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Preface

The visualization of complex conceptual structures is a key component of
support tools for many applications in science and engineering. A graph is
an abstract structure that is used to model information. Graphs are used
to represent information that can be modeled as objects and connections
between those objects. Hence, many information visualization systems re-
quire graphs to be drawn so that they are easy to read and understand.
In this book, we describe algorithms for automatically generating clear and
readable diagrams of complex conceptual structures.

Graph Drawing

Graph drawing addresses the problem of constructing geometric represen-
tations of graphs, networks, and related combinatorial structures. Geomet-
ric representations of graphs have been investigated by mathematicians for
centuries, for visualization and intuition, as well as for the pure beauty of
the interplay between graph theory and geometry. In the 1960s, computer
scientists began to use graph drawings as diagrams to assist with the un-
derstanding of software. Knuth’s 1963 paper on drawing flowcharts [Knu63]
was perhaps the first paper to present an algorithm for drawing a graph for
visualization purposes.

Today, the automatic generation of drawings of graphs finds many ap-
plications. Examples include software engineering (data flow diagrams,
subroutine-call graphs, program nesting trees, object-oriented class hierar-
chies), databases (entity-relationship diagrams), information systems (orga-
nization charts), real-time systems (Petri nets, state-transition diagrams),
decision support systems (PERT networks, activity trees), VLSI (circuit
schematics), artificial intelligence (knowledge-representation diagrams), and
logic programming (SLD-trees). Further applications can be found in other
science and engineering disciplines, such as medical science (concept lat-
tices), biology (evolutionary trees), chemistry (molecular drawings), civil

vii



viii PREFACE

engineering (floorplan maps), and cartography (map schematics).

Because of the combinatorial and geometric nature of the problems in-
vestigated, and the wide range of the application domains, research in graph
drawing has been conducted within several diverse areas, including discrete
mathematics (topological graph theory, geometric graph theory, order the-
ory), algorithmics (graph algorithms, data structures, computational geom-
etry, VLsI), and human-computer interaction (visual languages, graphical
user interfaces, software visualization). A bibliography on graph drawing
algorithms [DETT94] cites more than 300 papers. In addition, a large body
of related nonalgorithmic literature exists on geometric graph theory, topo-
logical graph theory, and order theory.

Various graphic standards are used for drawing graphs. Usually, ver-
tices are represented by symbols such as points or boxes, and edges are
represented by simple open Jordan curves connecting the symbols that rep-
resent the associated vertices. However, the graphic standards may vary de-
pending upon the application. For example, mathematicians seem to prefer
straight-line drawings, where edges are straight-line segments, while circuit
and database designers tend to use orthogonal drawings, where edges consist
of horizontal and vertical segments. Within a graphic standard, a graph has
infinitely many different drawings. The usefulness of a drawing of a graph
depends on its readability, that is, the capability of conveying the meaning
of the graph quickly and clearly. Readability issues can be expressed by
means of aesthetic criteria, such as the minimization of crossings between
edges, and the display of symmetries.

When drawing a graph, we would like to take into account a variety of
aesthetic criteria. For example, planarity and the display of symmetries are
often highly desirable in visualization applications. In general, in order to
improve the readability of a drawing, it is important to keep the number
of bends and crossings low. Also, to avoid wasting space on a page or a
computer screen, it is important to keep the area of the drawing small,
subject to resolution rules. In this scenario, many graph drawing problems
can be formalized as multi-objective optimization problems (e.g., construct a
drawing with minimum area and minimum number of bends and crossings).
Trade-offs are often necessary in order to solve these problems.

The purpose of this book is to describe fundamental algorithmic tech-
niques for constructing drawings of graphs.

Organization of the Book

This book is organized as follows:
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In Chapter 1, we review the terminology of graphs and their drawings.

Chapter 2 presents general graph drawing methods which use the algo-
rithms presented in the following chapters as building blocks. It provides
guidelines for employing the technical material of the book in the design of
graph drawing algorithms and systems.

Divide and conquer is an evergreen paradigm in computer science. In
Chapter 3, we apply this technique to draw trees and series-parallel digraphs.
Further, we show how to test the planarity of a graph using the divide and
conquer paradigm.

Chapter 4 presents techniques for constructing various types of drawings
of planar graphs. These techniques can also be used for drawing nonplanar
graphs by means of a preliminary planarization step.

In Chapter 5, we present methods based on network flow. These methods
construct a planar orthogonal drawing of an embedded planar graph, with
the minimum number of bends.

Flow techniques are used again in Chapter 6 to address the upward pla-
narity testing problem for digraphs. The study of upward planarity has fas-
cinating connections with fundamental graph-theoretic and order-theoretic
properties.

Incremental techniques are presented in Chapter 7. We apply these
techniques to the graph planarization problem, and also use them to design
algorithms suitable for interactive systems.

In Chapter 8, we focus on constructing orthogonal grid drawings of non-
planar graphs. The presented techniques are based first on orienting a given
graph, and then drawing it one vertex at a time, following the order of the
orientation.

Chapter 9 presents the hierarchical approach for creating polyline draw-
ings of digraphs with vertices arranged in horizontal layers. This approach
is highly intuitive and can be applied to any digraph.

Chapter 10 presents several techniques that take a graph as input and
simulate a system of forces reflecting user preferences. A straight-line draw-
ing results from an equilibrium configuration of the force system.

In Chapter 11, we present techniques for investigating the intrinsic limits
of graph drawing algorithms, both in terms of the quality of the output and
in terms of computational resources required.

In Appendix A, we tabulate upper and lower bounds on properties of
drawings of graphs, and discuss trade-offs between such properties.
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Use of the book

The reader is expected to be familiar with basic algorithms and data struc-
tures. This book is primarily written for three audiences.

e It can be used as a text in an advanced undergraduate or graduate
course in graph drawing. It can also provide material for courses that
devote part of their attention to graph drawing; these include compu-
tational geometry, graph algorithms, and information visualization.

o It provides researchers with techniques that cover the main themes
of the graph drawing area. Also, the chapters are relatively self con-
tained, allowing for independent reading.

¢ Engineers involved in creating user interfaces can use this book as a
fundamental source for effective and practical graph drawing methods.

Most chapters end with several exercises and problems. Many of them
are devoted simply to testing the level of knowledge of the material contained
in the chapter. Some exercises require more thought, and some are suitable
for advanced courses.
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Chapter 1

Graphs and Their Drawings

Relational structures, consisting of a set of entities and relationships be-
tween those entities, are ubiquitous in computer science. Such structures
are usually modeled as graphs: the entities are vertices, and the relation-
ships are edges. For example, most tools in software engineering use graphs
to model the dependency relationships between modules in a large program.
A module is represented as a vertex in a graph, and the dependency of
module ¢ on module b is represented by an edge from a to b. These graphs
are typically drawn as diagrams with text at the vertices and line segments
joining the vertices as edges. The example in Figure 1.1 represents the de-
pendencies between some of the modules in Xwindows. In the example in
Figure 1.2, the vertices represent documents in a hypertext system and the
edges represent hyperlinks between the documents.

Visualizations of relational structures are only useful to the degree that
the associated diagrams effectively convey information to the people that
use them. A good diagram helps the reader understand the system, but a
poor diagram can be confusing and misleading.

For example, consider the two diagrams in Figure 1.3. Both diagrams
represent a simple class hierarchy; vertices represent classes of geometric
shapes, and edges describe the is-a relation. Here each vertex represents a
class, and a directed edge between two vertices represents the class-subclass
relationship. Figure 1.3.a is more difficult to follow than Figure 1.3.b. This
book is about graph drawing algorithms, that is, methods to produce graph
drawings which are easy to follow.

The main purpose of this introductory chapter is to define the basic
concepts for graphs and graph drawings. Related material is available in
many textbooks:
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(Courtesy of F. Schreiber and C. Friedrich.)



Figure 1.2: A graph representing hypertext documents and links between
them. (Courtesy of M. Huang.)

e Graph theory is described in [BM76, Har72).

e Graph algorithms are illustrated in [Eve79, Gib80, Meh84, NC8S8,
Tar83).

e There are many textbooks describing basic data structures and al-
gorithms, for example, [CLR90, GT98). Also, a reference book for
computational complexity is [GJ79).

e Computational geometry provides a good background for many graph
drawing methods (see [PS85)).

A graph G = (V,E) consists of a finite set V of vertices and a finite
multiset E of edges, that is, unordered pairs (u,v) of vertices. The vertices
of a graph are sometimes called nodes; edges are sometimes called links,
arcs, or connections.

An edge (u,v) with v = v is a self-loop. An edge which occurs more
than once in E is a multiple edge. A simple graph has no self-loops and
no multiple edges. Most of this book deals with simple graphs, and unless
otherwise specified, we assume that graphs are simple.
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Quadrilateral Shape
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Figure 1.3: Two drawings of a class hierarchy.

The end-vertices of an edge e = (u,v) are u and v; we say that v and v
are adjacent to each other and e is incident to u and v. The neighbors of v
are its adjacent vertices. The degree of v is the number of its neighbors.

A directed graph (or digraph) is defined similarly to a graph, except
that the elements of E, called directed edges, are ordered pairs of vertices.
The directed edge (u,v) is an outgoing edge of u and an incoming edge of
v. Vertices without outgoing (resp. incoming) edges are called sinks (resp.
sources). The indegree (resp. outdegree) of a vertex is the number of its
incoming (resp. outgoing) edges.

A (directed) path in a (directed) graph G = (V,E) is a sequence
(v1,v9,...,v,) of distinct vertices of G, such that (v;,vi31) € E for 1 <
¢ < h—1. A (directed) path is a (directed) cycle if (vp,v1) € E. A directed
graph is acyclic if it has no directed cycles.

An edge (u,v) of a digraph is transitive if there is a directed path from
u to v that does not contain the edge (u,v). The transitive closure G’ of
a digraph G has an edge (u,v) for every path from u to v in G. In many
applications, a digraph conveys the same information as its transitive clo-
sure. For example, since class inheritance is transitive, the class diagram in
Figure 1.4 contains the same information as the one in Figure 1.3. However,



as Figure 1.4 shows, transitive edges can clutter a graph drawing and cause
confusion. In general. for many digraphs it is better to draw a reduced di-
graph (also called transitive reduction), that is, a digraph with no transitive
edges. Figure 1.3 shows the reduced digraph of the digraph in Figure 1.4.
Many of the algorithms in this book deal with reduced digraphs.

Quadrilateral

Rhombus Rectangle

Y

Point

Figure 1.4: The transititive closure of the class hierarchy in Figure 1.3.

A graph G' = (V',E’),such that V' CV and E'E C EN (V' x V'), isa
subgraph of graph G = (V,E). If E' = EN (V' x V') then G' is induced by
V.

A graph G = (V, E) with n vertices may be described by a nxn adjacency
matriz A whose rows and columns correspond to vertices, with Ay, = 1 if
(u,v) € E and A,, = 0 otherwise. Table 1.1 gives a description of a graph
(let us call it G,) as an adjacency matrix.

Another way to describe a graph is by giving a list L, of edges incident
to vertex u for each u € V. A description of a directed graph (let us call it
G>) in this format appears in Table 1.2.
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112]3[4(5
110j111]1]1
21110111170
311(111071]0
4111111)0{1
51170]0]1}0

Table 1.1: An adjacency matrix for graph G; shown in Figure 1.5.a.

Ly | (1,2), (1,5)
Ly | (2,3)
L3 | (3,4)
Ly | (4,5), (4,6)
Ls | (5,2)
L¢ | (6,3)

Table 1.2: Adjacency lists for digraph G5 shown in Figure 1.5.b.

In its simplest form, a drawing I" of a graph (digraph) G is a function
which maps each vertex v to a distinct point ['(v) and each edge (u,v) to a
simple open Jordan curve I'(u, v), with endpoints I'(z) and I'(v). A directed
edge is usually drawn as an arrow. Figure 1.5 contains a drawing of graph
G1 whose adjacency matrix is in Table 1.1, and a drawing of digraph G,
whose adjacency lists are in Table 1.2.

1 2 2 3
I
5 I
/N ‘
4 3 5 4
(a) (b)

Figure 1.5: (a) A drawing of graph G;. (b) A drawing of directed graph Go.

At this stage, it is important to note that a graph and its drawing are
quite different objects. In general, a graph has many different drawings: for
example, Figure 1.6 contains four drawings of the same graph. Nevertheless,
it is common to use the same terminology for an edge (u,v) and the drawing



I'(u,v) of the edge. The statement “the edge (u,v) is a straight line” is
usually interpreted as “the image I'(u,v) of the edge (u,v) is a straight
line.”

© G

Figure 1.6: Four planar drawings of the same graph.

A drawing T is planar if no two distinct edges intersect. A graph is
planar if it admits a planar drawing. All the drawings in Figure 1.6 are
planar.

Planar graphs play an important role in graph drawing for three reasons.
First, edge crossings reduce readability (see [BPCJ95, PCJ96, Pur97]). Sec-
ond, the theory of planar graphs has a long history in graph theory (see, for
example, [NC88]). This well-developed theory can be used to greatly sim-
plify topological concepts that otherwise would prove cumbersome. Third,
planar graphs are “sparse”: Euler’s formula [BM76] implies that a simple
planar graph with n vertices has at most 3n — 6 edges.

A planar drawing partitions the plane into topologically connected re-
gions called faces. The unbounded face is usually called the ezternal face.
A planar drawing determines a circular ordering on the neighbors of each
vertex v according to the clockwise sequence of the incident edges around v.
Two planar drawings of the same graph G are equivalent if they determine
the same circular orderings of the neighbor sets. A (planar) embedding is an
equivalence class of planar drawings and is described by the circular order of
the neighbors of each vertex. An embedded graph is a graph with a specified
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embedding. Note that a planar graph may have an exponential number of
embeddings.

As an example, the graph drawings in Figure 1.6.a, 1.6.b, and 1.6.c, all
have the same embedding. However, Figure 1.6.d has a different embedding.

The dual graph G* of an embedding of a planar graph G has a vertex for
each face of G, and an edge (f, g) between two faces f and g for each edge
that is shared by f and g. A planar graph and its dual graph are shown
in Figure 1.7. In a sense, the dual graph G* captures the combinatorial
information in the embedding. If two drawings have the same embedding
then they have the same dual graph. Note that a dual graph may have
self-loops and multiple edges.

Figure 1.7: Dual graph (shown with boxes for vertices and dashed lines for
edges) of an embedding of a planar graph.

A graph is connected if there is a path between u and v for each pair
(u,v) of vertices. A maximal connected subgraph of a graph G is a connected
component of G.

The notions of planarity and connectivity have an interesting interplay
in graph drawing, and we now review some stronger notions of connectivity.

A cutverter in a graph G is a vertex whose removal disconnects G. A
connected graph with no cutvertices is biconnected. The maximal bicon-
nected subgraphs of a graph are its blocks (sometimes called biconnected
components). Many algorithms in graph drawing assume that the input
graph is biconnected. This is seldom a serious restriction because it is rela-
tively easy to decompose a graph into its blocks (see [Eve79]). For example,



a graph is planar if and only if its blocks are planar. Biconnectivity notions
are illustrated in Figure 1.8.

a block

cutvertices

Figure 1.8: Cutvertices and blocks.

A pair (u,v) of vertices in a biconnected graph G is a separating pair if
the removal of u and v disconnects G. A separating pair is illustrated in
Figure 1.9. A biconnected graph without separating pairs is friconnected.
Triconnectivity is an important concept for geometry and topology. The
interplay between connectivity, geometry, topology, and planarity is illus-
trated by two important examples:

o The skeleton of a convex polyhedron is a planar triconnected graph.

o A planar triconnected graph has a unique embedding, up to a reversal
of the circular ordering of the neighbors of each vertex.

separating pairs

Figure 1.9: Separating pairs.

Finally, note that for each directed graph, we can construct the under-
lying undirected graph by forgetting the directions of the edges. This allows

the terminology of graphs to be applied to digraphs.



Chapter 2

Paradigms for Graph
Drawing

This chapter overviews general techniques for graph drawing, which use
the algorithms presented in the following chapters as building blocks, and
provides guidelines for employing the technical material of this book in the
design of graph drawing algorithms and systems.

In Section 2.1, we begin by defining fundamental issues in graph draw-
ing: the conventions used when drawing a graph, the aesthetic criteria for
a readable drawing, and the constraints that a drawing may be required to
satisfy. Section 2.2 shows how graph drawing algorithms have to consider
a priority among the desired features of a drawing. Sections 2.3-2.8 de-
scribe several approaches to the design of graph drawing algorithms. Each
approach is characterized by a sequence of elementary algorithmic steps.
Finally, Section 2.9 describes a general framework for graph drawing, where
each approach can be seen as a path in an inheritance hierarchy of graph
classes. This framework can be used as a model for a general graph drawing
system (see [BDL95, DLV95, DGST90, BBDL91)).

2.1 Parameters of Graph Drawing Methods

The obvious input to a graph drawing algorithm is a graph G that needs to
be drawn. Quite often, to draw G, it is important to take some combinatorial
properties of G into account. For example, we may know that G is directed
and acyclic, or that it is a tree, or that it is planar. More generally, we often
know the class of graphs to which G belongs. This knowledge is important
for at least two reasons.

11
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e Several graph drawing algorithms work only (or work better) on graphs
belonging to specific classes.

e The user often wants the drawing of G to illustrate the combinatorial
properties of G. For example, if G is an acyclic digraph, then it may
be important to draw all the edges following the same direction, to
emphasize the absence of cycles.

Thus the class of the input graph is an essential parameter of a graph drawing
methodology.

The need for another kind of parameter arises from observing that “the
best” drawing of a graph may not exist. Human perception of the same
drawing changes from individual to individual, and different application do-
mains require different kinds of drawings. Therefore another essential pa-
rameter of a graph drawing methodology is the particular environment in
which it will be used. Actually, words like “application domain” or “environ-
ment” are too abstract to be effectively used in our algorithmic framework.
Thus we need more specific concepts to describe the requirements of a nice
drawing. For this purpose, we introduce three important graph drawing con-
cepts. Namely, we describe the concept of drawing convention, the concept
of aesthetic, and the concept of constraint.

2.1.1 Drawing Conventions

A drawing convention is a basic rule that the drawing must satisfy to be
admissible. For example, in drawing data flow diagrams for a software en-
gineering application, we can adopt the convention of representing all the
vertices as boxes and all the edges as polygonal chains consisting of horizon-
tal and vertical segments. A drawing convention of a real-life application
can be very complex and can involve many details of the drawing. A list of
widely used drawing conventions is given below (see Figures 2.1 and 2.2):

Polyline Drawing: Each edge is drawn as a polygonal chain (Figure 2.1.a).

Straight-line Drawing: Each edge is drawn as a straight line segment
(Figure 2.1.b).

Orthogonal Drawing: Each edge is drawn as a polygonal chain of alter-
nating horizontal and vertical segments (Figure 2.1.c).

Grid Drawing: Vertices, crossings, and edge bends have integer coordi-
nates (Figure 2.1.d).
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Planar Drawing: No two edges cross (Figure 2.2.a).

Upward (resp. downward) Drawing: For acyclic digraphs, each edge is
drawn as a curve monotonically nondecreasing (resp. nonincreasing)
in the vertical direction (Figure 2.2.b). In particular, a drawing is
strictly upward (strictly downward) if each edge is drawn as a curve
strictly increasing (strictly decreasing) in the vertical direction.

(a) (b)

O

T

(c) )

Figure 2.1: Drawings of the same graph: (a) polyline; (b) straight-line;
(c) orthogonal; (d) polyline grid.

Straight-line and orthogonal drawings are special cases of polyline draw-
ings. Polyline drawings provide great flexibility since they can approximate
drawings with curved edges. However, edges with more than two or three
bends may be difficult to follow by eye. Straight-line drawings are common
in graph theory books and papers. Orthogonal drawings are widely used
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(a) (b)

Figure 2.2: Drawings of the same digraph: (a) planar polyline; (b) strictly
upward planar polyline.

in circuit schematics and software engineering diagrams (see Figure 2.3).
Planar drawings are aesthetically appealing (see Section 2.1.2) although not
every graph admits such a drawing. Acyclic digraphs representing hierar-
chical structures (e.g., PERT diagrams and class inheritance diagrams) are
frequently drawn upward.

2.1.2 Aesthetics

Aesthetics specify graphic properties of the drawing that we would like to
apply, as much as possible, to achieve readability. Commonly adopted aes-
thetics (see, e.g., the studies in [BFN85, PCJ96, STT81}) include:

Crossings: Minimization of the total number of crossings between edges.
Ideally, we would like to have a planar drawing, but not every graph
admits one.

Area: Minimization of the area of the drawing. The ability to construct
area-efficient drawings is essential in practical visualization applica-
tions, where saving screen space is of utmost importance. This aes-
thetic is meaningful only if the drawing convention adopted prevents
drawings from being arbitrarily scaled down (e.g., grid drawing, or
straight-line drawing where any two vertices have distance at least
one). The area of a drawing can be formally defined in different ways.
For example, we can define it as the area of the smallest convex poly-
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Figure 2.3: Examples of planar orthogonal drawings: (a) circuit schemat-
ics; (b) entity-relationship diagram.

gon covering the drawing (convex hull), or as the area of the smallest
rectangle with horizontal and vertical sides covering the drawing.

Total Edge Length: Minimization of the sum of the lengths of the edges.
This aesthetic is meaningful only if the drawing convention adopted
prevents drawings from being arbitrarily scaled down.

Mazimum Fdge Length: Minimization of the maximum length of an edge.
This aesthetic is meaningful only if the drawing convention adopted
prevents drawings from being arbitrarily scaled down.

Uniform Edge Length: Minimization of the variance of the lengths of the
edges.

Total Bends: Minimization of the total number of bends along the edges.
This aesthetic is especially important for orthogonal drawings, while
it is trivially satisfied by straight-line drawings.
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Mazimum Bends: Minimization of the maximum number of bends on an
edge.

Uniform Bends: Minimization of the variance of the number of bends on
the edges.

Angular Resolution: Maximization of the smallest angle between two
edges incident on the same vertex. This aesthetic is especially rele-
vant for straight-line drawings.

Aspect Ratio: Minimization of the aspect ratio of the drawing, which is
defined as the ratio of the length of the longest side to the length of
the shortest side of the smallest rectangle with horizontal and vertical
sides covering the drawing. A drawing with high aspect-ratio may not
be conveniently placed on a workstation screen, even if it has modest
area. Hence it is important to keep the aspect-ratio small. Ideally, we
would like to obtain small area for any aspect-ratio in a given range.
This would provide the flexibility of fitting drawings in arbitrarily
shaped windows.

Symmetry: Display the symmetries of the graph in the drawing. This
aesthetic can be further formalized by introducing a mathematical
model of symmetries in graphs and drawings (see, e.g., [Ead88, LNS85,
MAC™95)).

The above aesthetics are naturally associated with optimization prob-
lems. However, most of these problems are computationally hard (see Sec-
tion A.6). Thus many approximation strategies and heuristics have been
devised.

2.1.3 Constraints

While drawing conventions and aesthetics are general rules and criteria that
refer to the entire graph and to the entire drawing, constraints refer to
specific subgraphs and subdrawings. For example, we may want to draw
a PERT diagram such that the edges representing the activities of a given
critical path are aligned, or we may want to draw a data flow diagram such
that the vertices representing interfaces are placed on the outer boundary
of the drawing.

Constraints commonly used in visualization applications include (see
also [KMS94, TDBS8)):
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Center: Place a given vertex close to the center of the drawing.
Ezternal: Place a given vertex on the outer boundary of the drawing.
Cluster: Place a given subset of vertices close together.

Left-right (top-bottom) Sequence: Draw a given path horizontally
aligned from left to right (vertically aligned from top to bottom).

Shape: Draw a given subgraph with a predefined “shape.”

The graph drawing requirements of an application domain can be mod-
eled in terms of a drawing convention, a set of aesthetics, and a set of
constraints. These are fundamental parameters for graph drawing method-
ologies.

2.1.4 Efficiency

Finally, an important parameter of a graph drawing algorithm is its compu-
tational efficiency. Interactive applications require real-time response, even
for large drawings. Hence efficiency is a crucial issue for any practical graph
drawing technique.

2.2 Precedence Among Aesthetics

Most graph drawing methodologies are based on the following two simple
observations:

o Aesthetics often conflict with each other. Thus tradeoffs are unavoid-
able.

¢ Even if the adopted aesthetics do not conflict, it is often algorithmically
difficult to deal with all of them at the same time.

For example, suppose that the orthogonal grid drawing convention is
adopted. Figure 2.4 shows two drawings of the same graph, one minimizing
the number of bends and the other minimizing the number of crossings. For
this graph, there is no orthogonal grid drawing that minimizes both.

Figure 2.5 shows six different straight-line drawings of the cube graph.
Drawings (a) and (b) are planar, while the others are nonplanar. Depending
on the specific definition of area adopted (area of convex hull or area of
covering rectangle), the area of drawing (a) is larger than or equal to the
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(a) (b)

Figure 2.4: Two orthogonal grid drawings of the same graph: (a) with the
minimum number of bends; (b) with the minimum number of crossings.

area of drawing (b). Drawing (a) is “more symmetric” than drawing (b).
Among the nonplanar drawings (c)—(f), only drawings (c) and (d) are grid
drawings, since the crossings in drawings (e) and (f) do not have integer
coordinates. Drawing (f) minimizes the area of the convex hull over all
straight-line drawings with vertices placed at integer coordinates. However,
this drawing is clearly aesthetically unpleasing. Drawings (c) and (e) satisfy
external constraints for all the vertices and visually depict the existence
of a Hamiltonian cycle (simple cycle traversing all the vertices). Perhaps
the most satisfying drawing is (d) because it looks like the projection of a
three-dimensional cube.

From the above discussion, it follows that most graph drawing method-
ologies establish a precedence relation among aesthetics. Such a precedence
relation is suitable for certain applications and less suitable for others. The
approaches presented in the literature usually divide the graph drawing pro-
cess into a sequence of algorithmic steps, each one targeted to satisfy a cer-
tain subclass of aesthetics. The remainder of this chapter describes the
most popular of these methodologies.

2.3 The Topology-Shape-Metrics Approach

Orthogonal drawings are extensively used in real-life applications. For ex-
ample, entity-relationship and data flow diagrams, well known in informa-
tion systems, databases, and software engineering areas, are quite often
represented by orthogonal drawings. The topology-shape-metrics approach
(originally proposed in [BNT86, Tam87, TDB88]) has been devised to con-
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Figure 2.5: Six straight-line grid drawings of the cube graph.

struct orthogonal grid drawings, and allows homogeneous treatment of a
wide range of aesthetics and constraints.

The basic idea of the approach is that an orthogonal drawing is charac-
terized by three fundamental properties, defined in terms of the equivalence
classes they establish among orthogonal drawings of the same graph:

e Topology: Two orthogonal drawings have the same topology if one
can be obtained from the other by means of a continuous deformation
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that does not alter the sequences of edges contouring the faces of the
drawing.

e Shape: Two orthogonal drawings have the same shape if they have the
same topology, and one can be obtained from the other by modifying
only the lengths of the segments that compose the orthogonal chains
representing the edges, without changing the angles formed by them.

e Meirics: Two orthogonal drawings have the same metrics if they are
congruent, up to a translation and/or a rotation.

Each one of the above properties provides a description of the drawing
that is a refinement of the previous one. Namely, two drawings with the same
metrics also have the same shape, and two drawings with the same shape
also have the same topology. Note that the above concepts can be used
to characterize not only orthogonal drawings, but more generally polyline
drawings.

The hierarchical relationship between topology, shape, and metrics sug-
gests a stepwise generation of the drawing, where at each step an inter-
mediate representation is produced. Such a general strategy is depicted in
Figure 2.6.

e The planarization step determines the topology of the drawing, which
is described by a planar embedding. In this phase, the problem is
to reduce the number of edge crossings as much as possible. This
problem has been intensively investigated in the literature [CNS79,
JLM97, JM96, JTS86, Kan92b, NT84]. An example of a technique
that is used in practice is the following: a maximal planar subgraph of
the given graph is extracted; the “nonplanar” edges are successively
reinserted one by one, minimizing the number of crossings caused at
each insertion. Each crossing is represented by a dummy vertex so
that the final topology is planar.

e Given a topology, the orthogonalization step determines the shape of
the drawing. It outputs an orthogonal representation of the graph.
In an orthogonal representation, vertices do not have coordinates and
each edge (u,v) is equipped with a list of angles. Such a list describes
the bends that the orthogonal line representing (u,v) will have in the
final drawing. In the following chapters, we will see how an orthogonal
representation can be computed with a trade-off between number of
bends and time complexity.



2.3. THE TOPOLOGY-SHAPE-METRICS APPROACH 21

V=(1,2,3,4,5,6)
E={(1,4),(1,5),(1,6),
(2,4),(2,5),(2,6),

2
3,4),(3,5,3,6) lanarization

p
\ 6
1

orthogonali%
4

~8

compaction
\ \
6

Figure 2.6: The topology-shape-metrics approach for orthogonal grid draw-
ings. The dummy vertex introduced by the planarization step is represented
by a square.

e Given an orthogonal representation, the compaction step determines
the final coordinates of the vertices and of the edge bends. In this
phase, the problem is usually one of producing a drawing with the
minimum possible area. Also, dummy vertices introduced in the pla-
narization step are removed.

Observe that the above strategy determines an implicit order of impor-
tance among the aesthetics. Namely, the number of bends of the shape is
affected by the topology, and different choices of topology can lead to shapes
with a different number of bends (see Figure 2.4). However, the topology-
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shape-metrics approach gives higher priority to the minimization of crossings
than to the minimization of bends, since it performs the planarization step
before the orthogonalization step. Also, the shape and the topology affect
the area of the drawing, but the problem of minimizing the area is viewed
by the topology-shape-metrics approach as less important than the other
two aesthetics mentioned above. In the compaction step, other aesthetics
besides the area can be taken into account, such as the minimization of the
sum of the lengths of the edges or the minimization of the length of the
longest edge.

Several types of constraints can be taken into account within the
topology-shape-metrics approach. They can be subdivided into topologi-
cal, shape, and metrics constraints. In the planarization step we can, for
example, constrain certain vertices to stay on the external face of the draw-
ing or prevent edges from crossing a certain path. In the orthogonalization
step, we can require that a given path does not contain bends. We can also
impose specific sequences of bends on specific edges. In the compaction step,
we can constrain certain vertices to have larger or smaller coordinates than
other vertices. Of course, because of the order of the steps, the approach as-
signs higher priority to the satisfaction of topological constraints than shape
constraints, and higher priority to the satisfaction of shape constraints than
metrics constraints.

2.4 The Hierarchical Approach

Digraphs are widely used in applications to model dependency relationships.
Examples include PERT diagrams, i¢s-a hierarchies, and subroutine-call
graphs. Acyclic digraphs are usually represented with the polyline downward
(or upward) drawing convention. The hierarchical approach, originally pro-
posed in [STT81, Car80, War77a), is intuitive and is depicted in Figure 2.7.

e The layer assignment step receives an acyclic digraph as input and
first produces a layered digraph, where the vertices of G are assigned
to layers Ly, Ly,..., Ly, such that, if (u,v) is an an edge with v € L;
and v € Lj, then ¢ > j. In the final drawing, each vertex in layer
L; will have y coordinate equal to i. Next, the layered digraph is
transformed into a proper layered digraph, that is, a layered digraph
such that, if (u,v) is an an edge withu € L; and v € L;, theni = j+1.
This is done by inserting dummy vertices along the edges that span
more than two layers.
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Figure 2.7: The hierarchical approach. The dummy vertices introduced in
the layer assignment step are represented by squares.

e The crossing reduction step receives a proper layered digraph as input
and produces a new proper layered digraph in which an order is spec-
ified for the vertices on each layer. The orders of the vertices on the
layers determine the topology of the final drawing and are chosen in
such a way that the number of crossings is kept as small as possible.

e The z-coordinate assignment step receives a proper layered digraph
as input and produces final z coordinates for the vertices preserving
the ordering computed in the crossings reduction step. At the end of
this step, the final drawing is obtained by first representing each edge
with a straight-line segment and then by removing dummy vertices.
(In this way, long edges may be represented by polygonal lines.)

Observe that several aesthetics can be taken into account during the
z-coordinate assignment step; for example, the dummy vertices intro-
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duced in the long edges replacement step can be aligned to reduce the
number of bends in the final drawing, or vertices can be horizontally
displaced to emphasize symmetries of the digraph. Vertices can also
be packed to reduce the area of the drawing.

Figure 2.8: The hierarchical approach for general digraphs.

As was the case with the topology-shape-metrics approach, the hierar-
chical approach implicitly establishes an ordering among aesthetics through
the ordering of the steps.

The hierarchical approach can also be used when the input digraph is not
acyclic. Here, it is impossible to use the downward convention, but we can
try to minimize the number of edges that do not point downward. Observe
that in this case, downwardness is not satisfied everywhere and thus it is
no longer a drawing convention but rather an aesthetic. We can use the
following strategy (see Figure 2.8):

e Force the graph to be acyclic by temporarily reversing a subset of its
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edges. The set of reversed edges should be kept as small as possible
to obtain a drawing in which most of the edges follow the downward
direction.

e Apply the hierarchical approach to the acyclic digraph computed in
the previous step.

e Restore the original direction of the edges that were reversed.

The method can also be extended to undirected graphs by preprocessing
the graph to give it an artificial acyclic orientation. In this case, the layer
assignment step effectively simplifies the drawing problem by reducing the
size of its solution space.

The hierarchical approach supports several kinds of constraints. For
example, two given vertices on the same layer can be constrained to stay
close to each other in the crossing reduction step. Further, vertices on
different layers can be vertically aligned during the z-coordinate assignment
step.

2.5 The Visibility Approach

The visibility approach, originally proposed in [DT88, DT'T92b), is a general
purpose methodology for drawing graphs with the polyline drawing conven-
tion. It consists of the following three steps, illustrated in Figure 2.9.

e The planarization step. This is the same as in the topology-shape-
metrics approach presented in Section 2.3.

o The visibility step constructs a visibility representation of the graph.
In a visibility representation, each vertex is mapped to a horizontal
segment and each edge to a vertical segment. The vertical segment
representing the edge (u,v) has its endpoints on the horizontal seg-
ments representing vertices u and v, and does not intersect with any
other horizontal segment. Roughly speaking, a visibility representa-
tion can be considered a skeleton or a sketch of the final drawing.

e The replacement step constructs the final polyline drawing by replac-
ing the horizontal and vertical segments of the visibility representation
as follows. Each horizontal segment is replaced by a point representing
the corresponding vertex and each vertical segment is replaced by a
polygonal line representing the corresponding edge, roughly following
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Figure 2.9: The visibility approach.

the original vertical segment. There are several replacement strate-
gies that allow the construction of a planar polyline drawing from a
visibility representation.

The planarization step performed at the beginning makes the visibility
approach similar to the topology-shape-metrics approach in managing the
topology of the drawing. On the other hand, the visibility step is similar
to the layer assignment step of the hierarchical approach. In this sense, the
visibility approach can be considered as a meeting point of the previous two
approaches.
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The planarization step makes the crossing reduction the primary aes-
thetic of this approach. In the visibility step, it is desirable to minimize
the area of the visibility representation. In the replacement step, several
aesthetics can be taken into account. For example, there are replacement
strategies that attempt to minimize the number of bends, strategies that
emphasize symmetries of the graph, and strategies that balance, as much
as possible, the distribution of the vertices in the drawing. In Figure 2.10,
we show how different replacement strategies lead to different numbers of
bends or to more or less balanced drawings.

Figure 2.10: Different replacement strategies in the visibility approach.

Constraints can be imposed in each of the three steps. Topological con-
straints are identical to the ones of the topology-shape-metrics approach. In
the visibility and replacement steps, it is possible to impose constraints on
the vertical alignment of the vertices of selected paths, constraints on the
relative horizontal and vertical position of pairs of vertices, and constraints
on the shape of selected edges.

2.6 The Augmentation Approach

The augmentation approach is a further general purpose methodology for
drawing graphs in the polyline drawing convention. The basic idea is to add
edges and/or vertices to the graph to obtain a new graph with a stronger
structure and hence better drawability properties. The method consists of
the following three steps, illustrated in Figure 2.11.

e The planarization step. This is the same as in the topology-shape-
metrics approach presented in Section 2.3.
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Figure 2.11: The augmentation approach.

e The augmentation step adds a suitable set of edges (sometimes vertices

as well) to the planar embedding constructed in the previous step. to
obtain a maximal planar graph, that is, a planar graph whose faces
have three edges.

Since the quality of the drawing of a maximal planar graph, in terms
of area requirement and angular resolution, is usually affected by the
degrees of the vertices, it is typical to use augmentation techniques
that attempt to keep the degrees of the vertices as small as possible.

The triangulation drawing step constructs the final drawing by repre-
senting each face as a triangle. Dummy edges and vertices are removed.
There are several algorithms for this step. They all exploit the spe-
cial properties of triangulations, in that they are either based on the
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construction of interleaved spanning trees of the triangulation or on a
canonical vertex numbering scheme.

Of course, if the graph is planar, then the resulting drawing is straight-
line. Otherwise, the dummy vertices that represent crossings become bends.
As with other strategies, the initial execution of the planarization step makes
crossing reduction the most important aesthetic.

During the augmentation and the triangulation drawing steps, strategies
can be used to minimize the area, to maximize the angular resolution, and
to distribute the vertices uniformly. The augmentation approach is less
suitable than others for supporting constraints.

Since there are several algorithms for straight-line drawings of tricon-
nected or even of biconnected planar graphs, there are variations of the
augmentation step that do not produce a maximal planar graph, but rather
a planar graph with a certain level of connectivity.

2.7 The Force-Directed Approach

Force directed algorithms are intuitive methods for creating straight-line
drawings of undirected graphs. They are quite popular because their basic
versions are easy to understand and to code.

Roughly speaking, a force directed algorithm simulates a system of forces
defined on an input graph, and outputs a locally minimum energy configu-
ration. There are two ingredients of this approach:

e A force model. For example, we can assign a “spring” of “natural
length” ¢,, to each pair (u,v) of vertices. We can choose £,, to be the
number of edges on the shortest path between u and v. The spring
follows Hooke’s law, that is, it induces a force of magnitude dy, — €y,
on u, where d,, is proportional to the Euclidean distance between u
and v.

e A technique for finding a locally minimum energy configuration. Such
techniques are usually the product of numerical analysis rather than
combinatorial algorithms. Simple iterative methods are commonly
used.

Experience with force directed methods shows that they can produce
beautiful pictures of some of the well known graphs in Graph Theory (such
as the skeletons of the Platonic solids). They often give highly symmetric
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drawings, and tend to distribute vertices evenly. Further, a variety of con-
straints can be used. For example, special forces can be used to constrain a
set of vertices to lie within a given region, or on a given curve.

2.8 The Divide and Conquer Approach

The divide and conquer approach is widely adopted in graph drawing. The
basic idea is the following. First, the graph is split into subgraphs; second,
subgraphs are recursively drawn; and third, the drawing of the whole graph
is obtained by suitably gluing the drawings of the subgraphs. Of course,
the best results have been obtained for drawing graphs that can be easily
decomposed into subgraphs, such as trees or series-parallel digraphs.

In order to provide intuition into how divide and conquer can be used in
graph drawing, we outline an algorithm for drawing binary trees, originally
proposed in [RT81]. The algorithm consists of two main steps:

o The layer assignment step is analogous to the one of the hierarchical
approach. The vertices of the tree are assigned to layers in a way that
minimizes the distance from the root.

o The divide and conquer step is as follows:

If the tree consists of a single vertex, then trivially construct its draw-
ing on the assigned layer. If the tree is empty, then nothing has to be
done.

Else, (divide) recursively draw the left and right subtrees and (conquer)
place the two subdrawings obtained close to one another, so that the
horizontal distance between them is 2, where the root is positioned
halfway between the roots of the subtrees. (If one of the subtrees

is empty, the root is placed at distance 1 from the root of the other
subtree.)

The algorithm works with the planar straight-line grid drawing conven-
tion and takes into account several aesthetics. For example, the width of
the drawing is kept small, isomorphic subtrees have the same drawing, and
symmetric subtrees have mirror image drawings.

2.9 A General Framework for Graph Drawing

The graph drawing techniques we have surveyed in the previous sections
are representative of the large amount of existing methods, algorithms, and
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rules of thumb that have been developed in the graph drawing literature.
Furthermore, the main steps of such techniques can be mixed together in
several ways, giving rise to many possible methods and approaches. Hence,
in order to describe graph drawing algorithms in a more systematic way,
we use the framework originally proposed in [BDL95], which is based on a
taxonomy of classes of graphs and algorithms involved in graph drawing.
Such a taxonomy is justified in the following two simple observations.

e Let C be a class of graphs and let C’ be a subclass of C. An algo-
rithm that can be applied to the graphs of C can also be applied to
the graphs of C’. For example, an algorithm that can construct a visi-
bility representation of a biconnected graph works even if the graph is
triconnected; an algorithm that can draw an acyclic digraph can also
draw an acyclic bipartite digraph. Using object-oriented terminology,
we say that a graph drawing algorithm devised for C is inherited by C'.

e In the previous subsections, we have seen how a graph drawing method-
ology is a pipeline process of relatively independent functional steps.
Each step executes a single task and provides an input to the next
one. Inputs and outputs of the steps are always graphs, enriched more
and more with drawing features. Furthermore, it is possible to synthe-
size new methodologies by concatenating functional steps from other
methodologies.

The above observations lead to a taxonomy consisting of:

e An inheritance hierarchy of classes of graphs extensively studied in
graph drawing. The hierarchy also includes drawings and other inter-
mediate representations, such as planar embeddings and orthogonal
representations.

o A set of methods with the following characteristics.

— Each method is associated with a class of graphs and maps a
graph of that class into a graph of another class.

— A method associated with a class of graphs C is also associated
with all the descendant classes of C in the hierarchy.

A hierarchy including some of the most interesting classes of graphs for
graph drawing is depicted in Figure 2.12.
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Figure 2.12: Inheritance hierarchy of classes of graphs, drawings, and re-
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The most general class is Graph. The hierarchy is then structured ac-
cording to four main properties, connectivity, planarity, orientation, and ge-
ometry, which are associated with classes Connected Graph, Planar Graph,
Digraph, and Drawing.

A graph drawing algorithm can be viewed as a path whose vertices are
classes of the hierarchy and whose edges are methods transforming an in-
stance of a class into an instance of another class. The topology-shape-
metrics approach, illustrated in Figure 2.6, can be represented as shown in
Figure 2.13. Figures 2.14, 2.15, and 2.16 illustrate the hierarchical, visibil-
ity, and augmentation approaches. Note that the force-directed approach
does not consist of functional steps which produce graphs as intermediate
products. It can be thought of as a unique method connecting class Graph
and class Straight-Line Drawing.

Selected graph drawing methods presented in this book are summarized
in Table 2.1. For each method, we give the input class, the output class,
and the chapter where the method is described. Table 2.1 can be used as a
key to reading this book.

2.10 Beyond this Book

There are a number of subjects relevant to graph drawing that have not been
covered in this book. We list some of them and provide sample references.

Topological Graph Theory studies embeddings of graphs on surfaces. An
introduction to this subject can be found in [GT87]. A survey on algo-
rithms and lower bounds techniques for the crossing number problem
appears in [SSV95].

Geometric Graph Theory studies the combinatorial and geometric prop-
erties of straight-line drawings. See, for example, [KPTV97, PSS96].

Prozimity Drawings represent graphs by means of a geometric proximity
relation (e.g., a tree is drawn as the Euclidean minimum spanning tree
of a set of points). A survey of this area appears in [DLL95]. Recent
work includes [BLL96, ELL*95, EW96b, LT'TV97, LL97).

Intersection and Contact Drawings represent graphs by the intersec-
tion or contact relation among geometric figures. Relevant work in-
cludes [BK98, KM94, Moh93)].
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Method | Input Class Output Class Chapter |
Planarization graph embedded pla- 3,7
nar graph
Layered Tree Drawing tree straight-line 3
drawing
A-drawing series-parallel straight-line 3
digraph drawing
Cycle Removal digraph acyclic digraph 9
Layer Assignment acyclic digraph | layered digraph 9
Augmentation layered digraph | proper layered 9
digraph
Crossing Reduction proper layered | proper layered 9
digraph digraph
z-coordinate Assignment proper layered | polyline drawing 9
digraph
Augmentation planar graph planar st-graph 4
Tessellation planar st-graph | tessellation rep- 4
resentation
Visibility tessellation rep- | visibility repre- 4
resentation sentation
Vertex-Segment Replace- ] visibility repre- | polyline drawing 4
ment sentation
Vertex-Segment Replace- | visibility repre- | orthogonal 4
ment sentation drawing
Augmentation planar st-graph | reduced planar 4
st-graph
Dominance reduced planar | straight-line 4
st-graph drawing
Orthogonalization planar graph orthogonal rep- 4,5
resentation
Compaction orthogonal rep- | orthogonal )
resentation drawing
Augmentation digraph planar st-graph 6
Orientation and Pairing graph orthogonal 8
drawing
Interactive graph orthogonal 7
drawing
Force Directed graph straight-line 10
drawing

Table 2.1: Selected graph drawing techniques presented in this book.
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3D Drawings are becoming popular due to the availability of inexpen-
sive graphics hardware and software. Work on 3D graph drawing in-
cludes [CELR95, CGT96, ESW96, ESW97, GT97a, GTV96, HR94,
JJ95, LD95, PT97a, PV97, Rei95, RMC91).

Exzperimental Comparative Studies are important in order to evaluate
the practical performance of a graph drawing algorithm in visualiza-
tion applications. Examples include [BHR96, DGL*97a, DGL*97b,
Him95a, JEM 91, JM97, PST97).

Labeling the vertices and edges of a drawing is a difficult problem akin
to the classic problem of labeling cartographic maps. Specific work
includes [CMS95, KT97, KT98].

Declarative Approaches to graph drawing focus on constraint satisfac-
tion. Relevant work includes [Bra95, CG95, DFM93, HM97, Kam89b,
KMS94, KKR96, LE95, LES95, Mar91, RMS97).

Systems for constructing drawings of graphs include [BDL95, BGT97,
DLV95, EFK88, FLM95, FW95, Him95b, KN95, MAC™*95, MSG95,
San95, SM95a, VW95).



Chapter 3

Divide and Conquer

Some classes of graphs can be described recursively. For example, a rooted
binary tree is either empty or consists of a root and two rooted binary
trees. For such classes, elegant drawing algorithms that follow the divide-
and-conquer paradigm (see Section 2.8) have been devised.

In Section 3.1, we present divide-and-conquer techniques for drawing
trees. In Section 3.1.2, we describe the pioneering algorithm by Reingold
and Tilford [RT81), where vertices are placed on horizontal layers. Radial
drawings, where the layers are mapped to concentric circles, are discussed in
Section 3.1.3. They are studied in [Ead92, Ber81, Esp88, Kam88, MAS88]. In
Section 3.1.4, we study hv-drawings, where the edges are drawn as rightward
horizontal or downward vertical segments. Such drawings were introduced
by Shiloach [Shi76] and are further investigated in [CDP92, CP95b, ELL92,
ELL93, Kim95, Kim96, Tre96). By allowing leftward horizontal edges in hv-
drawings, we can obtain drawings with constant aspect ratio and small area
[CGKT97], as shown in Section 3.1.5. Other results on drawing trees are
discussed in Sections A.1 and A.4. In Section 3.2, we present the algorithm
of [BCD*94] for constructing straight-line upward drawings of series-parallel
digraphs.

A divide-and-conquer strategy can also be used to test whether a graph
is planar, as shown in Section 3.3, where we present the simple planarity
testing algorithm of [AP61, Shi69].

3.1 Rooted Trees

The importance of rooted trees as data structures and as representations
of simple hierarchies (such as organization charts, family trees, and parse

41
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trees) has ensured that a variety of specialized algorithms are available for
drawing rooted trees.

Since rooted trees can be viewed as directed acyclic graphs with all edges
directed away from the root, any technique for drawing directed acyclic
graphs, as described in later chapters, can be used to draw rooted trees.
However, the relatively simple structure of trees invites other approaches.

A natural way of representing rooted trees is to use a downward planar
drawing, that is, a planar drawing in which a child vertex is placed no higher
than its parent (see Section 2.1). In this section, we present four divide-and-
conquer techniques for constructing downward planar drawings:

e Layering (see Section 3.1.2)
¢ Radial drawing (see Section 3.1.3)
¢ hv-drawing (see Section 3.1.4)

¢ Recursive winding (see Section 3.1.5).

Firstly, however, we review the terminology of rooted trees.

3.1.1 Terminology for Trees

A tree is a connected acyclic graph. A rooted tree consists of a tree T' and a
distinguished vertex r of T. The vertex r is called the root of T.

Suppose that T is a rooted tree with root r. It is common to regard T
as a directed graph, with all edges oriented away from the root. Thus we
apply the terminology of digraphs to rooted trees. If (u,v) is a directed edge
in T, then u is the parent of v and v is a child of u. A leaf is a vertex with
no children.

An ordered tree consists of a rooted tree and, for each vertex v, an
ordering of the children of v. A binary tree is a rooted tree where each
vertex has at most two children. In most applications, binary trees are
ordered, and unless otherwise specified, we assume that a binary tree is
ordered. If vertex v in a binary tree has two children, then the first child of
a vertex is the left child, and the second child is the right child. If v has one
child, then it is either left or right.

If v is a vertex of T, then the subtree rooted at v consists of the subgraph
induced by all vertices on paths originating from v; and of course it has root
v. If T is binary and v has two children, then the subtree rooted at the left
(right) child of v is called left subtree (right subtree) of v.
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The depth of a vertex v of T is the number of edges of the path of T
between v and the root. The height of T is the maximum depth of a vertex
of T.

3.1.2 Layering

A simple and effective method for constructing a downward planar drawing
of a rooted tree T is to use the layering approach described in Section 2.4. We
can transform T into a proper layered digraph by placing each vertex with
depth ¢ into layer L;. In particular, the root of T is placed into layer Ly.
A layered drawing of a tree T is a drawing of T such that a vertex v of
depth ¢ has y-coordinate y(v) = —i. Note that a layered drawing is strictly
downward. Avoiding crossings in a layered drawing of 7" is merely a matter
of ensuring that if two vertices v' and v" are on the same layer L;, then their
left-to-right relative order is the same as the one of their parents v’ and u"
in layer L;_1, that is, z(v") — z(v') has the same sign as z(u") — z(u').

Since the definition of a layered drawing prescribes the y-coordinates of
the vertices, an algorithm for constructing such a drawing has to compute
only the z-coordinates. An obvious requirement is that a parent be placed
within the horizontal span of its children, possibly in a central position.
Note that in many applications, the ordering of the children of a vertex is
semantically significant (for example, in binary search trees), and hence the
left-to-right order of vertices for a specific layer may be fixed.

A simple method for assigning z-coordinates in a layered drawing of a
binary tree T is to set z(v) equal to the rank of v in the inorder traversal of
T, that is, if vertex v is the i-th vertex encountered in the inorder traversal
of T, then z(v) = i. An example of a drawing obtained with this method
is shown in Figure 3.1.a. This method does not typically yield aesthetically
pleasing drawings. In particular, two flaws are apparent:

e The drawing is usually much wider than necessary

o A parent vertex is not necessarily centered with respect to its children.

We give an informal description of Algorithm Layered- Tree-Draw for con-
structing a layered drawing of a binary tree T below. This algorithm is based
on a divide-and-conquer strategy that uses a local optimization heuristic at
each conquer step to reduce the width, and horizontally centers a parent
vertex with respect to its children.
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(a)

oy

(b)

(c)

Figure 3.1: Layered drawings of a binary tree T: (a) z-coordinates assigned
with an inorder traversal; (b) conquer step of Algorithm 3.1 Layered- Tree-
Draw; (c) z-coordinates assigned by Algorithm Layered- Tree-Draw.

An example of a drawing constructed by Algorithm 3.1 Layered-Tree-
Draw is shown in Figure 3.1.c. This algorithm yields aesthetically pleasing
drawings and has been widely used in visualization applications.

We say that two binary trees T” and T” are simply isomorphic if they
meet either one of two conditions:

e Both T" and T” are empty
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Algorithm 3.1 Layered-Tree-Draw
Input: a binary tree T
Output: a layered drawing of T

1. Base Case: If T consists of a single vertex, its drawing is trivially
defined.

2. Divide: Recursively apply the algorithm to draw the left and right
subtrees of T.

3. Conquer: Imagine that each subtree is drawn on a separate sheet
of paper. Move the drawings of the subtrees towards each other until
their horizontal distance becones equal to 2 (see Figure 3.1.b). Finally.
place the root r of T vertically one unit above and horizontally half
way between its children. If r has only one subtree, say the left one.

then place r at horizontal distance 1 to the right of its left child.
O

e The left subtrees of T' and T" are simply isomorphic and the right
subtrees of T' and T" are simply isomorphic.

Also, we say that two binary trees T' and T" are arially isomorphic if
the binary trees obtained from 7” and T", by exchanging the left and right
subtrees of each vertex, are simply isomorphic.

Because of its recursive formulation, Algorithm 3.1 Layered- Tree-Draw
draws a subtree of T independently from the rest of the tree. Thus, it
constructs drawings that have the following symmetry properties (see Fig-
ure 3.2):

¢ Simply isomorphic subtrees have congruent drawings. up to a transla-
tion

e Axially isomorphic subtrees have congruent drawings. up to a trans-
lation and a reflection around the y-axis.

As described above, Algorithm 3.1 Layered-Tree-Draw may not yield a
grid drawing, since the z-coordinates are in general rational numbers. If a
grid drawing is required, the conquer step can be modified by placing the
subtrees at horizontal distance either 2 or 3, such that the distance between
the roots of the subtrees is even.
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Figure 3.2: Isomorphisms and symmetries displayed by Algorithm 3.1
Layered- Tree- Draw.

Algorithm 3.1 Layered-Tree-Draw can be implemented by means of two
traversals of the input binary tree T. A first postorder traversal recursively
computes for each vertex v, the horizontal displacement of the left and
right children of v with respect to v. A second preorder traversal computes
the z-coordinates of the vertices by accumulating the displacements on the
path from each vertex to the root, and the y-coordinates of the vertices by
determining the depth of each vertex.

Special care is needed in order to implement the postorder traversal so
that it runs in linear time. The left contour of a binary tree T with height
h is the sequence of vertices vy, ..., vp such that v; is the leftmost_vertex of
T with depth i. The right contour is defined similarly. In the conquer step,
we need to follow the right contour of the left subtree and the left contour
of the right subtree.

In the postorder traversal, we maintain the invariant that after complet-
ing the processing of a vertex v, the left and right contours of the subtree
rooted at v are stored in linked lists.

Thus, processing vertex v in the postorder traversal can be done by
scanning the right contour of the left subtree of v (following the recursively
computed right contour list) and the left contour of the right subtree of v
(following the recursively computed left contour list). During the scan, we
accumulate the displacements of the vertices encountered on the left and
right contour and we keep track of the maximum cumulative displacement
at any depth.

Let T'(v) be the subtree rooted at v, and T" and T” be the left and right
subtrees of v, respectively. The left and right contour lists of T'(v) can be
constructed as follows (see Figure 3.3):

o If T’ and T" have the same height, then the left contour list of T'(v)
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is the same as the left contour list of 7' plus vertex v, and the right
contour list of T'(v) is the same as the right contour list of 7" plus v.

o If the height of T” is less than the height of T, the right contour list of
T(v) is the same as the right contour list of T". Let b’ be the height of
T’ and let u be the bottommost vertex on the left contour of T". Let
w be the vertex of the left contour of T” such that w has depth b/ + 1
in T". The left contour list of T'(v) consists of the concatenation of
vertex v, the left contour list of 7", and the portion of the left contour
list of T” beginning at vertex w. This case is illustrated in Figure 3.3.

e The case in which the height of 7" is greater than the height of T" is
analogous to the previous one, and can be illustrated with a mirror
image of Figure 3.3.

A crucial observation that proves the efficiency of the algorithm is that
it is necessary to travel down the contours of 7' and T only as far as the
height of the subtree of lesser height. Thus, the time spent processing vertex
v in the postorder traversal is proportional to the minimum of the heights
of 7" and T". The running time of the postorder traversal of tree T is given
by the following formula, where for a vertex v of T, we denote the height
of the left subtree of v by h/(v) and the height of the right subtree of v by
h”(v)

Y (1 + min{k'(v),h"(v)}) =n + ) min{k'(v), k" (v)}.

veT veT

We can visualize the sum

)" min{k'(v), " (v)}

veT
by connecting with new edges pairs of consecutive vertices with the same
depth (see Figure 3.4). The sum over all vertices v of the minimum height
of the subtrees of v is equal to the number of new edges added to the tree.
Each vertex is incident to at most one new edge on its right. Thus, the
number of new edges, and therefore the above sum, is no more than the
number of vertices of the tree.

Further details on Algorithm 3.1 Layered-Tree-Draw can be found

in [RT81]. We summarize the properties of Algorithm Layered- Tree-Draw
in the following theorem.

Theorem 3.1 LetT be a binary tree with n vertices. Algorithm 3.1 Layered-
Tree-Draw constructs a drawing I' of T in O(n) time, such that:
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(b)

Figure 3.3: Construction of the contour lists of subtree T'(v), from those of
the subtrees of v in the conquer step of Algorithm 3.1 Layered-Tree-Draw,
for the case when the left subtree T of v is shorter than the right subtree
T" of v: (a) contour lists of T’ and T"; (b) contour lists of T(v).

I’ is layered, that is, the y-coordinate of each vertez is equal to minus
the depth of the vertez

I’ is planar, straight-line, and strictly downward

I’ is embedding-preserving, that is, the left-to-right order of the children
of each vertez is preserved

Any two vertices of I' are at horizontal and vertical distance at least 1

The area of T is O(n?)

The z-coordinate of a parent with two children is the average of the
z-coordinates of its children
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Figure 3.4: Connecting, with new (dashed) edges, pairs of consecutive ver-
tices with the same depth in the analysis of the running time of Algorithm 3.1
Layered- Tree-Draw.

o Simply isomorphic subtrees have congruent drawings, up to a transla-
tion

o Acially isomorphic subtrees have congruent drawings, up to a transla-
tion and a reflection around the y-azis.

While Algorithm 3.1 Layered- Tree-Draw tries to reduce the width of the
drawing by performing a local horizontal compaction at each conquer step,
it does not always compute a drawing of minimal width. In Figure 3.5,
we show two drawings of the same binary tree that satisfy the properties
listed in Theorem 3.1. The drawing in Figure 3.5.a, constructed by Algo-
rithm Layered- Tree-Draw, is wider than the drawing in Figure 3.5.b, where
constructing a suboptimal drawing of a subtree has the effect of reducing
the overall width of the drawing. This example shows that any divide-and-
conquer strategy for layered drawings of binary trees that does not modify
the recursively computed drawing of a subtree cannot in general achieve
optimal width or area.

In fact, the problem of constructing a drawing of a binary tree that
satisfies the properties listed in Theorem 3.1 and has minimum width can
be solved in polynomial time by means of linear programming (see [SR83]).
However, if a grid drawing is also required, then the problem becomes NP-
hard [SR83].

Algorithm 3.1 Layered- Tree-Draw, as described above, works efficiently
and effectively for binary trees. It has a straightforward generalization to
rooted trees, as follows. Suppose that tree T has subtrees T}, T, ..., Tn.

Divide: Draw each subtree T; recursively.
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(a)

(b)

Figure 3.5: Example of nonoptimality of Algorithm 3.1 Layered- Tree- Draw:
(a) drawing constructed by the algorithm, where the shaded subtree is drawn
optimally; (b) a narrower drawing, where the shaded subtree is drawn non-
optimally.

Conquer: For i = 2,...,m, place the drawing of T; to the right of the
drawing of T;_,, and at horizontal distance 2 from it. Finally, position
the root half-way between the root of 77 and the root of Ty,.

The definition of simply and axially isomorphic can be extended in a
straightforward manner to rooted ordered trees. We have:

Theorem 3.2 Let T be a rooted tree with n vertices. There exists an algo-
rithm that constructs a drawing T of T in O(n) time, such that:

o [ is layered, that is. the y-coordinate of each verter is equal to minus
the depth of the vertex
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o T is planar. straight-line, and strictly downward

o I is embedding-preserving, that is. the left-to-right order of the children
of each vertex is preserved

Any two vertices of T are at horizontal and vertical distance at least 1

The area of the drawing is O(n?)

Simply isomorphic subtrees have congruent drawings. up to a transla-
tion.

The above algorithm for layered drawings of rooted trees gives reasonable
drawings in most cases. However, it suffers from a small imbalance problem,
as shown in the following example. Suppose that T has subtrees T), T3, T3,
and Ty, and that T3 and Ty are much larger than T and T3. Because the
algorithm works from left to right, it will place T> and T3 much closer to T}
than to Ty in the conquer step (see Figure 3.6).

Figure 3.6: Imbalanced layered drawing of a tree.

In order to solve the imbalance problem, we should space the drawings
of the subtrees of each vertex uniformly. For this purpose, we can either
modify the conquer step or perform a postprocessing [Til81, Wal90].
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3.1.3 Radial Drawing

In this section, we consider radial drawings of trees. A radial drawing is a
variation of a layered drawing where the root of the tree is placed at the
origin and layers are concentric circles centered at the origin. An example
of such a drawing is shown in Figure 3.7.

Figure 3.7: A radial drawing of a tree.

Simple algorithms for constructing radial drawings can be derived from
the algorithms for constructing layered drawings illustrated in Section 3.1.2.

In radial drawings, a subtree is usually drawn within an annulus wedge.
The layers Cy,Cs,...,Cr (where k is the height of the tree) of a radial
drawing and an annulus wedge are illustrated in Figure 3.8. Observe that
vertices of depth ¢ are placed on circle C; and the radius of C; is given by
an increasing function p(z).

The subtree rooted at a vertex v is drawn in annulus wedge W,. It
may seem reasonable to choose the angle of W, to be proportional to the
number £(v) of leaves in the subtree rooted at v; however, this strategy
can lead to edge crossings, because an edge with endpoints within W, can
extend outside W, and intersect other edges, as in Figure 3.9. To guarantee
planarity, we must restrict the vertices to a convex subset of the wedge.

Suppose that v lies on C;, and that the tangent to C; through v meets
Ci+1 at a and b as in Figure 3.10. The unbounded region F, in Figure 3.10,
formed by the line segment ab and the rays from the origin through a and
b, is convex. We restrict the subtree rooted at v to lie within the region F,.
The children of v are arranged on C;,; according to the number of leaves in
their respective subtrees. More precisely, for each child u of v, the angle 3,
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Annulus wedge
w

14

Figure 3.8: Parameters for radial drawings of trees.

Figure 3.9: Edge escaping from an annulus wedge.
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of Wy is

e ()

where (3, is the angle of W, and 7 is the angle formed by the region F,,. The

child u is placed on Cj at the center of W,. Note that cos(7/2) = ;ﬂ{%;.

Figure 3.10: Convex subset of the wedge.

From the previous description and from the algorithms illustrated in
Section 3.1.2, it is easy to derive an algorithm that runs in linear time
and gives a planar radial drawing. Further, the area of the drawings is
polynomial in the number of vertices of the tree, in the following sense.
Suppose that the minimum distance between two vertices is 1, the tree has
height h, and the maximum number of children of a vertex is dps. If we
assume that p(¢) is defined in such a way that the distance between any two
consecutive circles and the distance between the center and the first circle
is the same, then it is not difficult to show that the drawing occupies area
O(h%dp?). A tree which achieves this bound is illustrated in Figure 3.11.
Observe that circle C; has perimeter at least dps. It follows that its radius
is O(das). Because of the definition of p(i), the radius of the final circle Cj
is O(hdpg).

To make it easy to follow paths in the drawing, it is sometimes desirable
that specific paths follow a straight line. Although paths of vertices of
degree two are not always straight in radial drawings, long paths are mostly
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Figure 3.11: A radial drawing with large area.

straight: the only bends are at the second vertex and the the second to last
vertex in the path.

Radial drawings are frequently used for representing free trees, that is
trees without a prespecified root. For a free tree, a fictitious root is usually
selected to be a center of the tree, that is, a root such that the height of the
resulting rooted tree is minimized. A tree has either a unique center or two
adjacent centers. The center(s) can be found in linear time using a simple
recursive leaf pruning algorithm: if the tree has at most two vertices, then
we have found the center(s); if not, then we remove all the leaves. This step
is done recursively until we find the center(s). If the center is unique, then
it is placed at the origin. If there are two centers, then the edge which joins
them is drawn as a horizontal line of length one with midpoint at the origin.

There are many other radial algorithms for free trees, depending on the
choice of root, the radii of the circles, and the method for determining the
size of the annulus wedge (see [Ead92, Ber81, Esp88]). Bernard [Ber81]
has noted that a radial layout can be used to draw trees symmetrically.
It is comparatively easy to find automorphisms of trees (see, for exam-
ple, [AHU74)), and all automorphisms preserve the center and the depth
of vertices. Symmetry oriented radial algorithms are presented in [Kam88,
MASS]. Further, a free tree can be drawn using any algorithm for rooted
trees described in this chapter, by arbitrarily selecting a root as described
above.
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3.1.4 HV-Drawing

We define an hv-drawing (where “hv” stands for horizontal-vertical) of a
binary tree as a straight-line grid drawing such that, for every vertex u:

o A child of u is either horizontally aligned with and to the right of u,
or vertically aligned with and below u

o The bounding rectangles (smallest rectangles with horizontal and ver-
tical sides covering the drawings) of the subtrees of u do not intersect.

An example of an hv-drawing is shown in Figure 3.12. Is is easy to
see that an hv-drawing is planar, straight-line, orthogonal, and downward,
but not strictly downward (due to the presence of horizontal edges). Lisp
programs can be visualized with hv-drawings [Kam89b).

Figure 3.12: Example of an hv-drawing of a binary tree.

A general divide-and-conquer scheme for constructing hv-drawings works
as follows:

Divide: Recursively construct hv-drawings for the left and right subtrees.

Conguer: Perform either a horizontal combination or a vertical combina-
tion, as shown in Figure 3.13.
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Note that within this scheme, the embedding (order of the children)
is preserved only if the left subtree is placed to the left in a horizontal
combination and below in a vertical combination. Also, it is easy to verify
that because there are no rows or columns without vertices in a drawing
constructed with this scheme, the height and width are each at most n — 1,
where n is the number of vertices of the tree.
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Figure 3.13: A general divide-and-conquer scheme for constructing hv-
drawings: (a) horizontal combination; (b) vertical combination.

A simple specialization of the above scheme, called Algorithm 3.2 Right-
Heavy-HV-Tree-Draw, uses only horizontal combinations and places the
largest (in terms of number of vertices) subtree to the right of the smallest
subtree (see Figure 3.14). Note that Algorithm Right-Heavy-HV-Tree-Draw
is not embedding-preserving.
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Algorithm 3.2 Right-Heavy-HV-Tree-Draw
Input: a binary tree T
Output: an hv-drawing of T

1. Recursively construct drawings of the left and right subtrees of T
2. Using a horizontal combination, place the subtree with the largest

number of vertices to the right of the other one. -
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Figure 3.14: Example of an hv-drawing constructed by Algorithm 3.2
Right-Heavy-HV-Tree-Draw.

Lemma 3.1 Let T be a binary tree with n vertices. The height of the draw-
ing of T constructed by Algorithm 3.2 Right-Heavy-HV-Tree-Draw is at most
log n.

Proof: Let w be the lowest vertex in the drawing of T'. Since only horizontal
combinations are used to construct the drawing, each vertical edge has unit
length. Hence, the height of the drawing is equal to the number of vertical
edges encountered when traversing the path from w to the root. Since the
largest subtree is always placed to the right of the smallest one, each vertical
edge (u,v) traversed going from w to the root is such that the subtree rooted
at the parent vertex u is at least twice the size of the subtree rooted at the
child vertex v. Hence, the number of vertical edges traversed is at most
logn. ]

It is easy to implement Algorithm 3.2 Right-Heavy-HV- Tree-Draw to run
in linear time. Hence, we have:

Theorem 3.3 Let T be a binary tree with n vertices. Algorithm 3.2 Right-
Heavy-HV-Tree-Draw constructs a drawing I' of T in O(n) time, such that:
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o I' is an hv-drawing (and thus it is downward, planar, grid, streight-
line, and orthogonal)

o The area of T is O(nlogn)

The width of T is at most n — 1

The height of T is at most logn

Simply and azially isomorphic subtrees have congruent drawings, up
to a translation.

While the drawings constructed by Algorithm 3.2 Right-Heavy-H V- Tree-
Draw have a good area bound, they are penalized by a poor aspect ratio
(2(n/logn)). Clearly, in order to get a better aspect ratio, we should use
both horizontal and vertical combinations. For example, given a complete
binary tree T, we can use horizontal combinations for subtrees rooted at
vertices of odd depth, and vertical combinations for subtrees rooted at ver-
tices of even depth. It can be shown that the resulting drawing, shown in
Figure 3.15, has O(n) area and constant aspect ratio. The proof is left as
an exercise.

For a general binary tree, it is possible to construct an hv-drawing that
is optimal with respect to one of several cost measures, including area and
perimeter, in O(n?) time (see [ELL92, ELL93)).

Algorithm 3.2 Right-Heavy-HV-Tree-Draw can be extended to general
rooted trees as shown in Figure 3.16. We have:

Theorem 3.4 Let T be a rooted tree with n vertices. There ezists an algo-
rithm that constructs a drawing T of T in O(n) time, such that:

e I' is downward, planar, grid, and straight-line

o The area of T is O(nlogn)

The width of T is at most n — 1

The height of T is at most logn

Simply and azially isomorphic subtrees have congruent drawings, up
to a translation.
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Figure 3.15: An hv-drawing of a complete binary tree with linear area and
constant aspect ratio.

largest subtree

Figure 3.16: Extension of Algorithm 3.2 Right-Heavy-HV-Tree-Draw to
general rooted trees.

3.1.5 Recursive Winding

In this section, we present an algorithm called Algorithm Recursive- Wind-
Tree- Draw, which constructs planar downward straight-line grid drawings of
binary trees with constant aspect ratio and almost linear area.

Let T be a binary tree with n vertices and £ leaves, and assume, without
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loss of generality, that each internal vertex has two children; thus, n = 2£—1.
Given an internal vertex v, let left(v) and right(v) denote the left child and
the right child of v respectively. Let T(v) denote the subtree of T rooted
at v, and let £(v) be the number of leaves in T'(v). Arrange the tree so that
¢(left(v)) < €(rght(v)) at every vertex v. This preprocessing requires only
linear time.

Let H(¢) and W (¢) denote the height and width of the drawing of a
binary tree T with ¢ leaves constructed by Algorithm Recursive- Wind- Tree-
Draw. Also, let t(£) be the running time of the algorithm. Fix a parameter
A > 1 to be determined later. If £ < A, then we draw the tree using
Algorithm Right- Heavy-HV-Tree-Draw. This provides the base case

H(0) < log, ¢, W(£) < A, and t(€) = O(A) if £ < A.

Vi

Figure 3.17: Structure of binary tree T.

Suppose that £ > A. Define a sequence {v;} of vertices as follows: v is
the root and v;4y = right(v;) for i = 1,2.... Let £ > 1 be an index with
€(vr) > € — A and €(vry1) < € — A. Such an index can be found in O(k)
time, since £(vy), £(v2),... is a strictly decreasing sequence of integers. Let
T; = T(left(v;)) and ¢; = €(left(v;)) fori =1,...,k—1. Let T' = T(left(vk)),
T" = T(right(vi)), ¢ = €(left(vi)), and € = €(right(vi)). Note that £ < ¢,
since T is right heavy. (See Figure 3.17.) Note also the following properties:

Lbo+--+4_1=0-lun)<A

2. max{f, "} = f(vpy) < £ — A.
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We distinguish three cases:

o If k = 1 (see Figure 3.18.a), the subtrees T' and T" are drawn recur-
sively below v;.

o If k = 2 (see Figure 3.18.b), the subtree T; is drawn with Algorithm
Right-Heavy-HV-Tree-Draw, while the subtrees T’ and T” are drawn
recursively.

o If k > 2 (see Figure 3.18.c), the subtrees T}, ...,T;_» are drawn from
left to right with Algorithm Right-Heavy-HV-Tree-Draw. The subtree
T}, is drawn according to Algorithm Right-Heavy-H V- Tree-Draw and
then reflected around the y-axis and rotated by m/2 clockwise. The
subtrees 7" and T" are drawn recursively below T1,...,Ti_2 and then
reflected around the y-axis so that their roots are placed at upper
right-hand corners. (This is the “recursive winding.”)

In any case, the following bounds hold on the height and width of the
drawing and on the running time of the algorithm

< max{H(¢)+ H(€") +logs A+3, &, — 1}
W) < max{W()+1, W("), &, +---+ €2} +logy &y +1
< HO)Y+ )+ 0 +--- + €y +1).

By property 1, we can write the recurrences as

< max{H(¢') + H(€") + O(log A), A}
W) < max{W(), W("), A} +O(log A)
< ) + (") + O(A).

By property 2, we can see that W () = O([¢/A] log A + A).
Lemma 3.2 Suppose A > 1 and f is a function such that
e ift< A, then f(£) <1

o if £ > A, then f(€) < f(€) + f(€") + 1 for some €',¢" < € — A with
+0" <.

Then f(€) < 4¢/A—1 for all £ > A.
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Figure 3.18: Three cases in the recursive winding drawing method depend-
ing on the value of index k: (a) k=1; (b) k=2; (c) k> 2.

Proof: The proof is by induction. Suppose the theorem is true for ¢' and
2", If both ¢',¢" < A, then f(€) <3< 4¢/A—1.1f¢ < A and £" > A, then

FO) < FE@)Y+2 < 40"/A+1 < 4(€— A)JA+1 < 4¢/A—1.
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Finally, if both ¢, ¢" > A, then
f(€) < FOY+f(E")+1 < 40/A+40"JA-1 < 4/A-1.
(]

Using the fact that £'+¢” < £, we obtain that H(¢) = O([¢/A] log A+ A)
and t(£) = O([¢/A]A) by a direct application of Lemma 3.2. By setting
parameter A as A = /llog, ¢, we obtain the following theorem:

Theorem 3.5 Given a binary tree T with n vertices, Algorithm Recursive-
Wind-Tree-Draw constructs a drawing I’ of T in O(n) time, such that:

e I' is planar, downward, grid, straight-line, and orthogonal
e The area of T is O(nlogn)

e The height and width of T are O(v/nlogn) and thus the aspect ratio
of T is O(1).

An example of a drawing constructed by Algorithm Recursive- Wind-
Tree-Draw is shown in Figure 3.19.

3.2 Series-Parallel Digraphs

In this section, we illustrate how the divide and conquer drawing paradigm
can be used to construct straight-line upward drawings of series-parallel
digraphs. Such digraphs arise in a variety of problems such as scheduling,
electrical networks, data-flow analysis, database logic programs, and circuit
layout.

A series-parallel digraph is recursively defined as follows (see Figure 3.20):
An edge joining two vertices is a series-parallel digraph (see Figure 3.20.a).
Let G’ and G” be two series-parallel digraphs. Their series and parallel
compositions, defined below, are also series-parallel digraphs.

¢ The series composition of G’ and G” is the digraph obtained identifying
the sink of G’ with the source of G” (see Figure 3.20.b).

e The parallel composition of G’ and G” is the digraph obtained by
identifying the source of G’ with the source of G” and the sink of G’
with the sink of G” (see Figure 3.20.c).

This defines the digraphs that are sometimes called two terminal series-
parallel digraphs [VTL82]. A series-parallel digraph has one source and one
sink that are called its poles. In the following, we deal with series-parallel
digraphs not containing multiple edges.
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(c)

Figure 3.19: Drawing of a binary tree T constructed with the recursive
winding technique: (a) input binary tree T'; (b) subtrees T}, T», 7, and T"
of T; (c) drawing constructed by the algorithm. (Courtesy of J. Stewart.)

3.2.1 Decomposition of Series-Parallel Digraphs

A series-parallel digraph G is naturally associated with a binary tree T,
which is called decomposition tree of G (also known as parse tree). The
nodes of T are of three types, S-nodes, P-nodes, and Q-nodes. Tree T is
defined recursively as follows: If G is a single edge, then T consists of a
single Q-node. If G is created by the parallel composition of series-parallel
digraphs G’ and G", where G' is to the left of G” in the embedding, let T"
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Figure 3.20: Recursive definition of a series-parallel digraph: (a) base case;
(b) series composition; (c) parallel composition.

and T" be the decomposition trees of G’ and G”, respectively. The root of T
is a P-node and has left subtree T' and right subtree T". If G is created by
the series composition of series-parallel digraphs G’ and G", where the sink
of G' is identified with the source of G”, let T’ and T" be the decomposition
trees of G’ and G”, respectively. The root of T is an S-node and has left
subtree T' and right subtree T".

The leaves of T are Q-nodes. The internal nodes of T are either P-nodes
or S-nodes. We further require that if a node g and its parent v have the
same type, then p is a right child of v. Note that T is unique and that the
order of the children of the P-nodes of T defines the embedding of G. If G
has n vertices, then T has O(n) leaves and hence O(n) nodes. Recall that
unless otherwise specified, we assume that graphs are simple, that is. with
no self-loops and no multiple edges.

In the following, we assume that the decomposition tree T of the series-
parallel digraph G currently being considered is given as part of the input.
If not, it can be constructed in O(n) time using the algorithm of [VTL82}.

We now define the components of series-parallel digraphs (see Fig-
ure 3.21). Let C be a maximal path of nodes of T of the same type,
and let yp,- -, pr be the children of the nodes of C that are not on C, from
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left to right. A closed component of G is either G or the composition of
the series-parallel digraphs associated with a subsequence p;, ..., u;, where
1 < i< j < kand C consists of S-nodes. An open component of G is
either G or the composition of the series-parallel digraphs associated with a
subsequence p;, ..., u;, minus its poles, where 1 < ¢ < j < k. A component
is either an open or a closed component.

Figure 3.21: The digraph induced by vertices in box 1 is a closed compo-
nent, the digraph induced by vertices in box 2 is not a closed component,
and the digraph induced by vertices in box 3 is an open component.

3.2.2 An Algorithm for Drawing Series-Parallel Digraphs

It can be shown that there exist embedded series-parallel digraphs such that
any of their upward straight-line drawings that preserves the embedding
requires exponential area (see Table A.4). Thus, to have drawings with
polynomia] area it is (in general) necessary to change the given embedding.
We recall that an edge (u,v) of a digraph is transitive if there is directed
path from vertex u to vertex v distinct from (u,v). Now we show how to
construct an upward drawing of a series-parallel digraph G with n vertices.
We present an algorithm that modifies the embedding of a given series-
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parallel digraph so that each transitive edge (u,v) is embedded on the right
side of all the components whose poles are © and v. We call such embedding
right-pushed. A variation of this algorithm constructs upward grid drawings
with O(n?) area.

Algorithm 3.3 A-SP-Draw recursively produces a drawing I of G inside a
bounding triangle A(T) that is isosceles and right-angled (see Figure 3.22).
Hereafter we denote the sides of A(I') with base (hypotenuse), top side,
and bottom side. In a series composition, the subdrawings are placed one
above the other. In a parallel composition, the subdrawings are placed
one to the right of the other and are deformed in order to identify the
end vertices, guaranteeing that their edges do not cross. The algorithm is
described here at a level of detail that allows to deal with its correctness. In
Subsection 3.2.3, it will be detailed further for the time complexity analysis.

Note that in the parallel composition of G’ with G”, the rightmost edges
(s',u) and (v,t') incident on the source and sink of G’, respectively, are
drawn as vertical segments (see Figure 3.22.c), as can be shown by a simple
inductive argument. Also, in the parallel composition of G’ with a single
edge (the transitive edge (s,t) from the source to the sink of G), we move
the source and sink of G’ to the intersection of a vertical line (at least one
unit) to the right of A(G'), and the lines extending the top and bottom sides
of A(G'), respectively (see Figure 3.22.d).

The correctness of Algorithm 3.3 A-SP-Draw can be shown with an
inductive argument based on maintaining the following invariants:

1. The drawing is contained inside an isosceles right-angled triangle A(T'),
such that the base is vertical, and the other sides are to the left of the
base.

2. The source and sink are placed at the bottom and top corner of A(T'),

respectively. The left corner of A(I') is not occupied by any vertex
of G.

3. For any vertex u adjacent to the source s of G, the wedge formed at u
by the rays with slopes —m/2 and —7 /4 does not contain any vertex
of G except s.

4. For any vertex v adjacent to the sink ¢t of G, the wedge formed at v
by the rays with slopes 7/2 and w/4 does not contain any vertex of G
except t.

Clearly, by the construction of the algorithm, Invariants 1 and 2 are al-
ways satisfied. Invariant 3 is immediately satisfied after a series composition



3.2.

SERIES-PARALLEL DIGRAPHS 69

Algorithm 3.3 A-SP-Draw

1
2

3

4

Input: a series-parallel digraph G
Output: a strictly upward planar straight-line grid
drawing " of G

. Compute a decomposition tree of G.

. Modify the embedding of G into a right-pushed embedding and per-
form the corresponding modifications on T

. If G consists of a single edge, it is drawn as a vertical segment of
length 2, with bounding triangle having width 1 (see Figure 3.22.a).

. If G is the series composition of G’ and G”, the two drawings I'' and I'
of G’ and G" are first recursively produced (divide). Then (conquer),
I' is drawn by translating I'” so that the sink of G’ is identified with
the source of G” (see Figure 3.22.b). The bounding triangle A(T)
is obtained by extending the bottom side of A(I’) and the top side
of A(T™).

. If G is the parallel composition of G’ and G”. The two drawings I/
and I' of G' and G" are first recursively produced (divide). Then
(conquer), we consider the rightmost edges (s’,u) and (v,?') incident
on the source and sink of G', respectively (see Figure 3.22.c). Let
Ay be the line through u that is parallel to the bottom side of the
bounding triangle of G’, and ), be the line through v that is parallel
to the top side of the triangle of G. Also, let x be the vertical line
extending the base of the triangle of G'. The prescribed-region of I’
is the region to the right of x, A,, and A,. First, we translate I' so
that its triangle is anywhere inside the prescribed-region of I''. Then,
we identify the sources and sinks of G’ and G” by moving them to the
intersections s and ¢ of the base of A(G") with the lines extending the

top and bottom sides of A(G’), respectively. o
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Figure 3.22: Illustration of Algorithm 3.3 A-SP-Draw: (a) a series-parallel
digraph consisting of a single edge; (b) a series composition; (c) a parallel
composition; (d) a parallel composition with a transitive edge.

since the relative position of the vertices of G’ remains unchanged, and all
the vertices of G" are placed above the sink of G'.

Lemma 3.3 Let v’ and u” be neighbors of the source verter s, such that
edge (s,u') is to the left of edge (s,u"), and let Ay and A\y» be the rays of
slope —m /4 originating at u' and u”, respectively. If Invariant 3 holds, then
Aur i below Ay (see Figure 3.23).

Proof: By Invariant 1, all the outgoing edges of the source have slope greater
than 7/2. Therefore, if \,s were above Ay, then «” would be contained
in the angle formed at v’ by A, and the upward ray, which contradicts
Invariant 3 for vertex ' O
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Figure 3.23: Illustration of Lemma 3.3.

In a parallel composition, G” is placed to the right of G’ and above
line A,, where (s,u) is the rightmost edge incident on the source s. By
Lemma 3.3, no vertex of G” is inside the wedges associated with the neigh-
bors of s. Hence, Invariant 3 is satisfied for G if it was satisfied for G’
and G”. Invariant 4 can be proved in a similar manner as Invariant 3.

Invariants 3 and 4 guarantee that s and ¢t can be moved as described
in the algorithm without creating crossings. Thus, every composition step
yields a correct drawing provided the components are correctly drawn.

As described in the algorithm, the series composition of two components
exactly determines the relative positions of IV and T by identifying the
source of G” with the sink of G’. However, we have not described how to
exactly place I' with respect to I in the parallel composition. We simply
said that T'” has to be placed inside the prescribed-region of I'.

A possible placement consists of translating I'” in the prescribed region so
that the left corner of A(I'"') is placed on the base of A(I'). By Invariant 2,
there is no vertex of G” on this corner. This placement yields drawings with
O(n?) area. In order to prove this bound, we observe that the base of the
resulting triangle is always equal to the sum of the bases of the triangles of
I and I'". Therefore, the length of the base of A(T') is equal to 2m, where
m is the number of edges of G. Hence, the area of T is proportional to m?.

Since Algorithm 3.3 A-SP-Draw operates recursively on the decomposi-
tion tree T of G, isomorphic components are drawn in the same way. Hence,
we conclude:
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Theorem 3.6 Let G be a series-parallel digraph with n vertices. Algo-
rithm 3.3 A-SP-Draw produces a strictly upward planar straight-line grid
drawing of G with O(n?) area such that isomporphic components of G have
drawings congruent up to a translation.

3.2.3 Detailed Description of Algorithm A-SP-Draw

Let T be a drawing produced by Algorithm 3.3 A-SP-Draw. We describe
the bounding triangle A(T") by means of the length b of its base. Further,
we describe the prescribed region of I' by means of parameters b’ and b”,
where ' is the vertical distance between A, and the bottom corner of A(T’),
and V" is the vertical distance between A, and the top corner of A(T") (see
Figure 3.24.a).
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Figure 3.24: b, V/, b", Az, and A,.
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The root of each subtree T of the decomposition tree of G is labeled
by Algorithm 3.4 A-SP-Label with the values of b(T), ¥'(T), and b"(T)
that describe the bounding triangle and the prescribed region of the upward

drawing of the digraph whose decomposition tree is T'.

Algorithm 3.4 A-SP-Label
Input: decomposition tree T of a series-parallel di-

graph G
Output: labeling of each subtrees of T with values b,
b, and b"

if the root of T is a Q-node
then
(T)=b"(T)=¥(T)=2
else
let T} and T3 be the left and right subtrees of T, respectively
for eachi=1,2 do
A-SP-Label(T;)
if the root of T is an S-node
then (see Figure 3.24.c)
b(T) = b(T1) + b(T>)
¥(T) = b'(Th)
b'(T) = V' (T2)
else (the root of T is a P-node, see Figure 3.24.d)
b(T) =b(Th) + b(T2) + 24,
if T is a Q-node (transitive edge)
then
'(T) =¥ (T) = b(T)
else
V' (T) =b(Th) + 24, — Ay + V'(T2)
V(T) =V(Ty) + 4,

O

In Algorithm 3.4 A-SP-Label, we assume that in each parallel composi-
tion the displacement of A(I'2) with respect to the base of A(I';) is denoted
by means of A, and A, where A; is the horizontal distance between A(TY)
and A(T'z), and A, is the vertical distance between the line extending the

bottom side of A(I';) and the left corner of A(I'z) (see Figure 3.24.b).

In order to place A(I'2) into the prescribed region of I';, we must have
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Az > 0 and ¥(Ty) < A, < b(Th) — b'(Th), where T is the decomposi-
tion tree of G). Observe that in the variation of Algorithm A-SP-Draw of
Theorem 3.6, Ay = 0 and A, can be set equal to b'(T}).

The labeled decomposition tree obtained in this way is an implicit rep-
resentation of the drawing. In fact, it is easy to obtain a drawing of the
nested triangles by traversing the tree in preorder. Finally, it is immediate
to compute the coordinates of the vertices from the drawing of the nested
triangles.

Theorem 3.7 Algorithm 3.4 A-SP-Draw can be implemented to run in
O(n) time and space on a series-parallel digraph with n vertices.

3.3 Planarity Testing

In this section, we present a simple planarity testing algorithm due to [AP61,
Gol63, Shi69], which is based on the divide and conquer paradigm, and we
show how it can be implemented to run in O(n3) time. A sophisticated
algorithm inspired by this method, due to Hopcroft and Tarjan [HT74], tests
planarity in optimal O(n) time. Linear-time planarity testing methods based
on different techniques are given in [BL76, ET76, dFR82, LEC67]. Planarity
testing algorithms can also be modified to compute a planar embedding if
the graph is found to be planar. (See, e.g., [CNAO85, HT74].) A detailed
description of the Hopcroft-Tarjan planarity testing algorithm [HT74] that
covers important implementation issues is given in [MM96].

As a first application of the divide and conquer principle, we observe
that:

o A graph is planar if and only if all its connected components are planar

e A connected graph is planar if and only if all its biconnected compo-
nents are planar.

Thus, via a preliminary decomposition into connected and biconnected com-
ponents, we can restrict our attention to the problem of testing the planarity
of a biconnected graph.

As a further application of the divide-and-conquer paradigm to planarity
testing, we use a cycle to decompose a biconnected graph into “pieces.” Let
G be a biconnected graph. Given a cycle C of G, we partition the edges of
G not in C into classes as follows: two edges are in the same class if there is
a path between them that does not contain any vertex of C. The subgraph
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induced by the edges in a class is called a piece of G with respect to C. In
Figure 2.2, we show a graph G and a cycle C. The pieces of G with respect
to C are shown in Figure 3.26.

C

Figure 3.25: A biconnected graph G and a cycle C.

There are two types of pieces:

¢ Pieces consisting of a single edge between two vertices of C (for exam-
ple, pieces P, Py, P;, and Ps in Figure 3.26)

o Pieces consisting of a connected graph with at least one vertex not
in C (for example, pieces P; and P in Figure 3.26).

The vertices of a piece P that are in C are called the attachments of P.
Cycle C induces a circular ordering on the attachments of P. Since G is
biconnected, a piece has at least two attachments.

A cycle C of G is said to be separating if it has at least two pieces, and
is called nonseparating if it has one piece. Of course, if G = C, then C has
no pieces. In the example of Figure 3.25, cycle C is separating since it has
six pieces, while in the example of Figure 3.27.a, cycle C is nonseparating.

Lemma 3.4 Let G be a biconnected graph and let C be a nonseparating
cycle of G with piece P. If P is not a path, then G has a separating cycle
C’ consisting of a subpath of C plus a path of P between two attachments.

Proof: Let u and v be two attachments of P that are consecutive in the
circular ordering, and let ¥ be a subpath of C between « and v that does
not contain any attachment of C. Since P is connected, there is a path 7
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(b)

(a)

)

<

(f)

Figure 3.26: Pieces of the graph G of Figure 3.25 with respect to cycle C.
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(2)

Figure 3.27: (a) Nonseparating cycle C. (b) Separating cycle C' obtained
from C as shown in the proof of Lemma 3.4.

in P between u and v. Let C' be the cycle obtained from C by replacing
~ with 7. We have that v is a piece of G with respect to C'. If P is not a
path, let e be an edge of P not in #. There is a piece of C' distinct from v
containing e. Thus, if P is not a path, then C' has at least two pieces and
is thus a separating cycle of G. a

If the graph G is planar, then in any planar drawing of G each piece is
drawn either entirely inside C or entirely outside C. We say that two pieces
of G, with respect to C, interlace if they cannot be drawn on the same side
of C without violating planarity. In the example of Figure 3.26, pieces P
and P, interlace, while P; and P4 do not interlace.

The interlacement graph of the pieces of G, with respect to C, is the
graph whose vertices are the pieces of G and whose edges are the pairs of
pieces that interlace. In Figure 3.28.b, the interlacement graph I of the
pieces of the graph G of Figure 3.25, with respect to cycle C, is shown.
Clearly, if G is planar, then the interlacement graph of the pieces of G,
with respect to C, must be bipartite, since two pieces that interlace must be
drawn on opposite sides of C. For example, since the graph G of Figure 3.25
is planar (as shown in Figure 3.28.a), the graph I interlacement graph of the
pieces of G with respect to C is bipartite. Now let G be the graph shown
in Figure 3.29.a with a separating cycle C. The interlacement graph I of
the pieces of G, shown in Figure 3.29.b, is not bipartite. Thus, we conclude
that G is nonplanar.
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Ps
Pg
P,
Ps
P,
P
Py
(b)

Figure 3.28: (a) A planar drawing of the graph G of Figure 3.25, where
pieces Py, P4, and P; are drawn inside cycle C and the other pieces are drawn
outside. (b) The interlacement graph I of the pieces of G with respect to
cycle C. Graph I is bipartite, with P,, P4, and P on one side, and the
other pieces on the other side.

The following recursive characterization of planarity for biconnected
graphs is intuitive. We leave its proof as an exercise.

Theorem 3.8 A biconnected graph G with a cycle C is planar if and only
if the following two conditions hold:

e For each piece P of G with respect to C, the graph obtained by adding
P to C 1is planar.

e The interlacement graph of the pieces of G, with respect to C, is bi-
partite.

Algorithm 3.5 Planarity-Testing is based on Theorem 3.8 and uses a
divide-and-conquer strategy that decomposes a graph into pieces with a
separating cycle. Since by Euler’s formula a planar graph with n vertices
has at most 3n — 6 edges, we can assume that the input to the algorithm is
a graph with at most 3n — 6 edges. Otherwise, a simple preprocessing based
on counting the edges will detect that the graph is nonplanar. Also, we
assume that a separating cycle C of G is given. Otherwise, by Lemma 3.4,
we can conclude that G is planar.
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Figure 3.29: (a) A graph G and a cycle C with seven pieces. (b) The
interlacement graph I of the pieces of graph G with respect to C. Graph I
is not bipartite, which implies that G is not planar.

The correctness of Algorithm 3.5 Planarity-Testing is based on
Lemma 3.4, Theorem 3.8, and on the fact that the graph P’, obtained by
adding a piece P to cycle C, is biconnected.

As an example, consider a run of Algorithm 3.5 Planarity- Testing on the
graph G of Figure 3.25 and on the cycle C shown in Figure 3.25. The pieces
computed in Step 1 are shown in Figure 3.26. The graph obtained by adding
cycle C to piece P;, and its separating cycle to be used in the recursive
invocation of the algorithm is shown in Figure 3.30. It is straightforward to
verify that all the graphs recursively tested for planarity in Step 2 are planar.
The interlacement graph I computed in Step 3 is shown in Figure 3.28.a.
This graph is bipartite. Thus, the algorithm returns “planar” in Step 5.

We now analyze the running time of Algorithm 3.5 Planarity-Testing.
In Step 1, we determine the pieces of G with respect to C by computing the
connected components of the graph obtained from G by removing C. This
step takes O(n) time. In Step 2, computing the cycle C' of P' can be done
in time proportional to the number of edges of P’. Note that by Lemma 3.4,
C' is a separating cycle of P'.

In Step 3, the interlacement graph I of the pieces can be computed in
O(n?) time as follows. Given a piece P with attachments vy, ..., vg_1, in
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Algorithm 3.5 Planarity- Testing
Input: a biconnected graph G with n vertices and at
most 3n — 6 edges, and a separating cycle C

of G
Output: an indication of whether G is planar

1. Compute the pieces of G with respect to C.
2. For each piece P of G that is not a path (of one or more edges):

(a) let P’ be the graph obtained by adding P to C

(b) let C' be the cycle of P' obtained from C by replacing the por-
tion of C between two consecutive attachments with a path of P
between them

(c) apply the algorithm recursively to graph P' and cycle C'. If P!
is nonplanar, return “nonplanar”.

3. Compute the interlacement graph I of the pieces.
4. Test whether I is bipartite. If I is not bipartite, return “nonplanar”.

5. Return “planar”.
O

this order around C, we label the vertices of v with integers in the range
[0,2n — 1], where vertex v; is labeled with 27, and the vertices between v;
and ;) mod & are all labeled with 2i + 1. This labeling can be done in O(n)
time. Note that a piece @ does not interlace with P, if and only if, all its
attachments have labels in a range of the type [2i,2i + 2 mod 2n]. Hence,
testing whether @ interlaces with P takes time proportional to the number
of attachments of Q. Since the number of attachments of a piece is no more
than one plus the number of its edges, and all the pieces are edge disjoint, we
conclude that determining the pieces that interlace with a given piece takes
O(n) time. Therefore, computing the interlacement graph I takes O(n?)
time. The interlacement graph I has O(n) vertices and O(n?) edges. Hence,
testing whether it is bipartite in Step 4 takes O(n?) time.

The above analysis indicates that a recursive invocation of Algorithm 3.5
Planarity-Testing takes O(n?) time. In order to determine the overall run-
ning time, we observe that the number of recursive invocations of the al-
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Figure 3.30: Graph obtained by adding cycle C to piece P, of Figure 3.26.a,
and its separating cycle C' to be used in the recursive invocation of Algo-
rithm 3.5 Planarity- Testing.

gorithm is O(n) by associating with each invocation a distinct edge of G.
Namely, for a given invocation of the algorithm on a graph P’ and a cycle
C', we select an edge e of C’ that is not in the cycle C of the parent in-
vocation. Such an edge always exists because of the way C’ is constructed
from C in Step 2. We conclude that the running time of Algorithm 3.5
Planarity- Testing is O(n®).

3.4 Exercises

1. Let T be a binary tree. Consider the algorithm that assigns z-
coordinates to the vertices of T, using the rank of each vertex in a
postorder traversal of T, and y-coordinates according to the depth of
each vertex. Show that the resulting straight-line drawing is planar.
What is the area of the drawing? What happens if instead of a pos-
torder traversal we use a preorder traversal? Can the algorithm be
extended to rooted ordered trees?

2. Let T be a binary tree. For each vertex v of T, we set z(v) equal to
the rank of v in a preorder traversal of T, and y(v) equal to the rank
of v in a postorder traversal of T. Show that the resulting straight-line
drawing is planar and strictly downward. Show that a vertex v is in the
subtree rooted at vertex u if and only if z(v) > z(u) and y(v) < y(u).
Does the drawing display isomorphisms of subtrees? What is the area
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of the drawing? Modify the assignment of coordinates to produce a
more compact drawing.

Prove that the area of drawings constructed by Algorithm Layered-
Tree-Draw is O(n2). Are there trees that require that much area?

Let T be a binary tree with n vertices. For a vertex u of T, we denote
the height of the left subtree of u by h'(u) and the height of the right
subtree of u by h”(u). Prove by induction that

>~ (1+ min{h'(u), 2" (w)})

ueT
is O(n).

Write the details of Algorithm Layered-Tree- Draw to show that it runs
in O(n) time.

. Give a formal proof that the area of radial drawings, constructed as

shown in Section 3.1.3, is O(h2das2), where h is the height of the tree
and djs is the maximum degree.

. Consider the hv-drawing I of a complete binary tree T with n vertices

obtained by using horizontal combinations for subtrees rooted at ver-
tices of odd depth, and vertical combinations for subtrees rooted at
vertices of even depth (see Figure 3.15). Prove that I" has height and
width at most /n.

Give a complete proof of Theorem 3.4.

Draw the series-parallel digraph of Figure 3.21 using Algorithm A-SP-
Draw.

Show how to modify Algorithm A-SP-Draw so that for any two vertices
v and w, there is a directed path from v to w if and only if z(v) < z(w)
and y(v) < y(w). What is the area of the resulting drawing?

Give a proof of Theorem 3.8.

Show that a biconnected graph that has no separating cycle is planar.
What does such a graph look like?

Let P be a piece of a biconnected graph with respect to a cycle C:
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(a) Show that if P has at least one vertex, the number of edges of P
is greater than or equal to the number of attachments of P.

(b) Show that the graph obtained by adding P to C is biconnected.

Give a detailed proof of the correctness of Algorithm 3.5 Planarity-
Testing.

Write the details of the complexity analysis of Algorithm 3.5 Planarity-
Testing.

Show how to modify Algorithm 3.5 Planarity-Testing so that it also
computes an embedding when the graph is found to be planar.



Chapter 4

Planar Orientations

Several algorithms for drawing planar graphs are based on numbering the
vertices and then orienting the edges from low numbered vertices to high
numbered vertices, such that the resulting digraph, called a planar st-graph,
has certain special properties. In this chapter, we present techniques for
constructing various types of drawings of planar st-graphs, and then show
how to apply them to general planar graphs. These techniques can also
be used for drawing general nonplanar graphs by means of a preliminary
planarization step (see Section 7.1).

In addition to previously defined straight-line, orthogonal, and polyline
drawings, this chapter also considers two geometric representations of planar
graphs, called visibility representation and tessellation representation.

We say that two horizontal segments of a given set are visible if they can
be joined by a vertical segment that does not intersect any other horizontal
segment. A visibility representation (see Figure 4.1.a and Figure 4.1.b) of
a graph draws vertices as nonoverlapping horizontal segments, and edges as
vertical segments drawn between visible vertex-segments. It is easy to see
that a graph that admits such a representation must be planar.

A tessellation representation of an embedded planar graph draws each
vertex, edge, and face as a rectangular tile with horizontal and vertical sides,
such that:

e There is no intersection between the interiors of any two tiles

¢ The boundaries of two tiles intersect if and only if the corresponding
objects in the graph are incident

e The union of all the tiles is a rectangle.

~w
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(a)

(b)

(o)

Figure 4.1: (a) A graph G, (b) a visibility representation of G, and (c) a
tessellation representation of G where the vertex- and face-tiles are (degen-
erate) line segments.

Figure 4.1.c depicts a tessellation representation such that the vertex- and
face-tiles are (degenerate) line segments.

This chapter is organized as follows.

In Section 4.1, we review preliminary concepts on numberings of acyclic
digraphs, related to topological sorting and longest paths. Detailed coverage
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can be found in any book on graph algorithms.

Section 4.2 introduces planar st-graphs and presents several of their basic
properties. Planar st-graphs were introduced in conjunction with an early
planarity testing algorithm [LEC67). Also, they are closely related to the
covering digraphs of planar lattices [KR75]. Their properties are further
explored in [RT86, TP90, TTS86).

The construction of tessellation representations is described in Section 4.3
[TT89b]. A tessellation representation provides a floorplan for other types
of drawings. Extensions of tessellation representations to other surfaces are
studied in [MR95).

Algorithms for visibility representations are described in Sections 4.4
and 4.5. The study of visibility representations was originally motivated by
VLSI layout and compaction problems [OvW78, SLM*84]. Visibility rep-
resentations are studied in [DT88, DHVMS83, KW89, LMW87, RT86, T'T86,
TT91, Tho84, Wis85). Algorithms that construct visibility representations
in linear time are given in [DT88, Kan93, RT86, TT86). A complete com-
binatorial characterization of three classes of visibility representations and
linear time drawing algorithms are presented in [TT86]. An algorithm for
constructing constrained visibility representations, that is, representations
where the edges of given paths are aligned, is presented in [DTT92b).

Polyline drawings derived from visibility representations are covered in
Section 4.6 [DT88, DTT92b]. Related work on planar polyline drawings
appears in [Kan96, Kan92a).

In Section 4.7, we consider dominance drawings of planar st-graphs,
which display the transitive closure by means of the geometric dominance
relation among points in the plane [DTT92a]. The combinatorial underpin-
nings of dominance drawings are in the two-dimensionality of planar lat-
tices [KR75]. Dominance drawings can be used to construct planar polyline
drawings with fewer bends than those derived from visibility representations.
Related work appears in [EGHL193].

In Section 4.8, we show how to extend the drawing methods above for
planar st-graphs to undirected planar graphs by means of preliminary ori-
entation and augmentation steps.

Planar orthogonal drawings derived from visibility representations are
covered in Section 4.9 [TT89b). Other linear-time algorithms for construct-
ing planar orthogonal drawings are presented in [BK94, Kan96]. A quadratic-
time algorithm for minimizing bends in orthogonal drawings is presented in
Chapter 5 (see [Tam87)).

Results on planar straight-line drawings are briefly reviewed in Sec-
tion 4.10.
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Figure 4.2: A polyline drawing created by the GDToolkit software. (Cour-
tesy of W. Didimo, A. Leonforte, and M. Patrignani.)

A drawing of a 100 vertices digraph, constructed with a variation of the
techniques presented in this chapter, is shown in Figure 4.2. It is a polyline
drawing derived from a visibility representation.
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4.1 Numberings of Digraphs

Let G be a digraph with n vertices and m edges. A topological numbering
of G is an assignment of numbers to the vertices of G, such that, for every
edge (u,v) of G, the number assigned to v is greater than the one assigned
to u (i.e., number(v) > number(u)). A topological sorting is a topological
numbering of G, such that every vertex is assigned a distinct integer between
1 and n. A topological sorting is not unique unless G has a directed path
that visits every vertex. It is easy to show that the following statements are
equivalent:

e G is acyclic
e G admits a topological numbering

¢ G admits a topological sorting.

If the edges of digraph G have nonnegative weights associated with them,
a weighted topological numbering is a topological numbering of G, such that,
for every edge (u,v) of G, the number assigned to v is greater than or equal
to the number assigned to u plus the weight of (u,v) (i.e., number(v) >
number(u) + weight(u,v)). The numbering is optimal if the range of numbers
assigned to the vertices is minimized (i.e., max, number(v) — min, number(u)
is minimum). An example of an optimal weighted topological numbering is
shown in Figure 4.3.

There are simple algorithms for computing a (weighted) topological num-
bering or sorting that run in O(n + m) time. For example, an optimal
weighted topological numbering can be obtained by assigning, to each ver-
tex, a number equal to the number of edges on a longest directed path
terminating at that vertex. Note that all source vertices of G are assigned
number 0.

The definitions of topological numbering and sorting adopted in this
chapter are related to the concept of layering used in Chapter 9.

4.2 Properties of Planar Acyclic Digraphs

An acyclic digraph with a single source s and a single sink ¢ is called an
st-graph. Let G be an st-graph. The following simple properties hold:

¢ Given a topological numbering of G, every directed path of G visits
vertices with increasing numbers.
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(a)

Figure 4.3: (a) Example of a planar st-graph G; (b) weights on the edges
of G; (c) optimal weighted topological numbering of G.



4.2. PROPERTIES OF PLANAR ACYCLIC DIGRAPHS 91

e For every vertex v of G, there exists a simple directed path P from s
to ¢ that contains v.

The first property holds because of the way the numbers correspond with
the direction of the edges. If the second property is not true, then it is easy
to see that either there is no path from s to v or there is no path from v
to ¢t. This implies that either s is not the only source, or t is not the only
sink.

A planar st-graph is an st-graph that is planar and embedded with ver-
tices s and ¢ on the boundary of the external face. It is customary to visualize
a planar st-graph as drawn upward in the plane (with s at the bottom and
t at the top), as shown in Figure 4.3.a. Since a planar st-graph is acyclic,
it admits a topological ordering (numbering). Note that a planar st-graph
with n vertices without multiple edges has at most 3n — 6 edges, since it is
a planar graph (see Chapter 1).

Let G be a planar st-graph and F be its set of faces (recall that G is
embedded). We conventionally assume that F contains two representatives
for the external face: the “left external face” s*, which is incident with the
edges on the left boundary of G, and the “right external face” t*, which
is incident with the edges on the right boundary of G. For each edge e =
(u,v), we define orig(e) = u and dest(e) = v. Also, we define left(e) (resp.
right(e)) to be the face to the left (resp. right) of e.

We define a digraph G*, associated with planar st-graph G, as follows
(see Figure 4.4):

e The vertex set of G* is the set F of faces of G (recall that F has two
representatives, s* and t*, of the external face)

e For every edge e # (s,t) of G, G* has an edge e* = (f,g) where
f =left(e) and g = right(e).

Note that digraph G* may have multiple edges (as in the example of Fig-
ure 4.4). Also, G* is an orientation of the dual graph of G, except that the
dual vertex associated with the external face is duplicated, such that the
left (resp. right) external face inherits the outgoing (resp. incoming) edges.
It is customary to visualize G* with a rightward drawing. It is easy to see
that digraph G* is a planar st-graph.

As we will show next, each face of G consists of two directed paths with
common origin and destination, and the incoming (outgoing) edges of each
vertex of G appear consecutively (see Figure 4.5). The face separating the
incoming from the outgoing edges in the clockwise direction is called left(v)
and the other separating face is called right(v) (see Fig. 4.5).
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Figure 4.4: Digraph G* (represented with dashed lines) associated with
the planar st-graph G (drawn with solid lines) of Figure 4.3.a.

left(e) e left(v) v right(v)

Figure 4.5: Properties of planar st-graphs.
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Lemma 4.1 Each face f of G consists of two directed paths with common
origin, called orig(f), and common destination, called dest(f).

Proof: Let f be a face of G for which the lemma is not true. Then there
exists a (directed) edge (w, u) on the boundary of f directed from dest(f) to
orig(f). Using the above facts, there are directed paths P, from u to ¢t and
P, from s to w (see Figure 4.6). Additionally, since G is planar, these two
paths must intersect at a common vertex z. But then G has a cycle that
consists of: the edge (w, u), the subpath of P, from u to z, and the subpath
of P, from z to w. This contradicts the fact that G is a planar st-graph. O

Figure 4.6: Directed paths in the proof of Lemma 4.1.

A planar st-graph has another important property.

Lemma 4.2 The incoming edges for each vertez v of G appear consecutively
around v, and so do the outgoing edges.

Proof: The lemma holds trivially for the vertices s and ¢. Let v be any other
vertex, and suppose, for a contradiction, that there are edges (v, wp), (w1, v),



94 CHAPTER 4. PLANAR ORIENTATIONS
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Figure 4.7: Directed paths in the proof of Lemma 4.2.

(v,ws), and (w3, v), appearing in clockwise order around v (see Figure 4.7).
By the facts above, there are directed paths Py and P> from wp and ws to ¢,
respectively. Similarly, there are directed paths P; and P; from s to w; and
ws, respectively. But then one of P> and Py must intersect either P; or Pj
at a common vertex z. This implies that G has a cycle, which contradicts
the fact that G is a planar st-graph. O

This property is in a sense dual to the property described in Lemma 4.1.
If we imagine a vertex in the middle of a face f and the dual edges that cross
the edges of graph G, then all the incoming edges of f appear consecutively
around f, and so do all the outgoing edges.

There is an interesting interplay between the paths of digraphs G and
G*, as expressed by the following lemma.

Lemma 4.3 For any two faces f and g of a planar st-graph G, ezactly one
of the following holds:

e G has a directed path from dest(f) to orig(g)
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o G has a directed path from dest(g) to orig(f)
e G* has a directed path from f to g
e G* has a directed path from g to f.

orig(g)

Figure 4.8: Directed paths in the proof of Lemma 4.3.

Proof: Consider a topological sorting of G and, without loss of generality,
assume that the number of dest(f) is less than the number of orig(g). The
path from a vertex v of G that always takes the leftmost outgoing edge is
called the leftmost path from v. The rightmost path is similarly defined.
Consider the leftmost and rightmost paths of G from dest(f) to ¢, and call
them P, and P, respectively. Similarly, let P; and P4 be the leftmost and
rightmost paths of G from orig(g) to t. If there is a directed path of G from
dest(f) to orig(g), the lemma holds. Otherwise, either P, crosses P; (at a
common vertex), or P, crosses Py. For simplicity, we consider only the first
case. Let z be the first vertex at which P; and P; intersect (see Figure 4.8).
Clearly, from Lemma 4.2, every edge incident to any vertex in path P,, from
the right side of P», is incoming. The same happens for the edges incident
to P; from the left. Because of the construction of G*, there is a directed
path in G* from f to g. (]

It turns out that the above lemma is a special case of a more general
property of planar st-graphs, which establishes a total order on the vertices,
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edges, and faces. An element of V U E U F is called an object of planar
st-graph G. We extend the above definitions of orig(-), dest(:), left(-),
and right(-) to all the objects of G, as follows. For a vertex v, we define
orig(v) = dest(v) = v. For a face f, we define left(f) = right(f) = f.

Lemma 4.4 For any two objects 01 and o2 of a planar st-graph G, ezactly
one of the following holds:

e G has a directed path from dest(o1) to orig(o2)
o G has a directed path from dest(o2) to orig(o;)
e G* has a directed path from right(o;) to left(oz)

e G* has a directed path from right(o2) to left(o,).

4.3 Tessellation Representations

A tile is a rectangle with sides parallel to the coordinate axes. A tile can be
unbounded or can degenerate to a segment or a point. Two tiles are hori-
zontally (vertically) adjacent if they share a portion of a vertical (horizontal)
side. The coordinates of a tile 8 will be denoted by z1(8), zr(8), y5(8), and
yr(9).

Let G be a planar st-graph. As usual, we denote the sets of vertices,
edges, and faces of G by V, E, and F, respectively. (Recall that F has two
“external faces”, s* and t*.) A tessellation representation © for G maps
each object (vertex, edge, or face) o of G into a tile ©(0), such that (see
Figure 4.9.b):

¢ The interiors of tiles ©(0;) and ©(o2) are disjoint whenever 0; # 02.
e The union of all tiles ©(0), 0 € VU EUF, is a rectangle.

¢ Tiles ©(0,) and ©(02) are horizontally adjacent if and only if

01 = left(o2) or o) = right(o2) or o2 = left(o1) or oz = right(o).

¢ Tiles ©(0;) and ©(02) are vertically adjacent if and only if

01 = orig(02) or 0, = dest(oz) or 02 = orig(01) or o2 = dest(o,).



4.3. TESSELLATION REPRESENTATIONS 97

Algorithm 4.1 Tessellation
Input: a planar st-graph G
Output: a tessellation representation © for G such that
each vertex- and face-tile is a segment

1. Construct planar st-graph G*.

2. Compute a topological numbering Y of G.

3. Compute a topological numbering X of G*.

4. For each object 0 € VUE U F, let the coordinates of tile ©(o) be
z1(0) = X(left(o)
zr(0) = X(right(o

yg(0) = Y (orig(o)
yr(0) = Y (dest(o)

)

)7
));
);
)-

Algorithm 4.1 Tessellation constructs a tessellation representation © for
a planar st-graph G. An example of a run of algorithm Tessellation is shown
in Figure 4.9. The correctness of algorithm Tessellation is based on the fact
that, by Lemma 4.4, the tiles of any two distinct objects are separated either
by a vertical or by a horizontal line. Clearly, each step of the algorithm takes
linear time. Hence, we have:

Theorem 4.1 Let G be a planar st-graph with n vertices. Algorithm 4.1
Tessellation constructs a tessellation representation © of G in O(n) time.

We can modify Algorithm 4.1 Tessellation to support user-defined con-
straints on the size of the edge-tiles. Namely, let h(e) and w(e) be non-
negative numbers associated with each edge e of G. By replacing the first
two steps of Algorithm 4.1 Tessellation with the following ones, we obtain a
tessellation representation of G, such that the tile of each edge e has height
at least h(e) and width at least w(e):

1. Assign weight h(e) to each edge e of G and compute an optimal
weighted topological numbering Y of G.

2. Assign weight w(e) to each edge e* of G* and compute an optimal
weighted topological numbering X of G*.
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Figure 4.9: Example of a run of Algorithm 4.1 Tessellation: (a) planar
st-graphs G and G* labeled by topological numberings Y and X, respec-
tively; (b) tessellation representation © of G constructed by Algorithm 4.1
Tessellation.

Algorithm 4.1 Tessellation can also be further modified to support user-
defined constraints on the size of the vertex- and face-tiles. Namely, we
construct from G a new planar st-graph G’ as follows:

e Let G' =G.

o For each vertex v of G', we expand v into vertices v’ and v", joined by
an edge e, from v’ to v", such that »' inherits the incoming edges of v
and v” inherits the outgoing edges of v.
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o For each face f of G', we add an edge ey into face f from orig(f) to

dest(f).

Note that every object of G is associated with an edge of G’. We then
simply apply Algorithm 4.1 Tessellation to G', and represent each object of
G with the tile of the associated edge of G'. We conclude:

Theorem 4.2 Given a planar st-graph G with n vertices and nonnegative
numbers h(0) and w(o) for each object o of G, a minimum-area tessellation
representation © for G, such that each tile ©(0) has height at least h(o)
and width at least w(o) can be constructed in time O(n). In particular, if
h(o) = w(o) = 1 for each object o of G, then © has integer coordinates and
area O(n?).

4.4 Visibility Representations

Let G be a planar st-graph. A wvisibility representation T' of G draws each
vertex v as a horizontal segment, called vertez-segment I'(v), and each edge
(u,v) as a vertical segment, called edge-segment I'(u,v), such that (see Fig-
ure 4.10):

o The vertex-segments do not overlap
o The edge-segments do not overlap

o Edge-segment I'(u,v) has its bottom endpoint on I'(u), its top end-
point on I'(v), and does not intersect any other vertex-segment.

A visibility representation of a planar st-graph G can easily be con-
structed from a tessellation representation of G with degenerate vertex-tiles
and nondegenerate face-tiles, which can be produced by the algorithm of
Theorem 4.2. Indeed, the tessellation representation provides a floorplan for
drawing each vertex-segment as the degenerate vertex-tile itself, and each
edge-segment as any vertical segment spanning its tile (see Figure 4.10).

Algorithm 4.2 Visibility provides a direct construction of a visibility rep-
resentation for a planar st-graph G. For the sake of simplicity, the same
notation is used for a vertex-segment of the visibility representation and its
corresponding vertex in the graph. The same is done for an edge-segment
and its corresponding edge.

An example of the construction obtained by Algorithm 4.2 Visibility is
shown in Figure 4.11.
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Algorithm 4.2 Visibility
Input: planar st-graph G with n vertices
Output: visibility representation I' of G with integer
coordinates and area O(n?)

1. Construct planar st-graph G*.

2. Assign unit weights to the edges of G and compute an optimal weighted
topological numbering Y of G.

3. Assign unit weights to the edges of G* and compute an optimal
weighted topological numbering X of G*.

4. For each vertex v, draw the vertex-segment I'(v) at y-coordinate Y (v)
and between z-coordinates X (left(v)) and X (right(v) —1). In other
words,

for each vertex v do
draw I'(v) as the horizontal segment with
y(C(v)) =Y (v);
zL(T(v)) =Y (left(v));
zr(l'(v)) = Y(right(v)) - 1;
endfor

5. For each edge e, draw the edge-segment I'(e) at z-coordinate
X(left(e)), between y-coordinates Y (orig(e)) and Y (dest(e)). In other
words,

for each edge e do
draw I'(e) as the vertical segment with
z(C(e)) = X(left(e));
ys(['(e)) = Y (orig(e));
yr(T'(e)) = Y (dest(e));
endfor
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(a)

(b)

Figure 4.10: Example of construction of a visibility representation from
a tessellation representation: (a) tessellation representation of the planar
st-graph G of Figure 4.3, with degenerate vertex-tiles and nondegenerate
face-tiles; (b) visibility representation of G.

The proof of correctness of Algorithm 4.2 Visibility is based on the fol-
lowing observations. By Lemma 4.4 and the construction of the algorithm,
any two vertex-segments are separated by a horizontal or vertical strip of at
least unit width. Also, any two edge-segments on opposite sides of a face are
separated by a vertical strip of at least unit width, and no two faces intersect
in the representation constructed by the algorithm, except for their common
edges. An alternative proof of correctness can be derived by observing that
this visibility representation is “drawn inside” a tessellation representation,
and can be obtained from it as described at the beginning of this section.
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Figure 4.11: Example of a run of Algorithm 4.2 Visibility: (a) a planar
st-graph G, its dual G*, and the numberings of G and G*; (b) visibility
representation of G' constructed by the algorithm.

Clearly, all the steps of Algorithm 4.2 Visibility can be executed in O(n)
time. Hence, we have:

Theorem 4.3 Let G be a planar st-graph with n vertices. Algorithm 4.2
Visibility constructs in O(n) time a visibility representation of G with integer
coordinates and O(n?) area.
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4.5 Constrained Visibility Representations

In this section we present Algorithm 4.3 Constrained- Visibility, which con-
structs a visibility representation of a planar st-graph, such that some pre-
specified edges are vertically aligned. Such a visibility representation, called
constrained visibility representation, can be used as a starting point for
obtaining orthogonal and polyline drawings with interesting properties, as
shown in the rest of this chapter.

Let G be a planar st-graph with n vertices. Two paths m; and 75 of G
are said to be nonintersecting if they are edge disjoint and do not cross at
common vertices, that is, there is no vertex v of G with edges e;, e, e3, and
e4 incident in this clockwise order around v, such that e; and e; are in m;
and ez and e4 are in . Observe that any two vertex disjoint paths are also
nonintersecting.

(a)

(b)

Figure 4.12: Example of a constrained visibility representation: (a) planar
st-graph G with set II of paths shown with thick lines; (b) constrained
visibility representation of G with respect to II.
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Given a collection II of pairwise nonintersecting paths of G, we consider
the problem of constructing a visibility representation I' of G, such that, for
every path 7 of II, the edges of m are vertically aligned. More formally, for
any two edges €' and e” of w, the edge-segments I'(¢') and I'(e”) have the
same z-coordinate. An example of a constrained visibility representation is
given in Figure 4.12.

In order to simplify the description of the algorithm, without loss of
generality, we assume that the set II of nonintersecting paths covers the
edges of G. Otherwise, each edge originally not in II, is inserted in IT as a
single-edge path.

We observe that the computations performed by Algorithm 4.3
Constrained- Visibility are equivalent to the following construction. First,
it modifies G by duplicating each path 7 in II, thus forming a new face for
each path. Second, it constructs a visibility representation for the modified
graph such that the edge-segments of the left side of the boundary of each
face are vertically aligned, and two copies of an original vertex are horizon-
tally aligned. Finally, it removes the right copy of every duplicated edge and
joins the copies of the duplicated vertices. Figure 4.13 shows an example of
a run of Algorithm 4.3 Constrained- Visibility.

Notice that every edge e of G has a left and a right face. Also, e belongs
to some path in the set II. Every internal face of G has some path to its left
and some path to its right. No path is to the left (resp. right) of s* (resp.
t*). Hence G contains no directed cycles, has one source s*, and one sink
t*. Clearly, Gy is directed and planar. Finally, notice that both s* and ¢*
are on the external face of Gpj. Therefore we conclude:

Lemma 4.5 The digraph Gp constructed in Step 1 of Algorithm 4.3
Constrained-Visibility is a planar st-graph.

From the results described in the previous section, Algorithm 4.3
Constrained- Visibility computes a correct visibility representation. Fur-
thermore, each edge e of a path m is assigned the same z-coordinate,
z(I'(e)) = X(n). The area is clearly O(n?) and the algorithm takes O(n)
time.

Theorem 4.4 Let G be a planar st-graph with n vertices, and let 1 be a set
of nonintersecting paths covering the edges of G. Algorithm 4.8 Constrained
Visibility computes in O(n) time a visibility representation of G with integer
coordinates and O(n?) area, such that the edges of every path w in II are
vertically aligned.
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Algorithm 4.3 Constrained- Visibility
Input: planar st-graph G with n vertices; set II of
nonintersecting paths covering the edges of G

QOutput: constrained visibility representation I' of G
with integer coordinates and area O(n?)

1. Construct the graph Gy with vertex set F'|JII and edge set {(f, n)|f =
left(e) for some edge e of path 7} U {(7, g)lg = right(e) for some edge
e of path 7 }.

Note that graph Gy is a planar st-graph.

2. Assign unit weights to the the edges of G and compute an optimal
weighted topological numbering Y of G, such that Y (s) = 0.

3. Assign half-unit weights to the edges of G and compute an optimal
weighted topological numbering X of G, such that X(s*) = -1/2.

4. for each path 7 in II do
for each edge e in 7 do
draw I'(e) as the vertical segment with
z(T'(e)) = X(n);
ys(L'(e)) = Y (orig(e));
yr(C(e)) = Y (dest(e));
endfor endfor

5. for each vertex v do
draw I'(v) as the horizontal segment with
y(T'(v)) =Y (v);
zr([(v)) = minyer X(7);
zr(l(v)) = maxyer X (7);
endfor
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Figure 4.13: Example of constrained visibility representation computed
by Algorithm 4.3 Constrained- Visibility: (a) planar st-graph G, topological
numbering of G, and set II of paths that cover the edges of G, where the
paths with at least two edges are drawn with thick lines; (b) digraph Gn
and its topological numbering, where the square vertices represent faces of
G and the diamond vertices represent paths of II; (c) constrained visibility
representation of G.
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In order to obtain drawings with area O(n?), we use an optimal weighted
topological numbering with unit weights, as shown in Steps 2 and 3 of the
algorithm. However, the algorithm works for arbitrary positive edge-weights,
and any topological numbering.

4.6 Polyline Drawings

We can construct a planar upward polyline drawing of a planar st-graph G
starting from a visibility representation of G as follows. We draw each vertex
of G at an arbitrary point of its vertex-segment, and each edge (u,v) of G
as a three-segment polygonal chain, whose middle segment is a subset of
the edge-segment of (u,v). This construction is formalized in Algorithm 4.4
Polyline.

Algorithm 4.4 Polyline
Input: planar st-graph G
Output: planar upward polyline grid drawing of G

1. Construct a visibility representation I' of G with integer coordinates.

2. for each vertex v do
replace the vertex-segment I'(v) with an arbitrary point
P(v) = (z(v),y(v)) on I'(v)
endfor

3. for each edge (u,v) do

if y(v) = y(u) = 1 then { short edge }
replace the edge-segment I'(u,v) with the segment with
endpoints P(u) and P(v)

else { long edge }
replace the edge-segment I'(u,v) with the polygonal line
from P(u) to P(v) through (z(I'(u,v)),y(u) + 1)
and (z(I'(z,v)),y(v) - 1)

endfor
0

A possible choice for the placement of P(v) is the middle point of vertex-
segment I'(v). An example of the polyline drawing obtained with this “me-
dian positioning” from the visibility representation of Figure 4.11 is shown
in Figure 4.14.a.
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Figure 4.14: Polyline drawings constructed by Algorithm 4.4 Polyline from
the visibility representation of Figure 4.11: (a) median positioning; (b) long-
edge positioning with integer coordinates.

Theorem 4.5 Let G be a planar st-graph with n vertices. Algorithm 4.4
Polyline constructs in O(n) time a planar upward polyline grid drawing of
G with the following properties:

e The number of bends is at most 6n — 12
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e FEvery edge has at most two bends.

Proof: The correctness of the algorithm can be proved with simple geo-
metric considerations. Each edge-segment I'(u,v) is replaced by either a
segment or a polygonal line with at most two bends. Since a planar graph
has at most 3n — 6 edges, the total number of bends is at most 6n — 12. D

The above bound on the number of bends can be improved using a
specific visibility representation as input, and a particular choice for the
placement of P(v). Namely, we first construct a visibility representation I'
of G using Algorithm 4.2 Visibility. This guarantees that I" has at least
n — 1 short edges (that is, edges (u,v) with y(v) — y(u) = 1). Next, apply
Algorithm 4.4 Polyline where, for each vertex v, we place P(v) at the inter-
section of vertex-segment I'(v) with a long edge incident on v, whenever one
exists. This placement further reduces the number of bends. Additionally,
because of the construction of the visibility representation obtained by Al-
gorithm 4.2 Visibility, the height and width of the drawing are bounded by
O(n). Thus we have:

Theorem 4.6 Let G be a planar st-graph with n vertices. A planar upward
polyline grid drawing of G, with the following properties, can be constructed
in O(n) time:

o The drawing has O(n?) area
e The number of bends is at most (10n — 31)/3

o Every edge has at most two bends.

An example of polyline drawing, obtained with the “long-edge position-
ing” of Theorem 4.6 from the visibility representation of Figure 4.11, is
shown in Figure 4.14.b.

The technique above can be extended to constrained visibility represen-
tations. Let I be a constrained visibility representation for a planar st-graph
G and a set of verter disjoint paths I1. Algorithm 4.5 Constrained-Polyline
derives a planar upward polyline drawing of G from I, such that all the
internal vertices in a path of IT are vertically aligned.

Notice that if there is an edge (u,v) such that y(v) — y(u) = 2, then the
two middle points of the polygonal chain associated with (u,v) are coinci-
dent. Figure 4.15 shows the polyline drawing obtained from the constrained
visibility representation shown in Figure 4.13. When a vertex v does not
belong to an aligned path, then any choice of P(v) along I'(v) guarantees
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Algorithm 4.5 Constrained- Polyline
Input: planar st-graph G; set of vertex disjoint paths
IMof G
Output: a planar upward polyline drawing of G, such
that, for every path 7 of II, all the internal
vertices of 7 are vertically aligned

1. Construct a constrained visibility representation I' of G with respect
to IT by means of Algorithm 4.3 Constrained- Visibility.

2. for each vertex v do
replace the vertex-segment I'(v) with a point
P(v) = (z(v),y(v)) on I'(v) as follows:
if v belongs to a path 7 of IT then

z(v) = X(7);
y(v) =Y (v);
else
choose any point on I'(v)
endfor

3. for each edge (u,v) do

if y(v) — y(u) =1 then { short edge }
replace the edge-segment I'(u,v) with the segment with
endpoint P(u) and P(v)

else { long edge }
replace the edge-segment I'(u,v) with the polygonal line
from P(u) to P(v) through (z(I'(u,v)),y(u) +1)
and (z(I'(u,v)),y(v) — 1)

endfor

the correctness of the algorithm and a small number of bends (at most two
per edge).

Since Algorithm 4.5 Constrained- Polyline constructs the output polyline
drawing from an intermediate constrained visibility representation, the out-
put drawing has several of the properties of these representations. Recall
that a planar st-graph with n vertices can have at most 3n — 6 edges. At
least n — 1 edges are either short or belong to a path. Hence at most 2n -5
edges are drawn with two bends each. Therefore we have:
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Figure 4.15: Polyline drawing constructed by Algorithm 4.5 Constrained-
Polyline from the constrained visibility representation of Figure 4.13. Note
that we have aligned only one path.

Theorem 4.7 Let G be a planar st-graph with n vertices, and let I1 be a
set of vertex disjoint paths of G. Algorithm 4.5 Constrained-Polyline con-
structs a planar upward polyline grid drawing T’ for G in O(n) time with the
Jollowing properties:

o For every path = in II, all the internal vertices of ® are vertically
aligned

e T has O(n?) area
o I’ has at most 4n — 10 bends.

Algorithm 4.5 Constrained-Polyline allows us to effectively visualize spe-
cific paths, for example, critical paths in PERT diagrams. A PERT diagram
is a directed acyclic graph whose edges are associated with the tasks of a
given project and whose vertices are associated with designated events in
the evolution of the project, that is, the start and completion of the various
tasks. A PERT diagram has a unique source vertex s, denoting the start
of the project. and a unique sink vertex £, denoting the termination of the
project. Each edge has a weight which represents the expected duration
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of the task. The tasks are partially ordered due to technical constraints.
Hence, all tasks associated with edges outgoing from a vertex v, can start
only if all the tasks associated with the edges incoming in v are completed.
The minimum time to complete the entire project is the maximum weight
of a path from s to ¢, and such a path is called a critical path, since de-
laying any task along that path causes a corresponding delay of the entire
project. Therefore, identifying critical paths is very important in planning
and monitoring the execution of the project.

Assume that the project starts at time 0. A PERT diagram is usually
drawn in such a way that the y direction denotes the flow of time. For
example, a vertex v is drawn at a y-coordinate equal to the earliest starting
time of the corresponding event, that is, y(v) is the number of edges on
a longest path from s to v. Algorithm 4.5 Constrained-Polyline allows a
PERT diagram to be drawn in such a way that critical paths are effectively
displayed along straight lines.

4.7 Dominance Drawings

In this section, we present a drawing algorithm for planar st-graphs with
the following features: linear time complexity, small number of bends, small
area, detection and display of symmetries, and geometric characterization of
the transitive closure by means of the dominance relation between the points
associated with the vertices. First, we describe the algorithm for reduced
digraphs, and then extend it to the general case.

A dominance drawing of a digraph G is a drawing I" of G, such that,
for any two vertices u and v, there is a directed path from « to v in G, if
and only if z(u) < z(v) and y(u) < y(v) in I (see Figure 4.16). Notice that
these two conditions cannot be simultaneously satisfied with equality since
distinct vertices must be placed at distinct points. Dominance drawings
have the important feature of characterizing the transitive closure of the di-
graph by means of the geometric dominance relation among the vertices. A
straight-line dominance drawing is upward, but not necessarily strictly up-
ward, because it may have horizontal edges. In this case, a counterclockwise
rotation by any angle between 0° and 90° yields an upward drawing.

4.7.1 Reduced Digraphs

Let G be a reduced planar st-graph with vertex set V and edge set E. Recall
that G is embedded in the plane with s and ¢ on the external face. We shall
denote with u — v a directed path (or the existence of such a path) from
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Figure 4.16: An example of a straight-line dominance drawing.

vertex u to vertex v in G. In this subsection, we show how to construct a
planar straight-line upward drawing of G.

We will present a lemma that characterizes the relation between domi-
nance drawings and planarity. Some notation is needed. Given a straight-
line dominance drawing I of a digraph G, consider the point I'(u) = (z(u), y(u))
where vertex u is placed. We define the following four regions of the plane
(see Figure 4.17)

blu) = {(z,9): = < z(u) and y < y(u)}
t(u) {(z.y): 2 z(u) and y > y(u)}
l(u) {(z,y) : = <z(u) and y > y(u)}
r(u) = {(z,y): z > z(u) and y < y(u)}

Lemma 4.6 Any straight-line dominance drawing T' of a reduced planar
st-graph G is planar.

Proof: As a contradiction, suppose there is a crossing between edges (u,v)
and (w, z) in I". Consider edge (u,v). Since G is reduced and I" is a straight-
line dominance drawing, no vertex p is placed in the rectangle defined by
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lu) tu)

b(u) r(u)

Figure 4.17: Regions b(u), t(u), {(u), and r(u).

points ['(u) and ['(v) (see Figure 4.18). Otherwise, by the definition of
dominance drawing, there would be paths © — p and p — v, implying that
(u,v) is a transitive edge, thus contradicting the fact that G is reduced.

Without loss of generality, assume that I'(w, z) crosses I'(u,v) from left
to right. First, ['(w) cannot be in b(u). In fact, in this case (w,z) would
be transitive with respect to the path consisting of w — » and u — 2.
Analogously, z cannot be in ¢(v). Hence, the only possible case is that
w € l(u) — l(v) and z € r(v) — r(u).

Consider paths s = u and s = w, and let s’ be the last (farthest from s)
vertex common to both paths. Similarly, let ¢’ be the first (farthest from ¢)
vertex common to paths v = ¢t and z — t. By the above definitions and the
dominance property, G has the following pairwise vertex-disjoint (except in
the endpoints) paths (see Figure 4.19)

s—ow, d§ou vot, zo¢,
U=V, W=z u—=z, W=

Since s and ¢ are on the external face, we can add the edge (s, t) to G, while
preserving planarity. It is easy to verify that the paths listed above plus the
edge (s, t) form a graph that is homeomorphic to K3 3. This fact contradicts
the planarity of G.

O

Now we present Algorithm 4.6 Dominance-Straight-Line. The algorithm
consists of three phases: the first phase, Preprocessing sets up a linked data
structure; the second phase, Preliminary Layout, assigns to each vertex v
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Figure 4.18: Regions around edge (u, v) in the proof of Lemma 4.6.

Figure 4.19: A K33 in the proof of Lemma 4.6.

a distinct X- and Y-coordinate in the range [0,n — 1]; the third phase,
Compaction, adjusts the position of the vertices to reduce the area of the
drawing. The Preliminary Layout phase performs essentially two topological
sortings of the vertices of G, which scan the successors of each vertex from
left to right (e.g., clockwise) and from right to left (e.g., counterclockwise),
respectively. The Compaction phase scans the vertices according to the
order given by the preliminary X- and Y-coordinates.
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Algorithm 4.6 Dominance-Straight-Line
Input: reduced planar st-graph G
QOutput: straight-line dominance drawing I" of G

Preprocessing: Set up a linked data structure for G, where each vertex v
points to the list of its outgoing edges sorted according to their clock-
wise sequence around v. This list is doubly connected by means of
pointers nert(e) and pred(e), and is accessed by means of pointers
firstout(v) and lastout(v) to its leftmost and rightmost edge, respec-
tively. Also, v has pointers firstin(v) and lastin(v) to its leftmost and
rightmost incoming edges, respectively. Finally each edge e = (u,v)
stores a pointer head(e) to v.

Preliminary Layout: { Assign preliminary coordinates X and Y }

{ Assign preliminary coordinate X }
Set count = 0 and call LabelX(s):
procedure LabelX(v : verter);
begin

X (v) = count;

count = count + 1;

if v # t then begin

e = firstout(v);

repeat
w = head(e);
if e = lastin(w) then LabelX(w);
e = nect(e);
until e = nil
end
end;

{ Assign preliminary coordinate Y }
Set count = 0 and call LabelY(s):
procedure LabelY (v : verter);
begin
Y (v) = count;
count = count + 1;
if v # t then begin
e = lastout(v);
repeat
w = head(e);
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if e = firstin(w) then LabelY (w);
e = pred(e);
until e = nil
end
end;

Compaction: { Assign final coordinates = and y }

Set up two lists of vertices sorted by increasing X- and Y-coordinate
by means of pointers next X (v) and nextY (v).

{ Assign final coordinate z }
let u be the vertex with X(u) = 0;
z(u) =
while nextX (u) # nil do begin
v = nextX(u);
if Y(u) > Y(v) or
(firstout(u) = lastout(u) and firstin(v) = lastin(v))
then z(v) = z(u) + 1
else z(v) = z(u);
u=v;
end;

{ Assign final coordinate y }
let u be the vertex with Y (u) =
y(u) = 0;
while nezxtY (u) # nil do begin
v = nextY (u);
if X(u) > X(v) o
(firstout(u) = lastout(u) and firstin(v) = lastin(v))
then y(v) = y(u) +1
else y(v) = y(u);
u=uv;
end;

0

Let u and v be a pair of vertices with consecutive (preliminary) X-
coordinates. In general, the (final) z-coordinate is not incremented if (u,v)
is an edge, and is incremented otherwise. However, in the special case when
(u,v) is the only outgoing edge of u and the only incoming edge of v, the
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z-coordinate is incremented. This is done to prevent the possibility that u
and v are assigned the same pair of coordinates. Similar considerations can
be made for the y-coordinates.

A run of Algorithm Dominance-Straight-Line is illustrated in Figure 4.20.
The preliminary drawing (X- and Y- coordinates) is shown in Figure 4.20.a.
The final drawing (z- and y- coordinates) is shown in Figure 4.20.b. Per-
haps the best aesthetic result is obtained by a 45° rotation, as shown in Fig-
ure 4.20.c. Given a vertex u of G, we define B(u) (resp. T'(u)) as the set
of vertices distinct from u that can reach (resp. can be reached from) u by
a directed path. Also, we define L(u) (resp. R(u)) as the sets of vertices
that are on the left (resp. right) of every path from s to ¢ through u (see
Figure 4.21). Note that {u}, B(u), T'(u), L(u), and R(u) form a partition
of the vertices of G.

Lemma 4.7 The X- and Y -coordinates computed in the Preliminary Lay-
out phase of Algorithm 4.6 Dominance-Straight-Line have the following prop-
erties:

1. X(u) < X(v) #f and only if u € B(v) U L(v)
2. Y(u) < Y(v) ¢f and only if u € B(v) U R(v).

Proof: We give the proof of Property 1. A similar argument holds for
Property 2. For the “if” part, observe that the recursive calls of procedure
LabelX define a directed spanning tree T' of G rooted at s and containing the
rightmost incoming edge of each vertex. As a contradiction, suppose that
X(u) > X(v). Since vertex u is visited after vertex v by LabelX, vertex u
is either on a path from v in T, or it is on a path to the right of the path
7 from s to v in T. In the first case, we have v — u, which contradicts
the hypothesis that « € B(v) U L(v). In the second case, vertex u cannot
be in B(v), because no directed path in G can enter vertex v to the right
of path =; also, vertex u cannot be in L(v), since it is to the right of the
path of G from s to ¢ obtained by extending = with leftmost outgoing edges.
The “only-if” part follows from the fact that u € B(v) U L(v) if and only if
v € T(u) U R(u). o

From Lemma 4.7 we can deduce that u € B(v) if and only if both
X(u) < X(v) and Y (u) < Y(v). Thus, we have:

Theorem 4.8 The drawing of G described by the X- and Y -coordinates
computed in the Preliminary Layout phase of Algorithm 4.6 Dominance-
Straight-Line is a straight-line dominance drawing.
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e

< H

Figure 4.20: A run of Algorithm 4.6 Dominance-Straight-Line: (a) pre-
liminary drawing (X- and Y-coordinates); (b) final drawing (z- and y-
coordinates); (c) final drawing rotated by 45°; (d) minimum area drawing.

Lemma 4.8 Let u and v be a pair of vertices of G such that X (v) = X(u)+
1. Then Y(u) < Y (v) if and only if G has an edge from u to v.

Proof: The “if” part is trivial. For the “only-if” part, suppose that Y (u) <
Y (v). Since X (u) < X(v), we have v € T(u). If (u,v) is not an edge, then
the path (u — v) has a vertex w distinct from « and from v. Hence, X (u) <
X(w) < X (v), thus contradicting the hypothesis that X (v) = X(u) +1. O
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)

Figure 4.21: Vertex sets B(u), T(u), L(u), and R(u).

Theorem 4.9 Let G be a reduced planar st-graph with n vertices. Algo-
rithm 4.6 Dominance-Straight-Line constructs in O(n) time a planar straight-
line dominance grid drawing T' of G with O(n®) area.

Proof: By Theorem 4.8, the preliminary drawing given by the X- and
Y-coordinates is a straight-line dominance drawing. To also prove that the
final drawing I given by the z- and y-coordinates is a straight-line dominance
drawing, we show that:

1. u € B(v) = z(u) < z(v) and y(u) < y(v)

2. z(u) < z(v) = u € B(v) U L(v)

z(u

)
) ) )
y(u) < y(v) = u € B(v) U R(v)
) =z(v) = u € B(v) UT(v)
) ) ) )

y(u) = y(v) = u € B(v)UT(v

?’9‘:“9’

No two vertices are drawn at the same point (z,y).
It is immediate to verify that, for any two vertices u and v,

X(u) < X(v) implies that < z(v),

Y (u) < Y (v) implies thaty(u) < y(v),

z(u) < z(v) implies thatX(u) < X(v), and
y(u) < y(v) implies thatY (u) < Y (v).
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Hence, Properties 1-3 follow by Lemma 4.7. Assume that X(u) < X(v)
and z(u) = z(v). Let u = w;,ws,...,wr = v be the sequence of vertices
with X-coordinate in the range [X(u), X (v)]. Since the z-coordinate is not
incremented on these vertices, Y (w;) < Y(w2) < -+ < Y(wg), and hence,
Y(u) < Y(v). Since the preliminary drawing is a dominance drawing, we
have that « € B(v). Thus Property 4 is verified, and a similar argument
proves Property 5.

Regarding Property 6, assume, as a contradiction, that it does not hold
and there are vertices u and v with z(u) = z(v) and y(u) = y(v). By
Properties 1-4, we may assume that X(u) < X(v) and Y(u) < Y(v). By
Lemma 4.8, all the vertices w, such that X(u) < X(w) < X(v), form a path
from u to v, and all the vertices with Y-coordinate between Y (u) and Y (v)
form exactly the same path. Let z be the vertex such that X (z) = X (v) -1
and Y(2) = Y(v) — 1. Thus z(z) = z(v) and y(z) = y(v). Since both
procedures LabelX and LabelY visit v immediately after z, edge (2, v) must
be the only outgoing edge of z and the only incoming edge of v. However,
this causes the Compaction phase to increment both z and y at vertex v,
contradicting the previous conclusion that z(z) = z(v) and y(z) = y(v).

The area of the drawing I' is given by z(t)-y(t). Consider the assignment
of the z-coordinates. At the end of the Preliminary Layout phase, X(t) =
Y (t) = n—1. The compaction step scans the X-list from s to ¢ and, for each
pair of consecutive vertices u and v, either z(v) = z(u) or z(v) = z(u) + 1.
Hence, since z(s) = 0, z(t) < n — 1. Similarly, we have that y(t) < n - 1.

Concerning the time complexity, procedures LabelX and LabelY traverse
each edge twice. At the beginning of the Compaction phase, the two lists can
be constructed using a bucket sort. The remaining while-loops take linear
time to scan the lists and perform a constant-time test for each vertex. O

4.7.2 Display of Symmetries

Besides producing a dominance drawing, Algorithm Dominance-Straight-
Line has the important feature of displaying the symmetries and isomorphic
parts of the digraph. Before describing these features, we introduce some
definitions on symmetries of planar st-graphs.

A digraph G is weakly connected if its underlying undirected graph is
connected. Let G be a planar st-graph. An open component of G is a
maximal weakly-connected subgraph G’ of the digraph obtained from G by
removing a separation pair {p,q}, such that G’ does not contain s or t.
A closed component of G is an induced subgraph G’ of G, such that (see
Figure 4.22):
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1. G' is a planar pg-graph
2. G' contains every vertex of G that is on some path from p to q.

3. G' contains every outgoing edge of p, every incoming edge of ¢, and
every incident edge of the remaining vertices of G'.

A component of G is either a closed or an open component. Notice that G
is a trivial closed component of itself.

X 1 1

.

Figure 4.22: Drawing constructed by Algorithm Dominance-Straight-Line
of a planar st-graph with two rotationally isomorphic components, each of
which is axially symmetric.

The digraph obtained from a closed component by removing its source
and sink is not necessarily an open component, but, in general, the union
of several open components. Also, the digraph obtained from an open com-
ponent by adding the separation pair is not necessarily a closed component,
since Properties 2 and 3 above might not be verified. The concept of open
component generalizes the one of subtree of a rooted tree, as follows. Let
T be a tree rooted at vertex s. We construct a planar st-graph Gt by con-
necting all the leaves of T to a new vertex t. It is simple to verify that the
subtree of T rooted at a vertex v # s is an open component of Gr.

Let C) and C> be two components of a planar st-graph G that are iso-
morphic if we ignore the directions of the edges. C) and C, are said to be
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simply isomorphic if the isomorphism preserves the directions of the edges
and the clockwise boundaries of the faces. C; and C2 are said to be azi-
ally isomorphic if the isomorphism preserves the directions of the edges and
inverts the clockwise boundaries of the faces. Cy and C; are said to be ro-
tationally isomorphic if the isomorphism inverts the directions of the edges
and preserves the clockwise boundaries of the faces. A component is said
to be azially (rotationally) symmetric if it is axially (rotationally) isomor-
phic to itself. For example, the digraph of Figure 4.22 has two rotationally
isomorphic components, and each such component is axially symmetric.

Let E; be the set of edges (u,v), such that (u,v) is the rightmost in-
coming edge of v and the leftmost outgoing edge of u. Let Eg be the set
of edges (u,v), such that (u,v) is the leftmost incoming edge of v and the
rightmost outgoing edge of u. Also, we define Ey as the set of edges (u,v),
such that (u,v) is the only outgoing edge of u and the only incoming edge
of v. Observe that Ey = Er N Eg. We write mp = |EL|, mg = |Eg|, and
mpy = |Eg|. In the example of Figure 4.20, the set Ey contains exactly one
edge.

Lemma 4.9 Let (u,v) € E. Then u and v appear consecutively in the X -
list if and only if (u,v) € Er. Also, u and v appear consecutively in the
Y -list if and only if (u,v) € ERg.

By Lemmas 4.8 and 4.9, the tests for incrementing the z- and y-
coordinates in the Compaction step can be rewritten as follows:

if (u,v) € Ef — Ey then z(v) = z(u); else z(v) = z(u) + 1
if (u,v) € Egr — Ey then y(v) = y(u); else y(v) = y(u) + 1.

As shown in the following theorem, Algorithm 4.6 Dominance-Straight-
Line displays symmetries and isomorphic components.

Theorem 4.10 Let G be a reduced planar st-graph, and T' be the corre-
sponding straight-line drawing constructed by Algorithm Dominance-Straight-
Line. We have:

1. Simply isomorphic components of G have drawings in ' that are con-
gruent up to a translation.

2. Acially isomorphic components of G have drawings in T that are con-
gruent up to a translation and reflection.
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3. Rotationally isomorphic components of G have drawings in T that are
congruent up to a translation and a 180° rotation.

4. The drawing of an azially symmetric component of G is symmetric
with respect to the straight line that passes through its source and sink.

5. The drawing of a rotationally symmeltric component of G is symmetric
with respect to a 180° rotation around its centroid.

Proof: In the Preprocessing phase, the vertices of a component are visited
consecutively by procedures LabelX and LabelY. Hence, the layout of a
component is independent from the rest of the digraph. This proves Prop-
erty 1. As regards Properties 2 and 4, reversing the orientation of the faces
exchanges the set L(u) with R(u), for every vertex u. By Lemma 4.7, this
corresponds to exchanging the X-coordinate with the Y-coordinate, and
similarly for the final z- and y-coordinates. This yields drawings that are
congruent up to a translation and a reflection with respect to a 45°-slope
line. Now, we consider Properties 3 and 5. Reversing the direction of the
edges exchanges B(u) with T'(u) and L(u) with R(u), for every vertex u.
Hence, by Lemma 4.7, the X-lists of two rotationally isomorphic components
are the reverse of one another, and similarly for the Y-lists. This implies
that Properties 3 and 5 hold for the preliminary layout. The sets Ey, Ey,
and Ep stay the same after reversing the direction of the edges. Thus the
final z- and y-coordinates are incremented for the same pairs of vertices and
Properties 3 and 5 hold for the final layout. O

Figure 4.22 shows a drawing produced by Algorithm Dominaence-Straight-
Line that illustrates some of the properties listed in Theorem 4.10.

4.7.3 Minimum Area Dominance Drawings

As shown in Theorem 4.9, Algorithm 4.6 Dominance-Straight-Line produces
drawings with O(n?) area. Here we give a tighter upper bound on the area
and present a modification of the algorithm that constructs a minimum area
drawing among all straight-line dominance drawings of the input planar st-
graph G.

We recall that the area of the drawing constructed by Algorithm 4.6
Dominance-Straight-Line is z(t) - y(t), where t is the sink of G. We can
express z(t) and y(t) in terms of n, my, mg, and my (see the definitions in
the previous section) as follows:

Lemma 4.10 z(t) =n—~1— (my —my) and y(t) =n—1 - (mpr — my).
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Proof: The number of times that the z-coordinate (resp. y-coordinate) is
not incremented is equal to my; — my (resp. mg — my). u

Recall that the area of the drawing constructed by Algorithm 4.6
Dominance-Straight-Line is given by z(t) - y(t). Hence, we obtain the fol-
lowing tight bound.

Theorem 4.11 Algorithm 4.6 Dominance-Straight-Line produces drawings
with area
(n—1—=(mg —mpg)) X (n—1-(mg—mpg)).

Suppose that Ey = 0. In this case, we can prove that the area of the
drawing is optimal. Next, we show how to modify the algorithm to obtain
a minimum area drawing in the case when Egy # 0.

Lemma 4.11 Given a reduced planar st-graph G such that Ey = 0, Algo-
rithm 4.6 Dominance-Straight-Line produces a minimum area straight-line
dominance grid drawing of G.

Proof: First we observe that any straight-line dominance drawing that
preserves the embedding of G must place the vertices of L(v) in I(v) and the
vertices of R(v) in 7(v). Let v; be the vertex that is assigned X-coordinate
i by the Preliminary Layout phase of Algorithm 4.6 Dominance-Straight-
Line. By Lemma 4.7, in any drawing of G we have z(v;) < z(v;j4+1). Now
consider the n — my pairs of vertices {v;,v;4+1}, such that Y (v;) > Y (vi41)-
By Lemma 4.7, v;;y; € R(v;) and therefore z(v;y1) > z(v;). We conclude
that z(v,_1)—2(vp) > n—m—1. A similar argument shows that y(v,—1)—
y(vp) > n — mp — 1. Hence, by Theorem 4.11, the drawing constructed by
Algorithm 4.6 Dominance-Straight-Line has optimal area. 0O

To take into account the set Ey, we use the following variation of Algo-
rithm 4.6 Dominance-Straight-Line (see Figure 4.20.d):

¢ In the Preprocessing phase we compute mj, and mp.

¢ In the Compaction phase we replace the first “if” test with:
if (Y (u) > Y (v) or (firstout(u) = lastout(u) and
firstin(v) = lastin(v) and mp < mpg))
and the second “if” test with
if (X(u) > X(v) or (firstout(u) = lastout(u) and
firstin(v) = lastin(v) and my > mg)).



126 CHAPTER 4. PLANAR ORIENTATIONS

This variation of the algorithm yields a drawing with area
A =(n—1-min(mg,mg) + my) X (n — 1 — max(mg, mg)).

Clearly for any straight-line dominance drawing of G, we must have an
increment of the z- or y-coordinate in correspondence of every edge of Ey.
If m; and my, are respectively the increments of z and y, with mz+m, = my,
the area is at least

(n=1-mp+mg) X (n—1—mp+my).

It is easy to see that the minimum of the above quantity is equal to A, and
is achieved by setting

m. = MH if my <mp
710 if my > mp.

This yields the following theorem:

Theorem 4.12 Let G be a reduced planar st-graph with n vertices. A
minimum-area straight-line dominance grid drawing of G can be constructed
in O(n) time.

Note that minimum area drawings may not have the symmetry proper-
ties of Theorem 4.10 (see Figure 4.20.d).

4.7.4 General Planar st-Graphs

Algorithm 4.6 Dominance-Straight-Line can be extended to general planar
st-graphs by inserting a dummy vertex on every transitive edge.

The number of bends in the drawing constructed by Algorithm 4.7
Dominance-Polyline is equal to the number of transitive edges in the input
planar st-graph G. In an acyclic digraph with n vertices, at least n —1 edges
are not transitive. Since G is planar, it has at most 3n — 6 edges. Hence, G
has at most 2n — 5 transitive edges. Algorithm 4.7 Dominance-Polyline has

the same symmetry properties of Algorithm 4.6 Dominance-Straight-Line.
We have:

Theorem 4.13 Let G be a planar st-graph with n vertices. Algorithm 4.7
Dominance-Polyline constructs in O(n) time a drawing T' of G with the
following properties:
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Algorithm 4.7 Dominance- Polyline
Input: planar st-graph G
Output: polyline dominance drawing I' of G

1. If G is not reduced, replace each transitive edge (u,v) with a chain of
two edges, that is, a new vertex z and two new edges (u, z) and (z,v).
Let G’ be the resulting reduced planar st-graph.

2. Construct a straight-line dominance drawing I'' of G’ using Algorithm
Dominance-Straight-Line.

3. A polyline dominance drawing I’ of the original digraph G is finally

obtained by considering the dummy vertices of IV as bends of I.
O

. T is planar, upward, grid, dominance, and polyline
. T has O(n?) area

. T has at most 2n — 5 bends, and every edge has at most one bend;

LW D

. Simply isomorphic components of G have drawings in T that are con-
gruent up to a translation

5. Agially isomorphic components of G have drawings in T that are con-
gruent up to a translation and reflection

6. Rotationally isomorphic components of G have drawings in T that are
congruent up to a translation and a 180° rotation

7. The drawing of an azially symmetric component of G is symmetric
with respect to the straight line that passes through its source and sink

8. The drawing of a rotationally symmetric component of G is symmetric
with respect to a 180° rotation around its centroid.

4.8 Drawings of Undirected Planar Graphs

The algorithms of the previous sections for constructing tessellation repre-
sentations, visibility representations, and upward polyline drawings of planar
st-graphs can be extended to draw undirected planar graphs.
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Let G be an undirected planar graph. First, we construct a planar em-
bedding of G. This can be done in linear time, using variations of the
known planarity testing algorithms (see Section 3.3). Also, if G is not bi-
connected, then we augment G to an embedded planar biconnected graph
by adding dummy edges. This also takes linear time (see, e.g., [KB91,
KB92]). Let s and ¢ be two distinct vertices of G on the external face. An
st-numbering for G is a numbering vy, vs,...,vn of the vertices of G such
that s = v, t = vy, and every vertex v;, other than s and {, is adjacent to
at least two vertices v; and v, with ¢ < j < k. Such a numbering can be
constructed in O(n) time [ET76). Given an st-numbering for G, we orient
every edge of G from the low numbered vertex to the high numbered one
(this orientation is also called a bipolar orientation). It is easy to see that
the resulting digraph D is a planar st-graph (see Figure 4.23).

(a)

(b)

Figure 4.23: (a) Biconnected planar graph G and st-numbering of G; (b)
bipolar orientation of G induced by the st-numbering.

We now apply, to D, one of the algorithms described in the preceding sec-
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tions for constructing tessellation representations, visibility representations,
and upward polyline drawings of planar st-graphs. We derive a correspond-
ing drawing/representation of G by ignoring the directions of the edges and
the dummy edges introduced in biconnectivity augmentation.

Theorem 4.14 Let G be an undirected planar graph with n vertices. The
Jollowing representations and drawings of G can be constructed in O(n) time:

e A tessellation representation with integer coordinates and O(n?) area.
e A visibility representation with integer coordinates and O(n?) area.

e A planar polyline grid drawing with O(n®) area and at most (2n — 5)
bends.

There are other types of visibility representations of undirected planar graphs
that have been studied in the literature. They are mostly of theoretical in-
terest, and are briefly discussed below.

We say that two vertex-segments of a visibility representation are e-
vistble if they can be joined by a vertical strip of nonzero width that does
not intersect any other vertex-segment. An e-visibility representation for a
graph is a visibility representation with the additional property that two
vertex-segments are e-visible if and only if the corresponding vertices are
adjacent.

We can easily obtain an e-visibility representation for a biconnected pla-
nar graph by simply extending the vertex segments of each face f, toward
the interior of f, to block the e-visibility between the vertex-segments of
orig(f) and dest(f).

If all the cutvertices of a connected planar graph can be placed on the
boundary of the external face, then the e-visibility representations for each
biconnected component can be placed so that they will not create extraneous
visibilities. Conversely, if a planar graph admits an e-visibility representa-
tion, then there exists an embedding of the graph such that all the cutvertices
appear on the boundary of the external face. In fact, since any face of a
planar graph can be made external, we have the following theorem [TTSS8,
Wis85):

Theorem 4.15 A planar graph G admits an e-visibility representation if
and only if there ezists a planar embedding of G, such that all cutvertices of
G appear on the boundary of the same face.
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In other words, if we augment G by adding a new vertex and connect-
ing it to every cutvertex, then G admits an e-visibility representation if
and only if the new graph is planar. This alternative characterization can
be used in order to test, in linear time, whether G admits an e-visibility
representation [TT86).

A strong-visibility representation for a graph G is a visibility representa-
tion for G with the additional property that two vertex-segments are visible
if and only if the corresponding vertices of G are adjacent. Clearly, any
visibility representation of a maximal planar graph is also a strong-visibility
representation. However, the problem of determining whether a given pla-
nar graph G admits a strong-visibility representation is NP-complete, even
if G is triconnected [And92]. If G is four-connected however, then G ad-
mits a a strong-visibility representation which can be computed in linear
time [TT86).

4.9 Planar Orthogonal Drawings

In this section, we present Algorithm 4.8 Orthogonal-from- Visibility for con-
structing planar orthogonal drawings. This algorithm uses visibility repre-
sentations as an intermediate construction. Because of the nature of orthog-
onal drawings, we consider only graphs with vertices of degree less than or
equal to four.

An example of a run of Algorithm 4.8 Orthogonal-from- Visibility is given
in Figure 4.25.

In the orthogonal drawing constructed by Algorithm 4.8 Orthogonal-
Jrom-Visibility, there are at most two bends per vertex distinct from s and
t, and at most four bends for s and t (see Figure 4.24). Hence, the total
number of bends is at most 2n + 4. Clearly, the area of the drawing is
about the same as the area of the constrained visibility representation, that
is O(n2). All the steps of the algorithm take O(n) time. Therefore, we have:

Theorem 4.16 Let G be a biconnected planar graph with n vertices of de-
gree at most four. Algorithm 4.8 Orthogonal-from-Visibility constructs in
O(n) time a planar orthogonal grid drawing of G with O(n?) area and at
most 2n + 4 bends. Also, each edge has at most two bends, except for two
edges that have each at most four bends.

Algorithm 4.8 Orthogonal-from- Visibility can be extended to general pla-
nar graphs, as shown in [TT87, TT89a), where techniques for reducing the
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Algorithm 4.8 Orthogonal-from- Visibility
Input:  biconnected planar graph G with n vertices of

degree at most four
Output: planar orthogonal grid drawing of G

1. Construct a planar embedding of G and orient its edges such that the
resulting digraph D is a planar st-graph.

2. Create a set of n — 2 directed paths of D associated with the vertices
of D distinct from s and ¢, as follows: The path =, associated with
vertex v consists of two edges e’ and e’ where: if v has two incoming
edges, then €' is the leftmost incoming edge of v and €" is the rightmost
outgoing edge of v; while if v has either one or three incoming edges, €'
is the median incoming edge of v and €” is the median outgoing edge
of v. Unify paths sharing edges, which yield a set II of nonintersecting
paths.

3. Using Algorithm 4.3 Constrained- Visibility, construct a constrained
visibility representation I"' of D, with respect to the set II of paths,
such that I" has integer coordinates.

4. Construct a planar orthogonal grid drawing of G as follows:

e For each vertex v distinct from s and ¢, draw v at the intersection
P(v) of vertex segment I'(v), with the edge segments of path =,
(see Figure 4.24.a).

e Draw vertex s (resp. t) at the intersection of its vertex segment
with the edge segment of its median outgoing (resp. incoming)
edge (see Figure 4.24.b).

e For each edge e = (u,v), such that » and v are distinct from s
and ¢, draw e as an orthogonal chain through the following points:
P(u), the intersection of I'(u) and I'(e), the intersection of I'(e)
and I'(v), and P(v). The chain consists of three segments, where
the first and last segment may be empty.

o Edges incident to s or t are drawn as shown in Figure 4.24.b.
(]
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(a)

L

(b)

Figure 4.24: Drawing vertices and edges in Step 4 of Algorithm 4.8
Orthogonal-from- Visibility: (a) drawing of a vertex distinct from s and ¢;
(b) drawing of s and .

number of bends in an orthogonal drawing are also presented (see Sec-
tion 5.7).

4.10 Planar Straight-Line Drawings

One of the classic mathematical problems of graph drawing is to construct
a straight-line planar drawing of a planar graph. A classic result indepen-
dently established in [Far48, Ste51, Wag36], shows that every planar graph
admits a planar straight-line drawing. (The proof of Lemma 6.4 uses the
technique of [Far48).) This result also follows from Steinitz’s theorem on
convex polytopes in three dimensions [SR34].

The problem of constructing planar straight-line drawings of planar
graphs has also been solved, for example, by the barycenter algorithm of
Tutte described in Section 10.2. However, these researchers were more con-
cerned with proving the existence of straight-line drawings than with de-
signing algorithms to create them. In particular, all the algorithms prior
to 1988 have poor resolution. Namely, the output drawings contain ver-
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(a) (b)

(c)

(@)

Figure 4.25: An example of a run of Algorithm 4.8 Orthogonal-_{'rom
Visibility: (a) planar graph G; (b) orientation D of G and set II of noninter
secting paths; (c) constrained visibility representation I of D; (d) orthogona
drawing of G.
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tices which are exponentially close together, which implies that they have
exponential area if a minimum unit distance between vertices is specified.
This resolution problem limits the applications of these classic techniques
for visualization purposes.

de Fraysseix, Pach and Pollack [dFPP90] and Schnyder [Sch90] indepen-
dently show the following fundamental result.

Theorem 4.17 Every n-vertex planar graph has a planar straight-line grid
drawing with O(n?) area.

The proof of this theorem by [dFPP90] uses an orientation technique.
The graph is first oriented and then the drawing is created, one vertex at a
time, in the order specified by the orientation. The proof by [Sch90] exploits
the properties of a partial order defined over the vertices, edges, and faces
of a maximal planar graph.

An example of a planar straight-line drawing constructed by the algo-
rithm of [dFPP90] is show in Figure 4.26.

(a) (b)

Figure 4.26: Example of a planar straight-line grid drawing with quadratic
area.

4.11 Exercises
1. Prove that the following statements are equivalent for a digraph G:

e G is acyclic
¢ G admits a topological numbering

¢ G admits a topological sorting.
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Show that a topological sorting is unique if and only if the digraph
has a directed path that visits every vertex.

. Prove that the digraph G* defined in Section 4.2 is a planar st-graph.
. Prove Lemma 4.4.

. Construct a tessellation representation of the planar st-graph of Fig-

ure 4.22 using Algorithm 4.1 Tessellation.

Construct a minimum-area tessellation representation of the planar
st-graph of Figure 4.3, such that k(o) > 1 and w(o) > 3, for every
object o (vertex, edge, or face), using the algorithm of Theorem 4.2.

Give complete proofs of Theorems 4.1 and 4.2.

Give a complete proof of the bound on the number of bends given in
Theorem 4.6.

Give a proof of Property 2 of Lemma 4.7.

Construct a visibility representation of the planar st-graph of Fig-
ure 4.22 using Algorithm 4.2 Visibility.

Choose a set of nonintersecting paths covering the planar st-graph G
of Figure 4.22, and construct a constrained visibility representation G
using Algorithm 4.3 Constrained- Visibility.

Construct a planar upward polyline grid drawing of the planar st-
graph of Figure 4.22 using Algorithm 4.4 Polyline and the long-edge
positioning for the vertices.

Choose a path 7 from the source to the sink of the planar st-graph G
of Figure 4.22, and construct a planar upward polyline grid drawing
of G, such that the internal vertices of  are vertically aligned, using
Algorithm 4.5 Constrained-Polyline.

Let G be a planar st-graph. Construct two subgraphs T and Tg of
G as follows:

e T, is obtained by selecting for each vertex v # s of G, the right-
most incoming edge of v.

e T is obtained by selecting for each vertex v # s of G, the leftmost
incoming edge of v.
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(a) Show that T, and Tx are trees rooted at vertex s.

(b) Show that the X- and Y-coordinates of a vertex v, computed
in the Preliminary Layout phase of Algorithm 4.6 Dominance-
Straight-Line, are equal to the ranks of vertex v in a preorder
traversal of Tp and Tg, respectively, where we assume that the
children of a node are visited from left to right, and that the
ranks start at 0.

Implement Algorithm Dominance-Polyline.

Construct a polyline dominance drawing of the planar st-graph of
Figure 4.3 using Algorithm Dominance-Polyline.

Construct a planar polyline grid drawing of the planar graph G of Fig-
ure 4.23.a, by orienting it into a planar st-graph, using an st-numbering
that is different from the one shown in Figure 4.23.a.

Give a complete proof of Theorem 4.16.



Chapter 5

Flow and Orthogonal
Drawings

Network flow techniques can be used to solve a variety of planar graph
drawing problems. In a planar polyline drawing, the angles formed by the
edges at the vertices and at the bends satisfy geometric properties that can
be naturally expressed with a flow model. Namely, we can view angles as a
“commodity” that is produced by the vertices and consumed by the faces.

An important aesthetic for planar orthogonal drawings is the mini-
mization of the number of bends (see Section 2.1 and Figure 5.1). In this
chapter, we present a graph drawing method based on network flow tech-
niques, which constructs a planar orthogonal drawing of an embedded planar
graph with minimum number of bends. We show that minimizing bends in
planar orthogonal drawings can be modeled as a minimum cost flow prob-
lem on a flow network derived from the graph and its embedding. In this
flow network, each unit of flow corresponds to a w/2 angle, the vertices
are producers of four units of flow, the faces consume an amount of flow
proportional to the number of angles in their interior, and each bend trans-
fers a unit of flow across its incident faces. By giving unit cost to the
flow associated with bends, a drawing with the minimum number of bends
corresponds to a flow of minimum cost. This yields a quadratic-time algo-
rithm for bend minimization. This technique was first presented in [Tam87],
with variations, refinements, and extensions given in [FK96, Tam85, TDB88,
TTV9la). Linear-time algorithms for constructing planar orthogonal draw-
ings with O(1) bends per edge, but that do not guarantee the minimum
number of bends, are given in Chapter 4. Note that it is NP-hard to min-
imize bends over all possible embeddings of a planar graph [GT95] (see

137
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Appendix A). Polynomial-time algorithms exist only for special classes of
planar graphs [DLV93] (see Appendix A). Linear-time algorithms for con-
structing orthogonal drawings of general (nonplanar) graphs are given in
Chapter 8. The techniques presented in this chapter can also be used for
drawing general nonplanar graphs by means of a preliminary planarization
step (see Section 7.1).

Recall that only graphs whose vertices have degree at most four admit
a planar orthogonal drawing. Hence, throughout this chapter, unless oth-
erwise specified, we consider only graphs with vertices of degree at most
four.

— !
—t t

(a) (b)

Figure 5.1: Two planar orthogonal drawings of the same embedded planar
graph: (a) drawing with 9 bends; (b) drawing with 6 bends. The drawing
in part (b) has the minimum number of bends.

This chapter is organized as follows. In Section 5.1, we give preliminary
definitions on angles in orthogonal drawings. In Section 5.2, we introduce
the concept of orthogonal representation, which defines the “shape” of an or-
thogonal drawing in terms of angles, without considering the actual lengths
of the edges. A network flow model for the problem of constructing planar
orthogonal drawings of embedded planar graphs is defined in Section 5.3.
The problem of constructing an orthogonal drawing with a given orthogonal
representation is studied in Section 5.4. In Section 5.5, we give the algorithm
for minimizing the number of bends in a planar orthogonal drawing. The
algorithm is able to support a variety of constraints, as shown in Section 5.6.
Additional applications of the low model are given in Section 5.7. Finally,
in Section 5.8, we show how to apply the techniques to produce drawings
of planar graphs with degree greater than four, using a drawing convention
similar to the orthogonal grid convention.
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Three drawings constructed with the techniques presented in this chapter
are shown in Figures 5.2-5.4.

Window

o] x [w]efleT = wlal b wlalln mel Jfe
L | W S B il T
[Timesromar B[ 12254 [l S MR T
s =
L 9—6—

Fi: l ®—@

% B

=3 0—?—0

/ o
~ LO—T

- bl i Bewele it i g"'
E T Property [ vaiue [ visibie] =

| | |

|Java Applet Window

Figure 5.2: An orthogonal drawing constructed by the Graph Drawing
Server. (Courtesy of S. Bridgeman.)

5.1 Angles in Orthogonal Drawings

Let I be a planar orthogonal drawing of an embedded planar graph G.
There are two types of angles in I':

o Angles formed by two edges incident on a common vertex, called
vertez-angles

e Angles formed by bends (that is, angles formed by consecutive edge
segments of the same edge), called bend-angles.

The following properties are immediate (see Figures 5.5 and 5.6):
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Figure 5.3: An orthogonal drawing of an entity-relationship diagram cre-
ated by the JBG software. It contains one crossing that has been introduced
by a planarization algorithm. (Courtesy of M. Simoncelli.)

Lemma 5.1 In a planar orthogonal drawing, the sum of the measures of
the vertez-angles around a vertez is equal to 2w.

Lemma 5.2 Let f be an internal face of a planar orthogonal drawing. The
sum of the measures of the vertez-angles and bend-angles inside face f is
equal to m(p — 2), where p is the total number of such angles. If f is the
ezternal face, then the above sum is equal to w(p + 2).
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Figure 5.4: An orthogonal drawing of a graph with 80 vertices created by
the GDToolkit software. (Courtesy of W. Didimo, A. Leonforte, and M.
Patrignani.)

5.2 Orthogonal Representations

In this section, we introduce the concept of orthogonal representation. which
captures the notion of “orthogonal shape” of a planar orthogonal drawing,
by taking into account angles but disregarding edge lengths.

Let G be an embedded planar graph with vertices of degree at most four.
We denote with a(f) the total number of vertex-angles inside face f of G.
If G is biconnected, then a(f) is equal to the number of vertices (edges)
of f. For each (undirected) edge e of G with endpoints u and v, the two
possible orientations (u,v) and (v, u) of edge e are called darts. A dart is
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/2

/2

Figure 5.5: Angles around a vertex (vertex-angles) in a planar orthogonal
drawing.

n2 w2

3n/2 2

2 n . 7p)
.

Figure 5.6: Angles inside a face (face-angles) in a planar orthogonal draw-
ing.

said to be counterclockwise with respect to face f if f is on the left hand
side when traversing the dart in the direction of its orientation. We denote
with D(v) the set of darts that begin at vertex v, and with D(f) the set of
counterclockwise darts on face f.

Given a planar orthogonal drawing I' of G, we define values o and
associated with the darts of G as follows (see Figure 5.7.a):

o a(u,v) - 7/2 is the angle at vertex u formed by the first segments of
dart (u,v) and the next dart counterclockwise around u

¢ B(u,v) is the number of bends along dart (u,v) with the 7/2 angle on
the left hand side.

An orthogonal representation of G describes an equivalence class of pla-
nar orthogonal drawings of G with “similar shape,” that is, with the same
« and [ values associated with the darts of G. More formally, we say that
an orthogonal representation of G is an assignment of integer values a(u,v)
and ((u,v), to each dart (u,v) of G, that satisfy the following properties
(see Lemmas 5.1 and 5.2):
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o 1 <a(u,v) <4
e B(u,v) 20

e For each vertex u, the sum of a(u,v) over all the darts oriented away
from u is equal to four, that is,

E a(u,v) =4

(u,v)eD(u)

e For each internal face f, the sum of a(u,v) + B(v,u) — B(u, v) over all
the counterclockwise darts (u,v) on face f is equal to 2a(f) — 4, that
is,

E a(u,v)+ﬂ(v,u)—ﬂ(u,v) =2a(f)_4
(v,v)eD(f)

e For the external face h, the above sum is equal to 2a(h) + 4, that is,

Z a(u,v) + B(v,u) — B(u,v) = 2a(h) + 4.

(u,v)eD(h)

In Figure 5.7, we show three planar orthogonal drawings of a graph with
the same orthogonal representation. Note that the orthogonal representation
describes the “shape” of an orthogonal drawing, up to permuting the order of
the bends along each edge. In particular, two orthogonal drawings with the
same orthogonal representation have the same number of bends (equal to the
sum of the 3 values over all the darts). Conversely, in Section 5.4, we show
that given an orthogonal representation H, there exists a planar orthogonal
drawing with orthogonal representation H that can be constructed in linear
time.

5.3 The Network Flow Model

In this section, we present a network flow model for the problem of construct-
ing planar orthogonal drawings of embedded planar graphs. This model
views angles as a “commodity” that is “produced” by the vertices, “trans-
ported” between faces by the edges through their bends, and eventually
“consumed” by the faces. Hence, the nodes of the network are the vertices
and faces of the graph. Since all angles we deal with have measure Am/2,
with 1 < k < 4, we establish the convention that a unit of flow represents
a /2 angle. We shall see that the formulas of Lemmas 5.1 and 5.2 express
the “conservation” of flow at vertices and faces, respectively.
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Figure 5.7: Three planar orthogonal drawings with the same orthogonal
representation. Each dart (u,v) of the drawing in part (a) is labeled with
the pair (a(u,v), B(u, v)).

We need to introduce some terminology to discuss networks and flow. A
network N is a digraph whose vertices are called nodes and whose edges are
called arcs, such that:

e Each source (resp. sink) v has a production (resp. consumption)
denoted o(v). The total amount of production of the sources is equal
to the total consumption of the sinks.

e Each arc (u,v) is labeled with:

— a lower bound A(u,v)
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— a capacity p(u,v)

- a cost x(u,v).

A flow ¢ in N associates a nonnegative integer ¢(u,v), with each arc (u, v).
Flow ¢(u,v) cannot exceed the capacity of (u,v) and cannot be less than
the lower bound of (u,v). Also, for each node of M that is not a source or
a sink, the sum of the flows of the incoming arcs is equal to the sum of the
flows of the outgoing arcs.

The cost of the flow ¢ in N is the sum of x(u,v)@(u,v) over all the arcs
of N. The value of the flow in N is the sum of the flows reaching the sinks.
The minimum cost flow problem is stated as follows. Given a network A/,
find a flow ¢ in NV, such that the cost of ¢ is minimum.

We associate a flow network A, whose nodes have supplies and demands,
and whose arcs each have a lower bound A, a capacity p, and a cost x, with
an embedded planar graph G as follows (see Figure 5.8):

e The nodes of NV are the vertices and faces of G
e A vertex-node v of N produces flow o(v) = 4

e A face-node of N consumes flow o(f) = 2a(f) — 4 if f is an internal
face, and flow o(h) = 2a(h) + 4 if h is the external face

e For each dart (u,v) of G, with faces f and g on its left and right,
respectively, N has two arcs (u, f) and (f,g), where:

— arc (u, f) has lower bound A(u, f) = 1, capacity u(u, f) = 4, and
cost x(u, f) = 0 (see Figure 5.8.a)

— arc (f,g) has lower bound A(f,g) = 0, capacity u(f,g) = +oo,
and cost x(f,g) =1 (see Figure 5.8.b).

The thought behind the definition of flow network N is as follows (see
Figure 5.9):

e The flow in arc (u, f) associated with dart (u,v) represents the quan-
tity a(u,v), that is, the measure of an angle formed at vertex u inside
face f; the lower bound and capacity indicate that such an angle must
be at least 7/2 and at most 2m; the cost is zero since such an angle is
at a vertex and not at a bend
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Figure 5.8: Network A associated with an embedded planar graph G
(shown with dashed lines). Each face-node f of AV is labeled with the amount
of flow o(f) consumed: (a) arcs of N from vertex-nodes to face-nodes; (b)
arcs of N between face-nodes.
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e The flow in arc (f, g) associated with dart (u, v) represents the quantity
B(u, ), that is, the number of bends with the 7/2 angle in face f along
an edge between faces f and g; the lower bound and capacity indicate
that such a number must be nonnegative and can be unbounded; the
cost is one since each unit of flow in such an arc corresponds to a bend

e The conservation of flow at a vertex-node represents the property ex-
pressed in Lemma 5.1

e The conservation of flow at a face-node represents the property ex-
pressed in Lemma 5.2.

—#

(a)

@
(b)

Figure 5.9: Correspondence between flow in network A/ and orthogonal
representation of G: (a) vertex-node; (b) face-node.

The total amount of flow supplied by the vertex-nodes is equal to the
total amount of flow consumed by the face-nodes. Indeed. let n, m, and r
be the number of vertices, edges, and faces of G, respectively. By Euler's
formula [BM76], we have n — m + r — 2 =0. Therefore

Sow) - o(f) = 4= (2a(f)~4)-8
v s

v J
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= 4dn—4m+4r—38
= 4n—-m+r—2)
0.

The number of nodes of N is n+7r < m+ 2 < 2n + 2, and the number
of arcs of NV is twice the number of darts of G, that is, 4m < 8n. Note
that A is planar but has bidirectional arcs between pairs of face-nodes. It
is straightforward to compute N from G. Thus, we have:

Lemma 5.3 Let G be an embedded planar graph with n vertices. The flow
network N associated with G has O(n) nodes and arcs, and can be—con-
structed from G in O(n) time.

The correspondence between orthogonal representations and flows is for-
malized in the following theorem.

Theorem 5.1 Let G be an embedded planar graph, and N be the flow net-
work associated with G. For a dart (u,v) of G, let (u,f) and (f,g) be
the associated arcs of N'. The following relations uniquely associate an or-
thogonal representation of G (given by values a and B) with a flow ¢ in
network N :

o $(u, f) = a(u,v)
e ¢(f.9) = B(u,v).

Also, the cost of flow ¢ is equal to the number of bends of the associated
orthogonal representation of G.

In the example of Figure 5.10, we show the flow associated with a given
orthogonal representation.

Algorithm 5.1 Orthogonalize computes an orthogonal representation with
the minimum number of bends for an embedded planar graph G. It is based
on Lemma 5.3 and Theorem 5.1.

Theorem 5.2 Let G be an embedded planar graph with n vertices. Algo-
rithm 5.1 Orthogonalize computes an orthogonal representation of G, with
the minimum number of bends, in time O(T(n)), where T(n) is the time for
computing a minimum cost flow in the flow network N associated with G.
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Figure 5.10: Example of flow ¢ associated with a planar orthogonal rep-
resentation (drawn with dashed lines). Only the arcs with nonzero flow are
shown. The thickness of the arc is proportional to the amount of flow. Each
face-node f is labeled with the amount of flow o(f) consumed.

Algorithm 5.1 Orthogonalize
Input: embedded planar graph G with n vertices of
maximum degree four
Output: orthogonal representation of G with the min-
imum number of bends

1. Construct the flow network N associated with G (Lemma 5.3).
2. Compute a flow ¢ of minimum cost for network N.
3. Compute the orthogonal representation of G associated with ¢ (The-

orem 5.1).
0
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Figure 5.11: Example of a planar orthogonal representation with the min-
imum number of bends (drawn with dashed lines) associated with a flow ¢
of minimum cost. Only the arcs with nonzero flow are shown. The thickness
of the arc is proportional to the amount of flow. Each face-node f is labeled
with the amount of flow o(f) consumed.

In Figure 5.11, we show the orthogonal representation, with the mini-
mum number of bends, associated with a flow of minimum cost.

A simple algorithm for computing a minimum cost flow in network N
is based on the standard technique of augmenting the flow along minimum
cost paths [AMO93]. It runs in time T(n) = O(n? logn) using O(n) space.
A more complex algorithm, which exploits the sparsity of network A, runs
in time T(n) = O(n"/*logn) using O(n) space [GTITb].
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5.4 Compaction of Orthogonal Representations

In this section, we consider the problem of compacting an orthogonal repre-
sentation, that is, of constructing an orthogonal grid drawing with a given
orthogonal representation, such as the one produced by Algorithm 5.1 Or-
thogonalize. We want to assign lengths to the segments of the edges of
the orthogonal representation, such that there are no crossings or overlaps
among the vertices and edges. We aim at keeping the area small, while using
only integer values for the segment lengths, hence the name “compaction.”
We will show that a drawing with area O((n + b)2) can be constructed in
O(n + b) time, where n and b denote the number of vertices and bends in
the orthogonal representation, respectively.

The algorithm for the compaction problem deals separately with hori-
zontal and vertical segments. We begin by describing the algorithm for the
special case where each face in the orthogonal representation has the shape
of a rectangle, and then consider the general case.

5.4.1 Orthogonal Representations with Rectangular Faces

Let G be an embedded planar graph with n vertices, and H be an orthogonal
representation of G, such that each face of H has the shape of a rectangle
(see Figure 5.12). We have that H has at most four bends, which can only be
placed at the four “corners” of the external face. Any other bend would be
incompatible with the requirement that all faces have a rectangular shape.
Hence, the segments of H correspond to the edges of G, except possibly for
at most eight segments incident on the bends of the external face.

Figure 5.12: Example of orthogonal representation with rectangular faces.



152 CHAPTER 5. FLOW AND ORTHOGONAL DRAWINGS

We can formally express the fact that an internal face f has rectangular
shape with the conditions a(u,v) < 2 and B(v,u) = 0 for each dart (u,v) €
D(f). Conversely, the external face h has rectangular shape if a(u,v) > 2
and B(u,v) = 0 for each dart (u,v) € D(h).

Algorithm 5.2 Tidy-Rectangle-Compact uses a flow model of the com-
paction problem. Namely, it constructs two flow networks, one for the hori-
zontal segments, and the other for the vertical segments. We shall describe
the network Npor for the horizontal segments (see Figure 5.13). The other
network Nyr is analogous (see Figure 5.14).

Algorithm 5.2 Tidy-Rectangle-Compact
Input: embedded planar graph G with n vertices of
maximum degree four; orthogonal represen-
tation H of G, such that all the faces have
rectangular shape
QOutput: planar orthogonal grid drawing I’ of G with
orthogonal representation H and minimum
height, width, area, and total edge length

1. Construct flow networks Njor and Ny, associated with H.
2. Compute minimum cost flows for Nyor and Nyer.

3. Set the length of each segment of H equal to the flow in the corre-

sponding arc of Npor or Nyer.
a

Network Npor has a node associated with each internal face plus two
special nodes, denoted s and ¢, representing the “lower” and “upper” region
of the external face, respectively. Also, Ny, has an arc (f, g) for every pair
of faces f and g that share a horizontal segment e, with f below g. The
flow in arc (f, g) represents the length of segment e. Hence, arc (f,g) has
lower bound X(f,g) = 1, capacity pu(f,g) = 400, and cost x(f,g9) = 1.
Figures 5.13 and 5.14 show a flow of minimum cost for Npor and Nier,
respectively.

The following properties of network Njo, are immediate. Npor is planar
and acyclic, with a unique source and a unique sink, both on the external
face. This implies that Ny, is a planar st-graph (see Section 4.2). Also,
Nhor has O(n) nodes and arcs.

Clearly, given an orthogonal drawing of G with orthogonal representation
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Figure 5.13: Network Ny, for the orthogonal representation of Figure 5.12,
and a minimum cost flow for Nyqr.

Figure 5.14: Network Ny, for the orthogonal representation of Figure 5.12,
and a minimum cost flow for Nyer.
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H and integer segment lengths, we can immediately compute a flow for Ny,
(and Nyer) by setting the flow in each arc equal to the length of its associated
segment. Note that:

e The flow value for Npor (Nyer) is equal to the width (height) of the
drawing

e The sum of the costs of the lows in N4 and Ny, is equal to the total
edge length of the drawing.

For example, the flows of Figures 5.13 and 5.14 can be obtained from the
drawing of Figure 5.16.a. The converse is also true. Indeed, the conservation
of flow at each node of Nyor (Nyer) signifies that the top and bottom (left
and right) side of each rectangle have the same length. This implies the
assigned lengths give a consistent drawing. Therefore, we have:

Lemma 5.4 Given flows for networks Npor and Ny, setting the length of
each segment of H equal to the flow of the corresponding arc in Npor 07 Nyer
yields a planar orthogonal drawing I' of G with orthogonal representation H.
Also, the width (height) of ' is equal to the value of the flow in Npor (Nyer),
and the total edge length of I is equal to the sum of the costs of the flows in
Npor and Nyer.

By Lemma 5.4, the compaction problem for an orthogonal representation
with rectangular faces can be reduced to a minimum-cost flow computation.
This compaction method is summarized in Algorithm 5.2 Tidy-Rectangle-
Compact that computes minimum cost flows for networks Npor and Ny, (see
Figures 5.13 and 5.14) to construct a drawing with minimum height, width,
area, and total edge length (see Figure 5.16.a).

The correctness of Algorithm 5.2 Tidy-Rectangle-Compact follows from
Lemma 5.4. The time complexity of Steps 1 and 3 is O(n) time; Step 2
takes O(n?/?logn) [GT97b) time (see the discussion after Theorem 5.2).

Now we present a different compaction algorithm that runs in linear
time and minimizes the height, width, and area of the drawing, but does
not guarantee the minimum total edge length.

Let Ny . be the digraph obtained from G and H by (see Figure 5.15):

¢ Replacing (at most four) bends with fictitious vertices
e Orienting the horizontal edges from left to right

¢ Contracting maximal paths of vertical edges to a vertex.
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Digraph Ny . is a planar st-graph (see Section 4.2). We call the vertices
of Ny, vertical bars. Note that Ny, is the “dual planar st-graph” of Ny,
(see Section 4.2). We perform an analogous construction to obtain planar
st-graph Ny, whose vertices are associated with maximal paths of horizon-
tal edges, called horizontal bars. Digraphs Ny, and Ny, each have O(n)
vertices and edges, where n is the number of vertices of G.

Figure 5.15: Digraph N, for the orthogonal representation of Figure 5.12.
Each vertex of Ny is shown as a shaded oval. The vertex labels show an
optimal weighted topological numbering with respect to unit edge weights.

We can use topological numberings (see Section 4.1) of planar st-graphs
Ny and N, to compute flows in Npor and Nyer.

Lemma 5.5 Given an integer topological numbering X (Y ) of Ni,. (Nyer),
a flow ¢ for Nior (Nyer) can be constructed by setting ¢(f,g9) = X (") —
X)) (6(f,9) =Y(") =Y (V)), where b’ and b" are the vertical (horizontal)
bars containing the left (bottom) and right (top) endpoint of the horizontal
(vertical) segment associated with arc (v, f), respectively. Also, the value of
flow ¢ is equal to the difference between the mazimum and minimum X (Y)
value.

By Lemma 5.5, a flow in Nyor (Nyer) of minimum value can be con-
structed from an optimal weighted topological numbering of Ny, (Nyer)
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with respect to unit edge weights (see Section 4.1). Hence, by Lemma 5.4, we
obtain a planar orthogonal grid drawing of G with minimum width, height,
and area. This compaction method is summarized in Algorithm 5.3 Fast-
Rectangle-Compact. An example of a run of Algorithm 5.3 Fast-Rectangle-
Compact is shown in Figure 5.16.b.

Algorithm 5.3 Fast-Rectangle-Compact
Input: embedded planar graph G with n vertices of
maximum degree four; orthogonal represen-
tation H of G, such that all the faces have
rectangular shape
Output: planar orthogonal grid drawing I' of G with
orthogonal representation H and minimum
height, width, and area

1. Construct planar st-graphs Ny, and NJ.. and assign unit weights to
their edges.

2. Compute optimal weighted topological numberings X and Y of Ny,
and N, respectively.

3. Set the length of each horizontal segment e of H equal to X (b")— X ('),
where b’ and b” are the vertical bars of Ny . containing the left and
right endpoint of segment e, respectively.

4. Set the length of each vertical segment e of H equal to Y (V') — Y (V').
where b’ and b” are the horizontal bars of N}, containing the bottom

and top endpoint of segment e, respectively.
O

We summarize with the following theorem:

Theorem 5.3 Given an embedded planar graph G with n vertices of degree
at most 4, and an orthogonal representation H of G, such that all the faces
have rectangular shape, Algorithm 5.3 Fast-Orthogonal-Compact constructs
a planar orthogonal grid drawing of G, with minimum height, width, and
area, in O(n) time.
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(a)

O = N W b
)

(b)

S = N W b O

0 1 2 3 4 5

Figure 5.16: Examples of compaction of the orthogonal representation
of Figure 5.12: (a) drawing produced by Algorithm 5.2 Tidy-Rectangle-
Compact using the flows shown in Figures 5.13 and 5.14; (b) drawing pro-
duced by Algorithm 5.3 Fast-Rectangle-Compact using the topological num-
bering shown in Figure 5.15.

5.4.2 General Orthogonal Representations

In this section, we show how to compact general orthogonal representations,
where the regions do not necessarily have a rectangular shape. We “refine”
the orthogonal representation into one whose regions have a rectangular
shape by introducing “invisible” dummy edges, and then apply one of the
compaction algorithms of the previous section.

Let G be an embedded planar graph with n vertices, and H be an orthog-
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onal representation of G. A rectangular refinement of H is an orthogonal
representation H' of a graph G’, such that (see Figure 5.17):

o o I Q

Figure 5.17: Example of rectangular refinement.

e G’ is obtained from G by a sequence of the following operations:

— add an isolated vertex
— insert a vertex along an edge

— add an edge.

e The “subrepresentation” of H' associated with G is the same as H.

o The regions of H' have rectangular shape.

Clearly, a drawing of G’ with orthogonal representation H' contains a
drawing of G with orthogonal representation H. In this section, we show
that a rectangular refinement H' of H always exists and can be efficiently
computed.

The construction of H' starts by inserting a vertex at each bend of H.
Next, we consider each face in turn. Let f be an internal face. If f has
rectangular shape, nothing has to be done. Otherwise, we proceed as follows
(see Figure 5.18):

1. For each edge e of f, let nezt(e) be the edge following e when traversing
the boundary of f counterclockwise, and let corner(e) be the common
vertex of e and nect(e).
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Figure 5.18: Example of “refinement” of an internal face into rectangles.
Edges ertend(e) are dashed in part (a). Edges front(e), for each e with
turn(e) = —1, are indicated by arrows in part (b).

2. For each edge e of f, we set turn(e) = +1 if e and nezt(e) form a left
turn, turn(e) = 0 if e and nert(e) are aligned, and turn(e) = -1 ife
and nezt(e) form a right turn.

3. For each edge e, find the first edge ¢’ following e counterclockwise, such
that the sum of the turn values for all the edges between e (included)
and €' (excluded) is equal to 1, and set front(e) = ¢€'.

4. For each edge e, such that turn(e) = —1 (i.e., e and nezt(e) form a
right turn), insert a vertex project(e) along edge front(e), and add edge
extend(e) = (corner(e), project(e)). Update H' by establishing that
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eztend(e) has no bends, and e and extend(e) are aligned. If front(e’) =
front(e") = €", for distinct edges €' and e”, then we establish that
project(e') follows project(e”) counterclockwise, if and only if €, ",
and front(e') form a counterclockwise sequence.

The above algorithm “refines” internal face f into a collection of rectan-
gular faces. Its correctness can be proved as follows. First, front(e) is defined
for every edge e, since by Lemma 5.2, 3", turn(e) = 4. Assume, as a con-
tradiction, that two newly inserted edges extend(e’) and eztend(e”) “cross”,
that is, going counterclockwise we encounter in order €, €”, front(e’), and
front(e") (see Figure 5.19). This contradicts the definition of front (see

Figure 5.18).
j front(e")

L )
front(e')

Figure 5.19: Showing by contradiction that eztend(e') and extend(e”) can-
not cross.

The refinement of the external face can be done with a variation of the
above algorithm. Now, we have that 3_, turn(e) = —4, so that front(e) may
not be defined for every edge e. To handle the edges with front undefined,
we add a “rectangle” around the external face, and we “extend” such edges
by “projecting” them onto the sides of the rectangle (see Figure 5.20).

It is easy to see that the refined orthogonal representation H' has O(n+b)
vertices, where b is the number of bends of H. Also, the refinement algorithm
can be implemented in linear time by keeping the vertices encountered in
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Figure 5.20: Example of “refinement” of the external face into rectangles.

the traversal of each face in a stack. Therefore, by combining Algorithm 5.3
Fast-Orthogonal-Compact with the refinement strategy above, we obtain:

Theorem 5.4 Given an embedded planar graph G with n vertices of degree
at most 4, and an orthogonal representation H of G with b bends, a planar
orthogonal drawing of G with integer coordinates and area O((n + b)?) can
be constructed in O(n + b) time.

If we use Algorithm 5.2 Tidy-Rectangle-Compact instead of Algorithm 5.3
Fast-Orthogonal-Compact, then the total edge length of the drawing would
probably be smaller, but the time complexity would increase to O(n”/4 log n).

5.5 An Orthogonal Drawing Algorithm that Min-
imizes the Number of Bends

Using the building blocks provided by Sections 5.3 and 5.4, we can construct
Algorithm 5.4 Optimal-Orthogonal, the complete algorithm for creating a
planar orthogonal drawing, with a minimum number of bends.

Recall that it may be possible to obtain a drawing with smaller total
edge length by using Algorithm 5.2 Tidy-Orthogonal-Compact instead of
Algorithm 5.3 Fast-Orthogonal-Compact.
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Algorithm 5.4 Optimal-Orthogonal
Input: embedded planar graph G with n vertices of
degree at most four
Output: planar orthogonal grid drawing I' of G with
area O(n?) and the minimum number of bends

1. Construct an orthogonal representation H of G with the minimum
number of bends by means of Algorithm 5.1 Orthogonalize.

2. Refine H into an orthogonal representation H' with rectangular faces.

3. Construct a planar orthogonal grid drawing I' of H’ by means of
Algorithm 5.3 Fast-Orthogonal-Compact.

4. Obtain from I a planar orthogonal grid drawing I" of G by ignoring

the fictitious edges and vertices introduced in the refinement step.
0

Since the minimum number of bends in a planar orthogonal drawing is
O(n) (see Table A.7), the compaction can be carried out in O(n) time. Thus
the time complexity of Algorithm 5.4 Optimal-Orthogonal is dominated by
the minimum cost flow computation. We summarize the main result of this
section in the following theorem:

Theorem 5.5 Given an embedded planar graph G with n vertices of degree
at most four, Algorithm 5.4 Optimal-Orthogonal constructs a planar or-
thogonal grid drawing of G with area O(n?) and the minimum number of
bends, in O(T(n)) time,, where T(n) is the time for computing a minimum
cost flow in the flow network N associated with G.

We recall that T(n) = O(n?/4 log n) [GT97b] and that T'(n) = O(n?logn)
can be achieved with a simple algorithm (see the discussion after Theo-
rem 5.2).

Algorithm 5.4 Optimal-Orthogonal can be used in the orthogonaliza-
tion step of the topology-shape-metrics approach for constructing orthogo-
nal drawings of general (nonplanar) graphs outlined in Section 2.3.
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5.6 Constraints

Algorithm 5.4 Optimal-Orthogonal can be easily modified to support user-
defined constraints of the following types on the drawing:

o Verter-angle Constraints: Upper and lower bounds on a vertex-angle,
that is, on a(u,v), for a dart (u,v)

e Bend Constraints: Upper and lower bounds on the bends of an edge
e, that is, upper and lower bounds on 8(w,v) and B(v,u) for the darts
(u,v) and (v, u) of edge e.

These constraints can be imposed by modifying the capacities and lower
bounds of the arcs of N associated with appropriate darts. For example, to
prescribe at most two bends on an edge e with darts (u,v) and (v,u), we
set the capacity of the arcs (f,g) and (g, f) of NV, associated with the faces
f and g on the left of (u,v) and (v,u), equal to two respectively, that is,
u(f,g) = u(g, f) = 2. Note that a set of vertex-angle and bend constraints
allows us to prescribe the orthogonal representation of a subgraph. The
time complexity of Algorithm 5.4 Optimal-Orthogonal is not affected by the
use of the constraint satisfaction mechanism.

In Fig. 5.21, we show a drawing with the minimum number of bends
subject to bend constraints requiring two given edges to have zero bends.

Figure 5.21: Planar orthogonal drawing of the embedded planar graph of
Figure 5.1. The drawing has the minimum number of bends subject to bend
constraints requiring that the two edges drawn with thick lines have zero
bends. Imposing this constraint causes the minimum number of bends to
increase from 6 to 8.



164 CHAPTER 5. FLOW AND ORTHOGONAL DRAWINGS

5.7 Bend Minimal Drawings

In this section, we present additional applications of the flow model intro-
duced in Section 5.3. We provide a characterization of planar orthogonal
drawings with the minimum number of bends (Thcorem 5.6). This charac-
terization opens a different avenue for bend minimization. Suppose that we
have an orthogonal representation with a nonminimum number of bends, for
example, from Algorithm 4.8 Orthogonal-from- Visibility (see Theorem 4.16).
We can apply the characterization to give bend-stretching transformations
that reduce the number of bends.

Let ' be a planar orthogonal drawing. A vertex- or face-angle of T’
measuring 7/2, 7, or 37/2 is called inflex, flat, or reflez, respectively. An
oriented closed simple curve C, drawn onto I', defines an elementary trans-
formation of T if it intersects vertices only by entering from flat or reflex
angles. The elementary transformation is obtained by “transporting” a /2
angle across each vertex and edge intersected by C (see Figure 5.22). For
each vertex v traversed by C, the transformation subtracts m/2 from the
angle where C enters, and it adds m/2 to the angle where C exits. Also, for
each intersection of C with an edge e, if C traverses e at a bend entering
from the reflex angle, then the transformation removes that bend. Other-
wise (C traverses e entering from an inflex or a flat angle), it adds to e a
bend with the reflex angle on the side where C exits.

®

L 3

(a) (b)

Figure 5.22: Example of an elementary transformation: (a) initial drawing
and closed curve C with reflex(C) = 3, flat(C) = 1, inflex(C) = 0, and
A(C) = —2; (b) final drawing with two fewer bends.
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Let reflez(C), flat(C). and inflex(C) be the number of edges that are
traversed by C entering from a reflex, flat, and inflex angle. respectively.
Note that we do not take into account traversals of vertices. The variation
in the number of bends caused by the elementary transformation defined by
C is given by (sec Figure 5.22)

A(C) = flat(C) + inflex(C) — reflex(C).

Curve C is said to be frivial if it intersects only one edge (going back and
forth between two faces) and A = 0 (see Figure 5.23). The elementary
transformation defined by a trivial curve does not change the drawing.

Figure 5.23: Example of a trivial curve with A = 0.

In the correspondence between orthogonal representations of G and flows
in network A established by Theorem 5.1, a curve C, defining an elementary
transformation, corresponds to an augmenting cycle (see [AMO93]) in N
with cost A. Since a minimum cost flow has no negative-cost augmenting
cycles, I’ has the minimum number of bends if and only if A > 0 for every
curve. Also, a minimum cost flow is unique if and only if it has no zero-cost
augmenting cycles (see [AMO93]). Hence, we conclude that the orthogonal
representation of I is the unique orthogonal representation of G with the
minimum number of bends if and only if, for every curve C, A > 0.

Theorem 5.6 A planar orthogonal drawing I’ of an embedded planar graph
G of mazimum degree at most 4 has the minimum number of bends if and
only if, for every curve C defining an elementary transformation, we have
A(C) > 0. Also, the orthogonal representation of I' is the unique orthogonal
representation of G with the minimum number of bends if and only If. for
every nontrivial curve C defining an elementary transformation. A(C) > 0.

Theorem 5.6 suggests an alternative algorithm for computing an orthog-
onal drawing, with the minimum number of bends, for an embedded planar
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[

(b)

(c)

Figure 5.24: Bend-stretching transformations.

graph G with n vertices. Start with an O(n)-bend drawing T, for exam-
ple, the one constructed by Algorithm 4.8 Orthogonal-from-Visibility (see
Theorem 4.16), and then remove bends by means of O(n) elementary trans-
formations with A < 0. This algorithm is inefficient, since testing whether I’
admits such an elementary transformation is equivalent to finding a negative-
cost augmenting cycle in the flow network N associated with the orthogonal
representations of G, which takes O(n?) time (see [AMO93]).

There are however, special cases of elementary transformations with
A < 0 that can be efficiently detected in linear time by a simple visit of the
orthogonal representation. In Figure 5.24, we show three such elementary
transformations. called bend-stretching transformations, which were intro-
duced in [TT89a). In Figure5.25, we show an example of the improvement
obtained by perforining bend-stretching transformations.
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(a)

(b)

(c)

Figure 5.25: Example of the improvement obtained by performing a se-
quence of four bend-stretching transformations on a planar orthogonal draw-
ing: (a) initial drawing (same as part (d) of Figure 4.25); (b) intermediate
drawing after one transformation; (c) final drawing after three transforma-
tions.

Two drawings constructed with the techniques presented in this chap-
ter are shown in Figure 5.26. The same graph is drawn with two different
algorithms. The drawing on the left has been constructed by first applying
a variation of Algorithm 4.8 Orthogonal-from- Visibility and then perform-
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ing bend stretching transformations. The drawing on the right has been
constructed with a variation of Algorithm 5.4 Optimal-Orthogonal. The
technique used for the first drawing is faster than the technique used for the
second drawing. However, the second drawing is more readable.

el
4

Figure 5.26: Two orthogonal drawings of the same graph created by the
GDToolkit software. (Courtesy of W. Didimo, A. Leonforte, and M. Patrig-
nani.)

5.8 Extension to General Planar Graphs

Algorithm 5.4 Optimal-Orthogonal is applicable only to planar graphs with
vertices of degree at most four. In this section, we show how to extend
the algorithm to general planar graphs. For this purpose, we extend the
definition of orthogonal drawing to general graphs, by allowing vertices of
degree greater than four to be represented by rectangles with horizontal and
vertical sides. Related work appears in [FK96).

Let G be an embedded planar graph. For each vertex v of degree d > 4,
we expand G into a cycle C(v) of d vertices vy, v2, . .., vqg, Where each vertex
v; becomes incident to one of the edges formerly incident on v. Cycle C(v) is
called the ezpansion cycle of vertex v. Let G’ be the graph obtained from G
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by the above expansion procedure. Graph G’ is an embedded planar graph
with vertices of degree at most four. In particular, a vertex of an expansion
cycle has degree three.

We construct a planar orthogonal drawing I'' of graph G', subject to
the constraint that each edge of an expansion cycle has zero bends, using
the constrained variation of Algorithm 5.4 Optimal-Orthogonal described in
Section 5.6.

Lemma 5.8 In drawing I, each ezpansion cycle C(v) is drawn as a rect-
angle with horizontal and vertical sides.

Proof: Let f be the face of G’ bounded by C(v), and let u be a vertex
of C(v). Since u has degree three, each angle incident of u measures at
most m. Also, the bend constraints cause every edge of C(v) to be drawn
as a horizontal or vertical straight-line segment. Thus the drawing of cycle
C(v) in I is a polygon with horizontal and vertical sides that has internal
angles measuring either 7/2 or 7. We conclude that C(v) is drawn as a
rectangle. O

We can view I'' as a planar orthogonal drawing of graph G, such that the
representation of every vertex v is a rectangle with horizontal and vertical
sides. Note that such a drawing of G is not guaranteed to have the minimum
number of bends.

5.9 Exercises

1. Prove Lemma 5.2.

2. Show that in a planar orthogonal drawing with the minimum number
of bends, no edge has two bends with a 7/2 angle on opposite sides.

3. Show that the graph of Figure 5.11 has more than one planar orthog-
onal representation with the minimum number of bends.

4. Prove that networks Nyor and Nyer are planar st-graphs.
5. Give a complete proof of Theorem 5.4.
6. Apply Algorithm 5.4 Optimal-Orthogonal, showing all steps, to:

(a) The graph of Figure 5.1.a
(b) The graph of Figure 5.17
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(c) The graph of Figure 5.24.

7. Show how to modify Algorithm 5.4 Optimal-Orthogonal to give two
new algorithms:

(a) An algorithm which constructs a drawing with the minimum
number of bends subject to a prescribed orthogonal represen-
tation for a subgraph.

(b) An algorithm which constructs a drawing, such that a given edge
has a prescribed shape, specified by the sequence of left and right
turns of its bends.

8. Show that the planar orthogonal drawing of Figure 5.24 does not have
the minimum number of bends using an elementary transformation.



Chapter 6

Flow and Upward Planarity

When considering acyclic digraphs, the notion of planarity needs to be re-
fined to take into account the fact that such digraphs are usually drawn
upward, that is, with the edges monotonically increasing in the vertical di-
rection. Namely, we recall that a digraph is upward planer if it admits a
drawing that is at the same time planar and upward (see Section 2.1). Pla-
narity and acyclicity are necessary but not sufficient conditions for upward
planarity (see Figure 6.1).

(a) (b)

Figure 6.1: Two drawings of a planar acyclic digraph that is not upward
planar: (a) an upward drawing which is not planar; (b) a planar drawing
which is not upward.

This chapter addresses the upward planarity problem for digraphs. The

171
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study of upward planarity has fascinating connections with fundamental
graph-theoretic and order-theoretic properties such as connectivity and di-
mension (see, e.g., [Riv93)).

In Section 6.1, we describe a characterization that relates upward pla-
narity with planar st-graphs. In upward planarity, angles play a role similar
to their role in orthogonal drawings; this is the subject of Section 6.2. The
concepts presented in Section 6.2 find application in Section 6.3, where we
present a polynomial time algorithm to test upward planarity of embedded
acyclic digraphs [BDLM94]. The test consists of determining the existence
of a planar upward drawing with the given embedding. This is modeled by
a flow problem, where the sources and sinks of the digraph produce “large”
angles that are consumed by the faces.

In Sections 6.4 and 6.5, we present a polynomial time algorithm to test
upward planarity of single source acyclic digraphs [BDMT98, HL96]. In
Section 6.6, we show that, while testing whether a digraph admits a planar
drawing or an upward drawing can be done in linear time, combining the two
properties makes the problem NP-complete [GT95]. The NP-completeness
proof is based on a flow model. In Section 6.7. we complete the chapter by
addressing several other aspects of upward planarity.

Algorithms for constructing drawings of general (nonplanar) acyclic di-
graphs are presented in Chapter 9.

6.1 Inclusion in a Planar st-Graph

The following theorem gives a simple characterization of upward pla-
narity [DT88, Kel87].

Theorem 6.1 Let G be a digraph. The following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.

3. G is the spanning subgraph of a planar st-graph.

For example, the digraph of Figure 6.2.a is upward planar because adding
to it some edges yields the planar st-graph shown in Figure 6.2.b.

The remainder of this section consists of a proof of Theorem 6.1. First,
we show that Statement 1 implies Statement 3. Next, we show that State-
ment 3 implies Statement 2. Obviously, Statement 2 implies Statement 1.
which completes the proof.
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(a)

(b)

Figure 6.2: (a) An upward planar digraph G. (b) Planar st-graph obtained
from G by adding the light edges.

We illustrate the proof that Statement 1 implies Statement 3 in Fig-
ure 6.3. Consider an upward planar straight-line drawing of G, and call
s a source of G with lowest y-coordinate, and ¢ a sink of G with highest
y-coordinate. At a sink v # t, we start drawing a new edge upward. If we
encounter an existing edge e. then we follow its route closely, to avoid other
edges, until we reach w = dest(e). This adds a new edge (v.w) that pre-
serves planarity and acyclicity and “cancels” former sink v. This procedure
needs a minor modification if a vertical ray emanating upward from v does
not intersect any edge. By repcating this step, we are able to cancel all
the sinks, except ¢. A similar procedure allows us to cancel all the sources,
except s. Finally, we add the edge (s.¢).

The proof that Statement 3 implies Statement 2 is as follows. Given a
planar st-graph G' including G. we construct a planar upward straight-line
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t

S

Figure 6.3: Construction showing that Statement 2 implies Statement 3 in
Theorem 6.1.

drawing of G in three steps:

1. We add edges to G’, such that the resulting digraph G” is a planar
st-graph with all faces consisting of three edges.

2. We construct an upward planar straight-line drawing of G".

3. We remove the edges that do not belong to G from the drawing of G".

Let f be a face of a planar st-graph G'. We recall that by Lemma 4.1,
f consists of two directed paths P, and P, from orig(f) to dest(f). The
construction of Step 1 is based on the following lemmas.

Lemma 6.1 Let P be either P, or P, P = (v,...,v), where vy = orig(f)
and v; = dest(f), and assume that k > 4. Then either edge (vy,vg-1)
or edge (v2,vr) can be added to G' within face f, such that the resulting
embedded digraph is a planar st-graph.

Lemma 6.2 If f is an internal face and both P, and P, have at least three
vertices, then the embedded digraph, obtained by adding edge (v;,v,) to G’
within face f, where v; (v;) is a vertez of P, (P,) distinct from orig(f) and
dest(f), is a planar st-graph.

If G’ does not have the edge (s, t), then we add it. If (s,t) is not on the
external face, then we change the embedding of G’, such that (s, t) is on the
external face. If G' has a face f with more than three edges, then either
Lemma 6.1 or Lemma 6.2 applies. Hence, we can add an edge to G’ within
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face f. We repeat this edge-addition process until all the faces have three
edges.

The construction for Step 2 is given in Lemma 6.4. Some geometric
definitions are needed. Let X = (vo,...,vx) be a simple polygon, where the
sequence of vertices is counterclockwise, and p a point inside X. A vertex
v; of X is said to be visible from p, if the segment pv; lies entirely inside X.
A vertex v; is said to be properly visible from p if it is visible from p and the
interior of the segment pv; does not intersect X. The kernel of X is the set
of points p from which all vertices of X are visible. Notice that the concept
of visibility used here (visibility in any direction), is different from the one of
the definition of visibility representation (visibility in the vertical direction)
given in Chapter 4. The left half-plane of an edge (v;,v;41) of X is defined
as the half plane on the left of the straight line through (v;,v;41), oriented
from v; to vi41. The wedge of a vertex v; of X is defined as the intersection
of the left half-planes of the edges incident upon v; (see Figure 6.4.a). The
kernel of X is equal to the intersection of the left half-planes of its edges, or,
equivalently, to the intersection of the wedges of its vertices [YB61]. Using
this characterization of the kernel and continuity arguments, we can prove
the following lemma (see Figure 6.4.b).

Lemma 6.3 Let v; be a vertez of a simple polygon X, such that:
e v; belongs to the kernel of X

o The remaining vertices of X, except vi_y and vi4y, are properly visible
from v;.

Then there ezists a disk D centered at v; such that the intersection of D and
the wedge of v; is contained in the kernel of X.

Lemma 6.4 Let G be a planar st-graph with all faces consisting of three
edges. Given any upward planar straight-line drawing A for the erternal
face of G, there exists an upward planar straight-line drawing of G with the
ezternal face drawn as A.

Proof: The proof is by induction on the number n of vertices of G. The
basis of the induction, n = 3, is immediate, since A is a drawing of G. Now
we assume that the theorem holds for graphs with fewer than n vertices.
Let v be a vertex of G that is not on the external face, and let x be the
undirected cycle of the neighbors of v. We distinguish two cases.
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Figure 6.4: (a) Wedge of vertex v; in polygon X. (b) Illustration of
Lemma 6.3.

Case 1. If x has a chord, that is, an edge (u,w) joining two vertices non-
consecutive in x, then the undirected cycle A = (u,v,w) partitions G
into subgraphs sharing cycle A, where we denote the external subgraph
with G and the internal subgraph with G;. We have that Gy and G2
are planar st-graphs with fewer than n vertices and with all faces con-
sisting of three edges (see Figure 6.5). By the inductive hypothesis, we
can construct an upward planar straight-line drawing I'; of G, with
the external face drawn as A. Let A be the subdrawing of cycle A
in I';. We again use the inductive hypothesis to construct an upward
planar straight-line drawing I'; of G, with the external face drawn as
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A. The union of I'; and I'; is an upward planar straight-line drawing
of G, with the external face drawn as A.

t

s

Figure 6.5: Subgraphs G; and G in Case 1 of the proof of Lemma 6.4.

Case 2. Otherwise (x has no chords). Let u be a predecessor of v, such

that there is no directed path from u to any other predecessor of v.
Note that, given a topological numbering of G (see Section 4.1), u
can be chosen as the predecessor of v with the highest number. We
contract edge (u,v) into vertex u (see Figure 6.6). Namely, we remove
vertex v together with its incident edges, and add new edges between u
and each vertex w of x nonadjacent to u, where we add the edge (u,w)
if w was a successor of v, and add edge (w,u) if w was a predecessor
of v.

The above choice of u and Lemma 4.2 cnsure that the resulting graph
G' is a planar st-graph with n — 1 vertices and all faces consisting
of three edges. We apply the inductive hypothesis to construct an
upward planar straight-line drawing IV of G’, with the external face
drawn as A. To complete the construction, we have to remove the new
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(a)

(b)

Figure 6.6: Contraction of vertex v into vertex u in Case 2 of the proof of
Lemma 6.4: (a) before the contraction; (b) after the contraction.

edges and reinsert vertex v inside the polygon X of I'' corresponding
to cycle x. A legal placement for vertex v must satisfy the following
requirements:

1. Every vertex of X must be properly visible from v.

2. Vertex v is below its successors and above its predecessors.

Because of our construction, polygon X and vertex v satisfy the hy-
potheses of Lemma 6.3. Therefore, there exists a disk D centered at
v, such that the intersection S of D and the wedge of v is contained
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in the kernel of X. Clearly, placing v in the interior of S satisfics re-
quirement 1. It remains to show that v can be placed inside S so that
requirement 2 is also satisfied. Let 3’ be the minimum y-coordinate of
a successor of v in ['. Requirement 2 is satisfied by placing v at any
interior point of § with y-coordinate less than y'.

O

Lemma 6.4 immediately implies that Statement 2 of Theorem 6.1 implies
Statement 3. We have completed the proof of Theorem 6.1.

Note that it is easy to prove directly that Statement 3 of Theorem 6.1
implies Statement 1. Namely, given a planar st-graph G’ including G as
a spanning subgraph, we construct a planar upward polyline drawing of
G’, using one of the algorithms for drawing planar st-graphs presented in
Chapter 4 (see, e.g., Theorem 4.5) and then remove the edges that do not
belong to G from the drawing of G'.

As shown in [GT93), a variation of the strategy given in the proof of
Lemma 6.4 yields an O(n)-time algorithm for constructing an upward planar
straight-line drawing of an n-vertex planar st-graph. However. wlile such
drawings are desirable for their simplicity, their area requirement may be
prohibitive for visualization applications. In fact, in Section 11.1, it is shown
that there exists a family G, of upward planar digrapls, such that G,, has
2n + 2 vertices, and any planar straight-line upward drawing of G, has area
2(2"). This result holds under any resolution rule that prevents drawings
from being arbitrarily scaled down (e.g., integer vertex coordinates).

Testing whether an n-vertex digraph G is a planar st-graph can be easily
done in O(n) time by separately testing that:

e G has a single source s and a single sink ¢
e G plus the edge (s,t) is planar (as an undirected graph)
e G is acyclic.

Acyclicity can be tested in O(n) time by means of an elecmentary depth-
first-search method (see, e.g., [CLR90]). Planarity can also be tested in
O(n) time (see Section 3.3 and [HT74]). Hence. Theorem 6.1 yields an
exponential-time (albeit linear-space) upward planarity testing algorithm,
which consists of adding all the possible subsets of edges, and testing whether
each of the resulting digraphs is a planar st-graph.

Theorem 6.2 Upward planarity lesting is in NP.

See [Riv93] for an alternative proof of Theorem 6.2.
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6.2 Angles in Upward Drawings

This section presents a characterization of upward planarity for embedded
digraphs [BD91, BDLM94]. This characterization yields a polynomial time
upward planarity testing algorithm for embedded digraphs presented in Sec-
tion 6.3.

Let G be an embedded digraph. A vertex of G is bimodal if the cyclic
sequence of its incident edges can be partitioned into two (possibly empty)
linear sequences, one consisting of incoming edges and the other consisting
of outgoing edges. If all its vertices are bimodal, then G is bimodal. The
following leinma can be easily proved by elementary geometry.

Lemma 6.5 An embedded digraph is upward planar only if it is bimodal.

Note that a planar st-graph is bimodal. This immediately follows either
fromn Lemma 4.2, or from Lemma 6.5, and the fact that a planar st-graph is
upward planar.

We recall some terminology. We say that an embedded planar digraph
is upward planar if it admits an upward planar drawing with the given
embedding. The angles of an embedded planar digraph are the pairs of
consecutive edges incident on the same vertex. Such angles are mapped
to geometric angles in a straight-line drawing of the digraph. We slightly
enlarge this definition as follows. If a vertex has exactly one incident edge
e, we call the pair ¢,e an angle. This corresponds to an angle of 27 in a
drawing. An internal verter of a digraph is a vertex that is not a source or
a sink.

Consider an assignment of labels fromn the set {small, large} to the angles
formed by pairs of incoming or outgoing edges of G. The intuitive meaning
of the labels is to indicate whether the angle is smaller or larger than 7 in
an upward planar straight-line drawing of G. Let p be either a vertex or a
face of G. We denote the number of angles of p with label large and small
with L(p) and S(p), respectively. The following lemma is simple to prove.

Lemma 6.6 The following two consistency properties hold for any upward
planar straight-line drawing of a digraph G:
0 if v is an internal vertez,
Liv) = e .
1 ¢f v is a source or a sink.

_ —2 if f is an internal face,
Ln=-s4) = { +2 if f is the ezternal face.
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A labeling that respects the consistency properties of Lemma 6.6 is il-
lustrated in Figure 6.7.

Alfp) =1 L) =0; Sf)=2
Alfy) = 2 Lify)=1; S(fy)=3
A(f3) =3 L(f3) =2; S(f3) =4
A(h) =2 L) =3; S =1

Figure 6.7: Large and small angles in an upward planar straight-line draw-
ing. The large angles are indicated. Note that the consistency properties of
Lemma 6.6 are verified by the labeling.

Let A(f) be the number of angles in face f formed by pairs of incoming
edges (A(f) is also equal to the number of angles in face f formed by pairs
of outgoing edges). The values A(f) are determined by the embedding and
are independent from the drawing (see Figure 6.7). Clearly, for any labeling,
we have

L(f) + 5(f) = 2A(f)

for every face f.
Thus the consistency properties of Lemma 6.6 can be rewritten in the
following format, where only large angles are taken into account.

Lemma 6.7 The following two consistency properties hold for any upward
planar straight-line drawing of a digraph G:

Liv) = 0 if v is an internal vertez,
T 1 ifv is a source or a sink.

L(f) { A(f) =1 if f is an internal face,

A(f)+1 if f is the external face.

Motivated by the above formulation, we now consider an assignment $
that maps each vertex v, which is a source or a sink, to a face ®(v) incident
on v, and we denote with ®~(f) the set of vertices assigned to face f. We
say that assignment & is consistent if there exists a face A, such that
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1272 A(f)+1 iff=h

{ A(f)-1 iff#h,

Assigning vertex v to face f = ®(v) corresponds to giving label large
to the angle formed by v in f, and a consistent assignment corresponds to
a labeling with external face h that respects the consistency properties of
Lemma 6.7. In Figure 6.8, we show the consistent assignment associated
with the labeling of Figure 6.7.

Figure 6.8: The consistent assignment associated with the labeling of Fig-
ure 6.7. Small squares represent the faces. The quantity A(f) — 1 is shown
next to each internal face f. The quantity A(h) + 1 is shown next to the
external face h.

The following lemma can be deduced from Lemma 6.7.

Lemma 6.8 An embedded bimodal digraph is upward planar only if it ad-
mits a consistent assignment of sources and sinks to faces.

The necessary conditions given in Lemmas 6.5-6.8 are also sufficient.
Namely, given an embedded bimodal digraph G and a consistent assignment
® of sources and sinks to faces of G, Algorithm 6.1 Assign- Upward constructs
a planar st-graph that includes G as a spanning subgraph.

In order to describe Algorithm 6.2 Saturate-Face, we need to introduce
some definitions. A source-switch (sink-switch) of a face f is a source (sink)
of f. A switch of f is either a source-switch or a sink-switch of f. Observe
that a source (sink) is a source-switch (sink-switch) in all its incident faces;
an internal vertex is a switch in all its incident faces but two.
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Algorithm 6.1 Assign-Upward
Input: embedded bimodal digraph G with n vertices;
consistent assignment ® of sources and sinks
to faces of G
Output: planar st-graph G' that includes G as a span-
ning subgraph

1. For each face f of G, execute Algorithm 6.2 Saturate-Face on (f). This
algorithm inserts new edges that “cancel” some sources and sinks of

G.

2. Let s be a source, and ¢ be a sink assigned to the external face h.
Connect, with new edges, to s all the sources not canceled in the

previous step, and to ¢ all the sinks not canceled in the previous step.
O

We associate, to each face f of G, a circular sequence oy of symbols
obtained by traversing f clockwise and assigning sy and ¢y (L-symbols) to
source-switches and sink-switches labeled L (large) in f, and sg and tg (S-
symbols) to source-switches and sinks-switches labeled S (small) in f. If
f is an internal face, by Lemma 6.7, os contains A(f) — 1 L-symbols and
A(f) + 1 S-symbols.

Algorithm 6.2 Saturate-Face works as follows. It looks in o for canonical
subsequences. A canonical subsequence has one L-symbol followed by two
S-symbols. When one of such canonical subsequences is found, then one
edge is added to G in f; f is split into two new faces f' and f”, and oy is
split into two new sequences oy and oy». Figure 6.9 gives an example of
the behavior of Algorithm 6.2 Saturate-Face. Observe that this technique is
structurally similar to the refinement of an orthogonal representation into
one whose regions have a rectangular shape, as given in Section 5.4.

Lemma 6.9 Given an embedded bimodal planar digraph G, with n vertices
and a consistent assignment ® of sources and sinks to faces of G, Algo-
rithm 6.1 Assign-Upward constructs a planar st-graph that includes G as a
spanning subgraph in O(n) time.

Proof: Algorithm 6.2 Saturate-Face applied to face f inserts edges between
pairs of vertices of f. We show that each edge insertion preserves planarity,
acyclicity, and bimodality. Furthermore, we show that after all edge inser-
tions have been performed, the resulting embedded digraph G’ has exactly
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(b)

(c)

Figure 6.9: An example of execution of Algorithm 6.2 Saturate-Face: (a)
initial configuration; (b) after the first edge insertion; (c) final configuration
after the second edge insertion.

one source s and one sink ¢ on the same face. Hence, G' is a planar st-graph
that includes G.

Planarity and Acyclicity: As far as planarity is concerned, each edge is
inserted inside a face. Hence, it does not cause crossings.

Now we prove that each edge insertion preserves the acyclicity of the
digraph. The proofis by contradiction. Suppose that a simple directed
cycle C is obtained after the insertion of edge (z,z) (see Figure 6.10)
in the bimodal digraph G', derived from G after a number of sources
and sinks have been eliminated. Suppose that both z and z are source-
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Algorithm 6.2 Saturate-Face
Input: embedded bimodal digraph G; face f of G
equipped with a circular sequence o5 of sym-
bols
Output: embedded bimodal digraph G where some
faces have been split

1. If f has exactly one source-switch and one sink-switch (i.e., |of| = 2)
then return

2. Find a canonical subsequence (z,y, z) in o5 composed by one L-symbol
followed by two consecutive S-symbols; let v, v, and v, be the ver-
tices associated with symbols z, y, and 2, respectively

3. Split f into two faces f' and f” by inserting one edge; f” consists
of the part of f containing vz, v, and v, plus the new edge; f" has
only one source and only one sink; two cases are possible depending
on (z,y,2):

o (r,y,2) = (sL,ts,ss): Add edge (v.,v;); f' consists of the part
of f that does not contain v, plus the new edge (v.,v:); observe
that v, is not a source of the new digraph and oy is obtained
from o by replacing the subsequence s;,ts,ss with ss.

o (z,y,2) = (tL,8s,ts): Add edge (vz,v,); f' consists of the part
of f that does not contain v, plus the new edge (v, v.); observe
that v, is not a sink of the new digraph and o is obtained from
oy by replacing the subsequence t;, ss,ts with ts.

4. Apply Saturate-Face to face f'.

switches of f (the case where z and z are sink switches is analogous).
Let ®' be the consistent assignment for G’, where z is not assigned to
f while z is assigned to f. Denote by pg the path of G’ from z to z,
such that C is the union of path py and edge (2,z). In order to have
a cycle through z and 2, z cannot be a source in G’.

Now consider the path p;, of f from z to z containing sink-switch y.
Two cases are possible.
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P1

(a)

(b)

Figure 6.10: Cycles in the proof of Lemma 6.9.

Case 1. Paths py and p; are vertex disjoint (but for the endvertices =
and z). The concatenation of pg and p; is a circuit v with A(y) =1,
since it contains only the switches = and y. If v is external to f, then
@' assigns y to z (see Figure 6.10.a), a contradiction. Otherwise, @'
assigns vy to y (see Figure 6.10.b), again a contradiction.

Case 2. Paths py and p; share one or more vertices distinct from z
and z. Observe that the common vertices all lie on the directed path
from z to y, otherwise C would not be simple. Let w be the last
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common vertex on the directed path from z to y; w and y are distinct
vertices, otherwise a cycle was already present before the insertion of
the edge (2,z). Let pj be the path from w to z on the cycle and let p}
be the path from w to z on the face f, containing y. The concatenation
v of py and pj is a circuit with A(y) = 1, since it contains only the
switches w and y. If v is internal to f, then y is assigned to v in @',
a contradiction. Otherwise, w is a source in the embedded graph G’
and has to be assigned to v in @', yielding again a contradiction.

Bimodality: After the insertion of edge (2,z), the resulting embedding is
still bimodal. Suppose that vertices z and = are both source-switches
(the other case is analogous). Edge (z,z) is the only incoming edge
of z. Thus all the outgoing edges of = appear consecutively in the
embedding. Now consider vertex z. Edge (z,z) is inserted between
two consecutive outgoing edges of z, which preserves the bimodality
of the embedding.

The Consistent Assignment Invariant: After the insertion of edge
(2, x), the assignment is modified as follows:

¢ All the sources and the sinks that are assigned to f by ® and are
still sources and sinks after the addition of (z,z) are assigned by
® to f'.

o All the remaining sources and sinks are assigned by @' as by ®.

Hence, it is immediate to verify that assignment @’ is consistent.

Single Source and Sink: We have to show that, after all edge insertions
have been performed, the resulting digraph has exactly one source and
one sink, both on the external face.

First, we prove that after Algorithm 6.2 Saturate-Face is performed on
one internal face, all the faces that are obtained from that face contain
exactly one source-switch and one sink-switch, both labeled S. We
show that if an internal face f has more than one source-switch and
sink-switch, then it is always possible to find one of the two canonical
subsequences of Algorithm 6.2 Saturate-Face in os. Because of the
presence of A(f) + 1 S-symbols over the 2A4(f) symbols of oy, it is
always possible to find a subsequence of one L-symbol followed by two
S-symbols. Observe that the canonical subsequences are exactly the
subsequences consisting of one L-symbol followed by two consecutive



188 CHAPTER 6. FLOW AND UPWARD PLANARITY

S-symbols. Hence, only a vertex on the external face can be a source
or a sink after the process has been performed on all the internal faces.

When Algorithm 6.2 Saturate-Face is applied to the external face h,
since the number of assigned sources and sinks is now A(h) + 1, the
procedure stops when the final circular sequence o, is composed by
k > 0 S-symbols and k+ 2 L-symbols. Since no two S-symbols appear
consecutively in the sequence, the final sequence has the following
structure in terms of S- and L-symbols: oy, = Ly, 01, L2, 02, where o,
and o3 are two alternating sequences of S- and L-symbols. Each of o;
and o9 starts with an S-symbol and ends with an L-symbol. Observe
that the L-symbols of one of the two alternating subsequences refer to
sources while the L-symbols of the other subsequence refer to sinks.

The time complexity of Algorithm 6.2 Saturate-Face(f) is linear in the
number of vertices of f. A simple implementation consists of pushing the
L-symbols onto a stack while traversing ;. Hence, Algorithm 6.1 Assign-
Upward takes O(n) time. m]

Theorem 6.3 An embedded digraph G with external face h is upward planar
if and only if it is acyclic, bimodal, and admits a consistent assignment ®
of sources and sinks to faces. Also, given ®, a planar st-graph that includes
G as a spanning subgraph can be constructed in O(n) time.

Proof: The “only if” part follows immediately from Lemmas 6.5-6.8. The
“if” part and the computational result are a consequence of Lemma 6.9 and
Theorem 6.1. (]

As an example, Theorem 6.3 can be used to prove that the digraph of
Figure 6.1 is not upward planar, as illustrated in Figure 6.11.

6.3 Upward Planarity Testing of Embedded Di-
graphs

Now we present an algorithm for testing whether an embedded digraph is
upward planar. The algorithm is based on the characterization of Theo-
rem 6.3.

To test whether an embedded digraph G admits a consistent assignment
of sources and sinks to faces for a given choice of external face h, we construct
a bipartite flow network B}, as follows (see Figure 6.12):
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"

<

Figure 6.11: An embedded digraph that is bimodal but does not admit
a consistent assignment of sources and sinks to faces, for any choice of the
external face.

e The nodes of network By, are the sources, sinks, and faces of G. The
sources and sinks of G are the sources of network B, and cach supplies
a unit of flow. Each face f of G is a sink of network B}, with demand
equal to A(f) — 1 units of flow if f # h, and equal to A(f) + 1 units
of flow if f = h.

e Network Bj, has an arc (v, f) if v is a source or sink of G on face f.

A flow in network By is an assignment of values 0 or 1 to the arcs of
By, such that, for each source v of By, the sum of the values assigned to the
outgoing arcs of v is less than or equal to the supply of v, and for each sink
f of By, the sum of the values assigned to the incoming arcs of f is less than
or equal to the demand of f. The value of a flow in By, is the sum of the
values assigned to its arcs.

We summarize the properties of B, in the following lemma.

Lemma 6.10 The bipartite flow network By. associated with an embedded
n-vertez digraph G and a face h of G, has O(n) vertices. Also. G admits
a consistent assignment of sources and sinks lo faces, subject lo h being the
external face, if and only if B, admits a flow of value r. where r is the
number of sources and sinks of G.

Constructing network B, takes O(n) time, where n is the number of
vertices of G. The existence of a flow for B} can be tested in O(rn) time by
means of r flow augmentations (for the standard augmenting path method
to solve network flow problems, see, e.g., [CLR90]). Hence, we can test the
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Figure 6.12: (a) The embedded digraph G of Figure 6.2. (b) The network
B, associated with G and external face h. The nodes of By, are labeled with
their supplies or demands. (c) Example of flow in network B,. The thick
arcs have unit flow and give a consistent assignment of sources and sinks to

faces in G.

upward planarity of G in O(n?r) time by repeating the above procedure for
all the O(n) possible choices of the external face h.

Now we show that the time complexity can be reduced to O(nr) using
Algorithm 6.3 Embedded- Upward-Planar- Test.
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Algorithm 6.3 Embedded- Upward-Planar-Test
Input: embedded planar bimodal digraph G with n
vertices
Output: set of admissible external faces in a planar up-
ward drawing of G

1. Construct flow network B, which is the same as By, except that each
face f has demand A(f)— 1. Note that flow network B is independent
from the choice of external face.

2. Test whether B admits a flow of value » — 2. If not, then return the
empty set (G is not upward planar, for any choice of the external face).

3. For each face f, which is a sink of B, increase its demand by two units,
and test whether the flow of value r —2 in B can be augmented by two
units.

4. Return the set of all the faces of G for which the augmentation test of

Step 3 is successful.
(m}

Let n be the number of vertices of G, and let » be the number of its
sources and sinks. Step 1 takes O(n) time. Step 2 can be performed with
r — 2 flow augmentations, each taking O(n) time, and hence, runs in O(nr)
time. In Step 3, at most two augmentations are performed for each face.
Hence, Step 3 takes O(nr) time. Finally, Step 4 takes O(n) time. We
conclude that Algorithm 6.3 Fmbedded- Upward-Planar-Test runs in O(nr)
time.

By Theorem 6.3, the complete upward planarity test algorithm for an
embedded digraph G consists of first testing whether G is acyclic and bi-
modal, which takes O(n) time, and then using Algorithm 6.3 Embedded-
Upward-Planar-Test to test whether G admits a consistent assignment of
sources and sinks to its faces. This takes O(nr) time.

Theorem 6.4 Let G be an embedded digraph with n vertices and r sources
and sinks. We can test whether G is upward planar in O(nr) = O(n?) time.

Since a triconnected planar digraph has a unique embedding (see Chap-
ter 1), we can exploit the above algorithm to test its upward planarity.



192 CHAPTER 6. FLOW AND UPWARD PLANARITY

However, an improvement on the time performance can be obtained using
the following lemma.

Lemma 6.11 Let G be a planar embedded acyclic triconnected digraph. Let
r be the number of sources and sinks of G. The number of faces of G that
have at least one source and one sink is O(r).

Proof: Let G’ be the digraph defined as follows. The vertices of G’ are
the sources and sinks of G. For each face f of G, that contains at least
one source and one sink, one of the sources and one of the sinks of f are
arbitrarily selected and an edge between them is inserted in the edge set of
G

The number of faces of G that have at least one source and one sink is
equal to the number of edges of G'.

Since G is triconnected, an edge between two vertices £ and y of G’ can
be inserted at most twice, otherwise £ and y would result in a separating
pair of G. Hence, G’ is a graph with multiple edges with at most two edges
for each pair of vertices and without self-loops.

Furthermore, by construction, G’ is planar, hence, it has at most 6r — 12
edges. @]

Observing that the only meaningful external faces are those that have at
least one source and one sink, we can conclude that the number of external
faces that have to be taken into account by our algorithm is O(r). We have:

Theorem 6.5 Let G be a triconnected planar digraph with n vertices and r

sources and sinks. We can test whether G is upward planar in O(n +12) =
O(n?) time.

6.4 Optimal Upward Planarity Testing of Single-
Source Embedded Digraphs

In this section, we describe a characterization of upward-planarity and a
related optimal upward-planarity testing algorithm for single-source embed-
ded digraphs [BDMT98].

Given an embedded digraph G, with a single source s, we define the
undirected face-sink graph F of G as follows:

e The vertices of F are: (1) the faces of G and (2) the vertices of G that
are sink-switches for at least one face of G.
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e Graph F has an edge (f,v) if and only if the vertex v is a sink-switch
of face f.

The edges of graph F incident on a vertex v, which is a sink of G,
represent the possible assignments of v to the faces of G' (see Section 6.2).
In Figure 6.13.b, we show the face-sink graph F of the embedded single-
source digraph G of Figure 6.13.a. Note that, in this example, where G is
upward planar, F is a forest, that is, a collection of trees.

(c)

Figure 6.13: (a) An embedded single-source digraph G. (b) The face-sink
graph F of G, shown with light-blue edges. (c) A consistent assignment of
the source and sinks of G to its faces (shown with yellow edges), and the
corresponding rooting of the trees of F.

Figure 6.13.c shows a consistent assignment of the source and sinks of
G to the faces. This assignment corresponds to rooting each tree of F and
orienting its edges from child to parent. Namely, a sink v is assigned to a
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face f if and only if v is a child of f in the rooted tree containing v and
f. We also notice that the roots of all but one tree (denoted with 7) are
internal vertices of G. Tree T does not contain any internal vertex of G and
is rooted at the external face h.

Figure 6.13 illustrates of the following theorem. A proof can be found

ins [BDMT98].

Theorem 6.6 Let G be an embedded single-source digraph, and h a face of
G. Digraph G is upward planar, subject to h being the external face, if and
only if all the following conditions are satisfied:

1. The source of G is on the boundary of face h.
2. The face-sink graph F of G is a forest.

3. One tree T of F has no internal vertices of G, while the remaining
trees have ezactly one internal vertez.

4. Face h is a vertex of tree T.

An additional example for Theorem 6.6 is given in Figure 6.14. While
Conditions 1-3 of Theorem 6.6 are satisfied, Condition 4 is not satisfied
because face h is in a tree of F that contains an internal vertex.

o

Figure 6.14: An embedded single-source digraph that is not upward planar
and its face-sink graph.

Theorem 6.6 yields Algorithm 6.4 Embedded-Single-Source-Upward-
Planar-Test for testing the upward planarity of an embedded single-source
digraph G [BDMT98).
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Algorithm 6.4 Embedded-Single-Source- Upward-Planar-Test
Input: embedded planar bimodal digraph G with n
vertices
Output: set of admissible external faces in a planar up-
ward drawing of G

1. Test whether G is acyclic and bimodal. If either of these properties is
not verified, then return “not upward planar.”

2. Construct the face-sink graph F of G.

3. Check Conditions 2 and 3 of Theorem 6.6. If these conditions are not
verified, then return “not upward planar,” else let 7 be the tree of
Condition 3.

4. Report the set of faces of G that contain the source s of G (Condition 1)
and are vertices of tree 7 (Condition 4). If this set is empty, then

return “not upward planar;” else return “upward planar.”
0O

Algorithm 6.4 Embedded-Single-Source-Upward-Planar-Test can be eas-
ily implemented in O(n) time.

Theorem 6.7 Let G be an embedded single-source digraph with n vertices.
We can test whether G is upward planar in O(n) time.

By applying Theorem 6.7 to the embedded digraph G of Figure 6.14, we
conclude that G is not upward planar (for any choice of the external face).

6.5 Optimal Upward Planarity Testing of Single-
Source Digraphs

In this section, we present a decomposition strategy for testing the upward
planarity of single-source digraphs, which was originally proposed in [HL96],
and later improved in [BDMT98].

To start with, it is easy to prove that the blocks of a single-source digraph
can be separately tested.

Lemma 6.12 A connected single-source digraph G is upward planar if and
only if all the blocks of G are upward planar.
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By Lemma 6.12, we restrict our attention to a biconnected single-source
digraph G. The basic idea is to decompose G into its triconnected compo-
nents [HT73] and test each of them separately for upward planarity, with
certain constraints imposed on them to ensure that merging the tricon-
nected components back together preserves upward planarity. Recall that
the upward planarity of a triconnected digraph can be efficiently tested
(Theorem 6.5 and Theorem 6.7).

Let G be a biconnected digraph. A split pair of G is either a separation
pair or a pair of adjacent vertices. A split component of a split pair {u, v} is
either an edge (u,v) or a maximal subgraph C of G, such that {u,v} is not
a split pair of C. The decomposition is performed by splitting the digraph
G into split components with respect to a separation pair, and recursively
decomposing each split component. Each split component is constrained by
attaching to it a certain digraph, called a marker, which represents the rest
of the digraph. There are four type of markers, as shown in Figure 6.15.

VAN Y

Figure 6.15: Markers.

Suppose that G has two split components, H and K, with respect to a
separation pair {u,v}. We augment each of H and K with an appropriate
marker that represents the other split component, and recursively test each
of them for upward planarity. The markers have a twofold purpose:

e When testing a split component for upward planarity, they take into
account the “shape” of the other split component

e They ensure that each digraph in the decomposition process is bicon-
nected and has a single source.

For example, consider the biconnected single-source digraph G' shown
in Figure 6.16.a, which is not upward planar. The split components of
G with respect to {u,v}, shown in Figure 6.16.b and Figure 6.16.c, are
each upward planar. By adding the appropriate markers, we obtain the
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augmented split components shown in Figure 6.16.d and Figure 6.16.e. Note
that the augmented split component of Figure 6.16.c is not upward planar,
as can be shown by applying Theorem 6.7. This indicates that G is not
upward planar.

(a) (b) (c)

\

u u

(d) (e)

Figure 6.16: (a) A biconnected single-source digraph G with a separa-
tion pair u.v. (b) Split-component H of G with respect to u.v. (c) Split-
component K of G with respect to u,v. (d) Split-component H augmented
with the appropriate marker (shaded). (e) Split-component K augmented
with the ‘appropriate marker (shaded).

In addition to the markers, we must take into account the inside-outside
relationship of the split components with respect to the external face. For
example, if we determine that in any upward planar drawing of a split com-
ponent the separation pair does not appcar on the external face. then we
must test the other split component for upward planarity. subject to the
separation-pair appearing on the external face. Hence. in the decomposition
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process we should keep track of vertices that are constrained to appear on
the external face.

In [HL96], an O(n?) time upward planarity testing algorithm for single-
source digraphs is presented. It is based on the above decomposition strat-
egy. In [BDMT98], the time complexity is reduced to O(n) by combining a
linear-time algorithm for triconnected single source-digraphs (Theorem 6.7)
with an improved decomposition strategy, which is outlined below.

The SPQR-tree ([DT90]) T(G) of a biconnected graph (or digraph) G,
describes the arrangement of its triconnected components (see Figure 6.17).
The decomposition tree T'(G) is an unrooted tree whose nodes are of four
types: S, P, Q, and R. Each edge of T(G) is associated with an edge or sep-
aration pair of G, and each node p of T(G) is associated with a multigraph,
called the skeleton of u. A P-node corresponds to a parallel composition of
split components with respect to a separation pair (see Figure 6.18.a), and
its skeleton is a bundle of parallel edges. An S-node corresponds to a cyclic
arrangement of split components and separation pairs (see Figure 6.18.b),
and its skeleton is a cycle. An R-node corresponds to a maximal triconnected
homeomorphic subgraph of G, which is its skeleton (see Figure 6.17.c). A
Q-node corresponds to an edge of G, and its skeleton consists of two par-
allel edges. Note that the edge directions are ignored in the definition of
SPQR-tree.

The upward planarity testing algorithm of [BDMT98] first replaces each
edge of the skeletons by a gadget (playing the same role as the marker
of [HL96]), which is either a directed edge or a peak (see Figure 6.19), and
tests each augmented skeleton for upward planarity, marking those gadgets
that can appear on the external face in a planar upward drawing.

The existence of a compatible inside-outside relationship between skele-
tons is then tested using the SPQR-tree. Namely, the nesting of the skeletons
is represented by a rooting of the SPQR-tree T(G). If node v is the parent
of node p, then the skeleton of v is “outer” and the skeleton of 1 “inner”
in the embedding of G. Of course, this can be done only if the gadget of
the skeleton of y representing the split component of the skeleton of v is
marked. Also, the source s of G must appear in the outermost skeleton (i.e.,
at the root of T(G)).

In the example of Fig 6.17, only the skeleton of node p3 contains the
source s. Hence, T(G) must be rooted at 3. However, this implies that the
gadget e of the skeleton of node p2, associated with the split component of
the skeleton of u3, must appear on the external face in an upward planar
drawing. This is impossible, as can be shown by applying Theorem 6.7.
Thus, the single-source digraph of Fig 6.17.a is not upward planar.
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M Mo
(c)

Uo H3
(d)

Figure 6.17: (a) A biconnected single-source digraph G. (b) The SPQR-
tree T'(G) of G. The edges of T(G) that correspond to the edges and sep-
aration pairs of G are shown as red and light blue lines respectively. (c)
Skeletons of the R-nodes of T(G). The light blue edges correspond to split
components. (d) Augmented skeletons of the R-nodes of T(G). The gadgets
representing split components are shown by light blue lines.
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Figure 6.18: (a) Schematic illustration of a P-node. (b) Schematic illus-
tration of an S-node.

U

u u v

Figure 6.19: The edge and peak gadgets.

Theorem 6.8 Let G be a single-source digraph with n vertices. We can
test whether G is upward planar in O(n) time.
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6.6 Upward Planarity Testing is NP-complete

In this section, we overview the proof in [GT95] that upward planarity test-
ing is NP-complete. The proof is a reduction from the following well-known
NP-complete problem [GJ79):

NOT-ALL-EQUAL-3-SAT: Given a set of clauses with three literals each, is
there a truth assignment, such that each clause has at least one true
literal and one false literal?

Section 6.6.1 describes some special graphs called tendrils and wiggles
that are used in the reduction. A reduction from NOT-ALL-EQUAL-3-SAT to
an auxiliary flow problem is given in Section 6.6.2. Section 6.6.3 describes
the reduction from the auxiliary flow problem to the upward planarity test-
ing problem.

6.6.1 Tendrils and Wiggles

In this section, we define several digraphs that will be used as gadgets in
our reductions.

In Figure 6.20.a, we show tendril T}, (k > 1), which is an acyclic digraph
with k£ + 1 sources and k + 1 sinks. We also define tendril Tj as a a digraph
consisting of a single edge. Tendril T} (k > 0) has a designated source and a
designated sink, called the poles of T},. We consider transformations where
a directed edge (u,v) of a digraph is replaced with a tendril T, in which
the source is identified with u and the sink with v.

Lemma 6.13 Tendril T}, is upward planar.

In any upward planar drawing of T}, the external face consists of two
paths between s and ¢. One such path, called outer path, has 2k large
angles and no small angles, and the other path, called inner path, has 2k
small angles and no large angles. When a tendril replaces an edge of an
embedded planar digraph, the outer path becomes a subpath of a face, and
we say that the contribution of the outer path to the face is +2k. Similarly,
we say that the contribution of the inner path to its face is —2k.

Figure 6.20.b shows a wiggle Wi, which is an acyclic digraph consisting
of a chain of 2k + 1 edges whose orientation alternates along the chain. The
extreme vertices of Wy, a source and a sink, are called the poles of Wj.
We consider transformations where a directed edge (u,v) of an embedded
digraph is replaced with wiggle Wi, where s is identified with u and ¢ with
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Figure 6.20: (a) Tendril T3. (b) Wiggle W3.

v. Given an upward drawing of W, we say that the contribution of W, to
a face f containing Wy, is the number of large angles minus the number of
small angles of W}, in f. Clearly, W}, can be upward embedded to give to f
any contribution 2; with 0 < ¢ < k. Note that if W}, gives contribution ¢ to
a face, it gives contribution —c to the other face it belongs to.

6.6.2 An Auxiliary Undirected Flow Problem

In this section, we define two auxiliary flow problems and show that they
are equivalent to NOT-ALL-EQUAL-3-SAT under polynomial-time reductions.

A switch-flow network is an undirected flow network A, where each
edge is labeled with a range [¢ - - - ¢"] of nonnegative integer values, called
the capacity range of the edge. For simplicity, we denote the capacity range
[c---c] with []. A flow for a switch-flow network is an orientation and an
assignment of integer “flow” values to the edges of the network. A feasible
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flow is a flow that satisfies the following two properties:

Range Property: The flow assigned to an edge is an integer within the
capacity range of the edge.

Conservation Property: The total flow entering a vertex from the incom-
ing edges is equal to the total flow exiting the vertex from the outgoing
edges.

Starting from an instance S of NOT-ALL-EQUAL-3-SAT, we construct a
switch-flow network N as follows (see Figure 6.21). Let the literals of S
be denoted with z),4,...,Zn, yn, where y; = T;7 , and the clauses of S be
denoted with ¢,...,cn. Let 8 be a positive integer parameter. We denote
the number of occurrences of literals z; and y; in the clauses of S with o
and §; (i = 1,...,n), respectively. Note that "™, (c; + 53;) = 3m. Also, we
define v; = (2i — 1)@ and §; = 2i0 (i = 1,...,n). Network N has a literal
vertez for each literal of S and a clause vertex for each clause of S, plus a
special dummy vertex 2. There are three types of edges in N:

Literal Edges: Joining pairs of literals associated with the same boolean
variable. The capacity range of literal edge (z;,y;) is [a;y; + 3:6;).

Clause Edges: Joining each literal to each clause. The capacity range of
clause edge (z;,¢;) is [v] if x; € ¢j, and [0] otherwise. The capacity
range of clause edge (i, c;) is [6;] if i € cj, and [0] otherwise.

Dummy Edges: Joining each literal and each clause to the dummy ver-
tex. The capacity ranges of dummy edges (z,z;) and (z,y;) are [5;0;]
and [a;7;], respectively. The capacity range of dummy edge (z,¢;) is
[0---n; — 26}, where 7); is the sum of the capacities of the clause edges
incident on c;.

The construction of network N from § is straightforward and can be
carried out in O(nm) time.

A feasible flow in network A corresponds to a satisfying truth assignment
for S. Namely, a literal is true whenever its incident literal edge is incoming
in the feasible flow (see Figure 6.21.b) and its incident clause edges, with
nonzero capacity range, are outgoing. Also, the three clause edges with
nonzero capacity range incident on a clause vertex c; cannot be all incoming
or all outgoing, because of the conservation property at vertex c; and the
choice of capacity range for the dummy edge incident on cj. We obtain:
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(c) (d)

Figure 6.21: (a) Switch-flow network N with parameter 8 = 4, associated
with the the NOT-ALL-EQUAL-3-SAT instance S, with clauses ¢; = y1z2ys3,
c2 = nysx3. and c3 = x1x9x3. The clause edges with zero capacity range
are shown with thin lines. (b) Feasible flow for N corresponding to the
satisfying truth assignment (y;,x3,z3) for S. Only the edges with nonzero
flow are shown. (c) Planar switch-flow network P associated with S. The
edges with zero capacity range are shown with thin lines. (d) Feasible flow
for P corresponding to the satisfying truth assignment (y;,z2,z3) for S.
Only the edges with nonzero flow are shown.
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Lemma 6.14 An instance S of NOT-ALL-EQUAL-3-SAT is satisfiable if and
only if the associated switch-flow network N admits a feasible flow. Also,
given a feasible flow for N, a satisfying truth assignment for S can be com-
puted in O(nm) time, where n and m are the number of variables and clauses
of S, respectively.

Now, starting from A/, we construct a planar switch-flow network P con-
sisting of O(n?m?) vertices in O(n?m?) time. Network P has the property
that network A admits a feasible flow if and only if network P admits a
feasible flow, and a feasible flow for A" can be computed from a feasible flow
for P in O(n?m2) time.

P is constructed as follows (see Figure 6.21). First, we construct a draw-
ing of NV, such that the literal vertices and the clause vertices are arranged
on two parallel lines, and crossings occur only between clause edges. Next,
we replace the crossings formed by the clause edges with new vertices. called
crossing vertices. We call fragment edges the edges introduced by the split-
ting of the clause edges. Each fragment edge inherits the capacity range of
the originating clause edge.

Using Lemma 6.14, we obtain the main result of this section.

Theorem 6.9 Given an instance S of NOT-ALL-EQUAL-3-SAT with n vari-
ables and m clauses, the associated planar switch-flow network P has
O(n%m?) vertices and edges, and can be constructed in O(n®m?) time. In-
stance S is satisfiable if and only if network P admits a feasible flow. Also,
given a feasible flow for P, a satisfying truth assignment for S can be com-
puted in O(n?m?) time. Moreover, if n > 3 and m > 3. then P is tricon-
nected.

6.6.3 Upward Planarity Testing

In this section, we show how to reduce the problem of computing a feasible
flow in the planar switch-flow network P, associated with a NOT-ALL-EQUAL-
3-SAT instance S, to the problem of testing the upward planarity of a suitable
digraph. We set parameter 8 equal to 4.

Now, we construct an orientation P of P as follows (see Figure 6.22):

¢ Every literal edge (z;, y;) is oriented from z; to y;.

e Every fragment edge is oriented away from the clause vertex and to-
wards the literal vertex.
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¢ Every dummy edge incident on a literal vertex is oriented towards the
dummy vertex, and every dummy edge incident on a clause vertex is
oriented towards the clause vertex.

By Theorem 6.9, S has_.at least three clauses and variables each. We
construct the dual digraph D of P by orienting every dual edge of D from the
face on the left to the face on the right of the primal edge (see Figure 6.22).

Lemma 6.15 The dual digraph D of P is upward planar, triconnected,
acyclic, and has ezactly one source and one sink, denoted with s and t.

Starting from digraph D, we construct a new digraph G by replacing the
edges of D with subgraphs (tendrils or wiggles), as follows (see Figure 6.23):

¢ Every edge of D that is the dual of a literal edge, fragment edge, or
dummy edge incident on a literal vertex, is replaced with tendril T,
where [c] is the capacity range of the dual edge. Note that c is a
multiple of parameter 8.

e Every edge of D that is the dual of a dummy edge incident on a clause
vertex is replaced with wiggle W,, where [0- - - ¢] is the capacity range
of the dual edge.

The vertices of G that are also in D are called primary vertices. The
remaining vertices of G are called secondary vertices. By Lemma 6.15 and
the construction of digraph G, all the drawings of G are obtained by choosing
one of the two possible flips for each tendril.

Lemma 6.16 Digraph G is upward planar if and only if the tendrils can
be flipped and the wiggles can be arranged such that for every face the total
contribution of the tendrils and wiggles is zero.

The proof of Lemma 6.16 uses the result of Theorem 6.3.

We establish the following correspondence between digraph G and net-
work P (see Figure 6. 23) the faces of G correspond to the vertices of P; the
tendrlls and wiggles of G correspond to the the edges of P; flipping a tendril
of § corresponds to orienting an edge of P; the contribution of a tendril
or wiggle of G corresponds to the flow in an edge of P; the balance of the
contributions of the tendrils and wiggles in the faces of g“ corresponds to the
conservation of flow at the vertices of P.
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Figure 6.22: Orientation P (drawn with dashed lines) of the network P
shown in Figure 6.21.c and dual digraph D (drawn with solid lines) of P.
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Figure 6.23: Schematic illustration of: (a) digraph G obtained from D by
replacing edges with tendrils and wiggles; (b) the two faces of G associated
with literal vertices z; and y; of P; (c) the face of G associated with a clause
vertex of P; (d) the face of § associated with a crossing vertex of P.
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Theorem 6.10 Given an instance S of NOT-ALL-EQUAL-3-SAT with n vari-
ables and m clauses and the associated planar switch-flow network P, di-
graph G, associated with S and P, has O(n®m?) vertices and edges, and can
be constructed in O(n®*m?2) time. Instance S is satisfiable and network P
admits a feasible flow if and only if digraph G is upward planar. Also, given
an upward planar drawing for G, a feasible flow for P and a satisfying truth
assignment for S can be computed in O(n®*m?) time.

From Theorems 6.2, 6.9, and 6.10 we conclude:

Corollary 6.1 Upward planarity testing is NP-complete.

6.7 Further Issues in Upward Planarity

We complete the chapter by addressing several other aspects of upward
planarity.

6.7.1 Outerplanar Digraphs

A graph is said to be outerplanar if it is planar and it admits an embedding,
such that all the vertices are on the same face. In [Pap95], it is shown
that upward planarity testing can be efficiently performed for outerplanar
digraphs. The algorithm exploits the fact that the dual of an embedded
outerplanar graph is a tree.

Theorem 6.11 Let G be an embedded outerplanar digraph with n vertices.
We can test whether G is upward planar in O(n) time.

Theorem 6.12 Let G be an outerplanar digraph with n vertices. We can
test whether G is upward planar in O(n?) time.

6.7.2 Forbidden Cycles for Single-Source Digraphs

Thomassen [Tho89] characterizes the upward planarity of embedded di-
graphs with a single source in terms of certain forbidden (undirected) cycles.
This characterization is used in the algorithm in [HL96].

Theorem 6.13 An embedded digraph G is upward planar if and only if it
is acyclic and there is a choice of external face, such that:
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e The source of G is on the external face

o Every undirected cycle C of G has a vertexr which becomes a sink after
removing all the edges outside C.

Note that the choice of external face determines what is inside and out-
side a cycle. The necessity of the condition is easy to verify by considering
the vertex of C' with highest y-coordinate, in an upward planar drawing of G
(see, e.g., Figure 6.7).

Theorem 6.13 provides an alternative proof of the fact that the digraph
of Figure 6.1, which has a unique embedding, is not upward planar, as shown
in Figure 6.24.

Figure 6.24: Example of forbidden cycle (shown with shaded lines) in the
embedded digraph of Figure 6.1.b.

How to apply Theorem 6.13 to test the upward planarity of an embedded
single-source digraph is shown in [HL96].

6.7.3 Forbidden Structures for Lattices

We say that an ordered set is planar if its covering digraph (Hasse diagram)
is upward planar (refer to [Bir67] for standard terminology on ordered sets).
Testing upward planarity of digraphs and planarity of ordered sets are equiv-
alent problems. Namely, it is easy to see that a digraph G is upward planar
if and only if the ordered set with covering digraph obtained from G by
inserting a vertex along every transitive edge is planar.
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An important consequence of the fact that the digraph G of Figure 6.1
is not upward planar is that an upward planar digraph cannot contain a
subgraph honieomorphic to G. This observation implies the following re-
sult [Bir67. p. 32. Ex. 7(a)].

Theorem 6.14 The ordered set induced by an upward planar digraph with
one source and one sink is a lattice, that is, a bounded planar ordered set is
a lattice.

A Kuratowski-type characterization of planar lattices in terms of for-
bidden sublattices is given in [KR75). Namely. they define a family £ of
nonplanar lattices (see Figure 6.25) and show that £ is the minimal ob-
struction set, under sublattice containment, for upward planarity.

Theorem 6.15 A lattice s planar if and only if it contains no (order)
sublattice isomorphic to a lattice from the family L. Moreover, L 13 the
minimum such family.

A, (n20) B C

Figure 6.25: Some of the nonplanar lattices in the set £ of Theorem 6.15.

Platt [Pla76] characterizes the planarity of a lattice in terms of the pla-
narity of an undirected graph related to its covering digraph.

Theorem 6.16 A lattice is planar if and only if the undirected graph ob-
tained from its covering digraph, by ignoring the orientation of the edges and
adding an edge between the source and sink. is planar.

Lempel, Even, and Cederbaum [LEC67] relate the planarity of bicon-
nected undirected graphs to the upward planarity of acyclic digraphs with
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one source and one sink. Recall from Section 4.8 that a bipolar orientation
of an undirected graph G is an acyclic digraph with exactly one source and
one sink, which is obtained from G, by orienting its edges. A biconnected
graph admits a bipolar orientation with adjacent source and sink.

Theorem 6.17 Let G be a biconnected graph. and G' be a bipolar orienta-
tion of G with adjacent source and sink. Thus G is planar if and only if G’
is upward planar.

The planarity of lattices is also characterized by the (order) dimen-
sion (BFRT1].

Theorem 6.18 A lattice is planar if and only if it has dimension at most
two.

6.7.4 Some Classes of Upward Planar Digraphs

Several classes of planar digraphs whose members are always upward planar
have been identified.

Theorem 6.19 All the digraphs in the following classes are upward planar:

o Digraphs whose underlying undirected graph is a forest
e Planar st-graphs

o Series-parallel digraphs

o Planar bipartite digraphs [DLR90].

6.8 Exercises

1. Give examples of planar acyclic digraphs with one source and one sink
that are not upward planar.

2. Give an example of a planar acyclic digraph that is not upward planar
and whose blocks are upward planar.

3. Prove Lemma 6.12.

4. Prove that digraphs whose underlying undirected graphs are a forest
are upward planar.
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. Prove that acyclic digraphs whose underlying undirected graphs are a

simple cycle are upward planar.

. Let P be a simple polygon without horizontal sides. A peak is a vertex

v of P, such that its incident sides are both above or both below the
horizontal line through v. Prove that the number of peaks that have
a convex angle inside P is equal to the number of peaks that have a
concave angle inside P plus 2.

. Give a linear time algorithm to test whether a planar acyclic digraph

has a bimodal planar embedding.

. Apply Algorithm 6.3 Embedded- Upward-Planar-Test to test the up-

ward planarity of the embedded digraph of Figure 6.13.a.

. Let G be a digraph, such that a reorientation of its edges results in a

series-parallel digraph. Prove or disprove: G' (with the original orien-
tation of its edges) is upward planar.

Give a “reasonable” definition of the equivalence classes of upward
planar drawings.



Chapter 7

Incremental Construction

Several methods used in graph drawing rely on an incremental construction
strategy, where a drawing or an intermediate representation (e.g., planar em-
bedding) is constructed by adding vertices and edges one at a time, possibly
applying some greedy optimization at each step. Incremental construction
strategies are motivated, not only by algorithmic choices, but also by the
need to support the interactive updates performed by the user.

This chapter gives incremental techniques for two graph drawing prob-
lems. In Section 7.1, we outline a simple incremental planarization tech-
nique. In Section 7.2, we present an interactive orthogonal drawing method.

7.1 Planarization

Planarization techniques are motivated by the availability of many efficient
and well-analyzed drawing algorithms for planar graphs (see, e.g., Chap-
ter 2). If the graph is nonplanar, it is transformed into a planar graph by
means of a preliminary planarization step that replaces each crossing with
a fictitious vertex, and then a drawing method for planar graphs is applied.

Finding the minimum number of crossings and finding a maximum planar
subgraph are both NP-hard problems (see Section A.6). Hence, existing
planarization algorithms use heuristics. Work on planarization and related
techniques includes [CHT93, CNS79, Dji95, DT96, EFG82, JLM97, JTS86,
JTS89, Kan92b, La 94, MS78, Men92, NT84, OT81).

215
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7.1.1 Incremental Planarization

A planarization operation for a graph consists of adding a new vertex z
and replacing a pair (a,b), (c,d) of nonadjacent edges with the four edges
(a,z), (b,z), (c,z) and (d,r). The operation is illustrated in Figure 7.1.
Intuitively, a planarization operation adds a fictitious vertex z, at which the
edges (a,b) and (c,d) cross. A planarization G' of a graph G is a planar
graph obtained from G by a sequence of planarization operations. It is easy
to show that every graph has a planarization.

a c a ¢
X

b d b d

Figure 7.1: Planarization operation.

Algorithm 7.1 Planarize is a simple algorithm for finding a planarization
of a graph. It uses an algorithm for finding a planar subgraph as a subroutine
(see Figure 7.2).

Step 1 of Algorithm 7.1 Planarize computes a mazrimal planar subgraph
of the input graph. The best available algorithm for the mazimum planar
subgraph problem is described in {JM96]. This method has a solid theo-
retical foundation in polyhedral combinatorics, and achieves good results in
practice, despite its worst-case exponential running time.

Step 2 can be performed in O(n) time with a variation of a planarity test-
ing algorithm (see Section 3.3). Step 3 computes a shortest path algorithm
in a planar graph. This step can be implemented in O(n') time, where n’ is
the current number of vertices of G’ [KRRS94). Note that n’ may be Q(n4).
However, in many applications, graphs are sparse and “almost planar,” and
n’ is much smaller.

7.1.2 Constraints in Incremental Planarization

Several constraints of topological nature can be supported within the Algo-
rithm 7.1 Planarize, including:

e Preventing crossings on edges

¢ Placing vertices on the external boundary.
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Figure 7.2: Simple planarization method: (a) initial graph; (b) partition of
the edges into planar (solid) and nonplanar (dashed); (c) dual graph (dotted)
used to route the nonplanar edges; (d) shortest path in the dual graph for
a nonplanar edge; (e) embedding and dual graph after the insertion of a
nonplanar edge; (e) final planarized graph.

In order to prevent the edges of a given subset E* from having crossings,
we modify Steps 1 and 3 of Algorithm 7.1 Planarize as follows:

¢ In Step 1, we try adding the edges of E* first, so that a maximal subset
of them will be in the planar subgraph computed by this step.
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Algorithm 7.1 Planarize

Input: graph G
Output: planarization G' of G

Compute a maximal planar subgraph S of the input graph G, and
partition the edges into “planar” and “nonplanar” accordingly (see
Figure 7.2.b), as follows:

o Start with subgraph G’ consisting only of the vertices of G, but
no edges

o For each edge e of G, if the graph obtained by adding e to G’ is
planar, then add e to G' and classify e as “planar,” else reject e
and classify it as “nonplanar.”

Construct a planar embedding of the planar subgraph G', and the dual
graph of S (see Figure 7.2.c).

. Add to G’ the nonplanar edges, one at at a time, each time minimizing

the number of crossings. This is done as follows for a nonplanar edge
(u,v):

¢ Find a shortest (least number of edges) path in the dual graph
of the current embedding G' from the faces incident to u to the
faces incident to v (see Figure 7.2.d).

e Add the nonplanar edge and update G’ and its dual (see Fig-

ure 7.2.e).
O

e In Step 3, we place a large “crossing cost” on the edges of E*.

In order to constrain a given subset of vertices V* to be on the exter-

nal boundary, we can add a fictitious vertex v* to the graph and fictitious
edges connecting v* to all the vertices in V*. We then impose the aforemen-

tioned constraint of preventing crossings on the edges incident on v* (see
Figure 7.3).

7.2 Interactive Orthogonal Drawing

Many applications require human interaction during the design process,
where the user is given the ability to alter the graph as the design pro-



7.2. INTERACTIVE ORTHOGONAL DRAWING 219

AN

Figure 7.3: Constraining vertices to be on the external face.

gresses. Interactive, or dynamic, graph drawing addresses the problem of
maintaining a drawing of a graph while the user is interactively modify-
ing the graph. If an insertion, deletion, or move operation is performed on
the graph, then the new graph should be redrawn. Running any drawing
algorithm on the new graph will result in a new drawing, which may be
vastly different from the previous one. This is an inefficient use of time and
resources from two points of view:

(a) The machine must spend considerable computational resources to run
the algorithm on the new graph.

(b) The user may need to spend considerable cognitive effort in trying to
relate the new drawing to the previous one.

A systematic approach to dynamic graph drawing, especially as it relates
to problem (a), appears in [CDTT95). The focus of the approach is to
perform queries and updates on an implicit representation of the drawing.
Algorithms are presented for maintaining drawings of trees, series-parallel
digraphs, and planar st-graphs.  Most updates of the data structures
require logarithmic time.

Problem (b) is equally important. Consider Figure 7.4. Suppose that the
user has the graph in Figure 7.4.a on the screen, and the user adds the edge
(b, ¢). If a planarity-based algorithm is used to recompute the drawing, then
the shape of the drawing will change dramatically to avoid the edge crossing,
as in Figure 7.4.b. This dramatic change destroys the user’s “mental map,”
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that is, the mental image of the drawing. From the user’s point of view, it
would be better to simply accept the edge crossing for the sake of preserving
the mental map, as in the drawing of Figure 7.4.c. Models for the mental
map, as well as some layout adjustment methods which preserve the mental
map, were introduced in [MELS95)].

N

@ () ©

Figure 7.4: The transition from (a) to (b) destroys the user’s mental map;
the transition from (a) to (c) does not.

This section describes interactive techniques from {PT, PT96, PST97]
for orthogonal graph drawing. The techniques address both problem (a)
and problem (b), that is, they are efficient, and they preserve the user’s
mental map. Furthermore, the drawings have good aesthetic qualities: the
number of bends and the area are both bounded. Section 7.2.1 introduces
the scenaria: the allowable interactive operations and models for the user’s
“mental map.” The following two sections present two incremental drawing
methods based on these scenaria. Section 7.2.1 compares the methods.

There are several other studies of incremental graph drawing methods.
A technique for restructuring a layered drawing of a tree (see Section 3.1.2)
in time proportional to its height is presented in [Moe90]. An interactive
drawing system for layered drawings is presented in [Nor96}. Interactive
graph drawing methods based on force-directed methods and constraint
resolution are presented in [RMS97, ECH97]. Further interactive orthogo-
nal drawing techniques are presented in [BK97, F6897, MHT93, PT, PT96,
PSTY7].

7.2.1 Interactive Drawing Scenaria

Software which supports interactive graph drawing features should be able
to: (a) create a drawing of a given graph under some layout standard (e.g.,
orthogonal, straight line, etc.), and (b) give the user the ability to interact
with the drawing in the following ways:

e Insert an edge between two specified vertices
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Insert a vertex along with its incident edges
Delete edges, vertices or sets of vertices, or edges
Move a vertex

Move a set of vertices and edges.

There are various factors which affect the decisions that an interactive
drawing system takes at each moment a user request is posted and before
the next drawing is displayed. Some of these factors are the following:

The amount of control the user has upon the position of a newly
inserted vertex.

The amount of control the user has on how a new edge will be routed
in the current drawing connecting two vertices of the current graph.

How different the new drawing will be, with respect to the current
drawing.

Based on these factors, we propose the following scenaria for interactive
graph drawing:

1.

The full-control scenario. The user has full control over the position
of a new vertex in the current drawing. The control can range from
specifying lower and upper bounds on the z- and y-coordinates that
the new vertex will have, to providing the exact desired coordinates
to the system. The edges can be routed by the user or by the system.

The draw-from-scratch scenario. Here, every time a user request is
posted, the new graph is drawn using one of the popular drawing
techniques. Apart from the fact that this scenario gives rather slow
interactive drawing systems, the new drawing may be completely dif-
ferent form the current drawing, that is, the user’s mental map may
be destroyed.

The relative-coordinates scenario. The general shape of the current
drawing remains the same. The coordinates of some vertices and edges
may change by a small constant, because of the insertion of a new
vertex and its incident edges (somewhere in the middle of the current
drawing), and the insertion of a constant number of rows and columns.
The relative ordering of vertices in the z and y directions does not
change, and, to some extent, the user’s mental map is preserved.
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4. The no-change scenario. In this approach, the coordinates of the
already placed vertices, bends, and edges do not change at all. In order
to achieve such a property, specific invariants need to be maintained
after each insertion. In this scenario, the user’s mental map is strongly
preserved.

A practical technique for the incremental restructuring of an orthogonal
drawing, after an edge insertion under the relative-coordinates scenario, is
presented in [MHT93]. In the following, we present two methods that in-
crementally construct an orthogonal drawing under the relative-coordinates
and no-change scenaria, respectively [PT, PT96, PST97). Related methods
are presented in [BK97, Fo6897).

The Relative-Coordinates Scenario

In this scenario, every time a new vertex is about to be inserted into the
current drawing, the system makes a decision about the coordinates of the
vertex and the routing of its incident edges. New rows and columns may
be inserted anywhere in the current drawing in order for this routing to be
feasible. The coordinates of the new vertex (say v), as well as the locations
of the new rows and/or columns, will depend on the following:

o The degree of v (at the time of insertion).

o For each vertex u that is adjacent to v, which directions (i.e., up, down,
right, or left) around vertex u can be used by the new edges.

e Whether or not the required routing of edges can be done utilizing
segments of existing rows or columns that are free (not covered by an
edge).

¢ Our optimization criteria.

Deletions of vertices and edges can be done trivially by simply removing
them from the drawing. After several deletions, a compaction step (see
Section 5.4) may be necessary in order to reduce the area occupied by the
drawing. A move can be implemented via a deletion followed by a subsequent
insertion.

When we use the relative-coordinates scenario in an interactive system,
we can start from an existing drawing of a graph, or we can start from
scratch, that is from an empty graph. In either case, we assume that the
insertion of any vertex/edge under this scenario will not increase the number



7.2. INTERACTIVE ORTHOGONAL DRAWING 223

of connected components of the current graph. The only exception to this
is when a single vertex is inserted into an empty graph. Any other vertex
inserted during an update operation will be connected to at least one vertex
of the current drawing.

Let us assume that v is the next vertex to be inserted in the current
graph during an update operation. The number of vertices in the current
graph connected to v is called the local degree of v. From the discussion
above, it follows that we only consider the case where an inserted vertex
has local degree one, two, three, or four, except for the first vertex inserted
in an empty graph. If the user wishes to insert a new vertex that has local
degree zero, then this vertex is placed in a temporary location and it will be
inserted automatically in the future, when some new insertions of vertices
increase its (local) degree.

Assume that vertex v is about to be inserted in the current graph. For
each one of the vertices of the current drawing that is adjacent to v, the
system checks the possible directions around these vertices that new edges
may be inserted or routed. The target is to minimize the number of new
rows or columns that have to open up in the current drawing, as well as the
number of bends that appear along the routed edges.

There are many different cases because there are many possible combi-
nations. First, we will give examples of some of the best and worst cases
one might encounter, and then, we will see in more detail how v is inserted
when its local degree is one, two, three, or four. In the example shown in
Figure 7.5.a, vertices u; and u» have a free edge (i.e., grid edge not covered
by a graph edge) up and to the right respectively. In this case, no new
rows/columns are needed for the insertion of vertex v and no new bends are
introduced.

On the other hand however, in the example shown in Figure 7.5.b, all
four vertices u;, us, us, and u4 have pairwise opposite direction free edges.
The insertion of new vertex v requires the insertion of three new rows and
three new columns in the current drawing. Additionally, eight bends are
introduced. Vertices u,, us, ug, and u4 have general positions in Figure 7.5.b,
and we can see that edge (v, u4) has four bends. We can avoid the four-bend
edge, if we insert vertex v as shown in Figure 7.5.c. The total number of
new rows, columns and bends is still the same, but the maximum number
of bends per edge is now three. For a more even distribution of the bends of
the edges adjacent to vertex v, we may choose to insert vertex v as shown in
Figure 7.5.d, where every edge has exactly two bends (three new rows and
three new columns are still required). Notice, though, that the approach
described in Figure 7.5.d for inserting vertex v, is not always possible (e.g.,
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we cannot have this kind of insertion if vertices u, us, u3, and u4 are in the
same row or column).

Y
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Figure 7.5: Insertion of v: (a) no new row or column is required; (b)-(d)
three new rows and three new columns are required, with a maximum of
four bends per edge in (b), three bends per edge in (c), and two bends per
edge in (d).

Let v be the next vertex to be inserted. There are many cases, if we are
interested in an exhaustive analysis, and it is relatively easy to enumerate
all of them for each insertion. We distinguish the following main cases for
vertex v:

1. v has local degree one. If u is the vertex of the current drawing that
is adjacent to v, we draw an edge between u and v. Edge (u,v) uses a
direction (up, right, bottom, or left) that is not taken by some other
edge incident to u. This is depicted in Figure 7.6.a, and this insertion
requires at most either a new row or a new column. No new bend is
inserted.

2. v has local degree two. In the best case, the insertion requires no
new rows, columns or bends as shown in Figure 7.5.a. In the worst
case, though, two new rows and one new column, or one new row

and two new columns, and three new bends might be required (see
Figure 7.6.b).

3. v haslocal degree three. In the worst case, the insertion requires a total
of four new rows and columns, and five new bends. In Figure 7.6.c,
we show an example of such an insertion that requires one new row,
three new columns and five new bends.
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4. v has local degree four. The worst case requires a total of six new
rows and columns, however, at most four of them can be either rows
or columns. Also, eight new bends may be introduced, in the worst
case. We have already discussed an example, which is depicted in
Figure 7.5.c. In Figure 7.6.d, we show another case, where two new
rows, four new columns and eight new bends are introduced.

Figure 7.6: Inserting v when its local degree is (a) one, (b) two, (c) three,
and (d) four.

In Figure 7.7, we show an orthogonal drawing of a graph drawn under
the relative-coordinates scenario we just described.

Lemma 7.1 Assume that n vertices are inserted into an orthogonal drawing
of a graph with height h and width w, using the interactive graph drawing
scheme under the relative-coordinates scenario. These insertions add up to
8n new bends and result in a new drawing with area at most

(h+w+3 )2
5 n) .

Proof: Assume that all n inserted vertices have local degree four, and each
one of them falls into orie of the worst cases described above, in terms of rows,
columns, and bends introduced. This means that each insertion introduces
eight new bends and a total of six new rows and columns. Let A’ and «'
be the height and the width, respectively, of the graph after the n vertex
insertions are completed. Therefore, b’/ + w’ = h + w + 6n. The area of the
final drawing h' x w' is maximized when
, hM+vw  h+tw

’— = —3
h=w 2 ) + 3n.

Hence, the result follows. (]
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Figure 7.7: (a) A graph G of maximum degree four that is interactively
constructed by adding vertices 1,2,...,13. (b) Orthogonal grid drawing of
G constructed by the interactive graph drawing scheme under the relative-
coordinates scenario. Notice that no edge has more than three bends. In
fact, there is only one edge with three bends (i.e., edge (12,13)), whereas
all the other edges have two bends or less.
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In the rest of this section, we assume that, when we use the interactive
graph drawing scheme under the relative-coordinates scenario, we start from
scratch, that is the given graph is empty. According to the discussion in the
beginning of this section, the relative-coordinates scenario guarantees that
the graph that is being built is always connected after any vertex insertion.
Let n)(t), na(t), n3(t), and n4(t) denote the number of vertices of local
degree one, two, three, and four, respectively, that have been inserted up to
time ¢. Also, let n(t) be the total number of vertices that have been inserted
up to time ¢. Clearly, we have

n1(t) + na(t) + n3(t) + na(t) = n(t) — 1. (7.1)

We now analyze the number of bends. From the description of the in-
teractive graph drawing scheme under the relative-coordinates scenario, at
most six new rows and columns are opened as a result of a vertex insertion
(see Figures 7.5.b-d and 7.6.d). Figures 7.5 and 7.6 cover the worst cases
in terms of rows, columns, and bends required for a single vertex insertion,
and for all possible local degrees of the inserted vertex. From these figures,
we also observe the following:

e There can be at most three bends along any edge of the drawing (see
Figure 7.5.c)

e The bends along an edge are introduced at the time of insertion of the
vertex that is incident to that edge.

From Figures 7.5 and 7.6 and from the discussion above, it follows that
at most three new bends are introduced when a vertex of local degree two
is inserted, at most five new bends when a vertex of local degree three is
inserted, and at most eight new bends when a vertex of local degree four is
inserted. No new bend is introduced when a vertex of local degree one is
inserted. In other words, if B(t) is the total number of bends at time ¢, it
holds that

B(t) < 3na(t) + 5n3(t) + 8ny(t). (7.2)

Furthermore, the total number of edges at time ¢ is
n1(t) + 2na(t) + 3na(t) + 4n4(t) < 2n(t). (7.3)
Subtracting (7.1) from (7.3), and multiplying by 3, we obtain

3na(t) + 6n3(t) + 9In4(t) < 3n(t) + 3. (7.4)
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From (7.2) and (7.4), we obtain the following upper bound on B(t)
B(t) < 3n(t) + 3. (7.5)
With a more complex analysis (see Exercise 2), one can prove that B(t) <
3n(t) - 1.
Regarding the area of the drawing at time ¢, we can infer the following

facts from Figures 7.5 and 7.6:

e When a vertex with local degree one is inserted, either a new row or
a new column is required.

e When a vertex with local degree two is inserted, either two new rows
and one new column are required, or one new row and two new columns
are required.

e When a vertex with local degree three is inserted, a total of at most
four new rows and columns are required.

e When a vertex with local degree four is inserted, a total of at most six
new rows and columns are required.

Let h(t) and w(t) denote the height and the width, respectively, of the
drawing at time ¢. Then, it holds that

h(t) + w(t) < ny(t) + 3na(t) + 4ns(t) + 6ny(t) (7.6)
If we multiply both sides of (7.3) by 2, we have
3 9
-2-n1(t) + 3no(t) + 5”3(” + 6n4(t) < 3n(t). (7.7)
Hence, by (7.6) and (7.7), we obtain
h(t) + w(t) < 3n(t). (7.8)
This implies that the area A(t) at time ¢ is at most
AQt) < %n(t)z = 2.25n(1)?.

We summarize the above analysis in the following theorem.
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Theorem 7.1 Consider a graph G of mazrimum degree four that is con-
structed, starting from an isolated verter, by means of a sequence of oper-
ations that add to G a vertex and one or more edges incident on it. Let
n(t) be the number of vertices of G at time t. The interactive graph drawing
scheme under the relative-coordinates scenario maintains, at any time t, an
orthogonal grid drawing of G with the following properties:

o Each edge has at most three bends
e The total number of bends is at most 3n(t) — 1
e The area is at most 2.25n(t)2.

Also, after each operation, the coordinates of any vertex or bend are shifted
by a total amount of at most siz units along the ¢ and y azxes.

The scenario described in this section maintains the general shape of the
current drawing after an update takes place. The coordinates of vertices
and bends of the current drawing may shift by a total amount of at most six
units along the x and y axes, as a result of an update operation. This change
does not affect the number of bends of the current drawing. This scenario
works well when we build a graph from scratch (incremental setting), or we
are presented with a drawing (which was produced by any algorithm) and
we want our interactive system to update it.

The No-Change Scenario

In the no-change scenario, the drawing system never changes the positions of
vertices and bends of the current drawing; it just increments the drawing by
adding the new elements. As in the previous scenario, our scheme produces
an orthogonal drawing under the assumption that the maximum degree of
any vertex at any time is less than or equal to four. We assume that we
build a graph from scratch in such a way that the graph is always connected.

Let u be a vertex of the current drawing, and let v be the next vertex
to be inserted. In our scheme, there are four possible ways to draw the edge
connecting u to v, which are schematically illustrated in Figure 7.8.a. Each
one is called a route of vertex u. Vertex u has up to two routes to the right,
through edges €, and e2, and up to two routes to the bottom, through edges
e3 and e;. Namely, vertex u has a route to the right if and only if there is
no edge of the current graph using the portion of the row of u to the right of
u (edge e2) or the portion of the column of u above u (edge e;). Similarly,
u has a route to the bottom if and only if there is no edge of the current
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graph using the portion of the column of u below u (edge e3) or the portion
of the row of u to the left of u (edge e4). The routes of vertex » through
edges ez and e3 are said to be direct.

T e v

u' !
Tegev e
508
V'V () (b)

Figure 7.8: (a) Possible routes of a vertex u of the current drawing. (b)—(c)
Inserting the first two vertices in an empty graph.

When a vertex is inserted, it is connected to some vertices that have
already been placed. The local degree of a vertex that is about to be in-
serted into the current drawing is defined in the same way as in the relative-
coordinates scenario presented in the previous section. Since the graph is
always connected, we only consider the case where an inserted vertex has
local degree one, two, three, or four. Let us assume that v; is the next vertex
to be inserted in the current drawing. Let r; be the number of edges incident
on v; that are drawn along nondirect routes. We distinguish the following
cases:

1. v; has local degree one (see Figure 7.9). Let e be the edge incident
on v;. We introduce at most r; bends and r; + 1 rows and/or columns.
In Figure 7.9.a, vertex v; has one direct route to the bottom and two
routes to the right. In Figure 7.9.b, vertex v; has one direct route to
the right and two routes to the bottom.

2. v; has local degree two (see Figure 7.10). There are four cases. We
show two cases in Figure 7.10. The other two cases are symmetric and
are treated in a similar fashion. We introduce at most r; +2 bends and
at most r; + 2 rows and/or columns. Vertex v; has one direct route to
the right and one direct route to the bottom.

3. v; has local degree three (see Figure 7.11). There are eight cases. All
cases, however, can be treated by considering just two cases, as shown
in Figure 7.11. The remaining cases are symmetric and are treated
in a similar fashion. We introduce at most r; + 3 bends and at most
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Figure 7.10: Insertion of vertex v; with local degree two: (a) both neighbors
of v; have a route to the right (bottom); (b) one neighbor has a route to the
right and the other neighbor has a route to the bottom.

r; + 2 rows and/or columns. Vertex v; has one direct route either to
the right or to the bottom.

4. v; has local degree four (see Figure 7.12). There are sixteen cases.
All cases, however, can be treated by considering just three cases, as
shown in Figure 7.12. The symmetric cases are treated in a similar
fashion. We introduce at most r; + 6 bends and at most r; + 4 rows
and/or columns.

In Figure 7.13, we show an example of a drawing constructed by the
interactive graph drawing scheme under the no-change scenario.

Theorem 7.2 Consider a graph G of mazrimum degree four that is con-
structed, starting from an isolated vertez, by means of a sequence of opera-
tions that add to G a vertez and one or more edges incident on it. Let n(t) be
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Figure 7.11: Insertion of vertex v; with local degree three: (a) all the
neighbors of v; have a route to the right (bottom); (b) two neighbors have
a route to the right (bottom) and the other neighbor has a route to the
bottom (right).

(a) (b)

Figure 7.12: Insertion of vertex v; with local degree four: (a) all the
neighbors of v; have a route to the right (bottom); (b) three neighbors have
a route to the right (bottom) and one neighbor has a route to the bottom
(right); (c) two neighbors have a route to the right (bottom) and the other
two neighbors have a route to the bottom (right).

the number of vertices of G at time t. The interactive graph drawing scheme,
under the no-change scenario, maintains, at any time t, an orthogonal grid
drawing of G with the following properties:

e Every edge has at most three bends
e The total number of bends at time t is at most %n(t) +2;
o The area at time t is at most (§n(t))2.

Also, every insertion operation takes constant time.
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Figure 7.13: Drawing of the graph of Figure 7.7.a constructed by the
interactive graph drawing scheme under the no-change scenario. The final
drawing has width 10, height 11, and 24 bends. The dotted boxes delimit
the drawing at each intermediate step.

Proof: By the description of the scenario, each edge is drawn with at most
three bends. Let ny(t), na(t), n3(t), and n4(t) denote the number of vertices
of local degree one, two, three, and four, respectively, that have been inserted
up to time t. Let B(t) be the number of bends at time ¢, we have
n(t)
B(t) < 2na(t) + 3ns(t) + 6n4(t) + 21‘,’. (7.9)
i=2
When inserting vertex v;, an edge (u,v;) incident on v; can be drawn along
a nondirect route only if u = v; or u has local degree one. At most two
edges incident on v are drawn along a nondirect route. Also, each vertex of
local degree one will contribute at most one nondirect route. Thus, we have
n(t)
Yo <mu(t) + 2. (7.10)
i=2

By (7.9)-(7.10), we obtain
B(t) € na(t) + 2na(t) + Ina(t) + 6n4(t) + 2 < 2n(t) + 2n4(t) + 2. (7.11)
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In order to establish an upper bound for B(t), we compute the maximum
number of vertices of local degree four that can be inserted up to time ¢
under any insertion sequence. The number of edges incident on the vertices
of local degree four up to time ¢ is 4n4(t). Let m'(t) be the number of the
remaining edges at time ¢. It holds that m'(t) + 4n4(t) < 2n(t). Notice
that ng4(t) is maximized when m/(t) is minimized. Since the graph has to be
connected at time ¢, it holds that m' > n(t) — n4(t). Hence, we obtain

na(t) < % (7.12)

Thus, by (7.11), we obtain
B(n) < gn(t) +2.

We now discuss the area of the drawing. Let P(t) be the half perimeter
(width plus height) of the drawing at time ¢. By the description of the
scenario, we have

n(t)
P(t) < ny(t) + 2n2(2) + 2n3(t) + dna(t) + 3 7. (7.13)
i=2

By (7.10), we obtain
P(t) < 2ny(t) + 2na(t) + 2na(t) + dnq(t) + 2 = 2ny4(t) + 2n(t). (7.14)
By (7.12) and (7.14), we conclude that

8
P(t) < Zn(t).

2
The area at time ¢ is at most (Eéﬂ) , that is, at most (3n(t))2. w

An implementation of the interactive drawing scheme should try to do
the following whenever possible:

® Reuse rows and columns on which other vertices have been previously
placed.

e Use all direct routes first before using nondirect routes.

For example, when vertex 9 was inserted in the drawing of Figure 7.13, the
column of vertex 2 was reused. Hence, in practice, the area and number
of bends are typically smaller than the theoretical bounds given in Theo-
rem 7.2,
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Comparison

The analyses of the relative-coordinates and no-change scenaria, presented
in the previous sections, suggests that the performance of the no-change
scenario is better than that of the relative-coordinates scenario, in terms of
area and number of bends. This is true only in the worst-case.

The no-change scenario guarantees that the current drawing is never
altered, since any vertex insertion and edge routing takes place around it.
Another advantage of the no-change scenario is that each update operation
takes constant time.

In the relative-coordinates scenario, the general shape of the drawing is
maintained after each update operation. Redrawing the whole graph after
an update operation requires linear time, since the coordinates of many
vertices and bends of the current graph may be shifted (by a total amount
of at most six units along the two axes). However, the relative-coordinates
scenario has one important feature: it gives the user the ability to insert a
vertex into any existing orthogonal drawing. This is due to the fact that no
invariants are maintained by this scenario.

Both the relative-coordinates and the no-change scenaria can be ex-
tended to the case where the current graph is allowed to become discon-
nected during the interactive drawing process. For more details see [PT96,
PST97).

An experimental study, comparing the performance of the two scenaria
on a data set containing over 8000 graphs of maximum degree four, revealed
the following:

e The relative-coordinates scenario always exhibited better performance
than no-change in terms of both area and number of bends.

¢ The practical behavior of the two scenaria was much better than their
established theoretical worst-case bounds, in most cases. In other
words, the worst case did not happen very frequently.

An extensive description of the experimental results, along with heuristics
on the placement of vertices, appears in [PST97].

Figure 7.14 shows two drawings constructed by an interactive graph
drawing system under the relative-coordinates scenario. Figure 7.15 shows
two drawings constructed by an interactive graph drawing system under the
no-change scenario.
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13 5 1 3 "

Figure 7.14: Two orthogonal drawings constructed by an interactive graph
drawing system under the relative-coordinates scenario. The vertex numbers
indicate the order of insertion. (Courtesy of J. Six.)
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*

Figure 7.15: Two orthogonal drawings constructed by an interactive graph
drawing system under the no-change scenario. The vertex numbers indicate
the order of insertion. (Courtesy of J. Six.)
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7.3 Exercises

1.

Algorithm 7.1 Planarize is a simple algorithm for finding a planariza-
tion of a graph. The quality of the resulting planarization depends on
several factors. Describe them and give best and worst case examples.

. Prove the bound B(t) < 3n(t) — 1 on the number of bends of the

drawing produced by the interactive graph drawing scheme under the
relative-coordinates scenario given in Theorem 7.1. A possible ap-
proach consists of solving a linear program over variables n;, ng, ng,
and n4, where the function to maximize is 3ng + 5n3 + 8n4.

. Show that the expression n;(t) + 3na(t) + 4n3(t) + 6n4(t) appearing

in (7.6) is maximized for n)(t) = n3(t) = 0, ny(t) = n(t) — 2, and
ng(t) = 1.

. Show that the upper bounds on the number of bends and on the area

given in Theorem 7.2 are tight.

The following (noninteractive) algorithm constructs an orthogonal draw-
ing of a given graph G with n vertices:

(a) Compute a numbering v,,....,v, of the vertices of G, such that
the subgraph induced by v;,...,v; is connected for each ¢ =
l,...,n

(b) Incrementally draw G by inserting v;,...,v,, using the inter-
active graph drawing scheme under the relative-coordinates sce-
nario.

Develop a suitable numbering scheme for (5a) that yields better bounds
than those given in Theorem 7.1.

Repeat Exercise 5 using the no-change scenario instead of the relative-
coordinates scenario in (5b). Develop a suitable numbering scheme for
(5a) that yields better bounds than those given in Theorem 7.2.

. Extend the interactive graph drawing scheme under the relative-

coordinates scenario so that it works for graphs with degree higher
than four. Make reasonable assumptions. Discuss the trade-offs.

Is it possible to extend the interactive graph drawing scheme under
the no-change scenario so that it works for graphs with degree higher
than four? What assumptions are needed? Discuss the trade-offs.



Chapter 8

Nonplanar Orientations

The techniques presented in Chapters 4 and 5 rely heavily on the topology
of planar graphs. If a graph is not planar, then these techniques require
a planarization step (see Section 7.1). This introduces a potentially large
number (up to O(n?)) of fictitious vertices. Their number influences the
complexity of the drawing algorithm, and their placement influences the
quality of the final drawing.

The techniques in this chapter construct orthogonal grid drawings of
nonplanar graphs without a planarization step. They first orient a given
graph, then draw it, one vertex at a time, following the order of the orien-
tation. This approach has been followed in several algorithms that achieve
good bounds in terms of both the number of bends and the required area.

In Section 8.1, we describe an algorithm that produces an orthogonal
grid drawing of an n-vertex biconnected graph of maximum degree four
that needs at most 0.77n2 area and at most 2n + 4 bends. Each edge has
at most two bends. The algorithm uses a “pairing” technique: vertices are
paired in order to use the same row or column.

This algorithm is extended to the case of simply connected (i.e., not
necessarily biconnected) graphs of maximum degree four in Section 8.2. The
bounds for area and bends are the same as for biconnected graphs. This work
appeared in [PT95, PT97c, PT98). Similar techniques have been presented
in [BK94].

An algorithm that constructs drawings of graphs whose vertices have
degree greater than four is described in Section 8.3. Given a graph with m
edges, this algorithm constructs drawings with width at most m—1, height at
most 2 + 2, and at most one bend per edge. This work appeared in [Pap96,
PT97b). Related work can be found in [Bie97).

239
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8.1 Biconnected Graphs

In this section, we present an algorithm for obtaining orthogonal grid draw-
ings of general (nonplanar) biconnected graphs of maximum degree four. A
simple general method for producing such drawings is as follows:

e The graph is first st-ordered.

e The first vertex is placed and columns are allocated for each of its
incident edges.

e Next, the vertices are placed on the grid consecutively, according to
their order in the st-ordering.

e At each step, a vertex v is placed on a new row.

e When vertex v is drawn, we also draw all its incoming edges using the
already allocated columns.

e The outgoing edges of v are drawn by allocating a new column for
each outgoing edge. These columns will be used later.

As we will discuss later, this method can be implemented to run in linear
time. The drawings produced require area at most n X n and at most 2n +4
bends, with at most two bends per edge.

Next we present an algorithm that follows the above method and achieves
the same bound for the number of bends as the one described above. How-
ever, due to a clever vertex placement, it achieves better bounds in terms
of area. The goal of the algorithm is to reuse as many rows and columns
as possible by carefully placing vertices. This is done by finding pairs of
vertices that can share a row or column in the final drawing.

We distinguish between two different kinds of pairs:

e Row Pairs:

— both vertices of such a pair share the same row in the final drawing
of G, or

— the vertices of such a pair are placed in two different rows but their
placement results in reusing one row (e.g., one of them shares the
same row with one or more other vertices, which either belong to
another pair or do not belong to any pair at all).

In either case, we reuse a row.
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e Column Pairs: The two vertices of such a pair are placed in such a
way that a column is reused in the final drawing of G. A column is
reused when at Jeast two different edges (incident to the vertices) use
it. Thus we reuse a column.

Let G be a (perhaps nonplanar) biconnected graph of maximum degree
four. First we compute an st-numbering for G, with a vertex s as the
source and a vertex t as the sink, and use the numbering to orient the
graph. A vertex with a incoming and b outgoing edges is called an a-b
vertex (1 < a,b < 4). For example, a vertex with one incoming and two
outgoing edges, is a 1-2 vertex. The goal of the algorithm is to create pairs
of vertices of G, so that every 1-2, 1-3, and 2-2 vertex is a member of exactly
one such pair.

In order to simplify our presentation, we condense G as follows. After
the st-numbering is complete, we scan the graph G looking for 1-1 vertices
whose outgoing edge enters a 1-2 or a 1-3 vertex. We absorb these vertices
into a single edge until no 1-2 or 1-3 vertex has a 1-1 vertex as its (unique)
immediate predecessor. No double edges are introduced when these 1-1
vertices are (temporarily) removed from G. Notice that this step does not
alter the number of incoming and outgoing edges for each vertex that has
not been absorbed. Let us use the notation G’ for the condensed graph, and
n’ for its number of vertices. We then modify the st-numbering of G, such
that there are no gaps in the st-number sequence assigned to the vertices of
G’ as a result of the removal of these vertices from G.

The row and column pairs described above can be formed in various
ways. Next we present Algorithm 8.1 Form-Pairs that aims to create as
many pairs as possible. A regular graph of degree four is a graph such that
all the vertices have degree four. We will show that this algorithm works
well since it creates at least [2}2] pairs for any regular graph of degree
four. It considers the vertices of G’ in reverse order of the st-numbering
and produces pairs starting with the vertex immediately before the sink ¢.
If a vertex already belongs to a pair, the vertex is assigned, otherwise it is
unassigned. The next unassigned vertex to be considered is always a 1-2,
1-3, or 2-2 vertex and it is paired with some other lower numbered vertex in
G'. The assignment of the 1-2, 1-3, and 2-2 vertices of G’ to pairs is called
pairing of G'. The vertex of a pair with the lowest st-number of the two is
called the first vertex of the pair, and the other is called the second vertex.

In the rest of this chapter, when we talk about a predecessor of a ver-
tex in G or G’ with respect to the st-numbering, we mean the immediate
predecessor of this vertex.



242 CHAPTER 8. NONPLANAR ORIENTATIONS

Algorithm 8.1 Form-Pairs
Input: graph G of maximum degree four
Output: pairing of the vertices of the condensed
graph G’

1. Compute an st-numbering of G.

2. Condense G by absorbing degree two vertices, as described above.
3.i=n"~-1
4. while 7 > 2 do
(a) Consider vertex v; according to a decreasing order of the st-
numbering
(b) if v; is a 1-1, 2-1, or 3-1 vertex then
ei=¢—-1

(c) else if v; is a 1-2 or 1-3 vertex then
¢ form a pair containing vertices v;—; and v;
e i1=7—2

(d) else if v; is a 2-2 vertex then

i. Find the smallest j such that either
A. v;_j is not a 1-1, 2-1, or 3-1 vertex, or
B. v;_; is a predecessor of v;
ii. form a pair containing vertices v;—; and v;
. i=¢—j-1

end while

Algorithm 8.1 Form-Pairs assigns every 2-2, 1-2, and 1-3 vertex v; to one
pair, where 3 < 7 < n'—1. Vertex vs (which is a 1-1 or 1-2 or 1-3 vertex) may
or may not be paired with another vertex; this depends on both the graph
and the st-numbering. In Step 4(c), every 1-2 or 1-3 vertex v; is always
paired with vertex v;—;. If vertex v; is a 2-2 vertex, then Algorithm 8.1
Form- Pairs pairs v; with some vertex v, where j is the highest number less
than 7 so that v; is one of the following types:
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e 1-1 vertex which is also a predecessor of v;
e 2-1 vertex which is also a predecessor of v;
e 3-1 vertex which is also a predecessor of v;
o 2-2 vertex

e vertex

e vertex.

The algorithm pairs all 2-2, 1-2, and 1-3 vertices, except possibly for va,
since v2 and v3 cannot be 3-1 vertices. Now we discuss how to place the
pairs on the grid. Let (v;,v;) be a pair (j < ¢) formed by Algorithm 8.1
Form-Pairs. Vertex v; might be a predecessor of v;, or the two vertices
might not have a predecessor-successor relationship. If the latter is the case,
they are called independent. Various types of pairs are drawn in a different
fashion as follows:

1. If v; is a 2-2 vertex, then we distinguish three cases for v;:

(a) vj is a 2-2 vertex. Here we have a column pair.

o If v; is a predecessor of v;, then there is a column that is
closed by placing v; (i.e., an edge incident to v; is completed
and the rest of the column originally allocated to this edge
is now free). Hence, the column can be reused, as shown in
Figure 8.1.a.

e If v; and v; are independent, then we can always reuse one
column regardless of the arrangement of the columns of the
incoming edges of v; and v; (see Figures 8.1.b and 8.1.c for
two examples). Notice that in this case, in order to reuse a
column, we sometimes have to place v; in a row below v;.
This placement is possible since v; and v; are independent.
One can visualize this case by exchanging the labels of v; and
v; in Figure 8.1.b.

(b) v; is a 1-1, 2-1, or 3-1 vertex and a predecessor of v;.

o If v; is a 2-1 or 3-1 vertex, a column can be reused (i.e., we
have a column pair), as shown in Figure 8.1.d.

e Otherwise, if v; is a 1-1 vertex, then the two vertices can
share the same row (i.e., we have a row pair) as shown in
Figure 8.1.e.
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(c) vj is a 1-2 or 1-3 vertex. Here there are two subcases:

e If vj is a predecessor of v;, then v; can be placed in the
same row as vj, that is, we have a row pair. In fact, it can
be placed at the intersection point of the row of v; and the
edge coming from the other predecessor of v;, as shown in
Figure 8.2.a. Notice that because of the pairing algorithm,
the other predecessor of v;, say vy, is such that k£ < j.

e If v; and v; are independent, then we have a column pair. In
fact, vertex v; can be placed in the row immediately above
the row of v;, thus reusing the column of the edge terminating
at v;, as shown in Figure 8.2.b.

v

. Vl Vi Vj V‘
- Yi 1T Yi

@ () @ ©

Figure 8.1: Vertex v; is of type 2-2 and a column is reused when: (a) v;
is a 2-2 vertex and v;’s predecessor; (b),(c) v; is independent of v;; (d) v; is
2-1 or 3-1 and v;’s predecessor; (e) a row is shared when v; is 1-1.

@

Figure 8.2: (a) Vertices v; and v; share the same row. (b) Vertex v; is
placed in a row above v; and a column is reused. (c) Vertices v; and v;_
are independent and share the same row.

2. If v; is a 1-2 or 1-3 vertex, then it is always paired with vertex v;_;.
We distinguish four cases for v;—:

(a) Ifv;_; is a 2-2, 2-1, or 3-1 vertex then we have a column pair.
Vertex v; is placed in a row above the row of v;_; and a column
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(b)

(c)

is reused as described in Cases 1(a) and 1(b) above.

If v;_; is a 1-2 or 1-3 vertex and vertices v; and v;_; are inde-
pendent, then we have a row pair. In this case, vertices v; and
v;—1 are placed in the same row, as shown in Figure 8.2.c.

If v;_; is a 1-2 or 1-3 vertex, v;_; is v;’s predecessor, and both
of the following conditions hold, then we have a row pair.

o Either v; is connected later to another vertex, say v;, which
is 1-1, 1-2, or 1-3; or v; is connected later to a 2-2 vertex v,
which is either the second vertex of a pair of type 1(c) shown
in Figure 8.2.a, or the second vertex of a pair of type 1(b)
shown in Figure 8.1.e.

o The edge (v;-1,v;) has not absorbed any 1-1 vertices from
the original graph G.

In this case, v; and v;_; are placed in the same row, as shown in
Figure 8.3. We only have to ensure that edge e will connect to
vj in the future, as shown in Figure 8.3. Every edge is bent at
most twice. Also notice that the total number of bends for both
v; and v;_, is the same as if these two vertices were placed in two
different rows.

The final case is when v;_; is a 1-2 or 1-3 vertex, v;_; is a
predecessor of v; and at least one of the two conditions described
in the previous case does not hold. As can be seen by Figures 8.4.a
and b, although v; and v;_; are placed in two different rows, a
row is still reused. So v;_; and v; form a row pair.

Figure 8.3: Vertices v; and v;_1 share the same row and edge e will connect
to an appropriate future vertex, as described in pair type 2(c).

Recall that in order to simplify our description, we absorbed some degree
two vertices. After the drawing of G’ is complete, we need to restore those
vertices. They can usually be placed on bends or on grid points (i.e., points
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(b)

Figure 8.4: (a) Vertex v;_; shares the same row with a 1-1 vertex which
is placed on the bend of edge (vi-1,v;). (b) Vertex v; shares the same row
with the vertex which will be placed next in the drawing.

of integer coordinates that do not have a crossing). In the extreme case
where this is not possible, new rows are introduced as needed. Notice that
the pairing of the vertices of G’ “transfers” to G. All the other vertices of
the drawing maintain their positions, that is the rows and columns in which
they are placed.

Algorithm 8.2 Four-Orthogonal presents a formal description of the tech-
nique.

(a)

©

Figure 8.5: v; and vs placed by Algorithm 8.2 Four-Orthogonal: (a) v
and vz can be placed in the same row; (b) the placement of v; and v, when
v1 has degree three; (c) the placement of v; when v, is assigned to a pair.

Figure 8.6.a shows a regular degree four graph with 13 vertices and
Figure 8.6.b shows the orthogonal grid drawing that the algorithm produces
for it. Notice that vertices 1 and 2, 3 and 4, and 6 and 7 are placed in the
same row. Also, the pairs (10,8), (5,4), and (3,2) reuse one column each.
A total of four bends are saved in the rows where vertices 3 and 4, and 6
and 7 are placed. The drawing has height 11 and width 10.

Next we prove two intermediate results about the number of columns
and rows of the drawings produced by Algorithm 8.2 Four-Orthogonal.
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Algorithm 8.2 Four-Orthogonal

Input: .
b biconnected graph G of maximum degree four

Output: orthogonal grid drawing of G
1. Compute an st-numbering of G.

2. Run Algorithm 8.1 Form-Pairs and let G’ be the resulting condensed
graph.

3. (a) if vo does not belong to a pair in which it shares a row with
another vertex, then place vertices v; and v, in the same row
(see Figure 8.5.a).

(b) if v; and/or v have degree less than four, then the placement of
v1 and vz might require one or two rows. Figure 8.5.b shows the
case where v; had degree three and ve has degree four. Notice
that in this case, there is only one bend along edge (v;, vs).

(c) if v, is assigned to a pair, then we place v, as shown in Fig-
ure 8.5.c (if v; has degree four). Vertex v, will be placed when
its pair is considered.

4. repeat

(a) Consider the next vertex v; according to the st-numbering of G'.
(b) if v; has not already been placed, then:

i. if vertex v; is unassigned, then place v; in a new row. Con-
nect v; with each vertex v; (j < i), such that (vj,v;) is a
directed edge of G'. Allocate as many columns as nceded,
depending on v;’s outdegree.

ii. if vertex v; is assigned to a pair, then place v; along with
the other vertex in the pair, following the placement rules
described above for the specific type of pair.

until the only remaining vertex is v,.

5. Insert v,y in a new row. if v, is of degree four, then there is an
incoming edge that enters v,y from the top and bends twice. This
edge is chosen to be the one that connects to v,_,.

6. Restore the degree two vertices of G that were absorbed in Algo-

rithm 8.1 Form-Pairs, as described above. a
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Figure 8.6: (a) st-numbering of an example graph. (b) Orthogonal grid
drawing of the graph shown in part (a) produced by Algorithm 8.2 Four-
Orthogonal.
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Lemma 8.1 Suppose that there is a total of p1 column pairs, p> unassigned
degree two vertices, p3 unassigned degree three vertices in G, and that k) =
P+ p2 + 8. Then the width of the drawing of G output by Algorithm 8.2
Four-Orthogonal is at most n + 1 — ky.

Proof: When we place a vertex v of G = (V, E) with outdeg(v) outgoing
edges, we increase the width of the current drawing by outdeg(v) — 1. Since
all vertices of G other than v, have at least one outgoing edge, the width of
the drawing can be at most

Z (outdeg(v) = 1) <m-n+1.
veV—-{vn}

For each one of the p; column pairs of G, there is exactly one vertex of the
pair which reuses some column for one of its outgoing edges. This means
that the width of the drawing is at most m —n + 1 — p;. Let us assume that
there is a total of p3 unassigned degree three vertices of G (these are 2-1
vertices), and a total of p» unassigned degree two vertices of G (this includes
the vertices that were temporarily removed from G). It follows that the total
number of edges of G can be at most

m§2n—p2—%.

If we use this bound for the edges of G in the above expression for the width
of the drawing of G, it follows that the width is at most

2n—n+1-(p1+p2+£2§,
or n+1—ky, where ky = p +p2 + &. a

Lemma 8.2 Suppose that there are ky row pairs of vertices in G. Then the
height of the drawing of G output by Algorithm 8.2 Four-Orthogonal is at
most n+ 1 — ko, when ks > 1, or n when ks = 0.

Proof: Suppose that we have a total of k3 row pairs in G. Vertex vy, requires
one extra row if it is of degree four. Vertex v also requires an extra row if
it is of degree four and is not able to share the same row with vp. All the
other vertices of G are placed in separate rows. Hence, the height of the
final embedding of G is at most n + 1 — ks.

If there are no row pairs in the graph (i.e., k2 = 0), then the placement
of vertices v; and v, requires at most two rows (see Figures 8.5.a and b),
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according to Step 3 of Algorithm 8.2 Four-Orthogonal. Since vertex v, does
not require any extra row, it follows that the height G is n when ky = 0. O

Next we refine our analysis of the area requirement of Algorithm 8.2
Four-Orthogonal. In order to obtain worst case bounds, we consider graphs
that contain the maximum number of edges, namely regular graphs of degree
four.

The graph may have at most one 4-0 vertex and at most one 0-4 vertex.
Let us assume that the graph has one 4-0 vertex, one 0-4 vertex, and z3_,
3-1 vertices. Intuitively, in order to maximize the number of 3-1 vertices the
following has to occur: (a) the number of the remaining types of vertices
(other than 3-1) is minimized, and (b) the remaining vertices have as many
outgoing edges as possible. This implies that the remaining vertices must be
of type 1-3 only. Let z,_3 be their number. Since the number of outgoing
edges is equal to the number of incoming edges, we have

443x1_3+ 231 =21-3+ 323 +4.

It also holds that
I3-1 +x1-3+2=n.
Solving this system of equations we obtain that the number of vertices of

type 4-0, 0-4, and 3-1 is at most | 2£2|. This implies the following lemma:
2

Lemma 8.3 Consider a biconnected graph of mazimum degree four along
with an st-numbering. Then the number of vertices of type 4-0, 0-4, and 3-1
is at most |%$2].

We are ready now to discuss the properties of the drawings produced by
Algorithm 8.2 Four-Orthogonal.

Theorem 8.1 Let G be an n-vertez biconnected graph with marimum degree
Jour. Algorithm 8.2 Four-Orthogonal constructs an orthogonal grid drawing
[' of G in O(n) time with the following properties:

o The area of T is at most 0.77n? + O(n)
e The total number of bends in I' is at most 2n + 4

e No edge has more than two bends.
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Proof: From Lemmas 8.1 and 8.2, the area of the drawing of G = (V, E)
output by Algorithm 8.2 Four-Orthogonal is at most: (n+1—Kky)x(n+1—k,).
Also, the total number of vertices in G of degree two, three, and those with
degree four that are of type either 1-3 or 2-2, is at least [-’%‘2] (see Lemma
8.3). Since all vertices of this type are either paired (see Algorithm 8.1
Form-Pairs) or contribute to the reduction of the number of columns (see
proof of Lemma 8.1), it holds that k) + k2 > ["T‘Z]. The area is maximized
when k) = ko = "T‘z. Thus the area is at most

n 5 n S _ 2 ~ 2
(F +7) % (F +7) = 077" +2.18n + 1.56 ~ 0.77n’.

Each vertex v inserted in the drawing introduces deg(v) — 2 bends, with
the exception of vertices vy, vo, vn, and the vertices which form a pair of
the type shown in Figure 8.3. In that figure, we can see that one of the two
1-3 vertices (v;—1) introduces one bend, and the other one (v;) introduces
three bends. When we have pairs like this, we may assume, for the sake
of the analysis, that each one of the two 1-3 vertices introduces two bends,
since the combined total is still four bends. Vertices v; and v2 introduce
deg(vy) + deg(v2) — 2 bends and v,, introduces at most four bends. Hence,
the total number of bends is at most

Z(deg(v) -2)+4=2m-2n+4.
veV

Since the number of edges can be at most 2n (if our graph is regular of degree
four), it follows that the total number of bends introduced by Algorithm 8.2
Four-Orthogonal is at most 2n + 4.

Finally, notice that because of the construction of the drawing, no edge
bends more than twice.

Now we discuss the time complexity of Algorithm 8.2 Four-Orthogonal.
Since new rows and columns are continually inserted in the drawing, it is
important to be able to maintain and update the data structures efficiently.
The insertion of new rows poses no problems, since they are always inserted
on top of the existing current drawing. New columns however are arbitrarily
inserted anywhere in the current drawing. For this reason, we need to be
able to keep track of the relative order among all the columns. We use the
data structure and algorithms for the order maintenance problem proposed
by Dietz and Sleator [DS87], that support the following operations in O(1)
time:

o Insert(z,y): Insert item y after item x. Item y must not be in the list
already.
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e Delete(z): Delete item z from the list.

e Order(z,y): Return true if itein z is before item y in the list, otherwise
return false.

This implies that the total running time of Algorithm 8.2 Four-Orthogonal
is linear. a

In the next section, we will discuss how to extend the results of this
section to simply connected graphs. In order to accomplish this, we need
to reduce the bound on the total number of bends to 2n + 2 with a minor
adjustment of the drawing. In the rest of this section, we discuss practi-
cal issues such as using a simpler data structure, the expected number of
bends/area, and the effects of si-numberings on the resulting drawings.

As we discussed in the proof of the above theorem, the time complexity
assumes the use of the Dietz and Sleator data structure, which is compli-
cated. Alternatively, the use of a simple balanced binary search tree data
structure will suffice for updates and column order queries. However, the
time complexity of the algorithm will increase to O(n log n), since each such
operation will require O(logn) time.

In practice, the number of bends in drawings produced by Algorithm 8.2
Four-Orthogonal is expected to be less than 2n + 4:

e When a 2-2 vertex is placed in the same row as its 1-2 or 1-3 prede-
cessor, then two bends and one column are saved. We call these good
rOW pairs.

e Two bends and one column are saved in the case where we have a pair
of two 1-3 vertices, say v; and v;, and v; is placed in a row above v;.
Thus, if the vertex which is placed in the row of v; is a 2-2, 2-1, or
3-1 type and has v; as its predecessor, two extra bends are saved. We
also call these good row pairs. We will use the existence of at least
one good row pair in the next section in order to improve the obtained
bounds.

o If we have a pair of type 2(c) in which the second vertex is 1-2, then
the placement of this pair, as described in Figure 8.3, will save one
bend.

This means that we expect the total number of bends to be less than
the upper bound of Theorem 8.1. Also, note that the area required by the
drawings produced by Algorithm 8.2 Four-Orthogonal, is typically better
than what Theorem 8.1 claims for two reasons:
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e The total number of 1-1, 1-2, 1-3, 2-2, and 2-1 type vertices is often
larger than 3.

e In the proof of Theorem 8.1, we only considered vertices of type 1-1,
1-2, 1-3, 2-2, and 2-1 to determine the total area. When pairs are
formed, we typically expect some vertices of type 3-1 to participate as
the first vertex in some column pairs of type 1(b) or 2(a). If this is
the case, then the total number of pairs is further increased.

In fact, experimentation on the performance of Algorithm 8.2 Four-
Orthogonal revealed that the area and shape of the produced drawings de-
pends heavily on the specific st-numbering that is employed [PT95).

¢ One st-numbering algorithm (resembling Depth First Search) pro-
duced drawings in which the height was larger than the width. but
the area was no more than 0.65n2.

e A second st-numbering algorithm (resembling Breadth First Search)
produced more squarish drawings, with shorter edges, but the column
reuse was not as good as in the case of the first type. As a result, the
area was larger, but never more than 0.72n2.

Finally, in all these experiments the number of bends was at most 2n,
and for large graphs it was significantly lower than 2n. Figures 8.7 and
8.8 show two drawings constructed by an implementation of Algorithm 8.2
Four-Orthogonal.

If the given graph has maximum degree three, then one can obtain better
bounds for the area and bends of the drawings. Namely, there is a linear-
time algorithm that produces drawings with at most |5 | + 3 bends, and at
most ;}n2 area. Moreover, there is at most one edge that bends twice (PT95,
PT97c, PT98].

8.2 Extension to Connected Graphs

In this section, we show how to extend the above approach to all connected
graphs. The technique is based on breaking the graph into its blocks, which
has been successfully employed by various authors (see e.g., [BK94, PT95,
TT89b)). The block cutvertez tree of graph G has a B-node for each block
of G, and a C-node for each cutvertex of G. Edges in the block cutvertex
tree connect each B-node u to the C-nodes associated with the cutvertices
in the block of p.
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Figure 8.7: Orthogonal drawing constructed by an implementation of Al-
gorithm 8.2 Four-Orthogonal. (Courtesy of A. Papakostas.)

In order to extend the bounds obtained in the previous section to one-
connected graphs, we have to guarantee that when Algorithm 8.2 Four-
Orthogonal draws any block the height and width of the drawing is at most
n and the number of bends is at most 2n + 2.

Notice that in the worst case it is possible for Algorithm 8.2 Four-
Orthogonal to produce a drawing with 2n + 4 bends and/or width n + 1.
This can happen only if the following hold:

e The graph is regular of degree four

¢ There is no good row pair in the graph. Recall that good row pairs save
one column and two bends, as described in the paragraph following
the proof of Theorem 8.1.
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Figure 8.8: Orthogonal drawing constructed by an implementation of Al-
gorithm 8.2 Four-Orthogonal. (Courtesy of A. Papakostas.)

We now show that it is possible to avoid these two cases. Consider a
regular biconnected graph G with degree four. Let us assume that after
running Algorithm 8.1 Form-Pairs on G. there are no good row pairs. In
this case, the drawing of G, produced by Algorithm 8.2 Four-Orthogonal.
may have 2n + 4 bends and n + 1 width (this is especially true if there are
column pairs). Here we describe a technique which forces a good row pair
in the pairing of the vertices of G. The target is to generate at least one
good row pair even at the price of breaking other pairs.

Suppose there is no good row pair. We scan the vertices of G following
the st-numbering, until we find the first vertex v that is not a 1-3 vertex.
We distinguish two cases for v:

1. Vertex v is a 2-2 vertex. Let u be the highest numbered predecessor
of v. Vertices v and u do not belong to the same pair, since in that
case. we would have a good row pair. We break the pair that v is in,
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and pair v with . This new pair is of type 1(c) (the case shown in
Figure 8.2.a). Notice that in order to form the new pair, we have to
break the pair that u was previously assigned to. However, doing so
will not increase the width or the total number of bends.

2. Vertex v is a 3-1 vertex. We break any pair that v might have
been assigned to with another higher numbered vertex. We check the
highest numbered 1-3 predecessor of v, say u (notice that, since v has
three incoming edges, u cannot be vertex v5). Vertex u has been paired
with another 1-3 vertex, and u is the second vertex in that pair, as a
result of the running of Algorithm 8.1 Form-Pairs. This pair is now
treated as a pair of type 2(d), and v will be placed in the same row as
u.

From the above, it follows that, if we have a regular degree four bicon-
nected graph G, then we can place one 2-2 or 3-1 vertex in the same row as
its highest numbered predecessor (vertex u in the above description). We
accomplish this by forming a new row pair of type either 1(c) (u is the first
vertex and v is the second vertex of the pair), or 2(d) (u is the second vertex
of the pair, v becomes an unassigned vertex and is placed in u’s row). In
either case, the row pair is a good row pair and the resulting drawing has
at most 2n + 2 bends. Also, the width of the drawing is at most n. Notice
that although we might have to break two existing pairs, the new good row
pair that we form saves one row, one column, and two bends. Therefore we
have:

Theorem 8.2 Let G be an n-vertez biconnected graph with mazimum degree
four. The above variation of Algorithm 8.2 Four-Orthogonal constructs an
orthogonal grid drawing T of G in O(n) time with the following properties:

o The area of T is at most 0.77n2 + O(n)
o The total number of bends in T is at most 2n + 2

e No edge has more than two bends.

Algorithm 8.2 Four-Orthogonal can be extended to connected graphs of
maximum degree four. Suppose that we have such a graph G. We split G
into its blocks and produce the block cutvertex tree of G. Next, we apply
the variation of Algorithm 8.2 Four-Orthogonal as described in Theorem 8.2
on each block separately. Then we put the blocks together to form the final
drawing. We use an inductive approach for constructing the drawing of G.
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In the base case, we apply Algorithm 8.2 Four-Orthogonal on a biconnected
graph. In the induction step we consider a subtree of the block cutvertex tree
of G and we split the subtree into a block Gy (i.e., the root of the subtree) and
the connected (but not necessarily biconnected) subgraphs Gl,Gg,...Gq.
According to the induction hypothesis, each G; is already drawn. Hence,
the process of drawing G reduces to drawing Go and merging each G; at the
appropriate places.

Figure 8.9 shows how the blocks are placed together. The proof of cor-
rectness of this technique is rather long and is based on maintaining some
invariants during the drawing process. A detailed description of the tech-
nique and its proof can be found in [PT97c, PT98].

G

0 !

-1, lf:
=

C—
AN
. B v

(d)

Figure 8.9: (a) Gy continues the drawing of G;. (b) Examples of subgraph
rotation, placement and column reuse. (c) Reusing row(s) when G; is con-
nected to Gg through a bridge. (d) Drawing of a graph whose G;’s are small
size graphs (each G; here is a triangle).

Theorem 8.3 Let G be an n-vertez connected graph with mazimum degree
four. We can construct an orthogonal grid drawing T' of G in O(n) time
with the following properties:

e The area of T" is at most 0.77n + O(n)
e The total number of bends in I is at most 2n + 2

e No edge has more than two bends.
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The technique of splitting a connected graph G into its blocks has been
used in several algorithms in order to prove upper bounds [BK94, PT95,
PT97c, PT98, TT89b]. Due to the nature of Algorithm 8.2 Four-Orthogonal,
we can apply a simpler strategy in order to obtain orthogonal grid drawings
of connected graphs using an augmentation technique:

1. Insert a new (fictitious) vertex ts into graph G and connect it with all
leaf blocks of the block cutvertex tree of G. Connect tg to vertices.
preferably of degree less than four, of each leaf block. The augmented
graph G’ is biconnected.

2. Compute an st-numbering of G’ choosing as the source a vertex, prefer-
ably of degree less than four, and sink ¢s.

3. Next remove tg. Notice that the vertices of G are numbered so that
there is one source and many sinks (equal to the number of leaf blocks
in the block cutvertex tree of G).

4. Finally run Algorithm 8.2 Four-Orthogonal on G.

The above algorithm produces drawings whose height, width, and num-
ber of bends increase proportionally to the number of sinks, in the worst
case. Hence, the upper bounds of Theorem 8.3 do not hold. However, it is
much easier to implement.

8.3 Drawing Graphs of Degree Higher than Four

The above techniques can be extended to draw graphs of degree higher
than four, by expanding each vertex of high degree into a chain of vertices
of degree four, as discussed in [BK94). Special care is needed to number
such vertices consecutively and not to pair them during the pairing step of
Algorithm 8.2 Four-Orthogonal. Unfortunately, the resulting drawings tend
to be unnecessarily tall.

To overcome this problem, we present a technique that is specifically
designed for drawing graphs of degree higher than four. Each vertex is
drawn as a rectangular boxz. We call the boundary edges of a box sides.
Figure 8.10.a shows a box with its four sides, top, left, bottom, and right.
Each side has a number of connectors where all the edges of the graph
incident to the vertex are attached. Each connector point can be incident to
only one edge (except for the four corner connectors, which can be incident
to two edges).
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Figure 8.10: (a) A box with its sides and connectors. (b) Part of an orthog-
onal drawing produced by the simple algorithm described in this section.

When a box is used to represent a vertex in an orthogonal grid drawing,
its sides lie on grid lines and its connectors have integer coordinates. Also,
the perimeter of the box is sufficiently large, so that all the incident edges
can be attached to different connectors of the box boundary. We present
a simple algorithm for producing orthogonal grid drawings. The algorithm
inserts the vertices in the drawing, one vertex at a time. For simplicity,
we assume that the given graph is biconnected, and that an st-numbering
has been computed on the graph. As before, the edges of the graph are
directed from lower to higher numbered vertices. The size of each vertex v
is decided when v is the next vertex to be inserted in the drawing. The box
size depends on the number of incoming and outgoing edges of v.

All outgoing edges of vertex v are attached to the top side connectors
(see Figure 8.11.a). This implies that the width of the box is at least equal
to the number of outgoing edges of the vertex. If the box has only one

(a) (b) (¢)

Figure 8.11: Various types of box v: (a) Seven incoming and four outgoing
edges; (b) only one outgoing edge; (c) only one incoming edge.
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outgoing edge, we still use two columns for the box (i.e., a box with width
one, see Figure 8.11.b). We also use a box of width one for the sink.

The incoming edges of v are split between the right and left side con-
nectors. More specifically, if v has indeg(v) incoming edges, then I_Ld“’z’l(ﬂj
incoming edges are attached to the right side and the remaining [M‘%ﬂﬂl]
incoming edges are attached to the left side connectors of box v (see Fig-
ure 8.11.a). If v has only one incoming edge, we still use two rows for the box
(i.e., a box with height one, see Figure 8.11.c). We also use a box of height
one for the source. Each incoming edge of v originally has vertical direction,
since it is an outgoing edge of some other box which has already been placed.
Then it bends only once, and finally assumes horizontal direction before it
is attached to the appropriate side connector of box v.

At most ["'—d%a-(ﬂ] new rows and outdeg(v) (i.e., number of outgoing
edges of v) new columns need to be opened up when the algorithm inserts
the next vertex v. Vertices with only one outgoing (incoming) edge are the
exception, since two new columns (rows) need to open up for their boxes.

Before we describe how the boxes are placed, we give some definitions.
If v is the next vertex to be inserted, we locate the incoming edges of v and
the columns to which they are assigned. The vertices of the drawing where
v’s incoming edges come from, are v’s predecessors. Let us first assume that
indeg(v) is even. Since all the columns of the current drawing are always
ordered from left to right, there are two columns ¢; and c2 holding the
incoming edges e; and es, respectively, of v with the following properties:

e ¢ is to the left of cs.

e There are ﬂ‘;}@ — 1 columns holding incoming edges of v to the left
of .

o There are iﬁd—;ﬂﬂ — 1 columns holding incoming edges of v to the right
of ¢s.

Edges e; and es are called median incoming edges of vertex v; more
specifically, e is the left median incoming edge and e; is the right median
mcoming edge of v.

If indeg(v) is odd, there is only one median incoming edge e. In this
case, if ¢ is the column holding e, then there are [Ld‘flﬂﬂj columns holding
incoming edges of v to the left and right of c. The function of the median
incoming edge(s) is to establish where to split the incoming edges between
the left and right side of v.
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When the algorithin places vertex v, it first creates the box of v, and
then it opens up the appropriate number of new columns between the median
incoming edges of v. Next it opens up new rows above the current drawing,
and places box v there. If v has only one median incoming edge. then the
box of v is placed to the right of this edge. Figure 8.11.b shows some vertices
placed by the above algorithmn, as part of a larger drawing. If we are given
an n-vertex m-edge biconnected graph, then the following theorem holds for
the above algorithm:

Theorem 8.4 Given a biconnected graph G with m edges. and an st-
numbering, the above algorithm produces an orthogonal grid drawing T' of
G in O(m) time with the following properties:

o The perimeter of each verter is proportional to the degree of the verter.

o The width of T is at most m+noyn . and the height is at most 5 + add 4
Nin1 + Nin2, where gy is the number of vertices with one outgoing
edge, Nogq is the number of vertices with an odd number of incoming
edges, nin1 is the number of vertices with one incoming edge. and n;,2
is the number of vertices with two incoming edges.

e Each edge has at most one bend.

Proof: Similar to the proof of Theorem 8.1, we use the data structure
and algorithms for the order maintenance problem proposed by Dietz and
Sleator [DS87], that support the operations in O(1) time. This means that
the median incoming edge(s) can be computed in O(indeg(v)) time. using
a linear-time median finding algorithm (see, e.g. [CLR90]), where v is the
vertex that is being inserted. Hence, the total running time of the algorithm
is O(m).

The bounds on the area and the number of bends of the drawing follow
from the above discussion. More specifically, the width is obtained by the
total number of outgoing edges, which is m, and the fact that vertices with
one outgoing edge require two columns. The height is obtained by observing
that the number of rows is equal to half the total number of incoming edges.
which is I, plus extra rows based on the following two facts: vertices with
one or two incoming edges r_eauire two rows; a vertex v with an odd number
of incoming edges requires 29 + 1 rows, D

The reason that we do not attach any incoming edges to the bottom
side of the vertex (except the corner connectors) is twofold. The incoming
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edges of a vertex are not necessarily on contiguous grid columns, and if
some incoming edge were using the bottom side of v, then we would have
to horizontally stretch the box which this edge was coming from (say u)
to create space for the rest of the outgoing edges of u. This would create
vertices whose perimeter might not be proportional to the degree of each
vertex.

The above algorithm can be improved by allowing vertices to share (or
reuse) rows and columns, in a fashion similar to the pairing technique de-
scribed in Section 8.1. Also, vertices of degree one, two, and some vertices
of degree three and four, are represented by points. The results of these
improvements are summarized in the following theorem:

Theorem 8.5 Let G be a graph with m edges, and an st-numbering, There
ezists an algorithm that produces an orthogonal grid drawing of G, by repre-
senting the high degree vertices as bozes. The running time of the algorithm
is O(m). The produced orthogonal drawing has the following properties:

o The perimeter of each vertex is proportional to the degree of the vertex.

The width is at most m — 1.

The height is at most 3 + 2.

Each edge has at most one bend.

The total number of bends is at most m — ny_y, where ny_y is the
number of vertices with one outgoing edge.

In Figure 8.12, we show an example of a 12-vertex and 31-edge non-
planar graph G, drawn by an algorithm with the properties described in
Theorem 8.5. For more details on this approach and the proof of Theo-
rem 8.5, see [PT97b).

8.4 Exercises

1. Draw the graph of Figure 8.6, using Algorithm 8.2 Four-Orthogonal,
without doing the pairing step. Compare the area and the number of
bends between the two drawings.

2. Use three different st-numberings for the vertices of the graph of Fig-
ure 8.6 and draw it using Algorithm 8.2 Four-Orthogonal. Observe the
different properties of the drawings.
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Figure 8.12: An orthogonal drawing of a graph of high degree.

3. Let G be a graph with an even number n of vertices. Suppose that
G has n/2 vertices of degree three and n/2 vertices of degree four.
Customize Algorithm 8.2 Four-Orthogonal so that it produces the best
possible drawing (in terms of area and number of bends) for G. What
are the bounds? Prove your answer.

4. Let G be an n-vertex planar graph with a given embedding. Modify
Algorithm 8.2 Four-Orthogonal so that the produced drawing respects
the given embedding. Prove bounds on the area and number of bends
of the drawing.

5. Consider the algorithm described at the end of Section 8.2. Show that,
choosing the lowest degree vertex from each leaf block to connect to
the fictitious sink tg, results in drawings with low area and few bends.
In fact, assume that each leaf block has exactly one vertex of degree
two. Prove bounds on the area and number of bends of the resulting
drawing.



Chapter 9

Layered Drawings of
Digraphs

This chapter presents the hierarchical approach for creating polyline draw-
ings of digraphs with vertices arranged in horizontal layers, as outlined in
Section 2.4. The method was presented in 1981 by Sugiyama, Tagawa and
Toda [STT81], and several subsequent methods [GKNV93, Car80, ES91,
GNVS88, GM89, Mes88, MRH91, PT90] are closely related. These meth-
ods are highly intuitive and can be applied to any digraph, regardless of its
graph-theoretic properties. Thus they are attractive in practice, and varia-
tions of them may be found in several existing systems. Examples are given
in Figures 9.1-9.4.
The hierarchical approach consists of three steps:

e Layer Assignment: (described in Section 9.1) Assigns vertices to hor-
izontal layers, and thus determines their y-coordinate.

e Crossing Reduction: (described in Section 9.2) Orders the vertices
within each layer to reduce the number of edge crossings.

e Horizontal Coordinate Assignment: (described in Section 9.3) Deter-
mines an z-coordinate for each vertex.

If the input digraph contains directed cycles, then a preprocessing step is
needed:

o Cycle Removal: (described in Section 9.4) Temporarily reverses the
direction of a subset of the edges to make the digraph acyclic.

265
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Figure 9.1: A layered drawing constructed by D-Abductor. (Courtesy of
K. Misue.)

ﬂ JN2 . N10

Figure 9.2: A layered drawing created by the Tom Sawyer Toolkit.
(Courtesy of Tom Sawyer Software.)
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Figure 9.3: A layered drawing created by Ptolomaeus software. This rep-
resents the structure of a web site. (Courtesy of R. Lillo and F. Vernacotola.)
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(Courtesy of S.

Figure 9.4: A layered drawing constructed by dotty.

North.) Observe that polyline edges are converted to splines.
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9.1 Layer Assignment

The target of this step is to assign a y-coordinate to each vertex.

To discuss the issues involved in layer assignimment, some terminology is
required. Suppose that G = (V, E) is an acyclic digraph. A layering of G is
a partition of V into subsets L,, Lg, .... Ly, such that if (u.v) € E, where
u€ L;and v € L;, then i > j. An acyclic digraph with a layering is a layered
digraph. The height of a layered digraph is the number h of layers. We also
say that the digraph is an h-layered digraph. The width of the digraph is
the number of vertices in the largest layer, that is, max;<;<x |L;|. The span
of an edge (u,v) with u € L; and v € L; is ¢ — 3. The digraph is proper if
no edge has a span greater than one.

Note that the concept of layering of an acylic digraph is related to topo-
logical numbering and sorting (see Section 4.1).

Layered digraphs normally adopt the layered drawing convention. More
specifically, we draw vertices in layer L; on the horizontal line y = i, as
shown in Figure 9.5.

Figure 9.5: Example of a layered drawing of a digraph.

In some applications, the vertices are preassigned to layers. For example.
the diagram in Figure 9.6 shows the prerequisite structure of a Computer
Science degree. In this case, a student’s progress is measured by the y-
coordinates of the nodes.

However. in many applications the vertices have not been preassigned
to layers. The aim of the layer assignment step is to transform an acyclic
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Figure 9.6: Layered drawing of a digraph showing prerequisites between
courses. (courtesy of B. Beresford-Smith).

digraph into a layered digraph. There are three important requirements of
the layering;:

1. The layered digraph should be compact. This means that its width

and height should be small. The distance between layers is a constant.
Thus a lower bound on the height is the maximum number of edges
in a path from a source (vertex of indegree zero) to a sink (vertex of
outdegree zero). Section 9.1.1 describes a simple method which meets
this lower bound on height, but ignores width. Section 9.1.2 describes
a method which takes both height and width into account.

The layering should be proper. This is easily achieved by inserting
“dummy vertices” along the long edges, as follows. We replace each
edge (u,v) of span k > 1 with a path (u = vy, vs,...,v = v), adding
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the dummy vertices vg,v3, . .., vx—1 (see Figure 9.7). The dummy ver-
tices are nceded because the crossing reduction step in Section 9.2
assumes that the digraph is proper (it is difficult to handle crossings

involving edges of span greater than one).

e o o

" ’. - "\ ‘\
@ ® >0 + 0
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ANERY e RY,
® © & o o

dummy vertices

Figure 9.7: Adding dummy vertices (drawn as small circles) to break up

long edges in the layered digraph of Figure 9.5.

3. The number of dummy vertices should be small.

If there are O(n)

edges, each with span O(n), then the number of dummy vertices is
quadratic (see Figure 9.8). There are sevcral reasons to avoid a

layering with a large number of dummy vertices:

e The time used by subsequent steps of the layering approach de-
pends on the total number of vertices, duminy plus real.

¢ Bends in the edges in the final drawing occur only at dummy ver-
tices. Readability increases when the number of bends decreases.
Although some straightening can be achieved at the horizontal
coordinate assignment step, it is desirable to alleviate the prob-
lem by reducing the number of dummy vertices.

e The number of dummy vertices on an edge measures the y extent
of the edge. It is easier for the eye to follow short edges than long

edges.
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© dummy vertices

Figure 9.8: A layering with many dummy vertices.

A technique that computes a layering to minimize the number of
dummy vertices is described in Section 9.1.3.

9.1.1 The Longest Path Layering

The longest path layering first places all sinks in layer L;, then each remain-
ing vertex v is placed in layer Ly.1, where the longest (maximum number of
edges) path from v to a sink has length p. An example of a drawing using
a longest path layering is shown in Figure 9.9.

This layering has two attractive properties.

¢ It can be computed in linear time because the digraph is acyclic.

¢ It uses a minimum number of layers, that is, the height of the layering
is minimal.

The main drawback of the longest path layering is that it may give drawings
that are too wide. For example, the lower layers in Figure 9.9 are relatively
wide. Section 9.1.2 considers this problem.

9.1.2 Layering to Minimize Width

The longest path layering minimizes height. However, compactness of the
final drawing depends on both width and height.
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@00 00 0@

Figure 9.9: A longest path layering.

Unfortunately, the problem of finding a layering with minimum width,
subject to having minimum height, is NP-complete for the following reason.
Suppose that each vertex of an acyclic digraph G represents a unit-time
task to be performed on one of the processors of a multiprocessor. An edge
(u,v) in G represents a precedence constraint that « must precede v. This
is illustrated in Figure 9.10.

The precedence-constrained multiprocessor scheduling problem is to as-
sign each task to one of W processors, so that all tasks are completed in
time H. This can be done if and only if G has a layering of width W
and height H. The NP-completeness of the layer assignment problem can
be thus derived from the NP-completeness of the multiprocessor scheduling
problem [GJ79).

The connection with multiprocessor scheduling suggests heuristics for
layering. In particular, we now describe Algorithm 9.1 Coffman-Graham-
Layering [CG72], from the theory of multiprocessor scheduling. This algo-
rithm takes a reduced digraph G (see section 4.7.1) and a positive integer
W as input. It returns a layering of G with width at most W. The aim of
the algorithm is to ensure that the height of the layering is kept small, and
some performance guarantees for the height have been proven [LS77]. Note
that the restriction of the input to reduced digraphs is not significant, since
transitive edges do not affect the width of a layering.

At this stage, it is approriate to comment that the width of a layering,
as defined above, does not take the width of dummy vertices into account.
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Figure 9.10: Layering and scheduling.

This is a convenient assumption that is accurate only when the size of the
real vertices is considerably larger than the space occupied by the dummy
vertices. In most applications, the assumption is justified because the real
vertices are rectangles with a reasonable amount of text. See, for example,
Figure 9.11. In the case when the real vertices are small, we must adjust
the Coffman-Graham algorithm to take this into account.

Algorithm 9.1 Coffman-Graham-Layering has two phases; the first orders
the vertices, and the second assigns vertices to layers. The algorithm uses
an order defined on finite sets of positive integers as follows. If S is a finite
set of positive integers, then let max(S) denote the largest element of S.
Then S < T if either:

e S=0and T #0, or
o S#0, T # 0, and max(S) < max(T), or
e S#0, T # 0, max(S) = max(T), and S — {max(S)} < T - {max(T)}.
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Algorithm 9.1 Coffman-Graham-Layering
Input: reduced digraph G = (V, E), and a positive
integer W
Output: layering of G of width at most W

1. Initially, all vertices are unlabeled.
2. fori=1to|V|do
(a) Choose an unlabeled vertex v, such that {n(v) : (u,v) € E} is
minimized
(b) w(v) =1.
. k=1L1=0;U=0.
4. while U #V do

(a) Choose u € V — U, such that every vertex in {v : (u,v) € F} is
in U, and m(u) is maximized

(b) if |Lx| < W and for every edge (u,w), w € LyULsU... L
then add u to L;
else k=k+1, L = {u}

(c) Add u to U.

In fact, this is simply a lexicographic order, where the largest item of the
set is the most significant, for example, {1,4,7} < {3,8}, and {3,4,9} <
{1,5,9}.

The first phase of the algorithm orders the vertices by assigning a positive
integer label 7(u) to each vertex. First label 1 is assigned to a source u,
so that m(u) = 1. After labels 1,2,...,k — 1 have been assigned to vertices,
label k is assigned to a vertex v, such that:

(1) No label has been assigned to v yet
(2) Labels have been assigned to all vertices u for which (u,v) € F
(3) Among vertices satisfying (1) and (2) above, the set of labels of im-

mediate predecessors of v (that is, {m(u) : (u,0) € E}) is minimized
in the lexicographic ordering “<” defined above.
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Figure 9.11: A layering in which real vertices are large in comparison to
dummy vertices.

Figure 9.12: Labels computed by Algorithm 9.1 Coffman-Graham-
Layering. Note that vertex a is labeled before vertex b because {4} < {3,4},
and vertex c is labeled before vertex d because {4,5} < {3,7}.



9.1. LAYER ASSIGNMENT 277

Figure 9.13: Layers computed by Algorithm 9.1 Coffman-Graham-
Layering.

A digraph labeled by this procedure is illustrated in Figure 9.12.

The second phase of Algorithm 9.1 Coffman-Graham-Layering fills the
layers with vertices, ensuring that no layer receives more than W vertices.
We start with the bottom layer L) and proceed to the top layer L. To fill
L, we choose a vertex v which has not been placed in a layer yet, and for
which all vertices u with (v,u) € E have been placed in one of the layers
Ly,Ly,...Lg_y. If there is more than one such vertex, then we choose the
one with the largest label. If there are no such vertices or layer Ly becomes
full (that is, |Lx] = W), then we proceed to the next layer Lx;1. The
layering with W = 3, produced for the digraph in Figure 9.12, is illustrated
in Figure 9.13.

It can be shown [LS77] that the height of the layering output by Algo-
rithm 9.1 Coffman-Graham-Layering is not too large, in the following sense.
Let hyin be the minimum height of a layering of width W. Then the height
h of the layering satisfies

2
h<(2- W)hmin-

Recall that the notion of width used here does not take dummy vertices
into account, because dummy vertices have very small width in comparison
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to real vertices (which may contain significantly long text strings). Never-
theless, as mentioned above, dummy vertices do incur some cost. The next
section shows how to minimize the number of dummy vertices.

9.1.3 Minimizing the Number of Dummy Vertices

Surprisingly, we can compute a layering in polynomial time that minimizes
the number of dummy vertices [GKNV93]. Suppose that each vertex u of
an acyclic digraph G = (V, E) has a y-coordinate y(u), which satisfies the
following properties:

1. y(u) is an integer for each vertex u.
2. y(u) > 1 for each vertex u.
3. y(u) — y(v) > 1 for each (u,v) € E.

Such a function y defines a layering with L, = {u € V : y(u) = m}.
Denote by f the sum of the vertical spans of the edges in this layering minus
the number of edges, that is

F= 3 (y(u) —ylv)-1).

(u,v)EV

Note that f measures the total vertical extent of all the edges. Further, f
is the number of dummy vertices in a layering defined by y.

The layer assignment problem is reduced to choosing y-coordinates to
minimize f, subject to the conditions (1), (2), and (3). This is an integer lin-
ear programming problem. It is shown in [GKNV93] that the corresponding
relaxed linear programming problem has an integer solution.

In fact, we can intuitively see why there is an integer solution, as follows.
Suppose that for some vertex u, the value y(u) of an optimal solution of
the corresponding linear program is not an integer. Geometrically, this
means that u is positioned strictly between the line y = |y(u)} and the line
y = [y(u)]. Denote |y(u)] by y,. Inequality (3) above ensures that no
neighbor of u lies between the lines y =y, and y =y, + 1.

If outdeg(u) > indeg(u), then the value of f gets no larger if we move u
down a little. As long as there are no edges (u, v) with y(v) > y, — 1, we can
move u all the way down to the line y = y,,, without violating the constraints
(2) and (3) (see Figure 9.14).  In other words, f does not increase if the
noninteger y(u) is rounded down. If we are careful about the order in which
the vertices are moved, then we can move all vertices with outdeg(u) >
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Wu)

Figure 9.14: Moving a vertex downward.

indeg(u) downward to an integral y-coordinate. A symmetric argument can
be used for the case outdeg(u) < indeg(u) and, if outdeg(u) = indeg(u),
then we can move u either way. Hence, we can change each noninteger y to
an integer, without violating the constraints or increasing f.

Further, this linear programming problem can be solved efficiently in
several ways (see [GKNV93]).

9.1.4 Remarks on the Layer Assignment Problem

To achieve compactness, the multiprocessor scheduling methods are quite
effective for the following reason. In most drawings, vertices are not simple
points, but are rectangles with horizontal text labels. Thus the inter-vertex
spacing in the horizontal direction is usually larger than in the vertical direc-
tion. This makes the demand on width more important than the demand
on height, and multiprocessor scheduling methods are effective for draw-
ings where the preferred direction is top to bottom. However, for drawings
where the preferred direction is left to right, the longest path layering may
be competitive.

In practice, the dummy vertex minimization methods not only give
shorter edge lengths and fewer dummy vertices, but also tend to give rela-
tively compact layerings.

Unfortunately, combining the goals of minimizing the height of a draw-
ing and minimizing the number of dummy vertices leads quickly to NP-
completeness [Lin92].
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9.2 Crossing Reduction

In this section, we consider the problem of drawing a layered digraph with
a small number of crossings. We assume that the layering step has been
executed, and so the input to the crossing reduction step is a proper layered
digraph.

The number of edge crossings in a drawing of a layered digraph does not
depend on the precise position of the vertices, but only on the ordering of
the vertices within each layer. Thus the problem of reducing edge crossings
is the combinatorial one of choosing an appropriate vertex ordering for each
layer, not the geometric one of choosing an z-coordinate for each vertex.
Although this combinatorialization conceptually simplifies the problem, it
remains difficult. In fact, the problem of minimizing edge crossings in a
layered digraph is NP-complete, even if there are only two layers [GJ83].
Also, it is NP-complete even if there is only one nondummy vertex in each
layer [MNKF90].

A variety of heuristics have been used to reduce crossings. This section
discusses several such heuristics. First, we outline the layer-by-layer sweep.
which is the general format of most techniques. The most critical part of
the layer-by-layer sweep is an algorithm for the two-layer crossing problem,
that is, a technique for reducing crossings between two layers. We examine
some techniques for solving this problem in detail.

9.2.1 The Layer-by-Layer Sweep

The layer-by-layer sweep method can be described as follows. First, a vertex
ordering of layer L; is chosen. Then, for ¢ = 2,3,...,h, the vertex ordering
of layer L;_; is held fixed while reordering the vertices in layer L;, to reduce
crossings between edges whose endpoints are in layer L;_; and layer L;.
Note that this method presupposes a solution to a problem of the fol-
lowing form. Given a fixed vertex ordering of layer L;_;, choose a vertex
ordering of layer L; to minimize the number of edge crossings. This prob-
lem is called the two-layer crossing problem. The analysis of the two-layer
crossing problem is the subject of much of the remainder of this section.
There are several variations of the basic layer-by-layer sweep. For in-
stance, we can hold the vertex orderings of both L;_; and L;;; fixed, while
reordering the vertices of layer L; to reduce crossings between layers L;_1, L;
and L;y,. Other variations include ways of sweeping. We can sweep top to
bottom, bottom to top, and continue to do several sweeps, until the number
of crossings does not decrease. However, for each of these variations, the
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two-layer crossing problem is fundamental and has received a great deal of
attention in the literature [Cat88, EK86, EW94, JM97, Mak88a, Mak88b,
War77b).

A two-layered digraph is a bipartite digraph G = (L), L2, E), which
consists of disjoint sets L, and L2 of vertices and a set E C Ly x L of
edges.

Although the aim of this step is to order each layer, it is convenient to
specify vertex orderings for L, and Ly, by giving a unique z-coordinate z;(u)
for each vertex u € L;, ¢ = 1,2. The number of crossings in a drawing of
G specified by z; and z is denoted by cross(G, zy,z2), and the minimum
number of crossings subject to the vertices of L; being ordered by z, is
denoted by opt(G, z;). Note that

opt(G, 1)) = n;nzn cross(G, xy, x2).

Using this terminology, the two-layer crossing problem may be stated as
follows.

Given a two-layered digraph G = (L;, L2, E) and an ordering z;
of L, find an ordering zo of Lo, such that cross(G,z;,z2) =

Opt(Gv :L‘l)'

Unfortunately the two-layer crossing problem is NP-complete [EW94]. The
remainder of this subsection discusses three basic heuristic methods for the
two-layer crossing problem.

A simple observation is important for all three of these methods: if u and
v are vertices in Ly, then the number of crossings between edges incident
with u and edges incident with v depends only on the relative positions of u
and v and not on the other vertices. This observation motivates the notion
of crossing number defined below [EK86, War77b). Suppose that u and v
are vertices in Ly. The crossing number c,, is the number of crossings that
edges incident with u make with edges incident with v, when z2(u) < z2(v).
More formally, for u # v € L2, ¢y is the number of pairs (u,w), (v, z) of
edges with z,(2) < z;(w). For convenience, we also define ¢, = 0 for all
u € Ly. For example, Figure 9.15 shows a drawing of a two-layered digraph
and the crossing numbers for each pair of vertices in the top layer.

Note that the crossing numbers can be used to compute cross(G, 71, T2),
and to give a lower bound for opt(G, ), as in the following simple lemma.
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Figure 9.15: (a)Drawing of a two layer digraph. (b) Crossing numbers for
each pair of vertices in the top layer.

Lemma 9.1 If G = (L, Ls, E) is a two layer digraph and z; and z2 are
orderings of Ly and Lo respectively, then

cross(G,zy,12) = Z Cuy- (9.1)
zz(u)<z2(v)
Further
opt(G,z1) > ) min(cyv, Cou), (9-2)
u,v

where the sum is over all unordered pairs {u,v} of vertices of the top layer.

Proof: The identity (9.1) is immediate. For inequality (9.2), note that every
ordering of L (including an optimal ordering) has either z2(u) < z2(v) or
z2(v) < z2(u). o

9.2.2 Sorting Methods

The aim of an algorithm for the two-layer crossing problem is to sort the
vertices in L2 into an order that minimizes the number of crossings. This
can be exploited to give a few simple methods. Each requires computation
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of the crossing numbers. This can be done by a naive algorithm in O(|E|?)
time, and be reduced to O (Zu’v c,w), with a little effort (see Exercises).

The first, called Algorithm 9.2 Adjacent-Ezchange, exchanges adjacent
pairs of vertices, using the crossing numbers, in a way similar to bubble-sort.

Algorithm 9.2 Adjacent-Ezchange
Input: two-layered digraph G = (L;,Ls,E) and a

vertex order z; for L;

Output: vertex order 3 for Lo

1. Choose an initial order for L.
2. repeat

Scan the vertices of Ly from left to right, exchanging an adjacent
pair u, v of vertices, whenever c,, > ¢y

until the number of crossings does not reduce. -

Since ¢y, depends only on the relative positions of u and v, there is no
need to change the values of the crossing numbers. Thus we can implement
each scan of the vertices at Step 2 of Algorithm 9.2 Adjacent-Ezchange, in
O(|L2]) time, and there are O(|L2|) scans; the time complexity of Algo-
rithm 9.2 Adjacent-Ezchange is O(|L2|?).

For some pathological inputs, Algorithm 9.2 Adjacent-Ezchange can give
poor results (see Figure 9.16).

Figure 9.16: Worst case for the adjacent-exchange method.

We can also use a method reminiscent of quick-sort, called Split. We
choose a pivot vertez p € La, and place each vertex u # p € L, to the left of
pif cyp < Cpu, and to the right of p otherwise. The algorithm is then applied
recursively to the sets of vertices to the left and right of p. Algorithm 9.3 Split
has worst case time complexity O(|L2|?) but, (like quick-sort) in practice, it
runs in O(|Lz|log|L|) time.
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Algorithm 9.3 Split
Input: two-layered digraph G = (L,, L, E), an order
I for Ll
Output: vertex order z» for L,

if L, is not empty then

(a) Choose a pivot vertex p € Ls.

(b) Viese = 0; Vyighe =0

(c) foreach vertex u € L; such that u # p do
if cup < cpu
then place u in Vg,
else place u in Vijgp,

(d) Recursively apply the algorithm to the digraphs induced by Vi,
and Vyigne, and output the concatenation of the outputs of these

two applications.
a

Several methods similar to Algorithms 9.2 Adjacent-Exchange and 9.3
Split are described in [EK86). All require precomputation of the crossing
array and thus have nonlinear time complexity. In the next section, we
present two methods that run in linear time.

9.2.3 The Barycenter and Median Methods

The most common methods employed for the two-layer crossing problem are
variations of the barycenter method. Roughly speaking, the z-coordinate of
each vertex u € L, is chosen as the barycenter (average) of the z-coordinates
of its neighbors. That is, we select z5(u) to be avg(u) for all u € Ly, where

awg() = —— 3" 2 (),

- deglu) £F,

where deg(u) denotes the degree of u and N, denotes the set of neighbors
of u. If two vertices have the same barycenter, then we separate them
arbitrarily by a small amount. The barycenter method can be implemented
in linear time. The number of crossings output by the barycenter method
is denoted by avg(G, z1).
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The median method is similar to the barycenter method. Roughly speak-
ing, the z-coordinate of each u € Lz is chosen to be a median of the z-
coordinates of the neighbors of u. This rough definition needs refinement
to achieve good performance. First, we need a precise definition of median.
If the neighbors of u are vy, v2,...,v;, with z1(v1) < z1(v2) < ... < z1(v;),
then we define med(u) = z1(v(j/2))- If u has no neighbors, then we choose
med(u) = 0.

Next, we need to define how the values med(u) are used to order the
vertices in L. We sort Lz on med(u). We use the following criterion to
break ties: if med(u) = med(v) and one vertex has odd degree and the
other even, then the odd degree vertex is placed on the left of the even
degree vertex. If the parity of the degrees of u and v is the same, then we
can choose the order of u and v arbitrarily. This rather curious method for
breaking ties is necessary for one of the performance guarantees below.

For each vertex u € L, med(u) can be computed in time proportional
to the degree of u, with a linear-time median finding algorithm (see, for
example, [AHU83)), so that the drawing can be computed in linear time.
The number of crossings in the output of the median method is denoted
by med(G, x;).

It is easy to prove that both the barycenter and median methods give
zero crossings when a zero-crossing layout is possible. We leave the proof of
the following theorem as an exercise.

Theorem 9.1 Suppose that G = (Ly, Lo, E) is a two-layer digraph and z,
is an ordering of L. If opt(G,z1) =0, then avg(G, ;) = med(G,x;) = 0.

However, neither method gives an optimum solution. Figure 9.17 shows
a pathological case for the barycenter method, and Figure 9.18 shows a
pathological case for the median method. These examples imply the follow-
ing lemma.

Lemma 9.2

1. For each n there is a two-layered digraph G = (Ly, Lo, E), with |L1| =

n, |L2| = 2 and an ordering z, of L1, for which ';;“t’ g_fl‘ is Q(V/n).

2. For each n there is a two-layered digraph G' = (L}, L}, E'), with |L}| =
n, |LY| = 2 and an ordering x1 of L}, for which ':ﬁ‘gy—f.‘% > 3—0(%).

Proof: For the barycenter ordering, consider the digraph in Figure 9.17.
Suppose that the vertices in Ly are wi, ws, ..., wy,, from left to right, spaced
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one unit apart, where n = k%> + k — 1. Let v be joined to w2, and let u
be joined to wy, and wy24q, Wk249, ..., Wx24k_1. Then avg(u) = k% — /2 —
1/2 < k? = avg(v). Thus the barycenter method places u to the left of v,
which creates k — 1 crossings. However, if v is to the left of u, then there is
only one crossing. Since k is O(y/n), the inequality follows.

A similar argument applies to the median method, using the digraph in
Figure 9.18. O

O - R - - k1 -

Figure 9.17: Worst case for the barycenter method. The barycenter
method places u to the left of v and has k — 1 crossings; the optimal layout
has only one crossing,.

Figure 9.18: Worst case for the median method. The median method
places u to the left of v and has 2k(k + 1) + k2 crossings. The optimal layout
has only (k + 1)? crossings.

Next, in Lemma 9.2, we give an upper bound that matches the lower
bound for the median method.

Theorem 9.2 For all two-layered digraphs G = (L,, Ly, E) and all verter
orderings z, of L1, med(G, ;) < 3opt(G, z,).

Proof: Suppose that u and v are vertices in L2 and the median method
places u to the left of v. We define four groups of edges incident with « and
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v as follows (see the schematic illustration of Figure 9.19.a and the example
of Figure 9.20)

= {(u,w) € E: z1(w) < med(u)}
= {(v,w) € E: z1(w) > med(v)}
= {(v,w) € E: z1(w) < med(v)}
= {(u,w) € E : z1(w) > med(u)}.

o =2 ™ R

Note that u and v are both joined to a vertex at their respective medians.
We denote these two edges by e, and e, respectively. These two edges are
not included in any of the four groups.

Now let a = |a|, b= |8|, ¢ = |7], and d = |§]. We claim that

Cou 2= ab+a+b+€, (9.3)

where € = 0 if med(u) = med(v), and € = 1 otherwise. To prove (9.3),
suppose that v was placed to the left of u, as in Figure 9.19.b. Then all
edges in a would be forced to cross e, as well as all edges in 3, and edges in
3 would be forced to cross e,. If med(u) = med(v) then e, does not cross
ey and € = 0. However, if med(u) # med(v), then e, would also cross e,
and € = 1. The lower bound (9.3) follows.

Further, we claim that

Cuwv < ac+cd+bd+c+d. (9-4)

The reason for this is that, if » is placed to the left of v, then edges in «
cannot cross edges in 3, and e, cannot cross e,.

Next, we note that a and d are closely related. If the degree of u is odd,
then a = d; if the degree of u is even then a + 1 = d. Similarly, if the degree
of v is odd, then ¢ = b; if the degree of v is even then ¢+ 1 = b. In any case,
d < a+1 and ¢ < b. Using these inequalities in (9.4), we can deduce that

Cuw < 3ab+a+3b+1. (9.5)

In order to prove that med(G,z1) < 30pt(G,z;), we will show that
cuv < 3cyu- Suppose, on the contrary, that c,, > 3¢y, that is

Cuy — 3cyy > 0. (9.6)

From (9.3) and (9.5), it follows that 2a + 3¢ — 1 is negative. Since both
a and € are nonnegative integers, this implies that

a=¢=0. (9.7)
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Figure 9.19: Schematic illustration of the four groups of edges a, 3, 7,

and 4.

4 k 6 7 8 9

Figure 9.20: A digraph with groups of edges a = {(v,3),(v,4)}, 8 =
{(v,10), (v,11), (v,12), (v,13)}, 7 = {(v,1),(v,2),(v,6),(v,8)}, and &

{('U., 7)) ('U., 12), ('U., 13)}
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This implies that o is empty, and thus u has degree at most two. It is
easy to show that (9.6) is impossible when the degree of u is at most one,
so we can deduce that the degree of u is precisely two; thus d = 1.

The definition of € and (9.7) imply that med(u) = med(v). Recall that
if two vertices u and v have the same median, the degree of u is even, and
the degree of v is odd, then the median method places v to the left of w.
Thus we can deduce that the degree of v is even. It follows that ¢ = b ~ 1.
Using these values for ¢,a,b,c, and d in (9.3) and (9.4), we can show that
Cuy = 3b — 1 and ¢,, = b. This contradicts the assumption (9.6).

Therefore ¢y, < 3cyy. This holds for every pair u,v € Ly. To complete

the proof of the theorem, note that this implies that

Cuy < 3min(cyy, Cou)-
By summing the above inequality over all pairs u,v with ze(u) < z5(v),
using both parts of Lemma 9.1, we conclude that
CTOSS(G, I, 1'2) < 30pt(Ga 2?1).
0

A more refined argument can be applied to digraphs with low degree and
can be used for some tighter bounds. For instance, a case-by-case argument
gives the following result.

Theorem 9.3 Suppose that G = (Ly, Lo, E) is a two-layered digraph and
every vertez in Lo has degree at most three. Then for all orderings =, of Ly,
med(G1 1171) < 20pt(G’ I )

The proof of this theorem is left as an exercise.

9.2.4 Integer Programming Methods
An integer programming approach may be used for the two-layer crossing
problem. For a two-layer digraph G = (L, Ls, E), we define a binary vector

L
z € {0, 1}(I 22|), with entries ,, for u < v and z,, = 1, if u is to the left of
v, and z,, = 0 otherwise. From Lemma 9.1, we can deduce that

cross(G,z1,x2) = D (CuvTuv + Coull — Tuy))
u<v€L:z
= E (cuv - cvu)xuv + E Cyu- (9'8)
u<velLz u<velsz

Noting that 3~ ¢ La Cou is a constant, we can restate the two-layer crossing
problem as follows:
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Minimize 2 = }°, < yer, (Cuv — Cou)Tuy subject to:

1. 0 < Zyy+ZTyw — Tuw < 1 for all triples u < v < w of distinct
vertices in Ls.

2. Tyy € {0,1} for all pairs u < v of distinct vertices in Ls.

The first constraint above ensures that the vector z indeed defines a
total order on the vertices in Ls. Note that the optimum value 2* of the
cost function is not quite the same as the minimum number of crossings.
From (9.8), the minimum number of crossings is 2* + ¥, < yer, Cou-

Solving integer programs requires, in general, relatively sophisticated
techniques. A branch and cut approach [JM97] can be used to obtain an
optimal solution for digraphs of limited size. This begins by relaxing the
second set of constraints to

0 < 4y <1 for all pairs u < v of distinct vertices in L.

This can be solved using standard linear programming techniques. However,
the first set of constraints is large (O(|L2]|3)). Therefore, a cutting plane
approach is used. The algorithm starts using only the above inequalities,
then the elements of the first set are iteratively used to “cut” the solution
space. If this finds an integral solution, then the procedure stops; otherwise,
a variable z,, is chosen, and two problems are spawned, one with z,, = 0,
the other with z,, = 1. These problems are solved recursively. For more
details, see [JM97).

The main advantage of the integer programming approach over the meth-
ods mentioned previously is that it is guaranteed to find the optimum solu-
tion. While there is no guarantee that it will terminate in polynomial time,
it seems to be quite successful for small to medium sized digraphs.

9.2.5 The Two-Layer Crossing Problem on Dense Digraphs

In this section, we show that for dense digraphs, cross(G, z1,z>) is close to
opt(G, ;) for any ordering of L. The basic intuition is that if u and v have
many common neighbors, then both c,, and ¢,, are large. For each pair u,v
of vertices, denote the number of common neighbors of u and v by xy-

We begin with a simple lemma bounding c,, in terms of x,,. Here
deg(w) denotes the degree of vertex w.

Lemma 9.3 If u and v are in Ly then:

(a) Cuy + Cou + Xuv = deg('u)deg('v)
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(b) cuw 2 ( Xaw )

(c) cuy < deg(u)deg(v) — ( X“”2+ 1 )

The following theorem states that, for dense digraphs, the mazimum
number of crossings is close to the minimum.

Theorem 9.4 Suppose that G = (L1, L, E) is a two-layer digraph, |L,| =
|L2| = n, and |E| = en®. Then

maxg, ¢ross(G, ¢, z2)
im =1.
€1 Opt(Gv .'171)

Proof: The basic intuition for this theorem is from Lemma 9.3(b)b. Since,
Xuv = Xvu, both ¢y, and ¢,y are large.
From Lemma 9.1

cross(G,z1,22) —opt(G,z1) < D leww — cuul-

zz(u)<z2(v)

Also, from Lemma 9.3

leur — cvu] < deg(u)deg(v) — ( Xuv2+ 1 ) _ ( st ) ,

and since

we have

Y (deglu)deg(v) ~x%) 2 cross(G,z1,2) - opt(G,1). (9.9)

z2(u)<z2(v)

An upper bound on the sum of the first terms on the left-hand side of
(9.9) is easy to compute

2 2.4
Z deg(u)deg(v) < l%l— = e_2n_

z2(u)<z2(v)

(9.10)
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Next we compute a lower bound on the sum of the second term of the
left-hand side of (9.9). Note that

d
Z Xuy = Z ( 692(W) ) (9.11)
z2(u)<z2(v) wel,

and

Z deg(w) = |E| = en®.
wel)

. ( degz(‘") ) > n( S ) (9.12)

wel,
From (9.11) and (9.12), we can deduce that

2
o
( 2 ) _ €énd(en—1)2

It follows that

2 n
Yo X2 ( ) —t| = - (9.13)
22(u)<z3(v) 2 ( n ) 2n—1)
2
Thus from (9.9), (9.10), and (9.13), we obtain
e2nt  nd(en - 1)2
- < -
CTOSS(G, 31)32) Opt(G, 2‘1) = "9 2(n — 1) y
that is )
cross(G, z1,z2) — opt(G, z1) = €n? (en - 5) . (9.14)
Using a similar argument, we can show that
2,4
opt(G,21) 2 - = ofn?). (9.15)

From (9.14) and (9.15) we can deduce that c"’”(G’f"":t’fé?;‘;’”(G’z') is O(%)
and the theorem follows. o

9.2.6 Remarks on the Two-Layer Crossing Problem

From a theoretical point of view, the median method (Theorem 9.2) seems
very attractive. It is guaranteed to construct an ordering within a constant
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factor of the optimal, and it runs in polynomial time. However, in practice,
the effectiveness of a method must be verified by extensive testing. Many au-
thors have performed comparative tests on pseudo-random digraphs [EK86,
Mak88a, JM97] and on “real-world” digraphs [GKNV93]. Unfortunately, no
clear single winner arises from these tests. The best advice seems to be to
use a hybrid approach:

1. Use the median method to determine an initial ordering. If two ver-
tices « and v have equal median values, then they are sorted on their
barycenter values.

2. Use an adjacent exchange method (Algorithm 9.2 Adjacent Ezchange)
to refine the output of the first step.

Success with a hybrid method along these lines is reported in [GKNV93].

9.3 Horizontal Coordinate Assignment

Bends in edges occur at the dummy vertices introduced in the layer assign-
ment step to replace edges of span greater than one. We want to reduce the
angle of such bends by choosing an z-coordinate for each vertex, without
perturbing the ordering established in the crossing reduction step.

We can state this problem as an optimization problem as follows. Con-
sider the directed path p = (v, vs,...,vt), where vy, v3,...,v,_; are dummy
vertices. If this path was drawn straight, then for 2 < ¢ < k — 1, the
z-coordinate of v;, z(v;), would satisfy

(e — 2(@1). (9.16)

z(v;) — z(v) =
Thus for each such path p corresponding to an edge (v1,vy) of the digraph
before the introduction of dummy vertices, we define

k-1

9(p) = Y _(z(v:) — a;)?,
i=2

where a; = H(z(vk) — z(v1)) + z(v1), by rewriting (9.16). To make the
edges as straight as possible, we minimize the global sum

> 9(p)
4
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over all paths p of dummy vertices subject to the constraints
z(w) —z(z) >4 (9.17)

for all pairs w, 2 of vertices in the same layer with w to the right of z. The
constraints (9.17) ensure that the ordering within each layer (as computed
at the crossing reduction step) is preserved. Further, they enforce a minimal
horizontal distance é between vertices in the same layer.

Note that it is possible that the solution to this optimization problem
can affect the width of the drawing. In fact, using the same technique as in
Section 11.1, we can show that some layered drawings require exponential
area if edges are represented with straight lines. If the width of the drawing is
of concern, then further constraints can be added to force the z-coordinates
of each vertex to lie within specified boundaries.

We can attempt to draw edges as close to vertical lines as possible,
subject to the ordering constraints. In this case, the objective function is
slightly different. We want to minimize

Y. (2(w) —2(@)?

(uv)€E

subject to the constraints (9.17) above.

Either of these quadratic programming problems can be solved by stan-
dard methods. Note, however, that the solution requires considerable com-
putational resources.

9.4 Cycle Removal

As discussed above, a good drawing of a digraph helps the viewer follow the
direction of flow. This can be achieved if most of the edges follow the same
general direction, say from top to bottom.

The previous three sections described techniques for drawing acyclic di-
graphs. Though in many applications, such as dependency graphs, the input
digraph is acyclic, in other applications the input graph may contain cycles.
Typically, we first obtain an acyclic digraph by reversing some edges. Next,
we draw the acyclic digraph using the aforementioned techniques. Finally,
we render the digraph with the reversed edges pointing in their original
directions.

Each cycle of a digraph must have at least one edge pointing “against
the flow.” We need to keep the number of edges appearing “against the
flow” small, to preserve the general downward flow of the diagram.
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If G = (V,E) is a digraph and R C E, then we denote the digraph
obtained by reversing all the edges of R by G,¢,(r)- To remove cycles, we
choose a set R, such that the digraph G,ey(r) is acyclic. The main problem
is how to choose R so that |R| is small. The rest of this section presents
techniques to solve this problem.

A set R of edges of a digraph G = (V, E) is a feedback set, if G,cy(g) is

acyclic (see Figure 9.21).
B
L. g

7 8 9

Figure 9.21: Feedback set of a digraph shown with dashed lines.

The feedback set is closely related to the well-known feedback arc set,
which is defined as a set of edges whose removal makes the digraph acyclic.
This is not the same as our definition. For instance, removing all the edges
of a a cycle makes it acyclic, but reversing all the edges merely reverses
the cycle. However, a minimal set in one sense is a minimal set in the other
sense, which implies that if we reverse the direction of the edges in a minimal
feedback arc set, the new digraph contains no cycles. In fact, the problem
of finding a minimum cardinality feedback edge set of a given digraph is
equivalent to the well-known feedback arc set problem. Unfortunately this
problem is NP-complete [GJ79]. Thus effective heuristics are needed.

We state the problem in a slightly different form. Suppose that we
choose an ordering S = (v;,v2,...,v,) of the vertices of a digraph G. We
say that S is a vertez sequence for G. An edge (v;,v;) with ¢ > j is called an
leftward edge (with respect to S). In other words, if the vertices are drawn
on a horizontal line in the left to right order as they appear in S, then the
leftward edges point to the left. Figure 9.22 shows the same graph as in
Figure 9.21, with the feedback arcs pointing to the left.

The set of leftward edges for a vertex sequence forms a feedback set.
Conversely, if R is a feedback set, then by computing a topological ordering
of the digraph obtained by reversing all edges in R, we obtain a vertex
sequence, such that R contains every leftward edge. Thus the feedback set
problem is equivalent to finding a vertex sequence with as few leftward edges
as possible.
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_____

Figure 9.22: Leftward edges shown with dashed lines.

A simple technique to find a feedback set R is to perform a depth first
search on the given digraph, and place all back edges in R. However, in
the worst case, this may reverse |E| — |V| — 1 edges. The performance of
this simple method is quite poor for all but the sparsest of digraphs. A
better, but even simpler, approach is to start with an arbitrary ordering of
the vertices of G and count the number of leftward edges. If it is larger than
half, then we can choose the opposite order. This guarantees that at most
half of the edges will be reversed.

The remainder of this section presents a greedy algorithm, called Greedy-
Cycle-Removal, which computes a vertex sequence inducing a small set of
leftward edges. The algorithm is quite simple, it runs in linear time, and it
has a better guarantee on performance. We assume that the input digraph
G is connected; if not, we deal with each connected component individually.
The algorithm successively removes vertices from G, and adds each in turn,
to one of two lists S; and S,. The vertices are added either to the end of S;
or to the beginning of S,. When G has been reduced to an empty digraph
by successive removals, the output vertex sequence S is the concatenation
of S; and S,. This process is illustrated in Figure 9.23.

Figure 9.23: Visualization of Algorithm 9.4 Greedy-Cycle-Removal.
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The algorithm is greedy in its choice of the vertex to be removed from
G and the choice of the list (either S; or S;) to which it is added. All sinks
should be added to S;, and all sources of G should be added to S;, since this
procedure will prevent their incident edges from becoming leftward edges.
Note that an isolated vertex is both a sink and a source. In our algorithm,
we regard it as a sink and add it to S;. After dealing with all sinks and
sources, we choose a vertex u for which outdeg(u) — indeg(u) is maximized.
Vertex u is removed and added to S;. The thought here is that this choice
locally maximizes the number of “rightward” edges for a given number of
leftward edges.

Algorithm 9.4 Greedy-Cycle-Removal
Input: digraph G
Output: vertex sequence S for G

1. Initialize both S; and S, to be empty lists.
2. while G is not empty do

(a) while G contains a sink do

Choose a sink u, remove it from G, and prepend it to S;.
(Note: isolated vertices are removed from G and prepended
to S, at this stage.)

(b) while G contains a source do
Choose a source v, remove it from G, and append it to S;.
(c) if G is not empty then
Choose a vertex u, such that the difference outdeg(u) —
indeg(u) is maximum, remove it from G, and append it to
S;.

3. Concatenate S; with S, to form S. -

A two-cycle of a digraph is a directed cycle consisting of two edges (u,v)
and (v, u). Digraphs with many two-cycles do not have small feedback sets,
because every feedback set must contain at least one of the two edges of
each two-cycle. In practice, we should delete all two-cycles before apply-
ing Algorithm 9.4 Greedy-Cycle-Removal. For digraphs without two-cycles,
however, we can guarantee the performance of the algorithm.
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Theorem 9.5 Suppose that G is a connected digraph with n vertices and
m edges, and no two-cycles. Then Algorithm 9.4 Greedy-Cycle-Removal
computes a vertex sequence S of G G, with at most m/2 — n/6 leftward
edges.

Proof: We say that a vertex is isolated if it has no incident edges. The
vertex set V of G may be partitioned into five sets V;, Vo, V3, V4, Vs,
according to the indegrees and outdegrees of the vertices at the time that
they were removed by one of Steps 2(a), (b), or (c) of Algorithm 9.4 Greedy-
Cycle-Removal, as follows:

¢ V} consists of nonisolated sink vertices u removed from G at Step 2(a)
o V, consists of isolated vertices removed from G at Step 2(a).

o V3 consists of vertices removed at Step 2(b) (that is, they were sources
with positive outdegree at the time of removal).

e Vy consists of vertices u removed at Step 2(c) with indegree equal to
outdegree.

e Vs consists of vertices u removed at Step 2(c) with indegree less than
outdegree.

Note that these sets partition V. In particular, there is no vertex u with
indegree greater than outdegree removed at Step 2(c), since the existence
of such a vertex would imply the existence of a vertex v with indegree less
than outdegree.

For 1 < ¢ < 5, let n; = |V;| and let m; denote the number of edges
removed from G as a result of the removal of the vertices of V;. Note that
n= 2?:1 n;, m= 2?=1 m;, and me = 0.

First, we compute a bound on the number ns of vertices that were iso-
lated at the time of removal from G. Since G is connected, there is initially
no isolated vertex. Suppose that removal of a vertex u at Step 2(c) creates
an isolated vertex v. Then vertex v is isolated because of the removal of
either (u,v) or (v,u), but not both (since G has no two-cycles). Hence, v
was either a sink before the removal of (u,v) or a source before the removal
of (v,u). In either case, v would already have been removed at either Step
2(a) or Step 2(b), and so the removal of u cannot give rise to a vertex v € V5.
A similar argument shows that removal of a vertex u € V3 cannot create an
isolated vertex v, and we then see that v can only be created by the prior
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removal of a sink u and an incident edge (v,u). In other words, isolated
vertices are only created by the removal of vertices in V;. Thus

ng < my. (9.18)

Next we show that, after the removal of a vertex in V4, vertices exist in G,
for which indegree is not equal to outdegree. When Algorithm 9.4 Greedy-
Cycle-Removal is ready to remove a vertex in Vj, all vertices have indegree
equal to outdegree. Thus, after such a vertex is removed, the resulting
digraph contains at least one vertex whose outdegree is not equal to its
indegree. As we have seen, since the resulting digraph contains no isolated
vertex, it follows that the next vertex to be removed is in V; UV3U V5. That
is

ng4 < n1 + n3g + ns,

which, by substitution for n4, becomes

2n) + n2 + 2n3 + 2n;
2n; + ng + Ing + Ins,

n <
<

so that, applying (9.18) and observing that n; < m;, we find that
n < 3(my + nz + ns). (9.19)

Finally, we count leftward edges. Adding a vertex to either S; or S,
at Steps 2(a) and 2(b) does not contribute any leftward edges. Consider
the number of leftward edges created by placing a vertex u into S; at Step
2(c). If u € V4, then the number of leftward edges created by inserting u
into S is exactly half of its degree. If u € V5, then the number of leftward
edges created by inserting u into S is at most (deg(u) — 1)/2, where deg(u)
denotes the degree of u. It follows that the total number of leftward edges
is at most

ma/2+ (ms —n5)/2 = m[2—(m +m3+ns5)/2
< m/2 - (my +nz +ns)/2,

since n3 < m3. Applying (9.19), we obtain the desired result. o

Theorem 9.6 There is an implementation of Algorithm 9.4 Greedy-Cycle-
Removal that runs in linear time and space.
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Proof: We maintain the vertex set of G in 2n — 3 buckets B;, for —n +2 <
i < n—2, as follows. Isolated vertices and sinks are stored in B_, 2, sources
are stored in B,,_o, and for —n + 2 < i < n — 2, bucket B; contains vertices
for which the outdegree minus the indegree equals ¢. It is clear that every
vertex u € V is stored in exactly one bucket. The buckets can be initialized
in linear time. The removal of a vertex u moves all the neighbors of u
from one bucket to another. Using an adjacency list, these vertices can be
identified and moved in time proportional to the degree of u. The other
operations are trivial. O

The main attractions of Algorithm 9.4 Greedy-Cycle-Removal are its sim-
plicity and its speed. Algorithms with better worst-case performance are
presented in [BS90]. These algorithms are more complex and require O(mn)
time. Further, since most digraphs that need to be drawn are sparse, the
performance bound in Theorem 9.5 is relatively good. For sparse digraphs,
we can strengthen the result of Theorem 9.5 as follows [EL95):

Theorem 9.7 Suppose that G is a connected digraph with n vertices and
m edges, and no two-cycles. Suppose that each vertex of G has total degree
(sum of the indegree and outdegree) at most three. Then Algorithm 9.
Greedy-Cycle-Removal computes a verter sequence of G with at most m/3
leftward edges.

Finally, note that an approximation algorithm for the feedback edge set
problem, with a guarantee that the resulting feedback set is close in size to
the minimum sized feedback set, is unlikely to exist (see [PY91]).

9.5 Exercises

1. Show how to adjust the Coffman-Graham algorithm to account for
dummy vertices of nonzero size.

2. Complete the proof that there is an integer solution to the linear pro-
gram in Section 9.1.3, for finding a layering with a minimum number
of dummy vertices. (Hint: You need to find an appropriate ordering
for the vertices with nonintegral values y(u).)

3. Prove Theorem 9.1.

4. Prove Theorem 9.3.
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. Consider the following simplification of the median method. Order

vertices in Ly first on med(u) and then on avg(u). If two vertices
have the same median and the same barycenter, then separate them
arbitrarily. Does this method have a performance guarantee such as
the median method (as in Theorem 9.2)?

. Prove Lemma 9.3.

. Show that a set of edges of a digraph is a minimum feedback set if and

only if it is a minimum feedback arc set.

. Prove Theorem 9.7.



Chapter 10

Force-Directed Methods

Force-directed algorithms use a physical analogy to draw graphs. We view
a graph as a system of bodies with forces acting between the bodies. The
algorithm seeks a configuration of the bodies with locally minimal energy,
that is, a position for each body, such that the sum of the forces on each
body is zero. For example, Figure 10.1.a shows a graph where vertices
have been replaced with electrically charged particles that repel each other,
and edges have been replaced with springs that connect the particles. An
equilibrium configuration, where the sum of the forces on each particle is
zero, is illustrated in Figure 10.1.b. This configuration can be interpreted
as a straight-line drawing of the graph, as in Figure 10.1.c..

(@ (®) ©
Figure 10.1: A spring algorithm.

There are many force-directed methods, and some are described below.
In general, they have two parts:

303
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The model: A force system defined by the vertices and edges, which provides
a physical model for the graph.

The algorithm: This is a technique for finding an equilibrium state of the
force system, that is, a position for each vertex, such that the total
force on every vertex is zero. This state defines a drawing of the graph.

In a sense, the model encodes the aesthetic criteria. The forces are
defined so that an equilibrium configuration is a pleasing drawing.

The model may be defined as an energy system rather than a force sys-
tem. In this case, the algorithm may be viewed as a technique for finding
a configuration with locally minimal energy. For example, the spring model
above may be viewed as assigning potential energy (based on springs and
electrical energy) to a drawing. The algorithm searches for a drawing in
which the energy is locally minimal.

Force-directed algorithms are very popular for two reasons:

e The physical analogy makes them easy to understand and relatively
simple to code.

o The results can be good.

Force-directed methods were in use before applications in graph visual-
ization, for pure mathematics ([Tut60, Tut63]; see also [LW88]) and lay-
out of printed circuit boards [FCW67, QB79]. More recently, many force-
directed algorithms have been proposed and tested [Ead84, KK89, FR91,
FLM95, BH87a, Tun92, CBHH87, LES95, ELMS91, CT96, MRS96, DH96,
KM91, Men92, Men9%4, Ros97, FLM95, BF96, Bra96, MdNdS96, EK97,
BBS97]. These differ, both in the force or energy model used, and in the
method used to find an equilibrium or minimal energy configuration. Some
examples of drawings from force-directed methods are in Figures 10.2-10.7.

This chapter describes a few of the best known force-directed methods.
In Section 10.1 we introduce a simple model based on springs and electrical
forces. In Section 10.2, we describe the famous algorithm of Tutte [Tut60,
Tut63], called the barycenter method. Section 10.3 presents a more com-
plex method, which attempts to draw graphs so that the Euclidean distance
between two vertices is near to the number of edges on the shortest graph-
theoretic path between the vertices. Section 10.4 introduces a global force
field; magnetic forces act on edges. Extensions of the previously described
energy functions are introduced in Section 10.5, most notably the simulated
annealing method of Davidson and Harel [DH96). Finally, Section 10.7 dis-
cusses further issues of force-directed methods.



10.1. SPRINGS AND ELECTRICAL FORCES 305

Figure 10.2: Icosahedron drawn using the GEM algorithm. (Courtesy of A.
Frick and A. Ludwig.)

Figure 10.3: Dodecahedron drawn using a force-directed algorithm (Cour-
tesy of U. Erlingsson and M. Krishnamoorthy.)

10.1 Springs and Electrical Forces

The simplest force-directed method uses a combination of spring and elec-
trical forces mentioned above. Edges are modeled as springs, and vertices
are equally charged particles which repel each other. More precisely, the
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Figure 10.4: Graph of internet traffic drawn using a simple spring algo-
rithm. (Courtesy of J. Fenwick, D. Thompson and R. Stacey.)

force on vertex v is

F(v) = Z Juw + Z Guv, (10.1)

(uv)EE (uw)EVXV

where f,, is the force exerted on v by the spring between u and v, and
Guv is the electrical repulsion exerted on v by the vertex u. The force fy,
follows Hooke’s law, that is, fy, is proportional to the difference between
the distance between u and v and the zero-energy length of the spring. The
electrical force g,, follows an inverse square law.

Let us denote the Euclidean distance between points p and ¢ by d(p, g),
and suppose that the position of vertex v is denoted by p, = (24, yy). Thus,
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Figure 10.5: Graph drawn using a simple spring algorithm. (Courtesy of
Tom Sawyer Software.)

Figure 10.6: A hypercube drawn with the method of Tunkelang. (Courtesy
of D. Tunkelang.)

from equation (10.1), the £ component of the force F(v) on v is

2
Ty — Ty k&v) Ty — Ty

Z kslv) (d(py,Pv) — luv) . (10.2)

— 4+
(vv)eE d(pu,pv) (u,v)EV XV (d(Pu,Pv))z d(pu’le

The y component of F(v) has a similar expression. The parameters £y,
k,(,lv), and k,(,%) are independent of the positions of the vertices, and may be
interpreted as follows:

e The natural (zero energy) length of the spring between u and v is £y,-
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Figure 10.7: Graph drawn with an experimental force-directed algorithm
from Tom Sawyer Software. (Courtesy of A. Frick.)

If the spring has length £, (that is, d(py,py) = Cuv), then no force is
exerted by (u,v).
e The stiffness of the spring between v and v is expressed with k,(,lv .

The larger the value of k,(,l,,), the more the tendency for the distance
between u and v to be close to £,,.

e The strength of the electrical repulsion between v and v depends
(2)
on kyy .

This model directly aims to satisfy two important aesthetics:

e The spring force between adjacent vertices is aimed to ensure that
the distance between adjacent vertices « and v is approximately equal
to Cyyp.

e The electrical force aims to ensure that vertices should not be close
together.

Further, experience with this model has shown an indirect benefit. Under
certain assumptions, the drawing tends to be symmetric (see [EL97]).
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It is possible to use logarithmic springs [Ead84] rather than Hooke’s law
springs, that is, the z component of f,, in equation (10.1) becomes

d(p spv)) Ty — Ty
L(1) L
Ko log ( luy d(puapv).

However, experience has shown that it is difficult to justify the extra com-
putational effort by the quality of the resulting drawings.

In specific applications, one may choose the parameters ¢,,,,, kl(,lv) , and k,(,2v)
in order to customize the appearance of the drawing, or to express semantic
features of the graph. For example, ¢,, represents the desirable distance
between u and v. If the relationship expressed by the edge between u and v
is strong, then ¢, should be small. Thus the distance between u and v will
tend to be smaller for stronger relationships.

The algorithm seeks an equilibrium configuration of these forces, that is,
a drawing in which the total force F(v) for each vertex v is zero. Equiva-
lently, the algorithm seeks to find a drawing in which the energy is locally
minimal with respect to the vertex positions.

A variety of numerical techniques can be used to find an equilibrium con-
figuration. A simple “follow your nose” algorithm works as follows. Vertices
are initially placed at random locations. At each iteration, the force F(v)
on each vertex is computed, and each vertex v is moved in the direction of
F(v) by a small amount proportional to the magnitude of F(v).

7--» } 4

Figure 10.8: Frames in an animation of a spring algorithm.

This simple algorithm is not the fastest way to find an equilibrium.
However, it allows an intuitive and smooth animation of the transformation
from random locations to an equilibrium configuration. A sequence of frames
from such an animation is shown in Figure 10.8.

10.2 The Barycenter Method

One of the earliest graph drawing methods, due to Tutte [Tut60, Tut63],
can be described as a variation on the method presented in the previous



310 CHAPTER 10. FORCE-DIRECTED METHODS

section. The Tutte model uses springs with €,, = 0, that is, the force
exerted on vertex v by the edge (u,v) is proportional to d(py,p,). The
stiffness parameter k.(,lv) is set to one for each edge (u,v), and there are no
electrical forces. Thus force F(v) can be simply expressed as

Fo)= ¥ (pu—p0). (10.3)
(u,v)EE
Of course, equilibrium for the set of forces given by equation (10.3)
implies the trivial solution p, = 0 for all v. Indeed, this is not a good
drawing! To avoid the trivial solution, the vertex set V is partitioned into
two sets, a set of at least three fired vertices, and a set of free vertices. The
fixed vertices are “nailed down” so that the spring forces do not affect them.
Normally, they are “nailed” at the vertices of a strictly convex polygon.
Positions for the free vertices are chosen according to forces defined in
equation (10.3). That is, we choose p, so that F(v) = 0 for each free vertex
v. Thus

Y. (@u-2) =0, (10.4)
(u,v)EE
and
Y Wu-w) =0, (10.5)
(u,v)EE

where p, = (z,,y,) for each vertex v. Suppose that the sets of fixed and
free neighbors of v are denoted by Ny(v) and N (v), respectively. Rewriting
equations (10.4) and (10.5) yields

deg(v)z, — z Ty = z Zy, (10.6)
u€N(v) w€ No(v)
and
deg(v)y — Y. yu= . Yo (10.7)
u€EN (v) w€ No(v)

where the (fixed) position of a fixed vertex w is (z},,y.,), and deg(v) denotes
the degree of v. Observe that equations (10.6) and (10.7) are linear, and
the number of equations and the number of unknowns are both equal to the
number of free vertices. Solving them amounts to placing each free vertex at
the barycenter of its neighbors. Thus this technique is called the barycenter
method.

The matrix resulting from the above system of equations is diago-
nally dominant and in practice, a simple Newton-Raphson iteration (Al-
gorithm 10.1 Barycenter-Draw) converges quickly. Note that for planar
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graphs, the matrix is sparse and it is possible to solve the equations in
O(n'®) time [LRT79).

Algorithm 10.1 Barycenter-Draw
Input: graph G = (V, E); a partition V = VU V; of
V into a set Vy of at least three fired vertices
and a set V] of free vertices; a strictly convex
polygon P with |Vp| vertices
QOutput: a position p, for each vertex of V, such that
the fixed vertices form a convex polygon P

1. Place each fixed vertex u € V at a vertex of P, and each free vertex
at the origin.

2. repeat
foreach free vertex v do
—_ _1
Ty = Feg(v) Z(u,v)GE Ty
Yo = m Z(u,v)ea Yu

until z, and y, converge for all free vertices v. -

One of the main attractions of the barycenter method is that if the
input graph is triconnected and planar, then the output drawing is planar
and convex (that is, each face is a convex polygon).

Theorem 10.1 Suppose that G is a triconnected planar graph, f is a face
in a planar embedding of G, and P is a strictly conver planar drawing of
f. Then applying the barycenter algorithm, with the vertices of f fized and
positioned according to P, yields a convez planar drawing of G.

The proof of the above theorem can be found in {Tut60, Tut63].

A planar graph drawn with the barycenter method appears in Figure
10.9. Note that the resolution is poor. This is a characteristic of the barycen-
ter method. In fact, for every n > 1 there is a graph G, such that the
barycenter method outputs a drawing exponential area for any resolution
rule [EG96).

Theorem 10.1 can be generalized to drawings obtained with a more com-
plex energy function. For Algorithm 10.1 Barycenter-Draw, the energy of
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Figure 10.9: A large planar graph drawn with the barycenter method.
(Courtesy of P. Garvan.)

a drawing is the sum of the squares of the lengths of the edges. More gen-
erally, we can define the energy of a drawing as the sum of the pth powers
of the edge lengths. For these energy functions, a theorem analogous to
Theorem 10.1 holds [BH87b, BO87].

10.3 Forces Simulating Graph Theoretic Distances

In this section, we describe a method that attempts to model graph theoretic
distance with Euclidean distance. The model was pioneered in [KS80] and
independently developed in [KK89]. If G = (V,E) is a connected graph
and u,v € V, then the graph theoretic distance, denoted by 8(u,v), is the
number of edges on a shortest path between u and v. The aim of this method
is to find a drawing in which, for each pair u,v of vertices, the Euclidean
distance d(py,py) between u and v is approximately proportional to §(u,v)
between all pairs u and v of G. Thus the system has a force proportional to
d(pu,py) — 6(u,v) between vertices u and v.

Kamada and Kawai ([KK89); see also [Kam89b]) take an energy view of
this intuition. The potential energy in the “spring” between u and v is the
integral of the force that the spring exerts, that is

3 ((purpo) = 3, )
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Kamada chooses the stiffness parameter ky, so that springs between vertices
that have small graph theoretic distance are stronger. More precisely, k,,, =
k/&(u,v)? for a constant k. Thus the energy in (u,v) is

_k (d(pu,pv) _ 1)2
7= 2\ 8(u,v) ‘
The energy 7 in the whole drawing is the sum of these individual energies,
that is .
k d(Pu,Pv)
=22, (e )
uFveV ’

The algorithm seeks a position p, = (z,,yy), for each vertex v, to min-
imize 7. Minima occur when the partial derivatives of 7, with respect to
each variable =, and y,, are zero. This gives a set of 2|V| equations

on . On _
a:1:0—0, Byv_o’ veV.

Unfortunately these equations are nonlinear. However, an iterative approach
may be used to solve them. At each step, a vertex is moved to a position
that minimizes energy, while all other vertices remain fixed. The vertex to
be moved is chosen as the one that has the largest force acting on it, that

is, the one for which
2 2
V() + (32)
Oz, Yy

is maximized over all v € V.

10.4 Magnetic Fields

Sugiyama and Misue [SM95a, SM95b] proposed a model in which some or all
of the springs are magnetized, and there is a global magnetic field that acts
on the springs. The magnetic field can be used to control the orientation of
the edges and thus the model can handle a broader class of aesthetic criteria
than the methods of previous sections.

There are three basic types of magnetic field, shown in Figure 10.10:

o Parallel: All magnetic forces operate in the same direction.
e Radial: The forces operate radially outward from a point.

e Concentric: The forces operate in concentric circles.
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...........................................................

............................................................

Parallel Radial Concentric

Figure 10.10: Types of magnetic field.

The three basic fields can be combined. For example, we can encourage
orthogonal edges with a combination of parallel forces in the horizontal and
vertical directions.

The springs can be magnetized in two ways:

e Unidirectional: The spring tends to align with the direction of the
magnetic field.

e Bidirectional: The spring tends to align with the magnetic field, but
in either direction.

Further, a spring may not be magnetized at all.

The magnetic field induces a torsion, or rotational force, on the mag-
netized springs. For a unidirectionally magnetized spring representing the
edge (u,v), the force is proportional to d(pu,pv)"‘eﬂ, where d(py, py) is the
Euclidean distance between p, and p,, @ is the angle between the magnetic
field and the line from p, to p,, and & and 3 are constants. This is illustrated
in Figure 10.11. Forces on bidirectional springs are similar.

&7 unidirectional
magnetic spring

direction of the
magnetic field

Figure 10.11: Magnetic spring.

The magnetic forces are combined with the spring and electrical forces
described in Section 10.1.

Algorithms for finding an equilibrium configuration use the same “follow
your nose” approach as in Section 10.1. In other words, vertices are placed



10.4. MAGNETIC FIELDS 315

initially at random locations, and, at each iteration, the vertices move to
positions with a lower energy.

Unlike methods of the previous sections, the magnetic spring model is
able to handle directed graphs. Unidirectional springs, combined with one
of the fields in Figure 10.10, can give drawings in which most of the arcs
point downward (in a downward parallel field), outward (in a radial field),
or counterclockwise (in an counterclockwise concentric field).

The method has also been applied with some success to orthogonal draw-
ings (using a combined vertical and horizontal field, with bidirectional
springs) and mized graphs, that is, graphs with both directed and undi-
rected edges.

Figure 10.12: Magnetic spring drawing using a vertical magnetic field and
unidirectional magnetic springs.

Some sample drawings are given in Figures 10.12 and 10.13. The draw-
ing in Figure 10.12 uses a parallel magnetic field and unidirectional magnetic
springs, and thus the edges tend to point downward. The drawing in Fig-
ure 10.13 uses two parallel magnetic fields, one horizontal and one vertical,
as well as unidirectional magnetic springs. This ensures that the drawing
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has a tendency to be orthogonal, and the result is close to an hv-drawing
(see Section 3.1.4).

©

O—O—0O G0
®

Ol®

Figure 10.13: Magnetic spring drawing using a combination of horizontal
and vertical magnetic fields and unidirectional magnetic springs.

10.5 General Energy Functions

In each of the methods discussed above, the energy function 7 is a simple
and continuous function of the locations of the vertices. However, many of
the important aesthetic criteria, such as the minimization of the number of
edge crossings, are not continuous. By including discrete energy functions,
we can broaden the class of aesthetic criteria.

For example, for each drawing, we can define

e The number of crossings
e The number of horizontal and vertical edges
e The number of bends in edges,

as well as the continuous measures described in the previous sections.
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Also, recall from Section 2.2 that aesthetics conflict with each other, that
is, in general, we cannot expect to optimize several criteria simultaneously.
We can use an energy function that linearly combines a number of measures

n=Mm+ Aen2+ ...+ Al (10.8)

where, for i = 1,2,...,k, 7; is a measure for an aesthetic criterion and \;
is a constant. The functions 7; may include spring energy, electrical energy,
and magnetic energy, as well as discrete functions such as those mentioned
above. In this way, the energy 7 measures the “ugliness” of the drawing and
a drawing of minimum energy has maximum beauty.

As an example of this approach, Davidson and Harel [DH96] use the
following energy function for straight-line drawings

7= + X272 + A3n3 + Ag7q, (10.9)
where

m=Y,vevil /d(py,pv)?): This is similar to the electrical repulsion used
in Section 10.1. This term aims to ensure that vertices do not come
too close together.

e = Tuev (1/72) + (1/€2) + (1/t2) + (1/b2)), where 1y, £y, ty, and by are
the Euclidean distances between vertex u and the four sidelines (right,
left, top, and bottom) of the rectangular frame in which the graph is
drawn. This term ensures that vertices do not come too close to the
borders of the screen.

M = 2(uw)eE d(py,py)? ensures that edges do not become too long.
74 is the number of edge crossings in the drawing.

The flexibility of general energy function methods allows a variety of
aesthetics to be used by adjusting the coeficients );. For example, consider
Figures 10.14 and 10.15, which are both pictures of the nonplanar graph
K33. These are both output from a general energy system from (BBS97].
Figure 10.14 has fewer edges that cross, and Figure 10.15 has more sym-
metry. The user of the system of (BBS97] can choose to emphasize either
crossing minimization or symmetry, by simply adjusting system parameters.

In general, with a model of the form in equation (10.8), the user can
adjust the weights A1, A2,...,Ax to suit the aesthetics of a particular ap-
plication or a particular user. A large value for ); indicates that the ith
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Figure 10.14: A drawing of K33 with only two edges crossing.

Figure 10.15: A drawing of K3 3 with three edges crossing, but with a high
degree of symmetry.

aesthetic criterion is important. Mendonca [Men94] shows how these co-
efficients can be automatically adjusted to the user’s preferences without
explicit user intervention.

Figure 10.16 illustrates the successes and failures of techniques such as
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those described above. The first picture (a) shows an excellent drawing of
a 12-vertex planar graph. It is symmetric and planar. Unfortunately, the
method of [DH96) was not able to produce this drawing. The reason is that
the planarity and high degree of symmetry depend on highly nonuniform
edge lengths. It is an interesting problem to create a force-directed algorithm
which can automatically adjust the strengths of the springs to obtain better
drawings. However, the algorithm of [DH96] produced Figure 10.16.b—d, all
of which are very good drawings. Figure 10.16(b) is planar, but the edge
lengths are not uniform and it has no symmetry. This drawing used a version
of the algorithm with a fairly large value of Ay. When A4 was decreased, the
drawings in Figure 10.16.c and d were obtained. These have crossings, but
display symmetry and have a pleasing three-dimensional appearance. Note
that Figure 10.16.d has fairly uniform edge lengths.

(a) (b)

%

(© (d)

Figure 10.16: Drawings of a 12-vertex graph: (a) is an excellent draw-
ing, not obtained by simluated annealing; (b), (c), and (d) were obtained
using a general energy function, with various coefficients. The minimum en-
ergy state was found by a simulated annealing method. (Courtesy of David
Harel.)
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The main problem with using general energy functions is that it may be
computationally expensive to find a minimum energy state. Since the cost
function is general and discrete, we must resort to very general optimiza-
tion methods such as simulated annealing [DH96, CT96, MRS96, Men94,
CP96] and genetic algorithms [KM91, Bra96, Ros97, BBS97]. These meth-
ods are characteristically computationally intensive and are not suitable for
interactive systems.

Despite the computational difficulties, the flexibility of such methods has
ensured their popularity. For example, Figure 10.17 shows a social network.
The layout was computed by KrackPlot (KBM94, Kra98), using a simulated
annealing method.

I S\

Figure 10.17: Drawings of a social network, computed by KrackPlot, using
a simulated annealing method. (Courtesy of D. Krackhardt, J. Blythe, and
C. McGrath.)
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10.6 Constraints

The force-directed approach has been extended to support several types
of constraints [Kam88, Kam89a, Ost96, DFM93, HM97, KKR96, RMS97,
SM95a]. For example, force-directed methods can handle:

¢ Position constraints
¢ Fixed-subgraph constraints
o Constraints that can be expressed by forces or energy functions.

A position constraint assigns to a vertex a topologically connected region
where the vertex should remain. Examples of prescribed regions include:

1. A single point, which allows a vertex to be to “nailed down” at a
specific location.

2. A horizontal line, which allows a group of vertices to be arranged on
a layer.

3. A circle, which allows a set of vertices to be restricted to a distinct
region.

The numerical techniques that are used for unconstrained force-directed al-
gorithms can be easily adjusted for constraints that involve restricting ver-
tices to any region with a smooth boundary. Iterative methods, for example,
can confine the movement of vertices to the prescribed region at each itera-
tion. At the boundary of a constraining region, the vertices move along the
boundary in a frictionless way. An analysis of the physical and numerical as-
pects of constraining vertices to curves (and to surfaces in three dimensions)
is given by Ostry [Ost96).

A fixed-subgraph constraint assigns a prescribed subdrawing to a sub-
graph, which may appear translated or rotated, but not otherwise deformed,
in the overall drawing of the graph. It can be supported by considering the
subgraph as a rigid body. This body is translated and rotated at each simu-
lation step according to the overall force and torque applied to it as a result
of the individual forces applied to its vertices.

As an example, the barycenter method of Section 10.2 may be seen as a
force-directed method that constrains a set of vertices to a polygonal shape.

Constraints that can be expressed by forces include:

e Orientation of directed edges in a given direction, for example, hori-
zontal and vertical.
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e Geometric clustering of specified sets vertices.
o Alignment of vertices.

The magnetic spring model in Section 10.4 allows the orientation of a
user-specified set of edges in a specific direction by a choice of magnetizations
of the springs and a choice global magnetic field.

Clustering can be achieved as follows (see Figure 10.18):

1. For each set C of vertices which need to be clustered, add to the graph
a dummy “attractor” vertex vc.

2. Add attractive forces between an attractor v¢ and each vertex in C.

3. Add repulsive forces between pairs of attractors and between attractors
and vertices not in any cluster.

This method has been used [ECH97] in web navigation systems to ensure
clustering around nodes representing hypertext documents.

Figure 10.18: Example of clustering constraints realized by means of
forces. The two shaded vertices represent the dummy attractors of the two
clusters. The attractive forces between cluster vertices and attractors, and
the repulsive force between attractors are shown with dashed double-arrows.

10.7 Remarks

Force-directed methods are notorious for using considerable computational
resources, and several attempts have been made to improve their efficiency.
These include:
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The use of force functions that are more amenable to efficient algo-
rithms for finding local minimal [FR91).

Methods which use some randomization in the style of simulated an-
nealing [FLM95, Tun92).

The use of sophisticated methods from numerical analysis to solve the
equations that arise from the various models. An interesting point
made by Ostry [Ost96] is that the equations describing the minimal
energy states are stiff for some graphs of low connectivity. This means
that classical numerical techniques can be very slow. However, special
methods have been developed to deal with stiff equations and can
speed up force-directed methods considerably.

The use of combinatorial preprocessing methods. Harel and Sar-
das [HS95) give a variety of ad hoc combinatorial heuristics, which
give a good initial layout of a graph. This layout can be used as a
starting point for the method of Davidson and Harel described above.

Ostry [0st96) shows that replacing the cliques of a graph by stars can
improve the speed of some spring algorithms (Section 10.1) for dense
graphs.

Force-directed algorithms are heuristics which are best analyzed empir-
ically. Brandenburg, Himsolt, and Rohrer [BHR96] performed an extensive
empirical analysis of the following methods:

The method of Fruchterman and Reingold [FR91]. This is similar to
that described in Section 10.1.

The method of Kamada and Kawai [KK89, Kam89b), as described in
Section 10.3.

The simulated annealing method of Davidson and Harel [DH96) as
described in Section 10.5. A version of this method with a low value
of A4 (that is, a version which ignores edge crossings) was also tested.

The method of Tunkelang [Tun92]. This method uses the same cost
function as Davidson and Harel, but has a method for finding a local
minimum.

The GEM method of Frick, Ludwig, and Mehldau [FLM95), which is
one of the few methods that can handle graphs with more than 100
vertices.
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They conclude that there is no universal winner among these methods,
and their overall recommendation is to try several methods and choose the
best.

An interesting conclusion from their experiments is that the drawings
resulting from many of the algorithms (including the Davidson-Harel method
with a low A\4) are remarkably similar. They also note that algorithms from
[FLM95] and [Kam89b] are relatively fast, and that the algorithm from
[FRO1] is fast on small graphs (less than about 60 vertices). If time is
not important, then we can adjust the parameters of the algorithms from
[Tun92] and [DHY6) to obtain pleasing drawings.

10.8 Exercises

1. Show that the resolution of the output from the barycenter algorithm
may be poor. More specifically, show that for each n there is a tri-
connected planar graph G with O(n) vertices, such that if the the
barycenter algorithm draws G inside the unit square, then at least
two vertices have distance O(z).

2. Prove that the barycenter algorithm gives symmetric drawings of
graphs (when the graph has appropriate automorphisms).

3. Consider the following force model algorithm for directed acyclic
graphs. Each source (vertex of indegree zero) is fixed in a position
at the top of the page. Every other vertex is subject to spring and
electrical forces as in Section 10.1, as well as a linear attraction to the
bottom of the page.

Implement and evaluate a force-directed algorithm based on this
model.

4. The discussion of force-directed algorithms in this chapter assumes
that vertices have zero area. What adjustments are needed if the
vertices are circles of nontrivial size? What about rectangles?

5. A straight-line drawing of a connected graph is path-tension-free, if for
every pair u,v of vertices, the Euclidean distance between u and v is
the number of edges on the shortest path between u and v. Describe
the class of graphs which admit a path-tension-free drawing.

6. A straight-line drawing of a graph is edge-tension-free, if for every
edge (u,v), the Euclidean distance between u and v is one. For each
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of the following classes of graphs, describe the subclass which admits
an edge-tension-free drawing.

(a) Trees.
(b) Biconnected graphs.
(c) Triconnected planar graphs.

Repeat the same exercise for drawings in three dimensions.
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Proving Lower Bounds

In this chapter, we present techniques for proving lower bounds on graph
drawing problems. In Section 11.1, we give an example of a general method
for proving lower bounds on the area of planar drawings, based on construct-
ing a family of planar graphs with recursively nested subgraphs, and on ex-
pressing the area of the drawing with a recurrence relation. In particular,
we show that there is a family of planar digraphs that require exponential
area in any upward planar straight-line drawing.

In Section 11.2, we present a general paradigm for NP-completeness
proofs related to graph drawing, based on a a mechanical device, called
“logic engine.” This device simulates well-known NP-complete problems.

11.1 A Technique for Proving Exponential Area
Lower Bounds

In this section, we present a general technique for proving existential area
lower bounds. We illustrate this technique by showing that there is a class of
planar acyclic digraphs that requires exponential area in any planar straight-
line upward drawing (see also [DTT92a]). This technique has also been
used to prove lower bounds on the area of planar straight-line drawings of
series-parallel digraphs [BCD*94], planar layered digraphs [LE97], planar
clustered graphs [FCE95], and planar graphs with bounded angular resolu-
tion [GT94, MP94).

Let us define the following class of digraphs (see Figure 11.1). Digraph
G1, shown in Figure 11.1.a, consists of vertices sq, s;, to, and ¢, and edges
(SOvtO)’ (Sl, 30)’ (tOvtl)v (slvtO)v and (so’tl)' For n 2 2v dlgra.ph Gn is
constructed from G,_; by adding vertices s, and ¢,, and edges (sp, Sn-1)

327
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(tn-—lytn)» (Sn._2,tn), (sn,tn-—2)s (snatn—l)v and (sn—lvtn)v as shown in Flg’
ure 11.1.b.

4

8o Sp-1

- I%/

(a) (b)

Figure 11.1: A class of digraphs that require exponential area: (a) digraph
Gy; (b) digraph G,,.

It is easy to verify that G, is a planar s,t,-graph (see Section 4.2) with
2n+ 2 vertices and 6n+ 1 edges. Also, G,, is triconnected for n > 2, and thus
has a unique embedding. We show that the minimum area of a straight-line
drawing of G, is Q(2") for every possible resolution rule.

Theorem 11.1 Given any resolution rule, a planar straight-line upward
drawing of digraph G, (with 2n + 2 vertices) has area Q(2%).

Proof: Let A, be the minimum area of a planar straight-line upward draw-
ing of G,. We use induction to prove that A, > 4- A,_2. Since 4; > ¢, for
some constant ¢ depending on the resolution rule, this implies the claimed
result.



11.1. EXPONENTIAL AREA LOWER BOUNDS 329

Let T, be a straight-line drawing of G, with minimum area A,. By
removing vertices s, and ¢, and their incident edges from I';,, we obtain a
straight-line drawing I',_; of G,—;. Also, by removing vertices s,,_; and
tn—1 and their incident edges from I',_), we obtain a straight-line drawing
2 of Gp_5. Let 0 and 7 be horizontal lines through vertices s,,_» and
tn—2, respectively. Define 6, as the angle formed by edge (t.-3,t,_2) and
the z-axis. Also, define @ as the angle formed by edge (s,—2, s,—3) and the
z-axis. We distinguish two cases:

Case 1: 6, > 0, (see Figure 11.2).

Let p; be the line extending edge (t,_3,t,-2), and A; be the line paral-
lel to p; through vertex s,-2. Also, let A2 be either the line extending
edge (sp-2,8n—3) (Figure 11.2.a), or the line through vertices s,_»
and t,_o (Figure 11.2.b), whichever forms the largest angle with the
z-axis. Vertex s,—; must lie in the region S,_; below o and to the
right of p;, since it is connected to vertices s,_o and t,_ from the
right. Similarly, vertex ¢,_; must lie in the region T,_; above 7 and
to the left of A\o. With respect to vertices s, and t,, s, must lie in
the region S,, = S,_, since it is connected to t,,_ and ¢,-; from the
right, and ¢, must lie in the region T}, above 7 and to the left of \;,
since it is connected to s,—; from the left. (Actually, s, and ¢, must
lie in proper subregions of S,_; and T},_;.)

Let P be the parallelogram delimited by lines o, 7, A, and p;. Since
Sp-3 is vertically below t,_3, the area of P is at least two times the
area of I';,_5. Also, the area of I',,_s is greater than or equal to A,_2,
the minimum area required for drawing G,,—». Hence,

Area(P) > 2 Area(l'p—2) > 2 Ap-2.

Now, consider the triangle delimited by lines 7, p;, and the line é par-
allel to edge (sp—1,tn) through vertex s,_o (see Figure 11.3). Clearly,
', must contain this triangle. Let A; be the triangle delimited by o,
p1, and 4, and let Ay be the triangle delimited by 7, A;, and 4. It
follows that

Ap = Area(l'y) > Area(P) + Area(A,) + Area(As).
Since A; and Aj are similar, the minimum of Area(A;) + Area(A2)
is equal to Area(P). Hence, we have

Ap >2-Area(P) > 4- Area(Ty_3) = 4- Ap_s.
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Figure 11.2: Illustration of the proof of Theorem 11.1 for 6, > 62.
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Figure 11.3: Regions P, A;, and A,.

Case 2: 6, < 0,.

The proof for this case is symmetric to the one for the previous case
and is left as an exercise.

11.2 The Logic Engine: a Paradigm for NP-Hardnes
Proofs

In this section, we describe a powerful paradigm for proving NP-hardness
of graph drawing problems. The technique was introduced by Bhatt and
Cosmadakis [BC87) and later applied widely [EW96b, 1di90, Bra88, EW96a).
The paradigm uses a mechanical device called a “logic engine,” illustrated
in Figure 11.4. This device mechanically simulates the following well-known
NP-complete problem:
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Not-All-Equal-3-Sat (NAE3SAT)

Instance: A set C of clauses, each containing three literals from
a set of boolean variables.

Question: Can truth values be assigned to the variables so that
each clause contains at least one true literal and at least one false
literal?

The following section describes the logic engine, and Section 11.2.2 illus-
trates its application to a specific graph drawing problem. In Section 11.2.3,
we list several other graph drawing problems whose NP-hardness has been
established using the logic engine paradigm.

/ T armature A,
armature A

armature A

armature A

= flags
shaft

>chains

frame

Figure 11.4: A logic engine.

11.2.1 The Logic Engine

First, we describe the universal part of the engine, that is, the part which
depends only on the number of clauses and the number of variables. Then
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we show how to customize the engine to encode a particular instance of
NAE3SAT.

The logic engine is illustrated in Figure 11.4. It consists of several parts,
as follows:

e The engine has a rigid frame, which supports a shaft.

¢ A nested sequence of n armatures A, 1 < j < n, where n is the number
of variables, is mounted to the shaft. Each armature can rotate about
the shaft, but its position on the shaft is fixed: It cannot slide back
and forth along the shaft. The spacing between armatures is designed
to ensure that the armatures can rotate independently of one another.

e Each armature A; holds two chains a; and a; of equal-length links.
One stretches from one end of the armature to the shaft, the other
stretches from the other end of the armature to the shaft. Each of the
chains holds m links, where m is the number of clauses.

Note that the sides of the frame extend on either side of the shaft, at least
as far as the chains.

Each armature A; corresponds to a variable z; of an instance of
NAE3SAT. The chain a; corresponds to the literal z;, and the chain a;
corresponds to its complement Z;. If the engine lies flat (so that the frame,
each chain, and each armature all lie in the same plane) then the armature
Aj can be in one of two positions, either a; or @; can be above the shaft.
These two positions correspond to the truth assignments z; = 1 and z; = 0,
respectively.

Each of the clauses ¢}, cs,. .., ¢, in an instance of NAE3SAT corresponds
to a set of links, as described below. The links of each chain are numbered
1,2,...,m, outwards from the shaft, as illustrated in Figure 11.5. Clause c;
corresponds to the set consisting of all links numbered k. Note that if the
engine lies flat, then the links numbered k form two rows, one on either side
of the shaft.

The logic engine is customized by attaching flags to the links, as in
Figure 11.6. Each flag can rotate freely about the chain, and thus has two
possible positions when the logic engine is placed flat in the plane. It can
point toward the front (that is, the right-hand side of Figure 11.4), or it can
be “flipped” to point toward the rear (that is, the left). However, the flags
are designed so that, when the logic engine is placed in the plane, a collision
involving flags can occur under the following conditions.
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Figure 11.5: Numbering the links of each chain.

e Two flags that lie in the same row and that are attached to chains
of adjacent armatures collide with each other if and only if they are
flipped so that they point toward each other.

e Any flag attached to the chain of the outermost armature A, collides
with the frame if it points toward the front edge of the frame, and any
flag attached to the chain of the innermost armature A; collides with
that armature if it points toward the rear.

chain

Figure 11.6: A flag on a link.

Flags are attached to specific links according to the clause-literal inci-
dence relation. We attach a flag to every link i of every chain a; and &,
except:

1. If the literal z; appears in clause c; then link i of a; is unflagged

2. If the literal Z; appears in clause ¢; then link i of @; is unflagged.
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The relationship between the logic engine and NAE3SAT is expressed in
the following theorem.

Theorem 11.2 An instance of NAE3SSAT is a “yes” instance if and only
if the corresponding logic engine has a flat collision-free configuration.

Proof: Suppose that we have a “yes” instance of NAE3SAT, and the truth
assignment ¢ gives at least one true and at least one false literal for each
clause. The armatures may be rotated to simulate the truth assignment ¢
as follows. If t(z;) = 1, then place a; at the top and a; at the bottom.
If t(z;) = 0, then place a@; at the top and a; at the bottom. With this
configuration of armatures, since each clause ¢; contains at least one literal
y with ¢(y) = 1 and at least one literal z with £(2) = 0, there is at least one
unflagged link in each horizontal row of links. We can orient the flags in
each row to point toward the unflagged link. This avoids collisions.

On the other hand, suppose that we have a flat collision-free configura-
tion of the logic engine. This implies that there is at least one unflagged
link in each row. Thus, with the truth assignment defined by the positions
of the armatures, there is at least one true and at least one false literal in
each clause. m]

11.2.2 Logic Engine and a Graph Drawing Problem

In this section, we illustrate the use of the logic engine by showing that the
following problem is NP-hard.

Unit Length Planar Straight-line Drawing (ULPGD)
Instance: A planar graph G.

Question: Is there a straight-line planar drawing of G, such that
every edge has length one?

Theorem 11.3 ULPGD is NP-hard.

Theorem 11.3 was proved in [EW90] using a complex flow approach. The
proof below, using the logic engine, is much simpler.

Roughly speaking, the transformation proceeds as follows. Given an in-
stance of NAE3SAT, we define a logic graph, which is an instance of ULPGD.
We design the logic graph to simulate a logic engine. It follows from Theo-
rem 11.2, that the logic graph has a unit length planar drawing if and only
if the NAE3SAT instance is a “yes” instance.
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First, we show how to construct the universal part of the logic graph.
The critical property of this graph is that it has a limited number of unit
length planar drawings. These drawings correspond to flat configurations of
the logic engine. We say that a graph G is uniquely drawable if all the unit
length planar drawings of G can be obtained from each other by rotations,
reflections, translations, and changes of scale.

Figure 11.7 gives a unit length planar drawing of a link graph. The link
graph is clearly uniquely drawable.

Figure 11.7: A link graph.

A frame and armatures for the logic graph are composed of link graphs,
as shown in Figure 11.8. These are uniquely drawable as well.

A% AT aTaTaYa"aYaYaYaTa aYaTaYATATATATAYATATATATAa"s

A ASARARARAARA
a¥aTATATaTATaTATaTaVaVa.

KXRARARARAARARAAAAAAARARARAAAANH
¥ AT T A e AT AT A A A AYA At AT A AT AT AV AT AV A AVA AV ATATAY,

Figure 11.8: The universal part of a logic graph.
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A chain graph is a sequence of link graphs, joined together as shown in
Figure 11.8. The shaft is a simple path.

As Figure 11.8 shows, the universal part of the logic graph has a unit
length planar drawing. It is not difficult to show that the frame and ar-
matures are uniquely drawable. We need to show that the shaft is taut,
and thus unique. The maximum Euclidean distance between the extremal
endpoints to the shaft is equal to the number of edges in the shaft, and this
can be achieved only if the vertices are stretched out along a line. Thus
the uniqueness of the drawing of the frame forces the shaft to be drawn
as a straight line as shown. This argument can be extended to show the
uniqueness of the chains when they are attached to the armatures.

The set of points in the plane occupied by the vertices in any unit length
planar drawing of the universal part of the logic graph is unique up to
rotations, translations, reflections, and changes of scale. However, the labeled
logic graph has many unit length planar drawings. Each armature can be
turned about the shaft so that either side of the armature can be placed on
the outside face. Further, on each chain, each link except the center link
can be turned independently of the other links, so that either one of the two
degree three vertices of the link lies in the face defined by that particular
armature and its chain. These possible motions of the logic graph correspond
to the allowable motions of the logic engine.

Next, we show how to customize the logic graph. A link graph may be
extended to a flagged link graph by the addition of three new vertices, as
shown in Figure 11.9. Note that a flagged link graph has a unique drawing.

Figure 11.9: A link with a flag.

The customization of a logic graph (to simulate a specific instance of
NAE3SAT) consists of replacing link graphs with flagged link graphs ac-
cording to the incidence between literals and clauses, in the same way as
the customization of the logic engine described above. A customized logic
graph is shown in Figure 11.10.
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Figure 11.10: A logic graph.

The proof that the logic graph has a unit length planar drawing if and
only if the NAE3SAT instance is a “yes” instance follows the same argument
as the logic engine. Note that the logic graph corresponding to an instance
of NAE3SAT with n variables and m clauses has O((m + n)?) vertices and
edges, and the time taken to construct the logic graph is linear in the size
of the graph. Theorem 11.3 follows.

11.2.3 Other Problems which Simulate the Logic Engine

The logic engine approach was originally used by Bhatt and Cos-
madakis [BC87] to prove that the following problem is NP-hard.

Unit Grid Drawings of Trees

Instance: A tree T.

Question: Is there a grid drawing of T, such that each edge has
length one?

Remarks: See [BC87]. The problem remains NP-complete when
restricted to binary trees [Gre89).

The technique used by Bhatt and Cosmadakis does not use the arma-
tures, basically because the grid requirement makes them unnecessary. How-
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ever, an extended frame is needed. Brandenburg [Bra88] showed that the
basic ideas could be extended to prove NP-completeness of several related
problems for grid drawings of trees, including the following.

Minimum Area Grid Drawings of Trees
Instance: A tree T and an integer K.
Question: Is there a grid drawing of T of area at most K?

Idicula [Idi90] extends these results to a variety of grids, including tri-
angular and hexagonal grids.

The logic engine approach has been used [EW96b] to show that the
problem of drawing a tree as a minimum spanning tree is NP-hard:

Euclidean Minimum Spanning Tree Realization
Instance: A tree T.

Question: Is there a drawing of T, such that T is a minimum
spanning tree of the vertex locations?

A proof, similar to that in the previous section, has been used [EW96a)
to show that nearest neighbor graph realization problems are NP-hard. In
general, these problems ask for a drawing of a graph G, such that G is the
nearest neighbor graph of the locations of its vertices. There are several defi-
nitions of “nearest neighbor graph.” For example, a mutual nearest neighbor
graph on a set of points P in the plane has a vertex v, for each p € P, and
an edge (vp,vq) whenever p is a nearest neighbor of ¢ and g is a nearest
neighbor of p.

Mutual Nearest Neighbor Graph Realization

Instance: A graph G.

Question: Is there a drawing of G, such that G is the mutual
nearest neighbor graph of the vertex locations?

The following problem was proved NP-hard in {[BK98). It is possible to
adjust the proof in the previous section to provide another proof.

Unit Disk Touching

Instance: A graph G.

Question: Is there a drawing of G such that vertices are repre-
sented by unit disks, and there is an edge between u and v if and
only if the disks representing u and v touch?
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11.3 Exercises

1. Prove that embedded series-parallel digraphs exist, such that any up-
ward straight-line drawing that preserves the embedding requires ex-
ponential area.

2. Prove that layered upward planar digraphs exist, such that any planar
straight-line drawing that preserves the layering requires exponential
area.

3. Use the logic engine to explore the complexity of the problems listed
in Subsection 11.2.3.
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Bounds

There are mathematical limits on the performance of graph drawing meth-
ods. These limits can be in terms of the aesthetic criteria which algorithms
try to achieve, or in terms of computational resources required by the algo-
rithms. In many cases, there are trade-offs between various aesthetic crite-
ria, or between aesthetic criteria and computational resources. Designers of
graph drawing algorithms need an appreciation of these limits and trade-offs
in order to create effective techniques. In this chapter, we summarize upper
and lower bounds on properties of various drawings of graphs, and discuss
trade-offs between them.

For various classes of graphs and drawing types, many univer-
sal/existential upper and lower bounds have been discovered for specific
drawing properties. Such bounds typically exhibit trade-offs between draw-
ing properties. A universal bound applies to all the graphs of a given class.
An existential bound applies to an infinite number of graphs of a class, that
is, there is an infinite family of graphs that exhibit the lower bound.

In Sections A.1, A.2, and A.3, we present bounds on the area, angular
resolution, and number of bends, respectively. Trade-offs between area and
aspect ratio, as well as between area and angular resolution, are covered in
Sections A.4 and A.5. Time complexity issues are discussed in Section A.6.

Throughout this chapter, we denote the number of vertices and edges of
the graph being considered by n and m, respectively.

A.1 Area Bounds

In Tables A.2-A.5, we summarize selected universal upper bounds and exis-
tential lower bounds on the area of drawings of trees, planar graphs, planar

341
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digraphs, and general graphs.

When we give bounds on the area, we assume that the drawing is con-
strained by some resolution rule that prevents it from being arbitrarily scaled
down (for example, we require a grid drawing or a minimum unit distance
between any two vertices).

When we say that the area requirement of a class of graphs is O(f(n)),
we mean that both an O(f(n)) universal upper bound and an Q(f(n)) ex-
istential lower bound exist on the area.

The following general comments apply.

¢ Bends have two effects on the area requirement. On one hand, bends
occupy space and, hence, negatively affect the area. On the other
hand, bends may help in routing edges without using additional space.

e Linear, or almost-linear, bounds on the area can be achieved for trees,
as shown in Table A.2. See Table A.8 for trade-offs between area and
aspect ratio in drawings of trees.

e As shown in Table A.3, planar graphs admit planar drawings with
quadratic area. However, the area requirement of planar straight-line
drawings may be exponential, if high angular resolution is also desired.
Almost linear area can be achieved through nonplanar drawings of
planar graphs, which have applications to VLSI circuits.

e Asshown in Table A.4, upward planar drawings provide an interesting
trade-off between area and total number of bends. Indeed, unless
the digraph is reduced (see Section 4.7.1), the area of a straight-line
drawing is exponential in the worst case. A quadratic area bound is
achieved only at the expense of a linear number of bends.

A.1.1 Area of Drawings of Trees

Tables A.1 and A.2 summarize selected universal upper bounds and existen-
tial lower bounds on the area of drawings of trees. All the bounds assume
grid drawings.

Rooted trees are usually represented by downward planar straight-line
drawings. Layered drawings (see Section 3.1.2) have quadratic area require-
ment. The drawing method of [CDP92, Shi76] (see Section 3.1.4) for gen-
eral rooted trees (which constructs hv-drawings for binary trees) and the
recursive winding method of [CGKT97) for binary trees (see Section 3.1.5)
yield O(nlogn) area. Linear-area drawing methods are known for AVL-
trees (which include complete binary trees) and Fibonacci trees [CDP92,
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Table A.1: Universal upper bounds and existential lower bounds on the
area of downward drawings of rooted trees. We denote by a an arbitrary

constant such that 0 < a < 1.

| Graph Drawing Area §, Ref.
rooted tree | layered (strictly | Q(n2) O(n?) §3.1.2,
downward) [RTS81]
planar grid
straight-line
embedding-
preserving
rooted tree | downward Qn) O(nlogn) §3.14,
planar grid [CDPY2,
straight-line Shi76)
degree-O(1) | downward Qn) O(nloglogn) | [SKC96]
rooted tree | planar grid
straight-line
binary tree | hv (downward Qn) O(nlogn) §3.14,
planar grid [CDP92,
straight-line Shi76)
orthogonal)
binary tree | downward Qn) O(nlogn) §3.1.5,
planar grid [CGKT97)]
straight-line
orthogonal
complete, downward Q(n) O(n) [CP95b,
AVL, and | planar grid Tre96)
Fibonacci straight-line
tree
degree- downward Qn) O(n) [GGTI6]
O(n?) planar grid
rooted tree | polyline
binary tree | downward Q(nloglogn) | O(nloglogn) | [GGTI6]
planar grid
orthogonal
rooted tree | strictly Q(nlogn) O(nlogn) [CDP92]
downward
planar grid
straight-line
rooted tree | downward Q(nlogn) O(nlogn) [GGTI6]
embedding-
preserving
planar grid
polyline
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Table A.2: Universal upper bounds and existential lower bounds on the
area of drawings of trees.

Graph Drawing Area §, Ref.
tree planar Q(n) | O(nlogn) | {CDP92, Shi76]
straight-line
grid
binary tree | planar Qn) | O(nloglogn) | [CGKT97]
straight-
line orthogonal
grid
degree- planar polyline | Q(n) | O(n) [GGT96)
O(n®) tree | grid
degree-four | planar orthog- | (n) | O(n) [Val81, Lei80]
tree onal grid

CP95b, Tre96]. No nontrivial lower bounds on the area of downward planar
straight-line drawings are known.

Allowing bends in downward planar drawings reduces the area require-
ment. Indeed, for downward planar orthogonal drawings of binary trees, the
area requirement is O(nloglogn) [GGT96], and for downward planar poly-
line drawings of trees with maximum degree O(n®), where a is an arbitrary
constant such that 0 < a < 1, the area requirement is O(n) [GGT96).

All the above planar downward drawing methods have two limitations:

¢ Horizontal edges may be used. Hence, the drawings are not strictly
downward.

e The embedding (i.e., order of the children of each node) is not pre-
served. For example, in the hv-drawing method of [CDP92) for binary
trees (see Section 3.1.4), the larger subtree is always placed to the
right of the smaller subtree.

We can convert an hv-drawing of a binary tree, with height h and width
w, into a strictly downward drawing with height h+w and width w [CDP92].
Hence, binary trees admit strictly downward drawings with O(n log n) area.
Also, there is a family of binary trees that require Q(nlogn) area in
any strictly downward planar drawing [CDP92]. The area requirement of
embedding-preserving downward planar polyline drawings of rooted trees is
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O(nlogn) [GGTY6]. However, polyline drawings of trees are not aestheti-
cally pleasing.

If we do not require downwardness (for example, because the tree
is not rooted), better bounds can be achieved for orthogonal drawings.
Namely, O(n log logn) area can be achieved for planar straight-line orthog-
onal drawings of binary trees [CGKT97], and O(n) area can be obtained
for planar orthogonal drawings of trees with maximum degree four [Val81,
Lei80].

Note that the polyline drawing method of [GGT96] and the straight-line
orthogonal drawing method of [CGKT97) construct drawings with a good
aspect ratio (see Section A.4).

A.1.2 Area of Drawings of Planar Graphs

Table A.3 summarizes selected universal upper bounds and existential lower
bounds on the area of drawings of planar graphs. All the bounds assume
grid drawings.

There is an O(n?) existential lower bound on the area of planar grid
drawings of planar graphs. Such a lower bound is achieved, for example,
by a graph consisting of n/3 nested triangles. Inductively, adding one more
triangle to the graph causes both the width and height of the drawing to
increase by at least one unit.

Many techniques are available for constructing planar grid drawings with
O(n?) area:

e Various methods based on orientations and numberings yield polyline
drawings. See, for example, [DT88, DTT92a, Kan96] and Section 4.8.

¢ Orthogonal drawings can be constructed with methods based on orien-
tations and numberings (see, for example, [BK94, Kan96, TT89a] and
Section 4.9) and on network flow (see, for example, [DLV93, GT97b,
Tam87] and Chapter 5).

e Several methods are available for straight-line drawings (see [CN95,
CP95a, dFPP90, Kan96, Sch90]).

e An algorithm in [Kan96] constructs convex drawings, that is, straight-
line drawings such that all the faces are convex polygons, for tricon-
nected planar graphs.

Methods based on the planar separator theorem [LT80], originally de-
veloped for vLsI layout applications, construct (nonplanar) orthogonal grid
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area of drawings of planar graphs.
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[ Graph Drawing Area §, Ref.
planar tessellation Q(n?) O(n?) §4.3, [TT89b]
graph representation
with integer
coordinates
planar visibility Q(n?) O(n?) §4.4, [RTS86,
graph representation TT86)
with integer
coordinates
planar embedding- Q(n?) O(n?) §4.8, [DT8S,
graph preserving DTT92a,
planar polyline Kan96]
grid
planar embedding- Q(n?) O(n?) [dFPP90, Sch90]
graph preserving
planar grid
straight-line
triconnected | embedding- Q(n?) O(n?) (Kan96)
planar preserving
graph planar grid
straight-line
convex
planar planar Q(n?) O(n?) §4.9 §5.5,
graph orthogonal [BK94,
grid DLV93,
GTI7b,
Kan96,
Tam87,
TT89a)
planar (nonplanar) Q(nlogn) | O(nlog®n) | [Val8l,
degree-four | orthogonal Lei80,
graph grid Lei84,
BL84]
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drawings with O(n log2 n) area [Val81, Lei80, BL84). An existential Q(nlogn)
lower bound on the area of (nonplanar) orthogonal grid drawings of planar
graphs is also known [Lei84).

A.1.3 Area of Upward Planar Drawings of Planar Digraphs

Table A.4 summarizes selected universal upper bounds and existential lower
bounds on the area of upward drawings of planar digraphs. All the upper
bounds assume grid drawings.

Techniques based on orientations and numberings yield polyline draw-
ings with O(n?) area. See, for example, [DT88, DT'T92a] and Sections 4.6
and 4.7. As for planar polyline drawings of undirected graphs, quadratic
area is also a lower bound.

For straight-line drawings, the area requirement is exponential [DTT92a,
GT93] (see Section 11.1), even for embedding-preserving drawings of series-
parallel digraphs [BCD*94].

A.1.4 Area of Drawings of General Graphs

Table A.4 summarizes selected universal upper bounds and existential lower
bounds on the area of drawings of general graphs. All the bounds assume
grid drawings.

Techniques based on orientations yield O(n?) area orthogonal grid draw-
ings for graphs of maximum degree four (see, for example, [BK94, PT95,
Val81] and Chapter 8). A quadratic existential lower bound on the area also
holds [Val81].

In order to draw a general graph, we can first planarize it, and then apply
one of the planar drawing methods (see, for example, Section 2.3). This
yields a drawing with O((n + x)?) area, where x is the number of crossings
of the drawing. Note that finding the minimum number of crossings is
NP-hard (see Section A.6). A tighter O(m?) area bound is obtained with
orientation techniques [Bie97, Pap96, PT97b] (see Section 8.3).

A.2 Bounds on the Angular Resolution

Table A.6 summarizes selected universal lower bounds and existential upper
bounds on the angular resolution of drawings of graphs. Recall that it is
desirable to maximize the angular resolution.

For general graphs, a trivial upper bound on the angular resolution is
27/d, where d is the maximum vertex degree of the graph. This fact im-
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Table A.4: Universal upper bounds and existential lower bounds on the
area of upward planar drawings of planar digraphs. We denote by b and ¢

constants such that 1 < b <ec.

| Class Drawing Type Area §, Ref.

planar tessellation Q(n?) | O(n?) | §4.3, [TT89b]
st-graph representation

with  integer

coordinates
planar visibility Qn?) | O(n?) | §4.4, [RTSS,
st-graph representation TT86)

with integer

coordinates
upward pla- | upward planar | Q(b"%) | O(c®) | §11.1, [DTT92a,
nar digraph | grid straight- GT93]

line
reduced pla- | dominance Qn?) | O(n?) | §4.7, [DTT92a]
nar st-graph | (upward)

planar

embedding-

preserving grid

straight-line
upward pla- | upward planar | O(n?) | Q(n?) | §4.6 $4.7,
nar digraph | grid polyline [DTss,

DTT92a]

series- upward planar | Q(b") | O(c®) | [BCD194,
parallel embedding- GT93)
digraph preserving grid

straight-line
series- upward planar | Q(n?) | O(n?) | §3.2, [BCD*94]
parallel grid straight-
digraph line
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Table A.5: Universal upper bounds and existential lower bounds on the
area of drawings of general graphs. We denote the number of crossings in
the drawing by x.

Graph Drawing Area §, Ref. B
degree-four | orthogonal Q(n?) O(n?) | [Val8l1, Sch95)
graph grid
degree-four | orthogonal Qn®) n? (BK94)
graph grid
degree-four | orthogonal Q(n?) 0.76n2 | §8.1, §8.2,
graph grid [PT97c,

PT98]
general orthogonal Qn +x) | O(m?) | §8.3, [Bie97,
graph grid Pap96,

PT97b)

plies an existential O(1/n) upper bound. By placing all the vertices of
the graph at the vertices of a regular n-gon, we obtain a trivial Q(1/n)
universal lower bound. Existential upper bounds dependent only on d are
known for straight-line drawings [FHH*93] and for planar straight-line draw-
ings [GT94).

A coloring technique [FHH*93] can be used to prove the following uni-
versal lower bounds on the angular resolution of straight-line (nonplanar)
drawings: (1/d?) for general graphs and Q(1/d) for planar graphs.

For planar straight-line drawings, (1/n2) angular resolution is achieved
by any planar straight-line grid drawing with O(n) height and O(n) width,
such as those constructed by the algorithms of [dFPP90, Sch90]. On the
other hand, the best known lower bound dependent only on d is Q(1/c?),
where ¢ > 1 is a constant. This is achieved using a circle packing
method [MP94]. Note that there is a wide gap between the known upper
and lower bounds on the angular resolution of planar straight-line drawings.
They depend only on d.

Polyline drawings can optimally achieve an (1/d) angular resolution.
This is obtained through an orientation technique (Kan96). Trade-offs be-
tween the area and the angular resolution are discussed in Section A.5.
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Table A.6: Universal lower bounds and existential upper bounds on the
angular resolution of drawings of graphs. We denote by d the maximum
vertex degree of the graph, and by c a constant such that ¢ > 1.

Class Drawing Type | Angular Resolution | §, Ref.

general straight-line QL) | o(1/n)

graph

general straight-line L) | 0(ks?) [FHH*93]
graph

planar straight-line Q) | o) [FHH*93]
graph

planar planar (&) | 0(/'%2) | [GT4, MPo4]
graph straight-line

planar planar Qdr) | O(1/n) [dFPP90, Sch90]
graph straight-line

planar planar polyline | Q(4) | O( 5 ) [Kan96)

graph

A.3 Bounds on the Number of Bends

Table A.7 summarizes selected universal upper bounds and existential lower
bounds on the total and maximum number of bends in orthogonal drawings.

All the upper bounds are achieved by drawing algorithms based on ori-
entations and numberings (see, for example, [Bie97, BK94, EG95, Kan96,
LMS91, Pap96, PT95, PT97c, PT98, PT97b, TT89a), Section 4.9 and Chap-
ter 8). Lower bounds are discussed in [T'TV91b] and [Bie96b).

A.4 Trade-Off Between Area and Aspect-Ratio

A variety of trade-offs for the area and aspect ratio arise, even when drawing
graphs with a simple structure, such as trees. Table A.8 summarizes selected
universal bounds that can be simultaneously achieved on the area and the
aspect ratio of various types of drawings of trees.

Downward planar drawings are the most natural way of visualizing rooted
trees. Except for binary trees (see [CGKT97] and Section 3.1.5), the exist-
ing straight-line drawing techniques are unsatisfactory with respect to either
the area requirement (see, for example, [RT81] and Section 3.1.2) or the as-



A.4. TRADE-OFF BETWEEN AREA AND ASPECT-RATIO

351

Table A.7: Universal upper bounds and existential lower bounds on the to-
tal number of bends and maximum number of bends per edge in orthogonal
drawings. We consider only connected simple graphs. Some bounds hold
only for n greater than a small constant. For example, in any planar or-
thogonal drawing of K, there is an edge with at least two bends. Similarly,
the octohedron requires an edge with at least three bends.

preserving

Graph Drawing Bends §, Ref.
at least at most | per edge
graph orthogonal m 1 8.3,
[PT97b)
degree-four | orthogonal Mn 2n + 2 2 §8.1, §8.2,
graph [Bie96b,
BK94,
PT95,
PT98]
degree-three | orthogonal in 1 [Bie96a,
graph PT95,
PT98]
planar orthogonal 2n -2 2n +2 2 [BK94,
degree-four | planar TTVI1b)
graph
planar orthogonal 2n -2 Bn+2 3 [EG9s,
degree-four | planar LMS91,
graph embedding- TT89a,
preserving TTVI1b]
biconnected | orthogonal 2n -2 2n+2 3 §4.9, [EG95,
planar planar LMS91,
degree-four | embedding- TT89a,
graph preserving TTVI1b)
triconnected | orthogonal | 3(n-1)+2| 3n+4 2 [Kan96)
planar planar
degree-four | embedding-
graph preserving
planar orthogonal n+1 n+1 1 [Kangs,
degree-three | planar LMPS90]
graph embedding-
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Table A.8: Universal upper bounds that can be simultaneously achieved for
the area and aspect ratio in drawings of trees. We denote by a an aerbitrary
constant such that 0 < a < 1.

| Class Drawing Type | Area Aspect-Ratio | §, Ref.
rooted tree | layered (up- | O(n?) o) [RT81)
ward planar
straight-line)
grid
rooted tree | upward planar | O(nlogn) O(n/logn) | [CDP92,
straight-line Shi76}
grid
binary tree | upward planar | O(nloglogn) | O(1) [CGKT97]
straight-line
orthogonal
grid
rooted upward planar | O(n) O(n®) [GGT96]
degree- polyline grid
O(n?) tree
binary tree | upward planar | O(nloglogn) O("—'l‘:)‘é-'ﬂfﬂ) [GGT96)
orthogonal
grid
binary tree | planar O(nlogn) o) [CGKT97]
straight-
line orthogonal
grid
degree-four | planar orthog- | O(n) o) [Val81,
tree onal grid Lei80]

pect ratio (see, for example, [CDP92, Shi76] and Section 3.1.4). Linear area
can be achieved for polyline drawings, even with a prescribed O(n®) aspect
ratio, where a is an arbitrary constant such that 0 < a < 1 (see (GGT96)).

For nonupward drawings of trees, O(nloglogn) area and O(1) aspect
ratio are achievable in planar straight-line orthogonal grid drawings of binary
trees [CGKT97), and O(n) area and O(1) aspect ratio are possible for planar
orthogonal drawings of degree-four trees [Val81, Lei80]. However, the latter
method does not seem to yield aesthetically pleasing drawings, and is more
suited for vLsI layout than for visualization applications.
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A.5 Trade-Off Between Area and Angular Reso-
lution

There are trade-offs between the area and the angular resolution. Table A.9
summarizes selected universal bounds that can be simultaneously achieved.

Table A.9: Asymptotic bounds for the area and angular resolution that
can be simultaneously achieved in drawings of graphs. We denote by b and

¢ constants such that b > 1 and ¢ > 1.

Class Drawing Type | Area Angular Resol. | §, Ref.
planar straight-line O(d®n) | () [FHH*93)
graph
planar straight-line O(d*n) | (%) [FHH*93]
graph
planar planar on?) | Q) (dFPP90, Sch90)
graph straight-line

grid
degree- planar Q™) | ) (GT94, MP94]
O(1) planar | straight-line
graph
planar planar Q(c®™) | Qp) [GT94]
graph straight-line
planar planar on™) | (&) (MP94]
graph straight-line
planar planar polyline | O(n?) | Q(3) (Kan96)
graph grid

Good simultaneous bounds can be achieved only in nonplanar straight-
line drawings [FHH*93] and planar polyline drawings [Kan96]. Indeed, there
is a class of degree-O(1) planar graphs that require exponential area in any
planar straight-line drawing with optimal Q(1) angular resolution [GT94,
MP94]. This result can be extended to a continuous trade-off between area
and angular resolution in planar straight-line drawings [GT94].
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A.6 Bounds on the Computational Complexity

Results on the computational complexity of planarity testing and embedding
problems are summarized in Table A.10. It is interesting to observe that
apparently similar problems exhibit very different time complexities. For ex-
ample, while planarity testing can be done in linear time [BL76, CNAOS5,
ET76, dFR82, HT74, LEC67], upward planarity testing is NP-hard (see
[GT95) and Section 6.6). Note that for restricted classes of digraphs, up-
ward planarity testing can be performed in polynomial time (see [BDMT9S,
BDLMY94, HL96, Pap95] and Sections 6.3-6.5).

Table A.10: Time complexity of selected graph drawing problems: pla-

narity testing and embedding.

{ Class Problem Complexity | §, Ref. |
general graph minimize crossings NP-hard [GJI83]
two-layered minimize crossings in a | NP-hard | [EW94]
graph with pre- | layered drawing
assigned order
on one layer
general graph maximum planar sub- | NP-hard | [GJ79]

graph
general graph planarity testing and O(n) (BL76,
computing a planar CNAOS85,
embedding ET76,
dFR82,
HT74,
LEC67]
general graph maximal planar sub- | ©(n+m) | (DT89, CHT93,
graph La 94, Dji95)
general digraph | upward planarity testing [ NP-hard | [GT95]
embedded  di- | upward planarity testing | Q(n), O(n?) | [BDLM94]
graph
outerplanar di- | upward planarity testing | Q(n), O(n?) | [Pap95]
graph
embedded outer- | upward planarity testing O(n) {Pap95)
planar digraph
single-source di- | upward planarity testing o(n) [BDMT98,
graph HL96)
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Table A.11: The time complexity of selected graph drawing problems:
straight-line and polyline drawings of planar graphs.

area and O(n) bends

Class Problem Complexity | §, Ref.
planar graph planar straight- line NP-hard | §11.2.2, [EWO0] |
drawing with prescribed
edge lengths
embedded pla- | planar straight-line | NP-hard | [Gar95]
nar graph drawing with prescribed
angles
maximal planar | planar straight-line O(n) [DV93]
graph drawing with prescribed
angles
planar graph planar straight-line | NP-hard [ [Gar95, Kan96]
drawing with maximum
angular resolution
planar graph planar straight-line grid O(n) [CP95a,
drawing with O(n?) area dFPP90,
and (1/n?) angular res- Sch90]
olution
planar graph planar polyline grid O(n) [Kan96]
drawing with O(n?)
area, O(n) bends, and
©(1/d) angular resolu-
tion
planar graph visibility representation O(n) §4.4, §4.5, [DT88,
with O(n?) area DTT92b,
Kan93, RT86,
TT86)
triconnected planar straight-line con- O(n) |Kan96]
planar graph vex grid drawing with
O(n?) area and Q(1/n?)
angular resolution
triconnected planar straight-line O(n) [CONSS, Tut60,
planar graph strictly convex drawing Tut63]
outerplanar planar straight-line sym- Q(n) [MA92]
graph metric drawing
reduced planar [ upward planar  grid O(n) §4.7, [DTT92a]
st-graph straight-line dominance
drawing with minimum
area
upward planar | upward planar polyline O(n) §4.6, §4.7, [DTSS,
digraph grid drawing witn O(n?) DTT92a]
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The technique for constructing orthogonal drawings of graphs presented
in Chapter 8 yields algorithms that run in O(n + m) time (see also [BK97,
PT97b]). The computational complexity of other general techniques for
drawings graphs (see Chapter 2) is difficult to summarize, because each of
the steps of a given technique can be implemented with different algorithms.
Detecting and displaying symmetries in drawings of general graphs is NP-
hard [Man91).

Table A.11 summarizes the computational complexity of several prob-
lems arising in constructing straight-line and polyline drawings of planar
graphs. It is NP-hard to construct planar straight-line drawings with pre-
scribed edge lengths [EW90], prescribed angles [Gar95], or maximum angu-
lar resolution [Gar95, Kan96). Linear time algorithms have been devised for
the following problems:

e testing the existence of a planar straight-line drawing with prescribed
angles for a maximal planar graph [DV93];

o constructing planar grid drawings with quadratic area [CP95a, dFPP90,
Kan96, Sch90);

o constructing planar straight-line strictly convex drawings [CONS5,
Tut60, Tut63]; and

e constructing upward planar grid straight-line dominance and polyline
drawings [DT88, DTT92a).

Constructing orthogonal grid drawings with O(n?) area and O(n) bends
can be done in O(n) time for degree-four graphs (see Chapter 8 and [BK94,
PT95, PT97c, PT98)). If the input graph is planar, planar orthogonal grid
drawings with the same bounds on the area and number of bends, can
be constructed in O(n) time (see Section §4.9 and [BK94, Kan96, TT89a).
Minimizing the number of bends in planar orthogonal drawings is NP-
hard [GT95). However, the problem can be solved in polynomial time if
the input graph has a prescribed embedding (see Chapter 5 and [GT97b,
Tam87]) or has degree, at most, 3 [DLV93]. The above results are summa-
rized in Table A.12.

A polynomial time algorithm, based on linear programming, minimizes
the area of a planar straight-line upward layered drawing of a tree that dis-
plays symmetries and isomorphisms of subtrees [SR83). Note that the draw-
ing constructed by this algorithm is not, in general, a grid drawing. A poly-
nomial time algorithm based, on dynamic programming, minimizes the area
of hv-drawings of binary trees [ELL92]. Many other drawing optimization
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problems are NP-hard for trees, including area and edge-length minimiza-
tion in planar grid drawings [BC87, Bra88, DLT85, Gre89, KvL85, Sto84,
SR83]. Also, it is NP-hard to determine whether a tree can be drawn as the
Euclidean minimum spanning tree of a set of points in the plane [EW96b).
Efficient drawing algorithms that guarantee good universal upper bounds on
the area are known for rooted trees (see Section 3.1 and [CDP92, CGKT97,
GGT93, RT81, Shi76]). The above results are summarized in Table A.13.

Table A.12: The time complexity of selected graph drawing problems:

orthogonal drawings of graphs with degree, at most, four.

[ Class Problem Complexity | §, Ref.
degree-four orthogonal grid drawing ©(n) Chapter 8,
graph with O(n?) area and [BK94,

O(n) bends PT95,
PT97c,
PT98]
planar degree- | planar orthogonal grid O(n) §4.9, [BK94,
four graph drawing with O(n?) area Kan96,
and O(n) bends TT89a)
planar degree- | planar orthogonal grid NP-hard [GT95]
four graph drawing with minimum
number of bends
planar  degree- { planar orthogonal grid | Q(n), O(n®logn) | [DLV93]
three graph drawing with minimum
number of bends and
O(n?) area
embedded pla- | planar orthogonal grid | Q(r), O(n?/4logn) | Chapter 5,
nar degree-four | drawing with minimum [GT97Db,
graph number of bends and Tam87]
O(n?) area
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Table A.13: The time complexity of selected graph drawing problems:
trees. We denote by k a constant such that k£ > 1.

[Class Problem Complexity §, Ref.
tree draw as the Euclidean NP-hard [EW96b]
minimum spanning tree
of a set of points in the
plane
degree-four tree | minimize area in planar NP-hard [Bras8s,
orthogonal grid drawing DLTS85,
KvL85,
Sto84]
degree-four tree | minimize to- NP-hard (BC87,
tal/maximum edge Bra8s,
length in planar orthog- Gre89)
onal grid drawing
rooted tree minimize area in a pla- NP-hard {SR83|
nar straight-line upward
layered grid drawing that
displays symmetries and
isomorphisms of subtrees
rooted tree minimize area in a pla- Qn), O(n*) [SR83]
nar straight-line upward
layered drawing that dis-
plays symmetries and
isomorphisms of subtrees
binary tree minimize area in hv- | Q(n), O(nynlogn) | [ELL92]
drawing
rooted tree planar straight-line up- O(n) §3.1.2,
ward layered grid draw- [RTS81)
ing with O(n?) area
rooted tree planar polyline upward O(n) IGGTI3|
grid drawing with O(n)
area
rooted tree planar straight-line up- O(n) §3.14,
ward grid drawing with §3.1.5,
O(nlogn) area [CDP92,
Shi76,
CGKT97]
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A-SP-Draw, 69

A-SP-Label, 73

e-visibility representation, 129
planar graph, 129-130

acyclic digraph, 4

layered drawing, 269-294
adjacency matrix, 5
adjacent vertices, 4
Adjacent-Exchange, 283
aesthetics, 12, 14

angular resolution, 16

area, 14

aspect ratio, 16

crossings, 14

maximum bends, 16

maximum edge length, 15

precedence relation, 18

symmetry, 16

total bends, 15

total edge length, 15

uniform bends, 16

uniform edge length, 15
Algorithm

A-SP-Draw, 69

A-SP-Label, 73

Adjacent-Exchange, 283

Assign-Upward, 183

Barycenter-Draw, 311

Coffman-Graham-Layering, 275

Constrained-Polyline, 110
Constrained-Visibility, 105

Dominance-Polyline, 127
Dominance-Straight-Line, 116
Embedded-Single-Source-Upward-
Planar-Test, 195
Embedded-Upward-Planar-Test,
191

Fast-Rectangle-Compact, 156
Form-Pairs, 242
Four-Orthogonal, 247
Greedy-Cycle-Removal, 297
Layered-Tree-Draw, 45
Optimal-Orthogonal, 162
Orthogonal-from-Visibility, 131
Orthogonalize, 149
Planarity-Testing, 80
Planarize, 218
Polyline, 107
Right-Heavy-HV-Tree-Draw, 58
Saturate-Face, 185
Split, 284
Tessellation, 97
Tidy-Rectangle-Compact, 152
Visibility, 100

algorithmic step, 18

angle, 180
large, 180
small, 180

annulus wedge, 52

arc
of a network, 144

armature, 333

artificial acyclic orientation, 25
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aspect ratio, 59, 60, 64
Assign-Upward, 183

assigned vertex, 241

attachment, 75

augmentation, 28, 128, 129
augmentation approach, 27-29, 33
axially symmetric, 123

axially isomorphic, 45, 123

barycenter method, 284, 309, 310

Barycenter-Draw, 311

bend, 20

bend-angle, 139

bend-stretching, 164

bend-stretching transformations, 166

biconnected, 8, 74, 75, 78-80, 128-
131, 141, 196-199, 211, 212,
239-241, 247, 250, 255-259,
261

biconnected component, 8

biconnected graph, 8

orthogonal grid drawing, 240-

253

bimodal embedded digraph, 180

bimodal vertex, 180

binary tree, 30, 42

bipartite, 188

bipartite graph, 77

bipartite digraph, 281

layered drawing, 281-293

bipolar orientation, 128, 212

block, 8

block cutvertex tree, 253

bounding rectangle, 56

bounding triangle, 68

branch and cut, 290

canonical subsequence, 183
canonical vertex numbering, 29
child, 42

INDEX

class inheritance diagram, 14
class of graphs, 11
closed component, 67, 121
Coffman-Graham-Layering, 275
collision, 333
column pair, 241
compaction, 21
component, 67, 122
congruent drawing, 20
connected component, 8
connected graph, 8, 33
connector, 258
consistent assignment, 181
Constrained-Polyline, 110
Constrained- Visibility, 105
constraint, 12, 16
alignment, 322
bend, 163
center, 17
cluster, 17, 322
crossing, 216
energy function, 321
external, 17, 216
fixed-subgraph, 321
force, 321
left-right sequence, 17
orientation, 321
orthogonal representation, 163
position, 321
shape, 17, 163
tessellation representation, 97
upward planar polyline draw-
ing, 109
vertex-angle, 163
visibility representation, 103
continuous deformation, 19
convex drawing
planar graph, 311
convex polytope, 132
cost of the flow, 145
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covering digraph, 210
critical path, 112
crossing number, 281
Crossing Reduction, 265
crossing reduction, 23
cutvertex, 8

cycle, 4

Cycle Removal, 265

dart, 141
data flow diagram, 18
decomposition tree, 65
degree, 4
depth, 43
diagonally dominant matrix, 310
digraph, 4, 33
layered drawing, 22-25, 294~
300
orthogonal drawing, 315
upward drawing, 315
direct route, 230
directed cycle, 4
directed graph, 4
directed path, 4
discrete energy function, 316
divide and conquer, 30
divide and conquer approach, 30
dominance drawing, 112
planar st-graph, 126-127
reduced planar st-graph, 112-
126
Dominance-Polyline, 127
Dominance-Straight-Line, 116
downward, see upward
draw-from-scratch scenario, 221
drawing, 33
drawing convention, 12
grid, 12
orthogonal, 12
planar, 13
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polyline, 12
straight-line, 12
strictly upward, 13
upward, 13
dual graph, 8, 91, 155
dummy vertex, 20, 22, 271
dynamic graph drawing, 219

edge-segment, 99

efficiency, 17

electrical force, 305

elementary transformation, 164

embedded graph, 7

Embedded-Single-Source-Upward-
Planar-Test, 195

Embedded-Upward-Planar-Test, 1¢

embedding, 7

embedding-preserving, 48, 51

endvertex, 4

entity-relationship diagram, 18

equilibrium configuration, 309

equivalent drawing, 7

Euclidean distance, 29, 306, 312

Euler’s formula, 7, 78, 147

expansion cycle, 168

external face, 7

face, 7

face-sink graph, 192
Fast-Rectangle-Compact. 156
feedback arc set, 295
feedback arc set problem, 295
feedback set, 295

flag, 333

flagged link graph, 337

flow, 145, 189

force, 305

force model, 29

force-directed approach, 29-30, 33
forest, 193, 194, 212
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Form-Pairs, 242
Four-Orthogonal, 247
free tree, 55

free edge, 223
full-control scenario, 221

gadget, 198
genetic algorithm, 320
good row pair, 252
graph, 1, 3, 6
interactive orthogonal grid draw-
ing, 218-235
mutual nearest neighbor draw-
ing, 339
orthogonal drawing, 18-22
orthogonal grid drawing, 253-
262
planar drawing, 74-81
planarization, 215-217
polyline drawing, 25-29
straight-line drawing, 29-30, 305-
309, 312-324
symmetric drawing, 308
unit disk touching drawing, 339
graph theoretic distance, 312
Greedy-Cycle-Removal, 297
grid drawing, 12
biconnected graph, 240-253
graph, 218-235, 253-262
planar st-graph, 107-112
planar graph, 130-134, 151-
162
rooted tree, 45
series-parallel digraph, 64-74
tree, 338, 339

h-layered digraph, 269
Hasse diagram, 210
height

of a tree, 43

INDEX

of a layered digraph, 269
hexagonal grid, 339
hierarchical approach, 22-25, 33
Hooke’s law, 29, 306
horizontal combination, 56
Horizontal Coordinate Assignment,

265

horizontally adjacent, 96
hv-drawing, 56

rooted tree, 316

incident, 4

incoming edge, 4

indegree, 4

independent vertices, 243

induced subgraph, 5

inheritance, 31

inheritance hierarchy, 31

inner path, 201

interactive drawing, 219
graph, 218-235
planar st-graph, 219
series-parallel digraph, 219
tree, 219

interlace, 77

interlacement graph, 77

interleaved spanning tree, 29

internal vertex, 180

is-a hierarchy, 22

isomorphic subtree, 30

isomorphism, 45, 49, 51, 59, 72,

121, 123, 126

Jordan curve, 6
kernel, 175

lattice, 211

Layer Assignment, 265
layer assignment, 22, 30
layer-by-layer sweep, 280
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layered digraph, 22, 269

layered drawing, 43, 269
acyclic digraph, 269-294
bipartite digraph, 281-293
digraph, 22-25, 294-300
planar layered digraph, 327
rooted tree, 43-55

Layered-Tree-Draw, 45

layering, 269
longest path, 272
requirements, 270

leaf, 42

left contour, 46

left half-plane, 175

left median incoming edge, 260

leftmost path, 95

list of incident edges, 5

local degree, 223

locally minimal energy, 309

logic engine, 331

logic graph, 335

magnetic field, 313

bidirectional, 314

concentric, 313

parallel, 313

radial, 313

unidirectional, 314
marker, 196
maximal planar graph, 28
maximal planar subgraph, 20, 216
maximum Euclidean distance, 337
maximum planar subgraph, 216
median incoming edges, 260
median method, 285
mental map, 219
method, 31
metrics, 20
minimum cost flow problem, 145
minimum energy configuration, 29
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minimum energy state, 320
minimum spanning tree drawing,
339
multiple edge, 3
mutual nearest neighbor drawing
graph, 339
mutual nearest neighbor graph, 339

nearest neighbor graph realization,
339

neighbor, 4

network, 144

Newton-Raphson iteration, 310

no-change scenario, 222

node

of a network, 144

nonseparating cycle, 75

NOT-ALL-EQUAL-3-SAT, 201, 332

NP-complete, 130, 172, 201, 209,
273, 279-281, 295, 331, 338

339
NP-hard, 49, 137, 215, 331, 332,
335, 338, 339

object
of a planar st-graph, 96
open component, 67, 121
Optimal-Orthogonal, 162
ordered set
upward planar drawing, 210-
212
ordered tree, 42
orthogonal drawing, 12
biconnected graph, 240-253
digraph, 315
graph, 18-22, 218-235, 253-
262
planar graph, 130-132, 139-
169
orthogonal representation, 142
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Orthogonal-from-Visibility, 131

orthogonalization, 20

Orthogonalize, 149

outdegree, 4

outer path, 201

outerplanar, 209

outerplanar acyclic digraph
upward planar drawing, 209

outgoing edge, 4

P-node, 66
pairing, 241
pairing technique, 239
parent, 42
parse tree, 65
path, 4
peak, 198
PERT diagram, 14, 16, 22, 111
piece, 75
pivot vertex, 283
planar st-graph, 91
inclusion in, 172
polyline dominance drawing, 126-
127
tessellation representation, 96—
99
upward planar drawing, 212
upward planar polyline grid draw-
ing, 107-112
visibility representation, 99-112
planar st-graphs
interactive drawing, 219
planar acyclic digraph
planar straight-line upward draw-
ing, 327-331
upward planar drawing, 172-
192, 201-209
planar bipartite digraph
upward planar drawing, 212
planar clustered graph

INDEX

planar straight-line drawing, 327
planar drawing, 7, 13
graph, 74-81
ordered set, 210-212
outerplanar acyclic digraph, 209
planar st-graph, 107-112, 212
planar acyclic digraph, 172-212,
327-331
planar bipartite digraph, 212
planar clustered graph, 327
planar graph, 127-134, 139-
169, 309-312, 335-338
planar layered digraph, 327
rooted tree, 43-64
series-parallel digraph, 64-74,
212, 327
single-source planar acyclic di-
graph, 192-200, 209-210
tree, 338
planar drawing with bounded an-
gular resolution
planar graph, 327
planar embedding, 7, 20
planar graph, 7, 33
e-visibility representation, 129-
130
convex drawing, 311
planar orthogonal drawing, 139-
150, 164-169
planar orthogonal grid draw-
ing, 130-132, 151-162
planar polyline drawing, 127-
129
planar straight-line drawing, 309
312
planar straight-line drawing with
bounded angular resolution,
327
planar straight-line grid draw-
ing, 132-134
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tessellation representation, 127-
129
unit length planar straight-line
drawing, 335-338
visibility representation, 127-
132, 165-168
planar layered digraph
planar layered drawing, 327
planarity testing, 74-81
Planarity-Testing, 80
planarization, 20, 25, 27, 216
planarization operation, 216
Planarize, 218
Platonic solid, 29
pole
of a tendril, 201
Polyline, 107
polyline drawing, 12
digraph, 22-25
graph, 25-29
planar st-graph, 107-112, 126~
127
planar graph, 127-129
potential energy, 312
precedence-constrained multiproces-
sor scheduling problem, 273
predecessor, 241, 260
prescribed-region, 69
proper layered digraph, 22, 269
properly visible, 175

Q-node, 65

radial drawing, 52

rectangular refinement, 158

Recursive-Wind-Tree-Draw, 60-64

reduced digraph, 5

reduced planar st-graph
dominance drawing, 112-126

regular graph, 241

395

relative-coordinates scenario, 221
replacement, 25
resolution, 132
resolution rule, 328
right contour, 46
right median incoming edge, 260
Right-Heavy-HV-Tree-Draw, 58
right-pushed embedding, 68
rightmost path, 95
rigid frame, 333
root, 42
rooted tree, 42
hv-drawing, 56-59, 316
layered drawing, 43-55
planar straight-line strictly up
ward drawing, 43-51
planar straight-line strictly up
ward grid drawing, 45
planar straight-line upward gr
drawing, 60-64
radial drawing, 52-55
terminology, 42
rotationally isomorphic, 123
rotationally symmetric, 123
route, 229
row pair, 240

S-node, 66
Saturate-Face, 185
self-loop, 3
separating cycle, 75
separating pair, 9
series-parallel digraph, 30
series-parallel digraph, 64
interactive drawing, 219
planar straight-line strictly ur
ward grid drawing, 64-74
planar straight-line upward di
ing, 327
terminology, 64
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upward planar drawing, 212
shaft, 333
shape, 20, 141
simple graph, 3
simply isomorphic, 44, 123
simulated annealing, 320
single-source planar acyclic digraph
upward planar drawing, 192-
200, 209-210
sink, 4
sink-switch, 182
skeleton, 198
social network, 320
source, 4
source-switch, 182
span, 269
Split, 284
split component, 196
split pair, 196
SPQR-tree, 198
spring, 305
spring force, 305
st-graph, 89
st-numbering, 128
stiffness, 308
straight-line drawing, 12
graph, 29-30, 305-309, 312-
324
planar acyclic digraph, 327-331
planar clustered graph, 327
planar graph, 132-134, 309-
312, 335-338
rooted tree, 43-64
series-parallel digraph, 64-74,
327
tree, 338
straight-line drawing with bounded
angular resolution
planar graph, 327
strictly upward drawing, 13

INDEX

strong-visibility representation, 130
subgraph, 5, 30
subroutine-call graph, 22
subtree, 42
switch, 182
switch-flow network, 202
symmetric drawing
graph, 308
symmetric subtree, 30
symmetry, 45, 49, 59, 72, 121, 123,
126
system of forces, 29

taxonomy of classes of graphs, 31
tendril, 201
Tessellation, 97
tessellation representation, 85
planar st-graph, 96-99
planar graph, 127-129
Tidy-Rectangle-Compact, 152
tile, 96
topological numbering, 89
topological sorting, 89
topology, 19, 23
topology-shape-metrics approach,
18-22, 33
transitive edge, 67
transitive closure, 4, 112
transitive edge, 4
transitive reduction, 5
tree, see rooted tree, free tree, 30,
42
grid drawing, 339
interactive drawing, 219
minimum spanning tree draw-
ing, 339
unit length planar straight-line
grid drawing, 338
triangular grid, 339
triangulation drawing, 28
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triconnected, 29, 31, 130, 191, 192,
196, 198, 205, 206, 311,
328

triconnected graph, 9

two-layer crossing problem, 280, 281,
290

two-layered digraph, 281

unassigned vertex, 241
underlying undirected graph, 9
uniquely drawable graph, 336
unit disk touching drawing
graph, 339
unit length grid drawing
tree, 338
unit length planar drawing
planar graph, 335-338
tree, 338
unit length straight-line drawing
planar graph, 335-338
tree, 338
upward drawing, 13
digraph, 22-25, 315
ordered set, 210-212
outerplanar acyclic digraph, 209
planar st-graph, 107-112, 212
planar acyclic digraph, 172-210,
327-331
planar bipartite digraph, 212
rooted tree, 43-51, 56-64
series-parallel digraph, 64-74,
212, 327
single-source planar acyclic di-
graph, 192-200, 209-210

value of the flow, 145
vertex sequence, 295
vertex-angle, 139
vertex-segment, 99
vertical combination, 56
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vertically adjacent, 96

Visibility, 100

visibility, 25

visibility approach, 25-27, 33

visibility representation, 25, 85, 99
planar st-graph, 99-112
planar graph, 127-132, 165-

168
visible, 85, 175

weakly connected. 121

wedge, 175

weighted topological numbering
optimal, 155

weighted topological numbering, 89
optimal, 89

width, 269

wiggle, 201

z-coordinate assignment, 23



