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Preface  

Male infertility presents a spectrum of phenotypes often with a complex etiology. 
About 15% of couples worldwide suffer from infertility, and male factors contribute 
to roughly one third, female factors contribute to another one third, and the remain-
ing are due to combined male and female factors. In-depth physical and physiologi-
cal examinations reveal exact etiology in only a few cases, resulting in the 
classification of the remaining as idiopathic. Due to complex and partially under-
stood etiology, the treatment of male infertility is not straightforward. In the cases 
with a defined etiology, specific treatments offer hope, but in the cases with idio-
pathic infertility, empirical and generalized treatments are advised often. This puts 
impetus on a thorough understanding of the process of spermatogenesis and fertility 
to craft new avenues for infertility treatment.

This book aims at providing a comprehensive coverage of male infertility. It is 
divided in three sections; the first section introduces the reader to spermatogenesis 
and male fertility to provide a reasonable understanding of spermatogenic failure 
and male infertility. This covers the overview of the male reproductive system, its 
genesis, sperm production, maturation, and post-ejaculation changes that are neces-
sary for male fertility. The second section deals with a thorough coverage of the 
known and plausible causes of male infertility. The foremost among these are 
genetic causes, such as Y deletions and other gene mutations, cytogenetic defects, 
and congenital syndromic forms of male infertility. Among environmental and life-
style factors, obesity, oxidative stress, and sexually transmitted infections are dis-
cussed. The latest developments in the genetic, epigenetic, and proteome-related 
causes of male infertility have been covered toward the end of this section.

The third section of the book is dedicated to the management of male infertility. 
Since the etiology of infertility is complex, a number of different therapeutic or 
prophylactic measures are advised depending upon the severity of the disorder and 
the depth of investigation. This section entails nutritional, lifestyle, and other pro-
phylactic measures that can be adopted to avoid loss of fertility. Other chapters in 
this section emphasize on specific and empirical treatments of male infertility. 
Toward the end, fertility preservation options for cancer patients are detailed. Upon 
failure of most of the treatments, ARTs are suggested, which have revolutionized 
the field of infertility treatment. A detailed description of ARTs is beyond the scope 
of this book; however, an overview of these techniques with opportunities and chal-
lenges has been discussed.
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The book has been composed and designed to serve a broad reader base from 
basic scientists and postgraduate students to doctors in reproductive medicine. Most 
of the material is composed in a way that even the patients can read and understand 
it to benefit their fight against infertility. A thorough understanding of the disease is 
the key to successful treatment; therefore, the first section is highly relevant for 
clinicians and patients. The second section is largely related to the causes and would 
be apt for the researchers and postgraduate students who aim a career in the field of 
reproductive medicine. Since the third section largely deals with the therapeutic and 
prophylactic measures, it would cater to the patients and layman for adopting mea-
sures (nutritional, lifestyle, and prophylactic) to delay or avoid the development of 
infertility and to clinicians for offering counseling to infertility patients.

Uttar Pradesh, India Rajender Singh 
Uttar Pradesh, India   Kiran Singh

Preface  
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1Overview of the Male Reproductive 
System

Sujit Kumar Mohanty and Rajender Singh

Abstract
The human reproductive system consists of primary and secondary organs to 
facilitate the process of reproduction. The male reproductive system is special-
ized for the production of male gametes and their transportation to the female 
reproductive tract that is mediated by supporting fluids and production of testos-
terone. The organs of the male reproductive system consist of the paired testis 
(site of testosterone and sperm production), scrotum (compartment for testis 
localization), epididymis, vas deferens, seminal vesicles, prostate gland, bulbo-
urethral gland, ejaculatory duct, urethra, and penis. The accessory organs facili-
tate the process of sperm maturation and transportation. Sperm with the secretions 
of seminal vesicles, prostate, and bulbourethral glands constitute semen (the 
ejaculate). The penis and urethra help in delivering the ejaculate to the female 
reproductive tract. This chapter provides an introduction to the male reproduc-
tive system and its functions.

Keywords
Male reproductive system • Male reproductive organs • Spermatogenesis and 
fertility • Testicular cells • Sperm production

Key Points
• Testes are the primary male sex organs as they are sperm factory.
• The highest numbers of cell divisions in human body take place in the testes, 

producing about 4.7 million sperm/g testes everyday.

mailto:rajender_singh@cdri.res.in
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• A number of accessory glands, such as the prostate, seminal vesicle, and bulbo-
urethral gland, pour their secretions that mix with sperm mass to constitute the 
ejaculate (semen).

• An average human ejaculate contains about 200 million sperm.

1.1  Origin of the Reproductive Organs

The reproductive system is developed from the embryonic intermediate mesoderm. The 
development of permanent reproductive organs of the adults starts within the bipotential 
gonad in the embryonic stage. The bipotential gonad, capable of forming both male and 
female structures, is made up of embryonic structures containing several ducts and can 
differentiate into male or female structures under the effect of several developmental 
sex-specific gene expressions. Some of the ducts disappear just before the end of fetal 
life. These embryonic structures are the Wolffian and Müllerian ducts, also known as 
mesonephric and paramesonephric ducts, respectively. The Wolffian ducts (mesoneph-
ric duct) develop as male reproductive organs, while the Müllerian ducts give rise to the 
female reproductive organs. The alternate ducts regress depending upon sex of the fetus.

1.2  Anatomy and Physiology of the Male Reproductive 
System

1.2.1  Scrotum

Testes are located behind the penis in a pouch of skin-covered, highly pigmented, 
muscular sac, called the scrotum (Fig. 1.1). The unique muscles (dartos muscle and 
cremaster muscle) make up the wall of scrotum. These muscles are involved in con-
tracting and relaxing the testicles (also called as testes), moving them closer to the 

Male Reproductive System

Penis

Corona

Glans penis

Urethra

Scrotum

Fig. 1.1 External view of the male reproductive system

S.K. Mohanty and R. Singh

https://en.wikipedia.org/wiki/Wolffian_duct
https://en.wikipedia.org/wiki/Müllerian_duct
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body to decrease the surface area to retain heat or far away from the body to increase 
the scrotal surface area, which promotes heat loss. When the testes are closer to the 
body, they become warm to support spermatogenesis; alternatively, when the core 
body temperature increases above the ideal range of spermatogenesis, the wall of 
the scrotum relaxes to move testes far from the body.

1.2.2  Testes

The testes are the male gonads responsible for the production of both sperm and 
testosterone and are active throughout the reproductive lifespan of a male. Each 
testis is found inside its own pouch on one side of the scrotum and is connected to 
the scrotum by a spermatic cord and cremaster muscles, the muscle layer of scro-
tum. Each testis is internally divided into 300–400 structures, known as lobules 
(Fig. 1.2). Each lobule contains a section of seminiferous tubules lined with epithe-
lial cells. Within the seminiferous tubule, the epithelial cells contain stem cells that 
divide and differentiate into spermatozoa through the process of spermatogenesis 
(Goldstein and Schlegel 2013). The lumen of the seminiferous tubules helps in 
facilitating the development of spermatozoa at the hollow center of the tubules, 
where sperm are produced and pushed into the ductal systems of the testes. 
Exclusively, from the lumen of the seminiferous tubules, sperm travel toward the 
straight tubules and from there into a fine meshwork of tubules, called the rete testes 
(Shupnik and Schrefflofer 1997).

Efferent ductules

Tunica albuginea

Straight tubules

Septum

Lobule

Seminiferous tubules

Rete testis

Epididymis

Ductus deferens

Fig. 1.2 A schematic view of the human testis showing seminiferous tubules (the site of sperm 
production), epididymis (the site of sperm maturation and storage), and vas deferens (the site of 
exit)

1 Overview of the Male Reproductive System
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1.2.2.1  Leydig Cells
The Leydig cells or interstitial cells are located adjacent to the seminiferous tubules 
in the space between the neighboring tubules in testis (Fig. 1.3). These cells possi-
bly have their origin in the mesonephros and develop outside the testicular cord in 
the testes. Several gap junctions permit direct communication between the Leydig 
cells. Leydig cells can be differentiated from other testicular cells by the presence 
of round nucleus, prominent nucleolus, and crystals in the cytoplasm (due to the 
presence of cholesterol lipid droplets). Cholesterol in the cytoplasm of the Leydig 
cells is used for testosterone production (Haider 2004). The process does not begin 
until puberty when LH stimulates Leydig cell to produce and secrete testosterone. 
Testosterone, secreted by the Leydig cells, acts on the Sertoli cells, which in turn 
regulate the development, maturation, and differentiation of the germ cells.

1.2.2.2  Sertoli Cells
The Sertoli cells are a kind of sustentacular cells or nurse cells that are nondividing 
somatic cells that rest on the basement membrane and form the wall of the tubules 
(Fig. 1.3). Sertoli cells are unique as they have an irregular-shaped prominent 
nucleus, Sertoli germ cell connections, as well as unique tight junctional complexes 
between the adjacent Sertoli cell membranes. The Sertoli cells synthesize a variety 
of essential products necessary for germ cell survival, thus making a unique and 
favorable environment in the basal compartment for the maturation of germ cells. 
For the development and differentiation of the germ cells, the Sertoli cells perform 
a number of functions (Goldstein and Schlegel 2013). First, they provide physical 

Blood
vessel

Leydig cells

Interstitial space

Lumen of seminiferous
tubule

Basal lamina

Spermatogonium

Primary spermatocytes

Secondary spermatocytes

Early spermatid

Late spermatid

Sertoli cell

Fig. 1.3 A cross section view of seminiferous tubule showing the arrangement of somatic cells 
(Sertoli, Leydig, and interstitial) and various stages of germ cell development

S.K. Mohanty and R. Singh
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support to the germ cells and facilitate their progression toward the lumen of the 
seminiferous tubules. Second, they provide a suitable microenvironment necessary 
for germ cell maturation and differentiation. Third, they form tight junctions and 
provide immune privilege to the postmeiotic germ cells. Fourth, during the matura-
tion of germ cell, the Sertoli cells consume the unneeded portion of spermatozoa by 
the process of phagocytosis.

1.2.2.3  Blood–Testis Barrier
The blood–testis barrier is ideally termed as Sertoli cell barrier. This barrier 
splits the seminiferous epithelium into the basal and apical (adluminal) compart-
ments. The adluminal compartment contains postmeiotic germ cells and sperma-
tozoa, but the basal compartment contains spermatogonia (mother stem cells) 
and immature spermatocytes (Dym and Fawcett 1970). The functional compo-
nents of the barrier include the tight junctions (TJ), the basal ectoplasmic spe-
cialization (basal ES), the basal tubulobulbar complex (basal TBC) (both are 
testis-specific actin-based adherens junction [AJ] types), and the desmosome-
like junctions, which are present adjacent to the seminiferous epithelium. The 
blood-testis barrier serves a number of functions: (1) sequester the postmeiotic 
germ cells from the immune system to avoid elicitation of immune response, (2) 
regulate the entry of nutrients and other molecules from the blood stream to the 
testes, and (3) maintain a gradient of biochemical composition between the two 
compartments.

1.2.2.4  Germ Cells
The mother germ cells, the spermatogonia, line the basement membrane inside 
the tubule (Fig. 1.3). Spermatogonia are the stem cells, also called as spermato-
gonial stem cells (SSCs), line the periphery of seminiferous tubules. SSCs give 
rise to other spermatogonia (2n) by the process of mitosis. Spermatogonia give 
rise to primary spermatocytes, which upon meiosis give rise to secondary sper-
matocytes and spermatids (1n). Spermatids ultimately differentiate into sperma-
tozoa (1n).

1.2.2.5  Spermatogenesis
Spermatogenesis is the process of production of spermatozoa from the male pri-
mordial germ cells (spermatogonia) in the testes (Fig. 1.4). Spermatogonia, the 
most immature male germ cells, lie along the basement membrane of the tubule 
in the basal compartment. The formation of highly specialized spermatozoa from 
the spermatogonia requires approximately 64 days. The first mitotic division 
takes place in the fetal testis, producing the spermatogonia and primary sper-
matocytes that are present at birth, and the complete functional sperm are not 
formed until the onset of puberty. These spermatogonial cells undergo several 
mitotic divisions to produce large number of cells that will either participate in 
stem cell renewal or go to produce daughter cells, which will later become sper-
matocytes. There are two meiotic divisions involving primary and secondary 
spermatocytes (2n) that ultimately give rise to four haploid spermatids. After 

1 Overview of the Male Reproductive System
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metamorphosis, the round spermatids shed most of the cytoplasm to become 
elongated mature spermatozoa that are capable of motility, and this process of 
differentiation is known as spermiogenesis (Clermont 1972). This transformation 
consists of the development of the acrosome, condensation of chromatin, forma-
tion of the flagellum, and migration of cytoplasmic organelles. The spermatozoa, 
thus formed, are released into the epididymis where they complete their matura-
tion and gain motility.

1.3  Testosterone

The cluster of the Leydig cells, which resides in the interstitial space created by 
the adjacent seminiferous tubules, produces testosterone, a primary androgen that 
is required for spermatogenesis and development and maintenance of male sec-
ondary sexual characters. The secretion of testosterone by the Leydig cells occurs 
by the seventh week of development in the male embryos. This initial release of 
testosterone results in the anatomical differentiation of the male reproductive 
organs. To ensure the proper functionality of the male reproductive system, a con-
tinuous and regulated secretion of testosterone is essential. A sustained release of 
the normal concentration of testosterone promotes spermatogenesis, whereas low 
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Fig. 1.4 An overview of the process of spermatogenesis
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level of testosterone may lead to male infertility. In the testis, high local concen-
tration of testosterone is required to promote spermatogenesis (Shupnik and 
Schrefflofer 1997). Moreover, testosterone is also released into the blood circula-
tion and plays a significant role in muscle development, bone growth, and the 
development of secondary sex characteristics. The regulation of testosterone con-
centration throughout the body is significant for male reproductive functions. In 
the brain, the hypothalamus and pituitary gland control the production of testos-
terone. The gonadotropin- releasing hormone (GnRH) secreted from the hypothal-
amus binds to the GnRH receptors on the anterior pituitary gland to stimulate the 
release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). 
These two hormones play a significant role for reproductive functions in both 
males and females. In males, FSH promotes spermatogenesis, and LH upon bind-
ing to its receptors on the Leydig cells, stimulating the production of 
testosterone.

1.4  Sperm Transport

1.4.1  Epididymis

The epididymis is made up of coiled tubes that enclose around the superior and 
posterior edges of the testes where newly formed sperm continue to mature 
(Fig. 1.2). It takes an average of 12 days for sperm to travel through the coil of epi-
didymis. As they travel along the length of the epididymis, sperm mature further 
and acquire the ability to move under their own power (Bedford et al. 1994). The 
length of epididymis delays the release of immature sperm, providing them a proper 
time to mature. The mature sperm are stored in the distal end of epididymis until 
ejaculation occurs.

1.4.2  Duct System

During ejaculation, the mature sperm come out of the epididymis and move 
toward the vas deferens with the help of smooth muscle contraction (Figs. 1.2 and 
1.5). The vas deferens is a thick, muscular tube that is packed together inside the 
scrotum with connective tissue, blood vessels, and nerves into a structure called 
the spermatic cord. Each vas deferens of the epididymis extends into the abdomi-
nal cavity through the inguinal canal, located in the abdominal wall. From here, 
the vas deferens prolongs to the pelvic cavity and finally reaches behind the blad-
der, where these end in a region called the ampulla (Goldstein and Schlegel 2013). 
The mass of semen is produced with the help of three accessory glands of the male 
reproductive system: the seminal vesicle, the prostate, and the bulbourethral 
glands.

1 Overview of the Male Reproductive System
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1.5  Seminal Vesicle

As sperm reach the ampulla from the vas deferens at the time of ejaculation, they 
mix with fluid from the associated seminal vesicle (Fig. 1.5). The seminal vesicles 
are basically glands that add approximately 60% of the semen volume. The fluid 
contains maximum amount of sugars, which are used by sperm to generate ATP to 
permit movement through the female reproductive tract. Another major component 
of their secretion is seminogelin proteins that provide thickness to semen, required 
for coagulation immediately upon ejaculation (Goldstein and Schlegel 2013). The 
fluid, which now have both sperm and seminal vesicle secretions, moves into the 
associated ejaculatory duct, which is a small structure formed from the ampulla of 
the vas deferens and the duct of the seminal vesicle. The paired ejaculatory ducts 
transport the seminal fluid into the prostate gland.

1.6  Prostate Gland

It is a muscular gland that encloses the first inch of the prostatic urethra as it appears 
from the bladder (Fig. 1.5). The size of the gland is like a walnut and secretes an alka-
line, milky fluid to the passing seminal fluid called as semen. The contraction of the 
smooth muscles of the prostate gland during ejaculation helps in discharging semen 
from the urethra (Goldstein and Schlegel 2013). The prostate gland adds a variety of 
proteases, which help in semen liquefaction to facilitate the release of sperm.

Bladder

Pubic Bone

Urethra

Penis

Epididymis

Rectum

Seminal vesicle

Prostate gland

Seminal duct

Testicle

Fig. 1.5 Cross-sectional view of the internal and external organs of the male reproductive 
system
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1.7  Bulbourethral Gland

The bulbourethral glands, also called as Cowper’s glands, are located underneath 
the prostate gland that release a thick, salty fluid that lubricates the end of the ure-
thra and the vagina and helps in cleaning the remaining urine from the penile urethra 
(Fig. 1.5). The fluid from these accessory glands is released in two phases, the first 
phase after the male becomes sexually stimulated and second phase shortly before 
the release of semen. The most interesting function of this gland during unfavorable 
environment in the female reproductive tract is that the alkalinity of seminal fluid 
helps neutralize the acidic vaginal pH and turns the environment favorable to permit 
sperm mobility.

1.8  Urethra

The urethra is the last part of the urinary tract that crosses the corpus spongiosum 
(Figs. 1.1 and 1.5). Urethral opening, known as meatus, lies on the top of the glans 
penis. It is both, a way for urine and for the ejaculation of semen.

1.9  Penis

The penis is the male external genitalia (Figs. 1.1 and 1.5). It is made up of special 
tissue that helps in erection and allows the process of insemination. The shaft of the 
penis surrounds the penile urethra. The shaft is composed of three column-like 
chambers of erectile tissue that cover the length of the shaft. Each of the two lateral 
chambers is called a corpus cavernosum (Goldstein and Schlegel 2013). Together, 
these make the bulk of the penis. The corpus spongiosum surrounds the spongy or 
penile urethra. The end of the penis, called the glans penis, has a high concentration 
of nerve endings, ensuing a very sensitive skin that influences the probability of 
ejaculation. The skin from the shaft extends down over the glans and forms a collar, 
called the prepuce (foreskin). The prepuce also contains a dense concentration of 
nerve ending, and both lubricate and protect the sensitive skin of the glans penis 
(Rowley et al. 1970).

1.10  Structure of Human Mature Sperm

Spermatozoon is a unique cell that is capable of limited independent survival and 
motility that is dispensed out of human body (Fig. 1.6). Each day, approximately 
100–300 million sperm are produced. A sperm cell is classified into distinct regions 
on the basis of their appearance and function. The head of sperm contains an elon-
gated haploid nucleus with 22 autosomes and an X or Y chromosome with a very 
small amount of cytoplasm. The anterior portion, covered by a cap-like structure, is 
called as acrosome, which is filled with lysozymes important for penetrating egg 
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during fertilization (Clermont 1972). The mid-piece possesses tightly packed mito-
chondria, which produce energy in the form of ATP for movement of tail that 
enables sperm motility essential for fertilization. The tail is made up of flagella, 
which extends from the neck and mid-piece, and consists of typical 9 + 2 microtu-
bule arrangement.
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2Embryonic Development of the Testis

Pranav Patni, Sujit Kumar Mohanty, and Rajender Singh

Abstract
Testicular development is a very interesting aspect of male reproduction and fertil-
ity. The primordial germ cells migrate from yolk sac to the genital ridge along the 
wall of the hindgut and the dorsal mesentery to ultimately settle in the genital ridge 
that would give rise to testes. Sex-determining region of the Y chromosome (SRY) 
is the principal driver of testes development. Testes development culminates into 
descent of fully formed testes in the scrotum, which is necessary for facilitating 
spermatogenesis. Failure of testicular descent results in their retention in the ingui-
nal canal or abdomen, often associated with azoospermia and infertility. This chap-
ter provides a brief overview of the process of testicular development and descent 
with a glimpse of the consequences of the failure of testicular descent.

Keywords
Testis development • Germ cell migration • Testes descent • Cryptorchidism  
Azoospermia

Key Points
• The testes differentiate themselves earlier than the ovaries, namely, in the course 

of the 7th week.
• SRY gene on the Y chromosome is the primary driver for testis development, 

which in tum drives male sexual differentiation.
• Interestingly, the primordial germ cells migrate from yolk sac to the genital ridge 

along the wall of the hindgut and the dorsal mesentery.
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• Migration of testis to the scrotum completes by the end of the 8th month, which 
is followed by small changes up to shortly after birth.

• Failure of testes descent can result in a number of abnormal positions of testes 
from inguinal canal to abdomen, called as cryptorchidism, which is often associ-
ated with azoospermia.

2.1  Introduction

Functional gonads are essential for sexual reproduction and the survival of higher ani-
mal species. The development of gonads is a particularly interesting event that is highly 
orchestrated in the form of origin, migration, and final settlement of the germ cells in 
the gonads. All these critical events take place in a tightly regulated temporal fashion. 
In humans, the sexual development and differentiation takes place at three levels: (1) 
chromosomal level, which is decided at the time of gamete fusion; (2) gonad level, 
which is the development of either testes or ovaries; and (3) physiological level, which 
is the development of secondary sexual organs and characters under the influence of 
hormones secreted by gonads. The primordial gonads are bipotential and have the 
capability to differentiate into ovaries or testis depending upon the molecular signals. 
The identification of the testis-determining gene, SRY, was a major discovery in the 
signals that set the path for development of either testis or ovaries. SRY is believed to 
be the master regulator of gonadal development, the absence of which results in ovarian 
development. Though a number of genes have been identified to be important for ovar-
ian development, no master regulator of ovarian development has been identified.

In humans, the first important step of sexual differentiation takes place during the 
initial 7 weeks of the embryonic development that consists of several successive 
events starting with the establishment of genetic sex, development of the gonadal 
ridge, and immigration of primordial germ cells trailed by a sexually dimorphic dif-
ferentiation of the gonadal anlagen into either testes or ovaries. Until this point of 
time, it is denoted as the indifferent stage of gonadal development, and no morpho-
logically distinct sex differences can be observed in the developing human gonads. 
This developmental phase has a major influence on the later events of male as well 
as female paths since it establishes the hormonal dimorphism. This chapter details 
the differentiation of male gonads, covering the events from its first appearance 
through maturation to ultimate migration in the scrotum.

2.2  Overview of the Development of the Testes

The differentiation of the testes takes place more quickly than ovaries in the course 
of the 7th week (44 days). SRY is the principal driver gene for testicular differentia-
tion. SRY initiates a series of gene expression, ultimately helping testes differentia-
tion. The primordial germ cells are the bipotential cells that can give rise to both 
spermatozoa and oocytes. These are diploid like all other somatic cells and can 
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already be found in human embryos in the primary ectoderm (epiblast) in the 2nd 
week of gestation. The first step in the organogenesis of testes is the differentiation 
of Sertoli’s supporting cells (Karl and Capel 1998). The appearance of these cells in 
mice comes from the gonadal ridge, precisely the pluripotent coelomic epithelial 
cells (Table 2.1). The gene expression events triggered by the SRY result in the for-
mation of intercellular membrane connections that would surround the primordial 
germ cells. With this, the gonadal cords start rising into the medulla. In males, cells 
of the mesonephric origin start accumulating on the outer side of gonadal cords and 
form peritubular myocytes. Gonadal cords develop into testicular cords and later into 
seminiferous tubules. The efferent ductules develop link with rete testis and the 
mesonephric duct. The influence of testosterone toward the end of the 8th week 
directs tight coiling of the cranial part of the mesonephric duct to develop into epi-
didymis, while the exterior part of the duct remains as the deferens duct.

Post 8th week, certain mesenchymal cells in the testicular cord develop into 
Leydig cells, which further drive testosterone production. The mesenchyme between 
the testicular cords leads to the development of septa that divide each testis into 
lobules. The exact origin of these cells remains unknown. The mesenchyme at this 
stage also forms connective tissue layer between the testicular cords and the future 
tunica albuginea. The coelomic epithelium finally transforms into a mesothelium, 
just like other cavities. Finally, the testes are migrated to the scrotum. Migration of 
the testis apparently involves two phases; the initial stage is transabdominal migra-
tion, and the second stage is passage through the inguinal canal.

2.3  Formation of the Primitive Gonads

By day 32 post conception (pc), the gonadal anlagen can be recognized as combined 
bipotential structures in the developing human embryo. No morphological sexual 
dimorphism can be seen at this stage of development. Primordial germ cells (PGCs), 
which develop into gonocytes later on, cannot be observed at this time of gonadal devel-
opment (Shawlot and Behringer 1995; Torres et al. 1995; Park and Jameson 2005).

Table 2.1 Chronology of important early events in human male sex differentiation

Event Age at start (dpc) Size CRL (mm)

Genetic sex 0

PGC migration from yolk sac 28 4

Formation of gonadal ridge 32 5

PGCs reach gonadal ridge 37 10

Male sex determination 42 15

Leydig cells appear 55 30

Androgen, INSL3 detectable 63 40

Testicular descent (first phase) 67

dpc days post conception, CRL crown rump length (“sitting height”)

2 Embryonic Development of the Testis
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The mesonephros at this stage also has primordium of the adrenal glands and 
the urinary system. The development of the urogenital system is regulated mainly 
by two transcriptional regulators: Wilms’ tumor-associated gene 1 (WT1) (tumor 
suppressor) and steroidogenic factor-1 (SF1) (the orphan nuclear receptor). WT1 
is a DNA- and RNA-binding protein with transcriptional and posttranscriptional 
regulation capacity. It is expressed in gonadal stromal, coelomic epithelial and 
immature Sertoli cells, interacts with the cAMP-responsive element-binding pro-
tein CITED 2, and is regulated by “paired box gene 2” (PAX2). SF1, expressed in 
the gonadal ridge, is a transcriptional regulator of steroid hydrolases, gonadotro-
pins, and aromatase and is involved in the stabilization of intermediate mesoderm, 
follicle development, and ovulation. Furthermore, SF1 helps in regulating the 
anti-Müllerian hormone (AMH), dosage-sensitive sex reversal congenital adrenal 
hypoplasia critical region on the X chromosome protein 1 (DAX1), and steroido-
genic acute regulatory protein (StAR). Normally these genes are expressed in the 
somatic testicular compartment and are important for normal testicular cord for-
mation, and for the beginning of steroidogenesis they help in the differentiation of 
the Leydig and Sertoli cells. Sf1 knockout in mice results in the failure of gonadal 
and adrenal development, whereas the corresponding loss of function mutations 
in humans has a less prominent gonadal phenotype and adrenal insufficiency 
(Biason-Lauber and Schoenle 2000; Achermann et al. 2002; Park and Jameson 
2005).

2.4  Cell Lineages

2.4.1  Primordial Germ Cells

By the end of the 5th week of conception, three different lineages of somatic 
cell types with bipotential fate dependent on their future paths constitute the 
gonadal anlagen. At this stage, immigrating primordial germ cells (PGCs) are 
colonizing the gonadal structures. After the final localization in the gonad, they 
are specified as gonocytes. The PGCs differentiate from epiblast-derived stem 
cells in the yolk sac. Expression of alkaline phosphatase, OCT3/4, and c-kit by 
the germ cells at this stage can be used to differentiate them from other cells. 
The PGCs migrate to the genital ridge under guidance of the extracellular matrix 
proteins expressed along the dorsal mesentery of the hindgut (Fig. 2.1). During 
the transit, the PGCs undergo active mitotic proliferation and expand in num-
bers by the time they reach gonadal anlagen. (Bendel-Stenzel et al. 1998; Wylie 
1999). Gonocytes continue proliferation in the early testis shortly after determi-
nation and later become mitotically quiescent. The entry into meiosis is not 
allowed until much later in time. This decision is governed by the somatic cells 
since XY PGCs residing in an ovary follow the female path (McLaren and 
Southee 1997). Nevertheless, entry into meiosis may also be activated by mech-
anisms intrinsic to the germ cells (Morelli and Cohen 2005). Differentiation of 
the somatic cells (Leydig and Sertoli cells) in the male gonad continues even in 
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the absence of germ cells. This results in testosterone production that ensures 
pubertal development, but they are infertile due to Sertoli-cell- only syndrome 
(SCOS) (Söder 2007).

2.4.2  Somatic Cell Lineages in the Male Testis

Upon completion of the 6th week of embryonic development, four cell lineages 
consisting of Sertoli cells, Leydig cells, and peritubular cells and gonocytes can be 
identified in the indifferent gonad. The crucial somatic cell lineages are Sertoli cells, 
Leydig cells, and peritubular cells. Failure of differentiation and function of any of 
these lineages would result in severe phenotypes with respect to adult gonadal func-
tion and fertility.

2.4.2.1  Sertoli Cells
Sertoli cells are essential for testicular histogenesis and future functions. In adult 
testis, the Sertoli cells are nurse cells for spermatogenesis, creating niches for dif-
ferentiation of spermatogonial stem cells and providing structural support, nutri-
ents, and growth factors for the developing germ cells. Due to the fact that sperm 
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Fig. 2.1 Migration of the primordial germ cells from yolk sac to the genital ridge along the wall 
of hindgut and the dorsal mesentery
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output in the adult testis is related to the number of Sertoli cells, the control of 
Sertoli cell proliferation in the developing testis is very important for future produc-
tion of male germ cells (Petersen and Söder 2006). Pituitary follicle-stimulating 
hormone (FSH) and its receptor (FSHR) are important factors for Sertoli cell devel-
opment. Any functional impairments of the FSHR may result in reduced fertility, a 
reduction of Sertoli cell numbers and, therefore, a reduction of testicular size com-
bined with a reduction in circulating testosterone levels (Huhtaniemi et al. 1987; 
Simoni et al. 1997; O’Shaughnessy et al. 2006). Sertoli cell differentiation and pro-
liferation is one of the most important steps in male sex determination. The fetal 
hypothalamic-pituitary-gonadal (HPG) axis is not yet operative, and FSH is not 
available during the first phase of Sertoli cell differentiation (Söder 2007). Therefore, 
Sertoli cell proliferation at this stage is controlled by other regulators (Petersen et al. 
2001, 2002; Petersen and Söder 2006). A number of endocrine disruptors and 
inflammatory factors can disrupt Sertoli cell differentiation and proliferation at this 
stage (Petersen et al. 2002, 2004; Petersen and Söder 2006; Söder 2007).

Pre-Sertoli cells are first defined as cells of the supporting lineage expressing the 
sex-determining region on the Y chromosome (SRY). After SRY expression, the 
SRY-related HMG box 9 (SOX9), a gene with predominantly testis promoting activ-
ity, is expressed by the Sertoli cells and that leads to an upregulation of AMH, fibro-
blast growth factor 9 (FGF9), and prostaglandin D2 (PGD2). These genes affect the 
differentiation of the reproductive tract and therefore define male sex determination. 
This procedure is quickly trailed by morphological changes in the primitive gonad, 
therefore, embracing testicular elements such as the arrangement of testicular lines.

2.4.2.2  Leydig Cells
In the developing male, Leydig cells constitute another crucial testicular cell lineage. 
Leydig cells originate from steroidogenic precursor cells that migrate from the coe-
lomic epithelium and mesonephric mesenchyme to colonize the indifferent gonad 
(Merchant-Larios and Moreno-Mendoza 1998; O’Shaughnessy et al. 2006; Söder 
2007). These cells start to proliferate and differentiate at week 7 of human embryonic 
development under the influence of the Sertoli cell signals, such as AMH, desert 
hedgehog (DHH), and FGF9 (Clark et al. 2000; Colvin et al. 2001). The first genera-
tion of the Leydig cells is fetal type, which appears after the testes determination. 
Other Leydig cell types appear before puberty and after achieving puberty (Ge et al. 
2006; Colvin et al. 2001). At the 8th week of human gestation, fetal-type Leydig 
cells start producing testosterone and other androgens (Svechnikov et al. 2010). 
Initially, they are regulated by the placental human chorionic gonadotropin (hCG), 
which shares on Leydig cells signaling receptors with pituitary LH, though the latter 
appears much later in the development when the HPG axis becomes established in 
the beginning of the second trimester of human pregnancy. At mid gestation, they 
constitute 40% of the total testicular cell mass. Leydig cells are situated in the inter-
stitial compartment of the testis and increase their number during the first 2–3 months 
after birth (Svechnikov et al. 2010).
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In addition to testosterone, a crucial hormone for differentiation of male 
external and internal genitalia, Leydig cells also produce SF1 that is necessary 
for steroidogenesis (Achermann et al. 2002) and insulin-like factor-3 (INSL3). 
INSL3 and its receptor RXFP2, together with androgens and AMH, are involved 
in the process of testicular descent. The first transabdominal phase of testicular 
descent occurs in human fetuses during weeks 8–16. Apart from its role in tes-
ticular descent, INSL3 seems to be an important paracrine mediator in male 
gonad and serves as a useful marker of Leydig cell differentiation (Ferlin et al. 
2006).

In the coelomic epithelium, adrenocortical and gonadal steroidogenic cells share 
an embryonic origin and exist as one lineage before divergence into the gonadal and 
adrenocortical paths (Mesiano and Jaffe 1997). Additionally, the expression of adre-
nocorticotropic hormone (ACTH) receptor on fetal Leydig cells makes ACTH 
(ACTH) an important regulator of Leydig cell development. A common origin of 
testicular and adrenocortical tissue is also supported by abnormalities that affect 
both these organs together (Stikkelbroeck et al. 2001). In a similar way to Sertoli 
cells, Leydig cells represent an obvious target of disruptive actions of xenobiotics 
and EDCs (Söder 2007). In adult animals, these cells demonstrate a large regenera-
tive capacity. Several growth factors have been implicated in Leydig cell regenera-
tion and survival (Yan et al. 2000). Yet it is not yet clearly identified if this 
regeneration is driven by the resident Leydig precursor cells. A second possible 
hypothesis suggests that peritubular testis cells also represent a reserve pool of ste-
roidogenic cells.

2.4.2.3  Peritubular Cells
Peritubular cells (PTCs) are required for early histogenesis of the seminiferous 
cords along the basal membrane of the seminiferous tubuli. Together with the 
basal membrane and the Sertoli cells, they form the blood-testis barrier and pro-
vide physical support for the Sertoli cells. In the postpubertal testis, they are sup-
posed to add contractile forces, which are thought to be necessary for pushing 
tubular fluid and sperm release (Söder 2007). By the chemotactic signals received 
from the Sertoli cells, early PTCs and the cells contributing to the vasculature of 
the testis migrate from the adjacent mesonephros (Cupp et al. 2003). This migra-
tion process is a crucial step in sex determination and is SRY dependent. Normal 
SRY expression is related to GATA4, a gene also expressed by the PTCs. GATA4 
also activates steroidogenic genes such as StAR, CYP11A, CYP17, CYP19, and 
HSD3B2, which are mainly expressed in the Leydig cells. Considering this and 
the fact that they are highly proliferative cells, PTCs demonstrate important fea-
tures for normal testis development (Capel et al. 1999; Schmahl and Capel 2003), 
but their precise role in adult testicular function is still not known. Data accumu-
lated lately indicate their possible role as a reserve or stem cell pool (Haider et al. 
1995) and that they might be involved in the regeneration of Leydig cells after a 
disruptive injury.
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2.5  Testicular Descent

Function of the postpubertal testes is dependent on their scrotal position. The pro-
cedure of testicular descent consists of two phases: the first transabdominal phase of 
descent followed by the inguino-scrotal phase aiming to transfer the testes to a scro-
tal position (Fig. 2.2). The first phase begins soon after testis determination and 
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Fig. 2.2 The course of testicular descent: Between the 7th and the 12th week of gestation, the 
gubernaculum shortens and pulls the testes, the deferent duct, and its vessels onward. By the 
6th month, the testes reach the orifice of the inguinal canal and cross it during the 7th month to 
reach their final position in the scrotum by the 8th month. After this, the inguinal canal contracts 
around the spermatic cord to complete the process. In the first year of life, the upper part of the 
vaginal process becomes obliterated, and peritoneo-vaginal ligament remains there. The lower 
portion persists as the tunica vaginalis testis
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differentiation of Leydig cells and guides the testis from a position in the upper 
abdomen to the inner opening of the inguinal channel in the pelvic part of the abdo-
men. The testes with the epididymis and the proximal part of vas deferens finally 
move through the inguinal canal after week 18 of gestation. During the final 
2 months of pregnancy, the testes usually take their scrotal position.

2.6  Perinatal Events in Testicular Maturation

During the third trimester of pregnancy, the fetal testes still produce large quantities 
of androgen but less than the peak activity at mid gestation. Although closer to birth, 
at term age, the hormonal activity of the testes declines, but it is still clearly measur-
able. However, soon after birth in both sexes of primates, but best recognized in 
human males, the first few months are a period of a very high hormonal activity of 
the testes and the hypothalamic-pituitary axis (Grumbach 2005). This period is 
often referred to as the mini-puberty and characterized by a hormonal surge of 
gonadotropins and testosterone. This is associated with proliferation of the Sertoli 
cells and some extent of germ cell development, i.e., transformation of gonocytes to 
Ad spermatogonia, at a time when gonadotropin, testosterone, and inhibin B reach 
high levels. More detailed studies have shown that LH value begins to increase 
2 weeks after birth and decline to prepubertal values by 1 year of age in both sexes. 
FSH value also begins to increase 2 weeks after birth and decline to prepubertal 
levels by 1 year of age in boys and 2 years of age in girls. In parallel, testosterone 
level in boys often reach a peak of 10–15 nmol/L during the 2nd month of postnatal 
life but then decline to prepubertal low levels at 6 months of age (Forest 1975). The 
biological role of “mini-puberty” for future testicular and male reproductive func-
tion is unknown, but it has been speculated that it may play a role in the germ cell 
maturation and for the development of male gender identity.

2.7  Cryptorchidism: The Failure of Testicular Descent

Cryptorchidism or undescended testicle is a common developmental abnormality. 
Cryptorchidism is a stage in which testes fail to descend in the scrotal sac (Fig. 2.3). 
Since spermatogenesis takes place at a temperature 2–3 ° less than the body, failure 
of testicular descent leads to spermatogenic failure. The prevalence of cryptorchi-
dism in the newborns is approximately 1–3%, but in premature children it increases 
to approximately 30% (Kolon et al. 2004). Cryptorchidism is of two types, unilat-
eral and bilateral cryptorchidism. The prevalence of azoospermia in unilateral 
cryptorchidism is 13%, but this incidence increases up to 89% in bilateral cryptor-
chidism, suggesting that most of the cryptorchid individuals are azoospermic 
(Hadziselimovic and Herzog 2001). Bilateral cryptorchidism is more common as 
compared to unilateral cryptorchidism. The etiology of cryptorchidism is complex, 
involving a wide range of risk factors such as chromosomal, genetic and epigenetic 
alterations, hormonal imbalances, exposure to environmental toxicants, and the 
effect of endocrine disruptors.

2 Embryonic Development of the Testis
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2.8  Testicular Descent: Associated Disorders

Infertility is the primary disorder in cryptorchidism. Cryptorchidism is associated 
with spermatogenic alterations, which may range from normozoospermia to subfer-
tility and azoospermia (Zimmermann et al. 1997, 1999). The severity of spermato-
genic failure depends on the presence of unilateral or bilateral cryptorchid condition. 
Excryptorchid individuals may also display defects in spermatogenesis. A retro-
spective study described arthrogryposis multiplex congenita (AMC), a condition 
defined by the presence of multiple joint contractures at the time of birth to be 
associated with cryptorchidism (Fallat et al. 1992). The association of limb defor-
mities was described by an external indirect compression of the inguino-scrotal 
region during the third trimester (Fallat et al. 1992).

Hypospadias, a congenital midline fusion defect of urethra leading to abnormal 
location of urethral meatus in males, is associated with increased risk of cryptorchi-
dism (Tasian et al. 2010). Also, the incidence of hypospadias severity increased the risk 
of acquired cryptorchidism; however, the mechanism is still unexplained (Itesako et al. 
2011). Further, the patients having disorder of sexual development (DSD) often have 
cryptorchid testis/gonads with ambiguous genitalia (Matsumoto et al. 2012). The risk 
of testicular cancer is 3–8 times high in cryptorchid individuals, and around 5–10% of 
patients with testicular cancer are excryptorchid (Whitaker 1988; Møller et al. 1996). It 
is thus an established risk factor for testicular germ cell tumor (TGCT). A recent study 
described that altered regulation of growth factor expression in the spermatogonial 
stem cell (SSC) somatic cell niche may impair the fine balance between SSC self-
renewal and differentiation, which may drive the stem cells toward neoplastic transfor-
mation in cryptorchid individuals (Ferguson and Agoulnik 2015).
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Fig. 2.3 Failure of testicular descent can take place at several levels, resulting in a variety of 
abnormal testicular positions from inguinal canal to abdominal. On the left side, normal testicular 
descent is shown (final scrotal position now shown), while the right side shows various positions 
of maldescent
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Abstract
Pituitary gonadotropins have been established as essential components for the dif-
ferentiation of the male reproductive organs. Human sexual maturation and sper-
matogenesis are intricately regulated by the hypothalamic-pituitary-gonadal (HPG) 
axis, which eventually determines the reproductive potential of an organism. 
Alterations affecting this fine balance can severely impair sexual development and 
fertility. These defects may result from mutations, small deletions or polymorphic 
changes within the regulatory genes involved in the biosynthesis of hormones, 
hormone receptors, growth factors and their associated signal transduction path-
ways. This present chapter summarizes the functioning and regulation of the HPG 
axis, its control over spermatogenesis by means of FSH and LH synthesis, and the 
impact of endocrine disruptors on this central axis regulating fertility.
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Key Points
• Human sexual maturation and spermatogenesis are intricately regulated by the 

hypothalamic-pituitary-gonadal (HPG) axis.
• Gonadotropin-inhibiting hormone (GnIH) and kisspeptin are two hypothalamic 

neuropeptides regulating the HPG axis.
• Melatonin affects the process of sexual maturation and reproductive functions by 

stimulating the HPG axis.
• INSL3 is considered as a biomarker of Leydig cell functionality in males.
• LH receptor mutations are associated with Leydig cell hyperplasia and sper-

matogenic arrest.
• Endocrine-disrupting compounds (EDCs) may affect fertility by interfering with 

endocrine actions of the HPG axis.

3.1  Introduction

The endocrine regulation of spermatogenesis is largely directed by the neuroendo-
crine actions along the hypothalamic-pituitary-gonadal (HPG) axis. Proper devel-
opment and organization of the HPG axis are indispensable for normal reproductive 
competence. The fundamental molecule that regulates the function of the HPG axis 
is gonadotropin-releasing hormone (GnRH). GnRH neurons are believed to origi-
nate in the olfactory placode, which further migrate to their destinations in the brain. 
The episodic and timely secretion of GnRH from the hypothalamus along with 
GnRH receptor (GnRH-R) activation in pituitary gonadotrophs is crucial for opti-
mum gonadotropin synthesis and secretion. Dysregulation of any of these functions 
may result in delayed or complete absence of puberty, leading to infertility (Catt 
et al. 1985; Rasmussen 1993; Krsmanovic et al. 1996; Terasawa 1998; Moenter 
et al. 2003; Krsmanovic et al. 2009).

A robust and pulsatile release of GnRH from the hypothalamus regulates the 
secretion of two major endocrine signals from the pituitary gland: follicle- 
stimulating hormone (FSH) and luteinizing hormone (LH). These are heterodi-
meric glycoprotein hormones that act via GnRH receptors in the testis. Low level 
of GnRH results in decreased FSH and LH secretion, which gives rise to hypogo-
nadotropic hypogonadism (HH), resulting in low androgen secretion and impaired 
spermatogenesis (Seminara et al. 2000). Adequate functionality of the LH and 
FSH receptors plays a crucial role in relaying the functions of HPG axis. Besides, 
genetic alterations within the regulatory genes involved in the biosynthesis of 
hormones, growth factors, hormone receptors and their associated signal trans-
duction pathways may lead to the impairment of fertility. Infertile patients with 
altered secretion of HPG hormones are tested for serum FSH, LH, total free tes-
tosterone, oestradiol and prolactin levels. This chapter recites the regulation of 
spermatogenesis by the HPG axis, the effect of endocrine disruptors and genetic 
causes on its regulation, which can have implications in understanding and treat-
ment of male infertility.
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3.2  The Hypothalamic–Pituitary–Gonadal Axis

The hypothalamus, the pituitary, and the testis form an integrated system for the 
appropriate secretion of male hormones and maintenance of normal spermatogenic 
functions. The hypothalamus secretes GnRH, which in turn stimulates the gonado-
troph cells of pituitary to secrete FSH and LH (Fig. 3.1). These hormones play a 
vital role in regulating the gonadal functions. Inhibins, activins and steroid hor-
mones, the secretory products of gonads, affect the secretion of gonadotrophins. 
Recent evidences suggest that internal and external factors such as stress hormones, 
leptin and the opioid system also influence the HPG axis by modulating the secre-
tion of GnRH and gonadotrophins.

Recently, findings on the functions of RFamide peptides have emerged into pic-
ture. RFamides are small peptides possessing Arg-Phe-NH2 motif at the C-terminus. 
Two groups of RFamide peptides are known to actively participate in HPG 
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regulation: gonadotropin-inhibiting hormone (GnIH), their related peptides and the 
group of kisspeptins. Kisspeptins and GnIH are two hypothalamic neuropeptides. 
They are critical players in the regulation of the reproductive axis. Kisspeptins act 
as stimulators of the reproductive axis, while GnIH is the inhibitory antagonist 
(Ubuka et al. 2005; Pinilla et al. 2012; Ubuka et al. 2013; Wahab et al. 2015). 
Recently, a group of researchers has found that serum kisspeptin levels were signifi-
cantly lower in infertile males as compared to fertile, suggesting that kisspeptin 
might be associated with fertility problems in males (Ramzan et al. 2015). Together, 
it is likely that an integrated functional interaction of both these hypothalamic neu-
ropeptides plays an important role as a regulator and gatekeeper in sustaining repro-
ductive competence.

3.3  GnRH Neurons: Origin and Development

GnRH is an indispensable peptide, with both endocrine and neuromodulatory 
roles in vertebrates. An intricate crosstalk between various developmental and 
neuroendocrine signalling pathways regulates the ontogeny and homoeostasis of 
GnRH neurons including the production, secretion and action of GnRH (Wierman 
et al. 2011). The development of the olfactory system and GnRH neurons is inti-
mately connected, modulated by common cell surface receptors. During early 
embryogenesis, GnRH neurons originate from the neural crest within the olfac-
tory placode; however, the recent evidence suggests that GnRH cells have multi-
ple embryonic origins and transiently associate with the developing olfactory 
system while migrating to ventral forebrain locations. After penetrating through 
the cribriform plate, the GnRH neurons reach the hypothalamus, where they dis-
engage from the olfactory axonal guides, lose motility and disperse further into 
the basal lamina of the brain before undergoing terminal differentiation (Forni and 
Wray 2015) (Fig. 3.2).

In mice, this migratory development begins at embryonic day E10.5 and is 
completed by E17.5 (Schwarting et al. 2007). A coordinated interplay of vari-
ous cell adhesion molecules, axonal guidance cues and extracellular matrix 
proteins, neurotransmitters and transcription factors and growth factors are 
involved in the regulation and synchronization of the migratory events of 
GnRH neurons (Forni and Wray 2015; Kim 2015). GnRH neurons spread their 
axonal processes across the medial eminence of the hypothalamus through 
which pulsatile GnRH is secreted into circulation via the hypophyseal portal 
system. GnRH is temporarily secreted at 3–6 months postnatally, sometimes 
called as “mini-puberty”. GnRH secretion then remains dormant until the 
inception of puberty, when it gets reactivated to initiate secondary sexual matu-
ration (Wierman et al. 2011). Therefore, the normal development and harmo-
nized actions of the HPG axis are indispensable for GnRH pulse generation and 
proper reproductive functions.
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3.4  Role of FSH and LH in Spermatogenesis

FSH and LH are the primary regulators of spermatogenesis; however, the initiation 
and maintenance of spermatogenesis are driven by indispensable action of andro-
gens. The functions of FSH and LH on spermatogenesis are mainly regulated 
through the secretion of Sertoli cell factors, which is mediated directly by FSH and 
indirectly by LH (via testosterone-androgen receptor).

FSH and LH facilitate their actions by means of specific transmembrane receptors, 
FSHR and LHR, respectively. FSHR expression is predominantly seen in the Sertoli 
cells; however, LHR is expressed by the Leydig cells. The gonadotropin response 
from the pituitary produces two major endocrine signals from the testis: steroidal 
hormone testosterone production from Leydig cells in response to LH and non-steroi-
dal inhibin production from the Sertoli cells in response to FSH. The secretory actions 
of testosterone and inhibin occur in a pulsatile and non-pulsatile manner, respectively. 
Although the classically established endocrine regulation of spermatogenesis occurs 
via LH and FSH, the paracrine regulation occurs through a coordinated action of 
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Fig. 3.2 Diagrammatic representation of the migratory events of GnRH neurons. GnRH neurons 
originate from the neural crest and ectodermal progenitors within the olfactory placode. After 
penetrating through the cribriform plate along olfactory sensory axons, the GnRH neurons reach 
the hypothalamus, extending their axons along the median eminence
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inhibins, activins and follistatin hormones. Gonadotropin actions during pubertal 
stage are essential in synchronizing the behaviour of the primordial germ cell, Leydig 
cells and Sertoli cells for orchestrating spermatogenesis. Hormonal insufficiency dur-
ing these stages may affect the scrotal decent and testicular development in adults. 
Contrarily, in adults, the germ cell dysfunctions as a result of hormonal imbalance 
occur largely through functional deficiencies in the Sertoli cells.

3.5  FSH and LH in Human Male Infertility

The role of FSH in human male infertility has been extensively analysed using various 
association studies. Though the knockout studies in animal models have provided an 
indirect clue towards the functional impairments, the exact mechanism underlying the 
pathogenesis in humans is still uncovered. FSHβ and FSH receptor knockout male 
mice are fertile, however, with reduced testicular size and spermatogenic impairment 
(Kumar et al. 1997). However, upcoming reports have highlighted that loss of func-
tion mutation in the FSHβ gene leads to azoospermia in men, with low testosterone 
and delayed virilization in a few cases (Lindstedt et al. 1998; Phillip et al. 1998; 
Layman et al. 2002). Nevertheless, a few infertile cases with an idiopathic FSH defi-
ciency, but normal virilization and testosterone levels, have also been identified 
(Mantovani et al. 2003; Giltay et al. 2004; Murao et al. 2008). Another study reported 
a homozygous, inactivating FSHR mutation in five men with spermatogenic failure of 
variable phenotype. Although these cases were fertile, elevated FSH level and oligo-
zoospermia phenotype were clearly evident (Tapanainen et al. 1997).

The phenotypic spectrum of LHR mutations is more complex and often associated 
with abnormal development of external genitalia and impaired sexual differentiation. 
LHR mutations widely occur in association with deficiencies of testicular decent and 
pseudohermaphroditism (Berthezène et al. 1976; Gromoll et al. 2000; Richter-Unruh 
et al. 2002; Simoni et al. 2008; Richard et al. 2011; Latronico and Arnhold 2012; 
Kossack et al. 2013). LHR mutations in these cases were associated with Leydig cell 
hyperplasia and spermatogenic arrest. Interestingly, in one of the studies, a patient 
with a deletion at exon 10 of the LHR displayed an azoospermia phenotype with 
delayed onset of puberty (Gromoll et al. 2000). A study evidenced homozygous mis-
sense mutation (Q54R) in the LHβ gene in a male with pubertal delay, low testoster-
one and spermatogenic arrest (Weiss et al. 1992). This mutation preserved the hormone 
synthesis and immunoreactivity, but prevented its binding to the LH receptors (Weiss 
et al. 1992). Two phenotypically milder LH receptor mutations have been described in 
patients with micropenis (S616Y, I625K), pubertal failure and infertility (S616Y). 
One of the patients with LH receptor mutation showed the absence of mature Leydig 
cells and spermatogenesis arrest at spermatid stage (Martens et al. 1998).

3.6  Endocrine Disruptors: Modulators of the HPG Axis

Many natural and synthetic compounds affect endocrine organs and the signalling 
pathways that impair human health. During the last century, the profusion of syn-
thetic chemicals developed for consumer products and commercial industrial 
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processes has upraised significant apprehensions with respect to their ill effects on 
health (Diamanti-Kandarakis et al. 2009).

Endocrine-disrupting compounds (EDCs) are synthetic or natural compounds that 
interfere with endogenous endocrine actions (Zawatski and Lee 2013). The US 
Environmental Protection Agency (EPA) has defined endocrine disruptors as “an exog-
enous agent that interferes with synthesis, secretion, transport, metabolism, binding 
action, or elimination of natural blood-borne hormones that are present in the body and 
are responsible for homoeostasis, reproduction, and developmental process”.

It was believed that EDCs exert their actions predominantly through nuclear hor-
mone receptors, including androgen receptors (ARs), oestrogen receptors (ERs), pro-
gesterone receptors (PRs), thyroid receptors (TRs) and retinoid receptors among 
others. But today, the advancement in basic scientific research has shown a much 
broader perspective of their action. Now, we know that EDCs act via nuclear recep-
tors, nonnuclear steroid hormone receptors (e.g. membrane ERs), nonsteroid recep-
tors, orphan receptors (e.g. aryl hydrocarbon receptor (AhR)), enzymatic pathways 
involved in steroid biosynthesis and/or metabolism, and various other mechanisms 
regulating the endocrine and reproductive functions. Commonly used EDCs include 
pharmacological compounds such as diethylstilbestrol (DES), a synthetic oestrogen 
as well as industrial or agricultural chemicals such as plasticizers or insecticides, 
industrial solvents/lubricants and their byproducts [polychlorinated biphenyls (PCBs) 
(Pocar et al. 2011), polybrominated biphenyls (PBBs) (Darnerud 2008), dioxins (Shi 
et al. 2007)], plastics [bisphenol A (BPA)] (Rubin 2011), plasticizers (phthalates) 
(Hauseur and Cal 2005), pesticides [methoxychlor, chlorpyrifos, dichlorodiphenyltri-
chloroethane (DDT) (Hayes et al. 2011)] and fungicides (vinclozolin) (Fig. 3.3). 
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Contemporaneous exposers can also disrupt the HPG axis. Natural chemicals in edi-
ble food products such as phytoestrogens, including genistein and coumestrol, are 
also shown to act as endocrine disruptors (Diamanti-Kandarakis et al. 2009).

EDCs interfere with the hormonal pathways of the HPG axis through a multi-
tude of mechanisms. They compete for oestrogen receptor binding and activation, 
post- receptor signalling pathways and modulating the synthesis, bioactivity or 
degradation of hormones, receptors and cofactors. Studies have demonstrated that 
pubertal timing can be influenced by either prenatal or postnatal exposure to EDCs. 
EDCs exposure can disrupt many aspects of the HPG axis during early stages of 
the CNS development and sexual differentiation. These include modulation of neu-
roendocrine organization and feedback loops and gonadal sex steroid synthesis 
(Navarro et al. 2009; Walker and Gore 2011). Upcoming evidences have suggested 
that exposure to EDCs can adversely affect not only the organism that comes in 
contact with it but also the future progeny of the exposed individuals (Anway et al. 
2005; Anway and Skinner 2006; Guerrero-Bosagna et al. 2010). Exposure to EDCs 
may disrupt the normal functioning of the hypothalamic circuitry, which may sub-
stantially inhibit GnRH, LH and FSH release for regulation of sexual development 
and gametogenesis (Milardi et al. 2008). In rats, it was demonstrated that exposure 
to DES (Lassurguere et al. 2003), PCB (Gore et al. 2002) and atrazine (Hayes et al. 
2011) causes disruption in the HPG axis, leading to gonadal insufficiency.

Kisspeptins are a group of neuropeptides encoded by the KISS1 gene, produced 
mainly by neuronal clusters at hypothalamic nuclei and are broadly recognized as the 
fundamental activators of the HPG axis at the onset of puberty (Smith et al. 2006). 
Kisspeptin and its G-protein-coupled receptor act as gatekeepers to control the secre-
tion of GnRH, thereby regulating the anterior pituitary hormones and testicular hor-
mones such as testosterone, activing and inhibin B (Roseweir and Millar 2009; 
Silveira et al. 2010; Hamlin and Guillette 2011). In rats, the neonatal exposure to 
oestrogenic EDCs such as BPA and genistein has been shown to inhibit the kisspeptin 
synthesis (Bateman and Patisaul 2008; Navarro et al. 2009). These studies have pro-
vided initial clues regarding the mechanism of action of some of the EDCs.

Hormones play a primary role in coordinating the regulation of mammalian sper-
matogenesis, which in turn depends on a functional hypothalamic-pituitary-testis 
axis. Uncovering the mechanisms of action of EDCs on reproductive outcomes is of 
significant interest nowadays. It will further provide insights into the biological 
effects of the EDCs on reproduction, embryonic development and fertility. The 
study of their transgenerational effects would be particularly interesting as they can 
potentially affect the fertility of the exposed and the upcoming generations.

3.7  Melatonin and HPG Axis in Reproductive Health

Melatonin (N-acetyl-5-methoxy-tryptamine), a principal product of the pineal 
gland, is produced predominantly during the dark phase of the circadian cycle. This 
hormone plays an essential role in the regulation of circadian changes in various 
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physiological aspects and neuroendocrine functions. In mammals, melatonin can 
affect the process of sexual maturation and reproductive functions by stimulating 
the HPG axis (Shi et al. 2013).

It has been well documented that melatonin exerts its effects on the HPG axis 
to ultimately regulate the testicular function. The effects of melatonin have been 
recently shown to be relayed by other factors, which are GnIH (gonadotropin- 
inhibiting hormone) and kisspeptins. Both these factors belong to a group of 
RFamide peptides. Mammalian GnIH is also called as RFamide-related peptide 
(RFRP) (Osugi et al. 2014). Two types of GnIH are characterized in humans to 
regulate the HPG axis in males, that is, RFRP-1 and RFRP-3 (Tsutsui et al. 2013). 
GnIH is a hypothalamic factor that inhibits the HPG axis. It was first of all identi-
fied in the quail (Tsutsui et al. 2000). Melatonin also seems to act directly on 
GnIH neurons through its receptor to induce GnIH expression in Aves (Ubuka 
et al. 2006). Overall, melatonin acts indirectly on the GnRH neuronal activity. 
Chronic treatment of mature birds with GnIH for 2 weeks resulted in decreased 
plasma testosterone concentrations and release of gonadotropins (Ubuka et al. 
2006; Nargund 2015), suggesting their important effect on the HPG axis. Disturbed 
sleep and melatonin synthesis have been shown to affect night testosterone pro-
duction (Wurtman 2014).

Recently, a peptide hormone INSL3 has emerged into picture. In mammals 
INSL3 is synthesized by the interstitial Leydig cells in males. Several other organs 
are reported to secrete this hormone, but the circulatory form is exclusively 
derived from the testis. INSL3 acts in both autocrine and paracrine manner in the 
testis. The functions of INSL3 are believed to be regulated by the HPG axis. 
Acting as a downstream effector molecule, it buffers the action of both LH and 
FSH for proper steroidogenesis and reproductive functions (Ivell et al. 2014). 
INSL3 gene expression regulates the process of testicular descent, and its disrup-
tion results in bilateral cryptorchidism in males (Nef et al. 1999; Zimmermann 
et al. 1999). INSL3 is considered as a biomarker for Leydig cell functionality in 
males (Ivell et al. 2014).

 Conclusion

In both, males and females, gametogenesis is controlled by the HPG axis that 
refers to the GnRH-gonadotropins-steroids axis. This regulates gametogenesis 
by releasing FSH and LH from the anterior pituitary and the synthesis of steroid 
hormones in gonads. An understanding of the reproductive axis is essential for 
the assessment of abnormal development of the genitalia, hypergonadism, hypo-
gonadism, infertility and various other reproductive dysfunctions. This axis nor-
mally functions in a tightly regulated manner to produce circulating steroids 
essential for male sexual development, function and fertility. A number of genetic 
mutations and endocrine disruptors are known to result in alterations in the HPG 
regulation and contribute to infertility. Further understanding of the HPG regula-
tion and the mechanism of action of EDCs would help in better understanding 
and management of male infertility.

3 HPG Axis: The Central Regulator of Spermatogenesis and Male Fertility
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4Sperm Maturation in Epididymis

Gopal Gupta

Abstract
In mammals, sperm are produced in the testes to attain (a) the cellular morphol-
ogy for swimming actively up to the site of fertilization and (b) the haploid 
nucleus to fuse with that of ova for transferring the paternal genetic information. 
However, the spermatozoa cannot achieve these functions until they travel 
through the epididymis, where they spend ~1–2 weeks time to undergo “matura-
tion” that bestows them with motility and fertilizing ability. Epididymis is thus a 
unique organ that is crucial for male fertility. The tall columnar cells of the epi-
didymal epithelium create a special region-specific milieu (fluid) by active 
absorption and secretion of components such as proteins, enzymes, hormones, 
electrolytes, and organic molecules. The proximal segment secretes a variety of 
proteins and other factors that cause surface modifications on sperm and instigate 
cell signaling to make them potentially motile and fertile, while the distal end 
(cauda) creates a special environment for storing mature sperm for long periods 
of time until ejaculation, in a viable but physically quiescent state (in most mam-
mals like mouse, rat, and man). This chapter discusses in brief the epididymal 
maturation of mammalian sperm.
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Key Points
• Testicular sperm are progressively immotile and infertile, and they gain these 

properties after maturation in the epididymis.
• Epididymis is a dynamic, tubular organ that receives sperm from the testis and 

passes them on to the vas deferens.
• A special, progressively changing epididymal fluid environment ensures surface 

modifications and cell signaling in sperm cells, required for motility and 
fertility.

• The epididymal function is under strict endocrine and paracrine regulations.

4.1  Introduction

The mammalian epididymis consists of a single, long, coiled, and convoluted tubule 
that transports, concentrates, matures, and stores testicular sperm before ejaculation 
(Turner 2008). A few fine efferent ducts carry the testicular sperm, which are immo-
tile and incapable of fertilizing the ova, from the rete testis to the epididymal duct 
for maturation into competent male gametes that are progressively motile and capa-
ble of undergoing capacitation, acrosome reaction, and fertilization. The efferent 
ducts do not serve merely as a conduit for transporting testicular sperm to the epi-
didymis but also initiate the process of fluid reabsorption, thereby removing 50–96% 
of luminal fluid component and increasing the concentration of sperm several fold 
(Hess 2002). The active fluid resorption by the efferent ducts is supported by the 
presence of Na+/K+ ATPase, Na+/H+exchanger-3 (NHE-3) and cystic fibrosis trans-
membrane regulator (CFTR)-Cl− channels, aquaporins, and histological features 
supporting endocytosis (Hess 2002; Rodríguez and Hinton 2003). Estrogen signal-
ing through estrogen receptor-α may also play a vital role in fluid resorption in 
efferent ducts as ERαKO male mice have abnormally dilated efferent ducts due to 
defects in fluid transport, which prevents sperm transport and causes infertility 
(Hess et al. 1997). The present chapter provides a brief overview of the important 
process of sperm maturation in epididymis, which is a prerequisite for natural 
fertility.

4.2  Epididymal Morphology

The epididymis is found adhered as an “appendix” to the upper and lateral side of 
the testis, and the word “epididymis” is derived from the word “didymi,” which is 
the ancient nomenclature for the testes. Epididymis can broadly be distinguished 
into three functionally distinct segments, the proximal head or “caput,” the middle 
body or “corpus,” and the distal tail or “cauda.” The proximal segments (caput and 
corpus) have been assigned the function of providing a special milieu to sperm for 
the development of their motility and fertility, while the distal cauda creates a unique 
environment to store sperm viable and physically quiescent (in most mammals, 
including rat, mouse, and human) for long periods of time until ejaculation. 
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The organ (epididymis) itself measures just a few centimeters (depending on spe-
cies); however, the uncoiled epididymal tubule may vary in length from about 3.2 m 
in rat to 6–7 m in man and 80 m in stallion (Turner 2008), and it takes ~1–2 weeks 
time for sperm to travel through the epididymis. The epididymal epithelium consists 
of tall columnar principal cells with microvilli whose height decreases from proxi-
mal to distal segment and are involved in secretion, absorption, and phagocytosis 
(Turner 2008).

4.3  Epididymis: The Site of Sperm Maturation

Though the differentiation and maturation of sperm cells in the testis is mostly 
under genomic regulation, the post-testicular maturation of sperm is controlled by 
external factors in the epididymis. While possessing the distinct sperm morphology, 
testicular sperm entering the epididymis are both progressively immotile and inca-
pable of fertilizing the ova (infertile), and they gain both these properties during 
their transit through the epididymis (Fig. 4.1). Thus sperm present only in the distal 
segments of epididymis (mostly cauda) are potentially motile and fertile. However, 
sperm are highly specialized cells with extremely condensed and inactive nucleus, 
which has been rendered transcriptionally and translationally quiescent (almost 
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Sperm surface proteins modified
during epididymal passage

Irregular~55%

Jagged~30%

Large circular & arcs ~5%

Small circular ~ 5%

Straight ~5%

Irregular~20%

Jagged~25%

Large circular & arcs ~15%

Small circular ~ 25%

Straight ~15%

Irregular~10%
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Large circular & arcs ~20%

Small circular ~10%

Straight ~50%

Caput
epididymis

Corpus
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*   SPAM-1

*    PH-30
     (fertilin)
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*   Surface
     galactosyl

      transferase

*   CE9
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Fig. 4.1 Maturational changes in sperm motility pattern of rabbit (Yeung and Cooper 2002) and 
surface proteins of mammalian sperm (Toshimori 2003) during epididymal transit. The proteins 
are not enlisted in a segment-specific order 

4 Sperm Maturation in Epididymis



40

completely) during spermiogenesis in the testis. Hence, maturational changes that 
occur in the epididymis are dependent on the epididymal milieu/fluid, the composi-
tion of which is governed by active, segment-specific absorption and secretion of 
proteins, enzymes, hormones, ions/electrolytes, and other small organic molecules 
by the epididymal epithelial cells. The sperm bathe in a precisely regulated compo-
sition of epididymal fluid, which is conducive for sperm maturation and storage 
(survival) and whose composition changes from caput to cauda in relation to the 
distinct functions of these regions. It is pertinent to mention that the normal func-
tioning of the epididymis is regulated by androgens (endocrine factors) and the 
presence of sperm and plasma (paracrine factors) (Robaire et al. 2007; Turner et al. 
2007). The segment- specific epididymal physiology and energy metabolism in rela-
tion to sperm maturation and storage have long been known to be sensitive to the 
endocrine and paracrine factors in rats (Brooks 1981) and rhesus monkeys (Gupta 
et al. 1992, 1993, 1994). However, recent efforts have stressed more upon the seg-
ment-specific transcriptome, proteome, and secretome profile of the epididymis.

4.4  Epididymal Transcriptome and Proteome

A detailed microarray analysis of the transcriptome of mouse epididymis identified 
2186 genes with segment-specific expression difference of ≥fourfold. Subsequent 
qRT-PCR indicated the strict segment-specific expression of cystatin-8 and Ros1 
proto-oncogene in the proximal caput, glutathione peroxidase-5 and clusterin in the 
distal caput and corpus, and cysteine-rich secretory protein-1 (Crisp-1) in the cauda 
(Johnston et al. 2005). Subsequent analysis of rat epididymal proteome by the same 
group found striking similarities and some differences (Jelinsky et al. 2007). A sim-
ilar transcriptome analysis of human epididymis discovered epididymis abundant 
and region-specific expression of several genes (Li et al. 2008). However, further 
analysis of the regulatory regions of the differentially expressed genes and their 
protein products indicated that these would either directly be secreted or otherwise 
indirectly help in creating the special epididymal milieu for sperm maturation 
(Johnston et al. 2005).

Taking view of the fact that epididymal duct’s protein components help in cre-
ating the segment-specific physiology of the epididymal duct necessary for creat-
ing the special milieu (fluid) that is critical for sperm maturation, other research 
groups studied the proteome of the epididymal tissue. Using high-resolution 2D 
gel electrophoresis followed by mass spectrometry, Yuan et al. (2006) identified 
28 proteins belonging primarily to basic cellular metabolism, amino acid metabo-
lism, antioxidant system, and smooth muscle tissue showing segment-specific 
expression in rat epididymis. Interestingly, antioxidant enzymes like inducible 
carbonyl anhydrase and peroxiredoxin-4 were localized to the distal cauda region, 
while enzymes catalyzing amino-acid metabolism were abundant in the caput 
region, which is the primary site for protein synthesis and secretion (Yuan et al. 
2006). The strict, region-specific synthesis and secretion of proteins indicated 
their precise regulatory mechanism in the epididymis. Recently small noncoding 
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RNAs have emerged as key players in regulation of epididymal function. A 
genome wide profiling of miRNA signatures in mouse epididymis identified 218 
miRNAs expressed specifically in the epithelial cells. While 75% of these had 
equivalent levels along the entire epididymal tract, a small cohort had region-
specific expression, like the miR- 204- 5p and miR-196b-5p, which were down- 
and upregulated by ~39- and 45-fold in caput and cauda, respectively. Besides, 79 
miRNAs displayed conserved expression in mouse, rat, and human tissues, which 
included the let-7 family of miRNAs that have been implicated in regulation of 
androgen signaling (Nixon et al. 2015).

4.5  Epididymal Secretome

In the proximal caput, almost all of the proteins in the rete testis fluid are absorbed 
and subsequently replaced by epididymis-specific proteins/components secreted 
mainly by the proximal segments (Fig. 4.1). For example, testicular clusterin and 
transferrin secreted by the Sertoli cells are completely removed from the epididymal 
plasma and replaced by more than 100 proteins with high polymorphism in their 
molecular weights and isoelectric points (Gatti et al. 2004). In a preliminary study, 
the rat epididymal tubules were found to synthesize and secrete proteins in a region- 
specific manner with the most prominent secreted bands in caput epididymis consis-
tent with the heavy and light chains of epididymal clusterin and the most secreted 
protein in cauda epididymis being a 25 kDa protein consistent with protein D 
(Turner et al. 1994). Subsequently, more detailed investigation of the boar epididy-
mal lumen revealed that the protein secretion was highly regionalized with the max-
imum number of proteins being secreted by the distal caput and minimum number 
by the proximal caput and cauda (Syntin et al. 1996). Some of the major proteins 
identified included epididymal clusterin, glutathione peroxidase, retinol-binding 
protein, lactoferrin, EP4, p-N-acetyl-hexosaminidase, α-mannosidase, and proca-
thepsin L (Syntin et al. 1996). Likewise, in the stallion epididymal epithelium, 
about 117 proteins were secreted, out of which, just 18 proteins made up 92.5% of 
total secretory activity, comprising mainly of lactoferrin (41.2%) and epididymal 
clusterin (24.6%). Other major proteins secreted were albumin, prostaglandin D2 
synthase (PGDS), glutathione peroxidase (GPX), cholesterol transfer protein (HE1/
CTP), and hexosaminidase. The caput epididymis was characterized by the secre-
tion of clusterin (53%), PGDS (44%), GPX (6%) and the corpus segment by the 
secretion of lactoferrin (60%), clusterin (29%), hexosaminidase (10%), and proca-
thepsin- D (6.9%), while the cauda segment was marked mainly by the secretion of 
lactoferrin (2–4 mg/mL). The corpus region was characterized by the secretion of 
highest number of proteins, possessing the highest concentration of proteins (60–
80 mg/mL) and spermatozoa (85%) in the luminal fluid (Fouchecourt et al. 2000). 
The epididymal fluid is also shown to contain both soluble and particulate matter. 
The presence of small membrane vesicles named “epididymosomes” has been 
described in this fluid, which are small vesicles of 25–50 nm in diameter, having a 
different composition from the surrounding fluid (Gatti et al. 2004; Guyonnet et al. 
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2011). These vesicles transfer specific proteins and signaling molecules from the 
epididymal epithelium to sperm for aiding maturation, e.g., the Wnt ligand for LRP 
receptors to instigate Wnt signaling (Koch et al. 2015).

4.6  Maturational Changes in Sperm 
During Epididymal Transit

The most important event during sperm maturation in epididymis is the modifica-
tion of sperm surface proteins. Thus, the sperm membrane undergoes constant 
remodeling during epididymal transit. This includes proteolytic removal of surface 
proteins, their redistribution to different loci on sperm, changes in their molecular 
weights and antigenicity, modification of their side chain glycosyl units like d- 
galactose and N-acetyl-d-galactosamine residues by glycosylation/deglycosylation. 
The enzymes required for glycosyl modification like the glycosidases and the gly-
cosyltransferases like fucosyltransferase, galactosyltransferase, and sialyltransfer-
ase are present in the epididymal fluid. Some of these modified components have 
been shown to participate in acrosome reaction, interaction, binding, and penetra-
tion of the zona pellucida (Toshimori 2003). Sperm proteins that undergo modifica-
tions through protolysis include angiotensin 1-converting enzyme, disintegrin and 
metalloprotease (ADAM) gene family, sperm adhesion molecule-1 (Spam1 or 
PH-20 hyaluronidase), basigin, and α-d-mannosidase (Sipila et al. 2009).

In an elegant study, Suryawanshi et al. (2011) compared the proteome of caudal 
sperm with that of testicular sperm and identified 140 extra proteins on the caudal 
sperm out of which nine were novel and primarily involved in metabolic processes 
(Suryawanshi et al. 2011). In yet another study, Baker et al. (2011) studied the 
changes in sperm phosphoproteins and total proteins using titanium dioxide. A total 
of 53 phosphoproteins were significantly modified during epididymal transit, and 
this was confirmed for ornithine-decarboxylase antizyme 3, heat-shock protein90R, 
and testis lipid-binding protein (by immunoblotting), which underwent a major loss 
during epididymal passage. Recently, transcription-independent Wnt signaling has 
been shown in mouse sperm through Wnt ligands released from the epididymal 
epithelium in epididymosomes, and male mice mutant for the Wnt regulator cyclin 
Y-like 1 are sterile due to immotile and malformed spermatozoa. The signaling is 
mediated through GSK3 by reducing of global protein poly-ubiquitination to main-
tain protein homeostasis, inhibiting the septin 4 phosphorylation to establish a 
membrane diffusion barrier in the sperm tail and inhibiting the protein phosphatase 
1 to initiate sperm motility (Koch et al. 2015).

4.7  Development of Motility Potential in Sperm 
During Epididymal Transit

The testicular sperm entering the epididymis are immotile, in most mammals. The 
development of sperm motility during epididymal transit and the role of epididymis 
have been studied by a number of simple and ingenious in vivo and in vitro 

G. Gupta



43

experiments by different investigators. Motility development involves the initiation 
of flagellar movement followed by coordination of this movement into a waveform 
whiplash motion causing the propulsion of sperm into a progressively moving cell. 
The amplitude of lateral displacement of head (ALH) is more in the proximal region 
of epididymis with low progressive motility. However, as sperm move to distal seg-
ment of epididymis, the ALH decreases and progressive motility increases. In 
mouse, sperm are immotile at the start of epididymal tubule but rapidly develop 
motility in the proximal caput region, though the flagellar beat is erratic with negli-
gible progression. The motion becomes circular when sperm reach the proximal 
corpus region of epididymis. Most heterogeneous sperm motility is observed in the 
mid-corpus region and most homogeneous motility in the mid-cauda region of epi-
didymis (Soler et al. 1994).

In rabbits, testicular sperm are motile but nonprogressive. Forward progression 
develops in distal caput, but sperm in the proximal cauda display maximum motility 
percentage (Sanchez et al. 1996). On the other hand in monkeys, the motion of 
sperm in the initial segment is sluggish and irregular, which becomes more erratic 
as sperm move to more distal region of epididymis due to an increase in flagellation. 
The most drastic change in sperm motility pattern becomes evident between distal 
caput and proximal corpus, though maximum values for motility parameters are 
achieved only in distal corpus with full kinematic development in proximal cauda 
(Yeung et al. 1996). Ligating the efferent ducts to retain sperm in the rete testis 
increases their rate of flagellar beating, but heads remain static, and no forward 
motility is developed, while the motility of rat sperm trapped in the caput epididy-
mis by ligation for a few days were comparable to caput sperm of non-ligated con-
trols, with sperm displaying circular path (Burgos and Tovar 1974). In rabbits and 
guinea pigs, sperm aging in corpus region developed forward motility with fertility, 
while in hamster, increased motility was not associated with fertility (Cooper 2012). 
However, in vitro incubation of sperm in rete testis and epididymal fluid was inef-
fective in promoting forward motility in rams and bulls (Cooper 2012).

Concluding Remarks

Once released into the epididymis by the efferent ducts, the immotile testicular 
sperm bathe in a progressively and constantly changing epididymal fluid envi-
ronment. The composition of the fluid is continuously adjusted by the secretory 
and absorptive activities of the epididymal epithelium to ensure exposure of 
sperm to required biological stimulus causing well-programmed cell signaling 
and surface modifications in a region-specific manner. The recent discovery of 
epididymosomes released by the epididymal epithelium into the lumen as minute 
vesicles containing special proteins and signaling molecules for sperm matura-
tion further indicates that the process is far from being simple. These changes 
bestow the sperm with progressive motility and the ability to undergo post-ejac-
ulatory events like capacitation, acrosome reaction, and fertilization. A large 
number of sperm proteins have been shown to undergo glycosylation/deglyco-
sylation and other posttranslational modifications during epididymal maturation, 
yet the exact role of these proteins in the entire process is far from being under-
stood completely.

4 Sperm Maturation in Epididymis



44

Acknowledgment I would like to thank the Council of Scientific and Industrial Research (CSIR), 
Govt. of India, for financial help, particularly for the network project on competent gamete genera-
tion that supported my work on sperm motility (PROGRAM, BSC0101). This is CDRI communi-
cation number 9455.

References

Baker MA, Smith ND, Hetherington L, Pelzing M, Condina MR, Aitken RJ (2011) Use of titanium 
dioxide to find phosphopeptide and total protein changes during epididymal sperm maturation. 
J Proteome Res 10(3):1004–1017

Brooks DE (1981) Metabolic activity in the epididymis and its regulation by androgens. Physiol 
Rev 61(3):515–555

Burgos MH, Tovar ES (1974) Sperm motility in the rat epididymis. Fertil Steril 25(11):985–991
Cooper TG (2012) The epididymis, sperm maturation and fertilisation. Springer Science & 

Business Media, New York
Fouchécourt S, Métayer S, Locatelli A, Dacheux F, Dacheux JL (2000) Stallion epididymal fluid 

proteome: qualitative and quantitative characterization; secretion and dynamic changes of 
major proteins. Biol Reprod 62(6):1790–1803

Gatti JL, Castella S, Dacheux F, Ecroyd H, Metayer S, Thimon V, Dacheux JL (2004) Post- 
testicular sperm environment and fertility. Anim Reprod Sci 82:321–339

Gupta G, Srivastava A, Setty BS (1992) Effect of efferentiectomy on enzymes of glycolytic path-
way, HMP pathway and TCA cycle in epididymis and vas deferens of rhesus monkey. Indian 
J Exp Biol 30(11):1062–1065

Gupta G, Srivastava A, Setty BS (1993) Androgenic regulation of glycolytic and HMP pathway in 
epididymis and vas deferens of rhesus monkey. Indian J Exp Biol 31(4):305–311

Gupta G, Srivastava A, Setty BS (1994) Activities and androgenic regulation of kreb cycle enzymes 
in the epididymis and vas deferens of rhesus monkey. Endocr Res 20(3):275–290

Guyonnet B, Dacheux F, Dacheux JL, Gatti JL (2011) The epididymal transcriptome and proteome 
provide some insights into new epididymal regulations. J Androl 32(6):651–664

Hess RA (2002) The efferent ductules: structure and functions. In: Robaire B, Hinton BT (eds) The 
epididymis: from molecules to clinical practice. Springer, New York, pp 49–80

Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS, Lubahn DB (1997) A role for oestro-
gens in the male reproductive system. Nature 390(6659):509–512

Jelinsky SA, Turner TT, Bang HJ, Finger JN, Solarz MK, Wilson E, Brown EL, Kopf GS, Johnston 
DS (2007) The rat epididymal transcriptome: comparison of segmental gene expression in the 
rat and mouse epididymides. Biol Reprod 76(4):561–570

Johnston DS, Jelinsky SA, Bang HJ, DiCandeloro P, Wilson E, Kopf GS, Turner TT (2005) The 
mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the 
epididymis. Biol Reprod 73(3):404–413

Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C (2015) Post-transcriptional Wnt signaling 
governs epididymal sperm maturation. Cell 163(5):1225–1236

Li JY, Wang HY, Liu J, Liu Q, Zhang JS, Wan FC, Liu FJ, Jin SH, Zhang YL (2008) Transcriptome 
analysis of a cDNA library from adult human epididymis. DNA Res 15(3):115–122

Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Dun MD, Tyagi S, Holt JE, McLaughlin 
EA (2015) Next generation sequencing analysis reveals segmental patterns of micro RNA 
expression in mouse epididymal epithelial cells. PLoS One 10(8):e0135605

Pérez-Sánchez F, Tablado L, Yeung CH, Cooper TG, Soler C (1996) Changes in the motility pat-
terns of spermatozoa from the rabbit epididymis as assessed by computer-aided sperm motion 
analysis. Mol Reprod Dev 45(3):364–371

Robaire B, Seenundun S, Hamzeh M, Lamour S (2007) Androgenic regulation of novel genes in 
the epididymis. Asian J Androl 9(4):545–553

Rodríguez CM, Hinton BT (2003) The testicular and epididymal luminal fluid microenvironment. 
In: Tulsiani D (ed) Introduction to mammalian reproduction. Springer, New York, pp 61–77

G. Gupta



45

Sipilä P, Jalkanen J, Huhtaniemi IT, Poutanen M (2009) Novel epididymal proteins as targets for 
the development of post-testicular male contraception. Reproduction 137(3):379–389

Soler C, Yeung CH, Cooper TG (1994) Development of sperm motility patterns in the murine 
epididymis. Int J Androl 17(5):271–278

Suryawanshi AR, Khan SA, Gajbhiye RK, Gurav MY, Khole VV (2011) Differential proteomics 
leads to identification of domain-specific epididymal sperm proteins. J Androl 32(3):240–259

Syntin P, Dacheux F, Druart X, Gatti JL, Okamura N, Dacheux JL (1996) Characterization and 
identification of proteins secreted in the various regions of the adult boar epididymis. Biol 
Reprod 55(5):956–974

Toshimori K (2003) Testicular and epididymal maturation of mammalian spermatozoa. In: Tulsiani 
D (ed) Introduction to mammalian reproduction. Springer, New York, pp 93–111

Turner TT (2008) De Graaf’s thread: the human epididymis. J Androl 29(3):237–250
Turner TT, Avery EA, Sawchuk TJ (1994) Assessment of protein synthesis and secretion by rat 

seminiferous and epididymal tubules in vivo. Int J Androl 17(4):205–213
Turner TT, Johnston DS, Finger JN, Jelinsky SA (2007) Differential gene expression among the 

proximal segments of the rat epididymis is lost after efferent duct ligation. Biol Reprod 
77(1):165–171

Yeung CH, Morrell JM, Cooper TG, Weinbauer GF, Hodges JK, Nieschlag E (1996) Maturation of 
sperm motility in the epididymis of the common marmoset (Callithrix jacchus) and the cyno-
molgus monkey (Macaca fascicularis). Int J Androl 19(2):113–121

Yuan H, Liu A, Zhang L, Zhou H, Wang Y, Zhang H, Wang G, Zeng R, Zhang Y, Chen Z (2006) 
Proteomic profiling of regionalized proteins in rat epididymis indicates consistency between 
specialized distribution and protein functions. J Proteome Res 5(2):299–307

4 Sperm Maturation in Epididymis



47© Springer Nature Singapore Pte Ltd. 2017
R. Singh, K. Singh (eds.), Male Infertility: Understanding, Causes 
and Treatment, DOI 10.1007/978-981-10-4017-7_5

R.K. Deshmukh • A.B. Siva (*) 
CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
e-mail: abs@ccmb.res.in
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Abstract
Capacitation is defined as an ensemble of several physiological, molecular and 
cellular changes in the spermatozoa, making them fertilization competent. It is 
considered as an obligate requirement for sperm fertility, since failures in sperm 
capacitation affect the fertilization potential. This chapter discusses the hall-
marks of capacitation, including molecular changes involved in this phenome-
non. Laboratory-based studies on human spermatozoa (molecular studies and 
sperm function tests based on capacitation and its associated events: hyperactiva-
tion, acrosome reaction and tyrosine phosphorylation) have been discussed with 
a view to highlight the pressing need for translating this information into the 
clinical practice. Additionally, a requirement to develop molecular markers/
sperm function tests based on protein tyrosine phosphorylation has been empha-
sized. The latter have come to the fore with increasing incidence of infertility and 
frequent use (and need) of assisted reproductive technologies like IVF and ICSI.
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Key Points
• Sperm capacitation, discovered in 1951, independently by CR Austin and MC 

Chang, is considered as an obligate requirement for sperm fertility.
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• The last six decades have seen a considerable rise in laboratory-based studies on 
human sperm capacitation and its associated phenomena: hyperactivation, acro-
some reaction and protein tyrosine phosphorylation.

• Clinical tests based on the identified molecular markers are rather scarce, with 
one test, viz. Androvia Cap-Score™ showing promising results in being able to 
discriminate fertile from infertile men.

• In the present era of assisted reproductive techniques (ARTs), especially ICSI, it 
is mandatory to develop reliable sperm function tests based on capacitation and 
other related phenomena to ensure the selection of the “healthiest” 
spermatozoa.

5.1  Introduction

In mammals, after having gone through the journey of formation in testis and matu-
ration in epididymis; spermatozoa, the male gamete, isn’t quite ready yet to marry 
the female gamete, the oocyte. It still has to undergo a whole battery of changes—
this time—in the female reproductive tract, to fertilize the oocyte (Fig. 5.1). This 

Male

Female

Testis

SPERMATOGENESIS

Oocyte

Uterus

Ovary

Fallopian Tube

Embryo
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+

Fig. 5.1 Life cycle of sperm: After production in testis in sufficient numbers with normal shape, 
the spermatozoa undergo maturation in epididymis, gain motility and undergo capacitation in the 
female reproductive tract, then acrosome react after oocyte binding and penetrate and activate the 
egg, resulting in successful fertilization. The blue arrows indicate the site of event 
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ensemble of post-ejaculation changes in the spermatozoa has been collectively 
called as sperm “capacitation”. Capacitation renders the spermatozoa functionally 
mature.

Origin of spermatozoa in the testis is followed by its capacitation (after ejacula-
tion) in the female reproductive tract and ultimately fertilization with oocyte in the 
fallopian tube. Sperm contribution to fertilization to assess the “male factors” is usu-
ally estimated through evaluation of semen parameters, namely, sperm count, mor-
phology and motility (World Health Organization 2010). Quite often, in spite of 
these parameters being normal and these males being termed as normozoospermic 
(normal count, motility and morphology); the infertility still exists in the male part-
ner. Such cases of idiopathic (unknown etiology) infertility have been attributed sub-
stantially to the problems in sperm capacitation (Tucker et al. 1987; Matzuk and 
Lamb 2002; Esposito et al. 2004; Hildebrand et al. 2010; Nandi and Homburg 2016).

5.2  What Is Sperm Capacitation?

Sperm capacitation has been defined as the “ensemble of all the physiological, 
molecular and cellular changes in the spermatozoa, which are necessary to make it 
fertilization competent”. It was independently discovered by Austin and Chang in 
1951 (Austin 1951; Chang 1951). Although discovered more than half a century 
ago, capacitation is still regarded as a “poorly understood” phenomenon, owing to 
the fact that each mammalian species has its unique features at the physical (time of 
capacitation) and molecular level (Chang 1984) that are difficult to monitor, since it 
takes place in the female reproductive tract (either in the oviduct or in the vicinity 
of the egg).

Sperm capacitation is a prerequisite for successful fertilization as evidenced 
from the observations that a block in capacitation causes male infertility (Tucker 
et al. 1987; Matzuk and Lamb 2002; Esposito et al. 2004; Hildebrand et al. 2010). 
Therefore, there has been a pressing need to understand sperm capacitation in all the 
individual species making it a focus of investigations of many gamete biologists 
worldwide. Most progress in understanding the phenomenon of capacitation has 
been because of in vitro methods for capacitation (Yanagimachi 1969). In the pro-
cedure, freshly ejaculated or epididymal spermatozoa are washed and incubated at 
physiological conditions in a defined medium that mimics the female oviductal fluid 
(Dow and Bavister 1989). The medium normally has the following composition: 
electrolytes, metabolic energy source and a macromolecule to allow for cholesterol 
efflux like serum albumin (Yanagimachi 1969, 1994). Several in vitro studies have 
revealed that during capacitation, spermatozoa undergo a number of biochemical 
and biophysical changes (Fig. 5.2), such as increase in membrane fluidity (Davis 
et al. 1980; Cross 1998; Buffone et al. 2009; Salvolini et al. 2013), activation of 
trans-bilayer signalling events (Go and Wolf 1985; Visconti et al. 1998; Gadella and 
Harrison 2000; Flesch et al. 2001; Sheriff and Ali 2010; Ickowicz et al. 2012), 
changes in redox status of spermatozoa leading to generation of reactive oxygen 
species (ROS) (de Lamirande and Gagnon 1992; Aitken 1995; O’Flaherty et al. 
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2006; Musset et al. 2012), removal of stabilizing proteins (Shivaji et al. 1990; 
Villemure et al. 2003; Leahy and Gadella 2011) and phosphorylation of proteins 
(Leyton and Saling 1989; Visconti et al. 1995; Mitra and Shivaji 2004; Arcelay et al. 
2008; Mitchell et al. 2008; Kota et al. 2009; Katoh et al. 2014).

5.3  Hallmarks of Capacitation

Capacitation is generally monitored by recording protein tyrosine phosphorylation 
(pY), hyperactivation (Yanagimachi 1994; Kulanand and Shivaji 2001; Baker et al. 
2006) and acrosome reaction (Ward and Storey 1984; Meizel and Turner 1991; 
Aitken 1995; Curry and Watson 1995; Mitra and Shivaji 2004; Varano et al. 2008; 
Bragado et al. 2012; Jaldety and Breitbart 2015), which are also considered as the 
“hallmarks of capacitation” (Fig. 5.2). Capacitation changes lead to the transforma-
tion in the motility pattern of spermatozoa from a progressively motile cell to a more 
vigorous, but less progressive, motile cell (Yanagimachi 1969; Suarez and Dai 1992; 
Mortimer and Swan 1995; Ho and Suarez 2001). This type of motility is termed as 
“hyperactivation”, and subsequent to this, capacitation ends with the ability of sper-
matozoa to undergo “acrosome reaction”, during which the spermatozoa releases the 
hydrolytic enzymes to facilitate its penetration and fusion with the oocyte—finally 
leading to fertilization. The increase in pY is another distinctive feature of the mam-
malian spermatozoa associated with capacitation. This molecular change is consid-
ered as an important characteristic of mammalian capacitation and has been addressed 
by various groups worldwide in varied animal models (Visconti and Kopf 1998; 
Visconti et al. 1999; Kulanand and Shivaji 2001; Lefièvre et al. 2002; Jha et al. 2003; 
Shivaji et al. 2007, 2009; Arcelay et al. 2008; Mitchell et al. 2008; Kota et al. 2009).
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to Ca2+

Increased protein
tyrosine phosphorylation

Cholesterol efflux

Hyperactivated motility
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cAMP, ROS levels

Hyperpolarization of Plasma
membrane

Influx of Ca2+ and HCO3
-

ions
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intracellular pH

Acrosome Reaction

Membrane destabilization

Sperm Capacitation

Fig. 5.2 A schematic representation of capacitation and its associated hallmarks (in blue) and 
biochemical and biophysical changes 
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5.3.1  Hyperactivation

Hyperactivation, which is defined as “a distinct change in the sperm motility from a 
symmetrical to an asymmetrical pattern, is crucial for fertilization” (Yanagimachi 
1969; Suarez 2008). The mammalian spermatozoa, while in the epididymis are 
immotile. But when released in the female reproductive tract/culture media, they 
quickly begin to swim and get hyperactivated (Morton et al. 1974), which imparts 
sperm the ability to traverse through the mucus-filled, labyrinthine lumen of the 
oviduct to reach the female gamete. Hyperactivation also helps the spermatozoa in 
penetrating the cumulus oophorus and the zona pellucida (Suarez et al. 1991; Suarez 
2008). This activated spermatozoon generates a near symmetrical flagellar beat, 
which is called as a “planar motility” pattern. This planar motility propels the sper-
matozoa in an almost linear trajectory (Suarez and Dai 1992; Mortimer and Swan 
1995; Ho et al. 2002). The amplitude of the flagellar bend is usually increased only 
on one side of the hyperactivated spermatozoa. This increased uneven amplitude 
leads to a circular, wriggling and whiplash type of motility pattern of the spermato-
zoa as shown in Fig. 5.3, and these movements are assessed objectively by using the 
computer-assisted sperm analysis (CASA) system (Shivaji et al. 1995; Panneerdoss 
et al. 2012). Hyperactivation is initiated and maintained by the involvement of a 
number of physiological factors like calcium, bicarbonate, cAMP and metabolic 
substrates (Visconti et al. 1999).

Progressive Hyperactivated

Fig. 5.3 Change in sperm 
movement from 
progressive to 
hyperactivated during 
sperm capacitation
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5.3.2  Acrosome Reaction

Acrosome reaction is an absolute crucial step for successful fertilization, as it is due 
to acrosomal secretions alone that the sperm makes its progress through the invest-
ments surrounding the egg. In fact, males with spermatozoa lacking the acrosome 
are infertile (Baccetti et al. 1991). During the acrosome reaction, multiple fusions 
occur between the plasma membrane and the outer acrosomal membrane in the 
anterior region of the head. These multiple fusions lead to the formation of exten-
sive hybrid membrane vesicles and subsequent exposure of the inner acrosomal 
membrane and acrosomal contents (Cardullo and Florman 1993). These stages of 
acrosome reaction have been depicted in Fig. 5.4.

5.3.3  Protein Tyrosine Phosphorylation

Protein tyrosine phosphorylation (pY), a post-translational event, is also considered 
as hallmark of capacitation. pY is a regulatory mechanism which controls many 
processes, such as cell cycle control, cytoskeleton assembly, cellular growth, recep-
tor regulation and ionic current modulation (Hunter 2000; Pawson 2004; Vizel et al. 
2015). The first evidence of protein tyrosine phosphorylation in spermatozoa was 
provided by Leyton and Saling (1989) in mouse. Later, Visconti et al. (1995) showed 
a correlation between sperm capacitation and protein tyrosine phosphorylation in 
mouse spermatozoa, and soon this increase was demonstrated in spermatozoa of 
various other species during capacitation, including human (Leclerc et al. 1996; 
Osheroff et al. 1999), hamster (Kulanand and Shivaji 2001), cat (Pukazhenthi et al. 
1998), pig (Tardif et al. 2001), boar (Kalab et al. 1998), bovine (Galantino-Homer 
et al. 1997, 2004), equine (Pommer et al. 2003), cynomolgus monkey (Mahony and 
Gwathmey 1999), tammar wallaby and brushtail possum (Sidhu et al. 2004), guinea 
pig (Kong et al. 2008) and ram (Grasa et al. 2006).

Acrosome

Outer
acrosomal
membrane

Inner
acrosomal
membrane

Nucleus

Acrosomal contents
Inner
acrosomal
membrane

Plasma membrane

Fig. 5.4 Schematic representation of various stages in the progression of the sperm acrosome 
reaction (adapted from Curry and Watson 1995)
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Naz and Rajesh (2004) proposed a model for tyrosine phosphorylation pathways 
during sperm capacitation. The model suggests that sperm capacitation involves 
three main signalling pathways, namely, a cAMP/PKA-dependent pathway (path-
way I) [unique to spermatozoa], a receptor tyrosine kinase pathway (pathway II) 
and a non-receptor protein tyrosine kinase pathway (pathway III). A crosstalk 
between tyrosine kinase and cAMP-dependent kinase signalling pathways in human 
sperm motility regulation is a unique feature in spermatozoa (Bajpai and Doncel 
2003). SRC family kinases (SFKs) known to play an important role in this 
capacitation- associated increase in protein tyrosine phosphorylation (Battistone 
et al. 2013) are shown to be downstream of PKA. The target proteins for PKA could 
be protein tyrosine kinase(s) or protein tyrosine phosphatase(s) or both. These 
kinase(s) and phosphatase(s) then regulate the downstream phosphorylation of their 
substrate proteins at their tyrosine residues leading to a cascade of signalling events. 
Till date, a number of kinases have been identified (Table 5.1), which are involved 

Table 5.1 List of kinases identified in spermatozoa from several species

Kinase Species (reference)

Receptor tyrosine kinases

EGFR Human (Breitbart and Etkovitz 2011); ram (Luna et al. 2012); 
bull (Etkovitz et al. 2009); boar (Awda and Buhr 2010)

IGFR1/IGF1 Human (Wang et al. 2015)

Tyrosine kinase-32 Porcine (Tardif et al. 2003)

FGFR1 Mouse (Cotton et al. 2006)

Non-receptor tyrosine kinases

SRC Mouse (Krapf et al. 2012); human (Lawson et al. 2008; Mitchell 
et al. 2008)

LYN Mouse (Goupil et al. 2011); bovine (Lalancette et al. 2006)

FYN Human (Kumar and Meizel 2005); mouse (Luo et al. 2012); rat 
(Kierszenbaum et al. 2009)

YES Human (Cheng and Mruk 2012); porcine (Bragado et al. 2012)

HCK Mouse (Goupil et al. 2011); bovine (Bordeleau and Leclerc 
2008)

LCK Hamster (Singh DK et al. 2017)

PYK2 Human (Battistone et al. 2014); mouse (Chieffi et al.  2003; 
Roa-Espitia et al. 2016); Bovine (González-Fernández et al. 
2013); stallion (Rotfeld et al. 2012)

FER Mouse (Alvau et al. 2016)

Serine threonine kinases

Protein kinase A Human (Leclerc et al. 1996); bovine (Galantino-Homer et al. 
1997); porcine (Tardif et al. 2001); hamster (Kulanand and 
Shivaji et al. 2001)

Protein kinase B/AKT Human (Aquila et al. 2005); mouse (Feng et al. 2005); boar 
(Aparicio et al. 2007); Stallion (Gallardo Bolaños et al. 2014)

ERK 1/2 Human (Almog et al. 2008); mouse (Nixon et al. 2010); guinea 
pig (Chen et al. 2005); boar (Awda and Buhr 2010)

Phosphoinositide 3-kinase 
(PI3K)

Human (Sagare-Patil et al. 2013)
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in the process of capacitation, and the list is still expanding (Lawson et al. 2008; 
Mitchell et al. 2008; Varano et al. 2008; Goupil et al. 2011; Battistone et al. 2013; 
Wang et al. 2015). Although several kinases have been identified in the spermatozoa 
(Table 5.1), their functional relevance is seen only in vitro and mostly in animal 
models. The importance of the identified kinases and thus the regulation of tyrosine 
phosphorylation in male fertility/infertility has not yet been explored much.

5.4  Diagnosis and Prognosis of Male Infertility/Fertility: 
Importance of Capacitation-Based Sperm Function 
Tests

In humans, the prognosis and diagnosis of male fertility has been a subject of 
research worldwide. As mentioned earlier, a good percentage of human pregnancy 
failures can be attributed to decreased male fertility or male factor infertility 
(Thonneau et al. 1991; Sharlip et al. 2002; Lee and Foo 2014). To evaluate human 
sperm fertility, there has always been a consistent effort to get in place sperm func-
tion tests, owing to low predictive power of standard seminal parameters (motility, 
concentration and morphology) (Oehninger 1995; Carrell 2000; Muller 2000; 
Aitken 2006; Lefièvre et al. 2007; Vasan 2011; De Jonge and Barratt 2013; Esteves 
et al. 2014; Oehninger et al. 2014). Attempts have been made in laboratories for 
decades to design sperm function tests based on capacitation and its associated 
events/parameters for predicting male fertility.

Sperm penetration tests, including the sperm mucus penetration test and sperm 
penetration assay, are being routinely used in fertility centres. In addition, various 
biochemical and biophysical changes during capacitation (Zaneveld et al. 1991; 
Benoff 1993; Martínez and Morros 1996; Cross 1998; Travis and Kopf 2002; 
Visconti et al. 2002, 2011; Mitra and Shivaji 2005; Signorelli et al. 2012; Aitken and 
Nixon 2013) also are being utilized for designing sperm-function tests, for instance, 
determining the cholesterol efflux, examining activation of ion channels, evaluating 
protein phosphorylation changes, measuring intracellular calcium and pH and reac-
tive oxygen species, monitoring hyperactivation and acrosome reaction, etc. Three 
of these events/changes are discussed in the following sections.

5.4.1  Monitoring Hyperactivation (HA)

One of the indicators of capacitation is the display of HA by spermatozoa (Burkman 
1984). Sperm motility, hyperactivation and related motility kinematic parameters 
like average path velocity (VAP), curvilinear velocity (VCL), straight line velocity 
(VSL), linearity (LIN), amplitude of lateral head displacement (ALH), straightness 
(STR) and beat cross frequency (BCF) are assessed using CASA (Larsen et al. 
2000; Freour et al. 2009). Based on the aforesaid kinematic parameters, namely, 
VCL, LIN and ALH, the non-hyperactivated spermatozoa (exhibiting planar motil-
ity pattern) can be differentiated from the hyperactivated spermatozoa (exhibiting 
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either circular or helical motility patterns) using the SORT facility of the CASA 
(Youn et al. 2011).

Impaired sperm hyperactivation (HA) has been observed in human patients with 
infertility (Wong et al. 1993; Munier et al. 2004; Wiser et al. 2014). Wiser et al. 
evaluated spermatozoa from the normal patients who were to undergo IVF. They 
found that patients with increased hyperactivated motility had significantly higher 
fertilization rate compared to the group with no increased hyperactivated motility. 
Several groups have also found a good correlation between sperm hyperactivation, 
zona-induced acrosome reaction and zona binding (Liu et al. 2007); sperm motility, 
capacitation and tyrosine phosphorylation (Yunes et al. 2003; Buffone et al. 2005); 
and oocyte penetration (Wang et al. 1991), thus presenting HA as a good prognostic 
parameter for sperm fertility.

5.4.2  Monitoring Acrosome Reaction (AR)

Only capacitated spermatozoa are known to undergo acrosome reaction, underscor-
ing its importance in predicting sperm capacitation and fertility potential of sperma-
tozoa (Bielfeld et al. 1994). Acrosomal status in human spermatozoa is monitored 
with the fluorescent conjugated lectins (PNA, peanut agglutinin, and PSA, Pisum 
sativum agglutinin) (Cross and Meizel 1989). Additionally, several methods of 
assessing induced AR in vitro have been designed, where the ability of spermatozoa 
to acrosome react in the presence of calcium-mobilizing agents, such as calcium 
ionophore (A23187) or the physiological inducers like progesterone and zona pellu-
cida proteins, is assessed (Brucker and Lipford 1995; Bastiaan et al. 2002). There are 
other fluorescent tests to evaluate the acrosome, like chlortetracyclin (CTC) staining, 
in which staining can differentiate three different sperm populations: the uncapaci-
tated and acrosome intact (F pattern), the capacitated and acrosome intact (B pattern) 
and the capacitated and acrosome reacted (AR pattern) (Kholkute et al. 1992; 
Dasgupta et al. 1994).

The fact that in vivo, acrosome reaction is induced by progesterone and zona 
proteins, evaluation of induced acrosome reaction is routinely used as a predictor of 
sperm quality for utilization in clinics for assisted reproductive technologies (ARTs) 
(Shimizu et al. 1993; Coetzee et al. 1994; Fusi et al. 1994; Yovich et al. 1994; 
Glazier et al. 2000; Makkar et al. 2003). Quite often, spontaneous acrosome reac-
tion is also evaluated and correlated with sperm fertility (Bielsa et al. 1994; Parinaud 
et al. 1995; Tavalaee et al. 2014; Wiser et al. 2014).

5.4.3  Monitoring Tyrosine Phosphorylation (pY)

In human spermatozoa, increase in global protein tyrosine phosphorylation occurs 
during capacitation and is correlated with the fertilizing ability of the spermatozoa 
(Yunes et al. 2003; Liu et al. 2006; Barbonetti et al. 2008, 2010; Mendeluk et al. 
2010; Kwon et al. 2014; Sati et al. 2014).
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In spite of the importance of pY in human sperm capacitation, laboratory studies 
and clinic-based sperm-function tests on pY are very scarce. Such studies have to be 
in place to determine the predictive capability of pY of sperm fertility. As discussed 
for the kinases as well earlier, profiling of infertile patients’ samples with appropri-
ate controls is essential to develop sperm function tests based on this important 
molecular event during sperm capacitation.

5.5  From Bench to Clinics: Male Fertility Biomarkers 
and ARTs

There has been a steady rise in the molecular studies on the role of capacitation and 
its associated events (hyperactivation, acrosome reaction and tyrosine phosphoryla-
tion) in male fertility, in vitro (Fig. 5.5a, b). In spite of such extensive work being 
carried out at the laboratory level, these studies do not seem to have found applica-
tion in the clinics yet. There are only a handful of clinics globally which seem to 
offer basic sperm capacitation/acrosome reaction tests as a part of routine sperm 
analysis, e.g. FIVMadrid; Poma Fertility; Androvia Life Sciences; University of 
Utah Hospitals and Clinics; the Male Fertility Lab, University of Washington; and 
Genetics & IVF Institute (references for website information). This data/informa-
tion presented and discussed here is based on literature survey and searches on the 
World Wide Web, and real picture regarding the clinical usage of sperm capacitation 
tests might differ and remains to be determined.
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Fig. 5.5 (a) Relative percentages of studies in different categories (as shown) conducted over the 
last four decades worldwide (total number of studies =363). (b) Threefold increase in molecular 
studies has taken place in the last decade (2007–2016) as compared to the previous one (1996–
2006). The publications were taken from PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). The 
search was done using the following terms: [sperm capacitation, fertilization, infertility, human(s), 
infertility, infertile], [sperm, sperm capacitation, human(s), infertility, infertile, fertilization, hyper-
activation] and [sperm, sperm capacitation, human(s), infertility, infertile, fertilization, acrosome 
reaction]. Based on their content, the publications (related to humans) were assigned to six catego-
ries and then percentages calculated, as shown in the pie chart
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There is a pressing need to evaluate the potential of the capacitation-associated 
sperm molecules/events and sperm function tests as biomarkers (or predictors) of 
sperm fertility/infertility. One promising sperm function/molecular test in this 
direction has been the “Androvia Cap-Score™ test”—a clinical test based on 
sperm surface ganglioside, GM1 (http://www.androvialifesciences.com/cap-
score-sperm- function-test/). This test is based on the work of Dr. Alex Travis and 
is based on the localization of GM1 on sperm head (Buttke et al. 2006; Selvaraj 
et al. 2007). GM1 is a sperm membrane component that regulates the opening and 
closing of specific calcium ion channels on the surface of sperm head. Androvia 
uses technology that identifies the ability of sperm to undergo capacitation. Since 
capacitation, hyperactivation and the acrosome reaction require an influx of cal-
cium ions, by identifying the presence and location of GM1 in the sperm mem-
brane across a number of sperm and identifying how many sperm are undergoing 
capacitation, a “Cap-Score™” can be generated that is predictive of the fertiliz-
ing ability of sperm in the ejaculate. The company Androvia claims that their 
preliminary research has already validated the ability of the test to discriminate 
between fertile and infertile populations of men, thus gaining clinical significance 
as a molecular marker/sperm function test.

Sperm capacitation and its associated events are the very basis of intrauterine 
insemination (IUI) and in vitro fertilization (IVF), the first line of ART management 
for couples with unexplained infertility/subfertility (Muratori et al. 2011; Wiser 
et al. 2014; Tosti and Ménézo 2016). In the cases of IUI and IVF, where cryopre-
served spermatozoa are used, knowledge of sperm capacitation is especially useful 
for extending the health and life span of the sperm (and thus success of the ART), 
since it is known that freeze-thawed spermatozoa exhibit a precocious acrosome 
reaction-like phenotype, suggesting capacitation-like event during the process of 
cryopreservation (Gomez et al. 1997). Though extensively used in domestic species 
(such as bovine, pigs and dogs), it is well known and accepted that cryopreservation 
damages sperm, with a large number of cells losing their fertility potential after 
freezing/thawing (Cormier and Bailey 2003). Knowledge about mechanisms 
involved in capacitation/acrosome reaction would help in efforts towards minimiz-
ing the cryo-damage to spermatozoa and improve the success rate in ARTs, as being 
used in the livestock industry (Singh et al. 2014; Layek et al. 2016).

The life cycle of sperm is complex and involves a series of events, which have to 
be perfect for successful fertilization—viz. production in testis in sufficient num-
bers with normal shape, maturation in epididymis, gain of motility, successful 
capacitation, hyperactivation and acrosome reaction, oocyte binding and penetra-
tion, activation of the ovum and ultimately successful fertilization. All these param-
eters ought to be looked at in defining a “healthy” spermatozoon, and defects in any 
of these complex events can cause male infertility. The use of ICSI (intracytoplas-
mic sperm injection) bypasses many of these events, increasing the risk of choosing 
the “compromised spermatozoa”. To avoid this, as already emphasized, it is impera-
tive to develop new pre-ART molecular markers/sperm-function tests, for use in the 
clinics (Muratori et al. 2011; Natali and Turek 2011). Although few efforts to define 
predictive tests for ICSI success have already begun with limited success (Vural 
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et al. 2005; Setti et al. 2012; Brown et al. 2013; Breznik et al. 2013; Meerschaut 
et al. 2013), further research in this direction is much needed.

Concluding Remarks

It is well accepted now that conventional semen analysis is unable to precisely 
predict sperm fertility potential, thus warranting search of biomarkers for fertil-
ity/infertility based on newer research (Weber et al. 2005; Lewis 2007; Lamb 
2010). Attempts to translate the molecular information about capacitation—from 
laboratories to clinic—and to develop capacitation-based molecular markers/
sperm function assays (besides other tests) is the need of the hour, especially in 
the era of assisted reproductive technologies like ICSI. The pre-ART tests would 
permit the clinicians and the infertile couples to make a more informed decision 
about the treatment/procedure and be assured of its success. It, thus, becomes 
necessary to continue improving our understanding of sperm capacitation, not 
only for the basic understanding of sperm physiology but also to understand its 
functionality, both in vivo and in vitro, ultimately translating into higher success 
rate in assisted reproductive technologies.
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6Genomic Landscape of Human 
Y Chromosome and Male Infertility
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Abstract
Initially thought to be functionally inert, the Y chromosome has now been estab-
lished not only as a regulator organizer of sex determination and a functional hub 
for spermatogenesis but also as a genetic center involved in mediating autosomal 
functions and genome-wide expressions. The whole genome and transcriptome 
analysis of Y chromosome across different species have shed light on the origin, 
comparative gene content, and long-term providence of this interesting chromo-
some. Comparative studies further provided insights into the evolutionary and 
molecular forces driving Y degeneration toward evolutionary destiny. In the due 
course of evolution, the Y chromosome has undergone dynamic transformations 
and has evolved autonomously, gaining a lot of distinctive characteristics that no 
other chromosome possesses. An unusual architecture and dynamic nature has 
made it the most remarkable chromosome for genetic and molecular studies.

Keywords
Y chromosome • SRY and spermatogenic genes • Azoospermic factor (AZF)  
Spermatogenesis • Male infertility

Key Points
• Y is the most unstable chromosome characterized by having undergone drastic 

structural changes with respect to size and content.
• Y chromosome is distinguished by rooted pedigree of 153 Y chromosome hap-

logroups around the world.
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• Tiepolo and Zuffardi in 1976 were the first to propose the presence of spermato-
genic genes on the Y chromosome.

• Y chromosome has lost nearly 640 genes it once shared with the X 
chromosome.

6.1  Introduction

Y chromosome, which has been previously thought as a “biological wasteland,” a 
“nonrecombining desert,” or a “gene-poor chromosome,” is now largely known for 
its functional significance during sex determination and spermatogenesis (Quintana- 
Murci and Fellous 2001). Y chromosome has always been in a state of an evolution-
ary drive, which created multiple Y chromosomes distinguished now by a rooted 
pedigree of at least 153 Y chromosome haplogroups around the world. This chro-
mosome spans around 60 Mb length, out of which 3 Mb belongs to the pseudoauto-
somal region (PAR) involved in pairing with the X chromosome during meiosis and 
the rest 57 Mb to the nonrecombining region of Y chromosome (NRY), which har-
bors the heterochromatic and euchromatic regions. Skaletsky renamed this region as 
MSY (male-specific region of Y chromosome) as the designation NRY fails to jus-
tify the dynamic evolutionary events occurring on Y chromosome (Skaletsky et al. 
2003). Most of the genes on the Y chromosome are present in the euchromatic 
region. The MSY comprised of 16 coding genes spanning around 10.2 Mb that are 
by and large single copy and ampliconic multi-copy class genes (Skaletsky et al. 
2003). The absence of recombination across a large portion of the Y chromosome 
has hindered the construction of a Y chromosome linkage map, thus Y chromosome 
mapping has been based on naturally occurring deletions (Foresta et al. 2001). 
Verngaud and colleagues in 1986 mapped the Y chromosome into seven deletion 
intervals (1–7), out of which the short arm and centromere contained intervals 1–4, 
distal to proximal, and the euchromatic part represented by intervals 5 and 6, proxi-
mal to distal, and the heterochromatic region defined by interval 7. In 1992, Vollarath 
and colleagues further divided this seven interval map into 43 subintervals, which is 
the most largely accepted map (Foresta et al. 2001). This 43 interval deletion map 
of human Y chromosome relies exclusively on PCR technology containing specific 
monomorphic molecular markers across the whole Y chromosome, occurring only 
once in human genome called as STS (sequence-tagged sites). The euchromatic 
region of MSY encompasses a total of 23 Mb that contains 156 transcription units 
and 78 protein-coding genes that encode 27 distinct proteins (Skaletsky et al. 2003; 
Simoni et al. 2004). Vollrath et al. initially tried to map the Y chromosome and 
subdivided the Yq11 region; known to be the most frequently deleted region in 
infertile patients into 223 intervals termed 5A to 5Q and 6A to 6F. On the basis of 
sequence-tagged site deletion map, Vogt further established 25 intervals of D1 to 
D25 at Yq11 region.

DNA sequencing of the Y chromosome identified a strikingly unique feature, 
eight palindromes within the Yq region, designated as 1 to 8 from distal to proxi-
mal. These palindromic regions comprised of an array of ampliconic segments 

V. Singh and K. Singh



69

containing very long, near identical, direct, and indirect repeats, (Skaletsky et al. 
2003) harboring most of the multi-copy genes. Intrachromosomal recombination 
events between these amplicons are believed to cause a high rate of de novo Y chro-
mosome microdeletions, which are known to be a major cause of male infertility.

6.2  Y Chromosome and the Azoospermia Factor 
Region (AZF)

The role of Y chromosome as a functional niche for genes involved in the regulation 
of spermatogenesis has been appreciated since the mid-1970s. Tiepolo and Zuffardi 
in 1976 were the first to propose a correlation between Y chromosome deletions and 
human male infertility. By analyzing the karyotype of 1170 men, they observed 
large deletions in six infertile azoospermic males, which spanned the entire hetero-
chromatic region (Yq12) and some adjacent euchromatic regions (Yq11). Two of 
these cases had their father carrying a normal Y chromosome indicating a de novo 
origin of these mutations. This study suggested the significance of these deletions as 
a cause of azoospermia, which further suggested that a genetic factor at Yq11 is 
important for male germ cell development. This was then called as “azoospermia 
factor” (AZF) region (Tiepolo and Zuffardi 1976). However, the genetic complexity 
of the AZF region remained unanswered until the STS- and YAC-based mapping on 
patients with microdeletions revealed that the determinants of these deletions dis-
play a tripartite organization (Vogt et al. 1996; Foresta et al. 2001). These particular 
regions regulating spermatogenesis were termed as AZFa, AZF, and AZFc from 
proximal to distal Yq. Furthermore, a fourth region, AZFd has been proposed, 
whose existence is still controversial.

Kuroda-Kawaguchi et al. (2001) showed that 47 out of 48 men carried a common 
proximal and distal breakpoint in 229 Kb amplicons flanking the AZFc region. This 
finding was further supported by the study of Repping et al. (2002) who showed that 
the majority of AZFb and AZFc deletions can be explained on the basis of recom-
bination between the palindromic regions containing the ampliconic sequences. 
Intrachromosomal nonallelic homologous recombination (NAHR) events are more 
pronounced in the MSY region, mostly at the AZFc locus, which explains the high 
frequency of deletions at AZFc locus, among other AZF loci (Skaletsky et al. 2003; 
Machev et al. 2004; Vogt 2005).

6.2.1  AZFa

AZFa region is located in the proximal Yq11.21 region (D3-D6) at deletion interval 
5 (subinterval 5C). The region spans around 1.1 Mb (Wimmer et al. 2003). It har-
bors single copy genes located in the X-degenerate region of the Y chromosome 
(Qureshi et al. 1996; Pryor et al. 1998). The genes of this region have been shown 
to be essential for normal spermatogenic functions (Vogt et al. 1992; Reijo et al. 
1995). Deletions in the AZFa region have been shown to be associated with 
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azoospermia (Georgiou et al. 2006; Krausz et al. 2006). The candidate genes found 
in this region are USP9Y, DBY, and UTY and about 11 pseudogenes. The very first 
gene identified and shown to be absent in infertile patients was DFFRY (Drosophila 
fat facets related Y), currently known as USP9Y (ubiquitin-specific protease 9, Y 
chromosome). This gene spans around 16 Kb with 17 exons and functions as a 
C-terminal ubiquitin-specific protease 9Y, involved in the regulation of protein 
metabolism (Sun et al. 1999; Kleiman et al. 2007). This gene functions as a “fine- 
tuner,” increasing the efficiency of spermatogenesis. USP9Y encodes a nine-residue 
peptide, which has been shown to represent a new minor histocompatibility antigen 
(H-Y antigen) involved in graft rejection. Majority of the infertile males carrying 
AZFa deletion show the complete absence of this interval. Recently, an additional 
anonymous expressed sequence tag (AZFaT1) was mapped proximal to USP9Y, 
and the absence of USP9Y and/or AZFaT1 has been shown to be associated with an 
oligozoospermia phenotype, while a more severe phenotype (Sertoli cell-only syn-
drome) reflected the supplementary loss of DBY (Sargent et al. 1999). DBY is 
another functional single copy gene belonging to the AZFa region, which codes for 
an ATP-dependent RNA helicase in humans, thus playing a significant role during 
premeiotic spermatogonial stages. It consists of 17 exons spanning a length of 16 kb 
with a testis-specific expression pattern (Ditton et al. 2004). AZFa deletions occur 
as a consequence of homologous intrachromosomal recombination between two 
human endogenous retroviral sequences, HERV15uq1 and HERV15yq2, located at 
the proximal Yq11 region. Complete AZFa deletion removes around 792 kb of the 
sequence including both the functional genes of this region. Partial deletion of 
AZFa region has been shown to be associated with hypospermatogenesis; however, 
the complete deletion results incomplete loss of germ cell production and matura-
tion leading to a Sertoli cell-only phenotype (Kamp et al. 2000; Suganthi et al. 
2014). These studies have brought to the conclusion that the genes harbored in this 
region might play a role in fine-tuning rather than an indispensable role in regulat-
ing spermatogenesis.

6.2.2  AZFb

The AZFb region is located between subintervals 5 M to 6B (Vogt 1997). The region 
makes a 1.5 Mb overlap with the AZFc region and spans about 3.2 Mb, comprising 
several genes essential for normal spermatogenesis (Ferlin et al. 2003). After the 
identification of RBMY, several other single copy and multi-copy genes were dis-
covered, some of which belonged solely to the AZFb region, while others were 
shared between the overlap between the AZFb and AZFc regions. EIF1AY, RPS4Y2, 
and SMCY (present on X-degenerate region) and HSFY, XKRY, PRY, and RBMY 
(located on the ampliconic region) are some of the important spermatogenic candi-
date genes located in the AZFb region. RBMY was the first evidence among the AZF 
candidate genes to be identified in the AZFb region. It is present in multiple copies 
in all eutherian placental mammals, encoding a testis-specific RNA-binding pro-
tein (Skaletsky et al. 2003). The RBMY gene is exclusively expressed in germ line 
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in the testis (spermatogonia, spermatocyte, and round spermatid). Homologous 
recombination between the palindrome P1 of the Yq results in complete AZFb dele-
tions. Complete AZFb deletion removes 6.23 Mb spanning 32 genes including all 
the members of testis-specific gene families located in the AZFb region. AZFb dele-
tion has been shown to be associated with severe spermatogenesis failure with the 
loss of genes like SMCY, EIFIAY, RPS4Y2, and HSFY (Ferlin et al. 2003). An 
altered expression of HSFY was shown to be associated with severe infertile pheno-
type such as SCOS (Sertoli cell-only syndrome) and maturation arrest (Sato et al. 
2006). The Y-linked gene (HSFY) encodes a protein similar to those regulated by 
the heat shock factor family, which plays an important role in sperm function. The 
HSFY expression is also seen in Sertoli cells and spermatogenic cells (Shinka et al. 
2004). Recent reports also suggest the role of PRY and EIF1AY genes in spermato-
genic impairment (Foresta et al. 2001; Sato et al. 2006). Another significant class of 
deletion includes the deletions extending from P5 to the distal arm of P1 (P5/distal-
 P1 deletions) and from P4 to the distal arm of P1 (P4/distal-P1 deletions) called the 
AZFbc deletions. The P5/distal-P1 deletion spans around 7.66 Mb region including 
42 genes, whereas the P4/distal-P1 deletion removes around 7.03 Mb region taking 
along 38 gene copies. These deletions occur due to nonhomologous recombination 
between the P5/distal-P1 and P4/distal-P1. However, some reports have provided 
contradictory results suggesting homologous recombination to be the mechanism 
behind such kind of deletions. AZFbc deletion results in impaired spermatogenesis 
with variable phenotypes.

6.2.3  AZFc

AZFc is the most commonly deleted and best studied region of Y chromosome 
(MSY) mapped to the distal part of Yq or the deletion subintervals 6C–6E, hosting 
a number of spermatogenesis-related gene families (Yang et al. 2015; Silber 2000). 
Multiple studies have confirmed that complete AZFc deletion leads to azoospermia 
or severe oligozoospermia in different ethnic and geographical populations (Yang 
et al. 2015). However, whether or not different Y chromosome haplotypes/hap-
logroups show an association with infertility is questionable (McElreavey et al. 
2000; Carvalho et al. 2003; Singh and Raman 2009). The region is composed of 
massive areas of nearly identical, repeated amplicons which are arranged in direct 
repeats, indirect repeats, or palindromes (Fig. 6.1).

The ampliconic regions undergo a frequent nonallelic homologous recombina-
tion (NAHR) giving rise to a variety of structural mutations. The AZFc region spans 
around 3.5 Mb, containing seven gene families with a total of 19 transcription units 
exclusively expressed in the testis. Among all the three major AZF regions, AZFc is 
considered to be the most divisive due to its variable nature (Navarro-Costa et al. 
2010). The AZFc amplicons are organized in sequence families, with five different 
families color coded as blue, green, gray, and yellow each displaying a particular 
genetic signature harboring a total of 13 different ampliconic units (Kuroda-
Kawaguchi et al. 2001; Navarro-Costa et al. 2010). The significance of these 
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ampliconic regions lies in harboring the genes responsible for spermatogenesis 
whose variable gene dosage due to change in ampliconic copy number might result 
in phenotypic alteration at the level of spermatogenesis (Navarro-Costa et al. 2010). 
Studies from Repping and colleagues in 2006 have demonstrated that AZFc rear-
rangements are the hotspots for large-scale Y chromosomal structural variations 
which occur due to high mutation rate in the interval as demonstrated by detection 
of 11 different AZFc architectures in four Y chromosomes representing the major 
evolutionary lineages in Y genealogy. It has been thought that the sequencing of 
AZFc across different Y evolutionary lineage may show new light on the genetic 
regulation of spermatogenesis (Navarro-Costa et al. 2010). Lack of recombination 
with a chromosome partner has been suggested to drive the use of amplicons for 
intrachromosomal recombination in the AZFc region to ensure genetic variability 
(Yen 2001; Repping et al. 2006; Lange et al. 2009; Navarro-Costa 2010). AZFc 
region has also evidenced non-homology-based recombination method through 
activation of nonhomologous DNA end joining (NHEJ) (Costa et al. 2008; Yang 
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et al. 2008; Navarro-Costa et al. 2010). NHEJ is more frequent in nonduplicated 
region as it does not require DNA pairing for successful ligation (Navarro-Costa 
et al. 2010; Lieber 2010).

Recently, several types of AZFc partial deletions have been recognized including 
the gr/gr, b2/b3, and b1/b3 subdeletions. The gr/gr deletions are now newly defined 
as “gr/gr deletion rearrangements” which is further divided into five rearrangement 
types, that is, simple gr/gr deletion, gr/gr deletion-b2/b4 duplication, gr/gr deletion-
 b2/b4 multiple duplication, gr/gr deletion-CDY1, and DAZ amplification (Krausz 
et al. 2008; Shahid et al. 2011; Choi et al. 2012). These deletions occur as a result 
of recombination between the sub-amplicons located within the AZFc locus. Among 
all the gr/gr deletions are the most commonly detected deletions which excise 
around 1.6 Mb of the AZFc region covering two copies of DAZ gene, one copy of 
CDY1 gene and one of the three copies of BPY2 gene. The frequency of gr/gr dele-
tions varies from 2.1 to 12.5% among all cases. gr/gr are the group of deletions 
resulting from recombination between the amplicons g1/g2, r1/r3, and r2/r4. As 
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these deletions are vertically transmitted, they are likely to reduce the sperm count 
subsequently reducing the fertility potential of the offspring (Fig. 6.2).

6.3  Sex-Determining Region Y (SRY)

The Sry locus (sex-determining region of the Y chromosome) is an evolutionary- 
conserved locus on mammalian Y chromosome responsible for testis determina-
tion in males. It functions as a developmental switch in the embryonic genital 
ridge of males, driving a bipotential gonad toward testicular differentiation 
(Gubbay et al. 1990; Sinclair Griffiths et al. 1990; Koopman et al. 1991; Tanaka 
and Nishinakamura 2014). Its primary function includes the differentiation of 
pre-Sertoli cells, an essential event in the testis differentiation of a bipotential 
gonad. SRY initiates the development of the testis by binding to a testis-specific 
enhancer of SOX9, a highly conserved gene that plays a central role in testis 
developmental program. The mutational analysis of the C-terminal domain of 
SRY suggests its function in regulating the conformation of SRY, a change of 
which may influence the SRY function. The N-terminal domain contains the 
nuclear localization signal (NLS), a mutation in which results in a decline in 
nuclear importation which somewhat explicate some of the cases of human sex 
reversal (Tanaka and Nishinakamura 2014). The Sry locus contains a highly con-
served high mobility group (HMG) box region responsible for DNA binding. 
HMG domain of Sry elicits crucial events in the developmental process. Mutations 
in HMG box have been shown to be associated with sex reversal, while the muta-
tions outside this region which show little conservation have normal sex determi-
nation (Schafer and Goodfellow 1996; Ely et al. 2010). These studies emphasize 
the functionality of HMG box as the sole functional unit of Sry locus. Present 
studies however show that Sry may also be involved in other functions evidenced 
by its expression in the brain, kidney, and adrenal gland of adult males (Milsted 
et al. 2004; Turner 2007; Turner et al. 2009; Turner et al. 2011). Recently its 
overexpression has been reported in some hepatocellular carcinoma cell lines 
such as K2 cells. The study also suggested a hypothetical model of Sry and 
SGF29 pathway in male-specific malignancy of hepatocellular carcinoma by 
explaining that the altered expression of sry causes the augmentation of SGF29 
which is integrated into STAGA complex to enhance the C-myc target gene 
expression (Kurabe et al. 2015).

The HMG box of SRY and Sox proteins binds to the minor groove of DNA by 
recognizing a consensus DNA sequence AACAAT. Sry belongs to SOX B fam-
ily of SOX loci, which includes Sox1, Sox2, Sox3, and Sry. In most of the mam-
mals, Sox1 and Sox2 are autosomal while Sox3 is X-linked. It is proposed that 
Sry has originated from a mutation in Sox3 on the primordial mammalian X 
chromosome leading to the advent of Y chromosome. Multiple Sry copies on a 
single Y chromosome have been reported in some rodent species (Bullejos et al. 
1997). These multiple copies occur probably as a result of repetitive organiza-
tion of mammalian Y chromosome leading to many species-specific 
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duplications and deletions. In human males exposed to high back radiations, 
multiple copies of Sry have been identified which were absent in normal control 
males (Premi et al. 2006).

6.4  Y Chromosome Has Significance Beyond Sex 
Determination and Spermatogenesis

The role of Y chromosome in sex determination has been already established. The 
recent advances in this area have shown that it is undergoing a rapid evolutionary 
deterioration. A large number of studies have speculated that Y chromosome could 
completely decay within the next 10 million years. Recent advances in this field 
however have provided some unexpected insights by analyzing the Y chromosome 
evolution independently in two separate sets of mammals covering more than 15 
different species including human, chimpanzee, rhesus monkeys, bulls, marmosets, 
mice, rats, dogs, and opossums. They strikingly found a small but stable group of 
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essential regulatory genes on Y chromosome that have endured over a long evolu-
tionary period of time, while the surrounding genes were decaying. These genes 
have been studied to play a critically important role by regulating the expression of 
other genes throughout the genome (Fig. 6.3).

The reason for the continued endurance of these Y regulatory genes is their dose- 
dependent nature. These studies suggested the role of Y chromosome beyond sex 
determination and fertility. A few studies have observed that large deletions in the 
long arm of Y chromosome alter spermatogenesis and sex ratio distortion to a very 
little extent, showing its non-detrimental effect.

Sex-specific differences are observed in many diseases including cardiovascular 
diseases, which have higher evidence in males. A study using rat model has identi-
fied Y chromosome as a contributor to hypertension in males. Recently a group has 
established that the hormones and sex chromosomes have opposite contribution to 
hypertension generating effects that minimizes the overall sex differences.

In an experiment using FGF mice model to study hypertension, it has been shown 
that the males with intact gonad have increased blood pressure as compared to XY 
female, whereas gonadectomized (GDX) XX mice show increased mean arterial 
pressure in comparison with GDX XY mice, regardless of gonadal sex (Ji et al. 
2010). Genetic variations in Y chromosome are widely associated with increase in 
male diastolic and systolic blood pressure in Polish and Scottish men (Charchar 
et al. 2002); however, the studies on cardiovascular risk factors such as blood pres-
sure, cholesterol levels, and body mass index lack an association with Y chromo-
some in Polish and Japanese men. A recent study showed a 50% higher risk of 
coronary artery disease in men with inherited Y chromosome haplogroup I as com-
pared to other haplogroups (Charchar et al. 2012).

A few studies have recently reported the differential expression of immuno-
logical and inflammatory pathway genes in Y chromosome haplogroups, with 
haplogroup I showing downregulation of UTY and PRKY genes in macrophage 
cells (Bloomer et al. 2013). Y chromosome linked variations are also associated 
with paucity in B cells, NK cells, and iNKT cell development, suggesting its 
role in regulation and maintenance of immunological homeostasis (Sun et al. 
2013).

Although it is evident that chromosome compliment mediates sexually dimor-
phic expression pattern of some proteins leading to functional differences, the 
contribution of male-specific region of Y chromosome gene expression during 
neuronal development remains insufficient. A group of researchers recently 
reported the expression profile of 23 MSY genes and 15 of their X-linked homo-
logues during neural differentiation of NTERA-2 human embryonal carcinoma 
cell line NT2. They found an increase in expression of 12 Y-linked genes over 
neuronal differentiation which included RBMY1, EIF1AY, DDX3Y, HSFY1, BPY2, 
PCDH11Y, UTY, RPSY1, USP9Y, SRY, PRY, and ZFY. They further showed that 
SiRNA-mediated knockdown of DDX3Y, a DEAD box helicase enzyme in neural 
progenitor cells, impairs cell cycle progression and apoptotic process 
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consequently interrupting differentiation. They suggested MSY genes to play an 
important role in neural differentiation and established that DDX3Y could func-
tion in regulating neural cell development process in a sexually dimorphic manner 
(Vakilian et al. 2015).

The significance of Y chromosome has also been documented for its functional 
association with susceptibility toward numerous infectious diseases. It has been 
demonstrated that Y chromosome linked natural genetic variation affects the sur-
vival rate of B6 Y chromosome consomic mice infected with coxsaekievirus B3 
(CVB3) (Case et al. 2012). Y chromosome haplogroups has been shown to be asso-
ciated with progression of AIDS in European Americans (Sezgin et al. 2009). 
Additionally an age-related loss of Y chromosome (LOY) has been frequently 
reported in normal hematopoietic cells (Jacobs et al. 1963; Pierre and Hoagland 
1972). A recent study has analyzed 1153 elderly men and reported that LOY in 
peripheral blood was associated with risks of all-cause mortality and non- 
hematological cancer mortality. The study has suggested the LOY in blood to be a 
predictive biomarker of male carcinogenesis (Forsberg et al. 2014).

6.5  Oncogenic Role of Y Chromosome

Nowadays a considerable attention has been focused on understanding the Y chro-
mosomal aberrations in modulating susceptibility toward cancer progression. A 
higher incidence of the same has been found in males as compared to the females. 
Large Y chromosomal deletions and altered transcriptional events have been reported 
in numerous cancers (Mitelman et al. 2014). The genetic mapping studies have iden-
tified a distinctive locus on human MSY, the gonadoblastoma locus (GBY) located 
on the short arm of Y chromosome expanding over a region of 1–2 Mb proximal to 
the centromere. This locus harbors a gene predisposing dysgenetic gonads to develop 
gonadoblastoma (Page 1987). Further studies identified TSPY as a putative gene for 
this locus. This gene is present in multiple copies in the BGY region. The expression 
of gene is confined preferentially to the testicular germ cells; however, various stud-
ies have demonstrated its expression in somatic cells under disease condition such as 
cancer. A recent investigation based on data mining study on hepatocellular carci-
noma (HCC) using RNA-Seq gene expression data of 27 pairs of male tumor and 
nontumor-paired samples at the Cancer Genome Atlas (TCGA) project has shown a 
consistent upregulation of genes such as TGIF2LY and VCY in 30% cases of liver 
cancer with frequent downregulation of ZFY and DAZ1 in 70% of cases. These 
observations strongly suggest that Y-linked genes may predispose germ cells toward 
oncogenic progression and multistep process of tumorigenesis (Fig. 6.4).

Loss of Y chromosome from peripheral blood mononuclear cells (PBMC) in 
human is associated with increased risk of cancer (Forsberg et al. 2014). Recently a 
common deletion in Yp11.2 region has been observed in prostate tumor using a 
bacterial artificial chromosome microarray containing clones derived from Y 

6 Genomic Landscape of Human Y Chromosome and Male Infertility



78

chromosome. Copy number variations in TSPY have also found to be associated 
with increased risk of prostate cancer (Bianchi 2009). However the role of Y chro-
mosome in human oncogenesis is still controversial and needs further deep research 
insight.

6.6  Gene Conversions

The Y chromosome palindromes are particularly prone to such events reflecting a 
conversion rate of 2.8 × 10−4 per duplicated base per 25 years generation (Rozen 
et al. 2003). The present studies have reported that most of these events are selec-
tively neutral in terms of reproductive fitness (de Vries et al. 2002; Repping et al. 
2003; Machev et al. 2004; Zhang et al. 2006; Navarro-Costa et al. 2007; Giachini 
et al. 2008; Stouffs et al. 2008; Navarro-Costa et al. 2010).

However, the conversion pattern reflects variation between Y chromosome evo-
lutionary lineages (Navarro-Costa et al. 2007). The mechanism of gene conversion 
pathway serves as a genetic correction mechanism for ampliconic genes (Skaletsky 
et al. 2003; Lange et al. 2009). This model explains a directional bias in the gene 
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conversion event following the replacement of defective coding sequence with unaf-
fected template.

The gene conversions act as a significant driver for AZFc variability playing an 
unpredictable role in functional regulation of interval (Navarro-Costa et al. 2010) 
protecting these genes from degeneration (Charlesworth 2003; Hawley 2003; Rozen 
et al. 2003). Thus it is expected that gene conversions might slow down the degen-
eration of Y-linked genes; nevertheless, the nonrecombining regions are thought to 
accumulate gene duplications because of an ineffective selection and elimination of 
duplications due to small population size (Lynch and Conery 2003; Lynch and 
Walsh 2007) though the growing belief that gene conversions might oppose Y 
degeneration has been criticized (Graves 2004). The upcoming reports suggest that 
the Y-Y gene conversions are much more frequent as compared to the X-Y gene 
conversion events.

6.7  Y Chromosome: Evolution and Degeneration

Although the mammalian X and Y chromosomes have evolved from the same auto-
somal ancestors around 200–300 million years ago, it has been established as highly 
divergent structures in the present day form. Restriction of recombination followed 
by a subsequent genetic loss has resulted in the morphological differentiation of sex 
chromosome (Bachtrog et al. 2014). Lack of recombination over most of the Y 
chromosome indicates less effective mechanism of nature in preventing the accu-
mulation of deleterious mutations and driving the fixation of beneficial ones, subse-
quently leading to genetic erosion of Y chromosome (Bachtrog and Charlesworth 
2001). Considering the gene content, Y chromosome has lost nearly all of the 
approximately 640 genes it once shared with the X chromosome (Hughes et al. 
2015). Recent theories suggest that Y chromosome has evolved gradually by gene 
loss during a time scale, the pace of which slows down ultimately precipitating as 
paucity of genes and stasis (Hughes et al. 2010). The first step in the evolution of Y 
chromosome underlies the acquisition of a male-determining gene on one member 
of a pair of autosomes that ultimately will become the sex chromosome. The origin 
of a heteromorphic sex chromosome eventually after the acquisition of a male- 
determining gene requires suppression of recombination between the homomorphic 
proto-sex chromosomes, which in turn allows the Y chromosome to evolve inde-
pendently of its X homologue (Bachtrog 2013). Numerous evolutionary models 
have been proposed for the Y chromosome degeneration over an evolutionary time 
scale, and the common feature among all of those is that the natural selection is not 
favored on a nonrecombining chromosome (Fig. 6.5).

An individual in a population is subjected to recurrent mutations; the beneficial 
ones get accumulated over time whereas the deleterious are selected against. On a 
recombining chromosome, the selection acts independently; however, an absence of 
recombination poses selection to operate on whole chromosome, which will be 
fixed if the acquired mutation is beneficial or whole of the chromosome is elimi-
nated if it carries a deleterious mutation (Bachtrog 2013). It has been estimated that 
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the human sex chromosomes originated around 150 million years ago from a pair of 
autosomes, initiated by the emergence of a male-determining gene sry (Lahn and 
Page 1999; Graves 1995; Vidal et al. 2001; Repping et al. 2002; Marais et al. 2010). 
The Y chromosome evolved as a recombinationally inert unit possibly by a mecha-
nism underlying several inversion events which further leads to inefficient selection 
and reduced polymorphism, the so-called Hill- Robertson effect with the preferable 
accumulation and establishment of sex-antagonistic genes on Y chromosome 
(Charlesworth and Charlesworth 2000; Gordo and Charlesworth 2000). The cross-
ing-over events are restricted to the two small regions called pseudoautosomal 
regions (PAR) that is the sole player for all meiotic crossing-over events in males 
(Lahn and Page 1999). The recent evidences have revealed that the nonrecombining 
MSY region of Y chromosome has eventually lost around 97% of genes it initially 
possessed. While the pseudoautosomal regions had perfectly normal characteristics, 
the MSY region accumulated a large amount of repeats (~ 80% of its current DNA) 
which eventually turned into heterochromatin (Skaletsky et al. 2003; Ross et al. 
2005). The sequencing of Y chromosome provided a deeper insight to the function-
ality of MSY region of Y chromosome by proposing that the genes in the MSY 
region belong to nine gene families called as ampliconic genes. These genes undergo 
frequent gene conversions within each gene family contradictory to the established 
view of being a recombinationally inert region. The comparison of interparalogue 
divergence human chimp divergence estimated the level of gene conversions to be 
1000-fold the genome average (Rozen et al. 2003; Marais et al. 2010). Interestingly 
many studies revealed that the ampliconic genes are testis specific and are involved 
in the regulation of spermatogenesis (Rozen et al. 2003; Skaletsky et al. 2003; 
Marais et al. 2010). This suggested a highly intricate mechanism of protecting these 
genes from degeneration by way of gene conversion and gene duplication events. It 
is strongly believed that the gene conversion events could eventually slow down the 
process of Y chromosome degeneration, which is supported by a recent investiga-
tion by Marias et al. who suggested that a high gene conversion is essential for an 
effective gene conversion to be observed. They also observed that the ampliconic 
regions on Y chromosome evolved gradually for an increased dosage being selected 
for large- scale duplication gene events. A high level of Y-Y gene conversions seen 
in human might have been selected to oppose the Y chromosome linked gene 
degeneration.

6.8  Y Chromosome: Regulation of Autosomal Gene 
Expression

There is emerging evidence from the studies performed on Drosophila that Y chro-
mosome is a member of regulatory genome in males and may directly influence the 
gene expression, playing an imperative role in regulating male physiological states.
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In an experiment using a mouse model of atherosclerosis with male-biased sex-
ual dimorphism, a combined analysis of quantitative trait loci (QTL) mapping along 
with gene expression profiling (eQTL) of bone marrow-derived macrophages exhib-
ited a remarkable differential expression of genes with a male or female expression 
bias. Further, Y chromosome in males represented a hotspot for trans-eQTL with 
around 334 characterized Y chromosome eQTLs. All these studies lead to the estab-
lishment of Y chromosome as a global regulator controlling genome-wide expres-
sion of various genes in mice (Bhasin et al. 2008). In experiments performed using 
B-6 Y chromosome consomic strains of mice, it has been demonstrated that Y chro-
mosome regulates the transcriptome epigenetically in CD4+ T cells and exhibits 
cell-type-specific effects based on autosomal background of mice. A copy number 
variation analysis in Y chromosome identified an inverse correlation between 
increase in copy number and upregulated genome-wide expression demonstrating Y 
chromosome trans-eQTL regulatory property (Case et al. 2013). Y  chromosome 
linked variation affects the differential distribution of androgen receptors on the 
heart, along with differential chromatin modeling, suggesting its involvement in 
regulating chromatin dynamics. It has also been shown to regulate genome-wide 
expression profiles of pathogenic immune cells in males.

6.9  Future Prospects

The Y chromosome possesses unique characteristics in many aspects. Its role in sex 
determination and reproductive functions has been widely accepted. Its dynamic 
nature and distinctive properties have been demonstrated to provide extremely 
important information unraveling the evolutionary lineage of human populations. 
The upcoming studies have revealed its essential biological roles apart from repro-
ductive functions making this chromosome a very important element of human 
genome. The theoretical and technological advances will provide a deeper insight 
into its role in diverse biological phenomena.
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7Seminal Decline in Semen Quality 
in Humans Over the Last 80 years

Priyanka Mishra and Rajender Singh

Abstract
During the later half of the twentieth century, there have been scientific debates 
over a decline in semen quality in past decades. Several studies from all over the 
world have reported a deterioration in semen quality. Interestingly, the reports of 
decline are contrasted by only a few studies. At the same time, there are reports 
of an increase in the incidence of other reproductive system malfunctions, such 
as testicular cancer, hypospadias, and cryptorchidism. Exposure to estrogenic, 
antiandrogenic, and maternal lifestyle factors during the fetal period are sup-
posed to contribute to the temporal decline. In this chapter, we have presented a 
comprehensive review by highlighting the top time course studies reporting 
instability of semen quality. We have also discussed the putative factors respon-
sible for this decline with an eye on transgenerational impact on human 
fertility.

Keywords
Sperm count • Semen quality • Sperm motility • Sperm morphology • Infertility

Key Points
• Donald Macomber and Morris B. Sanders undertook a quantitative assessment 

of spermatozoa in semen samples for the first time in 1929.
• The World Health Organization (WHO) released its first manual for semen anal-

ysis and classification of fertile and infertile men in 1980, and five manuals have 
since been released.
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• Nelson and Bunge for the first time inferred a decline in semen parameters in the 
year 1974.

• In 1992, Carlsen et al. reported that semen quality has declined by 50% at the 
global level.

• Decline in semen quality is concomitant with increased incidence of testicular 
abnormalities such as cancer, hypospadias, and cryptorchidism.

• A number of factors that are responsible for decline in semen quality may be 
transgenerational in nature, exposing future generations to further decline.

7.1  Introduction

The foundation of modern semen analysis was laid back in 1929, when physician 
Donald Macomber and Morris. B. Sanders for the first time undertook a quantita-
tive assessment of spermatozoa in semen samples of 294 males. Blood cell count-
ing chamber was used to count sperm and semen evaluation was suggested as a 
measure of male fertility. It was concluded that sperm count of 60 million per mL 
in a man could establish successful pregnancy in his female counterpart (Macomber 
and Sanders 1929). McLeod wrote “I think that if we are to select a count level to 
represent the demarcation line between “poor and fair” fertility, 60 million per mL 
would be a wise choice” (MacLeod and Heim 1945). This value was set as a stan-
dard limiting value to gauge male fertility. In 1951, normal reference value for 
sperm count was dropped down to 20 million per mL after a comparative study 
done by John MacLeod and Gold on 1000 fertile men and 800 infertile men 
(MacLeod and Gold 1951).

Realizing the diagnostic importance of semen analysis to standardize and bring 
uniformity in its evaluation across all the labs worldwide, the World Health 
Organization (WHO) was set forth to provide guidelines and reference values for 
the analysis of semen parameters. The first manual of WHO was published in 1980, 
and subsequently other updated versions were released in the years 1987, 1992, 
1999, and 2010 (Belsey et al. 1980, Barratt et al. 1995, Cooper et al. 2009, World 
Health Organization 1987, 1999). Currently, the fifth edition is in circulation, which 

Table 7.1 Comparison of reference values provided by the successive WHO manuals

Semen parameters 1980 1987 1992 1999 2010

Volume (mL) ND ≥2 ≥2 ≥2 ≥1.5

Sperm count (×106) per mL 20–200 ≥20 ≥20 ≥20 ≥15

Total sperm count ND ≥40 ≥40 ≥40 ≥39

Total motility (%) ≥60 ≥50 ≥50 ≥50 ≥40

Progressive motility (%) ≥23 ≥25%a ≥25%a ≥25%a ≥32%a,b

Vitality (%) ND ≥50 ≥75 ≥75 ≥58

Morphology (%) 80.5 ≥50 ≥30 ≥14 ≥4

Leucocyte count (106/mL) <4.7 <1.0 <1.0 <1.0 <1.0
aRapid progressive motility
bSlow progressive motility
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was released in 2010. Although the current version of WHO manual provides refer-
ence values on evidence-based data collected from recent fathers with known time 
to pregnancy, these new clinical reference values are remarkably low as compared 
to the previous one (Table 7.1). Interestingly, the gradual lowering of normal refer-
ence values ascribed by WHO for evaluating semen parameters relate to the fact that 
the quality of semen has declined in past decades and are consistent with the reports 
that came from many regions of the world over the secular changes that happened 
in semen parameters in past decades.

7.2  Hallmark Studies Describing a Decline Over the Past 
80 years

It was in 1974 that Nelson and Bunge first inferred a decline in semen parameters 
while analyzing semen samples of 386 men presenting themselves for vasectomy in 
Iowa, USA. Title of the report was “Semen analysis: evidence for changing param-
eters of male fertility potential.” They noticed that mean sperm concentration in 
these groups of men was 48 × 106 per mL and only 7% had sperm concentration 
above 100 × 106 per mL, which was far low value than those set by MacLeod and 
Gold as standard normal range for fertile males (Nelson and Bunge 1974). Following 
this, other reports also found a decline in sperm count while analyzing semen of 
fertile male subjects with intermediate values of mean sperm concentration between 
70 × 106 to 81 × 106 per mL (Rehan et al. 1975; Sobrero and Rehan 1975; Smith 
et al. 1977; Zukerman et al. 1977). Leto and Frensilli (1981) observed that several 
parameters had declined in potential sperm donors in the past 8 years. Downward 
trends in sperm count, rate of forward progression, viability, and normal morphol-
ogy were observed.

In 1983, Bostofte et al. published a report on decline of fertility in Danish men. 
Semen quality of 1077 men observed in 1952 was compared with 1000 men exam-
ined in 1972 (Bostofte et al. 1982). They found a fall in sperm count (median values 
73.4 million per mL in 1952 and 54.5 million per mL in 1972), deterioration in 
spermatozoa motility, and an increase in the number of abnormal spermatozoa. 
Osser et al. (1984) reported similar findings while analyzing 185 men for infertility 
in Sweden. Median sperm concentration was declined from 109 × 106 per mL in 
1960 to 65 × 106 per mL in 1980. Amidst, there were also reports of no change in 
semen quality. Macleod and Wang (1979) acclaimed on consistent trend in sperm 
counts found in US men seeking advice for infertility-related problems in their hos-
pital clinic. Similarly, David et al. (1979) reported the presence of higher sperm 
count values in pre-vasectomy males (since 1973) than those ascribed by Macleod 
in 1951. Observing all these studies, W. H. James (1980), in his review article, con-
cluded that at least in some places, it seems likely that a secular decline has occurred. 
These evocative studies on changing semen quality were small and limited to a 
particular region and thus could not arouse/instigate fervent debate among scientific 
community.

The issue got revived again in 1992 with the publication of an influential report 
of Elisabeth Carlsen, Aleksander Giwercman, Niels Keiding, and Niels E Skakkeblek 
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from the Department of Growth and Reproduction, the National University Hospital 
(Rigshospitalet), and the Panum Institute, Copenhagen, Denmark, which provided 
an evidence for global decline of semen quality during the past 50 years (1938–
1990) (Carlsen et al.1992). In this paper, meta-analysis was done by taking data 
from 61 published studies from multiple nations, which included males with no 
history of infertility. A significant decrease in mean sperm count and volume was 
reported by using linear regression. Sperm count had declined at a rate of 0.94 × 106 
per mL per year (1% per year) from 113 million per mL in 1940 to 66 million per 
mL in 1990. Also, the volume had declined from 3.40 to 2.75 mL, which advocates 
more pronounced decrease in sperm count. Although this study got many interna-
tional critics, namely, Brake and Krause 1992, Bromwich et al. 1994, Fisch et al. 
1996, Olsen and Rachootin 2003, and Fisch 2008, who put question marks about the 
retrospective design and the mathematical analysis used in the study, nevertheless, 
it evoked researchers all round the world to investigate the trend of semen quality in 
their respective countries.

Since 1992, the scientific literature became crowded with peer-reviewed publica-
tions over this concern, and heated debate among scientists and clinicians started. 
Swan et al. 1997 undertook a reanalysis of Carlsen study and tried to subset its 
shortcomings by regulating confounding factors (age, abstinence time, semen col-
lection method, and fertility status) and implemented different statistics methods to 
reach a more comprehensive interpretation. They extracted data for only 56 studies 
from the United States, Europe, and non-Western countries and found that decline 
in sperm density in the United States (1.5% per year), Europe, and Australia (3% 
per year) were greater than the average decline reported by Carlsen et al. (1% per 
year). Data for non-Western countries was too low to draw a definite conclusion. 
Swan et al. 2000 extended the Carlsen study by adding 47 new studies to include in 
analysis a total of 101 studies for the period 1934–1996. Decline in average sperm 
count was observed during 1934–1996 as seen earlier in the data over 1938–1990. 
This made the issue even more interesting and invited others to undertake meta- 
analysis to further explore the decline.

From year 1992 onwards, more attention was paid to design unbiased compre-
hensive studies with less methodological flaws to extrapolate the outcomes of stud-
ies to the general population. To conduct prospective studies, andrologists and 
clinicians started picking up data from the records of sperm banks or from sperm 
donors or by selecting male subjects from infertile or subfertile couples (Fisch 
2008). Auger et al. 1995 collected semen data for 20 years (1973–1996) from a 
sperm bank in Paris where the mode of semen collection and the method of semen 
analysis had remained the same during the whole study period. Analysis reported no 
change in semen volume during the study period, whereas the mean concentration 
of sperm decreased by 2.1% per year, from 89–106 million per mL in 1973 to 
60–106 million per mL in 1992. During the same period, the percentages of motile 
and normal spermatozoa decreased by 0.6 and 0.5% per year, respectively.

Deteriorating semen quality in the United Kingdom was reported in a retrospec-
tive birth cohort study in 577 men from Scotland analyzed over 11 years (1951 and 
1973). Of these subjects, 171 were born before 1959, 120 were born in 1960–1964, 
171 in 1965–1969, and 115 in 1970–1974. When comparison of all the four cohorts 
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was undertaken, a later year of birth associated with a lower sperm concentration, a 
lower total number of sperm, and a lower number of motile sperm in the ejaculate. 
The median sperm concentration fell from 98 million per mL among donors born 
before 1959–1978 million per mL among donors born after 1970. The total number 
of sperm in the ejaculate fell from 301 × 106 to 214 × 106 per mL, and total number 
of motile sperm fell from 169.7 × 106 to 129 × 106 (Irvine et al. 1996). Similarly, 
Bonde et al. (1998) reported that sperm count is related to the year of birth while 
analyzing sperm count of 1196 men from three regions of Denmark from 1986 to 
1995. Sperm concentration was higher in men born in 1937–1949 whereas lower in 
male folks born after 1970. Although, results of Bonde et al. (1998) could have been 
affected by different age and fertility status of the subjects.

Seminal volume and total sperm number trends in men attending subfertility clin-
ics in Athens were examined during the period 1977–1993. Seminal data of 2385 
subjects were collected from three andrological laboratories. Analysis indicated a 
significant decrease in total sperm number over the years with an average value of 
154.3 × 106 at the beginning in 1977 dropping to 130.1 × 106 per mL in 1993 
(Adamopoulos et al. 1996). Decline in seminal fluid in Italian population during the 
past 15 years (1981–1995) was reported by Bilotta et al. (1999) by analyzing the data 
of fertile semen donors. Mean concentration of spermatozoa was reported to shrink 
from 88 × 106 per mL in 1981–1961 × 106 per mL in 1995, mean motility declined 
from 74 to 66%, and typical morphology fell from 76 to 63%. Similarly, during the 
study period of 1977–1992, Slama et al. (2004) estimated a 21% decrease (1977–
1992) and 47% decrease (1947–1992) in sperm count for French sperm donors.

In the new millennium, large well-controlled studies brought better insight over 
the concern of instability of semen and indicated its prevalence as a threat across the 
whole globe. Examination of the urban population of 7780 men (excluding azoosper-
mic) attending an andrology clinic for infertility-related problems in Austria during 
1986–2003 revealed that the median sperm concentration dropped down from 27.75 
million per mL in 1986 to 4.60 million per mL in 2003 and semen pH increased from 
7.4 in 1986 to 7.9 in 2003 (Lackner et al. 2005). In Finland, 858 men from general 
population were investigated for the semen quality during 1998–2006. It was found 
that young Finns showed lower sperm counts in the most recent birth cohort com-
pared with few years older cohort. Sperm concentration in most of the young Finns 
was below the new WHO reference level of 15 million per mL (Jørgensen et al. 
2011), whereas during a study period of 1967–1994, no change in sperm count was 
reported in 234 normal and 5481 infertile Finnish males (Vierula et al. 1996).

While analyzing 10,932 normozoospermic males from infertile couples from 
Marseille (France), Geoffroy-Siraudin et al. (2012) found declining trends in sperm 
concentration (1.5% per year), total sperm count (1.6% per year), total motility 
(0.4% per year), rapid motility (5.5% per year), and normal morphology (2.2% per 
year). Similarly, Splingart et al. (2012) reported a significant decrease in total sperm 
count, motility, viability, and normal morphology in Tours, France from 1976 to 
2009. Further, a decrease in sperm concentration (1.9% per year) and normal mor-
phology over a 17-year period (1989–2005) was reported among 26,609 males part-
ners of infertile women from all parts of France seeking advice for assisted 
reproductive technology (ART) procedures (Rolland et al. 2012). A retrospective 
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study of New Zealand conducted across 1987–2007 on 975 sperm donors from 
Auckland and Wellington showed a decline in sperm concentration from 110 × 106 
per mL in 1987 to 50 × 106 per mL in 2007. A drop in semen volume from 3.7 to 
3.3 mL in this 20-year duration was also reported (Shine et al. 2008).

Semen parameters were analyzed in a prospective study conducted on German 
population including 234 young men from Leipzig (East Germany) and 457 men 
from Hamburg (West Germany). No significant interregional differences were 
found in sperm concentration, but morphology and motility varied significantly. 
The median value of sperm concentration in combined population was 44 million 
per mL, which indicates that young German males have poor semen quality of sub-
fertile range (Paasch et al. 2008). In Denmark, semen quality of annual cohorts of 
4867 young men had not declined during 15 years (1996–2010), but there was a 
significant fall in sperm concentration and total sperm counts as compared to fertile 
men examined few years back and male partners from historical cohort of infertile 
couples. Further, only one in four males was found to have optimal sperm concen-
tration (Jørgensen et al. 2012). These findings are consistent with the report of 
declining trends in conception rates and deteriorating male reproductive health in 
Danish populations (Jensen et al. 2008).

Trend in semen parameters was also investigated in Sfax city of Tunisia between 
1996 and 2007 in a sample of 2940 men in infertile relationships. A decreasing 
trend in sperm count and percentage of normal morphology was found over the last 
12 years (Feki et al. 2009). A recently published report of Haimov-Kochman et al. 
(2012) provided evidence of adverse trend in semen parameters during the period of 
1995–2009. This study was conducted on 2182 samples provided on a weekly basis 
by 58 young healthy fertile sperm donors. Sperm concentration dropped from 106 
million per mL with 79% motility to 68 million per mL with 66% motile sperm. The 
total motile sperm count per ejaculate also decreased, from 66.4 million to 48.7 mil-
lion. Decline in sperm count (5.2 × 106 million per mL per year) in Jerusalem across 
10 years (1990–1999) was also supported by Almagor et al. (2003). The report also 
stated that about 38% of sperm donations are being rejected because of unsatisfac-
tory sperm counts.

A US study on 489 semen donors from urban Boston area analyzed semen data 
using linear regression after adjustment for age, days of abstinence, as well as by 
the Cochran–Armitage trend test and reported decline in sperm count, total count, 
and total motile count (Centola et al. 2016). Nonetheless, no change in semen qual-
ity was reported in the United States by earlier studies (Fisch et al. 1996; Paulsen 
et al. 1996; Saidi et al. 1999). Exploration of 29 studies from 1938–1996 of 9612 
subfertile men reported that sperm count had not changed during the study period 
(Saidi et al. 1999). Interestingly, Fisch et al. (1996), analyzed data from sperm 
banks of New York, California and Minnesota for 1283 men who preserved their 
sperm prior to vasectomy and reported an increase in sperm concentration over a 
period of 25 years (1970–1995). In Brazil, semen samples of 764 infertile males 
examined during 2000–2002 were compared with 1536 infertile men in 2010–
2012. The mean sperm concentration per mL decreased remarkably from 61.7 
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million in 2000–2002 to 26.7 million in 2010–2012 (Borges et al. 2015). Similar 
unambiguous downfall in sperm count was seen in Sweden (Bendvolt et al. 1991), 
Belgium (Van Waeleghem et al.1996), Itly (Menchinni et al.1996), Canada 
(Younglai et al.1998), Norway (Ulstein et al. 1999), Scotland (Sripada et al. 2007), 
Italy (Vicari et al. 2003), India (Adiga et al. 2008), Argentina (Molina et al. 2010), 
Spain (Mendiola et al. 2013), and China (Wang et al. 2016) (Table 7.2).

The declining trend in semen quality parameters detailed above is very interest-
ing. In the meantime, increased prevalence of testicular cancers, hypospadias, and 
cryptorchidism was observed worldwide (Giwercman et al. 1993; Purdue et al. 
2005). Emergence of testis cancer increased majorly in the developed countries 
between 1980 and 2002. The general statistics of increment per year are 2.4% in 
Sweden, 5.0% in Spain, 2.9% in the UK, 3.0% in Australia, 3.5% in China, while 
India is at lower risk of only 1.7% (Chia et al. 2010). In Finland, a prospective study 
was conducted to analyze current trends of semen quality and appearances of tes-
ticular cancers. Semen data of 858 men from general population (age 18–19 years) 
was analyzed from 1998–2006, and the registries of incidence of testicular cancer 
of 5974 men were observed for 1954–2008 period. This study confirmed an 
increased incidence of testis neoplasia in the past 15 years in parallel with a decline 
in semen quality between 1998 and 2006 (Jørgensen et al. 2011).

International Clearing House for Birth Defect Monitoring System (ICBDMS), 
an organization of WHO, reported that increasing trends of incidence of hypospa-
dias were found during 1960s in Sweden, Norway, Denmark, England, and Hungary 
during 1970s, while in the United States, the incidence increased from 1970s to 
1990s (Toppari et al. 2001). Metropolitan Atlanta Congenital Defects Program 
(MACDP) and Birth Defects Monitoring Program (BDMP) are the two birth defect 
surveillance systems of the United States. Analysis of data taken from these regis-
tries reported doubling in the rate of occurrence of hypospadias during 1970–1993 
from 20.2 to 39.7 per 10,000 births (Paulozzi et al.1997). A longitudinal study con-
ducted during 1977–2005 in Danish boys showed occurrence of hypospadias in 
3940 boys among 921,745 live births of male child with increased prevalence from 
0.24% in 1977 to 0.52% in 2005 with an annual rate of 2.40% (Lund et al. 2009). 
Prevalence of cryptorchidism among boys since birth has increased in the UK from 
2.7 to 4.1% between the 1950s and 1980s and in Denmark from 1.8 to 8.4% between 
the 1950s and 1990s. These figures vary from 2.1 to 8.4% in different countries dur-
ing the last two decades (Paulozzi et al.1999; Virtanen and Toppari 2008).

Interestingly, a decline in fertility rate has occurred in the developed nations in the 
last decades (Kaufmann et al. 1998; Pearce et al. 1999; Lutz et al. 2003; Yew 2012). 
There is an average of less than two children per couple in Europe and in Japan 
(Central Intelligence Agency 2015), whereas in Spain and Italy, this figure is below 
1.5 (Bosch 2000). International Committee for Monitoring Assisted Reproductive 
Technology (ICMART) in 2002 has reported an increase in the use of intracytoplas-
mic sperm injection (ICSI) worldwide (from 54.4% in 2000 to 60.8% in 2002 in North 
America, from 45.7 to 53.9% in Europe) and reached 76.1% in Latin America and 
92.5% in the Middle East in 2002. According to the European IVF-Monitoring 
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Consortium, the number of reported cycles of IVF and ICSI has increased by 4.9% in 
comparison to 2011 (Kupka et al. 2016). Though the fertility rate is a complex phe-
nomenon that is influenced by a number of variables, a decline is semen quality is one 
of the important contributors. Similarly, a trend in secular drowning of reproductive 
hormones, testosterone, and sex hormone-binding globulin levels in serum of men has 
also been reported (Andersson et al. 2007). Thus, high incidence of the abovemen-
tioned reproductive system deformities and decline in reproductive hormone param-
eters are followed up as evidences of instability of semen parameters over time.

7.3  Factors Alleged for Deteriorating Semen Quality

Semen parameters are highly sensitive biomarkers of male reproductive function. 
Semen analysis provides information about functioning of various reproductive organs 
of males, viz., testis, epididymis, accessory gland, seminal vesicle, and prostate and are 
thus used as a diagnostic tool to access male infertility-related information. Decline in 
sperm count has occurred in the past 60–70 years, and this fact indicates that the 
involvement of environmental and lifestyle factors rather than genetic is more likely. A 
rapid expansion of industries has outpoured the pandora of hazardous chemicals in the 
immediate environment of human beings. Most of these chemicals are estrogenic and 
endocrine disruptors. The epithelium of seminiferous tubule is highly sensitive to stress 
and chemicals. Occupational or domestic exposure to estrogenic chemicals led to 
impairment of spermatogenesis, which in turn caused low sperm counts and produc-
tion of defective sperm. Estrogens like compounds bind to estrogen receptors and 
stimulate pituitary gland for the production of gonadotropins. Gonadotropins influence 
the secretion of male reproductive hormones and can thus modulate spermatogenesis.

Environmental pollutants cause a generation of reactive oxygen spices (ROS), 
which if unchecked, can cause deterioration of sperm quality (Hammoud et al. 
2010). A study conducted by De Rosa et al. (2003) found that men exposed to traffic 
pollutants had increase level of methaemoglobin in serum and more amount of lead 
in semen as compared to those who were not exposed. Prenatal and postnatal expo-
sures have been suggested to affect sperm concentration and reproductive organ 
development of male child (Jouannet et al. 2001; Pastuszak and Lamb 2013). A 
follow-up study of two decades by Ramlau-Hansen et al. (2010) reported that alco-
hol intake at the time of pregnancy associated with lower sperm counts in sons, and 
most of the pregnant women in Denmark have reported alcohol intake throughout 
pregnancy. Maternal smoking during pregnancy has also been associated with lower 
sperm counts in the upcoming male child (Storgaard et al. 2003). Similarly, paternal 
and maternal smoking has been reported to affect semen quality in the upcoming 
generations (Axelsson et al. 2013). More interestingly, both alcohol and smoking 
have been postulated to have transgenerational effects, which may last up to several 
generations (Lee et al. 2013; Joya et al. 2014; Taki et al. 2014).

Radiations cause detrimental effect on male reproductive health (Aitken et al. 
2005). Exposure to cell phone radiations may be a common factor related to a 
decrease in sperm count, motility, viability, and normal morphology (Agarwal et al. 
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2008). Radio frequency electromagnetic radiations of mobile phones cause sperm 
DNA fragmentation and decline in sperm motility (Gorpinchenko et al. 2014). It 
was also shown that microwave radiation can affect sperm count (Kim et al. 2007) 
and that 2.45 GHz microwave radiation decreased the diameters of seminiferous 
tubules (Saygin et al. 2011), thus affecting the Sertoli cell numbers, which in turn 
impair spermatogenesis. Antiandrogen compounds adversely affect male reproduc-
tive health (Kristensen et al. 2011; Nordkap et al. 2012). Inhalation, consumption, 
or absorption of phthalate chemicals during pregnancy causes birth of male child 
with low sperm count, and this is due to inhibition of testosterone production (Parks 
et al. 2000; Sharpe 2005; Swan 2008). About 8% of chemicals display antiestro-
genic effects (Vinggaard et al. 2008). It has been found that occurrence of childhood 
cancer is linked to paternal exposure to hydrocarbons in various forms like benzene, 
paint, methyl ethyl ketone, plastic and resin fumes, and different types of solvents. 
A cross-sectional Denmark study on 701 of young men who underwent medical 
checkup before joining military showed that males with high dietary intake of satu-
rated fat had 38% lesser sperm concentration and 41% lower total sperm count than 
those who consumed less saturated fat diet (Jensen et al. 2013). Thus, a host of fac-
tors, which may vary significantly from one population to the other, have resulted in 
a significant decline in semen quality over the last several decades. Some of these 
factors have been discussed in detail in Chap. 23.

7.4  Discussion and Future Directions

Infertility affects about 8–12% of couples, and in 50% cases, male factor is found to 
cause infertility-related problems. According to the WHO, 60–80 million couples 
are currently suffering from infertility. In the United States alone, 10% couples are 
estimated as infertile. The National Centre for Health Statistics has estimated that 
absolute number of impaired fecundity has increased by 2.7 million women from 
4.56 million in 1982 to 7.26 million in 2002. Fertility rate in men less than 30 years 
has also decreased by about 15% (Kumar and Singh 2015). Simultaneously, demand 
for assisted reproductions has also grown abruptly in the recent decades (Andersen 
et al. 2008). Thus, it is tempting to speculate the role of declined semen quality in 
the hike in prevalence of male infertility in parallel with increasing demand for the 
assisted reproductive technologies.

In the last few decades, the increased incidence of testis cancer and other male 
congenital abnormalities like hypospadias and cryptorchidism is in synchronization 
with a fall in semen quality. A hypothesis underlies that the incidence of testicular 
neoplasia, undescended testis, hypospadias, and poor semen quality all is part of a 
single etiology, broadly called as testicular dysgenesis syndrome (TDS), commonly 
originated by the exposure to estrogenic or antiandrogenic toxins in prenatal period 
that adversely affect reproductive development of fetus. It is very likely that the rise 
in infertility goes hand in hand with increase in the frequency of appearance of 
reproductive organ deformities.
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The exposure to endocrine disruptors, chemical toxins like pesticides, fungi-
cides, medications or inadequate nutrition, high fat diet also shows inheritable trans-
generational effects, which are epigenetic in nature (Jirtle and Skinner 2007). These 
factors can modulate methylation pattern of DNA or histone in germ line cells, 
which can alter gene expression and thus may affect semen parameters up to several 
generations. Studies in mice have shown that vinclozolin, phthalate, dioxin, tetracy-
cline, high fat diet, and folate are some of the few known compounds exposure to 
which in ancestral generation can cause lowering of sperm count and reproductive 
functions in the coming generations (Anway et al. 2006; Dunn and Bale 2011; 
Manikkam et al. 2012, Nilsson et al. 2012; Zeh et al. 2012; Doyle et al. 2013; 
Padmanabhan and Watson 2013).

 Conclusion

Sufficient scientific and demographical data supports a significant decline in 
semen quality in most of the populations, with very few exceptions. Diminishing 
semen quality may impose pandemic threat of various male reproductive system 
disorders and decline in fertility rates in the coming generations. Adverse trend 
in semen standard has hit the human reproduction process and thus may bring the 
subsistence of human species under question. Declining of sperm count would 
not only bring social and psychological distress at individual level; it would be 
disappointing for infertile couples as poor semen may lead to cessation of intra-
uterine insemination- based treatments. Although exposure to antiestrogenic and 
antiandrogenic compounds during embryonic stage are known causes of drop in 
sperm count, but a host of other factors await discovery. In addition to decline in 
sperm count, it is also important to explore what sort of transmissible program-
ming at the epigenetic level in the germ cells could be brought in by the environ-
mental exposure and maternal lifestyle in prenatal period of ensuing fetus. No 
doubt, immediate long-term follow- up with well-designed studies involving sev-
eral countries are needed to observe the severity and outcome of changing trend 
in semen quality. More research studies are needed to identify other potent 
chemicals that can act as xenoestrogens and endocrine disruptors and also the 
ways for their rapid detection. It is the time to take the call seriously; otherwise, 
natural conceptions may be a rare phenomenon in future.
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8Syndromic Forms of Male Infertility

Vertika Singh, Rajender Singh, and Kiran Singh

Abstract
Syndromes represent abnormalities of more than one organ, and the complex 
malignancy may be easily identifiable by external appearance or physical exami-
nation. However, the exact identification of a syndrome and the complexity of 
the organs affected may be difficult to identify and often require assistance from 
cytogenetic and molecular investigations. The molecular basis of various disor-
ders and syndromes has been worked out, and in some cases, molecular diagno-
sis has become a standard. Interestingly, a number of human syndromes often 
cosegregate with infertility to little or large degree, and more than 70 such syn-
dromes have been identified. In some syndromes, infertility becomes the primary 
problem requiring attention; however, other features may be notable well before 
the onset of puberty. This chapter presents a collection of the syndromic forms of 
male infertility to illustrate their importance and clinical investigations, with an 
emphasis on the quantitative loss of fertility associated with them.
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Noonan syndrome • Jacob’s syndrome • Cystic fibrosis • Myotonic dystrophy 1 
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Key Points
• A number of genetic syndromes cosegregate with male infertility.
• Klinefelter’s syndrome is the most frequent disorder of sex chromosomes in 

humans.
• CBAVD is present in around 1–2% infertile men and 6% obstructive azoosper-

mia cases.
• Around 800 AR mutations are registered in the McGill University database of 

AR gene.
• Some rare syndromes of infertility include myotonic dystrophy 1, primary ciliary 

dyskinesia, Kearns–Sayre syndrome, Aarskog–Scott syndrome, persistent 
Müllerian duct syndrome and Prader–Willi syndrome.

8.1  Introduction

A syndrome is characterised as a disorder that has more than one identifying feature 
or symptom. Human male infertility is infrequently associated with genetic syn-
dromes. The molecular basis of some syndromes is now well known; however, the 
basis of other syndromes remains unidentified or idiopathic. A major reason could 
be the lack of emphasis of infertility workup on the detection of rare syndromes. 
More than 70 syndromes have been identified to be associated with infertility so far 
(Hempel and Buchholz 2009). Some of the syndromic forms manifest with infertil-
ity as one of the most obvious clinical features, whereas in majority, infertility is 
coupled with mental retardation and severe malformations. As these individuals are 
often not concerned with the reproductive health and family planning, they are 
oblivious of their infertility.

The identification of 46 human chromosomes in 1956 gave birth to the area of 
genetics, which has diversified tremendously since then. With the expansions of 
genetic research and its clinical offshoots, numerous genetic factors have been iden-
tified to associate with male infertility. Some of the syndromes are associated with 
chromosomal aberrations, such as Klinefelter’s syndrome, Noonan syndrome and 
47,XYY syndrome, while others are linked to various autosomal or sex-linked 
genetic mutations. Due to overlapping features among these syndromes, identifica-
tion of the molecular aetiology has become a standard method of diagnosis in asso-
ciation with physical examination. This article brings together the molecular defects 
and phenotypic/anatomical features of the syndromes that have infertility as one of 
the identifying features.

8.2  Syndromes with Chromosomal Aneuploidy

8.2.1  Klinefelter’s Syndrome (47,XXY)

Dr. Harry Klinefelter was the first to identify the clinical presentation of Klinefelter’s 
syndrome in nine men with an array of features: testicular dysgenesis, small and 
firm testes, elevated serum FSH levels, functional Leydig cells, azoospermia, 
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microorchidism, eunuchoidism and gynecomastia (Klinefelter et al. 1942). For 
some years till then, it was thought to be an endocrine disorder of unidentified aeti-
ology. Later, in 1959, when the cytogenetic arena was flourishing, Jacobs et al. 
reported a strong evidence of an extra X chromosome, that is, 47,XXY karyotype, 
in males with Klinefelter’s syndrome (Jacobs 1959). Around 80–90% of Klinefelter’s 
syndrome (KS) cases represent the ‘original’ karyotype of 47,XXY, while the 
remaining show either a varying degree of mosaicism (e.g. 47,XXY/46,XY), an 
additional sex chromosome (48,XXXY; 48,XXYY; 49,XXXXY) or a structurally 
abnormal X chromosomes (Bojesen et al. 2003; Lanfranco et al. 2004). KS is repre-
sented as the most frequent disorder of sex chromosomes in humans, with a global 
prevalence of around one in 500 males (Nielsen and Wohlert 1991). Because of 
unusual chromosomal and gonadal features, Klinefelter’s syndrome condition has 
been recognised as a disorder of sexual development (Hughes et al. 2006).

47,XXY males show clinically variable signs that are often age related. In 
infancy, the KS males may display hypospadias, cryptorchidism or small phallus 
(Caldwell and Smith 1972). In the toddler years, they may start presenting symp-
toms of developmental delay and language deficits especially with delayed expres-
sions (Walzer et al. 1978). The school-aged child may display various learning 
disabilities and behavioural/social problems (Walzer et al. 1978), while the adoles-
cent may display a delayed or incomplete pubertal development with eunuchoid 
body habitus, small testes and gynecomastia (Robinson et al. 1990). Adults may 
also develop complications associated with malignancy of breast (Okada et al. 
1999). KS often presents a wide spectrum of phenotype in the adulthood; however, 
it is often associated with primary testicular failure, hypergonadotropic hypogonad-
ism, reduced testicular volume and infertility due to azoospermia and severe oligo-
zoospermia in 90 and 10% of non-mosaic KS patients, respectively (Lanfranco 
et al. 2004; Ferlin et al. 2007; De Sanctis and Ciccone 2010; Foresta et al. 2012).

KS is present in around 3% of all infertile men, while the frequency increases to 
13% in infertile azoospermic population (Van Assche et al. 1996; Vincent et al. 
2002; Tüttelmann and Gromoll 2010). KS represents, thus far, the most frequent 
genetic cause of azoospermia in humans. The azoospermia phenotype in KS devel-
ops due to progressive germ cell degeneration that starts at the time of mid-puberty 
and progresses during puberty and adolescence. The accelerating severity eventu-
ally leads to Sertoli cell dysfunction, extensive fibrosis and hyalinisation of seminif-
erous tubules and Leydig cell hyperplasia (Aksglaede et al. 2006, 2013). The 
mechanism underlying the global degeneration is still unclear; however, one of the 
leading hypotheses moves around, an altered dosage of X-linked genes that escapes 
the process of inactivation (Aksglaede et al. 2006). It has been suggested that the 
supernumerary X itself prevents the completion of meiosis and disturbs the testicu-
lar homeostasis by affecting Sertoli and Leydig cell functions (Aksglaede et al. 
2006). Nevertheless, some of the studies have debatably mentioned the elimination 
of supernumerary X chromosome during meiosis, which was supported by some 
indirect clues (Foresta et al. 1999; Sciurano et al. 2009). Besides, majority of the 
reports are in favour of 47,XXY spermatogonia, being able to complete meiosis, 
which is evident by an increase in the incidence of KS boys to KS fathers (Hall et al. 
2002; Staessen et al. 2003; Martin 2008).
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Interestingly, a few studies highlighted that a skewed X chromosome inactivation 
(XCI) and X-linked imprinting may have differential effects on the autistic and 
schizotypal features observed in KS patients. These reports highlighted the signifi-
cance of epigenetic processes in the development of KS. Recently, a group of 
researchers performed a global transcriptome analysis on testicular biopsies 
obtained from six non-mosaic KS patients with azoospermia. The analysis revealed 
that a large number of deregulated transcripts belonged to the regulatory pathways 
of various Sertoli cell and Leydig cell functions (D’Aurora et al. 2015). Similarly, a 
study demonstrated genome-wide alterations in DNA methylation and gene expres-
sion patterns in two regions of the brain from a patient with a 47,XXY karyotype. 
These genes belonged to the loci which normally escape the XCI in females, thus 
supporting the hypothesis of X-linked dosage imbalance. So far, no fertility treat-
ment is available for the affected patients.

8.2.2  Jacob’s Syndrome (47,XYY)

Avery Sandberg et al. were the first to identify 47,XYY syndrome in a normal 
44-year-old man who fathered a Down syndrome child (Sandberg et al. 1961; 
Hauschka et al. 1962). Few years later, a British geneticist, Patricia Jacobs, described 
it in detail, and thereafter the presence of an extra Y chromosome was termed as 
Jacob’s syndrome (Jacobs 1974, 1975). 47,XYY syndrome has a prevalence of 1 in 
1000 male individuals (Bojesen et al. 2003). 47,XYY genotype in these patients 
arises due to non-disjunction at the time of the second meiotic division (MII) during 
spermatogenesis or post-zygotic mitosis (PZM). It is well demonstrated by the pres-
ence of an additional Y chromosome in spermatogonia and/or spermatocytes, which 
gets selective advantage during gametogenesis (Jacobs 1974, 1975; Jacobs and 
Hassold 1995; Robinson and Jacobs 1999).

The phenotypic features of XYY men are similar to those observed in Klinefelter 
syndrome, including tall stature, learning disabilities, cognitive impairment and 
lack of attention (Maclean et al. 1961; Robinson et al. 1989; Ratcliffe 1982; Welch 
1985; Ratcliffe et al. 1992; Rovet et al. 1995; Bojesen et al. 2003; Aksglaede et al. 
2008); however, they show normal pubertal development and testosterone levels. 
From the last few years, there has been increasing evidences on the association of 
47,XYY complement in the somatic cells and the presence of chromosomally 
abnormal sperm in the semen (Speed et al. 1991; Blanco et al. 1997; Chevret et al. 
1997; Lim et al. 1999; Gonzalez-Merino et al. 2007; Wong et al. 2008). Numerous 
studies have demonstrated an increase in the presence of sperm mosaicism, aneu-
ploidy or hyperhaploidy in 47,XYY men ranging from 0.57 to 77.8% (Speed et al. 
1991; Lim et al. 1999; Morel et al. 1999; Shi and Martin 2000; Wong et al. 2008; 
Gonzalez-Merino et al. 2007). These men frequently display an increase in the risk 
of transmission of extra Y chromosome in the offspring (Lim et al. 1999).

It has been proposed that the YY bivalent pairs during meiosis I leave the free X 
univalent within the vesicle, which subsequently gets eliminated during anaphase, 
resulting in disomic YY sperm (Lim et al. 1999). An increase in the frequency of 
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XY disomy can also be explained by this assumption (Lim et al. 1999). Studies by 
Guttenbach et al. and Kruse et al. have also reported an increasing prevalence of XY 
and XX disomic sperm, providing strong indication of 47,XXY cells to undergo 
complete meiotic divisions (Guttenbach et al. 1997; Kruse et al. 1998). However, 
the presence of extra Y chromosome may impede normal spermatogenesis process, 
affecting various sperm parameters that define fertility (Milazzo et al. 2006). 
Nevertheless 47,XYY men are reported to have sperm count between normozoo-
spermia to azoospermia (Faed et al. 1976; Lim et al. 1999; Egozcue et al. 2000; 
Blanco et al. 2001; Moretti et al. 2007). 47,XYY men with normal sperm counts 
have potential to achieve a normal pregnancy. However, for men with poor fertility, 
screening for sperm sex chromosome constitution is strongly recommended.

8.3  Syndromes with Gene Mutations

8.3.1  Kallmann Syndrome

Maestre de San Juan in 1856 was the first to report an association of small testis 
with the absence of olfactory structures in the brain (de San Juan 1856). Later, the 
syndrome was clinically recognised and identified in 1944 by an American medical 
geneticist, Kallmann, who reported an anosmia-associated occurrence of hypogo-
nadism in three affected families and suggested the syndrome to be hereditary 
(Kallmann 1944). Later in the 1950s, a Swiss anatomist named de Morsier further 
described that the patients with Kallmann syndrome have underdeveloped or absent 
olfactory bulbs in association with hypogonadism (de Morsier and Gauthier 1963). 
A few years thereafter, it was found that the hypogonadism in affected patients 
developed due to gonadotropin-releasing hormone (GnRH) deficiency (Naftolin 
et al. 1971). The incidence of Kallmann syndrome has been estimated to be 1 in 
8000 boys; however, the prevalence is five times lower in girls. Perhaps in most of 
the cases, primary amenorrhoea in females remains undervalued and often unex-
plored (Jones and Kemmann 1976).

Clinical diagnosis of Kallmann syndrome is made by the presence of anosmia 
together with a diminished libido, erectile dysfunction and lack/delay/stop in puber-
tal sexual maturation with the absence of secondary sex characters. Though, the 
status of pituitary and hypothalamus appears normal in Kallmann syndrome, they 
often present a low serum testosterone level (<100 ng/mL). The adult males show a 
eunuchoid body habitus, which results due to delayed skeletal maturation (Pallais 
et al. 1993). The testicular morphology in Kallmann syndrome may show heteroge-
neous grades of spermatogenic impairments (Nishio et al. 2012); however, sper-
matogenesis can be easily rescued by hormonal stimulation (Jungwirth et al. 2012). 
Some nonreproductive characters associated with gene mutations in Kallmann syn-
drome men include unilateral renal agenesis, congenital ptosis, dyskinesia and/or 
skeletal abnormalities, involuntary upper limb mirror, cleft lip/palate, ear/hearing 
defects, coloboma (eye defect), agenesis of one or several teeth (hypodontia), obe-
sity and hyperlaxity of the joints. Nevertheless, it typically cosegregates severe 
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hypogonadotropic hypogonadism with a complete absence of the sense of smell 
(anosmia). The degree of the hypogonadism may vary significantly between unre-
lated patients and even between monozygotic twins.

Various histopathological studies have demonstrated that the poor reproductive 
features of Kallmann syndrome men result due to disrupted embryonic migration of 
neuroendocrine GnRH from the nose to the brain (Fig. 8.1) (Schwanzel-Fukuda and 
Pfaff 1989; Teixeira et al. 2010). Kallmann syndrome presents various modes of 
transmission, which can be X-linked, autosomal recessive, autosomal dominant or 
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Fig. 8.1 Diagram showing the development and migration of GnRH neurons. In normal condition 
the GnRH neurons originate in the olfactory placode outside the brain and migrate along the olfac-
tory axons through the cribriform plate to reach the hypothalamus (a), while in the KS patients the 
GnRH neurons fail to migrate and get arrested in the cribriform plate (b)
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digenic/oligogenic (Dodé and Hardelin 2009; Sykiotis et al. 2010). As this syn-
drome shows an incomplete penetrance, the genetic linkage analysis in these 
patients becomes difficult. However, through various candidate gene approaches, 
including screening of gene mutations associated with the disease phenotype, the 
researchers have identified various genes, most of which function at the level of 
GnRH neuron migration. Some of these genes include KAL-1, FGFR1, PROKR2 
and PROK2, FGF8, CHD7, WDR11, HS6ST1 and SEMA3A (Valdes-Socin et al. 
2015). The KAL-1 gene mutation and the FGFR1/FGF8 gene mutation account for 
around 8 and 10% of all KS cases, respectively. KAL-1 gene is mapped to Xp22.32 
locus and contains 14 exons. It encodes for 840 amino acid long protein, anosmin-1. 
It is an extracellular adhesion protein that helps in orchestrating GnRH neuron 
adhesion and axonal migration. It also acts as a co-receptor for FGF-mediated sig-
nalling processes. KAL-1 gene mutation leads to an abnormal GnRH migration and 
olfactory neuron disorder (Viswanathan and Eugster 2011). Recently, mutations in 
PROKR2 and PROK2 genes have been identified to occur in approximately 9% of 
the KS patients (Dodé and Hardelin 2009; Sarfati et al. 2010; Dodé and Ronard 
2014). PROKR2 and PROK2 genes encode for G protein-coupled, prokineticin 
receptor-2 and prokineticin-2, respectively. Gene knockout studies have identified 
loss of PROKR2 and PROK2 genes to be associated with hypogonadotropic hypo-
gonadism in conjunction with abnormal GnRH neuron migration.

8.3.2  Androgen Insensitivity Syndrome (AIS)

The end-organ resistance to androgen actions is termed as the androgen insensitivity 
syndrome (AIS). AIS is a disorder of hormone resistance characterised by a devel-
opment of female phenotype in XY individual. Pathogenesis of AIS is a result of 
mutation in X-linked androgen receptor gene (AR), which belongs to a class of 
nuclear receptor family. Knockout studies on animal models have revealed that the 
presence of AR gene expression in Sertoli cell and Leydig cell is crucial for sper-
matogenesis (Wang et al. 2009). Numerous AR mutations have been identified, and 
around 800 AR mutations are registered in the McGill University database of AR 
gene. Around 30% of AR mutations are sporadic de novo in nature (Hughes and 
Deeb 2006). The overall occurrence of AIS varies between 1 in 20,000 and 1 in 
99,000 genetic males (Grumbach and Conte 2003).

Hormone resistance syndrome was first characterised by John Morris in 1953, 
while analysing the clinical features of 82 patients, with female phenotype and 
bilateral testis (Morris 1953). It was then called as testicular feminisation syndrome; 
however, AIS is by far the most accepted terminology (Quigley et al. 1995).

AIS can occur due to a varying degree of androgen insensitivity in an XY person 
(Fig. 8.2). The phenotypes in AIS patients vary on a seven-point scale and are 
broadly categorised into three categories: partial androgen insensitivity syndrome 
(PAIS), mild androgen insensitivity syndrome (MAIS) or complete androgen insen-
sitivity syndrome (CAIS) depending on the degree and loss of androgen actions 
(Quigley et al. 1995).
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AR gene consists of eight exons. CAIS occurs due to missense mutations occur-
ring throughout the AR gene; however, it is most frequent in regions encoding DNA 
binding and ligand binding domains (Matias et al. 2000; Hughes et al. 2012). Female 
infants with CAIS are characterised by labial swelling and inguinal hernia; however, 
the prepubertal girls show a short, blind-ending vagina; a complete absence of 
Wolffian duct-derived structures such as the epididymis, vas deferens and seminal 
vesicles; and an absence of the prostate gland. Some authors claim a rare presence 
of Müllerian duct-derived structures (Dodge et al. 1985; Ulloa-Aguirre et al. 1990; 
Swanson and Coronel 1993).

PAIS is also referred as incomplete androgen insensitivity syndrome. It exhibits 
a wide spectrum of phenotypes in comparison to the normal male phenotype, which 
are not severe enough to be classified as CAIS. All uncharacterised cases of andro-
gen insensitivity syndrome are kept into this class (Aiman et al. 1979; Aiman and 
Griffin 1982; Morrow et al. 1987). The differentiation of PAIS from CAIS is 
achieved on the basis of the extent of masculine growth impairment of the external 
male genitals along with an absence of female characteristic features such as breast 
which is normally present in all CAIS patients (Quigley et al. 1995). Even though 
the affected PAIS are infertile or impotent, they usually present normal erectile 
functions.

In MAIS, the degree of the androgen receptor sensitivity is quite mild in nature. 
Thus, the effected males of this type are phenotypically normal, containing fully 
developed male genitalia, though, they may have mild defects in secondary sexual 
characteristics. Infertility is the most frequently associated symptom of 
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Typical male external genitals,
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ambiguous genitalia

Typically female external genitalia

Fig. 8.2 Three major forms of androgen insensitivity syndrome in 46, XY individuals are MAIS, 
PAIS and CAIS in increasing order of severity
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MAIS. Nevertheless, the presence of infertility is not associated with genital anom-
alies (Zuccarello et al. 2008). Fertility can however be restored in these patients by 
high dose of androgen supplementation (Yong et al. 1994). Reduced fertility in 
MAIS is often manifested as spinal and bulbar muscular atrophy (SBMA). SBMA 
is caused by an X-linked polymorphic CAG repeat expansion (>35 CAGs) in exon 
1 of the AR gene. SBMA is characterised by muscle atrophy and weakness, gynae-
comastia, testicular atrophy and infertility.

Management of AIS is performed by optimal dosage of androgens at the time of 
puberty and beyond.

8.3.3  Noonan Syndrome

Noonan syndrome (NS), also known as pterygium colli syndrome or male Turner 
syndrome, is a congenital disorder characterised by the presence of short stature, 
typical dysmorphic facial features and congenital heart defects. The disease was 
first defined by Noonan and Lezington in 1968 (Noonan and Lexington 1968). As 
the disease shows strikingly similar features to Turner’s syndrome (short stature, 
webbed neck, low set ears, cubitus valgus, pulmonary stenosis and cardiovascular 
disorders), it is sometimes referred as male Turner syndrome. The prevalence of NS 
varies between 1:1000 and 1:2500 live births. NS males often present with infertil-
ity associated with testicular atrophy and cryptorchidism (Witt et al. 1988; Nisbct 
et al. 1999). Most of the NS cases are sporadic; however, it displays a clear autoso-
mal dominant mode of inheritance pattern in some families. The associated locus 
for this dominant form is mapped to 12q22-qter (Jamieson et al. 1994). Genotype- 
phenotype studies have reported an association of PTEN11 gene with the pathogen-
esis of NS. PTEN11 gene mutations are present in as high as 50% of the NS cases. 
Mutations in other genes such as SOS1, RAF1 and RIT1 are associated with the 
remaining 20% of the cases. These genes are involved in the regulation of RAS/
MAPK cell signalling pathway. However, further research is required to find the 
exact mechanism associated with the development of this phenotype.

8.3.4  Cystic Fibrosis

Cystic fibrosis (CF) is an autosomal recessive disorder, caused due to mutations in 
cystic fibrosis transmembrane regulator (CFTR) gene. It often manifests as congeni-
tal bilateral absence of the vas deferens (CBAVD) in 99% of CF cases. Abnormal 
development of the mesonephric duct results in bilateral absence of the vas deferens 
in CF patients (Patrizio and Salameh 1997).

CBAVD is present in around 1–2% infertile men and in 6% obstructive azoosper-
mia cases. The mutational spectrum of CFTR gene is significantly heterogeneous, 
and more than 800 mutations, 70 sequence variants, have been reported (Lewis- 
Jones et al. 2000). Δ508F is the most common mutation in CF patients; however, 
the frequency varies across different geographical and ethnic populations. The most 
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frequently found seminal abnormalities in CF patients include azoospermia, reduced 
semen volume, high acidic pH and low fructose level. Azoospermia in CBAVD 
occurs due to complete blockage in sperm transportation from testis or epididymis 
to the outer genital tract. Microsurgical epididymal sperm aspiration and intracyto-
plasmic sperm injection (ICSI) are the best options for infertile CF patients. More 
details of this syndrome can be found in Chap. 9.

8.4  Rare Syndromes of Male Infertility

8.4.1  Myotonic Dystrophy 1

Myotonic dystrophy 1, also known as Morbus Curschmann-Steinert or dystrophia 
myotonica 1, DM1, is caused by an unstable expansion of CTG repeats in the 
DMPK gene (dystrophia myotonica protein kinase), which encodes a serine/threo-
nine protein kinase. A spectrum of phenotypes such as defects of skeletal and 
smooth muscle, frontal balding, cardiac arrhythmias and abnormalities of the eye, 
heart, endocrine system and central nervous system are seen in these patients. Males 
with DM1 may also present symptoms of infertility, which include testicular atro-
phy, decrease in sperm count, hyalinisation and fibrosis of seminiferous tubules, 
loss of libido and potency and hypogonadism (Sarkar et al. 2004). Testicular atro-
phy is the most frequent anomaly observed in around 80% of the cases (Kim et al. 
2012a). DMPK gene has been mapped to cytogenetic locus, 19q13.3. The 3′UTR 
region of the gene contains a triplet repeat motif of around 5–35 CTGs (Meschede 
and Horst 1997), which increases from 50 to several hundred in diseased condition. 
The age of onset of this disease may decrease from generation to generation in the 
affected family, and this phenomenon is termed as anticipation (Tsilfidis et al. 1992; 
Redman et al. 1993; McInnis 1996). Around 73% of the DM1 patients present with 
oligozoospermia or azoospermia (Klesert et al. 1997).

8.4.2  Primary Ciliary Dyskinesia

In 1933, Kartagener reported a ‘clinical triad’ of ‘sinusitis-bronchiectasis-situs 
inversus syndrome’ in four patients with familial and hereditary characteristics. 
‘This clinical triad’ presenting all three symptoms was termed as complete 
Kartagener’s syndrome (KS). Cases which showed an absence of situs inversus 
were referred as incomplete Kartagener’s syndrome (Bent and Smith 1997; Berdon 
and Willi 2004; Ortega et al. 2007). A more appropriate nomenclature was provided 
to this syndrome in 1988, as primary ciliary dyskinesia (PCD). Kartagener’s syn-
drome follows an autosomal recessive inheritance pattern and is seen in about 50% 
of the PCD cases. It causes simultaneous ciliary dysfunctions in several parts of the 
body, making it one of the most severe PCD conditions (Cox and Talamo 1979; 
Afzelius and Eliasson 1982; Bartoloni et al. 2002). The occurrence of Kartagener’s 
syndrome is around 1 in 30,000 live births. The association of Kartagener’s 
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syndrome with male infertility was first recognised by Afzelius while observing an 
absence of dynein arms in the spermatozoa and cilia of four patients (Afzelius 
1976). The males with this syndrome usually present an infertile phenotype due to 
loss of sperm motility, which arises due to various ultrastructural defects in sperm 
tail (Samuel 1987).

Though the genetic research is still going on, mutations in DNAI1 (the axonemal 
dynein intermediate chain gene), located on chromosome 9p12–21, and the DNAH5 
gene (axonemal dynein heavy chain gene), located on chromosome 5p15–14, are 
two significant and widely studied genes in the pathology of Kartagener’s syn-
drome. Mutations in these genes result in the absence of the outer dynein arm of the 
cilia, leading to abnormal ciliary structure and motor function (Pennarun et al. 1999; 
Omran et al. 2000; Gravesande and Omran 2005; Zariwala et al. 2006). Afflicted 
men with immotile spermatozoa have almost no chance of accomplishing preg-
nancy through natural procedures. Thus, an aid of assisted reproductive technolo-
gies is the only option for Kartagener’s syndrome patients to initiate a pregnancy.

8.4.3  Kearns–Sayre Syndrome

Kearns–Sayre syndrome (KSS) is one of the multisystem syndromes which occur 
due to single or large-scale deletions in the mitochondrial genome. The syndrome 
predominantly affects the neuromuscular and endocrine systems. The diagnosis of 
KSS is based on the clinical presentation of a classic triad of symptoms: onset of the 
symptoms before 20 years of age, progressive ophthalmoparesis and pigmentosa 
retinitis (PR) (Berenbaum et al. 1990). However, it often manifests with other sys-
temic anomalies, such as cardiac conduction defects, cerebellar syndrome, different 
neurological abnormalities, increased cerebrospinal fluid (CSF) protein concentra-
tion and several endocrine disorders (Harvey and Barnett 1992). Reproductive 
anomalies are reported in around 20–30% of the cases in which the syndrome cose-
gregates with distinctive presence of cryptorchidism, pubertal delay, low testicular 
volume and insufficient gonadotropin levels. Mitochondria are strictly derived from 
mothers; therefore, the syndrome is inherited exclusively through the maternal line. 
Nevertheless, no genetic locus or mutations have been identified till date, which 
affects fertility in Kearns–Sayre syndrome males.

8.4.4  Aarskog–Scott Syndrome

Aarskog–Scott syndrome or ASS is a genetically heterogeneous, X-linked recessive 
disorder (Altıncık et al. 2013). This syndrome is often called as ‘faciogenital dys-
plasia’ due to the distinctive presence of facial, genital and skeletal anomalies in 
these patients. The syndrome was first described by Aarskog and Scott in 1970 
(Aarskog 1970; Scott 1971). ASS patients exhibit a wide range of phenotypic het-
erogeneity, and the symptoms may vary from mild to severe. Minor features typi-
cally include the abnormalities of midline and the urogenital system. The diagnosis 
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is predominantly made on the basis of genital anomalies such as shawl scrotum, 
cryptorchidism, hypertelorism and brachydactyly. The dysplastic changes, however, 
involve the skeletal abnormalities (Schwartz et al. 2000; Al-Semari et al. 2013). 
Mutations in the FGD1 gene (FYVE, RhoGEF and PH domain containing 1) have 
been identified in around 20% of the ASS cases. This gene is located at Xp11.21 
region and encodes for a guanine nucleotide exchange factor (GEF). GEFs are 
involved in regulating signalling pathways of skeletal development, cytoskeletal 
reorganisation and morphogenesis. A growth hormone (GH) therapy is the most 
acceptable and widely used treatment for these patients; however, discrepancies 
exist in concern with the GH dose, optimal age for the GH therapy and potential 
adverse effects.

8.4.5  Persistent Müllerian Duct Syndrome

Persistent Müllerian duct syndrome (PMDS) is a rare form of sexual development 
disorder, first characterised by Nilson in 1939 (Nilson 1939). It is a genetic anomaly 
characterised by a distinctive presence of Müllerian duct derivatives (i.e. the uterus, 
cervix, fallopian tubes and vagina) in males, giving it an internal male pseudoher-
maphrodite phenotype (Yuksel et al. 2006). The development of external genitalia 
and secondary sexual characteristics, however, occurs normally. The syndrome is 
caused either by a deficiency of anti-Müllerian hormone (AMH) or its type II recep-
tor (AMHR-II) or due to an insensitivity of the target organ towards Müllerian- 
inhibiting factor (MIF) (Gutte et al. 2014). The syndrome follows an autosomal 
recessive mode of inheritance. The genes for AMH and AMHR-II have been mapped 
to cytogenetic loci 19p13 and 12q13, respectively. Two types of anatomical vari-
ants, male and female types, have been identified in PMDS. The male form is the 
most frequent, occurring in about 80–90% of PMDS cases. The male form is char-
acterised by the presence of inguinal hernia and unilateral cryptorchidism. The 
female form contributes to the remaining 10–20% of PMDS cases and is character-
ised by bilateral cryptorchidism with abdominal testis attached to the fallopian tube 
(Wu et al. 2000; Dekker et al. 2003). Compromised testicular function and infertil-
ity are largely attributed to cryptorchidism in PMDS males. High degree awareness 
is desirable to diagnose this condition. Early treatment is mandatory to restore fertil-
ity and to prevent the development of malignancy in the remnants of Müllerian 
structures.

8.4.6  Prader–Willi Syndrome

Prader–Willi syndrome (PWS) is a gene imprinting disorder, predominantly charac-
terised by psychomotor retardation in the affected individuals (Holm et al. 1993). It 
was first described by the Swiss physicists Prader, Labhart and Willi in 1956 (Prader 
1956). It occurs at a frequency of 1/10,000–1/30,000 individuals. Deletions and 
epigenetic alterations in the 15q11.2-q13 region of paternal chromosome 15 lead to 
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syndrome development The syndromic features arise due to the lack of gene expres-
sion from the paternally derived chromosome 15q11.2-q13. About 70–75% of the 
affected individuals with PWS encompass a de novo deletion at paternally inherited 
chromosome 15q11-q13 region. 20–25% of the patients exhibit maternal uniparen-
tal disomy (UPD) at the same locus. The remaining 3% of cases harbour imprinting 
defects (Wharton and Loechner 1996; Cassidy 1997; Nicholls et al. 1999). A few 
studies have also reported cytogenetic anomalies, such as chromosomal transloca-
tions or rearrangements at 15q11-q13 region (Bittel and Butler 2005; Kim et al. 
2012b). Hypogonadism is the most consistent feature of PWS in both males and 
females. The presence of hypogonadism often cosegregates with clinical presenta-
tion of genital hypoplasia, delayed or incomplete puberty and infertility in majority 
of the cases. Males frequently display features of cryptorchidism, a poor rugated 
and hypoplastic scrotum and small penis in 80–90% of the PWS cases (Cassidy 
et al. 2011). Recent reports have demonstrated that primary gonadal failure is the 
primary contributor to male hypogonadism in PWS cases (Vogels et al. 2008; 
Siemensma et al. 2011; Radicioni et al. 2012). Infertility, in both the sexes, is almost 
universal in PWS cases.

8.4.7  Deafness Infertility Syndrome

Deafness infertility syndrome (DIS) was first of all characterised by Avidan et al. in 
2003, in a consanguineous family that had three male siblings with deafness and 
infertility (asthenoteratozoospermia). The syndromic phenotype was attributed to a 
70 kb deletion at chromosome 15q15.3 containing genes such as KIAA0377, 
CKMT1B, STRC and CATSPER2 (Avidan et al. 2003). It was again identified by 
Zhang et al. in 2007 in three families presenting large contiguous gene deletion in 
the locus, but the deleted length was around 100 kb. The syndrome is inherited in an 
autosomal recessive fashion with a prevalence of <1/1,000,000 individuals. 
Abundant large inverted repeats in 15q15.3 region make it prone to secondary struc-
ture formation and chromosomal rearrangements, resulting in large deletions 
(Zhang et al. 2007). Affected males are homozygous for the deletion with parents as 
asymptomatic carriers. However, females with homozygous deletions are deaf, but 
fertile.

 Conclusion

The field of biological research and medical genetics has prospered a lot in the 
last few decades, enabling the identification and characterisation of various dis-
eases and syndromes. However, the accurate identification of genes and mecha-
nism leading to the appearance of a constellation of features seen in the syndromic 
cases is yet to be elucidated. Some syndromes may present one or more strik-
ingly specific features unique to that syndrome. However, in some cases the diag-
nosis becomes really difficult due to overlapping features and the lack of a 
careful medical examination. In most of the cases of infertility-associated syn-
dromes, lack of awareness and fertility concerns becomes the primary cause of 
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identification failures. Clinical investigations coupled with genetic analysis are 
needed for proper diagnosis of these syndromes. Males with variable phenotype 
need thorough clinical and genetic investigations and counselling. High-
throughput platform utilisation in genetic mutation detection in these patients 
will certainly lead to the characterisation of the new syndromic forms of male 
infertility.
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9Cystic Fibrosis, CFTR Gene, and Male 
Infertility

Rahul Gajbhiye and Avinash Gaikwad

Abstract
An abnormality of cystic fibrosis transmembrane conductance regulator (CFTR) 
gene is known to be one of the etiologies of male infertility. CFTR gene muta-
tions are associated with cystic fibrosis (CF-severe phenotype) to congenital 
bilateral absence of the vas deferens (CBAVD-mild phenotype). CF is the most 
common autosomal recessive disorders in the Caucasians, characterized by 
chronic lung disease, pancreatic insufficiency, rise in sweat chloride, and obstruc-
tive azoospermia. The milder phenotype is classified as congenital absence of the 
vas deferens (bi- or unilateral) (CBAVD or CUAVD) or ejaculatory duct obstruc-
tion (EDO). Some of these CAVD cases are associated with unilateral renal 
anomalies (URA). The role of CFTR gene in this subtype of CBAVD-URA is 
still not understood clearly. The utility of advanced assisted reproductive tech-
nologies such as intracytoplasmic sperm injection (ICSI) helps CBAVD males to 
become biological fathers. If female partner is CF carrier, there is a risk of having 
a child with CF or CF-related disorders. The currently available CFTR mutation 
panels cover the most common mutations of Caucasians. Recent studies con-
ducted in South Asian population suggested different spectrum of CFTR muta-
tions than Caucasians. There is a need to develop population-specific CFTR gene 
mutation panels especially for South Asians where CF or CF-related disorders 
were once considered rare.
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Key Points
• Male infertility is associated with both cystic fibrosis (CF) and congenital bilat-

eral absence of the vas deferens (CBAVD).
• CF and CBAVD are two distinct spectrums of CFTR gene abnormalities.
• CBAVD men carry different CFTR gene mutations than classic CF.
• Renal anomalies are associated with ~11% men having CBAVD, more common 

in individuals having congenital unilateral absence of the vas deferens.
• PESE-ICSI is the widely preferred and accepted treatment for men having 

CBAVD.
• If female partner is CF carrier, there is a risk of having a child with CF or CF- 

related disorders such as CBAVD.
• CFTR gene testing should be offered to both the partners before planning ICSI.
• Population-specific mutation panels are required for accurate diagnosis and cal-

culation of genetic risk in CBAVD men.

9.1  Introduction

Cystic fibrosis (CF) affects multiple organs of the body, and it is associated with 
mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 
CF is considered as the most common autosomal recessive disorder in Caucasians 
with a frequency of 1/2000 (Nielson et al. 1988). Earlier, it was assumed that CF or 
CF-related disorders (CFTR-RD) are rare in African and Indian populations. 
However, recently with the advances in the diagnostic techniques as well as due to 
the increased awareness, CF and CFTR-RDs are increasingly detected in these pop-
ulations. However, the incidence is still underestimated in Indian and black South 
African populations. Moreover, studies have reported that the prevalence of CF var-
ies with geographical location (Casals et al. 1992).

CFTR gene is located on chromosome 7q31.2 and contains 27 exons (~250 kb of 
DNA). More than 1800 CF-causing CFTR gene mutations have been reported in the 
CFTR gene mutation database so far. Following are the databases of CFTR gene 
mutations:

• http://www.genet.sickkids.on.ca/
• http://www.umd.be/CFTR/
• http://www.cftr2.org/

There is limited information on exact pathogenicity of the CFTR gene mutations 
reported in different populations. Through CFTR 2 project, functional analysis of 
identified mutations is being investigated. Six functional classes of CF mutations 
are described (Fig. 9.1):
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• Class I mutations: CFTR production is stopped early and the protein is defective 
resulting into nonfunctioning CFTR chloride channels. Accounts for ~10% of 
CFTR gene mutations causing CF worldwide. Mutation leads to premature stop 
codon, which causes translation of mRNA to stop prematurely.

• Class II mutations: No proper processing of CFTR and proteins is destroyed 
within the cell. F508del (absence of phenylalanine at position 508) is the most 
commonly reported Class II mutation. F508del occurs in around 88.5% of CF 
patients worldwide as per the CF registry database.

• Class III mutations: CFTR reaches cell surface but it does not open properly to 
transport chloride. Only a small percentage CF (2–3%) cases have this 
mutation.

• Class IV mutations: Defective conduction of chloride through the channel. These 
are uncommon mutations and lead to disease ~2% of patients with CF.

• Class V mutations: The least common mutations. Splicing defects resulting into 
improper processing of mRNA are the etiology for Class V mutation.

• Class VI mutations: Although function CFTR protein but unstable at cell 
surface.

The cystic fibrosis transmembrane conductance regulator (CFTR) protein is 
expressed throughout the epithelial cells in the airways, gastrointestinal tract, and 
reproductive organs (Quinton 2007). As a result, CF patients manifest symptoms 
related to multiple organs that include repeated and chronic lung infection, 
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Fig. 9.1 Classes of CFTR gene mutations
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insufficiency of the pancreas, and male infertility. CFTR gene mutations are the 
main etiological factors due to defective electrolyte and fluid transport (Welsh and 
Fick 1987; Welsh and Smith 1993; Quinton 2007).

In addition to regulating the chloride ion channel in the epithelial cells, CFTR is 
involved in the following functions: (a) sodium transport through the sodium ion 
channel, (b) regulation of the chloride flow outside the cell membrane, (c) regula-
tion of the ATP channels, (d) intracellular vesicle transport, (e) acidification of intra-
cellular organelles, (f) inhibition of endogenous calcium-activated chloride 
channels, and (g) efficient bicarbonate–chloride exchange.

9.2  Pathogenesis

The CFTR protein is an epithelial membrane protein, an ATP-binding cassette 
(ABC)-transporter-class ion channel. It regulates the chloride ions across epithelial 
cell membranes. The CFTR protein is made of five domains: two membrane- 
spanning domains (MSDs) that form the channel pores; two nucleotide-binding 
domains (NBDs), which control channel gating; and one regulatory domain (R 
domain), which determines the phosphorylation activity.

There are different hypotheses to explain the role of CFTR abnormalities in 
developing CF or CFTR-RD. Following are the most relevant hypothesis; it may be 
possible that the combination of these aspects could contribute to the pathogenesis 
of the CF or CFTR-RD:

 1. Low-volume hypothesis: Due to the CFTR dysfunction, there is loss of inhibi-
tion of epithelial sodium channels leading to excess sodium and water reab-
sorption ultimately resulting in dehydration of airway surface materials 
(Matsui et al. 1998). The low airway surface water volume is not corrected by 
the epithelium due to the associated loss of chloride. Reduction in periciliary 
water leads to decrease in the lubricating layer between epithelium and mucus 
and compresses the cilia by mucus causing inhibition of normal ciliary move-
ment and cough clearance of the mucus. According to this hypothesis, bacte-
ria such as Pseudomonas aeruginosa can grow due to the mucus on the 
epithelium that leads to plaque formation with hypoxic niches (Boucher 
2007).

 2. High-salt hypothesis: Absence of functional CFTR protein leads to retention of 
excess of sodium and chloride in airway surface liquid. The higher levels of 
chloride in the periciliary layer then disrupt the function of innate antibiotic mol-
ecules such as human β-defensin 1 and thereby allow the growth of bacteria that 
are normally cleared by normal airways to persist in the lungs (Goldman et al. 
1997).

 3. Dysregulation of the host inflammatory response: Cystic fibrosis cell cultures 
and uninfected ex vivo tissue samples contain higher concentrations of inflam-
matory mediators (Freedman et al. 2004). Inflammatory mediators were detected 
in the lung lavage samples of children as young as 4 weeks of age. The pro- 
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inflammatory molecules (Interleukin 8, Interleukin 6, TNFα, and arachidonic 
acid metabolites) were detected CF (Freedman et al. 2004). Studies also reported 
the activation of NFκB pathway, platelet hyperreactivity, and neutrophil apopto-
sis abnormalities (Carrabino et al. 2006).

 4. Primary predisposition to infection: Normally, P. aeruginosa binds to functional 
CFTR, and rapid and self-limiting innate immune response is initiated. In CF, 
increase in asialo-GM1 in apical cell membranes allows binding of P aeruginosa 
and Staphylococcus aureus to the airway epithelium, without CFTR-mediated 
immune response. The self-limiting response that eliminates P. aeruginosa from 
the airways is lost in CF and at the same time as there is enhanced attachment of 
bacteria to the epithelial surface.

9.3  Epidemiology

Incidence of CF is reported to be 1 in 2000–3000 in Caucasians with a carrier fre-
quency of 1 in 22–28. High prevalence of CF is reported in North America, Europe, 
and Australia. Recent studies generated evidence of increased number of CF and 
CF-related disorders in other ethnic populations residing in Africa, South America, 
Middle East, and Asia (WHO 2004 and Cystic Fibrosis Foundation Patient Registry 
2012 Annual Data Report). It has been reported that there is a variation in birth 
prevalence due to CF worldwide with different ethnic backgrounds. Prevalence of 
CF was reported as 1 in 3000 in white Americans, 1 in 4000–10,000 in Latin 
Americans, and 1 in 15,000–20,000 in African Americans (Walters and Mehta al. 
2007). Cystic fibrosis was earlier reported to be a rare disorder in Africa and Asia, 
with a frequency of 1 in 350,000 in Japan (Yamashiro et al. 1997). Frequency 
F508del mutation was higher in northwest region of Europe than southeast. 
Similarly, Trp1282X is the most common mutation reported in Israel (O’Sullivan 
and Freedman 2009).

There could be multiple reasons for lower reporting of CF and CF-related disor-
ders in developing countries in South Asian subcontinent. Majority among them is 
the lack of awareness about CF and CF-related disorders, limited clinical expertise 
for diagnosis and management, and limited molecular diagnostic facilities. There 
has been a good progress in the past few years, and evidence is emerging on CFTR 
gene mutations in CF and CFTR-RD from the South Asian population. A heteroge-
neous spectrum of CFTR gene variants was identified in Asians (Fig. 9.2), with a 
lower frequency of F508del in Asians as compared to Caucasians (Sharma et al. 
2009). Evidence is very limited to prove whether low incidence of CF in Asian 
populations is due to genetic drift or it is due to misdiagnosis. This needs to be thor-
oughly investigated especially in South Asian countries. Earlier reports indicated 
the incidence of CF in immigrant Asians residing in Canada as 1/9200, 1/10,000 in 
the UK, and 1/40,000 in the USA (Powers et al. 1996; Mei-Zahav et al. 2005). 
Researchers now hypothesize that India may hold the largest CF and CFTR-RDs 
population in world with up to 1,00,000 undiagnosed CF patients (CFRI News 
2013).
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9.4  Diagnosis

The preliminary diagnosis of CF is based on elevated sweat chloride level (>60 
mmol/L). In a more classical condition, CF is diagnosed if the sweat chloride levels 
are in the intermediate range (for infants >6 months, 30–59 mmol/L and for old 
individuals, 40–59 mmol/L) and two severe disease-causing mutations are identi-
fied in an individual (Rosenstein et al. 1998; De Boeck et al. 2006; Welsh et al. 
2001). Patients with intermediate range (30–60 mmol/L) of sweat chloride levels 
might have CFTR genotype combining two CF-causing mutations. The American 
College of Medical Genetics recommended a panel of 23 CF-causing mutations. 
More than 1800 CFTR gene mutations have been reported and included in the CF 
registries. The number of novel mutations is also exponentially increasing 
(Table 9.1). The diagnosis of CF becomes more problematic when sweat chloride 
levels are intermediate and patient still has symptoms suggestive of CF. A more 
severe lung disease is observed among the patients with abnormalities in NPD 

Table 9.1 List of high prevalence of CFTR gene mutations

Mutation cDNA name Mutation protein name
Mutation legacy 
name Significance

c.54-5940_273+10250del21kb p.Ser18ArgfsX16 CFTRdele2,3 CF-causing

c.178G>T p.Glu60X E60X CF-causing

c.223C>T p.Arg75X R75X CF-causing

c.224G>A p.Arg75Gln R75Q Non-CF- 
causing

c.254G>A p.Gly85Glu G85E CF-causing

c.262_263delTT p.Leu88llefsX22 394delTT CF-causing

c.328G<C p.Asp110His D110H CF-causing

c.350G>A p.Arg117His R117H Varying 
clinical 
significance

c.489+1G>T No protein name 621+1G>T CF-causing

c.579+1G>T No protein name 711+1G>T CF-causing

c.1040G>C p.Arg347Pro R374P CF-causing

c.1364C>A p.Ala455Glu A455E CF-causing

c.1519_1521delATC p.lle507del I507del CF-causing

c.1521_1523delCTT p.Phe508del F508del CF-causing

c.1585-1G>A No protein name 1717-1G>A CF-causing

c.1624G>T p.Gly542X G542X CF-causing

c.1652G>A p.Gly551Asp G551D CF-causing

c.1657C>T p.Arg553X R553X CF-causing

c.2052_2053insA p.Gln685ThrfsX4 2184insA CF-causing

c.2052delA p.Lys684AsnfnsX38 2184delA CF-causing

c.2657+5G>A No protein name 2789+5G>A CF-causing

c.3196C>T p.Arg1066Cys R1066C CF-causing

(continued)
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measurement or two CFTR gene mutations (Goubau et al. 2009). However, their 
disease symptoms are milder as compared to those with a sweat chloride levels 
above 60 mmol/L. In children with multiple organ involvement with marginal levels 
of sweat chloride concentration and/or presence of at least one CFTR gene mutation 
of unknown clinical significance, a terminology of “nonclassical” or “atypical” CF 
is applicable (Rosenstein et al. 1998). Due to the varied spectrum of clinical pheno-
types, now the new terminology of “CFTR-related disorders” (CFTR-RDs) is gain-
ing wider acceptance (Dequeker et al. 2009; Castellani et al. 2008). It is very 
essential to understand the complete clinical phenotype along with biochemical and 
molecular tests for reaching out the correct diagnosis of CF or CFTR-RD.

9.5  Fertility in Men Having CF

Spermatogenesis is a well-orchestrated process by which the totipotent primordial 
spermatogonia undergo meiosis to produce daughter cells called spermatozoa. In 
order to form a mature sperm, the spermatozoa undergoes a series of morphological 
and functional differentiation processes under the influence of hormones including 
follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. 
These processes occur within the seminiferous tubules, which are supported by 
Sertoli cells that are in close contact with the germ cells. Defects at any stage of 
spermatogenesis may cause male infertility including azoospermia, oligospermia, 
and teratospermia. However, the importance of CFTR in spermatogenesis is still 
controversial, even after its experimental evidence of expression in the testis (Trezíse 
and Buchwald 1991). Histological studies with testicular tissues of men with CF 
and CBAVD tried to resolve this controversy but resulted in contradictory findings 
such as normal spermatogenesis (Tuerlings et al. 1998) to severely decreased sper-
matogenesis with abnormal sperm and a reduced sperm count (Larriba et al. 1998).

Puberty in men having classic CF and chronic lung disease, malnutrition is usu-
ally delayed due to lower levels of follicle-stimulating hormone (FSH) and lutein-
izing hormones (LH). In spite of the delayed onset of puberty, majority of CF 
patients

Mutation cDNA name Mutation protein name
Mutation legacy 
name Significance

c.3454G>C p.Asp1152His D1152H Varying 
clinical 
consequence

c.3484C>T p.Arg1162X R1162X CF-causing

c.3528delC p.Lys1177SerfsX15 3659delC CF-causing

c.3717+12191C>T No protein name 3849+10kbC>T CF-causing

c.3846G>A p.Try1282X W1282X CF-causing

c.3909C>G p.Asn1303Lys N1303K CF-causing

Table 9.1 (continued)
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(>90%) achieve normal height. Around 2–5% of CF men are fertile. There is a 
normal production of immature sperm in testes. Bilateral vas deferens is either atro-
phied or absent in approximately 95% of CF males. Seminal vesicles are hypoplas-
tic or absent and normal maturation of sperm is impaired. As a result of this, there 
is reduced seminal volume, no mature sperm, and high acid content, absent or low 
fructose in semen.

9.6  CFTR-Related Disorders Associated with Male Infertility

A CFTR-related disorder (CFTR-RD) is a separate clinical condition associated 
with CFTR gene abnormalities and does not fulfill the diagnostic criteria of CF. Four 
main clinical entities illustrate these phenotypes:

• Congenital bilateral absence of the vas deferens (CBAVD) with CFTR 
dysfunction

• CBAVD having renal anomalies
• Congenital unilateral absence of the vas deferens (CUAVD)
• Ejaculatory duct obstruction (EDO)

9.6.1  Congenital Bilateral Absence of the Vas Deferens (CBAVD)

CBAVD is a condition in which there is a complete or partial failure of development 
of vasa deferens before birth. CBAVD in otherwise healthy men also known as iso-
lated CBAVD accounts for ~3% of male infertility. The incidence of CBAVD is 
~1:1000 men (Holsclaw et al. 1971; Oates and Amos 1993; Mak and Jarvi 1996). 
Isolated CBAVD (MIM#277180) is an autosomal recessive genetic disorder known 
to be associated with CFTR gene abnormalities. Milder phenotype such as CBAVD 
is due to the CFTR gene variants that retain the CFTR function to its minimum. 
CBAVD is either due to the one inherited CFTR gene mutation (Dumur et al. 1990; 
Anguiano et al. 1992; Patrizio et al. 1993) or due to the inheritance of mutations in 
both the copies of the CFTR gene (70–90% of cases) (Bombieri et al. 2011). CBAVD 
and CF are now considered as two different spectrums of CFTR due to the distinct 
genotype and phenotype (Colin et al. 1996).

The diagnosis of CBAVD is based on scrotal examination—bilateral absence of 
the vas deferens and normal testicular volume (>15 mL) and absence of body and 
tail of epididymis. Semen analysis is very important in diagnosis as it reveals azo-
ospermia with low seminal volume (<1.0 mL), low pH (average <6.8), and low or 
absent fructose levels (Casals et al. 1995, Holsclaw et al. 1971). The abnormal 
CFTR protein could affect the multiple organs including reproductive tract. 
Transrectal ultrasonography (TRUS) reveals the morphology and size of the semi-
nal vesicles, prostate, and ejaculatory ducts. In CBAVD, body and tail of the epi-
didymis are either atrophic or absent or the epididymis remnants are distended, 
whereas the head or caput of the epididymis is usually present (McCallum et al. 
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2000a, b). The sweat chloride levels are usually normal, and testicular biopsy shows 
normal spermatogenesis in majority of CBAVD cases.

Due to the compound heterozygosity (either one severe and one mild mutation or 
two mild mutations) in CBAVD, the spectrum of CFTR gene mutations differs from 
that of the classical CF. In CF patients two severe CFTR gene mutations (88%) or one 
severe and one mild or variable CFTR mutations (12%) are detected. In CBAVD, one 
severe and one mild or variable (88%) or two mild CFTR gene mutations (12%) are 
detected (Bombieri et al. 2011). p.F508del along with IVS8-5T (28%) and p.F508del 
in trans with p.R117H (6%) are the most common compound heterozygous geno-
types found in CBAVD. A significant difference in the frequency is found in the most 
CF-causing mutations. The frequency of p.F508del is found to be 21–33% in the 
USA, Canada, and Northern Europe (Oates and Amos 1993; Jarvi et al. 1998; Dork 
et al. 1997; Claustres et al. 2000; Jarvi et al. 1998) and 12–18% in Southern Europe 
and India (Kanavakis et al. 1998; Grangeia et al. 2004; Sharma et al. 2009). However, 
p.F508del is found in lower frequencies in CBAVD men from non-European popula-
tions. The IVS8-5T allele is found in similar frequency in Indian (25%) and Japanese 
(30%) (Sharma et al. 2009; Anzai et al. 2000) or higher frequencies in Egyptians 
(44%) and Taiwanese (44%) population (Lissens et al. 1995; Wu et al. 2004). 
IVS8-5T is seen in 5% of general population and is reported in many countries where 
CF was once considered as a rare disorder. Due to the limited studies in South Asian 
populations, many of the common CFTR gene mutations are yet to be reported in 
these populations. IVS8-5T allele is 5–8 times higher in CBAVD men than the gen-
eral population. Hence, it is the most common “mild” CFTR allele, present in at least 
5% of general population worldwide (Bombieri et al. 2011). Studies have found that 
34% of CBAVD men from European descent inherit at least one IVS8-5T allele 
(Casals et al. 1992). However, due to mild pathogenicity, IVS8-5T allele alone or in 
combination with other CFTR gene mutation cannot result in severe CF phenotype. 
IVS8-5T causes alternative splicing of exon 9 of the CFTR gene and leads to 
decreased levels of functional CFTR protein to develop isolated CBAVD phenotype 
(Casals et al. 1992). It has been reported that Wolffian tissues are the most prone tis-
sues to splicing of exon 9, resulting in reduced full-length CFTR mRNAs as com-
pared to other tissues. IVS8-5T splicing variant also produces low transcript level of 
full-length CFTR protein which is necessary for normal Wolffian tissues phenotype 
(Teng et al. 1997). The vas deferens is most sensitive to reduced functional CFTR 
protein due to the above mentioned mechanisms.

The IVS8-5T allele is known as a genetic modifier of p.R117H mutation when 
associated in cis position. The IVS8-5T allele is considered a CBAVD mutation with 
partial or incomplete penetrance. The efficiency of exon 9 splicing is influenced by 
the (TG)m repeat which lies immediately upstream of the IVS8-Tn tract (Cuppens 
et al. 1998). Thus, chances of exon 9 skipping is higher in the presence of longer 
IVS8-TGm and shorter IVS8-Tn repeats leading to misfolded and/or nonfunctional 
CFTR protein (Cuppens et al. 1998). It has been found that CBAVD men have longer 
IVS8-TG repeats (12 or 13) as compared to healthy men, who have shorter IVS8-TG 
repeats (10 or 11) (Cuppens et al. 1998). Longer IVS8-TG repeats (IVS8-TG12 or 
TG13) in cis with IVS8-5T were found to correlate with CBAVD or CFTR-RD 
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disease status. Therefore, the polymorphic dinucleotide (TG)m repeats could be the 
reliable predictor for the penetrance of IVS8-5T as a disease-causing allele. So far, 
the pathogenicity of TG12-5T and TG13-5T is much higher than that of TG11-5T 
allele. The TGmTn allele represents a model of CBAVD “polyvariant mutant CFTR.”

Point mutations are extensively identified in the CFTR gene of CBAVD men. 
Often, large rearrangements such as deletions or duplications within the CFTR 
locus are also identified in 6–10% CBAVD cases, which is lower than the rearrange-
ments found in CF patients (15–25%). Overall, large rearrangements (null muta-
tions, classified as “severe”) represent <1% of CBAVD alleles, a lower proportion 
than in CF, which reflects the higher contribution of severe alleles to the pathogen-
esis of CF (Bombieri et al. 2011).

9.6.2  CBAVD Having Renal Anomalies (CBAVD-URA)

CBAVD is associated with congenital malformations or agenesis of the upper uri-
nary tract in 12–21% of cases. The association of CFTR gene mutations with 
CBAVD-URA is controversial as majority of cases failed to detect CFTR gene 
mutation (Anguiano et al. 1992; Augarten et al. 1994; Casals et al. 1995; Mickle 
et al. 1995; Schlegel et al. 1996; Dörk et al. 1997; de la Taille et al. 1998; Claustres 
et al. 2000; McCallum et al. 2001). As a result, CBAVD with renal malformation 
was considered as a distinct clinical phenotype termed “CBAVD-URA” (McCallum 
et al. 2001). There was no statistically significant difference in physical, laboratory, 
and radiographic findings of the reproductive derivatives as well as in fertilization 
and pregnancy rates between CF/CBAVD and CBAVD-URA (Robert et al. 2002). 
The hypothesis that CBAVD-URA could be a separate clinical disorder is further 
supported by the marked difference between the renal portions of the mesonephric 
duct in the two cohorts. The physical separation between the two mesonephric duct 
derivatives (seminal and renal) occurs by week 7 of gestation (Oates and Amos 
1993). During embryonic development, the mesonephric duct gives rise to the vas 
deferens, seminal vesicle, ejaculatory duct, and distal two-thirds of the epididymis, 
while the ureteric part induces renal development. The genital ridge extends to form 
the caput of the epididymis (which is present in men with CBAVD or CF) and the 
testis. Any abnormalities at the embryonic developmental phase before week 7 
could lead to abnormal development of the entire mesonephric duct resulting in 
CBAVD-URA phenotype (Hall and Oates 1993; McCallum et al. 2001) or CUAVD- 
URA phenotype (Donohue and Fauver 1989). By contrast, the genetic defect in 
CBAVD-URA appears to affect the embryo after the division of the mesonephric 
parts in the seventh week of gestation, so that only the seminal tract will be altered. 
A few number of patients with CBAVD and URA have now been reported to be 
heterozygous for a CFTR gene mutations (Mak and Jarvi 1996); the significance of 
these mutations is undetermined as it could be in conjunction with the IVS8-5T car-
rier status found in the general population and the lack of investigations in large 
number of CBAVD-URA patients. Hence, a complete family studies are required in 
both the CBAVD and CBAVD-URA cohort to determine the genetic causes, the 
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mode of inheritance, and the penetrance of genetic factors in CBAVD and nephro-
genesis. More studies are required to prove or disprove the association of CFTR 
gene with CBAVD and renal anomalies.

9.6.3  Congenital Unilateral Absence of the Vas Deferens 
(CUAVD)

Congenital unilateral absence of the vas deferens (CUAVD) occurs in less than 1/1000 
men and hence is a rare condition. Mickle et al. (1995) defined CUAVD as the absence 
of one of the scrotal vasa deferentia and considered as a clinically and genetically dis-
tinct phenotype. The frequency of ipsilateral renal agenesis is higher (40–80%) in 
CUAVD and no CFTR gene mutations were detected (Mickle et al. 1995; Mak and Jarvi 
1996; Weiske et al. 2000; McCallum et al. 2001; Kolettis and Sandlow 2002). A large 
variation is observed in the clinical presentation of CUAVD. Surprisingly, patients could 
be diagnosed of CUAVD during a clinical evaluation for vasectomy or other urologic 
conditions. Others may be diagnosed due to infertility and azoospermia because of con-
tralateral testicular or Wolffian duct abnormalities. CUAVD exists as two different forms 
with and without renal anomalies suggesting different pathophysiological processes.

9.6.4  Ejaculatory Duct Obstruction

It was suggested that azoospermia not related to vas aplasia may be in some cases 
associated with CFTR gene mutations, including idiopathic forms of epididymal 
obstruction (Jarvi et al. 1998; Mak and Jarvi 1996). Bilateral ejaculatory duct 
obstruction (BEDO) was associated with a higher frequency of CFTR gene muta-
tions (Meschede et al. 1997; Mak and Jarvi 1996). In a study involving 16 men with 
isolated anomalies of the seminal vesicles (IASV), only one was found to be hetero-
zygous for a missense mutation and one for the 5T allele, with a frequency not dif-
ferent from the general population, so that IASV was not considered a CFTR-related 
entity (Meschede et al. 1997). The association of chronic bronchopulmonary dis-
ease with azoospermia due to a complete bilateral obstruction of the epididymis 
characterize Young’s syndrome, but, in contrast to CBAVD or CF, there is no ana-
tomical malformation of the seminal ducts.

9.7  Infertility Management in CBAVD

9.7.1  Assisted Reproduction

Obstructive azoospermia (OA) is due to the blockage in sperm delivery pathway 
occurring anywhere in the reproductive tract including the vas deferens, epididymis, 
and ejaculatory duct. The most common etiology of OA is CBAVD, vasectomy, 
failed vasoepididymostomy, post-infective epididymitis, and other irreparable 
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obstructions (Chen et al. 1995; Mansour et al. 1997). Intracytoplasmic sperm injec-
tion (ICSI) with percutaneous epididymal sperm aspiration (PESA) is the treatment 
of choice in men with OA due to CBAVD (Celikten et al. 2013).

It is a well-established fact that spermatogenesis is usually normal in majority of 
CBAVD men (Meng et al. 2001). There are various techniques of sperm retrieval 
such as microsurgical epididymal sperm aspiration (MESA) and testicular sperm 
extraction (TESE) allowing biological paternity to CBAVD patients.

There is an increased risk of having a child with CF or CFTR-RD if female part-
ner of CBAVD is CF carrier. The percentage of 5T alleles in intron 8 of CFTR gene 
was reported as 26.25% in CBAVD, 20% in CUAVD, and 5% in controls in Indian 
population (Sharma et al. 2009). Thus, a male with CBAVD and F508del/7T alleles, 
if partnered with a female of normal phenotype possessing the 9T/5T, according to 
Mendelian expectation, provides a ratio of one in four embryos with F508del/5T 
genotype, which would result in CF phenotype. The other three predictions would 
be F508del/9T male having same phenotype as their father, i.e., CBAVD, 7T/9T 
offspring of normal phenotype, and 7T/5T offspring having normal phenotype (in 
females) and CBAVD (in males) (Persson et al. 1996). The evidence from follow-up 
study of children born after ICSI in CBAVD couples suggested 16% increased risk 
of CF or CBAVD suggesting the mandatory screening for CFTR gene mutations in 
both the partners prior to ICSI (Bonduelle et al. 1998). The first pregnancy for a 
couple in which the male partner was having CBAVD was reported in 1987 (Silber 
et al. 1988). The initial IVF cycles yielded poor oocyte fertilization rates. Since 
1993, ICSI is the treatment of choice for CBAVD patients. Although lower fertiliza-
tion (Patrizio et al. 1993) or lower embryo implantation (Hirsh et al. 1994) rates 
have been reported in couples with CBAVD, the presence of CFTR mutations in 
men with CBAVD does not seem to affect sperm function during IVF with micro-
manipulation (Schlegel et al. 1996; Silber et al. 1995). The success rate of ICSI in 
CBAVD was reported to be around 31% per cycle and a “take-home baby rate” was 
23% (Silber et al. 1990). The meta-analysis of the ICSI outcome suggested that 
ICSI outcome is independent of whether retrieved spermatozoon is fresh, frozen, 
epididymal, or testicular. However, it suggested a lower fertilization rate and high 
miscarriage in CBAVD–CFTR as compared to acquired causes of obstructive azo-
ospermia (Nicopoullos et al. 2004). Liu et al. (1994) reported the first successful 
PGD for a couple with CBAVD (both partners F508del heterozygous). Three carrier 
embryos were transferred and a healthy boy was born. The data suggested that the 
presence of CF- or CBAVD-causing CFTR gene mutations in CBAVD does not 
compromise significantly in fertilization rates, embryo implantation rates, or the 
successful delivery of asymptomatic child after PGD (McCallum et al. 2000; 
Phillipson et al. 2000).

9.7.2  Genetic Counseling

Genetic counseling prior to ICSI provides an estimated risk of transmitting the CF 
mutation from each of the parents. The probable CF or CFTR-RD phenotype of the 
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offspring is calculated based upon the female partner’s genotype, the severity of the 
mutation identified in the male partner, and the presence of intron 8 splice site vari-
ant. Even if the female partner is not detected to be a CF carrier by available CF 
mutation panels, the risk of being a carrier of a missed mutation is 0.1%. The genetic 
risk for couples having CFTR gene mutations to have a CF child is 1/4000 and 
1/2000. The main rationale for CFTR testing in CBAVD, irrespective of the fact that 
they will be using their sperm for ICSI, is that this information is important from the 
point of genetic counseling regarding future health impacts of CFTR mutations as 
well as counseling of the siblings regarding their risk of being CF carriers. Therefore, 
men with CBAVD should be offered genetic counseling and CFTR testing. The 
CFTR screening should also be carried out in female partner before undergoing 
ICSI that utilizes the sperm of CBAVD partner.

9.7.3  Sperm Collection Techniques

9.7.3.1  Percutaneous Epididymal Sperm Aspiration (PESA)
PESA is used in obstructive azoospermia due to CBAVD. A small needle is inserted 
in the scrotum and sperm are collected from the epididymis. Obstructive azoosper-
mia cases can be greatly benefitted from PESA as it is a useful technique to find 
sperm in the male partner.

This can be done by two methods: (1) testicular sperm extraction (TESE), surgi-
cal biopsy of the testis, or (2) testicular sperm aspiration (TESA), sticking a needle 
in the testis and aspirating fluid and tissue with negative pressure.

9.7.3.2  Microsurgical Epididymal Sperm Aspiration (MESA)
MESA is a highly advanced sperm retrieval technique. The optimal area of the epi-
didymis is selected using operating microscope. The retrieved sperm are used for 
intracytoplasmic sperm injection (ICSI). MESA is now considered as a gold stan-
dard for sperm retrieval obstructive azoospermia cases. High fertilization and preg-
nancy rates and low risk of complications are some of the advantages of MESA 
(Bernie et al. 2013).

9.8  Our Experience

9.8.1  CFTR Gene Variants in Isolated CBAVD in Indian 
Population

Due to the limited information in Indian population, studies were initiated through 
NIRRH-ICMR, Mumbai. The andrology clinic at NIRRH is providing regular clini-
cal and laboratory services to males with obstructive azoospermia due to vas apla-
sia. Currently, the clinic has one of the largest cohorts of obstructive azoospermia 
cases due to congenital absence of the vas deferens in India. Studies in Indian popu-
lation observed heterogeneous spectrum of CFTR gene mutations suggesting the 
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need to develop population-specific CFTR gene mutation panel. We detected ten 
novel and nine reported CFTR gene mutations in Indian CBAVD men (Gajbhiye 
et al., unpublished data). Further studies are ongoing to carry out screening of larger 
cohorts of CAVD representing different ethnic groups in India. Studies are also 
being undertaken to functionally characterize the novel CFTR gene mutations 
reported in Indian CBAVD.

9.8.2  CBAVD-URA

At NIRRH-ICMR, Mumbai, out of 85 CBAVD men, ten patients (11.76%) were 
found to have unilateral renal anomalies (URA). We detected CFTR gene variants 
in CBAVD having renal malformations. Congenital bilateral absence of seminal 
vesicles (CASV) and CBAVD are uncommon anomalies, and such patients usually 
have normal kidneys. Direct DNA sequencing of the CFTR gene in five CBAVD- 
URA men detected c.1210-12[5] (IVS8-5T) mutation in four out of five CBAVD 
males having renal anomalies with an allelic frequency of 40%. Four novel CFTR 
gene variants (c.2751+85_88delTA, c.2752+106A>T, c.3120+529InsC, c.4375- 
69C>T); four coding SNPs, V470M, T854T, P1290P, and Q1463Q; and ten previ-
ously reported CFTR gene variants were also detected in CBAVD males having 
renal anomalies (Gajbhiye et al. 2016). Normally, in addition to prostatic secretions, 
seminal vesicular secretions also contribute to the alkalinity of the ejaculate and 
make up approximately 90% of fluid in ejaculate. Thus, patients having CASV and 
CBAVD present with history of infertility, and usually patients with URA remain 
undiagnosed until there is some pathology in the contralateral kidney.

Two CBAVD-URA patients in our study were found to have longer IVS8-TG 
repeats (TG12 or TG13) in cis with 5T and M470V polymorphism. Previous studies 
reported that M470V along with short poly-T (5T) and long TG-repeat tracks 
(TG12, TG13) may contribute to CBAVD risk. This genotype was not detected in 
normal male participants suggesting that longer TG-short T repeats in association 
with M470V and other variants might be responsible for CBAVD-URA 
phenotype.

9.9  Future Perspectives

Evidence suggests that CFTR-related male infertility is now well established. The 
epidemiologic data also suggested variation in CF and CBAVD incidence by eth-
nic groups indicating that population-specific CFTR gene mutation database and 
mutation panels should be used for CF or CBAVD men undergoing ICSI. The 
major challenge is to identify disease-causing CFTR gene mutations in CFTR-
related male infertility. This would help us to understand the genotype–phenotype 
correlation and provide accurate genetic counseling to the CF or CBAVD men 
undergoing ICSI. Further research should be focused on screening large number 
of infertile men due to vas aplasia and also to detect the CF carrier frequency in 
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populations where CF or CF-related disorders (CFTR-RDs) were considered to be 
low. Studies are also required to functionally characterize the novel ethnic-spe-
cific mutations. There is a great need to create awareness about the CF and 
CFTR-RD worldwide. The genetic screening and counseling should be made 
available through public health care, especially in low- and middle-income coun-
tries. The global network of clinicians, scientists, and policy makers shall be 
established to provide standard care to patients having CF and CFTR-RD. The 
international experts and NGOs should come forward and empower the health-
care providers in developing countries to diagnose and provide treatment to CF 
and CFTR-RD patients.
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10Oxidative Stress and Male Infertility

Rima Dada and Shilpa Bisht

Abstract
Male infertility accounts for up to half of the infertility cases and affects 13–15% 
couples worldwide. An optimal level of reactive oxygen species is crucial for 
maintaining spermatogenesis and sperm functions. However, excessive produc-
tion of reactive oxygen species may cause oxidative stress. Oxidative stress has 
been identified as one of the major risk factors which affects the fertilizing poten-
tial of spermatozoa. Oxidative stress occurs due to excessive production of ROS 
and causes germ cell DNA damage, sperm fragility and defects in motility, cul-
minating in infertility. Poor sperm quality and DNA damage may also result in 
pregnancy loss. This article highlights the significance of ROS in human male 
fertility and that of oxidative stress in infertility.

Keywords
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Key Points
• A large number of biological reactions are catalysed or mediated by the reactive 

oxygen species.
• Reactive oxygen species serve essential functions in capacitation, acrosome 

reaction, sperm hypermotility and hence fertility.
• Excessive production of ROS and not the decline in antioxidant capacity is gen-

erally the cause of oxidative stress.
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• Aimless and robust antioxidant therapy can be detrimental rather than beneficial 
for spermatogenesis and fertility.

• Careful antioxidant therapy or other natural ways of alleviating oxidative stress 
such as yoga and meditation are suitable measures to keep the ROS levels in 
check.

10.1  Introduction

Free radicals were first described more than a century ago (Gomberg 1900), and 
several years after that, it was proposed that all oxidation-reduction reactions involv-
ing organic molecules are mediated by free radicals (Michaelis 1939). Free radicals 
are short-lived chemical intermediates that have one or more unpaired electrons. 
Free radicals are regulated by a number of mechanisms including hormones, and 
they regulate various metabolic pathways (Spagnoli et al. 1995; Tafuri et al. 2015; 
Alfadda and Sallam 2012). They cannot be considered to be only harmful as a num-
ber of biological reactions at the chemical level are catalysed by ROS. From fertility 
point of view, an optimal concentration of reactive oxygen species (ROS) is required 
for sperm maturation, capacitation, hyperactivation, acrosome reaction, zona pel-
lucida binding and sperm-oocyte interaction (Mishra et al. 2016; de Lamirande and 
Lamothe 2009; Agarwal et al. 2014a, b).

Oxidative stress (OS) is defined as a condition when the antioxidant scavenging 
system of the cell is overwhelmed by the overproduction of ROS, which causes cellular 
damage and affects essential metabolic processes (Valko et al. 2007). OS has long 
been considered a potential risk factor for impaired spermatogenesis and male infertil-
ity (Aitken 2014; Hampl et al. 2012; McLachlan and de Kretser 2001). MacLeod in 
1943 was the first to describe the association of elevated ROS levels with male infertil-
ity. Elevated ROS level affects the male reproductive functions via two mechanisms: 
first, it damages sperm membrane, affecting motility (De Lamirande and Gagnon 
1992) and fertilizing potential, and second, it causes germ cell DNA damage, resulting 
in increased apoptosis and compromised paternal genomic contribution to the embryo 
(Tremellen 2008; Aitken and Curry 2011). It is, thus, considered to be the prime con-
tributor to the aetiology of male factor infertility, especially in unexplained (idiopathic) 
infertile male patients (Saalu 2010; Ray et al. 2012). The present chapter illustrates the 
significance of ROS in terms of male reproductive functions and fertility outcomes.

10.2  Significance of ROS in Sperm Function

An optimal level of ROS is required for maintaining dynamic functions such as 
sperm hyperactivation, capacitation, acrosome reaction, zona pellucida binding and 
sperm-oocyte interaction. Regulated release of ROS during capacitation initiates 
various molecular modifications within the cell, which start with an increase in 
cyclic adenosine 3′,5′-monophosphate (cAMP) level. Activation of cAMP pathway 
is involved in the phosphorylation of tyrosine moieties in fibrous sheath of sperm 
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membrane, causing an increase in sperm motility and hyperactivation (Aitken et al. 
1998; de Lamirande and O’Flaherty 2008; Kothari et al. 2010). Significance of ROS 
in sperm hyperactivation was further supported by a study which demonstrated that 
in vitro incubation of spermatozoa with low concentration of OH− triggered sperm 
hyperactivation (Makker et al. 2009).

The hyperactivated sperm undergo acrosome reaction through a series of events 
involving protein tyrosine phosphorylation, Ca2+ influx and increase in cAMP and 
Protein kinase A (PKA) levels. Functions of ROS in initiating acrosome reaction involve 
phosphorylation of three plasma membrane proteins (Agarwal et al. 2014a, b). The 
significance of ROS is further supported by the induction of acrosome reaction by 
in vitro supplementation of O2

−, H2O2 and NO in the seminal plasma (Bansal and 
Bilaspuri 2010). Further, high concentration of polyunsaturated fatty acids (PUFAs) 
such as docosahexaenoic acid (DHA) is required for maintaining membrane fluidity in 
sperm, which is essential for zona pellucida binding and fertilization. ROS has been 
shown to facilitate the process of sperm-oocyte fusion by increasing the membrane flu-
idity during capacitation and acrosome reaction (Khosrowbeygi and Zarghami 2007).

10.3  Sources of ROS in Semen

ROS represents a collection of a broad range of radicals (e.g. hydroxyl ion [OH−], 
superoxide ion [O2

−], nitric oxide [NO], peroxyl [RO2], lipid peroxyl [LOO] and Thiyl 
[RS−]) and nonradical molecules (singlet oxygen [−1O2], hydrogen peroxide [H2O2], 
hypochloric acid [HOCL], lipid peroxide [LOOH] and ozone [O3]). The major sources 
of ROS production in semen include activated leukocytes mainly neutrophils and 
macrophages in the seminal plasma. Semen leukocytes produce 1000 times more 
ROS than spermatozoa (Plante et al. 1994). Immature and morphologically abnormal 
spermatozoa are other important source of ROS in semen (Griveau and Le Lannou 
1997). However, the chief cause of ROS production in human spermatozoa is oxida-
tive phosphorylation reaction in sperm mitochondria (Koppers et al. 2008).

ROS targets the PUFAs, particularly DHA present on the sperm plasma 
membrane. PUFAs are essential for maintaining the sperm plasma membrane 
fluidity and physiological homeostasis within the sperm. ROS initiates a cas-
cade of reactions by attacking PUFAs in the sperm plasma membrane. 
Malondialdehyde (MDA), a by-product of lipid peroxidation, is used for indi-
rect estimation of peroxidative damage in sperm (Colagar et al. 2009). Due to 
heavy energy requirements, sperm mitochondrion is the major source of ROS 
production in infertile men and often the major target as well.

10.4  Oxidative Stress: Potential Origins

The term “oxidative stress” began to be used frequently in the 1970s, but its concep-
tual origin can be traced back to the 1950s, when researchers pondered over the 
toxic effects of ionizing radiations, free radicals, peroxides and similar toxic effects 
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of molecular oxygen. Oxygen is one of the most ubiquitous elements present on the 
earth, and aerobic organisms produce energy through various metabolic processes. 
OS in sperm can arise from intrinsic sources such as testicular or sperm-borne 
sources to exogenous or extrinsic sources such as lifestyle and environmental 
sources (Fig. 10.1). Intrinsic origins of ROS can be attributed to damaged or defi-
cient sperm (Aitken and Clarkson 1987) and several other aetiologies such as infec-
tion/inflammation, varicocele, cryptorchidism, testicular torsion and ageing.

Varicocele, a pathological condition defined by an abnormal enlargement of 
the pampiniform plexus of the spermatic veins, is associated with elevated ROS 
level in infertile men. It occurs in around 30–81% of infertile men (Saypol 1981). 
Varicocele- induced OS results from increased retrograde flow leading to elevated 
testicular temperature (Goldstein and Eid 1989; Hendin et al. 1999; Santoro and 
Romeo 2001). Varicocele is also associated with reduced seminal plasma anti-
oxidant activity (Hendin et al. 1999). Similarly, cryptorchidism is associated 
with increased ROS levels and OS, particularly due to inactivation of superoxide 
dismutase activity and decreased catalase activity at elevated temperatures 
(Ahotupa and Huhtaniemi 1992).
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Ischaemia-induced testicular torsion and its repair increase the level of ROS, lead-
ing to germ cell-specific apoptosis (Da Ros et al. 1998; Lysiak et al. 2001; Turner 
et al. 2004). Elevated production of ROS from leukocytes during inflammation and 
infection in the genital tract creates OS in spermatozoa, which causes various func-
tional defects in sperm. Recently, a study demonstrated a significant positive correla-
tion between OS and leukocytospermia in 88 men (Aggarwal et al. 2015). 
Overproduction of ROS during testicular inflammation occurs due to elevated levels 
of inducible nitric oxide synthase (iNOS), cyclooxygenase- 2 and interleukin-1b with 
a corresponding decrease in antioxidant level (Reddy et al. 2006; Henkel 2011). 
Ageing has been demonstrated to create testicular OS by reducing the antioxidant 
efficiency, specifically in the Leydig cells (Cao et al. 2004; Luo et al. 2006).

Further, several extrinsic or environmental factors, such as ionizing radiations, 
toxins and chemotherapy can induce testicular ROS causing abnormal spermato-
genesis (Agarwal et al. 2003). Some of these extrinsic factors that affect male fertil-
ity by inducing ROS include methoxyethanol from brake fluid and paints (Syed and 
Hecht 1998), toluene by-products, sulphur dioxide from petroleum, cadmium or 
lead exposure and cigarette smoking (Koizumi and Li 1992; Hsu et al. 1997). 
Chemotherapy often involves gonadotoxic elements such as cisplatin (Santos et al. 
2008), doxorubicin (Asmis et al. 2006) and cyclophosphamide (Sudharsan et al. 
2005) that affect spermatogenesis via OS.

10.5  Oxidative Stress: A Major Contributor to the Disease 
Pathology

As introduced above, ROS serve beneficial as well as detrimental effects on the body 
depending upon their levels. In low or moderate levels, ROS serve essential functions 
such as host defence system, regulation of various intracellular signalling cascades 
(Nathan 2003), induction of mitogenic response and transcription of various genes 
etc. High levels of ROS generate OS, which in turn has detrimental effects on cell 
physiology and disrupts cell membrane permeability and fluidity, disrupts junctional 
complexes especially connexons, initiates lipid peroxidation cascade, damages mito-
chondrial and nuclear DNA integrity (Mishra et al. 2014), affects protein functions 
and is involved in mutagenesis and carcinogenesis, most of which are mediated by 
hydroxyl radicals (·OH) (Aitken et al. 2012; Datta et al. 2000).

OS is in general bad for overall health. High level of ROS can cause the overall 
metabolic insult, resulting in a state of poor overall health and defence against 
other factors that affect health adversely. Accordingly, excessive ROS production 
has been found to be associated with several disorders like neurodegenerative 
disorders, autoimmune diseases, cardiovascular dysfunctions, accelerated ageing, 
cancer, (Carmignani and Bozzini 2006), disease of the reproductive system (male 
and female infertility), etc. (Droge 2002; Valko et al. 2006; Pacher et al. 2007; 
Dada et al. 2012). Hence, OS is central to the pathophysiology of “oxidative 
stress-associated diseases” that affect the whole system to little or large extent 
(Singh et al. 2004).
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10.6  Oxidative Stress and Declining Semen Quality

Uncontrolled production of ROS (25–40%) has detrimental effect on the func-
tion and quality of sperm (Sikka 1996), and around 80% of infertile men present 
elevated level of ROS in semen (Agarwal and Sekhon 2011). Thus, an elevated 
level of ROS, rather than a compromised antioxidant activity, is the major cause 
of OS-induced male infertility (Agarwal and Said 2003). Increase in ROS can 
cause male infertility predominantly by two ways: by damaging sperm plasma 
membrane and sperm DNA (Agarwal et al. 2014a). A large number of studies 
have reported the association of OS with abnormal sperm morphology (Aziz 
et al. 2004), sperm DNA damage (Duru et al. 2000; Desai et al. 2009), elevated 
apoptosis levels (Buttke and Sandstrom 1994; Agarwal and Said 2005), declined 
motility (Athayde et al. 2007) and low sperm concentration (Zini et al. 1993; 
Athayde et al. 2007).

A recent study demonstrated significantly high level of seminal ROS in infertile 
men as compared to fertile donors (Agarwal et al. 2014b). Further, high level of 
ROS correlated positively with abnormal seminal parameters such as low sperm 
concentration, abnormal motility and morphology (Agarwal et al. 2014b). High 
ROS level has been shown to significantly impair the sperm-oocyte interaction 
(Agarwal et al. 2008; Peña 2015).

10.7  Oxidative Stress Correlates with Erectile Dysfunction

The factors such as hypercholesterolemia, atherosclerosis, hypertension and diabe-
tes mellitus that affect vascular functions may also affect erectile function by dis-
turbing intricate neurovascular mechanisms (Wang et al. 2004). A number of other 
stressful conditions such as hypoxaemia, sleep apnea and oxygen supply are now 
recognized as causes of erectile dysfunction (ED) (Brow et al. 2000). Most of these 
conditions affect normal body functions by inducing OS as a result of increased 
ROS generation (Slater 1984). Further, OS in testis can leave the cellular mem-
branes damaged, affecting the functioning of testicular cells and production of tes-
tosterone. Decreased testosterone level not only affects spermatogenesis but also 
affects libido and sexual function. Therefore, OS can have more than one mecha-
nism of action causing loss of spermatogenesis and fertility. A study on a rabbit 
model found that arteriogenic ED accumulated products in the erectile tissue, and 
the authors concluded that OS may be of great importance in the pathophysiology 
of arteriogenic ED (Azadzoi et al. 2005). The study also evaluated various antioxi-
dant regimens and found that alleviating OS helped decrease ED. Similarly, another 
study suggested that arteriogenic ED is related to OS as it was found that arterio-
genic ED cases had higher ROS and lower total antioxidant capacity (Barassi et al. 
2009). It is now known that the interaction between nitric oxide and ROS is one of 
the important mechanisms contributing to the pathophysiology of ED (Nunes and 
Webb 2012).
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10.8  Oxidative Stress: Clinical Perspectives and Laboratory 
Assessment

In a large number of idiopathic infertility cases, the semen parameters are normal as 
per the WHO criteria. Infertility in these individuals must have other reasons that 
are beyond the regular assessment of semen parameters. A number of functional 
sperm parameters such as ability to undergo capacitation, acrosome reaction, pen-
etrate the zona pellucida and ultimately initiate post-fertilization development 
remain untested. These tests if adopted could explain the cause of infertility in a 
significant number of idiopathic infertility cases. However, none of these parame-
ters is in regular screening programs for infertility evaluation. As mentioned above, 
an optimal level of ROS is required for capacitation and acrosome reaction; there-
fore, ROS evaluation could serve as a potential marker for functional competence of 
sperm.

Further OS damages both mitochondrial and nuclear DNA, and therefore DNA 
damage tests could also be a part of functional sperm tests. Sperm DNA integrity 
serves as an essential parameter for the assessment of sperm quality and has a pre-
dictive value in the outcomes of idiopathic infertility treatment, embryo quality, 
implantation, spontaneous abortion, congenital malformations and childhood dis-
eases (Gautam et al. 2015) following natural or assisted conception. A number of 
tests have been devised for the detection of sperm DNA damage in human sperma-
tozoa. These are classified as direct tests or indirect tests depending upon whether 
DNA fragmentation/oxidation is measured directly by incorporating probes at the 
site of DNA damage or DNA fragmentation is measured indirectly by measuring 
chromatin compaction (Table 10.1).

Routine semen analysis involving assessment of semen parameters (motility, 
morphology, sperm count) is still used by various laboratories to find out the pos-
sible presence of sperm OS. A reduction in any of the semen parameters is more 
commonly seen in men with OS, and asthenozoospermia is considered as probably 
the best surrogate marker for OS in a routine semen analysis (Keskes-Ammar et al. 
2003; Kao et al. 2008). Hyperviscosity of seminal plasma is associated with 
increased seminal plasma MDA levels (Aydemir et al. 2008) and reduced seminal 
plasma antioxidant status, making impaired seminal viscosity a reasonable marker 
for OS evaluation (Siciliano et al. 2001). Other laboratory parameters which could 
predict the possible involvement of OS-induced oxidative DNA damage and hence 
male infertility include poor sperm motility, high number of round cells (leucocyto-
spermia), poor sperm membrane integrity on hypo-osmolar swelling test, poor blas-
tocyst development in the absence of a clear female factor, poor sperm motility after 
overnight incubation with the oocyte, poor fertilization on routine IVF, etc. (Alvarez 
et al. 2002; Tremellen 2008).

Damaged or defective spermatozoa can also affect the pregnancy outcome and 
health of the offspring in a successful pregnancy. For example, OS can be the cause 
of paternally mediated increase in miscarriages, disrupted preimplantation growth, 
implantation failure, congenital malformations, complex neuropsychiatric disorders 
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and a wide range of diseases in the offspring, including dominant genetic disorders 
(Aitken et al. 2003, 2014). Therefore, it is vital and very essential to explore the 
factors that cause decline in sperm function and disrupt genomic integrity, of which 
OS is the predominant one (Aitken and Baker 2006; Aitken 2006).

10.9  Management of Oxidative Stress-Induced Male 
Infertility

As mentioned above, there is an indispensable need of optimal ROS concentration 
for proper enzymatic activities, and the undesirable effect of ROS in inducing cel-
lular damage is prevented by the scavenging system of antioxidants (Ganestra 2007). 
This system involves enzymatic and non-enzymatic pathways, which maintain a 
proper balance between oxidants and antioxidants (Agarwal et al. 2003, 2014a, b). 
Seminal plasma contains a rich level of scavengers and antioxidants to prevent the 
damaging effects of ROS in sperm.

Enzymatic antioxidants include glutathione peroxidase, glutathione transferase, 
ceruloplasmin, catalase and superoxide dismutase. The non-enzymatic antioxi-
dants contain vitamin C (ascorbic acid), vitamin E (alpha-tocopherol), carnitine, 

Table 10.1 Tests for detection of DNA damage in human spermatozoa

Test Detection Features

TUNEL Direct quantification of 
sperm DNA breaks (single 
and double stranded)

Direct assay, based on flow cytometry

Comet Double-stranded DNA breaks Direct assay, based on single-cell gel 
electrophoresis, implies use of staining 
dyes such as propidium iodide, SYBR- 
Green and YOYO-1 iodide

ISNT Single-stranded DNA break Direct assay, utilizes template-dependent 
DNA polymerase I, less sensitive

DNA oxidation DNA base adduct 
8-hydroxy-2′-
deoxyguanosine

Direct assay, ELISA based, labour 
intensive

Sperm chromatin 
structure assay

Based on susceptibility of 
sperm DNA to acid-induced 
denaturation in situ

Indirect assay, flow cytometer based, 
utilizes intercalating dye acridine orange

Nuclear protein 
composition

Protamine to histone ratio Indirect assay, assessed by protein 
extraction, gel separation, 
immunoblotting with specific antibodies

Sperm nuclear 
maturity test

Chromatin integrity, 
protamine composition of 
sperm DNA

Indirect assay, simple, inexpensive slide 
based

Sperm chromatin 
dispersion

Sperm DNA fragmentation, 
single-stranded DNA 
fragments

Indirect assay, simple, based on 
characteristic halo produced by sperm 
depending upon sperm DNA integrity
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pyruvate, ubiquinol, hypotaurine, zinc, β-carotenes and glutathione (Sies et al. 
1992; Saleh and Agarwal 2002; Agarwal and Sekhon 2010, 2011). These antioxi-
dants work by terminating the oxidative chain reactions and alleviate the  
OS- induced damage (Young and Woodside 2001; Bansal and Bilaspuri 2010).

10.9.1  Antioxidants

On the basis of their mode of action, antioxidants can be (1) preventive, for exam-
ple, metal chelators such as lactoferrin and transferrin which limit the formation of 
ROS or (2) scavenging antioxidants, such as vitamins C and E, which eliminate the 
existing ROS (Lampiao et al. 2012). A group of researchers recently suggested that 
a supplementation of antioxidants such as green tea, white tea, fish oil and melato-
nin might be beneficial in treating OS-induced male infertility (Cemile Merve and 
Elmas 2016). However, the latest research shows that an improper antioxidant ther-
apy may result in physiological distress disturbing the intricate balance between 
various pro-oxidants and antioxidants in the cell/body. Aimless and robust antioxi-
dant therapy may do more harm than good. A detailed description of the vitamins 
and antioxidants in male infertility treatment can be found in Chap. 20.

Sperm DNA damage or total antioxidant capacity gives a rough estimation of the 
OS level in spermatozoa. Hence, antioxidant supplementation could be considered 
as a plausible therapy to reduce OS level and to improve the reproductive outcome. 
Many studies have already been published discussing the role of various antioxidant 
therapies in the context of male infertility. However, the results of these studies are 
not in concordance with each other because of small sample size, too many vari-
ables used in these studies (Sikka et al. 1995) and the fact that the impact of antioxi-
dants on DNA at therapeutic doses is still not known. Determination of the most 
preferred active doses of antioxidants needs further research. The effectiveness of 
antioxidant therapy remains controversial as it has not been confirmed by other 
studies.

10.9.2  Other Therapies

Yoga, essentially described as a psychosomatic-spiritual discipline, aims at achiev-
ing union and harmony between our mind, body and soul and brings balance to all 
aspects of one’s being from physical, mental, emotional to spiritual spectrum. This 
ancient Indian discipline includes all aspects of an individual from health to self- 
realization. It caters to self-management of life and includes regulation of diet, men-
tal attitude and the practice of specific techniques such as asanas (postures), 
breathing practices (pranayamas) and meditation, to attain the highest level of con-
sciousness (Balaji et al. 2012). Various randomized controlled trials have been pre-
viously conducted citing the significant positive impact of yoga in the management 
of several diseases like bronchial asthma, cardiovascular disorders, diabetes 
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mellitus, attention-deficit hyperactivity disorders, depression (Tolahunase et al. 
2016), primary open-angle glaucoma (Mittal et al. 2015; Dada et al. 2016) and 
infertility (Dada et al. 2015), etc.

It is important to note that infertility itself causes stress, which leads to further 
increase in ROS level. Stress combined with adverse quality of life leads to eleva-
tion of cortisol which, in turn, leads to elevation in ROS. ROS causes oxidative 
damage in spermiogenesis leading to the production of damaged spermatozoa 
which again leads to elevation in ROS. Taken together, these factors accelerate pro-
gression in the severity of ROS and increase in abnormal or non-viable spermato-
zoa. Yoga and meditation (encompassing physical postures, breathing practices, 
relaxation techniques and meditation) are known to modulate neural, endocrine and 
immune functions at the cellular level through influencing cell cycle control, age-
ing, OS, apoptosis and several pathways of stress signalling (Dada et al. 2015; 
Kumar et al. 2015).

In our recent studies, we have also observed upregulation in genes involved in 
cellular repair and nerve growth maintenance while observing a downregulation of 
pro-apoptotic and pro-inflammatory genes (Dada et al. 2016; Mittal et al. 2015; 
Mohanty et al. 2016) in the central as well as peripheral tissues. Therefore, yoga has 
multisystem effects and is an ideal practice in treatment of infertility and reversing 
testicular ageing.

 Conclusion

In physiological conditions, normal male reproductive system has an optimum 
oxidative status, which is maintained by equilibrium between ROS production 
and the antioxidant capacity. As ROS catalyse a number of biological reactions, 
they are indispensable for spermatogenesis and sperm fertility. Sperm functions 
such as capacitation, acrosome reaction and hypermotility are dependent on ROS 
production. Nevertheless, ROS overproduction in many pathological or stressful 
conditions may lead to oxidative stress, rendering the spermatozoa dysfunc-
tional. Heavy antioxidant therapy is not recommended as it may lead to further 
damage by scavenging even the physiological level of ROS. Since oxidative 
stress has a strong lifestyle and environmental component, adoption of healthy 
lifestyle and interventions like yoga and meditation may help reduce psychologi-
cal and oxidative stress and alleviate the ill effects of oxidative stress.
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Abstract
Obesity is one of the major global health problems concerning people from 
almost all age groups. Obesity has profound adverse effects on the reproductive 
health and may lead to metabolic disturbances and syndromes. Obese couples 
have less fertility potential and often opt for assisted reproductive technologies 
for conception. It has been observed that obese men have an altered adipokine 
profile, increased serum estrogen levels, and poor sperm quality. These altera-
tions correlate with impaired spermatogenesis and may subsequently lead to sub-
fertility or infertility. The increasing incidence of obesity calls for molecular, 
genetic, and epigenetic research to elucidate the underlying risk factors for loss 
of fertility. This chapter focuses on the factors responsible for obesity and pro-
vides an account of its effects on spermatogenesis and fertility in males. Finally, 
potential reversibility measures and management options for obesity-associated 
infertility have been discussed.

Keywords
Obesity • Metabolic syndrome • Spermatogenesis • Oligozoospermia • Male 
infertility

Key points
• Sedentary lifestyle and urbanization can lead to metabolic syndrome including 

obesity.
• Obesity affects almost all the physiological processes in the body, including 

reproduction.
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• With increasing incidence of male obesity, there is a rise in male infertility 
worldwide.

• Obese males have reduced spermatogenesis, poor sperm quality, abnormal sperm 
morphology, reduced serum testosterone level, and altered adipokine profile.

• Paternal obesity also has transgenerational effects, thus affecting the health and 
reproduction of the coming generations.

• The most effective way to manage obesity would be following a good lifestyle, 
weight loss, healthy diet, and adequate physical activity.

11.1  Introduction

Excessive use of escalators and elevators, less sidewalks, sedentary lifestyle, poor 
eating habits, and the lack of physical activity can lead to metabolic disorders or 
metabolic syndromes (MetS), such as non-insulin-dependent diabetes mellitus 
(NIDDM), cardiovascular diseases (CVDs), and other groups of abnormalities 
including overweight (Kasturi et al. 2008). The following criteria have been 
defined for an individual to be diagnosed with metabolic syndrome in accordance 
with the International Diabetes Federation in 2006; central obesity measured by 
waist circumference plus two additional factors such as reduced high-density 
lipoprotein (HDL) cholesterol level (<40–50 mg/dL), raised triglycerides level 
(>150 mg/dL), increased blood pressure (>130 mmHg systolic or >85 mmHg dia-
stolic), or raised level of fasting plasma glucose (>100 mg/dL) (Grundy et al. 
2004). Obesity is one of the most important aspects of MetS as it opens the gate-
way to many associated abnormalities to develop (Deedwania and Gupta 2006). 
Exposure to endocrine disruptors and environmental toxins with estrogenic effects 
causes reproductive disorders as these toxins are fat soluble and accumulate in 
adipose tissue. The etiology of obesity is indeed highly complex which includes 
genetic, environmental, physiological, and psychological factors, which coalesce 
to promote the development of obesity (Aronne et al. 2009).

Obesity introduces a deficient overall health, which convolutes with time and 
further affects almost every vital organ in body. Various studies suggest that 
obesity negatively affects the reproductive potential in males, usually associated 
with erectile dysfunction and reduced semen quality (Hammoud et al. 2012). 
Evidenced by the increase in couples seeking assisted reproductive technologies 
(ART), especially intracytoplasmic sperm injection (ICSI) confirms the increase 
in male infertility due to a number of reasons, including obesity. There is also 
heightening awareness about male obesity and its effects on spermatogenesis, 
thereby reducing sperm quality, count, and viability, in particular by affecting 
the germ cells in testes. There is a high prevalence of obese men with poor 
semen quality than normal men (Magnusdottir et al. 2005). Increased adipose 
tissue around scrotal area raises gonadal temperature which affects the heat 
sensitive spermatogenesis process. This chapter brings together the mechanisms 
by which obesity contributes to the loss of fertility and the methods to overcome 
some of these.
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11.2  Obesity and Reproduction

Ancient human lifestyle demanded them to eat and store food to thrive through fast and 
famines; however, that lifestyle is not applicable in the modern society. People now 
dwell in sedentary behavior and suffer from severe obesity that may also be linked to 
subfertility and infertility. As evidenced by an increase in the number of overweight 
and obese couples seeking assisted reproductive technology (ART), obesity is found to 
be in direct correlation with male infertility. Not all individuals in a population are able 
to reproduce, and one of the factors that inhibit the ability to reproduce is obesity. 
Reproduction is an energy demanding process that has a fundamental effect on fat 
metabolism, which is the major form of energy stored in animals (Bronson 1989). 
Lipid metabolism and reproduction are intricately related. Several studies in animals 
suggest that the fat reserves are mobilized during reproduction; hence, reduced or abol-
ished reproductive activity can elevate the lipid storage and may lead to weight gain in 
various species (McElroy and Wade 1987; Corona et al. 2009; Judd et al. 2011).

Obesity and overweight are consorted with severe reproductive consequences in 
women as well as men. Excess of body fat has been associated with increased risk 
of polycystic ovarian syndrome, miscarriages, infertility and infertility treatment 
failure, menstrual cycle disturbances, multiple complications in pregnancy, gesta-
tional diabetes, preeclampsia, cesarean delivery, and macrosomic fetus. It has been 
observed that girls with delayed puberty are relatively thin during their adolescence; 
a critical body weight of 47 kg or ~22% body fat content has been suggested for the 
onset of cyclical ovarian activity (Pasquali et al. 2007). A study showed that around 
1–5% women suffer from weight-related amenorrhea (Laughlin et al. 1998). 
Another study suggested that it is the regional fat loss that might trigger amenorrhea 
rather than the total fat loss. Reduction of fat from thighs, hips, and buttocks, which 
provide much of energy during pregnancy and lactation, may severely disrupt repro-
ductive function (Brownell and Jeffery 1987).

Obesity affects the reproductive parameters in men to the same degree as in 
women. Obesity is directly linked to reduced spermatogenesis, poor sperm quality, 
and altered sperm morphology. The incidence of obesity is increasing; likewise the 
number of men with compromised sperm quality is rising. The effects of obesity 
creep in steadily, thus making it difficult to comprehend due to a wide variation in 
semen parameters in humans. Nevertheless, interesting studies over the last few 
decades have identified a significant correlation between obesity and fertility. A 
number of mechanisms have been put forward to explain the impact of obesity on 
male fertility, some of which are supported by animal experimental studies and 
human observational studies.

11.3  Obesity Compromises Testosterone Production

Altered hormonal profile in obese males changes the microenvironment of germ 
cells, affecting spermatogenesis at the molecular level. Males suffering from severe 
obesity generally have decreased plasma concentration of testosterone and the level 
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decreases as obesity increases (Kley et al. 1980; Wang et al. 2011). Free testoster-
one level might be at normal in men with an appropriate weight or even in men with 
moderate obesity, but in men suffering from massive obesity, there is a significant 
decrease in the level of free testosterone (Zumoff et al. 1990). Increased insulin 
level in obese men has been shown to be responsible for reduced sex hormone- 
binding globulin (SHBG) production in liver, further decreasing the availability of 
free unbound testosterone in blood, which reflects in poor sperm count in obese 
patients (Haffner et al. 1992; Laing et al. 1998; Wang et al. 2011). Levels of free 
testosterone have been reported to be lower among diabetic obese men in compari-
son to nondiabetic obese men (Corona et al. 2011). Increasing evidence suggest that 
decreased serum testosterone can further induce metabolic syndrome. Hence, one 
can hypothesize that obesity in males may be promoted further by decreased testos-
terone level (Kupelian et al. 2006; Akishita et al. 2010).

The impact of fat on reproductive function can also be attributed to the endocrine 
disturbances and mechanisms as suggested by a study showing that higher BMI 
values are related to lower inhibin B levels (Pauli et al. 2008). Lower inhibin level 
is associated with decreased number of Sertoli cells, thereby lowering the sperm 
count in obesity (Ramaswamy et al. 2000; Cabler et al. 2010). Several studies sug-
gest that metabolic parameters such as high levels of cholesterol and triglycerides 
that are associated with obesity have a direct and drastic effect on the testicular 
function, which may lead to poor semen quality and infertility (Padron et al. 1997). 
This observation is further supported and expanded by a study that reported a 65% 
incidence of dyslipidemia (defined by isolated hypercholesterolemia and triglyceri-
demia) in infertile men (Ramirez-Torres et al. 2000). LH pulse remains undisturbed 
in obese men; however, the LH amplitude is severely attenuated as compared to 
nonobese men (Vermeulen et al. 1993). The decrease in LH level depends strongly 
on the degree of obesity and is observed more often in massive obese men with a 
BMI greater than 40 kg/m2. Increased serum glucose in obese men has been shown 
to be responsible for decreased LH levels due to altered HPG activity (Clarke et al. 
1990).

11.4  Obesity Disturbs Testosterone: Estrogen Ratio

Testosterone and estradiol exert a negative feedback on GnRH release through the 
activation of kisspeptin 1 (KISS1) neurons present in large numbers in the arcuate 
nucleus (ARC) of the hypothalamus, which has receptors for androgens and estro-
gens (Tng 2015). KISS1 also stimulates the release of GnRH. Besides stimulating 
GnRH levels, estradiol and testosterone also have a negative effect on the release of 
FSH and LH by the pituitary. In comparison to testosterone, obese men exhibit a 
considerable increase in estradiol, estrone, and defective estrogen receptors that fur-
ther leads to decreased testosterone-estradiol binding globulin (TeBG) (Schneider 
et al. 1979). Unlike testosterone levels, estrogen levels in obese individuals are ele-
vated, predominantly due to the aromatization of free testosterone levels by aroma-
tase in the adipose tissue. The overall rate of aromatization of testosterone to 
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estradiol increases with age and fat mass (Vermeulen et al. 2002). The conversion of 
testosterone to estradiol enhances fat deposition and contributes to a greater degree 
of testosterone deficiency, which may also cause secondary hypogonadotropic 
hypogonadism and infertility in obese men. Obese men when treated with aroma-
tase inhibitors, such as anastrozole or letrozole that inhibit the conversion of testos-
terone to estradiol, show normalization of testosterone levels, spermatogenesis, and 
fertility (De Boer et al. 2005; Roth et al. 2008).

11.5  Obesity Disturbs Scrotal Thermal Regulation

The key role of the scrotal sac is to keep the temperature of testes 2–4 °C below the 
core body temperature (Ivell 2007). Spermatogenesis is highly sensitive to increase in 
temperature, and a small rise in testicular temperature may induce testicular stress, 
germ cell apoptosis, and hypogonadism. In case of obese men, increased mass in 
thighs results in close proximity between thighs and testicles, causing testicular heat-
ing. High scrotal temperature in obese individuals may also be due to increased fat 
deposition in the scrotum (Wise et al. 2011). Obese men have been reported to have 
high scrotal temperatures with altered seminal parameters, hypogonadism, and 
increased sperm aneuploidies, suggesting that increased testicular heating might be 
the cause of impaired testicular activity in these subjects (Garolla et al. 2015). The 
same study pointed out those obese individuals show circadian rhythm in the changes 
in scrotal temperature, with high fluctuations between day and night from the observed 
mean scrotal temperature of 34.73 °C in healthy subjects (Garolla et al. 2015).

11.6  Obesity Increases DNA Damage

Appropriate sperm concentration and motility as well as the molecular entities are 
vital to generate a healthy pregnancy. To have a successful fertilization and embry-
onic development, it is important to have adequate sperm DNA integrity as sperm 
with poor DNA integrity negatively correlate with pregnancy outcome (Benchaib 
et al. 2003). It has been shown that sperm with high DNA damage are more frequent 
in obese men as compared to nonobese men (Chavarro et al. 2010). Another study 
showed a positive association of increased BMI with DNA fragmentation using 
sperm chromatin structure assay, wherein obese and overweight men showed a 
higher percentage of DNA fragmentation index (27 and 25.8%) in comparison to 
normal men (19.9%) (Kort et al. 2006). Earlier studies have shown that with increase 
in BMI, the oxidative stress increases mainly due to the rise in seminal macrophage 
activation. This may lead to decreased sperm motility, increased sperm DNA dam-
age, decreased acrosome reaction, and lower embryo implantation rates (Palmer 
et al. 2012; Katib 2015). Excessive generation of reactive oxygen species may 
attack the phospholipid membranes, causing disruption and inhibition of oxidative 
phosphorylation, ultimately leading to decreased production of ATP (Bourgeron 
2000; Turner 2003).
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11.7  Obesity Leads to Transgenerational Epigenetic Effects

An interesting study on rats showed that paternal obesity compromised the meta-
bolic and reproductive health of the first and second generation offsprings, indicat-
ing that sperm is the potent carrier for any such physiological change (Palmer et al. 
2012). Such molecular mechanisms include altered epigenetic modifications and 
sperm noncoding RNA content (Youngson and Whitelaw 2011). Reduced preg-
nancy success and increased sperm DNA damage in males undergoing infertility 
treatment are associated with hypomethylation of imprinted genes and repeat ele-
ments in sperm (Palmer et al. 2012). Interestingly, a study showed that male mice 
fed with high-fat diet displayed altered acetylation status in the late round sperma-
tids, which correlated with DNA damage in the germ cells. Disruptions to the sperm 
histone acetylation lead to increased DNA damage in mature sperm and potentially 
correspond to poor sperm parameters that are observed in obese males (Jenkins and 
Carrell 2012). Daughters of male rats fed a high-fat diet were shown to have abnor-
mal DNA methylation in the pancreas (Ng et al. 2010), whereas offsprings of male 
mice fed a low-protein diet showed altered liver expression of cholesterol genes 
(Carone et al. 2010).

11.8  microRNAs (miRNAs), Obesity, and Male Infertility

miRNAs are small noncoding RNAs of about 18–25 nucleotides long playing 
a crucial role in gene regulation and in silencing or repressing thousands of 
genes at the posttranscriptional levels (He and Hannon 2004). miRNAs are 
known to express in human adipose tissue and show significant modulation in 
obese individuals (Hilton et al. 2013; Oger et al. 2014). It is evident from 
human and animal studies that obesity alters microRNA (miRNA) expression 
in metabolically important organs and that miRNAs are involved in changes of 
normal physiology, acting as mediators of disease. miRNAs regulate multiple 
pathways including insulin signaling, immune-mediated inflammation, adipo-
kine expression, adipogenesis, lipid metabolism, and food intake regulation 
(Oger et al. 2014).

Though spermatozoa are transcriptionally inactive, now it has been shown that 
mature sperm contain mRNA, noncoding RNA, and piwi-interacting RNA (piR-
NAs) (Lalancette et al. 2008; Dadoune 2009). These RNAs have roles during fertil-
ization and embryo development (Palmer et al. 2012). There is a report suggesting 
an altered sperm miRNA profile in obese rodents (Lane et al. 2012). Obese men 
have also been reported to have altered circulatory miRNA content, which can be 
restored by diet and exercise (Ortega et al. 2013). It has been recently shown that 
diet alteration or exercise intervention in obese fathers might prevent female off-
spring from being predisposed to metabolic syndrome by regulating miRNA profile 
(McPherson et al. 2015).
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11.9  Obesity Correlates with Erectile Dysfunction

The inability to have and maintain a penile erection adequate for sexual intercourse 
is known as erectile dysfunction (ED), which has organic and psychogenic compo-
nents (Muneer et al. 2014). ED is reported to be one of the consequences of obesity 
in males. Obesity-associated ED cases are more common than age-related ED 
(Skrypnik et al. 2014). Various studies have suggested that obesity negatively affects 
the reproductive potential in males, which is usually associated with erectile dys-
function and reduced sperm quality (Hammoud et al. 2012). Central obesity is asso-
ciated with both arteriogenic ED and reduced testosterone (T) levels (Corona et al. 
2014). Hypogonadism is prevalent among obese men, which justifies the higher 
prevalence of ED among them (Corona et al. 2009). A study involving the 
Massachusetts male aging cohort found that men who were overweight at baseline 
were at a higher risk of developing ED regardless if they lost weight during the 
follow-up (Derby et al. 2000). However, a report suggests that obese men with EDs 
showed better erectile function within 2 years of incorporating changes in their 
dietary habits and increased physical activity (Esposito et al. 2004). The link 
between obesity and ED might be a useful motivation for men to improve their 
health-related lifestyle choices.

11.10  Obesity, Adipokines, and Male Infertility

Adipose tissue is no longer considered to be an inert tissue for fat storage. This tis-
sue is considered an endocrine organ that actively affects the whole body metabo-
lism (Coelho et al. 2013). Adipose tissue secretes adipokines or adipocytokines, 
which directly influence insulin sensitivity along with several other physiological 
events including fertility (Hutley and Prins 2005). Adipose tissue releases chemo-
kines like adiponectin, visfatin, resistin, tumor necrosis factor (TNF)-α, interleukin 
6, etc., and their balance is dysregulated in obesity (Rosen and Spiegelman 2006). 
In obesity, there is increased level of all the pro-inflammatory adipokines, such as 
leptin, TNF-α, etc., which in turn causes insulin resistance in these individuals 
(Hotamisligil et al. 1993; Rotter et al. 2003). Interestingly, the only anti- inflammatory 
adipokine, adiponectin, shows an opposite trend. Adiponectin expression decreases 
with increase in obesity, and earlier studies showed that adiponectin protects against 
several metabolic dysfunctions and ameliorates insulin resistance and glucose toler-
ance (Maeda et al. 1996).

Increased levels of the pro-inflammatory cytokines, such as leptin, significantly 
decrease testicular testosterone production, thereby promoting infertility in obese 
individuals (Caprio et al. 1999). Studies in rodents showed that leptin concentra-
tions at par with obese men directly inhibited the conversion of 17OH-progesterone 
to testosterone (Caprio et al. 1999; Isidori et al. 1999). The presence of leptin has 
been demonstrated in human male spermatocytes in the testes, suggesting that 
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increased levels of leptin might disrupt spermatogenesis (Ishikawa et al. 2007). 
Another study showed that intratesticular delivery of TNF-α reduced the human 
chorionic gonadotropin (hCG) and stimulated steroidogenic acute regulatory pro-
tein expression and testosterone biosynthesis in rats (Morales et al. 2003). Leptin 
has also been shown to augment the secretion of gonadotropin hormones, thereby 
impairing testicular activity (Hausman et al. 2012). It has also been reported that 
persistent insulin resistance condition induced by pro-inflammatory cytokines 
(TNF-α and IL-6) affects the HPG axis, causing secondary hypogonadism in males 
(Bhasin et al. 2010).

Interestingly, a recent study has shown that obese male seminal vesicle fluid has 
increased levels of both leptin and insulin (Leisegang et al. 2014). Since both leptin and 
insulin have their receptors on spermatozoa (Aquila et al. 2005), it was hypothesized 
that after ejaculation during the movement through the female reproductive tract, altered 
levels of these hormones in obese males may affect sperm functions (Binder et al. 2015).

11.11  Impact of Childhood Obesity on Puberty

In the recent past, the incidence of childhood obesity has increased tremendously 
(Kiess et al. 2015). One of the important concerns for these obese children is the 
effect of obesity on pubertal development, i.e., whether pubarche will be at a faster 
pace. However, this is a point of debate, mainly because of diverse views generated 
by several studies and due to scarcity of data. A study from Belgium pointed out that 
in boys, adult median height and weight have increased by 1.2 cm and 0.9 kg per 
decade; however, the timing of puberty has not advanced as evident from pubertal 
onset and enlargement of scrotum and testes in boys (Roelants et al. 2009). 
Conversely, other studies from Denmark have shown that while body mass index is 
inversely proportional to the age at puberty and that there is a general trend of attain-
ing puberty at early age, but the trend cannot be attributed exclusively to BMI (Juul 
et al. 2006; Aksglaede et al. 2009). Another report showed that short stature chil-
dren had delayed puberty, portraying an inverse relationship between weight status 
and pubertal development and suggesting that over nutrition may accelerate devel-
opment in boys (Juul et al. 2007). Yet another study showed that boys with a higher 
childhood BMI attained puberty earlier, and the childhood BMI correlated posi-
tively with adult adiposity (Nathan et al. 2006).

In a very recent study, it was shown that rapid infancy weight gain had a strong 
correlation with increased risk of childhood obesity. These individuals had increased 
insulin-like growth factor I and adrenal androgen levels, upregulated aromatase 
activity, and decreased sex hormone-binding globulin levels, which in turn increased 
free serum steroid levels promoting the activity of the GnRH pulse generator. In 
addition, obese children have been reported to have higher leptin level, which trig-
gers LH pulsatility and early onset of puberty (Pintana et al. 2015). A recent study 
demonstrated that early pubarche predicts a central fat mass distribution, while a 
predominantly subcutaneous obese phenotype is strongly predicted by a high prepu-
bertal body mass index (Kindblom et al. 2006).
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11.12  Effect of Maternal Obesity on Fetal Health

Maternal obesity not only increases the risk of complications during pregnancy, 
including preeclampsia and gestational diabetes mellitus (Bautista-Castaño et al. 
2013; reviewed in Guelinckx et al. 2008) but also can affect child’s health later in 
life. High birth weight of fetuses has been hypothesized to have several complica-
tions later in life for the young one (Barker 2001). According to the Barker hypoth-
esis, a link has been established between maternal obesity during the first trimester 
and obesity in the offspring. Maternal obesity has been associated with increased 
risk of neural tube defects in offspring. Further, maternal obesity has also been 
shown to be closely associated with semen abnormalities in male offspring by 
affecting the testicular development during the fetal life in utero (Teerds et al. 2011). 
Animal studies have also shown that paternal obesity might cause the offspring to 
be more susceptible to obesity through epigenetic modifications (Ozanne 2015). 
Thus, evidence suggest that obesity at adult or prepuberty and maternal obesity 
before birth all affect fertility, often negatively.

11.13  Obesity and Quality of Sexual Life

Sexual health had been described by the WHO as “a state of physical, emotional, 
mental, and social well-being in relation to sexuality.” Clinical syndromes such as 
sexual aversion, dysfunctional sexual arousal, erectile dysfunction, and premature 
ejaculation in males are the major signs of sexual dysfunction in males as marked 
by the WHO. Earlier studies have highlighted that both obese men and women have 
more problems in their sexual life in comparison to their lean counterparts 
(Marchesini et al. 2002; Esposito and Giugliano 2005). Altered adipokine profile, 
obstructive sleep apnea syndrome, physical disability, and social and psychosocial 
problems in obese males may explain the association between obesity and sexual 
dysfunction (Poggiogalle et al. 2014). However, obesity associated with lack of 
enjoyment of sexual activity and sexual desire and difficulties with sexual perfor-
mance is common in obese individuals (Kolotkin et al. 2006).

11.14  Animal Studies on Obesity and Fertility

To understand and delineate the molecular mechanisms and pathways relating obe-
sity with fertility, the best approach had been to create animal models that mimic the 
obese condition of humans. Animal models of obesity include loss of function 
mutation-based and diet-induced models. Recent studies have demonstrated that 
obese animal models have frequently displayed reproductive problems as observed 
in humans. Loss of function mutations in obesity (ob) gene in mice display similar 
effects as observed in humans, such as low sex steroid and gonadotropin levels. In 
ob/ob mice testes, multinucleated spermatids, few spermatozoa, and abnormal 
Leydig cells were observed (Bhat et al. 2006). An earlier study has suggested that 
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treatment with leptin in ob/ob mice significantly reduced the neuropeptide Y (NPY) 
mRNA expression and normalized reproductive functions (Lutz and Woods 2012). 
Treatment with leptin in ob/ob mice significantly decreased the body weight, 
increased the weight of testis and seminal vesicle, and normalized plasma LH, 
Leydig cell morphology, and spermatogenesis (Stephens et al. 1995). In another 
interesting study on the molecular effects of obesity, Palmer et al. (2012) undertook 
a study on SIRT6 expression in mice fed with normal and high-fat diet for 16 weeks. 
The authors observed that SIRT6 protein was localized to the nucleus of transitional 
spermatics and the acrosome of mature spermatozoan with the levels significantly 
reduced in high-fat diet-fed male mice. Further, this study showed that decrease in 
SIRT6 level in sperm was mainly due to altered acetylation status of the H3K9 in 
the nucleus (Palmer et al. 2012).

Just like the loss of function mutations in the leptin receptor, the Zucker rats also 
show many similarities after leptin receptor mutations with that of db/db mouse 
(Wang et al. 2014). These mutations cause severe hyperphagia, early onset of obesity, 
insulin resistance, and infertility as observed in humans. Male Zucker rats have been 
shown to have increased sperm DNA damage (Vendramini et al. 2013). Along with 
rodent models to study obesity, there are some wild animals showing seasonal adipos-
ity during winter, which also coincides with suppressed reproductive activity during 
this period. A study in male Scotophilus heathi showed that increase in circulating 
leptin level during winter decreases testicular activity by inhibiting testicular steroido-
genesis (Roy and Krishna 2010). In this animal model, there is a period of decreased 
spermatogenesis, which coincides with peak body mass due to increased accumula-
tion of white adipose tissue (WAT) (Roy and Krishna 2010). Similar seasonal adipos-
ity has been investigated in the Siberian or Djungarian hamster (Phodopus sungorus), 
Syrian or golden hamster (Mesocricetus auratus), collared lemming (Dicrostonyx 
groenlandicus) (Bartness and Goldman 2002) and in various species of vole (Dark 
and Zucker 1984; Peacock et al. 2004).

11.15  Management of Obesity-Related Infertility

Obesity affects male fertility negatively through adipokines. Obese men also have 
high levels of estrogen, and inhibitors of aromatase are in use to lower the estrogen 
levels, which increase peripheral testosterone levels, spermatogenesis, and fertility. 
Another alternative might be to manage obesity by nontherapeutic methods, which 
include lifestyle modifications as the prominent change. There are clusters of 
options to manage obesity and metabolic disorders; however, the most effective 
would be having a drastic change in lifestyle, weight loss, eating habits incorporat-
ing a regular healthy diet, and adequate physical activity. Daily physical activity of 
moderate intensity for 30–45 min duration at least four times a week is considered 
to be a healthy practice. Daily walking for a moderate period is also a good way to 
avoid overweight and is considered as an adaptation for cardiorespiratory fitness 
(Poirier and Després 2001). It was reported that obese children and adolescents 
randomly assigned to a 6-month combined exercise (aerobic and resistance 
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training) and Mediterranean diet program showed improved body parameters (Lisón 
et al. 2012). In another such trial, a 56-week treatment with liraglutide as an adjunct 
to diet and exercise to obese individuals showed reduced body weight and improved 
metabolic control (Pi-Sunyer et al. 2015). Other effective measures used along with 
low-calorie intake are fat absorption blockers, which inhibit the gastric and pancre-
atic lipases (Curran and Scott 2004).

Noninvasive methods have also been adopted; for example, metformin has been 
widely used against hyperglycemia to lower hepatic glucose through partial AMPK 
activation (Zhou et al. 2001). Although some drugs might have side effects, they are 
prescribed, such as thiazolidinediones that are PPAR-α agonists, which have an 
effect on type II diabetes as they enhance insulin sensitivity by modulating adipose 
tissue (Edgerton et al. 2009). Recently, GLP-1 analogs which also stimulate insulin 
secretion are used, and DPP4 inhibitors that help to prolong GLP-1 action are pre-
scribed without many side effects. Sibutramine (Meridia), which works by inhibit-
ing noradrenergic and serotonergic reuptake in the hypothalamus, is prescribed for 
the treatment of obesity in spite of the fact that it has serious side effects.

Invasive surgeries may be the option for severely obese individuals who cannot 
resort to physical workout due to very high weight, but are willing to adopt a good 
lifestyle once mobile. Bariatric surgeries including gastroplasty, gastric bypass, bil-
iopancreatic diversion, etc. are performed to reduce weight, which is also an effec-
tive way to control glucose and insulin resistance. However, there are reports that 
weight loss through surgeries are associated with a death rate of 0.3% and may start 
a series of serious complications in 4.1% patients (Lim et al. 2010).

 Conclusion and Future Directions

Obesity and fat accumulation are important risk factors for the development of 
type 2 diabetes, hypertension, cardiovascular disease, and infertility. Obesity 
brings a state of poor overall health, which disturbs glucose metabolism, physi-
cal fitness, and the quality of sexual life. In addition to these indirect effects on 
male fertility, obesity also affects spermatogenesis and fertility by a number of 
means discussed above. Obesity is now established as a risk factor for loss of 
spermatogenesis and male infertility. Weight once gained is difficult to loose; 
therefore, avoiding weight gain is the best method of prevention against the ill 
effects of obesity. The molecular mechanisms by which obesity contributes to 
male infertility are being unraveled, which may contribute to the development of 
better therapeutics in severely obese individuals. Targeting miRNA and the small 
noncoding RNAs might open up new arenas for obesity therapeutics. For exam-
ple, initially brown adipose tissue (BAT) was thought to be present only in 
infants; now there is increasing evidence that these are also present in adult 
human (Saito et al. 2009), and these could be potential target for obesity manage-
ment. BAT activation releases excess of energy in the form of heat. A better 
understanding of adipogenesis along with the associated adipokine profile is a 
prerequisite for managing obesity-associated infertility issues as these fat 
released hormones form a connection between metabolism and reproduction.
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Abstract
Sexually transmitted diseases (STDs) are caused by bacteria, viruses, or parasites 
that are transmitted through venereal contact. The major STDs causing bacterial 
infections include Chlamydia trachomatis (chlamydiasis), Neisseria gonorrhoeae 
(gonorrhea), Treponema pallidum (syphilis), Mycoplasma, and Ureaplasma spe-
cies. On the other hand, the major viral STD infections include herpes simplex 
virus (HSV), human papillomavirus (HPV), human immunodeficiency virus 
(HIV), human cytomegalovirus (HCV), and hepatitis B and C viruses. Similarly, 
the major parasite infecting the genital tract is the protozoan Trichomonas vagi-
nalis, which causes trichomoniasis. In males, these STDs may either be asymp-
tomatic or cause urethritis, epididymitis, orchitis, vasiculitis, and prostatitis. Most 
of these infections have been shown to affect male fertility by affecting semen 
parameters like sperm count, motility, and morphology; however, their exact 
mechanism of action is still not known. The presence of infection(s) on sperm 
and/or in the seminal plasma causes their horizontal transmission to sexual part-
ners and vertical transmission to offsprings. This chapter briefly reviews some of 
the published literature on major STDs in relation to male infertility and relevant 
treatment strategies. (CDRI communication number 9456)
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Key Points
• Sexually transmitted diseases (STDs) are caused by pathogenic bacteria, viruses, 

or protozoa that are transmitted by venereal contact.
• The infections trigger inflammatory processes, which may lead to obstruction of 

the seminal tract and deterioration of spermatogenesis.
• STDs in males result in urethritis, epididymitis, orchitis, vasiculitis, and prosta-

titis and have been associated with reduced sperm quality, concentration, and 
motility.

• STDs are often asymptomatic in males and spread horizontally to sexual partners 
and vertically to offsprings.

• In males, sexually transmitted infections require repetitive screening for the 
prognosis of disease.

12.1  Introduction

Sexually transmitted diseases (STDs) are caused by bacteria, viruses, or parasites 
and transmitted through the venereal contact. These microorganisms, which colo-
nize the male and female genital tracts, pose a serious threat to the normal well- 
being of mankind. Morbidity, mortality, and stigma related to STDs make it a major 
global health problem (Maan et al. 2014). More than 1 million sexually transmitted 
infections (STIs) are acquired every day worldwide (Okamura et al. 1986). These 
infections are often asymptomatic, which holds a greater risk of passing the disease 
on to others, if left untreated. These infections pose serious threat to one’s immedi-
ate and long-term reproductive health and well-being, as well as that of one’s part-
ner (Marconi et al. 2009).

Male fertility involves a systematic process of germ cell division and maturation 
aimed at producing competent gametes with normal fertilization potential. Sperm 
have to pass through an elaborate labyrinth of tubules where they are bathed in flu-
ids of special composition added by the accessory glandular organs for their full 
functionalization. Several factors secreted by male accessory glands (viz., epididy-
mis, seminal vesicles, prostate, and the bulbourethral glands) such as fructose, 
ascorbic acid, prostaglandins, polyamines, ergothioneine, l-carnitine, glycerylphos-
phorylcholine, alpha-glucosidase, bicarbonate, zinc, and citric acid are crucial for 
normal sperm physiology. The seminal vesicles produce factors that act as reducing 
agents and prevent sperm agglutination (Schneede et al. 2003; Apari et al. 2014).

Sperm production and delivery involves a delicate interplay between various 
organs with unobstructed ducts. However, the process is susceptible to various 
inflammatory and other pathologies caused by infectious instigators. Bacteria, 
viruses, protozoa, and epizoa include causative organisms of STDs. These patho-
gens cause acute and chronic diseases. The most common sexually transmitted 
infections/diseases are chlamydial, mycoplasmal, ureaplasmal infections and syphi-
lis, gonorrhea, hepatitis, genital herpes, human immunodeficiency virus, trichomo-
niasis, chancroid, lymphogranuloma venereum, and donovanosis (La Vignera et al. 
2011).
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In males, these infectious instigators colonize particularly the genital region and 
cause genital injury, prostatitis, urethritis, epididymitis, and orchitis, resulting in 
fertility impairment due to organ damage, cell and gamete damage, and obstruction 
(Marconi et al. 2009). These pathogens are very sensitive to physical and chemical 
factors and do not cause immunity. Therefore, multiple infections with different 
organisms may occur at the same time (Baird et al. 2007).

12.2  STD Pathogens: Locus of Infection and Resultant 
Pathology in the Male Urogenital Tract

Male urogenital tract pathologies include urethritis, epididymitis, orchitis, prostati-
tis, and vesiculitis and are mostly caused by STD/RTI pathogens. Depending on the 
site of inflammation, these may contribute to fertility impairment of various magni-
tudes. Chronic infections often result in transient or permanent infertility, impairing 
hormones, testicular function, and spermatogenesis (Bignell et al. 2011). Testicular 
damage by orchitis directly hampers sperm production (Weidner et al. 1999). 
However, impairment of male accessory glands (epididymis, prostate, and seminal 
vesicles) and urethral infections exert a negative effect on male reproductive func-
tion and fertility owing to obstruction or sub-obstruction, altered secretory func-
tions, and release of inflammatory mediators (Bignell et al. 2011).

12.2.1  Urethritis

Urethritis refers to infection-induced inflammation of the urethra, which can be 
classified into gonococcal urethritis (GU) and non-gonococcal urethritis (NGU). 
GU is caused by Neisseria gonorrhoea, while the two most common organisms 
implicated in NGU are Chlamydia trachomatis, and Mycoplasma genitalium. 
Infections are often asymptomatic as seen in 90–95% of men with gonorrhea 
(Weidner et al. 1999) and 50% of the patients with chlamydial infections (Cosentino 
and Cockett 1986). Non-gonococcal urethritis infections have long-term conse-
quences, when left untreated, and include painful infection of the testicles with 
reduced fertility (Fig. 12.1).

12.2.2  Epididymitis and Orchitis

The epididymis contains high order of vascularization, which not only provides a 
nourishing environment for sperm maturation but also serves as a fertile ground for 
bacterial growth. The epididymis collects sperm formed in the testes and undertakes 
final maturation of the spermatozoa (Trojian et al. 2009). Epididymitis is caused by 
infectious bacteria such as chlamydia and gonorrhea that reach the epididymis and 
develop a painful inflammation. This condition may affect some parts or the entire 
organ depending upon the severity of inflammation (Fig. 12.1).
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As the infection progresses, it may lead to complete obstruction of the duct sys-
tem. Even after the culmination of symptomatic phase, the scarred areas can still be 
a source of bacterial infections leading to asymptomatic bacteriospermia. When the 
inflammation spreads from the epididymis to the adjacent testicle, it develops 
epididymo- orchitis (Ness et al. 1997), a condition which reduces sperm count and 
motility, resulting in high rates of infertility (Krieger et al. 1999; Mazzoli et al. 
2010).

12.2.3  Prostatitis

Prostatitis refers to an infection or inflammation of the prostate gland. Prostatitis 
syndromes can be categorized as follows: acute, chronic, non-bacterial prostatitis, 
chronic pelvic pain syndrome, and asymptomatic inflammatory prostatitis (Lepor 

Chlamydia trachomatis

•  Chlamydia trachomatis
•  Neisseria gonorrhoeae
•  Mycoplasma spp.
•  Ureaplasma spp.

•  Chlamydia trachomatis
•  Neisseria gonorrhoeae
•  Treponema pallidum
•  Ureaplasma spp.

•  Chlamydia trachomatis
•  Neisseria gonorrhoeae
•  Mycoplasma spp.
•  Ureaplasma spp.

•  Chlamydia trachomatis
•  Neisseria gonorrhoeae
•  Treponema pallidum

Bacteria

Seminal
vesiculitis

Bacteria

Protozoa

Bacteria

Bacteria

Viruses

Viruses

Protozoa

Protozoa
Bacteria

Viruses Protozoa

Epididymitis &
Orchitis

Epididymitis

Urethritis

Vesiculitis

Urethritis

Trichomonas vaginalis

Inflamed
seminal
vesicle

Inflamed
epididymis

Inflamed
testicle

Bladder

Prostate

Inflamed
urethra

Inflamed
prostate

Seminal
vesicleVas deferens

Urethra

Epididymis

Testicle

Trichomonas vaginalis

Trichomonas vaginalis

Trichomonas vaginalisHerpes simplex virus

Herpes simplex virus

Herpes simplex virus

Orchitis

Prostatitis

Prostatitis

Fig. 12.1 Locus of infection by sexually transmitted infections and the resultant pathology in the 
male genital tract

B. Kushwaha and G. Gupta



187

et al. 1994). A high prevalence of C. trachomatis in chronic prostatitis (39.1%) has 
been reported (Motrich et al. 2005). It is hypothesized that C. trachomatis infection 
in the prostate gland may cause inflammation and impair the normal functionality 
of the gland that in turn causes male infertility (Martínez-Prado and CamejoBermúdez 
2010) (Fig. 12.1).

However, other studies suggest the role of cytokines in prostatitis and male infer-
tility. Increased levels of IL-1β, IL-6, IL-8, IL-12, IL-18, and TNF-α in semen have 
been correlated with poor semen parameters, with decreased sperm count and motil-
ity, and with increased oxidative stress (Allahbadia 2016; Furuya et al. 2004). 
Cytokines play an important role in male infertility caused by prostatitis and are 
released locally from stimulated tissues, serving as important components of the 
innate host defense against infection (Krishnan and Heal 1991).

12.2.4  Vesiculitis

Seminal vesiculitis refers to the inflammation of the seminal vesicles, commonly a 
secondary outcome of prostatitis, and sometimes occurs independently. Studies 
suggest that C. trachomatis is found predominantly in the seminal vesicle fluid 
(Ochsendorf 2008). It has also been shown that after antimicrobial treatment, 
vesiculitis- associated symptoms disappear with an improvement in the symptoms 
of epididymitis (Ochsendorf 2008). Some studies propose that chlamydial epididy-
mitis may originate from seminal vesiculitis (Rybar et al. 2012). These findings 
strongly indicate that seminal vesicles are involved in the urogenital inflammation 
process (Fig. 12.1).

12.3  Bacterial Infections and Male Infertility

Fertile and infertile men contain several species of bacteria in their genital tract and 
semen, and their prevalence and relevance to the etiology of male infertility varies 
according to the geographical location. The major pathogenic bacterial strains that 
affect male fertility include Chlamydia trachomatis, Neisseria gonorrhoeae, 
Mycoplasma spp., Ureaplasma spp., and Treponema pallidum (Gimenes et al. 
2014). Furthermore, STI instigators present in semen directly affect and alter semen 
quality, sperm number, motility, and morphology (Rybar et al. 2012; Isaiah et al. 
2011) (Fig. 12.2).

12.3.1  Neisseria gonorrhoeae

Gonorrhea is a common sexually transmitted disease caused by a gram-negative 
diplococcus, Neisseria gonorrhoeae (Edwards and Apicella 2004), with a global 
annual incidence of ~78 million new infections (Newman et al. 2015). The inci-
dence of gonorrhea has escalated over the years, and according to the Center for 
Disease Control and Prevention (CDC), gonorrhea is the second most commonly 
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reported STD after chlamydiasis (WHO 2016; CDC 2009). Gonococcal infections 
in males are manifested by urethritis, orchitis, disseminated gonococcal infections, 
epididymitis, sexual gland obstruction, and penile discharge (Gimenes et al. 2014). 
Coinfection of chlamydia is observed in 10% cases with gonorrhoea (Brookings 
et al. 2013). If left untreated, such infections can cause serious damage, which 
includes scarring and obliteration of the epididymal canal causing azoospermia in 
majority of the cases with bilateral involvement (Harkness 1948). The infection is 
transmitted from asymptomatic carriers rather than the symptomatic patients 
(Korzeniewski and Juszczak 2015).

Reports have confirmed an adverse effect of N. gonorrhoeae infection on fer-
tility (Ness et al. 1997; Gimenes et al. 2014). Despite the global prevalence of the 
disease, the exact role of N. gonorrhoeae in male infertility is still poorly under-
stood. Using polymerase chain reaction, N. gonorrhoeae DNA was detected in 
semen of 6.5% of infertile Jordanian men as compared to 0% in fertile men, 
highlighting the association of N. gonorrhoeae with infertility in men (Abusarah 
et al. 2013). On the other hand, eradication of gonorrhoea lowered the infertility 
risk in Swedish men (Akre et al. 1999). Gonococcal interactions with urethral 
epithelium may initiate cytokine release promoting neutrophil influx and inflam-
matory response (Edwards et al. 2004), which is a risk factor for male fertility 
(Henkel et al. 2006). Infections of the male genital tract account for 15% cases 
of male infertility, and N. gonorrhoeae along with C. trachomatis form the 
 primary sexually transmitted infections that are involved in male infertility 
(Pellati et al. 2008).
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A range of different virulence factors have been identified in N. gonorrhoeae, 
which enable the bacteria to adapt in the host microenvironment (Edwards and 
Apicella 2004; Carson et al. 2000). Such adaptations and antigenic shifts allow the 
bacteria to thrive well in the sole human host and also hinder the development of a 
vaccine. Several neisserial adhesin proteins (i.e., pilli, Opa, Opc, and P36), addi-
tional putative virulence elements, and proteins involved in invasion (i.e., LOS, cap-
sule, PorB) have been identified. Pilus (Dehio et al. 2000), opacity-associated (Opa) 
outer membrane proteins, and lipooligosaccharide (LOS) undergo phase or anti-
genic change to avoid the immune cells (Schneider et al. 1988; Danaher et al. 1995). 
Evidently, the variations in surface as an adaptive mechanism help in immune eva-
sion and survival in the host.

N. gonorrhoeae continues to exhibit elevated resistance to penicillin and tetracy-
cline treatment ever since the 1970s (CDC 2011), hence fluoroquinolones are the 
recommended therapeutic regimen for uncomplicated gonococcal infections. In 
2011, the first resistance of N. gonorrhoeae to azithromycin was reported in the 
United States. Third-generation cephalosporins remain the available class of antibi-
otics, which can be used effectively against N. gonorrhoeae (CDC 2011). However, 
parasites with abridged sensitivity to oral cephalosporins and cefixime have started 
to emerge (Wang et al. 2003; Yokoi et al. 2007; Lo et al. 2008). In 2009, first 
multidrug- resistant gonococcal isolate was identified in Japan (Ohnishi et al. 2011). 
In order to counter the emerging cephalosporin resistance, the CDC 2015 STD 
treatment guidelines recommend using a combination of two antibiotics with differ-
ent mechanisms of action, and accordingly, the recommended treatment for all 
cases of gonorrhea (uncomplicated urethral, cervical, oropharyngeal, and anal) is 
ceftriaxone intramuscular 250 mg in a single dose along with a single oral azithro-
mycin dose of 1.0 g.

12.3.2  Chlamydia trachomatis

Chlamydia trachomatis is the most common sexually transmitted bacterial infec-
tion with global incidence of 131 million new infections annually (Newman et al. 
2015), and its prevalence is similar in men and women. It is mostly asymptomatic 
in humans (Geisler 2010; Taylor and Haggerty 2011). In England, its prevalence in 
people under 25 years of age was reported to be 10.1% in women and 13.3% in 
men, and age, sexual behavior, and ethnicity were identified as the primary risk fac-
tors (LaMontagne et al. 2004). However, the disease has been reported to have a 
very high prevalence of 43.3% in asymptomatic infertile men, though its direct 
correlation with semen parameters could not be established (Gdoura et al. 2008). 
Other studies similarly reported a high occurrence of chlamydial infection in infer-
tile men (Abusarah et al. 2013; Joki-Korpela et al. 2009; Karinen et al. 2004). The 
disease may cause acute epididymo-orchitis (Ibrahim et al. 1996), seminal vesicu-
litis, epididymitis (Furuya et al. 2004), prostatis (Motrich et al. 2006; Ouzounova- 
Raykova et al. 2010), orchitis, scrotal pain, and even fever (Trojian et al. 2009). 
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It has been shown that male genital tract inflammation is an important factor for 
male infertility due to the action of inflammatory mediators. For example, the pres-
ence of leukocytes in semen adversely affects sperm motility, viability, and mor-
phology (Henkel et al. 2006). Abnormally high concentrations of leukocytes in 
semen (pyospermia) caused by C. trachomatis infection in infertile men could be 
treated successfully with antibiotics, which resulted in improved seminal pH, vol-
ume, sperm concentration, and motility (Pajovic et al. 2013). The presence of 
Chlamydia trachomatis IgG antibodies in men has been shown to be related with 
decreased pregnancy rates in asymptomatic infertile couples (Karinen et al. 2004; 
Joki-Korpela et al. 2009; Idahl et al. 2004), and C. trachomatis-infected semen 
samples have shown poorer sperm morphology, volume, sperm concentration, 
motility, and velocity (Veznik et al. 2004). Chronic prostatitis and immune-medi-
ated germ cell damage may cause decreased male fertility in males with chlamydial 
infection (Mazzoli et al. 2010). Though some studies did not find a direct correla-
tion between chlamydial infection and semen parameters (de Barbeyrac et al. 2006), 
several other studies have demonstrated a direct adverse effect of bacteria on sperm 
motility, viability, and acrosomal status. Co-incubation of normal human sperm 
with chlamydia caused decline in percent sperm motility and premature sperm 
apoptosis (Hosseinzadeh et al. 2001; Satta et al. 2006), caused mainly by the bacte-
rial lipopolysaccharide (Eley et al. 2005; Hosseinzadeh et al. 2003). The elemen-
tary bodies of the serovar E infection were most toxic to human sperm (Hosseinzadeh 
et al. 2001, 2003). Thus Chlamydia trachomatis, the most prevalent STI, causes 
severe inflammation of the male genital tract causing orchitis, epididymitis, vasicu-
litis, and prostatitis, ensuing innate immune response, which results in increased 
concentration of leukocytes and antibodies in semen and sperm damage (Fig. 12.4). 
A direct adverse effect of the presence of C. trachomatis infection and sperm 
parameters has been seen in vivo and in vitro.

After diagnosis of Chlamydia trachomatis infection in men by nucleic acid 
amplification test (NAAT) of the first catched urine sample or the urethral swab, the 
treatment recommendations remain essentially the same since 2010: oral azithro-
mycin (1.0 g in a single dose) or 1 week of oral doxycycline (100 mg twice daily). 
Chlamydia is highly prevalent among adolescents. Azithromycin is also recom-
mended as first line of treatment for C. trachomatis infections during pregnancy 
(Van Vranken 2007). Since most infected persons remain asymptomatic, detection 
relies on routine screening. The CDC also recommends alternative treatment regi-
mens of erythromycin base 500 mg orally four times a day for 7 days or erythromy-
cin ethylsuccinate 800 mg orally four times a day for 7 days or levofloxacin 500 mg 
orally once daily for 7 days or ofloxacin 300 mg orally twice a day for 7 days.

12.3.3  Treponema pallidum

Syphilis is a chronic sexually transmitted disease, and the etiologic agent is a spiro-
chete, Treponema pallidum. Approximately, 6 million new infections are reported 
annually in the world (Newman et al. 2015). An adverse effect of Treponema 
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pallidum on male fertility has not been established or reported, though complica-
tions caused by syphilis can affect fertility. In syphilitic epididymitis, obstruction of 
the epididymis may occur, and in case of chronic obliterative endarteritis, interstitial 
inflammation can occur in congenital area and lead to small, fibrotic testes 
(Brookings et al. 2013; Gimenes et al. 2014). Syphilis develops in different stages 
with varied symptoms at each stage. The primary stage symptoms include sores or 
chancres on the genitals, rectum, or mouth. The second stage is characterized by 
rashes on body especially on palms and soles. And the final stage may occur after 
few years, which includes gummatous syphilis, late neurosyphilis, and cardiovascu-
lar syphilis causing severe problems to the brain, nerves, eyes, or heart (CDC 2015). 
Gummatous lesions are soft and non-cancerous growth, which occurs in tertiary 
stage of syphilis (Kent and Romanelli 2008). These lesions can cause destruction of 
the local tissue and, when they are formed in the testicles, may affect the testicular 
function and fertility. Indirect effects of syphilis can cause erectile dysfunction 
(Gimenes et al. 2014). The primary mode of syphilis transmission is sexual contact. 
After T. pallidum penetrates through the genital mucosa or abraded skin, it enters 
the lymphatic and bloodstream and disseminates to various organs including the 
CNS (Ficarra and Carlos 2009). It has also been seen that syphilis aids in the trans-
mission of HIV.

The parenteral administration of penicillin G (benzathine penicillin G 2.4 mil-
lion units intramuscular in a single dose) is the preferred treatment for syphilis (all 
stages); the CDC 2015 STD treatment guidelines recommend doxycycline 100 mg 
given orally twice a day for 14 days or tetracycline 500 mg given orally four times 
a day for 14 days to be considered as treatment options in cases of penicillin allergy 
(Katz et al. 2012). The updated 2015 guidelines warn against the use of single-dose 
azithromycin due to the emergence of azithromycin-resistant strains of T. pallidum 
(Workowski and Berman 2007). Patients with syphilis should also to be routinely 
tested for HIV infection in order to exclude the coinfection.

12.3.4  Mycoplasma Species

Mycoplasmas are the smallest free-living organisms (bacteria), widespread in 
nature. Unlike other bacteria, they lack a cell wall and therefore are not affected by 
common antibiotics that target cell wall synthesis. Mycoplasma hominis, M. prima-
tum, M. genitalium, M. spermatphilum, and M. penetrans infect and colonize the 
genital tract of humans (Uuskula and Kohl 2002). M. genitalium was first isolated 
from two men with NGU and was later shown to be an important causative agent for 
acute and chronic urethritis in men (Deguchi and Maeda 2002; Uuskula and Kohl 
2002; Jensen 2004; Manhart et al. 2011). A study conducted in Japan has shown that 
among 153 patients with NGU, 17% were infected with M. genitalium and 2.6% 
with M. hominis (Maeda et al. 2004). The rates of M. genitalium infection were 
found to be higher than that of other bacterial STI in HIV-positive men who have 
sex with men (Soni et al. 2010). The prevalence of these infections is high in semen 
samples of infertile men though a direct relationship of infection with sperm 
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concentration, viability, motility, and morphology, and leukocyte count could not be 
established (Andrade-Rocha 2003). On the other hand, some studies could not find 
a significant difference between the rate of Mycoplasma infection in fertile and 
infertile men, but an effect on semen quality was reported in infected patients 
(Al-Sweih et al. 2012). Mycoplasma genitalium has been shown to adhere to the 
head, midpiece, and tail of human spermatozoa and is carried by motile sperm on its 
neck and midpiece. Thus, sperms serve as vectors for carrying Mycoplasma genita-
lium infection to women causing female genital disease and infertility (Svenstrup 
et al. 2003). M. genitalium was detected in 5.8% of human immunodeficiency virus 
(HIV)-positive men in Brazil (da Costa et al. 2010).

Tetracyclines and fluoroquinolones are highly active against Mycoplasmas 
(Taylor-Robinson and Bebear 1997), whereas β-lactams face resistance due to the 
absence of cell wall in these microbes. In addition to tetracyclines and erythromy-
cin, some newer macrolides such as clarithromycin, azithromycin, and telithromy-
cin were also found to be highly potent against M. genitalium with low minimum 
inhibitory concentrations (MICs) (~0.01 μg/mL or less) (Renaudin et al. 1992; 
Bébéar et al. 1999, 2000; Hannan and Woodnutt 2000). Current research has 
strongly presented azithromycin as the first drug of choice against M. genitalium 
infections.

Despite having such potent antibiotics, treatment against M. genitalium-positive 
urethritis is lagging behind with no well-accepted guidelines or recommendations. 
Also, only few studies have confirmed antimicrobial chemotherapy in men with M. 
genitalium-positive urethritis, but with limitations like small number of patients, no 
detection of other potentially important genital mycoplasmas, or other types of 
organisms (Gambini et al. 2000; Johannisson et al. 2000). Thus, it is difficult to 
draw any conclusions to devise the best strategy for managing M. genitalium- 
positive non-gonococcal urethritis (Deguchi and Maeda 2002). In-house PCRs are 
valuable tool to diagnose M. genitalium infections, although there is a need of 
highly accurate internationally validated and approved commercial NAAT.

12.3.5  Ureaplasma Species

Ureaplasma are a class of bacteria that can perform urea hydrolysis and belong to 
the family Mycoplasmataceae. Ureaplasma urealyticum is a causative agent for 
non-gonococcal urethritis, prostatitis, and epididymitis, and its prevalence in semen 
was found to be more in infertile patients (9%) than in healthy men (1%) (Zeighami 
et al. 2009). The infected infertile patients presented lower semen parameters like 
volume, sperm count, and morphology than uninfected patients (Zeighami et al. 
2009). Similarly, in another study the frequency of U. urealyticum infection was 
found to be 39% in semen samples of infertile men, who also displayed abnormal 
semen parameters in terms of viscosity, pH, sperm morphology, motility and con-
centration, and leukocyte count (Zinzendorf et al. 2008). U. urealyticum-infected 
men also exhibit higher sperm apoptosis rates, which may indicate the effect of the 
STI on male fertility (Shang et al. 1999). In African men, a study reported U. 
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urealyticum infection in infertile men to be as high as 42% (Bornman et al. 1990), 
while in Shanghai (China), its reported incidence in infertile men was ~39% against 
9% in fertile subjects, with the bacteria found adhering to the membrane of sperma-
tozoa and exfoliated germ cells (Xu et al. 1997). In in vitro experiments, incubation 
of U. urealyticum with sperm cells resulted in significant alteration in motility and 
membrane alterations (Reichart et al. 2001), with marked damage to paternal DNA 
that could affect embryonic development (Reichart et al. 2000). It has also been 
shown that although the fertilization parameters in IVF were similar for infected 
and non-infected semen samples, pregnancy rates were significantly lower in the 
infected group, indicating the role of U. urealyticum at the level of the endometrium 
(Montagut et al. 1991). Hence it is apparent that Ureaplasma, especially U. urealyti-
cum infection, may play a significant role in affecting semen parameters and/or 
pregnancy outcome in case of infertile male patients.

Ureaplasma species infection is diagnosed mainly through culture and poly-
merase chain reaction (PCR); however commercial assays are also available. For 
measuring antimicrobial susceptibility of isolates, micro-broth dilution is the rou-
tine technique. Biovar strains (that differs physiologically and/or biochemically 
from other strains) have shown variations in susceptibility with biovar 2 maintain-
ing higher sensitivity rates. Antibiotics such as azithromycin, josamycin, ofloxacin, 
and doxycycline have been tested against Ureaplasma species, and results have 
shown resistance against macrolides, tetracyclines, and fluoroquinolones. Thus, 
rapid diagnosis and appropriate antibiotic therapy can prevent long-term complica-
tions associated with Ureaplasma infections (Sethi et al. 2012).

12.4  Viral Infections and Associated Male Infertility

Viral infections either ascend through the urethra or invade the reproductive tract 
via the bloodstream to encourage male infertility either by direct toxic effects on the 
cells of the male reproductive tract or indirectly by causing local inflammatory and/
or immunological reactions. These infections are often more disseminated and can 
occur in epithelial [e.g., human papilloma virus (HPV)] and neuronal cells [e.g., 
herpes simplex virus (HSV)-2], as well as in WBCs [e.g., human immunodeficiency 
virus (HIV-1), cytomegalovirus (CMV), Epstein–Barr virus (EBV)] (Fig. 12.3).

12.4.1  Human Papillomavirus

Human papilloma virus (HPV) is one of the most common sexually transmitted 
viral infections. Over the last two decades, research has found a strong correlation 
between HPV infection and cancer, including penile cancer in men (Colon-Lopez 
et al. 2010). HPV is present in semen of asymptomatic men with a higher preva-
lence in infertile men seeking treatment for fertility (16%) than in other men (10%) 
(Laprise et al. 2014). In a study conducted in China, 17.4% of infertile men were 
HPV positive against 6.7% HPV-positive fertile men (Yang et al. 2013), confirming 

12 Sexually Transmitted Infections and Male Infertility: Old Enigma, New Insights



194

the high infertility rates in infected males. HPV infection was also associated with 
reduced sperm motility and abnormal sperm morphology. The incidence of astheno-
zoospermia was significantly higher in HPV-infected sperm samples (75%) versus 
non-infected samples (8%) (Lai et al. 1997). Another study analyzed the semen 
samples of 100 young adult sexually experienced men (18 year old) in comparison 
with 100 sexually inexperienced men of equal age and found HPV infection in 10% 
of sexually active men who also presented reduced sperm motility, while none 
among sexually inexperienced men were infected (Foresta et al. 2010). The sexual 
transfer of HPV is also indicated by HPV detection in the cervix and sperm of 53 
married couples, out of which ~50% had at least one partner infected. Nine out of 
12 partners of HPV-positive men and 9 out of 23 partners of HPV-positive women 
were infected, indicating sexual transmission (Kyo et al. 1994). HPV infection is 
also found to negatively affect the outcome of assisted reproductive technologies 
(ART) in infertile couples. 66.7% of infertile couples with HPV-infected male part-
ner suffered pregnancy loss as compared to only 15% of infertile couples with HPV- 
negative males (Perino et al. 2011).

Sperms act as vectors for the transmission of HPV horizontally to sexual partners 
(as seen above) and vertically to the offsprings. The HPV has been localized in the 
equatorial region of sperm head from where it is transferred to the oocyte during 
fertilization (Foresta et al. 2011). HPV capsids bind efficiently to two distinct sites 
at the equatorial region of sperm head surface, which can be reduced by infection 
inhibitors like heparin and carrageenan (Perez-Andino et al. 2009). Direct swim-up 
and modified swim-up techniques can also effectively remove HPV DNA from nat-
urally and artificially infected human sperm for ART (Garolla et al. 2012)
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Virus-transmitted sexual diseases are difficult to cure, and the antiviral therapy 
can only mitigate the symptoms but not eradicate the virus. During the past years, 
substantial improvement has been made in the discovery and development of anti-
viral drugs. One of the oldest antiviral drugs, acyclovir (ACV), is approved for ini-
tial and recurrent genital herpes infections. Resistance toward ACV and related 
drugs has been reported among immune-compromised patients. In case of drug 
resistance, infections can be managed by the second line of drugs that include fos-
carnet or cidofovir (Mlynarczyk-Bonikowska et al. 2013). In HPV-infected indi-
viduals, there is no known specific drug target for the medication, and therefore 
antimitotics or immunomodulators are used for therapy.

12.4.2  Human Cytomegalovirus

Human cytomegalovirus (HCMV) is a virus of the Herpesviridae family whose 
infection remains undetected in healthy people but can be life-threatening in the 
immunocompromised individuals (Ryan and Ray 2004). It has phases of latency 
and reactivation and has been isolated from the semen and vagina. In males, its pres-
ence has been detected in the epididymis (Gimenes et al. 2014), vas deferens 
(Kimura et al. 1993), prostate (Geder et al. 1976), and seminal vesicles (DeTure 
et al. 1976).

Among herpes viruses, HCMV harbors maximum genes that are dedicated 
toward altering (evading) innate and adaptive immunity in the host and represents a 
lifelong burden of antigenic T cell surveillance and immune dysfunction (Varani 
and Landini 2011). These infections are life-threatening when the balance main-
tained by host immune surveillance is disturbed (Khan 2007).

HCMV has been detected in the epididymis, seminal vesicles and vas deferens 
(Kimura et al. 1993), and prostate (Mastroianni et al. 1996) of men. Significantly 
lowered sperm quality has been reported in HCMV-infected men, and its incidence 
was found to be more than that of HSV-2 (Wu et al. 2007). HCMV has been shown 
to be present in the extracellular fluid of semen (Lang et al. 1974) and in the semen 
of infertile patients (Levy et al. 1997). HCMV has also been detected both in sperm 
samples and in testis organotypic culture, and it has been concluded that the virus 
may infect immature spermatogenic cells, which may later develop into HCMV- 
carrying spermatozoa (Fig. 12.4). Significant reduction in the number of testicular 
germ cells indicates that HCMV can produce a direct gametotoxic effect, leading to 
male infertility (Naumenko et al. 2011).

The appropriate diagnostic test for identifying HCMV infection is the presence 
of CMV-specific IgG antibodies. The confirmatory tests include serology or detec-
tion of HCMV antigen (pp65) or DNA (by PCR) from infected individuals 
(Ljungman et al. 2002).

The preemptive therapy for CMV disease is to start antivirals for patients in order 
to halt the proliferation of virus (Griffiths 2002). Drugs available for combating 
HCMV infection include valganciclovir (VGCV), ganciclovir (GCV), acyclovir 
(ACV), valacyclovir (VACV), maribavir, foscarnet, and cidofovir.
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12.4.3  Human Immunodeficiency Virus

The human immunodeficiency virus (HIV) is a lentivirus (a subgroup of retrovirus) 
that causes HIV infection and, over a period of time, acquired immunodeficiency 
syndrome (AIDS) (Weiss 1993; Douek et al. 2009). The major mode of HIV trans-
mission is through sexual contact, though transmission may also occur through con-
tact with contaminated blood and vertical transmission to the offsprings from 
infected mothers.

HIV infection has been shown to affect male fertility. The testes of AIDS patients 
are atrophic with decreased spermatogenesis and can be grouped into three major 
categories, (a) low spermatogenesis, (b) arrested spermatogenesis at primary sper-
matocyte stage, and (c) Sertoli-cell-only syndrome (Shevchuk et al. 1998). HIV-1 
virus has been detected in >90% of testes from HIV-infected adults and in 25–33% 
of the residual germ cells of these infected testes, though HIV-1 DNA was found to 
be absent in the testes of all the three preadolescent boys who had acquired HIV-1 
in utero. (Shevchuk et al. 1998). The presence of HIV-1 proviral DNA has also been 
detected in the nuclei of germ cells at all stages of spermatogenesis, which sug-
gested that HIV-seropositive men are capable of producing infected spermatozoa 
and releasing them in the genital tract. A direct infection of the germ cells by cell- 
free virus in the testis could be supported by the immune privilege of this organ 
(Muciaccia et al. 1998). Similarly, in the testis of men who deceased of AIDS, 
hypoplasia and spermatogenic arrest were presented with infected spermatogonia 
and spermatocytes, demonstrating the testis as one of the major site for early HIV 
infection. The authors concluded that HIV-positive men release infected spermato-
zoa (Fig. 12.4) in the genital tract (Muciaccia et al. 1998). In yet another study, 
HIV-1 DNA was detected in the testis of 11 out of 12 HIV-infected men by PCR in 
situ hybridization technique, which was localized mainly in the testis cells (sper-
matogonia and spermatocytes, rarely in spermatids), but not in the epithelium of the 
prostate, epididymis, seminal vesicles, or penis of men with AIDS (Nuovo et al. 
1994). It was inferred that spermatogenic cells serve as the primary source for vene-
real transmission of virus (Nuovo et al. 1994). However, experimental studies on 
nonhuman primates have demonstrated that HIV may infect the testes (spermatogo-
nia but not more mature spermatogenic cells) as well as the epididymis (Shehu-
Xhilaga et al. 2007).

HIV infection has also been shown to adversely affect semen parameters in 
infected individuals. Semen volume, sperm count, and progressive motility have 
been reported to be markedly decreased in HIV-infected patients (van Leeuwen 
et al. 2008; Huang et al. 2002a; Dulioust et al. 2002; Bujan et al. 2007). The above 
is reported to be accompanied with increased population of immature germ cells and 
spermiophage cells in semen, suggesting defective epididymal sperm maturation 
due to reduced testosterone levels (Dondero et al. 1996). Cytokine and chemokine 
concentrations are elevated in semen upon HIV infection which triggers inflamma-
tion and can contribute to male infertility (Gimenes et al. 2014). Undoubtedly, 
semen is considered as the main vector for HIV-1 transmission, which can transmit 
HIV-1 as free virions, infected leukocytes, and spermatozoa-associated virus 
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(Ceballos et al. 2009). HIV-1 proviral DNA has been detected in the seminal cells of 
45% HIV-1-infected men and 33% of their sperm samples, with positive staining for 
HIV-1 in the midpiece and rarely in the head (Bagasra et al. 1994). Electron micros-
copy has revealed that HIV-1 attaches to the sperm surface and enters the sperm 
cells through the cell membrane suggesting human sperm as the primary cellular 
element involved in the transmission of HIV through semen (Bagasra et al. 1988). 
Sperm express a 165–175 kDA mannose receptor for HIV-1 attachment, resulting in 
vertical and horizontal transmission of virus (Cardona- Maya et al. 2006). Heparin 
sulfate expressed in spermatozoa may also play a critical role in capturing HIV-1, as 
it has been shown that at low vaginal pH, the binding of HIV-1 to spermatozoa and 
its transmission to the dendritic cells is greatly enhanced (Ceballos et al. 2009). 
HIV-1 may be carried passively by spermatozoa through attachment of virus to the 
cell surface, mediated by beta-chemokine receptors (CCR5 and CCR3) present on 
the acrosomal surface of spermatozoa (Muciaccia et al. 2007).

Development of combinatorial antiretroviral therapy in late 1990s helped in 
managing fatal HIV illness which was unconquered earlier. More than 25 licensed 
drugs have been developed since then which block the replication of virus at differ-
ent steps. A large number of vaginal microbicides have been tested at different 
stages of preclinical and clinical development, but their development has been 
delayed perhaps due to lack of support from the pharmaceutical industries (Lederman 
et al. 2006).

Before antiretroviral therapies, protease inhibitor-based drugs were more in use. 
However, antiretroviral therapies were developed to decrease the dose and increase 
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the safety and effectiveness of drugs. Standard antiretroviral therapy used currently 
involves combination of two nucleoside reverse transcriptase inhibitors like emtric-
itabine or lamivudine along with abacavir, tenofovir, or zidovudine and a non- 
nucleoside reverse transcriptase inhibitor, a protease inhibitor, or a integrase 
inhibitor (Maartens et al. 2014).

12.4.4  Herpes Simplex Virus

Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) are known as oral herpes and 
genital herpes virus, respectively. These two are members of the herpesvirus family 
Herpesviridae, which infects human beings (Ryan and Ray 2004). Globally, around 
3.7 billion people under the age of 50 (67%) have HSV-1 infection, while 417 mil-
lion people aged 15–49 (11%) have HSV-2 infection (WHO 2016).

Many reports have linked HSV with male infertility (Borai et al. 1997; Kapranos 
et al. 2003). Herpes simplex virus seems to play a significant role in male infertility 
and has been related to low sperm count and poor motility. Semen of infertile men 
has been shown to be populated with HSV DNA (Kapranos et al. 2003; Sheikh et al. 
2014). A study on Iranian men detected HSV DNA in 22.9% of men with male fac-
tor infertility having lower sperm count (Monavari et al. 2013). HSV-2 has been 
isolated from the testes and epididymis of male cadavers, suggesting that these 
organs may serve as reservoirs for the transmission of virus (DeTure et al. 1976). 
Expression of HSV thymidine kinase (HSV-tk) in transgenic mouse testis led to 
abnormal spermatogenesis, acrosomal aberrations, spermatogenic arrest, and infer-
tility (Huttner et al. 1993). In transgenic rats, two HSV-tk proteins of 37 and 39 kDa 
were accumulated in the round spermatids, which increased apoptosis of testicular 
germ cells. Their sperm had malformed heads and looped tails (Cai et al. 2009). The 
DNA of herpes viruses is frequently detected in the semen of asymptomatic fertile 
and infertile male patients (Neofytou et al. 2009). A significant association between 
the evidence for infertility and HSV-positive test in semen was observed in men 
(P = 0.024) (el Borai et al. 1997). Oligozoospermia is reported to be two times more 
frequent in HSV-containing ejaculates than in HSV negative with sperm displaying 
microhead and cytoplasm drops in HSV-infected patients, which indicated that 
asymptomatic HSV infection may adversely affect male fertility (Abdulmedzhidova 
et al. 2007; Wu et al. 2007). A study reported that as compared to apparently healthy 
individuals, men with infertility had a higher incidence of HSV infection of the 
semen (P < 0.05), decreased numbers of actively motile sperm (P = 0.0001), and 
lower percent of morphologically normal sperm (P = 0.002), indicating HSV as one 
of the factors for male infertility (Klimova et al. 2010). However, several other stud-
ies could not find an association of HSV infection with male infertility (Kaspersen 
and Hollsberg 2013).

Screening for HSV is not routinely performed except in those people who are at 
high risk or have a partner diagnosed with herpes or have developed some symp-
toms. Diagnosis for HSV is readily available, which includes viral culture, poly-
merase chain reaction (PCR), and serology testing (Workowski and Berman 2007; 
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Gupta et al. 2008; Patel and Rompalo 2005). Serology testing is also important to 
distinguish between HSV-1 from HSV-2. Suppressive therapy is highly encouraged 
in genital HSV infections to reduce the transmission of infection. One study has 
reported that valacyclovir (Valtrex) reduces the rate of virus transmission in hetero-
sexual companions (Corey et al. 2004). Some vaginal microbicides like Ushercell 
and T-PSS have been shown to inhibit transmission of STIs, including HSV 
(Anderson et al. 2002; Zaneveld et al. 2002), but these could not be developed fur-
ther as OTC products.

12.4.5  Hepatitis B Virus (HBV)

According to a WHO report, 2 billion people have been infected with HBV glob-
ally, and approximately 380 million are chronic carriers (6% of the world popula-
tion). About 4.5 million new infections are reported worldwide annually with 
620,000 deaths per year (Lemoine et al. 2013). HBV prevalence has been found 
in the reproductive system including semen and vaginal secretions and also in 
many other body fluids (Alexander and Kowdley 2006). The transmission of the 
virus occurs mainly from mother to child at time of birth, the use of infected 
syringes in drug addicts, sexual transmission, and emigration from endemic areas 
(Toy et al. 2008).

A study of 457 HBV-positive and 459 HBV-negative men seeking fertility assis-
tance at Zhejiang University indicated HBV-infected men exhibiting lower semen 
volume and lower sperm count, motility, and normal morphology than HBV- 
negative men (P < 0.05). HBV infection increased the incidence of asthenozoosper-
mia, oligozoospermia, or azoospermia (P < 0.05) and decreased the rates of 
implantation/clinical pregnancy in ICSI cycles (P < 0.05) (Zhou et al. 2011). 
Another study reported that HBV patients had significantly worse sperm density, 
total number, forward motility, morphology, and viability than HCV patients, and 
additional presence of varicocele further worsened the sperm parameters in HBV 
patients (Vicari et al. 2006). Perhaps exposure to HBV leads to ROS generation, 
lipid peroxidation, phosphatidylserine externalization, activation of caspases, and 
DNA fragmentation, resulting in increased apoptosis of sperm cells and loss of 
sperm membrane integrity and causing sperm dysfunctions (Kang et al. 2012). The 
presence of integrated HBV DNA sequences in spermatozoa of 66% and HBV 
DNA in seminal plasma of 33% of patients has been reported, which could cause 
vertical and horizontal transmissions, respectively (Hadchouel et al. 1985). Similar 
integration of HBV DNA in spermatozoa was also observed by Huang et al. (2002). 
In an interesting study, HBV markers were found in 12 sperm samples, and HBV 
DNA was detected integrated in 3 sperm samples of infected men whose 66.7% 
wives and 57.1% of children were also found to be HBV positive. One infant was 
found infected with HBV-negative mother and HBV-positive father (with HBV 
DNA-integrated sperm), indicating the possibility of vertical transmission. The 
study also indicated that men to women transmissions were easier and sperm was 
the most plausible vector (Xu 1992).
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Diagnosis for HBV provides the opportunity to identify those who are positive 
and recommend vaccination to those who are negative but at risk (Cooke et al. 
2010). Hepatitis B vaccines contain inactivated HBsAg and are available from early 
the 1980s. Initially the vaccines were plasma derived, but currently these have been 
replaced by vaccines manufactured using recombinant DNA technology (Shouval 
2003).

Currently, seven drugs are available for the treatment of chronic hepatitis B, 
which include five nucleos(t)ide analogues (lamivudine, adefovir, entecavir, tenofo-
vir, and telbivudine) and two interferon-based therapies (conventional interferon and 
pegylated interferon-alpha) (Aspinall et al. 2011). Nucleoside analogues subdue the 
viral replication by inhibiting the viral polymerase, whereas interferon therapy 
works by boosting the host immune response. In addition to vaccination, the risk of 
HBV transmission can be reduced through other preventive measures such as routine 
testing of blood, organ and tissue donors, and screening of blood and blood 
products.

12.4.6  Hepatitis C Virus or HCV

Hepatitis C virus (HCV), a member of the Hepacivirus genus of the family 
Flaviviridae, is a small, enveloped, single-stranded, positive-sense RNA virus 
(Rosen 2011). HCV infection has been correlated with male infertility. HCV 
patients show significantly lower sperm concentration, forward motility, normal 
sperm morphology and mitochondrial membrane potential, and higher DNA frag-
mentation, apoptosis, and ROS levels and abnormal chromatin in semen (La 
Vignera et al. 2012; Hofny et al. 2011). Similar results were obtained in another 
study in which mean sperm motility (P < 0.001), viability (P < 0.001), and nor-
mal morphology (P < 0.05) were significantly reduced in HCV patients as com-
pared to controls (Lorusso et al. 2010). Adverse effects of HCV infection have 
also been shown on spermatogenesis, which could be improved by therapy 
(Durazzo et al. 2006). Lower serum testosterone and higher serum estradiol and 
prolactin levels in HCV patients have also been reported (Hofny et al. 2011). 
HCV RNA and viral particles have been found in seminal plasma but not in sper-
matozoa (Gimenes et al. 2014).

Hepatitis C infection can be acute or chronic and is usually asymptomatic but can 
cause significant liver damage before its diagnosis. Treatment recommendations for 
hepatitis C are based on the condition of the disease (acute vs chronic). The fore-
most aim of the treatment is to achieve a sustained virologic response, defined as the 
absence of HCV RNA in serum at least 6 months after the withdrawal of treatment 
(Modi and Liang 2008). Therapy for hepatitis C infection has improved substan-
tially over the period. The current recommended drugs for chronic HCV infection 
include the combination of peginterferon and ribavirin and will be in primary use 
for the next few years (Manns et al. 2001; Fried et al. 2002; Hadziyannis et al. 
2004).
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12.5  Protozoan Infections and Male Infertility

12.5.1  Trichomonas vaginalis

Trichomonosis, a sexually transmitted disease (STD), is caused by the flagellated 
parasitic protozoan Trichomonas vaginalis. The parasite is a common cause of geni-
tourinary tract infection in both men and women (Mielczarek and Blaszkowska 
2015). Worldwide 160–180 million people are affected annually by trichomoniasis, 
and over half of new T. vaginalis infections each year are estimated to occur in men. 
It is one of the most poorly studied parasites with respect to virulence properties, 
pathogenesis, and immunopathogenesis (Harp and Chowdhury 2011). The infec-
tions are largely neglected, despite being highly prevalent (Bar et al. 2015). About 
75% of men harboring T. vaginalis are asymptomatic and may not seek treatment 
(Twu et al. 2014).

Some males infected with T. vaginalis show symptoms like inflammation, irrita-
tion, urethritis, and urethral discharge. They serve as vectors for the transmission of 
this STI and other infections including the HIV through disruption of urogenital epi-
thelial layers, which activates local immune cells leading to increased viral replication 
(Kushwaha et al. 2016; Guenthner et al. 2005). Antimicrobial (Alidina et al. 2016) and 
cytotoxic agents (Twu et al. 2014) present in male genital secretions and prostatic 
fluid, viz., pathogenic inhibitory factors (Fair et al. 1976) and zinc, respectively, force 
the parasite toward asymptomatic infection through various mechanisms.

Recent reports have shown the effect of T. vaginalis on sperm morphology, via-
bility, motility, and function through various mechanisms. Some studies have 
reported reduced sperm function in T. vaginalis-infected infertile men than in non- 
infected fertile controls. T. vaginalis produces a proteinaceous substance that kills 
sperm rapidly (Soper 2004), and in vitro mixing of sperm with Trichomonas reduced 
sperm activity (Jarecki-Black et al. 1988). Gopalkrishnan et al. 1990 assessed the 
effect of Trichomonas on sperm and found reduced sperm motility and viability 
with a reduction in the percentage of sperm with normal morphology (Tuttle et al. 
1977; Gopalkrishnan et al. 1990). A significant improvement in disrupted sperm 
parameters was found in 50% males after treatment with metronidazole, suggesting 
reversible effect of Trichomonas on sperm (Fig. 12.4).

The most sensitive and accessible method for diagnosis of trichomoniasis in 
women is culture of vaginal secretions, whereas in men, a culture from urethral 
swab, urine, and semen has the highest sensitivity (Workowski et al. 2006). The 
5-nitroimidazole drugs (metronidazole and tinidazole) are the only recommended 
drugs, of which (FDA)-approved metronidazole is the most prescribed and effective 
drug to treat trichomoniasis (Dunne et al. 2003). Studies have shown that tinidazole 
2 g is equivalent or better than metronidazole 2 g (Fung and Doan 2005). Tinidazole 
has a longer half-life than metronidazole (Workowski et al. 2006). Oral metronida-
zole is the preferred way of delivery; metronidazole in vaginal gels cannot reach 
therapeutic levels in the urethra and vaginal glands and has limited efficacy when 
used vaginally.
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On the other hand, 5-nitroimidazole class compounds are prone to drug resis-
tance. The first case of drug resistance was reported with metronidazole within 
2 years of its introduction, and more than 100 cases were reported by 2003 (Crowell 
et al. 2004). With an increasing incidence of resistance against metronidazole and 
cross-resistance among the family of 5-nitroimidazole drugs, disease prevention 
with a safe and effective alternative to nitroimidazoles would clearly be desirable.

A number of studies have been published demonstrating the in vitro trichomonicidal 
activities of non-5-nitroimidazole drugs. These compounds include both drug deriva-
tives synthesized specifically for the treatment of T. vaginalis infection and agents cur-
rently in use for the treatment of other infectious diseases. The synthesized compounds 
include imidazole derivatives (Kumar et al. 2013; Anthwal et al. 2014), ammonium salts 
of carbamodithioic acid (Jain et al. 2011, 2014; Kushwaha et al. 2016), and dithiocarba-
mate derivatives (Bala et al. 2014, 2015; Mandalapu et al. 2015).

Some synthetic derivatives of benzisothiazolinone showed significantly higher 
in vitro trichomonicidal activities than metronidazole (Ziomko and Kuczyńska 
1993). Some other drugs investigated for antitrichomonal activities include sulfi-
midazole, a 5-nitroimidazole with a functional sulfonamide group (Malagoli et al. 
2002); nifuratel, a nitrofuran derivative (Lossick 1990); berberine sulfate, a plant 
alkaloid (Kaneda et al. 1991); thiadiazine derivatives (Atienza et al. 1992); some 
4-nitrobenzimidazole derivatives (Alcalde et al. 1992); specific benzimidazole 
derivatives (Katiyar et al. 1994); acetylated derivatives of sugar hydrazones 
(Macickova et al. 1990); disulfiram, a drug often used to treat alcoholism (Bouma 
et al. 1998); etc. These chemical agents have shown some promising trichomona-
cidal activity.

 Conclusion

This chapter summarizes the current knowledge relating to the major sexually 
transmitted infections and their influence on sperm and male fertility. STDs are 
caused by bacterial, viral, and protozoal pathogens and can induce male infertil-
ity through multiple pathophysiological mechanisms, including impairment of 
sperm parameters and functions (Fig. 12.5). Pathogens can be transmitted hori-
zontally to sexual partners and vertically to fetuses and neonates. However, the 
effect of these pathogens and their role in the manifestation of male infertility are 
still imprecise and require further validation. While most of the bacterial patho-
gens and Trichomonas vaginalis are curable by the use of appropriate drugs/
antibiotics, the asymptomatic nature of some of these diseases results in high 
rates of transmission. On the other hand, viral infections are difficult to manage 
and require timely intervention. Inflammation caused by sexually transmitted 
microbial infections appears to play a major role in male infertility. Lower preva-
lence of infection reported in earlier studies may be mainly due to the lack of 
sensitive diagnostic parameters. However, it must also be taken into consider-
ation that most of the studies were performed on men with acute/active disease. 
Screening and treatment of individuals at risk of acquiring STIs as well as those 
with infertility due to acute manifestation of the disease will help reduce the 

B. Kushwaha and G. Gupta



203

incidences of infertility. Readers are encouraged to consult Gimenes et al., Nat 
Rev. Urol. 2014;11(12), pp. 672–87 and Brookings et al., Alternative formats. 
Korean J Urol, 2013; 54(3), pp. 149–156 for further reading on this subject.

Protozoa Trichomonas
vaginalis

Urethritis

Epididymitis

Prosatitis

Orchitis

Disruption of urogenital epithelial layers

Decreased sperm concentration, motility
and morphology

Proteinases inhibit sperm motility

Fig. 12.5 Spermatozoal damage caused by STD pathogens
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13Cytogenetic Factors in Male Infertility

Vertika Singh and Kiran Singh

Abstract
Nearly 15% of the couples worldwide face the problem of infertility. A number 
of cytogenetic aberrations in the form of somatic chromosome aneuploidies, 
sperm aneuploidies, chromosomal translocations and inversions, etc. are known 
to contribute to male infertility. Couples with normal hormonal profile should be 
evaluated for possible cytogenetic abnormalities before proceeding to treatment. 
The identification of cytogenetic abnormality cannot only explain infertility but 
also guide treatment in the affected cases. This chapter summarizes the cytoge-
netic factors that increase the risk of male infertility. Towards the end, we have 
provided a glimpse of the contemporary techniques that have revolutionized the 
classical field of cytogenetics.

Keywords
Cytogenetics • 47,XXY • 46,XX male • 47,XYY • Klinefelter’s syndrome • 
Germ cell aneuploidy • Interchromosomal effects • Cytogenetic techniques

Key Points
• Chromosomal abnormalities and mutations of genes involved in germ cell pro-

duction and function account for 30% of the infertile cases.
• The prevalence of cytogenetic anomalies in infertile males varies between 2% 

and 8% and is as high as 20% in azoospermia.
• High frequency of chromosomal abnormalities (42.5%) has been reported in 

embryos derived from ICSI cycles of males with meiotic aberrations.
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• 66% of abnormal karyotypes obtained from miscarriages have a male factor 
origin.

• Autosomal structural rearrangements may lead to an increase in the frequency of 
sex chromosome aneuploidies, called as the interchromosomal effect.

• Next-generation sequencing technique offers the highest accuracy and detection 
limit till now.

13.1  Introduction

Spermatogenesis is essential for the perpetuation of the male germline. It is marked 
by highly regulated mechanism of interaction between somatic and germ cells with 
coordinated hormonal regulation. After the identification of the hormonal dysregu-
lation as a contributor to male infertility, the next major discovery was the identifi-
cation of the molecular aberrations at the level of chromosomes. With the inception 
of the field of cytogenetics, chromosomal defects in the form of aneuploidies, breaks 
or translocations were identified. It is estimated that chromosomal abnormalities 
and mutations of genes involved in germ cell production and function account for 
30% of the infertile cases. Due to deletions or insertions or a large number of genes 
in the form of big chunks of DNA or the whole chromosome, a number of cytoge-
netic abnormalities infest in the form of syndromes. Cytogenetic aberrations inter-
fere with the process of spermatogenesis, and the percentage of chromosomal 
abnormality increases proportionally with the decline in sperm concentrations and 
increasing severity of the infertility (McLachlan and O’Bryan 2010). The estimated 
frequency of the overall occurrence of a chromosomal factor in infertile males var-
ies between 2% and 8% (Foresta et al. 2002). The prevalence further increases to 
20% in azoospermic males, with sex chromosome most frequently involved (Dohle 
et al. 2002).

Aneuploidy reflects a change in the chromosome number from a normal diploid 
complement in somatic cells or haploid complement in the gametes. These defects 
can be either numerical in nature involving a gain or loss of an entire chromosome 
or structural involving a gain or loss of a chromosomal segment. Numerical chro-
mosomal anomalies are the most frequently associated chromosomal abnormality 
in infertile males (Emery and Carrell 2006). High incidences of sex chromosome 
aneuploidy are reported in men with nonobstructive azoospermia (Palermo et al. 
2002; Mateizel et al. 2002). Aneuploidy results from non-disjunction of chromo-
somes during meiosis. Klinefelter syndrome (KS), a condition characterized by at 
least a single supernumerary X chromosome is the most common abnormality 
reported in infertile males (Tüttelmann and Gromoll 2010; Fu et al. 2012) (cumula-
tive 4.9%). The abnormality is characterized by progressive testicular failure result-
ing in small firm testes, androgen deficiency and azoospermia in males (Klinefelter 
et al. 1942). It affects around 1:600 males (Lissitsina et al. 2006). Around 80–90% 
of KS cases show an ‘original’ compliment of 47,XXY, whereas the remaining dis-
play (in decreasing frequency) a varying mosaicism (e.g. 47,XXY/46,XY), addi-
tional sex chromosomes (48,XXXY; 48,XXYY; 49,XXXXY) or structurally 
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abnormal X chromosomes (Bojesen et al. 2003; Lanfranco et al. 2004; Tüttelmann 
and Gromoll 2010). Variants of Klinefelter patients with increasing number of X 
chromosomes show a female sexual phenotype owing to the X-chromosome dosage 
effect on the male gonad development (Vogt 2004). Other rare chromosomal abnor-
malities include XYY syndrome, 46,XX males and Noonan syndrome. The fre-
quency of XYY syndrome is seen in around 0.84/1000 infertile males. This disorder 
takes place as a result of paternal meiotic non-disjunction events and is character-
ized by tall, azoo-/oligozoospermia phenotype (Robinson and Jacobs 1999). Noonan 
syndrome also called as pterygium colli syndrome or male Turner syndrome occurs 
with a frequency of 1 in 1000 to 2500 live births. The chromosomal constitution of 
Noonan syndrome shows 46,XO/XY mosaicism. Most of the males with Noonan 
syndrome typically display cryptorchidism with elevated gonadotrophin levels. 46, 
XX males are sterile which occur with a frequency of 1 in 20,000. Though these 
males are devoid of Y chromosome, they show a distinctive presence of SRY gene, 
responsible for male sexual characteristic. Chromosomal translocations account for 
an additional source of aneuploidy in humans (Gianaroli et al. 2002). Disruption of 
genes due to translocations leads to a loss of genetic material resulting in transmis-
sion of an incorrect genetic message (Carrell 2008). Robertsonian translocations are 
the most frequent structural chromosomal abnormalities in humans (Therman and 
Susman 2012; Ferlin et al. 2007). Furthermore, the meiotic abnormalities during 
spermatogenesis and sperm aneuploidies are the leading cause of infertility, recur-
rent miscarriage, abnormal embryos and offspring. In this chapter we aim to delin-
eate various chromosomal abnormalities associated with impaired fertility and 
associated reproductive outcomes.

Most of the evidence of chromosomal abnormalities in male infertility has come 
from case studies or case series as the individuals bearing these abnormalities 
acquire them de novo and are generally infertile.

13.2  SRY Gene Translocation on X Chromosome or 
Autosomes

The presence of SRY gene on the distal end of the Y chromosome encodes the ‘tes-
tis-determining factor’ responsible for the regression of Mullerian structures and 
production of testosterone in the Leydig cells. Most of the males (80%) devoid of Y 
chromosome are ‘SRY positive’. Due to unequal crossing over events between 
homologous regions during paternal meiotic division, the SRY from the Y chromo-
some fragment is translocated to the short arm of an X chromosome or an autosome. 
Due to SRY, the affected individual shows male sexual characteristic, despite the 
XX sex chromosome pattern. However, a few reports demonstrated the presence of 
testicular tissue in SRY-negative patients. Several hypotheses have been put forward 
to explain the mechanism. Rajender et al. reported a hidden gonadal mosaicism for 
SRY gene as the reason for the development of testicular tissue and male phenotype 
in an SRY-negative male (Rajender et al. 2006). They suggested that the develop-
ment of the male phenotype in the absence of SRY probably occurred from the loss 
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of function mutation in some unknown gene termed ‘Z’. Furthermore, a gain of 
function mutation in a few genes that might function downstream to the SRY gene 
in the sex-determination pathway may also lead to 46,XX female-to-male sex rever-
sal (Kent et al. 1996; Meeks et al. 2003; Rajender et al. 2006; Maciel-Guerra et al. 
2008). In 1999, Kusz et al. described that a preferential inactivation of the Y-bearing 
X chromosome in XX males with Y-to-X translocations could be the major mecha-
nism triggering a sexually ambiguous phenotype (Kusz et al. 1999). The origin of a 
male phenotype in XX males thus could be the result of translocation of Y chromo-
some sequences, including the SRY gene, to an X chromosome or to an autosome, a 
mutation in a yet unknown X-linked or autosomal gene from the testis- determination 
pathway and cryptic Y chromosome mosaicism (Pandith et al. 2015).

13.3  Somatic Chromosome Aneuploidies

Somatic chromosomal abnormalities are reasonably common in humans. These can 
be numerical, with an extra chromosome, or structural, such as translocations. 
Chromosomal abnormalities have been widely accepted as a causative factor associ-
ated with infertility, an increased probability of pregnancy loss and various birth 
defects. These abnormalities are known to occur with a frequency of 3% and 19%, 
in the cases of subfertility and nonobstructive azoospermia (NOA), respectively 
(Yoshida et al. 1997). Thus, it is imperative to routinely practice karyotyping in all 
the unexplained cases of male infertility to provide the estimated probable risk and 
contribution of the cytogenetic abnormalities.

13.3.1  47,XXY

Klinefelter syndrome (KS) characterized by an extra X-chromosome (karyotype 
47,XXY) is seen in about 80–90% of patients, while the remaining show chromo-
somal mosaicisms (e.g. 47, XXY/46, XY), additional sex chromosomes (e.g. 48, 
XXXY; 48, XXYY; 49, XXXXY) or X chromosome structural abnormalities (e.g. 
47,X,iXq,Y) (Maiburg et al. 2012). The patients with Klinefelter syndrome 
(47,XXY) or mosaic variants display an impaired spermatogenic phenotype, which 
includes primary testicular failure with reduced testicular volume, hypergonado-
tropic hypogonadism and azoospermia or severe oligozoospermia in 90% and 10% 
of non-mosaic patients, respectively (Ferlin et al. 2007; De Sanctis and Ciccone 
2010; Foresta et al. 2012). KS is the most frequent genetic cause of male infertility, 
which occurs with a frequency of 15% of all azoospermic cases and 3% of all infer-
tile men (Anawalt 2013). These aneuploidies result due to parental and maternal 
non-disjunction events during meiosis, resulting in an extra X chromosome 
(Fig. 13.1). Progressive germ cell degeneration and impaired Sertoli cells (SCs) 
function in association with an extensive fibrosis and hyalinization of the seminifer-
ous tubules, and Leydig cell hyperplasia results in an azoospermic phenotype in KS 
patients (Aksglæde et al. 2006). The mechanism associated with the global degen-
eration in these patients is still unclear. However, it has been hypothesized that an 
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altered dosage of the genes which escape the inactivation on the supernumerary 
X chromosome might be responsible for the induction of germ cell loss during sper-
matogenesis (Aksglæde et al. 2006). A study recently reported that SHOX gene, 
which encodes for a transcription factor expressed in the developing skeleton and is 
associated with various skeletal anomalies seen in 47, XXY syndrome, might be 
responsible for the tall stature regularly seen in KS (Tüttelmann and Gromoll 2010).

It has been well established that in 47,XXY men, the supernumerary X chromo-
some is inherited with equal probability from the mother and the father (Thomas 
and Hassold 2003). This may further result in an altered differential expression of 
paternal versus maternal alleles due to imprinting (Iitsuka et al. 2001). This hypoth-
esis was supported by another study which demonstrated that in a study on 61 KS 
men, a higher incidence of developmental problems in speech/language and motor 
impairment was seen when the supernumerary X chromosome was paternally inher-
ited (Stemkens et al. 2006). The X chromosome harbours 9% of the genes (99 out 
of 1098) specifically expressed in testis which makes the fertility status of XXY 
patients highly variable (Ross et al. 2005; Aksglæde et al. 2006). The beginning of 
various testicular sperm retrieval technologies and microdissection technologies 
provided a testicular sperm retrieval rate ranging between 30% and 70% in the KS 
patients (Schiff et al. 2005; Koga et al. 2007; Yarali et al. 2009). This augmented the 
possibility for KS men to become father with the assistance of various assisted 
reproductive technologies.

13.3.2  47,XYY

47, XYY is the most common sex chromosome aneuploidy after Klinefelter syn-
drome (47, XXY) (Hook and Hamerton 1977; Gekas et al. 2001; Rives et al. 2005) 
with a clinical presentation of around 1 in 1000 live male births. Men with 47,XYY 
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karyotype are generally phenotypically normal, but are at greater risk of behav-
ioural problems, mild learning disability, delayed speech and language development 
(Evans et al. 1991). These men are usually fertile, but are more frequently seen in 
the infertile populations. Recent studies have reported an association of 47,XYY 
phenotype with chromosomally abnormal spermatozoa in the semen (Speed et al. 
1991; Blanco et al. 1997; Chevret et al. 1997; Lim et al. 1999a, b; Gonzalez-Merino 
et al. 2007; Wong et al. 2008). However, men with 47,XYY karyotype display a 
wide range of seminal phenotypic variability from normal sperm count to azoosper-
mia (Lim et al. 1999a, b; Egozcue et al. 2000; Rives et al. 2005; Moretti et al. 2007; 
Abdel-Razic et al. 2012). A group of researchers analysed 75 sperm karyotypes 
from a 47,XYY male and reported that none of the karyotypes were abnormal for 
sex chromosomes. They suggested that elimination of the extra chromosome during 
spermatogenesis can result in production of sperm lacking sex chromosome disomy 
in 47,XYY men (Benet and Martin 1988). They further analysed 10,000 sperm from 
the same men by fluorescence in situ hybridization and reported a small but signifi-
cant increase of XY disomy (Martin et al. 1999). Since men with 47,XYY syn-
drome present a heterogeneous phenotype with a diverse spectrum of clinical 
presentation, it becomes really difficult to diagnose especially in the cases where 
there is normal fertility.

13.4  Meiotic Abnormalities and Sperm Aneuploidies

In the recent years, the use of intra-cytoplasmic sperm injection (ICSI) in assistance 
with the new methods used for recovering testicular spermatozoa has significantly 
improved the fertility dimensions for infertile patients (Van Steirteghem et al. 1993). 
However, the preimplantation genetic diagnosis and careful observations following 
ICSI have shown a significant increase in de novo sex chromosome abnormalities 
and structural abnormalities in sperm (Bonduelle et al. 2002; Van Steirteghem et al. 
2002). These abnormalities may arise due to meiotic abnormalities during the pro-
cess of spermatogenesis. High frequency of sperm aneuploidies has been shown to 
be associated with altered meiosis in infertile men. Meiotic errors can even result in 
the production of abnormal sperm, which retain fertilization capabilities, but 
increase the risk of recurrent miscarriage and abnormal embryos or offspring. High 
frequency of chromosomal abnormalities (42.5%) has been reported in embryos 
derived from ICSI cycles of males with meiotic aberrations (Aran et al. 2004).

In 1990s, fluorescence in situ hybridization (FISH) was developed as a faster, 
easier and economic method to detect aneuploidies in human sperm (Martin 2008a, 
b). This technique utilizes fluorescent-tagged probes complementary to the DNA to 
visualize the region of interest. Since then, it is the most widely used technique for 
the detection of sperm aneuploidies. FISH analyses have revealed a higher manifes-
tation of numerical chromosomal abnormalities in infertile men, particularly in sex 
chromosomes (Moosani et al. 1995; Bernardini et al. 1998; Aran et al. 1999; 
Colombero et al. 1999; Pang et al. 1999; Pfeffer et al. 1999; Nishikawa et al. 2000; 
Ushijima et al. 2000; Vegetti et al. 2000; Calogero et al. 2001a, b; Rubio et al. 2001; 
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Martin et al. 2003). However, a higher incidence of sex chromosome aneuploidy 
was observed in sperm derived from oligoasthenoteratozoospermic men as com-
pared to the normozoospermic, asthenozoospermic, teratozoospermic and asthe-
noteratozoospermic males (Rubio et al. 2001). The percentage of chromosome 21 
disomic sperm was also higher in OAT patients in comparison with other infertile 
phenotypes (Rubio et al. 2001). A gradual increase in aneuploidy rates was observed 
with declining sperm concentration in infertile men. Some studies, however, 
reported the highest percentage of aneuploidy in severe oligozoospermia patients 
having a sperm concentration of <1 × 106 sperm/mL (Rubio et al. 2001). Individuals 
with karyotype abnormalities present an obvious predisposition towards chromo-
somally abnormal conceptions as a result of which they fail to achieve a successful 
pregnancy often due to repeated spontaneous abortions (Harton and Tempest 2012). 
The FISH analysis demonstrated that the sex chromosome aneuploidies range 
between 2% (Rives et al. 2000) and 45% (Estop et al. 1999) in sperm derived from 
men with Klinefelter syndrome and from 1.5% (Lim et al. 1999a, b) to 7% (Kruse 
et al. 1998) in sperm from Klinefelter mosaics. Interestingly, some studies have 
reported that sperm chromosomes derived from men with Klinefelter syndrome 
have a tendency to eliminate the extra sex chromosome during the process of 
spermatogenesis.

The majority of children born to 47,XXY men have been normal although chro-
mosomally abnormal foetuses have been reported (Ron-el et al. 2000; Friedler et al. 
2001). Staessen et al. in 2003 studied 113 embryos by preimplantation genetic diag-
nosis (PGD) and found a significantly increased frequency of autosomal and sex 
chromosomal abnormalities (Staessen et al. 2003). Thus, there appears to be a small 
increased risk for these men. This group found that the frequency of sperm aneu-
ploidy was concordant with the frequency of aneuploidy in preimplantation embryos 
(32%). Since many 47,XYY men have normal semen parameters, severe oligozoo-
spermia observed in these men may indicate more perturbations during meiotic 
pairing, subsequent loss of germ cells and the production of aneuploid sperm.

13.5  Chromosomal Translocations and Inversions

A balanced chromosomal translocation occurs when two chromosomes break fol-
lowed by abnormal repair of their chromosome fragments, resulting in the transpo-
sition of genetic material from one chromosome to the other without loss of any 
genetic material. In most of the cases, the carriers of balanced translocation display 
normal phenotypic characters, but may experience various birth defects and reduced 
fertility outcomes (Tempest and Simpson 2010). Robertsonian translocation 
involves the fusion of long arms of two acrocentric chromosomes. In this instance, 
the short arm is generally lost, which results in chromosomal constitution of 
45 chromosomes. Reciprocal translocations, however, occur when there is an 
exchange of material between two or more chromosomes with the involvement of at 
least one non-acrocentric chromosome. Reduced fertility in translocation carriers 
may result due to the formation of quadrivalent (in case of reciprocal translocation 
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or trivalent in case of Robertsonian translocation) structures during the pairing of 
homologous chromosomes. The probable explanation behind the reduced fertility 
due to the formation of quadrivalent and divalent are the time restrictions and 
mechanics involved in the formation of such complexes and disjunction of these 
structures which may result in the production of unbalanced gametes (Tempest and 
Simpson 2010). The frequency of unbalanced gametes has been reported to vary 
between 3% and 36% in a study performed on 20 carriers of balanced Robertsonian 
translocations (Ferlin et al. 2005; Sarrate et al. 2005). However, an analysis of 30 
balanced reciprocal translocation carriers reported a high frequency of genetically 
unbalanced sperm (29–81%) as compared to the Robertsonian translocation carri-
ers. Similarly, the chromosomal inversions may also result in fertility- and birth-
related complications due to the formation of inversion loops to enable the 
chromosomes pair at the time of meiosis (Brown et al. 1998). Various molecular 
studies have reported that the recombination event between these loops is restrained 
due to mechanics and time constraints associated with the formation of loop. A 
restricted recombination further results in meiotic breakdown and germ cell apopto-
sis, thus reducing sperm count. Moreover, the recombination between the inversions 
loops augments the possibility of a production of unbalanced gametes. Nevertheless, 
the frequency of the production of an unbalanced gamete depends on the chromo-
somes involved, the length of the region involved and the probability of recombina-
tion to occur within the inverted sequences. Very few studies have investigated the 
frequency of unbalanced gametes in the carriers of balanced inversions; however, 
the reported frequency ranges from 1% to 54% of unbalanced sperm.

13.6  The Interchromosomal Effects

The effect of inversions and translocations on the synapsis and disjunction of heter-
ologous chromosomes is called as the interchromosomal effect or the ‘Schultz–
Redfield effect’ (Schultz and Redfield 1951; Averhoff and Richardson 1974). The 
concept of interchromosomal effect in humans was first postulated by Lejeune in 
1963 (Lejeune 1963). The logical explanation behind this phenomenon is based on 
the hypothetical formation of heterologous pairing among the rearranged chromo-
somes, which frequently adopt configurations with asynaptic regions and other 
chromosomes (Guichaoua et al. 1990). The chromosome of infertile males shows a 
high degree of variability in chromosomal segregation patterns during meiosis, 
which can be attributed to complex chromosomal rearrangements and aneuploidies 
that could affect the meiotic synapsis (Miharu et al. 1994; Moosani et al. 1995). 
Many reports have demonstrated an increase in the frequency of sex chromosome 
aneuploidies in patients with autosomal structural rearrangements (Morel et al. 
2001; Anton et al. 2004; Roux et al. 2005). This can be attributed to alterations in 
the meiotic process produced by the rearrangement. A research group recently ana-
lysed the meiotic segregation pattern in sperm of a patient who was a double 
Robertsonian carrier with karyotype 45,XY,der(13;13)/45,XY,der(13;14). The 
patient with this rare translocation reflected a high rate of unbalanced gametes with 
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disomic spermatozoa (de Vozzi et al. 2009). Studies performed on sperm obtained 
from carriers of structural chromosomal rearrangements have reported an ICE of 
58% in Robertsonian translocation carriers and 64% in reciprocal translocation car-
riers (Martin 2008a, b). In addition, the PGD studies have also reported an increase 
in chromosomal aneuploidy rates in embryos for chromosomes which are not 
involved in rearrangements (Martin 2008a, b).

13.7  Sperm Aneuploidies and Adverse Reproductive 
Outcomes

Sperm aneuploidies can influence the reproductive outcomes at various stages of 
development, right from the process of fertilization to the embryo development, 
pregnancy and birth (Vera et al. 2012). A large number of studies have identified the 
clinical concerns of sperm aneuploidies during in vitro fertilization (IVF) cycles. 
Sperm aneuploidy rates were associated with repeated ICSI failures in a prospective 
study, and the frequency was even higher for aneuploidies of chromosome 18 and 
the sex chromosomes (Nicopoullos et al. 2008). In an analysis, Martin et al. identi-
fied an infertile men who had a ninefold higher frequency of 24,XY sperm than 
controls (Martin 1986). Later, this man was identified to induce a pregnancy through 
ICSI that resulted in a 47,XXY foetus (Moosani et al. 1999). Increase in sperm 
aneuploidy levels is also shown to correlate with the abnormal development of 
embryo. FISH analyses have identified that abnormal sperm significantly increase 
the number of mosaic embryos (Rodrigo et al. 2003). A decline in sperm concentra-
tion to <5 million sperm/mL has also been shown to result in the development of 
abnormal embryos with sex chromosome aneuploidies (Pehlivan et al. 2003). High 
embryonic mosaicism rate (53%) is reported in nonobstructive azoospermia patients 
(Silber et al. 2003). Moreover, an increase in diploid sperm resulted in triploid 
embryos, which resulted in spontaneous abortions (Rodrigo et al. 2010). 
Chromosomally abnormal sperm is related to poor implantation rates and miscar-
riage. An increase in sex chromosome disomy was reported in 31.6% of males with 
three or more implantation failures (Rubio et al. 2001). A study recently identified 
that around 66% of abnormal karyotypes obtained from miscarriages have a male 
factor origin (Kim et al. 2010).

13.8  Advances in Human Molecular Cytogenetics: 
From Chromosomes to SNPs

It was in 1956 when Tjio and Levan established the human diploid chromosome 
number as 46. From then began the area of human cytogenetics, which became even 
more popular with the advent of G-banding technique, which utilized trypsin diges-
tion followed by Giemsa staining to identify each chromosome. This technique 
could identify chromosomal rearrangements of 5–10 Mb in size. With the discovery 
of fluorescence in situ hybridization (FISH), it became possible to localize target 
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DNA sequence in the regions of interest. This technique was breakthrough in bring-
ing cytogenetics towards clinical centres to investigate the cytogenetic cause of vari-
ous disorders.

With complete genome sequencing of human, the field gained enormous expan-
sions in technological advancements and research applications. Now we know that 
in addition to aneuploidies and large structural rearrangements, human genome is 
susceptible to much wider range of variations in form of single nucleotide poly-
morphisms (SNPs), copy number variations (CNVs) and large-scale deletions. 
Some of these variations may be tolerated, while others can be pathogenic in 
nature. The availability of human genome sequence brought forward a number of 
cytogenetic high-resolution techniques that allow the detection of submicroscopic 
alterations and single nucleotide variations. Some of these techniques include 
modified FISH techniques, called multiplex-FISH and combining binary and ratio-
labelling (COBRA-FISH) and high-throughput techniques such as array CGH, 
SNP array and massive parallel sequencing, popularly known as next-generation 
sequencing.

13.8.1  Multiplex-Fluorescence In Situ Hybridization (M-FISH) 
and Spectral Karyotyping (SKY)

M-FISH is used to stain human chromosomes with distinctive colours for karyo-
typing. It is based on combinatorial labelling of fluorescent probes to produce 24 
colours in order to identify complex chromosomal rearrangements and the pres-
ence of marker chromosomes. Thus, it allows the detection of 22 autosomes, X and 
Y chromosomes. A similar technique called as spectral karyotyping (SKY) permits 
the classification of chromosomes on the basis of different emission spectra 
(Schrock et al. 1996). SKY uses the combination of chromosome painting and 
multicolour fluorescence to paint each of the 24 chromosomes of human with dif-
ferent colours. In this technique new colours are developed by mixing a pair of 
different fluorescent dyes among spectrum orange, Cy5, Texas red, spectrum green 
and Cy5.5.

13.8.2  Combining Binary and Ratio Labelling (COBRA-FISH)

COBRA-FISH is a modification of classical MFISH technique that combines the 
use of combinatorial labelling and ratio labelling (Tanke et al. 1999). The ratio 
labelling procedure allows different ratios of fluorescent labels to differentiate 
between the probes. Thus, a fewer number of fluorochromes could generate more 
number of pseudocolours, allowing 48 colour combinations for differential recogni-
tion of human chromosome arm (Wiegant et al. 2000). Depending upon applica-
tions, some other modifications of FISH include Comet-FISH (for detection of 
DNA damage), Halo-FISH (for detection of DNA/chromatin organization) and 
Flow-FISH (For identification of telomeric repeats).
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13.8.3  Array-Based CGH

Array-based comparative genomic hybridization (aCGH) is a powerful method 
used to detect aneuploidies, uniparental disomy and genome-wide imbalances/sub-
microscopic alterations in the form of copy number changes (gains/loss) in target 
DNA sample. In this technique millions of oligonucleotide probes from the human 
genome are immobilized on a glass slide by photolithography in the form of an 
array. Differentially labelled/fluorescent-tagged genomic DNA from sample of 
interest and reference DNA are co-hybridized on the array to detect deferential 
hybridization in the form of relative fluorescence signals. Cyanine 3 (Cy3) and cya-
nine 5 (Cy5) are the two most commonly used fluorescent labels in aCGH. The 
inability to detect balanced translocations and other rearrangements that do not 
allow a detectable change in copy number are some of the limitations of aCGH.

13.8.4  Single-Nucleotide Polymorphism Array (SNP Array)

Around ten million SNPs are present in the human genome, which can be patho-
genic or nonpathogenic in nature (Kruglyak et al. 2001). SNP array allows the iden-
tification of various SNPs across the genome. It is based on the complementary 
binding of target DNA base to unique reference oligonucleotide probes spotted on a 
chip. Each probe is designed for a specific DNA region. The detection is made on 
the basis of differential signal intensity produced depending on affinity between the 
target and the probe. It offers genotyping accuracy over 99.5% and is capable of 
interrogating millions of SNPs per run.

13.8.5  Next-Generation Sequencing (NGS)

Massive parallel sequencing or next-generation sequencing is one of the highly used 
techniques nowadays to analyse novel SNPs, copy number variations and transcrip-
tomic and epigenetic alterations. NGS technologies use a number of different chem-
istries which allows parallel sequencing of a number of DNA fragments. It is based 
on the concept of incorporation fluorescently labelled dNTPs by DNA polymerase 
during consecutive cycles of DNA synthesis and the identification of nucleotide 
incorporation by signal detection and strength. This technique offers the highest 
accuracy and detection limit till now.

With these techniques, we can hope for better detection, diagnosis and manage-
ment of various complex cytogenetic disorders with unknown aetiology.

 Conclusion

Chromosomal aberrations are seen in around 0.6% of the general population 
(Berger 1975). However, the frequency of karyotype abnormalities increases to 
2–14% in males presenting with infertility (Shi and Martin 2000). Chromosomal 
aberrations may have profound effects on fertility outcomes. The advent of ICSI 
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procedures has provided new dimensions and hopes to the infertile men to father 
a biological child. However, since their inception, there has been a growing con-
cern about the risk of utilizing sperm from infertile men with chromosomal 
defect. This becomes particularly important in order to reduce the transmission 
of various fertility defects (chromosomal rearrangements and aneuploidies) to 
the offspring, the probability of which increases with increasing severity of the 
disease. Thus, it is of substantial interest to analyse various chromosomal defects 
in the gametes before going ahead with assisted reproductive procedures. 
Screening of the gametes will further allow the patients to be appropriately coun-
selled regarding various repercussions of the ART. However, we are far from 
being able to answer the mechanisms that cause various meiotic errors and dis-
junctions driving chromosomal rearrangements.
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14Autosomal Genes in Male Infertility

Vertika Singh, Sandeep Kumar Bansal, Rajender Singh, 
and Kiran Singh

Abstract
Spermatogenesis is driven by the master genes present on the Y chromosome. 
These driver genes need support from numerous other genes spread across the 
genome for a number of actions such as energy metabolism, cell death and apop-
tosis, protein turnover, synthesis of new proteins and garbage disposal. 
Preliminary studies on infertility focused on the Y chromosome genes due to 
their primary and indispensable role in spermatogenesis. A number of other stud-
ies on human infertility and mouse knockouts have identified several spermato-
genically important genes present on chromosomes other than X and Y. For some 
of these genes, molecular pathways they participate in have also been worked 
out. This chapter summarizes the genes present on the autosomes that facilitate 
the process of spermatogenesis and fertility.
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Key Points
• Y-chromosomal spermatogenic driver genes need autosomal genes for 

spermatogenesis.
• Mutations in the transcription factor gene WT1 result in a series of genitourinary 

anomalies in humans, including gonadal dysgenesis.
• Deletions/mutations of Sox9 in humans and mice result in male-to-female phe-

notypic sex reversal, whereas Sox9 gain-of-function causes testis formation in 
XX individuals.

• Men with ataxia-telangiectasia (AT) display gonadal atrophy and azoospermia 
due to meiotic arrest at the zygotene-pachytene stage.

• PROP1 mutations cause combined pituitary hormone deficiency, including 
hypogonadotropic hypogonadism and infertility.

• INSL3 serves as an excellent marker in monitoring the treatment of hypogonadal 
patients.

• Deletions in the CATSPER genes, which encode cation channel of sperm, are 
associated with human male infertility.

14.1  Introduction

The SRY gene on the Y chromosome regulates the development of maleness. 
Logically, nature chooses to integrate a number of spermatogenic genes on the Y 
chromosome. From the initial studies that identified the deletions on Y chromosome 
in infertile individuals, the dissection of the Y chromosome in infertile male indi-
viduals has identified a number of major, minor and partial deletions that result in 
male infertility. This signifies the presence of a number of spermatogenic genes on 
Y chromosome, which are indispensable for spermatogenesis. Interestingly, most of 
these genes exist in multiple copies, and accordingly, deletions of various lengths 
show a continuous spectrum of spermatogenic loss.

Spermatogenic genes of Y chromosome cannot work in isolation and need assis-
tance from numerous other genes spread across the whole human genome. The iden-
tification of these genes has progressed slowly due to complex nature of spermatogenic 
loss and vast size of human genome. Mouse knockout studies have identified a 

Table 14.1 List of autosomal gene knockouts and their effect on spermatogenesis leading to 
infertility

Gene knockout and male infertility

Gene symbol Gene name Reproductive phenotype Reference

Mlh1 MutL homologue 1 Apoptosis of pachytene 
spermatocytes and infertility

Edelmann et al. 
(1996)

A-myb Proto-oncogene 
A-myb

Arrest at pachytene spermatocyte 
stage

Toscani et al. 
(1997)

Complete absence of postmeiotic 
cells such as spermatids or 
spermatozoa and infertility

Fkbp6 FK506-binding 
protein

Apoptosis of pachytene 
spermatocytes and infertility

Crackower et al. 
(2003)
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number of genes that are indispensable for spermatogenesis (Table 14.1). Candidate 
gene studies on infertile human patients have further confirmed the importance of a 
number of these genes in spermatogenesis and male infertility. Interestingly, further 
research has even identified the biological pathways and roles of some of these genes. 
The present chapter discusses candidate autosomal genes important for spermatogen-
esis and fertility with a glimpse of the biological functions they facilitate.

Gene knockout and male infertility

Gene symbol Gene name Reproductive phenotype Reference

Rxrb Retinoid X receptor 
beta

Accumulation of lipids in Sertoli 
cells, testicular degeneration and 
infertility

Mascrez et al. 
(2004)

H1t2 Testis-specific and 
histone H1 variant

Abnormal cell restructuring and 
DNA condensation during the 
elongation phase of spermiogenesis 
and reduced fertility

Martianov et al. 
(2005)

MFP-2 Multifunctional 
protein-2

Sertoli cell apoptosis and infertility Huyghe et al. 
(2006)

Spo11 Meiosis-specific 
protein Spo11

Failure of spermatocytes synapsis 
and progress beyond zygotene stage 
and infertility

Smirnova et al. 
(2006)

TSLC1 Tumour suppressor of 
lung cancer 1

Apoptosis of spermatid and 
infertility

van der Weyden 
et al. (2006)

Rara Retinoic acid receptor 
A protein

Apoptosis of early meiotic prophase 
spermatocytes, degeneration or germ 
cells and infertility

Doyle et al. 
(2007)

Akap4 A-kinase anchor 
protein 4

Loss of sperm progressive motility 
and infertility

Miki et al. 
(2002)

Csnk2a2 Casein kinase 2 alpha 
2

Oligospermia and globozoospermia 
with male infertility

Xu et al. (1999)

hook1 Hook microtubule- 
tethering protein 1

Ectopic positioning of microtubular 
structures within the spermatid and 
infertility

Mendoza- 
Lujambio et al. 
2002

PCI Protein C inhibitor Abnormal spermatogenesis, sperm 
malformation and infertility

Uhrin et al. 
(2000)

Dazl Deleted in 
azoospermia like

Spermatogenic arrest and infertility Schrans-Stassen 
et al. (2001)

CcnA1 Cyclin A1 Arrest of spermatogenesis and 
infertility

Liu et al. (1998)

Cks2 Cyclin-dependent 
kinases regulatory 
subunit 2

Spermatogenesis blockage at the 
metaphase of meiosis I and infertility

Spruck et al. 
(2003)

Tnp2 Transition protein 2 Teratozoospermia and infertility Adham et al. 
(2001)

DMRT1 Doublesex and 
mab3-related 
transcription factor 1

Disorganized seminiferous tubules, 
absence of germ cells and infertility

Raymond et al. 
(2000)

Insl3 Insulin-like 3 Cryptorchidism and male infertility Gorlov et al. 
(2002)

Table 14.1 (continued)
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14.2  Genes in Gonadal Development and Fertility: 
Establishing Fertility

Apart from the sex chromosomal genes that are exclusively involved in gonadal 
functions and regulations, a number of genes from autosomes are reported to play an 
indispensable role in gonadal development, testis differentiation and spermatogene-
sis. These include genes such as SF1, WT1, GATA4, SOX9, SOX8, FGF9 and DMRT1. 
The steroidogenic factor 1 (SF1) protein is encoded by the NR5A1 gene located on 
chromosome 9. Steroidogenic factor-1 (SF-1) transcription factor is widely expressed 
throughout the reproductive axis, including the hypothalamus, gonadotropic cells of 
the pituitary, gonads and adrenal gland. It plays a key role in the regulation of adrenal 
and functional development of gonads (Parker and Schimmer 1997; Lin and 
Achermann 2008; Schimmer and White 2010). Genetic studies, in mice and humans, 
have demonstrated its significance in male fertility. Male and female Nr5a1 null mice 
show adrenal agenesis, internal genitalia and gonadal agenesis.

WT1 gene is located on chromosome 11 and encodes for a transcription factor 
that plays an essential role in cell survival and development. Mutations in the tran-
scription factor gene WT1 result in a series of genitourinary anomalies in humans, 
including gonadal dysgenesis, suggesting its critical role in sex determination. In 
mice, Wt1 is demonstrated to play an essential role in cell survival and proliferation 
at genital ridge. The genital ridge fails to thicken in Wt1−/− animals and completely 
disappears by E14 (Kreidberg et al. 1993). One of the studies reported that Wt1 gene 
plays a very crucial role in spermatogenesis by regulating the polarity of Sertoli 
cells via Wnt signalling pathway and is one of the genetic causes of nonobstructive 
azoospermia in humans (Wang et al. 2013).

The role of transcription factor GATA4 has been well established in sustaining 
the development and function of the mammalian testis (Viger et al. 2008). The 
expression of GATA4 at foetal stage is observed in pre-Sertoli cells, Sertoli cells, 
Leydig cells, fibroblast-like interstitial cells and peritubular myoid cells (Bielinska 
et al. 2007; Viger et al. 1998). GATA4 expression is postnatally seen in the Sertoli 
cells and adult Leydig cells only (Ketola et al. 2002; Oréal et al. 2002; LaVoie 
et al. 2004). Gata4 knockout mice are lethal and die by embryonic day 9.5 due to 
abnormal ventral morphogenesis and developmental heart anomalies (Kuo et al. 
1997; Molkentin et al. 1997). Due to this reason, it becomes difficult to ascertain 
the role of this transcription factor in postnatal gonadal development. A study 
performed using adult transgenic mice with small interfering RNA directed 
against Gata4 revealed poor breeding capacity with reduced testicular expression 
of Gata4 target genes, such as Amh and StAR (Thurisch et al. 2009). Recently, a 
group of investigators generated mice with conditionally deleted Gata4 in Sertoli 
cells using Cre-LoxP recombination with Amhr2-Cre. The knockout (cKO) mice 
displayed age-dependent testicular atrophy and loss of fertility with decrease in 
sperm concentration and motility. The histological analysis further showed Sertoli 
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cell vacuolation, impaired spermatogenesis and altered permeability of the blood-
testis barrier. These findings highlight the importance of this gene in spermato-
genesis and fertility.

SOX proteins are transcription factors containing a high-mobility group (HMG) 
domain which facilitates binding and bending of DNA, allowing the transactivation 
of target genes (Giese et al. 1994; Pontiggia et al. 1994). SOX9 (Sry-related HMG 
box gene 9) is present at cytogenetic locus 17q24.3. It is one of the important genes 
that help in Sertoli cell differentiation. It performs its functions initiated by direct 
interaction with SRY. Along with male sexual development, SOX9 is involved in the 
regulation and maintenance of other male specific factors. Deletion of SOX9 in 
human and mice results in male-to-female phenotypic sex reversal, whereas Sox9 
gain-of-function and Sry-independent upregulation of Sox9 cause testis formation in 
XX individuals (Wagner et al. 1994; Foster 1996; Vidal et al. 2001; Chaboissier 
et al. 2004; Barrionuevo et al. 2006; Lavery et al. 2011). Similarly, the loss of SOX8 
has been demonstrated to result in progressive degeneration of the seminiferous 
epithelium through impaired communication between the Sertoli cells and the 
developing germ cells. A study performed to analyse the copy number variations in 
an infertile dog revealed a copy number difference in TEKT1, DNM2 and SOX8 
genes (Cassatella et al. 2013). The growth factor Fgf9 is shown to express initially 
in gonads of both sexes, but the expression shoots up in the developing testis shortly 
after the activation of SRY and SOX9 in pre-Sertoli cells (Colvin et al. 2001; Nef 
et al. 2005). Deletion of Fgf9 results in male-to-female phenotypic sex reversal 
(Colvin et al. 2001; Schmahl et al. 2004). Using in vitro and in vivo models, it has 
been demonstrated that Fgf9 acts directly on germ cells to inhibit meiosis (Bowles 
et al. 2010).

DMRT1 gene maps to the chromosomal region 9p24.3 having in common a zinc 
finger-like DNA-binding motif referred to as the “DM domain” and a nuclear local-
ization signal (Raymond et al. 1998; Ying et al. 2007). DMRT1 is chiefly expressed 
in the testis and plays a central role in testis differentiation (Raymond et al. 1998). 
DMRT1 expression is highly upregulated in undifferentiated spermatogonia, while 
it is downregulated in differentiating spermatogonia. In addition, DMRT1 represses 
male germ cell meiosis and stimulates germ cells to enter mitosis (Matson et al. 
2010). Dmrt1−/− mice showed testicular hypoplasia, disorganized seminiferous 
tubules and undifferentiated Sertoli cells. However, Dmrt1+/− males were fertile 
with normal testicular development (Raymond et al. 2000). Deletions on the short 
arm of chromosome 9 are associated with XY gonadal dysgenesis. A study utilized 
a high-resolution array CGH (comparative genomic hybridization) approach to 
observe the genomic imbalances in patients with XY gonadal dysgenesis. The study 
revealed very small partial deletions of DMRT1 gene as an unexpected finding of 
XY ovotesticular disorder of sexual development (DSD) (Vinci et al. 2007; Ledig 
et al. 2012). Deletions of DMRT1 were identified in impaired spermatogenesis cases 
(Lopes et al. 2013).
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14.3  Autosomal Pathways in Spermatogenesis

14.3.1  Infertility and Apoptosis: Eliminating the Unfit

Spermatogenesis is a dynamic process intricately regulated by germ cell prolifera-
tion and differentiation. The testis is an organ having the highest rate of all multipli-
cations in a normal male individual. Mitosis and meiosis take place in a tightly 
regulated manner to supply millions of spermatozoa without turning cancerous. 
Therefore, a process of death is required to eliminate the unwanted cells and to 
match the ratio of the germ cells with supporting Sertoli cells. Excessive prolifera-
tion of germ cells is counterbalanced by selective apoptosis of their progenies (Allan 
et al. 1992; Bartke 1995; Billig et al. 1995). The process of death can occur via 
several processes such as necrosis, apoptosis, autophagy and entosis. Apoptosis is 
the most studied and well-elucidated process of cell death in spermatogenesis. 
Apoptotic mechanisms in the testis are governed by complex interactions between 
the diverse kind of cells and their unique ability to respond to various types of 
stimuli (Hikim et al. 2003). As high as 75% of the germ cells from various stages 
undergo apoptosis in the testis (Huckins 1978).

Germ cell apoptosis within the testis is regulated by both intrinsic or mitochon-
drial pathway and extrinsic or death receptor pathway (Kawamura et al. 2004; Said 
et al. 2004; Theas et al. 2006; Yin et al. 2007; Sofikitis et al. 2008; Aitken et al. 
2011), whose execution is governed by the activation of caspase family of proteins. 
However, in the past few years, some caspase-independent pathways of apoptosis 
have also been reported (Coureuil et al. 2006). This includes the perforin/granzyme 
pathway that induces apoptosis via either granzyme B or granzyme A (Martinvalet 
et al. 2005) and the p53 pathway involved in the regulation of apoptosis induced by 
genotoxic and non-genotoxic stresses (Vogelstein et al. 2000).

Testicular germ cell apoptosis is a natural phenomenon that occurs normally and 
continuously throughout life (Bartke 1995; Billig et al. 1995). The testis of a 
4-week-old rat is reported to have large number of spermatocytes undergoing apop-
tosis; however, in adult rat, spermatogonia become the principle cells undergoing 
process of apoptosis (Billig et al. 1995). The initiation of apoptotic signalling within 
the cell is mediated via extrinsic or intrinsic pathway. Extrinsic pathway is executed 
through the stimulation of transmembrane death receptors such as Fas receptors 
localized on cell membrane. However, the intrinsic pathway is governed by the 
release of various signalling factors by the mitochondria. Candidate genes from 
both the extrinsic and intrinsic pathway are involved in maintaining the balance 
between germ cell proliferation and death (Fig. 14.1).

14.3.1.1  Intrinsic Pathway
During the migration of primordial germ cells to the developing gonad, the cells 
with abnormal migration undergo apoptosis mediated by Bcl-xl and Bax (Rucker 
et al. 2000). Heterozygous Bcl-x knockout mice [Bcl-x (+/−)] exhibit severe 
defects in male germ cell development (Kasai et al. 2003). Transgenic mice with 
Bax “knockout” or Bcl-2 or Bcl-x overexpression show an accumulation of 
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Fig. 14.1 Diagrammatic illustration of the role key apoptotic proteins in sustaining a physiological 
balance between cell proliferation and cell death. (a) A balance between anti-apoptotic and pro-
apoptotic proteins are vital for maintaining a cellular homeostasis. (b) An excess of anti-apoptotic 
proteins may result in increase in cell number (c) An excess of proapoptotic proteins may result in 
increase in cell death via apoptosis
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spermatogonial and spermatocyte population due to the elimination of the first wave 
of apoptosis resulting in the development of an infertile phenotype (Knudson et al. 
1995). Mice with Bcl-xl overexpression show an increase in germ cell death (Russell 
et al. 2001). Thus, a fine-tuning is required in order to maintain a proper balance 
between apoptosis-inducing and apoptosis-protecting proteins in the testis (Russell 

14 Autosomal Genes in Male Infertility



238

et al. 2001). In our lab, we performed a protein profiling of candidate genes from 
apoptosis pathway in impaired spermatogenesis cases. The analysis indicated a sig-
nificant expression of pro-apoptotic proteins BAX, BAD and BAK and a low 
expression of anti-apoptotic BCL2 and BCLW, the anti-apoptotic proteins. A ratio 
between pro- and anti-apoptotic genes was disturbed, which might be the reason for 
altered apoptosis in impaired spermatogenesis cases (Jaiswal et al. 2015). The testis 
of a bik (−/−) or bim (−/−) male mice develops normally but displays an infertile 
phenotype (Shaha et al. 2010). A recent report demonstrated significantly increased 
and decreased level of seminal BAX and BCL2, respectively, in infertile men with 
varicocele (Mostafa et al. 2014).

14.3.1.2  Extrinsic Pathway
FasL and its corresponding receptor, Fas, interact to form an activated Fas receptor 
complex that initiates a pro-apoptotic death signal in the receptor-bearing cell 
(Janssen et al. 2003). Fas ligand and Fas receptor expression are well studied in the 
testis (Guazzone et al. 2009). Upregulation of Fas receptor is demonstrated in asso-
ciation with spermatocyte apoptosis during the first round of spermatogenesis in rat 
(Lizama et al. 2007). The altered expression of Fas/FasL system is also associated 
with germ cell apoptosis in humans. Elevated level of FasL is associated with SCO 
(Sertoli cell-only) syndrome and MA (maturation arrest) (Kim et al. 2004), indicat-
ing a role of altered apoptosis through caspase-3 activation. Studies from our lab 
have demonstrated an increased expression of FasL in compromised spermatogen-
esis (Jaiswal et al. 2015).
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Fig. 14.1 (continued)
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14.3.2  DNA Damage, Replication and Repair Pathways: Keeping It 
Correct

Repair of DNA lesions is an indispensable requirement of a cell for maintaining 
genomic stability and to safeguard healthy propagation of species. The DNA repair 
and recombination mechanisms are highly conserved across species. Alteration of 
any of these machineries may result in repair and recombination errors, which might 
precipitate in the form of reproductive failure. A number of reports suggest the 
involvement of a series of meiotic checkpoints that may cause a spermatogenic 
arrest due to defective recombination, leading to male infertility. A study performed 
by Reijo-Pera, Martin and colleagues identified that nearly half of the infertile 
patients show measurable defects in recombination (Gonsalves et al. 2004, 2005). 
SPO11 is a topoisomerase involved in homologous recombination repair. Mice with 
disrupted spo11 show defective meiosis in both males and females (Baudat et al. 
2000; Romanienko and Camerini-Otero 2000).

The synaptonemal complex is a proteinaceous structure involved in linking 
homologous chromosomes during recombination. This aggregate is composed of 
SYCP1, SYCP2 and SYCP3 proteins known as SC. Targeted deletion of Sycp3 
resulted in male sterility and synaptic failure (Yuan et al. 2000, 2002). Mutations of 
SYCP3, the human homologue of SCP3, are reported in azoospermic infertile men 
(Miyamoto et al. 2003). FK506-binding protein 6 (Fkbp6) plays an essential role in 
maintaining fidelity of homologous chromosome pairing during meiosis and is 
important for sex-specific fertility (Crackower et al. 2003). Targeted inactivation of 
Fkbp6 mice showed lack of spermatids and absence of spermatozoa in caudal epi-
didymis and seminiferous tubules. Further analysis of nucleotide sequence revealed 
that a 93 bp region corresponding to exon 8 of the Fkbp6 gene was deleted in these 
animals, which was thus suggested as a causative factor for aspermic phenotype 
(Crackower et al. 2003).

RAD51, a recombinase protein, plays an important role in meiotic prophase by 
co-localizing with DMC1. RAD51 and DMC1 proteins are crucial during homol-
ogy and heteroduplex formation along with other associated proteins (Zenvirth et al. 
2003). Dmc1 null mice display an infertile phenotype showing gross defects in 
chromosome pairing (Yoshida et al. 1998; Pittman et al. 1998). Similarly, Rad51 
knockout mice exhibit embryonic lethality demonstrating an indispensable role of 
these proteins in meiosis and development (Thacker 1999). Analysis on a man with 
spermatocyte arrest showed an abnormal presence of BRCA1 with RAD51 absence 
in early and late spermatocytes (Sciurano et al. 2006). In case of failure of DNA 
repair, the cell cycle checkpoint genes get activated resulting in apoptosis. Numerous 
genes are elaborated in the DNA damage-induced regulation of cell cycle control. 
Mutation in one such gene, ATM, causes ataxia-telangiectasia, a genetic disorder 
characterized by radiosensitivity, defective cell cycle checkpoint activation, genomic 
instability and infertility (Meyn 1999). Men with ataxia-telangiectasia (AT) display 
gonadal atrophy and azoospermia due to meiotic arrest at zygotene-pachytene stage 
(Xu and Baltimore 1996).

14 Autosomal Genes in Male Infertility



240

Fanconi anaemia genes such as BRCA1 and BRCA2 play an important role in 
male and female fertility. Targeted deletion of the FANCA genes results in germ cell 
deficiency due to defective proliferation of germ cells (Chen and Tomkinsz 1996; 
Whitney et al. 1996; Nadler and Braun 2000; Yang et al. 2001; Meetei et al. 2003). 
Brac1-p53 double-knockout male mice were infertile due to meiotic failure 
(Cressman et al. 1999). Tp53 and Ercc1 play a fundamental role in DNA damage 
response and repair during spermatogenesis. DNA mismatch repair protein family 
is involved in DNA repair mismatches that arise predominantly during DNA repli-
cation. Their function is to ensure chromosomal integrity during meiotic recombi-
nation in most of the sexually reproducing organisms (Svetlanov and Cohen 2004). 
Msh2 and Tp53 genes display compromised germ cell function and sperm produc-
tion (Paul et al. 2007). Msh4 or Msh5 knockout mice exhibit defects in synapsis 
resulting in a failure of primary spermatocytes at the zygotene/pachytene check-
point (de Vries et al. 1999; Svetlanov and Cohen 2004). Using case- control associa-
tion approach, another study reported that rs4647269 SNP in MLH1, rs1059060 
SNP in PMS2 and rs2075789 in MSH5 may act as risk factors for azoospermia or 
oligozoospermia.

14.3.3  Hormonal/Endocrine Pathways

The hormonal control of spermatogenesis is governed by the hypothalamic- 
pituitary- testicular axis. This axis functions in a highly regulated and coordinated 
manner to produce optimal concentrations of circulating steroids that are essential 
for normal male sexual development, spermatogenesis and fertility. The hypothala-
mus secretes gonadotropin-releasing hormone (GnRH), which further stimulates 
the pituitary gonadotrophs to secrete follicle-stimulating hormone (FSH) and lutein-
izing hormone (LH). These hormones play pivotal roles in the process of spermato-
genesis. Low level of GnRH results in decreased levels of FSH and LH, which result 
in hypogonadotropic hypogonadism (HH) (Seminara et al. 2000). Idiopathic con-
genital hypogonadotropic hypogonadism (CHH) is a reproductive disorder charac-
terized by impaired pubertal development caused by gonadotropin-releasing 
hormone (GnRH) deficiency. This disorder is often characterized by low plasma 
luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels along with 
undetectable concentrations of circulating sex steroids. About 50% of CHH patients 
possess a reduced (hyposmia) or deficient (anosmia) sense of smell, termed as 
Kallmann syndrome (KS). Anosmia is associated with hypoplasia of olfactory bulbs 
and tracts. This defect is largely associated with abnormal GnRH neuron ontogen-
esis (Juan A. 1856, Kallmann 1944). Recent report suggests five KS genes that are 
associated with the Kallmann syndrome, namely, FGFR1 (Dodé et al. 2003), FGF8 
(Falardeau et al. 2008), PROKR2, PROK2 (Dodé et al. 2006) and KAL1 (Franco 
et al. 1991; Legouis et al. 1991; Hardelin et al. 1992). Insulin-like peptide 3 (INSL3) 
represents an additional regulator of the HPG axis. INSL3 belongs to insulin-like 
hormone superfamily (which also includes relaxin). In mammalian testis, INSL3 is 
a chief secreted product of the interstitial Leydig cells. This Leydig cell hormone 
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interacts with specific receptors, called RXFP2, to modulate the process of steroido-
genesis and support spermatogenesis. INSL3 receptor is predominantly found on 
spermatocytes and to a great extent on germ cells (Anand-Ivell et al. 2006). RXFP2 
is a G-protein-coupled receptor normally linked to Gs, activating adenylyl cyclase 
(Bathgate et al. 2006). In mice, the complete loss of INSL3 (Insl3−/−) results in 
abnormal gubernacular development with intra-abdominal gonads (Zimmermann 
et al. 1999; Nef and Parada 1999). Global ablation of its receptor RXFP2 results in 
cryptorchidism and infertility in male mice (Gorlov et al. 2002). Beta-catenin and 
NOTCH1 signalling pathways are the major targets of INSL3 signalling during 
gubernacular development (Huang et al. 2013). INSL3 serves as an excellent marker 
in monitoring the treatment of hypogonadal patients.

Loss-of-function mutations in the pituitary-expressed FSHβ genes did not cause 
infertility; however, they resulted in reduced testes size and reduced sperm count 
(Kumar et al. 1997). One of the essential regulatory genes for pituitary gland ontog-
eny is PROP1, which encodes a paired-like homeodomain transcription factor 
Prop1 (prophet of Pit1) (Sornson et al. 1996). Its expression appears early in embry-
onic development and is essential for somatotroph, thyrotroph, gonadotroph and 
lactotroph function and differentiation. Prop1 (mouse) and PROP1 (human) gene 
mutations reveal its significance during pituitary gland organogenesis. A homozy-
gous missense mutation (S83P) in the Prop1 gene exhibits growth insufficiency, 
hypothyroidism and infertility in Ames dwarf mice (Wu et al. 1998a, b). PROP1- 
related combined pituitary hormone deficiency (CPHD) is associated with more 
than 11 different loss-of-function and null mutations identified in humans. PROP1 
mutations cause combined pituitary hormone deficiency, including HHG and infer-
tility (Cogan et al. 1998; Dattani and Robinson 2000).

Members of the steroid receptor superfamily along with their transcriptional 
coactivators such as AR, ER, PR, RXRβ, SF1, DAX1 and SRC1 play crucial roles 
in regulating and maintaining the testicular development and spermatogenesis. 
Disruption of any of these genes may subsequently affect male development, sper-
matogenesis and fertility. Mutations in the AR gene (X linked) cause male infertility 
with a frequency of 1:60,000 of live deliveries (Hiort et al. 2000). The functions of 
oestrogens (OS) in regulating testis development and spermatogenesis are well 
known (Rochira et al. 2005). In addition to roles in spermatogenesis, the presence 
of oestrogen receptors (ORα and ORβ) on germ cells shows their importance in 
spermatogenesis (Carreau et al. 2011). Oestrogen maintains the function of sperm 
by facilitating capacitation and fertilization (Carreau et al. 2007). Physical functions 
of oestrogens are mediated through the oestrogen receptors (OR) (Ellmann et al. 
2009).

The functional significance of oestrogen has been investigated using genetically 
modified mice that lack the OR (Korach 1994). ORα, ORβ and ORαβ knockout male 
mice displayed reproductive incompetence. ORαKO mice were infertile with defects 
in epididymal fluid reabsorption (Delbès et al. 2006). ORβ knockout mice pre-
sented a 50% increase in the number of gonocytes caused by an increased prolif-
eration and decreased apoptosis. However, ORα gene increased testosterone production 
without affecting the number of gonocytes during foetal life (Delbès et al. 2005).  
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ORβ is involved in regulating neonatal gametogenesis; however, ORα controls the 
foetal and neonatal steroidogenesis. Genetic screening for the ORα and ORβ gene 
has shown several polymorphic sites associated with the pathogenesis of male infer-
tility (Gennari et al. 2005). A recent study has performed a meta-analysis on the 
single-nucleotide polymorphisms (SNPs) in oestrogen receptor genes in association 
with the risk of male infertility. The study revealed a significant association of 
rs2234693C allele with a decreased risk for male infertility; however, the 
rs9340799AA and the rs1256049GA genotypes showed an increased risk for male 
infertility (Li et al. 2014). The steroidogenic factor 1 (SF1) protein, encoded by the 
NR5A1 gene, is a member of the nuclear receptor superfamily. It is one of the key 
regulatory genes of the hypothalamic-pituitary-steroidogenic axis (Morohashi et al. 
1992; Luo et al. 1994). The SF1 protein plays a vital role in gonadal development 
and steroidogenesis. Mutations in NR5A1 have been shown to be associated with 
primary adrenal insufficiency, 46, XY gonadal dysgenesis and boys with hypospa-
dias, micropenis and bilateral anorchia (Ferraz-de-Souza et al. 2011). A group of 
researchers has analysed the frequency of NR5A1 mutations in infertile men. The 
study demonstrated that 4% of the infertile men (N = 315) with reduced sperm 
counts and sperm concentrations below one million/mL were having the mutation 
(Bashamboo et al. 2010). Recently, a lab performed a mutation screening of NR5A1 
gene in infertile patients by sequencing all exons. The investigation identified seven 
novel and one previously described missense mutation in patients with severe sper-
matogenic impairment (Ferlin et al. 2015).

14.4  Standalone Drivers from the Autosomal Store

A number of genes which we have discussed so far are involved in the regulation of 
a multitude of pathways influencing the process of spermatogenesis. However, there 
are a few autosomal genes which either function in isolation or have not yet been 
linked to biological pathways. These include DAZL, PRM1, PRM2 and CATSPER 
genes that are known to be important for spermatogenesis or sperm functions.

Deletions in the long arm of Y chromosome at Yq11.2 region are found in 
approximately 5–15% of males with spermatogenic failure. Among these cases, 
deletions involving the DAZ (deleted in azoospermia) gene family are the most fre-
quent (Reijo et al. 1996; Vogt 1998).

The DAZ gene has an autosomal homologue, DAZL (DAZ like), which is located 
on chromosome 3p24. DAZL gene is highly homologous to the DAZ gene with 83% 
similarity cDNA coding region. Both of these genes encode RNA-binding proteins 
required for germ cell development in diverse organisms (Saxena et al. 1996; Shan 
et al. 1996; Yen et al. 1996; Chai et al. 1997; Xu et al. 2001). It is believed that the 
DAZ gene evolved around 40 million years ago through a series of events involving 
transposition, recurring amplification and modification of an ancestral autosomal 
gene, DAZL (Saxena et al. 1996). Dazl knockout mice showed a loss of germ cells 
with complete absence of gamete production (Ruggiu et al. 1997). A number of 
studies however have reported that Dazl is required for germ cell development in 
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wide range of species (Ruggiu et al. 1997; Yen et al. 1996; Cooke et al. 1996; Reijo 
et al. 1996; Houston and King 2000; Lin and Page 2005).

The loss of Dazl functionality has been demonstrated to increase the level of 
germ cell apoptosis along with chromatin configuration changes in the immature 
germ cells at prenatal stage (Lin and Page 2005). Interestingly, a number of studies 
have reported the association of DAZL gene mutations with male infertility. A recent 
meta-analysis on the studies of DAZL gene polymorphism showed that A260G 
polymorphism did not correlate with oligo-/azoospermia, while A386G correlated 
with male infertility (Chen et al. 2016). However, this correlation was found only in 
China in an ethnicity-specific manner but not in India, Japan and other Caucasian 
countries (Chen et al. 2016).

Protamines are the most abundant sperm nuclear proteins which help in paternal 
genome packaging and replace histones during spermatogenesis (Bloch 1969; 
Calvin 1976; Mezquita and Teng 1977; Subirana 1983; Oliva and Dixon 1991; 
Lewis et al. 2003; Ando et al. 2012). These proteins contain a high content of posi-
tively charged amino acids, predominantly arginine that facilities their binding into 
the minor groove of DNA. Protamine gene family includes the nucleoprotein genes 
PRM1, PRM2 and TNP2 closely linked in a stretch of DNA, 13–15 kb long, one on 
human chromosome 16p13.3. Mutations in the protamine genes are found to be 
widely associated with impaired spermatogenesis, defects in imprinting, sperm 
chromatin abnormalities and DNA breaks (De Yebra et al. 1993; Cho et al. 2001; 
Miyagawa et al. 2005; Iguchi et al. 2006), which are also shown to affect sperm 
penetration functions and embryonic development (Ahmadi and Ng 1999; Kempisty 
et al. 2007). Protamine P1 is synthesized as a mature protein; however, P2 family 
proteins are formed by proteolysis from a precursor protein. The P1/P2 ratio (con-
tent of protamine P1 vs protamine P2) in the human sperm nucleus is approximately 
one. Alteration of P1 or P2 is shown to significantly affect the DNA integrity and the 
outcome of various assisted reproduction procedures (Aoki et al. 2005). Another 
important gene, TNP2, encodes for transition nuclear protein 2 that is required for 
sperm chromatin condensation. These proteins are transition proteins in the sense 
that they are replaced by protamines in the course of sperm chromatin condensation 
in the mature sperm nucleus (Steger et al. 2000; Sassone-Corsi 2002; Aoki et al. 
2005; Oliva 2006; Tüttelmann et al. 2007). Defects in TNP2 proteins are associated 
with acrosome deficiencies, defects in sperm movement through the female genital 
tract and inability of the spermatozoa to penetrate the zona pellucida (Adham et al. 
2001). These functional deformities of sperm may explain infertility in a number of 
normozoospermic cases (Carreras et al. 1990).

The cation channel of sperm (CatSper) is a sperm-specific ion channel, which 
plays an exclusive role in orchestrating various fertilization events and appears to be 
entirely evolved for male reproductive functions and fertility (Jaiswal et al. 2014; 
Singh and Rajender 2015). The CatSper channel is localized to the principal piece 
of sperm flagellum (Ren et al. 2001) and humans (Cheon et al. 2004). The disrup-
tion of CatSper alpha subunits (CatSper1–4) by knockout in mouse models results 
in channel dysfunction and infertility (Qi et al. 2007). CatSper1 and CatSper2 
mutations have been found to correlate with asthenoteratozoospermia (Avidan et al. 
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2003; Avenarius et al. 2009). In a recent microarray study, our laboratory reported 
genomic imbalance/copy number variations in two infertile brothers with reference 
to control. The analysis demonstrated a common deletion in both the patients at 
15q15.3 locus, which harboured several genes including CATSPER2. This is the 
first familial case report from India on the association of CATSPER gene deletion in 
human male infertility (Jaiswal et al. 2014).

Conclusion and Future Prospects: Anticipations from the Next-Generation Era

In the past few decades, candidate gene approach has been used to study the 
effect of gene mutations/deletions in understanding the mechanism of spermato-
genesis and infertility. The progress in the identification of genes important for 
spermatogenesis and fertility had been slow due to technical limitations. 
However, the concept of forward genetics has recently taken a big leap in the 
form of genome- wide scan. SNP microarray technology promises simultaneous 
detection of a wide range of SNPs across the whole genome. Similarly, massive 
parallel sequencing allows scanning of the whole genome for genetic and epi-
genetic variations that can affect spermatogenesis and fertility. These high-
throughput techniques allow the documentation of protein-coding mutations, 
including missense, nonsense, splice site and small deletions or insertions. These 
powerful techniques have been widely appreciated as efficient strategies for 
identifying the causes behind the pathophysiology of various complex diseases 
including male infertility. Well-planned scientific studies aided by powerful 
genome analysis tools would accelerate the discovery of new autosomal drivers 
of spermatogenesis and fertility.
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Abstract
Y chromosome harbors the male-specific region (MSY) that regulates male sex 
determination and spermatogenesis. Y microdeletions are the most common 
cause of male infertility. These deletions are found in 15–20% of patients with 
idiopathic azoospermia and 7–10% of patients with severe oligozoospermia. 
Apart from microdeletions, partial deletions in the AZFc region result in loss of 
multiple copies of Y genes and increase the risk of infertility. A few studies have 
suggested that routine screening of these deletions could help in understanding 
the etiology, offering counseling and managing infertility by natural or assisted 
methods. X being a homologue chromosome of Y has drawn attention regarding 
the presence of spermatogenic genes. A number of theories and speculations 
have been put forward that are now supported by the identification of a number 
of testis-specific or testis-predominant genes present on the X chromosome. This 
chapter provides an overview of the Y deletions and X chromosome genes that 
affect spermatogenesis or male fertility.
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Key Points
• Y microdeletions have been established to be a cause of male infertility and are 

found in high frequency in idiopathic azoospermic patients (18%), severe oligo-
zoospermic (14%), and oligozoospermic (4%) patients.

• Deletions in AZFa and AZFb with or without AZFc have severe consequences, 
resulting in Sertoli cell-only syndrome or spermatogenic arrest.

• AZFc is made up of ampliconic repeats that make it susceptible to frequent par-
tial deletions by nonallelic homologous recombination (NAHR), resulting in an 
array of spermatogenic loss phenotypes.

• Meta-analysis and cohort analysis suggest that gr/gr deletions significantly 
increase the risk of male infertility and that patients with gr/gr deletions have 
relatively low sperm count in comparison to those without deletions.

• Approximately, 1098 genes are present on the human X chromosome. Out of 
these, 99 are expressed in the testis and various cancers. Few testis-specific genes 
are present in multiple copies on the X chromosome.

• Studies have shown that copy number variations (CNVs) on the X chromosome 
may cause spermatogenic failure because these CNVs are present very close to 
the genes that show testis-specific expression.

15.1  Introduction

X and Y chromosomes are interesting as males have only one copy of each of these 
chromosomes. It is believed that the mammalian sex chromosomes evolved from an 
ordinary pair of autosomes. The divergence of X and Y chromosomes is dated back 
to about 180 million years, well before the divergence of the marsupial and placen-
tal mammalian lineages. The autosomes that became sex chromosomes in mammals 
still exist in birds as a pair of autosomes. The first step in the process of divergence 
was the acquisition of the testis-determining gene, now known as SRY (Hughes and 
Page 2015). Over a period of time, large-scale inversions and deletions on the Y 
chromosome suppressed recombination with the X chromosome, leading to accu-
mulation of unique differences between the two chromosomes. The male-specific 
region of the modern Y chromosome (MSY) harbors the genes for male sex deter-
mination and spermatogenesis.

Over this course of evolution, the X chromosome remained largely unchanged 
in size though the gene content on this chromosome also changed significantly. 
Due to the presence of the MSY region on Y chromosome, most of the initial 
studies on spermatogenesis and infertility focused on the Y chromosome, leading 
to the identification of genes that are indispensable for spermatogenesis. 
Nevertheless, it is believed that X chromosome does not merely serve as a part-
ner for recombination with Y chromosome and harbors genes important for sper-
matogenesis and fertility. There has been a lot of controversy regarding the 
presence of male-specific genes on the X chromosome. Some authors believe 
that a few male-specific genes are present on the X chromosome (Wang 2004), 
while others claim that X chromosome is enriched for spermatogenesis genes 
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(Rice 1984). This chapter highlights the role of X and Y chromosome genes that 
are important for spermatogenesis and fertility.

15.2  Y Deletions Are Common in Infertility

DNA sequencing of the Y chromosome has identified Yq region to contain an array 
of amplicons that form eight palindromes named as P1 to P8 from distal to proximal 
(Skaletsky et al. 2003). These ampliconic regions contain most of the multi-copy 
genes. Intrachromosomal recombination events between these identical repeats give 
rise to high-frequency de novo Y microdeletions. Eventually, deletions on the Y 
chromosome are the most common cause of male infertility (McElreavey et al. 
2000). These deletions are present in 15–20% of the patients with idiopathic azo-
ospermia and 7–10% of the patients with severe oligozoospermia. Y deletions map 
to the Yq region of the chromosome and belong to three non-overlapping regions, 
called as azoospermia factor (AZF).

Tiepolo and Zuffardi (1976) first reported the association between azoospermia 
and deletions in the Yq region. Subsequently, by using the STS- and YAC-based 
mapping, Vogt et al. (1996) revealed that deletions in the Yq region correspond to 
three different regions, which were later termed as AZFa, AZFb, and AZFc. Till 
date, many studies have been performed on Y microdeletions and male infertility, 
finding that the frequency distribution of Y microdeletions varies widely with ethnic 
and geographical affiliations. Foresta et al. (2001) revealed by reviewing the litera-
ture that the prevalence of Y microdeletions was highest in idiopathic azoospermic 
patients (18%) in comparison with severe oligozoospermic (14%) and oligozoo-
spermic (4%). Atia et al. (2015) screened Y microdeletions and revealed that 22% 
of patients (azoospermic and severe oligozoospermic) had at least one microdele-
tion in one or the other AZF region. A recent study on Indian population revealed 
that 3.4% of infertile men had Yq microdeletions (Sen et al. 2013). Combined anal-
ysis of all published studies across India revealed that 5.8% of infertile individuals 
had Yq microdeletions (Sen et al. 2013). They also revealed that the frequency of 
these deletions in India was 6.4% in azoospermia, 5.8% in oligozoospermia, and 
3.2% in oligoasthenozoospermia and teratozoospermia cases.

15.3  Screening of Y deletions

So far, EAA/EMQN guidelines have been recommended and used for detecting Y 
deletions (Simoni et al. 2004). These deletions are detected by PCR (polymerase 
chain reaction) amplification of selected regions of the Y chromosome. MSY-specific 
STS (sequence-tagged site) primers are used for PCR amplification (Skaletsky et al. 
2003). Specific sets of these primers amplify both unknown sequences and MSY-
specific genes (Skaletsky et al. 2003). However, a microdeletion detected using the 
STS primers cannot be regarded as a harmful or pathological deletion; it may be a 
common polymorphism (Repping et al. 2003; Fernandes et al. 2004).
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Basically, the analysis of single STS locus in each AZF region is sufficient for 
detection of deletion in AZFa, AZFb, and AZFc regions; however, analyzing two 
STS loci in each region increases the diagnostic accuracy (Simoni et al. 2004). 
Based on the experience of different laboratories and the formats of multiplex PCR, 
a fixed set of STS primers has been recommended in the guidelines for detection of 
Y microdeletions. These primers include for AZFa (sY84 and sY86), for AZFb 
(sY127 and sY134), and for AZFc (sY254 and sY255; both are in the DAZ gene). 
SRY (sY14 marker) should be included as a control for detecting the presence of 
testis-determining factor (Simoni et al. 2004). Primer sequences of these STS mark-
ers are given in Table 15.1.

As mentioned elsewhere in this article, Y chromosome also shows partial dele-
tions in the AZFc region that contribute to male infertility. Y partial deletions (Y 
subdeletion) are detected by using five STS markers (sY1161, sY1191, sY1291, 
sY1206, sY1201) specific to the AZFc region (Repping et al. 2003; Lin et al. 2006). 
Absence of sY1291 marker and the presence of all other markers indicate gr/gr 
deletions, while absence of sY1191 marker and the presence of all other markers 
indicate b2/b3 deletions. Absence of three STS markers (sY1161, sY1191, and 
sY1291) and the presence of other markers indicate b1/b3 deletions. Primer 
sequences of these STS markers are given in Table 15.1.

Table 15.1 Sequences of STS primers of Y microdeletions and partial deletions

STS 
primer Forward primer (5′-3′) Reverse primer (5′-3′)

Amplicon 
size

sY84 AGA AGG GTC TGA AAG CAG 
GT

GCC TAC TAC CTG GAG GCT 
TC

326

sY86 GTG ACA CAC AGA CTA TGC 
TTC

ACA CAC AGA GGG ACA ACC 
CT

320

sY127 GGC TCA CAA ACG AAA AGA 
AA

CTG CAG GCA GTA ATA AGG 
GA

274

sY134 GTC TGC CTC ACC ATA AAA 
CG

ACC ACT GCC AAA ACT TTC 
AA

301

sY254 GGG TGT TAC CAG AAG GCA 
AA

GAA CCG TAT CTA CCA AAG 
CAG C

400

sY255 GTT ACA GGA TTC GGC GTG 
AT

CTC GTC ATG TGC AGC CAC 126

sY14 GAA TAT TCC CGC TCT CCG 
GA

GCT GGT GCT CCA TTC TTG 
AG

214

sY1161 CGACACTTTTGGGAAGTTTCA TTGTGTCCAGTGGTGGCTTA 377

sY1191 CCAGACGTTCTACCCTTTCG GAGCCGAGATCCAGTTACCA 385

sY1291 TAAAAGGCAGAACTGCCAGG GGGAGAAAAGTTCTGCAACG 527

sY1201 CCGACTTCCACAATGGCT GGGAGAAAAGTTCTGCAACG 677

sY1206 ATTGATCTCCTTGGTTCCCC GACATGTGTGGCCAATTTGA 394
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15.4  Classical Deletions/Microdeletions

Prognostic value of Y microdeletions is not clear and has been a topic of debate 
since long. Generally, doctors or practitioners do not recommend screening of Y 
microdeletions before proceeding for ART procedures. TESE/ICSI procedures are 
usually performed for the treatment of azoospermia or oligozoospermia without 
complete diagnostic workup. TESE/ICSI procedures are highly invasive and may 
adversely affect the male (Manning et al. 1998). By these procedures, sperm could 
only be retrieved in 50% of the patients with nonobstructive azoospermia (Silber 
et al. 1995). Silber et al. (1998) revealed that complete deletions of AZFb+c or 
AZFa+b+c show total absence of testicular spermatozoa. On the contrary, Mulhall 
et al. (1997) reported that sperm could be retrieved from the testis in approximately 
50% azoospermic patients with AZFc deletions. Hopps et al. (2003) examined the 
success rate of testicular sperm retrieval in men with deletions of AZFa, AZFb, and 
AZFc regions. They reported that sperm retrieval is almost nil or poor in men with 
microdeletions of complete AZFa or AZFb regions on the Y chromosome, whereas 
most of the men with AZFc deletions have sperm either in semen or in testis. 
Therefore, the phenotypic consequences of AZFa or AZFb regions are more severe 
in comparison with deletions involving only AZFc. This also explains the low fre-
quency of AZFa and AZFb deletions.

Brandell et al. (1998) have suggested that screening of Y microdeletions has 
clinical importance and can be used as a potential prognostic test. By literature 
search, Krausz et al. (2000) analyzed the correlation between Y microdeletions and 
infertility phenotypes. They reported that different subtypes of AZFb deletions may 
exist and complete deletion of AZFb may lead to spermatogenic arrest at spermato-
cyte or spermatid stage (Vogt et al. 1996; Krausz et al. 2000). In addition to this, 
complete deletions of AZFb with AZFa and/or AZFc are associated with Sertoli 
cell-only syndrome. Krausz et al. (2000) have also revealed that if azoospermic 
patients are found with complete AZFb deletions, the possibility of sperm retrieval 
by TESE is completely nil; however, in case of partial AZFb deletions, round sper-
matids could be retrieved (Brandell et al. 1998). Further, Krausz and McElreavey 
(1999) reported that complete AZFa deletion is associated with Sertoli cell-only 
syndrome type I. Krausz et al. (2000) have also revealed that AZFc deletions are 
usually associated with hypospermatogenesis and Sertoli cell-only syndrome type 
II. Screening of Y microdeletions could help the patients in prediction of sperm 
retrieval from the testis and the success of ART procedures.

Y microdeletions are now well established as a cause of male infertility. In indi-
viduals with the above microdeletions, the chances of fertility are almost nil; how-
ever, hidden islands of normal spermatogenesis could be found in multiple biopsies 
of patients, for example, in Sertoli cell-only syndrome type II (Brandell et al. 1998). 
Oligozoospermic patients could directly proceed to ART procedures; however, 
screening of Y microdeletions could help in prediction of success of ART procedures 
and offer counseling. However, partial AZFb and complete AZFc deletions may be 
associated with oligozoospermia. Simoni et al. (1997) have reported a progressive 
decrease in sperm count over several months in patients with AZFc deletions. 
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We have also come across a few patients with AZFc deletions who showed progres-
sive loss of sperm count. Early detection of Y microdeletions in these oligozoosper-
mic cases could be useful in overcoming the problem of infertility. This way, an 
individual could escape from TESE-like invasive procedures in the future.

15.5  Partial Deletions

Among several genetic factors, Y partial deletions are a major cause of male infer-
tility (Repping et al. 2003; Tüttelmann et al. 2007; Stouffs et al. 2011). AZFc 
region is made up of highly repeated sequences, which make this region more 
susceptible to deletions. A deletion in the b2/b4 region (also referred to as b2/b4 
deletion) completely removes the AZFc region (3.5 Mb in size), which contains 
several important genes in multiple copy numbers (Repping et al. 2003). Besides 
complete AZFc deletion (B2/b4 deletions), partial deletions such as gr/gr (1.6 Mb), 
b1/b3 (1.6 Mb), and b2/b3 (1.8 Mb) are known to occur in the AZFc region. The 
effects of deletions in the AZFc region are quantitatively mild to severe spermato-
genic failure (Pryor et al. 1997; Krausz et al. 1999a, b; Foresta et al. 2001). Among 
partial deletions, gr/gr are the most frequent and major factors for male infertility. 
One study has revealed that gr/gr deletions do not completely remove important 
testis-specific genes, but reduce their copy numbers on the Y chromosome (Repping 
et al. 2003). They reported that dosage of these deleted genes affects sperm produc-
tion, which may lead to different infertility phenotypes from azoospermia to nor-
mozoospermia. Moreover, semen profiles of patients with gr/gr deletions may vary 
ethnically and geographically. In comparison with gr/gr deletions, b2/b3 deletions 
(also known as g1/g3 deletions) are less common. B2/b3 deletions do not occur 
directly but are preceded by an inversion event having occurred in this region on 
the Y chromosome.

15.5.1  gr/gr Is a Risk Factor for Male Infertility

Screening of gr/gr deletions in male infertility is still questionable. It is now con-
firmed that gr/gr deletions are present in the general population and could be detected 
in both cases and controls; however, to what extent these partial deletions contribute 
to male infertility is still unknown. Nevertheless, most of the studies have shown that 
gr/gr deletions are significantly more frequent in infertile cases in comparison with 
controls. Till date, a number of investigators have tried to find out the relevance of 
partial deletions in male infertility. Several case–control studies have been conducted 
on the correlation between gr/gr deletions and male infertility. Most of these studies 
have shown association between the gr/gr deletions (Repping et al. 2003; de Llanos 
et al. 2005; Lynch et al. 2005) and male infertility, while others have ruled out the 
possibility of an association (Ravel et al. 2006; Zhang et al. 2006; Stahl et al. 2011). 
At least three major meta-analyses have been conducted till date to quantify the 
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relationship of gr/gr deletions with infertility. All of these meta- analyses suggested 
that gr/gr deletions significantly increase the risk of male infertility [Tüttelmann 
et al. 2007: OR = 1.81, p-value < 0.00001; Stouffs et al. 2011: OR = 1.76, p < 0.001; 
Bansal et al. 2016a, b: OR = 1.821, p < 0.001]. Recently, we undertook a meta-
analysis on 29 studies with 10,948 cases and 6604 controls and observed that gr/gr 
deletions are a risk factor for male infertility (Bansal et al. 2016a, b).

In cohort analysis, we found that the gr/gr deletions result in about 25% loss 
in sperm count (Bansal et al. 2016a, b). This study supported two previous stud-
ies suggesting that gr/gr deletions correlate with poor sperm count (Visser et al. 
2009; Shahid et al. 2011). Similarly, Sato et al. (2014) also reported a negative 
correlation between the gr/gr deletions and semen quality. Stouffs et al. (2011) 
revealed by meta-analysis that gr/gr deletions had significantly higher occur-
rence in oligozoospermic group/patients in comparison with azoospermic group/
patients. This study showed that screening of gr/gr deletions can be useful in 
oligozoospermic infertile patients. Stouffs et al. (2011) had also reported that gr/
gr deletions were present both in normozoospermic presumptive controls and 
proven fertile controls. This outcome indicates that gr/gr deletions do not invari-
ably lead to fertility problems. Nevertheless, gr/gr deletions increase infertility 
risk tremendously and can result in infertility or poor sperm count that shows 
accelerated decline with age. Therefore, routine screening of gr/gr deletions is 
advised. In a recent meta-analysis and review of literature, we reported that the 
frequency of gr/gr deletions varies widely across ethnic and geographic affilia-
tions (Bansal et al. 2016a, b).

15.5.2  b2/b3 May Increase Risk in Some Ethnic Groups

A small number of studies have focused on b2/b3 deletions, with most of them sug-
gesting a lack of association between these deletions and male infertility. We 
recently reviewed the literature on b2/b3 deletions and found that most of the stud-
ies reported a higher frequency of b2/b3 deletions in infertile group in comparison 
with the control group. However, only two studies reported a significant association 
of b2/b3 deletions with male infertility (Lu et al. 2009; Vijesh et al. 2015). 
Interestingly, two other studies showed their protective association with fertility 
(Hucklenbroich et al. 2005; Sen et al. 2015). Eventually, there is a lack of consensus 
in association between b2/b3 deletions and the risk of male infertility. In a recent 
meta-analysis, we included 24 studies and found that b2/b3 deletions are signifi-
cantly associated with spermatogenesis loss/infertility (Bansal et al. 2016a, b). 
Further in-depth analysis revealed a significant association only in Mongolians and 
Negro-Caucasians, but not in Caucasians, South Asians, and Dravidian-Indians. 
The frequency of these deletions in Mongolian populations was almost the same as 
that of the gr/gr deletions (Bansal et al. 2016a, b). Due to the lack of adequate num-
ber of studies in other populations, the contribution of b2/b3 deletions in male infer-
tility risk is still unclear.
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15.6  Y Haplotypes

15.6.1  Terminology and Nomenclature of Y Haplotypes

A common nomenclature system was recommended by the Y Chromosome 
Consortium (YCC) in 2002 (Y Chromosome Consortium 2002). YCC report uses 
the terminology of de Knijff (2000). According to this terminology, haplogroup (hg) 
refers to the lineage of NRY (a nonrecombining portion of the Y chromosome), 
which is defined by binary polymorphisms, while haplotype refers to all sublin-
eages of the haplogroups defined by the variations at STRs (short tandem repeats) 
on the NRY (Hammer and Zegura 2002). The other terms such as lineage, sublin-
eage, basal lineage, clade, and subclade refer to tree branches at different hierarchi-
cal levels. Prefixes “M” and “P” denote to mutation and polymorphism, respectively 
(Underhill et al. 2000, 2001; Hammer et al. 1998, 2001). The term paragroup refers 
to lineages that belong to the clade but not to its subclades (Hammer and Zegura 
1996).

The YCC (2002) report stated two complementary nomenclature systems (Y 
Chromosome Consortium 2002; Ferlin et al. 2007). The first system is hierarchical-/
lineage-based nomenclature and is dependent on the binary polymorphisms on 
human NRY. This system uses 19 capital letters (Y and A–R) to denote the major 
clades. These capital letters are initial letters of all subsequent subclade names. 
Paragroups are distinguished by the star (*) symbol added after the clade designa-
tion. Subclades are named by alternate alphanumeric letters in lowercase.

Alternatively, a second method can be used to name the haplogroups. The format 
of this nomenclature system is “capital letter–mutation name” where capital letter 
refers to the major haplogroup and may be a letter from A to R and Y, while the 
mutation name refers to the name of the terminal mutation. Dash (−) between the 
capital letter and mutation name distinguishes this system from the lineage based. 
Due to the simplicity of this system and the widely known “M” and “P” alphanu-
meric mutational designations, this system is most likely adoptable.

15.6.2  Y Haplotypes and Male Infertility

Y haplotypes represent the genetic diversity linked to the Y chromosome due to 
single nucleotide polymorphisms (SNPs) and the linkage between them. In the past 
decades, Y haplotypes have been found to be associated with Y microdeletions or 
male infertility. Patients with approximately similar Yq microdeletions have shown 
variability in infertility phenotypes ranging from azoospermia to oligozoospermia 
suggesting that there should be some modifier genes which might produce a unique 
Y chromosome constitution that modulate the effect of genes lost due to deletion. 
Initially, Carlsen et al. (1992) reviewed the papers published in the past 50 years and 
reported that semen quality including sperm concentration is decreasing and the 
number of subfertile men is increasing. This study was supported by the work of 
Auger et al. (1995) and de Mouzon et al. (1996). By then, it was already known that 
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the Y chromosome had crucial genes for spermatogenesis (Tiepolo and Zuffardi 
1976; Nakahori et al. 1996). Based on this preliminary work, Kuroki et al. (1999) 
studied the relationship between Y haplotypes and sperm concentration in fertile 
Japanese males. They observed that mean sperm concentration correlated with Y 
chromosome type. They also reported that occurrence of azoospermia was related to 
a particular Y chromosomal lineage (a branch of D2b haplotype). Thereafter, many 
studies were conducted on different populations and regions.

Krausz et al. (2001) reported that haplotype hg 26+ [or K*(xP) haplotype accord-
ing to YCC nomenclature] was associated with male infertility in Danish popula-
tion. Among various studies, two studies (one on European population and the other 
on northwestern European population) did not find an association between Y haplo-
types and male infertility (Paracchini et al. 2000; Quintana-Murci et al. 2001). Later 
on, Repping et al. (2003) reported that D2b haplotype contained only gr/gr-deleted 
chromosomes and may be a risk factor for male infertility in Japanese population 
where this haplotype is common. They also reported that D2b haplotype is rare in 
other populations, including European and American populations. On the contrary, 
Carvalho et al. (2003) reported the lack of association between Y haplotypes and 
male infertility in Japanese men. These discrepancies in results of different studies 
may be due to differences in populations/regions.

Further, Fernandes et al. (2004) reported that b2/b3 deletions (more precisely 
DAZ3/DAZ4 deletions) are associated with haplotype N, which is an ancient lineage 
of Y haplotype and is prevalent in northern Europe and Asia. Meanwhile, Arredi 
et al. (2007) showed an association between AZFc deletions and certain Y haplo-
types in northern Italy. Puzuka et al. (2011) reported that Y-hg K* was predomi-
nantly present in infertile Latvian men. In a study on Indian population, Shahid 
et al. (2011) revealed that Y-hg L1 was present in patients with b1/b3 deletions, 
whereas Y-hg H1a1 and H1b were present in normozoospermic individuals with gr/
gr deletions. Choi et al. (2012) reported that gr/gr deletions were significantly asso-
ciated with impaired spermatogenesis in Korean men with YAP− lineage, but not in 
YAP+ lineage. Further, Lu et al. (2013) showed that the distribution of Y hap-
logroups (Y-hgs K* and O3e*) was significantly different between cases and con-
trols in Han Chinese population. They found that Y-hg K* was significantly 
predisposed to nonobstructive azoospermia, while Y-hg O3e* had a protective effect 
against the same. After deep analysis, they revealed that overdosage of DAZ gene 
(DAZ duplication) was significantly more frequent in Y-hg K* in comparison with 
Y-hg O3e*.

Sato et al. (2013) revealed that Y-hg d2* lineage is associated with azoospermia 
in Japanese males. Similarly, Ran et al. (2013) reported that Y-hgs F*, K*, P*, and 
N1* may be susceptible to spermatogenic impairment in southwest China, while 
Y-hg O3 may show a protective effect. Recently, Sato et al. (2015) hypothesized that 
Y haplotypes may be associated with sex hormone levels. By conducting a study on 
a Japanese population, they observed that haplogroup D2a1 was significantly asso-
ciated with high LH levels. From the above studies, it is now clear that Y hap-
logroups are undoubtedly correlated with male infertility, though genetic 
backgrounds provide various phenotypic responses from none to severe. In the 
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future, Y haplotype analysis, particularly in studies on Y-deletions, is encouraged as 
genetic background can significantly manipulate the outcome of Y microdeletions/
partial deletions.

15.7  Genes on the X Chromosome

There has been a lot of controversy regarding the presence of male-specific genes 
on the X chromosome. Some authors believe that a few male-specific genes are 
present on the X chromosome (Wang 2004), while others claim that X chromosome 
is enriched for spermatogenesis genes (Rice 1984). In this context, some theories 
have been proposed based on the evolutionary feminization or masculinization of 
the X chromosome. These theories include hemizygous exposure hypothesis or 
Rice hypothesis, sexual antagonism-driven X inactivation hypothesis (SAXI), and 
meiotic sex chromosome inactivation (MSCI) (Stouffs and Lissens 2012). Loss of 
fertility in Klinefelter’s syndrome (KS) patients explains the significance of X chro-
mosome genes in testicular homeostasis and germ cell development. A group of 
researchers recently performed a transcriptome analysis of testicular biopsies 
obtained from six non-mosaic KS patients with azoospermia. The analysis revealed 
a differential upregulation and downregulation of 656 and 247 transcripts, respec-
tively. Majority of the transcripts belonged to Sertoli and Leydig cell functions 
(D’Aurora et al. 2015).

Rice hypothesis favors the masculinization of the X chromosome. According to 
this hypothesis, recessive mutations with beneficial or positive effects for men will 
accumulate on X chromosome. If the mutation is deleterious, it will not affect females 
and will survive because it would require two copies to show its effect. On the con-
trary, the male is hemizygous (having only one copy of X chromosome); therefore, 
beneficial effects of mutation for men will appear immediately. Thus, the genes/
alleles beneficial for men or spermatogenesis will enrich on the X chromosome.

Sexual antagonism-driven X inactivation hypothesis (SAXI) favors feminization 
of the X chromosome. Sexual antagonism refers to a condition, in which a mutation 
shows positive effects on one sex, but negative on the other. According to this 
hypothesis, since females have two copies of X chromosome, X-linked mutations 
with beneficial effects for women are more likely to fix on the X chromosome, even 
if they are detrimental to men.

Meiotic sex chromosome inactivation (MSCI) is also referred to as meiotic 
silencing of unsynapsed chromatin (MSUC) and is a process by which X chromo-
some is inactivated during the male meiosis. This process is different from X chro-
mosome inactivation or lyonization and is independent of the XIST gene. MSCI 
favors the feminization of X chromosome. Due to MSCI, most of the genes on X 
chromosome are suppressed from meiosis onward. Consequently, it becomes an 
unfavorable place for meiotic and postmeiotic genes on the X chromosome; there-
fore, genes relocate themselves from X chromosome to autosomes by retroposition. 
However, variations in theories on the gene content of the X chromosome may be 
explained as researchers examine different species and different gene pools.
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15.8  X-Linked Testis-Specific or Testis-Enriched Genes

Ross et al. (2005) suggested that 1098 genes are present on the human X chromo-
some, of which 99 are expressed in the testis and various cancers. These genes are 
categorized as cancer–testis (CT) group. Several genes have been identified which 
are linked to X chromosome and specially expressed/enriched in the testis. Out of 
these, some have homologues/genes in both human and mouse. These genes include 
AKAP4/AKAP82, ARPT1/ACTRT1, CPXCR1, DMRT8, ESR1, FATE1, FMR1NB, 
LUZP4, NUDT10, NUDT11, PABPC1L2A/B, PAK3, RHOXF1, RHOXF2, TAF7L, 
TEX11, TEX13A, TEX13B, TGIF2LX, TKTL1/TKR, and USP26. Some genes are 
present only in humans: CXorf61/CT83, DDX53/CAGE, GLUD2, H2BFWT, 
MYCL2, PASD1, and SAGE1. Some genes such as Tex16, Tsga8/Halp-X, and Tsx 
are present only in the mouse.

These enriched genes play various roles in the testis. Some genes work as tran-
scription factors, such as DMRT8 (Veith et al. 2006), RHOXF1 (Wayne et al. 
2002; Geserick et al. 2002), RHOXF2 (Wayne et al. 2002), TAF7L (Pointud et al. 
2003; Cheng et al. 2007), and TGIF2LX (Blanco-Arias et al. 2002), while others 
play different roles during the development, organization, and spermatogenesis, 
e.g., AKAP4 is a part of sperm fibrous sheath, TEX11 plays a role in meiotic 
recombination, GLUD2 participates in glutamate metabolism, USP26 plays a role 
in deubiquitination, and FATE1 participates in testicular differentiation/germ cell 
development.

Some testis-specific genes are found in multiple copies on the X chromosome. 
Out of these genes, some have homologues in both human and mouse such as 
FTHL17 (4 copies), H2AFB1 (3 copies), MAGE family (>24 copies), NXF (4 cop-
ies), SPANX genes (9/11 copies), and SSX family (>10 copies). Some are present 
only in humans, e.g., CSAG (4 copies), CT45 (4 copies), CT47 (>13 copies), CTAG 
(3 copies), FAM9 (3 copies), GAGE family (13–39 copies), PAGE family (7 cop-
ies), VCX (4 copies), and XAGE family (14 copies), while genes such as Cypt (7 
copies), Srsx (~14 copies), Sstx (3 copies), and Slx (>25 copies) are present only 
in mouse.

15.9  Mutation Analysis of Human X-Linked and Testis- 
Enriched Genes

15.9.1  A-Kinase Anchor Protein 4 (AKAP4)

AKAP4 gene belongs to the family of A-kinase anchor proteins. This protein is cru-
cial for tyrosine phosphorylation, which is essential for sperm capacitation. Miki 
et al. (2002) revealed that disruption of Akap4 protein in mice resulted in infertility. 
These mice had shortened flagella, which led to immotile spermatozoa. Though no 
differences have been observed in the expression and location of AKAP4 proteins 
between patient and control groups (Turner et al. 2001a, b), Bacetti et al. (2005a, b) 
have reported partial deletions in the AKAP4 and AKAP3 genes in one patient with 
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fibrous sheath dysplasia (Baccetti et al. 2005a, b). Further, Visser et al. (2011) 
reported a mutation (c.887G>A; p.Gly296Asn) in theAKAP4 gene, which was pres-
ent only in infertile patients (Visser et al. 2011).

15.9.2  Fetal and Adult Expressed 1 (FATE1)

This gene is highly expressed in the testis and to a lesser extent in the brain, heart, 
kidney, lung, and adrenal gland (Olesen et al. 2003). Cytoplasmic expression of this 
gene has been seen in spermatogonia, primary spermatocytes, and Sertoli cells, but 
not in spermatid and spermatozoa. Olesen et al. (2003) reported two mutations 
(c.185T>C or p.I34T and c.459C>G or p.S125R) in this gene, which were present 
in two (one in each) patients out of 144 infertile males, but not in controls (n = 100).

15.9.3  TATA Box Binding Protein-Associated Factor 7 Like (TAF7L)

Homologue of this gene, Taf7, is found on the autosome and is expressed ubiqui-
tously. A study has shown that TAF7L protein expression changes from cytoplasm 
to the nucleus after meiosis (Pointud et al. 2003). Since autosomal TAF7 is expressed 
in the nucleus, it is expected that function of TAF7 in the nucleus is replaced by 
TAF7L after meiosis. Cheng et al. (2007) using Taf7l−/Y mice revealed that all 
females were fertile, while male mice had low sperm count as well as abnormal and 
immotile sperm cells. Akinloye et al. (2007) found that 1371G>A mutation in this 
gene was present more often in the patient group (nonobstructive azoospermic; 
n = 3/41) in comparison with the control group (n = 1/80). They suggested this 
mutation to be a risk factor for infertility in humans.

15.9.4  Ubiquitin-Specific Peptidase 26 (USP26)

This gene encodes a member of ubiquitin-specific processing (UBP) family of pro-
teases and is a deubiquitinating enzyme with His and Cys domains. Lin et al. (2011) 
revealed that USP26 is especially expressed in mice testis. They also observed that 
protein product of this gene is present at the blood–testis barrier (BTB) and on acro-
some of round spermatid and spermatozoa where sperm cells attach to the Sertoli 
cells. Several variations have been observed in this gene; however, only three muta-
tions (c.370_371 insACA, c.494T>C, and c.1423C>T) have been studied exten-
sively. A study performed in 2005 suggested a correlation between this cluster of 
genes and spermatogenesis defects (Stouffs et al. 2005). However, a meta-analysis 
involving eight studies ruled out any such association. According to Dirac and 
Bernards (2010), this gene is involved in the regulation of androgen receptor ubiq-
uitination. These authors investigated the effect of four variants (c494T>C, 
c.1037T>A, C.1090C>T, and c1423C>T) on transcriptional activity of the andro-
gen receptor gene; however, no change in transcriptional activity of AR with mutant 
USP26 protein in comparison with the wild type was observed.
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15.10  Genes on the X Chromosomes with a Homologue 
on the Y Chromosome

Some genes on the X chromosome have a homologue on the Y chromosome. These 
include AMELX, DDX3X, EIF1AX, KDM5C, KDM6A, NLGN4X, PCDH11X, 
PRKX, RBMX, RPS4X, SOX3, TBL1X, TGIF2LX, TSPYL2, USP9X, VCX, and ZFX 
genes. Out of these, two genes (VCX and TGIF2LX) are expressed in the testis only. 
Though no mutational study is available on these genes, a study in 2005 revealed 
that VCX gene has a potential role in mental retardation (Van Esch et al. 2005). 
However, it is less likely that a testis-specific gene may participate in mental retar-
dation; therefore, reinvestigation of the expression pattern of these genes is required.

15.11  X-Linked Copy Number Variations and Male Infertility

Though several genetic factors have been studied extensively for the etiology of 
male infertility, X-linked copy number variations (CNVs) have been less explored. 
Copy number variations are structurally variant regions of the genome, which may 
differ from individual to individual in the number of copies of that region. These 
CNVs are larger than 1 kilobase (kb) in size and are gains and losses of genomic 
DNA. These CNVs are either microscopic or submicroscopic and therefore cannot 
be detected by standard G-banding karyotyping. Latest techniques, such as array- 
comparative genomic hybridization (a-CGH) and next-generation sequencing 
(NGS), have provided new insights into the presence of CNVs in the genome and 
their roles in diseases. At present, CNVs are thought to cover about 10% of the 
genome and a large part of the X chromosome; however, very little is known about 
their role and correlation with infertility. Tüttelmann et al. (2011), for the first time, 
studied CNVs in infertile patients with severe oligozoospermia and Sertoli cell-only 
syndrome. They revealed that X-linked CNVs were significantly higher in patients 
with Sertoli cell-only syndrome. They detected a duplication in CXorf48 gene in 
two oligozoospermic patients and 23 “private” CNVs only in one patient (Tuttelmann 
et al. 2011). Recently, a case–control study conducted on 276 idiopathic infertile 
patients and 327 controls revealed that difference in duplication load (CNVs) 
between patients and controls was highly significant (Chianese et al. 2014). They 
also concluded that CNVs might cause spermatogenic failure because these CNVs 
were patient specific and were found very close to the genes that show testis-specific 
expression (Chianese et al. 2014).

 Conclusion
X and Y chromosomes are believed to have originated from a pair of autosomes 
that later specialized in the function of sex determination and fertility. Males 
have one copy of each of these chromosomes, making them very penetrating for 
their variations and interesting for their functions. Since Y harbors the MSY 
region, deletion analysis of Y chromosome started soon after the identification of 
the role of Y chromosome in sex determination. Now Y microdeletions have 
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been established as a cause of male infertility. The AZFc partial deletions caught 
attention a little later, and a number of studies have emphasized on their impor-
tance as infertility risk factors. Meta-analyses have established that gr/gr dele-
tions are a significant risk factor, while b2/b3 deletions may confer infertility risk 
in an ethnic-specific manner. B1/b3 deletions are relatively rare and need further 
investigation to understand their importance in infertility. X chromosome cer-
tainly harbors a number of genes with testis- specific or testis-predominant 
expression. Knockout studies have revealed the importance of a number of X 
chromosome genes in spermatogenesis and fertility; however, only a few muta-
tion studies in humans have been conducted. Therefore, X chromosome genes 
need further investigations in human male infertility that may be guided by 
mouse knockout studies.
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16Male Infertility: An Epigenetic 
Perspective
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Abstract
Besides known genetic and environmental factors, research over the last two 
decades has shed light on several epigenetic mechanisms and their association 
with male infertility. The male germ line undergoes extensive epigenetic remod-
eling throughout fetal to adult life and is thus susceptible to environmental fac-
tors that can affect fertility. During fetal life, the primordial germ cells undergo 
removal of epigenetic marks (demethylation) followed by re-establishment of 
these marks according to the sex of the fetus, at the time of gonadal differentia-
tion. Extensive programming of the epigenome occurs during the various phases 
of spermatogenesis, i.e., mitosis, meiosis, and spermiogenesis, leading to 
haploid- condensed spermatozoa with protamines as the major nucleoproteins. 
Shortly after fertilization, the sperm chromatin decondenses and the protamines 
are replaced by histones. The male pronucleus undergoes active demethylation. 
One such epigenetic phenomenon, genomic imprinting resulting in monoallelic 
expression of genes depending on the parent of origin, is involved in early 
embryogenesis. Aberrant methylation pattern of imprinting control region (ICR) 
of imprinted genes in the spermatozoa is associated with altered sperm morphol-
ogy, count, and motility. This chapter provides a comprehensive overview of the 
epigenetic changes affecting spermatogenesis and male fertility.
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Key Points
• The male germ line undergoes extensive epigenetic remodeling throughout fetal 

to adult life. Thus, it is susceptible to adverse environmental changes affecting 
germ cell maturation and fertility.

• Extensive epigenetic programming occurs during the various phases of sper-
matogenesis, i.e., mitosis, meiosis, and spermiogenesis, leading to haploid- 
condensed spermatozoa with protamines as the major nucleoproteins.

• Aberrant methylation of imprinting control region (ICR) of imprinted genes in 
spermatozoa is associated with altered sperm count, motility, and morphology.

• Inclusion of male epigenetic diagnostics in routine clinical investigations will be 
beneficial for infertility management and for selection of cases that will benefit 
from assisted reproductive technology (ART).

• Extensive research is required to decide on the type of epigenetic tests/parame-
ters that can be included in routine clinical investigations for spermatozoa.

16.1  Introduction

Epigenetics is the study of heritable changes affecting gene expression that are not 
caused by changes in the underlying DNA sequence. Epigenetics can also be con-
sidered as a switch that regulates gene transcription in response to various environ-
mental factors, leading to phenotypic changes essential for survival. Epigenetic 
modifications are mainly of three types: DNA methylation, histone modifications 
and noncoding RNAs.

The methylation of cytosine residues in a CpG (5'-C-phosphate-G-3′) dinucleotide 
in the DNA is the most well-studied epigenetic modification in mammals. Methylation 
of CpG-rich regions leads to silencing of gene expression, whereas unmethylated 
CpG regions are transcribed owing to being more accessible to transcription factors. 
DNA methyltransferases (DNMTs) are a group of enzymes regulating the process of 
DNA methylation and are involved in establishment and maintenance of methylation 
marks on the DNA. DNMT3A, DNMT3B and DNMT3L are responsible for estab-
lishment of methylation marks, a process which is independent of DNA replication 
cycles during early embryogenesis, whereas, DNMT1 is a maintenance methyltrans-
ferase which restores methylation patterns following DNA replication. DNMT3L 
lacks catalytic activity and acts as a cofactor to DNMT3A. Recently, 10–11 transloca-
tion (TET) family of proteins have been identified, which act as DNA demethylases 
and are responsible for catalyzing the removal of methyl groups from the DNA. Thus, 
the expression of both DNMTs and TETs is important to understand the role of DNA 
methylation in health and disease (Ni et al. 2016).

Another mechanism of epigenetic control of gene transcription is through the mod-
ification of histones. The N-terminal tails of histones are modified at specific amino 
acid residues. The presence of different modified histones associated with specific 
gene loci is an indicator of the transcriptional activity of genes (Sawan and Herceg 
2010). The association of trimethylated histone 3 at lysine 4 (H3K4me3) and histone 
3 acetylation (H3ac) at the promoter region marks an actively transcribing gene, while 
trimethylated histone 3 at lysine 27 (H3K27me3) and at lysine 9 (H3K9me3) is indic-
ative of repression of gene expression (Boyer et al. 2006; Ho et al. 2015).
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Noncoding RNAs (ncRNAs) forms the third mechanism of epigenetic regulation 
of gene transcription (Fig. 16.1). Noncoding RNAs are generally classified as small 
noncoding RNAs:  microRNAs and piwi-interacting RNAs (piRNAs) and long non-
coding RNAs. These ncRNAs regulate gene expression at the level of transcription, 
RNA stability and translation (Tsai et al. 2010).

Spermatogenesis is a sequential process, which involves the production of sper-
matozoa from spermatogonial cells. It takes place in three phases: spermatogonial 
proliferation by mitosis, meiotic division of primary spermatocytes, and differentia-
tion into haploid sperm cells by the process of spermiogenesis (de Kretser and Kerr 
1994). Each of these phases involves extensive epigenetic programming, starting 
from the primordial germ cells (PGCs) in fetal life. The PGCs undergo genome- 
wide DNA demethylation and histone modifications such that the PGCs in the males 
are only ~10% methylated when they enter the genital ridge. Subsequently, de novo 
DNA methylation occurs until meiosis, to establish sperm and oocyte-specific epi-
genetic marks and silence the retrotransposable elements (Oakes et al. 2007; Tseng 
and Liao 2015).

Several studies have shown the involvement of both DNA methylation and his-
tone modifications in various aspects of meiosis in males, namely, chromosome 
condensation, pairing, recombination and XY body formation. Another major epi-
genetic reorganization occurs post-meiosis, during the process of spermiogenesis, 
when the histones are replaced by protamines leading to a highly condensed sperm 
nuclear chromatin (Zamudio et al. 2008). These epigenetic modifications have been 
found to be involved in the etiology of idiopathic male infertility (Aston et al. 2012). 
The following sections discuss how the epigenetic modifications affect male 
fertility.

16.2  DNA Methylation

The role of DNA methylation in the male germ line is evident from a number of 
studies. The DNMTs are expressed in the male germ cells in a developmentally 
regulated fashion. Male mice deficient in Dnmt3l are infertile due to complete lack 
of germ cells and a decrease in global DNA methylation (Oakes et al. 2007). In the 
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Fig. 16.1 Overview of the epigenetic causes of male infertility
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absence of Dnmt3l, chromosomes do not form heterochromatin appropriately, thus 
failing to pair during meiosis I. This leads to the activation of retrotransposons and 
repeat elements resulting in a “meiotic catastrophe” (Bourc’his and Bestor 2004). 
Disruption of Dnmt3a in germ cells results in loss of methylation at imprinted genes 
leading to infertility (Kaneda et al. 2004).

Genome-wide DNA methylation patterns in the spermatozoa are different from 
other somatic tissues as observed in mice and humans (Oakes et al. 2007). This is 
due to a reprogramming event that occurs in the PGCs of the developing embryo 
(Reik et al. 2001; Oakes et al. 2007). In the PGCs of mice, DNA methylation marks 
on imprinted genes and repetitive elements are erased between days 10.5 and 12.5 
of gestation. In males, these marks are re-established around 15.5 dpc and 17.5 dpc 
on imprinted genes and repeated sequences, respectively. De novo DNA methyla-
tion and demethylation takes place in the early phases of spermatogenesis and are 
completed by the end of pachytene stage during meiosis (Oakes et al. 2007).

Studies in mice and humans have demonstrated that male gametogenesis occurs 
without significant changes in 5mC, but involves a dynamic change in 
5- hydroxymethylcytosine (5hmC). This indicates that during spermatogenesis, 
there is a reduction in DNA demethylation leading to retention of methylation 
marks in mature sperm (Nettersheim et al. 2013; Ni et al. 2016). Interestingly, hypo-
methylated promoters in the mature sperm trigger transcription and production of 
signaling factors required for early embryo development. In mammals, appropriate 
sperm DNA methylation is essential for both fertilization and early embryo viabil-
ity. The main sites for methylation in germ cells are the non-CpG island sequences 
in both distinct loci and repetitive sequences, although CpG islands (CGIs) can also 
be methylated (Oakes et al. 2007). Recently, Ichiyanagi et al. reported that non-CpG 
methylation is present within and around B1 retrotransposon sequences in mitoti-
cally arrested fetal pro-spermatogonia and reaches its highest level by birth. The 
level decreases in the neonatal period after the resumption of mitosis and is eventu-
ally absent in spermatogonia (Ichiyanagi et al. 2013). However, the biological role 
of non-CpG methylation remains unknown.

The male germ line undergoes two waves of genome-wide DNA demethylation: 
the first, in paternal pronucleus shortly after fertilization and, the second, in PGCs 
(Reik et al. 2001; Hajkova et al. 2002). TET (1–3) dioxygenases are essential for 
active DNA demethylation in the paternal pronucleus. All three TETs are detectable 
at the mRNA and protein level in the spermatozoa. Ni et al. reported that normal men 
exhibited higher levels of TET (1–3) enzymes in spermatozoa as compared to men 
with oligozoospermia and/or asthenozoospermia. They also reported that levels of 
TET3 in spermatozoa were significantly associated with high fertilization rates and 
that of TET2 was significantly associated with healthy pregnancy (Ni et al. 2016).

Evidences pertaining to the involvement of epigenetic mechanisms in male fer-
tility were initially obtained from mice treated with a demethylating agent, 5-aza- 
20-deoxycytidine. A significant reduction in sperm counts, testis and epididymis 
weights and litter size was observed (Doerksen and Trasler 1996; Kelly et al. 2003). 
However, it took several years to clearly demonstrate that besides DNA methyla-
tion, other epigenetic mechanisms are also linked to male fertility (Table 16.1) 
(Boissonnas et al. 2013).
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Several studies have shown altered sperm DNA methylation patterns in genes 
associated with spermatogenesis, such as methylene tetrahydrofolate reductase 
(MTHFR), which plays an important role in folate metabolism; cAMP-responsive 
element modulator (CREM), which is associated with spermiogenesis; and deleted 
in azoospermia-like (DAZL) gene, which is involved in germ line establishment and 
gametogenesis (reviewed by Boissonnas et al. 2013). A study by Jenkins et al. in 
two participant groups with similar semen characteristics revealed that hypomethyl-
ation at two genomic loci, HSPA1L and HSPA1B (members of the heat shock pro-
tein family), was associated with decreased fecundity (Jenkins et al. 2016). 
Urdinguio et al.  for the first time studied genome-wide DNA methylation profiles 
in the spermatozoa of patients with unexplained infertility versus that of fertile indi-
viduals and identified about 3000 CpG sites, which displayed aberrant methylation. 
Among these genes, they found two CpG sites, associated with insulin-like growth 
factor 2 (IGF2) and heat shock 70 kDa protein 6 (HSPA6) genes, having altered 
methylation, which was also observed by Pacheco et al. However, further studies are 
necessary to elucidate the mechanisms underlying such alterations and their signifi-
cance for male infertility (Urdinguio et al. 2015;  Pacheco et al. 2011).

16.3  Histone Modifications and Chromatin Remodeling

In addition to DNA methylation, histone modifications and chromatin remodeling 
are important during spermatogenesis. Acetylation of H3 and H4 lysine residues 
and methylation of H3K4 are required for differentiation of spermatogonial stem 
cells and later diminish during meiosis. In males, during meiosis, chromosome con-
densation is correlated to phosphorylation of the histone variant H2AX (γH2AX) 
and gene silencing (Fernandez-Capetillo et al. 2003). Phosphorylation of H2AX 
usually occurs in response to DNA double-strand breaks (DSBs). H3K4 mono-, di-, 
and trimethylation and H3K9me2 are important for chromosome pairing and DNA 
DSBs formation. Histone methyltransferases Suv39h1, Suv39h2, and G9a which 
are responsible for tri-, di- and mono-methylation of H3K9 have been implicated to 
play a role during meiosis. In the Suv39h-deficient mice, spermatocytes undergo 
apoptosis in the pachytene stage due to incomplete homologous chromosome pair-
ing and synapsis (Peters et al. 2001). In the G9a germ lineage-specific knockout 
mice, there was failure of synaptonemal complex formation and hence the sper-
matocytes were unable to progress beyond pachytene stage (Tachibana et al. 2007). 
Specific lysine demethylases expressed during gametogenesis are important for 
meiotic progression (Nottke et al. 2009). In males, the sex chromosomes are heter-
ologous and undergo recombination at the pseudoautosomal regions, while the 
other regions on these chromosomes undergo transcriptional silencing, also known 
as meiotic sex chromosome inactivation (MSCI), thus forming XY (sex) body. 
γH2AX phosphorylation brought about by ATX and BRCA1, is involved in this 
inactivation. To maintain MSCI throughout the pachytene stage, several histone 
modifications are involved, namely, ubiquitylation of H2A; sumoylation; methyla-
tion of H3K27; di-methylation of H3K9, H4K20, H3K79 and H3K27; 
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trimethylation of H3K9 and H4K20; and deacetylation of H3K9, H4K12 and 
H4K16. Methylation of H3K9 and H3K27, which are repressing modifications, 
increases during meiosis and removal of H3K9 methylation at the end of meiosis is 
essential for the onset of spermiogenesis (reviewed by Zamudio et al. 2008). In 
addition, hyperacetylation of H4 occurs in elongated spermatids and is an important 
prerequisite for histone-to-protamine exchange during spermiogenesis.

During spermiogenesis, after the completion of meiosis, the genome of the round 
spermatid undergoes major changes to ensure efficient packaging of the male 
genome for its safe travel in the female reproductive tract. The somatic histones get 
replaced by testis-specific histones that in turn are substituted by transition proteins, 
which is then followed by tight packaging with protamines. The elongating sperma-
tids also undergo other maturational events that affect motility and fertilizing ability 
during the period of protamine replacement (reviewed by Stuppia et al. 2015). 
Recent study has shown that the replacement of histones by protamines is not com-
plete and 5–15% of the sperm chromatin is nucleosomal in humans. This nucleoso-
mal structure is retained at specific gene loci, which are important in early 
embryogenesis (Hammoud et al. 2009).

The ratio of the two protamines P1 and P2 and their phosphorylation status are 
important for optimal sperm function. The P1/P2 ratio in fertile men ranges from 
0.8 to 1.2 (Carrell and Liu 2001). Higher or lower values are associated with poor 
semen quality, increased DNA damage, and decreased fertility (Aoki et al. 2005; 
Stuppia et al. 2015). Protamine deficiency was found to be associated with an 
increase in methylation and a decrease in hydroxymethylation of the male pronu-
cleus chromatin. Also, the efficiency of fertilization in protamine-deficient sperm 
cells was less than normal (Rajabi et al. 2016).

16.4  The Epitranscriptome

Abnormal sperm DNA methylation levels are associated with altered semen param-
eters (Aston et al. 2012). Apart from DNA, several mRNAs, miRNAs, and piwi- 
interacting RNAs (piRNAs) present in the sperm are also important for male fertility 
(Hamatani 2012; Liu et al. 2012; Sendler et al. 2013; Johnson et al. 2015). Epigenetic 
modifications of RNA, including methylation, are being investigated for their con-
tribution in epigenetic regulation. Till date, more than 100 types of RNA modifica-
tions, occurring in mRNA, tRNA, rRNA, and small nuclear RNA (snRNA), have 
been identified (Sun et al. 2016). Among these modifications, N6-methyladenosine 
(m6A) modification is the more prevalent in mammalian mRNA (Yue et al. 2015).

m6A modification was first reported by Desrosiers et al. (1974). The regulation 
of m6A modification is brought about by functional interplay between m6A methyl-
transferases and demethylases (Klungland and Dahl 2014). The methyltransferase 
complex consists of methyltransferase like 3 (METTL3), methyltransferase like 14 
(METTL14), and Wilms’ tumor 1-associated protein (WTAP). It catalyzes the for-
mation of m6A with S-adenosyl-L-methionine (SAM) as the methyl donor. 
METTL14 and METTL3 form a stable heterodimer to mediate mammalian nuclear 
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m6A methylation. WTAP itself has no methyltransferase activity, but it can affect 
cellular m6A by interacting with the METTL3-METTL14 complex (Liu et al. 2014). 
The alpha-ketoglutarate and Fe2+- dependent dioxygenase fat mass and obesity- 
associated protein (FTO) and AlkB family member 5 protein (ALKBH5) are func-
tionally similar to the DNA demethylase enzyme, TET. YTHDF domain family 2 
protein (YTHDF2) regulates RNA stability, translation, splicing, transport, and 
localization through selective recognition of methylated RNA. Thus, methyltrans-
ferases act as “writers,” demethylases serve as “erasers” and m6A-selective-binding 
proteins (YTHDF) represent “readers” of m6A in mRNA (Ben-Haim et al. 2015).

The expression of the FTO gene and m6A levels are inversely proportional dur-
ing adipogenesis (Zhao et al. 2014) and in type 2 diabetes mellitus (Shen et al. 
2015). In 1997, Bokar et al. first revealed that METTL3 (MT-A70) was expressed in 
several human tissues, with the highest levels being in the testis (Bokar et al. 1997). 
A recent  study demonstrated that male mice deficient in Alkbh5 showed an increase 
in m6A levels in the mRNA and reduced fertility due to compromised spermato-
genesis (Zheng et al. 2013). Recently, Yang et al. showed that m6A levels and 
expression of METTL3 and METTL14 were found to be significantly higher in 
spermatozoa obtained from asthenozoospemic individuals compared to controls 
suggesting that it could be one of the risk factor for asthenozoospermic condition 
(Yang et al. 2016).

16.5  Noncoding RNAs

There are three types of noncoding RNAs: Dicer-dependent miRNAs, long noncod-
ing RNAs and Dicer-independent piRNAs which are expressed in male germ line. 
The miRNAs are the well-studied noncoding RNAs that are shown to affect sper-
matogenesis (Moazed 2009). These noncoding RNAs regulate gene expression by 
degrading their target mRNAs or by either activating or repressing translation 
(Gangaraju and Lin 2009). Transcription of miRNAs is carried out by polymerase II 
into large precursors which are later processed by a ribonuclease, DROSHA, and 
DGCR8, a DiGeorge syndrome critical region 8. These processed forms are then 
delivered into the cytoplasm, where they are further processed by an endonuclease 
known as Dicer into functional 20–24 nucleotide mature form and then incorpo-
rated into a RNA-induced silencing complex (RISC complex). It has also been 
observed that testis-specific DROSHA or DICER knockout models show arrested 
spermatogenesis (Korhonen et al. 2011; Hayashi et al. 2008; Wu et al. 2012).

Several miRNA precursors ranging from 100 to 150 nucleotides, also known as 
the pri-miRNAs, are found in spermatozoa. Pri-miRNA-181c is the most commonly 
found immature miRNA in mature human spermatozoa. The targets predicted for 
this miRNA are known to be involved in early embryonic development (Sendler 
et al. 2013; Vassena et al. 2011).

Several studies have demonstrated the association between altered miRNA pro-
file and human male infertility. Testicular miRNA profiling identified several miR-
NAs to be dysregulated in patients with Sertoli cell only (SCO) syndrome, 
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asthenozoospermia, mixed atrophy (MA) and germ cell arrest (GA) compared to 
healthy fertile males (reviewed in Gou et al. 2014). Interestingly, several SNPs (sin-
gle nucleotide polymorphisms) are found in binding sites of miRNA of various 
candidate genes that are significantly associated with male fertility, which in turn 
may alter the expression of these genes thereby increasing the risk of infertility 
(reviewed in Gou et al. 2014). miRNAs are known to be a part of several biological 
fluids, which include seminal plasma. Wang et al. have demonstrated that the 
miRNA profiles of patients with abnormal morphology/motility or nonobstructive 
azoospermia were significantly altered compared to miRNA profiles of seminal 
plasma from healthy donors (Wang et al. 2011). Similarly, Salas-Huetos et al. have 
demonstrated that spermatozoa from patients with seminal alterations i.e., astheno-
zoospermia, teratozoospermia and oligozoospermia, exhibited differential miRNA 
profiles and were able to identify specific microRNAs associated with sperm motil-
ity (hasmiR-629-3p) and concentration (has-miR-335-5p, hasmiR-885-5p, and has- 
miR- 152-3p) (Salas-Huetos et al. 2015). However, the function of altered miRNAs 
in structural integrity, metabolism and motility of spermatozoa is not well under-
stood suggesting that these miRNA signatures need to be functionally characterized 
in order to be used as diagnostic biomarkers for male infertility.

piRNAs are also present abundantly in the male germ line (Girard et al. 2006). 
They are found in the spermatozoa of many species (Kawano et al. 2012; Krawetz 
et al. 2011; Peng et al. 2012). Their genomic organization is in clusters of up to 100 
kb. piRNA precursors are processed into mature 23–32 nucleotide form using a 
mechanism which is dependent on piwi proteins (Ishizu et al. 2012). They are 
involved in regulation of epigenetic states, RNA stability and protection of germ line 
genome against transposition (Gangaraju and Lin 2009; Aravin and Hannon 2008). 
Any alterations in these regulatory RNAs can cause spermatogenic arrest (Carmell 
et al. 2007; Kuramochi-Miyagawa et al. 2004). The piRNAs may also have protec-
tive functions during early embryonic development when the DNA undergoes mas-
sive demethylation and remethylation. They also have the ability to maintain and 
protect DNA integrity by binding to it and prevent the attack of various transposable 
elements like LINE (long interspersed repeat element), SINE (short interspersed 
repeat element), LTR (long terminal repeat) and MER (medium reiterated sequence) 
at several developmental stages of an embryo (Krawetz et al. 2011).

Recent studies have shown that allele-specific differences in DNA methylation in 
PIWIL2 and PIWIL1 were significantly associated with disturbed spermatogenesis 
resulting in male infertility suggesting that these allele-specific genetic variations in 
piRNA and proteins associated with it may also compromise male fertility (reviewed 
in Gou et al. 2014).

Human spermatozoal small non-coding RNAs (sncRNAs) keeps in check several 
repetitive/transposable elements of LINE, SINE/ALU and LTR families (Krawetz 
et al. 2011). Disturbances in LINE1 activity results in arrest at the two- or four-cells 
stage of embryo (Beraldi et al. 2006). Certain LINE1 RNA fragments, which are 
poly-purine enriched, form a triple helix in different regions of LINE1 elements and 
act as a scaffold that will disturb the association of chromatin modifiers with the 
transcriptional machinery thereby promoting their own transcription (Fadloun et al. 
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2013). Possibly, large numbers of LINE1 fragments which are delivered by the 
sperm are capable of activating such a feedback cycle.

Long noncoding RNAs (lncRNAs) are another group of noncoding RNAs, the 
size of which ranges from 200 to 10,000 nucleotides. lncRNAs regulates gene 
expression in somatic cells at both transcriptional and post-transcriptional levels 
(Lee 2012; reviewed in Mercer et al. 2009; Rinn and Chang 2012). During tran-
scription, several lncRNAs activate specific histone modifications. For example, 
HOX transcript antisense RNA (HOTAIR) regulates transcription by recruitment of 
a complex called PRC2 (polycomb recruiting complex 2) to HoxD locus, thereby 
making a repressive mark on histone (H3) (Tsai et al. 2010).

16.6  Genomic Imprinting

Genomic imprinting, an epigenetic phenomenon, is defined as monoallelic expres-
sion of genes or chromosomal regions depending on parent of origin of the allele 
and is reported to occur in mammals and some plant species. There are more than 
100 imprinted genes found in mammals, of these many have roles in early embry-
onic and placental development and also in metabolic and behavioral functions 
(reviewed by Kitamura et al. 2015) (Table 16.2). The parent-specific expression of 
imprinted genes is due to differential epigenetic marking, predominantly in the form 
of DNA methylation in the regions termed as differentially methylated regions 
(DMRs) on the two parental genomes during gametogenesis when both the parental 
genomes are physically separated. Besides DNA methylation, histone modification 
is also known to differentially mark two parental alleles.

One of the most important features of imprinted genes is that they usually occur 
in clusters. Every cluster of imprinted genes has at least one DMR, where DNA 
methylation will occur only on one parental allele. One DMR can regulate many 
imprinted genes within a single cluster. Thus, methylation status of a single DMR 
can give information about several genes (reviewed by Kitamura et al. 2015). DMRs 
can be classified into somatic and germ line DMRs. In somatic DMRs, differential 
DNA methylation is parent-of-origin specific and is acquired only after fertilization, 
whereas germ line DMRs display differences in DNA methylation states between 
egg and sperm and are maintained even after fertilization. Once the methylation 
marks are established, parent-specific imprinted genes escape genome-wide methy-
lome reprogramming after fertilization and tissue differentiation (reviewed by 
Kitamura et al. 2015).

Genome of the primordial germ cells undergoes extensive methylome repro-
gramming in order to make sure that it acquires proper sex-specific imprint marks. 
While inherited maternal and paternal “imprints” in the somatic cells of the embryo 
are maintained and read, they are erased in the germ line and new imprints are estab-
lished depending on the sex of the embryo during gametogenesis (Reik et al. 2001) 
(Fig. 16.2). The erasure and establishment of imprints is initiated in the embryonic 
gonads and extends till meiosis in the adults. During gametogenesis, establishment 
of the imprint marks occurs at different time points in both female and male germ 
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line. The establishment occurs at the embryonic stage in males and is completed 
before meiosis, whereas in females, imprint acquisition initiates at the time of mei-
otic division I. In females, maternal DNA methylation of germ line DMRs initiates 
early in adult oocytes (Sato et al. 2007). In males, methylation occurs at three 
imprinted genes - RASGRF1, H19 and GTL2, which exists prenatally before meio-
sis and is accomplished by the pachytene stage of spermatogenesis after birth (Davis 
et al. 2000; Kerjean et al. 2000).

Genomic imprinting involves dynamic remodeling of epigenetic marks that 
occurs at different phases of growth and development in both males and females. 
Errors occurring in the process of erasure, establishment or maintenance of imprints 
can have deleterious effects on the future generations, which are evident in genomic 
imprinting disorders like Beckwith–Wiedemann, which is an embryo overgrowth 
syndrome, or Silver–Russell, which is an embryo growth-restriction syndrome.

Abnormal DNA methylation patterns in imprinted genes and genes critical for 
embryonic development have been observed in the testis and spermatozoa of men 
suffering from oligozoospermia, azoospermia, and idiopathic infertility and have 
also been associated with poor semen parameters (Houshdaran et al. 2007; 

Zygote Blastocyst

Embryo

Maintenance Maintenance

Imprint
maintenance

and
reading

ErasureEstablishment

Primordial germ cells

Mature gametes

IC2

IC2

Fig. 16.2 Life cycle of genomic imprinting. Erasure, establishment and maintenance of DNA 
methylation at imprinting clusters during embryonic and germ cell development. Imprinting con-
trol regions: IC1 and IC2 are shown as examples. Gray region indicates DNA methylation and 
white region indicates the absence of DNA methylation on specific alleles. Parental chromosomes 
are designated in blue which stands for male or red which stands for female segregated on the basis 
of their individual sex (Modified from Reik et al. 2001)
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Hammoud et al. 2010; Marques et al. 2010; Urdinguio et al. 2015). In addition, 
studies have been done to investigate the increased risk of imprinting disorders in 
children who were conceived through assisted reproductive technologies (ART). 
Aberrations in the sperm methylome and defect in other epigenetic factors are sus-
pected to impair the quality of sperm, reduce male fertility in general, cause early 
developmental problems, and thereby decrease the success rates of ART (Jenkins 
and Carrell 2012).

It has been observed that the outcome of ART in the form of fertilization or 
implantation rates is generally poor due to the spermatozoa having altered DNA 
methylation status (Kobayashi et al. 2007). However, aberrant methylation of two 
paternally imprinted genes like GTL2 and H19 and five maternally imprinted genes 
like MEST, LIT1, PEG3, SNRPN and NESPAS demonstrated a significant correla-
tion with poor semen parameters; however, it did not affect the ART outcome (El 
Hajj et al. 2011). In addition, methylation of ALU elements also showed to have a 
significant effect on fertilization and live birth rate especially in couples with male 
factor infertility. El Hajj et al. demonstrated that sperm samples from male partners 
of women experiencing abortions showed low ALU methylation (El Hajj et al. 
2011). Also, studies from our laboratory have shown hypomethylation at the 
IGF2-H19 ICR in spermatozoa of male partners of women experiencing recurrent 
spontaneous abortions (Ankolkar et al. 2012).

In addition to DNA methylation, recent studies have also shown that in somatic 
cells, DMRs are epigenetically marked by various histone modifications. Locus- 
specific and genome-wide studies of histone modifications revealed the presence of 
specific chromatin signatures at both paternal and maternal gametic DMRs. The 
unmethylated DNA region is usually associated with histone H3 or H4 acetylation 
and di-methylation of lysine 4 of histone H3 (H3K4me2), which are the hallmarks 
of activating chromatin, whereas the methylated DNA region is associated with 
repressing chromatin, i.e. trimethylation on lysine 9 of histone H3 (H3K9me3) and 
trimethylation on lysine 20 of histone H4 (H4K20me3) (Henckel et al. 2009; 
reviewed by Arnaud 2010). However, the importance of these activating or repress-
ing chromatin signatures is poorly understood in genomic imprinting.

16.7  Influence of External Factors or Environment 
and Transgenerational Inheritance

It is well known that spermatogenesis process is under a tight control of gonadotro-
pins and steroid hormones. Disruption of hormonal signaling by endocrine disrup-
tors causes epigenetic disturbances in the germ cells leading to impaired fertility. 
Many of these endocrine disruptors are present in the environment and are estro-
genic or antiandrogenic. For example, pesticides like vinclozolin and phthalates are 
anti-androgens, whereas plasticizers like bisphenol A are estrogenic and are known 
to cause several epigenetic disturbances (Zhang and Ho 2011). In the last few 
decades, poor semen quality, abnormal sperm counts and other reproductive or 
endocrine disorders in men are shown to have significant association with 
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environmental estrogens and endocrine disrupting compounds exposure (Marques-
Pinto and Carvalho 2013).

Similarly, studies in our laboratory on rodents revealed that on paternal subcu-
taneous administration of tamoxifen drug, which is a selective estrogen receptor 
modulator (SERM), for 60 days at a dosage of 0.4 mg/kg/day showed a decrease 
in fecundity with a significant increase in pre- (PIL) and post-implantation loss 
(POL) without any effect on sperm-fertilizing ability. The PIL was observed at 
two- and four-cells stage of embryo and POL around mid-gestation (Balasinor 
et al. 2002). Igf2 expression, a paternally expressed and maternally imprinted 
gene, was seen to be significantly downregulated in resorbed embryos, i.e. 
embryos lost post- implantation (Kedia et al. 2004). The Igf2-H19 ICR was hypo-
methylated in resorbing embryos and in spermatozoa obtained from tamoxifen-
treated group, suggesting that tamoxifen could be responsible for errors in the 
acquisition/maintenance of imprint mark during spermatogenesis (Pathak et al. 
2009). In addition, microarray experiments using rat whole genome arrays 
revealed disruption of growth factor signaling pathways and cell cycle arrest in 
resorbed embryos. Altered expression of imprinted genes important for tropho-
blast formation and differentiation was observed in resorbed embryos (Kedia-
Mokashi et al. 2013; Kedia et al. 2016), suggesting a negative impact on placental 
development. The study demonstrates that defects in placental development may 
be caused by paternal drug treatment.

Several environmental factors including diet are known to affect male fertility 
through influence on epigenetic mechanisms and these factors also affect the 
health of the offspring. Epidemiological studies have found that paternal diet can 
influence fertility as well as the health of the offspring. Consumption of low-
protein diet by male rats results in abnormal chromatin packaging in spermatozoa 
and causes aberrant changes in DNA methylation in the offspring (Carone et al. 
2010). Paternal insufficiency of folic acid results in increased incidence of prog-
eny suffering from skeletal and muscular defects. To investigate the role of dietary 
constituents in epigenetic alterations, Lambrot et al.  fed female mice diet contain-
ing only ~15% of the recommended amount of folate during the preconception 
period, pregnancy and lactation. The male offsprings were given folate-deficient 
diet after weaning. It was observed that the pups given deficient diet showed 
delayed onset of meiosis and DNA damage in spermatocytes. Due to defective 
sperm function, pregnancy rate of females mated with males put on deficient diet 
was far lower than that of the control diet group. A number of differentially meth-
ylated genes were observed in the spermatozoa from these males (Lambrot et al. 
2013). A diet high in fat content also reprograms the sperm epigenome. Barbosa 
et al. demonstrated that high-fat diet alters the expression of the miRNA let-7c in 
the sperm of F0 rats and their F1 offspring (Barbosa et al. 2016). These studies 
indicate how silent effects of the environment, including diet, can significantly 
alter the epigenome and have grave health consequences for the future 
generations.
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Adverse transgenerational effects on male germ cells, prostate gland, testicular 
functions, and male fertility, accompanied by aberrant changes in the epigenome 
either in the form of DNA methylation or gene expression, occurred in Sertoli cells 
of F3 or F4 generations derived from vinclozolin-exposed F0 dams in a series of 
studies (Guerrero-Bosagna et al. 2013; Anway and Uzumcu 2006; Skinner 2014). 
The altered prostate phenotype was accompanied by transgenerational reprogram-
ming of the expression of calcium and WNT signaling pathways. Effects on the 
sperm and testis were also observed in animal models exposed to a mixture of insect 
repellent (N,N-diethyl-meta-toluamide (DEET) and pesticide (permethrin) 
(Manikkam et al. 2012), insecticide (dichlorodiphenyltrichloroethane (DDT) 
(Skinner et al. 2013), plasticizer bisphenol A (BPA) (Salian et al. 2009) and di(2- 
ethylhexyl) phthalate (DEHP) (Doyle et al. 2013), and benzopyrene (Mohamed el 
et al. 2010).

In addition to the transgenerational inheritance through DNA methylation, 
male germ cells can transfer functional epigenetic information transgeneration-
ally through RNA, also known as paramutation. An example of RNA-mediated 
inheritance is mutation of Kit gene that codes for a tyrosine kinase receptor 
involved in melanogenesis, germ cell differentiation and hematopoiesis 
(Rassoulzadegan et al. 2006). Heterozygous mutation in Kit gene in mice has 
significantly altered Kit expression and has distinct white patches on tails and 
feet. Also, when heterozygotes male or female were crossed with the wild-type 
counterpart, it was observed that wild-type offspring showed reduced Kit expres-
sion levels and inherited the mutant phenotype, i.e. white patches (Rassoulzadegan 
et al. 2006). The altered phenotype of the F1 generation was passed to its subse-
quent F2 generation suggesting a transgenerational inheritance through RNA. 
This was further confirmed when Kit mRNA and its target miRNA were injected 
from heterozygotes into zygotes, the white pigmentation was observed in the off-
spring (Rassoulzadegan et al. 2006).

Conclusion and Future Directions

In the past few years, number of studies has elucidated the involvement of epi-
genetic mechanisms in spermatogenesis and male fertility. The impact of envi-
ronment through epigenetic mechanisms on fertility in males as well as 
transmission to subsequent generations is also well documented. However, these 
epigenetic factors are not routinely investigated for infertility management. 
Hence, inclusion of male epigenetic diagnostics in routine clinical investigations 
will aid in infertility management and selection of cases appropriate for 
ART. However, more research is required to decide on the type of epigenetic 
tests/parameters to be included in routine clinical investigations.
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17Sperm Chromatin Compaction  
and Male Infertility

Aniket Patankar and Priyanka Parte

Abstract
Nucleosome, the fundamental unit of chromatin, is histone octamer composed of 
dimers of each histone H2A, H2B, H3, and H4. Histones are the key epigenetic 
players and regulate chromatin architecture. During later stages of spermatogen-
esis, extensive remodeling of chromatin takes place in which somatic histones 
get replaced by testis-specific histones, which in turn get replaced by transition 
proteins and finally by protamines. Disturbances that impair this highly orches-
trated process may result in loose DNA packing, endangering its integrity. This 
reflects on sperm morphology and motility, resulting in teratozoospermia and 
asthenozoospermia and consequently infertility. These sperm are unable to reach 
the oocyte and, if they do, fail to fertilize. Assisted fertilization in the form of 
IVF or ICSI may help overcome this hindrance; however, the risk of failure at 
early embryonic developmental stages or preimplantation loss increases dramati-
cally. This review provides an update on our current understanding of the role of 
sperm chromatin compaction in sperm function and the impact of its failure on 
male fertility.

Keywords
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Key Points
• Chromatin packaging is an integral part of spermatogenesis, and sperm DNA is 

packed into almost crystalline status that is at least six times more condensed in 
comparison to mitotic chromosomes.

• During spermiogenesis, somatic histones in the haploid spermatid are replaced 
by testis-specific histones, which in turn are replaced by transition proteins and 
finally by protamines, leading to dense chromatin compaction in sperm.

• Sperm histones undergo several posttranslational modifications, predominantly 
methylation and acetylation, to repress the transcriptional activity in sperm.

• Compaction or proper packaging of chromatin is essential for shutting down the 
transcription activity in sperm and also for protecting its DNA from damage dur-
ing its transit from testis through epididymis into the female reproductive tract.

• Defects in chromatin packaging affect the morphology of sperm and its tran-
scriptional activity and are associated with infertility or the outcome of ARTs.

• Significantly higher histone-protamine ratios are observed in sperm from infer-
tile men; a direct correlation exists between sperm protamine levels, DNA integ-
rity, and sperm quality.

17.1  Introduction

WHO estimates as reported in 2012 indicate that about 50 million couples worldwide 
suffer from infertility (Mascarenhas et al. 2012). Male infertility accounts for almost 
50% of the infertility. Asthenozoospermia, oligoasthenozoospermia, oligozoosper-
mia, teratozoospermia, globozoospermia, azoospermia, and aspermia are the observed 
manifestations in male infertility. There is a considerable population of infertile indi-
viduals where none of these manifestations are observed and thus are referred to as 
idiopathic. Although research world over has been overwhelming with respect to 
female infertility, with respect to male infertility, it is limited probably because of the 
general perception that all problems of male infertility can be bypassed using assisted 
reproductive technologies (ARTs) such as IVF and ICSI. Increasing evidence is now 
available on the problems associated with ICSI (Wennerholm et al. 2000; Belva et al. 
2007; Bonduelle et al. 2004; Morris et al. 2002). One of the biggest drawbacks of ICSI 
is that the genetic quality of sperm is overlooked leading to embryonic loss despite 
successful fertilization following ICSI. Genetic quality of sperm is determined by the 
integrity of its DNA and its compaction during spermiogenesis. A positive correlation 
has been observed between chromatin condensation and successful pregnancy in IUI 
and ICSI couples (Ioannou et al. 2016; Irez et al. 2015; Morris et al. 2002). In order to 
understand the impact of chromatin compaction on male fertility, it is imperative to 
understand the process of chromatin condensation.

17.2  DNA Packaging and Chromatin Compaction 
During Spermatogenesis

Spermatogenesis is a well-synchronized and tightly regulated process by which hap-
loid male germ cells are formed. In the third and final stage of spermatogenesis, i.e., 
spermiogenesis, the haploid round spermatids undergo extensive morphological 
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changes and nuclear remodeling to give rise to structurally distinct cell, the sperma-
tozoa. Mature spermatozoon contains nucleus carrying haploid male genome, which 
is sixfold more compact as compared to any somatic cell of the body. Two major 
nucleoproteins involved in DNA compaction are nucleosomes and protamines. 
Nucleosome is the histone octamer composed of dimer of each histone H2A, H2B, 
H3, and H4. Histone H1 binds to the DNA in between two nucleosomes and is 
thought to be involved in higher-order chromatin structure formation. Each histone 
of nucleosome core particle (NCP) is divided into two parts: structured region made 
up of core and C-terminal region of histone and N-terminal unstructured tail which 
protrudes out of the nucleosome and interacts with DNA. Approximately 146 bp 
DNA is wrapped around each nucleosome. Posttranslational modifications (PTMs) 
like acetylation, phosphorylation, and ubiquitination occurring especially on 
N-terminus can influence chromatin structure either directly by adding negative or 
positive charge and altering histone-DNA interaction or indirectly by recruiting mod-
ification-specific chromatin remodeling factor (Pivot-Pajot et al. 2003).

Protamines are arginine-rich, small, basic, major nucleoproteins in sperm. They 
are synthesized in late-stage spermatid. Around 80–85% sperm DNA is compact 
due to protamination. In case of mammals, protamines are of two types protamine 1 
(P1) and protamine 2 (P2). The presence of P1 in association with sperm DNA can 
be observed in nearly all vertebrates, whereas P2 is present only in primates, many 
rodents, and a subset of other placental mammals (Balhorn 2007). The number of 
protamine genes and copies present per haploid genome varies from species to spe-
cies. Mammals have single-copy genes of P1 and P2, located on chromosome 16 
(Reeves et al. 1989). P1and P2 are products of gene Prm1 and Prm2, respectively. 
The precursor protein of Prm2 undergoes proteolytic processing at its N-terminus to 
give rise to p2, p3, and p4. P2 family proteins, p2, p3, and p4, differ in 3–4 residues 
at N-terminus. The arginine-rich DNA-anchoring domains by which protamines 
bind with the negatively charged DNA and the multiple serine and threonine resi-
dues that can be used as phosphorylation sites form the structural elements of prot-
amines (Balhorn 2007). The cysteine residues allow disulfide bond formation and 
thus link two adjacent protamines, which leads to further compaction of DNA.

During the process of spermiogenesis, nucleohistone to nucleoprotamine tran-
sition occurs. This transition is not direct but a gradual process, comprising of 
well- defined events, which involves first replacement of somatic histone by tes-
tis-specific histone variants and subsequently by transition proteins and then 
protamines.

At the round spermatid stage, the DNA compaction is the same as that of any 
somatic cell of the body. After the completion of second meiotic division, there is a 
surge of transcription observed characterized by two features not observed in 
somatic cells, namely, (a) the use of specialized transcriptional machinery and (b) 
the expression of large numbers of spermatogenic-specific genes which includes 
transcription of proteins like transition proteins, protamine, etc. required for sper-
miogenesis. At the same time, hyperacetylation of somatic histone H4 is observed. 
In vitro studies have indicated the role of hyperacetylated histones in nucleosome 
disassembly and replacement of histone by protamines (Oliva et al. 1987; Awe and 
Renkawitz-Pohl 2010). It has also been shown that bromodomain-containing pro-
tein (BRDT) binds with the hyperacetylated H4 and initiates nuclear remodeling 
(Pivot-Pajot et al. 2003; Moriniere et al. 2009).
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Hyperacetylated histones then get replaced by testis-specific histone variants. 
Excepting histone H4, testis variants have been reported till date for core histones 
H2A, H2B, H3, and linker histone H1. During spermiogenesis, testis-specific histones 
get replaced by transition proteins (TP). Mammals, including mouse, rat, human, ram, 
and boar, predominantly have two types of transition proteins, viz., transition protein 
1 (TP1) and transition protein 2 (TP2) (Akama et al. 1996; Chevaillier et al. 1998; 
Steger et al. 1998). Both TP1 and TP2 are encoded by single- copy genes, Tnp1 and 
Tnp2, respectively (Rathke et al. 2014). TP1 is a 6200 Da protein with about 20% 
arginine and 20% lysine, distributed uniformly, and no cysteine (Kistler et al. 1975). 
TP2 is a 13,000 Da protein with about 10% arginine, 10% lysine, and 5% cysteine 
(Grimes et al. 1975). It has a highly basic C-terminal domain and an N-terminal 
domain that forms zinc fingers (Meetei et al. 2000). TP1 is abundantly expressed 
(Heidaran et al. 1988), and its sequence is highly conserved in various mammals as 
compared to TP2 (Kremling et al. 1989). The role of TPs is not extensively studied. 
TP1−/− and TP2−/− knockout mice have been shown to be less fertile than normal mice 
and show abnormal chromatin condensation (Zhao et al. 2001). TP1 and TP2 double-
knockout mice are sterile, and spermatogenesis is severely impaired suggesting their 
important role in spermiogenesis (Zhao et al. 2004).

Transition proteins remain associated with DNA for a short period of time and 
rapidly get replaced by protamines. Immediately after their synthesis, protamines 
get phosphorylated. Phosphorylation is thought to be essential for their nuclear 
transport as protamines can bind to their nuclear receptor and get transported only 
when phosphorylated (Mylonis et al. 2004). After binding of protamine to DNA, 
dephosphorylation takes place, and the disulfide bond formed between protamine 
further compacts the DNA. Chromodomain helicase DNA-binding protein 5 (Chd5) 
has a key role in the DNA compaction. It is involved in H4 hyperacetylation, histone 
variant expression, and removal and replacement of the histones with nucleoprot-
amines, and Chd5 deficiency in mice leads to defective sperm chromatin compac-
tion and infertility (Li et al. 2014). Low expression of Chd5 has also been observed 
in the testis of infertile men by the same group.

17.3  Testis-Specific Histones

Replacement of histone by protamine is not 100%, and about 5–15% histones are 
still retained in mature human spermatozoa (Tanphaichitr et al. 1978; Gatewood 
et al. 1987; Zalensky et al. 2002). Retained histones have been found to be specifi-
cally enriched in the regulatory region of genes that are important for the earliest 
development stages postfertilization (Hammoud et al. 2009). Later it was shown by 
MNase sequencing that infertile males have random distribution of retained his-
tones in spermatozoa (Hammoud et al. 2011). Testis-specific histone variants are 
thought to have specific biological function during spermiogenesis, as demonstrated 
by knockout studies with different variants. Table 17.1 summarizes the testis- 
specific histone variants known to date and their localization and influences on 
fertility.
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Among the retained histones, TH2B is the major testis-specific histone 
variant present in mature sperm. TH2B differs from H2B mainly at its 
N-terminus. N-terminus of H2B has been shown to be associated with chro-
mosome condensation in meiotic cell (de la Barre et al. 2001). N-terminus 
of TH2B has additional three potential phosphorylation sites (Ser12, Thr23, 
and Thr34) and repositioning of two others (ser5 and ser60), which are not 
seen in H2B, resulting in a different phosphorylation map of the N-terminal 
tail for TH2B (Pradeepa and Rao 2007).

Presence of TH2A/TH2B in nucleosome has been shown to induce a 
more open chromatin structure (Padavattan et al. 2015). This open chroma-
tin structure facilitates the removal of histones and their replacement by 
protamines, thus enabling further compaction of DNA (Montellier et al. 
2013). We have earlier reported reduced TH2B in asthenozoospermic indi-
viduals (Parte et al. 2012). However, TH2B knockout male mice have been 
shown to be fertile as the absence of TH2B is compensated by overexpres-
sion of somatic H2B variants and modifications on other histones. But 
Th2b+/tag mice show arrest at condensing spermatid stage leading to lack of 
sperm in epididymis and consequently infertility (Montellier et al. 2013). 
However, double knockout for TH2A/TH2B causes defect in spermatogen-
esis in males. Histone replacement during spermiogenesis is also affected. 
The mice showed reduced testis and epididymis weight and are sterile. 
Secondary spermatocytes at interkinesis (the interphase between meiosis I 
and II) are more abundant in the mutant testis than in the wild type, suggest-
ing extended interkinesis in mutant mice (Shinagawa et al. 2015). 
Interestingly, it is the TH2A and TH2B from oocyte that is involved in acti-
vation of paternal genome postfertilization (Shinagawa et al. 2014). The 
dynamic changes in chromatin structure during spermiogenesis, epididymal 
maturation, and up to early embryonic development are summarized in 
Fig. 17.1.

17.4  Histone Modifications in Sperm and Their 
Influence on Sperm Fertilizing Ability/Embryonic 
Development

Several posttranslational modifications (PTMs) have been observed in 
mouse and human sperm (Fig. 17.2). In mouse sperm, 26 PTMs have been 
reported in specific residues of core histones and linker histone and 11 
PTMs on PRM1 and PRM2 (Brunner et al. 2014). Comprehensive assess-
ment of the histone modifications in normal human sperm revealed 102 
modifications (Schon et al. 2015). Modifications are observed on the linker 
histone H1, the canonical histones, as well as their variants. While modifica-
tions on H4 are conserved, those on H3 vary between individuals. The mod-
ifications are not altered on cryopreservation of the sperm. Some PTMs of 
histones are uniquely distributed in human sperm, and this distribution 
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varies among individuals and also between the sperm of a single individual (Krejci 
et al. 2015). Variations among individuals have been observed in the levels of 
H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1 in the sperm-head 
fractions. Levels of acetylated (ac) histones H4 are relatively stable. Lower levels of 
H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1 are seen in sperm 
with P2 deficiency. H3K9me2 and levels of P2 show a strong correlation. While the 
localization of H3 lysine 4 methylation (H3K4me) or H3 lysine 27 methylation 
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(H3K27me) is highly similar in the gametes of infertile men compared with fertile 
men, a reduction in the amount of H3K4me or H3K27me retained at developmental 
transcription factors and certain imprinted genes has been noted. Also, the methyla-
tion status of certain developmental promoters and imprinted loci are altered in a 
subset of infertile men (Hammoud et al. 2011). Recently, histone PTMs and their 
relative abundance in distinct stages of mouse spermatogenesis and in human sper-
matozoa have been identified (Luense et al. 2016). They observed a strong conser-
vation of histone PTMs for histone H3 and H4 between mouse and human sperm; 
however, H1, H2A, and H2B showed very little conservation (Luense et al. 2016).

In sperm, genes relevant to spermatogenesis are marked by H3K4me2, and the 
genes involved in developmental regulation are marked by H3K27me3 (Brykczynska 
et al. 2010). While H3K4me2 is an activating mark, H3K27me3 has been shown to 
be a repressor of genes. This means that prior to fertilization, the genes involved 
in early embryonic development are repressed by H3K27me3, while those involved 
in spermatogenesis are maintained in an active state by H3K4me2. Reduction in 
H3K4me2 induced by human KDM1A histone lysine 4 demethylase transgene 
overexpression during mouse spermatogenesis has been shown to severely impair 
development and survival of the offspring, a defect which is also seen in two subse-
quent generations (Siklenka et al. 2015). H3K4me2 was reduced at the CpG islands 
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of genes involved in development. While this region is majorly marked by 
H3K27me3, work of Brykczynska has shown that some of the developmentally 
regulated genes are also marked by H3K4me2. H3K4me3 has also been demon-
strated to be important for spermatogenesis; loss of H3K4 methyltransferase MII2 
reduces H3K4me3 consequently rendering the male mice sterile (Glaser et al. 
2009). H3K9me2/1-specific demethylase JHDM2A also known as JMJD1A is 
essential for spermatogenesis, and its loss causes infertility in male mice due to 
incomplete chromatin condensation (Okada et al. 2007).

Stage-specific modifications have been identified for TH2B with acetylated 
TH2B being most abundant in spermatogonia (28.9%) compared to spermatocytes 
(8.3) and spermatids (11.2%). At the C-terminus, phosphorylation at K116 and 
methylation at K117 were observed in combination in TH2B isolated from these 
stages (Lu et al. 2009). However, its functional relevance is not known. Various 
PTMs like acetylation, methylation, and phosphorylation have been identified on 
TH2B from tetraploid spermatocyte and haploid spermatid. LC–MS/MS analysis of 
TH2B from spermatocytes identified six acetylation, three monomethylation, and 
one phosphorylation site, while that of TH2B from round spermatids identified four 
acetylation and two monomethylation sites. In silico analysis showed altered 
histone- histone as well as histone-DNA interactions in TH2B-bearing nucleosome. 
Also acetylation on N-terminal tail of TH2B has been shown to weaken its interac-
tions with the DNA (Pentakota et al. 2014). Its physiological relevance remains to 
be determined.

17.5  Protamines and Male Infertility

Protamines and histones are the two major nuclear proteins in many vertebrate spe-
cies including mice, rat, human, etc. These proteins play major roles during chroma-
tin condensation at spermiogenesis. Several reports indicate that P1 and P2 are 
expressed in nearly the same amount in fertile human sperm and alteration in P1/P2 
ratio is associated with male infertility (Aoki et al. 2005a, 2006; Zhang et al. 2006; 
Hammoud et al. 2009).

The first documented report highlighting the importance of protamines revealed 
the absence of protamines in the spermatozoa of infertile (oligozoospermic) patients 
(Silvestroni et al. 1976). This was followed by a study on 7 infertile and 17 fertile 
individuals where increased P1/P2 ratio in six of the seven patients was observed 
(Balhorn et al. 1988). Thereafter, a good number of studies have indicated that fer-
tile men express P1 and P2 in same amount, while alteration in this ratio correlates 
with male infertility; infertile men show either decreased or increased P1/P2 ratio 
(Balhorn 2007; Balhorn et al. 1988; Belokopytova et al. 1993; de Yebra et al. 1993; 
Mengual et al. 2003; Aoki et al. 2005a). Balhorn’s group has shown that the per-
centage of protamines is different in the patients with abnormal seminal parameters 
compared to patients with normal parameters. Also within the heterogeneous popu-
lation of spermatozoa, round-headed spermatozoa from patients contain less prot-
amines and more histones and intermediate proteins than normal spermatozoa. 
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Further, protamine levels vary between individual sperm of infertile males and cor-
relate with viability and DNA integrity (Aoki et al. 2006). Interestingly, studies 
employing Percoll separation for fractionating sperm have shown that P1/P2 ratio 
and total protamine from different Percoll fractions within the same sample were 
not significantly different. However, there were significant differences in P1/P2 
ratios in the oligozoospermic and asthenozoospermic groups as compared to nor-
mozoospermic indicating that P1/P2 and amount of protamine retention were inde-
pendent of morphology and motility of sperm cells (Mengual et al. 2003).

This alteration in P1/P2 ratio might be due to alteration in expression of either of 
two protamines or both. Several studies have indicated lower P2 and increased P2 
precursor in infertile men, indicating abnormality in the processing of precursor 
protein (de Yebra et al. 1993, 1998; Carrell and Liu 2001; Torregrosa et al. 2006). 
Aoki et al. observed a P1/P2 ratio around 1 in fertile donors; in infertile group, the 
P1/P2 ratios were either less than 0.8, between 0.8 and 1.2, or greater than 1.2 in 
13.6%, 46.7%, and 39.7% of the patients, respectively. P1 and P2 were both under- 
expressed in patients with a normal P1/P2 ratio. In patients with a high P1/P2 ratio, 
P1 was normally expressed and P2 was under-expressed. They also reported that 
patients with abnormal P1/P2 ratios displayed significantly reduced semen quality 
and sperm penetration ability (Aoki et al. 2005a).

Several studies have also reported the presence of protamine transcript in sperm. 
Significantly aberrant protamine mRNA ratio was found in infertile individuals, and 
it correlates with DNA fragmentation and IVF success (Steger et al. 2001; 
Rogenhofer et al. 2013; Ni et al. 2014a). Significantly higher PRM1 and PRM2 
mRNA copy numbers have been observed in normozoospermic versus teratozoo-
spermic samples (Savadi-Shiraz et al. 2015). In contrast, transition protein 2 (TNP2) 
transcript abundance was significantly higher in teratozoospermic samples and pos-
itively correlated with sperm-head defects.

17.6  Protamines, DNA Compaction, and Integrity

Protamines are essential for sperm-specific packing of DNA. Compaction of DNA 
shuts off transcription as the DNA is no more amenable to the transcription factors 
and RNA polymerase. It also protects the DNA from any damage thus maintaining 
its integrity. This ensures that postfertilization the paternal genome is delivered in a 
form that allows developing embryo to accurately express genetic information. 
DNA compaction during chromatin condensation changes a transcriptionally active 
chromatin into a transcriptionally silent chromatin, and all the genes that are 
required for spermatogenesis and sperm function are transcribed prior to this transi-
tion, i.e., until the round spermatid stage. Live imaging studies in Drosophila have 
shown that histone-to-protamine transition starts 50–60 h after completion of meio-
sis and lasts for 5–6 h (Awe and Renkawitz-Pohl 2010). In mice although there is no 
direct evidence such as live imaging, indirect evidences suggest that this transition 
starts approximately 156 h after completion of meiosis and it lasts for 120–126 h, 
i.e., from step 10 to step 15 of spermiogenesis (reviewed by Rathke et al. 2014). 
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This period is characterized by DNA breaks and repair which allows relief from the 
torsion stress and facilitates removal of the histones and replacement by transition 
proteins and subsequently protamines (Marcon and Boissonneault 2004). Thereafter, 
selective translation of the stored mRNA takes place as per the requirements of the 
sperm.

It is well established that about 5–15% histones are retained in normal human 
sperm. Elegant studies by Hammoud et al. have shown gene clusters important for 
embryonic development to be associated with the retained histones in sperm of 
fertile men (Hammoud et al. 2009). This implies that improper packaging due to 
higher histone retention as seen in sperm chromatin of infertile men may expose 
many more gene clusters. A subsequent study by the same group showed that in 
infertile men, histones retention was random genome-wide, unlike fertile men 
where the histone retention was seen only at specific gene clusters (Hammoud et al. 
2011). The epigenetic marks H3K4me or H3K27me were also reduced on the 
retained histones in the infertile men. They speculate that these changes may be 
responsible for the poor reproductive outcome post ICSI/IVF in infertile men.

Any defects in chromatin packaging wreaks havoc with the sperm ability to fer-
tilize or sire a viable offspring either by allowing the untimely transcription of cer-
tain genes, allowing certain modifications of histones that may switch the 
transcription on or off, or increasing the vulnerability of the DNA to drug-induced 
damage. Observations from the chromodomain helicase DNA-binding protein 5 
(CHD5) KO mice are a testimony to the effect of improper condensation on sperm 
morphology and fertility of the male offspring (Zhuang et al. 2014). H4 hyperacety-
lation, which is vital for histone replacement during spermiogenesis, is reduced in 
these mice, and the sperm show deformed nuclei and abnormal head morphology. 
However, in these mice transcription of important genes, controlling spermatogen-
esis was not affected. Several groups have shown very lucidly the correlation 
between protamine compaction, DNA integrity, and sperm quality (Franken et al. 
1999; García-Peiró et al. 2011; Manochantr et al. 2012; Utsuno et al. 2014). 
Chromatin packaging as studied by CMA3 and acidic aniline blue staining nega-
tively correlates with normal sperm morphology (Franken et al. 1999). Utsuno et al. 
observed abnormal protamination in significantly higher number of spermatozoa 
with abnormal head morphology compared to those with normal head morphology. 
DNA fragmentation was also higher in the protamine-deficient spermatozoa. Studies 
on DNA damage in men undergoing IVF treatment revealed a positive association 
between DNA damage and abnormal sperm morphology and motility and negative 
correlation with sperm concentration (Morris et al. 2002). Protamine 2-deficient 
mice sperm demonstrate a direct correlation between PRM2 haploinsufficiency and 
frequency of DNA damage as seen from comet assays and ultrastructural analysis 
(Cho et al. 2003). In studies with human sperm, a positive correlation has been 
shown between protamine deficiency and sperm DNA damage (De Iuliis et al. 2009; 
Nili et al. 2009; Tarozzi et al. 2009; Razavi et al. 2010; Manochantr et al. 2012; 
Utsuno et al. 2014). Several studies have correlated altered P1/P2 ratio with suscep-
tibility to DNA damage (Aoki et al. 2005b, 2006).
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17.7  DNA Integrity and ART Outcomes

DNA integrity also influences sperm penetration and fertilizing ability, IVF and 
embryo quality, and development in ICSI outcome (Khara et al. 1997; Carrell et al. 
1999; Carrell and Liu 2001; Nasr-Esfahani et al. 2004; de Mateo et al. 2009). DNA 
fragmentation and CMA3 positivity indicative of protamine deficiency negatively 
correlate with the fertilization rate in ICSI patients; DNA methylation negatively 
correlated with DNA fragmentation (Tavalaee et al. 2009). However, Tarozzi et al. 
observed a close relationship between sperm protamination and fertilization and 
pregnancy only in IVF; in ICSI there was a correlation between DNA fragmenta-
tion and pregnancy (Tarozzi et al. 2009). In men enrolled for ICSI, a positive asso-
ciation was seen between sperm damage and impairment of postfertilization 
embryo cleavage (Morris et al. 2002). In another study of individuals referred for 
ICSI, CMA3 positivity showed a significant negative correlation with fertilization 
rate post ICSI (Iranpour 2014). An isolated study using cleavage-stage frozen-
thawed embryos from cycles of IVF and ICSI has however observed no significant 
difference in the biochemical pregnancy, clinical pregnancy, and miscarriage rates 
between sperm showing DFI <30% and those >30% (Ni et al. 2014b). The group 
did find some association between DFI and blastocyst formation in the ICSI group. 
A recent study investigating the influence of sperm DNA fragmentation on the 
pregnancy outcome and pregnancy loss after ART in couples going for either autol-
ogous ICSI, ICSI using donor eggs, or IUI observed that while the pregnancy rates 
were not significantly different, pregnancy losses correlated positively with the 
DNA fragmentation which was measured as DNA fragmentation index (DFI). The 
study indicates that sperm samples showing DFI >27% are associated with an 
increased risk of early pregnancy loss (Rilcheva Violeta et al. 2016). A similar 
observation has been reported earlier (Jin et al. 2015). Additionally, this group 
observed that when the DFI exceeded 27.3%, the live birth and implantation rates 
were significantly reduced in women with reduced ovarian reserve vis-a-vis women 
with normal ovarian reserve.

 Conclusions and Future Directions
DNA integrity and its proper compaction in sperm are vital to its fertilizing 
ability as well as for early embryonic development in the preimplantation 
stage. Poor DNA compaction in sperm severely hampers its fertilizing ability 
and further development that accounts for fertility loss in natural conception 
or poor success of IVF/ICSI procedures. While literature is replete with evi-
dences on histone retention and protamine deficiency in infertile cases, our 
knowledge on impact of several histone modifications on the fertility of male 
is limited and needs attention. Further research in this direction may identify 
sperm chromatin tests that may predict the success of ARTs. At the same time, 
further studies are needed to understand the significance of the retained his-
tones in sperm maturation and their contribution toward the fertilizing ability 
of sperm.
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Abstract
Screening of male infertility cases via clinical semen analysis is not apt to 
diagnose the causes in 30–50% of infertility cases. Such idiopathic cases with 
no known cause are difficult to monitor and thus provide momentum toward 
enhanced and sensitive diagnostic tools for infertility examinations. “Omics,” 
the system biology approach to study the biological system on a large scale, 
includes proteomics as a newcomer. The era of clinical proteomics in combi-
nation with bioinformatics has emerged as a new tool to identify novel molec-
ular markers for pathology. The supremacy of proteomics technology to 
characterize the proteome content of a cell or tissue on a large scale has 
enabled it to explicate both global and targeted proteins. Both seminal plasma 
and sperm serve to have the potential to be a preliminary material for identify-
ing protein signatures related to infertility. The current chapter illustrates the 
lacunae allied with the clinical semen analysis for infertility investigations 
and exemplifies the role of clinical semen proteomics in male infertility 
identification.
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Key Points
• Semen is rich in proteins, making it important to study their functional roles.
• Proteomics provides information beyond gene expression as proteins are the 

actual functional molecules.
• Sperm proteins are known to undergo posttranslational modifications, making 

proteomic studies important.
• Semen proteomic studies hold the potential for providing better platform for 

diagnosis of idiopathic male infertility.

18.1  Introduction

Clinical proteomics in combination with bioinformatics has emerged as a new tool to 
identify novel molecular markers for pathology. From the DNA sequence, one cannot 
extract information about the level of protein expression. Thus, the proteome which 
is the protein compliment of the genome is defined as the sum of all the protein spe-
cies occuring during the lifetime of an individual, isoforms of the protein and the 
posttranslational modifications (PTMs) (Jungblut et al. 2008). The proteome fluctu-
ates in response to the internal and external stimuli and undergoes disease- specific 
changes. Study of the differentially expressed sperm proteins that regulate fertiliza-
tion holds potential in unraveling the molecular signatures related to male infertility. 
Transcriptome profiling of the sperm holds less potential for the post testicular inves-
tigations as sperm is both transcriptionally and translationally silent, thus PTMs play 
important role in inducing physiological changes responsible for fertilization.

Presently, the concept of seminal plasma (SP), as a biological fluid and a nonin-
vasive clinical sample for urogenital diagnosis and for biomarker discovery of male 
reproductive disorders, is gaining attention. SP is an affluent and easily available 
source of protein identification owing to its high protein content of 35–55 mg/mL. 
As SP is a collection of fluids secreted from testis, epididymis, and other male 
accessory glands, it serves to be a reservoir of proteins crucial for sperm capacita-
tion, sperm-zona pellucida interaction, and sperm-egg fusion (Tomar et al. 2012). 
SP is a possible target for early detection of male reproductive cancers (prostate and 
testicular), since proteins representative for cancer emerge earlier in SP than in 
blood serum (Drabovich et al. 2014).

In the current chapter, we first briefly discuss the risk factors associated with 
male infertility followed by the clinical tests available for its assessment and the 
lacunae allied with them followed by the importance of proteomics in infertility 
diagnosis. In the second part of the chapter, we broadly review the proteomics data 
of SP and sperm with special reference to male infertility.

18.2  Functional Tests for Male Fertility

Despite of physical examination, hormone analysis, and semen analysis, the etiol-
ogy of male infertility in a large number of cases remains idiopathic. A number of 
normozoospemic patients appear for assisted reproduction due to failure of natural 
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conception for which the reasons are not obvious. Therefore, there is need to develop 
functional tests for male fertility, which can identify the lack of fertile (functional) 
sperm ejaculates with normal semen parameters according to the WHO criteria. It 
is not that we entirely lack the information about the potential functional analysis 
parameters; however, most of them suffer some or other limitations for bringing in 
regular clinical practice and are in need of further refinements. One such marker 
could be reactive oxygen species (ROS) level, which is well known to functionally 
impair spermatozoa. However, the short duration of activity of these molecules 
restricts the direct testing of ROS and its use as a method for infertility evaluation 
(Aitken et al. 1991). DNA fragmentation index (DFI) could be another such test; 
however, the lack of a standard DNA fragmentation test displaying universally 
agreed cutoff values limits its use as a diagnostic test for infertility assessment. The 
third could be the analysis of sperm/semen proteins for functional importance. The 
third aspect needs a lot of research on sperm proteomics, which has great potential 
in identifying the proteins of interest for this purpose.

18.3  Proteomics as a Diagnostic Tool for Evaluating Male 
Infertility

In the context of male infertility, clinical semen analysis providing a note for the con-
centration, motility, morphology of the sperm, and many other diagnostic tests still 
fail to screen the 30–40% infertility cases (Turek 2005). Thus, there is an unmet need 
for sensitive diagnostic tools for infertility investigations. With new scaling heights in 
molecular biology research, proteomics has expanded its horizon in sighting the path-
ological complexities of infertility and its causes. The protein biomarkers may help us 
toward better understanding of unknown causes of male infertility by dealing with the 
physiological functions of the proteins at tissue level that, in turn, can guide us to find 
better therapeutic solutions. It not only provides a platform to discover biomarkers of 
infertility but may also help in devising effective male contraceptives (Tomar et al. 
2012; Upadhyay et al. 2013). By means of proteomic approaches, both global and 
targeted protein expression, regulation, and modification of proteins in various bio-
logical systems can be studied (Kolialexi et al. 2008). Several proteomic approaches 
are applied to study the proteome, its PTMs, and other different aspects that are 
directly linked with male fertility status. In the coming pages, a glimpse of the pro-
teomic tools used to study the proteome will be discussed.

18.4  Proteomic Workflow for Sperm Characterization

The fundamental process of sperm proteome analysis comprises of purification of 
the sperm cells from the seminal fluid and making it free of contaminating cells 
(leukocytes, epithelial cells) and SP. Purity of the sperm cell preparation is a very 
decisive step and is the only step at the preliminary stage for the entry of minor 
contamination that could result in false-positive results. To circumvent this prob-
lem, density gradient centrifugation using Percoll or direct swim up method is used 
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for isolating sperm cells in humans (de Mateo et al. 2013). Another parameter to be 
considered in sperm proteomic study is to scrutinize the component of sperm to be 
concerned, target the entire cell or subcellular fractionation, and explore specific 
cell compartments. An advantage of subcellular proteomics is that it may allow the 
detection of low abundance proteins that may well escape detection in whole cell 
approaches (de Mateo et al. 2011).

Subsequent to the purification of sperm cells or the subcellular fractions, solubi-
lized proteins are digested for peptide generation which is identified by Mass 
Spectrometry (MS). Essentially, two alternatives are there for MS identification of 
proteins: (1) separation of proteins followed by protein digestion and peptide iden-
tification and (2) generation of peptides by direct digestion of the proteins present 
in the crude mixture followed by their identification. Conventionally, proteins were 
separated using two-dimensional electrophoresis (2DE) followed by LC-MS-based 
protein identification. Low abundant proteins are tricky to detect via 2DE pertaining 
to its low sensitivity. With the advancements in proteomics field, 2DE was replaced 
with a more specific and sensitive technique of differential gel electrophoresis 
(DIGE), which labels the proteins with Cy dye and gives information about the dif-
ferential expression of proteins. With these 2DE approaches, small number of pro-
teins were elucidated, whereas LC-MS/MS-based studies depicted large number of 
proteins. The mass spectra generated by MS are evaluated using computer-based 
algorithm to determine whether peptides found in protein databases could produce 
spectra that resemble those observed experimentally.

To gain access about the biological information of the identified proteins, they 
are then categorically distributed using Gene Ontology (GO) database into three 
domains, cellular component, molecular function, and biological process. By and 
large, the outcome of a sperm proteomic study depends on (1) sample preparation, 
(2) protein extraction, (3) reduction of sample complexity, (4) optimum protein 
separation by advanced gel electrophoresis and/or LC, (5) MS protein identification 
with sufficient mass resolution and mass accuracy, (6) advanced computational 
analysis of peptide and protein data, (7) the bioinformatics analysis for the estab-
lishment of potential protein interactions and the clustering of molecular functions 
of newly identified proteins, and (8) essential verification analysis of proteomic 
data, using immunoblotting, biochemical assays, confocal microscopy, and/or func-
tional testing (Holland and Ohlendieck 2015).

18.5  Whole Sperm Proteomics

In the past, 2DE was the method of choice to investigate the proteome of the sperm. 
The number of proteins distinguished in 2D maps ranged from 10 to 200 approxi-
mately. For the first time, Naaby-Hansen established a 2D map of the neutral and 
acidic human spermatozoa proteins using 2DE (Table 18.1). The study found 260 
proteins ranging from 20 to 200 kDa and pI 4.5 and 7.8 (Naaby-Hansen 1990). In 
subsequent study by the same author and the colleagues, near about 1397 vectori-
ally labeled sperm surface proteins belonging to membrane protein fractions were 
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catalogued using same 2DE technique (Naaby-Hansen et al. 1997). Additionally, 
the study revealed novel isoforms of actin, beta-tubulin, PH-20, and several 
phosphotyrosine- containing proteins in human sperm (Naaby-Hansen et al. 1997).

The low sensitivity issue associated with conventional 2DE approach hinders the 
detection of low abundant proteins. For this reason, researchers switched over to a 
more sensitive tool of MS. For the first time, extensive sperm proteome analysis of 
the soluble and insoluble sperm fractions was carried out using LC-MS/MS by 
Johnston and coauthors. Proteome analysis displayed about 1760 proteins in total, 
with 1350 proteins corresponding to soluble fractions, 719 for insoluble fractions, 
and 309 for both soluble and insoluble fractions. This sperm proteome characteriza-
tion provides a physiologically relevant index of proteins (Johnston et al. 2005). In 
another study of its kind investigating the whole sperm proteome, 2DE separation 
was followed by matrix-assisted laser desorption/ionization time of flight-MS 
(MALDI-TOF/MS) identification of the proteins. The investigation revealed a total 
of 98 proteins with assigned functions. The proteins identified had major role in 
energy production (23%), transcription, translation, protein turnover (23%), cell 
cycle, apoptosis and oxidative stress (10%), and metabolism (6%). The functional 
details described in the present study paid impetus toward the better understanding 
of the sperm proteins (Martínez-Heredia et al. 2006).

Li et al. obtained a 2D reference map of 3872 proteins using narrow range pH 
strips and multiple 2D gels and identified the protein spots by MALDI-TOF/MS 
analysis, thus providing a comprehensive view of the sperm proteome, which can be 
useful in studying deregulations related to sperm infertility (Li et al. 2007). Similar 
to this, using comprehensive protocol of LC-MS/MS, the triton X-100 soluble and 
insoluble sperm fractions were analyzed, and 1056 different proteins were obtained 
(Baker et al. 2007). This is the first published list of identified proteins in human 
spermatozoa using LC-MS/MS analysis (Baker et al. 2007).

In a most extensive report, a total of 4675 unique proteins from human sperm have 
been successfully identified, of which 227 were testis specific. Furthermore, 500 pro-
teins were annotated as drug targets, thus providing in-depth knowledge about the 
candidate targets for the development of male contraceptive drugs (Wang et al. 2013). 
In a recent study published by Amaral and her colleagues, the highest number of sperm 
proteins listed till date has been reported (Amaral et al. 2014). These proteins were 
reported to be involved in various functional pathways, such as metabolism, apoptosis, 
cell cycle, meiosis, and membrane trafficking. As discussed previously, functional 
annotations for the proteins identified are provided by using the GO catalogue.

18.6  Sperm Subcellular Proteomics

Subcellular proteomics helps in sorting different proteins from different compart-
ments of the isolated sperm, viz., the head, tail, nucleus, and membrane proteins. As 
sperm is a cell with distinct sections having specific cellular roles, evaluation of the 
proteins from these compartments provides a clear view of the functioning of the 
sperm, events associated with fertilization and the proteins, which are responsible 
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for male infertility. Another relevance of studying the different fractions of the cell 
is the identification of the specific cellular localization of each protein and also the 
less abundant proteins. Extending this view, de Mateo and coauthors elucidated the 
sperm nuclear proteome highlighting some interesting facts not discussed before. 
Nuclear proteins are potentially relevant for epigenetic marking, proper fertiliza-
tion, and embryo development. The study revealed a total of 403 proteins from the 
sperm nuclei, with histones as the most abundant family, zinc fingers, and transcrip-
tion factors were deduced for the first time and may be responsible for epigenetic 
marking and embryonic development (de Mateo et al. 2011).

In another study reviewing the sperm tail proteins, a number of proteins were 
identified by LC-MS/MS and were found to be involved in metabolism and energy 
production, motility, and structure of the tail (Amaral et al. 2013). Interestingly, 
some peroxisomal proteins were also exposed in the investigation, thus paying 
momentum to the fact that both mitochondrial and peroxisomal pathways are active 
in the sperm and are imperative for the motility of the sperm (Amaral et al. 2014). 
Moreover, Baker and colleagues isolated and analyzed the proteome of sperm head 
and tail jointly from the same sperm sample, clearly pointing the compartmental-
ized expression of the head and tail proteins (Baker et al. 2013). For example, 
energy-providing proteins were found to be present in the tail, whereas the proteases 
were localized in the head region (Baker et al. 2013).

Similarly, some investigators have isolated the human sperm fibrous sheath, a 
cytoskeletal element unique to spermiogenesis. The proteomic analysis identified 
unique ADP/ATP carrier protein, glycolytic enzymes (reported for the first time), and 
sorbitol dehydrogenase in the fibrous sheath of the sperm (Kim et al. 2007). The pres-
ence of these proteins in the fibrous sheath provide a clue that ATP is regulated inde-
pendent of mitochondrial oxidation via the principal piece of the flagellum (Kim et al. 
2007). Highly heterogeneous structures of the sperm such as the head, mid-piece, and 
tail are enveloped under the sperm surface membrane. Throughout the epididymal 
transit and during initial events of fertilization (capacitation, zona binding, acrosomal 
reaction), the sperm membrane proteins experience complex remodeling.

Sperm membrane proteins are presumably entailed in fertilization process, criti-
cally sperm-oocyte interaction, and capacitation. By means of discrete enrichment 
techniques, several authors have analyzed membrane calcium binding proteins 
(Naaby-Hansen et al. 2010), heat shock proteins (Naaby-Hansen and Herr 2010), 
and membrane proteins with an affinity for zona pellucida (Nixon et al. 2015). As 
the membrane proteins have crucial role in the fertilization events, most of the stud-
ies focused toward categorization of surface antigens, which are involved in infertil-
ity and their use as immune contraceptives (Shetty et al. 2001; Bohring et al. 1999).

18.7  Comparative Proteomics of Anomalous Behavior 
of Sperm Proteins

Abnormal semen parameters are the most common cause of male infertility as sug-
gested by the World Health Organization. Treatment of infertility using intra cyto-
plsmic sperm injection (ICSI) is a very effectual and routinely used procedure. 
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Nearly, 5% of in vitro fertilization (IVF) attempts have an unpredictable failure fate, 
regardless of normal sperm parameters. However, in the literature, there are accu-
mulating evidences in humans that sperm defects such as defective zona binding or 
the zona-induced acrosome reaction count for 56% of total fertilization failure in 
assisted conception (Liu and Baker 2000, 2003). Being a heterogeneous phenotype, 
it is not necessary that these defects are the only underlying cause of reproductive 
failure, and thus other factors involved need to be assessed. The molecular nature of 
these defects is also needed to be traced, and for this several proteomics studies have 
been reported in the literature toward the potential identification of the sperm pro-
tein defects that might be responsible for failed fertilization at the IVF.

Using proteomics strategy, Pixton et al. compared the sperm proteome profile of the 
fertile donors with that of the patient who experienced failed fertilization at IVF inspite 
of normal semen parameters and found 20 consistent protein differences in the patient 
proteome profile (Pixton et al. 2004). Similarly, in another report, proteins associated 
with gamete interaction, viz., the laminin receptor LR67 and the l-xylulose reductase, 
have been found (Frapsauce et al. 2009). Xu and his group also focused on the major 
proteins extracted from infertile patients with normal semen parameters but failed 
IVF. The study revealed a total of 24 altered proteins, which were involved in energy 
production, structure and movement, and cell signaling and regulation (Xu et al. 2012). 
Abnormal morphology (globozoospermia), reduced motility (asthenozoospermia), 
and reduced number of sperms (oligo-/azoospermia) are other probable causes of male 
infertility, and comparative studies related to these pathological conditions at the pro-
teome level have displayed a whole lot of proteins that are differentially expressed.

There are proteomic studies assessing differential expression pertaining to asthe-
nozoospermic patients and normal fertile donors. For sperm motility, ATP produc-
tion is of prime importance, and glycolysis and oxidative phosphorylation are the 
accepted pathways for ATP production in the mammalian sperm mitochondria. 
Enzymes associated with energy metabolism such as isocitrate dehydrogenase sub-
unit, carbonic anhydrase, and glycolytic enzymes have been identified in a study 
(Zhao et al. 2007). Other proteins related to low sperm motility include Rho GDP- 
dissociation inhibitor 1 and outer dense fiber protein (sperm structural proteins) 
(Zhao et al. 2007), phosphorylated forms of tubulin, reduced expression of gamma- 
tubulin (Chan et al. 2009), various HSPs, disturbed cAMP-mediated protein kinase 
A signaling, and abnormal actin regulation (Parte et al. 2012), protein turnover, and 
folding and stress response proteins (proteasome alpha 3 subunit and heat shock- 
related 70 kDa protein 2) (Siva et al. 2010), which can be used for establishing 
biomarker signature for low sperm motility thus improving its diagnosis.

Recently, Hashemitabar and colleagues have isolated and compared the pro-
teome of sperm tail fractions of asthenozoospermic semen samples with that of 
normal fertile donors using 2DE and MALDI-TOF MS/MS. The authors found diff-
erentially expressed proteins related to turnover, folding and stress response (pro-
teasome alpha 3 subunit and heat shock-related 70 kDa protein 2), energy 
metabolism, sperm movement, stress response, signaling and transport, antioxidant 
activity, and structural proteins (Hashemitabar et al. 2015). Globozoospermia 
(round-headed spermatozoa with an absent acrosome) diagnosed by the presence of 
100% round-headed spermatozoa on semen analysis is an aberrant nuclear 
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membrane and mid-piece defect making the patients with this condition absolutely 
infertile. Using DIGE coupled with MS over 61 protein spots were analyzed with 
nine proteins to be upregulated and 26 proteins to be downregulated in round-
headed spermatozoa compared with normal spermatozoa. The differential proteins 
had important roles in a variety of cellular processes and structures, including sper-
matogenesis, cell skeleton, metabolism, and spermatozoa motility (Liao et al. 2009).
Recently, Saraswat et al performed shotgun proteomic analysis (label free-LC- MS) 
of the sperm cells and seminal plasma proteins in normal and AS samples. The 
authors included 667 and 429 proteins for quantification in sperm and SP samples 
respectively. The investigators inferred that sperm motility pathway defects are 
reflected in sperm proteomic signatures and the seminal plasma data set does not 
imitate any of these defective pathways (Saraswat et al. 2017).

Oligoasthenozoospermia is a condition where both the sperm concentration and 
cellular motility are deranged posing the individual as infertile. Four unique pro-
teins, semenogelin II precursor, prolactin-induced protein, clusterin isoform 1, and 
prostate-specific antigen (PSA) isoform 1 preproprotein were predominant in the 
semen of healthy men; however, semenogelin II precursor and clusterin isoform 1 
were not seen in the semen of infertile men, suggesting unique differences in the 
spermatozoa protein profiles of fertile and infertile men (Thacker et al. 2011).

18.8  Functional Proteomics

The fate of fertilization is reliant on two hallmark events, viz., capacitation and acro-
some reaction. Freshly ejaculated sperm goes through a number of functional modifi-
cations to accomplish fertilization proficiency. The process of acquiring the fertilizing 
potential starts by ejaculation and finally ends in the female reproductive tract. Austin 
and Chang in 1951 independently told that the sperm resides in the female tract to 
attain fertilizing capability and named it “capacitation” (Austin 1951, 1952; Chang 
1951). Broadly, capacitation is defined as an ongoing process occurring during the 
sperm transport through female reproductive tract rendering sperm to undergo func-
tional modifications, thus transforming it to competently fertile. The process is physi-
ologically not complete until the spermatozoon reaches the oocyte (Bailey 2010). Once 
the sperm is competent, it binds to the zona pellucida, undergoes acrosome reaction 
followed by hyperactivated motility, and finally fuses with the oocyte (Bailey 2010).

Another major event succeeding capacitation is the acrosome reaction, which is 
calcium-dependent exocytosis triggered by the binding of the sperm to the oocytes zona 
pellucida (ZP) (Florman and Storey 1982). Outer acrosomal membrane fuses to the 
overlying plasma membrane at multiple points, thus liberating the entire contents, which 
pass through ZP and fuse with the oocyte plasma membrane. A prerequisite for this 
event is that the sperm should have undergone previous capacitation. Molecular mecha-
nisms underlying capacitation and acrosome reaction are poorly understood. c-AMP-
dependent tyrosine phosphorylation is a landmark for capacitation (Ficarro et al. 2003). 
Capacitated human sperm phosphoproteome analysis conducted for the first time 
revealed valosin-containing protein/p97 and two members of the A kinase-anchoring 
protein (AKAP) to be tyrosine phosphorylated during capacitation (Ficarro et al. 2003).
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In another study of its kind, in vitro-induced capacitation proteome changes were 
illustrated. Altered proteome profile of normal versus capacitated sperm suggested 
that proteins involved in flagellar organization (tubulin beta-2C chain, outer dense 
fiber protein, A-kinase anchor protein 4), energy metabolism (ATP synthase subunit 
alpha, l-asparaginase), and protein turnover (heat shock-related 70 kDa protein 2) 
were downregulated after in vitro-induced capacitation (Secciani et al. 2009). Proteins 
that, instead, increased as a consequence of in vitro capacitation were seminal pro-
teins such as clusterin and prolactin-inducible protein (PIP). The results indicate that 
the motility apparatus of the capacitated sperm is deregulated, which may probably be 
induced by apoptosis-like mechanism (Secciani et al. 2009). Label-free quantitative 
phosphoproteomics has been newly applied to investigate the overall phosphorylation 
events during sperm capacitation in humans and the phosphorylation sites involved. 
The results showed that the activity of insulin growth factor 1 receptor (IGF1R) tyro-
sine kinase is appreciably augmented during sperm capacitation posing it to be the 
target for improvement in sperm functions in infertile men (Wang et al. 2015).

The recognition and binding of spermatozoon to an ovulated oocyte is an impera-
tive cellular event. Emerging evidences advocate for the concerted action of several 
sperm proteins for the accomplishment of sperm-egg fusion (Redgrove et al. 2011, 
2012; Bromfield et al. 2016). Proteomic analysis of two such complexes using elec-
trospray ionization mass spectrometry recognized the several components of the 
multimeric 20S proteasome and chaperonin-containing TCP-1 (CCT) complexes, 
with zona pellucida binding protein (ZPBP2) as a component of one of the com-
plexes (Redgrove et al. 2011). Label-free MS-based comparative proteome analysis 
of sperm possessing an impaired capacity for sperm-egg recognition with normal 
cells revealed a reduced expression of the molecular chaperone and heat shock 70 
kDa protein 2 (HSPA2) (Redgrove et al. 2012). Interaction analysis showed that 
HSPA2 was found in close association with two other proteins, sperm adhesion mol-
ecule 1 (SPAM1) and arylsulfatase A (ARSA), both of which have previously been 
implicated in sperm-egg interaction. The depletion of HSPA2 in the infertile patients 
posed impetus to the significance of this multimeric complex in arbitrating the sperm-
egg contact thus paying attention to the male infertility causes (Redgrove et al. 2012).

Recently, Bromifield and colleagues have identified angiotensin-converting enzyme 
(ACE) and protein disulfide isomerase A6 (PDIA6) as the other new interacting part-
ners of HSPA2, thus forming a multimeric protein complex participating in fertiliza-
tion cascade. Moreover, the complex dwells in the membrane raft microdomains 
located in the peri-acrosomal region of the sperm head. Functional significance of the 
protein complex was assessed by inhibiting ACE, which significantly reduced the abil-
ity of human spermatozoa to undergo acrosome reaction (Bromfield et al. 2016).

18.9  Analysis of PTMs in Sperm Cells

In the rapidly changing environment persisting within the cell, the fragile homeosta-
sis/balance is sustained by the proteins, which are the focal point of all the biologi-
cal functions operative within the cell. The intricate process of transcription and 
translation (degradation), which govern the protein abundance, a composite 
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network of intra- and intermolecular interactions, PTMs (affecting protein activity 
and function) aid in adjusting to the dynamic alterations in the cellular environment. 
Usual aging, disease onset, and many other biological processes are the conse-
quence of slight changes within this network. Mature spermatozoa are almost tran-
scriptionally and translationally silent, and to attain its fertile destiny, it relies on 
PTMs that play important roles in sperm functions. Phosphorylation being the most 
commonly studied PTMs has been detected on approximately 17,500 proteins, and 
roughly one-third of the proteins in eukaryotic cell are phosphorylated at any time 
(Mann et al. 2002). Other recurrent PTMs are ubiquitination (∼8100 proteins), gly-
cosylation (∼4500), lysine acetylation (∼6700 proteins), and lysine methylation 
(∼2400 proteins) (Pagel et al. 2015).

The molecular mechanisms underlying capacitation and acrosome reaction are 
poorly understood, and phosphorylation and glycosylation are the most prominent 
PTMs during these two processes. c-AMP-dependent tyrosine phosphorylation is a 
landmark for capacitation (Ficarro et al. 2003). Capacitated human sperm phospho-
proteome analysis conducted for the first time revealed valosin-containing protein/
p97 and two members of the A kinase-anchoring protein (AKAP) to be tyrosine phos-
phorylated during capacitation (Ficarro et al. 2003). Label-free quantitative phospho-
proteomics has been newly applied to investigate the overall phosphorylation events 
during sperm capacitation in humans and the phosphorylation sites involved. The 
results showed that the activity of insulin growth factor 1 receptor (IGF1R) tyrosine 
kinase is appreciably augmented during sperm capacitation posing it to be the target 
for improvement in sperm functions in infertile men (Wang et al. 2015).

Recent reports state that sperm motility is coupled with α-tubulin acetylation 
(Bhagwat et al. 2014) based on the finding that protein acetylation can modulate pro-
teasomal degradation of core histones and axonemal microtubule construction (Yu 
et al. 2015). Using proteomics approaches, global lysine acetylation profiles of normal 
uncapacitated sperm were characterized reporting 973 lysine-acetylated sites that 
matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 
205 novel lysine-acetylated proteins. Another imperative discovery of the study was 
novel acetylation of voltage-dependent anion channel 2 at Lys-74 in the asthenozoo-
spermic sperm cells (Yu et al. 2015). A number of proteins have been found acetylated 
at lysine residues in human capacitated sperm with functions in motility, capacitation, 
acrosome reaction, and sperm-egg interaction, thus proving to be an evidence for the 
importance of lysine acetylation in the sperm (Sun et al. 2014). O-linked or N-linked 
glycosylation is another PTM reported in the developing spermatozoa during the epi-
didymal descent. The role of glycosylation in cell- cell recognition, adhesion, and rec-
ognition is well established, and in the sperm, it helps in gamete binding.

Using high-throughput glyco-FASP technique for the enrichment of glycopep-
tides and then subjecting to tandem MS analysis, 554 N-glycosylation sites and 297 
N-glycosylated proteins in human sperm were identified (Wang et al. 2013). About 
91% of the N-glycoproteins were either lysosomal, extracellular, or membrane pro-
teins, and via in vitro fertilization assay, it was evident that glutathione peroxidase 
4 (GPX4), a membrane glycoprotein, was effectively involved in gamete interac-
tions (Wang et al. 2013). A recent study has stated that excessive sumoylation is a 
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marker of defective spermatozoa as some flagellar proteins, glycolytic and mito-
chondrial enzymes, and some heat shock proteins were found to be sumoylated at 
abnormally higher levels in nonmotile, two-tailed, microcephalic, and acephalic 
sperm (Vigodner et al. 2013). These sumoylated proteins were detected in the neck, 
flagella, and head regions as revealed by immunofluorescence and electron micros-
copy (Vigodner et al. 2013).

18.10  Seminal Plasma Proteomics in the Assessment of Male 
Fertility Status

As SP is a collective fluid derived from several organs and has protein constituents 
specific for the organ, therefore, differences in protein composition of SP might 
indicate an ongoing pathological process in a specific organ (Drabovich et al. 2014). 
For example, PSA, found at much higher concentrations in the semen than in the 
blood serum, is identified as a marker for prostatic diseases and is used for prostate 
cancer diagnosis. Proteome analysis of SP has raised the expectations for improved 
diagnosis and stratification of wide range of diseases (Davalieva et al. 2012). As SP 
is a collection of secretion of various tissue-specific proteins secreted by different 
male reproductive organs, it serves to be a potential source of protein biomarkers. 
SP proteome is subjected to alteration owing to male reproductive system disorders, 
thus leading to higher concentrations of organ-specific proteins, which can be quan-
tified accurately by MS. Furthermore, it’s proteome analysis could drive early diag-
nosis of testicular and prostate cancers as any cancer-specific protein appears much 
early in the SP than in the blood serum (Drabovich et al. 2014).

18.11  Seminal Plasma Proteome

The ejaculate is composed of 10% spermatozoa and 90% SP, with pH ranging from 
7.2 to 8.0. SP serves to be the vehicle for the transport of spermatozoa during ejacula-
tion from the male urethra thus escorting them to the female reproductive tract. Cell-
free DNA, RNA, and microRNAs have also been identified in the SP, with microRNAs 
likely to be involved in spermatogenesis as their roles need to be further explored.

For the first time, SP proteins were electrophoretically separated in 1942 by a 
group of scientists (Gray and Huggins 1942; Ross et al. 1942), thus illustrating four 
protein components, α-globulin, β-globulin, γ-globulin, and albumin. Later advance-
ments in the separation techniques resulted in the detection of nearly 40 proteins 
(Sensabaugh 1978). With the advent of new analytical paradigms in the field of elec-
trophoretic protein separation through succeeding decades does the scientists were 
able to cut through the details of the SP proteome. In the early 1980s, Edwards and 
colleagues separated SP proteins by 2D-PAGE followed by blotting of proteins to 
nitrocellulose membrane and accordingly detected 200 proteins (Edwards et al. 1981).

The complexity of the SP was further attested by the introduction of high- 
throughput protein separation and identification tools, viz., soft ionization and MS. 
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In a study suggesting the role of SP proteins in impaired spermatogenesis, 750 pro-
teins were identified including prostatic acid phosphatase (PAP), PSA, Zn-a-2- 
glycoprotein, glycodelin, and clusterin (Starita-Geribaldi et al. 2001). Furthermore, 
Fung et al. studied the SP proteome using LC-ESI thereby confirming the fact that 
the proteins were posttranslationally modified and that the multiple spots matching 
to the same parent protein were the isoforms of the same protein (Fung et al. 2004). 
Low molecular weight SP proteins of <30 kDa as truncated forms of semenogelin I 
and II, cystatin S, cystatin C, and variants of PIP were also identified.

In-depth analysis of SP proteome was conducted by Pilch and Mann in 2006, who 
catalogued a total of 932 proteins specific to each organ that has contributed to the 
formation of SP: seminal vesicle, prostate, epididymis, and Cowper’s gland (Pilch 
and Mann 2006). Extracellular proteins secreted by the male sex glands, prostasomal 
proteins (originated from the epithelial lining of the prostate acini), and the proteins 
originated due to epithelial shredding were the three most prominent categories iden-
tified by the investigators. A large proportion of the proteome included proteins hav-
ing functions in immunological reactions, providing metabolic sustainability and 
protection for the spermatozoa, involved in clot formation and liquefaction (Pilch and 
Mann 2006). Most recently, the investigators have used 2D liquid chromatography 
separations coupled to electrospray ionization and detection of mass spectra with 
Orbitrap™ and identified thousands of SP proteins. Largest library of SP proteins 
reported till date is of 3200 proteins in total as identified by Batruch et al. (2012).

Human SP contains a large array of proteins of clinical importance, and their 
characterization is imperative (Table 18.2). During fertilization process, the contact 
between the sperm and the egg is the decisive step for the future embryo to develop, 
and glycosaminoglycans (GAGs) have been reported to be vital for cell–cell inter-
actions and communications. In the male reproductive biology, heparin, a GAG, is 
reported in processes, such as capacitation and acrosome reaction, and certain 
heparin- binding proteins (HBPs) interact with these GAGs present in the female 
reproductive tract, thus facilitating zona pellucida induction. Our group identified 
and characterized seven HBPs in the seminal fluid using affinity chromatography 
followed by MALDI-TOF/MS identification (Kumar et al. 2008). The major HBPs 
were semenogelin I fragment, semenogelin II, lactoferrin and its fragments, PSA, 
homolog of bovine SP proteins (BSP), zinc finger protein (Znf 169), and fibronectin 
fragments (Kumar et al. 2008).

As an extension to the abovementioned study, we also identified a group of concan-
avalin- A binding glycoproteins using affinity chromatography and subsequently iden-
tified them by MALDI-TOF/MS (Tomar et al. 2011). The major proteins identified in 
this study included aminopeptidase N, PSA, PAP, zinc-alpha-2- glycoprotein (ZAG), 
lactoferrin, Izumo sperm-egg fusion protein, progestogen-associated endometrial pro-
tein, and PIP (Tomar et al. 2011). Among the recent of all the studies done by our 
group, glycosylation sites, glycan compositions, and structures for 243 glycopeptides 
belonging to 73 N-glycosylation sites on 50 glycoproteins have been elucidated. 
Majority of the glycoproteins were complex type (83%) followed by high-mannose 
containing (10%) and hybrid type (7%), and most of the glycoproteins were either 
sialylated, fucosylated, or both (Saraswat et al. 2016).
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The accuracy and proficiency of intracellular signaling pathways is under the 
influence of multiprotein complexes. Our group for the first time reported that ZAG 
is present as complex with PIP (Hassan et al. 2008). Human serum albumin (HSA), 
known to preserve in sperm motility, is proposed by our group as another plausible 
interacting partner of PIP (Kumar et al. 2012). Additionally, Tomar et al. identified 
the other interacting partners of PIP by co-immunoprecipitation followed by MS, 
suggesting semenogelin 1 fragments binding with PIP, thus providing its link in aid-
ing spermatozoa to acquire motility (Tomar et al. 2013).

Later we also purified and characterized a zinc-binding high molecular weight 
multi-protein complex from human SP. The complex contained isoforms/fragments 
of different proteins with PSA, ZAG, PAP, and PIP as the major proteins of this 
complex (Yadav et al. 2011). Among the low molecular weight proteins, our group 
purified three cystatins (cysteine proteinase inhibitors), viz., cystatin 9, cystatin SN, 
and SAP-1 (N-terminal truncated form of cystatin S), and studied their enzyme 
kinetics (Yadav et al. 2013). Further interaction studies conducted on SAP-1 and 
heparin concluded that SAP-1 interacts with heparin and the binding is dependent 
on the chain length of heparin (Yadav et al. 2015).

Prostasomes, the membrane-enveloped vesicles secreted by the epithelial lining 
of the prostate acini, are rich source of intracellular proteins and are important for 
spermatozoa survival. Utleg et al. studied the composition of these prostasomes 
using LC-MS/MS and reported 139 proteins including enzymes, structural proteins, 
GTP binding proteins, and transport proteins. More importantly, majority of the 
proteins were secreted by the prostate (Utleg et al. 2003). Apart from focusing on 
the protein components of SP, researchers have also investigated the peptide con-
stituents of the SP (Kausler and Spiteller 1992; Goverde et al. 1998; O’Mahony 
et al. 2000).

18.12  Comparative SP Proteomics with Clinical Objectives

From clinical viewpoint, the relevance of SP proteomics lays in the identification of 
male infertility-associated biomarkers. As SP constitutes the 90% of the total semen 
volume with the rest 10% engaged by spermatozoa and also higher concentration of 
tissue-specific proteins are present in it, it is a probable source of protein biomark-
ers. Extensive literature is there dealing with the identification of SP constituents; 
however, studies having inclination towards male infertility with extensive com-
parative analysis of SP proteome providing a correlation between SP proteins and 
male infertility are meager. In the first study of its kind, Starita-Geribaldi and col-
leagues studied the SP proteome in impaired spermatogenesis and compared the 
proteome from fertile men with vasectomized or azoospermic men and revealed 
nearly 700 proteins including acid phosphatase, PSA, ZAG, glycodelin, and clus-
terin (Starita-Geribaldi et al. 2001).

Most commonly, male infertility is diagnosed by a laboratory-based semen anal-
ysis for the presence of spermatozoa in the seminal fluid. Azoospermia, a condition 
with absence of sperm in the semen, is the most severe form of male infertility 
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(Jarow et al. 1989). Major attempt in this direction was made by Yamakawa et al. 
who analyzed the differential expression of proteins with respect to azoospermia 
condition and displayed stabilin 2 (STAB2), 135 kD, centrosomal protein (CP135), 
guanine nucleotide, releasing protein (GNRP), and PIP as the potential markers 
(Yamakawa et al. 2007). In another report, SP of nonobstructive azoospermia 
patients and healthy fertile males were compared showing 28 differentially 
expressed proteins (Bai et al. 2007). Our group purified PIP by immunoprecipita-
tion and quantified its level in azoospermic SP samples using ELISA kit and found 
no significant change in its concentration in normozoospermia and oligozoosper-
mia, while its expression was downregulated in azoospermia, thus paying impetus 
to the above findings of Yamakawa indicating PIP to be a plausible marker of azo-
ospermia (Tomar et al. 2012).

Comparative proteomic analysis of normal and asthenozoospermic SP proteomes 
revealed 741 proteins, most of which were of epididymal and prostate origin. 
Moreover, epididymal secretory protein E1 and epididymal secretory protein E4 
were increased in asthenozoospermic SP, thus pointing toward the functional abnor-
malities in the prostate and epididymis contributing to abnormal sperm motility 
(Wang et al. 2009). Another crucial finding of the study was the downregulation of 
DJ-1 protein, which is involved in regulating oxidative stress thus concluding that 
increased levels of reactive oxygen species due to deregulated DJ-1is an indicator of 
poor semen quality (Wang et al. 2009). High-resolution multidimensional protein 
identification technology (MudPIT) analyzed the SP proteome of normal and post-
vasectomy (PV) data sets, thus reporting 32 proteins unique to controls and three 
unique to PV patients (Batruch et al. 2011).

The same authors recently catalogued more than 2000 proteins in nonobstructive 
azoospermia (NOA) subjects. Some of the proteins identified in this study, viz., 
LDHC, ELSPBP1, CES7, A2M, OVCH2, PTGDS, GPR64, and ALDH1A1, can 
possibly serve as markers differentiating NOA from obstructive azoospermia 
(Batruch et al. 2012). The only diagnostic protocol to differentiate between the 
obstructive azoospermia (OA) and NOA is testicular biopsy. In an attempt to iden-
tify markers distinguishing the two, Drabovich et al. identified two proteins, 
epididymis- expressed ECM1 and testis-expressed TEX101, which differentiated 
OA and NOA with high specificities and sensitivities (Drabovich et al. 2013). Using 
DIGE approach, differential protein expression was studied between normal, AS, 
oligozoospermic, and azoospermic men and found statistically significant increased 
expression of eight proteins in azoospermia compared with at least one of the other 
studied groups. The proteins were fibronectin, PAP, proteasome subunit alpha type- 
3, beta-2-microglobulin, galectin-3-binding protein, PIP, and cytosolic nonspecific 
dipeptidase, thus providing a deeper insight to the azoospermia condition (Davalieva 
et al. 2012).

In the search for a panel of common proteins in the fertile males that might be 
crucial for successful reproduction, a group of investigators performed high- 
throughput proteomic analysis. Of the 900 proteins resolved, 83 were common in 
set of five fertile men whose partners conceived 3 months before the study was initi-
ated. Semenogelin I, semenogelin II, olfactory receptor 5R1, lactoferrin, hCAP18, 
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spindling 1, and clusterin were the common proteins among them suggesting their 
vigor for reproduction (Milardi et al. 2012). In a recent investigation, differential 
protein expression of men with abnormal sperm count and sperm morphology was 
studied (Sharma et al. 2013a). Proteomics analysis revealed 20 differentially 
expressed proteins among the 4 groups with altered sperm count and abnormal mor-
phology. Among the proteins identified, 3 were downregulated in the group with 
normal sperm count and abnormal morphology (NA), 1 in oligozoospermia and 
normal morphology (ON) group, 1 in oligozoospermia and abnormal morphology 
(OA) group while 2 were upregulated in the ON and OA groups. SP serves as an 
antioxidant reservoir, antioxidants remove the excess ROS generated in the body 
thus maintaining a balance and prohibiting oxidative stress. Imbalance in the levels 
of ROS is reported in SP of infertile men (Wang et al. 2009). Taking this into 
account, the same researchers studied the molecular mechanisms underlying oxida-
tive stress and sperm dysfunction in infertile men by proteomic profiling. The oxi-
dative stress parameters were assessed (ROS, antioxidant concentration, and DNA 
damage), and subjects were classified as ROS+ and ROS–. Proteomic analysis 
revealed 14 proteins in all, with seven proteins common in both the groups. Levels 
of PIP were elevated in men with increased ROS levels, and gene ontology annota-
tion displayed the extracellular distribution of proteins with a major role in antioxi-
dative activity and regulatory processes (Sharma et al. 2013b).

Similarly, Herwig et al. compared the SP of oligoasthenoteratozoospermia sam-
ples with normal fertile males and identified proteins related to oxidative stress, viz., 
tubulin-folding cofactor B, alpha-1-antichymotrypsin, and aldose reductase (Herwig 
et al. 2013). Recently, a comparative analysis of oligoasthenozoospermic and nor-
mal SP samples revealed that two proteins, namely, epididymal secretory protein E1 
and galectin-3-binding protein, were under-expressed in oligoasthenozoospermia 
and two other proteins, lipocalin-1 and a PIP form, were overexpressed, thus sug-
gesting their involvement in the pathology of idiopathic oligoasthenozoospermic 
condition (Giacomini et al. 2015).

Conclusion

As a concluding remark, research pertaining to SP proteomics for the search of 
biomarkers related to specific conditions of male infertility is still ongoing. 
Integrative approach of proteomic analysis and functional studies annotating the 
cellular pathways affected has paved the pathway for a deeper insight in mecha-
nisms of male infertility-related pathology. Current research embraces the capa-
bility for the development of innovative and clinically relevant male infertility 
biomarkers using noninvasive procedures, which may provide a better platform 
for the patients undergoing treatment. Apart from this, success of ART in cases of 
infertility also needs to be explored. Diverse conditions of infertility have associ-
ated with the different sets of proteins. Nevertheless, the data obtained from these 
studies is heterogeneous as only a small subset of independent studies reporting a 
small fraction of proteins is found to be overlapping, reason being the use of dif-
ferent proteomic approaches and its combinations. However, the appearance of 
high- throughput MS-based techniques allows more detailed investigation of the 
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proteomes of interest, among which is human seminal plasma proteome, and 
holds promise on more reproducible results in the future. Semen proteomics has 
the potential to provide information about the regulatory mechanisms of male 
infertility which is poorly understood till date. The identified proteins should be 
studied further in deep to find out their exact roles in male infertility. These stud-
ies may provide new approaches for management of male infertility.
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19Advancing Paternal Age: The Ticking 
Biological Clock

Rima Dada and Vidhu Dhawan

Abstract
Since spermatogenesis is a continuous process that occurs throughout life, pater-
nal age often gets less consideration for childbearing. However, a number of 
studies have reported a significant impact of advanced paternal age on the time 
to pregnancy, adverse pregnancy outcomes and the birth of children with con-
genital deformities. This chapter provides an overview of the impact of advanced 
paternal age on the loss of fertility and increased likelihood of passing birth 
defects and genomic changes that can have significant impact on the coming 
generations.

Keywords
Paternal age • Age and infertility • Age and congenital abnormalities

Key Points
• Testosterone level declines by 0.4–2% per year, resulting in a decrease in libido 

and spermatogenesis.
• There is evidence of epigenetic changes with ageing that may affect the quality 

of gametes.
• DNA accumulates defects with ageing that are more likely to pass on to the next 

generation.
• Advanced paternal age is more likely to contribute to congenital defects.
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19.1  Introduction

Over the last few decade, the trend for advanced parental age has increased in cou-
ples due to professional and social commitments. There is a precipitous decline in 
female fecundity after 30–35 years of age with an increase in various adverse repro-
ductive events from infertility, pregnancy complications to perinatal morbidity and 
mortality. The ‘ticking biological clock’ for women is well understood, but this 
clock ticks for men too and appears to tick faster (Crow 2000; Thacker 2004). The 
anecdotal reports about older fathers have always sounded fascinating, and the old-
est paternity has been noted scientifically as 94 years (Seymour et al. 1935). 
However, the advanced paternal age adversely affects testicular functions, semen 
parameters, sperm DNA integrity and sperm telomere length and increases de novo 
mutation rate and chromosomal and epigenetic alterations. Accumulated chromo-
somal aberrations and mutations in male germ cells may lead to the increased risk 
of reduced fertility, poor implantation and pregnancy rates and an increased risk of 
birth defects and childhood disease burden.

A steep increase in the age of childbearing by men tends to invite a host of nega-
tive reproductive outcomes. According to CDC birth statistics, the birth rate for men 
25–44 years is increasing with a decline seen in men <25 years (Hamilton et al. 
2003). There is a strong association between paternal age and extension of sperm 
DNA strand breaks. With increased age, there is a concomitant increase in DNA 
damage with increase in the incidence of semen abnormalities (Singh et al. 2003; 
Moskovtsev et al. 2006, 2009). With age, the incidence of mutations in spermatozoa 
rises due to repeated premeiotic cell divisions, decreased antioxidant capacity and 
other diseases which are more likely to appear with ageing. This adversely affects 
embryogenesis because advanced paternal age is also associated with advanced 
maternal age and suboptimal quality of oocyte. This may lead to incomplete, inef-
ficient aberrant repair of sperm DNA damage by oocyte postfertilization. The 
advanced age at the planning of the first child not only decreases the chances of 
conception but also increases the risk of DNA damage, gene deletions and chromo-
somal aneuploidies. A host of these factors are associated with pregnancy loss or the 
birth of children with congenital abnormalities. This chapter highlights the impact 
of advanced paternal age on fertility, its possible odd outcomes and the need to 
counsel couples for timely planning of family.

19.2  Testicular Morphology and Semen Parameters

Age-related morphological changes in testes affect spermatogenic efficiency, char-
acterized by a predominance of multinucleated spermatogonia, megalospermato-
cytes, giant spermatids along with seminiferous tubular diverticula and thickening 
of the basal membrane (Johnson et al. 1988; Kuhnert and Nieschlag 2004; Dakouane 
et al. 2005). Testicular sclerosis occurs as a result of defective vascularization in 
senile testis and systemic arteriosclerosis (Sasano and Ichijo 1969). A decrease in 
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testicular volume is attributed to a decrease in both Sertoli cells and Leydig cells. 
The Sertoli cells are seen to accumulate cytoplasmic lipid droplets, and Leydig cells 
may also be multinucleated (Johnson 1986; Holstein 1989). A pioneering study by 
Auger et al. (1995) found a 2.6% decline in sperm concentration, a 0.3% decline in 
motile sperm number and a 0.7% decline in the percentage of normal sperm mor-
phology, with increased paternal age. There is a decrease in seminal volume and 
seminal fructose concentration with age, whereas zinc and α-glucosidase, secreted 
by prostate and epididymis, remain constant (Rolf et al. 1996).

19.3  Testicular Functions and Reproductive Hormones

Alterations in testicular functions develop gradually, which has been considered as 
a rough indicator of spermatogenesis. The testicular volume remains constant over 
quite a long time and is documented to decrease only in the eighth decade of life 
(Kuhnert and Nieschlag 2004). The changes in testicular volume are seen to be 
associated with the levels of follicle-stimulating hormone (FSH), inhibin B and tes-
tosterone. The resultant increased FSH levels associate with a decrease in the inhibin 
B/FSH ratio as well as a decrease in Sertoli cell mass and testosterone levels in the 
testis (Weiner-Megnazi et al. 2012). Testosterone levels peak around 20 years of age 
(Bhasin and Buckwalter 2001) and continue to decline by about 0.4–2% every year 
after 30 years of age (Feldman et al. 2002; Abram McBride et al. 2016). Decreasing 
testosterone levels were quantified by Massachusetts Male Ageing Study (MMAS), 
as a cross-sectional decline of 0.8%/year of age and a longitudinal decline of 1.6%/
year, over a 10-year follow-up data (Morley et al. 1997).

The decrease in testosterone levels with age has led to the development of 
‘late- onset’ hypogonadism (LOH) in contrast to hypogonadism, which is a more 
general term referring to the state with decreased testicular volume, impaired 
sperm production and low testosterone levels. Age-related below-normal testos-
terone levels and associated symptoms have also been addressed as ‘andropause’, 
‘symptomatic androgen deficiency’, ‘age-related hypogonadism’ and ‘testoster-
one deficiency (TD)’. This hypogonadism in ageing men is characterized by poor 
libido, fatigue and loss of cognitive functions (Sharma et al. 2015; Abram McBride 
et al. 2016). Testosterone production is regulated by the hypothalamic–pituitary–
gonadal (HPG) axis via the production of luteinizing hormone (LH) (Abram 
McBride et al. 2016). Failure in this delicate balance can result in primary, sec-
ondary or mixed hypogonadism. The predominant form of testosterone deficiency 
in ageing men is mixed with primary and secondary hypogonadism components. 
The levels of luteinizing hormone may vary with age due to the decrease in Leydig 
cell number and subsequent decrease in sensitivity of the HPG axis to feedback 
inhibition and/or decreased LH pulse amplitude despite normal pulse frequency. 
The decrease in LH pulse amplitude may subsequently be related to decreased 
neuronal cell secretion of gonadotrophin-releasing hormone (Kaufman and 
Vermeulen 2005).
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19.4  Spermatozoa Have Limited Repair Capacity

The aetiology of DNA damage in the spermatozoa is complex and is chiefly induced 
by oxidative stress and thus making it vital to understand the nature and extent of 
DNA damage. Oxidative stress is one of the major causes of defective sperm func-
tion, which disrupts the sperm DNA integrity, induces single double-strand breaks, 
shortens telomeres, alters sperm methylome, oxidizes DNA bases and interstand 
and intrastand crosslinking and also causes fragmentation of mt and nuclear DNA 
also (Shamsi et al. 2008; Mishra et al. 2014). It thus limits the fertilizing potential 
because of parallel damage to lipids and proteins in the sperm plasma membrane. 
Spermatozoa are particularly vulnerable to lipid peroxidation because they have 
high concentrations of unsaturated fatty acids, which further triggers the mitochon-
dria for the generation of high levels of superoxide anion as a prelude to entering the 
intrinsic apoptotic cascade (Aitken and De Iullis 2010; Aitken et al. 2012, 2013).

Unfortunately, spermatozoa have very little capacity to respond to such an attack 
because they have a highly truncated base excision repair mechanism as they only 
possess the first enzyme in the base excision repair (BER) pathway, 
8- oxoguanineglycosylase 1 (OGG1). The latter successfully creates an abasic site, 
but the spermatozoa cannot process the oxidative lesion further because of the lack 
of downstream proteins (APE1, XRCC1) needed to complete the repair process. 
These are repaired only by oocyte at the time of fertilization. However, ageing 
oocyte and the presence of extensive sperm DNA damage in ageing sperm may 
overwhelm the oocyte repair mechanism postfertilization with persistence of these 
mutagenic bases in the child, and that may be an alternative explanation for paternal 
age effects (Smith et al. 2013).

19.5  Paternal Age and Mutations in Sperm DNA

The female fertility reaches a natural limit marked by the occurrence of menopause, 
which leads to cessation of ovarian function due to inevitable loss of female gam-
etes. The male reproductive functions have been observed to decline gradually with 
age and spermatogenesis throughout life. Each oocyte produced by the female 
undergoes 22 germ line divisions and two meiotic divisions, and regardless of her 
age, female oocytes do not undergo any further divisions after that. In males, as 
spermatogenesis is continuous throughout life, ageing increases the number of cell 
divisions, hence increased number of chromosomal replications with advanced age 
reaching a number of 840 replications by the age of 50 years. This increase in the 
number of cycles of DNA replication with advanced paternal age brings more copy- 
error mutations as per the Penrose’s copy-error hypothesis (Penrose 1955).

Fathers bequeath more mutations with advanced age, and the germ line mutation 
rate is higher than in females, mainly because of many more germ-cell divisions. As 
compared to females, the number of cell divisions in males is seven times higher at the 
age of 20 and 25 times higher at the age of 40 (Crow 2000; Taylor et al. 2006). The 
mutation rate tends to further increase due to the decrease in sperm DNA integrity 
with ageing and accumulation of highly mutagenic oxidized DNA adducts like 
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8-hydroxy 2-deoxy guanosine. Oxidative DNA damage gets accumulated with 
advanced paternal age and also by the exposure to various exogenous and lifestyle 
factors like smoking, excess alcohol intake, psychological stress, increased BMI and 
exposure to xenobiotics and infections (Kumar et al. 2015). In a genome-wide asso-
ciation study by Kong et al. (2012), the average de novo mutation rate was found to be 
1.20 × 10−8 per nucleotide per generation with an average father’s age of 29.7 years. 
There is a striking effect of over two additional mutations every year or an exponential 
effect of doubling of paternal mutations every 16.5 years (Kong et al. 2012). The 
effect of hazardous environmental conditions and various demographic characteristics 
driven by forces of genetic drift, gene flow and natural selection cannot be negated.

The mutation rate for base substitutions is much higher in the ageing male. The 
critical phase for induction of de novo mutations is the post-meiotic events during 
spermiogenesis (Wyrobek et al. 2006; Crow 2006). NR5A1 nuclear receptor, also 
known as steroidogenic factor 1 mutations, has been reported in 46,XY disorders of 
sex development in 4% men with unexplained severe spermatogenic failure 
(Bashamboo et al. 2010). Men with non-obstructive azoospermia were reported to 
have de novo point mutations in Y-chromosomal gene USP9Y (Sun et al. 1999). On 
the contrary, small deletions or rearrangements do not show the paternal age effect. 
This has been observed in larger genes encoding for neurofibromatosis, Duchenne 
muscular dystrophy, Wilms’ tumour or retinoblastoma (Crow 2000). Ongoing stud-
ies in our lab (Kumar et al. 2015) in fathers of children with nonfamilial sporadic 
heritable retinoblastoma (RB) showed higher levels of oxidative DNA adducts in 
blood of children with RB who were born to fathers who smoked or who were 
above 35 years of age. Advanced age in fathers and limited detection of DNA dam-
age and repair in sperm and its dependence on oocyte to repair DNA damage may 
result in incomplete removal of DNA lesions due to suboptimal quality of oocyte 
(associated with advanced maternal age) and extensive DNA damage thus persists.

A variable incidence of different dominant mutations due to varied base substitu-
tions and deletions has been observed in children as the age of the father increased. 
Advanced maternal age has been reported as the only well-documented non-genetic 
risk factor for trisomies in humans, but recent studies have found that trisomy 21 is 
primarily associated with advanced paternal age when the female partner is >35 years 
of age (Sartorius and Nieschlag 2010). Advanced paternal age has not been associated 
with trisomy 18 and even less likely with trisomy 13. No relationship of advanced 
paternal age has been observed with the birth of an offspring with anencephaly or 
encephalocele. No significant relationship between either maternal or paternal age has 
been observed in Klinefelter’s syndrome as well. Nevertheless, an increase in the like-
lihood of these disorders with advancing paternal age cannot be denied.

19.6  Paternal Age Effect (PAE) Disorders

The first remarkable statement about the association of paternal age with birth dis-
orders was given by Wilhelm Weinberg in 1912 when he noticed the sporadic cases 
of achondroplasia in the last-born children of sibship. This was further strengthened 
40 years later by Penrose who gave the ‘copy-error hypothesis’ owing to more 
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number of germ line mutations in men. Paternal age effect (PAE) disorders are small 
group of such type of rare disorders with an increased risk for spontaneous congeni-
tal disorders and common complex diseases (some cancers, schizophrenia, autism, 
bipolar disorder) (Goriely and Wilkie 2012; Goriely et al. 2013). Replication error 
is not the only underlying mechanism in such disorders. The common factor in 
these disorders lies in dysregulation of spermatogonial cell behaviour with an effect 
mediated by specific mutations in genes encoding components of the tyrosine kinase 
receptor/RAS/MAPK signalling pathways (Maher et al. 2014). These are random 
mutations occurring during mitotic divisions of spermatogonial stem cells (SSCs) 
that confer a selective/growth advantage on mutant SSCs, leading to a clonal expan-
sion of mutant cells significantly above the background mutation rate. The clonal 
expansion takes place in the testes of all men, leading to the relative enrichment of 
mutant sperm over time. This phenomenon is known as Selfish Spermatogonial 
Selection and skews the mutational profile of sperm as men age, enriching the de 
novo mutations in offsprings of older fathers (Goriely et al. 2013).

Nine autosomal-dominant disorders (Apert, Crouzon, Pfeiffer and Muenke syn-
dromes, achondroplasia, Costello and Noonan syndromes and multiple endocrine 
neoplasia types 2A and 2B), corresponding to specific point mutations within five 
genes (FGFR2, FGFR3, HRAS, PTPN11and RET), have been ascribed to the PAE 
disorders. 99% of individuals with Apert syndrome carry either of the two transver-
sions (c.755C>G or c.758C>G), encoding substitutions in two adjacent amino acids 
(p. Ser252Trp or p. Pro253Arg, respectively) located within the extracellular region 
of the receptor tyrosine kinase protein fibroblast growth factor receptor-2 (FGFR2) 
(Wilkie et al. 1995). It is characterized by craniosynostosis (premature fusion of the 
cranial sutures) and severe syndactyly of both hands and feet. Single nucleotide 
substitution mutation (encoding a p. Gly380Arg mutant protein) in FGFR3 causes 
more than 95% of achondroplasia cases (Rousseau et al. 1994), which is the most 
common cause of short-limbed dwarfism.

Crouzon and Pfeiffer syndromes are witnessed to overlap clinically and are 
caused by any of more than 50 specific activating point mutations in fibroblast 
growth factor receptor 2 (FGFR2) gene. Craniosynostosis is seen to occur in Apert 
syndrome, but limb abnormalities are milder (Kan et al. 2002). Muenke’s syndrome 
develops because of a single c.749C>G transversion in FGFR3 (resulting in a point 
substitution Pro250Arg equivalent to the FGFR2 Apert-causing Pro253Arg) and is 
the most common genetic cause of coronal craniosynostosis (Vajo et al. 2000). 
Costello and Noonan syndromes are a part of neuro–cardio–facial cutaneous syn-
dromes or RASopathies and present with variable combinations of distinctive cra-
niofacial features, short stature, failure to thrive, developmental delay and skin, 
cardiac and skeletal abnormalities (Aoki et al. 2008). 90% of Costello syndrome 
patients have the c.34G>A transition in HRAS (Gly12Ser) at a well-known muta-
tion hotspot in tumorigenesis, while ~50% of Noonan syndrome mutations are 
detected within the PTPN11 gene (encoding SHP2-containing tyrosine phospha-
tase). The last two PAE disorders, multiple endocrine neoplasia types 2A (Men2A) 
and 2B (Men2B), are caused by allelic mutations within the RET receptor tyrosine 
kinase (Aoki et al. 2008; Tartaglia et al. 2010).
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A noticeable phenotypic overlap is observed between different PAE syndromes 
though they are clearly distinct and have well-defined complex pathological entity. 
These features highlight the pleiotropic role played by the PAE genes during devel-
opment, whereas the clinical overlaps of these features point out to the fact that 
these genes are required in common cellular contexts in shared molecular 
pathways.

19.7  Paternal Age, Sperm DNA Integrity and Reproductive 
Outcomes

Moskovtsev et al. (2006) reported that there was twice an increase in DNA fragmen-
tation index (DFI) from less than 30 years of age (15.2%) to ≥45 years of age 
(32.0). In an ongoing study in our department, we observed that an increase in DNA 
damage is associated with decreased probability of conception with increase in time 
to pregnancy. Decreased sperm DNA integrity is associated with an increased risk 
of recurrent miscarriages, congenital birth defects and childhood carcinomas. 
Advanced paternal age has been seen to affect the rates of fertilization, implanta-
tion, pregnancy and miscarriage. The impact of paternal age on the seminal oxida-
tive stress and DNA integrity in our laboratory showed an increase in seminal ROS 
from 58.3 to 115.7 relative light units (RLU)/s/million sperm and an increase in DFI 
from 32.6 to 42.3% from 2 to 40 years of age. Damage to the germ cells entering 
meiosis will precipitate an increase in apoptosis, thus making the sperm cell suscep-
tible to accumulate damage to its genome and epigenome right from the time they 
are formed till conception (Tremellon 2008; Dada et al. 2012; Aitken et al. 2012, 
2013).

19.8  Increased Telomere Length in Offsprings of Old Fathers

The response of the germ cells to an increase in stress is up-regulation of telomerase 
activity and increase in telomere length of the spermatozoa. Milder level of oxida-
tive stress may thus compensate, and this is one of the effects which may favour the 
survival of the offspring by increasing the telomere length. The telomere length is a 
paternally inherited trait so the offsprings of ageing fathers will have longer telo-
meres and this can be explained as a biological resistance to ageing process (Unryn 
et al. 2005). A strong and positive correlation has been showed between increasing 
paternal age and telomere length (Aston et al. 2012). By contrast if the germ cells 
are exposed to oxidative stress post-meiotically as in cases of infertility patients 
undergoing ART, the telomerase can no longer increase and the telomere length will 
be abnormally short, posing serious health hazards for the offspring.

With age the telomeres of leukocytes tend to decrease, while that of sperm tend 
to increase in length (Aston et al. 2012). Consistent with increase in sperm telo-
mere length, a correlation between paternal age at birth and leukocyte telomere 
length of the individuals has been reported (Prescott et al. 2012). The paternal age 
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contribution to offspring leukocyte telomere length is stronger than the maternal 
contribution (Broer et al. 2013), and the paternal age shows cumulative effect 
across generations (Eisenberg et al. 2012). A recent study analysed leukocyte and 
sperm telomere length in the same individual in relation to spermatogenic activity 
and parents’ age at birth by recruiting 18–19 years old high school students. 
Sperm and leukocyte telomere length showed correlation, but sperm telomere 
length was significantly longer. Also, a positive correlation between sperm telo-
mere length and total sperm number was observed. This increase telomere length 
may have health implications, though they do not seem to affect the risk of cancer 
(Chang 2012).

19.9  Age-Related Changes in Sperm Epigenome

Epigenetics is a stable heritable modification on histone tails but not the DNA 
sequence that leads to altered gene expression. The sperm cell has a highly differen-
tiated and specialized morphology, and the epigenome of human sperm matters for 
embryogenesis. Epigenetic factors suggest that sperm play diverse and critical roles 
in embryonic development. Methylation of cytosine residues, typically found at 
cytosine phosphate guanine dinucleotides (CpGs), in the DNA by DNMTs (DMA 
methyl transferases) is the most important mechanism regulating the process of 
gene expression and capable of regulatory control over gene activation or silencing. 
DNA hypomethylation is associated with gene transcriptional activity, whereas 
hypermethylation is associated with gene silencing activity (Carrell and Hammoud 
2010; Carrell 2012). Epigenetic patterns are shown to be silenced/disrupted by vari-
ous environmental and endogenous factors such as age, diet and lifestyle factors, 
including smoking or drug intake (Sharma et al. 2015). These epigenetic events may 
impair or inhibit key steps of fertilization, implantation and/or embryo 
development.

Epigenetic modifications have been shown to not only affect normal cellular 
function but also to be involved in ageing and cancer and as a mechanism where 
environmental influences come into play. Jenkins et al. studied the impact of ageing 
on DNA methylation in 17 fertile donors by methylation array approach. They iden-
tified 139 regions in sperm DNA that were hypomethylated and eight regions that 
were significantly hypermethylated with age. They reported that 117 genes were 
associated with these regions and a portion of age-related changes in sperm DNA 
methylation were located at genes associated with schizophrenia and bipolar disor-
der (Jenkins et al. 2014). Epigenetic marks within sperm are specifically associated 
with genes that regulate transcription and developmental processes. As the embryo 
grows, these imprints are maintained in somatic tissues, but erased in primordial 
germ cells so that imprints can be re-established during gametogenesis. The various 
methylation changes during development make the epigenome vulnerable to inter-
ference from environmental exposure (Kumar et al. 2015). Epigenetic programming 
plays an important role in an organism’s response to environmental stress during 
critical developmental periods. Understanding the epigenetics of sperm can be a 
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potential mean to decipher the mechanisms of pluripotency, which has broad impli-
cations for potential therapies.

Conclusion

In the last decade, an alarming increase in delayed marriages and delayed parent-
hood has been observed. This is due to several reasons like increased contracep-
tive use and professional pressures. Though the effect of advanced maternal age 
on fertility and health of the offspring is well documented, the impact of advanced 
paternal age on fertility is less well investigated. Hence, there is little awareness 
about the impact of father’s age on fertility and the health of offspring. The use 
of sperm from old men for ART may also lead to pre- and post-implantation 
losses and congenital malformations. In a number of cases of miscarriage, the 
role of paternal age may be significant; however, investigation of this requires 
well-planned studies on aborted foetuses. Thus, there is a need to increase aware-
ness to not delay childbearing as ageing affects the quality of gametes, which is 
usually associated with adverse pregnancy outcomes. Nevertheless, the rate of 
testicular ageing can be slowed by adopting a healthy lifestyle and practice of 
meditation and yoga.
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20Food, Nutrition, and Male Fertility

Sudha Bhagwati and Rajender Singh

Abstract
In a number of lower organisms and seasonal breeders, availability of food is a key 
determinant in shaping the time for reproduction and fertility. Therefore, food and 
nutrition strongly affect fertility, even in nonseasonal breeders. Eating a balanced 
diet is the key to good overall health. Food habits and their inherent components 
vary greatly across the globe. Making nutritious food a part of the regular diet can 
ameliorate health and upkeep fertility. Deficiency of nutrients and antioxidants can 
decrease fertility as various reports have supported the role of antioxidants in fertil-
ity. This chapter provides a comprehensive coverage of dietary elements that pro-
vide essential nutrients, cofactors, and antioxidants for the maintenance of good 
reproductive potential and fertility and improve prophylaxis against infertility.

Keywords
Food and fertility • Vitamins and fertility • Antioxidants and spermatogene-
sis • Soy food • Coenzyme Q10 • Vitamins A, C, and E

Key Points
• Food and nutrients play vital roles in male reproduction and fertility.
• Food contains antioxidants, N-acetylcysteine, vitamin C, vitamin E, CoQ10, sele-

nium, and zinc that significantly improve sperm health by reducing oxidative stress.

“The food you eat can be either the safest and most powerful form of  
medicine or the  slowest form of poison”

—Ann Wigmore.
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• Soy foods, fatty acids, and obesogens (endocrine-disrupting chemicals) may com-
promise spermatogenesis and thus decline male fertility.

• Eating healthy and nutritious diet can reduce chances of male infertility.
• Taking nutritious and balanced diet, avoiding obesity, and including required vita-

min supplements can be a good prophylactic measure against male infertility.

20.1  Introduction

Food and reproduction are the basic needs, which mark the very basis of survival 
and perpetuation of all species. Food and reproduction are closely linked aspects 
and every species tries to ensure both these essentials for survival. In a number of 
avian species, food availability is the principal factor that has shaped the timing of 
breeding season (Davies and Deviche 2014). Lack’s theory (1950, 1968) postulated 
that the breeding timing has a genetic basis and seasonal variations in food supply 
select genotypes of birds laying eggs such that the nestling stage coincides with the 
peak in food availability. Similarly, in a number of other species such as wild boar 
(Sus scrofa), the availability of high quality of acorns and olives correlated with 
higher body weight, more breeding females and a larger litter size than in the years 
of poor production of these foods (Massei et al. 1996). Further, the age at puberty in 
beef cows is inversely proportional to the availability of nutrition (Schillo et al. 
1992). These evidences clearly indicate an important impact of food and nutrition 
on fertility.

Humans are not seasonal breeders, but studies on the other animals suggest that 
food can have a significant impact on fecundity in humans. Worldwide, people eat 
various kinds of food. Some eat plant products like fruits, vegetable, cereals, pulses, 
etc., while others eat animal products like red meat, egg, fish, etc. In India, people 
mostly eat plant-based diet, while in the western countries, people are more depen-
dent on animal-based food products. Some of these products affect male fertility 
positively while others have negative effects. Vitamins, minerals, and fatty acids are 
essential parts of the diet and are well known to affect male fertility. The levels of 
these nutrients vary greatly across the foods described above. Interestingly, similar 
to the variation in food habits across the globe, semen parameters vary greatly 
across major populations (Vujkovic et al. 2009). A large fraction of these variations 
may be explained by differences in food habits. In fact, there is research showing 
that there are certain fertility foods a man can include to his diet to help increase the 
odds of conceiving a baby, and other food items can actually impair men’s fertility.

Nutritional status and lifestyle factors are considered as crucial determinants of 
normal healthy reproductive function. Nutrition has a significant impact on sperm 
health. What men eat reflects in their fertility. Research shows that having a poor 
diet and regular alcohol consumption, for instance, can compromise the quality and 
quantity of sperm and make conception more difficult. Food and nutrition are known 
to affect fertility, and nutrients are accredited to affect molecular mechanisms and 
balance in physiological functions. The use of nutrients to treat infertility is docu-
mented, but there is no specific heed to food and nutritional recommendations for 
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infertility in classical medicine reference books. Therefore, there is a need to write 
an account of food and nutrition in relation to male fertility. This chapter provides a 
summary of food and nutrients that improve male fertility.

20.2  Dietary Essentials

20.2.1  Carbohydrate

Very less is known about how carbohydrates influence male reproductive health. An 
observational study explains that consumption of cereal and fruit was positively 
associated with semen quality (Braga et al. 2012). Additionally, one case-control 
study conducted on 30 men suffering from poor semen quality and 31 normal 
healthy controls reported that the control group had comparatively higher intake of 
raw or cooked vegetables (lettuce and tomato) and fruits (apricots and peaches), 
whereas intake of potato was higher and that of fruits and vegetables was lower in 
the case group (Mendiola et al. 2009). In yet another study, Eslamian et al. (2012) 
stated that men reporting higher consumption of fruit and vegetables showed lower 
risk of asthenozoospermia. Subgroup analysis on the basis of fruit and vegetable 
consumption showed that orange intake was negatively related to the risk of asthe-
nozoospermia. Among vegetables, the intake of dark green vegetables and tomatoes 
was linked with a lower risk of asthenozoospermia (Eslamian et al. 2012).

20.2.2  Protein

A few studies analyzed the association between different dietary sources of protein 
with male reproductive health. Swan et al. (2007) described that maternal beef intake 
as well as anabolic steroids in beef result in an alteration in the male fetus develop-
ment in utero and have adverse effects on his reproductive capacity. Sperm concentra-
tion of son was negatively correlated with mother’s weekly beef consumption. In sons 
of high beef consumers (>7 beef meals per week), sperm concentration decreased by 
24.3% in comparison with men whose mothers consumed less beef (Swan et al. 2007). 
Similarly, an observational study conducted on 250 male patients undergoing intracy-
toplasmic sperm injection (ICSI) therapy reported that meat consumption was signifi-
cantly higher in infertile cases as compared to healthy individuals (Braga et al. 2012). 
A case-control study on 72 asthenozoospermic and 169 normozoospermic patients 
also reported identical findings. The study showed that the odds of asthenozoospermia 
were 2.03 times higher in the topmost tertile processed meat consumers. Furthermore, 
the odds of asthenozoospermia were 0.47 lower for those in the highest tertile of poul-
try product consumers (Eslamian et al. 2012).

Although soy food is regarded as a vegetable source of protein, some studies indi-
cated that it adversely affects sperm parameters due to its high content of isoflavone. 
Soybean is a member of family Fabaceae. It is a legume and native of East Asia. It 
has a significant role in the treatment of some cancers, such as colon, prostate, and 
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breast. Soy and soy-derived products contain isoflavones which mimic the actions of 
estrogens and may exert adverse effects on male fertility. The intake of 15 soy-based 
food by 99 males of subfertile couples for a period of 3 months showed that high 
intake of soy foods and soy isoflavones associated with lower sperm concentration 
(Chavarro et al. 2008; Modaresi et al. 2011) showed that the 20, 30, and 50% soy diet 
had a negative effect on male reproductive system in mice with a decline in primary 
spermatocytes and sperm count (Modaresi et al. 2011). The adverse effects of soy 
food on male fertility are due to the presence of isoflavones. Isoflavones are the type 
of naturally occurring isoflavonoids, which act as phytoestrogens and adversely 
affect sperm health and the male reproductive system.

20.2.3  Fat

More than 33% of the daily caloric intake of the human diet in most parts of the world 
contains fats and oils together (Bialostosky et al. 2002). Evidence from literature sug-
gests that dietary fatty acids (FAs) may have substantial effects on male fertility. 
Bongalhardo et al. (2009) showed that birds fed fish and corn showed the highest and 
lowest n-3 polyunsaturated fatty acids (PUFA), respectively, in sperm. Diet compris-
ing few distinct lipid sources differentially alters the lipid content of sperm head and 
body membrane, with minor effects on sperm characteristics (Bongalhardo et al. 
2009). The fat composition of sperm membrane may affect sperm maturation in epi-
didymis as the epididymal maturation is known to bring significant changes in sperm 
plasma membrane by extracting certain lipids (Rana et al. 1991).

Three types of natural fatty acids include saturated, monounsaturated, and poly-
unsaturated. Polyunsaturated fatty acids (PUFAs) are needed for various processes 
including growth, reproduction, vision, and brain development. Since they cannot 
be synthesized by the human body, they are regarded as essential fatty acids (Mazza 
et al. 2007). A clinical study conducted for analyzing the level of PUFA and satu-
rated fatty acids in semen suggested that spermatozoa of asthenozoospermic patients 
have lower levels of PUFA compared with saturated fatty acids and this may con-
tribute to the poor motility of sperm in these men (Tavilani et al. 2006).

20.3  Dietary Pattern

The dietary pattern has a significant impact on semen quality and hence on male 
reproductive health. A cross-sectional and observational study was conducted on 
188 young men, dependent on two different dietary patterns (Prudent and Western) 
in the years 2009–2010 at the University of Rochester. Prudent diet included high 
intake of fish, chicken, fruit, vegetables, legumes, and whole grains, while Western 
diet included high intake of red and processed meat, refined grains, pizza, snacks, 
high-energy drinks, and sweets. Semen samples were collected and analyzed for 
sperm count, motility, and sperm morphology and compared between the two 
dietary patterns. The consumption of a prudent dietary pattern was found to be 
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significantly associated with higher progressive sperm motility and not associated 
to sperm concentration and morphology. On the other hand, the consumption of 
Western diet showed neither positive nor negative association with conventional 
semen parameters. Therefore, it can be concluded that prudent diet or inclusion of 
at least a few of prudent components in the diet may help upkeep sperm motility 
(Gaskins et al. 2012).

20.4  Food Spices

Nigella sativa is a medicinal spice, which is also known as black cumin. It has a 
potent bioactive compound known as thymoquinone that is used to treat epilepsy 
and allergies and boost the immune system. Seeds and alcoholic extract of Nigella 
sativa are found to improve spermatogenesis and hence male fertility potential 
(Mohammad et al. 2009). Nigella sativa is used as a food spice in some countries.

Seeds are the major source of the active components of this plant and used in the 
traditional medicine as a natural therapy for a variety of disorders and manifesta-
tions such as headache, dizziness, bronchial asthma, nasal congestion, fever, diar-
rhea, inflammation, cough, influenza, eczema, toothache, hypertension, diabetes, 
kidney and liver dysfunctions, lung diseases, rheumatism, parasitic infections, 
hypercholesterolemia, gastrointestinal disorders, and overall general well-being, for 
more than twenty centuries (Ahmad et al. 2013).

There are many other plant products like Asparagus racemosus, Chlorophytum 
borivilianum, Crocus sativus, Curculigo orchioides, Mucuna pruriens, Tribulus ter-
restris, Trichopus zeylanicus, Withania somnifera, Zingiber officinale, etc. that have 
potential pro-fertility activities. These plants may not be used as food items, but 
their human use for overcoming male infertility and sexual debilities has been docu-
mented. Some of these products and their specific uses have been described in detail 
in Chapter 21.

20.5  Nutrients and Vitamins

Humans have evolved with a sophisticated and complex antioxidant protection sys-
tem to protect cells and organs of the body from reactive oxygen species. It involves 
a number of components, both endogenous and exogenous in origin, that function 
interactively and synergistically to neutralize the free radicals (Percival 1998). These 
components include (1) nutrient-derived antioxidants like vitamin C (ascorbic acid), 
vitamin E (tocopherols and tocotrienols), carotenoids, and other low molecular 
weight compounds such as lipoic acid, glutathione, etc.; (2) antioxidant enzymes, 
like superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase, 
which catalyze the quenching reactions of free radicals; and (3) metal-binding pro-
teins, for example, ferritin, lactoferrin, ceruloplasmin, and albumin that confiscate 
free iron and copper ions that are able to catalyze oxidative reactions. There are many 
other antioxidant phytonutrients present in an extensive variety of plant foods (Ford 
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et al. 1999). The eating habits of various species are set to provide the best reproduc-
tive fitness and fecundity. However, due to a number of environmental and stress 
factors, the regular eating habits may not always remain adequate to maintain the 
level of various nutrients and extra antioxidants required under these conditions. A 
detailed description of food and nutrients which improve various parameters of male 
reproductive health is given below (Fig. 20.1).

20.5.1  Zinc

Zinc is an important trace mineral present in the cells throughout the body. It is 
required for body’s defensive (immune) system to work properly. It plays a crucial 
role in cell division, cell growth, wound healing, and the breakdown of carbohydrates. 
It is also required for the sense of smell and taste, during pregnancy and infancy.

CoQ10

Selenium

Zinc

Obesogen

Fatty
acids

Soy
foods

NAC

L-
carnitine

Vitamin C

Vitamin
B12

Vitamin E

Folate

Fig. 20.1 Food/nutrition/vitamins that affect spermatogenesis. The items shown in green have 
positive effect and those shown in red have negative effect
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Zinc is regarded as one of the most significant trace minerals for male reproduc-
tive health; increasing zinc levels in infertile men has been shown to increase sperm 
count and improve the morphology, form, function, and quality of sperm, thus 
improving male fertility. Hunt et al. (1992) showed that there is a significant 
decrease in seminal volume, serum testosterone concentration, and sperm morphol-
ogy in young men due to zinc depletion in diet (Hunt et al. 1992) According to the 
World Health Organization (WHO) guidelines (5th edition), the lower reference 
limit for seminal zinc is ≥2.4 μmol/ejaculate, and level below this range may be a 
risk for infertility.

Oysters, calf liver, sesame seeds, beef, lamb, pumpkin seeds, yogurt, turkey, peas, 
venison, and shrimps are the major food sources of zinc. Zinc can be degraded by 
cooking; therefore, it is important to eat some foods in their raw forms, which are high 
in zinc.

20.5.2  Selenium

Selenium is an essential trace mineral, which our body requires in small amount. 
Selenium is necessary for the production of special proteins called antioxidant sele-
noproteins for protection against oxidative stress caused by the reactive oxygen 
species (ROS) and reactive nitrogen species (NOS) (Tinggi 2008). It exerts its bio-
logical functions through selenoproteins that contain amino acid selenocysteine. 
There are 25 selenoproteins encoded by the human genome.

Selenium is a requisite element for the production of sperm. A study showed that 
hyperlipidemia has significant adverse effects on male fertility, which can be ame-
liorated by diet supplemented with probiotics, inorganic selenium, or selenium- 
enriched probiotics (Ibrahim et al. 2012). Malondialdehyde (MDA) is a lipid 
peroxidation marker and the level of MDA is high in semen of infertile men. A 
vitamin intervention study reported that oral supplementation of vitamin E and sele-
nium caused a significant decrease in MDA concentration in sperm and an improve-
ment in sperm motility (Keskes-Ammar et al. 2003). In another study, a combination 
therapy with selenium and vitamin E was found to be effective for the treatment of 
asthenospermia and asthenoteratospermia and the induction of spontaneous preg-
nancy (Moslemi and Tavanbakhsh 2011). It has also been shown that oral supple-
mentation of selenium and N-acetylcysteine improved all semen parameters, such 
as sperm count and motility (Safarinejad and Safarinejad 2009). Specific effects of 
nutrients and vitamins on semen parameters are detailed in Fig. 20.2.

Brazil nuts, mushrooms, cereals, egg, liver, cod, sardines, halibut, tuna, salmon, 
shrimp, snapper, and turkey are the food products that provide selenium.

20.5.3  CoQ10

Coenzyme Q10 is a naturally occurring quinone, present ubiquitously in the animal 
body. It is also known as ubiquinone and ubidecarenone. A critical role of CoQ10 is 
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as an electron carrier in the mitochondrial respiratory chain complex. It is one of the 
most important lipophilic antioxidants, protecting the production of free radicals as 
well as oxidation of proteins, lipids, and DNA. Decreased levels of CoQ10 in 
humans are observed in many pathological conditions, for example, cardiac disor-
ders, neurodegenerative diseases, AIDS, cancer, infertility, etc. (Bentinger et al. 
2007). In these cases, treatment involves pharmaceutical supplementation or 
increased consumption of CoQ10 with meals as well as treatment with suitable 
chemical compounds like folic acid or vitamin B group, which significantly increase 
ubiquinone biosynthesis in the body.

CoQ10 is a vital antioxidant that helps in preventing cellular damage caused by 
free radicals, thus protecting DNA. CoQ10 is necessary for sperm motility and is, 
therefore, a crucial nutrient which affects male fertility. In vitro and in vivo studies 
done by Lewin and Lavon (1997) reported a significant increase in sperm cell motil-
ity after treatment with coenzyme Q10 in humans (Lewin and Lavon 1997). 
Additionally, some other recent studies also have shown that CoQ10 can increase 
sperm health, particularly sperm motility (Balercia et al. 2004; Balercia et al. 2009; 
Safarinejad 2009; Mancini and Balercia 2011).

CoQ10 is abundantly present in seafood and organ meats, though it is very dif-
ficult to obtain through the diet, especially for vegetarians and vegans. CoQ10 ubi-
quinol supplementation is the best way to obtain CoQ10.
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20.5.4  Vitamin E

Vitamin E is an important antioxidant, which protects body tissues from damage 
caused by the free radicals. It functions as an essential lipid soluble antioxidant or 
radical scavenger. It limits the production of free radicals in tissues by reacting with 
them to form a tocopheryl radical, which will then be reduced by a hydrogen donor 
(such as vitamin C) and thus return to its reduced state (Traber and Stevens 2011). 
Vitamin E is also being used as a commercial antioxidant in ultrahigh molecular 
weight polyethylene used in hip and knee implants to replace defective joints to help 
resist oxidation (UHMWPE Biomaterials Handbook). Vitamin E also plays a role in 
neurological functions (Muller 2010) and inhibition of platelet coagulation (Dowd 
and Zheng 1995). Vitamin E also protects lipids and prevents the oxidation of poly-
unsaturated fatty acids.

Vitamin E has been shown in various studies to improve sperm health and motil-
ity in men. Vitamin E is found to play a significant role in improving the in vitro 
functions of spermatozoa, which is evaluated by zona-binding test (Kessopoulou 
et al. 1995). In other studies, vitamin E and selenium supplementation in combina-
tion were found to improve sperm parameters like motility (Keskes-Ammar et al. 
2003; Moslemi and Tavanbakhsh 2011). It is also known as “tocopherol” that liter-
ally means to bear young. It is an important antioxidant that helps to protect DNA 
damage and maintains the DNA integrity of sperm and egg cells (Kessopoulou et al. 
1995).

Vitamin E is abundantly present in spinach, sunflower seeds, olives, papaya, 
almonds, and dark green leafy vegetables.

20.5.5  Folic Acid/Folate/Vitamin B9

Folate is an important factor required for the production and maintenance of new 
cells, DNA and RNA synthesis, preventing DNA damage, and thus preventing can-
cer (Kamen 1997). This is also involved in the biosynthesis of nitrogen bases, 
nucleic acids, and some amino acids like creatine, methionine, and serine. Folic acid 
prevents spina bifida and neural tube defects. Its ability to lower the level of homo-
cysteine suggests that it might have a positive influence on cardiovascular diseases. 
The role of folic acid in maintaining good health may extend beyond these ailments 
to encompass other birth defects, several kinds of cancer, dementia, Down syn-
drome, and serious conditions affecting pregnancy outcome (Lucock 2000).

Research suggests that folic acid can potentially improve sperm health. A double- 
blind, placebo-controlled interventional study showed an increase of about 74% in 
total normal sperm count in previously subfertile and normal fertile men taking 
66 mg/day of zinc with 5000 mcd/day of folic acid (Wong et al. 2002). Folate is 
required for DNA synthesis pathways and repair. Folate deficiency hinders DNA 
synthesis, cell division, and reproduction (Forges et al. 2007). Men with low levels 
of seminal plasma folate have increased risks of low sperm density and count 
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(Wallock et al. 2001). In an observational study, 70 fertile and 63 subfertile men 
undergoing in vitro fertilization or intracytoplasmic sperm injection treatment were 
assessed for semen parameters and tHcy (total homocysteine), folate, cobalamin, 
and pyridoxine concentrations in seminal plasma and blood. In case of fertile men, 
seminal plasma folate level was inversely correlated with the DNA fragmentation 
index (Boxmeer et al. 2009). Fertilization of egg with an abnormal sperm may lead 
to birth defects such as Down syndrome or an increased chance of miscarriage, 
making folate pathway crucial for reproductive health.

According to the European Association of Urology, antioxidant treatment (folic 
acid, vitamin E, zinc, selenium) has a positive effect on semen quality. Lentils, spin-
ach, pinto beans, asparagus, navy beans, black beans, garbanzo beans, kidney beans, 
and collard greens are the food sources of folic acid.

20.5.6  Vitamin B12

Also known as cobalamin, B12 helps the body convert food (carbohydrate) into fuel 
(glucose), which is used to produce energy. Vitamin B12 is a critically important 
vitamin for maintaining healthy nerve cells and helping synthesis and repair of 
DNA and RNA. Vitamin B12 works closely with folate or folic acid in helping the 
formation of red blood cells. Folate and vitamin B12 work together to produce 
S-adenosylmethionine (SAM), a derived amino acid involved in immune function 
and mood.

It is required for cellular replication and studies suggest that cobalamin defi-
ciency can cause reduced sperm count and motility. In an observational study, 70 
fertile and 63 subfertile men undergoing in vitro fertilization or intracytoplasmic 
sperm injection treatment were assessed for semen parameters and tHcy (total 
homocysteine), folate, cobalamin, and pyridoxine concentrations in seminal plasma. 
In the fertile control men, cobalamin was found to positively correlate with sperm 
count, but inversely correlate with ejaculate volume (Boxmeer et al. 2009). In 
another study on male albino rats, vitamin B12-deficient diet was given to animals 
for three different periods, (1) whole period (gestation to mature), (2) gestation 
period (gestation to weaning), and (3) immature period (3–12 weeks postnatal). 
This study suggested that dietary vitamin B12 deficiency during pregnancy may 
induce damage to germ cells of the embryo and affect maturation of spermatozoa 
(Watanabe et al. 2003).

Food sources rich in vitamin B12 include clams, oysters, muscles, liver, lamb, 
caviar (fish eggs), lobster, fish, crab beef, cheese, and eggs.

20.5.7  Vitamin C/Ascorbic Acid

Vitamin C is necessary for the development and maintenance of connective tissues 
and plays a crucial role in wound healing, bone formation, and the maintenance of 
healthy gums. It also plays an important role in a variety of metabolic functions 
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such as activation of vitamin B and folic acid and conversion of cholesterol to bile 
acid and tryptophan (amino acid) to serotonin (the neurotransmitter). It is an anti-
oxidant that protects the body from free radical-induced damage.

Infertile men possess considerably more sperm DNA damage than the normal 
fertile men, and vitamin C is found to improve sperm quality and protect sperm 
from DNA damage. It also helps in reducing the chance of miscarriage and chromo-
somal problems. A study conducted on males working in a battery manufacturing 
industry at Hyderabad (India) showed a significant increase in total sperm count and 
sperm motility and a significant decrease in abnormal sperm morphology after vita-
min C prophylaxis (Vani et al. 2012). Greco et al. (2005) showed that sperm DNA 
damage can be efficiently treated with oral administration of antioxidants (Greco 
et al. 2005). Vitamin C also appears to keep sperm from clumping together, making 
them more motile. In a study that analyzed various semen parameters in oligosper-
mic infertile men, before and after oral supplementation of vitamin C, it was con-
cluded that vitamin C supplementation in infertile men might improve sperm count, 
motility, and morphology (Akmal et al. 2006).

It is also known as ascorbic acid and is abundantly present in plants and fruits, 
including red peppers, potatoes, broccoli, cranberries, tomatoes, cabbage, and citrus 
fruits.

20.5.8  l-Carnitine

This compound is synthesized in the liver, kidney, and brain and is composed of two 
amino acids, lysine and methionine. It performs a crucial role in the energy supply 
for tissues during fetal life and in the neonatal stage by regulating the influx of fatty 
acids into mitochondria. l-Carnitine regulates the level of acylo-CoA and CoA in 
the mitochondria and provides acetyl moieties for the biosynthesis of acetylcholine 
(Rospond and Chłopicka 2012). l-Carnitine also plays a vital role in the metabolism 
of lipids and by transporting long-chain fatty acids into mitochondria for beta- 
oxidation. l-Carnitine further functions as an antioxidant, favoring fatty acid 
replacement within previously oxidatively damaged membrane phospholipids. 
Availability of l-carnitine is compulsory in the developing fetus for various pro-
cesses underlying fetal maturation.

Carnitine is a vital nutrient for sperm cells to function normally. Sperm requires 
high concentrations of carnitine for energy metabolism. A study showed a direct 
correlation between the level of free carnitine in seminal fluid and sperm count and 
motility (Johansen and Bohmer 1979). In a clinical study, it was found that l- 
carnitine is a potential factor, which significantly improves sperm motility and 
increases the rate of pregnancy. It is also a safe therapeutic for the treatment of 
asthenozoospermia (Wang et al. 2010). Carnitine, acetyl carnitine, l-arginine, and 
ginseng combined therapy significantly improved progressive sperm motility in 
men with asthenospermia (Morgante et al. 2010). Balercia et al. (2005) showed that 
supplementing with l-carnitine helps in improving sperm health and increasing 
sperm count and motility in the patients with low count and motility. l-Carnitine 
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and l-acetyl carnitine in combination are found to be effective in increasing sperm 
kinetic properties in idiopathic asthenozoospermia patients and improves the total 
oxyradical scavenging capacity of seminal fluid (Balercia et al. 2005).

Red meat and dairy products are the major food sources of l-carnitine, but other 
foods include nuts, seeds, asparagus, brussels sprouts, collard greens, garlic, mus-
tard greens, okra, kale, broccoli, apricots, bananas, bee pollen, artichokes, brewer’s 
yeast, parsley, buckwheat, corn, oatmeal, rice bran, rye, and whole wheat.

20.5.9  N-Acetylcysteine (NAC)

N-Acetylcysteine or acetylcysteine (NAC) is a mucolytic agent used to loosen the 
thick mucus in the disorders such as cystic fibrosis or chronic obstructive pulmo-
nary disease. It is also used for the treatment of numerous disorders, such as doxo-
rubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress 
syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal tox-
icity, and psychiatric disorders. It acts as a crucial antioxidant as it reacts with OH, 
NO2,· and CO3− (Samuni et al. 2013).

NAC is a modified amino acid, which has potent antioxidant properties. It sig-
nificantly reduces the destructive reactive oxygen species in human semen and 
improves impaired sperm function (Oeda et al. 1997). Ciftci et al. (2009) concluded 
from a research that in the NAC-treated group, the total antioxidant capacity of 
serum was greater and total peroxide and oxidative stress indices were lower as 
compared to the control group (Ciftci et al. 2009). Few more studies suggested that 
NAC is an important antioxidant, which can ameliorate sperm health by combating 
the reactive oxygen species (Safarinejad 2009; Reddy et al. 2011).

Granola, oat flakes, and vegetables like broccoli, red pepper, and onion are major 
sources of cysteine. Other plant sources include bananas, garlic, linseed, and wheat 
germ.

Other than derived amino acids, l-carnitine and N-acetylcysteine (NAC), a recent 
study also found some basic amino acids to have a positive effect on male infertility 
by improving production and quality of sperm. Supplementation with amino acids 
(lysine/methionine/threonine/tryptophan/valine) in a particular ratio (100:27:73:19:69) 
in boar diet improved sperm quality and subsequently increased the fertilization 
capacity and the number of live piglets (Dong et al. 2016).

20.6  Obesogens

Obesogens are the foreign chemicals, which disrupt normal development and bal-
ance of lipid metabolism. This may lead to obesity in some cases. There are various 
potential obesogens found everywhere, and people come in contact with them every 
day, intentionally or unintentionally, for example, bisphenol-A (BPA), high fructose 
corn syrup (HFCS), nicotine, arsenic, pesticides, organotins (tributyltin and triphe-
nyltin), and perflurooctanoic acid (PFOA). All endocrine-disrupting chemicals 
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(EDC) are defined as obesogen and are well known to be associated with early 
puberty, reproductive dysfunctions, and infertility later in life of humans and ani-
mals (Diamanti-Kandarakis et al. 2009; Skakkebaek et al. 2001).

EDCs have transgenerational effects; they affect not only the exposed individual 
but also the subsequent generations. Ephemeral exposure of a gestating female rat 
during the gonadal sex determination to the EDCs such as vinclozolin (an antian-
drogenic) or methoxychlor (an estrogenic compound) produced an adult phenotype 
in the F1 generation with decreased spermatogenesis (cell number and viability) 
and increased incidence of male infertility (Anway et al. 2005). This effect may be 
transmitted not due to the mutations in the DNA sequence, but through modifica-
tions in the factors such as DNA methylation and histone acetylation, which regu-
late gene expressions. Causes of obesity and its association with male infertility are 
described in detail in Chapter 11.

20.7  Nutrigenomics

Nutritional genomics or nutrigenomics is the study of how individual genetic differ-
ences can affect the way we respond to nutrients and other natural compounds we 
eat or how nutrients exert health effects by affecting gene expression (The NCMHD 
Center of Excellence for Nutritional Genomics, University of California, Davis). 
Nutrigenomics is an approach to understand the relationship between diet and 
health with integration to individual differences in the genetic makeup. Some of the 
changes thus introduced may be inherited from generation to generation, resulting 
in transgenerational effects. Munshi and Duvvuri (2008) explained how nutrients 
influence gene expression, i.e., mRNA synthesis (transcriptomics), protein synthe-
sis (proteomics), and production of metabolites (metabolomics), by giving the 
example of genetic polymorphism (SNPs) which may be responsible for variations 
in individual’s response to bioactive food components (Munshi and Duvvuri 2008).

The effect of dietary components on gene expression has not been well explored 
except a few commonly studied pathways. One such pathway relates folate and 
homocysteine cycle with the genes participating in one carbon metabolism pathway. 
MTHFR is the most commonly studied gene from this pathway. A number of stud-
ies have suggested a significant impact of MTHFR 677C > T polymorphism with 
various disorders, including male infertility. At the same time, folate is known to be 
important for spermatogenesis. Interventional studies have shown that folate sup-
plementation improved sperm concentration in infertile men. A simple explanation 
for this observation may be adequate functioning of the folate pathway upon supple-
mentation. Interestingly, Aarabi et al. (2015) in a recent study showed that apart 
from improvement in the blood folate levels, significant changes in the methylation 
level of differentially methylated regions of several imprinted loci (H19, DLK1/
GTL2, MEST, SNRPN, PLAGL1, KCNQ1OT1) in sperm DNA were seen upon 
supplementation. Interestingly, a recent study has shown significant differences in 
the MTHFR promoter methylation between infertile individuals and controls 
(Aarabi et al. 2015). Karaca et al. (2016) showed that the percentage of MTHFR 
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promoter methylation in infertile normozoospermic men was significantly higher in 
comparison to healthy controls (Karaca et al. 2016).

In another interesting double-blind, placebo-controlled interventional study, 
Ebisch et al. (2003) analyzed 677 C > T polymorphisms in 13 fertile versus 77 sub-
fertile individuals and studied MTHFR-dependent response to sperm concentration 
upon folic acid/zinc sulfate supplementation. Daily capsules of folic acid (5 mg) 
and/or zinc sulfate (66 mg) versus placebo were recommended for 26 weeks. The 
authors found that the genotype frequencies between the two groups were compa-
rable. Interestingly, sperm concentration increased significantly in wild types, but 
heterozygous and homozygotes did not show significant improvements. The study 
concluded that MTHFR genotype had a significant impact on the response to folic 
acid/zinc supplementation in subfertile individuals (Ebisch et al. 2003). Similar 
studies in other disorders have supported the role of gene polymorphisms in affect-
ing the response to diet or nutrient supplementation. For example, a study on dietary 
folate intake showed an inverse association with promoter methylation in colorectal 
adenomas that was dependent on the MTHFR genotype (van den Donk et al. 2007). 
Similarly, the influence of a number of dietary or nutritional factors via their effects 
on promoter methylation and gene expression is likely in addition to their simple 
availability to act as enzyme cofactors.

20.8  Discussion and Future Directions

Apart from congenital disorders and genetic causes, the major reason for infertility is 
the hormonal imbalance and/or oxidative stress. Disturbance in the homeostasis of 
hormone levels and the antioxidant defense may result in increased production of 
reactive oxygen species, leading to slowing down or arrest of spermatogenesis. 
Hormonal imbalance may result in compromised spermatogenesis, which can be 
further decelerated by oxidative stress. Apart from affecting sperm production, oxi-
dative stress can cause DNA damage. DNA of both parents is the future blueprint for 
the child. Impaired DNA is known to cause miscarriages, birth defects, and develop-
mental problems in the offsprings. Studies have also shown a strong correlation 
between oxidative stress caused by free radicals and male infertility. If the physiol-
ogy is otherwise perfect or close to that, food can have a significant impact on sperm 
production and fertility. Therefore, a general precaution and adequate attention to 
nutrition can have a sound effect on fertility.

The food products discussed in this book chapter have nutritional value and may 
not be adequate in regular diet. “Fertilica Choice Antioxidants” contains most of the 
important antioxidant nutrients in a capsule formulation. This blend is useful for 
both men and women, but especially for men with low sperm count and poor sperm 
health. The transgenerational effects of food and nutrition in relation to male fertil-
ity cannot be denied. Obesogens (such as endocrine-disrupting chemicals) have 
transgenerational effects on male fertility and decline the reproductive status of the 
future male progeny (Schug et al. 2011). Short-term exposure of a gestating female 
rat during the gonadal sex determination, to the EDCs like vinclozolin or 
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methoxychlor, induces an adult phenotype in the F1 generation of decreased sper-
matogenic capacity and increased incidence of male infertility. These effects are 
transferred through the male germ line to the males of F1 to F4 generations. The 
transgenerational effects may not be transmitted due to mutation in the DNA 
sequence, but through modifications in the factors like DNA methylation and his-
tone acetylation, which regulate gene expressions.

The capability of an environmental factor (such as endocrine-disrupting chemi-
cals) to reprogram the germ line and promote a transgenerational condition has a 
remarkable association between evolutionary biology and disease etiology (Anway 
et al. 2005). It must be noted that fertility, reproductive potential, environment, and 
evolution are strongly correlated. There is a proof for the role of sperm-derived 
RNAs in arbitrating paternal transgenerational effects, with several categories of 
RNA recently discovered in sperm that are amenable to changes in diet, behavior, 
and stress (Sharma and Rando 2014). The research on the transgenerational impact 
of environmental factors, endocrine disruptors, and food is still in the infantile 
phase; further research in this area would bring forth the effects of food and nutri-
tion unseen so far.

 Conclusion

People with idiopathic male infertility can treat their disorder by supplementation 
of zinc, selenium, CoQ10, folic acid, vitamin B12, vitamin E, vitamin C, l-carni-
tine, and antioxidant-rich diet. Normal fertile individuals can prolong their fertil-
ity period by supplementation of a nutritious diet in their regular food habits and 
by avoiding food items like soy food, fatty acids, and obesogens that are poten-
tially detrimental to spermatogenesis and fertility. We should prefer food therapy 
over drug therapy to increase the quality and quantity of semen as a measure to 
avoid or treat male infertility. Nutrigenomics research may open the way to per-
sonalized nutrition. Food may be seen as a requirement for regular course of life, 
but interestingly, food and nutrition play roles well beyond that as they have been 
shown to affect the DNA that we pass on to our subsequent generations. The 
impact of environmental toxicants, endocrine disruptors, stress, and other factors 
that affect fertility can be minimized or reversed by paying a little attention to 
daily nutritional requirements. Therefore, one must keep an eye on self-nutrition 
to upkeep fertility and pass the same to the coming generations.
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Abstract
Male infertility is a disorder with an undefined etiology in about half of the cases. 
It has devastating effects on personal and social life of a couple. In the past few 
years, the modern medical sciences have prospered a lot; however, in spite of 
great advancements in synthetic products, the herbal products are still a preferred 
choice in terms of safety, affordability, and higher efficacy. Assisted reproductive 
technologies (ART) such as IUI, IVF, and ICSI promise to treat a few but a long- 
lasting curative effect, easy availability, natural way of healing, and fewer side 
effects make herbal plant products an attractive alternate for a larger section of 
society. As recommended by the Ayurvedic, Unani, and Siddha medicinal sys-
tems, plant products are gaining a substantial importance for infertility manage-
ment. In this chapter, we have focused on some well-known selected plants with 
respect to the scientific evidence of their effects on male fertility and their avail-
ability in the Indian market.

Keywords
Male infertility treatment • Plants in male infertility • Plant extracts • Mucuna 
pruriens • Withania somnifera • Asparagus racemosus • Tribulus terrestris

“The management of fertility is one of the most important functions of adulthood”
—Germaine Greer.
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Key Points
• According to the World Health Organization (WHO) estimates, due to poverty 

and lack of access to modern medicine, about 65–80% of the world’s population 
living in the developing countries depends essentially on plants for primary 
health care.

• In Ayurveda “Vajikarana Rasayana” has been suggested as an effective treatment 
for male sexual debilities and infertility.

• Plant products have aphrodisiac, adaptogenic, and antioxidant properties and 
offer holistic benefits to overcome male infertility.

• Medicinal plant products contain steroidal saponins, flavonoids, and alkaloids as 
active components, which may account for their pro-fertility effects.

• Plant products such as Asparagus racemosus, Chlorophytum borivilianum, 
Curculigo orchioides, Mucuna pruriens, Tribulus terrestris, Withania somnifera, 
etc., improve the level of testosterone and increase libido.

21.1  Introduction

Infertility is defined as the inability of a couple to achieve pregnancy after 1 year or 
more of regular and unprotected intercourse. Around the world, 1/6 couples trying 
to conceive have difficulties. Male reproductive capability is compromised in about 
50% of the infertile couples. It is certain that stressful lifestyle has increased the 
number of cases suffering from sexual dysfunction and infertility. Oligozoospermia, 
sexual, and ejaculatory dysfunctions are also important factors for the decrease in 
conception other than congenital and immunological factors. Male infertility can 
have a great impact on a man’s life affecting his self-esteem, confidence, and his 
sense of manhood. It can devastate a young couple’s life by influencing their sexual, 
procreative, and marital needs and usually results in unconsummated marriages and 
divorce. To be childless generates problems for many couples regarding the lack of 
future support in old age and awful social suffering. To save a couple from these 
undesirable consequences due to all these reasons, it is desirable and highly worth-
while to treat infertility.

According to Charak Samhita, the healthy life has three main pillars— 
balanced diet, proper sleep, and healthy sexual and marital life. Ayurvedic reme-
dies have long been used to address the complications of infertility. Vajikarana 
Rasayana was a very popular and effective treatment of male infertility in the 
ancient Indian medicinal system, which is still a method of choice alone or in 
combination with other methods of infertility management. In Sanskrit “Vaji” 
defines horse, the symbol of potency and performance; therefore, Vajikarana 
means producing a horse’s vigor, particularly the animal’s great potential for sex-
ual activity. There are more than a 100 formulations used for Vajikarana, which 
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include plant parts such as root, leaves, seeds, etc., of various medicinal plants. 
These formulations are used for good physique, potency, sexual exhilaration, and 
strength. The plants most commonly used in Vajikarana Rasayana are Mucuna 
pruriens, Asparagus racemosus, Madhuca indica, Withania somnifera, Pueraria 
tuberosa, Saccharum officinarum, Tribulus terrestris, Bambusa erundinacea, etc. 
(Dalal et al. 2013).

Nevertheless, specific antioxidants, revivers, and nutrients such as vitamins are 
available in the contemporary medicinal systems; however, none of them provides 
as multifarious constituents as may be required to withstand the multifaceted prob-
lems of male infertility. Plant products are the ultimate substitutes when general and 
varied effects are desired. Among the methods used to treat male infertility, medici-
nal plants have been used empirically as pure herbs, extracts, or semi-purified com-
pounds. These herbal products are used for the treatment of erectile dysfunction, 
decreased libido, and sperm disorders. Many in vitro, in vivo, and clinical studies 
manifest the empirical use of plant products in the improvement of male fertility 
parameters. More than 50% of the world’s population trusts herbal products for 
medicinal purposes.

Since the lack of libido is one of the causes of male infertility, the plants 
improving sexual drive help in treating male infertility. Some of the plants have 
already been tested on humans and found to be very potent in treating sexual 
debility and male infertility. Some plants are scientifically proven for reviving 
sexual desire, such as ethanolic extract of Trichopus zeylanicus; ethanolic extract 
of Vanda tessellata flowers; lipidic extract from Lepidium meyenii; extract of 
Turnera diffusa, Pfaffia paniculata, and Tribulus terrestris; and roots of Panax 
ginseng, or Panax quinquefolius. Infertile couples use both traditional medicine 
and modern therapies as treatment, but drugs derived from natural plant sources 
have always been considered safe and promising. The research on natural prod-
ucts as a source of potential drug has been of resurgent interest in developing as 
well as the developed countries due to the various reasons, namely, conventional 
medicine can be ineffective and abusive and wrong use of a synthetic drug may 
cause adverse effects.

A number of plant products claimed for pro-fertility effects have now been 
established to possess these properties by modern scientific experimentation, 
while a few still lack such evidence. A few plants with strong pro-fertility proper-
ties have been subjected to preparation of specific extracts and fractionation of 
active constituents. Mechanistic studies on a number of plants have shown the 
presence of antioxidant properties, which is a major factor in the treatment of 
male infertility. However, other properties specific to a number of plants have 
also been reported (Table 21.1). We have provided a detailed description of each 
plant and the status of the experimental evidence in support of their claimed 
effects.
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Table 21.1 List of some acclaimed plants in practice for treatment of male infertility

Plants

Probable 
mechanism of 
action Used part

Major 
constituent Scientific evidence

Asparagus 
racemosus

Regeneration of 
seminiferous 
tubules

Root powder, 
hydroalcoholic, 
and aqueous 
extract

Saponins, 
shatavarin I–IV

Wani et al. (2011); 
Devi et al. (2004)

Asteracantha 
longifolia

Increases level 
of testosterone 
and 
spermatogenesis

Ethanolic 
extract of seed

Cardiac 
glycoside, 
phenol, aponins

Chauhan et al. 
(2011); Doss (2009)

Chlorophytum 
borivilianum

Antioxidant, 
aphrodisiac

Aqueous 
extract of root

Steroidal 
saponins, 
Borivillianosides

Rath and Panja 
(2013); Thakur 
et al. (2009); 
Kenjale et al. 
(2008); Visavadiya 
and 
Narasimhacharya 
(2007)

Crocus sativus Antioxidant, 
aphrodisiac

Aqueous 
extract of 
stigma

Crocin Hosseinzadeh et al. 
(2008); Heidary 
et al. (2008)

Curculigo 
orchioides

Aphrodisiac Root extract Saponins, 
glycosides

Agrahari et al. 
(2010)

Curculigosides 
A–D

Dioscorea 
bulbifera

Reducing 
reactive oxygen 
species

Tuber Diosgenin, 
alkaloids, 
flavonoids, vit C 
and B

Son et al. (2007); 
Okwu and Ndu 
(2006)

Morinda 
citrifolia

Protective 
effects against 
oxidative 
injuries and 
reduce lipid 
peroxidation in 
sperm 
membrane

Fruit, leaves, 
roots

Alkaloids, 
polysaccharides, 
lignans, 
anthraquinones

Wang et al. (2011); 
Kamiya et al. 
(2004); Hirazumi 
and Furusawa 
(1999)

Mucuna 
pruriens

Reducing ROS 
and GnRH 
signaling

Seed powder l-Dopa, sterols, 
alkaloids

Singh et al. (2013); 
Lieu et al. (2010)

Tribulus 
terrestris

Increases level 
of T, DHT, and 
DHEAS

Dried fruit 
powder

Protodioscin Sellandi et al. 
(2012)
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21.2  Plants with Pro-fertility/Aphrodisiac Properties

21.2.1  Asparagus racemosus

Asparagus racemosus is a medicinal plant of family Asparagaceae that grows in 
tropical and subtropical India, Nepal, and Sri Lanka. It is commonly known as 
Shatavari or Shatmull. It has been a part of Vajikarana Rasayana in the traditional 
Indian medicinal system and was very popular for its aphrodisiac role. Shatavari 
roots contain majorly four steroid saponins, namely, shatavarin I–IV. The root pow-
der of A. racemosus has already been tested for treatment of male infertility in rats 
(Fig. 21.1). It has been given to men in combination with other medicinal plants 
such as Gokshura and Ashwagandha (Devi et al. 2004). Hydro-ethanolic and aque-
ous extracts of the roots of A. racemosus were examined for male infertility treat-
ment and found to be potent (Wani et al. 2011). We demonstrated that A. racemosus 
root powder restores spermatogenesis by reducing the level of reactive oxygen spe-
cies and restoration of hormonal imbalance at the central endocrine axis (our unpub-
lished study). Pure herb powder or syrup of Shatavari is available in the Indian 
market from different manufacturers with the brand names like Himalaya Shatavari 
(capsule and syrup), Patanjali Shatavari Churna (powder), Organic India Shatavari 
(capsule), and many others. Only a few side effects of Asparagus have been noted. 
It might cause weight gain in some people, and allergic reaction to herb may lead to 
coughing, runny nose, inflammation of skin, occupational asthma, etc. (Alok et al. 
2013). Patients with edema because of kidney disorder or impaired heart function 
should not use Shatavari.

Table 21.1 (continued)

Plants

Probable 
mechanism of 
action Used part

Major 
constituent Scientific evidence

Trichopus 
zeylanicus

Increases mating 
performance

Leaf ethanolic 
extract

Flavonoid 
glycosides, 
glycolipids

Tharakan and 
Manyam 2005; 
Singh et al. (2001); 
Subramoniam 
et al. (1997)

Withania 
somnifera

Increases T and 
LH and reduce 
FSH and PRL

Lyophilized 
aqueous extract 
of root

Withaferin, 
withanolides

Ahmad et al. 
(2010); Singh et al. 
(2001); Abdel- 
Magied et al. 
(2001)

Zingiber 
officinale

Increases level 
of testosterone

Rhizome 
aqueous and 
ethanol extract

Polyphenol, vit 
C, β-carotene, 
and flavonoids

Oyeyipo et al. 
2014; Morakinyo 
et al. (2008)
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Fig. 21.1 Figure showing plants with pro-spermatogenesis/fertility activity

Plant Dried rootRoot
Asparagus recemosus

Plant Dried rootSeeds
Astercantha longifolia

Plant Dried rootRoot
Chlorophytum borivilianum

Plant

Corcus sativus

Stigma
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Plant Dried rootRoot
Curculigo orchoides

Plant Tuber/air potatoAir potato
Dioscorea bulbifera

Plant Mature rootFruit
Morinda citrifolia

Plant SeedsPods
Mucuna pruriens

Fig. 21.1 (continued)
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Plant Dried fruitFruit
Tribulus terrestris

Plant Leaves and flower
Trichopus zeylanicus

Plant Dried rootRoot
Withania somnifera

Plant RhizomeFlower
Zingiber officinale

Fig. 21.1 (continued)
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21.2.2  Asteracantha longifolia

A. longifolia is an annual herb of family Acanthaceae, which has been used in the 
ancient Indian medicinal system for management of several disorders. It is a native 
of tropical and subtropical regions and is abundantly present in India. It is com-
monly known as Kokilaksha and Ikshura. Roots, seeds, and leaves have been used 
in Indian medicinal system for treatment of various diseases, but seeds are conven-
tionally used to treat sexual frailty, erectile dysfunction, premature ejaculation, and 
oligozoospermia (Chauhan et al. 2011). Ethanolic extract of seeds was administered 
to male rats for 28 days, and a significant increase in sperm count and fructose level 
of seminal vesicles was seen (Chauhan et al. 2011). Cardiac glycosides, phenols, 
steroids, saponins, and tannins have been proven as major chemical constituents 
present in A. longifolia by phytochemical screening (Doss 2009). “Speman” manu-
factured by Himalaya is a drug, which comprises of A. longifolia in combination 
with some other herbs (M. pruriens, T. terrestris, W. somnifera) for the treatment of 
erectile dysfunction and infertility. No human trial has been done on the powder of 
seed, leaf, or roots of plant, but “Speman” has been tested on humans. Speman has 
been tested on 30 idiopathic oligospermia patients with administration of two tab-
lets twice daily for 6 months. A significant increase in sperm count and motility was 
observed (Agrawal and Kulkarni 2003). No side effect has been reported till date.

21.2.3  Chlorophytum borivilianum

Chlorophytum is a medicinal plant of family Papilionaceae with manifold therapeutic 
values. It is a native of tropical forest of peninsular India and commonly known as 
Safed Musli. Seeds and roots of Safed Musli are in use for treating male infertility 
since ages. It possesses adaptogenic and immunomodulatory properties, which treat 
impotency and sterility and enhance male potency. Aqueous extract of tuberous roots 
of C. borivilianum (CB) has already been evaluated for its aphrodisiac and spermato-
genic potential on rats (Visavadiya and Narasimhacharya 2007; Kenjale et al. 2008; 
Thakur et al. 2009). Aqueous extract of CB has also been tested on infertile human 
patients and found to be effective in improving male sexual health (Rath and Panja 
2013). Roots of C. borivilianum contain major chemical constituents such as steroidal 
saponins, namely, neotigogenin, neohecogenin, stigmasterol, tokorogenin, sapoge-
nins, fructans, magnesium, etc. (Thakur et al. 2009). We could not find any drug based 
on C. borivilianum. There are no known side effects of Safed Musli if taken under 
prescribed doses. Higher doses may however lead to gastrointestinal problems.

21.2.4  Crocus sativus

Crocus sativus is a member of family Iridaceae, and dried stigma is known as saf-
fron or kesar or kumkuma that is used for medicinal purposes since ages. This plant 
is a native of Greece and Southwest Asia and was first cultivated in Greece. Dried 
stigmas (threadlike parts of the flower) are used for medicinal purposes. A study 
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designed to evaluate the antioxidant properties of saffron in humans used 50 mg 
with drinking milk administered three times a week and reported a significant 
increase in sperm count and motility (Heidary et al. 2008). Another recent study has 
been done on rats exposed to cadmium that showed improved sperm parameters in 
saffron-treated animals (Asadi et al. 2013). Aqueous extract of C. sativus and its 
active chemical constituent “crocin and safranal” were assessed for their aphrodi-
siac activity in male rats, and crocin was reported to be a potent aphrodisiac at all 
doses (100, 200, and 400 mg/kg body weight) and aqueous extract specially at doses 
160 and 320 mg/kg body weight; however, safranal did not show aphrodisiac effects 
(Hosseinzadeh et al. 2008). This is popular as strong aphrodisiac and contains major 
chemical constituent such as crocin and picrocrocin. C. sativus is present in combi-
nation with some other medicinal plants in marketed drug “Speman forte Vet” man-
ufactured by Himalaya for improvement of spermatogenesis and sperm quality. 
Side effects of C. sativus include dry mouth, anxiety, dizziness, nausea, and head-
ache. Allergic reaction may be seen in some people. A large dose of saffron by 
mouth is unsafe as it can cause poisoning; bloody diarrhea; bleeding from nose, lips, 
and eyelids; and other serious side effects (Wüthrich et al. 1997). Doses of 12–20 g 
can cause death (Wüthrich et al. 1997).

21.2.5  Curculigo orchioides

It is often known as “Kali Musli” and “Golden Eye Grass” that belongs to the family 
Hypoxidaceae and is well known for its aphrodisiac character in the ancient Indian 
and Chinese medicinal systems. It is a native of China, Japan, Indian subcontinent, 
Papuasia, and Micronesia. Rhizome or roots of the plant are commonly used for 
medicinal purposes. The major chemical constituents present in C. orchioides are 
glycosides and polysaccharides such as starch, tannins, resin, hemicelluloses, muci-
lage, etc. Fresh rhizome contains sapogenin (yuccagenin) and alkaloids (lycorin) 
(Irshad et al. 2006). The rhizome of C. orchioides is described in Ayurveda as a 
Vajikarana Rasayana. Ethanolic extract of rhizomes was evaluated for sexual behav-
ior of male rats and found to be potent for enhancing sexual performance (Chauhan 
et al. 2007). It also improves sperm count in heat-exposed rats as compared to heat-
exposed positive control groups (Chauhan et al. 2007). No drug is available in the 
market that contains Kali Musli for male infertility management. It has not been 
tested for pro-male fertility effects in humans despite being a potential aphrodisiac. 
Therefore, further exploration of this product is warranted. There is no report of side 
effects of C. orchioides till date.

21.2.6  Dioscorea bulbifera

D. bulbifera is a native of the Indian subcontinent and Africa and is commonly 
known as “Varahi or air potato.” It is a tropical and subtropical plant of family 
Dioscoreaceae. Tuber of D. bulbifera is observed as pungent, tonic, aphrodisiac, 
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stomachic, and anthelmintic in Ayurveda. Antioxidative and hypolipidemic 
effects of D. bulbifera have been proven on high-cholesterol-diet rats in which 
diosgenin (steroidal saponins), a major chemical constituent of Dioscorea spp., 
showed increased level of superoxide dismutase (SOD) in the plasma and liver 
and catalase in erythrocytes and the liver (Son et al. 2007). It also contains bioac-
tive compounds comprising saponins, alkaloids, flavonoids, tannins, phenols, 
vitamin C (ascorbic acid), and vitamin B complex (niacin, riboflavin, thiamin) 
(Okwu and Ndu 2006). This plant has not been investigated in detail for pro-
fertility activity in humans. As it has antioxidant properties and vitamin B, it 
must be potent in treatment of male infertility and requires further attention of 
scientists in this field. We could not find any drug based on D. bulbifera for male 
infertility treatment. The overdose of air potato causes gastrointestinal reactions 
like vomiting, diarrhea, abdominal pain, etc. It may also cause certain damage to 
the liver and kidneys.

21.2.7  Morinda citrifolia

Morinda citrifolia is an evergreen tree of family Rubiaceae, which is commonly 
known as “Noni or Indian mulberry.” It is a native of Southeast Asia and Australasia. 
Fruits, leaves, and roots are used to enhance the sexual strength in men. Juice of 
fruit is used as an alternative medicine for many ailments such as inflammatory, 
infections, and cancers. It has been explored for its effective adaptogenic property 
and relieves from stress in ICR mice (Wang et al. 2011). No study has been under-
taken on humans for testing its pro-fertility effects. It contains majorly alkaloids, 
polysaccharides, lignans, etc. (Kamiya et al. 2004). The pure herb is available, but 
no formulated drug for treatment of male infertility in market. No information is 
available regarding its adverse effects.

21.2.8  Mucuna pruriens

Mucuna pruriens is a member of family Papilionaceae and has been used for the 
treatment for male sexual debility since ages. It is commonly known as “velvet 
bean, Yokohama velvet bean, cowage, and lacuna bean.” The seeds of this plant are 
mainly used for treating male infertility in Indian medicinal system. L-Dopa is a 
major constituent present in M. pruriens. Along with L-dopa, this plant is an abun-
dant source of alkaloids such as prurienine, prurieninine, prurienidine, etc. The seed 
powder of M. pruriens improves sperm count and motility by reducing the oxidative 
stress and DNA damage in Sprague-Dawley rats and is a potent product for manage-
ment of free radical mediated disorders (Singh et al. 2013).

The defensive mechanisms of M. pruriens on rats as well as humans have already 
been investigated. Seed powder was orally administered to infertile men that signifi-
cantly ameliorated physiological stress and seminal plasma lipid peroxide level, 
resulting in improved sperm count and motility (Shukla et al. 2010). Crude powder 
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of seed and ethanolic extract of M. pruriens have been assessed for treatment of male 
infertility. The ethanolic extract of M. pruriens was administered to male Wistar 
albino rats for different doses and time periods. This increased mounting frequency, 
intromission frequency, and ejaculation latency and decreased the mounting latency, 
intromission latency, post-ejaculatory interval, and inter- intromission interval at a 
particular dose of 200 mg/kg body weight (Suresh et al. 2009). Aqueous extract 
could be used for the same purpose because extract in water was found to be active 
in the improvement of Parkinsonism (Lieu et al. 2010). We demonstrated that M. 
pruriens and its major chemical constituent L-dopa significantly recuperate the sper-
matogenic loss caused by ethinyl estradiol administration in SD male rats by lower-
ing the reactive oxygen species level, reestablishing mitochondrial membrane 
potential and regulating the level of apoptosis (Singh et al. 2013). There are many 
drugs present in the Indian market, which contain Mucuna such as “Confido,” 
“Speman,” and “Tentex forte” by Himalaya wellness. It is safe with very few side 
effects like headache and pounding heartbeat and symptoms of psychosis including 
confusion, agitation, hallucination, and delusions (Infante et al. 1990).

21.2.9  Tribulus terrestris

It is a flowering plant of family Zygophyllaceae, a native of temperate and tropical 
regions of the Old World. The common names are Bullhead, Burra Gokharu, and 
Bindii. Roots and seed pods have been used in Ayurveda, Unani, and Siddha medi-
cines and also in Chinese medicine since long back. Protodioscin is the major chem-
ical constituent present in T. terrestris, which is known for its aphrodisiac properties. 
It restores libido by increasing the level of testosterone, dihydrotestosterone, and 
dehydroepiandrosterone sulfate (Gauthaman and Ganesan 2008). The experimental 
studies on T. terrestris have already been done on primates, rabbits, castrated rats 
(Gauthaman and Ganesan 2008), and humans (Sellandi et al. 2012). “Libilov” by 
Nutrica, Inc. is a marketed drug, which is composed of purified extracts of T. ter-
restris, Ginkgo biloba, and natural amino acid (L-arginine). It may cause stomach 
upset and also may affect the blood glucose level.

21.2.10  Trichopus zeylanicus

It is a rare berry plant commonly known as Arogyapacha or Kerala Ginseng that is 
native to India. It has been historically used by Kani tribe in India as an antifatigue 
medicine (Pushpangadan et al. 1988). It is a medicinal herb of family Dioscoreaceae 
with many pharmacological activities, such as antihepatotoxic, antifatigue, and antiul-
cer (Tharakan and Manyam 2005). The ethanolic extract of T. zeylanicus leaves has 
been proven active in the enhancement of mount and mating performance in male 
mice (Subramoniam et al. 1997). It contains NADH, polyphenols, and sulfhydryl 
compounds, which have the ability to lower ROS level. The antioxidant activity may 
be an important mechanism of action of T. zeylanicus to withstand fatigue. This plant 
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also has adaptogenic (Singh et al. 2001) and aphrodisiac (Subramoniam et al. 1997) 
properties apart from antioxidant and antifatigue properties. Studies on humans could 
be undertaken using ethanolic extract of T. zeylanicus as it remains unexplored. We 
could not identify any drug based on this plant in the market that promises to improve 
sexual health or fertility. There are no reports on the side effects of T. zeylanicus.

21.2.11  Withania somnifera

Withania somnifera is commonly known as winter cherry and is a member of the 
family Solanaceae. It is a native of India, North Africa, and the Middle East. The 
practitioners of the traditional medicinal system in India account W. somnifera as 
“Indian Ginseng” (Grandhi et al. 1994). Tuberous roots, berries, and leaves are the 
plant parts, which were generally used in the traditional medicine system. The 
lyophilized aqueous extract of Withania was reported to increase testicular weight, 
diameter of seminiferous tubules, seminiferous epithelial cell layers, and serum 
levels of ICSH (interstitial cell stimulating hormone) with a synchronous reduc-
tion in serum testosterone and FSH level in immature Wistar rats (Abdel-Magied 
et al. 2001). We demonstrated that W. somnifera and its major constituent witha-
ferin A improve spermatogenesis due to their restorative efficacy on reproductive 
hormones and reduction in oxidative stress (our unpublished study). We also car-
ried out a trial on humans to evaluate the value of W. somnifera root extract in 
treating idiopathic male infertility (Mahdi et al. 2011). Administration of W. som-
nifera was found to improve semen quality by significantly reducing oxidative 
stress and level of serum FSH and prolactin, increasing serum testosterone, and 
luteinizing hormone levels (Ahmad et al. 2010). The major chemical constituents 
of W. somnifera are alkaloids such as withanine, somniferine, somniferinine, 
withananine, and somnine. “Himalaya Wellness” has manufactured some drugs in 
combination with W. somnifera with some other medicinal plants. These drugs are 
available in the market with the brand names such as “Confido,” “Himplasia,” 
“Speman,” and “Tentex Forte.” Although it is safe when taken by mouth for short 
time periods, overdoses of Ashwagandha may cause stomach upset, diarrhea, and 
vomiting.

21.2.12  Zingiber officinale

It is a flowering plant of the family Zingiberaceae whose rhizome has been used in 
the traditional medicine to treat various ailments like nausea, diarrhea, and arthritis 
for ages. It is indigenous to South China and eventually spread to other parts of Asia 
and West Africa. The Rhizome of plant has been used in traditional medicine for 
treatment of various disorders. Many studies have been done on pro-fertility proper-
ties of Z. officinale. The beneficial effects of Z. officinale on male reproductive func-
tion by increased sperm count, motility, and testosterone and decreased 
malondialdehyde level have been proven (Morakinyo et al. 2008). In a very recent 
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study, aqueous extract of the rhizome of Z. officinale was found to have preventive 
effect on nicotine-induced infertility (Oyeyipo et al. 2014). Different animal models 
such as cyclophosphamide, aspartame-induced male rats, and male broilers have also 
been used, but no human trial has been done till date. Antioxidant components such 
as flavonoids, polyphenols, and tannins are the major chemical constituents present 
in different extracts (water, methanol, and ethanol) of Z. officinale (Prakash 2010). 
There is no drug available in the market for male infertility treatment. Burning feel-
ing in mouth, abdominal pain, and diarrhea may occur due to overdose.

21.3  Discussion

Sexual potentiality is a principal element of quality of life and subject matter for 
well-being in humans. Several factors such as obesity, stress, alcohol, tobacco con-
sumption, and excessive use of synthetic medicines have elevated the risk of erectile 
dysfunction and sexual impairment, a leading cause of male infertility. The number 
of erectile dysfunction and infertility cases has risen significantly over the last few 
decades. Several new factors such as pollution and lack of physical exercise contrib-
ute to the increasing number of infertility cases, a majority of which fail to show any 
defined cause. The semen quality has seen an appreciable decline over the last few 
decades (Auger et al. 1995; Le Moal et al. 2014; Borges Jr. et al. 2015; Romero- 
Otero et al. 2015). The rising trend of male infertility suggests far higher require-
ment of new medicinal options to tackle male infertility. Therefore, further efforts 
to explore medicinal options for infertility treatment must continue.

Most of the plants listed in this article provide various benefits that culminate into 
better overall and sexual health. Some of the common mechanisms of action include 
their effects on the central nervous system, which results in alleviated stress and bet-
ter regulation of the central control of hormone release. Scientific studies have sup-
ported their action on the central nervous system as a number of these products 
improve the levels of peripheral hormones that ultimately result in higher level of 
testosterone and increased libido. Further, these products provide a number of flavo-
noids, alkaloids, and other ingredients for the synthesis of steroids and messengers 
that result in activation of signaling cascades leading to better blood flow to the 
reproductive organs, thereby resulting in a significant improvement in sexual func-
tion and health (Fig. 21.2). Some of the plants are well-known aphrodisiacs, which 
enhance sexual power, thus raising the confidence in the sexual act. Elevated sexual 
confidence makes sexual life pleasurable and increases the chances of regular coitus. 
The normalization of the circulating hormone levels and testosterone translates into 
a higher sperm count and motility, thereby increasing the chances of conception and 
fertility. Strong adaptogenic properties increase the level of nitric oxide and the level 
of reactive oxygen species, leading to a significant improvement in the qualitative 
parameters of sperm function. Apart from all the above, the nutritional elements 
present in these plants need further investigation, which could be one of the several 
reasons for their effects. The actual effect of a number of plant products on sperm 
count and motility has been demonstrated in animal models and human trials.
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The plant products are not only used as medications for the patients but may also 
be used for prophylactic purposes to provide strength and immunity against fertility- 
related issues. In fact, the references in Ayurveda and other systems of medicine 
suggest their use for strength building. Since antioxidant mechanisms quench reac-
tive oxygen species and free radicals to protect against damage to spermatozoa, 
antioxidant properties of medicinal plants play significant and diverse roles in 
reproduction and could possibly be used as preventive medication against sexual 
debility and infertility. Most of the scientific studies till date have not explored the 
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available products from prophylactic point of view; therefore, further studies are 
required to identify their potential use as preventive medicine. Nevertheless, the 
products suggested to be good for fertility might be consumed for these purposes as 
they are grossly nontoxic and have been subjected to experimentation by common 
men over the last several years. Appropriate use of promising products could help 
not only in improving fertility but also in maintaining good reproductive and sexual 
health for a longer duration. Most of the plants used as aphrodisiac agents have not 
been rigorously experimentally studied on humans.

According to the World Health Organization (WHO) estimates, due to poverty 
and lack of access to modern medicine, about 65–80% of the world’s population 
living in the developing countries depends essentially on plants for primary health 
care. The importance of medicinal plants in the management of male infertility in 
India as well as in other countries is indubitable. The plant-based products are gain-
ing preference over other modern forms of medicine. As far as infertility is con-
cerned, the scope of plant products is on its way to rise. The need of the hour is an 
exhaustive scientific research to generate support in evidence of their claimed ben-
efits and assess toxic effects, if any. Toxicity evaluation should be made a part of the 
scientific studies. Therefore, exhaustive research into the chemical and biological 
properties and toxicological aspects of less explored medicinal plants is still needed 
to determine their aphrodisiac and pro-fertility properties. Most of the plant prod-
ucts are regarded as safe and are unlikely to cause side effects; however, the over-
dose may lead to some mild side effects. As mentioned above, the often-noted side 
effects are gastrointestinal problems due to the presence of various polyphenols in 
plant products and extracts.

21.4  Conclusion and Future Prospects

Successful treatment of sexual impairment may improve not only a sexual relation-
ship but also the overall quality of life. The medicinal plants are popular among 
people since ages due to their affordability, safety, and higher efficacy. Curiosity in 
the traditional medicine has led to the expeditious research and studies of various 
herbal medications employed for sexual impairment. Many herbs have been used by 
people from different cultures to manage various conditions of male infertility such 
as erectile dysfunction, lack of libido, abnormal sperm, etc. The lack of clinical 
efficacy data and safety issues may be a concern for some of the potential users of 
these medications. Therefore, there is a crucial need to conduct clinical studies to 
endorse the traditional claims. All of the plants listed in this article are effective in 
the treatment of male infertility, but it remains to be explored if a combination 
would be more effective. For example, “Confido,” “Himplasia,” “Speman,” etc., are 
some products available in the market, which contain more than one product in 
combination. Desire of natural aphrodisiacs necessitates rigorous studies to com-
prehend their effects on humans and address safety concerns.

The lack of human trials is a major concern in the promotion of traditional prod-
ucts for their pro-fertility effects. Human trials need to be undertaken for a large 
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number of plants alone and in combination. As detailed above, only a few plants 
have been tried on human patients, and evidence for many others is based on litera-
ture or animal experiments. As plant products are safe without serious adverse 
effects, they can be tested on humans to accelerate drug discovery in this field. Most 
of the studies till date have been undertaken on animal models, particularly rodents. 
Since the effect may vary in the higher individuals, human trials on the selected 
products must be undertaken to gain further insights into their effects. Molecular 
mechanisms could be studied in the animal models. Apart from the analysis of the 
common markers of apoptosis and antioxidant mechanisms, it is required to expand 
research to study the effects on the central nervous system, hormone levels, and 
overall well-being.

One of the most challenging aspects of the future of plant products is regarding 
their translation into drugs by means of laboratory synthesis. The activity-guided 
fractionation of potential plants may lead to the identification of the active ingre-
dients; however, this needs to be subjected to laboratory synthesis to make it eco-
nomical and reduce the burden on natural sources. Identification of the active 
compounds would also accelerate drug development by means of preparation of 
substitutes with better absorption, efficacy, and reduced side effects. Most of the 
active plant compounds are quite complex in nature, which are not easy to synthe-
size. The use of some of these products in their natural form may be justified as far 
as the plant parts used do not affect the existence of the species and are easily 
reproduced. The ultimate aim of activity-guided fractionation is to identify the 
plant chemical for synthesis in the laboratory. Therefore, further research into this 
field needs a lot of scientific analysis to decide the depth of investigations and 
synthesis of the identified chemical constituents. Further advancements in the field 
of chemistry are equally important to get breakthroughs in laboratory synthesis of 
complex compounds, which are most abundant in plants and other natural 
resources.
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22Lifestyle, Fertility, and Infertility 
Management

Rajender Singh

Abstract
With technological advancements, we have evolved into a species that is sur-
rounded by a number of potential hazards that may endanger our own survival. 
One of the important aspects of the effect of modern lifestyle is increased inci-
dence of infertility. Renewal being the most important requirement for a spe-
cies, fertility loss can have radical consequences. Since fertility does not need 
to be earned, it is taken to be immune to changes in lifestyle and surroundings. 
While a number of poor lifestyle practices are adopted, we fall prey to other 
hazards inadvertently. We recognized the effect of lifestyle on fertility a little 
late, but fortunately it is neither too late nor too difficult to confront the life-
style factors that may take a heavy toll on fertility. In this chapter, I have pro-
vided the most comprehensive review of a number of lifestyle factors that 
matter to fertility and simple ways to overcome their potential perils. Following 
a great lifestyle ardently may be a difficult task, but can have great therapeutic 
rewards.
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Key Points
• Laptop use, Wi-Fi radiations, television watching, occupational exposure, tight 

undergarments, and obesity can cause testicular heating.
• Paternal smoking is now well known to cause altered meiosis in testes, quantita-

tive loss of semen parameters, contribute to pregnancy failure, and increase the 
risk of childhood cancer.

• Paternal alcohol use (moderate to heavy) is known to contribute to fetal alcohol 
syndrome, which encompasses a number of disorders seen in the children of 
alcoholics.

• Stress in various forms is a killer of fertility; failure of infertility treatment raises 
stress even further, making it more difficult to treat these individuals.

• Mobile phone radiations in heavy users may contribute to the loss of sperm pro-
duction and quality, which may be compounded by Wi-Fi radiations.

• Disturbance of day-night cycle, abnormal/prolonged working hours, late-night 
television watching/laptop usage, etc. can contribute to sleep disturbance and 
decreased testosterone production and fertility.

• Exercise in general is good for fertility, but heavy exercise, for example, heavy 
cycling, may contribute to reduced semen quality and infertility.

22.1  Introduction

Prevention is better than cure is an old and apt proverb. It is applicable in almost 
every domain of life, in healthcare, the most. The adaptability of the biological sys-
tem resists adverse changes in the body; therefore, development of an ailment takes 
place over a period of several years. Diagnosis of a disorder is generally done at a 
stage when significant damage to the body has already been caused. Therefore, 
treatment may show only partial recovery and may restore the original condition, 
and some of the changes are altogether irreversible. There are near and far connec-
tions in various molecular and organ systems of human body. Therefore, the damage 
caused by a clinical disorder is generally not restricted to the affected organ, making 
the management further difficult. Therefore, prophylaxis is much better than cure, 
especially in those that are modifiable by human causes.

The term lifestyle, which has for the last about a century described a central 
concept of Adlerian psychology, has recently gained importance in general and has 
become everyday vocabulary. For Adler, lifestyle represented the organismic ideas 
of the individual as an actor rather than a reactor of the purposiveness, goal- 
directedness, unity, self-consistency, and uniqueness of the individual and of the 
ultimately subjective determination of his actions (Adler 1992). The use of the term 
lifestyle has increased in the last few decades owing to a number of illnesses related 
to it as the causal or compounding factor. We are equipped with machines and tech-
nologies that make us more sedentary, expose to heat and radiations, potentially 
increasing the risk of a number of lifestyle-related disorders. Apart from technologi-
cal advances, individual account of food habits, smoking, drinking, and other activi-
ties influences a number of health aspects. Due to sophistication in the recent times, 
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the number of lifestyle disorders has gone up alarmingly. Cardiovascular disorders, 
atherosclerosis, stroke, hypertension, diabetes, and obesity are some of the disor-
ders that have already attained top ranks among lifestyle disorders.

The incidence of infertility has increased in the last few decades. A number of 
studies have shown that the overall semen quality has declined significantly over the 
last few decades, and this correlates with increased incidence of infertility and other 
reproductive health disorders. The decline in semen quality is thought to be the 
result of a compound of factors, including changes in lifestyle. Unfortunately, the 
impact of lifestyle factors on reproductive health and fertility potential was recog-
nized relatively late. It has come to light that a number of lifestyle factors such as 
the use of mobile phone, laptop computers, Wi-Fi and other radiations, smoking, 
drinking, hot baths, excessive exercise, stress, and sleep disorders may affect sper-
matogenesis and semen quality. Well-planned scientific studies have now estab-
lished a number of these factors to negatively correlate with semen quality and 
fertility. Fortunately, lifestyle is the most easily modifiable factor. The current chap-
ter presents a collective account of the lifestyle factors that have a significant impact 
on reproductive potential and fertility of men.

22.2  Activities Causing Testicular Heating

In humans and most of the mammals, spermatogenesis is temperature dependent 
and takes place at 2–8 °C below the body temperature (Ivell 2007). The difference 
in the temperature between the testicles and body was first reported in 1945 by 
Badenoch that was subsequently confirmed by others (Harrison and Weiner 1949; 
Kitayama 1965). Maintenance of this temperature difference is critical to spermato-
genesis, and two mechanisms are in place to regulate the same. The scrotum is 
capable of expanding the skin surface for heat exchange and the other is regulation 
at the level of spermatic cord where heat is exchanged with the incoming blood. 
Testicular temperature is strongly dependent on the scrotal position and body pos-
ture. As in the case of most mammals, the scrotum in humans is supposed to hang, 
which keeps its temperature at the optimum (Zorgniotti and Macleod 1973). The 
best heat dissipation is possible in hanging and uncovered scrotum, and scrotal tem-
perature is lower in walking posture in comparison to sitting posture. Ambulatory 
posture keeps testes away from body, and sitting or lying posture brings the testis 
between or on the thighs, raising their temperature by few degrees depending upon 
position, posture, and duration (Rock and Robinson 1965).

Experimental studies have demonstrated that testicular hyperthermia suppresses 
spermatogenesis in rats (Guo et al. 2007), mice (Li et al. 2013), monkeys (Zhang 
et al. 2006), and humans (Rao et al. 2015). Increasing the temperature of testicles by 
1–3 °C can cease spermatogenesis altogether. The importance and impact of tem-
perature on spermatogenesis can be understood by the fact that testicular heating 
has been tried as a method of contraception (Mieusset and B’ujan 1994). In one 
such technique, testes were fixed nonsurgically close to the inguinal canal by pass-
ing penis and the empty scrotum through a hole made in a close-fitting underwear. 
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In another method, immobilization was achieved by adding a ring of soft material 
surrounding the hole in the underwear. Both these techniques demonstrated that a 
daily mild increase in testicular temperature can act as a significant contraceptive 
(Mieusset and B’ujan 1994). Scientific studies have identified numerous external 
factors such as seating posture, clothing, lifestyle, use of laptop, television watch-
ing, playing video games, etc. that can result in testicular heating and impaired fer-
tility. A number of these and other factors that affect spermatogenesis and fertility 
are detailed in Fig. 22.1.

22.2.1  Use of Laptop

Laptop computers have now become an indispensable part of the contemporary 
lifestyle. Apart from using the computers and electronics at office, we remain clung 
to these devices at home, even if for different reasons. From office work to house-
hold chores and entertainment, laptop computers are indispensable. Laptops are 
known to reach high internal temperature during continuous usage. Sheynkin et al. 
(2005) analyzed the effect of computer heat on scrotal temperature in 29 healthy 
volunteers in two separate sessions of 60 min. The study compared the testicular 
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Fig. 22.1 Lifestyle and other factors that adversely affect spermatogenesis and male fertility
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temperature with laptop in its position with approximated thighs without laptop. 
Rise in scrotal temperature with working laptop in lap position (2.88 °C) was sig-
nificantly higher in comparison to the increase in the comparison group (2.18 °C) 
(Sheynkin et al. 2005). Since spermatogenesis is known to be very sensitive to tem-
perature, a simple increase in testicular temperature by one degree can hamper sper-
matogenesis significantly.

Later, Sheynkin et al. (2011) undertook an observational study on 29 volunteers 
to find out the ways to protect elevation of scrotal temperature by means of using a 
lap pad and legs-apart sitting position in laptop users. The authors found that a lap 
pad is not an effective method of avoiding testicular heating; however, sitting in legs 
apart position may help in reducing scrotal hyperthermia in combination with a 
shorter duration of laptop use (Sheynkin et al. 2011). The use of laptop computers 
is increasing and serves many purposes. Therefore, simple precautions during lap-
top use can help evade the ill effects of heat on spermatogenesis. Laptop, as the 
name indicates, is generally kept in lap, particularly in a household setting. Laptop 
should be kept on a tabletop for work, and one should try to maintain the maximum 
possible distance between the testes and laptop. In case a table is not available, lap-
top should be kept away from the groin area. It could be kept on other surface such 
as a thick and heat-resistant lap pad. In any of these cases, the user should try to be 
in legs-apart position for effective testicular cooling. It is important to take short 
breaks during continued laptop use. For example, a 10-min break every 1 h of laptop 
use should help in protecting against testicular heating. Such breaks should prefer-
ably be used to take a short walk for better air circulation to the scrotal area.

22.2.2  Wi-Fi Radiations

In every home or office, we are surrounded by Wi-Fi signals that are used to com-
municate between various wireless applications that connect with each other or 
internet. With the number of wireless devices increasing, the use of 2.4 GHz EMRs 
has become very common, thus increasing exposure to these radiations. 
Electromagnetic radiations from various sources such as satellite links, wireless 
communication, microwave oven, frequency modulation radio, and television trans-
mitters/antennas are some of the common indoor/outdoor EMR spectrum that we 
are exposed to most often. Widespread use of scientific, medical, industrial, mili-
tary, and domestic applications using 2.45 GHz radio-frequency radiations is inevi-
table and a low-cost technology. Due to widespread and unlicensed use of this 
spectrum of radiations, their leakage into the environment and exposure are com-
mon. It has already been shown that 2.45 GHz microwave exposure causes an 
increase in caspase-3 and creatine kinase activities and a decrease in plasma level of 
testosterone and melatonin in exposed rats (Avendano et al. 2012). It is believed that 
exposure to Wi-Fi can increase the production of reactive oxygen species (Naziroğlu 
and Gümral 2009). This has been shown to lead to an increase in lipid peroxidation 
and a detrimental effect on reproductive tissues (Shokri et al. 2015).
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In a study to evaluate the effect of Wi-Fi radiations on sperm parameters, 
Avendano et al. (2012) exposed semen samples of 29 healthy donors to wireless 
internet-connected laptop for 4 h and compared the results with a control sample 
incubated under the same conditions without Wi-Fi exposure. The authors found a 
significant decrease in progressive sperm motility and increase in sperm DNA frag-
mentation (Avendano et al. 2012). de Gannes et al. (2013) evaluated the effect of 
exposure to 2.45 GHz Wi-Fi signal on the reproductive system of male and female 
Wistar rats. However, the authors did not find any deleterious effect of Wi-Fi expo-
sure on reproductive organs and fertility (de Gannes et al. 2013). In a recent study 
to assess the impact of Wi-Fi radiations on sperm parameters and testicular histo-
morphometry, Shokri et al. (2015) exposed rats to 2.45 GHz radiation. The animals 
were exposed to Wi-Fi radiations to different degrees for 2 months, finding that 
Wi-Fi exposure resulted in a deleterious effect in a time-dependent manner (Shokri 
et al. 2015).

The use of Wi-Fi radiations is unavoidable and growing. The scientific literature 
is divided on the actual impact of these radiations on reproductive organs. 
Nevertheless, some negative effect on sperm motility and DNA integrity is possible. 
Further well-planned studies must uncover any potential effect of these radiations 
on fertility. Nevertheless, general precautions in the use of Wi-Fi should help avoid 
their effect on spermatogenesis. The Wi-Fi should be switched off when not in use, 
for example, during nighttime, and Wi-Fi should preferably not be installed close to 
the area where you spend most of your time. The Wi-Fi should be of adequate 
strength according to the requirement, and the use of extra strong Wi-Fi despite a 
small coverage area should be avoided. Since these radiations are invisible, one has 
to be conscious about their presence, and simple precautions in their use can easily 
cut down exposure to and unwanted effects of these radiations.

22.2.3  Hot Bath and Spring

There are a number of activities, which may increase scrotal temperature temporar-
ily. The modern lifestyle has introduced a number of such activities, for example, 
hot tubs, hot baths, steam baths, Jacuzzi, and a general habit of taking bath in hot 
water. Exposure to wet heat has been shown to be more detrimental in comparison 
to dry heat. Shefi et al. (2007) analyzed semen parameters in a cohort of men who 
had a remarkable history of wet heat exposure in the form of hot baths. The study 
compared the semen parameters before and after discontinuation of such activities 
and found that sperm count and motility showed significant improvements upon 
discontinuation of exposure to wet heat. The study concluded that exposure to wet 
heat has adverse but reversible effect on semen quality (Shefi et al. 2007). Hot 
spring is very popular in daily life, particularly in China. A number of hotels and 
resorts provide the facility of hot springs. Hot bath lovers may have this facility built 
at home. In a hot spring, the temperature is typically between 37 and 45 °C, which 
is much higher than scrotal temperature (Rao et al. 2016). This exposure is antici-
pated to be detrimental to spermatogenesis.
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An experimental study provided a proof that hot baths associated with testicular 
heating can damage spermatogenesis and compromise semen quality. A recent pro-
spective randomized clinical study was undertaken on 20 normozoospermic subjects 
who were divided into two groups for different schedules of hot baths at 43 °C for ten 
times of 30 min each (Rao et al. 2016). One of the groups underwent testicular warm-
ing for ten consecutive days and those in second group once every 3 days. Both the 
groups showed significant and reversible changes in disrupted mitochondrial mem-
brane potential, sperm apoptosis, high DNA stainability, and changes in the expression 
of a number of proteins involved in heat stress and mitochondrial function. The study 
demonstrated that transient and frequent scrotal hyperthermia causes severe and 
reversible damage to spermatogenesis and that consecutive exposure had serious dam-
age in comparison to intermittent exposure (Rao et al. 2016). As mentioned above, the 
impact of wet heat is much more in comparison to dry heat. Therefore, the use of hot 
baths, hot tubes, steam bath, sauna, hot springs, and any other activity that can cause 
testicular heating should be minimized, particularly in a repeated and regular manner.

22.2.4  Television Watching/Video Games

We could identify only two studies on the impact of television watching on semen 
parameters. In a study to evaluate the impact of physical activity and television 
watching, Gaskins et al. (2013) analyzed 189 men aged 18–22 for hours and type of 
physical activity and hours of TV watching over a period of 3 months (Gaskins et al. 
2013). Comparison of data with semen parameters found that sperm count was 
directly related with moderate to vigorous activity such that men in the highest quar-
tile of moderate to vigorous exercise (>15 h/week) had 73% higher sperm concentra-
tion than men in the lowest quartile (<5 h/week). TV watching was found to inversely 
correlate with sperm concentration and total sperm count. Men in the highest quartile 
of TV watching (>20 h/week) had 44% lower sperm concentration than men in the 
lowest quartile (0 h/week) (Gaskins et al. 2013; British J of Sports Medicine). A 
recent cross-sectional study on 1,210 healthy young Danish men undergoing fitness 
test for military services found that time spent watching television was associated 
with a poor sperm count (Priskorn et al. 2016). Quantitatively, men who watched 
television for more than 5 h per day had an average adjusted sperm count of 37 mil-
lion/ml in comparison to 52 million/ml in the control group (Priskorn et al. 2016).

Some of the possible factors that may affect semen parameters as a result of 
television watching are sedentary time, testicular heating, and lack of physical 
movement. Depending upon the position, television watching may bring the scro-
tum in between or on the thighs, resulting in testicular heating. In case of cross-leg 
sitting in front of television, heat dissipation from the testis may get compromised. 
Further, people tend to eat while watching television, which may contribute to 
weight gain and increased BMI. Long hours of television watching correlate with 
poor physical activity. Increased BMI and poor physical activity are well known to 
have a significant negative correlation with sperm production and fertility. In order 
to avoid adverse impact, television watching should be minimized and interrupted 
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by short breaks. Further, watching television should not be admixed with untimely 
eating. During television watching, one must be conscious about the position of 
testes in order to avoid prolonged testicular heating. The body posture and choice of 
clothes should be decided to facilitate adequate testicular cooling.

22.2.5  Occupational Exposure

Epidemiological studies have emphasized that occupational exposure to high tem-
peratures such as in the case of electric welders, drivers, etc. can have deleterious 
side effects on spermatogenesis because of scrotal heat stress (Thonneau et al. 1997; 
Hjollund et al. 2000). Sitting on chair for long hours may result in poor scrotal cool-
ing, which could be further complicated by cushioned chairs and tight underwear and 
jeans as well as trousers. In an interesting study on the impact of sitting hours and the 
type of chair used for this purpose, Koskelo et al. (2005) found that a statistically 
highly significant increase of up to 3 °C was recorded when subjects were sitting on 
commonly used cushioned chairs in comparison to the subjects sitting on saddle 
chair (Koskelo et al. 2005). The study concluded that the chairs, which increase scro-
tal temperature, may have contributed to a decline in semen quality in the sedentary 
society (Koskelo et al. 2005). The studies evaluating the impact of sitting hours have 
been rare, and further well-planned studies taking into consideration a number of 
parameters with respect to outer clothing, undergarments and number of sitting 
hours, and frequency and duration of intermittent breaks for underscoring the actual 
impact of prolonged seating on semen quality parameters are required.

With the recent advancements, a number of people are into sedentary jobs that 
may require continuous seating for several hours. As most of the working class 
spends about one third of their time in offices, studying the impact of seating hours 
on semen quality is extremely important. A number of occupations have been stud-
ied, but a job requiring sedentary office life needs to be investigated further for cor-
relation with semen parameters. Indirect evidence suggests that sedentary sitting in 
chair can cause testicular heating; therefore, as a general precaution to avoid adverse 
effects on fertility, the office chair should be selected with care. For example, the 
chair should be less cushioned so as to allow maximum airflow around the groin 
area. Cross-leg seating for long duration and sitting in a sophisticated cushioned 
chair may compromise testicular cooling. The material of chair should allow ade-
quate airflow, and the use of leather or any other synthetic and impermeable mate-
rial should be avoided. Short breaks at work should be combined with a short walk 
so as to facilitate testicular cooling.

22.2.6  Choice of Clothes/Underwear

Layers of clothing impede heat exchange and can cause testicular heating. Clothing 
has been found to elevate scrotal temperature by 1.5–2 °C in comparison to 
unclothed state (Zorgniotti et al. 1982). Therefore, it is important to choose clothes 
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carefully, particularly underwear and pants, in order to maximize airflow around 
testicles. A number of observational studies have been undertaken to assess the 
impact of loose or tight underwear on semen quality in individuals seeking infertil-
ity evaluation (Oldereid et al. 1991; Parazzini et al. 1995; Jung et al. 2001; Povey 
et al. 2012; Pacey et al. 2014). Some of these studies have reported an association of 
loose underwear with better semen quality (Parazzini et al. 1995; Jung et al. 2001; 
Povey et al. 2012), though others have shown no association (Oldereid et al. 1991; 
Pacey et al. 2014). Most of the interventional studies have shown that using under-
wear type device to hold the testes close to the body resulted in reduced semen 
quality parameters (Shafik 1992; Mieusset and B’ujan 1994; Ahmad et al. 2012). At 
least one study reported complete azoospermia after several months of the use of 
tight underfitting (Shafik 1992), another reported higher high DNA stainability and 
high DNA fragmentation index (Ahmad et al. 2012), and yet another reported no 
effect (Wang et al. 1997).

Some other studies randomized men to wear briefs and boxers for several months 
and found that using loose underwear associated with good semen quality, though 
the sample size was a limitation with these studies (Sanger and Friman 1990; 
Tiemessen et al. 1996). In an interesting recent study on the impact of the type of 
underwear on male fecundity, Sapra et al. (2016) collected data from a prospective 
preconception cohort conducted in 16 counties in Michigan and Texas, USA. Five 
hundred one couples were enrolled and followed for 12 months, during which 
semen analysis was undertaken and the men were classified into six categories on 
the basis of the type of underwear worn during daytime and bedtime. The classes 
were (1) briefs day/night, (2) boxer briefs day/night, (3) boxers day/night, (4) briefs 
day and boxers/none at night, (5) boxer briefs day and boxers/none at night, and (6) 
boxers day and none at night. Interestingly, it was found that men switching from 
their usual daytime underwear to boxers/none for bed showed the most prominent 
evidence of differences in semen quality endpoints in comparison to those sticking 
to briefs day/night. The study concluded that the choice of underwear during day/
bed is associated with differences in semen parameters, though it did not correlate 
with time to pregnancy (Sapra et al. 2016).

It is conceivable from the above discussion that the choice of clothes, particular 
underwear, may affect testicular cooling and hence spermatogenesis. Buying clothes 
may be a matter of significant choice, but with evidence from the recent studies, 
buying under covers also requires your careful attention with respect to size and 
material. Cotton garments are likely to facilitate better air exchange in comparison 
to other materials. Choosing a loose underwear should help in effective testicular 
cooling. The brief-style underwear, which presses the scrotum close to the pelvic 
floor, should be avoided. The use of boxer-style underwear should be preferred, as 
their use is known to correlate with better semen quality. Further, when off work, the 
use of tight underwear should be avoided. During bedtime, switching to boxers 
without a pant/trouser over it is a good idea. The use of shorts during holidays and 
off-work hours should help in better air circulation around the scrotal area. General 
sensitization to the testicular heating should help one choose appropriate under- and 
overgarments for office and off-work hours.
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22.2.7  Obesity and Increased BMI

Obesity is characterized by high BMI and excess body fat or white adipose tissue. An 
individual with BMI in 25–30 kg/m2 is classified as overweight, and in excess of 
30 kg/m2 is classified as obese, though there are other more specific measures of 
obesity such as waist-to-hip ratio. Dietary factors in complex with sedentary lifestyle 
have given rise to the problem of obesity. According to WHO, about 16 billion adults 
were classified as overweight and 400 million as obese in 2005 (WHO 2009). Obesity 
is now rampant even among young school-going children. Fatty tissue converts tes-
tosterone to estrogen by increased aromatase activity (Roth et al. 2008). Dysregulated 
ratio of estrogen to testosterone affects spermatogenesis and other aspects of male 
reproduction. Among other problems in obesity that contribute to infertility are 
decreased libido and increased incidence of erectile dysfunction (Cheng and Ng 
2007). Obesity not only leads to increased mass in thighs that presses testicles closer 
to them but also may result in fat deposition in testes (du Plessis et al. 2010). Increased 
testicular heating and dysregulation of hormone production and balance leads to 
impaired spermatogenesis (Hammoud et al. 2008).

Obesity is the root or associated cause of a number of disorders. With the advent 
of obesity starts a phase of poor overall health, which slowly starts affecting every 
organ of the body. Obese and diabetic males are frequently diagnosed with sleep 
apnea, characterized by fragmented sleep course due to repeated episodes of airway 
obstruction and hypoxia. Patients with sleep apnea may develop disturbance of 
pituitary-gonadal axis that affects night rise in the level of testosterone. A study on 
the male partners of 471 infertile couples from Korea measured testicular heating in 
relation with body mass index (BMI). The study reported that the temperature dif-
ference between the thigh and testicles was the highest (up to 1.5 °C) in the under-
weight and normal groups and the least in the obese group (Jo and Kim 2016). 
Testicular heating in the obese individuals has been linked with poor semen quality 
by a number of studies (du Plessis et al. 2010). The impact of obesity on male factor 
infertility has been covered in detail in Chap. 11.

Obesity and high BMI are well known causes of a number of disorders, which 
contribute significantly to morbidity and mortality. Obesity should be avoided as far 
as possible by choosing better lifestyle in the form of eating habits and exercise 
regimen. Once obesity signs in, it is very hard to get rid of its adverse health impli-
cations. Increased weight makes it difficult to adhere to a strict exercise schedule, 
thus, making it very difficult to regain fitness. Therefore, keeping away from obesity 
and high BMI is the best option. Regular exercise to maintain BMI in the normal 
range should be one of the most important objectives of daily timetable. Fortunately, 
it requires only as little as 4% (45 min) of a day or 2% (45 min × 4 days) of a week’s 
total time for adequate workout.

22.2.8  Sports and Exercise

A number of sports activities such as soccer, hockey, cricket, and others require 
securing the testicles in a pouch for safety purposes. During intense activities in 
sports, a lot of heat generated in and around the groin area is not dissipated 
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optimally. This can result in temporary hyperthermia in testes. There is evidence 
from indirect and related studies that sports and intense exercise can result in tes-
ticular hyperthermia (Vaamonde et al. 2016a, b). Similar innerwear devices have 
been demonstrated to impede spermatogenesis and have contraceptive effect 
(Mieusset and B’ujan 1994). In one such technique, testes were fixed nonsurgically 
close to the inguinal canal by passing penis and the empty scrotum through a hole 
made in a close-fitting underwear. In another method, immobilization was achieved 
by adding a ring of soft material surrounding the hole in the underwear. Both these 
techniques demonstrated that a daily mild increase in testicular temperature could 
act as a significant contraceptive (Mieusset and B’ujan 1994).

For all sports or exercise regimens, it must be kept in mind that the activities that 
require wearing tight undergarments or wrapping the testicles against the abdomen 
should be avoided in order to preserve fertility. In general, individuals participating 
in intense exercise as an obligation should avoid testicular tethering against the 
pelvic floor in order to avoid adverse impact on fertility. Testicles are meant to hang 
and let them follow their natural course as far as possible. The effects of testicular 
heating are reversible, and hence recovery is easily possible if such events are rare 
and infrequent. Nevertheless, repeated episodes, particularly on a daily basis as a 
preparation for competitive activities, may not allow sufficient time for recovery, 
resulting in testicular insult and loss of fertility.

22.3  Use of Mobile Phone

The use of mobile phone is inevitable. The impact of the mobile phone on human 
life has been perhaps the most revolutionary. Mobile phone came with calling facil-
ity, but engulfed a number of other useful features to become a many-in-one device 
that has replaced a number of other gadgets of daily use. Essentially, that has made 
us more dependent on this device leading to a close proximity between the mobile 
phone and us. The use of electromagnetic radiations (EMRs) in mobile phone com-
munication and a number of other applications is increasing. The EMRs used in 
mobile phone are non-ionizing radiations; nevertheless, they can cause heating 
effect, which is detrimental to spermatogenesis. Therefore, several investigators 
have asked if mobile phone radiations in fact affect sperm production, motility, and 
fertility.

22.3.1  Animal Studies

One of the methods to evaluate the effect of mobile phone radiations is the study on 
animal models. Among the oldest studies, Dasdag et al. (1999) investigated the 
adverse effects of mobile phone radiations in male rats. Seminiferous tubule diam-
eter was lower, and the rectal temperature was higher in the exposed groups than the 
control group. The authors, however, did not observe differences in the epididymal 
sperm count and the count of normal and abnormal sperm. In a relatively recent 
study on exposure of rats to EMRs using mobile phones, the authors found that the 
exposed group had a lower value of mean total sperm count and an increased 
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percentage of apoptotic cells (Kesari et al. 2010). Other studies on animals exposed 
to mobile phone radiations have shown ill effects leading to reduction in testicular 
size (Desai et al. 2009) and degeneration of the seminiferous epithelium (Saunders 
and Kowalczuk 1981; reviewed in Agarwal et al. 2011).

22.3.2  Direct Exposure of Sperm

Another commonly used method of analyzing the effect of mobile phone radiations 
is in vitro exposure of human ejaculate to mobile radiations. In one such study, 
Erogul et al. (2006) exposed semen samples from 27 donors to EMR of 900 MHz 
cellular phone and found a significant decline in rapid progressive motility, slow 
progressive motility, and an increase in no-motility category of sperm movement; 
however, sperm concentration was not different between the two comparison 
groups. In another in vitro study, Falzone et al. (2008) exposed human spermatozoa 
to pulsed 900 MHz GSM mobile phone radiations and found that the exposure led 
to a significant decrease in two kinetic parameters, i.e., straight-line velocity and 
beat cross frequency, without change in mitochondrial membrane potential (Falzone 
et al. 2008). In an in vitro pilot study, Agarwal et al. (2009) exposed sperm from 23 
healthy donors to mobile phone radiations and found that exposure led to a signifi-
cant decrease in sperm motility and viability, increase in ROS level, and decrease in 
ROS-TAC score. In another in vitro study, Ahmad and Baig (2011) exposed semen 
samples of 22 individuals aged 20–35 to mobile phone radio frequency- 
electromagnetic waves (RF-EMW) for 1 h and found a significant decrease in sperm 
motility (Ahmad and Baig 2011).

22.3.3  Usage-Based Studies

The most direct method of evaluating the impact of mobile phone radiations on 
male fertility is usage-based correlation with semen quality. In a usage-based 
study, Fejes et al. (2005) collected mobile phone usage data from 371 individuals 
attending infertility clinic. The authors reported a significant negative correlation 
of the duration of possession and daily transmission time with the proportion of 
rapid progressive motile sperm and the proportion of slow progressively motile 
sperm. In the high transmitter group, the proportion of rapid progressive motile 
sperm was low in comparison to low transmitter group (Fejes et al. 2005). In 
another usage data-based study, Wdowiak et al. (2007) analyzed the effect of cell 
phone usage in individuals who appeared for marital infertility therapy. Comparison 
of the semen parameters among nonusers, moderate users, and heavy users showed 
an increase in the percentage of sperm with abnormal morphology with the dura-
tion of exposure to GSM phone (Wdowiak et al. 2007). Agarwal et al. (2008) col-
lected mobile phone usage data from 361 participants and observed that the mean 
sperm motility, viability, and normal morphology were significantly different 
according to the level of exposure. The study concluded that decline in semen 
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parameters was correlated with duration of daily exposure and was independent of 
initial semen quality (Agarwal et al. 2008).

22.3.4  Meta-Analysis on the Effect of Mobile Phone

A recent meta-analysis on the effects of mobile phone usage included data from 11 
studies and found that mobile phone usage deteriorated a number of semen param-
eters including sperm concentration, sperm morphology, sperm motility, number of 
nonprogressive motile sperm, and the proportion of progressive motile sperm 
(Dama and Bhat 2013). The above study also undertook a pooled analysis on in 
vitro studies and found that exposure of spermatozoa to mobile phone radiations led 
to a significant decline in sperm quality. In-depth analysis showed that mobile radia-
tion particularly deteriorated straight-line velocity, fast progressive motility, hypoos-
motic swelling test score, major axis, minor axis, total sperm motility, and 
acrosome-reacted spermatozoa.

In another meta-analysis on the effect of electromagnetic wave (EMW) exposure 
in vitro, Fakhri et al. (2016) analyzed data from ten studies. Sperm motility in the 
unexposed and exposed samples were 17.70 ± 10.9% to 87.20 ± 7.32% and 
18.40 ± 11.90% to 87.5 ± 8.57%, respectively. The mean differences for sperm 
motility and heterogeneity were REM:−4.57;CI (−7.11 to −2.03) and I2 = 69.38%; 
ρ heterogeneity <0.001, respectively. The percentage range of sperm viability in the 
unexposed and exposed samples were 50.78 ± 5.98% to 90.9 ± 3.7% and 48.43 ± 13.99 
to 90.4 ± 4.1%, respectively, and for sperm viability, the mean differences for sperm 
motility and heterogeneity were REM-1.19; CI (−2.04 to −0.34) and I2 = 96.9%; ρ 
heterogeneity <0.001, respectively. The study concluded that exposure to EMW of 
mobile phone decreased sperm motility significantly; however, the decrease in sperm 
viability was not significant (Fakhri et al. 2016).

22.3.5  Precautionary Measures

The studies on the impact of mobile phones are very complex and difficult to design 
in a confounder-free manner. It is difficult to modify the schedule of mobile usage 
for a prospective study in the users. Individual variations in recalling the usage, the 
number of active usage hours, sleeping hours, proximity of mobile phone with tes-
tes, and the type of mobile device are some of the complicating factors in dissecting 
the actual impact of mobile phone radiations on semen parameters. Studies on 
human ejaculate may suffer from a number of limitations, such as direct exposure, 
which is not the case with actual usage. None of the studies on mobile phone radia-
tions in humans collected data on most significant confounders affecting exposure 
to mobile phone radiations. At least two literature-based reviews warrant further 
analysis before reaching conclusions regarding the impact and the magnitude of the 
effect of mobile phone radiations on sperm parameters (Agarwal et al. 2011; Merhi 
2012). Another review on general health effects of radio frequency suggests 
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conducting well-planned and long-term studies, including those on exposure in young 
age (Ahlbom et al. 2004). Therefore, the quantum of the impact of mobile phone 
radiations remains dubious.

Irrespective of the inconclusive scientific and experimental evidence, there is a 
plethora of data suggesting adverse effects of mobile radiations on spermatogenesis 
and sperm function. The effect, even if mild and incapable of introducing infertility, 
may raise the risk of infertility in the presence of other comorbidities/factors. 
Therefore, we must be cautious in using this indispensable device. For example, 
keeping the mobile phone in a place other than the trousers’ pocket would help keep 
the radiations away from testes. Another method of avoiding excessive exposure to 
mobile phone radiations is keeping the phone on table rather than pocket while sed-
entary. In ambulatory positions, prefer to keep mobile phone in the pocket of shirt, 
which offers the maximum distance between mobile phone and testes in comparison 
to carrying it in trouser pocket or hand. Among other measures to contain the expo-
sure would be switching off mobile phone in night or keeping it away from bed. This 
would not only keep radiations away but also minimize sleep disturbances induced 
by mobile phones, which is another reason for a number of disorders, including sleep 
apnea and poor semen parameters. General lifestyle modifications that can help in 
upkeeping spermatogenesis and male fertility are shown in Fig. 22.2.

Switch to boxers

Switch off
when not in

use (e.g. night)

Light to moderate
exercise

Intermittent breaks at work

Respect biological clock
Kill stressKeep testicles cool

Quit smoking

Quit drinking

Switch to active life

Fig. 22.2 Lifestyle modifications that can help upkeep spermatogenesis and fertility
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22.4  Smoking

Approximately one third of male adults worldwide use tobacco, mainly in the form 
of cigarettes (WHO report 2015). Cigarette smoke consists of gases, vaporized liq-
uids, and particles, and tobacco combustion produces more than 7000 compounds, 
with most of them being toxic in general including the reproductive health (Rodgman 
and Perfetti 2013). Cigarette smoke contains well-recognized mutagens that include 
cadmium, dimethylbenzanthracene, naphthalene, dimethylnitrosamine, methnaph-
thalene, and radioactive polonium. Most of these are well-known carcinogens, and 
their presence correlates with the increased risk of a number of cancers in smokers. 
Initially, a number of studies reported controversial findings regarding the impact of 
smoking on semen parameters; however, it is now largely agreed that smoking has 
an adverse impact on semen quality.

Smoking has been associated with lower sperm concentration, impaired sperm 
motility and morphology, increased DNA damage, and reduced cell viability (Cui 
et al. 2016). Cigarette smoke is known to lower the antioxidant capacity of human 
body, thereby lowering protection against any potential insult to the reproductive 
system. Benzo(a)pyrene, which is a highly mutagenic carcinogen, is found bound to 
DNA in higher quantities in smokers in comparison to non-smokers (Alexandrov 
et al. 2006). Cigarette smoking is thought to affect meiosis in ovaries and testes, 
semen parameters in a dose-dependent manner, number of retrieved oocytes leading 
to early menopause, inhibit embryo development post-fertilization, and raise the 
risk of childhood cancer (Zenzes 2000). A number of studies have reported signifi-
cant adverse effects of smoking on sperm count and motility. In a recent study, 
Asare-Anane et al. (2016) compared semen parameters between smokers and non- 
smokers and found that the former have significantly lower semen volume, sperm 
count and motility, viability, and normal morphology (Asare-Anane et al. 2016).

22.4.1  Smoking Correlates with Infertility

In a cross-sectional on a rural Chinese population, Yang et al. (2016) analyzed the 
relation of male smoking with couple’s infertility. The study included data from 
7,025 couples and found that after adjusting for the confounding factors, the couples 
were more likely to suffer from infertility if the husband smoked before the first 
pregnancy. In-depth analysis showed that the risk started after a longer duration of 
5–10 years of smoking. Further, a stronger association was observed in the groups 
with more than 10 years of smoking. Similar quantitative relationship was found for 
the number of cigarettes per day and the total number of cigarettes smoked (Yang 
et al. 2016). Among studies on large number of smokers, Meri et al. (2013) analyzed 
396 smokers and 546 non-smokers and found that smokers had poor sperm motility 
and a higher proportion of abnormal sperm and leukocytes. Sperm count on the 
other hand was not affected. Further analysis found that the relationship between 
smoking and semen quality loss was directly proportional. Heavy smokers had poor 
semen parameters in comparison to non-heavy smokers (Meri et al. 2013).
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In a retrospective cohort of 1,512 infertile patients, Zhang et al. (2013) included 
the highest number of smokers (n = 737) and a comparable control group (n = 775). 
The study found that smokers had a significant decrease in semen volume, rapid 
progressive motility, and sperm viability in comparison to non-smokers. Further, 
smokers had a significant increase in the number of immotile sperm and semen 
leukocytes. Almost all sperm motility parameters were lower in the smokers group. 
Eventually, the percentage of normal morphology sperm was significantly decreased 
in smokers, and the loss of normal sperm morphology showed a quantitative 
decrease with increased degree of smoking (Zhang et al. 2013). Most of the above 
studies agree that smoking causes a reduction in semen quality and quitting smok-
ing may benefit the individuals with marginal loss of fertility. Smoking has been 
found to have multitude of adverse effects on male fertility by affecting almost 
everything that matters for competent sperm production.

22.4.2  Smoking Affects Hypothalamic-Pituitary-Gonadal Axis

Smoking has also been found to affect the functioning of the hypothalamic- pituitary- 
gonadal axis and disturbs the release of a variety of hormones, which inhibit lutein-
izing hormone and prolactin. A number of endocrine disruptors are known to 
increase infertility risk by the same means. In a study on the effect of tobacco, 
Ochedalski et al. (1994) reported that smokers had a relatively higher level of estra-
diol, LH, and FSH with decreased level of prolactin, though the level of testosterone 
and dihydrotestosterone was not significantly different from non-smokers 
(Ochedalski et al. 1994). Another study reported a positive dose-dependent relation-
ship between smoking and testosterone and LH and that elements of tobacco smoke 
might interrupt the HPG axis leading to Leydig cell failure in smokers (Ramlau- 
Hansen et al. 2007). Nevertheless, another study on 889 fertile men divided into 
mild, moderate, and heavy smokers found no significant differences in FSH, LH, or 
serum total testosterone levels (Pasqualotto et al. 2006).

22.4.3  Smoking Affects Sperm Maturation and Varicocele

In addition to its action on hormone levels, smoking has also been shown to affect 
sperm maturation in the epididymis (Dacheux and Dacheux 2014). Smoking has 
been found to increase the loss of sperm count in the individuals with varicocele. It 
is evident that a combination of smoking with varicocele correlates with oligozoo-
spermia with a tenfold greater incidence than non-smoking men with varicocele and 
five times more than the incidence in men who smoked but did not have varicocele 
(Klaiber et al. 1987). Smoking has been found to increase oxidative stress, and the 
latter is a well-known risk factor for loss of fertility. Therefore, smoking may cause 
infertility by promoting varicocele and hyperthermia of the scrotal region 
(Pasqualotto et al. 2006). It is well known that the vascular blood supply in the tes-
ticular cord is relatively insufficient. Smoking is known to further decrease oxygen 
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tension in blood, which may compromise spermatogenesis by creating hypoxia in 
the testis. Smoking also correlates with reduced semen volume (Pasqualotto et al. 
2006), which may affect the life and fertility of sperm after ejaculation.

22.4.4  Smoking Contributes to Erectile Dysfunction

Smoking may also affect the physiology of erection and the competence of semen to 
support sperm fertility. Erectile dysfunction is one of the major causes of infertility 
as discussed elsewhere in this book. Smoking has been conclusively found to be a 
risk factor for erectile dysfunction. A systematic review that included four prospec-
tive cohort studies and four case-control studies reported that smoking increases the 
risk of erectile dysfunction significantly (Cao et al. 2013) and cessation of smoking 
significantly improved physiological and sexual health in male smokers (Pourmand 
et al. 2004; Maiorino et al. 2015). A number of accessory glands such as the seminal 
vesicle, prostate, and bulbourethral pour their secretions in the ejaculate. In smokers, 
vesicular and prostatic parameters showed a decline (Pasqualotto et al. 2006; Harlev 
et al. 2015). Experimental proof has been provided to show that the secretions in the 
smokers are not competent enough for sperm fertility. Spermatozoa from non-smok-
ers when exposed to seminal plasma of smokers have reduced sperm motility and 
acrosome reaction significantly (Arabi and Moshtaghi 2005). Conversely, incubation 
of spermatozoa from smokers with seminal plasma of non-smokers leads to a non-
significant improvement in functional parameters of sperm (Mehran 2005).

22.4.5  Molecular Mechanism of Action of Smoking

Cigarette smoke condensate (CSC) contains several carcinogenic and teratogenic 
components, which result in accelerated germ cell death via the cytoplasmic tran-
scription factor, aryl hydrocarbon receptor (AHR). A study on germ cell line, GC2, 
showed that CSC activates AHR and adversely affects the development of germ 
cells by disturbing the expression of a battery of genes participating in cell prolif-
eration, cell cycle, apoptosis, and antioxidant mechanisms (Esakky and Moley 
2016). It is worth noting that AHR is important during testicular sperm production 
and post-testicular sperm maturation. This report suggested that cigarette smoke 
exerted negative effects both genomically and non-genomically, contributing to the 
loss of sperm count and germinal epithelium (Esakky and Moley 2016).

22.4.6  Meta-Analysis Supports Adverse Effect of Smoking

A recent meta-analysis analyzed data for 5,865 participants from 20 studies, sug-
gesting that cigarette smoking was associated with reduced sperm count, motility, 
and morphology. Further analysis revealed that the effect size was bigger in infertile 
individuals than the control group, and there was a quantitative effect of smoking as 
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heavy smokers faced a greater decrease in comparison to mild smokers. Therefore, 
there is now sufficient and conclusive evidence that smoking impairs semen quality 
and fertility by affecting hormone levels, exposure to carcinogenic compounds, and 
contribution to erectile dysfunction, ultimately leading to reduced sperm motility, 
viability, and DNA integrity. Scientific studies have also uncovered the possible 
mechanism of actions involved in the adverse effects of smoking and tobacco chew-
ing on semen quality. Smoking has also been reported to affect the epigenome in 
male infertility (Dong et al. 2016). The latter could have transgenerational effects, 
which needs further investigation.

22.4.7  Precautionary Measures

Smoking does not require any specific suggestion for its ill effects. The adverse 
health effects of smoking are well known and reviewed. Smoking in addition to 
general deterioration of health is known to cause cancer. Therefore, smoking should 
be avoided or reduced in quantity. Most of the studies on smoking have reported 
adverse effects of adult smokers; however, its effects on younger population around 
puberty needs further detailed investigations for effects on sexual and pubertal 
development. In the infertility patients who are heavy smokers, quitting smoking 
should help not only directly but also by improving the action of other therapeutic 
measures in place. In addition to active smoking, non-smokers should avoid expo-
sure to passive smoking. Other forms of tobacco such as chewing tobacco also need 
to be curbed for betterment of semen parameters. Significant transgenerational 
effects of smoking may expose the coming generations to the risk of reproductive 
disorders, the full spectrum of which is yet to be studied.

22.5  Alcohol

Alcohol is used as food, entertainment, and recreation at personal and societal level. 
A large fraction of population drinks alcohol on a regular basis in a variety of forms. 
According to the World Health Organization (WHO) report, worldwide per capita 
consumption of alcoholic beverages in 2005 equaled 6.13 L of pure alcohol con-
sumed by every person aged 15 years or older. WHO report also stated that the 
alcohol consumption worldwide is underscored in comparison to the actual usage. 
The consumption of alcohol by people of younger age group (13–15 years) has also 
increased significantly over a period of time. According to the WHO Global Survey 
of Alcohol and Health (2008), the 5-year trend of drinking showed an increase in 
the underage drinking in about 71% of the responding countries (WHO report 
2008). Low usage of alcohol has been shown to have no detrimental effect, particu-
lar in short terms. Therefore, the adverse effects of alcohol are often discussed in 
relation to excessive use of alcohol.

In a classical study, Lloyd and Williams found that 72% of men with advanced 
alcoholic cirrhosis exhibited decreased libido and sexual potency (Lloyd and 
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Williams 1948). Further analysis in this study reported that out of 22 men with cir-
rhosis, 18 were unable to ejaculate, two produced no sperm at all, one had reduced 
sperm counts, and only one had normal sperm count. Lloyd and Williams also 
reported that 87% of men with advanced alcoholic cirrhosis exhibited reduced axil-
lary hair, showing decreased testosterone action. Men with low consumption (10–
40 g or approximately 1–3.5 drinks per day) showed no abnormal sperm forms 
(Pajarinen et al. 1996). Sperm abnormalities are generally seen in individuals con-
suming alcohol in moderate or high quantities. Moderate alcohol consumption (40–
80 g or 3.5–7 drinks per day) was found to lead to slight alterations in sperm 
maturation. A history of heavy alcohol consumption (>80 g or 7 drinks per day) led 
to arrest of sperm development in about 20% of the cases (Pajarinen et al. 1996). 
Alcoholics who had not yet developed severe liver damage were found to have 
reduced sperm count in 40% of the cases, abnormal sperm shapes in 45%, and 
altered sperm motility in 50% (Villalta et al. 1997).

22.5.1  Alcohol Affects the Hypothalamic-Pituitary-Gonadal Axis

Experimental evidence suggests that alcohol can affect the production of LH by the 
pituitary gland. For LH production from the pituitary, GnRH released from the 
hypothalamus must interact with specific receptor on the surface of the pituitary 
cells. Upon GnRH binding, an enzyme protein kinase C must move from 
LH-producing cell to their surface. Alcohol has been shown to affect the movement 
of this protein to the cell surface (Steiner et al. 1997). In addition to its action on the 
testis and pituitary gland, alcohol is also known to directly affect the hypothalamus. 
A study on male rats found that alcohol administration significantly lowered GnRH 
level in the blood vessels connecting the hypothalamus to the pituitary gland (Ching 
et al. 1988). Apart from affecting GnRH secretion, alcohol also appears to affect the 
production of active GnRH molecules. Therefore, alcohol affects sperm production 
by acting at several points on the hypothalamus-pituitary-gonadal (HPG) axis. The 
effects could be compounded by small but additive effects on each of the main ele-
ments of the HPG axis, ultimately resulting in compromised sperm production or 
sperm maturity.

22.5.2  Alcohol Affects the Function of Leydig and Sertoli Cells

An interesting study on the action of alcohol on Leydig cell function undertaken on 
young healthy male volunteers having normal liver function who received alcohol 
over a period of 4 weeks found that testosterone in these individuals decreased as 
early as 5 days and continued falling during the entire duration of the study (Gordon 
et al. 1976). Alcohol is known to stimulate aromatase, which results in increased 
conversion of testosterone to estrogen in fat and liver (Gordon et al. 1979). High 
levels of estradiol are known to be detrimental to spermatogenesis. Numerous stud-
ies have suggested that alcohol abuse can result in shrinkage of the testis and 
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impaired testosterone production (Adler 1992). These alterations can result in 
impotence and infertility. It has also been reported that alcohol may damage some 
of the Sertoli cell proteins that are required for sperm production (Zhu et al. 1997). 
Muthusami and Chinnaswamy (2005) in a study on alcoholics free from smoking 
found that heavy alcohol consumption resulted in increased levels of LH, FSH, and 
E2 and decreased levels of testosterone and prolactin. This was accompanied by a 
significant decrease in semen volume, sperm count, motility, and other morphologi-
cal parameters of sperm quality (Muthusami and Chinnaswamy 2005). Another 
study on alcoholics found that moderate to high alcohol consumption resulted in a 
significant increase in morphologically abnormal nuclei and plasma membranes in 
sperm (Joo et al. 2012).

22.5.3  Paternal Alcoholism Contributes to Fetal Alcohol 
Syndrome

Excessive maternal alcohol consumption during pregnancy is well known to result 
in a number of disorders in the offsprings, collectively known as fetal alcohol 
spectrum disorders (FASD). A number of these disorders are known to inherit by 
epigenetic modifications. Fetal alcohol syndrome (FAS) is one of the worst out-
comes, which is characterized by growth retardation, craniofacial abnormalities, 
and mental retardation. However, paternal contribution to FAS was shown by 
studies where mother had not consumed alcohol during pregnancy, but fathers 
were alcoholics (Lemoine et al. 1968). FAS was seen in about 75% of the children 
whose fathers were alcoholics (Abel 1983). Human and rodent studies have shown 
that preconception paternal alcohol intake was related with growth retardation, 
low birth weight, and congenital abnormalities (Friedler 1996; Passaro et al. 
1998). It has now been confirmed that FASD may be the result of contribution of 
paternal and maternal exposure to alcohol preconception or maternal exposure 
during pregnancy (Abel 2004). Paternal alcohol exposure has been found to result 
in reduced global DNA methylation in the developing mouse fetus (Knezovich 
and Ramsay 2012).

22.5.4  Paternal Alcoholism Affects Fetal Development

Paternal alcohol consumption has also been shown to affect not only fertility but 
also the development of the fetus. Alcohol administration at moderate to high doses 
before mating in rats previously unexposed to alcohol resulted in the production of 
low birth weight in pups and also reduced litter size (Cicero et al. 1994). Recently, 
alcohol consumption has also been shown to have transgenerational effects by 
affecting the epigenome of father (Knezovich and Ramsay 2012). A recent study 
examining the effect of preconception alcohol exposure found that prenatal alcohol 
exposure of male mice resulted in significant changes in the paternally methylated 
imprinting control regions (H19 and Rasgrf1) in the sperm of exposed males and 
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somatic DNA of the sired offspring. The study also reported a significant reduction 
in methylation at H19 CTCF and CTCF2 binding sites in the offsprings that corre-
lated with a reduced weight at postnatal days 35–42 (Knezovich and Ramsay 2012).

22.5.5  Precautionary Measures

As mentioned above, low-level consumption of alcohol may not have severe effects 
on reproductive health. Nevertheless, it is generally seen that alcohol addiction 
increases with time and a number of people have genetic tendency to become alco-
holics. Therefore, negligible effect of low consumption does not make one immune 
to adverse effects of alcohol. It is the low consumption which needs to be curbed to 
avoid development of alcoholism that has a number of health-deteriorating effects 
including poor reproductive health and sexual life. Alcoholics seeking infertility 
treatment should be strongly encouraged to quit drinking. If required, the patients 
may seek medical advice and be referred to habitation centers for quitting alcohol.

22.6  Stress

Stress can be defined as an internal state different from one’s normal state of rest, 
which may be caused by an external or internal stressor (Selye 1955). Our body 
reacts to a number of situations by engaging in automatic responses in order to aid 
the individual cope up adequately with the noxious stimuli by temporarily changing 
the physiology (Cannon 1994). Popularly known as the “fight or flight response,” the 
physiological changes during acute stress are thought to involve the activation of the 
sympathetic nervous system and inhibition of the parasympathetic system in order to 
help the individual tackle the potentially harmful situation (Cannon 1994). The phys-
iological response initiates at the level of the hypothalamus, which upon recognizing 
the state of stress, stimulates the secretion of the neurotransmitters epinephrine 
(adrenalin) and norepinephrine (noradrenalin) in the blood stream by the adrenal 
medulla of the autonomic nervous system (McCorry 2007). These neurotransmitters 
stimulate the sympathetic nervous system that helps the body to better deal with the 
stressful situation. Upon activation of the hypothalamic-pituitary-adrenal axis in the 
stressful situation, the hypothalamus stimulates the pituitary gland to secrete a num-
ber of hormones including adrenocorticotropic hormone. The latter stimulates the 
adrenal glands to produce cortisol, which inhibits the sympathetic nervous system, 
aiding the return of homeostasis.

Persistent stress may result in continued activation of the sympathetic nervous 
system, resulting in a number of changes in the hypothalamic-pituitary-gonadal axis 
that affects spermatogenesis. Because of close association between the central ner-
vous system and the gonadal function, disturbances at the level of CNS translate into 
changes in gametogenesis rather rapidly. Stimulation of the HPA axis may inhibit the 
HPG axis, thus altering spermatogenesis (Whirledge and Cidlowski 2013). While 
occasional stress can be handled with ease, prolonged stress can disturb the HPG 
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axis, thereby affecting fertility potential. The effect of stress on fertility was initially 
seen as a form of female infertility that resulted in increased risk of dysmenorrhea, 
anovulation, infertility, and loss of pregnancy (Mishra et al. 2000). However, now 
there is sufficient and conclusive evidence that stress increases the risk of male factor 
infertility as well. It has been reported and well reviewed that stress results in 
increased production of reactive oxygen species that causes damage to the germ 
cells, resulting in increased production of abnormal sperm with poor motility and 
fertility potential (Lawson 2016).

22.6.1  Life and Work Stress

In one of the oldest studies assessing the impact of stress and work environment, 
Bigelow et al. (1998) analyzed semen parameters of 845 infertile men and found a 
reduction in the percentage of progressive sperm and an increase in the percentage 
of coiled tail sperm defects in welders, compared with unexposed subjects. The 
study also reported a significant dose-dependent relationship between perceived job 
stress and percentage of progressive sperm, total motile count, morphology, abnor-
mal heads, and coiled tail defects (Bigelow et al. 1998). In a cross-sectional study, 
Auger et al. 2001 analyzed sperm morphological defects due to lifestyle and envi-
ronmental factors of 1,001 male partners of pregnant women from four European 
cities. The authors found that significant variations of several sperm defects were 
related to stress, weekly working time, occupational posture, and metal welding 
(Auger et al. 2001).

In a study on evaluating the impact of life and work-related stress, Janevic et al. 
(2014) evaluated 193 men and measured the stress level including job strain, per-
ceived stress, and stressful life events in relation with semen parameters. The authors 
found an inverse correlation between perceived stress score and sperm concentra-
tion, motility, and morphology. Men who experienced two or more stressful life 
events in the past year had lower percentage of motile sperm and a lower percentage 
of morphologically normal sperm in comparison to those having no stressful events 
(Janevic et al. 2014). A recent study analyzed the impact of stress and everyday fac-
tors on sperm DNA damage. The study collected data from 286 men attending infer-
tility clinic who had a normal semen concentration or slight oligozoospermia and 
found that high occupational stress and age increased DNA fragmentation index. 
Since DNA integrity is an extremely important parameter indicative of fertility 
potential, the study highlights the impact of everyday stress on loss of sperm fertil-
ity (Radwan et al. 2016).

22.6.2  Stress-Related Life Events

A number of studies on stress-related to life events have reported a decline in sperm 
count, motility, or morphology (Hjollund et al. 2004; Gollenberg et al. 2010; Janevic 
et al. 2014). Among the large studies on life event-related stress, Gollenberg et al. 
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(2010) examined the association between stressful life events and semen parameters 
in 744 fertile men (Gollenberg et al. 2010). After adjusting for confounders, the 
authors found that men reporting 2+ recent stressful events had an increased risk of 
being classified below normal WHO values of sperm count, motility, and morphol-
ogy criteria. Further, men with 2+ stressful life events had lower sperm concentra-
tion and lower percent sperm motility; however, morphology was less affected. 
Similarly, a number of studies on occupational stress showed detrimental impact of 
stress on sperm count, motility, and morphology (reviewed in Nordkap et al. 2016).

22.6.3  Psychological Stress

Among one of the recent studies evaluating the impact of psychological stress on 
semen parameters, Nouri et al. (2014) recruited 70 male partners to study the effect 
of psychological stress using hospital anxiety and depression score (HADS) ques-
tionnaire. The study reported that sperm count, motility, and morphologically nor-
mal sperm were lower in men having abnormal HADS. The study concluded that 
psychological stress primarily lowers total testosterone with rise in serum LH and 
FSH and reduces semen quality (Nouri et al. 2014). A recent cross-sectional study 
on the impact of psychological stress on male fertility evaluated 1,215 Danish men 
by getting a questionnaire on health and lifestyle, including self-related stress filled 
by general participants. It was found that the individuals with self-reported stress 
scores above an intermediate level had poorer semen quality in a dose-dependent 
manner, though no differences in the hormone levels were found (Nordkap et al. 
2016).

Psychological stress may also affect the outcome of assisted reproductive tech-
niques. Among the oldest studies on this aspect, Harrison et al. (1987) analyzed the 
impact of psychological stress on semen samples used in IVF setting. The investiga-
tors analyzed semen samples of 500 men such that one of the samples was collected 
before the IVF work-up and the other after ovum aspiration. The study found that 
the second sample had significantly lower sperm density, sperm count, and qualita-
tive and quantitative motility (Harrison et al. 1987). Therefore, stress not only 
increases the risk of infertility but also hampers infertility treatment using natural or 
assisted methods. Specific and occasional stressful situations such as war and exam-
inations also impact semen parameters negatively (Eskiocak et al. 2005; Abu-Musa 
et al. 2007; Lampiao 2009).

22.6.4  Infertility Itself Causes Stress

Stress makes a reciprocal relationship with infertility. A number of studies on the 
impact of fertility treatment-related psychological distress have framed the analysis 
in line with Lazarus and Folkman’s (1984) landmark theory of the relationship 
between stress, appraisal, and coping. According to this, the patients who practice 
inadequate coping strategies for failure of infertility treatment result in a significantly 
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higher distress, further negatively affecting the outcome of their infertility manage-
ment (Lawson et al. 2014). It is known that most of the infertility patients suffer from 
some level of moderate to significant distress, which may increase tremendously 
upon initial failure of treatment trials. The inability to conceive may raise personal, 
familial, and societal stress, which reduces the fecundity further. Research on infer-
tility patients undergoing treatment has found that 40–50% have mild to moderate 
depression, 2% have severe symptoms that worsen over time, and more than 50% 
suffer from anxiety (Cousineau and Domar 2007). These symptoms if present 
increase further upon initial failure of the treatment trials. Therefore, stress and infer-
tility form a loop, one giving rise to the other, and this ultimately increases the level 
of both, distress and infertility, which makes it further difficult to treat these patients.

A number of other studies have now firmly established that stress due to a variety 
of factors including stressful life events, work stress, self-perceived stress, and psy-
chological stress due to infertility cause a significant decline in semen quality by alter-
ing sperm count, motility, and the number of morphologically normal sperm (Nordkap 
et al. 2016). Most of the stress factors discussed above contribute to poor semen qual-
ity and infertility by increasing oxidative stress. In addition to the loss of sperm count 
and motility, oxidative stress also results in functional loss of sperm fertility and DNA 
integrity (Sawyer et al. 2003). Apart from damage to the nuclear DNA, mitochondrial 
DNA is particularly susceptible to oxidative stress-induced DNA damage. All these 
lead to reduced semen quality, significantly contributing to male infertility.

22.6.5  Precautionary Measures

As discussed above, stress comes in various forms, such as work pressure, job 
stress, household stress, and a combination of these culminating into psychological 
stress. Stress has a strong correlation with both male and female infertility. Stress 
and trauma early in life is well known to have transgenerational effects transmitted 
via sperm (Gapp et al. 2014). Stress management by medication may not help as far 
as reproductive fitness and fertility are concerned. A number of stress medications 
are known to be detrimental to fertility. Therefore, management of stress by other 
means such as exercise, yoga, and meditation is advisable. Better management and 
advance planning of daily and official chores would be an ideal strategy to avoid 
stress. Such management should preferably be used as a prophylaxis measure than 
a therapy; however, in the cases with stress, therapy in this form may be helpful too. 
Nevertheless, exercise in an appropriate dose would help alleviating stress and also 
improve the effect of other therapeutic measures employed to curb infertility.

22.7  Sleep Apnea

The physiology of human body and most of the animals is designed to follow a 
circadian rhythm, and a number of functions have been fine-tuned to take place 
optimally under light or dark conditions. In a classical study, Boyar et al. (1974) 
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found that testosterone level increases in relation to luteinizing hormone production 
during sleep in around puberty (Boyar et al. 1974). Axelsson et al. (2005) in a study 
on day sleep and night sleep found that testosterone levels increased during sleep 
periods and fell during walking and in awake position. In a study on sleep and sleep- 
related disorders, Schiavi et al. (1992) found that sleep disturbance correlates with 
decreased testosterone levels, and this may be one of the mechanisms for decrease 
in testosterone level with age (Schiavi et al. 1992). Similarly, another study showed 
that increase in testosterone was related to sleep and not the circadian rhythm 
(Luboshitzky et al. 2001). All these studies suggested that appropriate and 
disturbance- free sleep is critical to maintain adequate testosterone level for sper-
matogenesis and other reproductive health effects. In another study, Luboshitzky 
et al. (2005) reported that men with sleep apnea had lower LH and testosterone 
levels, which may be attributed to sleep disturbance and fragmented sleep.

22.7.1  Sleep Apnea Correlates with Low Testosterone

A number of studies in obese individuals have shown the presence of sleep apnea 
and low testosterone levels; however, it has been reported that the effect of sleep 
disorders on testosterone is independent of BMI (Gambineri et al. 2003). The rela-
tionship between sleep apnea and testosterone level is now well known (Hammoud 
et al. 2012). The reduction in testosterone level affects a number of fertility aspects, 
including spermatogenesis, sexual behavior, libido, and erectile function. The rela-
tionship between sleep apnea and sexual dysfunction has been suspected because of 
association between testosterone and sleep-related erection (Granata et al. 1997). 
Therefore, an altered sleep pattern can affect erectile function as a result of its effect 
on testosterone level. Budweiser et al. (2009) in a study on 401 men showed that 
sleep apnea was correlated with erectile dysfunction. In another study on a large set 
of men, Andersen et al. (2010) suggested a relationship between sleep apnea and 
erectile dysfunction after analysis on 467 men. A number of other studies have con-
firmed the relationship between sleep disturbances, erections, and quality of sexual 
life (Hammoud et al. 2008). Alvarenga et al. (2015) have demonstrated that rats 
exposed to 96 h of paradoxic sleep deprivation displayed poor sexual behavior and 
reduced performance (Alvarenga et al. 2009). Animal studies provide further proof 
of the effects of sleep disturbance on male sexual behavior, leading to changes in 
functional parameters and performance (Alvarenga et al. 2015).

22.7.2  Sleep Apnea May Affect Fertility

At least one study reported an adverse impact of sleep apnea on sperm count in rats 
along with a change in the sexual behavior and performance (Alvarenga et al. 2015). 
In this study, sexually experienced rats were subjected to paradoxic sleep depriva-
tion or sleep restriction, and testosterone level, sperm count, and gene expression 
related to spermatogenesis and fertility were analyzed. The authors found that 
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paradoxic sleep deprivation results in decreased level of testosterone, testicular gene 
expression, and a decrease in the number of live sperm. Further analysis showed 
that iNOS and hydroxysteroid 11b-dehydrogenase genes showed decreased expres-
sion in comparison to the control group. The study concluded that sleep disturbance 
can causes reduction in testosterone, sperm production, and male reproduction 
function by affecting testicular nitric oxide pathway (Alvarenga et al. 2015).

To the best of our knowledge, there has been no study demonstrating directly a 
relationship between sleep apnea and male infertility. In case of humans, it is diffi-
cult to undertake such studies. In a study on obstructive sleep apnea characterized 
by intermittent hypoxia and oxidative stress, Torres et al. (2014) subjected male 
mice to periodic hypoxia mimicking sleep apnea. The mice were tested for effective 
fertility by mating experiments. The authors observed that progressive sperm motil-
ity was significantly reduced in the test group. Further, the proportion of pregnant 
females and the number of fetuses per mating were significantly lower in the inter-
mittent hypoxia group (Torres et al. 2014).

22.7.3  Precautionary Measures

The studies on sleep apnea and fertility are in the infancy and have to go a long way 
before a direct correlation can be established. Nevertheless, animal studies on fertil-
ity and indirect evidence in the form of low testosterone upon sleep disturbance in 
humans are good reasons to foresee an adverse impact of sleep disturbance on 
semen parameters and fertility. Amid, preliminary evidence, management of 
disturbance- free sleep hours seems to be very important. Sleep disturbance not only 
changes hormone levels but also may increase stress level, which is an independent 
factor for impaired fertility. Therefore, late hours work, night shift job, watching 
television late night, and other activities that may cause sleep disturbance should 
better be kept at a distance. Night-shift female workers have already been shown to 
have disturbed menstrual cycle and ovulation (Gamble et al. 2013). Infertile patients 
with the presence of disturbed sleep pattern or night-shift job should be encouraged 
to follow a natural work cycle to better manage infertility. Further studies on sleep 
apnea and its contribution to male infertility would be of significant interest. It 
would be very interesting to study the effect of lifestyle changes and other therapeu-
tic interventions in alleviating the adverse effects of sleep apnea on testosterone 
level and fertility.

22.8  Exercise

Sedentary lifestyle has been linked with a number of disorders, such as diabetes, 
cardiovascular, muscle pain, poor bone health, and other lifestyle disorders. Given 
the multitude of adverse effects of sedentary lifestyle, it is conceivable that seden-
tary lifestyle may also affect spermatogenesis. A recent cross-sectional study on 
1,210 healthy young Danish men undergoing fitness test for military services found 
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that time spent watching television (sedentary time) was associated with a poor 
sperm count. Quantitatively, men who watched television for more than 5 h per day 
had an average adjusted sperm count of 37 million/ml in comparison to 52 million/
per in the control group (Priskorn et al. 2016). Sedentary lifestyle can increase the 
risk of poor semen quality and infertility by a number of means including testicular 
heating, increased BMI and weight, and poor energy metabolism.

22.8.1  Obese Individuals Benefit from Exercise

Obese individuals looking for infertility solution benefit from losing weight, irre-
spective of their gender. In case of obese females, it has been found that losing 
weight improves the chances of natural or induced ovulation and pregnancy. 
Similarly, in case of males, it has been found that physically active subjects have 
better semen parameters and hormone levels in comparison to the sedentary males. 
In general, exercise helps maintain good overall health and immunity, thereby 
reducing the risk of a number of disorders such as cardiovascular, blood pressure, 
diabetes, etc. It is conceivable that better overall health and energy metabolism 
would provide a conducive environment for optimal spermatogenesis and fecundity. 
In a comparison of semen parameters, Vaamonde et al. (2012) compared physically 
active and sedentary subjects. Statistically significant difference in total progressive 
motility and morphology was seen. The study concluded that physically active sub-
jects had better semen and hormonal parameters in comparison to the sedentary 
subjects (Vaamonde et al. 2012).

The above suggests a positive impact of exercise on overall health and fertility; 
however, exercise may be good or bad from fertility point of view depending upon 
the intensity, type, and objective. Many studies have emphasized the negative effects 
of exercise on human fertility, particularly in the female athletes. The adverse effects 
of exercise are clearer in case of females in the form of delayed menarche, oligomen-
orrhea, amenorrhea, inadequate luteal phase, and anovulatory cycles (Vaamonde 
et al. 2016a, b). A number of studies have mentioned adverse effects of intense exer-
cise on female fertility in case of runners, cyclists, swimmers, gymnasts, figure skat-
ers, and ballet dancers (Vaamonde et al. 2016a, b). Therefore, it is very important to 
distinguish between beneficial and harmful exercise from fertility point of view.

Interestingly, the impact of exercise on the male reproductive system should 
follow the same trend as in females; however, this is not easy to investigate in 
males due to wide variations in the level of semen parameters. In normal human 
males, the level of sperm production varies a lot across individuals and popula-
tions, making it difficult to identify subtle changes. Most of the studies on the 
impact of exercise on male fertility have been undertaken on athletes and not on the 
individuals of moderate fitness or those who follow a sedentary lifestyle. Therefore, 
it is very difficult to conclude about the scientific standpoint of the effect of exer-
cise on male fertility. However, significant evidence suggests that exercise can 
have good or bad effects depending on the type, volume, and objective of exercise 
(Vaamonde et al. 2016a, b).
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22.8.2  Exercise Affects Hypothalamic-Pituitary-Gonadal Axis

Acute and prolonged exercise regimen may lead to changes in the HPG axis, thus 
altering sperm production and maturation. Most of the literature on the impact of 
strenuous exercise in males is on athletes. Studies on cyclists have shown a detri-
mental effect of heavy cycling on spermatogenesis. It has been reported that cyclists 
who participate in competitions had lower testosterone levels than others (Lucia 
et al. 2001). In case of cyclists, most of the studies agree on a detrimental effect of 
intense cycling on HPG axis and sperm production. This could be due to continued 
friction between the saddle of the bicycle and the reproductive system (Grunbaum 
and Carrier 2002). Hypogonadal states have been reported in the individuals under-
going endurance training in the form of running or cycling for 10–20 h/week 
(Hackney et al. 2005). Similarly, in case of rowers, heavy training resulted in 
decreased free testosterone/cortisol ratio, when compared to basal levels (Vervoorn 
et al. 1991). In case of swimmers, there is controversy regarding the impact of exer-
cise. Other studies reported changes in testosterone and other hormones, which 
returned to normal levels during recovery (Vaamonde et al. 2016a, b). In other 
sports activities, such as soccer and basketball, it is not clear if there is any detri-
mental or beneficial effect on male reproductive parameters.

22.8.3  Exercise May Affect Testosterone Level and Erectile 
Function

It is difficult to assess if exercise leads to adverse effects on the size of testicles and 
other accessory reproductive glands. However, it has been found that an adverse 
effect on hormone levels may result in altered testicular size in athletes with intense 
exercise schedule. This may be complexed with reduced activity of the accessory 
reproductive glands, thus compromising semen quality. For example, the saddle of 
bicycle could cause direct damage to the accessory sex glands by repeated rubbing, 
resulting in inadequate production of their secretions, thus affecting semen produc-
tion. In case of strenuous exercise, tiredness and stress may lead to poor erections 
not enough to sustain the sexual intercourse. This may be further complexed by 
trauma to the reproductive organs during strenuous exercise. A majority of the stud-
ies on cyclists have reported erectile dysfunction (reviewed in Grunbaum and 
Carrier 2002). A number of conservative measures including altering the seat posi-
tion, increasing the width of the saddle, increasing saddle cushioning, and designs 
that reduce perineal pressure have been suggested as measures to avoid the develop-
ment of erectile dysfunctions in cyclists (Grunbaum and Carrier 2002).

22.8.4  Precautionary Measures

In conclusion, while light to moderate exercise may help us lose weight and improve 
fertility in comparison to a sedentary lifestyle, heavy exercise, particularly in the 
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form of endurance, competition, and athletics, may lead to a decline in the semen 
quality and fertility. This may be insignificant in the initial years of training and 
exercise; however, continued pressure on the body and reproductive organs may 
lead to adverse effects in the long term that may cause a decline in fertility. Therefore, 
a correlation between high-load exercise and a negative impact on fertility is con-
cluded. It is very important to define the low, normal, and intense levels of exercise. 
A regimen of workout of 45 min with light to moderate exercise four times a week 
should be considered optimal for overall health benefits including reproductive 
health. When exercise is solely introduced with an aim to improve fertility, it should 
not include cycling or other similar exercises, which could create testicular heating 
or cause trauma to the reproductive organs.

As a corrective measure to the problem of infertility, whether or not exercise should 
be advised depends on a number of parameters that include physical state of the indi-
vidual, past history of exercise and trauma, weight and BMI, and age. In case of the 
individual with high BMI or those suffering from obesity, light to moderate exercise to 
reduce weight would be beneficial in improving fertility. Similarly, in case of individu-
als with normal weight but sedentary lifestyle, light to moderate exercise in the form 
of running, walking, or aerobics may help improve fertility. Heavy exercise should not 
be advised to the individuals undergoing infertility treatment. In the case of athletes, 
where intense exercise seems to be the only probable cause of infertility, limiting the 
exercise or stopping it altogether should be advised in order to improve fertility.

22.9  Discussion and Future Directions

In the recent years, there has been emphasis on a significant decline in semen qual-
ity over the last few decades. Appreciable decline in semen parameters has been 
reported; however, the contributing factors remain unidentified. Among a number of 
plausible factors behind this decline, lifestyle factors discussed above may be a few 
significant contributors. Fortunately, a number of these factors are easily modifiable 
to curb their ill effects on general and reproductive health. A high-quality lifestyle 
including a good regimen of exercise, minimal or cautious use of electronic gadgets 
and other appliances using radiations, avoiding testicular heating by taking precau-
tionary measures at work or home, staying away from alcohol and smoking, and 
minimizing stress by appropriate and advanced management of life chores should 
help upkeep good reproductive health and fertility.

As discussed in details above, scientific research on the impact of mobile phone 
usage has provided initial details with most of the studies supporting an adverse 
impact of mobile phone radiations on seminal parameters. Nevertheless, a few stud-
ies have issued caution regarding the impact of these radiations on fertility; there-
fore, further well-planned studies can provide necessary data to take the debate to 
conclusion. Mobile phone usage has a number of confounding parameters, such as 
the number of hours of usage, proximity of phone with testes, type of device, and 
exposure during nighttime, all of which can affect the degree of their ill effects. 
Therefore, further studies on mobile phone usage should take these variables into 
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consideration in order to work out the exact quantum of adverse effects this indis-
pensable device may have on semen parameters.

Activities that could affect testicular heating, such as laptop usage, need further 
well-planned studies to identify their quantitative effects on semen parameters. We 
could identify only one study that analyzed the impact of laptop usage on testicular 
heating and one study that explored the ways to avoid testicular heating in laptop 
users. Retrospective and prospective studies taking into consideration the number of 
hours of laptop use at office and home, sitting position, body posture, position of 
laptop, frequency and duration of intermittent breaks, and other variables should be 
planned to firmly establish a relationship between laptop use and testicular heating 
and its potential impact on semen parameters. The studies discussed in this article 
have addressed changes in semen parameters, but research on the impact of testicu-
lar heating on fertility remains to be explored. Since the use of laptop starts early in 
life, studying its effects on pubertal development and semen parameters in adult-
hood holds an important place in fertility research.

Research on the impact of laptop and mobile phone use suffers from a number of 
limitations in addition to the above-mentioned confounding factors. A host of other 
variables, such as exercise and fitness regimen, nutritional status, and other stressful 
factors, may affect their effects on fertility. Since the radiations and heat emitted by 
these devices are invisible, we end up using them extravagantly. It must be kept in 
mind that these indispensable devices are getting smarter with time and they keep 
on performing a number of functions in the background even when not in use. 
Therefore, the devices such as mobile phone, Wi-Fi, and laptop should be switched 
off when not in use. Further, we must ensure a safe distance from them, and when 
unavoidable, we must ensure maximum possible distance between these devices 
and testes. For example, mobile phone should not be kept in the trousers’ pocket 
when ambulatory and should be placed on a nearby table when static. These simple 
measures should be able to curb most of the adverse impacts these devices may 
silently have on fertility parameters.

The studies on alcohol, smoking, and stress have advanced to conclusively estab-
lish their negative effects on seminal parameters. Further studies on these aspects 
may focus on molecular investigations to identify fine molecular changes contribut-
ing to their ill effects on fertility. One of the important aspects to investigate in rela-
tion to these habits is their impact on the sexual development, puberty, and fertility in 
young people. It has been reported that smoking and alcohol are tightening grip in 
the young generation. Exposure to these in young age may interfere with sexual 
development and attainment of maturity. Therefore, further studies should investi-
gate the effect of early exposure to these habits as a cause of infertility. Since both 
alcohol and smoking have been reported to have potential transgenerational effects, 
further research in this direction would provide significant clues to understand if the 
coming generations would have to pay for the poor lifestyle of the reproducing gen-
eration. Similarly, stress and trauma early in life have been reported to have transgen-
erational effects; therefore, there is utmost need to further investigate transgenerational 
impact of smoking, alcohol, and a stressful life in relation to semen parameters.
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Exercise in general has good overall effects on health; however, engaging into 
intense exercise and endurance building should be carefully considered to avoid 
adverse effects on fertility. Nevertheless, light to moderate exercise with appro-
priate combination of aerobics, muscle strength building, and fitness regimen 
should be included in daily schedule of activities. Some of the good practices to 
improve lifestyle can have dramatic effects on semen parameters and reproduc-
tive health, particularly if adopted early in life. The list of lifestyle diseases and 
the overall health benefits of engaging into good lifestyle is growing, and I have 
presented their impact on an important aspect of species survival. A number of 
recent studies have emphasized the transgenerational impact of poor lifestyle 
activities and suggested that the coming generation may have to pay for the 
“sins” of father; however, the knowledge in this area is still in infancy. Therefore, 
it is imperative to pay sufficient attention to this important but easily manageable 
aspect to ensure good overall and reproductive health in the present and future 
generations.

 Conclusion

Lifestyle factors such as smoking, alcohol, mobile and laptop use, exposure to 
heat and radiations, stress, and other activities adversely affect testosterone level, 
spermatogenesis, erectile function, and fertility. Fortunately, lifestyle is one of 
the easiest modifiable factors. General consciousness to health effects of poor 
lifestyle and numerous simple modifications are sufficient to wake us to adopt 
simple and sensible measures for better fertility. Smoking, alcohol, and stress 
have already been shown to have transgenerational impact, which can imprint 
poor sperm production and fertility in the DNA that we inherit to the coming 
generations. Therefore, engaging into good and fitness-oriented lifestyle should 
be one of our top priorities for the sake of our fertility and that of the generations 
to come.
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23Preserving Male Fertility

Rajender Singh

Abstract
Do you love your fertility? Obviously yes; but the most important question is 
how often do you think of preserving your fertility? Not so often or never. We 
tend to believe that fertility doesn’t require any care and in some societies; this 
subject is secluded from family matters. Fertility loss may start right from the 
attainment of puberty and may get accelerated if not paid heed. Interestingly, the 
loss of fertility may have no associated symptoms in a large number of cases. 
Finding yourself infertile once you wish to have children may have distressing 
consequences, which could have been easily averted with simple nontherapeutic 
ways aimed at preserving fertility. Taking cues from the published literature, 
I have prescribed lifestyle interventions and other simple measures that may keep 
you way from prescriptions for infertility management.

Keywords
Preserve fertility • Upkeep fertility • Lifestyle • Smoking • Alcohol • Stress 
• Exercise and diet • Semen analysis

Key Points
• Avoid exposure to radiations in the form of mobile phone, Wi-Fi, and other 

equipments used in household or office settings.
• Minimize testicular heating by taking precautions in laptop use and television 

watching and by keeping away from hot baths, sauna, Jacuzzi, and other habits 
that may raise scrotal temperature.
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• Learn to tackle stress and anxiety due to occupational or psychological stress to 
minimize their effects on testosterone production, spermatogenesis, and 
fertility.

• Respect the biological clock and follow a balanced work-relax schedule to avoid 
sleep apnea and development of stress.

• Light to moderate exercise along with a balanced and nutritious diet is the key to 
better semen quality, but avoid regular heavy exercise.

• Semen analysis early in life can help preserve fertility in susceptible cases.
• Timely planning of family helps not only with good fertility but also with mini-

mum risk of congenital abnormalities in the next generation.

23.1  Introduction

The nature has provided every species with the best tactics to survive even in the 
weirdest conditions. Security for food and reproduction are the two most important 
aspects intricately wired into all living beings. The logic of great investment in these 
two is easily understandable as they are indispensable for species survival. Food is 
the first priority for any living organism, and once food is secured, the hunt for 
reproduction comes to the fore. Superimposed on this, every species is provided 
with methods to improve its race by employing various methods of crossover and 
selection of the best partners for procreation. The biological system invests heavily 
in the process of reproduction. The gamete production (spermatogenesis in the con-
text of this chapter) is a heavy energy demanding process, which deserves sufficient 
attention to earn returns on the investment.

Most of us are endowed the gift of procreation; however, we generally do not 
ponder about our fertility, until we think of starting a family. Unfortunately, for a 
number of individuals, it is too late by then. Men present a continuous spectrum of 
no, poor, moderate, and high fertility. To ensure species survival, nature has ensured 
multiple lines of defense to preserve fertility and perhaps that is why most of us can 
do without worrying much about fertility. However, the reproductive fitness varies 
greatly across individuals. The declining reproductive fitness is evident by reverse 
trends in semen quality and increased frequency of infertility cases in the recent 
years. The etiology in a large number of infertility cases remains unknown, compli-
cating the treatment. Nevertheless, prevention is always better than cure.

Poor fertility early in life tends to fade sooner than rich fertility. This can be more 
dreadful in the cases where fertility loss is discovered too late. A number of infertil-
ity cases could have been fertile and had some general, inexpensive, common, and 
habitual precautions been in place. One must care for fertility from early in life and 
even after having done with the family planning. In a number of situations, people 
choose to have children even after family planning owing to a number of reasons 
from personal to accidental. From the initiation of puberty and spermatogenesis till 
the descent of spermatogenesis with andropause or age, caring for self-fertility can 
be rewarding. Irrespective of the marital status, availability of a partner or age, you 
must be conscious about your sperm and fertility so that you can initiate a 

R. Singh



441

pregnancy whenever required. Therefore, caring for fertility all through life should 
be one of our priorities.

Over the past several decades of research on fertility and infertility, we have 
learned a number of factors that contribute to infertility. Therefore, we have reached 
the crossroads where we should take a call and educate ourselves about the ways of 
fertility preservation. This would not only help in the maintenance of fertility for a 
longer duration but also help in contributing the best quality gametes for species 
propagation. In this chapter, I have attempted to put a number of evidence-based 
suggestions that can help preserve fertility for a longer duration, delay the onset of 
infertility, and avert it altogether in some cases. This guide is intended to help peo-
ple understand and preserve fertility, the loss of which can have devastating impact 
later in life.

23.2  Avoid Exposure to Radiations

Radiations are inevitable in today’s life owing to a number of applications we can-
not do without. Therefore, suggestions to get rid of them would be impractical; 
nevertheless, the possibility of minimizing the use to “just essential” is always there. 
A bunch of studies has shown potential ill effects of mobile phone radiations 
(Agarwal et al. 2008), Wi-Fi, and other radiations used in household, clinic, or 
office settings (Fakhri et al. 2016). Some of the studies even claim that the radia-
tions may not cause significant harm; nevertheless, it is sensible to avoid extra expo-
sure. In a number of situations, we end up using them extravagantly. The carelessness 
may not cost us extra in monetary terms but can be very expensive in terms of their 
adverse impact on a number of health conditions, including reproductive health and 
fertility. We must pay sufficient attention to feel the presence of these invisible radi-
ations and try to minimize exposure by switching off mobile phone, Wi-Fi, and 
other equipments, when not in use, in order to avoid their potential hazards on sper-
matogenesis and fertility.

23.3  Avoid Testicular Heating

A number of conditions such as using laptop in lap position, watching television, 
wearing tight underwear and tight jean pants, and other activities such as a number 
of sports activities that require tying up the scrotum against the pelvis, cross-leg 
seating, cushioned chair at work or home can result in testicular heating. Simple 
awareness about the activities, habits, or lifestyle factors that can result in testicular 
heating is sufficient to understand the necessary modifications that can help us avoid 
testicular heating. Testicular heating has been shown to result in significant adverse 
impact of spermatogenesis. A simple rise of 1 °C can lower spermatogenesis; sig-
nificantly a rise of 2–3 °C can cease spermatogenesis altogether (Durairajanayagam 
et al. 2015). While there are biological mechanisms to protect against testicular 
heating, repeated episodes of heating cannot be tackled sufficiently to nullify all 
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effects of testicular heating. Therefore, testicular heating should best be avoided to 
let spermatogenesis flourish. Testes are meant to hang and let them follow their 
natural course.

23.4  Learn to Kill Stress

Stress is a well-known detrimental factor for spermatogenesis. Stress has a strong 
impact on the hypothalamic-pituitary-gonadal axis, disturbances in which can leave 
spermatogenesis significantly impaired (Nordkap et al. 2016). A number of endocri-
nopathies are known to affect fertility in both the genders; therefore, keeping the 
HPG axis close to normal is the key to quality sperm production. Stress comes in 
avoidable and unavoidable forms. Life events, which are beyond our control cannot 
be evaded; nevertheless, their ill effects can be controlled by engaging in a number 
of activities that are well-known stress busters. Engaging in sports, exercise, and 
other hobbies relieves stress, and a small change can have a big effect on the endo-
crine system and stress management. Mismanagement and poor planning is a sig-
nificant reason behind stress due to job, household chores, and other professional or 
domestic activities (Michie 2002). Anxiety in a variety of forms can result in stress 
in the lack of efficient management. Therefore, advance planning, efficient and 
smart work style, defining objectives, and engaging into strategy building can alle-
viate stress due to the above factors. Despite all these measures, some forms of 
stress would always strike the doors. Identifying ways to tackle stress by training 
your mind not to overreact can have a tremendous effect on stress management. The 
biological system is highly flexible and a fast learner. Therefore, attempts to train 
your brain in stress management can yield unprecedented results.

23.5  Quit Smoking and Alcohol

Smoking has been proven to be the cause of cancer and increases the risk of a num-
ber of cancers tremendously. Still, a large population of the world smokes. Moderate 
and heavy smoking has been shown to reduce sperm count and motility (Sharma 
et al. 2016). Smoking leaves a number of carcinogenic and xenobiotic compounds 
in our body, which need to be removed by the detoxification system. In heavy smok-
ing, a large battery of the detoxification enzymes gets engaged in repeated cleaning 
of the smoking compounds inhaled. Under these conditions, the biological system 
remains under stress to keep the defense system on its toes by engaging in continu-
ous clearance of the xenobiotics. Such a system is not capable of tackling any emer-
gent stress in the form of testicular heating, poor nutrition, heavy load, job pressure, 
and psychological stress. Under adverse conditions, the biological system drained 
out as a result of smoking would surrender, leading to adverse impact on spermato-
genesis. A small increase in the number of abnormal sperm in the ejaculate can 
compromise the fertility quite significantly despite the production of a good number 
of normal sperm. Further, smoking and drinking early in life can hamper attainment 
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of puberty and may result in inadequate pubertal developmental. Such individuals 
are more prone to fertility loss, and the fertile period in these individuals may also 
be shorter. Therefore, one must stay away from these habits and try to quit if already 
in their grip.

23.6  Engage in Light to Moderate Exercise

Exercise in general is good for health. Exercise brings in a lot of vital improvements 
in the circulatory, excretory, musculoskeletal, neurosensory, and endocrine and 
immune systems, thus attaining a state of good overall health. Every organ system 
is connected to others, and therefore, good health in one aspect favors all others 
positively. Engaging in daily exercise is the way to good health; however, exercise 
can be good or bad depending upon exertion, intensity, type, and overall objective. 
Engaging in heavy exercises such as heavy gym, weight lifting, cycling, and other 
endurance- and resistant-building exercises may compromise spermatogenesis due 
to direct or indirect effects (Vaamonde et al. 2016). For example, in heavy cycling, 
the continuous pressure of saddle on reproductive organs can result in trauma, 
affecting spermatogenesis and semen production. In a number of other sports activi-
ties, tethering of scrotum in a tight pouch against the pelvic floor may be required, 
which can result in testicular heating. In general, engaging in exercise is good, but 
one must avoid repeated, particularly daily or several times every week, schedule of 
heavy exercise in order to reduce the possibility of adverse impact on spermatogen-
esis. For good part of exercise, spermatogenesis can be improved by engaging in 
light to moderate exercises, such as sports, walk, aerobics, running, light gym and 
other activities, which do not take a heavy toll on the system. One of the primary 
aims of exercise should be to keep body mass index (BMI) within normal limits 
(below 25) in order to keep good overall health.

23.7  Follow the Biological Clock

The biological clock in animals is set for a harmony with the environment and 
nature. The theory of evolution supports the origin of animals according to the envi-
ronmental conditions that were existent and the cycle of light and darkness. Even 
today, our body brings necessary modifications in our system in a constant endeavor 
to better adapt with the changing environment. Therefore, harmony with the nature 
and environment is the best way to keep good health. As detailed above, the biologi-
cal system is capable of adjusting for subtle and occasional deviations from the 
regular course of life and systematics; however, drastic, repeated, and haphazard 
deviations can have a heavy impact on the general health and fertility. A number of 
hormones including melatonin and testosterone are secreted during night’s sleep, 
though the biological reasons behind this choice are unknown. However, that essen-
tially means, following the biological clock is the key to good health and fertility is 
no exception. Significant alterations in the biological clock can be detrimental to 
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fertility. Studies on sleep disturbance in animal models and human studies on sleep 
deprivation and sleep apnea have already shown significant alterations in testoster-
one and other hormone levels (Alvarenga et al. 2015). These changes have been 
predicted to translate into erectile dysfunction and poor semen parameters. Similarly, 
night shift women workers have been shown to have oligomenorrhea, anovulation, 
and dysmenorrhea (Gamble et al. 2013). Therefore, it is advisable to follow the 
natural course of sleep and work as far as possible, and significant deviations from 
this should be avoided in order to keep good fertility.

23.8  Eat a Balanced and Nutritious Diet

A balanced and nutritious diet has been emphasized since ages. A number of food 
elements have undergone significant debates with respect to the health benefits they 
offer. Food elements known to have beneficial overall health effects are generally 
good for fertility too. High-fat diet, excessive eating, poor glucose metabolism and 
lipid profile, and a low level of antioxidants affect spermatogenesis and fertility 
adversely. Therefore, taking a well-balanced and nutritious diet is the key to ade-
quate spermatogenesis and fertility. A number of food items, such as a prudent diet 
and the relative levels of components of plant or animal origin, are known to affect 
spermatogenesis and fertility, which should be chosen carefully for inclusion in the 
regular diet. Adequate levels of essential vitamins/antioxidants such as B complex, 
C, E, L-carnitine, and CoQ10 must be taken to maintain the mineral balance required 
for spermatogenesis and good overall health. The choice of food and nutrition ele-
ments to keep good fertility should be based on the dietary habits of the individual. 
For example, vegetarians may have a deficiency of vitamin B12; hence, the diet and 
nutrition should be designed keeping in mind the requirement of B12. Certain phy-
toestrogens such as soy have been shown to have detrimental effects on spermato-
genesis; hence, high consumption of these food items should be avoided. The eating 
regimen and diet composition should be decided in accordance with the lifestyle 
such that malnutrition, obesity, high blood pressure, etc., are kept at bay by neces-
sary dietary modifications. Taking nutrients and vitamins regularly may not increase 
your fertility, but they may counteract the adverse changes under stressful condi-
tions. The vitamins that are water soluble (B group and C) can be taken without the 
fear of toxicity; however, the lipid soluble vitamins (A, D, E, K) should be taken 
only when a test suggests their deficiency.

23.9  Have Regular Coitus

Sex is not only a way to procreate but also a way to keep good health. Sex has been 
shown to affect a number of signaling mechanisms mediated/induced by the release 
of oxytocin, vasopressin, dopamine, serotonergic signaling, endorphin, and endog-
enous morphinergic mechanisms, coupled to nitric oxide autoregulatory pathways 
(Esch and Stefano 2005). A number of these changes are known to alleviate stress 
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levels. Therefore, having regular sex is one of the ways to keep good overall and 
sexual health. That is not all; regular sex may have other important implications. It 
has been shown in scientific studies that a second ejaculate showed better sperm 
parameters in comparison to the first ejaculate after 2–7 days of abstinence (Bahadur 
et al. 2016). It is known that sperm stored in the epididymis have to undergo apop-
tosis if not ejaculated. This may result in a significant number of sperm undergoing 
apoptosis in epididymis after a long period of abstinence, resulting in a significantly 
high proportion of such sperm in the first ejaculate after prolonged abstinence 
(Sunanda et al. 2014). Therefore, regular ejaculations can dispense sperm before 
they are directed to undergo apoptosis and thus improve sperm quality (Cannon 
2013; Wilton et al. 1988). The frequency of sexual intercourse varies a lot across the 
globe, but from a fertility standpoint of view, it has been suggested that intercourse 
every alternate day is a good way to achieve pregnancy in comparison to daily or 
infrequent intercourse (Imer and Willbanks 2010). Therefore, regular sex has ben-
efits beyond pleasure in stress management and keeping a store of better sperm. 
Some studies have even reported that regular ejaculations reduce the risk of prostate 
cancer. Prostate cancer, if present, would require therapeutic or surgical intervention 
for management, both of which are detrimental to the process of spermatogenesis 
and fertility due to their effects of testis, testosterone action, spermatogenesis, and 
semen formation. Therefore, engaging in regular sex may add more than pleasure in 
life and a method of up keeping fertility and reproductive health.

23.10  Semen Analysis Early in Life

Spermatogenesis and fertility is set once puberty is achieved. However, we do not 
care about this essential process until we think of starting a family. In the cases with 
adequate spermatogenesis, waiting till the initiation of family may not be a matter 
of thought. However, a significant number of individuals are poor producers of 
sperm or have poor semen parameters from the beginning. Being infertile can have 
serious personal, psychological, and societal impact; therefore, waiting to discover 
low fertility or infertility as late as while starting a family may leave one with no 
corrective measure available. We have come across a few patients who had sperm 
count in normal range (>20 and <50 million/mL) in the initial years of infertility 
investigations, which dropped to less than 15 million in subsequent years and in 
some cases to even azoospermia over a period of 5 years. Early semen analysis 
could be very helpful in such cases. Finding of abnormally low values of sperm 
count and motility in an individual can help by taking appropriate precautionary 
measures to maintain fertility and by keeping an eye on semen parameters over a 
period of time, just like organ surveillance and screening tests recommended in 
individuals susceptible to certain familial diseases. Detecting poor semen parame-
ters early in life may also help in appropriate and timely family planning or to opt 
for cryopreservation in case a threat to fertility looks plausible. The age of 20 years 
may be suitable for undergoing the first semen analysis, and a subsequent analysis 
every 2–3 years should be a sensible choice to keep an eye on fertility.
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23.11  Timely Planning of Family

The age at marriage or the age of planning the first child is increasing. Fertility in 
males starts around the age of 17 and in females around the age of 14 once they 
achieve puberty. However, the age at marriage or the first child is generally very 
late in comparison to this age. There are numerous reasons for pushing the mar-
riage or family planning toward the fag end of your fertility period. The need to 
build career, fierce competition for jobs and survival, stability in life, self-suffi-
ciency, and ability to bear the burden of a family are some of the reasons that have 
resulted in increased age at the first child. Most of the reasons discussed above may 
be justified in terms of the requirement for a proper and confident parenthood. 
Nevertheless, in certain cases the harm can be more than good, if delaying takes a 
toll on fertility, resulting in loss of fertility in either of the partners. Therefore, 
planning of family as soon as possible or immediately after achieving a certain 
level of societal or job security is the key to utilizing good fertility that may no 
longer remain so after a few years. Fertility is naturally kept under a check in 
advanced age in order to prevent the transmission of faulty gametes to the coming 
generations that can result in the generation of individuals with certain disorders 
(Harris et al. 2011). Among other reasons for decline in fertility with time are 
decreased frequency of sex, erectile problems, and other health problems that are 
more likely with advancing age (Harris et al. 2011). The incidence of a number of 
disorders has been reported to be high in the children of old parents. It has been 
suggested that the paternal age should ideally not be above 35 and maternal age 
above 30 for the best results. With delayed age at the first child, we not only 
increase the risk of losing fertility but also increase the risk of giving birth to a 
child with congenital deformities.

 Conclusion

Every individual undergoes loss of fertility with age. Fertility is at its best from 
puberty till the age of 30 years. It is believed that biological aging starts at the 
age of 30 years and fertility is no exception. The loss of fertility may be more 
accelerated in some individuals due to numerous genetic, environmental, cir-
cumstantial, and other unknown factors and, if unchecked, may result in infer-
tility. General precautionary measures to look after fertility are inexpensive 
and can be fun at times. Hence, one must pay heed to the above suggestions in 
order to strive their fertility to the best and remain capable of procreation as 
and when required. The rewards can be extraordinary in the susceptible cases 
where accelerated loss of fertility could have rendered one incapable of procre-
ation. Therefore, in your best interest and that of the species, always upkeep 
your fertility.
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Abstract
Approximately, 10–15% of all couples have fertility problems, undergo fertility 
assessment, and seek treatment. Infertility is a common and complex disorder 
attributed to a number of etiological factors. Due to the complexity of this disor-
der, its diagnosis and treatment are not straightforward. There is no standardized 
drug available for the treatment of idiopathic infertility. Generally, medicinal 
therapy is recommended on the basis of actual or probable cause of infertility. 
Antiestrogen therapy is the most common treatment for idiopathic infertility. 
Besides this, vitamins and antioxidants are also prescribed as dietary supple-
ments to improve the semen quality. However, assisted reproductive techniques 
can be used when medicinal therapy fails to restore fertility or initiate pregnancy. 
In this chapter, we have discussed specific and generalized therapies for the man-
agement of male infertility.

Keywords
Infertility treatment • Hormones and gonadotropins in male infertility  
Antiestrogens in male infertility • Antioxidants in male infertility

Key Points
• Due to highly complex nature of the disorder, there is no standardized form of 

male infertility treatment, which can be prescribed to most of the patients.
• Poor understanding of the etiology of male infertility is the prominent reason 

behind inadequate therapeutic measures available for treating it.
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• Specific treatment upon identification of the reason or generalized/empirical 
treatment in idiopathic cases is recommended to begin with.

• In many cases, vitamins and antioxidants are also prescribed as dietary supplements 
to improve the semen quality.

• Failure of the above treatments makes a case for assisted reproduction, and the 
patient may be advised to go for an appropriate method of ART.

24.1  Introduction

Approximately, 10–15% of all couples have fertility problems, undergo fertility 
assessment, and seek treatment. Infertility is a common and complex disorder attrib-
uted to a number of etiological factors. The list of etiological factors includes genetic 
(chromosomal abnormalities, classical and microdeletions), epigenetic (DNA meth-
ylation), environmental (exposure to hazardous chemicals), lifestyle, and nutritional 
(malnutrition) aspects (Oliva et al. 2001; Rajender et al. 2011; Bansal et al. 2016). 
Due to the complexity of this disorder, its diagnosis and treatment are not straightfor-
ward. Identification of an etiological factor would facilitate directed therapy with 
significant chances of success. The remaining cases are often prescribed empirical 
therapies, which are usually prescribed based on the theoretical concepts. Assisted 
reproductive techniques (ARTs) are recommended after the failure of initial treat-
ment (Cocuzza and Agarwal 2007) and need a number of considerations.

In the case of male factor infertility, the main goal of management is to diagnose 
the causes of infertility and to provide appropriate medications to achieve improve-
ments in semen parameters. After exploring all etiological factors, the cause of 
seminal abnormalities in 25% remains unknown (Greenberg et al. 1978). There is 
no standardized drug available for treatment of infertility of idiopathic infertility. A 
variety of non-specific medical treatments has been recommended to treat these 
patients. Some of these treatments have been effective in improvement in semen 
parameters, but none of them ensures improvements in pregnancy rates. Moreover, 
the efficacies of medical treatments are doubtful due to lesser number of studies 
being conducted on such therapies, inappropriate study designs, lack of the placebo/
controls, and problems in patient’s follow-up. Normally, empiric treatments last for 
more than 3–6 months to cover one spermatogenic cycle. In this chapter, we have 
discussed the current medical treatments available for male infertility.

24.2  Hormonal Treatments

Hypogonadotropic hypogonadism (HGH) or secondary hypogonadism is a clinical 
syndrome of undeveloped gonads due to either inadequate or absent hypothalamic 
GnRH secretion or less or no pituitary gonadotropin secretion. Pulsatile secretion of 
gonadotropin-releasing hormone (GnRH) by hypothalamic neurons is crucial for 
initiating the release of pituitary gonadotropins, secretion of sex steroids, pubertal 
development, and gametogenesis. HGH may be congenital (Kallmann syndrome, 
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Prader-Willi syndrome), acquired (pituitary tumors, steroid abuse, panhypopituita-
rism, pituitary trauma, and testosterone replacement therapy), or functional (func-
tional gonadotropin deficiency due to chronic systemic disease, malnutrition, acute 
illness, obesity, hyperprolactinemia). In Kallmann syndrome, this defect occurs at 
the level of hypothalamic GnRH secretion due to the malformation of the midline 
cranial structures (Cunningham and Lipshultz 1986). In HGH patients, testosterone 
therapy is given to the adult men to induce and maintain the secondary sexual char-
acteristics and sexual function, but it does not restore fertility. When fertility is 
desired, gonadotropin therapy is given to induce spermatogenesis in HGH males 
(Ho and Tan 2013). Treatment protocols of gonadotropin therapy vary with the 
patient. In patients with acquired HGH, administration of exogenous GnRH or 
gonadotropins can restore normal spermatogenesis (Fig. 24.1).

24.2.1  Gonadotropin-Releasing Hormone (GnRH) Therapy

Gonadotropin-releasing hormone (GnRH) is secreted by hypothalamic neurons in a 
pulsatile manner and is transported to the anterior pituitary gland, which in turn secretes 
follicle-stimulating hormone (FSH) and luteinizing hormone (LH). FSH and LH con-
trol gonadal gametogenesis and steroidogenesis, respectively, in both sexes (Fink 
1988). GnRH therapy has been used in the treatment of different reproductive endocri-
nopathies (Kiesel et al. 2002). Since GnRH has been discovered, many GnRH-I ana-
logs have been made and studied broadly (Conn and Crowley 1994). Exogenous GnRH 
administration can increase the pituitary’s production of FSH and LH and could poten-
tially increase spermatogenesis. Badenoch et al. (1988) examined prolonged GnRH 
treatment in idiopathic OAT (oligoasthenoteratozoospermia) patients, but no effect was 
observed on either semen parameters or circulating gonadotropins.
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Fig. 24.1 Therapeutics and their targets for male infertility treatment
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Because GnRH is secreted in a pulsatile manner, a pulsatile GnRH therapy has 
also been tried using the portable mini-pumps. Pulsatile GnRH therapy has been 
effective in gonadotropin deficiency caused by hypothalamic or pituitary diseases 
(Mortimer et al. 1974; Crowley et al. 1985), but not in patients with loss of pituitary 
gonadotropin function (Wang et al. 1989). Moreover, GnRH therapy has been effec-
tive in restoring fertilization capacity in men undergoing the treatment of testicular 
tumors. In two different studies, men undergoing cisplatin and radiation therapy 
restored the fertility completely from germ cell damage when GnRH treatment was 
provided (Kreuser et al. 1990; Brennemann et al. 1994). However, the use of this 
therapy is restricted by the pituitary malfunction, formation of anti-GnRH antibod-
ies (Lindner et al. 1981), the cumbersome wearing of the pulsatile pump, and high 
cost of the therapy.

24.2.2  Gonadotropins

The anterior pituitary gland produces and secretes two gonadotropins (FSH and LH), 
which stimulate spermatogenesis and steroidogenesis, respectively. hCG and hMG 
are also gonadotropins but are exogenous in nature. hCG is secreted by the chorionic 
cells of the placenta. It is analogous to LH and can stimulate the secretion of testoster-
one from the Leydig cells. hMG is extracted from the urine of postmenopausal women 
and has both FSH and LH activity. Generally, pituitary insufficiency is treated by hCG 
or hMG or urine FSH or recombinant human FSH (r-hFSH) alone or in combinations 
(Fig. 24.1). Treatment with gonadotropins has been very effective in the management 
of hypogonadotropic hypogonadism (HGH) (phenotypically hypogonadotropic oli-
gozoospermia/azoospermia). Human chorionic gonadotropin (hCG), which contains 
LH-like activity, and human menopausal gonadotropin (hMG), which contains both 
FSH and LH activity, are used for replacement therapy in these patients. Normally, 
hCG, at the dose of 1500–3000 IU, is subcutaneously administered three times per 
week. However, in cases of congenital HGH, after 3 months of hCG therapy, FSH is 
administered intramuscularly at the dose of 37.5–75 IU three times/week. Semen 
parameters and testosterone levels are measured during the treatment. Normally, sper-
matozoa appear in ejaculate in 6–9 months, but can take much longer time. Once 
sperm concentration reaches to the satisfactory level, FSH administration can be 
stopped, and spermatogenesis may be maintained with hCG alone.

The significance of this therapy has been controversial in the treatment of nor-
mogonadotropic oligozoospermia (Siddiq and Sigman 2002). Moreover, the effects 
of this therapy on pregnancy rates/outcomes have been contradictory. Two random-
ized controlled trials have reported no improvement in pregnancy rates with either 
purified hMG (Matorras et al. 1997) or r-hFSH therapy (Kamischke et al. 1998), 
while one has shown positive outcomes after a post hoc analysis in a selected sub-
population (Matorras et al. 1997). The use of this therapy is limited by its expen-
siveness and the lack of studies showing its significance on pregnancy outcomes. 
Moreover, this therapy could not be prescribed to the men without demonstrable 
hormonal abnormalities.
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In some patients, who do not respond to hCG/FSH combination therapy, GnRH 
therapy can be given. GnRH is administered intravenously or subcutaneously in a 
pulsatile fashion with a portable infusion pump. Pulsatile GnRH therapy depends on 
how well the anterior pituitary responds to exogenous GnRH. Pulsatile GnRH ther-
apy is effective in gonadotropin deficiency caused by hypothalamic diseases 
(Mortimer et al. 1974), but not in the loss of pituitary gonadotropin function (Wang 
et al. 1989). GnRH therapy is also very effective in restoring fertility in men under-
going treatment for testicular tumors (Kreuser et al. 1990; Brennemann et al. 1994).

24.3  Inhibitors of Hormone Synthesis/Action

24.3.1  Antiestrogens

Antiestrogen therapy is a most common treatment for idiopathic infertility. Though 
estrogen is a female hormone, many studies have shown its role in male reproduc-
tion (Hess et al. 1997). Estrogen receptors are expressed on male germ cells, sug-
gesting the importance of estrogens in spermatogenesis (Zondek 1934; Dorrington 
et al. 1978; Nitta et al. 1993; Carreau and Hess 2010). This hormone negatively 
regulates gonadotropin secretion (Finkelstein et al. 1991) and maintains the sexual 
behavior in adult males (Lauber et al. 1997). Antiestrogens work by blocking the 
estrogen and testosterone receptors in the hypothalamus, which increases the GnRH 
secretion, which in turn stimulates the secretion of FSH and LH from the anterior 
pituitary. The two commonly used antiestrogens are clomiphene and tamoxifen.

Clomiphene is a nonsteroidal drug, which has a structure similar to diethylstil-
bestrol (Fig. 24.1). Generally, clomiphene citrate is prescribed at a dose of 25 mg/
day (doses range from 12.5 to 400 mg/day). The significance of clomiphene treat-
ment on sperm count and pregnancy rates has been contradictory. Many randomized 
controlled studies on clomiphene citrate failed to show its efficacy over placebo 
(Foss et al. 1973; Paulson et al. 1977; Rönnberg 1980; Sokol et al. 1988). Only two 
studies have shown its positive effects on sperm count as well as on pregnancy rates 
(Wang et al. 1983; Check et al. 1988). Side effects of clomiphene treatment are mild 
and include headache, weight gain, nausea, change in libido, dizziness, allergic der-
matitis, and gynecomastia. Moreover, regular monitoring of FSH, LH, and testoster-
one levels and frequent semen analysis are required in patients undergoing the 
clomiphene therapy because increased testosterone levels could negatively affect 
spermatogenesis (Gilbaugh and Lipshultz 1994).

Tamoxifen is also an antiestrogen and is commonly used for idiopathic male 
infertility treatment (Fig. 24.1). Tamoxifen citrate is prescribed at a dose of 
10–30 mg orally per day. Recently, one study on infertile oligozoospermic men with 
different FSH levels revealed that tamoxifen citrate significantly increased the 
sperm count and concentration in men having lower FSH levels in comparison to 
those having higher FSH levels (Kadioglu 2009). Though uncontrolled studies have 
reported that tamoxifen citrate treatment increased sperm concentration/counts and 
pregnancy rates (Vermeulen and Comhaire 1978; Bartsch and Scheiber 1981; Buvat 
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et al. 1983), yet many controlled studies using tamoxifen citrate (at the dose of 
10–20 mg/day) did not find such an association (Willis et al. 1977; AinMelk et al. 
1987; Krause et al. 1992). Side effects of tamoxifen treatment are milder than clo-
miphene citrate because of its weaker estrogenic properties.

Antiestrogens are comparatively inexpensive and safe oral drugs for the treat-
ment of idiopathic male infertility. However, the efficacy of this treatment is doubt-
ful. Therefore, prolonged courses of this therapy should not be recommended.

24.3.2  Aromatase Inhibitors

In the testis, the Leydig and Sertoli cells have high aromatase activity (Inkster et al. 
1995). Aromatase is an enzyme that converts circulating testosterone into estrogen 
in fat cells. Therefore, obese men might have an excessive conversion of testoster-
one into estrogen. Theoretically, changes in the ratios of estrogen and testosterone 
systemically or within the testes could manipulate pituitary levels of LH and FSH 
and impair sperm production (Kulin and Reiter 1972; Veldhuis et al. 1985). 
Aromatase inhibitors suppress the conversion of testosterone to estrogen and 
increase spermatogenesis (Ciaccio et al. 1978).

Aromatase inhibitors are expensive pharmaceutical agents that fall into two cat-
egories: steroidal (testolactone) and nonsteroidal (letrozole, anastrozole, and 
exemestane). Anastrozole are the fourth generation of aromatase inhibitors. They 
are highly potent as well as specific for the aromatase enzyme (Fig. 24.1). These 
drugs are safe and well tolerated. These drugs can be prescribed to men with idio-
pathic oligozoospermia with abnormal testosterone/estrogen ratio. During the treat-
ment, patients are followed at regular intervals for serum testosterone, estrogen 
levels, and seminal parameters. Some studies have shown very impressive results 
with this treatment (Pavlovich et al. 2001; Raman and Schlegel 2002). Treatment 
with the aromatase inhibitor (testolactone at the dose of 50–100 mg twice daily) in 
infertile men with a low serum testosterone-to-estradiol ratio significantly increased 
sperm count and motility as well as corrected the hormonal abnormality (Pavlovich 
et al. 2001; Raman and Schlegel 2002). Similar changes were also observed when 
patients were treated with the more selective aromatase inhibitor, anastrozole, at the 
dose of 1 mg/day (Raman and Schlegel 2002). However, more numbers of placebo- 
controlled, randomized trials are required to assess the efficacy of aromatase inhibi-
tors in idiopathic male infertility.

24.3.3  Hyperprolactinemia

Hyperprolactinemia is a condition of elevated serum prolactins, which results in 
HGH and infertility. Prolactin is a 198-amino acid protein (23kDa), which is 
secreted by lactotroph cells of the anterior pituitary gland. Normally, prolactin is 
present in both men and women in a small amount in their blood. Its main function 
is to enhance breast development in women during pregnancy and to induce 
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lactation after a baby is born. In men, prolactin regulates sperm production by con-
trolling the secretion of GnRH. Normal fasting values of prolactin in men are less 
than 25 ng/mL. In hyperprolactinemia, elevated levels of prolactin inhibit the hypo-
thalamic secretions of GnRH.

Hyperprolactinemia may occur due to pituitary tumors (micro- or macroadenomas), 
stress, hypothyroidism, medical illness, medications such as antidepressants and anti-
hypertensives, and idiopathic factors. Pituitary micro- or macroadenomas are the most 
common causes of hyperprolactinemia. Generally, prolactin-secreting pituitary adeno-
mas result in lowering of the gonadotropin and testosterone levels and elevation in 
prolactin levels. In macroadenomas, prolactin levels are high to greater than 250 ng/
mL, while in microadenomas, the levels remain between 100 and 250 ng/mL.

In patients with hyperprolactinemia, pituitary MRI with gadolinium contrast is 
recommended to rule out a pituitary tumor. Prolactin levels are repeatedly checked 
many times in a day as prolactin levels vary throughout the day and with physical 
activity. In most of the patients with hyperprolactinemia or pituitary adenomas 
(especially microadenomas), medical therapy is the first line of treatment, but in 
macroadenomas where the condition is more serious, surgery may be recommended. 
In our body, prolactin levels are regulated by other hormones, called prolactin- 
inhibiting factors (PIFs), such as dopamine. Initially, in hyperprolactinemia, bro-
mocriptine, a strong dopamine D2 receptor agonist, is prescribed with doses ranging 
from 2.5 to 7.5 mg/day. Bromocriptine has been shown to significantly reduce the 
serum prolactin levels in oligozoospermic men with hyperprolactinemia and to 
increase the sperm count to a level sufficient for pregnancy initiation (Chuang and 
Howards 1998). In cases in which bromocriptine is not very effective and not well 
tolerated, a new long-lasting drug cabergoline is prescribed. Cabergoline shows 
fewer side effects and requires less frequent dosing than bromocriptine. Cabergoline 
is given at the dose of 1.0 mg/week. When prolactin levels get in normal range, the 
dose can be reduced to 0.5 mg/week (Verhelst et al. 1999).

24.4  Steroids and Antioxidants

24.4.1  Steroids for Anti-sperm Antibodies

Immunologic infertility is referred to as a condition in which anti-sperm antibodies 
(ASAs) are produced by the body as a response against sperm proteins. ASA may 
be present in serum and/or in seminal plasma or on the sperm surface. Normally, a 
man does not develop antibodies against his own spermatozoa because genital tract 
is a closed tube and is separated from the immune system. When blood cells and 
sperm come in contact, a male can produce antibodies against his own sperm. The 
presence of ASAs in the body fluids can block sperm-egg interactions via immobi-
lizing and/or agglutinating the spermatozoa. They can also block the implantation 
and/or the development of embryo (Haas 1986; Koide et al. 2000). In all infertile 
couples with ASAs, IgG and IgA anti-sperm antibodies were found either on sper-
matozoa or in cervical mucus (Kremer et al. 1978).
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ASAs have been found in a large number of infertile men and have been shown 
to compromise the male fertility (Rumke and Hellinga 1959). The most common 
causes of ASA include genital tract infections, surgical treatments such as testicular 
biopsy and vasectomy, testicular trauma, and testicular torsions (Broderick et al. 
1989; Koide et al. 2000; Arap et al. 2007). In males, genital tract infections can 
weaken the blood-testis barrier (BTB), leading to the leakage of sperm and influx of 
immunologically competent cells. According to an estimate, 50–80% of men having 
undergone for vasectomy have circulating anti-sperm antibodies (Haas 1987). ASAs 
are one of the major causes of obstructive azoospermia associated with infertility 
after surgical treatments (Alexander and Anderson 1979; Linnet 1983; Mandelbaum 
et al. 1987). Moreover, ASAs are present in 80% of men having unilateral ductal 
obstruction (Hendry et al. 1986).

Generally, infertile men with ASAs are treated with oral corticoids to suppress 
the antibody production. However, no double-blinded, randomized trial has been 
done to confirm its efficacy till date. Prednisolone, a synthetic form of corticosteroid 
hormone, is the first line of the medical therapy. In a study, two men treated with 
96 mg methylprednisolone per day for 7 days resulted in a slight decrease of the 
sperm-agglutination titer; however, no pregnancy was achieved (Kremer et al. 
1978). In severe sperm autoimmunity, intracytoplasmic sperm injection (ICSI) may 
be a treatment of choice (Check et al. 2000). ICSI has shown no significant differ-
ences in clinical pregnancy rates (19% vs 12%) between ASA-positive and ASA- 
negative patient groups (Clarke et al. 1997). Recently, meta-analysis also revealed 
that semen ASAs are not related to the pregnancy rates after ICSI or IVF, indicating 
that both ART techniques can be used in infertile couples with semen ASAs (Zini 
et al. 2011).

24.4.2  Vitamins and Antioxidants

Elevated levels of ROS have been identified as an independent cause of male infer-
tility (reviewed in Agarwal et al. 2006). In an estimate, increased levels of ROS in 
semen have been detected in 25–40% of infertile male patients (De Lamirande and 
Gagnon 1995; Padron et al. 1997). ROS can be beneficial or damaging depending 
upon the type and concentration of the ROS as well as length and location of the 
exposure to ROS (Agarwal and Saleh 2002). An excess amount of ROS can modify 
cell functions and increase cell death (Agarwal and Saleh 2002). Although ROS 
level in spermatozoa is controlled and maintained by the antioxidants present in 
seminal plasma, yet insufficient check on ROS could lead to oxidative stress, which 
in turn could be harmful to spermatozoa (Agarwal and Anandh Prabakaran 2005). 
Sperms are very susceptible to ROS because their plasma membrane has a large 
amount of polyunsaturated fatty acids (Alvarez and Storey 1995).

In most cases, damage induced by the ROS can be repaired. Seminal plasma has 
two different types of antioxidants to reduce the ROS level: enzymatic and nonenzy-
matic antioxidants. Enzymatic antioxidants include superoxide dismutase (SOD), cata-
lase, and glutathione peroxidase (GPX), and nonenzymatic antioxidants are vitamin E, 
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vitamin C, glutathione, pyruvate, and carnitine (Agarwal et al. 2004). In the treat-
ment of infertility, antioxidants are often prescribed to idiopathic infertile men as a 
supplement to reduce the ROS level/oxidative stress. In a randomized, double-
blinded controlled trial, asthenozoospermic patients were supplemented with oral 
vitamin E (300 mg/day). This treatment significantly decreased the malondialde-
hyde (MDA, a marker for lipid peroxidation) concentration and improved sperm 
motility (Suleiman et al. 1996). In another study, vitamin E and selenium supple-
mentation significantly decreased the MDA concentration and improved sperm 
motility (Keskes-Ammar et al. 2003).

Vitamin C is a potent chain-breaking antioxidant and contributes up to 65% anti-
oxidant capacity of the seminal plasma. Vitamin C concentration is ten times higher 
in seminal plasma than that in the blood plasma (Lewis et al. 1997). Fraga et al. 
(1991) reported that repletion of dietary vitamin C for 28 days (from 5 to 250 mg/
day) doubled the vitamin C level in seminal plasma and reduced the 8-hydroxy-2′-
deoxyguanosine (8-OHDG, a marker of oxidative stress) by 36%. This study indi-
cated that dietary supplementation could be used to protect spermatozoa from 
endogenous oxidative damage. Some of the vitamins and their sources have been 
discussed in detail in Chap. 20.

24.5  Other Treatments

24.5.1  Genital Tract Infections

Genital tract infections account for about 15% of male infertility cases (Pellati et al. 
2008). A number of microorganisms are involved in such infections. Some of them 
are Streptococcus faecalis, Escherichia coli, Chlamydia trachomatis (sexual trans-
mission), Ureaplasma urealyticum, Mycoplasma genitalium, and Mycoplasma 
hominis (genital mycoplasma). According to one study, an overnight co-incubation 
of M. hominis with human spermatozoa showed small but statistically significant 
differences in sperm motility, morphology, and fertilization potential (Rose and 
Scott 1994). Moreover, U. urealyticum has been found to be associated with the 
generation of reactive oxygen species, even in the absence of leucocytospermia, and 
M. genitalium has been found to be attached to human spermatozoa (Taylor- 
Robinson 2002). Among viruses causing the infections in the genital tract are her-
pesviruses (HSV), human papilloma viruses (HPV), and human immunodeficiency 
viruses (HIV). The contribution of these infections to infertility has been discussed 
in detail in Chap. 12.

Once an infection of genital tract is identified, antibiotic therapy is given. In cul-
ture-negative patients, anti-inflammatory therapy can be prescribed. According to the 
presence of the microorganism, the following antibiotics can be prescribed: for 
C. trachomatis infection, azithromycin 1 g single dose orally or doxycycline 100 mg 
orally twice daily for 7 days can be given. For N. gonorrhoeae infection, ceftriaxone 
(125 mg intramuscularly single dose) or fluoroquinolones (ciprofloxacin 500 mg, 
ofloxacin 400 mg, levofloxacin 250 mg/day) can be prescribed. For Mycoplasma 
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spp., macrolides (erythromycin/roxithromycin) are usually given. These drugs are 
usually prescribed for 2–3 weeks, depending on the severity of the infections (Haidl 
and Schill 1991).

24.5.2  Disorders of Ejaculation

Ejaculatory dysfunctions in males include premature ejaculation (PE), delayed ejac-
ulation (DE), anejaculation (AE), and retrograde ejaculation (RE). Except for PE, 
all other ejaculatory dysfunctions interfere with the delivery of sperms to the female 
genital tract and are important etiological factors for male subfertility. While PE and 
DE are common causes of sexual dissatisfaction in men and their partners, these 
disorders are not associated with male infertility (Barazani et al. 2012). On the other 
hand, men with RE and AE are not able to deliver sperm to the female genital tract 
and are subfertile. RE is referred to as a condition in which ejaculates flow abnor-
mally backward and toward the bladder. RE is a common ejaculatory dysfunction 
but contributes to only 0.3–2% of male infertility (Vernon et al. 1988; Yavetz et al. 
1994). The diagnosis of RE is made by the post-ejaculate urine test. In patients with 
low-volume ejaculates (<1.0 mL semen), the presence of sperm (>10–15/hpf) in 
urine indicates the etiology of RE. On the other hand, in patients with AE, the 
absence of sperms in the urine indicates the failure of emission.

Initially, pharmacologic therapy is recommended to the patients with RE. This 
therapy is only successful in patients who do not have bladder neck abnormalities 
(which are caused by the surgery done earlier for the treatment of other problems of 
genital tract, such as prostate surgery) and the problem of anejaculation. In treat-
ment, alpha-adrenergic agonists such as ephedrine sulfate (25–50 mg q.i.d), pseudo-
ephedrine (60 mg q.i.d), and imipramine (25 mg b.i.d) are prescribed. Moreover, 
medical therapy for ejaculatory dysfunction has to be synchronized with female’s 
ovulatory cycles. This therapy is more effective if given at least 7–10 days before 
the ejaculation is planned. If medical therapy fails to recover the normal ejaculation, 
ART techniques can be used to achieve the pregnancy. In such situations, spermato-
zoa can be retrieved from the post-ejaculatory urine (Shangold et al. 1990); how-
ever, urine may damage the sperm by its acidity, contamination, and change in 
osmolarity (Crich and Jequier 1978).

24.5.3  Miscellaneous Treatment Regimens

Other non-hormonal treatments have also been used for the treatment of idiopathic 
male infertility. One of these treatments included l-carnitine, which is present in epi-
didymal secretions. Approximately, 50% of total carnitine in human seminal plasma 
is found as acetyl-carnitine, which plays a major role in energy metabolism and sperm 
membrane stabilization. l-Carnitine is given as a nutritional supplement and is avail-
able over the counter. Carnitine also possesses antioxidant capacity that protects sper-
matozoa from oxidative stress/damage (Agarwal and Said 2004). However, studies 
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have shown no direct association between semen l-carnitine levels and fertility 
(Soufir et al. 1984). Uncontrolled studies have revealed improvements in semen 
parameters, but not in fertility rate (Costa et al. 1994; Vitali et al. 1995). Two ran-
domized controlled trials using carnitine and acetyl-l-carnitine for idiopathic male 
infertility (Lenzi et al. 2003, 2004) reported statistically significant improvements 
in seminal parameters, but neither in carnitine levels in semen nor in pregnancy 
rates (Lenzi et al. 2003: 8%; Lenzi et al. 2004: 13%). There are little evidences on 
the effectiveness of carnitine treatment; therefore, more number of studies are 
required for validation of its efficacy.

Tamoxifen treatment has been prescribed either alone or in combination with 
kallikrein/testosterone. Tamoxifen has been effective in oligozoospermia while kal-
likrein in asthenozoospermia. In this context, the combination of these two should 
be useful in the treatment of oligoasthenozoospermia. Three studies using more 
than 84 oligoasthenozoospermic patients showed an increment in sperm count 
(Höbarth et al. 1990; Maier and Hienert 1990) and motility (Maier and Hienert 
1990). However, these studies did not follow up the patients for pregnancy out-
comes. Tamoxifen in combination with testosterone has been reported to be effec-
tive in men with idiopathic oligoasthenoteratozoospermia (OAT). Recently, one 
study using a combination of tamoxifen citrate and testosterone undecanoate has 
shown improvements in total sperm count, functional sperm count, and motility in 
men with OAT (Adamopoulos et al. 2003). Interestingly, they have also reported 
good pregnancy rates (Adamopoulos et al. 2003).

 Conclusions

Selection of the therapy, whether specific or empirical, depends on the fertility 
status of infertile men. Once the etiology of the disorder is diagnosed, the treat-
ment is provided accordingly. Generally, medicinal therapy is recommended for 
the treatment of idiopathic male infertility. However, ARTs can be used when 
medicinal therapy fails to restore fertility or initiate pregnancy. Empirical (non-
specific) therapy can be provided to patients when no specific etiology is identi-
fied. There are some side effects of these medicinal therapies; therefore, proper 
caution and regular checkups are required during the course of treatment. 
Nevertheless, prior to treatment, infertile couples should be informed about the 
inconsistency of therapy outcomes and low conception rates. If semen parame-
ters do not improve significantly or a pregnancy is not achieved after at least two 
spermatogenic cycles, it is an indication to proceed with ART. Although few 
studies are available (even fewer studies have proper study designs) on the effec-
tiveness of these therapies, more number of studies having better study designs 
are required.

In a large number of patients, the etiology remains unknown and treatment a chal-
lenge. Unfortunately, the number of such patients with male infertility is very high. 
Therefore, development of other therapeutic strategies is much needed. Inadequate 
treatment regimens for male infertility are in part due to poor understanding of the 
molecular cues to spermatogenesis and sperm fertility. Further research needs to 
focus on the identification of new molecular players critical to the process of 
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 spermatogenesis. Identification of new molecular targets would open new avenues 
for drug development. Empirical therapies lack support by appropriately designed 
studies; nevertheless, it is not a bad idea to try these therapies in the cases where 
specific and targeted therapies are either not possible or fail to yield results.
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Abstract
The number of cancer patients in young age has increased in the recent years, which 
is coupled with late marriages and family planning. This makes an important place 
for a new and emerging field of cryo-preservation of gametes for cancer patients. A 
significant proportion of oncological treatments utilize chemotherapy or radiation 
exposure, both of which are detrimental to spermatogenesis. In post-cancer treatment 
period, fertility may resume in some but not all patients. Therefore, these patients 
need to be counselled about the methods of fertility preservation before commencing 
anti-cancer therapy. The present chapter brings a comprehensive overview of the fer-
tility preservation options for cancer patients and the techniques used in this process.

Keywords
Oncofertility • Cancer and infertility • Cancer and fertility preservation • Sperm 
cryopreservation

Key Points
• The concept of developing an interdisciplinary specialty addressing fertility con-

cerns of cancer patients was put forward in 2006 by Dr. Teresa K. Woodruff with 
the formation of Oncofertility Consortium.

• With 10% of cancer patients being younger than age 40, a substantial number of 
cancer patients are likely to have fertility preservation issues as a key component 
of their treatment plan.

• As the number of cancer survivors increases, the ability to have children assumes 
a vital role for patients and their families.
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• Majority of the cancer drugs act by interfering with the process of cell division 
(mitosis) and inducing apoptosis and are detrimental to spermatogenesis.

• Spermatogonia are particularly sensitive to the effects of irradiation and even a 
dose as low as 4–6 Gy can cause permanent damage to the germ cells.

• Lazzaro Spallanzani in 1776 first reported that the motility of human spermato-
zoa could be preserved after freezing and thawing.

25.1  Introduction

The demographic profile of oncology patients has undergone a sea change over the 
last few decades, and an increasing number of men are getting diagnosed with can-
cers of diverse organs in childhood or at an early age. Additionally, the improve-
ments in diagnostic and treatment modalities and the resultant increase in survival 
have resulted in the emergence of a new pool of young cancer survivors for whom 
quality of life issues in general and fertility preservation in particular have been 
paramount. Parenthood is the dream of every couple, and cancer patients have tra-
ditionally been deprived of this gift as the conventional modalities of cancer treat-
ment like chemotherapy and radiation therapy tend to have a deleterious effect on 
the reproductive functions of both men and women. Oncofertility is an evolving 
discipline at the intersection of oncology and reproductive medicine. The aim of this 
chapter is to review the available fertility preservation options for young males with 
cancers and sneak a glimpse into the advancements taking place in the field of fertil-
ity preservation.

Reproductive process and the underlying physiology have intrigued mankind for 
thousands of years. Hippocrates and Galen described human conception as occur-
ring from two “seeds” and propagated different philosophies of male and female 
genitalia and of conception. The research and studies over the subsequent centuries 
and a better understanding of the reproductive physiology demystified the process 
of conception and paved the way for introduction of amazing modalities of treat-
ment like in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and 
cryopreservation of gametes and embryos. Although the technique of sperm bank-
ing or cryopreservation of sperm to enable fertility in future has been around for 
many decades, the concept of oncofertility is relatively new and seeks to provide a 
holistic approach towards fertility preservation of cancer survivors.

25.2  Oncofertility: A New Approach to Fertility Preservation

The domain of oncofertility acts as a link between reproductive medicine and oncol-
ogy with the objective of enabling fertility in future for cancer survivors. The con-
cept of developing an interdisciplinary specialty addressing fertility concerns of 
cancer patients was put forward in 2006 by Dr. Teresa K. Woodruff with the forma-
tion of Oncofertility Consortium (Woodruff 2007). It is an interdisciplinary network 
of doctors, researchers and scientists which deals with fertility issues of young 
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cancer patients. Conventional modalities of cancer treatment like chemotherapy, 
radiotherapy and surgery can have a deleterious effect on fertility, and oncofertility 
aims to expand fertility preservation options in these patients. The scope of oncofer-
tility includes (Woodruff 2007) efforts to develop novel fertility preservation options 
for cancer patients; (Nandakumar 2001) collaboration among diverse clinical spe-
cialties to assimilate reproductive science, social and family counselling and fertil-
ity management after cancer treatment; and (Dikshit et al. 2012) expansion of 
awareness about oncofertility.

The incidence of cancer in India is rising significantly with an increasing number 
of cases being diagnosed at an earlier age. Over one million new cases of cancer are 
being diagnosed every year in India, and the estimated number of people living with 
cancer in India is approximately eight million (Nandakumar 1990; Dikshit et al. 
2012). With 10% of cancer patients being younger than age 40, a substantial number 
of cancer patients are likely to have fertility preservation issues as a key component 
of their treatment plan (National Cancer Registry Programme 2001; Saranath and 
Khanna 2014). As the number of cancer survivors increases, the ability to have chil-
dren assumes a vital role for patients and their families. Knowledge about fertility 
preservation and potential for ability to have a family in the future offers these 
patients a ray of hope even before the treatment for cancer has commenced. The 
domain of oncofertility encompasses a wide range of issues besides techniques of 
cryopreservation of tissues. It seeks to develop the contemporary understanding and 
research for a number of issues to improve clinical practice and enable better train-
ing of health-care providers in reproductive medicine. These issues include:

• Advancing the basic knowledge of gametogenesis and using this to improve fer-
tility preservation techniques

• A better understanding of the mechanisms of gonadotoxic effects of chemothera-
peutic drugs

• Improving the techniques of cryopreservation, storage, thawing and growing of 
gonadal tissue

• Enabling better communication between cancer patients and health-care 
providers

• Addressing ethical and legal issues regarding the use of fertility preservation 
techniques in cancer patients

• Providing counselling to cancer survivors and their families about issues like 
family planning, contraception, donor insemination, surrogacy and adoption

25.3  Impact of Cancer Treatments on Fertility

Chemotherapy—Cytotoxic chemotherapeutic agents form the mainstay of treatment 
for majority of cancers in the body. Majority of these drugs act by interfering with the 
process of cell division (mitosis) and inducing apoptosis (Wallace et al. 2005). These 
drugs act mainly on the rapidly dividing cells, which include normal cells of the 
body, and this action is responsible for the toxic side-effects of chemotherapeutic 
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agents. The process of spermatogenesis involves a population of rapidly dividing 
cells, and it makes them particularly susceptible to the cytotoxic actions of chemo-
therapy drugs which can cause interstitial fibrosis and hyalinization in the testicular 
tissue. Among all the chemotherapy drugs, alkylating agents like cyclophosphamide 
and cis-platinum have the highest gonadotoxicity with the maximum risk for pro-
longed azoospermia. The gonadotoxic effects of chemotherapy depend on the age of 
the patient, type of drug used and the dosage administered.

Radiation therapy—The role of radiation therapy to treat cancers is based on use 
of high-energy rays. Radiation can cause primary testicular damage if administered 
directly to the testis or by scatter radiation if adjacent tissues are irradiated. The 
harmful effects of radiotherapy on fertility are usually due to the damage to the 
germinal epithelium. The gonadotoxic effects of radiation may be transient or per-
manent and depend on the dose, amount of scatter, site of radiation in relation to the 
testis, fractionation and patient age. Spermatogonia are particularly sensitive to the 
effects of irradiation, and even a dose as low as 4–6 Gy can cause permanent dam-
age to the germ cells (Wallace et al. 2005). Secondary testicular failure can be a 
consequence of radiation to the brain where radiation-induced injury to the pituitary 
gland can hamper the production of luteinizing hormone and follicle-stimulating 
hormone leading to impaired spermatogenesis.

Surgery—Surgical procedures involving genitourinary organs like removal of 
both testes, prostate, urinary bladder and organs involved in sperm transport can 
lead to impaired fertility. Certain surgical procedures in the pelvis or retroperito-
neum like retroperitoneal lymph node dissection can damage the pelvic nerves and 
lead to an ejaculation or retrograde ejaculation.

25.4  Role of Oncofertility

Over the last few decades, improvements in technology and introduction of novel tech-
niques have opened up new avenues for fertility preservation in men with cancer. With 
the significant progress made in the field of oncofertility, many of these patients can 
hope to realize their dream of having progeny despite undergoing cancer therapy.

Oncofertility can play a role at different stages during the cancer management of 
a patient.

 1. Diagnosis stage: The patients and their families are going through a tempestuous 
period at the time of diagnosis and are overwhelmed by the enormity of the dis-
ease and the treatment options. The reassurance that they have options to pre-
serve their fertility and counselling regarding fertility preservation options can 
provide solace to the patients and help them in making decisions with far- 
reaching implications. The patients need to be informed about the likely impact 
of cancer treatments on their future fertility potential and assisted in realizing 
their fertility aspirations.

 2. Treatment stage: The issues concerning fertility preservation are difficult to 
address once the treatment for cancer has started, and the role of oncofertility is 
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limited in this scenario. Nevertheless, counselling about available options and 
providing psychological support can alleviate the concerns of patients and their 
families about fertility issues to a certain extent.

 3. Recuperation phase: Post-treatment fertility outcomes have been extensively 
studied. Besides the type of cancer treatment, pretreatment fertility status plays 
an important role in predicting future sperm recovery. Oncofertility team can 
play an important role in counselling, prognosticating and guiding patients real-
istically about their fertility prospects.

25.5  Fertility Preservation Options for Men with Cancer

The established fertility preservation options for men scheduled to undergo poten-
tially gonadotoxic cancer therapies include sperm cryopreservation, testicular 
sperm extraction and the use of gonadal shielding to protect the gonads during radi-
ation therapy. In addition, in prepubertal young males, there are new technologies to 
biopsy or remove portions of the testes, which can be frozen and then transplanted 
back into the testes, and mature human sperm can be created (Fig. 25.1). Although 
both of these treatment options are still experimental, a number of important studies 
are underway to make these options available for routine clinical use.

• Experimental technique—still under trial.

Male cancer patients prior to therapy

Pre-pubertal Post-pubertal

Testicular biopsy

Harvesting of spermatogonial
stem cells*

Masturbation

Yes

Yes

No

No

Ejaculate contains
sperm Electroejaculation/

vibratory ejaculation

Testicular/epididymal
sperm extraction

Cryopreserve
spermatogonial
stem cells*

Sperm absent Sperm present
Sperm cryopreservation

Fig. 25.1 Algorithm for sperm cryopreservation in male cancer patients
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25.6  Genesis of Cryopreservation

Cryopreservation is a method of preserving cells, tissues, organs or any other bio-
logical material by cooling to very low temperatures (Pegg 2007) to prevent damage 
caused by unchecked biochemical processes. Cryopreservation techniques aim to 
reach freezing temperatures without formation of ice crystals during freezing. 
Lazzaro Spallanzani in 1776 first reported that the motility of human spermatozoa 
could be preserved after freezing and thawing (Spallanzani and Bonnet 1780). 
Sperm preservation by freezing had been attempted for many centuries by research-
ers with disappointing results. Freezing leads to rapid ice crystal formation from 
water both inside and outside of the cells causing damage to critical cell metabolic 
processes and secondary injury due to dehydration and an increase in concentration 
of solutes as progressively more ice is formed. The understanding of the mechanism 
of freezing injury to cells led to introduction of techniques utilizing controlled or 
slow cooling to obtain maximum survival on thawing of the living cells. It was real-
ized that a slow- and controlled-rate cooling process which enables tissues to equili-
brate to optimal physical parameters in a cryoprotectant prior to controlled cooling 
is vital to prevent freezing injury. Cryoprotectants are substances that prevent cells 
from freezing injury during cryopreservation. Discovery of cryoprotection was ser-
endipitous in an accidental laboratory event in the United Kingdom when Christopher 
Polge unintentionally added glycerol to his experimental material while looking for 
a suitable cryoprotectant (Polge et al. 1949). This path-breaking discovery of cryo-
protectants opened up the avenues for cryopreservation of sperm and embryos, 
which led to the advent of revolutionary in vitro fertilization techniques like intra-
cytoplasmic sperm injection. The successful introduction of cryopreservation tech-
niques for freezing of sperm laid down the foundation for the concept of oncofertility 
enabling cancer patients to cryopreserve sperm for subsequent in vitro 
fertilization.

Although most reproductive health-care providers would agree that sperm cryo-
preservation options should routinely be offered to all patients at the risk for impaired 
fertility during forthcoming cancer therapy, this is not yet reflected in the current prac-
tice patterns (Kliesch et al. 1997; Achille et al. 2006). A study showed that only 27% 
of men diagnosed with cancer chose semen cryopreservation, and paucity of aware-
ness was the most common reason for failure of sperm banking in this study. In a 
survey of American physicians, only 10% affirmed suggesting routine sperm banking 
(Schover et al. 2002). The main cause for underutilization of semen cryopreservation 
is the lack of physicians’ awareness regarding the necessity for fertility preservation 
and the efficacy of this modality (Joint Council for Clinical Oncology 1998). 
Additionally, oncologists may be unaware of recent advancements in assisted repro-
ductive technology like intracytoplasmic sperm injection (ICSI) and get influenced by 
the suboptimal semen parameters and consider cryopreservation an exercise in vain 
(Lee et al. 2006). This aspect was highlighted in a survey in which 74% of oncologists 
were not cognisant of developments in assisted reproductive techniques (ART) 
(Bonetti et al. 2009). Failure to offer cryopreservation to cancer patients deprives them 
of the only possible reproductive option available. All men with fertility potential 
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encountering gonadotoxic therapy should consider sperm cryopreservation before the 
therapy damages their spermatogenic process (Bonetti et al. 2009). The responsibility 
of education and awareness of these patients about sperm cryopreservation rest with 
physicians and oncologists, and the use of educational leaflets and multimedia tools 
can be an effective method to achieve this objective.

25.7  Process of Sperm Cryopreservation

The whole process of sperm cryopreservation consists of a number of steps and is 
achieved in the following six stages.

25.7.1  Sperm Collection

Sperm collection is performed in the usual way in a sterile, non-spermatotoxic and 
wide-mouthed container, preferably at the laboratory or the storage facility, with 
masturbation being the preferred method. An abstinence period of 3–5 days is opti-
mal, and the use of lubricants should be avoided. In patients with obstructive or 
nonobstructive azoospermia, several techniques of direct sperm retrieval from testis 
or epididymis can be employed. These include testicular sperm aspiration (TESA), 
testicular sperm extraction (TESE) as well as by microscopic epididymal sperm 
aspiration (MESA), percutaneous epididymal sperm aspiration (PESA), micro-
TESE and testicular fine needle aspiration mapping.

25.7.2  Sperm Preparation

Sperm preparation prior to cryopreservation involves removal of seminal plasma 
and enhancement of collected sample by density gradient centrifugation or swim-up 
techniques and washing. Cryopreserved sperm isolated after swim-up technique has 
been demonstrated to have better linear and forward progressive velocity, better 
capacitation abilities, higher fraction of intact acrosomes and superior results in 
sperm penetration assays as compared to untreated cryopreserved sperm (Russell 
and Rogers 1987; Esteves et al. 2000). Another sperm preparation technique which 
has been used to select high-quality sperm for cryopreservation is magnetic- 
activated cell sorting (MACS), which utilizes annexin microbeads to immunolabel 
and remove apoptotic spermatozoa (Said et al. 2008). Annexin is a phospholipid- 
binding protein which binds avidly to phosphatidylserine which is an indicator of 
apoptosis when present on the outer aspect of the cell membrane as during dimin-
ished cell membrane integrity. Various studies have demonstrated that non-apop-
totic sperm selected from MACS shows higher motility, higher cryopreservation 
survival ratios, higher levels of intact mitochondria and an overall significantly bet-
ter fertilization potential (Grunewald et al. 2001; Said et al. 2005; Grunewald et al. 
2006).
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25.7.3  Medium Preparation

Preparation of sperm cryoprotective buffering media is a vital component of sperm 
cryopreservation and has a direct bearing on the successful freeze-thaw of sperma-
tozoa. The most commonly used cryoprotectant for sperm cryopreservation is glyc-
erol, which promotes cell dehydration, decreases the harmful effect of ice crystal 
formation and limits the toxic effects of solute build-up (Mack and Zaneveld 1987; 
Mortimer 2004). Although all cryomedia require the cryoprotectant glycerol, glyc-
erol itself can be damaging to human spermatozoa. It is necessary to keep the final 
concentrations of glycerol in the sperm mixture below 7.5% and to minimize the 
contact of sperm with glycerol by starting the cooling/freezing process immediately 
and by immediate washing after thawing. Various constituents called extenders have 
been added to the sperm suspension besides glycerol in order to improve the sur-
vival of cryopreserved sperm. A number of studies have demonstrated improved 
recovery of sperm on thawing when these substances are added to glycerol cryopro-
tectant suspension. These compounds include egg yolk, milk powder and serum 
proteins, among others. Their mechanism of action is not clear, but they are believed 
to interact with membrane proteins and phospholipids, protect from fluctuations in 
pH and prevent cold shock during freezing (Bergeron and Manjunath 2006). 
However, their optimal concentration has not been standardized, and the efficacy 
remains questionable, precluding their routine utilization in sperm cryopreservation 
media. The addition of cryoprotectants should be in a controlled manner to reduce 
osmotic stress, but with care to avoid prolonged contact with glycerol (Watson 
1979). The precise addition time is not clearly specified, but most laboratories cur-
rently prefer to keep it within 10 min (Royere et al. 1996), although few modified 
techniques utilize a quicker addition (Gao et al. 1995).

25.7.4  Packaging

Packaging is an important component of sperm cryopreservation, and optimal stor-
age containers should have certain fundamental features in order to ensure a secure 
and durable stowage. The ideal sperm packaging systems should be simple to man-
age in terms of storage, handling, packing and cataloguing; should be ergonomic 
and prevent wastage; should enable consistent cooling and augment heat exchange 
by offering a greater surface area to volume ratio; and should establish a leak-proof 
seal capable of maintaining integrity in freezing temperatures. Use of conventional 
plastic vials for cryopreservation while commonly practised is far from ideal. The 
heat exchange in these vials is uneven with higher cooling at the centre than at the 
periphery. Additionally, the sealing mechanism in these plastic vials is prone to 
leaks when stored in liquid nitrogen dewars, which are used commonly in cryo-
preservation facilities, and carries a probable explosion hazard due to entry of liquid 
nitrogen into the vials. Probably the best packaging currently available is in the 
form of straws which ensure a homogeneous cooling, effective sealing by soldering 
at both ends and easier filling by means of a sterile nozzle which also avoids 
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contamination. A high-security vitrification ionomeric resin straw (Cryo Bio 
System, France) ostensibly provides higher tensile strength and extra safety at ultra-
low temperatures.

25.7.5  Freezing

The process of cooling of sperm during cryopreservation varies widely at different 
laboratories, and there is no standardized protocol. Ideal cooling rates for sperm are 
believed to range from 1 to 10 °C per minute (Medeiros et al. 2002). Although both 
slow- and fast-freezing protocols have been described, it is important to keep in 
mind the fact that very rapid cooling can damage sperm by intracellular ice forma-
tion, while too tardy cooling rates can subject the sperm to disproportionate osmotic 
forces and solute build-up (Henry et al. 1993). The two most commonly used meth-
ods for freezing of sperm are controlled-rate freezing (slow freezing) and static 
vapour cooling method (rapid freezing). The slow and controlled freezing, also 
called as Cleveland Clinic Foundation (CCF) method, comprises of measured and 
sequential addition of freezing media, subsequent storage at −20 °C for 8 min fol-
lowed by storage in nitrogen vapours at −96 °C for 2 h and finally immersion in 
liquid nitrogen at −196 °C (Kobayashi et al. 2001; Nallella et al. 2004). Few studies 
have shown that controlled freezing using programmed and computerized 
approaches by means of automated freezers gives better quality sperm after thawing 
and curbs damage of low-quality sperm (Ragni et al. 1990), but use of such auto-
mated freezers is constrained by prohibitive cost, requirement for specialized equip-
ment and need for increased amount of liquid nitrogen (Paras et al. 2008). The rapid 
freezing technique, also referred to as the Irvine Scientific (IS) method, is a quicker 
cryopreservation method, which enables rapid freezing of sperm. In this technique, 
the full amount of freezing medium is added in one batch, and the sample is then 
immersed in liquid nitrogen (Kobayashi et al. 2001; Nallella et al. 2004). Although 
it is generally accepted that controlled and gradual freezing with resultant acclima-
tization of sperm shields sperm from cryodamage, many reports have indicated that 
rapid freeze technique gives better sperm motility and survival after thawing as 
compared to the slow-freeze technique (Hallak et al. 2000; Nallella et al. 2004). 
However, a number of studies have failed to provide conclusive evidence of advan-
tages of one technique over the other. Paras et al. (2008) failed to demonstrate any 
significant difference in sperm survival or motility rates in comparison of controlled 
freezing technique to vapour freeze technique. McLaughlin et al. (1990) in a similar 
comparative study showed that controlled-rate freezing technique resulted in a 
higher survival of motile sperm, but the proportion of viable sperm and comparative 
velocity were identical after the two freezing techniques.

Vitrification is a relatively new cryopreservation technique in which sperm is cen-
trifuged to remove the plasma components and then resuspended in a sucrose solu-
tion before being directly dipped into the liquid nitrogen to fast freeze with a cooling 
rate approximating 50,000 K/min or more (Nawroth et al. 2002). The vitrified sperm 
can then be stored either in liquid nitrogen or in an ultra-cold deep freeze at 
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−86 °C. The benefits of this technique include non-requirement of any specialized 
equipment, low cost, simplicity and speed of performance. Additionally, vitrification 
is claimed to provide a significantly improved motility, and a higher number of viable 
sperm are available after thawing. The potential downside of vitrification process is 
the need for relatively higher concentrations (30–50%) of cryoprotectants, which can 
lead to a significant deterioration of sperm motility. The current focus of studies 
regarding vitrification is on developing validated protocols and finding out the right 
balance of cryoprotectants to optimize the outcomes of cryopreserved sperm.

25.7.6  Storage

The storage of cryopreserved sperm is conventionally done in the liquid nitrogen 
medium at –196 °C because of its relative inertness, being in liquid state at this tem-
perature and the ease of storage at low pressures. However, cryopreserved sperm can 
be kept in storage at higher temperatures for short durations as is practised by some 
donor sperm banking facilities for storage during transit at −79 to −80° C in dry ice. 
It must be kept in mind that prolonged storage at these temperatures is likely to lead 
to poorer quality sperm after thawing (Ackerman 1967; Behrman and Ackerman 
1969). Human sperm are most appropriate for cryosurvival because they are one of 
the smallest cells in the body and have the highest ratio of surface area to volume 
among all cells of the body. The most common method of storage of cryopreserved 
sperm is in dewars which are specialized metal vacuum flasks for storing liquid nitro-
gen. The walls of dewars are made of two or more layers with a vacuum in between 
to provide optimal thermal insulation. The capacity of medium-sized dewars usually 
ranges between 2000 and 8000 straws depending on the internal arrangement and the 
volume of the vessel. The dewars are designed in a manner to take care of the gas 
which forms as the cryogenic liquid boils gradually. The suitability of dewars in 
cryostorage is based on their simplistic design, durability, relative safety, low main-
tenance and provision of consistent temperatures. For facilities which require mass 
storage or storage for very long periods, automated vapour storage systems are 
required. The functioning of these automated vapour storage systems is much more 
sophisticated than dewars and relies on constant supervision of parameters like tem-
perature and liquid levels. The critical component of automated storage systems per-
tains to sensing of fluid levels and autofilling of liquids. Malfunctioning of the 
fluid-level sensors can result in overfilling or under filling, both of which can pose 
serious threats to the samples and/or handlers (Tomlinson 2005). Additionally, 
vapour phase storage systems are considerably more expensive and require much 
higher amounts of liquid nitrogen as compared to dewars. The decision to use dewars 
or automated vapour storage systems should be individually taken by the concerned 
facility depending on a variety of factors like the number of samples to be stored, the 
type of packaging used, the kind of labelling and inventory required and the available 
floor space. Centres which need to store large number of samples for very long peri-
ods with limited storage space and where vials are used for cryopreservation should 
preferably be using automated vapour storage systems.
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25.8  Sperm Function After Cryopreservation

The effects of cryopreservation on sperm parameters have been extensively studied, 
and researchers have attempted to analyse the impact of both the duration of cryo-
preservation and the freeze-thaw process itself on sperm characteristics like motil-
ity, viability, DNA stability and acrosomal integrity. It is vital to remember that 
baseline sperm parameters prior to freezing play an important role in determining 
the effects of cryopreservation on sperm characteristics. Cryopreservation prior to 
starting anticancer therapy in cancer patients may be handicapped by the subopti-
mal sperm features that are present in certain cancers and can be attributed to the 
disease process itself. For instance, as many as 30–60% patients with testicular 
malignancies may have impaired sperm parameters at baseline (Petersen et al. 
1998). Likewise, patients with other cancers like Hodgkin’s disease can also have an 
impairment of spermatogenesis prior to the initiation of therapy (Naysmith et al. 
1998). However, cancer stage does not appear to have any bearing on sperm param-
eters. Impaired spermatogenesis at baseline should not preclude sperm cryopreser-
vation because ART techniques like IVF/ICSI may be successful with even a solitary 
good quality sperm. In a study on cryopreserved sperm acquired from men with 
cancers, the outcome of IVF procedures was 60% in terms of fertilization rate and 
40% in terms of pregnancy rate (Khalifa et al. 1992). In another study in which 
cryopreserved sperm from ten cancer patients were used, the pregnancy rate per 
cycle of ICSI was 36%, which is comparable to the usual ICSI protocols (Opsahl 
et al. 1996; Hallak et al. 1998; Naysmith et al. 1998). The deterioration in sperm 
parameters like motility and viability following cryopreservation is comparable in 
cancer patients and normal individuals. A study demonstrated a mean recovery rate 
after thawing of cryopreserved sperm to be around 30% in healthy men as well as in 
cancer patients (Bonetti et al. 2009). Poor post-thaw sperm parameters in cancer 
patients are mainly ascribed to the suboptimal semen quality prior to cryopreserva-
tion (Williams et al. 2009). The postulated reasons for impaired sperm parameters 
in cancer patients include defects in germ cells, a probable history of cryptorchi-
dism, local hormonal changes due to the malignant lesion, anti-sperm antibody for-
mation secondary to autoimmune disturbances, generalized endocrine imbalance, 
paraneoplastic effects and the strains and anxieties of the disease itself (Hallak et al. 
1999; Williams et al. 2009). This impairment of spermatogenesis needs to be con-
sidered while formulating sperm cryopreservation strategies in order to counteract 
the decline in post-thaw semen quality.

Studies have tried to determine the reasons responsible for deterioration in sperm 
parameters following cryopreservation. Freeze-thaw process significantly dimin-
ishes sperm viability, and many studies have demonstrated that the decrease in num-
ber of viable sperm after cryopreservation is approximately 50%. Studies have 
failed to reveal any correlation between the duration of storage and sperm parame-
ters after cryopreservation (Edelstein et al. 2008); likewise, no correlation was 
observed between the age of patient and sperm quality after thawing (Hourvitz et al. 
2008). With successful IUI reported using sperm stored for as long as 28 years, it 
seems the freeze-thaw procedure itself leads to impaired sperm characteristics 
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rather than the period of cryopreservation. Extracellular ice crystal formation results 
in solute toxicity causing osmotic damage and altering sperm morphology. Likewise, 
cryoprotectants like glycerol used during cryopreservation cross the plasma mem-
brane during cooling and are subsequently eliminated during thawing. This leads to 
osmotic imbalance causing bulging of the cells during freezing and shrinkage dur-
ing the thawing process. This may damage the cell membrane leading to impaired 
motility (Hallak et al. 2000) and can also damage the intracellular structures like 
mitochondria. Freeze-thaw processes can lead to the formation of free radicals like 
reactive oxygen species, which can cause peroxidation of plasma membrane and 
again have a deleterious effect on sperm motility. Studies have focussed on the role 
of antioxidants in improving post-thaw sperm parameters. Pentoxifylline pretreat-
ment of sperm samples has been demonstrated to improve sperm motility, acrosome 
reaction and fertilization potential by virtue of elimination of the reactive oxygen 
species and enhanced intracellular cAMP levels (Esteves et al. 1997; Schmidt et al. 
2004).

25.9  Risks During Cryopreservation

The potential hazards related to cryopreservation can be substantial as the cryopre-
served specimen probably is the only hope of parenthood for the patient. The risks 
associated with cryopreservation of sperm include not only the hazards of working 
with liquid nitrogen but also the danger of loss or mixing up of patient’s samples, 
incomplete thawing, contaminated samples or the breach of storage process. 
Prevention of such risks must be an essential component of protocol at any sperm 
storage facility. Labels on the samples should be unequivocally clear and should be 
able to stay legible for prolonged periods. The key patient parameters on the labels 
should be sufficient to avoid any possibility of misidentification. Premature thawing 
should be prevented by thorough vigilance during removal or substitution of sam-
ples and by using measures like freezer alarm systems to avoid the possibility of 
equipment failure. Correctly suited packing, vapour phase storage and screening for 
discernible pathogens like HIV and hepatitis B viruses can minimize the hazards of 
specimen breach and cross-contamination.

25.10  Looking Towards the Future

In prepubertal young boys where spermarche has not commenced, sperm collection 
for cryopreservation by conventional techniques is not possible. In this subset of 
patients, research is underway to remove the testicular tissue and harvest spermato-
gonial stem cells for cryopreservation and later transplant these spermatogonial 
stem cells subsequently to produce normal mature human sperm. Currently, these 
techniques are in experimental phase but hold promise for assisted reproductive 
techniques in the future. In a rodent model, Brinster et al. were able to perform a 
successful spermatogonial stem cell transplantation leading to the restoration of 
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spermatogenic process (Brinster and Avarbock 1994). Another experimental tech-
nique currently being studied relates to the role of testicular tissue allografting. In a 
study on mice by Ohta et al., donor testicular tissue was harvested from the cloned 
donor mice and subsequently transplanted into testes of the recipient mice (Ohta 
and Wakayama 2005). The outcome analysis at 3 months was promising with the 
transplanted donor testicular tissue being taken up by the seminiferous tubules of 
some recipient mice and generating spermatogenesis. While these novel concepts 
look promising, certain serious issues need to be addressed before these can be 
adapted in clinical settings. The biggest concern is regarding the possibility of rein-
sertion of cancer cells through the cryopreserved and transplanted testicular tissue. 
Since most of the childhood malignancies have the ability to infiltrate testicular 
tissue, the threat of reintroduction of malignant cells is very real (Jahnukainen et al. 
2001). While cell separation techniques can theoretically surmount this problem, it 
is critical to remember that even a tiny proportion of cancer cells can cause recurrent 
cancer (Fujita et al. 2005). Harvesting of testicular tissue from young boys has 
attendant hazards associated with it. The removal of testicular tissue from these 
young boys can seriously hamper the ability of the native testis to regain its function 
after the cancer therapy is complete.

 Conclusion

Oncological therapeutic modalities have far-reaching implications in terms of 
gonadotoxicity and resultant impairment of fertility. It is imperative on part of 
the treating physicians to counsel the patients and their families about available 
fertility preservation options before commencing the anticancer therapy. 
Oncofertility is an emerging discipline that addresses these issues in a holistic 
manner. Oncofertility combines the two diverse domains of cancer therapy and 
reproductive science with the goal of broadening the fertility preservation options 
of cancer survivors. Cryopreservation is an advanced technique for storage of 
sperm at ultra-low temperatures. Cryopreservation offers a chance of paternity to 
these patients by successfully preserving and banking the sperm for long periods. 
Centuries of research and technological advancements have led to improvements 
in sperm cryopreservation such as choosing correct cryoprotectants, finding their 
optimal dose, improvements in freeze-thaw techniques and development of cor-
rect protocols. The cryopreserved sperm can be used for either IUI or IVF with 
or without ICSI as per the clinical indications. Further advancements in the field 
of cryopreservation are likely to be based on research in topics like cryoprotec-
tant-free preservation by means of sperm vitrification and further improving the 
freezing and thawing procedures. Sperm can be harvested for cryopreservation 
by conventional methods in post-pubertal males. For prepubertal males, there are 
no scientifically assured methods for cryopreservation of sperm, but ongoing 
research, particularly in animal models, may make it possible to harvest and 
store spermatogonial stem cells for maturation and xenografting in future. 
Advent of novel chemotherapeutic agents which are more target specific and less 
toxic along with advancements in the field of assisted reproductive techniques is 
likely to have better fertility-related outcomes in cancer survivors.
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Abstract
A tremendous rise in the fertility clinics providing ART services is seen world-
wide with the birth of first IVF baby (Louise Joy Brown) in 1978. ART com-
prises various types of medical treatments designed to assist in achieving 
pregnancy. IVF and other ART-associated technologies of fertilization (ICSI, 
IUI, PZD, SUZI, MESA, and PESA) offer an opportunity to become parent even 
in severe cases of infertility. These technologies have allowed millions of indi-
viduals to fulfill their parenting wish. A positive attitude combined with an 
appropriate treatment can help most of the infertile couples experience the joy of 
parenthood. This chapter provides a thorough overview of the assisted reproduc-
tive technologies with opportunities for patients and challenges for clinical pro-
fessionals or researchers.
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Key Points
• In 1978, for the first time, manipulation of the gametes was done under in vitro 

conditions by conventional IVF methods that resulted in the successful birth of 
Louise Joy Brown.

• In a number of cases, failure of other treatments leaves the patients with the 
option of ART as the last hope.

• ARTs in the form of IUI, IVF, and ICSI are used very commonly because of a 
variety of reasons.

• Other variants of ARTs, such as SUZI, ZIFT, GIFT, and PZD, are good alterna-
tive techniques to routine ARTs.

• ARTs have revolutionized the field of infertility treatment as theoretically even 
men with one or few sperm can have a hope to father of a child.

26.1  Introduction

Infertility can be considered as inability of a female individual to conceive pregnancy 
for the full term. Infertility occurs mainly because of two factors, the male factor and 
the female factor. One third of both the male and the female factors are responsible 
for infertility, and the remaining one third is because of unexplained infertility. 
Despite the progresses in the field of reproductive biology, the etiology of infertility 
is still unknown, and about 50% of the cases are termed as “idiopathic.” The diagno-
sis and treatment of infertility may involve targeted or empirical therapies depending 
upon the nature of infertility, depth of investigations, and success in identifying the 
underlying cause. Unfortunately, a large number of individuals who are suffering 
from the infertility do not get benefit from the traditional medications or treatments; 
therefore, they need to move for the next line of therapy, i.e., assisted reproduction.

For a number of infertile couples, leaving the few exceptions, assisted reproduc-
tive technologies (ARTs) are the only effective treatments that allow conception 
even in severe infertility cases, including azoospermia. These technologies include 
in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), intrauterine 
insemination (IUI), percutaneous epididymal sperm aspiration (PESA), microsurgi-
cal epididymal sperm aspiration (MESA), testicular sperm extraction (TESE), par-
tial zona dissection (PZD), and subzonal sperm injection (SUZI). Earlier, infertile 
men were dependent on sperm donor insemination or adoption, but at present, even 
in more severe infertility cases, IVF and other ART fertilization technologies (ICSI, 
IUI, PZD, SUZI) provide them an opportunity to become parent. This chapter pro-
vides an overview of the available ARTs for infertile individuals with focus on their 
suitability, advantages, and disadvantages.

26.2  ARTs Are a Boon

Assisted reproductive technologies acted as a boon for millions of people worldwide 
by providing them the opportunity to become the parent of their biological children 
that would rather not been possible ever. According to the European Society of 
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Human Reproduction and Embryology (ESHRE), three million babies have born 
with the help of ARTs in the last 30 years which suggest that ARTs can be used to 
treat any form of infertility either related to women and men, lesbians and gays, or 
transgender couples. The arrival of these fascinating technologies in the form of 
ARTs has changed the opinion about the reproductive world and has generated new 
hopeful possibilities for infertile couples to have their own baby. The following 
ARTs may be considered for the treatment of infertility-related problems (Table 26.1).

Before undertaking an ART procedure, a number of investigations must be com-
pleted in order to know the symptoms, cause, and type of infertility that would help 
them choose the best possible therapy (Table 26.2). Traditionally, the gynecologist 
or reproductive endocrinologist starts observing and evaluating the infertility- 
related problems mainly with the female partner in comparison with a little analysis 
of the male partner. Analysis of male factors which are also equally responsible for 
infertility must be done by a urologist with specialization in male infertility. In fact, 
it is very necessary to diagnose and identify the real problem in order to suggest the 
best-suited ARTs to cure infertility-related problems. Hence, infertile couple should 
opt for a complete clinical checkup by a physician specialized either in male or 
female infertility, respectively.

26.3  Sperm Recovery Techniques

The preference of sperm retrieval technique and its success rate is based on the 
type of male infertility either obstructive or non-obstructive. Some of the impor-
tant preoperative tools for diagnosis are clinical history, physical examination, 

Table 26.1 ARTs used in treatment of infertility

Cause of infertility ART Outcome

Ejaculatory disorders (oligo-, azoo-, and 
zoospermia)

In vitro fertilization (IVF) Pregnancy

Repeated fertilization failure by natural 
method or IVF

Intracytoplasmic sperm injection 
(ICSI)

Pregnancy

Repeated embryo transfer failure

Asthenozoospermia (progressive 
motility), teratozoospermia, 
oligozoospermia

Partial zona dissection (PZD) and 
subzonal sperm injection (SUZI)

Pregnancy

Table 26.2 Different parameters of male fertility considered for the diagnosis of infertility

Parameters Clinical examination of male infertility

History Time and duration of infertility, any previous pregnancy, medical details of 
female partner, intercourse frequency and timing, any existing and past 
disease, alcohol, smoking, and drug consumption

Examination Details of treatment for testicular maldescent, size of testis, vas deferens 
diameter and blockage, epididymis diameter and blockage, hydrocele/
varicocele, semen analysis by CASA system

Investigation Endocrine profile (T3, T4, TSH, FSH, LH, testosterone)

26 ARTs in Infertility Treatment
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and endocrine assessment like measurement of follicle-stimulating hormone 
(FSH) and testosterone levels in patient serum. In conditions like vasectomy, 
failed vasectomy reversal, primary testicular failure, or congenital obstruction 
of the sperm ducts where there is no spermatozoa in the patient’s semen, differ-
ent types of technologies are available to retrieve sperm for ART purposes. This 
includes electroejaculation/vibratory stimulation, percutaneous epididymal 
sperm aspiration (PESA), microsurgical epididymal sperm aspiration (MESA), 
and testicular sperm extraction (TESE). For azoospermic patient where there is 
no obstruction, PESA and MESA are extremely useful to retrieve sperm for 
ART purposes. In contrast, MESA is a more advanced technology in which a 
number of sperms can be retrieved with less epididymal damage (Kim and 
Lipshultz 1997). In TESE, an open surgical procedure is adopted to retrieve the 
sperm. The procedure is performed in those cases where the process of epididy-
mal sperm retrieval fails. However, it provides similar pregnancy rates with 
micro-assisted fertilization technologies (Ghazzawi et al. 1998). Considering 
the number of sperm retrieval methods which plays an important role to achieve 
pregnancy, each infertile male partner must be carefully examined to determine 
the best sperm retrieval method because it would affect the overall outcome of 
ART. The most common and useful methods for sperm retrieval are summarized 
in Table 26.3 with their approximate costs summarized in Table 26.4.

Table. 26.3 Common and useful methods for sperm retrieval

Technique Common name Indications

Percutaneous epididymal sperm 
aspiration

PESA Obstructive azoospermia

Microsurgical epididymal sperm 
aspiration

MESA Obstructive azoospermia

Testicular sperm aspiration TESA Failed PESA, epididymal 
agenesis, non-obstructive 
azoospermia

Microsurgical testicular sperm 
extraction

Micro-TESE Non-obstructive azoospermia

Table 26.4 The approximate cost of different ARTs

ART
Approximate cost/
cycle (USD) Success rate

IUI $120–$400 5–30%, depending on the age of woman

IVF $10,000–$14,000 34% successful pregnancies per cycle

ICSI $12,000–$16,000 31% success rate

ZIFT/GIFT $12,000–$20,000 39–45% success rate

PGD $2500–$5000 Success rates are 90% for testing for medical 
conditions and close to 100% for sex selection

P.K. Dubey et al.



485

26.4  Intrauterine and Donor Insemination

Intrauterine insemination (IUI) is the simplest form of assisted reproductive tech-
nology where, at the time of egg ovulation, washed ejaculated sperm is placed in the 
uterus, beyond the cervix. This technology is used to treat infertility problem in 
males related to low sperm count or low motility, antisperm antibodies, and erectile 
dysfunction. In this technology, if the husband’s sperm is used, it is considered as 
AI (artificial insemination), and if the donor sperm is used, it is considered as DI 
(donor insemination). Donor insemination is an alternative form of AI that offers an 
effective advantage to those couples who fail to conceive despite repeated clinical 
therapies. In case of the absence of persisting female factor infertility, IUI techno-
logy is extremely successful (70%). However, donor insemination is unacceptable 
at social level, and it may be considered an illegal practice by some societies. 
Moreover, where adoption is not desired and the male wants to have his own genetic 
offspring, assisted reproductive technologies may prove to be a good option.

In recent years, IUI along with superovulation technology has become a famous 
method for the treatment of male-related infertility. Insemination using a high num-
ber of motile and morphologically normal sperms after superovulation by gonado-
tropins has a theoretical advantage and maximum chance of successful pregnancy. 
The success rate of IUI varies widely and is closely related to female age and repro-
ductive potential as, for example, the IUI success rate is higher for younger women. 
The IUI is very beneficial in case of male infertility; however, if the ovaries are 
stimulated with drugs to increase the number of eggs obtained every month, we can 
further enhance the overall pregnancy rate, for example, if the IUI is performed with 
superovulation in comparison with the IUI alone, a fourfold increase in the preg-
nancy rate will be observed (Kemmann et al. 1987). Furthermore, a study conducted 
by Serhal et al. (1988) showed that pregnancy rate/cycle is significantly greater for 
the combination of IUI and gonadotropin superovulation (26.4%) as compared to 
IUI (2.7%) or superovulation alone (6.1%). Further, a review by Dodson and Haney 
(1991) showed that the fecundity rate with IUI and superovulation in male factor 
infertility is 8.7% as compared to 17% for unexplained infertility. It appears that 
combination of IUI and superovulation may offer some limited benefits to infertile 
men but may improve the success rate of IUI in infertility due to female factors.

26.4.1  IUI Procedure

The IUI can be conducted mainly using three procedures, viz., natural, clomiphene, 
or gonadotropin stimulation. Natural cycle is recommended when treatment is with 
donor sperm or infertility is secondary to difficulties with intercourse. Cycles of 
fertility drugs such as clomiphene (Clomid) or gonadotrophins (Gonal-F, Puregon, 
and Menopur) are generally prescribed if there is a case of unexplained or mild male 
factor infertility. In case of IUI, lower doses of drugs are used than in IVF with an 
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aim to increase the incidences of successful fertilization by stimulating the produc-
tion of more than one follicle, for example, production of two or three follicles.

After induction of ovulation by injection of HCG or detection of natural ovula-
tion by urine, freshly prepared sperm from male partner or donor is prepared as per 
the established procedure and drawn into a syringe with small amount of culture 
medium. In insemination procedure, a fine plastic catheter is used to transfer the 
processed sperm through female partner’s cervix into the uterus (Fig. 26.1). 
Following IUI, there is no need to take time off or limit work, but the patient is 
advised to visit an embryologist and IVF clinic for post-insemination checkup to 
assure the pregnancy. The IUI procedure is more advantageous because of its less 
invasive nature and is better tolerated as compared to IVF. However, the major dis-
advantage of IUI is that its success rate is low and there is a high chance of occur-
rence of multiple pregnancies as compared to the IVF.

26.5  In Vitro Fertilization (IVF)

Among the various ART treatments, IVF is the most popular and invasive technology. It 
has been seen that in general, women who are trying for the pregnancy or live birth 
adopt other methods first and finally move on to the IVF when those methods become 
unsuccessful. In contrast to artificial insemination, fertilization in IVF gets done outside 
of the woman’s body in which eggs (retrieved from the woman trying to get pregnant or 
from an egg donor) are fertilized with the sperm (from a male partner or donor-derived 
sperm) in a petri dish. In 1978, for the first time, manipulation of the gametes has been 
done under in vitro conditions by conventional IVF methods that resulted in the success-
ful birth of Louise Joy Brown. Since the delivery of the first IVF baby some 38 years 
ago, the technology has spread worldwide and is still in high practice because of its 
consistent results. Here, we summarize the basic procedures of IVF.

Uterus

Uterine
cavity

Washed
sperm

CervixVagina

Syringe
Washed
sperm

Fig. 26.1 Diagrammatic 
representation of IUI 
procedure
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26.5.1  IVF Procedure

26.5.1.1  Step 1: Controlled Ovarian Hyperstimulation (COH)
For ovarian hyperstimulation, GnRH agonist (Lupron) protocol is used to suppress 
the secretion of gonadotropin hormone to avoid premature ovulation. The next stage 
is the multiple follicular recruitment by the use of gonadotropin injections daily 
once the suppression of gonadotropic hormone is achieved to optimum level. The 
follicular development is monitored by the use of the technologies like ultrasound 
imaging and hormone assessments. Physician using ultrasound examinations and 
blood testing can determine whether the follicles are ready for egg retrieval or not. 
Generally, 8–14 days of stimulation are required. The hCG administration is given 
for final maturation of the egg when the follicles are ready and reach an appropriate 
size. Egg retrieval is scheduled 34–36 h after hCG injection.

26.5.1.2  Step 2: Egg Retrieval
Egg retrieval is usually performed by transvaginal ultrasound aspiration, a minor surgi-
cal procedure, which is performed for egg retrieval process. To retrieve eggs from the 
patients, clinicians generally administer some pain medications. During egg retrieval 
process to identify the follicles, an ultrasound probe is inserted into the vagina, and a 
needle is guided through the vagina into the follicles. Thereafter, to locate all the avail-
able eggs, the follicular fluid is scanned by the embryologist. The cumulus-oocyte com-
plexes (COCs) consisting of the first polar body (PB) (Fig. 26.2) are placed in a special 
media and cultured in a CO2 incubator until insemination. Laparoscopy technique is 
also used to retrieve the eggs using a small telescope placed in the umbilicus. For more 
information on laparoscopy, consult with an ART center or a specialized doctor.

26.5.1.3  Step 3: Fertilization and Embryo Culture
After assessment of maturity and quality, the retrieved eggs are placed in an IVF cul-
ture medium. For fertilization, simultaneously sperms are processed from a male’s 
partner or donor-derived semen. Alternatively, if the male’s partner is azoospermic or 
having any kind of obstruction, sperm can be obtained from the testicle, epididymis, or 
vas deferens using sperm retrieval technology as described above. For fertilization pur-
poses, approximately 50,000–100,000 motile sperms are mixed with the meiotically 
competent eggs under in vitro condition. After 16–18 h of co- incubation of the egg and 
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Fig. 26.2 Cumulus- 
enclosed mature oocyte 
showing first polar body 
extrusion

26 ARTs in Infertility Treatment



488

sperm, fertilization is assessed by visualization of two pronucleus formation. Once the 
fertilization is confirmed, the presumptive zygotes (fertilized eggs) are cultured into a 
specially formulated culture medium that supports the growth and development of 
embryos. After 24 h of postfertilization, the fertilized eggs are divided into two to four 
cell embryos (Fig. 26.3). For transfer purpose, the embryos are grown till the blastocyst 
stage which have higher potential for implantation.

26.5.1.4  Step 4: Embryo Transfer
In general, 4–8 cell stage embryos (day 3 of postfertilization) are used to transfer for 
implantation purpose. Although, the later stages like 8–16, morula or blastocyst 
stage (Fig. 26.4) of embryo can be transferred into female partner or surrogate 
mother to get pregnancy. However, before transfer, clinicians must perform the pre-
implantation diagnosis to examine the embryo for any fragmentation or diseases. In 
practice, transferable embryos should be free from any kind of diseases and must be 
classified into grades 1–4 on the basis of several parameters where grade 1 repre-
sents the best-quality embryos to maximize the chance of successful pregnancy.

26.5.2  Assisted Hatching (AH)

In general, after transfer of embryo in the uterus, embryo must expand and rupture the 
zona pellucida (ZP) allowing to implant. In some cases, embryo does not hatch out from 
ZP and as a result implantation does not occur. In such cases, assisted hatching (AH) is 
used to overcome this problem. AH is a technology which is used to create a hole in the 
ZP with the help of an instrument prior to embryo transfer which facilitates hatching in 
utero. However, it has been seen that AH does not improve the rates of live birth though 
it is useful for aged women or couples to get maximum chance of pregnancy.

Fig. 26.3 Cell stage 
embryo
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26.5.3  Preimplantation Genetic Diagnosis (PGD)

PGD is a technology which is used to diagnose inherited diseases by screening of 
preimplantation embryo. In this procedure, one or two cells called blastomere are 
retrieved from the presumptive zygote and diagnosed the probability for different 
genetic disease using different molecular approaches. After diagnosis, embryos that 
free from any type of diseases are selected for transfer in the uterus. However, for 
conducting these procedures, a specialized clinician and equipment are needed. PGD 
is helpful for couples who are carriers of some genetic diseases, and these couples 
must perform embryo screening to reduce the risk of having an affected child. There 
are some other methods like chorionic villus sampling (CVS) and amniocentesis 
which can be used for diagnosis of genetic diseases during gestational period.

26.5.4  Cryopreservation

Cryopreservation is a technology in which any type of cells, tissues, or body organs 
can be preserved at very low temperature (−196 °C) in a natural state for future use. 
In ART, cryopreservation technology can be used to store or preserve extra embryos 
or oocytes for future use. The most significance of this technology is that ART clini-
cians may use the preserved oocyte or embryo for the fertilization or embryo transfer 
purposes rather than initiating a new IVF cycle in infertile patient. Moreover, live 
births that have been reported using frozen embryos showed the importance of this 
technology. However, there are some risks like chromosomal aberrations or bio-
chemical level associated with frozen embryo. Therefore, it is advisable for infertile 
couples and clinicians both that before using cryopreserved embryos, they must 
ensure that embryos are healthy and free from any type of aberrations at cellular and 

Fig. 26.4 Blastocyst stage 
of embryo
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molecular level. In general, in the field of ART, cryopreservation plays an important 
role because it is less expensive, time saving, and an invasive procedure (Fig. 26.5).

26.5.5  Advantages and Disadvantages of IVF

• This technology may help infertile couple to get a baby of their own.
• IVF can be performed with less number of motile sperms (50,000–100,000/

oocyte) compared to natural (2–6 million/oocyte) fertilization.
• It has higher success rate as compared to IUI and other ARTs.
• Preimplantation genetic diagnosis can be done for identification and prevention 

of genetic abnormalities.
• The procedure is relatively safe and has been utilized for a long time to produce 

a baby via egg or sperm donors.
• Sperm as well as embryos which are unused can be cryopreserved and may be 

utilized for stem cell research that would help cure various kinds of degenerative 
diseases in the future.

26.5.6  Disadvantages of IVF

• The main drawback of IVF is multiple births, i.e., delivery of more than one 
baby. To get higher success rate, clinics and doctors generally transfer more than 
one embryo that can result undesired multiple births.
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• IVF may cause ovarian hyperstimulation syndrome due to heavy use of hor-
mones and drugs during the procedure. IVF can lead to ectopic pregnancy in 
which implantation of embryo occurs outside the uterus.

• The success rate of IVF depends on the age of the female, the quality of eggs, the 
quality of sperm, the quality of the uterus, etc. IVF can cause some abdominal 
pain due to the use of some minor surgical procedure besides the use of drugs 
and hormones.

• IVF technique is little costly and it may not be affordable for some.

Failure of IVF could be devastating for any infertile couple. If it happens, what 
would be offered to the patient? In recent years, many advanced technologies have 
been developed in the field of ART, some of which promise to provide positive 
results even in severe infertility cases, such as severe oligospermia, asthenospermia, 
and teratospermia. In case of IVF failure, infertile couple can choose other options 
such as gamete intrafallopian transfer (GIFT), zygote intrafallopian transfer (ZIFT), 
and micro-assisted fertilization.

26.6  Gamete Intrafallopian Transfer (GIFT) and Zygote 
Intrafallopian Transfer (ZIFT)

Gamete intrafallopian tube transfer (GIFT) and zygote intrafallopian transfer 
(ZIFT) are variants of IVF which are used in the case of female infertility or 
some other infertility treatments that have been unsuccessful. From the last few 
years, both of the technologies have increased attraction of the clinicians 
because these technologies reasonably increased the clinical pregnancy rates in 
comparison with IVF. It is predicted that higher clinical pregnancy rate is due to 
the in vivo environment of the fallopian tube. As like IVF, ZIFT and GIFT tech-
nologies begin with ovarian stimulation and egg retrieval. In ZIFT, retrieved 
eggs are fertilized outside of the body, and the resulting zygote(s) is directly 
transferred into the woman’s fallopian tube by the help of laparoscopic surgery. 
In contrast to ZIFT, in GIFT, the processed eggs and sperms are both transferred 
directly into the woman’s fallopian tube. Principally, GIFT is more useful for 
the type of unexplained infertility. However, the disadvantage of GIFT is we 
can’t confirm whether transferred eggs become fertilized or not if the pregnancy 
is not achieved. Therefore, ZIFT is better than GIFT, and mostly ART clinicians 
preferred ZIFT over GIFT for the treatment of unexplained infertility. Moreover, 
some studies have been randomized comparing the ZIFT and IVF and found no 
advantage of ZIFT over IVF for the treatment of male-related infertility 
(Tournaye et al. 1992a, b). Furthermore, Tournaye and associates conducted a 
comparative study between IVF, GIFT, and ZIFT and stated that take-home 
baby rates are 13.5%, 7%, and 20%, respectively (Tournay et al. 1991). 
Remarkably, IVF is still the first choice of infertile couple when compared to 
other ARTs due to the ease of access, availability, cost, and success rate. 
However, as per the report, the technology like ZIFT also may be useful for 
treating infertile couple with little more success rate.
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26.7  Micro-assisted Fertilization

Though IVF, IUI, GIFT, and ZIFT are very useful for infertility treatment in the field 
of ART with variable success rate, however, still in many severe or unexplained infer-
tility cases, these technologies are not able to treat the patient. Therefore, there is a 
need to treat such cases with more advanced technologies. When there is severe defi-
ciency of sperm number and/or limited ability of sperm to fertilize during IVF, GIFT, 
and ZIFT, adjunctive micromanipulation technologies such as intracytoplasmic sperm 
injection (ICSI) may be useful in providing a reasonable chance of pregnancy.

26.7.1  Micromanipulation Technique

Micromanipulation is an advanced technology which is used to manipulate the gam-
etes (egg and sperm) under in vitro condition for different purposes. Micromanipulation 
technology have revolutionized the field of ART where maximum pregnancy rate can 
be achieved. In this technology, single oocyte and sperm can manipulated as per the 
need with the help of a holding and injection pipette equipped with an inverted micro-
scope. First, processed oocyte is immobilized by the holding pipette and then injected 
a single sperm or even any other chemicals into cytoplasm of oocyte with the help of 
injection pipette. This technology can be divided into zonal, subzonal, and intracyto-
plasmic procedure (Fig. 26.6). In zonal procedure, a tiny hole is created in zona pel-
lucida, an acellular layer surrounding the egg by the help of laser-guided beam.

Basically, this procedure has been broadly termed as “zona drilling” which is 
successfully adopted for treating male patient-related infertility. This method is also 
called partial zona dissection (PZD). Subzonal procedure of micromanipulation 
technology directly facilitate sperm-egg interaction are known as subzonal insertion 
of sperm (SUZI). In SUZI, sperm is directly placed into the perivitelline space of 
egg for the fertilization purposes. The third and most invasive form of microsurgical 
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fertilization is the microinjection of a single sperm into the cytoplasm of oocyte, 
referred to as intracytoplasmic sperm injection (ICSI).

In the field of male factor infertility where sperm production is nil or zero sperm 
count, another micromanipulation technology known as round spermatid nucleus 
injection (ROSNI) can be used. In ROSNI, round spermatid is directly extracted from 
male testicles and after removing the nucleus injected into the female partner’s eggs. 
However, this process has yet to give live birth and has to be clinically validated, 
though clinicians believe that it will eventually become a successful technology that 
will allow men, who previously had no hope, to be a father of a biological child.

26.7.2  Intracytoplasmic Sperm Injection (ICSI)

One of the major leading technologies for the treatment of male factor infertility is 
ICSI where a single sperm is injected into the cytoplasm of an egg. ICSI is per-
formed in case of low sperm count or when there is no sperm present in the ejaculate, 
in case of abnormally shaped sperm, low sperm motility, as well as when the IVF has 
been previously unsuccessful. ICSI has become the ART of choice for male infertil-
ity and is much more effective therapy than other assisted fertilization technologies. 
ICSI is carried out using automated instrument called as micromanipulator, which is 
equipped by a holding and injection pipette. In ICSI, first a single healthy and motile 
sperm and then meiotically competent egg are immobilized by the help of injection 
and holding pipette, respectively. After insuring that everything is right, then single 
sperm is injected into the cytoplasm of the egg by the help of injection pipette 
(Fig. 26.7). However, this technology has the possibility of transmitting genetic 
defects of spermatogenesis or other genetic defects to a future offspring.

In a study, fertilization rate of 55% for ICSI versus 17% for SUZI has been reported 
(Van Steirteghem et al. 1993). ICSI has become the most quickly adopted technology 
for those couples who are unable to conceive from conventional IVF. Further, a study 
conducted by Palermo and associates showed 69% fertilization rate and a 38% ongo-
ing pregnancy rate using ICSI (Palermo et al. 1995). The use of ICSI may prevent 
such complete failures; however, fertilization failure may still occur even when ICSI 
is used. Therefore, taking into consideration the added expenses and the potential 
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risks of the procedure, it is still debatable whether ICSI should be exclusively used for 
all the patients in place of the conventional IVF method.

In addition, concerns regarding disruption of chromosomal or cytoskeletal elements 
or fertilization consequences with genetically abnormal sperm remain to be a matter of 
further discussion and research. Approximately, half of the 7% of infertile men that har-
bor major sex chromosome abnormality accounts for a mosaic Klinefelter condition. The 
incidence of sex chromosome abnormality rises from 2% in men with normal sperm 
concentration to 20% in those with azoospermia (Baker et al. 1993). Despite these data 
and an apparently high risk for chromosome abnormalities in ICSI fetuses, Bonduelle 
and colleagues found the risk of chromosomal abnormalities to be approximately 1%, 
similar to the general newborn population (Bonduelle et al. 1996). There is a growing 
concern of germ line mutation that may result in heritable defects because ICSI allows 
fertilization by sperm, which under natural conditions is incapable of ZP penetration and 
oocyte-sperm fusion. The inheritance of susceptibility to infertility is another concern 
that remains unrecognized until late in the next generation. Once sexing of the spermato-
zoa becomes routinely available, prevention of sex-linked diseases may be prevented by 
selecting the healthier gender. Thus, during the ICSI procedure careful evaluation, genetic 
consultation with the couples, as well as follow-up of the pregnancies, is necessary.

Five important steps in the ICSI procedure involve:

 1. The sperm sample is either surgically removed from the testes or epididymis or 
taken from male partner’s semen.

 2. Eggs are collected by surgical method from hormonally induced ovarian folli-
cles. Single motile sperm is injected carefully from male partner into meiotically 
matured egg of the female partner by using a tiny hollow needle.

 3. The fertilized egg is observed for growth and development after injection.
 4. Once the normal growth is seen, the presumptive embryo is delivered into the 

female uterus where it has a chance to implant and grow.

26.7.3  Advantage and Disadvantages of ICSI

Although ICSI has become an established ART procedure, however, many concerns 
have been raised on the resultant embryos and children over its potential detrimental 
effects. First and foremost, ICSI is a procedure, where the sperm cells are directly 
introduced into an egg which effectively eliminates male infertility. One of the 
major concerns is that ICSI bypasses the natural selection of sperm for fertilization 
and so the sperm having defects that would have been prevented from fertilizing 
oocytes may do so with the aid of ICSI that ultimately passes the defects on to the 
next generation. Apart from facilitating the transmission of genetic defects, the 
sperm injection process may inevitably cause physical damage to the oocyte that 
finally interferes with subsequent embryo development. The ICSI-generated 
embryos have been found to less likely attain the blastocyst stage in vitro and have 
a greater chance of developing fragments in comparison with embryos from the 
conventional IVF method. Despite the observed and potential detrimental effects on 
the embryos at the genetic and cellular levels, ICSI has not been associated with 
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increased incidence of birth defects (Van Steirteghem et al. 2002; Hansen et al. 
2002). Public concerns over the safety of ART were raised again by a report show-
ing a higher incidence of birth defects in IVF babies (Hansen et al. 2002). The 
limited information available suggests that ICSI children may have a small delay in 
mental development although it is unknown if this mental impairment is caused by 
the ICSI procedure or by factors inherent to the patients who require ICSI in the first 
place (Bowen et al. 1998). Obviously, further studies on the long-term effects of 
ICSI on the offspring involving multiple centers with well-controlled study designs 
are needed to minimize confounding variables, such as operator/technical variations 
and population variations. Until conclusive data become available, patients should 
be counseled carefully before ICSI is offered as an ART treatment.

26.8  Surrogacy

In severe cases of infertility, the infertile couple may choose surrogacy. In surrogacy, 
the infertile couple does the legal contract with fertile women in which fertile woman 
becomes pregnant and gives birth to a child. If the surrogates used their own egg for 
the fertilization purposes, then the condition is referred to as “genetic surrogate.” On 
the other hand, if embryos are generated using another woman’s eggs and then 
implanted into the surrogate, condition is referred to as “gestational surrogate” and 
has no genetic tie with the child. From the last decade, it has been seen that hiring a 
surrogate becomes a business to earn money worldwide. In the United States alone, 
for surrogacy, ART clinic can charge $40,000–$100,000, including the surrogate fee, 
insemination or IVF costs, and costs related to medical care, transportation, and legal 
services. Due to the high cost, recently it has been seen that some of the couples 
started to hire women in the developing countries. In Indian subcontinent, hiring a 
surrogate costs from $5000 to $12,000, and the surrogate gets paid $3000–$6000.

26.9  Regulation of ART

In the United States alone, it is estimated that ART is a $3–5-billion-dollar industry. 
Considering the modern lifestyle and increasing infertility rate, ART clinics are rapidly 
expanding including egg brokers, sperm banks, and surrogacy services worldwide. As 
many ethical, social, and critical issues are associated with the ARTs, it is necessary that 
ART clinics must be regulated by the government agencies; otherwise, it would be at 
risk. There also must be some international law which can regulate individuals, couples, 
and ART clinics to find the quality services whether in their own country or another.

26.10  Risks in ART

Beyond the fact that ARTs offer the possibility for infertile couples to attain preg-
nancy, however, it poses potential risk in health issue for the mother as well as the 
infant. As in majority of ART procedures, multiple embryos are transferred, and 
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there is a risk of multiple gestational pregnancy and multiple births. The risk of 
multiple births at maternal interface includes high rates of cesarean deliveries, 
maternal hemorrhage, pregnancy-related high blood pressure, and gestational dia-
betes. At fetal interface, it includes prematurity, low birth weight, infant death, ele-
vated risk for birth defects, and developmental disability. Further, even singleton 
infants conceived with ART have a higher risk for low birth weight compared with 
singleton infants conceived with normal procedures. If during ART a maximum of 
two embryos are transferred rather than multiple embryos, the risk of high-order 
multiple births can be restricted. For patients who are seeking ART, twin pregnancy 
can be treated as necessary but manageable complication of infertility treatment. 
Double embryo transfer for the patient undergoing ART may be an option provided 
their health is good and they are in proper condition to conceive a twin pregnancy 
for 34 weeks and wish to have more than one child. ART programs should not be 
penalized for providing patients the option of double embryo transfer, by not count-
ing twin births when reporting IVF “success.” Nevertheless, IVF and ICSI technolo-
gies have revolutionized the treatment of male infertility with new hope of having 
their own genetic offspring as well as disease-free newborns.

 Conclusion

ART has become one of the widely accepted and most desirable technologies 
since last one decade. ART is a rising hope to millions of couples facing the 
problem of infertility. In the coming years, advancing technology is likely to 
exacerbate ethical, legal, and social concerns associated with ART. Further, due 
to the rapidly evolving nature of the ART, legislation is often unable to keep pace 
and address all of the ethical and legal issues that are constantly emerging in the 
field. It is therefore incumbent upon physicians to continuously monitor these 
issues and ensure that ART technologies are offered and delivered in a manner 
that balances patient care with social and moral responsibility. Furthermore, 
medical professionals should be keenly aware of their professional as well as 
social and ethical responsibilities in the pursuit of technical advancement. Of 
course, the latest advances in ART have not only enhanced the possibility of 
pregnancy but have also made today’s women conceive in situations which 
would not have been possible decades ago.
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