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        The clinical management of couple infertility suffers from a way of thinking still 
widely diffused today among those working in the fi eld, who often consider the 
understanding of the male factor of infertility too vague and its remedies not yet 
supported by solid scientifi c evidence. Consequently it often happens that couples 
are initiated directly to assisted reproduction techniques (ART), even in the pres-
ence of a male factor, undiagnosed or untreated [ 1 ,  2 ]. Unilateral handling of repro-
ductive care, according to this common way of thinking, should provide the couple 
with the best chances of procreation. In fact, there are four strong reasons to favor 
bilateral management of the infertile couple, including an assessment of the male. 

 Firstly, infertility should be considered a disease. It can be an expression of some-
times serious disorders not yet diagnosed at the time of the search for pregnancy 
[ 3 ,  4 ]. A comprehensive male infertility evaluation may allow to detect signifi cant 
disease(s) that otherwise would have remained undiagnosed if the evaluation of the 
male factor were limited to seminal examination only. Recent studies have suggested 
that male infertility may be associated with reduced longevity [ 5 ] and that male fac-
tor infertility is an increased risk factor for certain malignancies [ 6 ,  7 ]. Furthermore, 
the condition of an infertile male can cause psychological and marital stress [ 8 – 10 ]. 
Quantifying this risk, it has been estimated that for every 15 couples evaluated, in 
1 couple (6 %) the male partner has a signifi cant medical condition [ 11 ]. 
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These fi gures highlight the concept that not to provide infertile males with an appro-
priate diagnostic evaluation should be regarded as an error and/or omission by the 
physician and a missed opportunity, objectively diffi cult to justify. 

 Secondly, a correct andrologic diagnostic workout may unveil  infertility factors 
in about 70 % of infertile males [ 12 ]. Many of such factors are correctable or treat-
able,  with the perspective ideally to allow the couple to spontaneously conceive, but 
also to have better chances of success when exposed to ART [ 13 – 16 ]. 

 Thirdly, scientifi c evidence suggests that considering the high cost, success rates, 
and possible side effects of ART, early efforts to improve male fertility appear to be 
an attainable and worthwhile primary goal. The main results obtained concern evi-
dence-supported indications regarding other causes of male infertility, and their 
early detection and treatment [ 17 ]. 

 Lastly, it should be appreciated that the modern andrologist is no longer a spe-
cialist acting according to personal experience and common sense only. Scientifi c 
evidence and ensuing clinical guidelines are in fact today available. The skills of the 
andrologist today encompass internal medicine, endocrinology, seminology, micro-
biology, molecular biology surgery, and genetics. Pertinent scientifi c societies, 
according to the available peer reviewed literature, have produced guidelines, rec-
ommendations and diagnostic/therapeutic algorythms. Such advances in the andro-
logic fi eld allow today infertile males to be properly evaluated and potentially 
treated, making the andrologist the male infertility specialist that is equipped with 
the latest medical knowledge.    
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2.1            Definition 

 Infertility is defi ned by the World Health Organization (WHO) as “a disease of the 
reproductive system defi ned by the failure to achieve a clinical pregnancy after 
12 months or more of regular unprotected sexual intercourse” [ 1 ]. Infertility can 
also be defi ned on the basis of demographic considerations, such as “an inability of 
those of reproductive age (15–49 years) to become or remain pregnant within 
5 years of exposure to pregnancy” [ 2 ] or as “an inability to become pregnant with a 
live birth, within 5 years of exposure based upon a consistent union status, lack of 
contraceptive use, non-lactating and maintaining a desire for a child” [ 3 ]. The WHO 
also defi nes infertility from an epidemiologic perspective: “women of reproductive 
age (15–49 years) at risk of becoming pregnant (not pregnant, sexually active, not 
using contraception and not lactating) who report trying unsuccessfully for a preg-
nancy for 2 years or more.” No defi nition considers male infertility as a specifi c 
condition, and in only one, contained in the 5th edition of the WHO  Laboratory 
Manual for the Examination and Treatment of Human Sperm , has the male factor 
been cited: “Infertility is the inability of a sexually active, non-contracepting couple 
to achieve pregnancy in 1 year. The male partner can be evaluated for infertility or 
subfertility using a variety of clinical interventions, and also from a laboratory eval-
uation of semen” [ 4 ]. In this statement, reference is made to the need for a compre-
hensive evaluation of the infertile male. 

 Once considered a disorder of inconvenience, infertility has been classifi ed as a 
disease in the US regulatory Americans with Disabilities Act [ 5 ]. Indeed, infertility 
in women was ranked the fi fth highest serious global disability (among rural popu-
lations younger than 60 years) [ 6 ]. This change of view also applies to men. A dis-
ease is any deviation from or interruption of the normal structure or function of any 
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part, organ, system, or combination thereof of the body that is manifested by a 
characteristic set of symptoms or signs. Based on this defi nition, male infertility 
meets these criteria [ 7 ] and thus should accordingly, be considered a disease.  

2.2     Epidemiology 

 While most studies agree that infertility affects approximately 15–20 % of all cou-
ples [ 8 – 11 ], data relating to male infertility are more uncertain. An epidemiologic 
study of male infertility in fact presents a clinical problem because fertility is a 
couple-related concept and male fecundity (i.e., his biological capacity to repro-
duce) is a component of the fertility rate. Both male and female partners make an 
independent contribution to a couple’s fertility, but the outcomes of fertility are only 
fi xed in terms of pregnancy rate or births. It is often diffi cult to determine which 
partner makes the greatest contribution to a couple’s disease, and this diffi culty is a 
feature of infertility, in which there are no pathognomonic fi ndings to confi rm a 
diagnostic certainty. This diffi culty is also an important limitation of epidemiologic 
studies, in which the male factor is often undervalued and underestimated. 

 Epidemiologic studies of male infertility are also severely limited by several 
other factors. First, traditionally the couple’s infertility is addressed by evaluating 
the woman while male diagnostics is often confi ned to a semen analysis. Semen 
quality and quantity are the most widely used biological markers of male fertility 
and are a source of essential information in assessing the fertility of a couple, but 
they correlate with indices of subfertility, such as time to pregnancy (TTP), in addi-
tion to sexual activity and several other conditions [ 12 ]. Semen analysis is poorly 
predictive of the male fertility status, mainly giving information about the status of 
the male genital tract and, thus, only indirect indications of potential male fertility. 
Moreover, semen analysis is an operator-dependent examination and has a high 
coeffi cient of variability [ 13 ]. Classifi cation of the male condition of fertility/infer-
tility based on the seminal characteristics is an infl uential factor that limits the 
understanding of the problem. Furthermore, male infertility is not a specifi c dis-
ease subject to documentation as is, for example, a prostate cancer, which is easily 
detectable within large-scale databases. In addition, it is usually evaluated and 
treated in the private outpatient setting, and clinical data are not stored in the public 
health system databases. Therefore, quantifying the actual burden of the male com-
ponent is often impossible. The consequence is a lack of data with which to track 
diagnoses and treatments of a disease, and diffi culty in quantifying its causes and 
frequency. Another factor limiting the understanding of the epidemiologic prob-
lem, and which contributes to the loss of data related to male infertility, is the fre-
quent use of empiric treatments of male factor infertility, such as the in vitro 
fertilization (IVF) that primarily treats the female partner. In general, IVF pro-
grams require that an exact cause is assigned for the woman, whereas the male 
factor is classifi ed only as present or not present. When a male cause is reported, it 
is almost always based only on seminal data without undertaking a clinical assess-
ment, making data partial and generic [ 14 ,  15 ].  

P. Turchi
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2.3     Incidence 

 The majority of studies examining the incidence and prevalence 1  of male infertility 
have been conducted in specifi c geographic regions. In these studies, the incidence 
of male factor infertility varied considerably depending on the region considered. 
For example, a study conducted in Siberia reported female and male factors to 
account for 52.7 % and 6.4 %, respectively [ 10 ], whereas a Nigerian study revealed 
a high prevalence of male infertility [ 16 ]. In this study, male factor infertility was 
estimated at 42.4 % whereas female factors were estimated at 25.8 %. In 20.7 % of 
couples, both partners were affected. Sexual promiscuity and sexually transmitted 
diseases (and inadequate treatment) have been implicated in the high rate of male 
factors [ 16 ]. Epidemiologic studies are numerous but, even considering all the data 
available today, none is able to defi ne the incidence of male infertility. Male factor 
infertility can vary widely based on geography (e.g., Siberia vs Nigeria) and inher-
ent risk factors. Evaluating existing literature, a component of male factor infertility 
may range widely, from 6 to 50 %, with many groups estimating 30–50 % [ 17 – 20 ]. 
Perhaps the only consistent aspect found in the scientifi c literature is that male infer-
tility is variable with a multitude of contributory factors (race, country, geography, 
socioeconomic variables, environmental and occupational exposures, the fertility of 
the partner, and so forth), many of which require further research to be better char-
acterized. To understand the approximation of these data it should be re-empha-
sized, however, that the true extent of male infertility is probably underestimated 
because of the frequent lack of assessment of the male in the diagnostic workup of 
infertile couples. Eisenberg et al. [ 21 ] have evaluated the frequency of evaluation of 
male infertility using data from the National Survey of Family Growth, and have 
found that 18–27 % of men in infertile couples were not evaluated. Overall, these 
data suggest that male factor infertility is a signifi cant component of global infertil-
ity and needs better quantifi cation, using population-based studies conducted on a 
large scale, to help physicians fi ll these gaps in understanding.  

2.4     Classification 

 The nosology of male infertility, despite the growing attention it receives from medical 
research, is still diffi cult to defi ne. On the one hand a growing burden of the male com-
ponent of the infertile couple is described, with studies reporting a decline in male 
fertility over the years [ 22 – 25 ]. On the other hand, except for some specifi c causes of 
infertility such as cryptorchidism and genetic causes, other infertility factors, such as 
varicocele or genitourinary tract infections, often remain hypothetical and are not 
investigated. Male infertility therefore continues to be classifi ed as being due to poor 
semen quality (oligozoospermia, asthenozoospermia, or teratozoospermia alone or in 

1   Incidence is defi ned as the number of new cases of a disease in a specifi c population at risk over 
a specifi c period of time. Prevalence is defi ned as the total number of cases of disease (both old and 
new) present in a specifi ed population at a single point in time. 
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combination) of unknown causes, which does not contribute to increased knowledge 
about the etiology [ 26 ]. A correct clinical evaluation of the infertile male would, 
instead, identify an infertility factor in 60–70 % of cases (Table     2.1 ). In 30–40 % of 
cases, no cause of male infertility can be found; these men, affected by oligoasthe-
noteratozoospermia syndrome, might be defi ned as having idiopathic male infertility.

   Table 2.1    Male infertility causes and associated factors, and percentage of distribution in 
10,469 patients   

 Diagnosis 
 Unselected patients 
( n  = 12,945) 

 Azoospermic patients 
( n  = 1,446) 

  All   100 %  11.2 % 

 Infertility of known (possible) cause  42.6  42.6 

  Maldescended testes  8.4  17.2 

  Varicocele  14.8  10.9 

  Sperm autoantibodies  3.9  – 

  Testicular tumor  1.2  2.8 

  Others  5.0  1.2 

 Idiopathic infertility  30.0  13.3 

 Hypogonadism  10.1  16.4 

  Klinefelter syndrome (47, XXY)  2.6  13.7 

  XX male  0.1  0.6 

  Primary hypogonadism of unknown cause  2.3  0.8 

   Secondary (hypogonadotropic) 
hypogonadism 

 1.6  1.9 

  Kallmann syndrome  0.3  0.5 

   Idiopathic hypogonadotropic 
hypogonadism 

 0.4  0.4 

  Residual after pituitary surgery  <0.1  0.3 

  Others  0.8  0.8 

  Late-onset hypogonadism  2.2  – 

  Constitutional delay of puberty  1.4  – 

 General/systemic disease  2.2  0.5 

 Cryopreservation due to malignant disease  7.8  12.5 

  Testicular tumor  5.0  4.3 

  Lymphoma  1.5  4.6 

  Leukemia  0.7  2.2 

  Sarcoma  0.6  0.9 

 Disturbance of erection/ejaculation  2.4  – 

 Obstruction  2.2  10.3 

  Vasectomy  0.9  5.3 

   Cystic fi brosis (congenital bilateral absence 
of vas deferens) 

 0.5  3.1 

  Others  0.8  1.9 

  From Jungwirth et al. [ 27 ] and Thonneau et al. [ 26 ]  
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   When we consider male factor infertility, we imply a series of possible causal 
factors divided into pretesticular causes (inadequate stimulation of the testis by 
gonadotropin), testicular causes (diseases of the testis), and post-testicular causes 
(seminal tract obstructions, ejaculatory disorders, erectile dysfunction) (Table  2.2 ). 
As almost none of the causes can be considered a defi nitive factor of infertility, it 
is preferable to defi ne each condition as a male infertility associated factor when-
ever a clinical evaluation of the infertile male is performed  Table  2.3 ). In addition, 
many risk factors are associated with a worsening of semen quality (Table  2.4 ), 
which is attracting great attention and should be considered in the process of col-
lecting the medical history, but for which, at present, the scientifi c evidence is not 
suffi ciently strong.
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3.1            Is Sperm Analysis an Indicator of Male Infertility? 

    Sperm analysis is an important fertility test for infertile couples, and it is suggested 
that this test be performed before any treatments even if a female problem has been 
resolved. It is unacceptable to subject a woman to medical procedures and tests 
without knowing the status of her partner’s semen. Semen analysis has long repre-
sented the standard test for evaluating male fertility and remains a cornerstone; 
however, it is a poor predictor of fertility [ 1 ]. 

 The World Health Organization (WHO) guidelines on sperm analysis are based 
on percentiles, which in turn are based on a group of men who fathered children in 
a time window of 1 year or less. The lower acceptable numbers represent the fi fth 
percentile of this group. In other words, fewer than 5 % of the men who fathered a 
child in the past year had semen parameter measurements below these cutoffs. This 
implies that having better or worse numbers does not necessarily mean that a man 
will or will not be able to father a child. The semen parameters are merely guide-
lines to consider when investigating the potential causes of infertility. 

 Diagnosis is important in the management of male infertility, but “infertility” in 
itself is not a diagnosis but a symptom, like pain. Sperm analysis is only the fi rst 
step; all male patients with abnormal sperm should have a full clinical history taken 
and should undergo a complete clinical examination. 
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 In general, a man is asked to abstain from any ejaculations for 3 to 5 days before 
the test. In the laboratory it is important to use a cup, provided by the lab, because 
some materials are toxic to spermatozoa; if the sperm is obtained at home the  sample 
should be brought to the laboratory within approximately 1 h. 

 The sperm analysis must include the evaluation of both macroscopic and 
 microscopic parameters; if found to be abnormal, the test should be performed on 
multiple ejaculates before characterizing a man as infertile [ 2 ]. 

 The biological variation of seminal parameters further diminishes the clinical 
signifi cance of the most recent WHO reference values. 

 Data indicate that there are variations in semen parameters between men in 
different geographic regions and even between samples from the same individual 
[ 3 ,  4 ].  

3.2     Macroscopic Parameters 

 Semen is made up of more than just sperm; in fact, less than 5 % of semen consists 
of sperm. Healthy semen includes fl uid from the testes, the seminal vesicles, the 
prostate gland, and the bulbourethral glands. 

  Normal ejaculate  is between 1.5 and 6 mL of fl uid. Absence of seminal fl uid 
after orgasm ( aspermia ) occurs in males with diabetic neuropathy, following 
 surgical procedures, or after the intake of sympatholytic drugs. In some of these 
cases, because the nervous plexus is damaged, there may be retrograde ejaculation 
into the bladder, and an examination of the postejaculatory urine should be 
conducted. 

  Volume  <1.5 mL ( hypospermia ) may be due to the loss of a portion of the ejacu-
late during collection, incomplete orgasm, or incorrect abstinence. pH <7.0 may 
indicate absence of seminal vesicles or obstruction/subobstruction of the ejacula-
tory ducts. If pH is >8.0, this may indicate hypogonadism with accessory gland 
impairment, infl ammation, or intake of narcotics. 

  Appearance  and  semen color  seem to be insignifi cant in assessing sperm fertil-
ization potential. 

 A translucent aspect can denote the absence of spermatozoa, whereas an opaque 
sample may indicate the absence of sperm cellular components. Red color may 
indicate an excessive number of erythrocytes ( hematospermia ) and yellow color the 
presence of jaundice. 

 When semen is ejaculated it is thick and gelatinous, to help it adhere to the cer-
vix. The semen eventually liquefi es within 20–30 min of ejaculation.  Absence of 
coagulation  denotes possible obstruction or agenesia of seminal vesicles with sec-
ondary lack of secretions.  Delayed liquefaction  may indicate a problem with the 
prostate, the seminal vesicles, or the bulbourethral glands, also known as the male 
accessory glands. 

  Viscosity  is another parameter that is considered abnormal if the length of a 
thread exceeds 50 mm; in these cases there is low sperm motility and the sperm 
transportation can be compromised.
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3.3         Microscopic Parameters 

3.3.1     Sperm Concentration 

 Sperm count is in millions per milliliter of semen. Normal samples have more than 
15 million spermatozoa per milliliter. 

 The cutoff of 15 million spermatozoa/mL has been suggested in 2010 by the 
WHO as the lower normal value for sperm concentration in an ejaculate. Normal 
semen has more than 39 million in the whole ejaculate [ 5 ]. 

 In a study evaluating two semen specimens from each of the male partners in 765 
infertile couples and 696 fertile couples, subfertile men had sperm concentrations of 
<13.5 × 10 6 /mL [ 6 ]. 

 Another study that evaluated 166 male factor infertility patients and 56 proven 
fertile donors has suggested the concentration of 31.2 × 10 6 /mL as a prognostic fac-
tor for fertility status [ 7 ]. 

 On the other hand, the literature describes signifi cant overlap in threshold sperm 
concentration between fertile and infertile men. 

 Oligozoospermia, a low sperm concentration, is indicated when sperm 
 concentration falls below 5–10 × 10 6 /mL, and may be due to the loss of a portion of 
the ejaculate, partial obstruction of the genital tract, drugs, or genetic abnormalities. 
Other factors include the use of various medications, such as aspirin or  nitrofurantoin, 
and excessive heat exposure. 

 Azoospermia, the absence of spermatozoa, may be caused by complete 
 obstruction of sperm transport, hypogonadism, and iatrogenic causes  (chemotherapy), 
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or idiopathic factors that are most probably genetic in origin. In these cases, the 
semen analysis must be repeated with cytocentrifugation of the sample to confi rm 
the azoospermia [ 8 ].  

3.3.2     Sperm Motility 

 Spermatozoa are graded according to their ability to swim. 
 Sperm that swim in a progressive manner are graded as having rapid or sluggish 

motility. 
 Sperm motility is considered as compromised if the percentage of progressive 

motility falls below 32 % and total (progressive + nonprogressive) motility is below 
40 % within 60 min of sample collection [ 5 ]. Asthenozoospermia, the presence of 
low sperm motility, can occur as a result of prolonged time to processing of collected 
samples. Containers may be toxic to the sperm, and sample exposure to extreme 
temperature or sunlight can determine asthenozoospermia. A long period of absti-
nence can also be a cause of poor sperm motility. Other causes include axonemal 
deformities of spermatozoa, leukocytes, and idiopathic factors. Asthenozoospermia 
is also most commonly seen with antisperm antibodies. The observation of sperm 
clumping combined with low sperm motility is a further indication of the presence of 
antisperm antibodies [ 9 ]. 

 The presence of severe asthenozoospermia necessitates an investigation of sperm 
viability and identifi cation of necrozoospermia (nonviable spermatozoa). 

 A  vitality test  is suggested when the number of immotile sperm is >60 %. This is 
a staining technique that identifi es whether the immotile sperm are dead or just 
immotile, and is reported as percentage vitality. The normal value is 58 % or above.  

3.3.3     Sperm Morphology 

 The shape and size of the sperm are assessed on a stained preparation. The 2010 
WHO guidelines encourage the use of Kruger’s strict criteria, based on the research 
of Kruger and Menkeveld [ 10 ]. 

 In men whose partners are able to conceive within 12 months, a lower normal 
value of 4.0 % has been suggested for morphologically normal spermatozoa [ 5 ]. 

 Debate is still ongoing regarding the morphologic criteria that should be used 
and which one offers the most predictive power for in vivo and in vitro fertility. 

 In advocating the use of the strict criteria, the WHO suggests >4 % as a cutoff 
point for correlation with positive in vitro fertilization (IVF) outcomes [ 11 ]. 

 It is important to note that other studies have found the strict criteria to be of less 
value in predicting IVF outcomes [ 12 ].  

3.3.4     Non-Sperm Cellular Components 

 Immature germ cells are present in oligozoospermia, where the ejaculates usually 
have low sperm counts. 
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 Special attention should be given to the concentration of leukocytes in the seminal 
ejaculate. Leukocytes are normally present in the seminal fl uid, but a concentration 
above 1 × 10 6 /mL is considered abnormal [ 5 ]. A higher than normal white blood cell 
(WBC) count is known as leukocytospermia, which may indicate infection. However, 
some men may have leukocytospermia without any active infection or male fertility 
impairment. In fact, anywhere from 5 to 20 % of men tested may be found to have 
leukocytospermia. A positive correlation has been observed between leukocyte count 
and the total count of microorganisms in semen samples. An optimal sensitivity/
specifi city ratio appears at 0.2 × 10 6  WBC/mL semen    [ 13 ] (Table  3.1 ).

   The excessive presence of leukocytes may be detrimental to spermatozoa, owing 
to their excessive production of reactive oxygen species (ROS) and cytotoxic cyto-
kines [ 14 ]. 

 The presence of erythrocytes is not always indicative of reproductive tract 
 abnormality, while the presence of microorganisms is an indication of genital tract 
infection [ 15 ].   

3.4     Sperm Function Tests 

 Semen analysis is mainly used to estimate male fertility potential, but clinical 
research has shown that normal semen analysis might not refl ect defects in sperm 
function. Sperm function testing is used to determine if the sperm have the capacity 
to reach and fertilize oocytes. A variety of tests is available to evaluate different 
aspects of these functions [ 16 ,  17 ]. 

 Our knowledge of the molecular mechanisms regulating sperm function 
continues to grow, as do the opportunities for new diagnostic tests; for exam-
ple, recent studies emphasize the importance of nuclear DNA integrity and 
compaction [ 18 – 20 ]. 

   Table 3.1    Distribution of values for semen parameters from men whose partners became preg-
nant within 12 months of discontinuing contraceptive use [ 5 ]   

 Parameter (units)   N  

 Centile 

 2.5  5  10  25  50  75  90  95  97.5 

 Semen volume (mL)   1,941    1.2    1.5    2.0    2.7    3.7    4.8    6.0    6.8    7.6  

 Sperm concentration 
(10 6  per mL) 

 1,859  9  15  22  41  73  116  169  213  59 

 Total sperm number (10 6  
per ejaculate) 

 1,859  23  39  69  142  255  422  647  802  928 

 Progressive motility (PR, 
%) 

 1,780  28  32  39  47  55  62  69  72  75 

 Non-progressive motility 
(NP, %) 

 1,778  1  1  2  3  5  9  15  18  22 

 Immotile spermatozoa 
(IM, %) 

 1,863  19  22  25  31  39  46  54  59  65 

 Normal forms (%)  1,851  3  4  5.5  9  15  24.5  36  44  48 

 Vitality (%)  428  53  58  64  72  79  84  88  91  92 
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3.4.1     Test of Sperm Capacitation 

 Capacitation is a series of structural and biochemical changes that spermatozoa go 
through to be able to fertilize an oocyte. 

 All processes take place in the female genital tract, but with capacitation media 
can be induced in vitro. It is thought to have a role in preventing the release of lytic 
enzymes until spermatozoa reach the oocyte. One of the signs of capacitation is the 
display of hyperactivation by spermatozoa. At present, the clinical value of sperm 
capacitation testing remains to be determined [ 21 ].  

3.4.2     Testing for Antibody Coating of Spermatozoa 

 It has been known for more than 100 years that an immune response can be  generated 
against the antigens present on the surface of spermatozoa. The presence of anti-
sperm antibodies can be suggested on the basis of excessive sperm agglutination. 
Antibodies may block the penetration of cervical mucus by spermatozoa, or prevent 
sperm binding and penetration of zona pellucida. 

 Immunologic protection to sperm antigens are provided by the tight junctions of 
Sertoli cells forming the blood-testis barrier. 

 The antigenic capacity of semen can be ascribed to the fact that spermatogenesis 
begins during puberty, when the immune system is able to respond to antigenic 
stimulations. The spermatozoon evokes an immune response when exposed to the 
systemic immune defense system under conditions whereby this barrier gets dis-
rupted and leads to the formation of antisperm antibodies, such as testicular torsion, 
vasectomy, and testicular trauma [ 9 ]. 

 Two current methods of detecting antibodies bound to the surface of motile 
sperm are the Mixed Agglutination Reaction assay (MAR test; only for immuno-
globulin G) and the immunobead-binding assay (for immunoglobulins A, G, 
and M). 

 A positive fi nding of >50 % motile sperm with attached beads is considered to be 
clinically signifi cant [ 22 ,  23 ].  

3.4.3     Tests of Sperm DNA Damage 

 DNA damage is interconnected with poor semen parameters, e.g., low sperm 
 concentration, low motility, and high levels of reactive oxygen species. Fertilization 
in mammals involves the direct interaction of the sperm and the oocyte, fusion of 
the cell membranes, and union of male and female gamete genomes. Although a 
small percentage of spermatozoa from fertile men also possess detectable levels of 
DNA damage, which is repaired by oocyte cytoplasm, there is evidence to show that 
the spermatozoa of infertile men possess substantially more DNA damage and that 
this damage may adversely affect reproductive outcomes [ 24 ,  25 ]. There appears to 
be a threshold of sperm DNA damage, which can be repaired by oocyte cytoplasm 
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(ie, abnormal chromatin packaging, protamine defi ciency), and beyond which 
embryo development and pregnancy are impaired [ 26 ,  27 ]. 

3.4.3.1     Direct Tests 
     (a)    Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate 

nick end-labeling (TUNEL) assay   
   (b)    DNA oxidation measurement      

3.4.3.2     Indirect Tests 
     (a)    Sperm chromatin structure assay (SCSA)   
   (b)    Sperm chromatin dispersion assay   
   (c)    Sperm fl uorescence in situ hybridization analysis (FISH)     

 Overall, even if there are some data to suggest that sperm DNA damage is associ-
ated with poor pregnancy outcome after standard IVF, there is no signifi cant rela-
tionship between sperm DNA damage and fertilization rate or pregnancy outcomes 
at IVF or IVF/intracytoplasmic sperm injection [ 5 ,  28 – 31 ]. 

 According to the Practice Committee of the American Society for Reproductive 
Medicine, signifi cant intraindividual variations exist for the sperm chromatin struc-
ture assay, making precise conclusions problematic [ 32 ].    

3.5     Conclusions 

 Semen analysis is essential in estimating male fertility, but is not a direct measure 
of it. Abnormalities in the semen analysis can occur for numerous reasons, such as 
incomplete collection by the patient. Illness, fever, stress, and various medications 
can also affect sperm quality. 

 Confi rmation of a true sperm problem requires at least a second test. Each vari-
able alone is not a suitable predictor of the fertility status, and has to be considered 
in the context of the other parameters and the clinical setting.     
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        Whenever a couple has not conceived after 1 year of unprotected intercourse, both 
partners should undergo a thorough medical examination. An earlier evaluation is 
suggested in the presence of a known male (i.e., history of cryptorchidism) or 
female (i.e., age over 35 years) infertility risk factor or if a man wishes to know his 
fertility potential [ 1 ]. 

 The justifi cation for male evaluation by an andrologist relies on the fact that a 
male factor is solely responsible in about 20 % of infertile couples and is contribu-
tory in another 30–40 % [ 2 ,  3 ]. It is presently recommended that, to categorize 
infertility, both partners should be investigated simultaneously [ 4 ]. The goals of a 
male evaluation for infertility are to identify causes of infertility that after correction 
could allow natural conception, to identify causes of infertility that after correction 
could increase the chances of success of assisted reproduction technologies (ARTs), 
and to explore underlying conditions that, in additionto being related to infertility, 
could pose a risk for the man’s health. 

4.1     Andrologic Evaluation for Male Infertility: 
The Initial Office Visit 

 The minimum andrologic evaluation for male infertility should include a complete 
medical history, physical examination, and the evaluation of at least two semen 
analyses [ 1 ]. The physical evaluation is usually complemented by the ultrasono-
graphic evaluation of the scrotal content and, if indicated, the prostate. All of these 
tests can be carried out during a single andrologic offi ce visit. Additional 
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investigations may be appropriate, should specifi c problems emerge at the initial 
offi ce visit. These tests chiefl y comprise endocrine evaluation, genetic testing, post-
orgasmic urinalysis, and specialized sperm evaluations (Fig.  4.1 ). The components 
of the andrologic offi ce visit are detailed here.

4.1.1       Medical History 

 The medical history should investigate all possible causes that may affect the fertil-
ity potential of the man. The following areas should be addressed. 

4.1.1.1     Reproductive History 
 Did the man under investigation formerly induce pregnancy or pregnancies with the 
present or other partners? If so, this would suggest that medical attention be focused 
more on the present female partner. Should a history of spontaneous abortions be 
present, this should direct one’s attention to sperm DNA evaluations.  

4.1.1.2     Occupational History 
 Professions at risk of affecting fertility, such as direct and prolonged exposure 
to high temperatures (e.g., kitchen work) and exposure to gonadotoxic agents 
(e.g., pesticides), should be noted. According to the specifi c agent, fertility may 
improve after 1–2 spermatogenetic cycles (3–6 months) after discontinuation of 
exposure.  

4.1.1.3     Lifestyle Risk Factors 
 Smoke [ 5 – 7 ], excessive alcohol [ 8 ] and coffee [ 9 ] intake, recreational drugs [ 10 ], 
elevated body mass index (BMI) [ 11 ,  12 ], and low physical activity [ 13 ] also have 
been linked to impaired male fertility; modifying such risk factors may have a 
 positive impact on male fertility.  

  Fig. 4.1    Andrologic workup 
fl ow chart: *specialized 
sperm evaluations are 
presently considered 
experimental (WHO)       
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4.1.1.4     Andrologic History 
 The possible occurrence of the following conditions should be investigated: 
 undescended testis and age of orchiopexy, testis torsion and outcome, former 
inguinoscrotal surgery such as for inguinal hernia repair, former prostate surgery, 
pubertal/prepubertal mumps-related orchitis, pubertal development, anosmia, 
 former neoplasia and related treatments, current and recent medications, current and 
recent genitourinary symptoms or infections, and recent episodes of high fever.  

4.1.1.5     Sexual History 
 The patient should be asked about libido, quality of erection, intercourse frequency, 
ejaculation, and possible sexual distress related to reproductive diffi culties or timed sex.   

4.1.2     Physical Examination 

 In the man evaluated for infertility, physical examination is more informative by far 
than in the woman: male genitalia are external and easily evaluated, even without 
the aid of ultrasonography. Moreover, the main male sexual accessory gland, the 
prostate, can be digitally palpated through the anus. 

 The andrologic physical evaluation should comprise: evaluation of secondary 
sexual characteristics, presence of (pseudo-)gynecomastia, penis inspection with 
attention to location of the external urethral meatus, and digital rectal examination 
of the prostate. 

 A detailed evaluation of the scrotal content is of paramount importance. Testes 
should be assessed for bilateral presence, location (in place, vs retained, vs ectopic), 
size (according to Prader orchidometer; Fig.  4.2 ), consistency, and presence of 
 nodules. Epididymides should be evaluated for their presence, possible dilatations, 
and associated cysts. Bilateral presence of deferent ducts should be ascertained. 
The presence of varicocele, and its grading [ 14 ], should be sought while in 
 orthostasis (Fig.  4.2 ).

  Fig. 4.2    Prader 
orchidometer       
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4.1.3        Semen Analysis 

 Semen analysis is the cornerstone of the laboratory evaluation of the infertile male, 
and helps to defi ne the severity of the male factor [ 1 ]. The 2010 World Health 
Organization (WHO)  Laboratory Manual for the Examination and Processing of 
Human Semen  details the present standards of semen analysis and the related 
 laboratory protocols [ 15 ], and every laboratory performing semen analyses should 
comply with such standards. 

 In general, laboratory reports of semen analysis defi ne values within normal as 
those values that do not fall below the lower reference limit (fi fth centile). When 
critically evaluating sperm analysis reports, it should be remembered that the fi fth 
centile indicates values below which only 5 % of the observations of fertile men will 
fall, and not the average values of fertile men whose partners had a time to preg-
nancy of 12 months or less [ 15 ]. Table  4.1  lists the latest WHO sperm parameter 
reference values of the 5th and 50th centiles, with the aim of providing the reader 
with a more critical interpretation of sperm analysis.

   It should always be remembered that semen parameters within the 95 %  reference 
interval do not guarantee fertility; nor do values outside these limits, in isolation 
from other clinical data, necessarily indicate male infertility or abnormality: a man’s 
semen characteristics need to be interpreted in conjunction with his clinical 
 information [ 16 ] (Table  4.2 ).

4.1.4        Ultrasonography Evaluation of Testes and Prostate 

 Usually the andrologic physical evaluation of the male is complemented by ultraso-
nographic evaluation of scrotal content and, if indicated, the prostate. 

 Testis sonography adds useful information regarding the structure of testicular 
tissue (Fig.  4.3a : microlithiasis), the possible presence of nonpalpable tumors, 
 accurate defi nition of testes volumes, details of epididymis, and varicocele defi ni-
tion (using Doppler ultrasonography performed while in orthostasis).

   If there are clues of obstructive pathology, a transrectal ultrasonogram may 
unveil an intraprostatic obstructive cyst (Fig.  4.3b ). Obstructive intraprostatic 
cysts should be suspected in the presence of reduced semen volume or even 
 azoospermia, normal-sized testes with distended epididymis, and ejaculatory 
 discomfort/pain.   

   Table 4.1    Distribution 
of values at 5th and 50th 
centiles for semen parameters 
from men whose partners 
became pregnant within 
12 months of discontinuing 
contraceptive use (WHO)   

 Parameter  (Units)  Centile 

 5th  50th 

 Semen volume  (mL)  1.5  3.7 

 Sperm concentration  (10 6 /mL)  15  73 

 Total motility (PR + NP)  (%)  40  61 

 Normal forms  (%)  4  15 

   PR  progressive motility,  NP  nonprogressive motility  
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4.2     Andrologic Evaluation for Male Infertility: 
Additional Investigations 

 Some elements gathered during the initial andrologic offi ce visit may prompt 
further diagnostic workup. The more frequent aspects of additional investigation 
are endocrine status, genetic testing, postorgasmic urinalysis, and specialized 
sperm evaluations. 

   Table 4.2    Some examples of medical history, physical examination, semen analysis data, and 
possible underlying pathology   

 Medical history  Physical examination  Semen analysis  Suspected 

 Former prostate 
surgery 

 –  Reduced/absent 
sperm at orgasm 

 Retrograde ejaculation 

 Anosmia/
delayed puberty 

 Cryptorchidism  –  Kallmann syndrome 

 Inguinal hernia 
repair 

 Distended epididymis  Oligospermia  Deferent ischemic damage 

 Low libido  Altered sexual characters  OAT  Hypogonadism 

 Low libido  Small fi rm testes  Azoospermia  Klinefelter syndrome 

 Postpubertal 
parotitis 

 Small soft testes  Azoospermia/
cryptozoospermia 

 Postviral testicular 
damage 

 –  Varicocele  OAT  Causal role of varicocele 

 Pain at 
ejaculation 

 Prostatic tender “nodule”  Low semen volume  Obstructive intraprostatic 
cyst 

 –  Small testes  Normal volume, 
azoospermia 

 Nonobstructive 
azoospermia 

 –  Distended epididymis  Low volume, 
azoospermia 

 Obstructive azoospermia 

 Recent fever  Painful epididymis  Two million WBC/
mL OAT 

 Infection 

   OAT  oligoasthenoteratospermia,  WBC  white blood cells  

a b

  Fig. 4.3    Possible ultrasonographic fi ndings ( a ): testicular microlithiasis; ( b ): intraprostatic 
obstructive cyst       
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4.2.1     Endocrine Evaluation 

 It is appropriate to perform an endocrine evaluation whenever medical history and 
physical fi ndings suggest an endocrinopathy, in the presence of a low sperm count, and 
if there is concomitant sexual dysfunction. Gonadal activity relies on the  pituitary 
input provided by luteinizing hormone (LH) and follicle-stimulating- hormone (FSH). 
Although a minimum initial hormonal evaluation consists of FSH and total serum 
testosterone, the concomitant assessment of LH, prolactin, and estradiol permits one to 
obtain a more comprehensive picture of the endocrine status of the patient (Table  4.3 ).

4.2.2        Genetic Testing 

 When nonobstructive azoospermia or severe oligozoospermia (sperm count 
<10 × 10 6 /mL) is present, karyotype assessment and a search for microdeletions of 
the long arm of the Y chromosome are recommended [ 17 ]. When bilateral or unilat-
eral congenital absence of the vas is detected, and in the presence of obstructive 
azoospermia or severe oligozoospermia (sperm count <10 × 10 6 /mL), screening for 
CFTR mutations is strongly advised [ 17 ]. If anosmia has been identifi ed during 
medical history taking, and even more so if associated with azoospermia, KAL1 
gene screening is recommended, with the aim of detecting the X-linked variety of 
Kallmann syndrome [ 18 ].  

4.2.3     Postorgasmic Urinalysis 

 This test is indicated in men with low-volume or absent ejaculation at orgasm. The 
presence of any sperm in a postejaculatory urinalysis in these cases is suggestive of 
retrograde ejaculation.  

4.2.4     Specialized Sperm Evaluations 

4.2.4.1     Reactive Oxygen Species 
 Reactive oxygen species (ROS) are generated by both seminal leukocytes and 
sperm cells; although they have a normal physiological role in capacitation and 

   Table 4.3    Simplifi ed endocrinologic differential diagnoses in the presence of altered sperm 
analysis   

 FSH  LH  TT  Interpretation 

 >  >  <  Primary hypogonadism: the problem is the testis 

 <  <  <  Secondary hypogonadism: the problem is hypothalamus/hypophysis 

 >  N  N  Possibly: maturation arrest, germinal aplasia, genetic causes 

 N  N  N  Nonendocrine causes vs functional hypogonadotropic hypogonadism 

   FSH  follicle-stimulating hormone,  LH  luteinizing hormone,  TT  total testosterone,  N  normal  
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acrosome reaction, if in excess they can interfere with sperm function by 
 peroxidation of sperm lipid membranes, and induce DNA damage in both the 
nuclear and mitochondrial genomes [ 19 ]. Chemiluminescent procedures may be 
used to measure ROS production and the redox activity of human 
spermatozoa.  

4.2.4.2     Sperm Chromatin Assessments 
 Several methods have been used to test the normality of sperm chromatin and 
DNA. At present the most used tests are the TUNEL test (terminal deoxynucleotidyl 
transferase-mediated deoxyuridine triphosphate nick-end labeling], the COMET 
assay (single-cell gel electrophoresis), and the SCD (sperm chromatin dispersion) 
test. The results of these tests are correlated with each other [ 20 ] and with sperm 
morphology, motility, and viability [ 2 ]. 

 Although sperm chromatin assessments are often advocated in cases of inability 
to conceive by intercourse, intrauterine insemination, in vitro fertilization (IVF), 
and IVF using intracytoplasmic sperm injection, it is still controversial as to whether 
there is any relationship between the results of these tests and the specifi c 
 reproductive problems [ 2 ]. 

 Of note, currently both ROS determinations and sperm chromatin assessments 
are considered research procedures [ 2 ].    

4.3     Thinking of the Man, Not Only of the Sperm: Potentials 
of Infertility Male Workup to Detect Underlying 
Abnormalities and Risk Factors for Male Health 

 It has been recently reported that infertile men are overall less healthy than fertile 
men [ 21 ,  22 ] and that poor semen quality may be a biomarker of general health, 
associated with worse survival [ 22 ]. 

 While the above studies refer chiefl y to comorbidities are not typically related 
to male infertility, two specifi c conditions more prevalent in infertile men are 
directly linked to male fertility: testicular germ cell tumors and elevated 
BMI. Testicular cancer has a 20-fold greater incidence in infertile men than in men 
with normal fertility [ 23 ], and semen parameters of men affected with testis tumor 
are altered in comparison with healthy controls [ 24 ]. Elevated BMI is in turn known 
to negatively correlate with sperm density [ 25 ], sperm motility, and sperm chroma-
tin integrity [ 26 ]. 

 Two other risk factors for poor male fertility, namely cigarette smoke [ 5 ] and low 
physical activity [ 25 ], though not more prevalent in the infertile male population, 
are worth mentioning because, along with elevated BMI, they are also well-known 
cardiovascular risk factors. 

 The andrologic evaluation of the infertile man has the extra benefi t of opening a 
window on the general health of the man besides his fertility, with the potential to 
discover life-threatening conditions such as testis cancer, and to identify cardiovas-
cular risk factors which, if corrected, may positively affect the health quality and 
survival of affected men (Table  4.4 ).
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4.4        When to Refer, How to Refer: Key Elements 
of the Referral Letter 

 At the conclusion of the andrologic diagnostic workup, the management of the male 
patient will depend on both the outcome of the workup itself and the possible pres-
ence of female infertility risk factors, including advanced female age (>35 years). If 
a female factor is present, priority should be given to a male treatment strategy that 
does not delay access to assisted conception programs. 

 The possible scenarios are summarized in Table  4.5 .
   As outlined in Table  4.5 , a frequent outcome of the andrologic workup is a refer-

ral for assisted conception. When this occurs, it is important to write an appropriate 
referral letter to the assisted reproduction colleagues to adequately summarize the 
situation regarding the male partner. 

 Recently, an Italian panel of andrologists and gynecologists proposed a sche-
matic referral letter, aimed to synthetically provide the ART physicians with all the 
key clinical information concerning the male partner [ 31 ]. These fi ve sections of the 
proposed referral letter are outlined here.

    1.     Heading : This section should report the name and age of both partners   
   2.     Reason for referral . This section should summarize the male reproductive his-

tory: for how long the man has tried to conceive with the present partner, and 
possible formerly induced pregnancies (and related outcomes) with the present 
and, if pertinent, previous partners. Furthermore, results of the male diagnostic 
evaluation should be summarized: nontreatable male factor infertility versus 
potentially treatable male factor infertility but suspect/presence of female factor 
infertility, versus unexplained infertility   

   3.     Summary of male workup : Diagnostic conclusions (i.e., varicocele, hypergonad-
otropic hypogonadism, etc.)   

  Table 4.4    Life expectancy, 
principal conditions, and risk 
factors more prevalent in 
infertile men/men with poor 
semen parameters, versus 
fertile men  

 Conditions  Reference 

 Increased mortality a   [ 22 ] 

 Testicular germ cell tumors  [ 23 ,  27 – 29 ] 

 Colorectal cancer  [ 30 ] 

 Melanoma  [ 30 ] 

 Prostate cancer  [ 30 ] 

 Cardiovascular disorders  [ 21 ] 

 Pulmonary diseases  [ 21 ] 

 Connective tissue disorders  [ 21 ] 

 Liver diseases  [ 21 ] 

 Diabetes mellitus  [ 21 ] 

 Body mass index  [ 21 ] 

   a Increased mortality was due to a wide range of diseases and not 
particularly diseases related to lifestyle or socioeconomic status  
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   4.     Indications on how to improve sperm quality : For example, removal of identifi ed 
risk factors (cigarette smoke, elevated BMI, etc.), specifi c treatments that may 
parallel ART (e.g., varicocele correction, genital infl ammation treatment)   

   5.     Special notes ,  in case of azoospermia : Type of azoospermia (obstructive vs 
 nonobstructive), results of performed genetic testing, and suggestion on the 
most appropriate sperm retrieval procedure, in light of the specifi city of the case    

      Conclusions 
 Male andrologic workup is mandatory when addressing a couple’s reproductive 
diffi culties. The presence of ejaculated sperm, even if sperm values are not below 
the lower recommended WHO thresholds, should not prevent the male from 
being evaluated by means of medical history, physical examination, and, possi-
bly, ultrasonography. 

 Male investigation can allow identifi cation of conditions and risk factors 
which, when corrected, may improve the chances of both spontaneous concep-
tion and success with ART. Furthermore, male andrologic workup may unveil 
underlying conditions that pose a previously unknown risk for male health. 

 The extent of male diagnostic investigations must be always appraised in light 
of the possible presence of female factor infertility.     
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5.1            Introduction 

 The male factor of couple infertility is associated with impaired spermatogenesis 
in the majority of cases. Because spermatogenesis is a complex process that 
develops immature stem cells into mature gametes, it is obvious that, independent 
of the etiology of infertility, there exist harmful agents that are able to exacerbate 
every cause of infertility. Birth is the intended product of intercourse between a 
heterosexual couple and subsequent conception, so knowledge of the male part-
ner’s fertility conditions is mandatory before an andrologist prescribes any ther-
apy. For this reason a general therapeutic approach to male infertility exists, 
independent of the cause that generates infertility. This general approach involves 
evaluation of the therapeutic measures that should be used for all infertile men.  

5.2     Sperm Analysis 

 Male fecundity (defi ned as the potential male capability to induce pregnancy, inde-
pendent of female conditions) is related to sperm count. However, this relationship 
is hyperbolic and achieves a plateau at about 30 × 10 6  spermatozoa/mL, 50 % class 
A motility, and 14 % typical forms (strict criteria) [ 1 – 3 ]. Thus in attempting 
to improve couple fertility, the more severe the dyspermia, the more crucial is 
its therapy.  
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5.3     Female Age 

 Initially, extensive international data showed fairly consistent age-related risks of 
Down syndrome live births in different ethnic groups [ 4 ]: approximately 1 in 1490 
at age 20–24 years, 1 in 200 at 35 years, 1 in 60 at 40 years, and 1 in 11 at 
49 years. The observed trisomic births, however, were soon found to be only the 
tip of the iceberg. Older women have an extremely high rate of pregnancy loss of 
both chromosomally normal and abnormal conceptions, and increased rates of 
spontaneous abortions occur at ages similar to those of Down syndrome births. 
Moreover, spontaneously aborted conceptions that are chromosomally abnormal 
are mostly trisomic [ 5 ]. 

 The reproductive timeline for women is complex. A woman is born with all the 
oocytes she will ever have, and only 400–500 are actually ovulated [ 6 ]. As the num-
ber of oocytes declines, a woman’s menstrual cycle shortens, infertility increases, 
and menstrual irregularity begins 6–7 years before the menopause. Increasing age 
increases a woman’s time to pregnancy. When under the age of 30, a woman’s 
chances of conceiving may be as high 71 %; when over 36, it may only be 41 % [ 7 ]. 
The chances of becoming pregnant and being able to maintain a pregnancy are also 
affected. Matorras et al. reported that in a population of women, the number of 
infants born begins to exponentially decrease after the age bracket of 35–39 
( n  = 89,287) [ 8 ]. The odds of becoming pregnant and maintaining a pregnancy are 
believed to be connected to numerous factors, including euploidy and dehydroepi-
androsterone [ 9 ]. 

 These data imply that correction of male fertility should be performed in relation 
to female age, reserving correction of less severe dyspermias for couples whose 
female partner is younger than 35 years, with the exception of couples who refuse 
assisted reproduction. Further correction of dyspermias in couples whose female 
partner is older than 40 is a non sequitur.  

5.4     Diet 

 Sperm morphology and motility are linked to dietary intake of vitamin C, crypto-
xanthin, carotenoid, and lycopene [ 10 ,  11 ]. Consuming a diet rich in carbohydrates, 
fi ber, folate, and lycopene, in addition to fruit and vegetables, correlates with 
improved semen quality [ 12 ]. Consuming lower amounts of both proteins and fats 
are more benefi cial for fertility [ 13 ]. In other words, the Mediterranean diet improves 
male (and female) fecundity [ 14 ].  

5.5     Smoking Habits 

 Men who smoke before or during attempts to conceive risk decreasing their fertility 
(odds ratio 1.6) in comparison with nonsmokers [ 15 ]. Men who smoke tend to have 
a decrease in total sperm count, density, and motility, normal sperm morphology, 
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and semen volume [ 16 ,  17 ]. Smoking may reduce the mitochondrial activity in sper-
matozoa, and lead to a decreased fertilization capacity [ 18 ]. Smoking also can affect 
the DNA integrity of the sperm, with several studies noting an increase in DNA 
damage [ 19 ].  

5.6     Caffeine 

 It is likely that caffeine intake does not affect spermatogenesis [ 20 ].  

5.7     Alcohol 

 In men, alcohol consumption has been linked with many negative side effects such 
as testicular atrophy, decreased libido, and decreased sperm count [ 17 ,  21 ,  22 ]. It is 
likely that sperm count decreases because of a link between alcohol, oxidative 
stress, and infertility. Oxidative stress has been found to systematically increase 
with alcohol consumption [ 23 ].  

5.8     Stress 

 Stress is defi ned as mental/emotional tension resulting from a poor/absent compli-
ance to a life situation. 

 Stress, whether physical, social, or psychological, is a prominent part of any 
society. Infertility itself is stressful, owing to the societal pressures, testing, diagno-
sis, treatments, failures, unfulfi lled desires, and even fi scal costs with which it is 
associated [ 17 ]. 

 Males who experienced more than two stressful life events before undergoing 
infertility treatment were more likely to be classifi ed below World Health 
Organization standards for sperm concentration, motility, and morphology [ 24 ]. 
Stress has a signifi cant impact on sperm density, total sperm count, forward motil-
ity, morphology, and DNA fragmentation [ 24 ,  25 ]. Stress and depression are thought 
to reduce testosterone and luteinizing hormone pulsing [ 24 ,  26 ]. Coping with vari-
ous lifestyles also affects fertility. It was reported that actively coping with stress, 
such as being assertive or confrontational, may negatively affect fertility. These data 
indicate that planning sex in accordance with ovulation day(s) should be ruled out 
[ 27 – 29 ].  

5.9     Exercise 

 Physically active men who exercised at least three times a week for 1 h typically 
scored higher in almost all sperm parameters in comparison with those who partici-
pated in more frequent and rigorous exercise [ 30 ,  31 ].  
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5.10     Illicit Drugs 

 Studies of the effects of illegal drugs on human fertility have been scarce because of 
ethical considerations, and also subject to under-reporting and bias attributable to 
the characteristics of the population being studied, such as low socioeconomic sta-
tus or improper prenatal care [ 32 ]. The use of illicit drugs appears to have a negative 
impact on fertility. 

5.10.1     Marijuana 

 Marijuana acts both centrally and peripherally to cause abnormal reproductive func-
tion. Marijuana contains cannabinoids, which bind to receptors located on the vas 
deferens and inhibit its motility. In males, cannabinoids have been reported to 
reduce testosterone released from Leydig cells, modulate apoptosis of Sertoli cells, 
decrease spermatogenesis, decrease sperm motility, decrease sperm capacitation, 
and decrease acrosome reaction [ 33 ].  

5.10.2     Cocaine 

 Cocaine is a stimulant of both the peripheral and central nervous systems that causes 
vasoconstriction and anesthetic effects. It is thought to prevent the reuptake of neu-
rotransmitters [ 34 ], possibly affecting behavior and mood. Long-term users of 
cocaine claim that it can decrease sexual stimulation; men found it harder to achieve 
and maintain erection and to ejaculate [ 35 ]. Cocaine has been demonstrated to 
adversely affect spermatogenesis, which may be due to increases in serum prolactin 
and decreases in serum total and free testosterone [ 36 ,  37 ].  

5.10.3     Opiates 

 Opiates represent another large group of illicit drugs. Opiates such as methadone 
and heroin are depressants that cause both sedation and decreased pain perception 
by infl uencing neurotransmitters. In men taking heroin, sexual function became 
abnormal and remained so even after cessation [ 38 ]. Sperm parameters, most notice-
ably motility, also decrease with the use of heroin and methadone [ 37 ,  39 ].   

5.11     Radiofrequency Electromagnetic Waves (Cell Phones) 

 Several studies demonstrate negative effects of radiofrequency electromagnetic 
waves generated by cell phones on sperm count. Cell phone usage has been linked 
with decreases in progressive motility of sperm, decreases in sperm viability, 
increases in reactive oxygen species, increases in abnormal sperm morphology, 
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and decreases in sperm counts [ 40 – 42 ]. One study evaluating 52 men demonstrated 
that those who carried a cell phone around the belt line or hip region were more 
likely to have decreased sperm motility in comparison with those who carried their 
cell phones elsewhere or did not carry one at all [ 42 ].  

5.12     Male Fertility and Longevity 

 Stress, alcohol, prohibited drugs, smoking habit, Mediterranean diet, and physical 
exercise are all linked to life expectancy and sperm count. This chapter elucidates why 
sperm quality can be used as an index of good health and longevity in males [ 43 ].  

5.13     Residual Fertility 

 Residual fertility is defi ned as the probability of a couple to conceive after a period 
of desiring a child. The longer the period, the lower is the residual fertility (ie, pos-
sibility to conceive naturally), even in the case of a correct therapeutic approach and 
an increase in sperm count [ 44 ].     
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6.1            Definition 

  Azoospermia     is defi ned as the complete absence of sperm in the ejaculate even after 
centrifugation. Yet even a patient with rare nemasperms after centrifugation in the 
seminal fl uid test is erroneously considered  azoospermic . This latter condition is 
instead more correctly defi ned as  cryptozoospermia . Instead, severe  oligospermia  is 
considered a sperm count less than 5 millions/ml.  Azoospermia  must also be 
 differentiated from  aspermia , which is, instead, the complete absence of seminal 
fl uid emission during orgasm. In this situation the causes are very different and 
depend on defects of the bladder neck and urethral and ejaculatory ducts system 
(retrograde ejaculation, urethral stricture, neurological alterations) [ 1 ].  

6.2     Epidemiology and Classification 

 Approximately 15 % of couples are unable to procreate after a year of unprotected 
intercourses and are therefore defi ned  infertile . An isolated male factor is present in 
about 20–30 % of these cases, while in another 20–30 %, there is an association 
between the male and female factors [ 2 ]. Therefore, approximately in half of the 
cases of couple infertility is the male factor present. The prevalence of azoospermia 
is approximately 1 % among the general male population and ranges between 10 
and 15 % among infertile men [ 3 ]. 

 The different types of azoospermia are commonly classifi ed in two large groups: 
obstructive azoospermia (OA) caused by an obstruction of the passage of sperm 
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along the seminal pathways and secretory or non-obstructive azoospermia (NOA) 
due to a sperm production defi cit. The latter can then be subdivided into pre- 
testicular and testicular according to whether the problem derives from an alteration 
of the hypophisary hormonal system which stimulates spermatogenesis (very rare 
condition) or from damage intrinsic to the testis (more frequent condition). The 
prevalence of OA and NOA regarding the total of the different types of azoospermia 
is very variable according to authors and geographical areas. In countries or cultures 
where vasectomy is very diffused as a contraception system, a prevalence of slightly 
higher OA (40 %) [ 4 ] can be seen compared to countries, like Italy, where this is 
rarely done (25–30 %) (Franco G.    2008, unpublished data). It is clear, therefore, that 
on the whole, the NOAs constitute the majority of the different types of azoosper-
mia (60–75 %). As will be seen in this chapter, even OA and NOA prognosis is 
rather different and more favourable to OA.  

6.3     Aetiology 

6.3.1     Obstructive Azoospermia 

 Obstructive azoospermia is usually classifi ed according to the location of the 
obstruction (Table  6.1 ).

6.3.1.1       Testicular Obstruction 
 The isolated form, with total absence of spermatozoa in the epididymis and normal 
spermatogenesis, is an extremely rare condition, more often due to a congenital 
malformation (complete detachment of testicle from epididymis, vasa efferentia 
and rete testis atresia). The form associated with patchy epididymal obstruction 
with the presence of some epididymal tubules containing spermatozoa is more fre-
quent and usually due to an acquired post-phlogistic    base.  

6.3.1.2     Epididymal Obstruction 
 Obstruction usually happens in the epididymis. It affects about 30–67 % of 
azoospermic men with normal serum FSH values. The congenital form of it most often 
appears as bilateral agenesis of the vas deferens (CBAVD), which is associated with a 
cystic fi brosis gene mutation in 82 % of cases. This form is often correlated to the 
absence of the distal part of the epididymis (body and tail) and to the agenesis or 
atresia of the seminal vesicles. Other congenital forms include Young’s syndrome which 

   Table 6.1    Obstructive azoospermia: obstruction location   

 Testicular obstruction (often congenital, extremely rare) 

 Epididymal obstruction (post-fl ogistic, postvasectomy, congenital, Young’s syndrome) 

 Vas deferens obstruction (congenital: partial or complete aplasia; iatrogenic: vasectomy, 
hernioplasty) 

 Ejaculatory duct obstruction (cysts, post-fl ogistic stenosis) 
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typically is associated with chronic pulmonary infections, normal spermatogenesis 
and dilation of the head of the epididymis which is full of spermatozoa and amor-
phous matter, with the absence of spermatozoa in the epididymal corpus region. 
Among the acquired forms, the most frequent are the obstructions from sexually 
transmitted infections (gonococcus, chlamydia) and the postvasectomy obstructions 
from blow-out of the epididymal tubule due to secondary hyperpressure.  

6.3.1.3     Vas Deferens Obstruction 
 The most common cause of congenital obstruction is vas deferens agenesis, almost 
always associated with the cystic fi brosis gene mutations. In Italy, it has been calcu-
lated that about one out of three cases of obstructive azoospermia is caused by vas 
deferens agenesis. The most frequent form is the complete bilateral one in which the 
vas cannot be palpated by physical examination, but conditions of partial or uni-
lateral atresia can be observed in which at least one vas deferens or a section of it 
can be palpated. Unilateral complete or partial aplasia is associated with irregularities 
of the ejaculatory ducts with to contralateral renal ageneses in 80 and 26 % of cases, 
respectively. 

 In the countries where vasectomy is widespread, the most common cause of 
acquired obstruction is represented by vasectomy as a contraception method. In the 
United States, almost 500,000 vasectomies are performed per year and approximately 
2–6 % of the patients require a conversion (from 10 to 30 thousand reversals/year). 
In Italy, vasectomy is rarely used; therefore, it is a very less frequent cause of 
obstruction. Even inguinal hernioplastic surgery can induce vas deferens obstruction 
via accidental direct damage of it or of its blood supply during surgery. Fibroblastic 
reaction induced by contact with the polypropylene of the mesh can also determine 
delayed vas obstruction.  

6.3.1.4     Obstruction of the Ejaculatory Ducts 
 This represents almost 10 % of the obstructive forms of azoospermia and can be 
congenital (cyst, atresia) or acquired (post-fl ogistic or dysfunctional). 

 The utricle, Mullerian and Wolffi an cysts are localized in the prostate between 
the ejaculatory ducts and can be communicating or noncommunicating with the 
semen pathways and normally cause obstruction by compressive phenomena and 
lateralization of the ejaculatory ducts themselves. Postinfl ammatory obstructions, 
decisively more rare, are secondary to acute, subacute or chronic prostatovesiculitis. 
When complete, the ejaculatory duct obstructions are associated with a reduced 
volume of seminal fl uid    (<1.5 ml) with reduction or absence of  fructose, acid pH 
and dilatation of the seminal vesicles.   

6.3.2     Non-obstructive Azoospermia 

 The non-obstructive forms of azoospermia (secretory) are usually classifi ed according 
to their cause (Table  6.2 ). In almost all cases, the cause is at the gonad level ( testicular 
cause ), while very rarely, only in the case of hypogonadotropic hypogonadism is 
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azoospermia attributed to an alteration of the hypophisary gonadotropin secretion 
( pre-testicular cause ).

6.3.2.1      Idiopathic 
 Unfortunately, in almost half of the non-obstructive types of azoospermia, it is 
 diffi cult to pinpoint the cause connected to the condition, and therefore we speak 
about an idiopathic or unknown cause. Many of these situations probably have a 
base of genetic defects which are still unknown, congenital aberrations or a previous 
unknown exposition to gonadotoxins.  

6.3.2.2    Genetic 
 Karyotype aberrations can be recognized in 10–15 % of azoospermia cases. 
 Klinefelter’s syndrome  is characterized by the presence of a supernumerary X 
chromo some (47 XXY). One male out of 600 is affected. The patients manifest small 
and hard testicles, gynecomastia, azoospermia and high levels of gonadotropins. 
The only possible therapy is testicular sperm extraction (TESE) for intracytoplasmic 
sperm injection (ICSI). Apparently the best probabilities of success are in younger 
patients in whom spermatogenesis may not be entirely compromised. 

 Thanks to recent techniques of molecular biology (PCR), it has been possible to 
demonstrate that almost 5–10 % of azoospermic patients are a carriers of a  microde-
letion of chromosome Y . This is characterized by alterations of the genes localized 
in the AZF region (azoospermia factors a, b and c) which have a determining role in 
spermatogenesis. The complete deletion of the AZFa and AZFb loci is always asso-
ciated with the absence of spermatozoa in the testicles and therefore with a worse 
fertility prognosis [ 5 ,  6 ].  

6.3.2.3    Cryptorchidism 
 Cryptorchidism is the undescent of one or both testicles into the scrotum, often 
linked to a development defi cit of the testicles and their ligament connections.  In 
8 % of cases the testicle remains in the abdomen, in 70 % in the inguinal canal and 
in 20 % in the pre-scrotum. The greater the degree of retention, the more serious the 
testicular dysfunction; there is an absence of germinative cells in 20–40 % of testi-
cles in the inguinal or pre-scrotum region and in 90 % of testicles in the intra- 
abdominal location. In the case of bilateral cryptorchidism, the probability of 
infertility is 50–90 %, while in the case of monolateral forms, the probability is 
20–70 %. Azoospermia caused by cryptorchidism is almost always due to 

  Table 6.2    Non-obstructive 
forms of azoospermia: 
aetiological classifi cation  

 1. Idiopathic 

 2. Genetic 

 3. Cryptorchidism 

 4. Testicular torsion 

 5. Orchitis (viral or bacterial) 

 6. Varicocele 

 7. Chemo- or radiotherapy, medicines, toxics 

 8. Hypogonadotropic hypogonadism 
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alterations of  spermatogenesis connected to the testicular dysgenesis syndrome or 
due to damage caused by the elevated temperature the retained testicle is exposed 
to, in particular when not operated on immediately (before 1–2 years of age). Other 
possible causes of azoospermia are epididymal aberrations often associated with the 
cryptorchid testicle (didymo   -epididymal detachment of testicle from epididymis) 
which could theoretically cause an obstructive-based azoospermia or mixed secre-
tory-obstructive azoospermia.  

6.3.2.4    Testicular Torsion 
 Testicular torsion can result in azoospermia in the case of bilateral torsion, in mon-
orchid patients or when contralateral testicle is already compromised by other 
conditions.  

6.3.2.5    Orchitis 
 The parotitis virus can be responsible for orchitis in almost 30 % of affected patients, 
above all in the post-puberty age, with bilateral interest in 10–30 % of cases. As a 
result of the infection, an atrophy or permanent testicular hypotrophy can occur 
with consequent azoospermia. The introduction of the anti-parotitis vaccination has 
made this event rare. Other bacterial and viral infections or infections from other 
microorganisms can cause non-obstructive azoospermia from direct damage of 
spermatogenesis. These germs, however, more frequently cause epididymitis which 
determine a condition of obstructive azoospermia.  

6.3.2.6    Varicocele 
 The relationship between varicocele and azoospermia is still a matter for discussion. 
According to most authors, the two conditions could be coexistent only, but for 
 others there is a direct correlation between them. On the basis of this, some suggest 
the treatment of varicocele which can lead to the reappearance of spermatozoa in 
the ejaculate, particularly in the presence of a histological pattern of a late matura-
tion arrest or hypospermatogenesis [ 7 ].  

6.3.2.7    Exposure to Drugs, Toxic Substances and Radiation 
 Chemotherapy can exercise a negative effect on spermatogenesis. The most affected 
cells are the spermatogonia and spermatocytes up to the preleptotene stage. The 
type of drug, its dosage and patient age at time of treatment assume a relevant 
importance. It seems that alkylating    agents and procarbazine are the most toxic for 
the testicles. During chemotherapy many patients become azoospermic with elevated 
levels of serum FSH, but the majority of them recover a normal spermatogenesis 
months or years afterwards. Instead, in other patients, azoospermia is permanent. 
Also radiation exposure plays a negative role on spermatogenesis; in fact, spermato-
gonia and spermatocytes are very sensitive to this. Lastly, many toxic substances 
can cause a serious reduction in spermatogenesis, leading to azoospermia.  

6.3.2.8    Hypogonadotropic Hypogonadism 
 This is a very rare cause of azoospermia (less than 1 % of cases), even if it is the 
only condition treatable with medical therapy. In hypogonadotropic hypogonadism 
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the alterations of the hypothalamus or the pituitary gland compromise the correct 
release of gonadotropins, determining seminal alterations that extend to cases of 
azoospermia. The Kallmann syndrome is characterized by hypogonadotropic hypo-
gonadism associated with anosmia. An insuffi cient secretion of GnRh from the 
hypothalamus with consequent gonadotropin reduction and secondary testicular 
insuffi ciency is recognized as the cause of this syndrome. A delayed puberty is a 
pathognomonic sign. In this condition testicles are usually very small, under 2 cm 
in longitudinal diameter. Other pathologic conditions affecting the hypophysis dis-
eases such as ischaemia, tumours or infections can cause hypogonadotropic hypo-
gonadism. The Prader-Willi syndrome is characterized by hypogonadism, obesity, 
muscular hypotonia, mental retardation, reduced development of hands and feet and 
short stature. These patients have an FSH and LH defi cit caused by an insuffi ciency 
of GnRh. Therapy for these types of hypogonadism is pharmacological with admin-
istration of gonadotropins sometimes associated with GnRh.    

6.4     Diagnosis 

 A careful and accurate andrological evaluation can immediately pinpoint the  genesis 
of azoospermia: personal history, for example, can reveal previous cryptorchidism, 
testicle infections (orchitis, mostly from epidemic parotitis) or previous chemo- or 
radiotherapy treatments. 

 Particular attention is to be paid to:

•    Family medical history (even reproductive)  
•   Personal reproductive medical history and alterations of the ejaculate  
•   Pathological personal medical history

 –    Congenital aberrations (e.g. cryptorchidism)  
 –   Infl ammatory diseases  
 –   Traumas  
 –   Inguinal-scrotal and pelvic surgery  
 –   Systemic diseases  
 –   Endocrinopathies     
 –   Chronic obstructive bronchopulmonary diseases  
 –   Drugs and chemo- and radiotherapy  
 –   Environmental and professional exposure to heat sources, radiations and toxics       

 Physical examination can reveal small testicles (<10 ml) with reduced consistence 
or eunuchoid look of the patient in NOA, while the presence of a normal testicular 
volume, or unpalpable vasa, will orient towards OA. Physical examination can also 
show the presence of a varicocele. 

 The seminal fl uid exam can reveal the nature of OA/NOA via the evaluation of 
volume, pH and fructose. Serum levels of FSH and inhibin B supply further indi-
cations for the differential diagnosis between OA and NOA. In fact, an elevated 
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FSH value and a low inhibin B value certainly point to a NOA condition. Scrotum 
ultrasounds must always be done for the study of the testicle (volume, echogenicity) 
and epididymis (cribriform pattern suspect for obstruction) but also for the screen-
ing of testicular tumours, more frequently found in azoospermic subjects and, in 
general, in the infertile male. Scrotum echo Doppler or colour duplex scanning must 
be done in the presence of clinically evident varicocele. TRUS (transrectal ultra-
sound of the prostate) is recommended in cases of oligoposia, when obstruction of 
the ejaculatory ducts and agenesis of the vas deferens or seminal vesicles are sus-
pected. As concerns genetic screening, karyotype and chromosome Y microdele-
tions screening must be done when NOA is suspected and in any case before assisted 
reproductive techniques (ART). On the other hand, cystic fi brosis gene mutations 
screening is advised for patients with suspected congenital obstruction but also for 
the partner, in order to verify the risk of development of    cystic fi brosis in the new-
born. The invasive diagnostic study, instead, is represented by testicular fi ne needle 
aspiration, open testicular biopsy and vasography and vesiculography, which can be 
performed transscrotally or transperineally via ultrasound-guided needle puncture 
of the distal seminal tract (Fig.  6.1 ).

6.5        Therapy 

6.5.1     Obstructive Azoospermia 

 In obstructive azoospermia, when possible, recanalization of the seminal tract and 
restoration of spontaneous fertility are indicated. Obstruction location and charac-
teristics and partner age infl uence the choice of treatment.

  Fig 6.1    Ultrasound-guided 
transperineal 
vesiculodeferentography with 
fi ne needle puncture of a 
median prostatic cysts 
communicating with the 
seminal tract       

 

6 Azoospermia



48

•     Microsurgical recanalization of the proximal seminal pathways   
 This treatment is indicated in case of azoospermia, confi rmed by at least two 
recent spermiograms and normal spermatogenesis at least on one side, docu-
mented by histology or testicular cytology. Microsurgical reconstruction (epi-
didymovasostomy, vasovasostomy) should be indicated as the fi rst therapeutic 
option in azoospermia due to epididymal or vasal obstruction. In the majority 
of patients, it consents the achievement of spontaneous pregnancies by avoid-
ing ART techniques which carry high costs and invasivity to the female partner. 
In a recent revision of over 4,000 operated cases, Silber reports patency and 
pregnancy percentages after microsurgical reconstruction at, respectively, 
96 and 81 % for vasovasostomy and 84 and 67 % for vasoepididymostomy [ 8 ]. 
The recent introduction of simpler microsurgical anastomosis techniques has 
further improved results (Figs.  6.2  and  6.3 ) [ 9 ]. When the female partner is 
older than 37 years, there is, instead, a priority indication for immediate 
ICSI. This might also be associated with a contextual microsurgical recanaliza-
tion of the seminal tract.

•        Recanalization of the distal seminal tract  
   Endoscopic resection of the ejaculatory ducts (TURED) or obstructing prostatic 

cysts is the treatment of choice in distal obstruction. However, its indications 
have recently been reduced due to the introduction of less invasive techniques 
and the known possibility of negative postsurgical consequences such as urinary 
refl ux in the seminal tract during micturition [ 10 ,  11 ]. 

 In the presence of prostatic cysts obstructing the ejaculatory ducts but not 
 communicating with the seminal pathways, a recanalization is possible with a 
minimally invasive approach of transperineal ultrasound-guided injection and 
schlerotization of the cysts with alcohol (TRUCA) [ 10 ,  11 ].  

•    Sperm retrieval for ICSI  
   When recanalization is not feasible, sperm retrieval and ICSI are indicated 

[ 12 ,  13 ].     

  Fig. 6.2    Microsurgical 
vasovasostomy in two 
layers according to Silber       
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6.5.2     Non-obstructive Azoospermia 

 Except in the rare cases of hypogonadotropic hypogonadism which can be treated 
with medical therapy, in patients with NOA the only possible treatment is sperm 
retrieval for assisted    reproductive techniques (ART). 

6.5.2.1    Sperm Retrieval Techniques for ART 
 Sperm retrieval techniques with acronyms are listed in Table  6.3 . There is general 
consensus that in the case of obstructive azoospermia any technique allows a suffi -
cient sperm retrieval for ICSI [ 14 – 19 ]. In fact, by defi nition, in OA spermatogenesis 
is normal and sperm can be easily retrieved from the testicle or epididymis even 
with percutaneous techniques (TESA, PESA) [ 20 ,  21 ]. The original MESA tech-
nique is today rarely used because of its high costs and longer surgical times, but its 
simplifi cation (Mini-MESA), introduced in 1996 [ 22 – 24 ], combines advantages 
and simplicity of percutaneous techniques with the precision and accuracy of 
 microsurgical procedures. Using a small scrotal incision, the head of the epididymis 
is exposed and dislocated in the wound, anchoring it at the edges. The procedure 
continues with the direct puncture of the more dilated and whitish epididymal 
tubules with a TB syringe (Fig.  6.4 ). This technique allows one to obtain high counts 
of sperm and therefore facilitate cryoconservation of an adequate number of paillettes 
   for subsequent ICSI cycles.

  Fig. 6.3    Microsurgical 
terminolateral 
vasoepididymostomy 
(tubulovasostomy): simplifi ed 
technique with invagination 
of the epididymal tubule 
according to Monoski       

 MESA  Microsurgical epididymal sperm aspiration 

 PESA  Percutaneous epididymal sperm aspiration 

 TESA  Testicular sperm aspiration 

 TESE  Testicular sperm extraction 

 MicroTESE  Microsurgical testicular sperm extraction 

  Table 6.3    Retrieval 
techniques of male 
gametes and their acronyms  
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    TESA (or TEFNA, testicular fi ne needle aspiration) is the simplest percutaneous 
technique and in OA allows an immediate retrieval of suffi cient spermatozoa for one 
or more ICSI cycles. With a 21G needle butterfl y, the testicle is punctured, and with 
slight movements, testicular fl uid is aspirated and sent to the lab for sperm search. 
PESA is a similar percutaneous technique but performed by inserting the needle into 
the head of epididymis in order to obtain a more sizeable and clean sperm retrieval 
compared to TESA. PESA is particularly indicated in congenital absence of the vas 
deferens. In TESE one or more open surgical biopsies are  performed on one or both 
testicles. TESE is particularly indicated in NOA and when the percutaneous tech-
niques have failed [ 38 ]. 

 Many studies have compared ICSI results using freshly retrieved or frozen- thawed 
sperm, and the majority of these have concluded that there is no difference in terms 
of fertilization, implantation and pregnancy rates [ 25 ]. 

 In NOA the standard treatment is represented by single or multiple TESE [ 36 , 
 37 ]. In fact, success rate with percutaneous techniques is extremely low [ 26 ,  27 ]. 
Overall, in nearly 50–60 % of NOA patients, it is possible to retrieve spermatozoa 
with TESE [ 38 – 40 ]. Microsurgery has regained interest even in NOA after the 
 introduction of the MicroTESE technique proposed by Schlegel et al. in 1999 [ 28 ]. 
With this technique, many authors have reported a higher rate of sperm retrieval, 
with less complications compared to multiple TESE [ 29 – 31 ,  36 – 40 ]. The technique 
is performed with an equatorial incision of the tunica albuginea and clam opening 
of the testicle. Using the magnifi cation of an operating microscope, it is possible to 
spare the blood supply and to extract single seminiferous tubules with jeweller’s 
forceps. This is done in different areas of the exposed parenchyma, trying to identify 
the more dilated tubules which more likely harbour sperm (Fig.  6.5 ).

   Extracted tubules are then sent to the laboratory for the search of spermatozoa. 
The incision is then closed with microsurgical running suture. MicroTESE reduces 
the possibility of vascular lesions with a lower loss of tissue than multiple TESE. 
Furthermore, postsurgical pain is reduced due to lesser retraction of the tunica albu-
ginea and consequent less compression of the testicular parenchyma [ 32 ]. 

a b

  Fig 6.4    Mini-MESA: ( a ) TB needle aspiration from the head of the epididymis, ( b ) sperm retrieval       
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 However, recent reports have shown a reduction in serum levels of testosterone 
and an increase in LH and FSH after MicroTESE [ 33 ]. 

  A New “Stepwise” MicroTESE Approach 
 Following these considerations, we proposed a “stepwise” approach to MicroTESE 
in order to reduce invasivity and optimize results, particularly for those patients who 
did not have previous TESE or histology and whose chance of sperm retrieval is 
unknown or unclear. Under local anaesthesia (cord block and skin infi ltration), a 
small (10 mm) scrotal window incision is performed and a single testicular biopsy 
(5 mm) is taken from the mid-portion of the testis and sent to the lab for sperm 
extraction together with a specimen for histology. If there is presence of sperm, the 
procedure is terminated and the wound closed. In case of absence of sperm, the 
scrotal incision is expanded, and the horizontal albuginea incision is also extended 
equatorially until the testicle is split open and MicroTESE performed. We believe 
that this approach can optimize the results and reduce the invasivity of sperm 
retrieval procedures. In fact, although MicroTESE has been shown to be less inva-
sive than multiple TESE [ 34 ], a signifi cant hormonal impairment has been described 
after one or more MicroTESE procedures [ 33 ]. 

 Several questions concerning the sperm retrieval techniques in NOA are still being 
discussed. The possibility of programming the sperm retrieval procedure on the same 
day of ICSI, in order to use fresh sperm, has been taken into consideration by Verheyen 
et al. [ 35 ]. The authors conclude that there are no signifi cant differences regarding the 
implant, embryo transfer and pregnancy rate after ICSI with fresh or cryconserved 
sperm, and therefore they propose, for all patients with NOA, a planned TESE for 
diagnostic and therapeutic aims, with cryoconservation of the retrieved spermatozoa 
followed by a differed ICSI. In this way a useless ovarian stimulation of the partner can 
be avoided in the case of failed sperm retrieval. The superiority of TESE over TESA in 
NOA has been confi rmed by Hauser et al. in a study on the evaluation of the sperm 
retrieval rate after TESA and multiple TESE in 32 patients with NOA [ 26 ,  36 – 40 ].  

a b

  Fig. 6.5    ( a ) MicroTESE: atraumatic extraction of the seminiferous tubule with jeweller’s forceps. 
( b ) Dilated seminiferous tubules ( arrows  indicate an area of dilated seminiferous tubules)       
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 In conclusion, in sperm retrieval techniques, the complexity of the clinical 
 situations and the multiplicity of the therapeutic options presently available suggest 
the need for a correct evaluation and management of the azoospermic patient. An 
expert in the fi eld, adequately trained and with competences both in male genital 
surgery and reproductive medicine, will be able to best carry this out.       
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7.1            Definition and Classification 

    Va   ricoceles are abnormally dilated testicular veins (pampiniform plexus) in the 
scrotum, normally secondary to internal spermatic vein refl ux. This common 
 abnormality has implications such as pain and testicle discomfort, failure of 
 testicular growth, and infertility. 

 Ambroise Pare defi ned this anatomic problem in 1550 as a tumor of dilated 
veins, “a compact pack of vessels fi lled with melancholic blood” [ 1 ]. A modern 
defi nition of varicocele is a pathologic dilation of the pampiniform plexus or of the 
cremasteric venous system that is suffi cient to allow a retrograde fl ow of blood back 
into the venous system when the intra-abdominal pressure increases. Varicocele is 
a physical abnormality present in 11.7 % of men with normal semen analysis, 
25.4 % of men with abnormal semen [ 2 ], approximately 25 % of the normal male 
population, and up to 40 % of men presenting with infertility; it occurs on the left 
side in as many as 98 % of patients [ 3 ]. 

 The following classifi cation of varicocele is useful in clinical practice:

    (a)    Subclinical varicocele: Not palpable or visible at rest or during Valsalva 
 maneuver but is demonstrable by scrotal ultrasonography and color Doppler 
examination   

   (b)    Grade 1: Palpable during Valsalva maneuver but not otherwise   
   (c)    Grade 2: Palpable at rest but not visible   
   (d)    Grade 3: Visible and palpable at rest [ 4 ,  5 ].      
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7.2     Pathogenesis and Etiology 

 Presumably because of anatomic differences, varicoceles are much more common 
on the left side. The left internal spermatic vein empties into the left renal vein. It is 
much longer (6–8 cm) than the right spermatic vein, which drains into the vena 
cava. This process is thought to result in increased hydrostatic pressure, causing 
dilation and tortuosity of these vessels. 

 Although most men with varicoceles are able to father children, there is abundant 
evidence that varicoceles are detrimental to male fertility, but the exact association 
between reduced male fertility and varicocele is unknown. Different theories have 
been proposed to explain this possible association. 

7.2.1     Heat 

 It has long been observed that even minor fl uctuations in temperature can affect 
spermatogenesis and sperm function. 

 The scrotum is a temperature regulator for the testes, and varicocele can cause an 
increase in scrotal temperature and thus impair spermatogenesis. In 1973 Zorgnotti 
and MacLeod were able to correlate the increase in intrascrotal temperature with 
impaired testicular function in varicocele patients [ 6 ]. Later, Lewis and Harrison 
(1979) also showed a correlation between varicocele, increased scrotal tempera-
tures, and infertility [ 7 ]. Hyperpyrexia can also damage sperm production; this may 
be the way large varicoceles work, but it is diffi cult to understand how this could be 
the modus operandi of smaller varicoceles. 

  Metabolites . Because a varicocele may be caused by retrograde fl ow of blood 
from the renal and adrenal veins, in the left side this may contain toxic substances, 
perhaps a high concentration of catecholamines. In 1974 Comhaire and Vermeulen 
found the catecholamine concentration to be higher in the spermatic vein of varico-
cele than in a control group, implying that catecholamines in the pampiniform 
plexus lead to chronic testicular vasoconstriction and impaired spermatogenesis [ 8 ]. 

 Data on the role of metabolites in the varicocele patient is controversial and 
inconclusive at present. 

  Ischemia . When markedly distended, especially in large varicoceles, the pampi-
niform plexus contains a large amount of venous blood that may be suffi cient to 
impede the arterial input to the testis, lower the partial pressure of oxygen, and 
cause hypoxia. More work is required to substantiate this theory [ 9 ]. 

  DNA damage . Varicocele is associated with increased sperm DNA damage, 
and this sperm pathology may be secondary to varicocele-mediated oxidative 
stress. Varicocelectomy can reverse this sperm DNA damage, as shown in several 
studies [ 10 ]. 

  Obstruction of the epididymis . Varicocele, when vary large, may cause partial 
obstruction of the efferent ductules or of the epididymal duct itself, which can 
impair maturation of spermatozoa in epididymis and lead to motility distur-
bances [ 9 ].   
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7.3     Diagnosis 

 The fi rst step to the diagnosis of varicocele is the medical history and physical 
examination of the patient in both standing and recumbent positions. Rarely will 
the male have an abnormal feeling or heaviness in the scrotum or have palpated 
the veins himself. In general, the classic varicocele will disappear in the lying 
position owing to venous decompression into the renal vein, whereas the varico-
cele secondary to cancer invasion of the renal vein will remain because of an 
anatomic block. 

 The presence and size of varicocele is most frequently diagnosed on testicular 
ultrasonographic examination (Fig.  7.1 ).

   The reversal of bloody fl ow can be demonstrated using the Doppler facility 
(Fig.  7.2 ).

  Fig. 7.1    Ultrasonographic 
appearance of a large left 
varicocele       

  Fig. 7.2    Color Doppler 
ultrasonogram of left 
varicocele       
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   Venography is a much more invasive diagnostic method but provides a more 
detailed view of the varicocele, and also is used to determine the effi ciency of a 
 varicocele repair. 

 Scrotal ultrasonography and color-fl ow Doppler examination has replaced 
venography in most cases, and has proved especially useful in those patients so 
obese that accurate physical examination of the scrotum is impossible.  

7.4     Treatment 

 The clinical benefi t of varicocele repair in improving fertility has not been fi rmly 
established, but several approaches can be used in the treatment of a varicocele [ 11 ]. 

  Open surgery.  Open surgical options include retroperitoneal, inguinal, and scro-
tal approaches, or laparoscopy. 

 In  the retroperitoneal high procedure  the spermatic vein is ligated at a point 
above the pelvic brim. With this approach it is not possible to examine any con-
tribution to the varicocele made by the cremasteric venous system. The incidence 
of hydrocele with this procedure is 5–10 % [ 12 ]. Today this procedure is rarely 
used. 

  The inguinal approach  requires incision in the anterior wall of the inguinal canal 
and the exposition of the cord; the vas and the artery are identifi ed. Usually there are 
at least three or four veins that need ligation. There is a high possibility of missing 
out a branch of testicular vein; some surgeons use a microscope to identify all the 
vessels in the cord. 

  The scrotal approach . This procedure produces a very high incidence of hema-
toma, testicular atrophy, and arterial damage, and is no longer used [ 13 ]. 

  Laparoscopy.  In this approach the complete vascular bundle is diathermed, and 
for this reason has many unacceptable complications: injury to testicular artery and 
lymph vessels, intestinal and nerve damage, bleeding, pneumoscrotum, and wound 
infection [ 14 ]. 

 In general, the risks of surgical varicocele repair are rare and usually mild, and 
include hydrocele, hematoma formation, wound infections, recurrence of varico-
cele, and, rarely, testicular atrophy [ 15 ,  16 ]. 

  Percutaneous embolization.  This procedure is performed under general anesthe-
sia, is minimally invasive, and is accomplished by embolization of the refl uxing 
internal spermatic vein or veins. 

 Occlusion of the vein can be performed in a number of different ways such as the 
use of solid devices, sclerosing agents, and fi brin plugs. 

 The success of these techniques can be checked by venography [ 17 ]. 
 No single method has proven superiority over another as a cure for infertility. On 

comparing different surgical treatments of varicocele, Al-Kandari et al. showed no 
clear benefi t in favor of any technique in relation to improving sperm parameters 
[ 18 ]. However, the microscopic inguinal approach seems to be associated with sig-
nifi cantly less recurrence and potentially fewer complications such as hydrocele, 
but also requires more operating time and microsurgical training [ 5 ]. 
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7.4.1     Medical Treatment 

 The presence of endocrine dysfunction suggests that certain patients with varicocele 
and low sperm counts have Leydig cell dysfunction; therefore, human chorionic 
gonadotropin (hCG) administration might stimulate the testosterone production and 
the seminiferous tubule activity [ 19 ]. 

 Increased numbers of pregnancies have been reported with the use of hCG [ 20 ]. 
 Pentoxifylline and antioxidants improve sperm quality in male patients with 

varicocele. Oliva et al. examined the effect of 12 weeks of daily oral administration 
of pentoxifylline with zinc and folic acid on the semen quality of 36 men with 
varicocele- associated infertility in an open, uncontrolled study. After 4 weeks of 
treatment, the proportion of morphologically normal sperm cells was signifi cantly 
increased [ 21 ]. 

 Although the work presented herein is interesting, the medical treatment in male 
patients with varicocele remains controversial.   

7.5     Discussion 

 Evers et al. came to the conclusion that clinical evidence supports the concept that 
there is an association between varicocele and male infertility, but that there is clear 
evidence showing that appropriate treatment improves a couple’s chance of concep-
tion [ 22 ]. This meta-analysis has been criticized for including several biased hetero-
geneous studies [ 23 ]. 

 Three controlled randomized studies found surgical repair in men with subclini-
cal varicocele to be ineffective [ 24 – 26 ]. Moreover, in men with varicocele and nor-
mal semen analysis, no clear benefi t has been shown after surgical treatment [ 27 , 
 28 ]. For these reasons varicocele repair as a treatment for infertility is not indicated 
in patients with normal semen parameters or a subclinical varicocele. 

 In a recent meta-analysis of four randomized controlled studies of varicocelec-
tomy in men with clinical varicocele, oligozoospermia, and otherwise unexplained 
infertility, a trend in favor of surgical correction was observed [ 29 ]. 

 A recent study found an increase in motility of spermatozoa associated with postop-
erative pregnancy, irrespective of the method by which pregnancy was obtained [ 30 ]. 

 However, when the male partner of a couple attempting to conceive has a varico-
cele, treatment may be considered when all of the following conditions are met:

    1.    The varicocele is palpable on physical examination of the scrotum   
   2.    The couple has known infertility   
   3.    The female partner has normal fertility or a potentially treatable cause of 

infertility   
   4.    The male partner has abnormal semen parameters or abnormal results from 

sperm function tests [ 31 ];   
   5.    Varicocele treatment is recommended for adolescents who have progressive 

 failure of testicular development documented by clinical examination [ 32 ]     
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 Varicocelectomy improves semen in up to 80 % of infertile men, but the degree 
of improvement is less clear. In patients with a low sperm count, total motile count 
varicocelectomy may be of benefi t and may reduce the invasiveness of assisted 
reproductive technologies [ 33 ]. 

 Surgical and medical treatment of varicocele is indicated in selected patients 
with infertility and in others with pain or important local symptomatology [ 34 ].     
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8.1            Definition and Epidemiology 

 The    main genetic factors involved in male infertility are chromosomal abnormali-
ties. These abnormalities can be structural (e.g., deletions, duplications, transloca-
tions, inversions, etc.) or numerical (e.g., trisomy, tetrasomy, aneuploidy, etc.) [ 1 ,  2 ] 
and involve sex chromosomes (e.g., Klinefelter syndrome, 47,XXY) or autosomes 
(reciprocal translocations and Robertsonian translocations). The incidence of chro-
mosomal aberrations in the general population is approximately 0.5–0.6 % [ 3 – 6 ]. 
About 1 in 150 babies is born with a chromosomal abnormality [ 7 ,  8 ]. Chromosomal 
abnormalities account for about 5 % of infertility in males, and the prevalence 
reaches approximately 15–20 % of the azoospermic males [ 9 ,  10 ] and 5–10 % of the 
oligozoospermic males [ 11 ]. Karyotype abnormalities are reported in 2–14 % of 
males presenting with infertility [ 12 ]. Klinefelter syndrome and Y-chromosomal 
microdeletions are the most frequent genetic cause of male infertility.  

8.2     Etiology 

 Chromosomal abnormalities are caused by  errors in the number or structure of 
chromosomes . It is still unknown why these errors occur. 

 The  errors in the number of chromosomes  occur during cell division (mitosis and 
meiosis). 

 A chromosomal abnormality can also occur before fertilization. 
 Meiosis is the process of division of reproductive cells (with half the number of 

chromosomes, 23, haploid cell): eggs and sperms. 
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 If this process does not occur properly, the chromosomes do not segregate prop-
erly, and gametes, eggs, or sperms may end up with too few (monosomy) [ 13 ] or too 
many chromosomes (trisomy) [ 14 ]. 

 Errors can also occur during mitosis, after fertilization, when the chromosomes are 
being duplicated during fetal development resulting in mosaicism: some cells with a 
typical number of chromosomes and some with an incorrect number of chromosomes. 

 The  errors in structure of chromosomes  can occur, usually before fertilization, 
and change the structure of one or more chromosomes. Usually, individuals with 
structural chromosomal abnormalities have a normal number of chromosomes, but 
a portion of a chromosome is missing, deleted or inverted, duplicated, misplaced, or 
exchanged with another part of another chromosome. 

 Chromosome abnormalities can be inherited from a parent, such as the transloca-
tion, or may also occur for the fi rst time in an individual [ 15 ]. 

 An important causal factor of chromosomal abnormalities is the  maternal age  
(over 35 years) as the primary risk factor for nondisjunction during meiosis, which 
leads to the occurrence of trisomy 21 (Down syndrome) [ 16 ], trisomy 18 (Edward 
syndrome) [ 17 ], and trisomy 13 (Patau syndrome) [ 18 ]. 

 The  paternal age  is less important as a causal factor of chromosomal abnormali-
ties [ 19 – 21 ]. 

  Environmental factors  can cause chromosomal aberrations although there are 
few demonstrations [ 22 – 25 ].  

8.3     Pathology, Diagnosis, Therapy, and Prognosis 

    The majority of human chromosomal abnormalities occur in the autosomes. The 
most common autosomal abnormalities are trisomy 21 (Down syndrome), trisomy 
18 (Edward syndrome), trisomy 13 (Patau syndrome), partial deletion of the short 
arm of chromosome 4 (Wolf–Hirschhorn syndrome), and deletion of the short arm 
of chromosome 5 (cri du chat syndrome). Individuals with these autosomal abnor-
malities usually have multiple physical malformations, mental retardation, and rela-
tively short lives. The most common sex chromosome abnormalities are Klinefelter 
syndrome, monosomy X (Turner syndrome), and fragile X syndrome. These sex 
chromosome abnormalities are slightly less common than autosomal abnormalities, 
and they are generally much less severe in their effects, and the fi rst two are not 
associated with mental retardation. 

 However, for the purposes of this chapter the author has chosen to focus mainly 
on the most common chromosomic causes of infertility [ 26 ]:

•    Numerical sex chromosome abnormality = 54 %  
•   Structural chromosomal aberrations: chromosomal translocations (autosomal 

translocation, 15 %; Robertsonian translocation, 8 %; sex chromosome translo-
cation, 4 %), Y-chromosomal microdeletions, and CFTR gene deletions or 
duplications  

•   Others = 19 %    
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8.3.1     Klinefelter Syndrome (47,XXY) 

 Klinefelter syndrome (KS) is the most common numerical sex chromosome disor-
der in males caused by aneuploidy, affecting one in 660 newborn males [ 27 ]. This 
disease was described for the fi rst time in 1942 [ 28 ]. 

 KS is usually associated with the karyotype 47,XXY which may be in all cells 
(full trisomy) or in mosaic form (15 % of the cases, see Fig.  8.1 ) [ 29 ]. In KS mosa-
icism some of the cells only have an extra X chromosome (47,XXY/46,XY).

   The extra X chromosome derives from nondisjunction during meiosis and may 
have a paternal (>50 %) or maternal (40–50 %) origin [ 29 ]; for the rest of the cases, 
the X chromosome is originated post-zygotically [ 30 ]. The only way to confi rm the 
presence of an extra X chromosome is by a karyotype analysis of peripheral blood 
or on amniocytes or chorionic villi from prenatal specimens. Common signs and 
symptoms are small testes (bi-testicular volume      <6 ml) [ 31 ], hypergonadotropic 
hypogonadism, gynecomastia, learning diffi culties (children), azoospermia and 
decreased facial and pubic hair (adults), long arms and legs, and tall height (see 
Table  8.1 ). Most, but not all, patients affected by KS, are infertile with small 

15%
Mosaicism

47,XXY/46,XY

85%
47,XXY

(full trisomy in all cells)

Klinefelter
syndrome

(% distribution of cases)

  Fig. 8.1    The Klinefelter’ s 
distribution          

  Table 8.1    Klinefelter 
syndrome  

 Common clinical signs 

 Infertility (azoospermia or oligospermia) 

 Small testes 

 Hypergonadotropic hypogonadism 

 Gynecomastia 

 Tall height 

 Learning diffi culties (children) 

 Long arms and legs 

 Shorter torso 

 Decreased facial and pubic hair (adults) 

 Psychosocial or behavioral problems 
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testicles, increased numbers of Leydig cells, tubular sclerosis, and interstitial fi bro-
sis of varying degrees [ 32 ]. The physical manifestations of KS are often variable.

   This syndrome generally causes spermatogenesis arrest at the primary spermato-
cyte stage, but occasionally later stages of sperm maturation are observed [ 33 ]. It 
has been estimated that 25 % of non-mosaic KS patients have sperm in their ejacu-
late [ 9 ]. Paduch (2008) reported that over 50 % of KS patients were not sterile [ 34 ]. 
Some recent studies have reported a reduction of life expectancy for KS patients by 
1.5–2 years, with increased mortality due to different disorders: diabetes, lung can-
cer, breast cancer, non-Hodgkin lymphoma, cerebrovascular disease, vascular insuf-
fi ciency of the intestine, and epilepsy [ 35 ,  36 ]. Klinefelter syndrome should fi rst be 
suspected whenever a patient consults the doctor because of infertility. In this case 
these following tests should always be performed: karyotype analysis, semen count, 
and blood test to check hormone levels of follicle-stimulating hormone, luteinizing 
hormone, testosterone, and estradiol. Differential diagnoses for KS may include 
the following conditions: fragile X syndrome, Marfan syndrome, and Kallmann 
syndrome. With the introduction of the procedure intracytoplasmic sperm injec-
tion (ICSI), which consists of the use of sperm extraction from deep within the 
testicles of KS patients (non-mosaic), some 47,XXY men will have an increased 
chance of fathering a child [ 37 – 39 ]. Androgen replacement therapy in KS patients 
should begin in puberty to promote linear growth and secondary sexual characteris-
tics and to permit the normal accrual of muscle mass, bone mineral content, and the 
adult regional distribution of body fat [ 40 ]. However, this treatment is ineffective 
for treating infertility, gynecomastia, and small testes. Treatment options include 
 different routes of administration: transdermal, oral, and intramuscular injections.    
A gradual increase of dosage suffi cient to maintain age-appropriate serum 
 concentrations of testosterone, estradiol, FSH, and LH is recommended.  

8.3.2     Structural Chromosomal Aberrations 

•      Chromosomal translocations   
•    Y-chromosomal microdeletions   
•    CFTR gene deletions or duplications     

8.3.2.1     Chromosomal Translocations 
 Chromosomal translocations are caused by the rearrangement of parts between non-
homologous chromosomes. 

 There are two types of chromosomal translocations: reciprocal or Robertsonian 
translocations. 

 Reciprocal translocations occur when there is an exchange of chromosomal 
material between two different chromosomes. When translocations affect the non-
sex chromosomes, they are called autosomal translocations. These translocations 
occur in 1 in 500 newborns and are the most commonly observed structural chromo-
somal anomalies in infertile men [ 26 ]. Reciprocal translocations can be inherited 

G. Paulis



67

from a parent, or they can appear de novo. Translocations are “balanced” when the 
chromosome material has been rearranged but no genetic material has been lost or 
gained. Balanced translocations do not usually impact on the growth or develop-
ment of the individual involved. Nevertheless, carriers (parents) of balanced trans-
locations (who are normal phenotypes) produce both balanced and unbalanced 
gametes with deletions and duplications of large pieces of the chromosomes 
involved. The child conceived by an unbalanced gamete inherits a rearrangement of 
the chromosomes with deletion and/or duplication of chromosome; this condition is 
known as an unbalanced translocation. Although carriers of balanced chromosomal 
translocations are phenotypically normal, they may experience reduced fertility, 
spontaneous abortions, or birth defects [ 41 ,  42 ]. 

 Autosomal translocations negatively affect spermatogenesis due to disrupted 
meiotic pairing and segregation [ 43 – 45 ]. While translocations have no effect on 
other tissues, these aberrations can seriously impair spermatogenesis causing severe 
oligozoospermia or azoospermia [ 45 ,  46 ]. 

 In the same way that occurs in other chromosomal translocations, any part of the 
sex chromosome may translocate to autosomes. Translocations affecting sex chro-
mosomes have direct consequences on genes involved in spermatogenesis. 
Translocations between the Y chromosome and autosomes are rare and often cause 
abnormal spermatogenesis and infertility [ 47 ,  48 ]. The possible mechanisms for 
reduced fertility due to sex chromosome translocation are the altered gene loci or 
altered formation of sex vesicle during meiosis. 

 Translocations involving a sex chromosome and an autosome cause infertility 
more easily than translocations involving autosomes. 

 When translocations involve acrocentric chromosomes, these aberrations are 
called Robertsonian translocations. 

 Robertsonian translocations involve only these chromosomes and specifi cally 
chromosomes 13, 14, 15, 21, and 22. This type of translocation originates from a 
centric fusion of two acrocentric chromosomes. 

 When two chromosomes fuse at the centromere (centric fusion), the result is a 
Robertsonian translocation. Robertsonian translocation is the most frequent struc-
tural chromosomal abnormality in humans, and it occurs in around 1 in 1,000 live 
births [ 49 ]. Balanced Robertsonian translocations do not usually impact on the 
growth or development of the individual involved. Nevertheless, carriers (parents) of 
Robertsonian translocations, as with reciprocal translocations, can have reproductive 
effects, when the child receives the translocation in an unbalanced form. Robertsonian 
translocations can cause various degrees of sperm alteration (oligospermia or azo-
ospermia) [ 50 ,  51 ]. Robertsonian translocations are more common in oligozoosper-
mic and azoospermic men, with rates of 1.6 and 0.09 %, respectively [ 52 ]. 

 Robertsonian translocations involving chromosome 21 are found in 5 % of 
patients with Down syndrome [ 53 ]. 

 Preimplantation genetic diagnosis (PGD) by fl uorescence in situ hybridization 
(FISH) is recommended for a Robertsonian translocation and may be useful for 
couples who opt for assisted reproductive techniques [ 26 ].  
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8.3.2.2     Y-Chromosomal Microdeletions (Y Chromosome-Related 
Azoospermia) 

 The Y chromosome is the smallest human chromosome and contains many of the 
genes that are necessary for spermatogenesis and the development of testes. 
Y-chromosomal microdeletions, which span several genes and remove one or more 
of them, are able to cause various spermatogenic defects. Y-chromosomal microdele-
tions are determined by submicroscopic deletions on the Y chromosome (Yq11 
region) (see Fig.  8.2 ), and these alterations are not large and visible by conventional 
cytogenetic methods. After the Klinefelter syndrome, Y-chromosomal microdele-
tions are the most frequent genetic cause of male infertility [ 54 ,  55 ]. These gene 
deletions have been attributed to intrachromosomal homologous recombination 
within unstable amplicons clustered within the AZF region (azoospermia factor 
region) [ 56 ]. Y chromosome-related azoospermia is the most frequent structural 
chromosomal anomaly associated with failure in sperm production. The incidence of 
this anomaly is 15–20 % in men with idiopathic azoospermia and 7–10 % in men 
with idiopathic severe oligozoospermia [ 57 ]. Y-chromosomal microdeletions are 
extremely rare in infertile males with a sperm concentration >5 million/ml. Generally, 
Y-chromosomal microdeletions are “de novo” events and are estimated to occur in 
one in 2,000–3,000 males [ 58 – 61 ]. Infertile men with Y-chromosomal microdele-
tions    usually have no visible symptoms, although some have small testicles and/or 
cryptorchidism. The fi rst association between azoospermia and deletions of the long 
arm of the Y chromosome was demonstrated by Tiepolo (1976) [ 62 ].

   Microdeletions most frequently occur on the long arm of the Y chromosome, Yq 
11 region. An important area of interest on Yq is the AZF region that contains genes 
involved in germ cell development. This region contains three subregions: AZFa, 
AZFb, and AZFc [ 63 ] (see Fig.  8.2 ). 

 Gene deletions in this region cause various spermatogenic and infertility pheno-
types [ 64 ]. Severe infertility or azoospermia is manifest when AZFa, AZFb, or AZFc 
is singly, or in combination, deleted from the genome. AZFc deletions are the most 
common form of Y-chromosomal microdeletions and account for approximately 
58.3–69 % of reported microdeletions [ 65 – 67 ], followed by deletions of the AZFb 
region (14 %) and deletions of the AZFa region (6 %) [ 67 ]. Zhang et al. reported 
these incidence rates of several possible combinations of AZF region microdele-
tions [ 68 ]: AZFa = 1.7 %, AZFb = 12.5 %, AZFc = 64.2 %, AZFb + c = 20.0 %, and 
AZFa + b + c = 1.7 %. 

  Fig. 8.2    Sc   hematic 
representation of human 
Y chromosome       
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 AZFc deletions are usually associated with low levels of sperm in the ejaculate 
or azoospermia (about two-thirds of individuals) [ 69 ]. Transmission of 
Y-chromosomal AZFc microdeletions    could potentially result in the development 
of sexual ambiguities and Turner stigmata (45,X0) [ 70 ,  71 ]. Microdeletions of 
AZFa are associated with the complete Sertoli-cell-only (SCO) syndrome and 
azoospermia, while microdeletions of AZFb or AZFc result in a variable clinical 
and histological phenotype, ranging from the SCO syndrome to oligozoospermia 
[ 72 – 74 ]. AZFb + c deletions usually produce no testicular sperm. When AZF-
deleted sperms are used for  assisted reproductive techniques  (ART), fertility 
defects in male offspring are inevitable [ 65 ]. Classical Y-chromosomal microdele-
tions do not confer a risk for cryptorchidism or testicular cancer [ 74 ,  75 ]. If    com-
plete AZFa or AZFb microdeletions are detected, micro-testicular sperm extraction 
(TESE) is not indicated because this technique is very time consuming—it is 
extremely diffi cult to fi nd sperm cells [ 74 ]. Microdeletion analysis using PCR 
helps determine the frequency and site of gene deletion and thus the testicular 
phenotype. Yq microdeletion analysis (AZF screening) is generally carried out by 
multiplex polymerase chain reaction (PCR) amplifying AZFa, AZFb, and AZFc 
loci in the q arm of the Y chromosome [ 76 ]. The analysis    of Y-chromosomal 
microdeletions permits to establish a diagnosis and to formulate a prognosis, in 
men with idiopathic infertility presenting with azoospermia or severe oligosper-
mia with sperm concentrations <5 million/ml [ 77 ]. AZF screening is important 
before varicocelectomy because infertile men carrying a Yq microdeletion will 
most likely not benefi t from the surgical procedure [ 77 ]. In case of diagnosis of 
Y-chromosomal microdeletion, a genetic counseling is mandatory (especially for 
the ART candidates) to provide information about the risk of conceiving a son 
with impaired spermatogenesis.  

8.3.2.3     Mutations in the CFTR Gene 
 Congenital bilateral absence of the vas deferens (CBAVD) is an important disorder 
characterized by agenesis of the vas deferens, and it affects about one in 1,000 male 
individuals [ 78 ]. It is an important cause of sterility in men, approximately 2 % of 
infertility cases [ 79 ], and it accounts for 6 % of cases of obstructive azoospermia 
(OAZ) [ 80 ]. 

 Genetic mutations in the cystic fi brosis transmembrane conductance regulator 
gene (CFTR) are responsible for CBAVD and cystic fi brosis (CF). The CFTR gene 
is located on the long (q) arm of human chromosome 7 at position 31.2 [ 81 ] (see 
Fig.  8.3 ).

   CFTR gene mutations are responsible in about 95 % of men with CBAVD [ 82 ]. 
 Cystic fi brosis is the most frequent severe autosomal recessive genetic disorder 

in the Caucasian population, affecting about 1 in 2,500 live births [ 83 ]. The most 
frequent clinical manifestations of CF are chronic obstruction and infection of the 
respiratory tract and often exocrine pancreatic insuffi ciency. About 98 % of male 
CF patients are infertile as a result of CBAVD [ 84 ,  85 ]. The CFTR gene encodes for 
a membrane protein that also infl uences the formation of the ejaculatory duct, semi-
nal vesicle, vas deferens, and distal two-thirds of the epididymis. 
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 Genetic mutations in the CFTR gene (deletions or duplications) lead to the low 
function of CFTR resulting in the production of viscous secretions (dehydration of 
mucus secretions) that obstruct the lumen of airways, sweat glands, gastrointestinal 
tract, pancreatobiliary ducts, sinuses, and reproductive tissues [ 86 ]. 

 CBAVD may also occur as an isolated form of genital disorder without clini-
cal CF symptoms (incomplete genital form of CF) [ 87 ]. Patients with this pheno-
type of CF, previously considered a distinct genetic entity, have an increased 
frequency of CFTR gene mutations [ 88 ,  89 ]. CFTR gene mutations were detected 
in some patients with congenital unilateral absence of the vas deferens (CUAVD); 
this condition could be an incomplete form of CBAVD [ 89 ]. CUAVD is a rare 
condition and has an incidence of 0.5–1 % in the male population [ 90 ]. CUAVD 
was found to occur twice as frequently on the left than on the right side [ 91 ]. 
Whereas in some of CUAVD patients the condition is associated with mutations 
in the CFTR gene, in other patients this congenital anomaly is probably caused 
by other factors [ 88 ]. Men with CUAVD may be normally fertile [ 88 ]; in these 
males there is a high incidence of ipsilateral renal agenesis [ 92 ]. CUAVD is inter-
esting because of its association with renal anomalies and CFTR gene mutations 
[ 92 ]. Renal imaging and cystic fi brosis (CF) screening were recommended to all 

  Fig. 8.3    Location of the 
CFTR gene on human 
chromosome 7       
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patients with CUAVD or CBAVD. In fact unilateral renal agenesis is also possi-
ble in CABVD patients with an incidence of about 10 %, mostly seen in patients 
without CFTR gene aberrations [ 93 ]. 

 Screening for CFTR mutations is recommended in the following conditions:

•    Azoospermic male with a semen volume of < 1.5 ml and pH less than 7.0  
•   Individuals with a family history of CF or CFTR mutations  
•   Males with CBAVD or CUAVD  
•   Patients with chronic or idiopathic pancreatitis  
•   Reproductively active individuals or couples  
•   Couples who opt for ART (assisted reproductive techniques) for determining the 

risk of transmitting CFTR mutations to the offspring      

8.3.3     Prader–Willi Syndrome 

 Prader–Willi syndrome (PWS) is a rare genetic disease which occurs equally in 
both sexes and all races. 

 PWS was fi rst described in 1956 [ 94 ] and has a prevalence about of one in 50,000 
newborns [ 95 – 98 ]. 

 This syndrome is characterized by severe muscular hypotonia, hyperphagia, 
obesity, hypogonadism, mental retardation, and short stature. This condition is 
caused by the absence of paternal expression of imprinted genes localized in the 
15q11-q13 region [ 94 ,  99 ]. However, the following are possible genetic subtypes 
[ 100 ]: paternal deletion of chromosome 15q11-q13 (type I or II), 75 %; maternal 
uniparental disomy (UPD), 24 %; imprinting center defects (ID), 1 %; and trans-
location <1 %. 

 Delayed and incomplete pubertal development is documented in almost all PWS 
patients. Manifestations of hypogonadism in infancy include micropenis and/or 
cryptorchidism (80 %) in males [ 101 ,  102 ]. Hypogonadism was generally consid-
ered to be of hypothalamic origin [ 102 – 105 ]. 

 DNA methylation analysis is the only technique, which can both confi rm and 
reject the diagnosis of this syndrome [ 86 ]. A prenatal diagnosis could be suspected 
in cases of reduced fetal movement and polyhydramnios [ 106 ]. In a family who 
previously had a child with PWS (with an imprinting defect), the man with a dele-
tion has a 50 % chance of fathering a baby with PWS again [ 100 ]. At present there 
are no reports of paternity in PWS [ 100 ]. 

 A possible therapeutic program should include:

•    Obesity management with institution of a low-calorie, well-balanced diet, with 
regular exercise and rigorous supervision  

•   GH treatment in children to improve growth during childhood  
•   Hormonal treatment for induction, promotion, or maintenance of puberty  
•   Management of behavioral and psychiatric problems     
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8.3.4     Angelman Syndrome 

 Angelman syndrome (AS) is a rare condition caused by deletion on the mother’s 
chromosome 15. The incidence is one in 12,000–20,000 births [ 107 – 109 ]. Angelman 
syndrome is a rare neurological disorder characterized by developmental delay, sig-
nifi cant intellectual disability, diffi culties with speech development, seizures, 
uncontrolled limb and body movements, motor impairment, spontaneous laughter, 
EEG abnormalities, and epilepsy [ 110 ]. Anomalies of the head and face are com-
mon, including microcephaly, macrostomia, maxillary hypoplasia, mandibular 
prognathism, deeply set eyes, and widely spaced teeth. Males and females with 
Angelman syndrome achieve puberty normally, with normal secondary sexual char-
acteristics. However, there has been no documented case of reproduction in a male 
with Angelman syndrome [ 110 ]. A successful reproduction has been reported in 
only one case of female with Angelman syndrome [ 110 ]. 

 DNA methylation analysis identifi es approximately 80 % of individuals with 
AS. If the DNA methylation analysis is abnormal, the next step is FISH or array 
CGH analysis [ 111 ]. 

 For    completeness, other very rare forms of male infertility caused by genetic 
disorders [ 79 ] are listed at the end of this chapter:

•    Myotonic dystrophy (DM)  
•   Kallmann syndrome  
•   Immotile cilia syndrome  
•   Noonan syndrome  
•   Denys–Drash syndrome (DDS) and Frasier syndrome  
•   Androgen insensitivity syndrome  
•   Polycystic kidney disease (with multiple cysts in the liver, kidneys, epididymis, 

and seminal vesicles)  
•   Usher’s syndrome         
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9.1            Definition 

 Male idiopathic (oligo) ± (astheno) ± (terato)-spermia (iOAT) is defi ned as a defective 
spermatogenesis of obscure etiology and is regarded as undetectable using common 
laboratory methods [ 1 ]. iOAT can be classifi ed from a clinical point of view as isolated 
astheno ± teratospermia (no alteration in sperm concentration), moderate iOAT (sperm 
concentration <20 × 10 6 /mL), or severe iOAT (sperm concentration <5 × 10 6 /mL) [ 2 ].  

9.2     Epidemiology 

 iOAT affects approximately 30 % of infertile men and is one of the most common 
causes of infertility [ 1 ]. It is likely that its prevalence is increasing, in association 
with the progressive declining sperm count in men today [ 3 ].  

9.3     Etiology 

 Descriptions of reputed causes of iOAT have at least two biases. Two patterns whose 
alterations are linked to male infertility with normal sperm parameters have been 
described: DNA damage and alterations of polymerase mitochondrial gamma gene 
( POLG ) [ 4 – 6 ] (see Chap.   10    ). The sum of the percentages of patients with different 
causes of iOAT gave a result much higher than 100 %. This fi nding implies that the 
causes overlap, that the primary cause (if any) of iOAT is still unknown, and/or that 
more than one cause is needed to affect sperm patterns. The most likely hypothesis 
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is the fi rst; it has been demonstrated that iOAT sufferers comprise at least two dif-
ferent populations of infertile men [ 7 ]. 

9.3.1     Age 

 There is evidence that sperm motility declines progressively after age 30 years, 
although there is less evidence that a similar decline in sperm volume and concen-
tration may also occur in typical presentations [ 8 ,  9 ].  

9.3.2     Noninflammatory Functional Alteration 
in Post-testicular Organs 

 Low seminal concentration of prostate-specifi c antigen, zinc, fructose, and prostatic 
acid phosphatase [ 10 ], and low seminal activity of neutral α-glycosidase are linked 
to isolated asthenospermia in addition to increased viscoelasticity [ 11 ] and osmolar-
ity of seminal plasma [ 12 ]. Alterations of epididymal methylation of spermatogen-
esis-specifi c genes have been suspected to be involved in the etiology of iOAT [ 13 , 
 14 ]. Demethylation is critical for gene transcription.  

9.3.3     Infective Agents 

  Chlamydia trachomatis  (CT) and adenovirus (AV) infections have been regarded as 
being associated with iOAT; however, proof regarding the role of asymptomatic CT 
and/or AV infection in infertility is inconclusive [ 15 ,  16 ].  

9.3.4     Genetic Factors 

 Approximately 10 % of rat genomes are specifi cally linked to spermatogenesis, and 
about 200 genes are regarded as critical for germ cell development [ 17 ]; this means that 
several genes might be involved in iOAT etiology. To be considered a key factor for 
iOAT, a gene must display all of the following characteristics: (1) it should be specifi -
cally expressed in the germ cell line, (2) its altered expression should be associated with 
iOAT; and (3) it should have an essential role in spermatogenesis [ 18 ]. Despite this 
restriction, several genes have been identifi ed as causes of iOAT [ 19 ,  20 ]. (Diaginic) 
heredity and de novo mutations are the theoretical causes of the bad gene expression [ 1 ].  

9.3.5     Mitochondrial Alterations 

 In asthenospermia, both mitochondrial membrane potential [ 21 ,  22 ] and DNA mito-
chondrial content [ 23 ,  24 ] are impaired.  
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9.3.6     Subtle Hormonal Alterations 

 A decreased luteinizing hormone (LH) pulse frequency has been found to occur in 
iOAT men whose amplitude parallels the severity of the disorder [ 25 ]. 

 Molecular variants of LH have been associated with iOAT [ 26 ]. 
 IOAT displays a shift toward lower testosterone (T) serum levels, lower calcu-

lated T index, and lower T/LH ratio, and a shift toward higher serum LH levels, 
higher 17-β2-estradiol (E2), and higher E2/T levels [ 27 ]. Increased E2 levels are 
postulated to contribute to the central suppression of gonadotropin production 
which, in turn, may decrease both T production and spermatogenesis [ 28 ]. E2 is 
derived mainly from the intratesticular and peripheral aromatization of androstene-
dione and T by aromatase, a product of the CYP19 gene. CYP 19A1 is a single-copy 
gene located on chromosome15q21.2. Aromatase polymorphisms have been shown 
to affect various estrogen-dependent diseases in men and women. The most com-
monly studied aromatase polymorphism is the tetranucleotide Tyrosine-Tyrosine-
Tyrosine-Adenine [TTTA] repeat polymorphism [TTTAn] present in intron 4 of the 
CYP 19A1 gene. This polymorphism is associated with the activity of the aroma-
tase enzyme both in vivo and in vitro [ 29 ]. Higher numbers of TTTA repeats (>7 
repeats) in the aromatase gene are associated with a negative relationship between 
obesity and sperm count. The effect of obesity on E2 and sperm count appears to be 
absent in men with fewer (≤7) repeats [ 30 ].  

9.3.7     Environmental Pollutants 

 Environmental pollutants are regarded as capable of deteriorating semen quality. 
Chapter   16     is specifi cally dedicated to this aspect.   

9.4     Pathogenesis 

 The aforementioned causes affect spermatogenesis. Impaired spermatogenesis 
leads to increased reactive oxygen species (ROS) and unbalanced germ cell 
apoptosis. 

9.4.1     Increased ROS 

 ROS originate from the cellular physiologic metabolism of O 2  in aerobic condi-
tions, and are mainly produced by leukocytes and immature gametes. Immature 
gametes are common fi ndings in iOAT. ROS are short-lived chemical intermediates 
containing one or more electrons with unpaired spins. All spermatozoa structures 
can be attacked and denatured by ROS [ 1 ,  31 ], ultimately resulting in death and/or 
irreversible damage. Physiologic (low) levels of ROS exert critical function in nor-
mal sperm physiology, such as fertilizing ability (acrosome reaction, 
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hyperactivation, capacitation, and chemotaxis) and sperm motility; whereas 
increased ROS generation and/or decreased antioxidant capacity leads to the 
imbalance between oxidation and reduction in living systems, which is called 
sperm oxidative stress. This condition was widely considered to be a signifi cant 
contributory factor to sperm DNA damage/apoptosis, lipid peroxidation, and 
reduced motility, which, in turn, increased the risk of male factor infertility/subfer-
tility and birth defects [ 31 ].  

9.4.2     Modified Apoptosis 

 Apoptosis (programmed cell death) is a physiologic mechanism aimed at achieving 
optimal Sertoli cell/gamete ratio and removing damaged gametes [ 32 ]. The range of 
stimuli that triggers this activity is impressively broad and includes various forms of 
electromagnetic radiation, environmental toxicants, heavy metals, and chemothera-
peutic agents [ 33 – 37 ]. In addition, genetic perturbation of the germ cell line occurs 
through, for example, overexpression of SPATA17 [ 38 ] or androgen-binding protein 
[ 39 ], or deletion of key genes involved in the regulation of spermatogenesis [ 40 –
 42 ]. The impression given is that if spermatogenesis is disrupted in any way, the 
germ cells tend to default to an apoptotic state. The stage of spermatogenesis when 
apoptosis is induced appears to be predominantly pachytene spermatocytes, and the 
Fas (fi broblast-associated death receptor)/Fas ligand and caspase systems seems to 
be the major mediators of this process [ 34 ].   

9.5     Diagnosis 

 iOAT is commonly diagnosed by exclusion; the differential diagnosis is presented 
in Table  9.1 . 

   Table 9.1    Differential diagnosis of male infertility [ 2 ]   

 Reproductive failure mechanism  Methods of diagnosis 

 Chromosomal  X chromosome 
disorders 

 Objective examination, Y 
microdeletion detection, 
karyotype screening of cystic 
fi brosis, hormonal profi les, 
androgen receptor detection, 
semen analysis 

 Y chromosome 
disorders 

 Autosomal disorders 

 Developmental  Hypospadias  Clinical history, objective 
examination, semen analysis, 
scrotal echography 

 Ductal obstruction 

 Didymal-epididymal 
interruption 
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Table 9.1 (continued)

 Reproductive failure mechanism  Methods of diagnosis 

 Testicular pathology  Cryptorchidism  Clinical history, objective 
examination, semen analysis, 
scrotal echography 

 Ectopic testicle 

 Retarded descent 

 (Floating testicle?) 

 Testicular tumors 

 Bilateral atrophy 

 Trauma 

 Testicular torsion 

 Genital tract infl ammation  Urethritis  Clinical history, objective 
examination, semen analysis, 
scrotal echography, urethral 
swab, urine analysis, sperm and 
urine cultural analysis 

 Prostatitis 

 Epididymitis 

 Orchitis 

 Varicocele  Objective examination, scrotal 
bilateral echo-color Doppler 
examination, semen analysis 

 Endocrine  Pituitary disorders  Hormonal profi les 

 Hypothalamic 
disorders 

 Semen analysis 

 Testicle disorders 

 Thyroid disorders 

 Adrenal gland 
disorders 

 Iatrogenic  Surgery  Clinical history, objective 
examination, semen analysis  Drugs 

 Radiation 

 Sexually related causes  Erectile defi ciency  Clinical history, semen analysis 

 Disturbed ejaculation 

 General diseases  Renal diseases 

 Liver diseases 

 Neurologic diseases 

 Gastrointestinal 
diseases 

 Hematologic diseases 

 Autoimmune diseases 

 Infectious diseases 
(AIDS) 

 Psoriasis 

 Sarcoidosis 

 Diabetes 

 Idiopathic 
oligoasthenoteratospermia 

 Semen analysis, exclusion 
criteria 
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9.6       Therapy 

 Therapy for iOAT is commonly regarded as empiric, because it is not possible in the 
current outpatient clinical setting to defi ne the exact etiology of the spermatogenetic 
disorder of each iOAT patient. A number of therapies have been proposed, the most 
effective of which, according to author’s experience and literature review, are 
reported here. Obviously these therapies might improve the sperm count in the 
majority of patients but not in all, and these therapies should be intended as symp-
tomatic therapies: i.e., sperm count is improved as long as these therapies are 
administered, and decrease immediately after their suspension. Therapies should be 
administered for at least 3 months, because a stem cell requires about 61 days to 
achieve the fi nal status of mature spermatozoon [ 43 ]. A rough therapeutic classifi ca-
tion can be compiled on the basis of sperm analysis results. 

9.6.1     Isolated (Astheno) ± (Terato)-Spermia 

  Coenzyme Q10  100 mg twice daily for at least 3 months. Coenzyme Q10 is a lipo-
philic antioxidant agent and should be administered after meals. Galenic prepara-
tions should use lipophilic excipients (e.g., cocoa butter) [ 44 ].  

9.6.2     Oligo-Astheno-Teratospermia with Sperm 
Concentration >5 × 106/mL 

  l - Carnitine  1 g twice daily;  acetyl - l - carnitine  500 mg twice daily;  cinnoxicam  
30 mg, one tablet every 4 days after the main meal. These drugs are antioxidant 
agents [ 45 ,  46 ].  

9.6.3     All Degrees of Dyspermia with Serum 
Follicle-Stimulating Hormone <2 mIU/mL 

 Intramuscular  recombinant Follicle-Stimulating Hormone  ( FSH ) 100–300 IU every 
2 days. FSH stimulates Sertoli cell function and spermatogenesis [ 47 ,  48 ].  

9.6.4     All Degrees of Dyspermia with a low (<10) T/E2 Ratio 

 These dyspermias have exhibited an increased sperm count after  letrozole  (2.5 mg/
day) and/or  anastrozole  (1 mg/day) treatment. Nonobstructive azoospermic patients 
with T/E2 ratio <10 also had their sperm count increased with letrozole and/or anas-
trozole treatment. Letrozole and anastrozole are members of a novel class of nonste-
roidal, hormone-targeting agents used for breast cancer therapy. They reversibly 
inhibit the aromatase enzyme, which converts the androgen precursors in adipose 
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tissue to E2. Blocking of estrogen production has been shown to provoke increased 
gonadotropin and androgen levels in the blood and a parallel E2 decrease, resulting 
in spermatogenesis stimulation [ 49 ,  50 ].   

9.7     Prognosis 

 Prognosis is diffi cult to defi ne in these patients, mainly because of the empiric 
nature of the therapies. However, antioxidant drugs and aromatase inhibitors signifi -
cantly lower the number of couples that might require treatment with assisted repro-
duction to achieve a pregnancy [ 51 ].     
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10.1            Definition 

 Infertility means not being able to get pregnant after a year of constant and unpro-
tected intercourses [ 1 ]. Infertility and sterility are two very different concepts. 
Sterility is the permanent inability to reproduce. Infertility, on the other hand, can 
be either a permanent or temporary inability for fertilization to occur, because of 
one or more interfering factors [ 1 ]. In    recent decades, the quality of the male semen 
compared to the 1999 classifi cation by the World Health Organization (WHO) has 
become increasingly worse so that in 2010 (Table  10.1 ) normospermia was defi ned 
as having a sperm concentration ≥15 mil/ml, a progressive motility ≥32 %, and a 
morphology with a percentage of normal forms ≥4 % where for each parameter the 
percentile was identifi ed, and where the minimum parameter corresponded to the 
5th percentile, which meant that out of 100 people, 95 % had the best fertility 
parameters. In other words, just referring to the morphology, only 5 % of people had 
4 % of fertile sperm in their normal form [ 2 ].

   Obesity, defi ned as abnormal or excessive fat accumulation that presents a risk to 
health, has important effects on fertility [ 3 ]. 

 Obesity is a multifactorial disease caused by energy imbalance between calories 
consumed and calories expended, resulting in the accumulation of body fat. The 
condition of obesity is defi ned using the body mass index (BMI) which is a biomet-
ric datum, expressed as the ratio between the individual’s weight and the square of 
the height, and it is used as an indicator of ideal weight (Table  10.2 ) [ 4 ].
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    Table 10.1    Spermiogram parameters by the WHO [ 2 ]   

 Spermiogram parameters by the World Health Organization  1999 ed.  2010 ed. 

 Volume  ≥2 ml  ≥1.5 ml 

 Concentration  20 mil/ml  15 mil/ml 

    Ntot sperm cells  40 mil  39 mil 

 Total motility  ≥50 %  ≥40 % 

 Progressive motility  ≥25 %  ≥32 % 

 Morphology % normal  ≥30 %  ≥4 % 

 Vitality  ≥50 %  ≥58 % 

   Table 10.2    The worldwide classifi cation of the body mass index (BMI) [ 4 ]   

 Classifi cation 

 BMI (kg/m 2 ) 

 Main cutoff points  Additional cutoff points 

 Underweight  <18.50  <18.50 

  Critical thinness  <16.00  <16.00 

  Moderate thinness  16.00–16.99  16.00–16.99 

  Mild thinness  17.00–18.49  17.00–18.49 

 Normal weight  18.50–24.99  18.50–22.99 

 23.00–24.99 

 Overweight  ≥25.00  ≥25.00 

  Pre-obese  25.00–29.99  25.00–27.49 

 27.50–29.99 

  Obese  ≥30.00  ≥30.00 

   Obese class I  30.00–34.99  30.00–32.49 

 32.50–34.99 

   Obese class II  35.00–39.99  35.00–37.49 

 37.50–39.99 

   Obese class III  ≥40.00  ≥40.00 

10.2        Epidemiology 

 Infertility is caused by male factors in 25.5 % of infertile couples [ 5 ]. Body mass 
index or BMI is a simple and widely used method for estimating body fat mass. The 
healthy BMI range varies with age and sex; obesity in children and adolescents is 
defi ned as a BMI greater than the 95th percentile. In children, obesity is more severe 
and shows an even distribution of the body fat mass, which involves the whole body, 
including the upper and lower limbs, normally excluded by the adult obesity which 
has a typical central arrangement. Obesity is one of the most common diseases 
among the industrialized countries where the incidence rates are increasing so much 
that according to the data of the WHO, 54 % of the adult population is overweight 
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and 25 % is obese [ 4 ]. Infertility, especially in the highly industrialized countries, 
contributes to the dramatic fall in the birth rate. Epidemiological studies in the USA 
sorted out that the male fertility has been gradually reduced in the industrialized 
countries since 1936 by recording a severe incidence of obesity. Over the past 
70 years, the semen quality got worse, with an incidence in the male population 
between 15    and 18 % [ 3 ] (Table  10.3 ).

   Numerous data in the medical literature confi rm that the reduction in male fertil-
ity depends on nutritional factors [ 6 – 8 ]. There is an inverse correlation between 
BMI and the main hormones that mediate male fertility, where the obese have 
increased levels of estrogen and low levels of FSH, LH, inhibin B, and total and free 
testosterone [ 9 – 11 ]. Several studies confi rm that the increase in BMI would refer to 
a reduction in sperm concentration (oligospermia), motility, and sperm morphology 
(asthenoteratospermia) and to an increase in nemaspermic DNA fragmentation 
(Table  10.4 ) [ 23 – 25 ].

10.3        Etiopathology 

 There is a close relationship between fertility and lifestyles [ 26 ]. As a matter of fact, 
the reduction of fertility in men is also connected to nutritional factors [ 6 ]. Energy 
intake in obese subjects is chronically larger than the energy expenditure, but the 
phenomena that give rise to this chronic alteration are not known. However, in 
humans, we can clarify the physiopathological mechanisms that regulate energetic 
homeostasis through constant regulation of body weight and balance between body 
fat and lean mass [ 27 ]. 

 It has been reported that overweight and obese men have an up to 50 % higher 
rate of subfertility when compared to normal-weight men [ 21 ]. This effect persists 
even when confounding factors such as diseases, age, smoking, alcohol use, and 
obese female partner have been controlled [ 3 ]. Obesity is strongly linked to 
reduced spermatogenesis, poor quality of sperm, and a reduced percentage of 
normal sperm morphology [ 23 ]. Men’s diets, in particular the amount and type of 
different fats they eat, could be associated with their semen quality. According to 
the results of a study [ 14 ], it has been found that men who ate omega-3 polyun-
saturated fats (the type of fat often found in fi sh and plant oils) had better-formed 
sperm than men who ate less. A diet full of saturated fatty acids would cause a 
reduction in sperm count, while a diet rich in omega-3 fatty acids would 

  Table 10.3    Causal factors of 
couple’s infertility [ 5 ]  

 Causal factors of couple’s infertility  (%) 

 Male factor  25.5 

 Ovulatory endocrine infertility  16.9 

 Endometriosis  6.0 

 Male or female factor  17.3 

 Unexplained infertility  29.1 

 Others  5.3 
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contribute to a better sperm morphology. Men with a high intake of saturated fat 
have a 35 % lower total sperm count than men with a low intake and a 38 % lower 
sperm concentration [ 13 ]. A number of previous studies had investigated the link 
between BMI and semen quality, with mixed results (Table  10.4 ). The mecha-
nisms by which obesity is associated with hypogonadism are mostly unknown, 
but it is likely that insulin or other hormonal factors released from the adipose 
tissue may have a role in regulating the production of pituitary LH [ 22 ]. In men, 
one of the main causes of infertility determined by obesity is closely related to 
the hyperactivity of aromatase, an enzyme which is present in high percentage in 
the so-called white adipose tissue, which converts testosterone into estradiol. The 
increase of estradiol concentration is proportional to the quantity of adipose 
 tissue, and estrogens exert a negative feedback action on the pituitary secretion of 
both FSH and LH, the essential hormones for the normal growth and differentia-
tion of sperm [ 28 ]. The white adipose tissue is also the main site of synthesis of 
leptin, a hormone which regulates the energetic stability and body weight by mod-
ulating the energy intake and expenditure at the level of the central nervous 
 system. So an increase in fat mass, resulting from a caloric excess, corresponds to 
an increased secretion of the hormone on behalf of the adipose tissue. Leptin cir-
culates in plasma at concentrations that parallel the amount of fat reserves. In 
obese males, androgen levels decline in proportion to the degree of obesity. When 
leptin is produced in exaggerate amounts, it can reduce the level of androgens, and 
as its receptors are found in the testicular tissue, this can have a direct effect on 
the functionality of the sperm [ 20 ]. 

 Another characteristic of the adipose tissue that may interfere on male fertility is 
the increased production of resistin, a protein associated with insulin resistance. 
Plasma levels of this cytokine are increased in obese individuals [ 29 ]. 
Hyperinsulinemia is related to inhibition of spermatogenesis, and it also produces a 
deterioration of spermatic DNA, which causes not only a reduction in fertility but 
also a higher incidence of spontaneous abortions in female partners [ 22 ]. 

 Obesity and diabetes mellitus are insulin-resistant states with different abnor-
malities in oxidative stress, protein glycation, and cellular processes that lead to 
impaired endothelial function, vascular infl ammation, and hemostasis: pro-
cesses which give rise to impaired function of the microcirculation [ 22 ]. A large 
body of scientifi c evidences indicates that overweight or obese men frequently 
suffer from erectile dysfunction (ED) which is a cause of infertility. Sedentary 
life, prolonged sitting, and fat deposition in the lower abdomen can reduce male 
fertility, likely through increased testicular temperature to the level of body core 
temperature [ 30 ]. 

 An excessive intake of metabolizable food, especially carbohydrates and fats, 
subdues the individual to an oxidative stress with negative echoes on the 
reproductive area. In a healthy body there is a balance between the oxidative 
mechanisms and the antioxidant defenses. In normal conditions, the toxic 
potential of free radicals (ROS) is neutralized by a complex system of antioxidant 
factors that represents our physiological mechanism of defense. The relationship 
between oxidant factors and antioxidant defenses is the so-called oxidative 
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balance. Oxidative stress is, therefore, the expression of biological damage that 
occurs when the prooxidant factors (drugs, toxic substances, radiations, 
infl ammations, etc.) exceed the endogenous antioxidant defenses (enzymes such 
as superoxide dismutase, coenzyme Q10, catalase, peroxidase, etc.) and the 
exogenous ones (antioxidants found in food). Obesity is a pathological condition 
which causes oxidative stress with increased ROS in sperm causing its decreased 
quality. During the last years, andrologists’ interest on the diagnostics and 
treatment of male infertility has focused on the role of ROS in the pathogenesis 
of male infertility with harmful effects on sperm membrane rich in polyunsaturated 
fatty acids. The increased production of ROS and the related oxidative stress 
associated with obesity may be therefore responsible for the increased lipidic 
peroxidation damage to the sperm cell membrane [ 31 ,  32 ]. Not only the quantity 
but also the quality of food can have an effect on male fertility, and in recent 
years a lot of attention has been paid to the so-called endocrine-disrupting 
compounds, i.e., substances which have a structural similarity to the endogenous 
hormones, and therefore they are able to mime the hormones themselves, 
interacting with their transport proteins. A substantial number of environmental 
pollutants, such as polychlorinated biphenyls, dioxins, polycyclic aromatic 
hydrocarbons, phthalates, bisphenol A, alkylphenols, pesticides, and heavy 
metals (arsenic, cadmium, lead, mercury), have shown to interfere with endocrine 
function as they are released in the environment in different ways such as smoke, 
sewage, and careless use of pesticides with the direct release on the food. These 
substances can cause reproductive problems by reducing either the concentration 
of sperm or its quality [ 33 ].  

10.4     Diagnosis and Therapy 

 In this context, prevention has been of great importance in order to protect and pre-
serve the fertility of the individual since childhood. Smoking, obesity or excessive 
thinness, different environmental substances, physical inactivity, and even unre-
strained physical activity are some of the major risk factors capable of infl uencing 
the sexual and reproductive health of an individual [ 34 ]. 

 In the fi rst 2 years of life, a hyperalimentation can cause not only a hypertro-
phy of fat cells but can lead to hyperplasia that will develop to a sure adult obe-
sity    [ 35 ]. The best treatment of male infertility is the correct diagnosis. The 
andrologist, through a careful diagnostic process, can identify which is the most 
appropriate medical and/or surgical treatment for the infertile patient and has an 
important role in referring eventually the infertile couple to medically assisted 
procreation. Obesity is often associated with metabolic alterations (diabetes, 
hypertension, dyslipidemia, hyperuricemia) that are important cardiovascular 
risk factors which may have an impact on male sexual and reproductive health 
and in determining psychological disorders. Therefore   , in the diagnostic algo-
rithm of morbid obesity, it is essential to weigh the patient, to examine some 
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important parameters about his family history, to know his waist circumference 
and blood pressure, and to ask for a few diagnostic tests which are essential to a 
correct understanding of the problems [ 35 ]. Laboratory tests are of considerable 
importance to assess glucose tolerance and lipid and hormone profi le as well as 
an assessment of the seminal fl uid. In particular, it is necessary to evaluate the 
hypothalamic-pituitary-gonadal axis through the determination of FSH, LH, 
estradiol, and total testosterone and the examination of seminal fl uid according 
to the WHO criteria of 2010 (Table  10.1 ) [ 17 ]. 

 Once the patient’s clinical history, state of health, behavior, and food habits 
have been pointed out, a therapeutic integrated path referring to the different 
pathologies will be started. Since obesity is an altered balance between energy 
consumption and caloric intake, dietary therapy and physical activity must become 
part of a rehabilitation program. Weight reduction (5–10 % of initial body weight) 
leads to benefi ts in terms of morbidity and mortality: it is shown that a lasting 
weight loss allows signifi cant improvements of all the metabolic syndrome 
parameters, and in particular the reduction of visceral fat is associated with an 
improvement of the male reproductive function [ 35 ]. Moreover, a psychological 
evaluation is essential. Improving fertility can be a strong motivation for weight 
loss [ 36 ]. Dietary antioxidants may be benefi cial in reducing sperm DNA damage, 
in infertile obese men [ 37 ]. 

 In a male who suffers from obesity, diabetes, or metabolic syndrome, with a 
reduced fertility and hypogonadotropic hypogonadism, it is possible to evaluate 
a treatment with antiestrogens or aromatase inhibitors that, if properly 
prescribed, can improve the quantitative and qualitative characteristics of the 
seminal fluid. Antiestrogens have the ability to bind to estrogen receptors, both 
at the hypothalamic and the peripheral levels in a competitive manner, thus 
inducing an increase in plasma levels of gonadotropins and then of intratesticular 
testosterone [ 38 ]. The pharmacological effect on spermatogenesis should be 
manifested through increased concentrations of FSH, LH, and testosterone, 
although a direct effect on spermatogenesis cannot be excluded. The first used 
antiestrogen was clomiphene citrate, replaced by tamoxifen citrate in recent 
years [ 39 ]. Estradiol is derived from the conversion of testosterone, mediated 
by the aromatase system    which occurs in the testicles and peripheral, especially 
in adipose, tissues. Testolactone, an inhibitor of aromatase, can improve the 
testicular function through two mechanisms: a decrease of the concentrations 
of estradiol and a stimulation of the secretion of gonadotropins from the 
pituitary through a block of the inhibitory feedback exerted by estradiol. 
Anastrozole, a selective inhibitor of aromatase, at a dose of 1 mg per day, and 
letrozole (2.5 mg/day) seem to be comparable to the testolactone for its effects 
on spermatogenesis [ 28 ]. 

 The use of these molecules is interesting especially in patients with an altered 
testosterone/estradiol ratio, as occurs in obese subjects. Further studies will be nec-
essary to evaluate the effectiveness of these drugs in the treatment of male infertility 
in the obese because of the small number of studied subjects.     
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11.1            Definition 

 Unexplained male infertility (UMI) is defi ned as infertility whereby semen analysis 
is normal [ 1 ,  2 ]. Genetic defects are regarded as causes of UMI. Genetically 
 compromised spermatozoa used in assisted reproductive technology (ART) have 
been associated with a wide range of abnormal embryo development [ 3 ]. A proper 
diagnosis of UMI is mandatory.  

11.2     Epidemiology 

 Failure to determine the cause of infertility occurs in 15 % of infertile couples, 
which therefore are possibly indicated as UMI [ 4 ].  

11.3     Etiology 

 Genetic abnormalities may be associated with UMI [ 1 – 3 ,  5 – 8 ] and can be catego-
rized as follows: (1) chromosomal defects in the somatic cells; (2) gene mutations 
and polymorphisms in the somatic cells; (3) sperm chromosomal abnormalities; and 
(4) epigenetic disorders. 
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11.3.1     Chromosomal Defects 

 Patients with chromosomal translocation may have different types of alteration of 
spermatogenesis: from normal spermatogenesis to inability to produce spermatogo-
nia [ 9 ]. Chromosomal translocations occur when nonhomologous chromosomes 
exchange segments. Translocations can be balanced (in an even exchange of mate-
rial with no genetic information extra or missing, and ideally full functionality) or 
unbalanced (where the exchange of chromosome material is unequal, resulting in 
extra or missing genes). Robertsonian translocations (RT) are among the most 
 common balanced structural rearrangements in humans, and comprise complete 
chromatin fusion of the long arm of two acrocentric chromosomes. RT gives rise to 
one large metacentric chromosome and one extremely small chromosome that may 
be lost from the organism with little effect because it contains so few genes. The 
resulting karyotype in humans leaves only 45 chromosomes, as two chromosomes 
have fused together. RTs are relatively frequent, and affect fertility in 1 of every 
1,000 men [ 10 ]. Carriers of RT may exhibit normal phenotype but be otherwise 
infertile because of more or less severe sperm abnormalities [ 11 ]. RT, however, may 
account for only few cases of unexplained infertility [ 12 ].  

11.3.2     Gene Mutations 

 UMI includes mutations of cation channel of sperm (CatSper) and sperm 
 mitochondrial genes. The diagnosis of gene mutations can be made only by 
 molecular genetic testing. 

11.3.2.1     CatSper Gene 
 Voltage-gated calcium channels (CatSper 1–4) and H +  are four pumps located in the 
principal part of the sperm fl agellum. The action of CatSper in human spermatozoa 
can induce elevation of both intracellular pH and Ca 2+  required for sperm activation 
in the female reproductive tract (hyperactivation) [ 13 ,  14 ] which is positively cor-
related with the extent of zona pellucida binding, acrosome reaction, zona-free 
oocyte penetration, and fertilization capacity in vitro [ 15 ]. An abnormally low pro-
portion of sperm exhibiting hyperactivation has been found in UMI associated with 
CatSper1 gene mutations. CatSper-related male infertility is inherited in an autoso-
mal recessive manner [ 16 ].  

11.3.2.2     Sperm Mitochondrial Deoxyribonucleic Acid Mutations 
 Sperm mitochondria are located around the mid-segment in a helical arrangement 
containing mitochondrial deoxyribonucleic acid (mtDNA). mtDNA encodes 37 
genes that regulate the Krebs cycle (oxidative phosphorylation). mtDNA is not 
 protected by histones and physically associates with the inner mitochondrial 
 membrane, where highly mutagenic oxygen radicals are generated by the respira-
tory chain [ 17 ,  18 ]. Thus mtDNA is more prone than nuclear DNA to mutations. 

 Mitochondrial DNA polymerase gamma (POLG) is a key reparative enzyme of 
mDNA strands that encode for the POLG gene. The POLG gene is associated with 
UMI [ 19 ,  20 ].   
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11.3.3     Sperm Chromosomal Abnormalities 

 A threefold increase in the frequency of sperm aneuploidy is found in infertile men 
(approximately 3 %) in comparison with their fertile counterparts [ 21 ]. Sperm aneu-
ploidy has been associated with severe sperm defects, UMI, recurrent miscarriage, 
failure of in vitro fertilization, and increased risk of chromosome abnormalities in 
newborns [ 21 ,  22 ].  

11.3.4     Epigenetic Disorders 

 Epigenetics defi nes all types of molecular information (independent of DNA) trans-
mitted from the spermatozoa to the embryo. The epigenetic regulatory mechanisms 
include, in theory: (1) centrosome; (2) DNA methylation; (3) histone modifi cations; 
(4) chromatin remodeling; and (5) role of RNA transcripts. 

 Histone covalent modifi cations are associated with several nuclear functions 
including transcriptional control, chromatin packaging, and DNA methylation. If 
abnormally modifi ed, histones might impede normal embryogenesis [ 23 ,  24 ]. It is 
thought that assessments of DNA condensation/decondensation or fl uorescent in 
situ hybridization of sperm chromosomes might be useful tools for these patients, 
although the poor reproducibility of tests raises doubts about their clinical useful-
ness [ 23 ,  24 ].  

11.3.5     Germ Cell Splicing Factor 

 Alternative splicing of precursor messenger RNA (pre-mRNA) is common in mam-
malian cells and enables the production of multiple gene products from a single 
gene, thus increasing transcriptome and proteome diversity. Disturbance of splicing 
regulation is associated with many human diseases; however, key splicing factors 
that control tissue-specifi c alternative splicing remain largely undefi ned. In an unbi-
ased genetic screen for essential male fertility genes in the mouse, the author’s 
group identifi ed the RNA-binding protein RBM5 (RNA binding motif 5) as an 
essential regulator of haploid male germ cell pre-mRNA splicing and fertility. This 
gene encodes several apoptosis-related proteins including  Caspase 2  [ 25 ] , FAS  
receptor, and  c - FLIP  [ 26 ] .  It has been suggested that RBM5 male germ cell splicing 
factor is one of the contributory factors in UMI [ 27 ].  

11.3.6     Chromosome Heteromorphism 

 Certain regions in the genome are subject to heteromorphisms because of their 
repetitive DNA content. Chromosome localizations of these regions may be identi-
fi ed by several methods, each of which reveals typical staining patterns implying 
constitutional differences in heterochromatin [ 28 ]. The term heteromorphism is 
used synonymously with the polymorphism or normal variant. Common cytoge-
netic polymorphisms detected by G-banding are considered as heteromorphisms 
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and include heterochromatin regions of chromosomes 1, 9, 16, and Y, and also 
prominent acrocentric short arms, satellites, and stalks [ 29 ]. There seems to be an 
increased incidence, especially in UMI men, but the mechanism underlying this 
association needs to be elucidated [ 30 ].   

11.4     Diagnosis 

 A series of tests can be used to identify genetic and epigenetic defects in UMI 
(Table  11.1 ) [ 30 ,  31 ]. Unfortunately, these tests are not routinely available. Despite 
being limited by the widespread use of ART, a cost-effective genetic evaluation 
should be considered as an integral part of the workup in UMI. POLG gene 
 mutations can be detected using sequence analysis, and testing is clinically avail-
able (  www.transgenomic.com    ).

11.5        Therapy 

 At present the only available therapy is ART. Of note, the prognosis for pregnancy 
by POLG gene alterations is good in cases treated with ART, as mtDNA is not 
 transmitted to the offspring [ 11 ]. About one-half of the couples submitted to ART 
are affected by UMI. In the author’s opinion frustration induced by infertility, 
 notwithstanding laboratory examinations within the reference values, might play a 
critical role on the behavior of these couples.     
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12.1            Definition 

 Infl ammatory infertility occurs when male infertility is provoked by infl ammation 
of the urogenital tract and might constitute a curable cause of infertility [ 1 ]. About 
10–15 % of infertile men have genital tract infl ammation. After exclusion of 
 urethritis and/or bladder infection, a sperm leukocyte concentration of >10 6 /mL 
indicates infl ammation [ 2 ]. It was recently advocated that a high leukocyte count in 
prostate- specifi c materials, even in the absence of clear leukocytospermia, may be 
associated with male infertility/dyspermia [ 3 ]. A concentration of >10 3  colony-
forming units is signifi cant for bacteriospermia [ 2 ]. 

 Clinical studies raise doubts about whether infl ammation of epididymis and 
 didymis negatively affect male fertility when seminal duct obstruction is absent 
[ 4 ], leading to the suspicion that infl ammation of the testicles exerts a poor infl u-
ence on fertility. In fact, infl ammation is one of the most important components 
of immune protection. On coming into contact with pathogen antigens, cells of 
the infl ammatory response release signaling molecules (proinfl ammatory cyto-
kines), which amplify the response by recruiting other macrophages and granulo-
cytes to the  infection site. To prevent infl ammatory damage, another set of 
signaling molecules have the function of turning the signal off [ 5 ]. However, the 
disruption of immune response at the testicular level strongly affects 
spermatogenesis, indicating a  protective role of the immune system in regard of 
fertility potential [ 6 ,  7 ]. 
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 Further testicular macrophages play an important role in the balance between 
defense against invading microorganisms and “testicular immune privilege,” which 
serves to protect the neoantigens of the meiotic and haploid germ cells that appear 
during puberty after the establishment of self-tolerance. Although testicular macro-
phages exhibit many typical macrophage characteristics such as effective antigen 
presentation, phagocytic functions, and expression of Fc receptors and major histo-
compatibility complex class II receptor [ 8 ], they are more reminiscent of a type-2 
macrophage displaying diminished proinfl ammatory responses and reduced capac-
ity to induce T-cell activation [ 9 ]. 

 Thus the majority of the so-called infl ammatory infertilities are of prostatic ori-
gin, with epididymitis of marginal interest.  

12.2     Epididymitis 

 Acute epididymitis is divided into two classes [ 10 ,  11 ].

    1.    Sexually transmitted epididymitis (usually linked to urethritis), caused most 
often by  Neisseria gonorrhoeae  or  Chlamydia trachomatis , occurs among sexu-
ally active adults younger than 35 years   

   2.    Nonsexually transmitted epididymitis is often associated with urinary tract infec-
tions, and occurs more often in adults older than 35 or who have recently under-
gone urinary instrumentation procedures    

  A slight impairment of sperm forward motility might occur, which is completely 
recovered after appropriate antibiotic therapy [ 12 ]. Obstructive azoospermia after 
bilateral epididymitis can occur, although its prevalence is unknown.  

12.3     Prostatitis 

12.3.1     Definition and Categorization 

 Prostatitis is a prostatic infl ammation. About half of all men suffer from 
prostatitis symptoms during their life span [ 13 ,  14 ]. Prostatitis is classifi ed 
according to fi ve categories: acute prostatitis (category I), chronic bacterial pros-
tatitis  (category II), abacterial infl ammatory prostatitis (category IIIa), abacte-
rial noninfl ammatory prostatitis (category IIIb), and asymptomatic prostatitis 
(category IV) [ 15 ]. 

 Chronic prostatitis increases the risk for benign prostatic hyperplasia and pros-
tate cancer [ 16 ,  17 ], and may affect male reproductive health [ 18 ].  
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12.3.2     Etiology of Prostatitis 

  Escherichia coli ,  Klebsiella  sp.,  Proteus mirabilis ,  Enterococcus faecalis , 
 Pseudomonas aeruginosa ,  C. trachomatis , and  Ureaplasma urealiticum  are the 
most common bacteria involved in bacterial prostatitis infections. The route of 
infection is urinary ascending or lymphatic transrectal [ 19 ].  

12.3.3     Pathogenesis of Dyspermia Associated with Prostatitis 

 Most of the literature agrees that the existence of bacteria in the prostate is linked 
with asthenospermia and decreased male reproductive health [ 20 ]. Chronic prosta-
titis seems to affect sperm count mainly if associated with irritable bowel syndrome, 
because of dilation of the periprostatic venous plexus and increased temperature 
[ 21 ]. An increase in reactive oxygen species (ROS) from leukocytes [ 22 ] has been 
indicated as a further physiopathologic mechanism of dyspermia associated with 
prostatitis.  

12.3.4     Diagnosis 

 Although several symptomatic indices for prostatitis have been developed, only the 
National Institutes of Health (NIH) Chronic Prostatitis Collaborative Research 
Network has produced a valid instrument for evaluation of symptoms of prostatitis: 
the NIH Chronic Prostatitis Symptom Index (NIH-CPSI). This index has nine items 
divided into three domains (pain, urinary symptoms, and quality of life), and is used 
as a tool for the diagnosis and follow-up of chronic prostatitis and chronic pelvic 
pain syndrome. Initially it was presented in English [ 23 ] (Table     12.1 ) and later also 
in Italian [ 24 ]. 

  The prostate is tender, with various degrees of pain at objective examination. 
Urine culture and expressed prostatic secretion (EPS) represent the most important 
investigations for the diagnosis and categorization of prostatitis. EPS has been fully 
described by Mears and Stamey (Table  12.2 ) [ 25 ].

   If prostatic biopsy is contraindicated [ 26 ], transrectal echography might be of 
some help when stones or abscess are suspected [ 27 ]. The effi cacy of semen culture 
in the diagnosis and evaluation of chronic prostatitis remains unclear, and ejaculate 
culture is not recommended as a fi rst line of diagnostic evaluation in these patients 
[ 28 ]. Increased seminal plasma elastase [ 1 ], interleukins (especially interleukin-6) 
[ 29 ], and ROS [ 1 ], in addition to decreased zinc, citric acid, fructose, phosphatase, 
and α-glutamyltransferase [ 30 ], are regarded as biochemical signs of chronic 
prostatitis.  
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   Table 12.1    National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) [ 23 ]       
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Table 12.1 (continued)

   Table 12.2    Mears and Stamey localization technique [ 25 ]   

 The test begins when the patient needs to void: drink 500 mL water, 30–60 min before the test 

 Four sterile containers are needed, named VB1, VB2, EPS, and VB3 

 Retract completely the foreskin 

 Cleanse the glans with sterile physiologic solution and dry the glans with sterile gauze 

 Urinate 10–20 mL in VB1 

 Urinate 200 mL in the toilet and without interrupting the stream urinate in VB2 

 The physician massages the prostate until several drops of prostatic secretion are obtained (EPS) 

    If no EPS could be collected during massage, a drop may be present at the orifi ce of urethra, 
and this drop should be taken with a 10-μL calibrated loop and cultured 

 Immediately after massage the patients urinates 10–15 mL in VB3 
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12.3.5     Therapy 

 A full review of the therapy of prostatitis is presented on the Web site of the 
European Urological Association (EUA):   http://www.uroweb.org/guidelines/
online-guidelines/?no_cache=1     It should be noted that trimethoprim- 
sulfamethoxazole is contraindicated for the treatment of infl ammatory infertility 
linked to prostatitis because this drug is toxic for male gametes (see the Chap.   15    ). 
The therapy of prostatitis is mainly aimed at resolving the symptoms (see the fol-
lowing paragraph), and from a reproductive point of view the goals are reduction/
eradication of microorganisms in prostatic secretions and semen, normalization of 
sperm infl ammatory parameters, and improvement of sperm count [ 1 ,  14 ,  31 ]. At 
present only antibiotic therapy is achieving these goals [ 1 ].  

12.3.6     Prognosis of Prostatitis in Terms of Human Fertility 

 EUA guidelines indicate that antibiotic treatment often eradicates microorganisms 
but cannot reverse anatomic dysfunctions, and might improve sperm quality, which 
does not necessarily enhance the probability of conception [ 4 ]. 

 These data are not surprising, because the relationship between male fecundity 
and sperm count is hyperbolic and achieves a plateau at about 30 × 10 6  spermatozoa/
mL, 50 % class A motility, and 14 % typical forms (strict criteria) [ 32 – 34 ]. Thus the 
more severe the dyspermia the more crucial is its therapy to improve couple fertility, 
and chronic prostatitis is seldom associated with severe dyspermia [ 4 ,  20 ,  21 ]. 
Furthermore, male fecundity is linked more to the quality of spermatogenesis than 
to sperm count [ 35 ,  36 ], and spermatogenesis is obviously not or poorly affected in 
the course of prostatitis. Despite these limitations to therapy, it is generally recog-
nized that appropriate therapy for prostatitis should be performed to ensure, at the 
very least, symptom relief.   

12.4     Mumps Orchitis 

 Mumps orchitis is rare; however, because of its detrimental sequelae on sperm count 
it merits discussion here. Orchitis is a common complication of mumps in postpu-
bertal men affecting about 20–30 % of cases (10–30 % of which are bilateral), often 
results in testicular atrophy, and occurs 1–2 weeks after parotitis [ 37 ]. 

 The causes of testicular atrophy are not fully known. In the course of infl amma-
tion the tunica albuginea forms a barrier against edema, and the subsequent rise in 
intratesticular pressure leads to pressure-induced testicular atrophy [ 38 ]. 
Adamopoulos et al. found elevated luteinizing hormone (LH) levels and an exagger-
ated pituitary response to LH-releasing hormone (LHRH) stimulation in the acute 
phase of mumps orchitis. Basal testosterone concentrations returned to normal after 
several months, whereas mean basal follicle-stimulating hormone (FSH) and LH 
concentrations remained signifi cantly increased at 10 and 12 months after the acute 
phase [ 39 ]. 
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 Mumps orchitis rarely leads to azoospermia, more frequently leading to various 
degrees of dyspermia [ 40 ]. Testicular sperm extraction is indicated in cases of azo-
ospermia (even with high concentrations of FSH and LH), whereas no treatment has 
been proposed for dyspermia [ 41 ].  

12.5     Sperm DNA Fragmentation in Inflammatory Infertility: 
A Less Orthodox Point of View 

 Sperm DNA fragmentation (SDF) is the separation or breaking of DNA strands into 
pieces. Any form of DNA damage may result in male infertility. Sperm DNA integ-
rity is essential for the complete transmission of genetic information, and is neces-
sary for the normal fertilization and embryo growth in both natural and assisted 
conception [ 42 ,  43 ], but also for normal fetal development [ 44 ]. It has been reported 
that when 30 % or more of sperm DNA is damaged, natural pregnancy is not pos-
sible [ 45 ,  46 ]. Approximately 15 % of patients with male factor infertility have a 
normal semen analysis [ 47 ]. 

 Increased sperm DNA fragmentation is frequently observed in males with nor-
mal semen characteristics. In fact, sperm DNA damage is found in 8 % of men with 
normal seminal parameters [ 48 ,  49 ]. Moreover, a signifi cant proportion of males 
(8.4–23 %) diagnosed as unexplained infertile according to conventional semen 
analysis have high levels of sperm DNA fragmentation [ 50 – 53 ] .  DNA integrity can 
be considered an effective monitor of normal male fertility potential [ 54 ]. 

 High levels of sperm DNA fragmentation have been correlated with low fertility 
potential, failure to obtain blastocysts, hindrance in embryonic development, 
increased risk of recurrent miscarriages, reduced chances of successful implanta-
tion, and abnormal outcomes in the offspring [ 55 – 57 ]. 

 Several etiologic factors have been associated with sperm DNA fragmentation: 
environmental conditions and cigarette smoking [ 58 ,  59 ], chemotherapy [ 60 – 62 ], 
irradiation [ 63 ,  64 ], cancer [ 65 ], varicocele [ 66 ,  67 ], leukocytospermia [ 68 ,  69 ], 
advanced paternal age [ 70 – 72 ], high fever [ 73 ], and chronic prostatitis [ 74 – 78 ]. 
Sharma et al. found the highest levels of ROS in semen of infertile men with pros-
tatitis [ 79 ]. High levels of ROS mediate the DNA fragmentation commonly 
observed in spermatozoa of infertile men [ 80 ,  81 ]. Therefore, infl ammations of the 
male genitourinary tract can adversely affect male fertility by causing sperm DNA 
damage. 

 Chronic prostatitis affects about 10–15 % of the male population [ 82 ]. In other 
studies the prevalence of prostatitis symptoms ranged from 2 to 9.7 % [ 83 – 85 ]. 
Prostatitis is the most frequent urologic diagnosis in males younger than 50 years 
[ 86 ]. It has been estimated that approximately 50 % of men will suffer from pros-
tatitis during their lifetime [ 87 ]. A study of National Center for Health Statistics 
showed that about 25 % of outpatients evaluated for genitourinary problems suf-
fered from prostatitis [ 88 ]. Males with a previous diagnosis of prostatitis had a 
20–50 % risk for recurrent episodes [ 89 ]. A history of male genital infl ammations, 
including prostatitis, epididymitis, and orchitis, occurs in 5–12 % of infertile 
men [ 90 ]. 
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 A study by El-Bayoumi et al. has revealed that prostatitis was the cause of infer-
tility in 27.5 % of a sample of 375 infertile male patients [ 91 ]. A more recent study 
has shown chronic prostatitis as a cause of infertility in 39.1 % of 534 patients with 
male infertility [ 92 ]. 

 Hu et al., in their recent (2013) study, have shown that chronic prostatitis signifi -
cantly reduces sperm quality and male fertility, also highlighting a signifi cant 
increase in sperm DNA fragmentation [ 76 ]. 

 Considering that sperm DNA fragmentation is a frequent condition (due to vari-
ous causes) and that chronic prostatitis is also very common and causes infertility in 
a high percentage of cases, one can deduce that sperm DNA damage is a frequent 
precondition for male infertility. 

 As sperm DNA fragmentation cannot be detected by routine molecular and cyto-
genetic methods, several assays have been developed to evaluate sperm chromatin/
DNA integrity. 

 Some of these tests measure DNA damage directly, such as TUNEL (terminal 
deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end label-
ing assay) and COMET (single-cell gel electrophoresis) [ 93 ,  94 ]. Other tests (indi-
rect) include SCSA (sperm chromatin structure assay) and the SCD test (sperm 
chromatin dispersion) [ 95 ,  96 ]. The SCD test and TUNEL assay are both effective 
in detecting sperm DNA damage; however, using bright-fi eld microscopy, the SCD 
test appears to be more sensitive than TUNEL [ 97 ]. Sperm DNA fragmentation has 
now become a new biomarker for male infertility diagnosis [ 98 ]. 

 There are several notable facts regarding the interpretation and evaluation of the 
results of these different methods, as follows. 

 SCSA: The pregnancy rates are signifi cantly higher with DNA fragmentation 
index (DFI) below the thresholds of 30–40 % [ 99 ]. Other investigators have found that 
a DFI cutoff level of 30.27 % was able to discriminate infertile and fertile men [ 100 ];

   TUNEL: A threshold value of 20 % sperm DNA fragmentation (SDF) has been 
 suggested to distinguish between fertile men and infertile patients [ 54 ]. A more 
recent study has shown a cutoff value of 19.2 % that can differentiate infertile 
men with DNA damage from healthy men [ 101 ];  

  COMET (alkaline test): The risk of failure to achieve a pregnancy increases when 
SDF exceeds a prognostic threshold value of 52 % [ 102 ];  

  COMET (neutral test): When SDF exceeds a prognostic threshold value of 77.5 %, 
there is a high risk of pregnancy failure [ 103 ];  

  SCD test: Men with SDF greater than a diagnostic threshold of 22.75 have a high 
risk of infertility [ 103 ].    

 According to current knowledge, intake of antioxidants may be benefi cial in 
reducing sperm DNA damage, particularly in men with high levels of DNA frag-
mentation [ 104 ]. It is also important to identify behaviors that may reduce sperm 
DNA damage, such as removing testicular gonadotoxins and/or hyperthermia, treat-
ment of genital tract infections and chronic prostatitis, correction of varicocele, 
smoking cessation, and reducing radiation exposure [ 80 ,  104 – 109 ].     
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13.1            Cryptorchidism 

 Cry   ptorchidism is the commonest congenital anomaly affecting the genitalia of 
newborn male infants. 

 The cause may be related to an intrinsic testicular defect or lack of maternal 
gonadotropins. Approximately 10 % of instances are bilateral. The most common 
location is at the external inguinal ring [ 1 ]. 

 The testes normally descend into the scrotum at 7 months’ gestation. The incidence 
of cryptorchidism therefore decreases with age: it is 30 % in premature infants, 3 % 
in newborns, 1.5 % at 1 month and 0.75 % at 1 year of age [ 1 ]. 

 Most recent data reported that at 1 year of age, nearly 1 % of all full-term male 
infants have cryptorchidism [ 2 ]. 

 A patent processus vaginalis is present in 90 % of patients, while inguinal hernia 
in 25 % [ 1 ]. 

 The most useful classifi cation of cryptorchidism is clinical, distinguishing into 
 palpable  and  non - palpable  testes [ 3 ]. 

 The clinical management is decided by the location and presence of the testes:

•    In the presence of  palpable  and retractile testes, the clinical approach should be 
initially conservative.  

•   In case of bilateral  non - palpable  testes, an immediate endocrinological and 
genetic evaluation is necessary.    
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 From the etiological point of view, we can distinguish two kinds of undescended 
testicle:

•    Those in which the gubernaculum has gone “off course”, and we call them 
  ectopic testes .  

•   Those in which the descent to the bottom of the scrotum has been incomplete, 
but “on course”. We call them “incompletely descended” or  dystopic testes .    

 In case of  ectopic testicle , it has to be searched into one of four possible 
locations:

•    Inguinal, in the abdominal wall, near the external inguinal ring  
•   Perineal  
•   Penile, near the base of the shaft  
•   Crural, in the thigh    

 In case of  dystopic testicle , it moves up and down and can be defi ned according 
to its range of movement as:

•    Abdominal, when the testicle may move in and out of the internal inguinal ring  
•   Inguinal, when it moves along the inguinal canal  
•   Emergent, when it appears at the external ring  
•   High retractile, when it moves up and down but cannot be made to go to the 

 bottom of the scrotum  
•   Low retractile, when it descends to the bottom of the scrotum only in particular 

conditions (warm bath, under general anaesthesia, hand traction)    

 Low retractile testes are essentially normal and will always end up in the scrotum 
with puberty [ 4 ]. 

 Possible complications of undescended testis could be [ 4 ]:

•    Torsion: a peritoneal sac is often associated with an undescended testicle,  making 
it prone to torsion.  

•   Infertility: common only in case of bilateral undescended testicles, not with 
unilateral.  

•   Cancer: about one in ten testicular tumours is associated with undescended 
testicle.    

13.1.1     Diagnosis 

 Physical examination is suffi cient for differentiating between palpable and non- palpable 
testes. The groin region may be “milked” towards the scrotum to detect the possible 
attraction    of the testis into the scrotum. A retractile testis can generally be brought into 
the scrotum until a cremasteric refl ex will retract it into the groin again [ 5 ]. 
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 A unilateral, non-palpable testis and an enlarged contralateral testis suggest 
 testicular absence or atrophy, but this should not avoid surgical exploration. An 
inguinal, non-palpable testis requires specifi c visual inspection of the femoral, 
penile and perineal regions in order to exclude an ectopic testis [ 3 ]. 

 When no testicle can be felt on one side, it is often in the inguinal canal. The testicle 
is easily found with a computed tomography (CT) scan, even in the abdomen [ 4 ]. 

 Diagnostic laparoscopy is the only examination that can reliably confi rm or 
exclude an intra-abdominal, inguinal and absent/vanishing testis (non-palpable 
 testis). Before carrying out laparoscopic assessment, examination under general 
anaesthesia is recommended because some, originally non-palpable, testes could be 
palpable under anaesthetic conditions [ 6 ].  

13.1.2     Treatment 

 Although 90 % of testicles are in the scrotum at birth, the next 9 % do not descend until 
12 months, after which no more do [ 4 ]. Treatment should be done as early as possible, 
around 1 year of age, starting after 6 months and fi nishing preferably at 12 months  
of age, or 18 months at the latest. The timing is driven by the fi nal adult results on 
spermatogenesis and hormone production, as well as the risk for tumours [ 7 ,  8 ]. 

 After puberty the chance of improving fertility is minimal, and the risk of cancer 
increases rapidly, but most young men wish to keep both testes. When an unde-
scended testicle is found in a mature grown man, orchiectomy is the procedure that 
should be advised in view of the risks of malignancy [ 4 ]. 

13.1.2.1     Medical Therapy 
 Taking into account the hormonal dependence of testicular descent, the use of human 
chorionic gonadotrophin (hCG) or gonadotrophin-releasing hormone (GnRH) is rec-
ommended, with maximum success rates of 20 %. However, it must be considered 
that almost 20 % of descended testes have the risk of reascending later [ 3 ]. 

 In addition, the price that the patient will have to pay will be a premature puberty, 
with stunting of growth from early fusion of epiphyses [ 4 ]. 

 A total dose of 6,000–9,000 U hCG (depending on weight and age) is given in 
four doses over a period of 2–3 weeks, along with GnRH, given for 4 weeks as a 
nasal spray at a dose of 1.2 mg/day, divided into three doses per day [ 3 ]. 

 Medical treatment may be benefi cial before surgical intervention (orchidolysis 
and orchidopexy) or afterwards (low intermittent dosages), in terms of increasing 
the chances of fertility in later life [ 9 ].  

13.1.2.2     Surgery 

   Palpable Testis 
 Surgery for a palpable testis includes orchidofunicololysis    and orchidopexy, via an 
inguinal approach, with success rates of up to 92 %. It is important to remove and 
dissect all cremasteric fi bres to prevent secondary retraction [ 3 ]. 
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 Through a crease incision over the internal ring, the external oblique is 
opened, and the testicle is mobilized, taking care not to injure its artery or the 
vas deferens. The testicular vessels are followed up behind the peritoneum and 
mobilized medially by dividing fi brous bands. This allows the testicle to be 
placed in a sac between the dartos muscle and skin of the scrotum, without 
tension [ 4 ]. 

 Associated problems, such as an open processus vaginalis, must be carefully 
dissected and closed. There should be no fi xation sutures or they should be made 
between the tunica vaginalis and the dartos muscle. The lymph drainage of a 
testis that has undergone surgery for orchidopexy has been changed from iliac 
drainage to iliac and inguinal drainage (this is important in the event of later 
malignancy). 

 Scrotal orchidopexy can be considered in less severe case and when performed 
by surgeons with experience using that approach [ 3 ].  

   Non-palpable Testis 
 Inguinal surgical exploration with possible laparoscopy should be attempted for 
non-palpable testes. There is a signifi cant chance of fi nding the testis via an inguinal 
incision. In rare cases, it is necessary to search into the abdomen if there are no ves-
sels or vas deferens in the groin. Laparoscopy is the best way of examining the 
abdomen for a testis. In addition, either removal or orchidolysis and orchidopexy 
can be performed via laparoscopic access [ 10 ]. 

 For boys aged ≥10 years with an intra-abdominal testis, with a normal con-
tralateral testis, removal is an option because of the theoretical risk of later 
malignancy. In pre-pubertal boys, an effort should be made to preserve the testis. 
The exact location of the testis should be provided by CT scan and confi rmed by 
laparoscopy [ 4 ]. 

 In bilateral intra-abdominal testes, or in boys younger than 10 years, a one-
stage or two-stage Fowler-Stephens procedure can be performed. In the event of a 
two- stage procedure, the testicular vessels are laparoscopically clipped or coagu-
lated proximally to the testis as a fi rst step, to allow development of collateral 
vasculature [ 11 ]. 

 Six months later, a second operation provides the mobilization of the tes-
ticle downwards into the scrotum, by which time it will have acquired a new 
blood  supply from the artery to the vas and it is safe to divide the testicular 
vessels [ 4 ]. 

 This second-stage procedure, in which the testis is brought directly over the 
symphysis and next to the bladder into the scrotum, can also be performed by 
laparoscopy. The testicular survival rate in the one-stage procedure varies 
between 50 and 60 %, with success rates increasing up to 90 % for the two-stage 
procedure. Microvascular autotransplantation can also be performed with a 90 % 
testicular survival rate. However, the procedure requires skilled and experienced 
surgeons [ 12 ]. 

  Ectopic testes  never fi nd their way into the scrotum and require orchidopexy [ 4 ].    
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13.1.3     Prognosis 

 Although boys with one undescended testis have a lower fertility rate, they have the 
same paternity rate as those with bilateral descended testes. Boys with bilateral 
undescended testes have lower fertility and paternity rates. 

 Boys with an undescended testis have an increased risk of developing testicular 
malignancy. Screening both during and after puberty is therefore recommended for 
these boys [ 3 ]. 

 Pre-pubertal orchidopexy may decrease the risk of testicular cancer, and early 
surgical intervention is indicated in children with cryptorchidism. 

 Boys with retractile testes do not need medical or surgical treatment, but require 
close follow-up until puberty [ 3 ].   

13.2     Testicular Torsion 

 Testicular torsion is one of the most common emergencies in urology. It may occur 
at any age, but is most common around puberty [ 4 ]. About one-half of instances 
occur during sleep. Although the cause is unknown, poor fi xation of the testis within 
the tunica vaginalis (the so-called bell clapper deformity) is most often given as the 
origin [ 1 ]. 

 It results in twisting of the spermatic cord and occlusion of the venous or arte-
rial supply to the testis. It is a true vascular emergency that, if not treated within 
3–4 h after onset of pain, causes a complete infarction of the testis, followed by 
its atrophy [ 1 ]. 

 Clinical presentation entails a sudden onset of pain and swelling in the testicle. 
Patients often recall attacks of pain that come on and are relieved equally suddenly 
(a history of such warning attacks is suffi cient reason to explore the testicle and fi x 
it). On    examination, the scrotum is tender, red and swollen, and it is seldom possible 
to distinguish testis from the epididymis [ 4 ]. 

 The fi rst classifi cation classically distinguishes two forms [ 4 ]:

•     Extravaginal  torsion, rarely seen in newborn boys, in which the testicle has 
rotated on the spermatic cord and it is almost never possible to save the testis by 
untwisting it  

•    Intravaginal  torsion, in which the tunica vaginalis may be unusually roomy even 
with a normally descended testicle, and the testis and epididymis can twist on a 
stalk (like a light bulb in its socket)    

 The differential diagnosis is from [ 4 ]:

•    Mumps orchitis, which never attacks boys before puberty  
•   Epididymitis, which is often secondary to urinary infections  
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•   Fat necrosis, occasionally seen in infants  
•   Cancer, which in older boys and men can present with infl ammation  
•   Torsion of an appendix testis, which is diffi cult to be distinguished from torsion 

of the testis without exploration  
•   Incarcerated inguinal hernia    

13.2.1     Diagnosis 

 No investigation should be allowed to delay surgical exploration. A Doppler or 
radioisotope scan may show absence of arterial circulation in the testicle but is 
justifi ed only if it will not delay matters [ 4 ]. 

 Generally, no harm results from scrotal exploration if epididymitis is found, but 
much harm can result from delay in treating testicular torsion [ 1 ].  

13.2.2     Treatment 

 It is important to untwist the testicle before it dies from ischaemia [ 4 ]; therefore, the 
treatment depends on the interval from onset of pain to presentation in the emer-
gency room. 

 Within 4 h of onset, manual detorsion under local anaesthesia of the testicular 
cord should be attempted (the testes twist towards the midline as seen from the 
feet). If manual detorsion is successful, elective bilateral orchidopexy is indicated 
within the next few days. If it is not successful, immediate surgical exploration is 
indicated [ 1 ]. 

 If presentation is between 4 and 24 h from pain onset, immediate surgical explo-
ration, detorsion and bilateral orchidopexy should be performed [ 1 ]. 

 If more than 24 h have passed since onset of pain, surgical exploration is 
indicated, but preservation of testicular function is doubtful [ 1 ]. 

 In these cases, orchiectomy and placement of a testicular prosthesis is the treat-
ment of choice. 

 The testicle is explored through a transverse scrotal incision. The tunica vagina-
lis is opened and the testicle is untwisted. If there is any doubt about the viability of 
the testis, it can be incised to see if it still bleeds. All too often it is necrotic and must 
be removed [ 4 ]. 

 In case of  torsion of the appendix testis , tiny cysts are usually present at the upper 
pole, one on the epididymis (Wolffi an duct origin) and the other on the testis 
(Mullerian duct origin). Apart    from being of interest to embryologists either can 
twist on its stalk, exactly mimicking torsion of the testicle and equally requiring 
urgent exploration [ 4 ]. 

 Because torsion occurs in about 10 % of cases on the other side, the other testicle 
should be fi xed then or at a later operation.   
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13.3     Testicular Microlithiasis 

 Testicular microlithiasis (TM) is a relatively uncommon condition characterized by 
the presence of multiple, 1-mm to 3-mm foci of increased echogenicity distributed 
randomly in the testicular parenchyma, detected incidentally during scrotal ultra-
sound (US). Its incidence varies according to different reports: in healthy men, the 
incidence ranges between 1.5 and 5.6 % and in subfertile population between 0.8 
and 20.0 % [ 13 – 15 ], but it increases over 50 % in patients with testicular cancer 
[ 16 – 18 ]. 

 TM usually affects both testes, but may be unilateral and can be focal or diffuse. 
 The exact aetiology of TM is unclear. It is suggested that these calcifi ed concre-

tions within the lumen of seminiferous tubules originate from sloughing of degenerated 
intratubular cells and failure of the Sertoli cells to phagocyte the debris [ 19 ]. 

 TM    has been associated with several urological diseases, including testicular cancer 
(TGCT), intratubular germ cell neoplasia (ITGCNU), cryptorchidism (testicular 
 dysgenesis), varicocele, Klinefelter’s syndrome, hypogonadism and infertility. 

 The relationship between TM and infertility is not well understood even if 
decreased fertility could be expected because the majority of seminiferous tubules 
can be obstructed by intratubular calcifi cations. Infertile patients with TM may have 
signifi cant reductions in sperm migrations and motility. However, although some 
authors have reported abnormal semen parameters in infertile men with TM, others 
have found no signifi cant difference among infertile men with or without TM with 
no signifi cant differences in sperm count, motility or morphology in terms of sperm 
function between infertile men with or without TM [ 13 ,  14 ,  17 ]. 

 The clinical importance of TM is not well clarifi ed: because they can often be 
observed in association with germ cell tumours, many authors suggest to consider them 
as a possible “marker” of testicular cancer and to perform a prolonged scrotal ultra-
sound follow-up of these patients in order to recognize possible testicular tumours. 

 However, still today, the debate continues because many of the observations who 
link TM and testicular cancer are based on retrospective series [ 20 ,  21 ]. 

 Many studies report in fact the co-association between testicular tumour and 
TM, but few ones describe the actual risk of development of a testicular cancer after 
TM [ 22 ,  23 ]. 

 Serter et al. identifi ed TM in 53 of 2,179 (2.4 %) asymptomatic men (age 
17–42 years), but none had testicular tumour [ 24 ]. Similarly, Peterson et al. reported 
TM in 84 of 1,504 asymptomatic men (5.6 %) and 1 man without TM who had 
TGCT; they concluded that testicular microlithiasis is a common fi nding in asymp-
tomatic men that may not be related to testicular cancer [ 15 ]. 

 DeCastro et al. [ 23 ] screened 1,504 healthy men (age between 18 and 35 years) 
and detected 84 cases of TM (5.6 % prevalence). Even if at 5-year follow-up one 
man had developed a TGCT (64 months after initial screening), implying increased 
risk of developing testicular cancer compared with the general population, the 
authors concluded that most men with TM would have not developed a testicular 
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cancer and that, for this reason, an intensive screening program for men with 
testicular microlithiasis is not cost-effective and would have done little to improve 
outcomes associated with testicular cancer [ 23 ]. 

 Richenberg et al. performed a pooled analysis of literature data: a total of four 
patients (1 %; 95 % CI 0.4–2.6 %) among the 389 patients who were included in the 
study developed during the follow-up period a testicular cancer (median follow-up 
range 29–62 months). 

 Of these four patients, three had coexisting risk factors, one atrophied testis and 
two with previous history of testicular germ cell cancer. Excluding these patients 
from the fi nal analysis, only one patient in 386 with TM and no coexisting risk 
 factors developed cancer during follow-up (0.26 %; 95 % CI 0.05–1.45 %). They 
concluded that the literature reports a high association between testicular microli-
thiasis and testicular cancer, but that their meta-analysis did not suggest a causal 
link between microlithiasis and cancer. In the absence of additional risk factors, 
surveillance is not advocated, while in the presence of additional risk factors, 
 surveillance with regular follow-up is recommended [ 25 ]. 

 Recently Tan et al. [ 26 ] in their systematic review and meta-analysis summarized 
literature data about TM: management should depend on the clinical context. In 
healthy, asymptomatic individuals, the absolute risk of concurrent or interval TGCT 
or ITGCNU is very low. In patients who undergo scrotal ultrasound because of sub- 
or infertility, cryptorchidism or a personal history of germ cell tumour and for this 
reason already are at an elevated risk of testicular cancer, the presence of TM further 
increases the risk of a concurrent diagnosis of ITGCNU or germ cell tumours. 
In their pooled analysis, the estimated summary risk ratio was 8.5. However, even in 
the presence of risk factors, in contrast with other authors that recommend performing 
testicular biopsy [ 16 ], they suggest only to follow up these patients regularly.  

13.4     Testicular Trauma 

 Testicular trauma most commonly occurs in young men between 15 and 40 years. 
Testicular trauma may be the consequence of blunt or penetrating trauma [ 27 ]. 

13.4.1     Blunt Trauma 

 Blunt trauma to the scrotum can be responsible for testicular dislocation, testicular 
haematocele and testicular rupture, associated or not to scrotal haematoma. 

  Testicular dislocation  is quite rare; it is more common in motor vehicle accidents 
and in these cases can be also bilateral. Possible sites with relative frequency are 
superfi cial inguinal 50 %, pubic 18 %, penile 8 %, canalicular 8 %, truly abdominal 
6 %, perineal 4 %, acetabular 4 % and crural 2 %. 

 Traumatic dislocation of the testicle is treated by manual replacement and sec-
ondary orchidopexy. If primary manual reposition cannot be performed, immediate 
orchidopexy is indicated [ 28 ]. 
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  Haematocele  can be treated conservatively if it is smaller than three times the 
size of the contralateral testis [ 27 ]. Larger haematoceles or growing ones in fact can 
require delayed surgery, because conservative treatment often fails. Early surgical 
intervention resulted in preservation of the testis in more than 90 % of cases 
 compared to delayed surgery, which resulted in orchiectomy in 45–55 % of patients 
[ 29 – 31 ]. 

  Testicular fracture or rupture  may occur because of a traumatic compression of 
the testis against the inferior pubic ramus or symphysis, resulting in a rupture of the 
tunica albuginea testis, haemorrhage and extrusion of testicular contents into the 
scrotal sac. 

 The scrotum appears tender, swollen and ecchymotic, and the testis itself may be 
diffi cult to palpate. Ultrasound images show an irregular testicular outline, intra- 
and/or extra-testicular haematoma and heterogeneous testicular echotexture, with 
focal hyperechoic or hypoechoic areas in the testicular parenchyma corresponding 
to areas of haemorrhage or infarction [ 32 ]. 

 In case of suspected testicular rupture, surgical exploration, with evacuation of 
haematoma, debridement of necrotic tissue and closure of the tunica albuginea, is 
indicated [ 31 ,  32 ].  

13.4.2     Penetrating Scrotal Trauma 

 Penetrating trauma is usually due to gunshot wounds and less commonly to stab 
wounds, animal attacks and self-mutilation. 

 Testicular fractures and ruptures from penetrating injury are managed in the 
same way as are fractures and ruptures from blunt injury, with conservative 
debridement of non-viable tissue. Depending on the extent of the injury, primary 
reconstruction of the testis and scrotum can usually be performed. In patients 
with spermatic cord injury and complete vascular transection, immediate 
surgical exploration is mandatory with microvascular reanastomosis when 
possible. 

 When conservative surgical treatment is not possible, orchiectomy is indicated 
[ 27 ,  31 ,  32 ].   

13.5     Testicular Cancer 

13.5.1     Introduction 

 Testicular cancer accounts for about 5 % of all urological tumours, with an esti-
mated incidence of 3–10 new cases occurring per 100,000 males/per year in Western 
countries [ 33 ]. 

 The    recent widespread use of high-frequency ultrasonography (US) has led to an 
increasing number of incidentally detected small testicular masses [ 34 ] (STMs), 
defi ned as non-palpable and less than 25 mm in diameter, and intrascrotal masses, 

13 Testicular Pathology



128

and more than 70 % of patients are diagnosed with stage I disease [ 35 ]; the early 
diagnosis and the good response to extreme chemo- and radiotherapy give an 
 excellent cure rate to all the typology of testicular tumours [ 33 ]. 

 Testicular tumours can be classifi ed into three categories: germ cell tumours 
(90–95 %), cord stromal tumours and miscellaneous tumours (Table  13.1 ) [ 36 ].

13.5.2        Diagnosis of Testicular Cancer 

 Preoperative diagnosis of testicular cancer is based on identifi cation of testicular 
nodules with the straight palpation of the testis and the exploration of inguinal 
lymph nodes that could be enlarged. The second step is  ultrasound  ( US )  of both 
testes  and additional US of the retroperitoneum to screen for extensive retroperito-
neal metastasis. 

  Serum tumour markers , both before and 5–7 days after orchiectomy (AFP and 
hCG) and LDH, should be always assessed [ 37 ]. A total body CT scan should be 
always carried out for detection of metastasis and retroperitoneal, mediastinal and 
supraclavicular nodes assessment. 

 The fi nal diagnosis of testicular tumours is completed with the pathologic exami-
nation of the mass after inguinal exploration and orchiectomy with en bloc excision 
of the testis, tunica albuginea and spermatic cord. Organ-sparing surgery can be 
performed in some cases such as bilateral tumour [ 38 ] or solitary testes or incidental 
detection of STMs with intraoperative frozen section examination (FSE) of the 
mass [ 39 ].   

   Table 13.1    Pathologic classifi cation of testicular tumours   

 Germ cell tumours 
 Sex cord/gonadal stromal 
tumours 

 Miscellaneous 
nonspecifi c stromal 
tumours 

 Intratubular germ cell 
neoplasia 

 Leydig cell tumour  Ovarian epithelial tumour 

 Seminoma  Malignant Leydig cell tumour  Tumour of the collecting 
duct and rete testis 

 Spermatocytic seminoma  Sertoli cell tumour  Benign tumour of 
nonspecifi c stroma 

 Embryonal carcinoma  Malignant Sertoli cell tumour  Malignant tumour 
of nonspecifi c stroma  Yolk sac tumour  Granulosa 

 Choriocarcinoma  Thecoma/fi broma group 

 Teratoma  Incompletely differentiated 
or mixed sex cord tumours 

 Tumours with more than 
one histologic type 

 Gonadoblastoma 
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13.6     Testicular Cancer’s Staging System 
TNM (Table  13.2 ) [ 37 ] 

13.6.1        Guidelines for the Treatment of Testicular Cancer 

13.6.1.1     Seminoma Stage I 
 The most recommended management option is surveillance, due to the low risk of 
recurrence rate (<6 %) [ 37 ]; radiotherapy is not recommended as adjuvant therapy. 
one cycle of carboplatin-based chemotherapy can be used as alternative to sur-
veillance [ 40 ].  

   Table 13.2    Testicular Cancer’s Staging System TNM [ 37 ]         

 pT  Primary tumour a  

 pTX  Primary tumour cannot be assessed 

 pT0  No evidence of primary tumour (eg, histologic scar in testis) 

 pTis  Intratubular germ cell neoplasia (testicular intraepithelial neoplasia) 

 pT1  Tumour limited to testis and epididymis without vascular/lymphatic 
invasion: tumour may invade tunica albuginea but not tunica vaginalis 

 pT2  Tumour limited to testis and epididymis with vascular/lymphatic invasion 
or tumour extending through tunica albuginea with involvement of tunica 
vaginalis 

 pT3  Tumour invades spermatic cord with or without vascular/lymphatic 
invasion 

 pT4  Tumour invades scrotum with or without vascular/lymphatic invasion 

  N – Regional lymph nodes clinical  

 NX  Regional lymph nodes cannot be assessed 

 N0  No regional lymph node metastasis 

 N1  Metastasis with a lymph node mass ≤2 cm in greatest dimension or 
multiple lymph nodes; none >2 cm in greatest dimension 

 N2  Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension 
or multiple lymph nodes; any one mass >2 cm but ≤5 cm in greatest 
dimension 

 N3  Metastasis with a lymph node mass >5 cm in greatest dimension 

  pN – Pathologic regional lymph nodes  

 pNX  Regional lymph nodes cannot be assessed 

 pN0  No regional lymph node metastasis 

 pN1  Metastasis with a lymph node mass ≤2 cm in greatest dimension and 
≤5 positive nodes; none >2 cm in greatest dimension 

 pN2  Metastasis with a lymph node mass >2 cm but <5 cm in greatest dimension; 
or >5 nodes positive, none >5 cm; or evidence of extranodal extension of 
tumour 

 pN3  Metastasis with a lymph node mass >5 cm in greatest dimension 

(continued)
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13.6.1.2     Non-seminomatous Germ Cell Tumour (NSGCT) Stage I 
 In this case the treatments depend on vascular invasion: in case of no vascular 
invasion (low risk of recurrence/metastasis), a long-term surveillance (at least 
5 years) close follow-up is the recommended option [ 41 ]; an alternative adjuvant 
chemotherapy or nerve-sparing retroperitoneal lymph node dissection (RPLND) 
can be proposed; if RPLND shows nodal involvement, two courses of PEB (cisplatin, 
etoposide, bleomycin) chemotherapy are the best option. 

 In case of vascular invasion (pT2–pT4), the high risk of metastasis indicates 
chemotherapy with two courses of PEB [ 42 ] or an alternative surveillance or nerve- 
sparing RPLND [ 43 ] in patients not willing to undergo adjuvant chemotherapy. 

 If pathologic stage II is revealed at RPLND, further chemotherapy should be 
considered.  

13.6.1.3     Metastatic Germ Cell Tumours GR 
 In    case of low-volume NSGCT stage IIA/B with elevated markers, it should be 
treated with three or four cycles of PE; in case of tumours without marker elevation, 

Table 13.2 (continued)

  M – Distant metastasis  

 MX  Distant metastasis cannot be assessed 

 M0  No distant metastasis 

 M1  Distant metastasis 

  M1a  Nonregional lymph node(s) or lung 

  M1b  Other sites 

  pM – Pathologic distant metastasis  

 MX  Distant metastasis cannot be assessed 

 M0  No distant metastasis 

 M1  Distant metastasis 

  M1a  Nonregional lymph node(s) or lung 

  M1b  Other sites 

  S – Serum tumour markers  

 Sx  Serum markers studies not available or not performed 

 S0  Serum marker study levels within normal limits 

  LDH ,  U/I    hCG ,  mlU/ml    AFP ,  ng/ml  

 S1  <1.5 × N and  <5,000 and  <1,000 

 S2  1.5–10 × N or  5,000–50,000 or  1,000–10,000 

 S3  >10 × N or  >50,000 or  >10,000 

   LDH  lactate dehydrogenase,  N  upper limit of normal for the LDH assay,  hCG  human gonadotro-
phin,  AFP  α-fetoprotein 
  a Except for pTis and pT4, where radical orchidectomy is not always necessary for classifi cation 
purposes, the extent of the primary tumour is classifi ed after radical orchidectomy; see pT. In other 
circumstances, TX is used if no radical orchidectomy has been performed  
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chemotherapy can be performed after histologic analysis with RPLND or biopsy 
6 weeks after orchiectomy [ 44 ]. 

 In case of NSGCT > stage IIC, three or four courses of PEB are the primary 
treatment of choice according to prognosis grade [ 44 ]. 

 If serum levels of tumour markers are normal or normalizing, surgical resection 
of residual masses after chemotherapy in NSGCT is indicated. 

 Seminoma IIA/B can be treated with radiotherapy; chemotherapy can be used as 
a salvage treatment with the same schedule as for the corresponding prognostic 
groups of NSGCT. 

 In seminoma stage CS IIB, chemotherapy (4 × EP or 3 × PEB, in good prognosis) 
is an alternative to radiotherapy. 

 Seminoma stage ≥ IIC should be treated with primary chemotherapy according 
to the same principles used for NSGCT [ 45 ].   

13.6.2     Testicular Stromal Tumours 

 Testicular stromal tumours are rare (<10 % of all testicular tumours); among    a wide 
array of benign and malignant lesions, Leydig cell tumours and Sertoli cell tumours 
are the most common [ 46 ].  

13.6.3     Leydig Cell Tumours 

 Leydig cell tumours represent 1–3 % of adult testicular tumours and 3 % in 
 childhood [ 46 ,  47 ]. Only 7–10 % of them are malignant; no malignant tumours have 
occurred in the pre-pubertal population [ 47 ]. 

 The clinical presentation usually is characterized by a painless enlarged testis 
but very often the diagnosis is incidental in course of testicular US; it is very 
often accompanied by hormonal disorders (80 % of cases) [ 48 ]. Nowadays   , the 
good outcome of Leydig cell tumours treated by partial orchiectomy is widely 
demonstrated [ 47 – 49 ,  50    ], but the diagnosis of Leydig cell tumours is possible only 
often pathologic analysis, for this reason intraoperative FSE is mandatory [ 47 ]. 
In case of malignancy, orchiectomy and RPLND are the best options [ 46 ].  

13.6.4     Sertoli Cell Tumours 

 They are rarer than Leydig cell tumours, accounting for 1 % of all testis tumours; 
malignancy is found in 10 % of cases. Clinical presentation is similar to Leydig cell 
tumours, such as frequency of incidental diagnosis [ 46 ]. 

 Even in this case organ-sparing surgery with intraoperative FSE is a good option 
of treatment, but in case of histologic signs of malignancy, orchiectomy and RPLND 
are the treatment of choice [ 49 ].  
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13.6.5     Conclusions 

 The most common testis tumours derive from germ cells; nowadays the development 
of    diagnostic allows their detection in an early stage. 

 The treatment of choice is orchiectomy with excellent cure rates when it is 
 performed in early stages. 

 In    advanced stages a multidisciplinary therapeutic approach offers an acceptable 
survival rate. Follow-up schedules are mandatory to initial staging and treatment. 

 Testicular stromal tumours are rare and usually benign; they can be treated by 
organ-sparing surgery associated with intraoperative FSE. In case of malignancy, 
orchiectomy and RPLND are the treatment of choice.      
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14.1            Definition 

 This chapter encompasses all spermatogenesis-altering conditions affecting the 
 normal male endocrine balance. Such conditions can be caused by either testicular 
abnormalities (or other endocrine gland or pituitary-hypothalamus disorders) or the 
effect of exogenous substances (endocrine disruptors).  

14.2     Epidemiology 

 Male infertility is caused by endocrine alterations in 18–30 % of cases [ 1 ].  

14.3     Etiopathogenesis 

14.3.1     Hypogonadisms 

 The development, endocrine function, and reproductive function of the gonads are 
regulated by the hypothalamic-pituitary-gonadal axis. In the hypothalamus, specialized 
neurons release pulses of gonadotropin-releasing hormone (GnRH), which modulates 
the secretion of gonadotropins from the pituitary gland. In turn, the anterior pituitary 
gland produces luteinizing hormone (LH) and follicle-stimulating hormone (FSH), 
which stimulate steroid secretion and germ cell production in the testes. A complex 
interaction of endogenous inputs, chronobiological signals, and exogenous stressors 
regulates the whole process. 
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 Male hypogonadism is defi ned as a clinical situation presenting a defi cit in the 
testicular function. This defect can be a consequence of a disorder fi rst originating 
in the testis (primitive or hypergonadotropic hypogonadism) or can be caused by 
insuffi cient stimulation of pituitary gonadotropins in the testis (hypogonadotropic 
hypogonadism). This condition can in turn be due to a defect in the pituitary 
 (secondary hypogonadotropic hypogonadism) or an alteration in the secretion of 
hypothalamic GnRH (tertiary hypogonadotropic hypogonadism). The classifi cation 
of male hypogonadism is reported in Table  14.1 .

   Late-onset hypogonadism, a condition in which androgens decline with advanc-
ing age, is instead imputable to the hypothalamus-pituitary and/or the testes. 

 Isolated defi ciencies of FSH and LH also have been reported. Subjects with the 
rare isolated LH defi ciency show eunuchoid body habitus, large testes, and small- 
volume ejaculates containing few spermatozoa. Plasma testosterone is low while 
FSH levels are normal. 

 Isolated FSH defi ciency is also a rare condition that allows normal virilization 
and testosterone levels, albeit with low levels of FSH and oligospermia or azoosper-
mia. Its cause may be an FSH β-subunit defi ciency, an idiopathic genetic defect, or 
excess inhibin-B (idiopathic or resulting from a granulosa cell tumor).  

14.3.2     Testicular Steroidogenesis Congenital Disorders 

 Hormone biosynthesis is carried out in both the adrenal cortex and the gonads. Many 
steps of this process are common to both, while others are only possible in the adre-
nal cortex. A congenital defi cit of an enzyme of one of the steps of steroidogenesis 

   Table 14.1    Classifi cation of male hypogonadism   

 Secondary hypogonadism (hypogonadism hypogonadotropic) 

  Panhypopituitarism 

  Failure of the gonadotrophic function of the pituitary 

  Isolated LH defi ciency 

  Isolated FSH defi ciency 

  Altered LH biological activity 

  Altered FSH biological activity 

 Primary hypogonadism (hypogonadism hypergonadotropic) 

  Congenital or acquired anorchidism 

  Cryptorchidism 

  Mumps orchitis 

   Genetic and developmental conditions: Klinefelter syndrome, androgen receptor, LH 
receptor and enzyme defects 

  Sertoli cell only syndrome 

  Radiation treatment or chemotherapy 

  Testicular trauma 

  Testicular torsion 
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produces a defi cit in the hormones of the next step, and an increase in the hormones 
of preceding steps. 

 A series of complex syndromes are produced by the lack of certain hormones, 
which should have been synthesized, and by the increase of their precursors in 
circulation. 

 The most common condition is reduced virilization in the male embryo (male 
pseudohermaphroditism). There are eight known enzymatic defects able to affect 
testosterone synthesis, the most frequent of which is 21-hydroxylase defi cit, which 
accounts for 95 % of such defects.  

14.3.3     Androgen Resistance Syndromes 

 Androgen resistance syndromes are caused by alterations of the androgen receptor 
or the 5α-reductase enzyme, which hinder the androgenic action. Virilization defects 
shown by affected individuals are highly variable and have been classifi ed accord-
ing to fi ve phenotypic variants, ranging from complete testicular feminization syn-
drome to simple, and sometimes slight, virilization defects. Spermatogenesis is 
absent or reduced, but can be normal in rare cases.  

14.3.4     Other Endocrine Diseases 

14.3.4.1     Hyperprolactinemia 
 A chronic prolactin excess interferes with gonadic function, reducing testosterone 
levels and causing oligospermia. The mechanisms by which hyperprolactinemia 
inhibit testicular function are not yet fully verifi ed, even though experimental data 
indicate that it is likely the result of a combined action at the pituitary-hypothalamic 
level (by reducing the GnRH/gonadotropic secretion) and at the testicular level 
(by interfering with testosterone synthesis and secretion). Spermatogenesis altera-
tions are probably secondary with respect to the testosterone defi cit, while it is 
unknown whether prolactin is able to act negatively at a tubular level. 

 A routine check of prolactin levels in asymptomatic infertile men is not recom-
mended. In fact, mild increases in prolactin are of doubtful signifi cance, as they may 
be caused by medications or several other medical conditions. Prolactin-secreting 
tumors are rare, with prolactin levels beyond 50 ng/mL appearing in adenomas 
larger than 1 cm [ 2 ].  

14.3.4.2     Thyroid Disease 
 Male infertility is more frequent in thyroid diseases, particularly in hyperthyroidism 
[ 3 ,  4 ]. Nonetheless, most men with thyroid abnormalities are not infertile, either 
before or after treatment. Thyroid abnormalities, if present, often lead to oligosper-
mia rather than azoospermia. The following mechanisms have been proposed: alter-
ations in sex steroid metabolism, testicular and pituitary developmental 
abnormalities, changes in sex hormone binding globulin (SHBG), and increased 
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levels of estradiol. Severe congenital hypothyroidism may cause global develop-
mental abnormalities of the hypothalamic-pituitary-gonadal axis.  

14.3.4.3     Growth Hormone Alterations 
 There are few data confi rming a role of growth hormone (GH) in endocrine 
 dysfunction in fertility [ 5 ]. In fact it is diffi cult to identify a reliable method of 
 measuring GH secretion patterns that may relate to fertility. However, acromegaly 
may inhibit spermatogenesis [ 6 ].  

14.3.4.4     Hyperestrogenism 
 High levels of estrogens caused by peripheral aromatization in adipose tissue, 
mainly in obese subjects, can inhibit pituitary function [ 7 ] and, therefore, 
spermatogenesis.  

14.3.4.5     Cushing Syndrome 
 In Cushing syndrome, the glucocorticoid excess not only can suppress LH function 
but may also have a direct contributing role in affecting spermatogenesis and matu-
ration arrest [ 8 ].  

14.3.4.6     Diabetes Mellitus 
 Infertility rates in individuals with diabetes are higher than average (16 and 19.1 %, 
respectively, for primary and secondary infertility) [ 9 ]. Excessive weight, and 
 obesity in particular, seem to be the leading contributors to infertility. 

 Three main dysfunctional mechanisms may be postulated to explain the sperm 
damage observed in diabetic patients: endocrine disorders, diabetic neuropathy, and 
oxidative stress. In insulin-dependent diabetes:

    1.    Leydig cell function and testosterone production decrease because of the lack of 
stimulatory effect of insulin on these cells   

   2.    An insulin-dependent decrease in FSH reduces LH levels   
   3.    The FSH decrease also reduces sperm output and fertility     

 As a result, in diabetic patients serum testosterone is decreased and gonadotropin 
levels are increased. Moreover, a steroidogenetic defect in Leydig cells can be observed.   

14.3.5     Endocrine Disruptors 

 Endocrine manipulation in male infertility starts with ruling out possible endocrine 
disruptors [ 10 ]. 

 Micropollutants in the environment, in particular steroid mimetics (in water sup-
plies, food sources, etc.), may contribute to an overall decline in male fertility. 

 The increasing use of phytoestrogen has also been claimed to contribute. In fact, 
many dietary supplements contain signifi cant levels of plant phytoestrogens that 
mimic testosterone and estrogen.   
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14.4     Diagnosis 

 Clinical history and physical examination are the cornerstones of the diagnosis: penis 
and testis volume, weight, height, and secondary sexual characteristics should be eval-
uated. The occurrence of headaches, visual disturbances, bitemporal visual fi eld losses, 
cranial nerve palsies, and cerebrospinal fl uid rhinorrhea should also be investigated. 

 A small set of basal hormones (testosterone, LH, FSH, estradiol, SHBG, 
 prolactin) is usually suffi cient for diagnosis (Fig.  14.1 ) [ 11 ]. It should be remem-
bered that FSH and LH are secreted in short pulses, and a single measurement may 
not be suffi cient to clarify the diagnosis.

14.4.1       Dynamic Tests 

 Persistent borderline low hormonal values may be further evaluated with the GnRH 
stimulation test, the clomiphene stimulation test, and the human chorionic gonado-
tropin (hCG) stimulation test [ 12 ]. 

14.4.1.1     GnRH Stimulation Test 
 This test is indicated in adult men with low testosterone levels and normal or low-to- 
normal gonadotropins. The patient receives GnRH 100 μg intravenously. LH and FSH 
both are expected to rise, with a peak occurring between 15 and 60 min; LH increases 
threefold to sixfold while FSH increases about 20–50 % above the baseline.  

  Fig. 14.1    Diagnostic fl ow chart of male hypogonadism       
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14.4.1.2     Clomiphene Stimulation Test 
 This test is indicated in suspected gonadotropin defi ciencies. Clomiphene acts as 
an antiestrogen centrally and as a weak estrogen peripherally. The central anties-
trogen effect, interrupting the negative feedback of estrogen on GnRH release, 
induces a rise in LH and FSH. The patient is treated for 5–7 days with 100 mg 
clomiphene citrate. A doubling of LH and a 20–50 % increase in FSH are consid-
ered normal.  

14.4.1.3     Human Chorionic Gonadotropin Stimulation Test 
 The hCG stimulation test is indicated in adults, in the differential diagnosis of com-
bined testicular and pituitary failure versus secondary hypogonadism. A single dose 
of hCG (5,000 IU intramuscularly) is administered, and testosterone values are 
measured at the baseline and every 24 h up to day 5. In adult hypogonadism the lack 
of an increase in testosterone after hCG suggests a lack of functioning testicular 
tissue. Conversely, a rise suggests an intact Leydig cell system. In gonadotropin 
defi ciency with no primary testicular abnormality, the basal testosterone value 
should triple after hCG.    

14.5     Therapy 

 Several sites can be infl uenced by selective drugs (Fig.  14.2 ).

  Fig. 14.2    Sites of action of drugs used for treating male hypogonadic infertility       
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14.5.1       Estrogen Receptor Modifiers 

 Both clomiphene and tamoxifen are selective estrogen receptor modifi ers (SERMs); 
inhibiting estrogen receptor at the level of the pituitary, both FSH and LH levels increase. 
As a result testosterone increases, thus favoring sperm growth and maturation [ 13 ]. 

 In hypogonadism and oligospermia, clomiphene is used as monotherapy [ 14 ]. 
Starting dose is 25 mg once daily; as clomiphene is normally available in 50-mg 
tablets, a starting dose might be 50 mg every other day. When testosterone remains 
low, clomiphene can be titrated up to 100 mg once daily. 

 Clomiphene has also been used on hypogonadic patients with azoospermia. 
Increases in testosterone in the testis may favor production of suffi cient sperm in the 
ejaculate. Tamoxifen is used for the same indications [ 15 ], at a dosage of 10 mg 
once daily.  

14.5.2     Aromatase Inhibitors 

 Anastrazole and letrozole are aromatase inhibitors, directly limiting estrogen feed-
back to the pituitary, thus increasing the production of FSH and LH [ 16 ]. Some men 
with severely defective sperm production have excessive aromatase activity, docu-
mented by low serum testosterone and relatively high estradiol levels. Aromatase 
inhibitors can increase endogenous testosterone production and serum testosterone 
levels. Treatment of infertile males with aromatase inhibitors has been associated 
with increased sperm production and return of sperm to the ejaculate in men with 
nonobstructive azoospermia. 

 Anastrazole (1 mg once daily) and letrozole (2.5 mg once daily) are used for 
impaired spermatogenesis, although this represents an off-label use. 

 Enclomiphene citrate [ 17 ] (an isomer of clomiphene) is in phase 3 trials for the 
treatment of hypogonadism infertility.  

14.5.3     Gonadotropins 

 SERMs and aromatase inhibitors are effective and relatively inexpensive, and thus 
are used as fi rst-line agents for the treatment of endocrine dysfunction in the 
 hypogonadal infertile male. 

 However, in cases of severe hypogonadotropic hypogonadism, the LH  homologue 
hCG is the gold standard for treatment [ 18 ]. hCG 2,000 IU subcutaneously, three 
times per week, is usually suffi cient to achieve desired testosterone levels and 
induce spermatogenesis. Direct testosterone administration has proved to be 
 ineffective [ 19 ,  20 ]. 

 In congenital forms, a 6-month titration is often required to be followed by the 
use of recombinant FSH or an FSH analogue, human menopausal gonadotropin. 
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The usual dosage for both is 75 IU or 150 IU three times weekly, as the usual vial 
contains 75 IU. Even in acquired hypogonadotropic hypogonadism, however, com-
bination hCG/FSH analogues may be more effective than hCG alone in stimulating 
spermatogenesis.  

14.5.4     Future Therapy 

 The new horizon of idiopathic male infertility treatment is personalized pharmaco-
genetic therapy. 

 Gene therapy is one of the frontiers of modern medicine. A viral vector can be 
used as a delivery device to reconstitute a key missing promoter sequence encoding 
a vital protein for cellular function. Unfortunately, little is known about the genetic 
loci involved in spermatogenesis. Moreover, it may be diffi cult to affect testis and/
or spermatozoa with gene therapy without affecting the germline. The Sertoli cells, 
because of their special tolerogenic properties, may represent an ideal candidate for 
cell-based gene therapy. 

 Further possibilities are tissue grafting and spermatogonial stem cell 
transplantation.      
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15.1            Introduction 

 There are surgical treatments and a number of chemotherapeutic agents and drugs 
commonly used in therapies that may cause male infertility [ 1 ]. When the dispermia 
is due to medical or surgical causes, it is called iatrogenic infertility [ 2 ]. While 
reviews of iatrogenic causes of infertility in Western Europe reveal that these con-
tribute to approximately 5 % of infertility both in men and women, in Africa this 
rate is higher [ 3 ].  

15.2     Chemotherapeutic Drugs 

 The use of chemotherapeutic drugs in the treatment of cancer and in the manage-
ment of autoimmune disease can interfere with fertility. 

 The  a     lkylating chemotherapy  agent group does the most damage to fertility. 
These drugs include cyclophosphamide (Cytoxan), chlorambucil (Leukeran), busul-
fan (Myleran), procarbazine (Natulan, Matulane), nitrosoureas (Carmustine, 
Lomustine), nitrogen mustard (Mustargen), and L-phenylalanine mustard (Alkeran). 
In high doses, platinum-based chemotherapy agents (cisplatin, oxaliplatin) or drugs 
like bleomycin (Blenoxane), often used to treat testicular cancer, can also damage 
fertility. 
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15.2.1     Cyclophosphamide 

 Cyclophosphamide is one of the most frequently prescribed chemotherapeutic 
drugs. It is an anticancer and immunosuppressive agent commonly used in men of 
reproductive age and, when used in high dose or in combination regimens, can 
cause severe germ cell damage [ 4 ]. The damage done to spermatogenesis by 
cyclophosphamide appears to be dose dependent. A daily dose of 3.7 mg/kg body 
weight will produce oligospermia or even azoospermia, and this change is fre-
quently permanent. Cyclophosphamide can also interfere with Leydig cell func-
tion, resulting in a reduced secretion of testosterone, thus increasing problems 
relating to infertility [ 5 ].  

15.2.2     Chlorambucil 

 This is an aromatic nitrogen mustard that also acts as an alkylating agent. It is used 
in the treatments of lymphomas as well as in the management of leukemia. It can 
interfere with spermatogenesis, and its use frequently leads to azoospermia. 
Recovery in terms of fertility is very variable. 

 In the management of various types of cancer, it is common to use several differ-
ent anticancer drugs in combination so that the effect upon the cancer is maximal. 
All these combinations will always give unpredictable and very uncertain recovery 
rate in terms of infertility [ 5 ] (Table  15.1 ).

   It is very important to suggest patients to cryopreserve their semen before any 
chemotherapeutic treatment to save potential future fertility, as spermatogenesis 
will only return to normal in no more than 50 % of patients treated [ 6 ]. Certain 
cancers can cause men to have poor sperm quality, even prior to treatment [ 7 ,  8 ]. It 
is estimated that about 40 % of men with Hodgkin’s disease and 50 % of those with 
testicular cancer will have low sperm counts at the time of diagnosis [ 9 ,  10 ]. This 
does not mean that these men should not consider sperm banking, as advances in 
reproductive techniques have made even poor-quality specimens useful for repro-
duction [ 11 ,  12 ].   

15.3     Common Drugs That Can Cause Male Infertility 

 There are numerous drugs and medications that have been shown to have adverse 
effects on male fertility, acting through diverse mechanisms [ 2 ]. 

 The mechanisms of impaired fertility include direct effects on germ cells or their 
supporting cells, on the delicately balanced HPG axis, on erectile or ejaculatory 
function, and on libido. 

 In a thorough fertility evaluation of the male partner, the physician should deter-
mine what medication the patient is taking and his social habits involving alcohol 
consumption, tobacco, and recreational drug use. Simply discontinuing the offend-
ing agents can reverse most adverse effects from drugs and medications. 
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15.3.1     Nitrofurantoin 

 Nitrofurantoin has been shown to reduce the sperm count in animals and humans. 
This suppression is short and never permanent after the cessation of treatment.  

15.3.2     Cimetidine 

 Cimetidine is an H2 inhibitor commonly used in the treatment of dyspepsia. It binds 
to the androgen receptors interfering with sperm production. Its action is short lived 
and reversible [ 2 ].  

   Table 15.1    List of the drugs that can cause male infertility   

 Chemotherapy (dose to cause effect)  Known effect on sperm count 

 Chlorambucil (1.4 g/m 2 )  Prolonged or permanent azoospermia 

 Cyclophosphamide (19 g/m 2 ) 

 Procarbazine (4 g/m 2 ) 

 Melphalan (140 mg/m 2 ) 

 Cisplatin (500 mg/m 2 ) 

 BCNU (1 g/m 2 )  Azoospermia in adulthood if treated before puberty 

 CCNU (500 mg/m 2 ) 

 Busulfan (600 mg/m 2 )  Azoospermia likely, and they are often given with 
other highly sterilizing agents, adding to the effect  Ifosfamide (42 g/m 2 ) 

 BCNU (300 mg/m 2 ) 

 Nitrogen mustard 

 Actinomycin D 

 Doxorubicin (770 mg/m 2 )  When used alone, cause only temporary reductions in 
sperm count. In conjunction with above agents, may be 
additive in causing azoospermia 

 Thiotepa (400 mg/m 2 ) 

 Cytarabine (1 g/m 2 ) 

 Vinblastine (50 g/m 2 ) 

 Vincristine (8 g/m 2 ) 

 Amsacrine  When used in conventional regimens, cause only 
temporary reductions in sperm count. In conjunction 
with above agents, may be additive in causing 
azoospermia 

 Bleomycin 

 Dacarbazine 

 Daunorubicin 

 Epirubicin 

 Etoposide 

 Fludarabine 

 Fluorouracil 

 6-mercaptopurine 

 Methotrexate 

 Mitoxantrone 

 Thioguanine 

  Adapted from Devita et al. [ 5 ]  
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15.3.3     Sulfasalazine (Salazopyrin) 

 This drug is still widely used for the therapy of various different infl ammatory 
bowel disorders, especially for ulcerative colitis. It causes a reduction of concentra-
tion and motility of the sperms and also alters the shape of sperm head. Upon ces-
sation of therapy, the sperm count and motility will returns to normal [ 2 ].  

15.3.4     Sex Steroids 

 Estrogens and testosterone will reduce gonadotropin secretion, and thus, therapy 
with testosterone will rapidly lead to azoospermia.  

15.3.5     Gonadotropin-Releasing Hormone Analogs 
and Antiandrogens 

 These drugs, especially in the depot form, are frequently used in the treatment of 
hormone-dependent prostate cancer. These drugs quickly lead to azoospermia. 
Antiandrogens block the action of testosterone and can cause erectile failure. As 
prostate cancer is becoming more common and occurring in younger men, these 
aspects must be seriously considered [ 13 – 15 ].   

15.4     Radiation Therapy 

 After World War II, with the use of atomic energy and the following incidental irra-
diation of men, it became clear that sperm production could be reduced to zero due 
to the effects of irradiation. In 1964, McLeod    reported that the accidental exposure 
of men to radiation after an accident at the Oakridge Nuclear Plant caused azoosper-
mia in more than half of them [ 16 ]. Radiation has its most potent effect upon sper-
matogonia, the type B spermatogonia being the most sensitive. 

 Radiation therapy can slow down or stop sperm cell production if the testicle is in or 
near the target area for the radiation. A lead shield can help protect the testicles, but radia-
tion “scatters” within the body, so it is impossible to shield the testicles completely. 

 The likelihood of infertility after radiation depends on the dose to the testes, 
shielding, and fractionation (single dose vs. multiple doses). Doses as small as 
0.1 Gy can result in decreased sperm counts, and doses of 1.5–4 Gy can result in 
permanent sterility. As previously noted, the Leydig cells (responsible for testoster-
one production) are less sensitive to the effects of radiation, with damage occurring 
at 30 Gy in mature males (20 Gy in prepubescent males). 

 If the testicles are not the primary radiation targets, shielding can be used. This 
technique protects the testicle(s) from receiving radiation. Fractionation is the tech-
nique of dividing the total dose of radiation into multiple smaller doses. For most 
side effects, fractionation is used to lessen their severity, but in this case 
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fractionation (multiple smaller doses) causes more damage to sperm than a larger, 
single radiation dose. 

 Total body irradiation (TBI) is a technique used for preparation for stem cell and 
bone marrow transplants. As the name implies, it is irradiation of the entire body. It 
is estimated that 80 % of men who undergo TBI will have permanent azoospermia. 

 For those without permanent azoospermia, sperm counts are at their lowest 4–6 
months after treatment. Counts typically return to their pretreatment levels 10–24 
months after treatment but can take longer in those who received higher doses. 

 Radiation damage to the part of the brain that controls hormone production can 
sometimes interfere with the hormone messages that control sperm production [ 6 ].  

15.5     Surgery 

 If the cancer surgery requires the removal of both testes, fertility is affected because 
of the inability to produce sperm [ 17 ,  18 ]. 

 Surgery on the prostate, bladder, urethra, or colon can result in a condition called 
retrograde ejaculation. 

 In normal ejaculation, the semen is propelled through the urethra and the open-
ing to the bladder closes off, allowing the semen to exit the penis. In retrograde 
ejaculation, the opening to the bladder does not close, allowing the semen to enter 
the bladder instead of exiting the penis. While this condition is not medically harm-
ful, it does impair fertility [ 19 ]. 

 Men with testicular cancer or colon cancer sometimes have surgery that can 
damage nerves involved in orgasm. The result may be a “dry orgasm,” or the sensa-
tion of pleasure but without ejaculating any semen. Following a successful nerve- 
sparing radical prostatectomy, most men will have return of erections but will not be 
able to have children by natural means [ 20 ]. 

 There should be no seminal fl uid after the prostatectomy, so they will be “infer-
tile” by natural means, but with in vitro fertilization techniques, it is still possible 
for a man to father a child after a radical prostatectomy. In this case intracytoplas-
mic sperm injection (ICSI) of single spermatozoon surgically recovered from the 
testis could lead to a pregnancy [ 21 – 23 ]. 

  Video: Sperm recovery after testicular sperm extraction (TESE)     https://www.
youtube.com/watch?v=45W5XkzHy7w     

 Testicular cancer is associated with impaired spermatogenic function, even 
before orchiectomy, with a degree of dysfunction higher than that caused by local 
tumor effect [ 7 ]. 

 Oligospermia is observed in more than 60 % of patients at the time of diagnosis 
of testicular cancer [ 8 ]. 

 Storing sperm in a sperm bank before the operation is a recommended procedure 
for those men hoping to father children after the operation [ 24 ]. 

 Last but not least, the vas deferens or the testicular blood supply may be injured 
or ligated at the time of inguinal surgery, hernia repair, hydrocelectomy, or varico-
celectomy [ 25 – 27 ].     
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        Infertility    is a major health problem affecting 15 % of couples in the reproductive 
age group. The male partner is contributory in up to 50 % cases and the cause of 
male infertility remains unknown in 25 % of men [ 1 ]. These men with idiopathic 
infertility are usually treated with a number of empirical therapies. The basis of 
the treatment is the fact that these products appear rational because of their mode 
of action or because of uncontrolled human studies [ 2 ]. Many over-the-counter 
(OTC) therapies have been historically used for male fertility, including herbs, 
vitamins, and nutritional supplements [ 3 ]. Many studies demonstrate the positive 
effects of OTC supplementation on semen parameters and pregnancy outcomes. 
Conversely, many studies also demonstrate a lack of improvement and potential 
complications with supplementation. Current and historical OTC medication 
studies suffer from a variety of drawbacks, including small short-duration 
studies, failure to perform randomized double-blinded placebo-controlled stud-
ies, and lack of standardization of dose and effi cacy [ 4 ]. Defi nitive conclusions 
as to their true effects on male subfertility and dosing regimen could not 
be identifi ed. 

16.1     Antioxidants 

 Oxidative stress has been a well-studied aetiology of abnormal semen parameters 
[ 5 – 7 ]. Because of this, many of the current OTC therapies rely on antioxidant prop-
erties. Seminal oxidative stress (OS) results from an imbalance between reactive 
oxygen species (ROS) production and ROS scavenging by seminal antioxidants. 
Seminal OS is believed to be one of the main factors in the pathogenesis of sperm 
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dysfunction and sperm DNA damage in male infertility [ 8 – 11 ]. It is estimated that 
25 % of infertile men possess high levels of seminal ROS, whereas fertile men do 
not have high levels of seminal ROS [ 12 ,  13 ]. Spermatozoa are particularly suscep-
tible to oxidative injury due to the abundance of plasma membrane polyunsaturated 
fatty acids [ 14 – 16 ]. Seminal oxidative stress has been related to infection, industrial 
exposure, tobacco use, and elevated temperature [ 7 ]. The two main sources for 
antioxidants are physiologic and dietary. Physiologic antioxidants are present within 
seminal plasma and the spermatozoa themselves [ 5 ]. If the high seminal ROS levels 
are due to a decreased ROS scavenging capacity of semen, it would support the use 
of dietary antioxidant supplementation [ 17 ]. A higher intake of antioxidants can 
potentially improve semen quality as well as sperm DNA integrity [ 18 ]. In contrast, 
poor semen quality may be associated with a lower intake and resultant lower con-
centration of antioxidants within the body [ 19 ]. The practice of prescribing oral 
antioxidant is supported by the lack of serious side effects related to antioxidant 
therapy, although few studies have carefully evaluated the risk of overtreatment with 
antioxidants [ 20 ]. Despite a large body of literature, it is not possible to establish fi rm 
conclusions regarding the optimal antioxidant treatment for infertile men because 
the published studies report on different types and doses of antioxidants, the studies 
are small, the end points vary, and few of the studies are placebo controlled [ 8 ,  13 ]. 
The most commonly studied oral antioxidants (or antioxidant enzyme cofactors) 
include vitamin E, vitamin C, carnitines, lycopene, glutathione, selenium, omega-3 
and omega-6 fatty acids, zinc, arginine, and coenzyme-Q10.  

16.2     Vitamin E 

 Vitamin E is a fat-soluble vitamin within the tocopherol family. It is a major lipo-
philic chain-breaking antioxidant known to inhibit free-radical–induced damage to 
cell membranes, protect tissue polyunsaturated fatty acids against peroxidation, and 
improve the activity of other antioxidants [ 21 ,  22 ]. Its antioxidant activity is similar 
to that of glutathione peroxidase. Therond et al. found that vitamin E is present in 
widely varying concentrations in human spermatozoa and semen plasma with the 
percent of motile spermatozoa signifi cantly related to sperm α-tocopherol content 
[ 23 ]. Infertile men may have lower vitamin E in serum and seminal plasma [ 24 ]. 
Vitamin E is also effective in decreasing seminal ROS in infertile males [ 25 ,  26 ]. 
Substantial literature supports improvements in sperm motility, seminal ROS, and 
DNA fragmentation rates with vitamin E supplementation. Six RCTs evaluated the 
effects of vitamin E alone or in combination with vitamin C or selenium. Two of 
these studies reported a signifi cant improvement in sperm motility [ 27 ,  28 ] and one 
reported a signifi cant improvement in sperm DNA integrity [ 29 ] in the treatment 
arm only. In a randomized study of 54 infertile men, 28 were supplemented daily 
with 400 mg of vitamin E and 225 mcg selenium for 3 months, while the remaining 
26 received 4–5 gm vitamin B daily for the same duration [ 28 ]. In contrast, three 
RCTs reported no signifi cant improvement in sperm parameters after vitamin E ± C 
treatment [ 25 ,  30 ,  31 ]. Rolf et al. performed a placebo-controlled, double-blind 
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study of high-dose oral vitamins C and E for 56 days in 31 infertile men with  
asthenozoospermia and a normal or only moderatedly decreased sperm concentra-
tion. Of the patients 15 received 1,000 mg vitamin C and 800 mg vitamin E, while 
16 received placebo capsules. No changes occurred in semen parameters and no 
pregnancies were initiated.  

16.3     Vitamin C 

 Vitamin C is a water-soluble vitamin that is an important cofactor for hydroxyl-
ation and amidation reactions. Vitamin C also functions as an important antioxi-
dant and assists in recycling oxidized vitamin E [ 7 ]. It is highly concentrated within 
seminal plasma [ 32 ]. Vitamin C has been associated with various improvements in 
semen quality, although most studies have involved concurrent use of other vita-
mins and antioxidants. One RCT evaluated the effects of vitamin C alone and 
reported a signifi cant improvement in sperm parameters in the treatment arm only 
[ 33 ]. Daily vitamin C supplementation with doses greater than 200 mg (up to 
1,000 mg) was found to improve ( P     < .05) sperm count, motility, and viability in 
heavy smokers. A direct correlation was found between serum and seminal vitamin 
C concentrations and improvements in sperm quality, with those receiving 
1,000 mg daily having the most improvements. These included improvements 
( P  < .05) in count and viability of 34 %, motility of 5 %, and morphology of 33 % 
compared with baseline. Vitamin C plays an important role in protecting sperm and 
sperm DNA against oxidative damage by neutralizing ROS in a concentration-
dependent manner [ 29 ]. Adequate vitamin C intake has also been shown to increase 
seminal vitamin C concentrations and reduce sperm DNA fragmentation [ 19 ,  34 ]. 
Greco demonstrated a reduction in DNA damage by 13 ( P  < .001) after treatment, 
as measured by terminal deoxyribonucleotidyl transferase–mediated dUTP nick-end 
labelling (TUNEL) assay [ 29 ]. Vitamin C is available in many fruits and vegetables 
[ 35 ]. The RDA is 90 mg to maintain body stores [ 36 ]. Side effects, occurring above 
the daily upper limit of 2,000 mg, include dyspepsia, headache, and increased risk 
of nephrolithiasis [ 35 ].  

16.4     Carnitines 

 Carnitines are quaternary amines synthesized from the amino acids lysine and 
methionine. They are responsible for transporting long-chain fatty acids into the 
mitochondria for intracellular metabolism through β-oxidation. Carnitines assist 
sperm metabolism as an energy source for spermatozoa and affect motility and 
sperm maturation [ 37 ]. They have been proposed to have a role in sperm maturation 
during transit through the epididymis. They are also antioxidants protecting against 
ROS [ 38 ]. The two main forms of importance are  L -carnitine (LC) and 
 L -acetylcarnitine (LAC). Both are concentrated in the epididymis, spermatozoa, 
and seminal plasma [ 39 ]. Multiple randomized controlled studies supplementing 
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with carnitine therapy for idiopathic infertility demonstrate improvements in 
concentration, motility, and morphology. Four RCTs evaluated the effects of 
 L -carnitine alone or in combination with  L -acetylcarnitine and three of the four 
reported a signifi cant improvement in sperm parameters in the treatment arm only 
[ 40 – 43 ]. Lenzi et al. demonstrated signifi cant improvements of total motile sperm 
count in the carnitine treatment arm, with an increase of 19 million ( P  = .042). The 
treatment group had a 13 % pregnancy rate compared with no pregnancies in the 
placebo group ( P  > .05) [ 44 ]. Balercia also demonstrated signifi cant improvements 
with a 20–41 % increase in motility and a 13 % increase in morphology with LC or 
LAC supplementation or both for 24 weeks compared with placebo ( P  < .05) [ 40 ]. 
Nine pregnancies occurred in the treatment arms and three in the placebo arm 
( P  > .05). Cavallini studied the effects of a combination of carnitine and cinnoxicam 
(nonsteroidal anti-infl ammatory drug [NSAID]) therapy on sperm function [ 41 ]. 
Patients with no varicocele or small- or moderate-grade varicoceles treated with 
carnitine, alone or in combination with NSAID therapy, had signifi cant improve-
ments, with sperm concentration increases of 6–25 million/mL, motility increases 
of 2–22 %, and morphology increases of 8–23 % compared with placebo groups ( P  
value not reported). Conversely, carnitine therapy has also been found to have non-
signifi cant effects on semen parameters by some investigators. Sigman et al. [ 43 ] 
performed a small randomized, double-blinded, placebo-controlled study on 21 
patients. Patients were treated with carnitine therapy (2 g of LC and 1 g of LAC) or 
placebo daily for 24 weeks. At the end of the treatment period, there appeared to be 
a nonsignifi cant trend toward improvement in motility, with a 5.3 % increase in the 
treatment group compared with a 9.3 % increase in the placebo group ( P  > .05).  

16.5     Lycopene 

 Lycopene is a powerful non-provitamin A carotenoid antioxidant that quenches sin-
glet oxygen and scavenges peroxyl radicals. Its multiple roles include protection of 
lipid peroxidation, gap junction communication, cell growth regulation, gene 
expression modulation, and immune responses [ 45 ]. Palan and Naz measured semi-
nal lycopene by high-pressure liquid chromatography in 37 men and noted signifi -
cantly lower lycopene in the seminal plasma of immuno-infertile men than in fertile 
men [ 46 ]. Increased dietary intake or supplementation has been demonstrated to 
have positive effects on semen parameters [ 19 ]. Gupta and Kumar treated 30 infer-
tile men with 4 mg lycopene for 3 months and found a signifi cant improvement in 
sperm counts and motility with no signifi cant changes in morphology. A 20 % preg-
nancy rate was seen during the course of the study [ 47 ].  

16.6     Glutathione 

 Glutathione is the most abundant nonprotein thiol in mammalian cells. Glutathione 
reductases are selenoproteins. Glutathione is an endogenous antioxidant produced 
in the liver and is one of the most abundant antioxidants found in the body. It is a 
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molecule synthesized from cysteine, glutamic acid, and glycine that plays an important 
role in maintaining exogenous antioxidants (i.e., vitamins C and E) in their active 
(reduced) roles [ 48 ]. The selenoprotein phospholipid hydroperoxide glutathione 
peroxidase occurs in the active form in spermatids. It reduces phospholipid hydro-
peroxide and scavenges hydrogen peroxide in human spermatozoa. Decreased 
phospholipid hydroperoxide glutathione peroxidase expression has been found in 
the spermatozoa of infertile men. Raijmakers et al. evaluated 25 men and found that 
fertile men had signifi cantly higher glutathione in seminal fl uid than subfertile men 
[ 49 ]. Signifi cant associations of glutathione with sperm motility and sperm mor-
phology were also observed. Ochsendorf et al. found that glutathione in the sperma-
tozoa of patients with oligozoospermia was signifi cantly lower than in controls [ 50 ]. 
Lenzi et al. [ 51 ,  52 ] have demonstrated improved sperm motility in infertile men 
with glutathione supplementation in multiple studies. They also treated men with 
varicoceles with intramuscular glutathione, noting a 10 % increase over baseline in 
total sperm motility with therapy ( P  < .01) [ 53 ]. Glutathione supplementation has 
been associated with improved sperm concentration and decreased sperm DNA 
fragmentation in a nonrandomized study using a combination of glutathione, vitamin 
C, and vitamin E [ 54 ]. Dietary sources of glutathione include fresh meat products, 
fruits, and vegetables [ 55 ].  

16.7     Selenium 

 In human beings, the nutritional functions of selenium are achieved by 25 seleno-
proteins that have selenocysteine at their active centre [ 56 ]. In men, selenoprotein 
GPx4 is found in the mitochondria that make up the midpiece sheath of the sperm 
tail. In the early phase of spermatogenesis, GPx4, as a peroxidase, protects sperma-
tozoa by its antioxidant function, whereas in the later phase, it forms cross-links 
with midpiece proteins to become a structural component of the mitochondrial 
sheath surrounding the fl agellum, which is essential for sperm motility [ 57 ]. The 
selenium intake required for optimal activity and concentration of GPx4 and seleno-
protein P is around 75 mcg per day. Supplementation might not be necessary if 
adequate daily intake is obtained through a diverse diet [ 58 ]. Selenium has been 
associated with positive effects on male infertility, which appear synergistic when 
used with other OTC supplements. Optimal dosing appears to be between 100 and 
210 μg on the basis of the studies. In a randomized trial, selenium supplementation 
(100 mcg per day) of subfertile men with low selenium intake signifi cantly increased 
sperm motility and enabled 11 % of the men to achieve paternity, compared with 
none in the placebo group [ 56 ]. However, high selenium intake (about 300 mcg per 
day) was shown to decrease sperm motility [ 59 ]. Selenium in combination with 
other antioxidants has been noted to improve sperm count, motility, and morphol-
ogy [ 60 ]. Selenium defi ciency has been found to decrease sperm motility, affect 
spermatozoa midpiece stability, and result in abnormal sperm morphology [ 61 ]. 
Multiple studies have demonstrated selenium’s synergistic effects with other OTC 
supplements on sperm motility. In one prospective randomized study, infertile men 
with OAT receiving a 3-month course of selenium (210 μg) and vitamin E (400 mg) 
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had a signifi cant increase in sperm motility of 8 % ( P  < .05) and a decrease in lipid 
peroxidation levels, measured by an 8 % decrease in the malondialdehyde (MDA) 
level ( P  < .05) [ 28 ]. Three RCTs evaluated the effects of selenium alone or in 
combination with  N -acetyl cysteine and two of the three studies reported a signifi cant 
improvement in sperm parameters in the treatment arm only [ 60 ,  62 ,  63 ]. Contrary 
to the previous studies, one noncontrolled study treating 33 men with idiopathic 
infertility with 200 μg of selenium daily for 12 weeks noted no improvements in 
concentration, morphology, and motility despite increases in serum and seminal 
selenium levels [ 64 ].  

16.8     Omega-3 and Omega-6 Fatty Acids 

 The signifi cant effects of dietary fatty acids (FAs) on male fertility have been well 
documented both in animal and human studies [ 65 ,  66 ]. Polyunsaturated fatty 
acids (PUFAs) are essential FAs, because they cannot be synthesized by the human 
body. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic 
acid are the main omega-3 PUFAs. Linoleic acid, γ-linolenic acid, and arachidonic 
acid (AA) are the main omega-6 PUFAs. The fi rst mechanism by which omega-3 
and omega-6 PUFAs affect spermatogenesis is by the incorporation into the 
spermatozoa cell membrane [ 67 ]. Omega-3 and omega-6 PUFAs are structural 
components of cell membranes [ 68 ]. The lipid bilayer of cellular membranes is 
maintained by the presence of these PUFAs [ 69 ]. The successful fertilization of 
spermatozoa depends on the lipids of the spermatozoa membrane [ 70 ]. Increased 
omega-6/omega-3 ratio in spermatozoa has also been implicated in impaired semen 
quality in oligozoospermic and/or asthenozoospermic men [ 71 ]. Safarinejad et al .  
[ 72 ] investigated PUFA composition of the blood plasma and spermatozoa in men 
with idiopathic OAT. They found that fertile men had higher blood and spermatozoa 
levels of omega-3 PUFAs compared with the infertile counterparts. Attaman et al. 
[ 73 ] evaluated the relation between dietary fats and semen quality in 99 men. They 
concluded that higher intake of omega-3 PUFAs was positively correlated with 
sperm morphology.  

16.9     Zinc 

 Zinc has roles in testicular steroidogenesis, testicular development, spermatozoa 
oxygen consumption, nuclear chromatin condensation, the acrosome reaction, acro-
sin activity, sperm chromatin stabilization, and conversion of testosterone to 
5α-dihydrotestosterone [ 74 ]. The male genitourinary tract has a high concentration 
of zinc, especially in the prostate. Chronic mild zinc defi ciency is associated with 
oligospermia, decreased serum testosterone levels, and compromised immune sys-
tem function [ 75 ]. Five RCTs evaluated the effects of zinc alone or in combination 
with folic acid and all fi ve reported a signifi cant improvement in sperm parameters 
in the treatment arm only [ 60 ,  76 – 81 ]. Young studied the association of folate, zinc, 
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and antioxidant intake with sperm aneuploidy in 89 healthy nonsmoking men 
through a dietary and supplement questionnaire and sperm FISH studies [ 18 ]. In a    
controlled study 45 infertile men with asthenozoospermia were treated with three 
different regimens of zinc—200 mg orally twice daily with or without vitamin C, 
vitamin E for 3 months, and both regimens—compared with controls [ 78 ]. Zinc 
therapy with or without additional vitamins was associated with increases in sperm 
motility of at least 24 % ( P  < .001).  

16.10     Arginine 

 Arginine is a biologic precursor of nitric oxide. In the male reproductive system, argi-
nine is a biochemical precursor for synthesizing spermidine and spermine and is 
thought to be essential for sperm motility [ 82 ]. Multiple studies have evaluated argi-
nine’s effect on semen. Some studies have reported that supplementation up to 4 g/day 
improves sperm concentration and motility [ 83 ,  84 ], whereas others have failed to 
demonstrate improvement in semen parameters or pregnancy rates [ 85 ,  86 ].  

16.11     Coenzyme Q-10 

 Coenzyme Q-10 (CoQ10) plays a key role in transporting electrons in the mitochondrial 
respiratory chain [ 87 ]. It stabilizes and protects the cell membrane from oxidative 
stress [ 88 ]. CoQ10 levels are measurable within seminal fl uid and can be directly 
correlated with sperm count and motility [ 89 ]. In a placebo-controlled, double-
blinded, randomized controlled study, Balercia et al. [ 90 ] treated men with idiopathic 
subfertility with decreased motility (<50 %) with CoQ10. There was a 6 % absolute 
motility improvement in the treatment group after 6 months of treatment compared 
with the placebo group ( P  < .0001) although no difference in pregnancy rates. In a 
placebo-controlled study, Safarinejad [ 91 ] demonstrated absolute increases in total 
sperm count of 9.8 %, motility of 4.5 %, and morphology of 1.8 % over baseline 
with CoQ10 therapy when compared with placebo ( P  = .01).  

16.12     Phytotherapy 

 Herbal therapy is increasingly popular worldwide as a way to treat infertility. In the 
United States, 17 % constantly visited herbal therapies in the past 18 months out of 
the 29 % of infertile couples who use complementary and alternative medicine 
[ 92 ]. Ginseng is one of the most popular herbs used in the phytotherapy of male 
infertility. Both oligoasthenospermic patients and age-matched healthy counterpart 
showed an increase in spermatozoa density and motility after the use of  Panax 
ginseng  [ 93 ]. Asthenospermic patients treated with ginseng also showed a signifi -
cant increase in progressive sperm motility [ 94 ]. In the last few years Maca, a 
perennial plant of the  Lepidium meyenii  species, has been extensively studied for 
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its pharmacological properties on human spermatogenesis. An open-label study 
conducted by administering daily 1,500–3,000 mg of Maca for 4 months resulted 
in increased seminal volume, sperm count, and sperm motility [ 95 ]. A strong natu-
ral lipophilic antioxidant, astaxanthin, has been studied in a prospective, double-
blind, randomized trial, designed to evaluate the effect of 16 mg/day astaxanthin 
compared to placebo in 30 infertile men. At the end of the study, ROS and inhibin 
B decreased signifi cantly and sperm linear velocity increased in the treated group. 
The total and per cycle pregnancy rates among the placebo cases (10.5 and 3.6 %) 
were lower compared with 54.5 and 23.1 %, respectively, in the astaxanthin group 
( P  = 0.028;  P  = 0.036) [ 96 ].     
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17.1            Introduction 

 A decline in sperm counts has emerged in recent years [ 1 – 3 ]. Consequently, it has 
been argued that male fertility is declining, and it is further proposed that 
 environmental pollutants may play an active role [ 4 – 10 ]. By contrast, no apparent 
and clear decrease in population fertility has been noted in epidemiologic studies 
[ 11 ,  12 ]. Decline in sperm count of healthy men of reproductive age over the years 
has been higher in some regions (Denmark, Scotland, USA east coast) than in others 
(USA west coast, south of France, Baltic countries). Genetic and racial factors may 
also be involved [ 7 – 12 ]. 

 It has been hypothesized that environmental chemicals with estrogenic  properties, 
heavy metals, and solvents constitute detrimental factors for sperm count [ 13 – 18 ], 
even though the epidemiologic consequences are unclear. Nevertheless, some kind 
of toxicologic effect on spermatogenesis is hypothesized; clinical and laboratory 
research indicates that of all the changes in male reproductive health seem to be 
interrelated and may have a common origin in fetal life or childhood [ 19 – 23 ]. 
Furthermore, some epidemiologic studies confi rm that exposure to endocrine 
 disruptors, solvents, and heavy metals may play a role in male reproductive disor-
ders [ 24 ]. 

 Three categories of potential reproductive disruptor pollutants have been found: 
endocrine disruptors, heavy metals, and organic solvents.  
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17.2     Endocrine Disruptors 

 Endocrine disruptors affect the male genital tract during fetal testis and germinal 
cell development (testicular dysgenesis syndrome), targeting pituitary gonadotro-
pins [ 25 ] or the genetic regulation of steroidogenesis [ 26 ] at either the genomic [ 27 ] 
or proteomic [ 28 ,  29 ] levels. Gene pathways targeted include cholesterol transport 
and steroidogenesis, pathways involved in intracellular cholesterol/lipid homeosta-
sis, insulin signaling, transcriptional regulation, oxidative stress [ 27 ], α-inhibin 
(which is essential for physiologic Sertoli cell development), and genes involved 
with communication between Sertoli cells and gonocytes [ 27 ]. Environmental 
 pollutants are thought to induce oxidative stress, peroxidation [ 30 ], and germ cell 
apoptosis in the human fetal testis [ 31 ]. 

 There exists a critical period of exposure: diethylstilbestrol (an estrogenic 
 compound) exposure during the perinatal period can infl uence behavior, accessory 
glands, and reproductive structures in humans and rodents [ 32 ] via hormonal or 
epigenetic mechanisms [ 33 ]. 

 Given that animals represent an accepted experimental model for human male 
reproduction, it is noteworthy that pollutants are regarded as etiologic factors in the 
reproductive decline of wildlife [ 34 ,  35 ]. Perinatal exposure is critical for the 
 development of testicular dysgenesis syndrome in animals [ 36 – 38 ]. A severe prob-
lem of pollutants is that some of these chemicals have long half-lives and have been 
detected in environmental samples 10–20 years after they were banned for use [ 39 ]. 

 Pesticides, fungicides, heavy metals, defoliants, and other chemical weapons, in 
addition to oils and cleaning agents [ 40 – 44 ], are regarded as the main environmen-
tal pollutants capable of disrupting the human and wildlife endocrine system 
 (endocrine disruptor chemicals or EDCs). 

 Endocrine disruption is a mechanism of toxicity that hinders the ability of cells, 
tissues, and organs to communicate hormonally [ 45 ], provoking reduced fertility 
and fecundity [ 17 ], spontaneous abortion, skewed sex ratios [ 46 ], male and female 
reproductive tract abnormalities [ 47 – 49 ], precocious puberty [ 50 ,  51 ], polycystic 
ovary syndrome [ 52 ], neurobehavioral disorders, impaired immune function, and a 
wide variety of cancers [ 53 ,  54 ]. Endocrine disruptors represent a wide range of 
chemical classes and include agonists of the estrogen receptor, androgen receptor 
antagonists, and aryl hydrocarbon receptor agonists [ 55 ]. Some chemicals have 
more than one mechanism of action [ 56 ]. A list of endocrine disruptors is shown in 
Table  17.1 . Many of these chemicals persist in the environment. Some are lipophilic 
and, hence, sequestered in adipose tissue and secreted in milk, whereas others may 
only be present for short periods of time but at critical periods of development.

17.3        Heavy Metals 

 All heavy metals are toxic and can affect the seminiferous epithelium [ 57 – 59 ]. 
Cadmium interacts with the zinc-dependent stability of the human sperm chromatin 
[ 60 ]. Salts of arsenic, cadmium, mercury, lead, and antimony are all toxic for 
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   Table 17.1    Environmental pollutants: their sources and health effects [ 66 ]   

 Pollutant  Origin 

 Health effects 

 During development  During adulthood 

  a Bisfenol A  Component of 
polycarbonate 
plastic and epoxy 
resins 

 Modifi ed prostate 
development and 
puberty onset, 
hormonal changes, 
decreased semen 
quality, obesity 

 Decreased semen and 
oocyte quality, recurrent 
miscarriages 

  a Dioxin/furans  Manufacture or 
burning of products 
containing chlorine 

 Urologic 
malformations 

 Menstrual irregularities, 
epigenetic disorders 

  a Organochlorine 
pesticides 

 Largely banned in 
Western countries, 
still persist in the 
food chain (DDT) 

 Altered sex ratio, 
altered puberty onset, 
decreased semen 
quality 

 Altered puberty onset, 
decreased semen quality, 
endometriosis, fetal loss 

  a Pentachlorophenol  Wood preservative, 
railroad ties 

 Reduced fertility  Reduced fertility 

  a Ethylene oxide  Chemical sterilizer 
for dental practice 

 ?  Decreased semen 
quality, miscarriage 

  a Glycol ethers  Paints, enamels, 
wood stains; 
printing inks, 
cosmetics 

 ?  Reduced fertility, 
decreased semen quality, 
fetal loss, menstrual 
irregularities 

  a Nonylphenol, 
octylphenol 

 Detergents, 
pesticides, paints, 
plasticizers 

 Hormonal changes, 
altered puberty onset, 
decreased testicular 
size, decreased semen 
quality 

 ? 

  a Perfl uorinated 
compounds 

 Water-repellent 
treatments 

 Hormonal changes, 
fetal loss, reduced 
birth weight 

 ? 

  a Phthalates  Cosmetics, toys, 
lubricants 

 Malformations of 
reproductive tract, 
hormonal changes, 
decreased semen 
quality 

 Earlier menarche, 
menstrual irregularities, 
endometriosis, ovulation 
alterations, decreased 
semen quality, fetal loss 

  a Polybrominated 
diphenyl esters 

 Flame retardants  ?  Decreased semen quality 

  b Mercury  Thermometers, 
dental fi lling 

 Decreased semen 
quality 

 Decreased semen quality 

  b Cadmium  Batteries, pigments, 
some metal alloys 

 Sertoli cell and 
testicle damage 

 Toxic to Sertoli cells and 
spermatogenesis 

  b Lead  Batteries, 
ammunition, metal 
products, X-ray 
shields 

 Hormonal and 
pubertal 
onset alterations 

 Hormonal alterations, 
menstrual alterations, 
reduced fertility, fetal 
loss, altered puberty, 
reduced spermatogenesis 

(continued)
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spermatogenesis in humans and animal models [ 61 ,  62 ]. Heavy metals are also 
 present in some welding fl uxes [ 63 ].  

17.4     Solvents 

 Various organic solvents are also known to cause infertility, including glycol 
ethers [ 64 ], which are used in the printing industry and are also found in some paints 
(e.g., as used on naval vessels). Perchloroethylene, used in the dry cleaning industry, 
can also cause subfertility, but its effects on sperm morphology and kinematics are 
subtle, and their impact on fertility remains unclear [ 65 ].     
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18.1            Background 

 Article    1 of 40/2004    of the Italian law [ 1 ] states that assisted reproduction techniques 
(ARTs) should be started only when any other therapy for infertility has failed. 
In some cases any attempt to improve spermatogenesis is useless; in others its 
improvement increases the probabilities of an ART take-home baby.  

18.2     Specific Indications for ART 

 Any medical or surgical therapy for male infertility is useless in the following cases; 
thus, ART should be immediately started.  

18.3     Globozoospermia 

 Globozoospermia, the so-called roundheaded syndrome, is a sperm defect of low 
frequency (incidence <0.1 % of infertile patients) but is associated with a severe 
teratozoospermia causing male sterility [ 2 ]. Globozoospermia is characterized by 
the absence of acrosome in roundheaded spermatozoa, leading to a complete inability 
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to fertilize the oocyte; thus the affected males suffer from infertility. A genetic basis 
was suggested by the familial distribution of the syndrome [ 3 ], and different modes 
of inheritance have been described [ 4 ,  5 ]. 

18.3.1     Female Ageing 

 The size of the initial oocyte stock, the proportion that undergoes atresia, and 
the rate of initiation of growth of follicles are genetically determined variables. The 
number of oocytes in the ovaries declines naturally and progressively through 
the process of atresia, and fecundity declines gradually beginning at the age of 32 
and even more rapidly after 37 years [ 6 ]. 

 Anti-Müllerian hormone (AMH) correlates with the number of antral follicles 
and has been recently identifi ed as an early reliable predictor of ovarian reserve [ 7 ,  8 ]. 
This data means that improvement of sperm count is useless when female partner 
is >40 years [ 9 ] and that correction of mild dyspermias is ineffective for natural 
conception when female partner is >35 [ 10 ] or in any case in which AMH and AFC 
(antral follicle count) are strongly reduced independently of the female age. Anyway 
andrological clinic evaluation and scrotal ultrasounds are necessary to verify the 
presence or the absence of a testicular cancer.  

18.3.2     Micropolycystic Ovary 

 Polycystic ovary syndrome is a heterogeneous endocrine disorder found in 5 % 
of women of reproductive age and accounts for about 90–95 % of patients with 
anovulatory infertility. This syndrome presents defects in primary cellular control 
mechanisms that result in the expression of chronic anovulation, hyperandrogen-
ism, and polycystic ovaries. Some studies employing DNA microarrays have 
identifi ed over one thousand genes whose expression was altered in PCOS patients. 
These provide evidence that the genetic abnormality in PCOS affects key mecha-
nisms of follicular development and steroidogenesis, resulting in increased ovarian 
androgen secretion and anovulatory infertility due to arrested folliculogenesis. 
These data means that gametes of women affected by polycystic ovary syndrome 
are too severely compromised to have their ART performance increased with a 
spermatogenesis improvement [ 11 ].  

18.3.3     Presence of Y Microdeletions and/or High 
Follicle- Stimulating Hormone (FSH) >12 mIU/ml) 

 Short arm Y chromosome microdeletion and high FSH are laboratory signs of a 
spermatogenesis that is too compromised to be improved by any medical or surgical 
approach [ 12 – 14 ].  
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18.3.4     Unexplained Male Infertility 

 See Chap.   10    .  

18.3.5     Congenital Absence of the Vas Deferens 

 See Chap.   5    .   

18.4     Specific Indications to Improve Spermatogenesis 
Before ART 

 An attempt to improve spermatogenesis should be performed in all other cases. 
 In fact complementary treatment with antioxidant-containing food supplements 

quadruples the spontaneous pregnancy rate and reduces the cost per pregnancy by 
60 % [ 15 ]. Any andrological treatment lowers the number of couples who need 
ART for pregnancy [ 16 ]. 

 In nonobstructive azoospermic (NOA) patients, the probabilities to conceive are 
directly linked to the monitors of spermatogenesis: sperm motility, testicular histology, 
follicle-stimulating hormone (FSH) level,  previous testicular pathology, and number 
of sperm retrieved [ 17 – 20 ]. 

 Gonadotropin supplementation of hypogonadal oligoasthenoteratospermic (OAT) 
patients improves sperm count and intracellular sperm injection (ICSI) offsprings 
[ 21 ,  22 ]. Patients who had their sperm count improved after a varicocele ligation 
seldom achieved a spontaneous pregnancy; however, they had greater probabilities of 
a take-home baby after ICSI than the patients who had no sperm ejaculated after vari-
cocelectomy and who were submitted to (micro-)testicular sperm extraction [ 23 ]. 
The numbers of ICSI pregnancies and live births in severe idiopathic OAT patients 
improved with a course of L-carnitine, acetyl-L-carnitine, and cinnoxicam. The 
improvement occurred in the patients who had their sperm aneuploidy reduced and 
their sperm morphology increased [ 24 ]. Further varicocele correction presents a 
possible method to optimize a couples’ reproductive potential increasing ICSI off-
spring or decreasing the need for complex assisted reproductive technology [ 25 ]. 

 Approximately 5 % of children born through ICSI are at an increased risk of 
chromosomal anomalies because of the de novo aberrations (aneuploidies) that 
arise during gametogenesis of their parents. This percentage is much higher than 
the expected value of 0.5 % in the general population [ 26 ,  27 ]. Thus a correction 
of spermatogenesis might lower the percentages of chromosome anomalies of 
spermatozoa and of children born after ICSI. 

 Actually    intracytoplasmic morphologically selected sperm injection (IMSI) [ 28 ] 
or injection of spermatozoa which have undergone to acrosome [ 29 ] reaction is a 
valuable option for patients with severe male factors to improve ICSI offsprings; 
however, a correct andrological approach to OAT decreases the need of complex 
reproductive technology [ 25 ,  30 ].     
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19.1            Epidemiology 

 It is estimated that male factor infertility is the main or a contributing cause of 
infertility in half of involuntarily childless couples [ 1 ]. 

 Infertility is an emotional crisis and a physical challenge because it interferes 
with one of the most fundamental human activities. From a list of 87 items of stressful 
life events, infertility has been ranked as one of the most stressful situations similar 
to the death of a spouse or of a close relative [ 2 ]. 

 This stressful condition frequently causes diminished sexual desire as a side 
effect of feelings of sexual unattractiveness, guilt, shame, depression and anger or 
can be the consequence of the stress and demands infertility places on the marriage, 
social relationships, work life and fi nancial resources. Infertility frequently triggers 
feelings of failure, sexual inadequacy, diminished masculinity and altered sense of 
self, and all are contributory factors in male sexual dysfunction. Many men develop 
performance anxiety; sexual    avoidance especially if sex is for “procreation purpose 
only” and the female partners have become sexually irresponsive and passive. 

 Sexual dysfunction is more openly discussed than in the past, but still only a 
fraction of the men with these problems seek medical care [ 3 ]. 

 After    sexual desire disorder the most common sexual problem is erectile failure 
in 5–10 % of the general male population, 4–10 % inhibited male orgasm in 35 % 
premature ejaculation [ 4 ]. 

 The relationship between sexual dysfunctions and infertility can be mutual. 
Sexual dysfunction may cause diffi culty conceiving but also attempts to conceive 
may cause sexual dysfunctions.  
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19.2     Sexual Dysfunction Causing Infertility 

 For a small percentage of infertile couples, male sexual problems are the main cause 
of infertility [ 5 ]. For others it could be a relative cause: If a couple cannot or does 
not have sex near ovulation time, the woman is less likely to get pregnant. If they 
have sex once in a while because of low sexual desire or pain during sex, they may 
miss that important time for pregnancy.  

19.3     Erectile Dysfunction 

 It is traditionally referred to as impotence, and the NIH consensus conference has 
defi ned erectile dysfunction (ED) as the inability to achieve or maintain an erection 
adequate for sexual intercourse. Primary erectile failure is never having had the 
ability to achieve and/or maintain an erection suffi cient for vaginal penetration or 
successful coitus. This condition is very rare but, when it does occur, is a direct 
cause of infertility. Treatment success rates for primary erectile dysfunction are the 
lowest among all sexual disorders in men and women. 

 Secondary erectile dysfunction is partial or weak erections, total absence of an 
erection or the inability to sustain erections long enough for vaginal penetration or 
sexual intercourse. Most men experience some form of episodic, transient erectile 
dysfunction at some point of their lifetime, especially when they age, although it 
affects men of all ages [ 6 ]. Years ago it was believed that the main cause of erectile 
dysfunctions was due to psychological factors, but nowadays it is believed that at 
least 50 % of erectile dysfunction problems are due to organic aetiology [ 7 ]. 

 The pathophysiology of erectile dysfunction may be vascular, neurogenic, 
hormonal, anatomical, drug induced or psychogenic [ 6 ]. 

 Erectile dysfunction is the most important cause of male factor infertility due to 
sexual dysfunction, although men rarely disclose this problem to caregivers [ 8 ]. In 
one study, 10 % of men were observed to experience sexual dysfunction of a psychogenic 
nature in response to the diagnosis of infertility [ 9 ]. 

 The introduction of new oral therapies has completely changed the diagnostic 
and therapeutic approach to ED, and the current availability of effective and safe 
drugs for ED has resulted in an increasing number of men seeking help for ED. These 
patients may benefi t from a prescription of a PDE-5 inhibitor. Neither sildenafi l nor 
tadalafi l has an adverse effect on sperm function or ejaculate quality [ 10 ,  11 ]. 

 Patients who complain of diffi culty with ejaculation and climax may be taking 
psychotherapeutic agents that block dopamine production and consequently blunt 
the hypothalamic-pituitary axis and possibly decrease libido. Other psychothera-
peutic drugs can decrease vasodilation and worsen the quality of erections. 

 When ED is determined to be organic and not reversible (in case of injury or 
disease), treatment could involve intracavernous injection or surgical interventions 
such as penile prostheses [ 12 ]. Psychological treatments include decreasing perfor-
mance anxiety, increasing awareness of erotic sensations and disputing irrational 
belief and myths.  
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19.4     Premature Ejaculation 

 Premature ejaculation (PE) is an extremely common condition. Kinsey, in his 
landmark report, had stated that it affects as many as 70 % of all men. PE is charac-
terized by a lack of voluntary control over ejaculation. Many men occasionally 
ejaculate sooner than they or their partner would like during sexual activities. PE is 
a frustrating problem that can reduce the enjoyment of sex, harm relationships and 
affect quality of life. When it comes to conception, there are two things that must 
happen – intercourse with vaginal penetration and ejaculation. When the latter 
happens fi rst, it will impact fertility, but only in those rare cases in which ejaculation 
happens before the introduction of the penis in the vagina. PE is usually not situa-
tional; it occurs with all partners because the men have not learned to voluntary 
control his ejaculatory refl exes [ 13 ]. Although the exact cause of premature ejaculation 
(PE) is not known, new studies suggest that serotonin, a natural substance produced 
by nerves, is important [ 14 ]. 

 A breakdown of the actions of serotonin in the brain may be a cause. Studies 
have found that high amounts of serotonin in the brain slow the time to ejaculation, 
while low amounts of serotonin can produce a condition like PE. 

 Psychological factors also commonly contribute to PE. Temporary depression, 
stress, unrealistic expectations about performance, a history of sexual repression or 
an overall lack of confi dence can cause PE. Interpersonal dynamics may contribute 
to sexual function. PE can be caused by a lack of communication between partners, 
hurt feelings or unresolved confl icts that interfere with the ability to achieve emo-
tional intimacy. These psychological factors may be related to infertility with its 
emphasis on sex for procreation. 

 There are several treatment choices for premature ejaculation: psychological 
therapy, behavioural therapy and medications [ 15 ].  

19.5     Inhibited or Delayed Ejaculation 

 Inhibited or delayed ejaculation (also called retarded ejaculation) is the persistent 
and recurrent inhibition of orgasm, manifested by delay or absence of ejaculation 
following adequate sexual stimulation; the most frequent physical situation which 
interferes with ejaculation is spinal cord injury; researchers report that ejaculation 
occurs in up to 70 % of men with incomplete lower-level injuries and in as many as 
17 % of men with complete lower-level injuries. Ejaculation occurs in about 30 % 
of men with incomplete upper-level injuries and almost never in men with complete 
upper-level injuries [ 16 ]. 

 These conditions prevent men from ejaculating during sexual intercourse 
even though they can often ejaculate normally through masturbation. The causes 
could be psychological and physical; psychological anejaculation is usually 
anorgasmic and it could be situational or total. Situational means that men can 
ejaculate in some conditions or situation but not in others. It also can occur in stress-
ful situations, as when a man is asked to collect a sperm sample in an infertility 
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laboratory. Recently, delayed ejaculation has been identifi ed as a common side 
effect of some antidepressant medications [ 17 ]. 

 Treatments depend on the cause and include psychosexual counselling and drugs 
as ephedrine and imipramine. When delayed ejaculation affects fertility, vibrator or 
electroejaculation (a procedure in which ejaculation is stimulated by low electrical 
current) or surgical retrieval of sperm directly from the testis can be used to obtain 
sperm for insemination or used in IVF [ 18 ].  

19.6     Infertility as a Cause of Sexual Dysfunction 

 Infertility can negatively infl uence both the pleasure of sex and sexual function. In 
many couples, sexuality has already been compromised before infertility treatment 
because of the failure to conceive and the subsequent medical interventions [ 19 ]. 
The invasion of the couple’s physical and emotional privacy during fertility treatments 
can further reduce sexual desire in both partners and damage the relationship [ 20 ]. 

 Men are sensitive of the stress of infertility techniques as intrauterine insemination 
(IUI) and in vitro fertilization (IVF); this can be due to a diminished sense of male 
self-esteem. It has also been shown that the emotional stress of the men enrolled 
in the IVF programmes can negatively affect the quality of semen [ 21 ]. Moreover, 
the “super stress” of the moment, “this is the night” syndrome and the necessity to 
perform can deteriorate sexual performance and cause erectile failure. Some proce-
dures such as the post-coital test are particularly involved in the impairment of sexual 
functioning [ 22 ]. 

 When infertility results in relationship disturbances and sexual problems, 
the intervention of a caregiver is paramount. All too often the sexual problems of 
infertile couples are ignored and minimized in a belief that they will dissipate on 
their own or will have a few long-term consequences. Unfortunately    these beliefs 
are not true: although some sexual problems may disappear when the pressures of 
infertility treatment end, sexual diffi culties typically linger or become more prob-
lematic after treatment ends or parenthood is achieved [ 23 ]. Professional attention 
and care regarding sexual disturbances during infertility can lower the impact, and 
education can prevent many of the sexual diffi culties infertile couples encounter. 
The European Society of Human Reproduction and Embryology (ESHRE) has set 
up specifi c guidelines in order to provide a framework for counselling in infertility 
being aware that sexual counselling is dependent upon the legal, ethical and cultural 
background of every country [ 24 ].     
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