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SERIES EDITOR’S INTRODUCTION

The Nutrition and Health series of books have  an overriding mission to provide health
professionals with texts that are considered essential because each includes (1) a synthe-
sis of the state of the science; (2) timely, in-depth reviews by the leading researchers in
their respective fields; (3) extensive, up-to-date fully annotated reference lists; (4) a
detailed index; (5) relevant tables and figures; (6) identification of paradigm shifts and
the consequences; (7) targeted, interchapter referrals; (8) suggestions of areas for future
research; and (9) balanced, data-driven answers to patient /health professionals’ ques-
tions that are based on the totality of evidence rather than the findings of any single study.

The series volumes are not the outcome of a symposium. Rather, each editor has the
potential to examine a chosen area with a broad perspective, both in subject matter as well
as in the choice of chapter authors. The international perspective, especially with regard
to public health initiatives and cutting-edge topics, is emphasized where appropriate. The
editors, whose trainings are both research- and practice-oriented, have the opportunity to
develop a primary objective for their book, define the scope and focus, and then invite
the leading authorities from around the world to be part of their initiative. The authors are
encouraged to provide an overview of the field, discuss their own research, and relate the
research findings to potential human health consequences. Because each book is devel-
oped de novo, the chapters are coordinated so that the resulting volume imparts greater
knowledge than the sum of the information contained in the individual chapters.

IGF and Nutrition in Health and Disease, edited by M. Sue Houston, Jeffrey Holly,
and Eva Feldman is the first comprehensive volume developed for health professionals
and graduate students to deal with the cutting-edge science and clinical use of the insulin-
like growth factor (IGF) system. The first published report of this “serum factor”
appeared in 1957 and by the 1970s the biochemistry of the factor and its similarity to
insulin were understood. It was not until about 15 yr ago that the binding proteins and
receptors were fully identified and characterized. Currently, there are clinical studies
underway to evaluate the therapeutic value of IGF — which illustrates the critical need
for this volume in a rapidly moving field of relevance to human health and disease.

This text represents an important addition to the Nutrition and Health series and
exemplifies the potential for this series to include cutting-edge, clinically relevant texts
that are valuable to practitioners as well as those involved in the state-of-the-art research
into the many effects of nutritional status as well as specific nutrients on the IGF system
and vice versa. Moreover, this text fills a critical gap because at present, there is no text
that addresses both the clinical and basic aspects of the IGF system in a thorough, up-to-
date manner. The volume includes a detailed description of the IGF system, which is
composed of three ligands (insulin, IGF-I and IGF-II); three receptors (insulin receptor
and IGF-I and -II receptors) and six IGF binding proteins (IGFBPs 1–6). The editors have
assured that the reader gains a clear understanding of the importance of the IGF system
in the interactions with other critical molecules involved in growth, energy metabolism,

vii
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viii Series Introduction

and the development of organs and tissues from the formation of the embryo to its
requirement in century-old individuals. Of great value to clinicians, academicians, and
students are the key points that are enumerated at the beginning of each chapter. Also,
there are recommendations for novel research studies and identification of challenges for
future investigations provided for readers at the end of chapters.

Drs. Houston, Holly, and Feldman are internationally recognized leaders in the IGF
field and have investigated the role of diet and its constituents on the responses of the IGF
system to changes in intakes in both humans and animal models. The editors are excellent
communicators; they have worked tirelessly to develop a comprehensive book that is
destined to be the benchmark in the field because of its extensive, in-depth chapters
covering the most important aspects of the complex interactions among IGF, growth
hormone, prostaglandins, thyroid hormone, parathyroid hormone, the reproductive hor-
mones, the renin-angiotensin system and protein, carbohydrate, and energy metabolism.
Moreover, key nutrient components such as zinc, omega-3 fatty acids, glutamine, and
antioxidants are reviewed with an emphasis on their interactions with the IGF system.

The editors have chosen the most well-recognized and respected authors from around
the world to contribute the 18 informative chapters in the volume. Key features of this
comprehensive volume, in addition to the key points, include exhaustive lists of more
than 150 references in nine of the chapters and more than 200 references in several of
these chapters; there are numerous excellent figures and tables that add great insight into
the complex interactions among hormones, receptors, binding proteins, cytokines, and
response elements. The volume is a critical and excellent source of detailed information
that is required by clinicians when educated patients ask questions about the relevance
of IGF to their disease. Clinical use of IGF and its binding proteins are discussed with
great objectivity and the status of the clinical research is presented in a balanced, data-
driven analysis, yet in a language that makes it possible for patients to clearly understand
the current state of the science. The editors have also included a list of resources on the
IGF system that is invaluable to the patient and health professional.

The book chapters are logically organized in five major sections. The first section
provides the reader with the fundamentals of the IGF system and the interactions with
dietary manipulations. This section contains a well-organized chapter that outlines the
historic beginnings of the isolation of IGF and its establishment as a system that rapidly
responds to starvation, fasting, severe injury, or other catabolic states. The basics of the
mechanisms of action of the IGF system at the molecular, subcellular, and cellular levels
are carefully explained and form the foundation for all subsequent chapters. The second
section looks closely at the interactions between IGF and nutritional state with special
emphasis on conditions involving food restriction. Using more than 200 references, the
first comprehensive chapter in this section describes in detail the role of protein and
energy deprivation on the IGF system as well as other body systems that respond to
critical physical stressors. The manifestations of the molecular biology of the IGF system
in the whole animal are carefully explained using models such as a specific knock-out
mouse model, a novel primate model and, where data are available, in patient popula-
tions. The differences in the levels and actions of the IGFs between man and rodent
models are clearly stated. Complementing this chapter is the more clinically focused
chapter on the effects of chronic malnutrition related to severe illnesses such as cancer
and HIV infection; there are preliminary clinical studies that suggest a potential benefit
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of IGF as a therapeutic agent. Another unique chapter in the second section includes a
definitive description of the methodologies available to assess nutritional status for both
clinical studies and larger survey-type epidemiological studies — an important resource
for graduate students as well as research directors is the comprehensive table that outlines
the pluses and minuses of each of the assessment tools described in the chapter.

Although the IGF system has been known for less than 50 yr, there have been key
discoveries of many of the pathways where the IGF system functions in growth and
development. The third section of this book contains five chapters that examine current
levels of understanding of the essential role of IGF in embryonic and fetal development,
infancy, childhood, adolescence, adulthood, and aging. Specific nutrients, such as zinc,
that are critical to growth and development are reviewed in detail. Zinc is a co-factor in
more than 300 metalloenzymes and a critical component of the functional domains con-
taining zinc fingers, and also activates nuclear receptors. Zinc status affects the complex
intracellular signaling required for IGF to permit normal development and growth. The
next chapter describes the information that has been derived from studying pygmy popu-
lations; several of the genetic defects that result in mutations to IGF genes are also
discussed. The link between normal and abnormal cellular growth resulting in tumor
formation is reviewed in detail in another comprehensive chapter concerning the fetus
and the neonate. There are unique tables providing normative data on the levels of serum
IGF and the binding proteins in males and females from neonate through age 20. The
clinical relevance of these tables cannot be overstated. There is also an in-depth discus-
sion of the components of the IGF system found in human milk and their functions.

The newest research in the IGF field has shown that in addition to the systemic circu-
lating levels of IGF, there are many tissues and organs that synthesize IGF in situ.
Moreover, IGF-I is critical to the maintenance of normal bone, skeletal, and cardiac
muscles, nerves,  and the kidney. Each of these four areas is reviewed in depth in separate
chapters that have great clinical relevance. With regard to bone health, there is an in-depth
discussion of the requirements for protein for normal bone growth and maintenance,
which is under the influence of the IGF system in conjunction with the sex and growth
hormones. These complex interactions are illustrated in clear figures that help the reader
understand these interactions. Skeletal muscle contains about half of the human body’s
protein and, as a dynamic system, is also the site of about one-third of the body’s protein
turnover. IGF-I is central to the regulation of muscle protein synthesis. This chapter not
only reviews normal muscle physiology but includes an extended discussion of the
effects of catabolic states on muscle tissue wasting in the face of depressed levels of IGF-
I; the potential for therapy with IGF is placed in perspective. The effects of alcohol excess
and the adverse effects of glucocorticoids on IGF-related muscle loss are also included.
In the chapter on the nervous system, diseases reviewed include but are not limited to
Alzheimer’s, Parkinson’s, MS, ALS, diabetic neuropathy, strokes, and traumatic brain
injury. The cutting-edge research reviewed includes an analysis of the early clinical
studies with IGF and the importance of maintenance of nutritional adequacy for seeing
any potential efficacy. With regard to the kidney, it is a major target for IGF and stimu-
lates renal growth during development and also affects the filtration rate; loss of renal
function has a negative impact on the IGF system. There are excellent figures that clearly
identify the sites and actions of IGFs and the binding proteins within the glomerulus. The
interactions between the kidney and IGF are seen in children with renal failure whose IGF
levels are depressed and whose growth is stunted.

Series Introduction                                                                                                                   ix
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 The final section includes clinically based chapters that review the disease states of
diabetes, gastrointestinal (GI) diseases, endocrine dysfunctions, cardiovascular disease,
and cancer. The chapter on diabetes describes the importance of IGF and the binding
proteins in insulin and glucose regulation. IGF is a key regulator of glucose uptake and
use by muscle; the production of the IGF-binding protein 1 is directly proportional to the
liver’s production of glucose. Thus, there is a very high level of relevance of the IGF
system to the development and progression of diabetes. In addition to the discussion of
diabetes, there is also information provided about insulin resistance and polycystic ova-
rian syndrome that are both more prevalent in obese individuals. As mentioned earlier,
many tissues synthesize their own IGF and this is also true for the GI tract. The chapter
on GI diseases and parenteral nutrition includes detailed illustrations of the growth of the
small intestinal lining, indicating the importance of the balance between IGF stimulation
of cellular division vs the uncontrolled mitotic division of epithelial cells that could result
in colon or other GI tract cancers. Parenteral nutrition bypasses the physiological signals
that affect the oral ingestion feedback loops that are controlled in part by IGF. Addition-
ally, there are discussions of the potential for IGF to be used clinically in the treatment
of short bowel syndrome and/or inflammatory bowel disease. With regard to the chapter
on critical illnesses, the key point is that critical illness is often no longer acute, and
chronic severe conditions result in changes in IGF secretion as well as secretion of other
hormones such as thyroid, growth hormone, and the sex hormones; these changes are
presented in excellent graphs that will prove to be very helpful to clinicians and other
health care professionals. The chapter on cardiovascular effects carefully examines the
interactions between the IGF and renin-angiotensin systems in normal as well as patho-
genic conditions. This clinically based chapter reviews the changes in IGF in congestive
heart failure, hypertension, and cardiac cell death. The potential for using IGF as a cardiac
treatment is discussed. The final chapter on cancer describes the growing epidemiologi-
cal data that associate cancers of the prostate, breast, and colon with both higher than
average serum IGF-I levels and lower than average IGF-binding protein 3. The associa-
tion of IGF, better than average dietary composition and growth and a higher rate of
cancers in the tallest people has spurred a strong interest in this area of research. There
is also an expanding research interest in the preventive value of low calorie diets for
longevity and reduction in cancer risk. This final chapter exemplifies the state of the
science in the IGF field — an in-depth examination of the epidemiological data, extensive
studies in animal models, and the potential for a greater understanding of the core mecha-
nisms of action of critical molecules that are involved in the growth and development of
the organism as well as the development and prevention of human diseases.

Drs. Houston, Holly, and Feldman, as editors, have balanced the most technical infor-
mation with discussions of the central importance of the IGF system for normal devel-
opment and growth and have linked these functions to the nutritional status of the
individual. The volume, therefore, provides relevant information for graduate and medi-
cal students, health professionals, and academicians. Hallmarks of the chapters include
incisive key points to begin each chapter; complete definitions of terms with the abbre-
viation fully defined for the reader and consistent use of terms between chapters. There
are numerous referenced tables, graphs, and figures as well as extensive, fully annotated
up-to-date references; all chapters include a conclusion section that provides the high-
lights of major findings and the majority of chapters also include a final section entitled
“Recommendations and Challenges for the Future.” The volume contains a highly anno-

x Series Introduction
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tated index and within chapters, readers are referred to relevant information in other
chapters.

This important text provides practical, data-driven resources based on the totality of
the evidence to help the reader evaluate the critical role of nutrition in the functioning of
the IGF system, especially in the growth of infants and children. The overarching goal
of the editors is to provide fully referenced information to health professionals so they
have a balanced perspective on the value of the IGF system for future benefits to human
health. Finally, it must be noted that all of the authors and the editors agree that much more
research is required to be able to fully understand the biological mechanisms of action and
interactions between the IGF system and human nutritional status.

In conclusion, IGF and Nutrition in Health and Disease provides health professionals
in many areas of research and practice with the most up-to-date, well-referenced, and
easy-to-understand volume on the importance of the interactions between IGF system
and nutrition in optimizing human health. This volume will serve the reader as the most
authoritative resource in the field to date and is a very welcome addition to the Nutrition
and Health series.

 Adrianne Bendich, PhD, FACN

Series Editor

Series Introduction                                                                                                                   xi
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PREFACE

xiii

The complexity and significance of the insulin-like growth factor (IGF) system is
staggering. From conception through postnatal growth, development, reproduction, and
aging, in health and disease, the IGF axis orchestrates critical aspects of metabolism and
physiology. The IGF proteins and their cell receptors are widely expressed in the body
and many important functions of IGF system are rapidly being discovered. The impact
of nutrition as a fundamental influence on anabolism, growth, and in some instances
pathology, is intertwined with IGF in ways that are only just beginning to be appreciated.
Nutritional state is one of the most potent regulators of IGFs. Understanding the interac-
tions among nutrition and the IGF axis is critical to understanding the role of these growth
factors in normal growth and development and in pathological states. Conversely, IGFs
are key mediators by which growth, cell differentiation, and division is influenced by
nutrient availability. This volume is the first comprehensive review of nutrition and the
IGF system in health and disease. It brings together internationally known and distin-
guished researchers, physicians, and professors of biology, medicine, nutrition, molecu-
lar biology, physiology, biochemistry, animal science, and endocrinology. Inclusion of
the most recent basic, clinical,  and epidemiological data, across all phases of the life span,
as well as perspectives from multiple disciplines, is a major aim of this volume.

IGF encompasses a complex system that includes two proteins (IGF-I and IGF-II), at
least six distinct carrier proteins (IGFBP-1–6) that have unique roles in modulating IGF
bioactivity as well as independent actions, and two major cellular receptors (IGFR-I and
IGFR-II) with significant cross-reactivity with the insulin receptor. Many excellent re-
views of the IGF system, chronicling their initial characterization 40–50 yr ago, and
ongoing delineation of their roles are available (Appendix A). Virtually all cells and
tissues in the body are affected by IGFs in some fashion. As endocrine factors, the IGFs
were first recognized as “sulfation factors” that mediated the effects of growth hormone
(GH) on cartilage growth and were named “somatomedins” as their critical role in so-
matic growth during pre- and postnatal life became apparent. In a larger context, IGF
actions are part of the hypothalamic–pituitary axis and inseparable from GH. In addition,
as the nomenclature suggests, the overlap between IGFs and insulin in terms of structural
homology and biological properties is significant. IGFs have rapid insulin-like metabolic
actions as well as more long-term growth-promoting activities. There is significant cross-
reactivity between IGF-I and the insulin receptor at the cellular level. The importance of
the IGF system, in relation to nutrition in the pathogenesis, prevention, and treatment of
insulin resistance and diabetes mellitus and their related complications is being actively
investigated (Chapter 14).

In addition to the endocrine activity, the pleiotropic effects of the IGFs are related to
their local paracrine and autocrine production and activity. Cell differentiation, DNA and
protein synthesis, and cell survival are examples of the potent effects of the IGFs in
various tissues and organ systems. The specific roles and relative activities of the IGF
proteins vary by tissues. The complexity and importance of the IGF system as it is
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xiv                                                                                                                                    Preface

interrelated with nutrition and metabolic status is approached from many perspectives
and in the context of a variety of conditions under normal and pathological circumstances
in the present volume. The essential components and molecular aspects of the IGF system
and some of the newer concepts in the insulin/IGF signaling pathways lay the ground-
work (Chapter 1) for discussion of the direct effects of nutrient availability on the IGF
system in Part II. The remaining sections of this volume describe IGF and nutrition in
major organ systems and their roles in pathological conditions. Resources related to IGF
and nutrition, including the professional societies, organizations, and journals are pro-
vided in Appendix B.

Fasting, starvation, and nutritional imbalances have profound effects on the IGFs that
are independent of pituitary GH secretion and actions. Protein and energy availability,
and micronutrients such as zinc (Chapters 2 and 5), regulate IGF-I gene expression as
well as circulating levels of the IGFs, and ultimately the biological activity of IGFs in
growth and development. Much of bone health and disease involves some aspect of the
IGF system (Chapter 10). Calcium, vitamin D, and protein intakes exert strong influences
on bone metabolism that are mediated in part by IGF activity. Observational and
interventional studies in the elderly provide strong evidence for the relationship among
protein intake, IGF-I, and osteoporosis.

The loss of normal anabolic response to IGFs occurs in malnutrition, but also in
catabolic states brought about by metabolic and physical stresses such as infection,
injury, and organ failure. The conflicting, competing or perhaps overlapping influences
of nutrition and catabolic stress on IGF function during critical illness are considered
from a number of perspectives (Chapters 2, 3, 11, and 16).

Many chronic diseases cause profound metabolic changes that lead to catabolism and
unintentional weight loss. Persistent inflammation and other anti-anabolic factors in
chronic disease can lead to the loss of energy and protein reserves and protein energy
malnutrition that cannot be explained nor reversed by altered dietary intake (Chapter 3).
The imbalance of anabolic and catabolic signals provides the underlying mechanisms for
the wasting (cachexia) and malnutrition of chronic diseases. Understanding the specific
role of IGF in the prolonged catabolism of conditions such as heart failure (Chapter 17),
chronic critical illness (Chapters 2, 11, 16), inflammatory bowel disease (Chapter 15),
and chronic renal failure (Chapter 13) is important to minimizing the malnutrition,
morbidity, and mortality of chronic diseases.

Malnutrition is reflected in altered circulating levels of IGF-I and some of the IGFBPs,
particularly IGFBP-1, in the blood. This ability of IGF-I to serve as a marker of the
adequacy of nutrient intake has been recognized since early research in animals. The
possibility of assessing nutritional status with a marker such as IGF-I that is itself a potent
anabolic agent is appealing (Chapter 4). Understanding the impact of nutrition support
modalities such as parenteral nutrition is furthered by understanding its direct effects on
the IGF system (Chapter 15). In addition, the acuity and sensitivity of serum IGF-I
concentrations to nutrient adequacy is particularly vital in situations of acute catabolic
stress such as critical illness where existing markers of nutrition are limited and when
starvation, but also avoidance of overfeeding, is of paramount importance.

The regulation of IGF by nutritional status has many implications across the life span.
The IGF–GH axis is a critical component in the orchestration of normal prenatal and
postnatal growth (Chapters 6 and 7), and reproduction (Chapter 8). Compromises in
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Preface                                                                                                                                    xv

normal growth, reproductive function, and IGF activity by malnutrition have been dem-
onstrated in animal models, but the specific sites of nutritional regulation and the impli-
cations for human growth and development remain to be elucidated. Many age-related
disabilities in older years are believed to be tied to changes in the IGF proteins (Chapter
9). Circulating levels of IGF-I, IGFBP-1, and perhaps other IGFs, are nutritionally regu-
lated throughout life.

The IGF system is integrally involved in such diverse tissues as skeletal muscle (Chap-
ter 11), the nervous system (Chapter 12), the heart (Chapter 17), the gastrointestinal
system (Chapter 15), and the kidneys (Chapter 13). The IGFs offer promising therapies
for many debilitating conditions such as multiple sclerosis, Alzheimer’s disease, ALS,
kidney failure, heart failure, diabetic neuropathy, stroke, and traumatic injury. The inter-
action of IGF and nutrition in normal functioning as well as disease development and
therapy is just beginning.

In cancer research, there has been tremendous interest in the IGF proteins because of
their critical role in apoptosis, cell division, and differentiation. The impact of biologi-
cally active components in food, overall nutritional state, and possible interactions with
IGF are relevant to our understanding of the fundamental mechanisms of tumorigenesis
and how the environment and thus potentially modifiable factors can induce or prevent
cancer (Chapters 6 and 18).

We are a long way from fully understanding the relationships between the  IGF system
and nutritional state, but the potential interactions and impact on health and disease are
profound and compelling. Understanding the interplay between nutrition and the IGFs
has tremendous implications for understanding fundamental biological processes, dis-
ease prevention, therapy, and health. Ultimately, it is hoped that this volume introduces
and/or expands knowledge for researchers, health professionals and students, but also
fosters continued exploration of these two vitally important and intertwined fields of
study. The editors thank all of the contributors, who despite being incredibly busy, gave
up their time to make this volume come together. The authors acknowledge the technical
assistance of Jessica Jannicelli, Nicole Furia, and the staff at Humana Press. In addition,
the authors express their sincere appreciation to Paul Dolgert, Editorial Director, Humana
Press, and Adrianne Bendich, Series Editor of the Nutrition and Health series.

M. Sue Houston, PhD, RD

Jeffrey M. P. Holly, PhD

Eva L. Feldman, MD, PhD
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KEY POINTS

• The IGF system consists of two ligands, IGF-I and IGF-II, and several receptors: the IGF-I
receptor, the insulin receptor, and the IGF-II/mannose-6-phosphate receptor. There are
also six IGF-binding proteins.

• IGF-I is a circulating growth factor and also is produced by many tissues to act as an
autocrine/paracrine factor. IGF-I stimulates cellular proliferation, differentiation, and
survival.

• IGF-I and IGF-II expression are regulated by many hormonal and nutritional factors in a
manner consistent with the effect of these factors on growth, differentiation, and metabolism.

• IGF-I and IGF-II act through the IGF-I receptor, which is a tyrosine kinase that activates a
number of intracellular signaling pathways.

• Insulin acts through the insulin receptor, which is similar to the IGF-I receptor. IGF-II can
also bind to an alternative form of the insulin receptor. The IGF-II/mannose-6-phosphate
receptor clears IGF-II, thereby decreasing its levels.

• IGF-binding proteins protect IGFs in the serum and act at the local level to either inhibit
or enhance IGF action. Some IGFBPs have IGF-independent actions on cell growth and
survival.

• Recent studies indicate that despite the apparent similarity of IGF-I and insulin receptors,
activation of the receptors results in inherently distinct effects on cellular gene expres-
sion. and function. IGF-I primarily stimulates growth and cell survival, whereas insulin
regulates metabolism.

• The insulin/IGF receptors and intracellular signaling systems are conserved in inverte-
brates, where they regulate lifespan, growth, and metabolism.

1. INTRODUCTION

The insulin-like growth factor (IGF) system includes three ligands (insulin, IGF-I, and
IGF-II), three receptors (the insulin receptor [IR], the IGF-I receptor [IGF-IR], and the
mannose-6-phosphate [M6P/IGF-II receptor]), as well as six IGF binding proteins (IGF
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BPs). This family of growth factors has been extensively studied because of its critical
role in both normal physiology and in various disease states, such as cancer, diabetes,
and malnutrition. The various components of the IGF family are widely expressed and,
therefore, other important functions are rapidly being discovered.

This chapter presents an overview of the IGF system (Fig. 1), including the biologi-
cal functions of its various components and how the expression of these components is
controlled, and will focus on more recent findings because many excellent reviews
already have covered the well-known aspects of the IGF system (1–3).

2. LIGANDS

2.1. IGF-I
IGF-I is a 70-amino acid residue single-chain polypeptide with four domains, which

are designated as B, C, A, and D. In comparison, proinsulin includes the B, C, and A
domains, whereas mature insulin includes only the B and A domains. Circulating
“endocrine” IGF-I is synthesized and released primarily in the liver (4), although most
tissues of the body synthesize IGF-I to serve as an autocrine/paracine factor.

The major factors that regulate hepatic IGF-I biosynthesis are growth hormone
(GH), insulin, and nutritional status (reviewed in Chapter 2). GH stimulates transcrip-
tion of IGF-I in the liver. This is associated with chromatin rearrangements in the sec-
ond intron of the IGF-I gene (5). Hypophysectomized mice with a targeted deletion
of the Stat-5b transcription factor fail to respond to GH with the characteristic
increase in hepatic IGF-I mRNA (6). GH also activates the Stat-5a and Stat-3 tran-
scription factors (7,8). Stat-5a-deficient mice exhibit reduced levels of IGF-I mRNA

4 Adamo et al.

Fig. 1. Components of the IGF system include ligands (insulin, IGF-I and IGF-II), binding proteins
(bp 1–6), as well as the receptors.
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expression in liver (9). Recently, GH was shown to stimulate transcription of the IGF-
I gene by promoting Stat 5b binding to two growth hormone response elements
within the second intron (10).

2.1.1. IGF-I IN HEPATIC TISSUES

Insulin stimulates transcription of the IGF-I gene in a phosphatidyl inositol 3′-
kinase (PI3 kinase)-dependent manner in the liver. This is mediated through a novel
insulin response element (IRE), which is located within the transcribed portion of exon
1 (11,12). The Sp1 transcription factor acts synergistically with an as-yet-unidentified
IRE binding protein in this insulin-stimulated transcriptional activation. In contrast,
nutritional deprivation, including fasting and protein restriction, reduce hepatic IGF-I
mRNA through a posttranscriptional mechanism (13,14). Because alteration of amino
acids and glucose in cultured hepatocytes also regulates IGF-I mRNA posttranscrip-
tionally (14,15), it is possible that specific macronutrients and micronutrients, such as
zinc (reviewed in Chapter 5) directly contribute to the effects of altered nutritional sta-
tus on regulation of the IGF family of genes. 

2.1.2. IGF-1 IN EXTRA-HEPATIC TISSUES

GH also stimulates IGF-I biosynthesis in several extra-hepatic tissues, except for
those in the female reproductive tract (16–19). GH increases IGF-I transcription in a
preadipocyte cell line (20), resulting in increased levels of an alternatively spliced form
of IGF-I mRNA that is translated more efficiently (21). GH also increases IGF-I
mRNA in a cultured skeletal muscle cell line (22). Finally, GH increases expression of
a luciferase reporter gene driven by the IGF-I promoter in the brain of transgenic mice
in vivo and in cultured brain cells from these animals in vitro (23).

Although GH can clearly regulate IGF-I gene expression, IGF-I can also be regu-
lated independently of GH in several extra-hepatic tissues. Prostaglandin E2 (PGE2)
and parathyroid hormone (PTH) increased IGF-I mRNA in cultured osteoblasts,
whereas GH had little effect (24). More recently, studies have shown that cyclic adeno-
sine monophosphate (cAMP) stimulates transcription of IGF-I in osteoblasts via a
mechanism that involves protein kinase A (PKA)-dependent nuclear translocation and
retention of the C/EBP-δ transcription factor (25,26). It also has been demonstrated
that PTH fails to promote bone formation in IGF-I-deficient mice (27). This is consis-
tent with the important physiological role of PTH and locally produced PGE2 in facili-
tating bone repair and supporting growth in an IGF-I-dependent but GH-independent
manner (28). Estradiol also increases the expression of IGF-I in osteoblasts (29),
although the precise mechanism of action and its physiological significance are
unclear. Estradiol had no effect on activity of the proximal IGF-I promoter in
osteoblastic cells (30). In that study, estradiol actually inhibited cAMP-stimulated
transactivation of the IGF-I promoter, and this was associated with diminished binding
of C/EBP-δ to the IGF-I promoter. More recently, a so-called “antiestrogen” that may
have bone-specific trophic effects transactivated the IGF-I promoter in Hep3B cells via
the estrogen receptor ER-α (31). This effect was antagonized by estradiol (31).

Thyroid-stimulating hormone (TSH) increases IGF-I mRNA in thyroid cells (32).
This is proposed to be important in the interaction between TSH and IGF-I in promot-
ing thyroid growth and function (33). Although gonadotrophins stimulate IGF-I mRNA
in cultured granulosa cells (34), there is currently no evidence that follicle-stimulating

Chapter 1 / The IGF System 5
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hormone (FSH) regulates IGF-I expression in vivo (19). Rather, estrogen may be an
important local regulator of IGF-I in ovary and uterus (35,36).

Other examples of local control of IGF-I expression include angiotensin II stimula-
tion of IGF-I production in the cardiovascular system (37), the induction of IGF-I
expression in compensatory renal growth (38), and in skeletal muscle growth and
repair (reviewed in ref. 39). However, in these latter two cases, the specific factors that
induce IGF-I mRNA are not known. In addition, the marked tissue-specific regulation
of IGF-I mRNA that occurs during muscle development is probably not dependent on
GH (40). In liver, GH does not appear to initiate the postnatal induction of exon 1 tran-
scripts, although it may contribute to this process. GH may play a more important role
in the induction of exon 2 transcripts (41). In addition, liver-specific transcription fac-
tors, such as hepatic nuclear factor (HNF)-1α, are important in hepatic IGF-I expres-
sion (42). Subsequent chapters (i.e., Chapter 8, reproduction; Chapter 10, bone;
Chapter 11, muscle; Chapter 12, neurological; chapter 13, renal ; Chapter 15, gastroin-
testinal, and Chapter 17, cardiovascular) will review the function and regulation of IGF
proteins and their relation to nutrition in extra-hepatic tissues.

2.1.3. IGF-I IN GROWTH AND DEVELOPMENT

Total deletion of the IGF-I gene leads to prenatal and postnatal growth retardation in
mice, particularly during the peri-pubertal growth spurt (2,43,44). The growth of certain
soft tissues is relatively unaffected in these animals (45,46), indicating that IGF-I plays a
role largely in musculoskeletal growth. However, other defects in IGF-I knockout mice,
including hypomyelination (47) and sterility because of deficiencies in gonadal differenti-
ation and function (16,19), indicate that soft tissues are indeed dependent on IGF-I from
either serum or local production for normal growth and development. The role of IGF
proteins in postnatal growth and development is discussed extensively in Chapter 3 and 6.

To further characterize the endocrine vs the autocrine/paracrine roles of IGF-I in
growth and development, liver IGF-I-deficient (LID) mice were generated (4). The LID
mice grew and developed normally despite a 75% reduction in serum IGF-I levels (4).
Tissue-specific deletion of the IGF-I gene in the liver did not affect postnatal growth and
development, possibly because these mice maintained sufficient circulating levels of
IGF-I during early postnatal growth. The acid labile subunit (ALS) is a protein that binds
to the IGF/IGFBP-3 binary complex, primarily in serum. Association with ALS prolongs
the half-life (t1/2) of IGFs in serum and facilitates their endocrine actions. When LID
mice were crossed with mice carrying the null ALS allele, circulating IGF-I levels were
significantly reduced and the double-knockout mice exhibited significant postnatal
growth retardation (48). Thus, circulating IGF-I plays an important role in growth.

Although circulating IGF-I clearly plays a critical physiological role, autocrine/
paracrine expression of IGF-I is also important. Follicular expression of IGF-I correlated
precisely with FSH receptor expression and FSH receptor levels were decreased in IGF-
I knockout mice (19). Exogenous replacement of IGF-I restored FSH receptor levels to
normal. Although the latter result does not rule out an effect of circulating IGF-I on fol-
licular function, cell culture studies showed that neutralization of endogenous IGF-I
inhibited FSH action in granulosa cells (49). Calvariae cultured in vitro from IGF-I
knockout mice exhibited reduced collagen synthesis and, as was described previously, in
vivo bone growth was unable to respond optimally to PTH in IGF-I knockout mice.

6 Adamo et al.
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Recently, it has been shown that tissue-specific promoter-driven expression of IGF-I
transgenes stimulates growth and development in a number of tissues, including bone
(50), thyroid gland (33), and skeletal muscle (51). Use of the muscle-specific IGF-I
transgene has been proposed to be superior to systemic administration of IGF-I in main-
taining muscle cell function, because it avoids increased serum IGF-I and potential can-
cer risk (51). However, transgenic expression of IGF-I in epidermal basal cells using the
keratin 5 promoter increased tumor formation (52).

To determine the effects of protein calorie malnutrition on extra-hepatic tissues,
liver-specific IGF-I-deficient mice were assigned to one of four isocaloric diets that dif-
fered in the protein content (20, 12, 4, and 0%), for a period of 10 d. A low protein
intake decreased the nonhepatic IGF-I secretion into the circulation, whereas it caused
an increase in the level of circulating GH. The lack of dietary protein led to an up-regu-
lation of GH and IGF-I receptor expression in the spleen, whereas the IGF-I mRNA
remained unchanged. Upregulation of IGF-binding protein-3 mRNA levels was also
observed and suggests that the protein deprivation may lead to an increased sequestra-
tion of circulating or locally synthesized IGF-I (53).

2.2. IGF-II
The role of IGF-II in growth and development was clearly demonstrated by the dra-

matic effects seen when the IGF-II gene was ablated in mice (43). From embryonic d 11
onward there was proportionate growth retardation. There were no further postnatal
effects on growth in these mice, because IGF-II expression and circulating levels
decrease dramatically after birth in rodents. Expression of IGF-II in cultured cells is reg-
ulated by various agents, including FSH, chorionic gonadotrophin and cAMP in ovarian
cells, adrenocorticotropic hormone (ACTH) and cAMP in fetal adrenal cells, glucocorti-
coid and thyroid hormone in hepatic cells, and glucose in a pancreatic beta cell line (54).
IGF-II is also increased in response to glucose in fetal hepatocytes (15), and plays an
important autocrine/paracrine role in skeletal muscle myoblast differentiation in vitro
(55). In the circulation, IGF-II is a 67-amino acid, single-chain polypeptide. However,
patients with certain types of tumors occasionally release “big-IGF-II,” a larger precur-
sor form with a 21 amino-acid extension (E-peptide). Big-IGF-II may cause hypo-
glycemia by interfering with the normal effect of the IGFBPs on neutralizing circulating
IGFs, thereby enabling big-IGF-II to interact with insulin receptors (56).

3. RECEPTORS

3.1. The Insulin-Like Growth Factor-1 Receptor
The insulin-like growth factor-1 receptor (IGF-IR) is the product of a single gene

that spans more than 100 kilobases and contains 21 exons. The receptor is organized
into functional domains that resemble those found in the insulin receptor (IR), a closely
related membrane spanning tyrosine kinase receptor (57-59). The mature receptor is
expressed in an α2β2-configuration (Fig. 2), where two α chains are joined by disul-
fide bonds. The α-subunit lies entirely in the extracellular region and contains a cys-
teine-rich domain that forms the primary binding site for IGFs. The βsubunit includes a
24-amino acid residue hydrophobic transmembrane domain, a short extracellular
region, and a large cytoplasmic region that includes a tyrosine kinase domain. The

Chapter 1 / The IGF System 7
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Fig. 2. Postreceptor mechanisms are shown in this figure and include a large array of substrates and enzymes for a large number of
biological actions.
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tyrosine kinase region is highly conserved between the IGF-IR and the IR, which share
approx 84% similarity at the amino acid level. The juxtamembrane region contains
motifs that are also found in the IR and bind to important intracellular substrates. The
most divergent region between the two receptors is the cytoplasmic carboxyl-terminus
domain.

3.1.1. IGF-IR FUNCTIONING

Like the IR, IGF-IRs are internalized following ligand binding and activation. Activa-
tion of the IGF-IR enhances the association of EHD1 with the IGF-IR and SNAP29, a
synaptosome-associated protein. EHD1 belongs to a family of proteins that contain Eps15
homology (EH) domain-containing proteins and are involved in forming protein com-
plexes that promote clathrin-coated vesicles and are involved in endocytosis. Overexpres-
sion of EHD1 in NIH-3T3 fibroblasts inhibits IGF-I signaling and supports the hypothesis
that endocytosis may be a mechanism whereby the IGF-IR signal is abrogated (60).

Genetic disruption of the IGF-IR results in fetal growth retardation and is invariably
lethal at birth, or shortly thereafter (44). More recently, a cre-lox approach was used to
generate mice with a spectrum of IGF-I receptor deficiencies (61). Mice exhibited
reduced growth from the age of 3 wk and were markedly deficient in adipose tissue
stores. Interestingly, this defect was primarily owing to decreased mitogenesis in adi-
pose tissue. IGF-IR-deficient mice had lower numbers of adipocytes, but each
adipocyte was larger. This finding somewhat modifies the current thinking about IGF-I
and fat cell differentiation, and suggests that the IGF-I receptor may principally trans-
mit a mitogenic or survival signal to preadipocytes.

3.1.2. POSTRECEPTOR PATHWAYS

Binding of IGFs to the IGF-IR results in receptor autophosphorylation of the β-sub-
unit and activation of its tyrosine kinase. After receptor activation, various IR sub-
strates (IRS1-4) bind to the juxtamembrane region of the receptor, become
phosphorylated on tyrosine residues, and thereby act as docking proteins for SH2
domain-containing substrates, including Grb2, Shc and PI3K (57,62), as shown in Fig.
2. The adapter protein Grb2 links activated growth factor receptors with the
Ras/Raf/mitogen-activated protein (MAP) kinase pathway.

MAP kinase, also termed extracellular signal regulated protein kinase (ERK), and
PI3K are important regulators of cellular proliferation and survival. With respect to cell
cycle control, IGF-I stabilizes cyclin D1 mRNA via a PI3K-dependent mechanism.
Cyclin E is also increased by IGF-I (63). In addition, IGF-I regulates certain cyclin-
dependent kinase inhibitors, thereby regulating cyclin dependent kinase(cdk) activity. It
has been shown that exposure to IGF-I decreases p27 protein levels at a posttranscrip-
tional level and via a PI3K-dependent mechanism (63,64). Activation of PI3K can
inhibit translation of p27 mRNA, increase the degradation of p27 protein (65), and
inhibit p27 gene transcription through the forkhead transcription factor (66). The degra-
dation of p27 can also be increased by ERK. This may explain why an inhibitor of
MEK, the upstream activator of ERK, blocks IGF-I-stimulated increases in cdk-2 activ-
ity (67). The IGF-I mediated increases in cyclin D1, cyclin E, and cdk2 and the IGF-I-
induced decrease in p27 can speed the transition from G1 to S in the cell cycle.

In contrast, p21, a cdk inhibitor is actually increased by IGFs in some cells
(63,67,68). This has been shown to occur through both ERK and PI3K pathways and
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may serve to induce differentiation of myocytes or to promote cell survival. IGF-I can
also increase cyclin B and cdc2 levels, which is associated with increased entry into M
phase and with increased ERK activity (69).

Promotion of cell survival is one of the major effects of IGF-I. Several mechanisms
for the molecular basis of IGF-I-mediated cell survival have been described, including
PI3K/Akt, MAP kinase, and 14-3-3 proteins, all of which are associated with increases
in the phosphorylation of BAD (70). In neuronal cells, IGF-I promoted phosphoryla-
tion of the forkhead transcription factor via PI3K/Akt, thereby inhibiting apoptosis
(71). Furthermore, IGF-I promotes transcription of the antiapoptotic bcl-2 gene, by
promoting cAMP response element binding site (CREB) phosphorylation via both the
p38 stress-activated protein kinase and PI3K/Akt pathways (72,73).

Activation of the PI3K pathway has also been shown to mediate certain IGF-I-
induced changes in gene expression and differentiation (74). The induction of uncou-
pling protein expression and glucose transport protein-4 expression in brown adipose
cells by IGF-I are dependent on both PI3K and ERK, respectively (75). The activation
of the osteocalcin promoter in osteoblasts by IGF-I was blocked by an inhibitor of pro-
tein kinase C (PKC). Because certain PKC isotypes have recently been shown to be
activated by PI3K, this effect of IGF-I could well be mediated through PI3K. More
recently, IGF-I was found to stimulate muscle growth (ordered proliferation followed
by differentiation) through the calcineurin signaling pathway, although other pathways,
including PI3K, may be able to relay IGF-I signals (51).

Protein tyrosine phosphatases can also mediate signaling through the IGF-IR. Inter-
estingly, one tyrosine phosphatase, SHP-2, binds directly to the IGF-IR and enhances
its signaling (76). In contrast, other protein tyrosine phosphatases generally negatively
regulate growth factor receptor signal transduction (77). In addition, insulin-stimulated
cell proliferation and survival, but not glycogen and protein synthesis, were recently
found to depend on a PI3K-dependent activation of MAP kinase phosphatase-1
(MKP-1), thereby leading to dephosphorylation and inactivation of cJun-N-terminal
kinase (77b). It is not clear whether this result is relevant to IGF-I, because IGF-I acti-
vates c-Jun N-terminal kinase in MCF-7 cells in a growth stimulatory mechanism (78).

Overexpression of IGF-IRs in NIH 3T3 cells has been shown to induce activation of
Janus kinase (JAK)-1 and JAK-2. JAK-1 was recruited to the IGF-IR and was able to
phosphorylate IRS-1 (79). Interestingly, a more recent study in cardiomyocytes showed
that IGF-I can activate JAK-1 and induce phosphorylation of Stat-1 and Stat-2 on both
tyrosine and serine residues. The authors implied that activation of the JAK-STAT path-
way played a role in IGF-I-stimulated growth and function of cardiomyocytes (80).

3.2. Insulin Receptor Splicing Variants
The IR closely resembles the IGF-IR but is generally considered to have much lower

affinities for the IGFs, especially IGF-I, than for insulin. Indeed, IGF-I binds the IR
with an affinity 100- to 1000-fold lower than that for insulin. Interestingly, the affinity
of the IR for IGF-II is generally much higher, being only 10- to 100-fold lower than
that for insulin (57). Indeed there are a number of examples where the function of IGF-
II may be predominantly mediated via the IR. Dwarf mice with a disruption in the
IGFII gene are more growth retarded than mice in which the IGFR gene has been
deleted, suggesting that another receptor must be involved. This receptor was identified
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as the IR in further genetic analyses (44,81). IGF-II can also stimulate the IR in fibrob-
lasts that are deficient in IGF-IRs (82).

The IR exists in two isoforms as a result of alternative splicing of exon II, which
encodes 12 amino acids. In isoform A (IR-A), exon 11 is deleted, whereas IR-B
includes exon 11 (82). IR-A is expressed in the central nervous system, hemopoeitic
cells, fetal cells and in certain cancers (83). IR-B, however, is localized specifically in
insulin-sensitive, highly metabolic tissues, such as adipose tissue, muscle, and liver
(84). The two isoforms have slightly altered binding affinities for insulin and exhibit
different levels of responses. Most interestingly, IGF-II binds to IR-A with high affin-
ity, but it does not bind to the IR-B isoform. IGF-II activates IR-A and effectively stim-
ulates the Akt/Glycogen synthase kinase 3 (GSK3) pathway, as well as promotes
progression from the G0/G1 to the S and G2/M phases of the cell cycle. Thus, IGF-II
may exert some of its mitogenic effects via the IR as well as through the IGF-IR. This
feature is of particular importance because IGF-II is frequently expressed in cancer
cells and can act as an autocrine/paracrine growth factor; some of these cancers, breast
cancers in particular, express significant levels of IRs (85). The roles of IGF proteins in
cancer are discussed further in Chapters 6 and 18.

3.3. Mannose-6-Phosphate/IGF-II Receptor
This receptor is primarily involved in targeting newly synthesized lysosomal

enzymes from the Golgi to lysosomes and in delivering extracellular lysosomal
enzymes to the appropriate cellular compartment. This receptor binds mannose-6 phos-
phate (M6P) residues of these enzymes as well as those on IGFs (not insulin). Its affin-
ity for IGF-II is much greater than for IGF-I (86), and the receptor is considered to be
an important pathway for the internalization and degradation of IGF-II. Indeed,
M6P/IGF-II receptor gene-deleted mice are larger than controls (87). Furthermore,
these results support the idea that this receptor does not have any major signaling func-
tions in vivo. On the other hand, the M6P/IGF-II receptor may play a significant role as
a tumor suppressor, as it initiates the degradation of IGF-II and activates transforming
growth factor (TGF)-β1 from a precursor molecule (88). Interestingly, microsatellite
instability in the M6P/IGF-II receptor gene has been described in various cancers,
including stomach, colon, and endometrium (89).

4. INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS

To date, six IGFBPs have been described that have high affinity for the IGFs (90,91).
These proteins are characterized by their well-conserved amino and carboxyl terminal
domains that contain several highly conserved cysteine residues. IGFBPs are found in the
circulation and are also expressed at the local tissue level. In the circulation, IGFBPs act
as “transport proteins” for the IGFs, but at the local level they act as modulators of IGF
activity (90). In the circulation, the major proportion of IGF is bound to a 150 kD com-
plex that includes IGFBP-3 and ALS, which protects the IGFs from proteases and pro-
longs their circulating half-life (91). IGFBPs may also function as carrier proteins, since
other IGFBPs may be part of a 50-kDa circulating complex that facilitates the transfer of
IGFs from the circulation to target cells.

At the target cell level, the IGFBPs have multiple roles; some IGFBPs modulate the
effects of the IGFs and others act independently from the IGFs and the IGF-IR (92).
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Inhibition of IGF-I action depends on the ability of IGFBPs to prevent the interaction
of IGFs with the IGF-IR (93,94). However, the binding affinities of IGFBPs are altered
by various modifications, including phosphorylation, partial proteolysis, and attach-
ment to the cell surface or extracellular matrix (ECM). For example, dephosphoryla-
tion of IGFBP-1 lowers its affinity for IGFs. Attachment of IGFBP-3 to the cell surface
or IGFBP-5 to the ECM lowers their respective affinities for IGFs. All of these actions
are proposed to enhance the delivery of IGFs to the IGF-IR.

IGF-independent actions have been reported for IGFBP-1. When the RGD sequence
was prevented from interacting with the integrin α5β1 receptor, IGFBP-1 was pre-
vented from stimulating cell migration (95). In breast cancer cells, cell surface binding
of IGFBP-1 to integrin resulted in dephosphorylation of FAK, detachment from the
ECM, and cellular apoptosis (96).

It has been suggested that IGF-independent actions of IGFBP-3 inhibit cellular pro-
liferation via the type V TGF-β receptor, but not through Smad signaling (97) or the
type II TGF-β receptor (98). However, there is some question as to whether the latter
effect is truly IGF-independent. A proapoptotic action of IGFBP-3 was also reported to
be independent of IGF and p53 (99). This is somewhat surprising, because p53 has been
shown to induce IGFBP-3 (100). Although it is not entirely clear if these effects are
totally independent of IGF, IGFBP-3 has been shown to increase the bax/bcl-2 ratio in
p53-deficient breast cancer cells and to promote apoptosis induced by ionizing radiation
(101). Other proapoptotic actions of IGFBP-3 have been reported (102,103). A number
of potential IGF-independent survival effects of IGFBP-4 and IGFBP-5 have been
reported; however, the mechanisms underlying these effects are not known (102).
Finally, IGFBP-3 and IGFBP-5 are translocated into the nucleus via the importin 5 sub-
unit (104,105). The consequences of these actions are not known. Taken together, these
results suggest that multiple novel and IGF-I-independent actions of IGFBPs can regu-
late growth and survival.

5. INSULIN VS IGF ACTION

Insulin classically controls carbohydrate, lipid, and protein metabolism in mam-
mals, whereas the IGFs promote cell growth, survival, and differentiation. Because
their cognate receptors are so similar in structure and function and share many com-
mon signaling pathways, a vexing question remains: do differences in receptor distri-
bution or post-receptor signaling determine the specificity of insulin vs IGF actions in
the whole animal (106)? A number of intracellular substrate molecules have been
identified that mediate specific effects of one or the other of these two receptors.
pp120, a plasma membrane glycoprotein, plays a specific role in the actions of
insulin. pp120 is a substrate of the IR that becomes tyrosine phosphorylated upon
activation of the receptor, and is involved in the endocytosis of the insulin/IR com-
plex (107). Apparently, pp120-induced internalization of the IR complex reduces the
cellular mitogenic response to insulin in certain cells. Conversely, in the absence of
pp120, mitogenic responses to insulin may be artificially enhanced (108). The tyro-
sine phosphorylation of pp120 is essential for receptor endocytosis, as mutant forms
of pp120 failed to become phosphorylated and did not induce endocytosis of the IR.
The activated IR is capable of phosphorylating tyrosine residues on pp120, whereas
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the IGF-IR is not. Thus, pp120 appears to be an important endogenous substrate that
is specific for the IR.

To investigate the signaling specificity of the IR and IGF-IR, Siddle and coworkers
performed a number of elegant studies where they generated various chimeric recep-
tors (109). These chimeras consisted of an extracellular portion of the neurotrophin
receptor TrkC fused to the intracellular portion of either the IR or IGF-IR. Constructs
encoding these chimeric receptors were stably transfected into 3T3-L1 adipocytes.
Because these cells do not express endogenous TrkC receptors, exposing cells to neu-
rotrophin-3 specifically activated the intracellular tyrosine kinase domain of each
receptor. This approach has the advantage of eliminating potential complications
from regulation of endogenous receptors. These studies revealed that activation of the
TrkC-IR tyrosine kinase resulted in higher level of IRS-1 phosphorylation, a signifi-
cantly greater association of IRS-1 with PI3K, and an increase in translocation of glu-
cose transport protein-4, as compared with the cells expressing the TrkC–IGF–IR
chimera. In contrast, cells expressing the TrkC–IGF–IR chimera displayed a higher
level of Shc phosphorylation, increased association of Shc with Grb2, and increased
activation of ERK, as compared to cells expressing TrkC–IR. Thus, the IR was found
to have a greater role in stimulating metabolic effects in these cells, whereas the IGF-
IR was found to have a greater effect on mitogenic pathways, as has been previously
postulated (110). Similarly, Accili and coworkers demonstrated that the IR more
effectively stimulates glycogen synthesis in hepatocytes and 3T3-L1 adipocytes than
does the IGF-IR (111). The precise molecular basis for the different functional speci-
ficities between the IR and IGF-IR remains speculative, although a number of possi-
bilities have been suggested. One such possibility is that the divergent carboxyl
terminal domains of these two receptors may interact with different substrates.
Another possibility is the differences in endocytosis and subsequent cellular traffick-
ing of the IR and IGF-IR may result in specific cellular localizations of the two recep-
tor subtypes.

5.1. Differentiation of Insulin and IGF Actions by cDNA 
Microarray Analysis

To further define the differential effects of insulin and IGF-I receptors, NIH-3T3
fibroblasts were stably transfected with cDNAs encoding either the IR or the IGF-IR.
Cells overexpressing either the IR or the IGF-IR and corresponding control cells were
stimulated with insulin or IGF-I, respectively. mRNA was isolated from these cells 90
min later and control vs insulin- or IGF-I-treated samples were subjected to microarray
analysis using mouse arrays with 3899 genes. Fibroblasts generally exhibit prolifera-
tive responses, but little in the way of metabolic responses. Thus, if the IR and IGF-IR
signaling pathways are truly separate, differential gene expression should be exhibited.
Expression levels of 30 genes were significantly increased in IGF-IR-overexpressing
cells treated with IGF-I that were not induced in response to insulin stimulation of the
IR-overexpressing cells (Table 1). Conversely, insulin specifically induced the expres-
sion of 10 genes that were not induced by IGF-I. Most of the genes induced by IGF-I
corresponded to ones previously known to be involved in mitogenesis and/or differenti-
ation. The conclusion from these studies was that IGF-I is a more potent activator of
the mitogenic pathway than is insulin in mouse fibroblast NIH-3T3 cells (112).
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6. EVOLUTIONARY ASPECTS OF INSULIN AND IGF-I SIGNALING

An insulin/IGF-I signaling cascade has been identified in both Caenorhabditis ele-
gans and Drosophila melanogaster (113,114), as shown in Fig. 3. Mutations of the
IR/IGF-IR ortholog Daf-2 in C. elegans give rise to dauer larvae, which have a pro-
longed lifespan and reduced metabolic activity. This mutation enhances survival during
periods of food deprivation and other environmental stresses. Similar effects are exhib-
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Table 1
Genes Upregulated by IGF-I and Not by Insulin

IGF-1 Insulin

Mitogenesis and differentiation
IL-3 receptor, α-chain 5.32 1.23
Colony-stimulating factor, macrophage 4.12 1.32
Glial cell line-derived neurotrophic factor 3.96 0.80
Integrin-5 (fibronectin receptor) 3.55 0.94
Early growth response-1 3.65 0.58
Jun oncogene 3.01 1.11
Twist gene 2.95 1.54
Forkhead homolog 14 2.91 1.08
Wee 1-like protein kinase 2.75 1.95
IGF binding protein 10 2.48 1.48
SRY box-containing gene 2 2.39 0.59
IL-4 receptor α 2.30 0.80
DNA-binding protein A 2.29 1.65
MAK16 2.27 1.70
Nerve growth factor-induced clone A-binding protein 2 2.31 1.25
Mothers against decapetalegic-5 2.24 1.49
Early development regulator 2.22 1.67
Ets variant gene 6 (TEL oncogene) 2.21 0.97

Apoptosis
T-cell death-associated gene 51 9.00 1.52
Fas-binding protein (Daxx) 5.99 1.55

Cellular processes
Variant histone H3.3 3.30 1.39
Kinesin heavy-chain member 1A 2.83 0.67
Chromatin nonhistone high-mobility group protein 2.64 1.15
Eukaryote release factor 1 2.34 1.19
Aspartate-glutamate-alanine-aspartate (DEAD) box polypeptide 5 2.22 1.24
Splicing factor, arginine/serine 3 2.41 1.69

Metabolism
Gibbon ape leukemia virus receptor-1 4.88 1.20
Glycerol phosphate dehydrogenase 1, mitochondrial 2.74 0.91

Others
Nuclear factor erythroid-derived 2, -like 2 2.90 0.86
Immediate early protein Gly96 2.46 1.13

Numbers represent the fold increase (or decrease) above unity.
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ited with mutations of PI3K and Akt (114,115). Mutations of other substrates and signal-
ing proteins, include Daf-16 (a homolog of the mammalian FOXO forkhead transcrip-
tion factors) and Daf-19 (a homolog of the mammalian phosphoinositide phosphatase
(PTEN), which inhibits P13K) can negate the effect of the Daf-2 mutation (116,117).
These studies have shed new light on the role of the insulin/IGF signaling pathways in
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more primitive organisms. Furthermore, they suggest an intriguing mechanism whereby
enhanced caloric intake may shorten lifespan by increasing insulin/IGF signaling and,
conversely, lifespan may be lengthened by caloric restriction. This hypothesis has further
been substantiated in GH receptor knockout mice, which exhibit reduced levels of circu-
lating IGF-I and lifespans that are 65% longer than normal (118).

In D. melanogaster, the IR homolog (DIR) differs substantially from the mam-
malian IR and IGF-IR, as DIR itself binds directly to many of its downstream signaling
substrates via its carboxyl-terminal extension (119). In contrast, the mammalian IR and
IGF-IR use the IRS family of docking proteins to link insulin and IGF-I signaling to
downstream substrate molecules. The Drosophila homolog of the IRS family of mole-
cules, known as CHICO, has been shown to play an important role in cell proliferation
and overall body growth (120).

7. SUMMARY AND CONCLUSIONS

This brief introductory chapter has outlined the essential components of the IGF
system and has described some newer concepts in the insulin/IGF signaling pathways.
These include various evolutionary aspects, divergences in the two signaling pathways,
and effects on gene expression. Many of these aspects are relevant to the subsequent
chapters, including those related to nutrition, therapeutic aspects of IGF-I and insulin,
and even cancer.
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KEY POINTS

• Nutrition is one of the principal regulators of circulating IGF-I. Many mechanisms are
involved in the nutritional regulation of IGF-I.

• Both energy and protein are critical to the regulation of serum IGF-I concentrations. After
fasting, adequate energy and protein are necessary for restoration of serum IGF-I, but
energy may be somewhat more important than protein. While a low intake of protein is
able to increase IGF-I in the presence of adequate energy, there is a threshold requirement
of energy below which optimal protein intake fails to raise IGF-I after fasting.

• The decline of serum IGF-I during dietary restriction is independent of diet-induced alter-
ations in pituitary GH secretion. In severe dietary restriction (fasting), a marked decrease
in the number of liver somatogenic receptors suggests that a GH receptor defect is
involved in the decline of serum IGF-I. In protein restriction, the decline of serum IGF-I
results from a postreceptor defect in GH action at the hepatic level.

• Nutritional deprivation decreases hepatic IGF-I production by diminishing IGF-I gene
expression. Decline in IGF-I gene expression results from both transcriptional and post-
transcription mechanisms.

• Diet restriction also increases the clearance and degradation of serum IGF-I through
changes in the levels of circulating IGFBPs.

• The molecular mechanisms leading to the decline of IGF-I in catabolic stress seem to be
similar to those operational in food deprivation.

• Nutrients may also control the biological action of IGF-I, either directly or indirectly,
through changes in IGFBPs.

1. INTRODUCTION

Starvation causes growth arrest and decreases body cell mass. Although secondary
changes in the hormonal milieu play a major role, the mechanisms by which insuffi-
cient nutrition cause growth retardation are not well elucidated. Given its stimulatory
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effect on cell proliferation and differentiation and its anabolic effect on protein metab-
olism (1), the decline in insulin-like growth factor (IGF)-I in states of undernutrition
likely contributes to the observed growth arrest and loss of cell mass observed. In this
chapter, we will review the mechanisms responsible for the decrease of IGF-I in
response to fasting and food deprivation and compare the responses to insufficient
nutrition to those that occur during critical illness (2).

2. EVIDENCE FOR THE NUTRITIONAL REGULATION 
OF IGF-I IN HUMANS

2.1. Fasting and Malnutrition
Fasting among normal volunteers causes serum IGF-I to begin to decline within 24 h

and to reach 20% of prefast values by 10 d (3). Changes in serum IGF-I concentrations
parallel changes in nitrogen balance, suggesting that decreased IGF-I might mediate a
decline in protein synthesis or an increase in protein breakdown. Decreased serum
IGF-I is not restricted to fasting but also is observed in protein calorie malnutrition
(marasmus, kwashiorkor, anorexia nervosa, celiac disease, AIDS, inflammatory bowel
diseases) (4). In general, the magnitude of IGF-I reduction relates to the severity of the
nutritional insult as reflected by serum albumin concentrations, weight deficit, or loss
of body cell mass. The sensitivity of serum IGF-I to nutrient deprivation and repletion
makes it a useful marker of nutritional status (reviewed in Chapter 4). Growth hormone
(GH) secretion often is increased in malnourished patients, suggesting that they have
resistance to the action of GH (5). The injection of pharmacological doses of GH, how-
ever, may still increase IGF-I and cause nitrogen retention in some malnourished
patients (6).

Serious illness is also associated with low circulating concentrations of IGF-I
despite augmented GH concentrations (7). This rise in GH secretion persists despite
the calorie and protein supply afforded by artificial feeding, indicating that nutrient
deprivation is not always responsible for the GH resistance observed in such patients.

2.2. Respective Roles of Energy and Protein Intake
Both energy and protein are important in regulating IGF-I because each is essential

for restoration of serum IGF-I concentrations after fasting. Refeeding a diet sufficient
in calories and protein raises IGF-I to nearly 70% of the basal prefast values within 5 d,
whereas refeeding a protein-deficient isocaloric diet results in a 2-d delay in the
upward inflection of IGF-I and increases IGF-I to only 50% of control prefast values.
In contrast, refeeding a diet deficient in both protein and energy results in a further
decrease of IGF-I in serum (8). The importance of energy intake in regulating IGF-I is
supported by the observation that there is a threshold energy requirement (similar or
equal to 11 kcal/kg/d) below which optimal protein intake fails to raise IGF-I during
fasting (9). The source of energy also might be critical for the regulation of serum IGF-
I because the carbohydrate content of the diet appears to be a major determinant of the
response of IGF-I to GH when energy intake is severely restricted (10). The role of pro-
tein intake in the regulation of IGF-I is illustrated by the observation that the increase
in IGF-I after fasting is proportional to the protein content of the refeeding diet. The
quality of dietary protein is also important because IGF-I concentrations after fasting
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are restored more readily by a protein-restricted diet rich in essential amino acids than
by one that is rich in nonessential amino acids (11).

Energy and amino acid deprivation do not appear to play a major role in the decline
of IGF-I observed in critically ill patients. Evidence obtained mainly from animal mod-
els suggests that factors, such as cytokines, glucocorticoids, and acidosis, are important
in this regard.

3. MECHANISMS INVOLVED IN THE NUTRITIONAL REGULATION
OF IGF-I PRODUCTION

3.1. Role of GH Secretion
Because GH is the principal hormonal stimulus of IGF-I production, impaired GH

secretion may cause decreased IGF-I concentrations when food intake decreases (Fig. 1).
In rats, the pulsatile secretion of GH is markedly attenuated by decreased availability of
nutrients (12), and this could result in the decline of serum IGF-I. Unlike rats, however,
humans (13) and other species have increased GH secretion when food intake is
decreased. Fasting for 5 d increases the 24-h integrated GH concentration and the maxi-
mum amplitude and pulse frequency of GH (13). These observations suggest that
impaired GH secretion is not responsible for decreased serum IGF-I concentrations in
food-restricted humans.

Decreased GH secretion in starved rats could result from increased somatostatin,
somatotropin-releasing inhibitory hormone (SRIH), tone or from reduced growth
hormone-releasing hormone (GHRH) stimulation of somatotroph cells (14). The
involvement of SRIH is suggested by in vivo immunoneutralization studies in which
GH secretion is restored in fasted rats after intravenous injection of antiserum to
SRIH (15). Increased SRIH observed in the peripheral circulation of fasted rats
likely originates more probably from peripheral sources (gastrointestinal tract and
pancreas) and not the hypothalamus (12,16,17). These observations suggest that a
relative or absolute excess of SRIH is involved in fasting-induced inhibition of GH
secretion. The decline in GH secretion during fasting could also result from dimin-
ished GHRH secretion because levels of GHRH mRNA in the hypothalamus are
decreased markedly after 72 h of fasting (16). This decrease, however, is not associ-
ated with a reduction in hypothalamic GHRH peptide content, suggesting that
release of peptide may be decreased in parallel with the reduction in mRNA. Given
the evidence for an inhibitory effect of SRIH on GHRH release (18), the imbalance
between GHRH mRNA and peptide in the hypothalamus might be secondary to high
SRIH tone. Lack of dietary protein blunts spontaneous GH secretion (19). The pro-
tein content of the diet seems to be critical for the regulation of hypothalamic GHRH
gene expression (20). Furthermore, dietary protein restriction attenuates GH respon-
siveness to GHRH and reduces pituitary size and GH content.

Several extrahypothalamic hormones are also implicated in the regulation of GH
secretion and might be involved in nutrition-induced alterations in GH secretion. Lep-
tin, a product of adipose tissue, is capable of entering the brain to inhibit food intake
and increase energy expenditure. Because administration of leptin antiserum to rats
causes a marked decrease in GH secretion (21) and leptin levels are reduced by fasting
in rats as in humans (22–24), it has been suggested that leptin may be an integrative
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signal for coordinating growth with nutritional status. This is supported by the observa-
tion that exogenous leptin prevents the fasting-induced fall of serum GH in rats
(25–27). Despite its stimulatory effect on GH secretion, exogenous leptin does not
restore serum IGF-I in fasted animals to normal. The effect of leptin on GH secretion in
rats appears to be exerted at the hypothalamic level by regulating neurons that produce
GHRH, SRIH, and neuropeptide Y (NPY). The rescue of GH secretion by leptin may
be mediated by preventing decline of GHRH mRNA, and induction of NPY mRNA in
fasted rats (26). Alternatively, the GH-releasing activity of leptin may be mediated in
part by inhibition of SRIH (28), as suggested by the ability of leptin to decrease SRIH
mRNA and secretion in vitro (29). Finally, leptin may stimulate GH secretion directly,
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Fig. 1. Regulation of GH secretion by fasting in the rat. GH, growth hormone; SRIH, somatotropin-
releasing inhibitory hormone; GHRH, growth hormone-releasing hormone; NPY, neuropeptide Y; T3,
triiodothyronine.
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as illustrated by in vitro experiments (30). The effects of leptin on GH secretion in
humans remain to be clarified.

Ghrelin, an important regulator of GH secretion and energy homeostasis (31) pro-
duced mainly by the stomach, is regulated by nutrient intake (32) and promotes GH
release at both the hypothalamic and pituitary levels (33). Although both GH and ghre-
lin increase during fasting in humans, no correlations seem to exist between plasma
ghrelin and GH or IGF-I concentrations. Further investigation is needed to delineate
the role of ghrelin in enhancing GH secretion in fasting humans. Thyroid hormones
stimulate the production of growth hormone in cultures of GH1 pituitary cells (34), and
decreased plasma triiodothyronine (T3) in fasted rats has been implicated in the
decrease of GH mRNA in the pituitary during fasting (35). Moreover, retinoic acid,
acting in synergy with thyroid hormones, stimulates production of growth hormone in
cultured pituitary cells (36,37). We speculate that the stunted growth accompanying
vitamin A deficiency might be mediated by decreased GH production.

GH secretion of rats is impaired in several other models of dietary manipulation that
are accompanied by growth retardation and low serum IGF-I concentrations (lysine
deficiency, potassium deficiency, zinc deficiency and selenium excess) as well as in
response to stressful stimuli such as sepsis (38).

3.2. Role of GH Receptor and Postreceptor Defects
It is unlikely that impaired GH secretion alone causes the decrease in IGF-I

observed in nutritionally restricted rats because the administration of GH to fasted or
protein-restricted rats does not produce a normal increase of IGF-I in blood (39–43).
Also, protein energy malnutrition in humans is accompanied by high circulating con-
centrations of GH that fail to maintain IGF-I in the normal range (44,45). These
observations suggest that GH resistance accompanies nutritional deprivation.
Because the liver is a principal site for production of IGF-I (46,47), reduction of GH
binding by the liver could impair production of IGF-I. Rats that are fasted exhibit par-
allel decline in serum IGF-I concentrations and in somatogenic (GH) binding capac-
ity in liver (48).

Changes in hepatic GH receptors (GHR) caused by dietary restriction of rats are par-
alleled by changes in concentrations of GH binding protein (GHBP) in serum (49). In
humans, GHBP decreases in parallel with serum IGF-I concentrations during severe
dietary restriction (50). However, the consequences of changes in circulating GHBP in
the control of GH action are disputed.

Regulation of the GHR by fasting occurs at the level of gene expression (51). GH
receptor mRNA is reduced by fasting (52,53), and the magnitude and time-course of
this decline is similar to the decline in liver IGF-I mRNA, suggesting that there may be
a causal relationship between the two. This decline in GHR mRNA may be driven in
part by nutritionally induced changes in hormones, such as glucocorticoids, thyroid
hormones, and insulin, or in metabolites such as glucose. Glucocorticoids in excess
(54,55), insufficient thyroid hormones (56–58) or insulin (59–61), and reduced supply
of glucose (62,63) that occur in response to food deprivation are associated with low
liver GHR binding and mRNA. Decreased liver GHR mRNA occurs in humans who
have GH resistance caused by malnutrition (64) or postoperative catabolism (65). GH
resistance associated with decreased liver GHR mRNA and binding is also present in
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other dietary models of malnutrition, such as zinc deficiency (66) and in catabolic con-
ditions, such as chronic renal failure (67) and sepsis (68).

In contrast to fasting, the role of the liver GH receptors in the decline of serum IGF-
I in protein restriction is more questionable. Although protein restriction in young rats
results in a dramatic decline of serum IGF-I, liver GH binding sites decrease only mod-
estly. In older animals, protein restriction also causes a decline in serum IGF-I but does
not reduce GH binding to liver membranes (69) or to freshly isolated hepatocytes (70).
Also, no changes in serum GHBP are observed (71). Serum IGF-I responses to a single
injection of GH in hypophysectomized protein-restricted animals are severely blunted
(42). Despite the fact that continuous infusion of GH into protein-restricted rats
increases liver GH binding to the level of control-fed rats, serum IGF-I is not increased
(43). Taken together, these studies suggest that a postreceptor defect in GH action may
participate in the GH resistance observed in protein restriction.

Intracellular defects in GH action could be a direct effect of limited nutrients or
could result from secondary hormonal changes. Although it is not clear whether this
postreceptor defect is specific to GH or is one that limits the synthesis of IGF-I regard-
less of the stimulus, the latter alternative seems the more likely. In hepatocyte primary
cultures, the stimulation of IGF-I gene expression by insulin (72) as well as by GH (73)
is blunted by a reduction in the concentration of amino acids in the medium.

3.3. Role of GH Transduction Pathways
Although the decrease in liver GH binding associated with fasting is well estab-

lished, the consequences of this decline on the GH transduction pathway are less clear
(Table 1). To investigate the effect of fasting on the liver GH transduction pathway,
Beauloye et al. assessed the activation of the Janus kinase-signal transducers and acti-
vators of transcription (JAK-STAT) pathway in response to GH injected in the portal
vein of fasted and fed rats (74). Although GH stimulated the phosphorylation of JAK-2,
GHR, and STAT-5 in fed animals, the phosphorylation of these molecules was blunted
markedly in the fasted animals. The inhibitory effect of fasting on these GH signaling
molecules occurred without any changes in their protein content. The effect of fasting
on GH-induced GHR and STAT-5 phosphorylation was detectable as early as 3 min
after GH treatment and persisted at least until 30 min after GH injection. These find-
ings suggest that the effects of fasting on the GHR signaling pathway are not caused by
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Table 1
Effect of Fasting, Sepsis, and Chronic Renal Failure on GH-Induced JAK-2, GHR, STAT-5
Phosphorylation, and on SOCS-3 Gene Expression

Fasting Sepsis Chronic renal failure

P-JAK-2/JAK-2
P-GHR/GHR ND ND
P-STAT-5/STAT-5
SOCS-3 mRNA

P, phosphorylated; JAK, Janus kinase; STAT, signal transducers and activators of transcription; SOCS,
suppressors of cytokine signaling; GHR, growth hormone receptor; ND, not determined.

→→→→→→

→→→
→

→→→
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delayed GH activation. The observation that the phosphorylation of STAT-5 by JAK-2
is required for GH to stimulate IGF-I expression (75) supports the role of the alter-
ations caused by fasting in the decrease of liver IGF-I production.

Although the mechanisms by which fasting alters the JAK-STAT pathway remains
to be determined, it is likely that this defect results mainly from decreased liver GH
binding sites. Another mechanism might be the superinduction of an intracellular nega-
tive feedback loop mediated by suppressors of cytokine signaling (SOCS) proteins.
The ability of overexpressed SOCS-3 to blunt JAK-STAT activation in transfected cells
(76,77) and the increased SOCS-3 expression by fasting (74) suggest a role for SOCS-
3 in the fasting-induced JAK-STAT alterations. Impaired JAK-STAT signal transduc-
tion, possibly mediated through decreased GH receptors and SOCS proteins
overexpression, may also contribute to the GH resistance observed in chronic renal
failure (78) and in sepsis (79).

3.4. Role of Hormones in the Nutritional Regulation of IGF-I
3.4.1. INSULIN

Dietary restriction causes serum insulin concentrations to decline. Insulin-deficient
diabetic rats have low serum IGF-I and decreased liver GH binding (60,80,81).
Replacement of insulin restores both to normal. Insulin, therefore, might regulate
serum IGF-I concentrations through changes in liver GH binding (82). The addition of
insulin to hepatocytes in culture increases GHR mRNA and GH binding (61,83).
Recent onset or mild streptozotocin-induced diabetes in rats, however, can be accom-
panied by low serum IGF-I without change in hepatic GH binding (84). In this situa-
tion, the decline of IGF-I is attributed to a postreceptor defect, likely related to the
insulin deficiency directly, or less likely to metabolic abnormalities caused by insulin
deficiency. In primary cultures of hepatocytes, insulin stimulates the accumulation of
IGF-I mRNA in the absence of GH (85,86). Insulin also potentiates the stimulatory
effect of GH and amino acids on IGF-I production (72,85,87). Although its exact
mechanism of action is not known, the stimulatory effect of insulin seems to result
from an enhanced rate of IGF-I gene transcription (Fig. 2) in adult hepatocytes (88)
and from enhanced IGF-I mRNA stability in fetal hepatocytes (89). Despite insulin’s
stimulatory role on IGF-I production, protein restriction (and perhaps decreased avail-
ability of specific amino acids) may be more important mechanistically than decline in
serum insulin concentrations for the decreased circulating IGF-I in protein-restricted
rats (90). In rats made diabetic with streptozotocin who are treated with insulin and
then submitted to a low- or normal protein diet, the diet decline in IGF-I persists
despite high circulating insulin (two to three times normal values). This suggests that
dietary protein restriction decreases serum IGF-I independent of insulin and that pro-
tein restriction by itself is the major cause of reduced serum IGF-I in this model.

3.4.2. THYROID HORMONES

The involvement of the thyroid hormones in the nutritional regulation of IGF-I is
suggested by the close relationship between the decline of circulating IGF-I and of thy-
roxine (T3) in fasted humans (91) and rats (92). Low serum IGF-I in hypothyroid ani-
mals reinforces the possibility of thyroid hormone regulation of IGF-I (93). It is
possible, however, that the major effect of thyroid hormones on IGF-I synthesis is
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exerted on the pituitary (94), where thyroid hormones regulate GH gene expression
(95). Hypothyroidism is not only accompanied by a decline in GH secretion but is also
associated with blunted IGF-I production in response to GH and resistance to the
growth-promoting effect of GH (93). This suggests that thyroid hormones participate in
IGF-I production by the liver. Studies show that thyroid hormones potentiate hepatic
IGF-I synthesis in response to GH both in vivo and in vitro (83,96). Hepatic GH bind-
ing is upregulated by thyroid hormones. This supports the role of thyroid hormones in
the potentiation of GH induction of IGF-I. Low serum T3 concentrations might play a
role in the decline in GH and serum IGF-I concentrations in fasted rats because treat-
ment of fasted rats with T3 seems to attenuate the decline in serum IGF-I (97).

3.4.3. GLUCOCORTICOIDS AND PROINFLAMMATORY CYTOKINES

A role for glucocorticoids in the GH resistance caused by food deprivation is sug-
gested by their inhibitory effect on GH-induced IGF-I production in vivo (98) and in
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Fig. 2. Role of hormonal changes and nutrient availability in the regulation of IGF-I production by
liver in response to food deprivation. GH, growth hormone; GHR, growth hormone receptor.
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vitro (55,99) concurrent with their increased circulating concentrations during fasting.
Part of the GH resistance caused by excess glucocorticoids might be caused by their
capacity to inhibit GHR mRNA and GH binding to hepatocytes (54,55) and to other
cell types (99,100). In diabetic rats, which have increased glucocorticoids and GH
resistance, adrenalectomy restores the GH-induced IGF-I response (101,102). In con-
trast with diabetic rats, however, adrenalectomy of fasted animals failed to reverse the
fasting-induced inhibition of the early steps of the liver GH receptor-signaling pathway
(74). In addition to inhibit IGF-I production, glucocorticoids may also impair growth
by induction of IGFBP-1 and reduction of free IGF-I (103) in the circulation.

In severe catabolic states such as sepsis, proinflammatory cytokines, namely tumor
necrosis factor-α, interleukin-1β, and interleukin-6 are implicated in the development
of GH resistance and the decrease in circulating IGF-I (refs. 104–106; see also chapter
16). As reviewed in Chapter 3, metabolic acidosis, as in renal failure, also has been
shown to cause resistance to GH (107) and to decrease circulating IGF-I (108).

3.5. The Role of Nutrient Availability in the Nutritional Regulation of IGF-I
Evidence for a direct role of amino acid availability in regulating IGF-I comes from

experiments using primary cultures of rat hepatocytes (109). In this model, amino acid
deprivation causes a rapid and progressive decline in IGF-I mRNA and IGF-I peptide
production, whereas amino acid excess causes an increase (73,88). Among the amino
acids, tryptophan seems to be the most critical in regulating IGF-I, as its removal from
the medium for 48h causes a dramatic decline in IGF-I mRNA and in IGF-I release.
Across a broad range of amino acid concentrations, GH and insulin raised IGF-I
mRNA levels in proportion to the amino acid concentration (110). Taken together,
these observations suggest that GH, insulin and amino acids can regulate hepatic pro-
duction of IGF-I independently.

It is not known, however, whether amino acids, insulin and GH control IGF-I synthe-
sis at the same point. Whereas insulin and GH are believed to act at the transcriptional
level, decreased IGF-I mRNA in amino acid-deprived cultured hepatocytes results from
decreased transcription rate (88) and enhanced degradation (111). An amino-responsive
element has been described in the IGF-I gene (112). It does not seem, however, to share
common features with the one characterized in the CHOP and asparagine synthase
genes, two genes induced by amino acid deprivation (113). Several transcription factors
appear to be affected by dietary protein/amino acid availability, but it remains to be
determined whether these are involved in the observed effects of amino acids on IGF-I
transcription. Restriction of amino acids leads to accumulation of uncharged transfer
RNA, which could impair gene expression by altering the rate of transcription (114).

In parallel with inhibition of IGF-I, amino acid deficiency stimulates the in vitro
expression and release of IGFBP-1, a binding protein considered to inhibit the actions
of IGF-I. Limitation in any one of the essential amino acids causes strong induction of
IGFBP-1 (73,115). However, restriction in vivo of single essential amino acids is not
sufficient to induce IGFBP-1, and general amino acid depletion is necessary (116). The
direct effect of amino acid deprivation on IGFBP-1 explains why higher levels of
IGFBP-1 are observed in protein-restricted rats than in starved rats.

IGF-I gene expression also may be regulated by glucose in hepatocytes, particularly
those of fetal origin (63,117). In this model, glucose stimulates IGF-I mRNA and pep-
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tide secretion. Experiments with analogs suggest that glucose-6 phosphate is necessary
for the induction of IGF-I mRNA. A similar observation was made for IGF-II. The glu-
cose-induced rise in IGF-II mRNA was mediated by stimulation of gene transcription
and increased transcript stability. This effect was observed in the absence of GH, indi-
cating that it did not result from the potentiation of the GH action on IGF-I (63).

Although reduced amino acid availability is thought to be responsible for the
decrease of liver IGF-I mRNA in response to protein restriction, such a direct mecha-
nism does not seem to be the rule for all nutrients. For example, chelation-induced
depletion of zinc in rat hepatocytes does not cause IGF-I gene expression to decline,
despite the clear inhibition of the metallothionein mRNA (118).

3.6. Role of Changes in IGF-I Gene Expression
Decreased serum IGF-I in dietary energy or protein restriction correlates with

reduced steady-state levels of hepatic IGF-I mRNA (119–122), suggesting that nutri-
tional regulation of IGF-I gene expression takes place at a pretranslational level. In
fasted animals, the levels of IGF-I mRNAs with different 5′ untranslated regions (class
1 and class 2 transcripts) appear to be coordinately decreased (123,124). However,
although the levels of IGF-IB mRNA declined markedly, IGF-IA mRNA was not
altered significantly (125). Despite this preferential decrease in IGF-IB mRNA, fasting
caused both propeptides IGF-IA and IGF-IB to decrease (123,125). All size-class tran-
scripts (0.8–1.2, 1.7, 4.7, and 7.5 kb) are proportionately reduced by fasting (53).
Dietary protein restriction, however, caused a greater decrease of the 7.5 kb IGF-I
mRNA than the other size-classes (122,126).

Based on nuclear run-off studies (53,111,125) and analysis of nuclear transcripts
(127,128), both transcriptional and posttranscriptional mechanisms may mediate the
decrease in IGF-I expression observed in fasted as well as protein-restricted animals.

The weight of evidence suggests that transcription is the major locus for nutritional
regulation of IGF-I. The co-ordinate decrease in transcription of nutritionally sensitive
genes, such as albumin, transthyretin, and IGF-I in protein-restricted rats might result
from altered activity of transcription factors. The DNA binding activity of factors
involved in the expression of the IGF-I gene in liver (hepatocyte nuclear factor [HNF]-
1α, HNF-3, HNF-4, CCAAT/enhancer binding protein [C/EBP], Sp1) is altered in
response to protein restriction (129). The transcriptional activity of HNF-1α is reduced
in hepatocytes exposed to medium deficient in amino acids (130). In contrast, C/EBP
homologous protein (the CHOP transcription factor) is stimulated in these conditions
(131,132). The induction of CHOP is of interest as increased levels of CHOP could
interfere with C/EBP binding (133). Although the role of HNF-1α and C/EBPα in the
stimulation of basal expression of IGF-I in liver is well established (134,135), their
contribution to reduced IGF-I gene expression in the liver of protein-restricted rats is
unsettled. Other transcription factors involved in the transcriptional regulation of IGF-
I, such as Sp1 (136), might also direct the response to nutrient availability (137).

Nutritional regulation also seems to take place at the nuclear RNA splicing step. The
observation that IGF-IA and IGF-IB mRNAs result from alternative splicing after tran-
scription of a single gene, yet only IGF-IB mRNA levels are decreased by fasting sug-
gests that the decrease in liver total IGF-I mRNA might also involve regulation of the
pre-mRNA processing (111).
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Protein restriction may result in decreased stability of the IGF-I mRNA, in particular
for the 7.5-kb transcript (122,126). Reduction of the 7.5-kb transcript in protein
restricted rats is confirmed by the observation that IGF-I mRNA stability in vitro is
decreased in hepatocytes exposed to amino acid deprivation (111). In this model, the
7.5-kb mRNA is degraded faster than the two smaller IGF-I mRNA species. Differen-
tial regulation of the 7.5-kb IGF-I mRNA might be related to its 3′-untranslated region,
which contains several AU-rich sequences (138). Such sequences in other genes are
known to interact with cytosolic RNA-binding proteins and to be involved in the regu-
lation of the stability and/or translation of the mRNA (139).

Regulation of IGF-I synthesis by nutrients also may be under translational control
because discrepancies have been observed between serum IGF-I peptide concentra-
tions and liver IGF-I mRNA levels (122,140–142). In protein-restricted rats, injections
of high doses of GH for 1 wk restores liver IGF-I mRNA abundance to normal without
normalization of liver or serum IGF-I concentrations (122). This divergent response to
GH is not the result of a secretory defect of IGF-I because there was no accumulation
of IGF-I in liver. It also seems unlikely that tissues other than liver might make signifi-
cant contributions to the IGF-I released into the serum, given the observation that
80–90% of circulating IGF-I is produced by the liver (47). The mechanisms responsi-
ble for this presumed impairment of the translation of IGF-I mRNA are not known. It
appears, however, that all IGF-I mRNA size-classes are associated with polysomes,
even in the liver of protein-restricted rats (143), suggesting that they have the capacity
to engage in IGF-I synthesis.

In addition to liver, reduced IGF-I mRNA during diet restriction is observed in most
other organs (52,123). The decrement in IGF-I gene expression, however, is most dra-
matic in the liver. Fasting of young rats for 48 h decreases IGF-I mRNA levels by 80%
in liver and lung, by 60% in kidney and muscle, and by only 30% in stomach, brain,
and testes. No changes are observed in the heart. In a different study, prolongation of
fasting for 3 d caused IGF-I mRNA in heart muscle to decrease but caused no change
in the brain (52). Protein restriction for 1 wk, however, does not seem to reduce IGF-I
mRNA in tissues (kidney, heart, diaphragm, brain, and aorta) other than liver (52) and
muscle (144). The decline of circulating IGF-I in mice in whom the ability of liver to
produce IGF-I has been knocked out indicates that the decline of circulating IGF-I dur-
ing protein restriction originates from nonhepatic as well (145).

4. MECHANISMS INVOLVED IN THE NUTRITIONAL REGULATION
OF IGF-I ACTION

4.1. Role of IGF Binding Proteins 
Among the proposed functions of the IGF binding proteins (IGFBPs) are the prolon-

gation of the plasma half-life of IGF-I and IGF-II, control of the rate of IGF transport
from the vascular compartment, and regulation of the interaction between IGF-I and
the type 1 IGF receptor on the cell surface (146–148). Because they control the
bioavailability of IGF-I to tissues (149), the IGFBPs are believed to exert both stimula-
tory (150–152) and inhibitory (153–155) effects on IGF-I actions (Table 2). IGF-I
bioavailability may be controlled by posttranslational modifications of IGFBPs (partial
proteolytic degradation by specific IGFBP proteases, selective dephosphorylation)
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resulting in IGFBPs with reduced affinity for IGF-I. Less than 1% of IGF-I circulates
as free peptide (156), and most (>90%) is bound to the 150-kDa complex, which con-
sists of IGF-I, IGFBP-3, or IGFBP-5 and an acid labile subunit (ALS). This complex is
believed not to cross the capillary endothelium (157) and is credited with prolonging
the half-life of IGF-I in the circulation. The complex has a relatively long half-life of
3–6 h in rats (158) and 12–15 h in humans (159), whereas free IGF-I disappears with
an apparent half-life of 14 min (160). IGFBP-3 probably serves as a storage pool for
IGF-I. IGFBP-1, IGFBP-2, and IGFBP-4 are associated with IGF-I in smaller com-
plexes (30–40 kDa) that can cross the capillary endothelium (161). IGFBP-1 and
IGFBP-2 contain RGD sequences (Arg-Gly-Asp) (149) that may allow attachment to
cell surface integrin receptors. They may be involved in the delivery of IGF-I to tissues.
Although serum concentrations of IGFBP-3 correlate positively with ALS and total
IGF-I, IGFBP-1 and free IGF-I correlate inversely. It is hypothesized that IGFBP-1 is
an important determinant of free IGF-I in vivo (162,163). IGF-independent actions
have been shown for IGFBP-1, -3, and -5 (149). In particular, IGFBP-3 binds specifi-
cally and with high affinity to the cell surface of various cell types and inhibits mono-
layer cell growth, presumably by specific interaction with cell membrane proteins that
function as IGFBP-3 receptors (164). The functions and nutrition-related regulatory
mechanisms of IGFBP-5, IGFBP-6, and IGFBP-related proteins (Mac25, CTGF, NOV,
CYR61) (165) are largely unknown.

Nutrient intake is a major regulator of the plasma concentrations of the IGFBPs.
Serum IGFBP-3 concentrations in humans are relatively constant throughout the day,
and this is the likely mechanism for the stability of serum IGF-I concentrations (166).
In contrast, serum IGFBP-1 is markedly and rapidly suppressed by nutrient intake
(167,168). An effect mediated primarily by increased insulin (169,170), glucose
(171,172), and probably by amino acid concentrations (73,116). Insulin also may
selectively stimulate the transport of IGFBP-1 to the extravascular space (173), which
might explain the rapidity of the insulin-induced fall in IGFBP-1. IGFBP-2 levels are
more stable than IGFBP-1 and are not subject to postprandial changes (174).

Dietary manipulations change the abundance of serum IGFBPs in humans and ani-
mals. In general, dietary restriction decreases serum IGFBP-3 and ALS concentrations
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Table 2
Effect of Food Deprivation on Circulating IGF-I and IGFBP Levels 
and Their Hepatic Gene Expression

Circulating levels Hepatic gene expression

IGF-I Total
Free

IGFBP-1
IGFBP-2
IGFBP-3
ALS ~
IGFBP-4 ~ ~

IGFBP, insulin-like growth factor binding protein; ALS, acid-labile subunit.

→
→→ →→
→→

←
←←
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while it increases serum IGFBP-1 and IGFBP-2 (5). Fasting of rats for 24 h increases
serum IGFBP-1 and -2 (175,176), and produces parallel increases of liver IGFBP-1 and
IGFBP-2 mRNA (177). Likewise, 24-h fasting in humans causes a 4-fold increase of
IGFBP-1 (162,168) whereas prolonged fasting for 9 d or protein restriction for 6 d is
needed to cause an increase in plasma IGFBP-2 (174,178). Maternal fasting also
induces an increase of IGFBP-1 and IGFBP-2 in fetal serum (179), thereby increasing
the IGF binding capacity of serum. Free IGF-I changes in parallel with total IGF-I in
fasted rats (180) and children (162). Unlike IGFBP-1, fasting for 24 h does not affect
serum IGFBP-3 (181) and ALS (180) in rats and humans. A decline of serum IGFBP-3
and ALS, however, occurs after fasting for 48–72 h (179,180,182).

During more chronic dietary restriction, serum IGFBP-3 declines and a parallel
change in the liver IGFBP-3 mRNA is observed (180,183). Unlike other situations in
which IGFBP-3 concentrations are low, that is, pregnancy (184), after surgery (185),
and catabolic states (186), the decline of IGFBP-3 in food-deprived rats and humans is
not associated with proteolytic activity in serum (187). In response to reduced nutri-
tion, serum ALS levels also decline, but steady-state hepatic ALS mRNA levels are not
changed, indicating that ALS synthesis in fasting is regulated primarily at the posttran-
scriptional level (180,188–190). Because both IGFBP-3 and ALS production is stimu-
lated by GH and insulin (188,191,192), it is not clear whether their decrease in
response to food deprivation is due to decreased GH secretion, to defects in the GH
action pathway and/or to the lack of the stimulatory effect of insulin. IGFBP-3 and
ALS genes are stimulated directly by insulin, even in the absence of GH (192). The
decline of IGFBP-3 may be related to decreased serum IGF-I itself, because IGF-I
infusion in protein-restricted-rats normalizes serum IGFBP-3 (193). The induction of
IGFBP-3 by IGF-I provides a mechanism by which the concentrations of these two
peptides could be regulated coordinately. As with fasting, an increase in liver IGFBP-1
and -2 mRNA and increased serum concentrations of IGFBP-1 and -2 occurs with
chronic energy or protein restriction (71,183,189,190,194).

Changes in IGFBPs similar to those produced by food deprivation have been
observed in response to catabolic states. The most dramatic changes are an increase in
circulating IGFBP-1 levels and the presence of an IGFBP-3 proteolytic activity. Prote-
olytic activity that degrades IGFBP-3 specifically appears in the circulation after major
surgery (185) and in severe catabolic states (186). The decreased affinity for IGF-I
caused by the enzymatic alteration of IGFBP-3 is associated with increased free IGF-I
(195). This might increase the bioavailability of IGF-I for the tissues. Increases in
IGFBP-2 and IGFBP-4 and decline in ALS levels are also observed (186,196,197).

As a consequence of these changes, when the IGF binding by serum is evaluated by
chromatography after the serum sample has been incubated with radiolabeled IGF-I,
dietary restriction consistently causes a decrease in the 150-kDa complex and an
increase in the small binding protein complex (198,199). These changes might alter the
transport of IGF-I across the endothelium and the bioavailability of IGF-I to the tissues.

4.2. Role of the Clearance of Circulating IGF-I
Because IGFBPs are responsible for transport of IGF-I in the circulation, nutrient-

induced changes in the concentrations of the IGFBPs could alter the clearance of circu-
lating IGF-I. Plasma IGF-I clearance is accelerated in situations where serum IGFBP-3
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is decreased, for example, hypophysectomized (200) or pregnant rats (184). By moni-
toring the decline of radioactivity in the circulation of rats injected with [125I]-IGF-I, it
has been shown that the clearance and the volume of distribution of [125I]-IGF-I were
increased in protein-restricted rats by 50% and 75%, respectively (199). Pharmacoki-
netic analysis indicates that the accelerated clearance of IGF-I in protein-restricted rats
is the result of more rapid distribution of IGF-I into tissues (shorter t1/2) rather than a
change in the elimination half-life (t1/2). In fed rats, IGF-I is almost equally distributed
between the 150-kDa and the 30-kDa binding protein complexes, whereas in protein-
restricted rats, IGF-I is bound preferentially to IGFBPs in the 30-kDa complex (199).
Because the small IGFBP complexes are believed to facilitate the transport of IGF-I
from serum to tissues, the preferential association of IGF-I with these IGFBPs in pro-
tein-restricted animals might allow faster transcapillary passage and distribution to tis-
sues. Unlike the rat, clearance of radiolabeled IGF-I in fasted sheep is not enhanced.
This could result from species differences, or it could indicate that only chronic or a
more specific dietary restriction affect clearance and distribution of IGF-I. Despite the
rapid decline in circulating IGF-I after LPS injection, pharmacokinetic analysis of
blood [125I]-IGF-I decay curves indicates that the half-time for whole blood clearance
is not altered by LPS (201).

4.3. Role of the Sensitivity to IGF-I
In addition to decreasing IGF-I production, dietary restriction impairs the anabolic

actions of IGF-I. When protein restricted or zinc-deficient rats were infused with IGF-I
by osmotic minipump, carcass growth (body weight and tibial epiphyseal plate) was
not stimulated, despite the normalization of serum IGF-I (193,202). In contrast, growth
of the spleen and kidney was enhanced. Similarly, IGF-I failed to increase cancellous
and periosteal bone formation in protein-restricted rats, while exogenous IGF-I
increased the bone formation rate in well-fed rats (203). In rats fed parenterally with a
limited supply of amino acids, anabolic effects of IGF-I on carcass lean mass were not
observed, in contrast to visceral tissues (204). Treatment of neonatal protein energy-
deprived rats with IGF-I does not stimulate somatic growth. In contrast, erythroid pre-
cursors in bone marrow are increased, suggesting that the actions of IGF-I on growth
and erythropoiesis are unrelated (205). These results suggest that, in addition to its
effects on IGF-I gene expression and IGF binding proteins, food deprivation causes
organ-specific resistance to the anabolic properties of exogenous IGF-I. These observa-
tions support the concept that nutrient insufficiency can block the anabolic properties
of IGF-I, but do not block other properties (206–208).

Resistance to IGF-I during food deprivation occurs despite increased binding of
IGF-I by tissues. Rats that are fasted for 48 h have increased IGF-I binding to stomach,
lung, testes, and kidney, as reflected by alterations in the IGF-I receptor number and/or
affinity (123). Change in the abundance of the type 1 IGF receptor mRNA parallels the
change in binding. Protein restriction also is associated with an increase of IGF-I bind-
ing to muscle (209).

That nutrients can control the response to IGF-I directly has been observed in
fibroblast cultures where zinc depletion inhibits the mitogenic action of IGF-I (210).
Although the interaction between anabolic action of IGF-I and amino acid availability
has not been studied at the cellular level, several pieces of evidence indicate that cross-
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talk between the pathways activated by these stimuli are likely. For example, induction
of the transcription factor CHOP by amino acid depletion requires the presence of IGF-
I (132). In muscle cells, a target for IGF-I action, amino acids activate p70 S6 kinase,
an intermediate in the initiation of protein synthesis, in synergy with insulin (211). Fur-
thermore, both insulin and amino acids are required to stimulate protein synthesis and
to inhibit protein degradation in muscle tissue (212). If these observations can be
extended to IGF-I, they suggest that amino acids might modulate the anabolic action of
IGF-I, at least on protein metabolism.

The possibility that nutrients and hormones modulate the anabolic action of IGF-I
has been investigated in humans. In energy restricted obese subjects, exogenous GH
produced a twofold increase in serum IGF-I, accompanied by attenuation of nitrogen
loss (213). After a few weeks, however, resistance to the anabolic properties of IGF-I
occurred. In similar experiments, infusion of IGF-I for 1 wk increased serum IGF-I
concentrations fourfold and produced marked attenuation of the nitrogen wasting
(214). In volunteers made catabolic by glucocorticoid treatment, IGF-I infusion did not
produce any significant decrease of proteolysis, suggesting that the anabolic action of
IGF-I in humans may depend on the hormonal and nutritional environment (215). GH
administered together with IGF-I appears to function in a complementary fashion to
promote protein anabolism (216). There are several ways by which GH could produce
nitrogen retention that are not fully replicated by infusion of IGF-I. For example, GH
may alter concentrations of IGFBPs and modify the metabolism of carbohydrate or fat
to facilitate IGF-I action.

The loss of anabolic response to IGF-I has been described in catabolic states, such as
AIDS (217), sepsis (218), and uremia (219). In uremia, resistance is caused by a postre-
ceptor defect characterized by inhibition of the autophosphorylation of the type 1 IGF
receptor (IGF-1R) β-subunit and IRS-1 (220). Although perturbed IGFBPs in chronic
renal failure may play an important role in altering IGF-I storage and delivery to tis-
sues, IGF-I analogs with low affinity to IGFBPs fail to obliterate this IGF-I resistance
(220). In addition, malnutrition and acidosis have been excluded as mediators of the
IGF-I resistance of uremic rats (220). In more severe catabolic states, such as sepsis, the
anticatabolic action of IGF-I can also be blunted. In rats made septic by cecal ligature
and puncture, IGF-I failed to inhibit muscle proteolysis, despite the suppression of the
gene expression of several components of the ubiquitin-proteasome proteolytic path-
way (221). However, IGF-I retained its antiproteolytic action in burned rats (222).
Careful dissection of the factors controlling the anabolic actions of IGF-I will need to
be performed.

5. SUMMARY AND CONCLUSIONS

Nutrition is one of the principal regulators of circulating IGF-I.

• In humans, serum IGF-I concentrations are markedly reduced by energy and/or protein
deprivation.

• Both energy and proteins are critical in the regulation of serum IGF-I concentrations.
After fasting, optimal intake of both energy and protein is necessary for the restoration of
circulating IGF-I, but energy may be somewhat more important than protein in this
regard. While a low intake of protein is able to increase IGF-I in presence of adequate
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Fig. 3. Changes in IGF-I system induced by food deprivation. GH, growth hormone; GHBP, growth
hormone binding protein; GHR, growth hormone receptor; ALS, acid-labile subunit; IGF-R, insulin-
like growth factor receptors; IGFBP, IGF-binding proteins; BP-3, IGF-binding protein-3.
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energy, there is a threshold requirement of energy below which optimal protein intake
fails to raise IGF-I after fasting.

• When energy intake is severely reduced, the carbohydrate content of the diet is a major
determinant of IGF-I responsiveness to GH.

• The content of essential amino acids in the diet is also critical for the optimal restoration
of IGF-I after fasting.

Many mechanisms are involved in the nutritional regulation of IGF-I (Fig. 3).

• Decline of serum IGF-I during dietary restriction is independent of the diet-induced alter-
ations in pituitary GH secretion.

• The role of liver GH receptors is dependent of the severity of the nutritional insult. In
severe dietary restriction (fasting), a marked decrease of the number of somatogenic
receptors suggests that a receptor defect is involved in the decline of circulating IGF-I. In
contrast, in less severe forms of dietary restriction (protein restriction), the decline of
IGF-I results from a postreceptor defect in GH action at the hepatic level.

• Nutritional deprivation decreases hepatic IGF-I production by diminishing IGF-I gene
expression.

• Decline in IGF-I gene expression results from both transcriptional and post-transcrip-
tional mechanisms.

• Decline in IGF-I gene expression is mainly caused by nutrient deficiency, and less impor-
tantly by nutritionally induced changes in hormones (insulin, T3).

• Diet restriction also increases the clearance and degradation of serum IGF-I through
changes in the levels of circulating insulin-like growth factor-binding proteins (IGFBPs).

• Finally, nutrients may also control the biological action of IGF-I, either directly or indi-
rectly through changes in IGFBPs.

GH resistance with decreased IGF-I production is also present in situations charac-
terized by catabolic stress.

• Proinflammatory cytokines and glucocorticoids probably mediate the decreased IGF-I
production in these situations.

• The molecular mechanisms leading to the decline of IGF-I seem to be similar to those
operational in food deprivation.

• As with nutrients, these hormonal factors can control the anabolic action of IGF-I, in par-
ticular on skeletal muscle.
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KEY POINTS

• The systemic inflammatory response found in severe stress, or its persistence as seen in
chronic diseases, can cause a rapid or prolonged catabolic hypermetabolic condition lead-
ing to accelerated energy and nitrogen loss that cannot be compensated by dietary intake
and results in protein energy malnutrition.

• The catabolic response to systemic inflammation is the consequence of multiple factors
including increased levels of proinflammatory cytokines and catabolic hormones, decreased
concentrations of anabolic hormones and growth factors such as IGFs, as well as tissue
resistance to their effects. Although nutritional therapy has beneficial effects, adequate nutri-
tion support alone cannot overcome the catabolic effects induced by severe illness.

• Cytokines reduce the levels of IGF-I and impair the action of IGF-I directly, as well as
indirectly, by altering the IGFBPs.

• The most effective nutrition support for patients with conditions of acute or chronic sys-
temic inflammation is actively being studied. Specific amino acids, omega-3-fatty acids,
and antioxidant vitamins are examples of anabolic nutrition therapies that may, with ana-
bolic hormone therapy, be effective in the management of disease-related malnutrition.

1. INTRODUCTION

Severe injury, infection, and other critical illnesses, such as AIDS, cancer, and many
chronic diseases, cause profound metabolic changes in the host to support the injury
response, generally characterized by increasing the catabolism of certain tissues such
as muscle and fat to mobilize stored nutrients while decreasing nutrient availability for
growth. Net loss of body protein and fat mass results in adults, and growth cessation
occurs in children. During the acute phase of the systemic inflammatory response,
enhanced catabolism of endogenous protein and fat serve to meet the suddenly
increased energy and amino acid requirement that is vital for a successful outcome.
However, the intensity of the systemic inflammatory response found in severe stress, or
its persistence as seen in chronic diseases, can cause a rapid, or prolonged, catabolic
and hypermetabolic condition, leading to the exhaustion of energy and protein reserves
in both instances. If such accelerated energy and nitrogen loss cannot be compensated
by enhanced dietary intake, protein energy malnutrition (PEM) results. It has been
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reported that malnutrition is commonly observed both in hospitalized critically ill
patients and patients with chronic diseases (1–4). The unintentional loss of more than
10% of weight significantly contributes to the increased morbidity and mortality in
critically ill patients (5). Approximately two-thirds of patients who die with advanced
cancer suffer from cancer cachexia. For this reason, investigations into nutritional and
other anticatabolic therapy to blunt catabolism in such patients have been an important
research interest for many years. 

The catabolic response to severe illness is the consequence of multiple factors that
arise as components of the systemic inflammatory response, including decreased nutrient
intake, increased levels of cytokines and catabolic hormones, and decreased levels of
anabolic hormones as well as tissue resistance to their effects. Although nutritional ther-
apy has beneficial effects in these patients, adequate nutrition support alone cannot over-
come the catabolic effects induced by severe illness (6–8). The relative ineffectiveness of
nutritional therapy under such conditions could be caused by the failure to modify the
impact of endogenous catabolic and antianabolic factors associated with severe illness.
New therapies, including anticytokine strategies and pharmacologic doses of anabolic
hormones, particularly growth hormone, insulin-like growth factor, and anabolic
steroids, are currently being investigated for their role in the prevention or amelioration
of lean tissue loss during catabolic states. Previous chapters have extensively reviewed
various aspects of IGF-I system under different physiological and pathological condi-
tions. In this chapter, we will briefly review the mechanisms responsible for the develop-
ment of protein energy malnutrition in critical illnesses, particularly the role of cytokines
in protein malnutrition. Subsequently, attention will be focused on nutrition support in
critical illness, including the optimal levels of energy and protein intake, the effects of
omega-3 fatty acids, and the potential role of major anabolic hormones and vitamin and
antioxidant supplementation for improvement in the efficacy of nutritional repletion in
severe acute or chronic activation of the systemic inflammatory response.

2. CYTOKINES: MAJOR FACTORS CONTRIBUTING 
TO THE DEVELOPMENT OF MALNUTRITION

2.1. Effects of Cytokines on Protein Metabolism
It has been long appreciated that there is a catabolic nitrogen response to fever and

infection (9,10). Early studies demonstrated that factor(s) derived from white blood
cells, originally termed leukocyte endogenous mediator, could be responsible for these
responses (11,12). Subsequently, a number of different peptides that share some of the
actions under the general term leukocyte endogenous mediator have been identified.
All of these proteins, a family with over 80 members and still growing, are called
cytokines. Tumor necrosis factor (TNF), interleukin (IL)-1, and IL-6 are postulated as
the three major cytokines responsible for wasting during critical illness (13,14).

Over the past several years, evidence has accumulated that the levels of circulating
TNF-α, IL-1, and IL-6 are elevated in critically burned patients and in patients with septic
shock or severe sepsis (15–18). The increased serum levels of these cytokines, particularly
IL-6, can be a sensitive predictor of mortality in patients with septic shock (19–23), can-
cer (24), and some chronic diseases (25,26), suggesting that these cytokines are major
contributors to wasting in critical illness. In many chronic illnesses the evidence for the
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presence of a systemic inflammatory response often require the use of more sensitive
measures such as serum levels of soluble TNF receptors (27) or acute phase proteins like
C-reactive protein (28,29) because of the lower intensity of inflammation

Advances in recombinant technology have made it possible to investigate the roles
of individual cytokine in wasting. In our laboratory, major proximal cytokines in
recombinant form, IL-1β and TNF-α, alone and in combination, have been investi-
gated for their effects on protein metabolism (30). Studies using both acute and
chronic infusion of IL-1β into rats and matched pair-fed controls demonstrated that
IL-1 infusion at 20 µg/kg/d for 6 d caused weight loss and urinary nitrogen loss, reduc-
tion of plasma zinc concentration and increased energy expenditure (31). In this study,
dynamic protein metabolism was assessed by the continuous infusion of tracer. At a
steady state, estimates of protein synthesis were calculated based on the incorporation
of the tracer from the tissue free amino acid pool into the protein bound pool (32–34).
Protein breakdown was determined from the dilution of specific radioactivity in the
tissue free amino acid pool relative to the plasma pool (35,36). The algebraic sum of
these isotopic estimates of protein synthesis and breakdown rates was in general
agreement with independent assessment of tissue growth. The results showed that IL-1
significantly decreased the rate of protein synthesis in muscle and increased leucine
release from skeletal muscle tissue as compared to control (saline infusion). Moreover,
IL-1 significantly increased urinary 3-methylhistidine excretion, reflecting skeletal
muscle protein catabolism (31). Using the same tracer model, the effects of TNF (100
µg/kg/d) and IL-1 (20 µg/kg/d), either alone or in combination, on protein metabolism
were also compared in rats after 6 d of infusion (37). Both TNF and IL-1 significantly
reduced food intake and caused weight loss, net nitrogen loss and skeletal muscle
catabolism, whereas liver weight was increased. Isotopic study also showed that the
significant changes in skeletal muscle and whole body protein catabolism were greater
for both cytokine groups containing TNF (i.e., TNF and IL/TNF) compared with IL-1.
Although both IL-1 and TNF have been demonstrated to participate in protein catabo-
lism through decreases in expression of eukaryotic initiation factor-2 Bε (eIF-2Bε)
(38–40), these results suggest that there are different mechanisms for host wasting in
response to IL-1 and TNF. For instance, it has been demonstrated that glucocorticoids
(41), and nuclear factor-kappaB (NF-κB) activation (42) are essential to mediate TNF-
induced catabolism but not IL-1. However, both IL-1 and TNF induce anorexia, and
the reduced food intake in human and animals will decrease the rate of protein synthe-
sis and muscle growth. Therefore, by having a semistarved control group in both our
studies, the effects of cytokines and/or food restriction on nitrogen loss and protein
metabolism at the whole body level and in muscle could be identified. Our data
showed that the effects of cytokines were independent from and additive to those
resulting from semistarvation (31,37). Other studies also demonstrated that pretreat-
ment of rats with IL-6 for 6 h induced fever and increased the release of tyrosine and
3-methylhistidine in incubated extensor digitorum muscle in an ex vivo system, sug-
gesting that IL-6 also augments muscle proteolysis (43). However, it is not clear
whether the proteolytic-inducing effects of IL-6 are direct or require the release of
other mediators, such as TNF and IL-1.

The role of cytokines in wasting in critical illnesses is also confirmed by modifying
the release and/or biological activity of cytokines using anticytokine antibodies or
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cytokine receptor antagonists. Blockade of IL-1 action by administration of IL-1 recep-
tor antagonist (IL-1ra) to experimental animals prevents muscle proteolysis in response
to endotoxin (44). However, anticytokine antibodies and receptor antagonists are spe-
cific for an individual cytokine. Infusion of a single cytokine can stimulate the produc-
tion of other cytokines in vivo whereas endotoxin or disease elicits the production of
many cytokines. Thus, one single anticytokine antibody may not efficiently limit mus-
cle wasting, particularly if given post exposure. Moreover, it also is difficult to know
whether the effect of anti-cytokine antibodies to reverse catabolism is a direct or indi-
rect effect. For instance, the administration of IL-1ra significantly inhibits the neu-
trophilia and the induction of corticosterone secretion by IL-1, the latter action being
anti-catabolic. Mice with deletions for IL-1, TNF, or IL-6 genes can specifically define
which cytokine knockout mice express physiological deficits. In IL-6 gene-deficient
mice, for example, anorexia, cachexia, and lethargy in response to administration of
LPS and turpentine are suppressed (45,46), suggesting IL-6 contributes to the develop-
ment of wasting during critical illnesses. All these experimental data provide strong
evidence that cytokines do play unique and important roles in wasting.

2.2. Effects of Cytokines on Anabolic Hormone Actions
2.2.1. INSULIN

It has been recognized that resistance to the actions of anabolic hormones, including
insulin, growth hormone, and IGF-I, appears to be a significant contributing factor to
the catabolic response during severe stressful illness, advanced HIV infection and can-
cer. Evidence suggests that the resistance to anabolic hormones is related to the release
of cytokines during critical illness.

We conducted a study (47) to characterize the effects of endotoxin, TNF, and IL-1
on the glucoregulatory action of insulin in the rat using the euglycemic hyperinsu-
linemic clamp technique. Results showed that the glucose infusion rate necessary to
maintain similar glucose levels at similar hyperinsulinemic conditions varied signifi-
cantly according to treatment. Animals receiving saline infusion required 4.2 ± 2.5
mmol glucose/kg.h to maintain normoglycemia, which was the highest level among
the five groups. Animals that received IL-1 infusion required slightly but not signifi-
cantly less glucose, 3.4 ± 0.3 mmol glucose/kg/h, as compared with saline infusion.
With TNF infusion, the requirement for maintenance of normoglycemia was 2.3 ± 0.5
mmol glucose/kg/h. Animals receiving endotoxin infusion required only 1.9 ± 0.5
mmol glucose/kg/h. Animals treated with the combination of TNF and IL-1 required
the lowest amount of glucose, 1.0 ± 0.3 mmol glucose/kg/h. Thus these data sug-
gested that endotoxin, TNF, and possibly IL-1 can rapidly induce a state of insulin
resistance. However, the loss of insulin sensitivity is tissue specific in these animals.
It has been noted that under certain conditions, such as in patients with HIV lipodys-
trophy (48), the state of insulin resistance is more pronounced in skeletal muscle than
in liver or fat. Similarly, the resistance to elevated insulin may only be present in non-
tumor tissues in patients with cancer (49). 

TNF significantly decreases insulin receptor autophosphorylation, tyrosine phos-
phorylation of endogenous IRS-1, and kinase activity (50), which may provide the
molecular mechanisms to explain insulin resistance that develops under conditions of
excess cytokine production. Endotoxin, for example, markedly diminished insulin-
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stimulated insulin receptor and IRS-1 tyrosine phosphorylation (51–53). Using the
pair-feeding method, we also found that endotoxin inhibited insulin-stimulated tyro-
sine phosphorylation of insulin receptor (50%), IRS-1 (62%), and IRS-2 (approx
100%) in muscle tissue as compared with pair-fed controls (54). Because the nutri-
tional conditions in both groups were controlled at a similar level, our results further
suggest that cytokines released during endotoxin infusion induce insulin resistance
through defects at many steps in the insulin signaling pathway, and that such effects are
direct and independent from the malnutrition induced by food restriction.

Cytokine-induced stress hormones, such as glucocorticoids and epinephrine, also
contribute to anabolic hormone resistance in critical illness. Glucocorticoids are known
to impair insulin-mediated glucose uptake in skeletal muscle by inhibiting transloca-
tion of the Glut4 glucose transporter (55). Infusion of epinephrine in the absence of
other hormones impairs insulin-mediated glucose uptake (56). Under experimental
conditions in which critical illness was mimicked by the infusion of multiple stress
hormones, discontinuation of epinephrine infusion while maintaining other hormones
resulted in a rise in plasma insulin, improvement of insulin sensitivity and reduction of
free fatty acid levels (57).

2.2.2. GROWTH HORMONE–IGF AXIS

Growth hormone resistance is also a common feature of critical illness, character-
ized by growth hormone hypersecretion and very low IGF-I levels as a result of
acquired peripheral growth hormone resistance and malnutrition. In catabolic states, it
is thought that the decreased tissue abundance of growth hormone receptor in liver and
muscle contributes at least in part to GH resistance (58,59). After endotoxin adminis-
tration into the rat (4 h after 1 mg/kg of endotoxin), we further found there was a
marked decrease in GH-stimulated receptor tyrosine phosphorylation (70%), phospho-
rylation/Jak2 (50%) and STAT5 phosphorylation (40%) in the liver (60). Thus, during
critical illness the defects in both receptor abundance and postreceptor signaling
responses to growth hormone stimulation may be responsible for the development of
growth hormone resistance. The neuroendocrine effects of critical illness on the
GH/IGF axis are more thoroughly discussed in Chapter 16, and the effects of IGF pro-
teins on protein balance in Chapter 11.

Cytokines not only reduce the levels of IGF-I but also impair the action of IGF-I. The
ability of IGF-I to stimulate protein synthesis is impaired by TNF-α, at serum levels as
low as 2 ng/mL and as soon as after 10 min of exposure in human myoblasts (61). In a
study with a TNF infusion protocol (20 µg/kg of TNF infusion for 3 h), TNF signifi-
cantly inhibited the action of IGF-I (200 µg/kg) to lower plasma glucose levels indicated
by less glucose required to maintain euglycemia as compared with saline infusion (62).
Because this dose of IGF-I did not suppress insulin secretion, it seems the inhibition by
TNF on IGF-I-induced glucose utilization is independent of insulin action. Consistent
with our findings, Fang et al. reported that cytokines blocked the effects of IGF-I on glu-
cose uptake in incubated muscle (63). However, it also appeared that the inhibition of
glucose use by TNF could be readily overcome by the provision of increased amounts of
IGF-I (400 µg/kg) even though insulin levels were significantly decreased as compared
with low dose of IGF-I (200 µg/kg) (62), suggesting that the resistance to IGF-I might
occur at a step distal to IGF-I receptors. In contrast to these findings, Lang (64) reported
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that under euglycemic and hyperinsulinemic conditions the effects of IGF-I on glucose
uptake in the gastrocnemius, soleus, and heart muscle were similar between control and
septic rats, although the desensitized insulin receptor with association of IRS-1 and IRS-
2 may have resulted in cell resistance to both insulin and IGF-I (65).

In the circulation, the levels of free IGF-I are considered to be most relevant to the bio-
logic activity of IGF-I. However, the levels of IGF binding proteins (IGFBPs) also regu-
late the action of IGF-I. At least six distinct IGFBPs have been characterized (66).
IGFBP-3 generally responds in parallel with IGF-I and is most important for the mainte-
nance of IGF-I in the circulation, whereas IGFBP-1 and -2 may inhibit IGF-I activity.
TNF, IL-1, and IL-6, produce dose- and time-dependent increases in IGFBP-1 production
in HepG2 cells in the liver of C57BL/6 mice (67,68). In a study monitoring IGF-I and
IGFBPs levels in intensive care unit patients during a 30-d period, serum levels of IGF-I,
IGFBP-3 and acid-labile subunit were low on admission and remained low over 30 d (69).
In contrast, IGFBP-I levels were high on admission, correlated with early changes in neg-
ative nitrogen balance, and fell rapidly during the first week. Moreover, proteolytic degra-
dation of circulating IGFBP-3 was increased, leading to a reduced ability to form the
IGFBP-3 ternary complex (69,70). Taken together, these data suggest that cytokines also
inhibit IGF-I action indirectly through alterations in IGFBPs during critical illness.

3. NUTRITIONAL MANAGEMENT IN CRITICAL ILLNESS

3.1. Overview
Critically ill patients are hypermetabolic and have anabolic inefficiencies that lead to

increased requirements for certain nutrients. The metabolic changes that characterize the
systemic inflammatory response provide a reordering of priorities in relation to metabolic
homeostasis. On one level, there are the essential nutrients, some of which like protein and
certain vitamins may be required in somewhat greater amounts, whereas others like iron
may need to be withheld in the early phase of injury. In addition, the heterogeneity of the
patient population, including different degrees of trauma or injury, different types of
tumors and different stages of chronic diseases such as hepatic and renal insufficiency,
make it more difficult to provide or develop nutritional guidelines applicable to all mal-
nourished patients. Over the past three decades, nutrition support methods by total par-
enteral nutrition (TPN) or tube feeding (enteral nutrition) have been developed. These
invasive feeding techniques provide exciting tools that may allow certain nutrients to per-
form new and unique roles, such as reducing the intensity of the systemic inflammatory
response by their antioxidant (selenium, glutamine, zinc) or anti-inflammatory (omega-3
fatty acids) effects. In general, current nutritional approaches have been designed to
respond to special nutritional needs created by the catabolic state. The rationale of nutrition
therapy for critically ill patients, therefore, is largely based on clinical judgment. Since
nutritional assessment is reviewed in chapter 4, the discussion will be limited to some
important aspects of nutritional management, including levels of calories and protein
needed, effects of special nutrients on modulation of acute-phase response and the use of
anabolic agents in conjunction with adequate nutrition support to critically ill patients.

3.2. Protein Metabolism and Requirements in Critical Illness
The metabolic responses to critical illness differ significantly from those of starva-

tion and food restriction. During starvation and food restriction, the body attempts to
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adapt to undernutrition by reducing energy expenditure and limiting protein catabo-
lism. With the fall in food intake, glycogen stores are exhausted within the first 24–72
h, suggesting that carbohydrate oxidation rates are altered rapidly to reflect reduced
intake. Studies on glucose metabolism have revealed that underweight individuals have
higher rates of glucose use per unit of lean body mass accomplished by increasing
insulin sensitivity, as compared with normal middle-aged men (71). As an alternate
fuel, fat becomes the principal energy source sparing body protein by limiting the need
for gluconeogenesis. During longer starvation periods, protein breakdown is further
decreased in order to conserve nitrogen and maintain lean body mass. When rates of
whole body protein synthesis were measured in the undernourished state (body mass
index 16.7 kg/m2) and a normal state (body mass index 20.8 kg/m2), total body protein
synthesis and breakdown rates per unit of fat free mass were unchanged in the under-
nourished state (72). This ability, which is essential for conserving nitrogen when
intake is reduced, is absent in most critically ill patients. In critical illness, the rate of
lean tissue loss can be up to seven times greater than in well-adapted starvation (73,74).
Whole-body protein synthesis is diminished in skeletal muscle and connective tissue in
animal models of cytokine-produced catabolism (75). Although insulin resistance
develops and the percentage contribution of fat to energy expenditure is reduced, total
fat oxidation plus protein and carbohydrate oxidation are all increased with the
increases in energy expenditure present in critical illness. Interestingly, at the same
time, liver fractional rates of protein synthesis are increased in this condition, account-
ing for the increase in liver size as well as the production of the so-called acute-phase
proteins, although there is a concomitant decrease in albumin synthesis. The greatest
impact to lower serum albumin concentrations results from the systemic inflammatory
response and specifically the IL-6 effects, which reduce albumin synthesis, increase its
catabolism, and cause extravascular extravasation. Anorexia limiting protein and
energy intake makes only a minor contribution to the development of hypoalbumine-
mia. Thus, in critical illness conditions, hypoalbuminemia is primarily a marker of the
systemic inflammatory response that produces protein-malnutrition, rather than being a
direct measure of protein-energy malnutrition per se (76).

In a healthy adult consuming a diet without protein, there is an obligatory loss of 20
to 30 g of protein per day. A level of 55 g of protein intake per day (0.8 g of
protein/kg/d) is recommended to prevent a net protein loss in healthy individuals (77).
For critically ill patients, substantially more protein is required to account for anabolic
inefficiencies. Protein intake ranging from 1.0 to 1.5 g of protein/kg/d is recommended
to attenuate protein loss. In the most severe inflammatory states, the delivery of more
than 1.75 g of protein/kg/d only increases urea formation (78–80) making this the
upper effective level of protein intake. Although a positive nitrogen balance is desired,
net protein anabolism can usually only be achieved after the systemic inflammatory
response subsides. During the acute phase, however, energy intakes that meet energy
expenditure and protein intake at 1.5 g/kg will preferentially support the systemic
inflammatory response by fostering host immune function and wound healing whereas
losses of lean tissue are limited principally to skeletal muscle (81).

3.2.1. SPECIFIC AMINO ACIDS

Certain amino acids have unique importance for critically ill patients. The branched-
chain amino acids (leucine, isoleucine and valine) are essential amino acids. Studies
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have shown that these amino acids have additional effects on stimulation of protein syn-
thesis in muscle and on nonbranched chain amino acid uptake in the liver for protein
synthesis (82). Glutamine, arginine, and cystine are considered to be conditionally
essential amino acids because the levels of these amino acids are often low in plasma
and tissues following stress. In studies in rats, a higher protein intake elevates plasma
IGF-I levels (83–84), and pharmacological doses of arginine increase serum levels of
growth hormone and IGF-I (85). Amino acid limitation, as occurs during dietary protein
deficiency, inhibited endogenous IGF-I production (86) but induced IGFBP-1 expres-
sion in hepatic cells (87). Moreover, a clinical study with glutamine-enriched enteral
nutrition in 72 multiple trauma patients demonstrated a significant reduction in infec-
tion, although this did not translate into a significant reduction in hospital stay (88). In a
second study of trauma patients using a formula, containing not only glutamine but also
arginine, omega-3 fatty acid, and nucleotides, there was a significant reduction in infec-
tion rate and hospital length of stay (89). Although diets that have enriched concentra-
tions of specific amino acids have not always shown consistent benefits, growing
evidence suggests that supplementation with several of these amino acids improves
nitrogen balance (90,91), can decrease infectious complications and enhance immune
system function (92–94), which is of great potential clinical interest.

3.3. Energy Requirements
Provision of carbohydrate and lipids are also required as sources of energy to mini-

mize protein degradation and lipolysis. Although increasing energy intake above
energy requirements may improve protein use in unstressed individuals, there is little
evidence for such an effect in critically ill patients. In fact, excess administration of
either fat or carbohydrate in this setting can have adverse effects including increasing
the risk for infection. Thus, the present recommendation for energy intake is that total
energy provision should not exceed energy expenditure in critically ill, malnourished
patients. For most medical or surgical patients with mild-to-moderate stress, energy
goals are to achieve energy balance, which approximates 25–30 kcal/kg/d. Although
patients with severe trauma may have energy expenditures substantially higher, at
35–40 kcal/kg/d, increasingly an upper limit of 30–35 kcal/kg/d is being used in the
acute phase of injury to avoid metabolic complications (95,96). In the acute stage of
critical illness, metabolic adaptive responses are characterized by hyperglycemia due
to central and peripheral insulin resistance, accompanied by a hyperdynamic cardio-
vascular response including high cardiac output, increased oxygen consumption, high
temperature and decreased peripheral vascular resistance. Hyperglycemia is particu-
larly common when patients are fed greater than 35 kcal/kg/d, which can markedly
increase the risk for infection (97). For instance, it has been demonstrated that provi-
sion of dextrose at rates of 4 mg/kg/min (5.7 g/kg/d) intravenously often is associated
with hyperglycemia even in the nondiabetic host (98) because of the insulin resistance,
which is universal in stressed, hospitalized patients (96). A study from our hospital
showed that the presence of a blood glucose >220 mg/dL (12.2 mmol/L) on the first
postoperative day was associated with a greater than fivefold increased risk of serious
infection in diabetic patients (99). Recent evidence also suggests that hyperglycemia
can exacerbate inflammation through either induction of oxidative stress (100,101) or
acquired immunodepression (102). None of these effects is desirable in the critically
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ill. Although energy balance may not be achieved in some cases by caloric intakes at
25–30 kcal/kg/d, the lower risk for hyperglycemia may lead to an improved clinical
outcome. However, hyperglycemia is usually easily treatable by insulin with substan-
tial clinical benefits in randomized trials in humans (103–105) and in endotoxin-
induced stress in rats (106) and is preventable by limiting caloric intake (97,107).
Insulin is a potent anabolic hormone and stimulates muscle protein synthesis. Thus,
provision of adequate nutrients with exogenous insulin in prevention of hyperglycemia
should enhance muscle anabolism. In general, the goal of nutritional support in the
critically ill is to provide support for the systemic inflammatory response including
enhancing immune function, repairing injured tissues and healing wounds. Restoration
of lost lean tissue is generally not possible until the systemic inflammatory response
abates, although the initial losses of lean tissue in the acute phase generally abates and
is ultimately reversed by a combination of developing malnutrition and a less intense
inflammatory response in those with prolonged illness.

A lower caloric intake approximating resting rather than total energy expenditure
while including all other essential nutrients and at least 1 g/kg/d of protein may often be
more in accordance with the inflammatory and hormonal mediator climate during the
first few days and for up to 10 d of systemic inflammation. Although the effects of
hyperglycemia are not often considered in planning nutritional support, it is important to
maintain glycemia <220 mg/dL (11.1 mmol/L) in diabetic patients and 180–200 mg/dL
(9.1–10.0 mmol/L) in nondiabetic patients to minimize complications in patients receiv-
ing enteral and particularly parenteral nutrition support. Even tighter control blood glu-
cose level at 80–110 mg/dL may be justified in the critically ill (95). The nutritional goal
for these patients still remains the achievement of net anabolism by advancing caloric
intakes to estimated total requirements as tolerated and metabolic homeostasis allows. In
general, when a patient’s nutritional requirements cannot be met via the oral route for
period of 5–7 d (or less if the patients is initially malnourished), parenteral or enteral
nutrition is indicated. In chronically malnourished patients, it is well recognized that
wound healing and normal immune responses are dependent upon adequate nutrient
intake. Therefore, it seems reasonable to start feeding as soon as possible after malnutri-
tion is diagnosed. Early feeding may decrease complication rates and improve quality of
life in these patients. For patients with severe stress (multiple trauma, closed head injury,
major burns and severe sepsis) who are often well nourished at the onset of their illness,
early nutrition support within the first few days should also improve outcome as a result
of the intensity and the likelihood for a prolonged duration of the inflammatory response.
In patients requiring home TPN, who generally have minimal levels of metabolic stress,
a total caloric intake at 35 kcal/kg/d is recommended at the initiation of nutrition support
to rapidly replete the cumulative calorie deficit so as to achieve weight gain, and then
intake adjusted to a lower level to maintain desired body weight.

3.4. Lipid Metabolism and Recommendations
Lipid is an energy source with high caloric density (9 kcal/g). Compared with diets

exclusively of carbohydrate and protein, an adequate intake of fat can result in better
nutrient utilization, less CO2 production and decreased lipogenesis and insulin require-
ments (108). Provision of fat intake in TPN formulations is also essential to prevent
essential fatty acid deficiency (109–111). The ideal ratio of fat and carbohydrate is
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unknown, but high-fat feeding can enhance stress-stimulated corticosterone levels in
the rat (112). In our hospital, 20–40 g fat/d for 40–80 kg body weight is recommended.
For intravenous delivery, it is important to control the rate at an upper limit of 0.11
g/kg/h in critically ill patients to avoid the potential for adverse outcomes (113). Mal-
nourished patients with intact gastrointestinal function should be given adequate
dietary fat, which can range from 3% to 30% of calories in commercial enteral formu-
las and usually 30–35% in calories based on food, although surgery or disease may
reduce intestinal absorptive capacity. The minimal fat requirements for the prevention
of essential fatty acid deficiency are at least 3.2% total calories given as intravenous fat
(114,115). The minimal daily requirement for dietary linolenic acid (18:3ω-3) is
unknown, because dietary deficiency of 18:3ω-3 in a normal adult consuming food
orally has not been described but is assumed to be about 0.5% of total calories.

3.4.1. OMEGA-3 FATTY ACIDS (ω-3 FATTY ACIDS)

As described above, the accelerated catabolism, rapid onset of malnutrition, and
immune system failure is related to the excessive production of cytokines underlying
the systemic inflammatory response. Substantial evidence has accumulated that fish
oil, which is rich in ω-3 fatty acids, can significantly suppress cytokine release from
monocytes (116) and attenuate the metabolic response to inflammation or infection.
Effects noted in experimental studies in animals have included dampening of the
febrile response (117), decreasing serum lactate concentration and improving lung
morphology (118), decreasing insulin resistance (116,117), and improving survival
(119), all after endotoxin challenge. Clinical studies in humans have shown improved
outcome in critical illness (120), rheumatoid arthritis (121,122), inflammatory bowel
disease (123,124), and renal transplantation (125) to name but a few conditions. The
intravenous fat currently available for use in United States is soybean oil, which has
high content of polyunsaturated fatty acids (mainly ω-6 fatty acids). In rats, it has been
demonstrated that dietary ω-6 polyunsaturated fatty acids significantly increase the lev-
els of hepatic IGFBP-1 transcripts and protein, which is independent of any caloric
effects of the diets and the levels of insulin (126). Thus, these findings suggest that cer-
tain fats can be viewed as potential therapeutic agents during critical illness rather than
purely as an energy source.

Although many potential mechanisms have been proposed for the clinical benefits of
fish oil feeding, the anti-inflammatory effects of fish oil are thought to principally
occur through a reduction in arachidonic acid (AA) content of phospholipids within
cell membranes. Eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid
(22:6ω3), which are enriched in fish oil, are preferentially and rapidly incorporated
into membrane phospholipid to displace AA. Moreover, EPA is structurally similar to
AA and competes with AA in the cyclo-oxygenase pathway, which leads to the synthe-
sis of a different series of prostaglandins, thromboxanes, and prostacyclins that have
substantially less immune suppression, proinflammatory, and hypotensive effects
(127–130). These properties of ω-3 fatty acids may have application in the treatment of
chronic inflammatory disease, as well as in the more acute situation such as acute res-
piratory distress syndrome or patients undergoing chemo/radiation therapy (131–134).
It is speculated that lipid emulsions with a ω-3/ω-6 fatty acid ratio of 1:2 would induce
the highest leukotriene C5/leukotriene C4 (LTC5/LTC4) ratio and exert the most favor-
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able modulation of lipid mediator synthesis (135,136). Recently, a study in laboratory
animals demonstrated that during sepsis a fish oil-supplemented diet with 1:1 fish oil
and soybean oil emulsion significantly improved the survival rate and prevented the
sepsis-induced suppression of lymphocyte proliferation and IL-2 release (137).

The definition of cancer patients who might benefit from dietary ω-3 fatty acids has
only just begun. Clinical studies with EPA-containing fish oil have shown it to be effec-
tive in attenuating the development of weight loss in patients with pancreatic cancer. In
a trial of 18 patients with unresectable pancreatic cancer orally receiving fish oil cap-
sules (1 g) containing eicosapentaenoic acid 18% and docosahexaenoic acid 12%, 11
patients showed weight gain, three became weight stable, and four continued to lose
weight but at a reduced rate (138). Weight gain was seen in other studies where EPA
(2.1 g/d) was administered together with adequate calorie and protein supplement
(139,140). Moreover, the percentage body water was maintained, suggesting that the
weight gain was not the result of the accumulation of water. Body composition analysis
further suggested that there was no change in fat mass, opposite to what would be
expected from nutritional supplementation alone (141). It appears that provision of a
fish oil-enriched nutritional supplement in patients with pancreatic cancer results in
some normalization of the metabolic response, in association with an improvement in
nutritional status. Such effects might improve the quality of life and increase survival
time in these patients. However, further studies are needed to test whether EPA is effec-
tive in patients with other types of tumors.

3.5. Anabolic Hormones
The administration of anabolic hormones, such as insulin, growth hormone, IGF-I,

and anabolic steroids, in pharmacological amounts represents an approach to overcome
the resistance to their actions and reverse the protein energy malnutrition response to
acute illness or chronic disease. The availability of recombinant hormones has made
some of these agents clinically available for study and use in catabolic states. 

Currently, insulin is extensively used only to overcome TPN-induced hyperglycemia
as a standard procedure. It has been demonstrated that administration of growth hor-
mone to critically ill patients can enhance the levels of IGF-I and promote tissue
anabolism under certain circumstances (142–147). One study even showed that such
effects of growth hormone in protein synthesis were achieved in patients receiving only
intravenous dextrose or parenteral nutrition with a small amount of nitrogen (148).
Schambelan et al (149) examined the effect of 12 wk of growth hormone therapy on the
body composition and work capacity of HIV-infected individuals who had lost weight.
They found that growth hormone increased lean body mass, reduced body fat, and
increased treadmill work capacity. However, growth hormone has not consistently
demonstrated net anabolic effects on nitrogen economy, because the improvement in
nitrogen balance was not always statistically significant. Recent studies (150) investi-
gated the effects of high dose growth hormone (range from 0.07 to 8.0 mg/kg/d) on
clinical outcome in critically ill adults receiving prolonged intensive care. The results
showed that growth hormone administration was associated with an increase in mor-
bidity and mortality. Two potential side effects with growth hormone administration,
hyperglycemia and fluid retention, are particularly likely to be a problem for the criti-
cally ill. Several other studies also suggest that if patients are severely infected, or have
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cancer, the response of growth hormone treatment may be impaired (151,152). These
results suggest that growth hormone is more likely to be effective when the systemic
inflammatory response is mild to moderate. Therefore, despite the fact that growth hor-
mone has proven to be clinically useful in a variety of conditions, it should still be con-
sidered as an experimental tool, because its advantages and disadvantages in various
conditions need to be defined along with dosage requirements. Its value in reversing
catabolic states in cachectic diseases, such as cancer, trauma, infection, and in post-
operative care, have not been fully established yet.

IGF-I is an important mediator of the growth promoting effects of growth hormone.
Although the effects of IGF-I have also been evaluated, large parenteral doses are
required to promote specific anabolic activity. In addition, the action of IGF-I dimin-
ishes with time because of enhanced binding activity. Since the negative feedback of
IGF-I alters GH and IGF BP elaboration and interacts with insulin effects, it has been
suggested that the use of combination therapy of GH + IGF-I or the IGF-I + IGFBP3
molecule might be more beneficial. However, there is no condition of malnutrition
where this therapy has been established clinically.

Other anabolic hormones, such as anabolic steroids, have been investigated in a vari-
ety of malnourished states, particularly AIDS wasting. The rationale for the use of
androgenic steroids in chronic illnesses is based on the fact that there is a high fre-
quency of low testosterone levels in HIV-infected men and that low testosterone levels
in these patients are associated with poor disease outcomes and impaired muscle func-
tion. Studies in renal failure (153) and AIDs (154,155) have demonstrated improved
restoration of lean tissue structure and function. However, the overall benefits of these
drugs are undefined in patients with critical illness.

3.6. Micronutrients and Antioxidants
Micronutrients play a key role in many of the metabolic processes for promotion of

survival from critical illness. However, a deficiency state can develop in the critically ill
because of decreased nutrient intakes and increased requirements. For instance, sepsis or
adult respiratory distress syndrome can dramatically increase the production of reactive
oxygen species and lead to oxidative stress and activation of the transcription factor NF-
κB). In the rat, burn injury produced cardiac NF-κB nuclear migration 4 h after burn and
cardiomyocyte secretion of TNF, IL-1, and IL-6 by 24 h after the burn (156). It has also
been demonstrated that vitamin A deficiency results in the decrease of serum IGF-I lev-
els, which is accompanied by lower levels of IGF-I mRNA in rat liver (157). Zinc defi-
ciency produced lower serum IGF-I and liver IGF-I mRNA, lower serum IGFBP3, lower
liver growth hormone receptor and its mRNA, and lower serum growth hormone binding
protein and its mRNA (158). In these rats, exogenous growth hormone did not enhance
the levels of serum IGF-I and its liver mRNA, although the restoration of growth hor-
mone receptor and growth hormone binding protein to normal was achieved by continu-
ously infused bovine growth hormone in these rats. Thus, IGF-I synthesis may require
the presence of zinc in addition to growth hormone (discussed in Chapter 5).

In general, serum antioxidant vitamin and trace element concentrations, such as vit-
amin C, vitamin E, selenium, and zinc, are seen to decrease with systemic inflamma-
tion. The logical answer to enhancing micronutrient concentrations is to provide
dietary supplementation. There are only a limited number of studies that test the effi-
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cacy of antioxidant compounds in critical ill patients. Physiologic selenium replace-
ment in critically ill patients receiving parenteral nutrition restored serum selenium and
glutathione peroxidase levels to normal, and reduced the need for hemodialysis as well
as mortality although the latter effect was not significant (159). In a prospective, ran-
domized, double-blind, placebo-controlled study (160), 20 patients were randomized
to receive a formula supplemented with vitamin A (67 µg/dL), C (13.3 mg/dL), and E
(4.94 mg/dL), and 17 patients received an isocaloric and isonitrogenous control solu-
tion. Administration of the supplemented solution significantly increased the concen-
tration of plasma β-carotene, plasma and low-density lipoprotein-bound α-tocopherol
and improved low-density lipoprotein resistance to oxidative stress compared with
controls, as assessed by ex vivo testing. However, there was no clinical benefit identi-
fied despite the fact that glutathione status was compromised and correlated with glu-
tathione concentrations in critically ill patients. Parenteral glutamine administration
with total parenteral nutrition, which might be expected to enhance glutathione levels,
significantly reduced infections and hospital stay in patients undergoing bone marrow
transplant (161) and major surgery (162,163). Enteral glutamine in trauma patients led
to a significant reduction in infection rate in one study (164) and in infection rate and
length of hospital stay in another (165). However, glutamine has a multitude of other
effects that may in some part played a role as well as the unknown contribution of other
bioactive compounds contained in the various formulas. All these findings suggest that
consideration of dietary components that alter antioxidant/oxidant status may influence
the course of inflammatory and/or autoimmune diseases. On one hand, antioxidant lev-
els are diminished but oxidative stress quite clearly increased by severe illness; there-
fore, reactive oxygen species can be both beneficial and harmful in the critically ill
depending on such factors as the nutritional status of the host, the severity of the ill-
ness, and the relative balance between the systemic inflammatory response syndrome
and compensatory anti-inflammatory response syndrome. Further studies are required
to define optimal levels for provision of antioxidants in different diseases as well as the
identification of which antioxidants or combinations are effective.

4. SUMMARY AND CONCLUSIONS

Malnutrition is a major contributor to the increased morbidity and mortality seen in
critical illness. Percentage weight loss is a sensitive and specific tool that can be used at
initial presentation to screen for and identify malnutrition effectively. Nutritional
depletion developing subsequently is multifactorial and depends on the interactions
among numerous mediators including the proinflammatory cytokines, the stress hor-
mones of intermediary metabolism, along with the decrease in antioxidant defenses
and the decreased levels and effectiveness of anabolic hormones. Proinflammatory
cytokines, although essential for immune defense, can exert pathologic and even lethal
effects when produced in excessive amounts. The catabolic response in certain tissues
like muscle, which occurs as a normal part of the inflammatory response in part to sup-
port anabolism in other tissues like the liver and hemotopoietic tissue, also bears the
risk for the ultimate development of malnutrition. Moreover, the resistance to the
effects of anabolic hormones during critical illness impairs the utilization of exogenous
nutrients. The precise way in which individual factors interact with each other to deter-
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mine the outcome of inflammation is largely unknown. It is now widely appreciated
however that optimizing the supply of energy, protein, special fatty acids, and the
major anabolic hormones and micronutrients so as to support the metabolic responses
to injury can significantly affect the outcome in these patients. However, adequate
nutrition support and effective therapeutic interventions require an understanding of
the pathological processes taking place and the establishment of a balance between the
benefits of nutritional/metabolic support and the risks involved with overaggressive
feeding. Recent studies also demonstrate that genetic factors can play important roles
in the intensity of inflammation and the quality of the response to nutritional therapy in
individual patients. Clearly, further studies will be necessary to identify such factors
and their interactions so as to achieve the desired efficacy of nutritional therapy in the
management of disease-related malnutrition characteristic of critical illness.

5. RECOMMENDATIONS AND FUTURE CHALLENGES

For the future anabolic adjuvant therapy may be directed into other ways to reduce
the intensity of the systemic inflammatory response. One way would be the use of
anticytokine therapy, such as with IL-1 receptor antagonist (IL-1ra) or anti-TNF ther-
apy, including anti-TNF antibodies, soluble TNF receptors, pentoxifyline, a xanthine-
derived agent known to inhibit the production of TNF (166,167), and thalidomide
(168–170). Certain pharmacological agents like β-blockers (171) and angiotensin-
converting enzyme inhibitors (172) have been shown to reduce cytokine production
in chronic congestive heart failure. Recently, angiotensin-converting enzyme
inhibitors have also been shown to improve antioxidant status, nutritional status, and
clinical outcome in chronic renal failure, another proinflammatory state (173). Simi-
larly statins, which are widely used to improve cardiovascular outcome by reducing
serum cholesterol, have been shown to work as well through their antioxidant action
(174). Another potentially promising way is through the use of nutrients that can
influence antioxidant status such as selenium, zinc, glutamine, cysteine or vitamin E,
since it has now been convincingly shown that reactive oxygen species can exacer-
bate the systemic inflammatory response (175). The improved clinical outcome in
critically ill patients (176) using immune-enhancing diets, which contain both
immune- and antioxidant-enhancing nutrients and omega 3 fatty acids, which are
anti-inflammatory, suggest that combination therapies may be particularly effective.
Vitamin E, an important antioxidant nutrient, also has been shown to reduce cardio-
vascular disease and the cardiovascular end points in chronic renal failure (177).
Dietary omega-3 fatty acid pus vitamin E has a significant immunomodulating effect
and has been shown to prolong the survival of malnourished patients with generalized
malignancy (178). In this regard the combination of anabolic hormones such as
growth hormone, and/or IGF-I in conjunction with antioxidant or anti-inflammatory
therapies might be worthy of study, particularly since the side effects of the former
might be through the promotion of inflammation. Thus, the future looks bright for the
development of new methods to improve anabolic nutritional therapies.
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KEY POINTS

• The regulation of circulating IGF-I and IGFBPs by nutritional intake and the short half-
life of these proteins in circulation offer great potential for the IGF proteins to be utilized
as exceptionally sensitive acute biochemical markers of nutritional intake, repletion, and
metabolic status.

• The value of serum IGF-I as an indicator of short-term response to nutrional intervention
has been described in a wide variety of patient populations and experimental conditions.

• The sensitivity and specificity of serum IGF-I as a marker of nutritional status in critical
illness is much greater than other visceral markers such as albumin, retinol binding pro-
tein, or transthyretin. Continued validation of IGF-I and IGFBPs in critical illness and
other acute disorders is anticipated since assessment of appropriate nutritional interven-
tion is both exceedingly important and particularly challenging in these circumstances.

• Because of the acute nature of the response to nutrition, IGFs are much less suited to eval-
uating chronic nutritional status, body weight, or body composition.

• The dependence of IGF proteins on vitamins, minerals, and other dietary constituents has
been less fully investigated; however, deficiencies of specific nutrients clearly influence
IGF protein synthesis and concentrations in the serum.

• The IGFBPs, in particular IGFBP-1, IGFBP-2, and perhaps ratios of the IGFBPs and
IGF-I, or free IGF-I in relation to nutrition, await further study, but could prove to be
valuable markers of nutritional status.

1. INTRODUCTION

The dependency and remarkable sensitivity of the insulin-like growth factor (IGF)
proteins and IGF binding proteins (IGFBPs) to nutrient availability has been recog-
nized since the early work on the somatomedins. The fundamental role of IGF proteins
in metabolic regulation suggests that the IGF proteins provide a direct functional indi-
cator of sufficient substrates to support anabolism. The regulation of circulating IGF-I
and IGFBPs by nutritional intake and the short half-life of these proteins in circulation
offers great potential for the IGF proteins to be used as exceptionally sensitive acute
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biochemical markers of nutritional and metabolic status. Building upon the fundamen-
tal interrelationships between the IGF proteins and nutrition in health and disease, as
presented in this volume, the present chapter will review an extensive number of
research studies that have examined the IGF proteins as markers of nutritional status.
Background about the process of nutritional assessment and the criteria used to evalu-
ate the efficacy of markers is included to provide a context into which research can be
examined. The focus of the chapter is the utility of IGF proteins as markers of acute
nutritional status and monitors of nutritional repletion. The IGFs are much less suited
to evaluating chronic nutritional status, body weight, or body composition. Limitations
and the impact of non-nutritional factors on the validity and sensitivity of IGFs are dis-
cussed. Although a wide variety of disease states and circumstances have been studied,
of particular note is the work demonstrating IGFs as markers of nutritional status in
critical illness and other acute disorders in which assessment of appropriate nutritional
intervention is both exceedingly important, and particularly challenging.

2. BACKGROUND 

The present chapter will focus on the IGF proteins as markers of protein and energy
status because much less is known with regard to IGFs as markers of specific vitamin
and/or mineral imbalances. An overview of the process and methods available to assess
nutritional status is followed by a discussion of the important differences between
chronic and acute assessment. The basic concepts of validity, specificity, sensitivity,
and precision as they apply to evaluating the appropriateness of nutrition status mark-
ers are presented.

2.1. Protein Energy Malnutrition
Protein energy malnutrition (PEM) remains a worldwide problem, particularly in

children, but also in institutionalized individuals where the prevalence may reach 40 to
50% of hospitalized patients (1–5). There are two physiological subtypes of protein
energy malnutrition, marasmus and kwashiorkor, although combinations of these sub-
types are also common (6). Marasmus results from semistarvation and is characterized
by inadequate food intake and a balanced lack of both energy and protein. Metabolic
adaptation to simple starvation or marasmus is evident with fairly normal serum pro-
tein pools, maintenance of immune function, decreased basal metabolic rate, and other
metabolic adaptations to preserve body protein. In severe forms, growth failure and a
loss of body fat and proteins stores make diagnosis of marasmus PEM fairly obvious.
Kwashiorkor, or hypoalbuminemic PEM, in contrast, is a protein deficiency. The meta-
bolic adaptations to fasting and marasmus do not take place with kwashiorkor, and
accelerated loss of somatic and visceral proteins results in hypoalbuminemia and
edema. Physiological stressors, such as infection or the inflammatory stress response,
typically contribute to kwashiorkor by increasing the demand for protein and energy.
Immunity is compromised quickly, and both hypermetabolism and hypercatabolism
may be present. Kwashiorkor PEM is more difficult to diagnosis because of the rapid
onset, lack of obvious clinical signs, masking by normal or excessive body fat stores
and/or edema, and presence of other physical stressors. In contrast to marasmus, where
chronic and less specific anthropometric markers can be used, detection of kwashiorkor
requires the use of sensitive biochemical markers of acute nutritional status (6–8). The
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ability of IGF proteins to reliably detect PEM in both forms has been demonstrated and
is described in more detail in later sections of the chapter.

2.2. Assessment of Nutritional Status: General Considerations
The purpose of nutritional assessment is to accurately detect nutritional disorders as

early as possible and to monitor the appropriateness of nutrition intervention (9). Mal-
nutrition generally connotes a deficiency of energy or particular nutrients. However, in
its more inclusive meaning, malnutrition indicates “faulty” nutrition, including under,
over, and imbalanced nutritional states. The development of malnutrition typically pro-
gresses through four stages. The first stage is initiated by such factors as a faulty diet,
excessive losses, impaired absorption, or altered energy or nutrient requirements.
Although inappropriate food intake may contribute, there are many nondietary factors,
and simply testing the “adequacy” of the diet does not reliably predict malnutrition. In
the second stage, body stores of the nutrient are altered (increased or decreased). The
first and second stages are difficult to discern because tissues indicative of body stores
are usually inaccessible (e.g., liver biopsy). In the third stage of malnutrition, function
becomes affected. At some threshold of nutrient depletion, excess, or imbalance, bio-
chemical changes become apparent. This is a preclinical stage, symptoms of deficiency
are not obvious, but may be detected by acute biochemical markers of nutritional sta-
tus. In the fourth stage of malnutrition, cellular and tissue deterioration becomes more
obvious and can be indicated by clinical signs or chronic markers of nutritional status,
such as anthropometrics.

2.2.1. METHODS OF NUTRITIONAL ASSESSMENT

The most effective nutritional assessment uses a variety of different types of measure-
ments in combination. Many excellent reviews evaluating nutritional status techniques
are available (9–11). The major categories of nutritional assessment methods are out-
lined in Table 1. Validity, sensitivity, specificity, and reliability are important criteria with
which nutrition markers are evaluated (Table 2). Each type of nutrition data provides
unique information in the assessment of nutritional status. In many instances a direct
correlation between data from two types of method can not be demonstrated. Nutritional
assessment indices are not interchangeable, and a single method cannot adequately
reflect both long term and acute status. Thus, the validity of a marker is very dependent
upon the situation in which it is used. Biochemical indices are generously unreliable in
predicting body composition (9). As discussed later in this chapter, serum IGF-I and the
IGFBPs in many instances are not valid indicators of body weight or composition.

2.2.2. METHODS TO ASSESS ACUTE PROTEIN AND ENERGY STATUS:
BIOCHEMICAL MARKERS

Biochemical (laboratory) assessment is used to detect subclinical deficiency states
and can provide the most sensitive information regarding recent status and/or direc-
tional changes in both anabolism and catabolism. Concentrations of circulating pro-
teins (indicating visceral protein status) and nitrogen excretion (reflecting changes in
metabolism) can provide a picture of current nitrogen balance, but not long-term shifts
in somatic protein stores or body composition. With the exception of infants and young
children, anthropometric and clinical methods indicate changes in somatic protein and
body composition that take a fairly long time to occur. Biochemical tests can be sensi-
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tive to recent changes and are of two types: static or functional. Static biochemical
markers include levels of a nutrient or its metabolite in serum, urine, or other biopsy
material. Functional markers indicate the sufficiency of nutrients available to permit
cells, tissues, organs, or the whole organism to perform optimally. Functional markers
include the activities of enzymes that are dependent upon specific nutrients (e.g., super-
oxide dismutase), but also include the measure of rapid-turnover visceral proteins in
the blood (e.g., transthyretin or IGF-I). 

The main site of synthesis for serum proteins used for nutritional assessment is the
liver, one of the first organs affected by protein malnutrition. The characteristics of a
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Table 1
Types of Data Used in the Assessment of Nutritional Status

Indicator of 
acute or 
chronic 

Method Examples malnutrition

Dietary
Intake of energy and nutrients 24-h Recall or dietary record Acute

Food frequency Chronic
Diet history—usual dietary patterns or Chronic

dietary restrictions
Biochemical (laboratory)

Serum or urinary concentrations of Serum proteins, such as albumin, Acute
static or functional markers transthyretin, transferrin, IGF

Serum or urinary vitamins, minerals, Acute
electrolytes

Urinary nitrogen or metabolites Acute and 
chronic

Anthropometric or body composition
Body dimensions and gross Body weight, height, body mass index Chronic

composition (e.g., fat or somatic Triceps skinfold, mid-arm muscle Chronic
protein mass) circumference

% Body fat, % fat-free mass, Chronic

Physical/clinical signs and symptoms
Overt signs of malnutrition, visual wasting, growth failure, fatigue Acute and 

appraisal, reported symptoms chronic
chelosis, dermatitis, petechiae, alopecia, Acute and 

anemia and other signs of chronic
vitamin/mineral deficiency

History 
Factors that influence nutritional Medical diagnoses Acute and 

risk chronic
Social, psychological, lifestyle, and Chronic

economic factors
Developmental stage Chronic
Medications Acute and 

chronic
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marker considered ideal for measuring acute changes in protein status include: a small
body pool that can reflect changes quickly; very short biological half-life with a rapid
rate of synthesis and a fairly constant catabolic rate; a major pool present within the
vascular space with minimal extra vascular shifting; and specificity to protein and
energy deprivation with little effect of non-nutritional factors, such as stress and dis-
ease (9,12,13). Serum proteins traditionally used as nutrition markers do not necessar-
ily meet these criteria (Table 3). For example, serum albumin has a relatively large
body pool, more than 50% of which is present outside of the vascular space. Serum
albumin redistributes (unrelated to nutrition) in many circumstances. Albumin has a
long half-life, and may be a reasonable prognostic indicator of general health status,
morbidity, and hospital stay (15,16), but serum concentrations in adults do not reflect
nutrition except in cases of long-term, nonstressed protein and energy deprivation
(17,18). In kwashiorkor PEM and metabolic stress, such as severe injury, serum albu-
min decreases dramatically related to decreased synthesis and increased degradation
and trans capillary loss but not nutrition (15,19–21). Other short half-life serum trans-
port proteins, such as transthyretin (thyroxin-binding prealbumin), are widely consid-
ered more sensitive markers than serum albumin (10,22–26). However, in the presence
of the inflammatory stress response none of the widely used markers of visceral protein
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Table 2
Criteria to Evaluate the Appropriateness of Nutritional Status Markers

Criteria Explanation Example

Validity Adequacy with which any measurement Anthropometric measures are valid 
truly reflects the parameter of interest markers of chronic but not recent

nutritional status
Biochemical markers with short half-

lives are valid markers to monitor
refeeding 

Sensitivity Ability to detect small differences in Rapid-turnover serum markers with 
nutritional status such that there is detectable fluctuations that reflect 
great ability to identify all persons changes in nutritional status.
who are genuinely malnourished IGF-1 and IGFBP-1 appear to be more 
(i.e., few false negatives) sensitive to recent nutrition than

IGFBP-3
Specificity Individuals without malnutrition are Serum albumin is nonspecific in critical 

correctly identified as normal (i.e. illness because of extra vascular 
there are few false positives). shifts.
Reflects the extent to which random Recent weight change related to
errors and non-nutritional factors of edema is not indicative of nutrition 
(e.g., disease, diurnal variations) 
impact the ability of the index to 
predict malnutrition.

Precision Reliability or reproducibility. Degree to Low coefficient of variation for
which repeated measures of a sample laboratory measurements
give the same value.
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status have sufficient specificity, sensitivity, or validity (10,15,21,25,27,28). In con-
trast, serum IGF-1 provides a very rapid turnover marker with a small body pool and
minimal extra vascular shifting. As discussed later in this chapter under various condi-
tions, serum IGF-1 appears to be less influenced by many disease states than other
markers. As suggested in other chapters and research presented in the this chapter, the
IGF proteins hold great potential to accurately monitor nutritional interventions in
acute stress when avoiding both overfeeding and underfeeding, is particularly critical.
Several IGFBPs, free IGF-1, and acute labile subunit (ALS) may also be useful as
indices of nutrition but await further study.

2.2.3. METHODS TO ASSESS CHRONIC NUTRITIONAL STATUS: ANTHROPOMETRIC

AND BODY COMPOSITION MEASURES

Anthropometric methods of physical dimension or gross composition of the body
are useful in assessing chronic imbalances of protein and/or energy. A reflection of
long-term nutritional status, anthropometric methods can detect disturbances in the
patterns of physical growth and the relative proportions of body tissues, such as fat,
muscle, and body water. Many anthropometric procedures use simple, noninvasive,
indirect techniques, such as body weight, height, and triceps skin fold, although more
sophisticated techniques of measuring total body potassium, water, or protein are pri-
marily used in research settings. Anthropometric indices are crude markers that indi-
cate advanced malnutrition and are relatively insensitive in detecting subclinical
malnutrition or short-term changes in nutrition. For example, acute protein malnutri-
tion with decreased transthyretin can be found in a hospitalized patient with a body
mass index (BMI) indicating obesity. Lack of correlation between acute and chronic
markers of nutritional status is not uncommon. Mixed disorders commonly occur. In
general no single marker can reliably indicate both chronic and acute nutritional status.

3. SENSITIVITY OF IGF PROTEINS TO NUTRITION

This section provides a brief overview of the dependency and sensitivity of circulat-
ing IGFs to energy, macronutrient, micronutrient, and other dietary components.
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Table 3
Half-Life and Physiochemical Characteristics of Serum Proteins Used to Assess Acute
Nutritional Status

Molecular Normal Approximate 
mass plasma normal half-life Approximate 
(kDa) concentration in serum body pool

IGF-Ia 150–200 100–400 ng/mL 12–15 h
Albumin 65 3.5–5.2 g/dL 2–3 wk 3–5 g/kg
Transthyretin (prealbumin) 55 19–43 mg/dL 2 d 10 mg/kg
Transferrin 80 200–400 mg/dL 1 wk <100 mg/kg
Retinol-binding protein 21 2.1–6.4 mg/dL 12–14 h 2 mg/kg

aIGF-I as bound in the tertiary complex with IGFBP-3 and ALS. Free IGF-I has an estimated half-life of
10–12 min (14). Serum IGF-I concentrations are age-dependent.
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3.1. Protein and Energy
IGF-I and IGF binding proteins are acutely sensitive to nutritional status and recent

nutrient intake. The decline in IGF-I as a result of nutritional deprivation is indepen-
dent of growth hormone (GH) and is a result of decreased gene expression via tran-
scriptional and post-transcriptional mechanisms, reduced hepatic production, increased
degradation, and clearance of serum IGF-I (reviewed in Chapter 2). Serum IGF-I falls
within 24–48 h of fasting in healthy, normal-weight (29–31) adults. A threshold of
energy between 11–18 kcal/kg appears to be required in adults to maintain serum IGF-
I concentrations irrespective of protein intake (31,32). When energy is adequate (35
kcal/kg), even small increments in protein intake (0.2 g protein/kg) result in post fast
increases in serum IGF-I (31). The dependence of serum IGF-I concentrations on both
energy and protein intake has been clearly demonstrated in a variety of animal species
(33–41) as well as adult and pediatric populations (29–32,42–49). Excellent reviews of
the sensitivity IGF proteins to protein and energy status are available (44,50–53). 

Nutrient deficiency also alters the biological action of IGF-I either directly or indirectly
through changes in the IGFBPs. The vast majority of IGF-I (approx 90%) circulates
bound to the 150-kDa complex, which consists of IGF-I, IGFBP-3, or IGFBP-5, and an
ALS. Likely a storage form of IGF-I, this large complex has an estimated half-life of
12–15 h (14) in comparison with free IGF-I with a half-life of 14 min (54). IGFBP-1,
IGFBP-2, and IGFBP-4 associate with IGF-I in smaller complexes and may be involved
in the delivery of IGF-I to tissues and attachment to cell surface receptors. In addition,
IGF-independent actions have been shown for IGFBP-1, -3, and -5. Total serum concen-
trations of IGF-I correlate positively with ALS and IGFBP-3, but IGFBP-1 and free IGF-I
correlate inversely. Nutrient intake is a major regulator of circulating concentrations of the
IGFBPs. IGFBP-3 concentration is relatively stable throughout the day, and fasting for 24
h has little observable effect on serum IGFBP-3 and ALS in adults (55,56). With more
severe forms of nutritional deprivation (e.g., fasting for 48–72 h, and severe protein and
energy restriction), IGFBP-3 and ALS are depressed by the nutrient deprivation
(32,57–62), but the magnitude of the change is much less than is reported for other IGF
proteins. In contrast, serum IGFBP-1 is elevated in the fasted state (63) in energy restric-
tion in adults but not children (32) and is markedly and rapidly suppressed by nutrient
intake (64,65). Increased insulin, glucose, and perhaps amino acid concentrations mediate
the postprandial drop in IGFBP-1, and insulin may stimulate transport of IGFBP-1 to the
extravascular space (see Chapters 2 and 14). IGFBP-2 concentrations are also elevated by
dietary restriction (32,61) and are less affected by postprandial changes than IGFBP-1.

3.2. Effects of Specific Nutrients and Dietary Components on the IGF Proteins
Carbohydrate and fat composition of the diet also influence the IGF proteins

(34,66–68). The importance of the macronutrients in regulating serum IGF-I and the
IGFBPs has been reviewed elsewhere (44,53,69). The dependence of IGF proteins on
vitamins, minerals, and other dietary constituents has been less fully investigated; how-
ever, deficiencies of specific nutrients clearly influence IGF protein synthesis and con-
centrations in the serum. The interface between specific nutrient deficiencies, protein
synthesis, and growth appears to be mediated via the IGF proteins because alterations
in IGF metabolism are observed with deficiencies of zinc (33,70,71), specific amino
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acids (72), manganese (73), vitamin A (74–76), vitamin D (77), calcium (77,78), iodine
(79,80), magnesium (81,82), potassium (81–83), and copper (84). The ability of IGFs
to indicate micronutrient deficiencies has not been examined. 

Epidemiological evidence suggests that circulating concentrations of IGF proteins
may be associated with dietary intake of various electrolytes (85), milk (86), tomato
(lycopene) (87), and vegetarian dietary patterns (88). The dietary intake of soy has
been related to circulating IGF-I concentrations in some (89,90) but not other studies
(91,92). The associations suggested by these large population studies are beyond the
scope of this chapter and to date do not provide sufficient data to suggest the specificity
of IGF proteins in assessing dietary components. Whether the IGF proteins will be use-
ful in assessing specific nutrient deficiencies or the intake of other biologically active
components of the diet, such as nutraceuticals, awaits further investigation.

4. IGF PROTEINS AS MARKERS OF ACUTE NUTRITIONAL STATUS

A strong reliable association between serum IGF-I, urinary urea nitrogen, and direc-
tional changes in nitrogen balance are observed with fasting and refeeding diets of var-
ious quality (29–31,42). Short-term semistarvation, sustained workload, inadequate
sleep, thermal strain, and refeeding is reliably reflected in serum IGF concentrations in
healthy lean men (93). Short-term restriction of energy or protein in healthy children
and adults results in significant changes in serum IGF-I, IGFBP-3, -2, and -1 that are
detectable within 1–2 d after the diet is altered and are evident before observable
changes in other nutrient-dependent serum proteins (32). Serum IGF-I, IGFBP-3, and
IGFBP-2 in premature infants appear to respond to recent dietary intake of energy and
protein in a fashion similar to adults (43). The value of serum IGF-I as an indicator of
short-term response to nutritional intervention has been described in a wide variety of
patient populations (94–97). In malnourished hospitalized patients with diverse diag-
noses, serum IGF-I is more attenuated, more sensitive to refeeding, and more strongly
correlated to nitrogen balance than serum albumin, transferrin, transthyretin, or retinol
binding protein (46,47,94). Serum IGF-I has been shown to be more related to total
body water, sodium and potassium, and more sensitive to refeeding than serum albu-
min and transferrin (98) in malnourished patients with biliopancreatic bypass.

4.1. Repletion and Monitoring of Nutritional Interventions
Convincing evidence of the validity, sensitivity, and specificity of a nutritional status

marker is the observed changes that are associated with replacement of nutrients after
deficiency. The ability to discriminate between deficiency and normality in screening
and diagnosis should be distinguished from the utility of a marker in monitoring the
response to nutritional intervention. Measurements of body composition and size are
generally too crude for monitoring nutrition intervention because they are insensitive to
short-term changes in nutrition. Many studies suggest that serum IGF-I is more sensi-
tive to nutrient repletion than albumin, transferrin, or even transthyretin (46,98,99).
Relative changes in IGF-I may be even more useful than absolute values as indicators
of short-term changes in nutritional status. A large body of evidence demonstrating a
prompt, obvious, and reliable response of serum IGF-I to repletion of nutritional depri-
vation under very diverse circumstances and disease states is now available (Table 4).

82 Houston

075-104*/Houston04  6/29/04  5:55 PM  Page 82



Table 4
Studies Demonstrating Increased Serum IGF-I in Response to Nutritional Repletion

Study Condition/population Nutritional intervention

Malnourished children
Bhutta et al. 1999 (100) Malnourished children with Rice-lentil, yogurt repletion diet

diarrhea
Doherty et al. 2002 (101) Severely malnourished children Diet, zinc supplement
Hintz et al. 1978 (102) Children with PEM and bacterial Milk-based formula

infections
Kabir et al. 1992 (103) Malnourished children with High or normal protein diet

shigellosis
Lopez-Jaramillo et al. 1992 Schoolboys with low calorie and Animal or vegetable protein 

(104) protein intakes supplements
Ninh et al. 1996 (70) Growth-retarded children Zinc supplementation (10 mg/d)
Palacio et al. 2002 (105) Hospitalized children with PEM Repletion diet
Pucilowska et al. 1993 (59) Undernourished children with High protein refeeding diet

shigellosis
Smith et al. 1989 (106) Malnourished children with M Vegetable protein repletion diet

and K
Soliman et al. 1986 (107) Malnourished children with M, K, Nutritional rehabilitation

or MK
Zamboni et al. 1996 (108) Malnourished children with M or K Nutritional rehabilitation

Experimental fasting or 
semistarvation and repletion
Clemmons et al. 1985 (42) Healthy normal weight males, Diet plus essential amino acids

fasted 5 d
Clemmons et al. 1981 (29) Healthy obese males fasted for Normal diet

10 d
Isley et al. 1983 (30) Healthy, normal weight adults Normal, protein and/or energy 

fasted 5 d deficient diet
Isley et al. 1984 (31) Healthy, normal weight adults Low protein and/or energy 

fasted 5 d refeeding diet 
Smith et al. 1995 (32) Healthy adults, protein restriction Normal diet

or energy restriction for 6 d
Smith et al. 1995 (32) Healthy children—protein Normal diet

restriction or energy restriction 
for 6 d

Friedl et al. 2000 (93) Army Rangers, semistarvation and Normal diet
stress 

Critical illness
Aaberg et al. (109) Intensive care patients with TPN and enteral

severe injury
Baxter et al. 1998 (110) Intensive care patients, diverse TPN and enteral

diagnoses
Burgess 1992 (97) Malnourished surgical patients TPN

with sepsis
Elimam et al. 2001 (111) Normal weight adults, TPN

cholecystectomy 
Hawker et al. 1987 (112) Intensive care patients, diverse TPN and enteral 

diagnoses
Houston et al. (62) Intensive care patients with TPN and enteral 

severe injury
Jeevanandam et al. 1996 (113) Intensive care patients with TPN

severe injury
(Lopez-Hellin et al. 2002 (114) Surgical patients in intensive care TPN 
Marin et al. 1999 (115) Children postsurgery TPN

(continues)
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Table 4
(Continued)

Study Condition/population Nutritional intervention

Mattox et al. 1988) (116) Intensive care patients, diverse Enteral with BCAA
diagnoses

Pittoni et al. 2002 (117) Intensive care patients, trauma and TPN and enteral
sepsis

Eating disorders 
Argente et al. 1997 (118) Anorexia nervosa and bulemia Refeeding diet 
Caregaro et al. 2001 (95) Anorexia nervosa Refeeding diet
Counts et al. 1992 (119) Anorexia nervosa Refeeding diet
Fukuda et al. 1999 (120) Anorexia nervosa Refeeding diet 
Golden et al. 1994 (121) Anorexia nervosa Refeeding diet
Heer et al. 2002 (122) Anorexia nervosa Refeeding diet
Hill et al. 1993 (123) Anorexia nervosa Refeeding diet
Hotta et al. 2000 (124) Anorexia nervosa, hospitalized TPN
Nedvidkova et al. 2000 (125) Anorexia nervosa Refeeding diet 
Pascal et al. 2002 (126) Anorexia nervosa Refeeding diet 
Rappaport et al. 1980 (127) Anorexia nervosa Refeeding diet 

Various chronic diseases
Beattie et al. 1998 (128) Children and adolescents, Crohn’s Enteral nutrition support

disease 
Lebl et al. 2001 (129) Children and adults, cystic fibrosis Oral supplementation
Thomas et al. 1993 (130) Children, Crohn’s disease Elemental diet

Malnourished elderly
Bachrach-Lindstrom, 2001 Elderly women with hip fractures Protein–energy supplemented 

(131) diet
Campillo et al. 2000 (132) Undernourished elderly with hip Oral diet

fractures 
Rizzoli et al. 2001 (49) Osteoperotic elderly patients, hip Oral protein supplement 

fractures 
Schurch et al. 1998 (133) Osteoperotic elderly patients, hip Oral protein, vitamin, Ca 

fractures supplement 
Salbe et al. 1995 (134) Adult males Oral, enteral and TPN

Malnourished hospitalized 
patients
Donahue and Phillips 1989 (47) Malnourished adult patients Nutrition support
Raynaud-Simon et al. 2002 Malnourished elderly patients with Diet 40 kcal/kg, 15% protein

(135) inflammation
Clemmons et al. 1985 (94) Malnourished adult patients Nutrition support
Minuto et al. 1989 (98) Malnourished hospitalized Parenteral or enteral nutrition 

patients with biliopancreatic support
bypass 

Unterman et al. 1985 (46) Malnourished adult patients with Nutrition support
M, K, MK

Newborn infants
Colonna et al. 1996 (136) Preterm newborn infants Enteral nutrition
Diaz-Gomez et al. 1997 (137) Preterm newborn infants Formula supplemented with 

human milk
Park et al. 2001 (138) Preterm newborn infants Parenteral nutrition
Price et al. 2001 (139) Premature infants with Enteral and parenteral nutrition

bronchopulmonary dysplasia
Smith et al. 1997 (43) Premature infants Enteral and parenteral nutrition

PEM, protein energy malnutrition; M, marasmus PEM; K, kwashiorkor PEM; MK, combined marasmus and kwash-
iorkor PEM; TPN, total parenteral nutrition; enteral, enteral tube feeding; BCAA, branched chain amino acids.
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These studies (and there are undoubtedly more) make a compelling case for the use of
serum IGF-I to monitor both nutrition intervention and short term variations in nutri-
tional status.

4.2. Relationship Between IGF Proteins and Markers of Chronic 
Nutritional Status

Cross-sectional data in mixed populations have not demonstrated a consistent asso-
ciation between IGF-I and long-term indicators of nutritional status, body size, and
body composition. This is illustrated in an analysis of 790 elderly men and women in
the Framingham Heart Study. Serum IGF-I did not correlate with body composition,
weight, waist and hip circumferences, past health behaviors, or other long-term indica-
tors but was associated with acute biochemical markers of nutritional status and recent
weight loss (140). In many studies, the lack of association between IGF proteins and
anthropometric measures may be the presence of mixed chronic and acute nutritional
disorders or the inability to predict chronic status with an acute marker.

4.2.1. HEALTHY ADULT POPULATIONS

There are discordant data regarding the relationship between serum IGFs and
anthropometric and body composition measures in healthy populations. Issues such as
adjustment for age, recent dietary intake at the time of sampling, heterogeneity of the
sample, and testing only simple linear relationships may explain some of the discrep-
ancies. In studies of small-to-moderately sized populations (n < 100), results are con-
flicting and conclusions difficult. In men, inverse correlations have been noted between
IGF-I and BMI, triceps skinfold, and percent body fat (141–143). Similar associations
have been found in women in some, but not all studies (141,143,144). Serum IGF-I
was weakly correlated with BMI in healthy women, but not with men, after adjustment
for age (145). No correlation between IGF-I and BMI was found in healthy elderly per-
sons (146). IGF-I was not predictive of lean body mass in elderly men with varying
levels of physical activity (147). However, serum IGF-I was negatively correlated with
visceral fat mass, independently of subcutaneous and total fat mass in men with
abdominal obesity (148). Positive associations between IGF-I, IGFBP-1, and lean body
mass and a negative association between total body fat and IGFBP-1 were observed in
normal and growth hormone deficient adults (149). 

Data from large mixed healthy cohorts provide an even less convincing argument for
the association between serum IGF-I and anthropometrics, other indices of adiposity or
lean body mass in healthy populations. In the Baltimore Longitudinal Study of Aging,
BMI and waist circumference were not related to serum IGF-I when adjusted for age in
healthy, normal weight men or women (150). Serum IGF-I concentrations did not indi-
cate heavier weight, larger waist circumference, body fat, or lean mass in elderly men
and women (n = 790) from the Framingham Heart Study data (140). After adjustment
for age, serum IGF-I was not associated with height, BMI, total or central body fat, or
lean body mass in the Rancho Bernardo Study, which included 420 healthy men and
419 women aged 50 years and older (151). In a recent study of a large group of healthy
women (n = 1037), serum IGFBP-3, but not IGF-I, was positively associated with BMI
(152). BMI did not correlate significantly with serum IGF-I in 1030 healthy children,
adolescents, and adults (153).
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4.2.2. OTHER DEVELOPMENTAL STAGES

The relationship between IGF-I and body size or composition may be developmen-
tally dependent. Studies of healthy, growing infants have demonstrated that serum IGF-
I and IGFBPs are related to gestational age, birth weight, body weight, and nutritional
intake during gestation and early postnatal life (154–157). Serum IGF-I and IGFBP-3
increase with increasing caloric and protein intake; these changes correlate with anthro-
pometric measurements in growing preterm infants (43,136,137) and premature infants
with bronchopulmonary dysplasia (139). During infancy, research suggests that IGF-I
levels are primarily regulated by nutrition (157). Before puberty, serum IGF-I concen-
trations may reflect overall somatic size, that is, weight, height, BMI, and fat free mass
in nonobese healthy girls. However, with sexual maturation, the relationship between
circulating IGF-I and body size is diminished (158). Other studies have found that after
adjusting for pubertal development, serum IGF-I was not related to BMI, body weight,
or other anthropometric measurements in a sample of 325 healthy girls (159).

4.2.3. OBESITY

Alterations in the IGF/GH axis, although difficult to characterize, are commonly
observed in obesity (160–162). Despite alterations in the IGF system, measurement of
serum IGF-I or the IGFBPs have not been shown to be sensitive indicators of body
weight, adiposity, or body fatness, and in that manner not able to identify obesity
(163–165). In children, before puberty, IGF-I concentrations are greater in obese com-
pared with normal weight children in some (166,167) but not other reports (163).
IGFBP-3, IGFBP-1, IGFBP-2, and free IGF-I are also significantly different between
normal weight and obese prepubertal children (163,166). In obese children, IGF-I and
IGFBP-3 concentrations are greater after puberty compared to prepuberty (166,167).
However, the ability of serum IGF-I or IGFBP3 to reflect BMI in normal weight or
obese children is very inconsistent (163,166,167). Interestingly, with short-term
changes in nutrition (caloric restriction and 25% reduction of BMI standard deviation
score), IGF-I, free IGF-I, BP-1, and BP-2 were associated with BMI in obese children
(163). Weight loss has also been shown to cause at least a temporary increase in IGF-I
concentration in adults (164).

4.2.4. SEVERE MALNUTRITION

In extreme circumstances of undernutrition, the IGF proteins appear to be more pre-
dictive of body composition and size than in healthy populations. There may be a
threshold under which IGF-I (and perhaps other IGF proteins) may reflect BMI, body
weight, and other indicators of body size and composition. Whether the IGF proteins
are responsive to recent nutritional inadequacies or reflect decreased body stores of
protein or fat is difficult to discern. In any case, with severe malnutrition, IGF-I is pre-
dictive of BMI and/or other markers of body composition in conditions, such as
anorexia nervosa (95,118–120,123,124,168–170), end-stage renal disease (171–174),
cystic fibrosis (175,176), AIDS (134), malnourished elderly patients with hip fractures
(132,177,178), and children with PEM (100,107,179–182).

Thus, in conditions of chronic malnutrition resulting in decreased body weight and
diminished fat stores, serum IGF-I does correspond to anthropometric measurements in
a fashion that is not evident in normal weight or obese individuals. Even so, serum IGF-
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I may not be a reliable indicator of chronic nutritional status in diverse clinical popula-
tions that vary in severity of illness and/or levels of adiposity. For example, serum IGF-
I does not consistently correspond to BMI or anthropometric markers in cancer patients
with diverse clinical status and varying percentages of body fat (183–185), and the rela-
tionship between IGF-I and indices of adiposity may be gender specific (184).

5. IGF PROTEINS AS MARKERS OF NUTRITIONAL STATUS 
IN UNDERNOURISHED CHILDREN

Some of the earliest observations recognizing the relationship between somatomedin
activity and nutritional status were of chronically malnourished children with marasmus
and/or kwashiorkor PEM (102,186–188). A very consistent finding in populations of
children with any of these forms of PEM is initial observations of significantly depressed
serum IGF-I that responds to nutritional repletion and is correlated with weight and
height gains and general improvement in health status. The responsiveness of serum
IGF-I (somatomedin C bioactivity in early studies) to nutritional depletion and repletion
has been documented in children in South Africa (186), Thailand (102), India (187),
Nigeria (106,179), Morocco (180), Egypt (107), Malaysia (181), Vietnam (70), Equador
(104), Pakistan (100), Chile (105), and Bangladesh (59,103). Serum IGF-I is a better
marker of nutritional recovery than serum albumin, transthyretin, and retinol-binding
protein (100) and dramatic increases in serum IGF-I and IGFBP-3 are observed with as
little as 10% weight gain. Serum IGFBP-3 has also been associated with body weight
and height in recovering malnourished children (100,181). Although difficult to separate
in many studies, serum IGF-I tends to be lower in children with kwashiorkor compared
to marasmic protein energy malnutrition and supports animal work that demonstrates
that not only the lack of protein and/or energy, but the imbalance of protein to energy
intake has a negative impact on circulating concentrations of serum IGF-I (189).

6. IGF PROTEINS IN ASSESSING NUTRITIONAL STATUS 
AND MONITORING THE RESPONSE TO NUTRITION SUPPORT 
IN CRITICAL ILLNESS

The sensitivity and specificity of serum IGF-I as a nutritional marker in critical ill-
ness has been strongly supported by several studies that made comparisons to tradi-
tional markers of nutritional status. Correlations between nitrogen balance and serum
IGF-I concentrations are preserved during the acute response to critical illness
(97,112,116) in a manner similar to malnourished patients requiring parenteral or
enteral nutrition support (46,47). Serum IGF proteins are significantly associated with
accepted markers of nutritional status (110,190). However, serum albumin,
transthyretin, transferrin, and retinol binding protein are affected by the stress response
during early critical illness. Thus, many investigators have concluded that serum IGF-I
is a more useful index of nutritional status, particularly in indicating acute directional
changes in the early phases of critical illness and while monitoring the response to
nutritional support (62,97,112,114–116,191). 

Serum IGF-I responds to the initiation of nutrition support and the protein and energy
intake received in early critical illness (62,112,114,116). In a study of severely injured
patients, serum IGF-I was significantly less in patients receiving <12 kcal/kg compared
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with patients receiving >20 kcal/kg by d 4 after trauma despite a similar severity of
injury. During the first week, energy intake was a significant predictor of serum IGF-I,
even after adjusting for age and BMI by using multiple regression analysis (62). 

Less direct evidence of the sensitivity of nutrition on serum IGF-I levels to nutrition
in critical illness is suggested by observational studies demonstrating depressed IGF
levels that reach a nadir after several days of minimal nutritional intake and increase
towards normal in conjunction with increased protein and energy intake over the next
week to 10 d (110,113,115–117,192–198).

Response of serum IGF-I to nutritional support in critically ill patients has not been
clear in all studies. However, factors such as comparison to anthropometric measures,
small or diverse groups of patients, variations in time observed, or several days of fast-
ing or minimal feeding prior to initiation of full nutritional support (193,198–200) may
explain some of the lack of observed effect. Non-nutritional factors affecting IGF pro-
teins that have been observed in critically ill patients include age, severity of illness,
gender, and obesity (201–203). Another important consideration is the distinctive
metabolic environment that occurs after 7–10 d or in prolonged critical illness (Chapter
16). When data from several weeks of hospitalization, which encompass several neu-
roendocrine and metabolic phases are averaged, direct relationships between serum
IGF-I concentrations and nutrient intake or nitrogen balance are not observed
(62,110,204–206). 

Convincing confirmation of the validity of IGF-I as a marker of nutritional status in
critical illness was demonstrated in a carefully designed study aimed at determining the
efficiency of several short-lived proteins in assessing nutrition intake in surgical patients
(114). Patients were randomized to receive four different parenteral nutrition solutions
that varied in protein (0 to 1.5 g/kg/d), energy (approx 7, 11, 18, 33 kcal/kg/d), carbohy-
drate, and fat content after surgery and 48 h of fasting. Serum IGF-I was sensitive to
nutritional intake, able to discern between the four different levels of energy and protein
intake, and was not influenced by the stress response at adequate levels of nutritional
intake. Only IGF-I was able to indicate nutritional intake as clearly as nitrogen balance. 

Changes in IGFBPs during critical illness are just beginning to be characterized
(59,110,197,207–211). Preliminary observations indicate that several IGFBPs are quite
responsive to the metabolic shift that occurs from fasting or hypocaloric feeding to ade-
quate nutritional support in severely injured patients. Marked changes in IGF-I,
IGFBP-1, ALS, and free IGF-I occur in severely injured patients over a 24- to 48-h
period as nutrition support is initiated following a period of fasting or minimal intra-
venous dextrose administration during the first few days after trauma (109). Even in the
presence of inflammatory stress, IGFBP2 is an independent predictor of protein intake
(139). Further investigation of observations indicating alterations of IGFBPs and
IGFBP-3 proteolysis and their sensitivity to nutrition appear to be warranted.

7. THE IGFS AS SENSITIVE MARKERS OF STARVATION 
AND REPLETION IN ANOREXIA NERVOSA

Anorexia nervosa is a circumstance of starvation, a marasmus PEM. Not typically
related to other catabolic illnesses, anorexia nervosa is simple starvation resulting in
profound alterations in body composition and dimensions. The GH/IGF axis is dramat-
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ically altered in anorexia nervosa, with approx 50% lower basal IGF-I levels than
found in critically ill, obese, or normal subjects (127,212), elevated IGFBP-1, and
lower ALS and IGFBP3 concentrations (120,168). Distinctly different patterns of GH
and IGF proteins are found in anorexia nervosa when compared with hypopituitarism
or acromegaly, reinforcing the major role of nutrition in affecting the GH/IGF axis.
GH/IGF and insulin are altered and related to energy and dietary fat intake even in sub-
clinical eating disorders with amenorrhea (67,213). 

The ability of the body to maintain near-normal concentrations of some liver-
derived serum proteins (including those used to assess nutritional status) in the pres-
ence of marasmus-type protein energy malnutrition has been well documented in both
early (214) and more recent (93) controlled studies of starvation. Indeed, in recently
diagnosed patients with severe anorexia nervosa, serum albumin, transthyretin, and
retinol-binding protein are remarkably normal, and do not reflect the presence of pro-
found malnutrition (95,123,215). In contrast, IGF-I, IGFBP-1, -2, -3, and ALS are
markedly changed and are considered good indicators of nutritional state in individuals
with eating disorders (118–121,170). 

This extreme degree of malnutrition is a circumstance in which IGF proteins appear
to be predictive of BMI and other markers of body size and composition. At the initia-
tion of therapy, both recent nutrient intake and chronic nutritional deprivation are pre-
sent and strong positive correlations are observed between total IGF-I, free IGF-I,
ALS, IGFBP3, and negative correlations between IGFBP2, IGFBP1, IGF-I receptors,
and BMI or body weight (95,118–121,124,168–170). With repletion, changes in IGF
proteins correspond to increases in body weight (123,126) and eventually with BMI
(95,120,121,123). IGF-I has been shown to be more sensitive to weight gain with
repletion than proteins commonly used to assess nutritional status, such as retinol-
binding protein, albumin, and transthyretin, (95,123).

8. THE IGF PROTEINS IN ASSESSING NUTRITION IN CHRONIC
DISEASES ASSOCIATED WITH MALNUTRITION

The validity of IGF proteins as sensitive markers of nutritional status has been pro-
posed in individuals with various conditions that contribute to malnutrition and wasting,
such as HIV infection or AIDS (134), and hip fractures (132,177). Below are several
conditions for which more thorough investigation of the IGF proteins has occurred.

8.1. Renal Disease
The GH/IGF axis is altered in renal failure. Trapping of IGF-I by the kidney,

increases in IGFBPs, metabolic acidosis, diabetes, uremia, catabolism, and PEM can
all contribute to attenuated serum IGF-I in renal disease (reviewed in Chapter 13).
Despite other influences, serum IGF-I has consistently predicted the presence and
severity of malnutrition in chronic renal disease (52,171,172,174,216–218). Serum
IGF-I has been proposed as a valid, sensitive marker of nutrition, with advantages com-
pared with serum albumin and other visceral protein markers in children and adults
with end-stage renal disease, on either predialysis, hemodialysis, or peritoneal dialysis
(171–173,219–222). Furthermore, serum IGF-I and the IGF-I/IGFBP-1 ratio are
related to protein intake calculated from urea kinetics (protein catabolic rate) (221).
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8.2. Liver Disease
Disturbed hepatic synthesis, toxic effects of ethanol, as well as other pathological

changes and concomitant malnutrition contribute to the very low circulating concentra-
tion of IGF-I in liver disease (223–226). Protein energy malnutrition is a common find-
ing in patients with liver disease (227,228), but few studies have tested the significance
of IGF-I as a marker of nutrition in this population. In one study of alcoholic cirrhosis,
malnutrition correlated with IGF-I independently of liver dysfunction (229). In a more
recent study, serum IGF-I correlated with the degree of liver failure was a useful marker
of survival, was more suppressed in patients with the most severe liver disease and mal-
nutrition, was closely correlated with other serum markers of nutritional status, but was
not related to anthropometric indicators of chronic energy malnutrition (99). Serum
IGF-I remained very low in patients with cirrhosis who had 2–4 wk of refeeding (230).
IGF-I and other markers of nutrition increased significantly in malnourished alcohol
abusers after hospitalization (231). Although tempting to assume that circulating IGF
proteins are not related to nutrition in liver disease, more specific studies are needed.

8.3. Cystic Fibrosis 
Malnutrition in cystic fibrosis (CF) is related to increased energy expenditure,

decreased energy intakes, pulmonary disease, malabsorption of ingested nutrients, pan-
creatic insufficiency and chronic inflammation. IGF-I concentrations are diminished and
related to the poor growth, catabolic state, altered GH responsiveness, and malnutrition
that accompany cystic fibrosis (232,233). A well-designed cross-sectional and longitudi-
nal study of CF patients (3–33 yr) found very depressed IGF-I and IGFBP-3 concentra-
tions that correlated with markers of nutritional status, anthropometrics and serum
vitamin E concentrations. With intensive nutrition and antibiotic therapy, IGF-I and
IGFBP3 increased significantly (129). The close association between IGF-I and IGFB-3
and nutrition has been demonstrated in other studies of patients with CF (175,176).

9. NORMAL STANDARDS, NON-NUTRITIONAL FACTORS, 
AND LIMITATIONS OF IGF PROTEINS AS MARKERS 
OF NUTRITIONAL STATUS

Relative rather than absolute values are very useful in indicating the response of
IGFs to nutritional interventions. However, the use of IGFs for nutritional screening,
diagnosis, or cross-sectional assessment requires a comparison to a reference distribu-
tion, i.e., normal range or pre-determined cutoff points. Reference values are obtained
from a healthy sample group. Ideally, comparison of an individual observation to the
reference distribution involves matching factors such as age, sex, race, physiological
state, fasting, and analysis methods. An extensive reference distribution continues to be
developed to enable sophisticated and reliable interpretation of serum IGF values under
multiple circumstances (118,145,153,158,234–240). Establishing a normal range in
each laboratory has become less of an issue for IGF-I with the advent of commercially
available kits and automated systems that provide fairly standardized procedures for
extraction of the binding proteins. Important analytical differences are still possible
however, particularly in testing free IGF-I and some of the IGFBPs. 
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The choice of a cut-off point to differentiate between malnourished and well-nourished
states for a particular index critically affects both sensitivity and specificity. Lowering the
cut-off, that is, enlarging the normal reference range, will increase the specificity (less
likely to miss a malnourished individual), but decreases the sensitivity (more classified as
malnourished). This remains a challenge for IGF proteins for which normal reference
standards continue to evolve, and in the case of IGF-I, a fairly large range (generally
200–400 ng/mL) is considered “normal.” Normal ranges and cut-off points for the IGF-
BPs and free IGF-I are much less established and await further research. 

Many non-nutritional factors affect IGF proteins and their levels in circulation
(241,242). Age, gender, growth hormone status, and diabetes have recognized influ-
ences on the IGF proteins (Chapters 1, 2, 9, and 14). Consideration of other factors
may include estrogen status and parity (152,243), other sex hormone (244), menstrual
cycle (245), thyroid status (246), alcohol ingestion (151,247), and exercise (248–250).
Whether these factors are actually limitations in interpreting nutritional status will
likely need to be determined under each specific circumstance. 

Recent work in animal models suggests that local production of the IGF peptides
may compensate for changes in circulating levels of the IGF proteins in response to
protein or dietary restriction (251,252). The biological and clinical significance of the
autocrine and paracrine responses to nutrient availability are unknown. 

Interactions of IGFBPs, both independently and in ratio with IGF-I have important,
but not fully understood, effects on the bioavailability, biological activity, and circulat-
ing concentrations of IGF-I. Further research may demonstrate that concentrations of
IGFBPs, particularly IGFBP-1 and/or -2, or the molar ratios of IGF/IGFBP-3 may pro-
vide a more reliable nutritional status marker than IGF-I.

10. SUMMARY AND CONCLUSIONS

Serum IGF-I is acutely sensitive to recent protein and energy nutritional status in
adults, children, infants, and many animal species. This observation is well docu-
mented in healthy individuals under experimental conditions, but also in individuals in
a wide variety of disease and stressed conditions. A large body of evidence supports the
use of serum IGF-I as a sensitive, reliable marker to monitor repletion and nutritional
support. Serum IGF-I appears to be more sensitive and perhaps a more useful marker
of acute nutritional status than conventionally used serum proteins such as albumin,
transthyretin, transferrin, and retinol binding protein. This is particularly evident in
critical illness and extreme starvation such as anorexia nervosa.

As biochemical markers of nutritional status, serum IGF-I and the IGFBPs are less
suited to indicating chronic nutritional status and body composition. Before puberty, in
extreme malnutrition, or the presence of both chronic and acute deprivation, IGF pro-
teins may correlate with anthropometric measures. However, in mixed populations
serum IGF-I is not a reliable indicator of body weight or composition. The IGFBPs
hold promise as assessment markers of nutrition as well, and await further study.

11. FUTURE DIRECTIONS

Current evidence supports the use of serum IGF-I as a valid marker of acute nutri-
tional status and monitor of nutritional interventions in several situations including
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critical illness, and in repletion of severe PEM. The use of IGF-I and the IGFBPs in
other populations and clinical situations requires further validation. A better under-
standing of the strengths and limitations of the nutritional assessment process and
appropriate application of specific types of methods will enhance the design of
research studies investigating the IGFs as nutritional status markers.

The study of the IGFBPs, in particular IGFBP-1, IGFBP-2, and perhaps ratios of the
IGFBPs and IGF-I, or free IGF-I in relation to nutrition is just beginning. As the under-
standing of the interface between the GH/IGF axis and nutrition continues to expand,
additional markers, and perhaps better markers may become evident. The transition
from parameters that are used in a research setting to widespread availability and rea-
sonable cost will be necessary to fully use the IGF proteins in nutritional assessment.
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KEY POINTS

• Zinc deficiency results in impaired growth of animals.
• Zinc deprivation is rapidly sensed before tissue stores are depleted.
• Changes in zinc-dependent enzymes do not correlate with the rapid growth suppression.
• The IGF axis, including GH, IGF-I, and the IGF binding proteins, are affected directly

and indirectly by zinc depletion.
• Restoration of depressed IGF-I fails to restore growth of zinc-deficient animals.
• Defects in calcium uptake and protein kinase C signaling occur in zinc deficiency.
• Zinc depletion may alter intracellular signaling pathways that regulate growth.
• Zinc binding domains on regulatory proteins that affect gene expression may provide the

brake for mitogenic activity in response to zinc depletion.

1. INTRODUCTION

The regulation of growth is a complex integration of endocrinology, nutrition, and
physiology. Delayed or suboptimal growth is characteristic of many endocrine disor-
ders as well as nutritional deficiencies. Because the insulin growth factor system is inti-
mately associated with growth regulation, many studies have investigated the
interrelationships among nutrient intake, the IGF system, and growth. It has been well
documented that decreased protein or energy intake results in decreased circulating
IGF-I (1). Whereas a prolonged deficiency of most essential nutrients will ultimately
affect growth rate, inadequate zinc intake has rapid and severe effects on growth.
Because the growth inhibition occurs before tissue depletion of zinc, a more rapid, per-
haps circulating sensor of zinc status is implied. Zinc is an essential component of
many enzymes, provides a functional role in gene transcription factors, and may affect
growth hormone (GH) and IGF-I production. Hence, the IGF axis would be a likely
mechanism to explain the rapid growth inhibition associated with zinc deprivation.

2. OVERVIEW OF ZINC AND GROWTH

Zinc deficiency was associated with growth retardation and delay of sexual matura-
tion in boys in the 1960s (2). In animals, feeding a zinc-deficient diet induces decreased
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food intake within 4 d and delayed growth rate (3). Restoration of zinc to the diet rapidly
restores growth rate and food intake. Although zinc is essential for growth, the specific
zinc-dependent cellular mechanisms that affect growth have not been identified. Because
zinc forms stable complexes with amino acids and is resistant to oxidation and reduction
it has catalytic, structural, and regulatory roles in more than 300 metalloenzymes. The
wide range of distribution of zinc metalloenzymes covers all aspects of metabolism;
however, the growth inhibition associated with zinc depletion has not been found to cor-
relate with enzyme activity (4). Furthermore, amino acid sequences that bind zinc to
form functional domains (zinc fingers) have been found in DNA binding segments of
many eukaryotic regulatory proteins. Bunce (5) has proposed that many of the clinical
symptoms of zinc deficiency can be associated with defects in activation of the nuclear
steroid receptor superfamily, which may be regulated via zinc-finger DNA-binding
domains. Hence, altered gene activation caused by inadequate zinc nutriture may provide
the signal that results in growth inhibition. However, to date no specific genetic pathway
has been shown to correlate with the immediate growth inhibition observed in animals in
response to feeding a zinc-depleted diet.

3. RESPONSE OF IGF-I AND GH TO ZINC DEPLETION

Serum growth hormone (GH) (6) was found to be reduced by zinc deficiency in rats
fed zinc-deficient diets compared with zinc-adequate diets. Serum somatomedin C cor-
related with tibia zinc levels, a good marker of zinc status, in rats (7). And decreased
IGF activity, measured using 35SO4 incorporation, was significantly depressed in carti-
lage of zinc-deficient rats (8). These early findings suggested impaired GH/IGF activity
could explain the growth inhibition of zinc deficiency. Because rats fed zinc-deficient
diets voluntarily reduce food intake, and decreased energy intake reduces IGF-I levels
(1), it is difficult to distinguish effects of zinc depletion from caloric restriction on the
IGF system. The typical experiment controls for this variable by including a pair-fed
group: each animal fed the zinc-depleted diet is paired with an animal that receives the
identical quantity of food (containing zinc) consumed by the zinc-depleted animal.
Although this model controls for energy consumption, it is not entirely adequate for
separating the effect of decreased energy intake from decreased zinc intake, as both
groups are energy deprived. A force-feeding model, in which animals are gavaged with
a zinc-depleted diet to ensure adequate energy intake, does correct energy intake while
inducing a zinc deficiency. We have also found administration of megestrol acetate
stimulates food intake of zinc-deficient male rats (3,9). In both of these models, how-
ever, maintaining adequate food intake does not correct the growth suppression of zinc
depletion, which suggests zinc depletion is the primary mediator of growth inhibition.
Zinc deficiency does appear to have direct effects on the GH/IGF axis, although the
mechanisms for this are not well defined. Decreased serum IGF-I in rats fed a low-zinc
diet compared with a zinc-adequate diet is consistently observed. Some studies have
found serum IGF-I to be lower in zinc-deficient rats compared with zinc-adequate and
pair-fed controls (8,10–12), whereas others found serum IGF-I was decreased similarly
in zinc-deficient and pair-fed controls (13,14). Droke et al. (15) observed lower serum
IGF-I in lambs that were fed a zinc-deficient diet compared to marginal or adequate
zinc diets, with similar food intake in each group. It is difficult to reconcile these
results, although differences in diet composition or age of animals used may be factors.
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Cossack (7) found that somatomedin C levels in rats fed a low protein diet were
increased by adding zinc to the diet, although adding protein to a low-zinc diet did not
affect somatomedin C levels. Furthermore, restoration of serum somatomedin C after a
72-h fast was dependent on adequate zinc nutriture in rats (16). In contrast with these
findings, Clegg et al. (14) found serum IGF-I concentration in rats was similarly
decreased by food restriction and zinc depletion and that IGF-I levels did not correlate
with serum zinc at one time point (17 d). The time course of changes in serum IGF-I in
ad libitum-fed, pair-fed, and zinc-deficient rats was determined by Roth and Kirchgess-
ner (12). Serum IGF-I was similar among the three groups until d 7, when the level
began to increase in the ad libitum-fed animals. In zinc-deficient rats, serum IGF-I lev-
els begin to decrease at this time point, whereas it remained constant or slightly
increased in the pair-fed animals. A negative correlation between serum IGF-I and zinc
concentration was observed in the zinc-deficient animals but not the pair-fed, as shown
in Fig. 1. These data support the hypothesis that zinc deficiency affects serum IGF-I
concentration independently of energy intake.

Changes in IGFBP levels in zinc-deficient rats compared with zinc-adequate rats
have also been observed, but the same effects were found in the food-restricted animals
(14). In contrast, Ninh et al. (17) found that zinc-deficient rats had significantly lower
serum IGFBP-3 levels compared with control or pair-fed rats, and although administra-
tion of IGF-I increased IGFBP-3 levels in all rats, the levels remained lower in the
zinc-deficient animals compared to controls. Hence, serum IGFBP may also be directly
affected by zinc deficiency but adequate study of this relationship has not been
done.The pattern of changes in serum GH in response to zinc depletion was further
examined by Roth and Kirchgessner (12). Two days after feeding a zinc-depleted diet
to rats, serum GH was significantly lower compared with zinc-adequate rats. Serum
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Fig. 1. Zinc deficiency directly induces decreased serum IGF-I concentration. Rats fed a zinc-defi-
cient diet or pair fed a zinc-adequate diet at a reduced level to match the intake of the zinc-deficient
rats (pair fed) were followed for 32 d. Serum zinc and IGF-I concentrations were measured on d 0, 2,
7, 12, 22, and 32.
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GH remained lower in zinc-depleted animals through d 32, whereas serum IGF-I was
not different among the three groups at d 7, then decreased in both pair-fed and zinc-
depleted rats thereafter. In the zinc-depleted rats, pituitary GH concentrations were
slightly greater compared with controls after 3 wk, whereas liver IGF-I concentration
was not affected until d 12, when it began to decrease.

Using the force-feeding model, Roth and Kirchgessner (18) attempted to separate
the effects of zinc deficiency from impaired food intake. Despite a similar macronutri-
ent intake, rats fed the zinc-deficient diet gained less body weight and had lower serum
IGF-I concentrations than the zinc-adequate animals. A similar response was reported
in humans. Serum IGF-I (measured as somatomedin C) was decreased by 50% in
healthy adult volunteers who consumed a low-zinc diet for 12 wk (19). The subjects
maintained constant caloric intake during the study but all experienced weight loss.
Similarly, in postmenopausal women, serum IGF-I concentration was positively corre-
lated with zinc intake (20). Overall, the majority of the data suggest that dietary zinc
depletion results in a more severe decrease in serum IGF-I than does food restriction
alone. Clearly, zinc deficiency in the presence of adequate energy intake results in
decreased serum IGF-I concentration, and restoring energy intake without correcting
zinc deficiency fails to reverse decreased serum IGF-I concentrations.

4. RESPONSE TO GH OR IGF-I DURING ZINC DEPLETION

Evidence suggests that zinc deficiency impairs GH and/or IGF-I responsiveness in
animals. Administration of GH to rats fed a zinc-depleted diet failed to restore body
weight or tibia epiphysis width (10). Similarly, hGH treatment of rats fed a zinc-defi-
cient diet did not correct growth rate (13), and rats fed a zinc-deficient diet for 5 wk
failed to increase body weight in response to 2 wk of GH administration compared
with rats fed a zinc-replete diet (21). Zinc deficiency was found to reduce bone growth
in response to GH infusion in rats (22). Rats were fed a zinc-deficient or adequate diet
or pair-fed the adequate diet and GH was infused into the artery of one hindlimb by an
implanted osmotic pump. In zinc-adequate and pair-fed rats, GH infusion resulted in
increased epiphyseal plate width compared with the noninfused limb. Rats fed the
zinc-deficient diet had no change in plate width in response to GH infusion, suggesting
that zinc deficiency induces GH resistance in bone. Using hypophysectomized and
normal rats, Prasad et al. (21) concluded that zinc and GH had independent but addi-
tive effects on growth.

The defect in GH response in zinc deficiency is not simply the result of impaired
IGF-I activation, as zinc deficiency also prevents the mitogenic response to IGF-I.
Infusion of IGF-I for 1 wk to rats fed a zinc-depleted diet for 4 wk failed to stimulate
growth, despite normalization of serum IGF-I concentration (17). We also found that
maintaining serum IGF-I levels delivered by implanted mini-osmotic pumps during
zinc depletion of rats failed to correct the growth inhibition or depression of food
intake (3). These findings suggest that decreased IGF-I and/or GH levels that occur
during zinc depletion are not the primary factors associated with growth inhibition. It
is clear that zinc acts independently of GH and IGF-I to regulate growth and that main-
taining normal serum IGF-I and/or GH fails to prevent the growth inhibition induced
by zinc deficiency.
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5. ZINC SUPPLEMENTATION WITH GH OR IGF THERAPY

Based on the hypothesis that zinc, IGF-I, and GH are independent mediators of
growth but perhaps may have synergistic relationships, several studies have examined
the IGF axis during zinc administration to growth-impaired children. Figure 2 depicts
the complex interrelationships between zinc, IGF, and growth. Zinc administration (10
mg/d) to Vietnamese children increased growth and serum IGF-I concentrations (23).
Treatment resulted in reduced infectious disease and improved appetite, both of which
may have contributed to the elevation in IGF-I. Evidence from clinical studies suggests
that some children with impaired growth and exhibiting below normal serum IGF-I
and/or GH levels, respond to zinc supplementation by increasing growth and restora-
tion of serum IGF-I and GH levels. Collipp et al. (24) reported that zinc supplementa-
tion (220 mg daily) to two children with clinically determined growth hormone
deficiency resulted in improved growth rate and increased growth hormone levels. Sim-
ilarly, Nishi et al. (25) observed zinc supplementation to improve appetite, GH levels,
and growth in a 13-yr-old boy with delayed growth. Ghavami-Maibodi et al. (26) also
observed improved growth and increased serum IGF-I and GH in short but healthy
children given zinc supplementation (100 mg/d). When Japanese children with short
stature were treated with zinc (5 mg/kg/d) for 6 mo, their growth rate was improved
and serum IGF-I levels were increased (27). Measurements of zinc status of these chil-
dren demonstrated normal levels of serum zinc but elevated clearance of an intra-
venously administered dose of zinc. Therefore, zinc depletion or increased zinc
requirement may occur in children without overt zinc deficiency, and the administra-
tion of zinc may correct growth without hormone treatment. In contrast with these pos-
itive reports, no difference in response to GH treatment was observed in children given
a zinc supplement (220 mg/d) compared with children who were not (28). Also, zinc
supplementation (2 mg/kg/d) in infants with nonorganic failure to thrive increased
serum IGF-I levels but did not improve growth (29).
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on these processes and through altered GH and IGF-I activity.

105-120/Houston05_P3  6/29/04  5:56 PM  Page 111



6. GH AND IGF EFFECTS ON ZINC HOMEOSTASIS

GH appears to influence zinc homeostasis in humans. Administration of GH to GH-
deficient children resulted in reduced excretion of zinc in the urine and increased hair
zinc concentration but did not affect serum zinc concentration (30). Children with GH
deficiency had normal plasma zinc but elevated erythrocyte and urinary zinc levels
compared with age-matched controls (31). After GH treatment, urinary zinc excretion
was reduced but remained higher than controls, whereas erythrocyte zinc fell into the
normal range. Aihara et al. (31) also found elevated plasma and urinary copper in
patients before GH treatment but, unlike zinc, plasma copper remained elevated and
urinary copper increased after GH therapy. Erythrocyte manganese was below normal
and plasma selenium was above normal before treatment but both were corrected by
GH treatment. Patients with acromegaly were found to have lower plasma zinc and
higher urinary zinc excretion compared with controls (31). After adenectomy, plasma
zinc increased and urinary zinc decreased; however, both were higher than in controls.
In these patients, copper, selenium, and manganese levels were within the normal range
both before and after surgery. These studies suggest that GH treatment or excessive
endogenous GH induces a negative zinc balance. It has been suggested that the increased
zinc turnover reflects the accelerated use of zinc in catch-up or accelerated growth.

7. ZINC EFFECTS ON GH AND IGF HOMEOSTASIS

Rat anterior pituitary was found to contain high amounts of zinc and regions of the
pituitary responsible for hormone storage and release contained measurable amounts of
unbound zinc (32). Zinc and other divalent cations inhibited the release of GH and pro-
lactin from bovine adenohypophysial secretory granules in an in vitro assay (33).
Somatotropin (GH) release in response to growth hormone releasing-factor analog
administration was greater in zinc-deficient lambs compared with either marginal or
adequate zinc lambs, although basal levels were not affected by zinc status (15). The
response of the pituitary to zinc deprivation was compared in sexually mature and
immature male rats (6). In both mature and immature rats, zinc deprivation resulted in
decreased circulating GH and increased LH concentrations. In the immature rats zinc
depletion also resulted in impaired gonadal growth, and increased levels of pituitary
gonadotropins (luteinizing hormone and follicle-stimulating hormone).

Using an in vitro assay of bovine pituitary gland extracts, LaBella et al. (34) found
the release of pituitary hormones (thyroid-stimulating hormone, luteinizing hormone,
adrenocorticotropic hormone and GH) was increased by addition of zinc, whereas the
release of prolactin was inhibited. These responses were also observed with copper and
nickel. Similarly, prolactin release from rat pituitary glands was also inhibited by zinc
in an in vitro assay (35). Cunningham et al. (36) found zinc induced dimerization of
human growth hormone and proposed that this was a mechanism to increase stability
of GH during storage and reduce interaction of GH with receptors in the pituitary. Fur-
thermore, Cunningham et al. (37) found that the binding of hGH to the prolactin recep-
tor, a mechanism that is thought to explain the ability of GH to affect lactation,
involves the formation of a hormone-zinc-receptor “sandwich.” The zinc interaction is
likely to occur via zinc ligands identified as three residues on GH (His18, His21, and
Glu174) and His188 on the prolactin receptor. Notably, this ligand domain is conserved
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in all prolactin receptors across species. Based on experiments using hGH variants,
produced by site-directed mutagenesis, it was found that zinc plays a role in mediating
GH-mediated priming of neutrophils for an enhancement of superoxide radical secre-
tion (38). Because the GH and prolactin receptors are members of the cytokine recep-
tor gene superfamily, this finding implies that zinc may also be involved as a mediator
of other cytokines perhaps by providing receptor binding recognition domains.

Incubation of isolated rat hepatocytes with a zinc chelator, diethylenetrinitrilopen-
taacetate (DTPA), did not alter basal or GH stimulated IGF-I mRNA expression (39).
However, hepatocytes isolated from zinc-depleted rats had significantly lower IGF-I,
growth hormone receptor (GHR) and growth hormone binding protein (GHBP) mRNA
than hepatocytes from zinc-adequate rats, despite no difference in total zinc concentra-
tion in the hepatocytes. McNall et al. (40) also observed reduced IGF-I, GHR, and
GHBP mRNA in liver obtained from rats fed a zinc-deficient diet compared with pair-
fed or ad libitum fed controls. The addition of zinc to the culture media of hepatocytes
from the zinc-deficient rats did not reverse IGF-I, GHR, or GHBP mRNA levels,
whereas metallothionein expression was recovered (39). In contrast, supplementation
of the culture media with 50 µM zinc resulted in reduced basal and GH stimulated IGF-
I mRNA expression. The authors conclude from these studies that the IGF-I gene is not
responsive to decreased zinc concentration, although high zinc concentrations specifi-
cally inhibited this gene. In animals fed a zinc-deficient diet, depressed hepatic expres-
sion of IGF-I, GHR, and GHBP was an indirect consequence and not owing directly to
reduced zinc availability. It was speculated that the stability of the IGF-I mRNA tran-
script is reduced by zinc deficiency (40). Using cultured GH3 rat pituitary cells, Sci-
audone et al. (41) observed that chelation of zinc resulted in increased expression of
GH mRNA in response to thyroid or retinoic acid activation. The authors suggest that
reduced availability of zinc may increase the response of nuclear receptors that regulate
GH gene expression.

8. ZINC AND INTRACELLULAR SIGNALING PATHWAYS

There is evidence to suggest that zinc influences aspects of the intracellular signal-
ing pathway associated with the regulation of cell proliferation. Chesters et al. (42)
used the Swiss 3T3 epithelial cell culture model to examine cell cycle progression in
cells deprived of zinc by addition of the chelator, DTPA. When DTPA was present,
fetal bovine serum, as a source of growth factors, failed to stimulate thymidine incor-
poration into DNA. The addition of zinc specifically restored the rate of proliferation.
Furthermore, Chesters and Boyne (43) observed decreased RNA and protein synthesis
in zinc-deprived cells. They postulated that the defective DNA synthesis resulted from
failure to produce and maintain a specific protein required for progression of the cells
from the G1 to the S phase of the cell cycle. In a review, Chesters (44) suggested that
lack of zinc restricts gene expression of proteins directly involved with the initiation of
DNA synthesis, such as thymidine kinase. Although this is a valid conclusion, the same
results would occur if mitotic signal transduction were impaired by lack of zinc. To
explore this possibility, MacDonald et al. (45) extended the Chesters model and
showed that thymidine incorporation was stimulated by sequential treatment of 3T3
cells with platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and
IGF-I to a level equal that achieved by fetal bovine serum supplementation. Cells stim-
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ulated with PDGF and EGF are considered to be primed and competent for IGF-I stim-
ulation of cell proliferation. In this model, depletion of extracellular zinc by DTPA had
no affect on the PDGF or EGF response but completely eliminated IGF-I stimulation
of cell proliferation. Impairment of the IGF-I response could result from failure of
receptor expression or of signal transduction. Thornton et al. (46) found that IGF-I
receptor expression in 3T3 cells was not significantly affected by zinc deprivation but
that the proliferative fraction, that is, the proportion of cells in the S and G2/M phases
of the cycle, was greatly decreased. To further define the defect in IGF-I signaling asso-
ciated with zinc depletion, MacDonald et al. (47) found decreased extracellular cal-
cium uptake in response to IGF-I when zinc was depleted by DTPA. This observation
agrees with the fact that calcium uptake is impaired in other zinc-deficient systems,
including platelets (48,49) and brain synaptic vesicles (50,51) prepared from zinc-defi-
cient animals. In some cells, IGF-I signaling of mitogenic events requires activation of
extracellular calcium uptake (52). Hence, impaired IGF-I activation of extracellular
calcium uptake because of zinc depletion may be a mechanism through which the
mitogenic effect of IGF-I is impaired by zinc deficiency.

Using MC3T3-E1 cells as a model of osteoblasts, Matsui and Yamaguchi (53)
observed zinc (10 µM) and IGF-I (10 nM) to increase cell proliferation individually
and in combination to have a synergistic effect on these cells. Staurosporin, an inhibitor
of protein kinase C (PKC), inhibited the ability of zinc but not IGF-I to increase cell
protein concentration. The authors conclude that zinc may activate PKC in these cells.
PKC is a family of serine-threonine kinases that are involved in signal transduction
pathways in numerous cell types. Quest et al. (54) found that PKC is a zinc metalloen-
zyme that incorporates four zinc atoms per molecule. The zinc is bound within the lipid
binding regulatory domain of the enzyme that is thought to be the site for phorbol ester
(a PKC-activating compound) binding. However, when zinc was chelated with 1,10-
phenanthroline the ability of phorbol 12-myristate 13-acetate to induce phospholipase
D-mediated hydrolysis of phosphatidylcholine was enhanced rather than inhibited (55).
The addition of zinc to the reaction reversed the stimulatory response. Hence, the role
of the zinc containing domain of PKC remains unclear.

In cultured rat osteoblasts, chelation of zinc with NNN-tetrakis (2-pyridylmethyl)
ethylenediamine induced apoptosis (56). The zinc-depleted cells also demonstrated
reduced formation of the PKC metabolite, inositol-1,4,5-triphosphate (IP3), leading the
authors to conclude that apoptosis induced by zinc deficiency in these cells was the
result of decreased PKC activity. Using the force-fed zinc-deficient rat model,
Kirchgessner et al. (57) observed that whereas the specific activity of PKC/mg of pro-
tein in skeletal muscle was not reduced, a significant reduction of PKC in the particu-
late fraction occurred. A reduced PKC activity was suggested in these rats as platelets
from the zinc-deficient rats had significantly less IP3 compared with zinc-adequate ani-
mals (58). Platelet aggregation requires PKC and zinc-deficient rats demonstrate
reduced platelet aggregation (49). However, no change in subcellular distribution of
PKC, as determined by phorbol ester binding, occurred in platelets from zinc-deficient
rats (59). The authors found significantly impaired calcium uptake by platelets from the
zinc-deficient rats and therefore concluded that the defect in platelet aggregation with
zinc deficiency was caused primarily by impaired calcium uptake, which subsequently
resulted in defective PKC activation.
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Overall, these studies suggest that zinc status affects intracellular signaling cascades
associated with IGF-I and PKC. A model that depicts hypothetical roles for calcium
and PKC in IGF-I-stimulated proliferation of 3T3 cells is shown in Fig. 3. Binding of
IGF-I results in autophosphorylation of the receptor protein and activation of its intrin-
sic tyrosine kinase activity (60). Receptor tyrosine kinases, including the IGF-I recep-
tor, activate Gi-coupled receptors (61). Subsequent release of Gβγ causes activation of
PLCβ1, a zinc-dependent enzyme (62), which catalyzes the production of diacylglyc-
erol and IP3 from phosphoinositol. IP3 stimulates release of intracellular calcium
stores, which, together with diacylglycerol and phosphatidylserine, mediate the activa-
tion of PKCa. Activated PKCa phosphorylates the calcium channel, leading to calcium
uptake (63). Furthermore, activated PKC couples with Ras to activate mitogenic pro-
teins such as Mek-1/2 and Erk1/2, which activate transcription factors in the nucleus.
Evidence from our work and others suggests in the absence of zinc, the calcium chan-
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Fig. 3. Proposed mechanisms through which zinc deficiency affects intracellular signaling pathways
associated with mitogenic responses to IGF-I. Symbols indicate IGF-I receptor (IGF-IR), phosphory-
lation sites (P), G protein subunit (Gi), phospholipase C β1 (PLCβ1), phosphoinositol (PIP2), diacyl-
glycerol (DAG), inositol-1,4,5 triphosphate (IP3), calcium (Ca2+), protein kinase C (PKC), and
intracellular signaling proteins (RAS, MEK1/2, ERK1/2). The rectangles indicated by zinc are poten-
tial sites where zinc may be involved as a regulator either directly or indirectly.
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nel is impaired. The inhibition of calcium uptake observed in zinc depletion may occur
at several points in this pathway, including steps involved with activation of PKC or the
calcium channel directly. Recently, a zinc-sensing receptor has been proposed in
colonocytes, which induces intracellular calcium release in response to increased extra-
cellular zinc concentration (64). It was proposed that this zinc receptor was coupled to
a G-protein because inhibition of phospholipase C blocked calcium release. These
studies suggest that zinc may be involved at several points in the highly complex net-
work of intracellular signaling cascades that regulate cell proliferation and metabolism.

It is likely that additional zinc-responsive enzymes and signaling proteins will be
identified to further extend this scenario. For example, recently Kim et al. (65) found
zinc-activated p70S6k, a kinase that regulates phosphorylation of the ribosomal protein
S6, in Swiss 3T3 cells. Activation of p70S6k is thought to mediate cell growth at the G1
to S transition. Furthermore, zinc was found to activate the phosphoinositide 3-kinase
(PI3K) pathway in these cells via a tyrosine kinase-dependent mechanism. In this model,
zinc activation of p70S6k was independent of calcium. Another recent report also sug-
gests that zinc mediates the PI3K pathway. Addition of zinc to primary mouse cortical
cultures was found to induce stimulation of c-Jun N-terminal kinase and this effect was
blocked by inhibitors of PI3K (66). The large number of transcription factors that pos-
sess zinc finger motifs, such as the SP1 family of the Kruppel type zinc finger proteins
(67), the zinc RING (really interesting new gene) finger proteins (68), and tumor sup-
pressor genes such as p53 (69). which mediate cell cycle progression and apoptosis, sug-
gest that changes in zinc availability may alter the function of these proteins.

9. OTHER TRACE METALS AND THE IGF SYSTEM

The metabolism of other trace minerals may also be affected by GH and IGF,
although there has been little research in this area. Manganese is an essential nutrient
associated with glucose and lipid metabolism, as well as growth. A dietary induced
manganese deficiency was associated with reduced serum IGF-I concentrations in rats
(70). No changes in IGF binding proteins were observed in the manganese-deficient
animals. Iron is a critical component of heme containing proteins, which are involved
in many metabolic reactions. Iron deficiency results in impaired growth, however iron
depletion of veal calves did not affect plasma IGF-I, nor GH secretion (71).

10. SUMMARY AND CONCLUSIONS

Zinc is an essential nutrient for mammals and a deficiency of zinc results in
impaired growth. The IGF axis, including GH, IGF-I, and the IGF binding proteins, are
affected both directly and indirectly by zinc depletion. Decreased circulating IGF-I is
characteristic of zinc deficient animals and humans. However, impaired growth
because of zinc deficiency cannot be restored by the addition of GH or IGF-I, which
suggests zinc alters the ability of these mitogens to affect growth. Current evidence
suggests that zinc depletion is rapidly sensed, even before tissue stores are affected,
and mitogenic signaling pathways are inhibited. Specific intracellular signaling path-
ways that are zinc responsive have not been fully characterized, although calcium
uptake and PKC are likely candidates. Changes in zinc-dependent enzymes have not
been found to correlate with the rapid growth inhibition observed in animals. Zinc
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associates with amino acid residues on proteins and provides linkages that create func-
tional domains. Such zinc-binding domains have been found in many regulatory pro-
teins that affect gene expression. It is currently not known if the zinc ions associated
with such regulatory proteins are responsive to subtle changes in intracellular zinc
availability. However, these zinc-dependent proteins may provide the brake for mito-
genic activity in response to zinc depletion.

11. RECOMMENDATIONS AND CHALLENGES FOR THE FUTURE

The limiting cellular role for zinc in growth remains poorly defined. Many zinc-
dependent enzymes have been identified and characterized; yet, alteration of enzyme
activity cannot explain the rapid onset of growth inhibition observed when animals are
fed zinc-depleted diets. Exciting recent evidence suggests zinc may be involved in
many intracellular signaling pathways that provide rapid response to changes in zinc
concentrations. The IGF system is influenced by zinc availability, but future studies
are needed to identify how these systems interact. It is known that within cells, free
zinc concentrations are very low; however the transport, storage, and distribution of
zinc are not fully understood. As advances in understanding zinc transport progress,
potential relationships to the IGF and other mitogenic systems can be made. Under-
standing the role of zinc in regulatory proteins will also provide keys to identify
genetic targets for zinc.
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KEY POINTS

• IGF action is an important regulator of pre- and postnatal growth in both experimental
animals and in humans.

• The complexity of the IGF signaling system of ligands, receptors, and binding proteins
and their developmental and tissue-specific patterns of expression affords a powerful and
finely orchestrated control mechanism throughout the life of the organism.

• As a result of its ability to control growth and cell survival, the IGF system has the ability
to affect, and has been implicated in, tumorigenesis in many types of cancer.

• The IGF system has many components and aspects that make it an attractive therapeutic
target for treatment of a number of disorders, including those affecting growth, cancer,
and diabetes.

1. INTRODUCTION

The insulin-like growth factor (IGF) signaling system plays a critical role in the
growth and development of many tissues and is an important mediator of overall
growth, particularly prenatal growth. The IGF system is also implicated in pathophysi-
ology and plays an important role in tumorigenesis. As described in Chapter 1, the IGF
system is composed of the IGF ligands (IGF-I and IGF-II), cell-surface receptors that
mediate the biological effects of the IGFs, and a family of IGF binding proteins
(IGFBPs) that affect the half-lives and bioavailability of the IGFs in the circulation
and in extracellular fluids. This review will focus on the contribution of the IGF axis to
growth and development and its role in tumorigenesis, with an emphasis on human
data. The original somatomedin hypothesis that posited that IGF-I is the principal
mediator of the growth-promoting actions of growth hormone is still considered to be
valid overall (1). Thus, it is not entirely accurate to discuss the actions of the IGF sys-
tem without considering them in the greater context of the hypothalamic-pituitary axis.
With this caveat, this chapter focuses more narrowly on the IGF system per se and its
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physiological and pathophysiological effects. The following section reviews some
basic aspects of the IGF system that are of particular relevance to the topic of this
chapter.

2. BACKGROUND

2.1. IGF-I and IGF-II Expression
The expression of the IGF-II gene in rodents is widespread prenatally, but dimin-

ishes drastically after birth, with the choroid plexus and the leptomeninges being the
persistent sites of synthesis in adult animals. Murine expression of IGF-I, however, is
low prenatally and significantly increases during puberty, with hepatic production
being a major contributor to overall IGF-I levels in the circulation. IGF-I is produced
by numerous other adult organs, however, including kidney, lung, and bone, and exerts
endocrine, paracrine, and autocrine effects. This inverse pattern of IGF-I and IGF-II
expression in rats and mice initially led to the concept of IGF-II as a fetal growth factor
and IGF-I as an adult growth factor. This is not the situation in humans, however,
because both IGF-I and IGF-II are produced throughout life by multiple tissues. In fact,
the circulating levels of IGF-II are consistently several-fold higher than those of IGF-I,
which supports that concept that there are potentially divergent roles for the two IGFs
in human physiology.

2.2. The IGF Receptors
Most, if not all, of the effects of IGF-I result from its activation of the IGF-I receptor

(IGF-IR) (2). IGF-I is not thought to crossreact with the insulin receptor (IR), except at
pharmacological doses, because the relative affinity of IGF-I for the IGF-IR vs the IR
differs by an order of magnitude. It was initially thought that IGF-II, like IGF-I, only
bound appreciably to the IGF-IR as compared with the IR. Studies in knockout mice
lacking various combinations of the IGF system and the IR suggested that IGF-II acted
through the IR in early development, prior to detectable IGF-IR gene expression (3).
The molecular basis for this phenomenon was revealed when it was discovered that a
splice variant of the IR displayed high affinity for IGF-II. The IR transcript is subject to
alternative splicing of exon 11, which encodes a 12-amino acid segment at the C-termi-
nus of the extracellular α subunit. Previous studies had shown that the IR isoform
encoded by the mRNA lacking the exon-11 sequence (IR-A) displayed a twofold
higher affinity for insulin than the IR-B isoform specified by the exon 11-containing
mRNA. More recently, it has been reported that the IR-A isoform, in fact, functions as
a high-affinity receptor for IGF-II and produces predominantly proliferative effects as
compared to the principally metabolic effects elicited by insulin stimulation of IR-B
(4). Thus, IGF-I functions primarily by activating the IGF-IR, while IGF-II can act
through either the IGF-IR or through the A form of the IR.

2.3. Hybrid Receptors
IGF signaling is made considerably more complex by the existence of hybrid recep-

tors that result from the dimerization of IGF-IR and IR hemireceptors, each consisting
of a single α- and β-subunit linked by disulfide bonds. These hybrid receptors are
formed by the formation of intra-α subunit disulfide bonds in the Golgi apparatus of
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cells expressing both the IGF-IR and IR genes. Although originally considered to rep-
resent a small proportion of the total number of IGF-IR and IR in a given cell, recent
evidence suggests that the formation of hybrids may be preferred over the formation of
classical IGF-IR and IR heterotetramers. This could be the result of the preferential
formation of disulfide bonds between cysteine residues in IGF-IR and IR α subunits
themselves. Thus, in some circumstances, hybrid receptors may outnumber “pure”
IGF-IR or IR molecules at the cell surface.

IGF-IR/IR hybrid receptors retain high affinity for IGF-I, but exhibit severely
reduced affinity for insulin. This is thought to reflect the ability of IGF-I to efficiently
bind to either IGF-IR α subunit, while tight insulin binding requires its interaction with
both of the α subunits found in the IR. As a consequence, the existence of significant
number of hybrid receptors may preferentially diminish cellular responsiveness to
insulin, but not IGF-I. This has, in fact, been proposed as a mechanism through which
upregulation of IGF-IR expression could result in insulin resistance in cells expressing
the IR. The situation with hybrid receptors is further complicated by the existence and
the IGF-II-binding characteristics of IR-A and IR-B. Both IR-A/IGF-IR and IR-B/IGF-
IR hybrids probably occur because most cell express both splice variants. It has been
recently demonstrated that IGF-IR/IR-A hybrids bind IGF-I, IGF-II and insulin,
whereas IGF-IR/IR-B hybrids bind IGF-I with high affinity, IGF-II with low affinity,
and do not bind insulin (5). Therefore, the relative expression of the IGF-IR and IR
genes and the degree of alternative splicing of exon 11 of the IR gene governs the abil-
ity of a given cell to respond to IGF-I, IGF-II, and insulin.

2.4. IGFBPs
The biological activities of the IGF ligands are modulated by a family of high-affin-

ity IGFBPs (IGFBP-1 through -6) that are found in the circulation and in extracellular
fluids (6). IGFBP-3 is the predominant IGFBP in serum, and most circulating IGF-I
and IGF-II is not found in a free form, but in a ternary complex with IGFBP-3 and a
third component, acid-labile subunit, in a 1:1:1 molar ratio. IGFBP-5 also forms
ternary complexes with IGFs and acid-labile subunit. Although IGFBPs-1 through 4
exhibit generally similar affinities for IGF-I and IGF-II, IGFBP-5 and 6 bind IGF-II
with 10- and 100-fold greater affinities, respectively, than IGF-I. The IGFBPs do not
bind insulin. The IGFBPs control IGF action by increasing the half-lives of circulating
IGFs by controlling their availability for receptor binding and, in the case of cell sur-
face-associated IGFBPs, by potentially influencing their direct interaction with recep-
tors. Each of the IGFBPs is subject to limited and potentially regulated proteolysis by
various proteases. Thus, ligand-receptor interactions in the IGF system are subject to
complex regulation as a result of IGFBP levels, expression profile, degree of cell-sur-
face association, and extent of proteolysis.

3. THE ROLE OF THE IGF SYSTEM IN GROWTH 
AND DEVELOPMENT

The contributions of IGF action to growth and development have been discerned
from studies in transgenic mice in which various components of the IGF signaling sys-
tem have been ablated or overexpressed and from human studies of populations, such
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as pygmies and rare individuals with mutations affecting the IGF-IR and IGF-I genes.
These findings are discussed below.

3.1. Evidence from Transgenic Animals
3.1.1. PRENATAL GROWTH

The role of IGF action in prenatal growth has been deduced from the phenotypes of
transgenic and knockout mice in which the expression of the IGF-I, IGF-II, IGF-IR,
and IGF-II/M6P receptor genes has been manipulated (7–10). IGF-I and IGF-II defi-
ciency each results in a 40% decrease in birthweight, with IGF-II knockout mice also
exhibiting placental growth retardation. Double knockouts exhibit an additive growth
deficiency of 80%. IGF-I knockouts can exhibit general perinatal lethality, depending
on the genetic background. IGF-IR knockout mice exhibit a 55% decrease in growth
rate, which is less than that seen in the IGF-I/IGF-II knockouts, and invariably die of
suffocation at birth because of inadequate development of the musculature of the
diaphragm. Additional loss of IGF-I in IGF-IR knockout animals does not further
decrease birth weight, suggesting that IGF-I functions exclusively through the IGF-IR.
In contrast, IGF-II and IGF-IR double knockouts are more growth-retarded than single
IGF-IR knockouts, suggesting that IGF-II effects can be mediated by another receptor
during embryogenesis. Analysis of IGF-IR/IR knockouts (3) suggested that the IR was
responsible for IGF-II signaling not mediated by the IGF-IR. As mentioned above, it
was subsequently found that alternative splicing of exon 11 produces an IR isoform that
exhibits high affinity for IGF-II. An indirect role for the IGF-II/M6P receptor in prena-
tal growth (11–13) was inferred from the phenotype of IGF-II/M6P receptor knockout
mice, which exhibit modest fetal and placental overgrowth (25–40%). This phenotype
has been interpreted as resulting from the excess IGF-II that is seen in the serum and
tissues of these animals from lack of the clearance function of the IGF-II/M6P receptor.

3.1.2. POSTNATAL GROWTH

IGF-I-deficient mice that do not die perinatally exhibit severely reduced postnatal
growth, whereas IGF-II-deficient mice, although smaller than normal at birth, have
normal growth velocities postnatally. These findings support the concept that IGF-I is
the principal mediator of postnatal growth. The lack of a postnatal phenotype in IGF-
II-deficient mice is not surprising in light of the normal shutoff of IGF-II expression in
almost all mouse tissues postnatally.

Global overexpression of IGF-I in transgenic mice produces generalized hyperplasia
and organomegaly, resulting in adult animals that are 30% larger than normal (14).
Conversely, postnatal overexpression of IGF-II does not result in increased somatic
growth (15,16). Again, the lack of a growth phenotype in IGF-II transgenics may
reflect the lack of postnatal IGF-II expression in postnatal rodents.

To date, no convincing phenotype has been observed in knockouts of any of the six
IGFBPs, including several double knockouts. This puzzling lack of an effect may
reflect the redundancy of function among the six IGFBPs.

3.2. IGF System Effects in Humans
The role of IGF action in human growth and development has come from several

lines of evidence, including analysis of African Pygmies, a patient with mutational loss
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of the IGF-I gene, and a series of patients with hemizygosity of the IGF-IR gene result-
ing from loss of the distal arm of chromosome 15.

3.2.1. EFE PYGMIES

Initial cross-sectional studies of Mbuti and Babinga Pygmies concluded that the short
stature of these populations was caused by the lack of the pubertal growth spurt (17). Sub-
sequent longitudinal studies of Efe Pygmies demonstrated growth retardation at birth that
increased in the first 5 yr of life (18,19). More recently, it has been shown that immortal-
ized T- and B-cell lines from Efe Pygmies are IGF-I-resistant (20–22). The molecular
basis for this IGF-I resistance and, potentially, the growth phenotype of the Efe popula-
tion, appears to be a defect in IGF-IR gene expression (23). Thus, decreased IGF action
from decreased IGF-IR levels causes pre- and postnatal growth retardation in humans.

3.2.2. HUMAN MUTATIONS AFFECTING THE IGF-I AND IGF-IR GENES

One patient has been described who was homozygous for a partial deletion of the IGF-
I gene (24). This patient made no active IGF-I, exhibited severe pre- and postnatal growth
retardation and also presented with deafness, mental retardation, and microcephaly, char-
acteristics not found in patients with growth hormone deficiency or resistance. This
patient’s parents were heterozygous for the IGF-I gene mutation, had extremely low cir-
culating IGF-I levels, and also exhibited short stature. These findings provide additional
support for a role of IGF-I in both pre- and postnatal growth and development.

A number of patients have been described that are hemizygous for the IGF-IR gene
as the result of deletion of the distal arm of chromosome 15 (25,26) or ring chromo-
some 15 syndrome (27,28). All of these patients exhibited intrauterine growth retarda-
tion and postnatal growth failure, as well as other developmental abnormalities.
Although the growth-deficiency phenotype consistently manifested by these patients is
consistent with decreased IGF-IR levels, the fact that no direct demonstration of IGF
resistance in cells derived from these patients has been reported makes this data sup-
portive, but not definitive, evidence for a role of IGF-IR action in human pre- and post-
natal growth and development.

4. THE ROLE OF THE IGF SYSTEM IN TUMORIGENESIS

An important aspect of the IGF system in postnatal human physiology is its involve-
ment in tumorigenesis. This is hardly unexpected, based upon the demonstrated role of
IGF-I, in particular, as a potent growth regulator. Reports over the last several years of
a strong association of circulating IGF-I levels with the risk of developing a number of
important human cancers, as well as the ongoing studies of the molecular mechanisms
of IGF action in cancer cells, has renewed interest in the therapeutic and diagnostic
possibilities of the IGF system in cancer therapy. The sections below summarize these
molecular and epidemiological data. The topic is discussed further, and with reference
to nutrition, in Chapter 18.

4.1. Molecular Studies
4.1.1. IGF-II AND THE IGF-IR IN TUMORIGENESIS

Numerous studies performed over the last 20 yr have suggested that transformed
cells express higher levels of the IGF-IR. The molecular mechanisms responsible for
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the increased expression of the IGF-IR gene in tumors, however, remain largely
unidentified. Amplification of the IGF-IR locus at band 15q26 has been reported in a
small number of breast and melanoma cases (29). Most primary tumors and trans-
formed cell lines express easily detectable levels of IGF-II mRNA and protein, whereas
some tumors overexpress the IGF-I gene. The IGF-II gene is imprinted in mouse and
human, which restricts expression to the paternal allele (7). A number of human can-
cers exhibit relaxation of IGF-II gene imprinting, including Beckwith-Wiedemann syn-
drome, Wilms tumor, rhabdomyosarcoma, and lung cancer (30–32). Altered imprinting
may lead to overexpression of IGF-II, which could contribute to the development of the
tumors as a consequence of increased proliferative signaling. The presumed role of the
IGF-IR in tumorigenesis involves increased IGF-IR expression and concomitant
increased responsiveness to IGF in terms of proliferation and inhibition of apoptosis.
Although this picture is probably accurate with respect to the pediatric tumors that are
often associated with chromosomal translocations, such as Wilms tumor and rhab-
domyosarcoma, the situation in the epithelial tumors that are more prevalent in adults
is more complex (33). The original suggestion that the IGF-IR itself functions as an
oncogene was based upon the behavior of fibroblasts in which the IGF-IR had been
overexpressed (34), a system with limited relevance to human cancer. Other studies
suggesting that increased IGF-IR expression modulates radiosensitivity have also used
IGF-IR overexpression in fibroblasts (35). It should be noted, however, that a recent
report has demonstrated that inhibition of IGF-IR activity by a selective kinase
inhibitor in MCF-7 breast cancer cells resulted in increased radiosensitivity (36).

The multitude of studies describing overexpression of the IGF-IR in breast, prostate,
and other tumor types have been, for the most part, based on analyses of tissue
homogenates or established cancer cell lines for which appropriate normal controls do
not exist. The apparent IGF-IR content of homogenates, in particular, can be affected by
contamination with stroma, which would dilute IGF-IR content in normal epithelium or
small tumors. More focused studies of IGF-IR expression in breast and prostate that
employed immunohistochemistry, or matched cell lines corresponding to normal and
tumor tissue, revealed that normal epithelium and early-stage tumors both express abun-
dant IGF-IR, and that IGF-IR expression is significantly reduced in advanced, metastatic
cancer (37–41). This view has been challenged by a recent report by Hellawell et al.
(42), who observed that IGF-IR expression was decreased in some metastatic prostate
cancer samples as compared with benign or carcinoma tissue but was increased in a
majority of samples studied (8 of 12). In this study, however, the immunostaining for
IGF-IR using a single β-subunit antibody was diffusely cytoplasmic in most samples, in
contrast to the expected membrane localization reported by Chott et al. (39) using two
different α-subunit antibodies. Thus, the issue of the extent of IGF-IR over- or underex-
pression in prostate cancer progression is not completely settled.

The activation of the IGF-IR present in normal epithelium by elevated circulating
levels of IGF-I may underlie the epidemiological data cited below, whereas the subse-
quent decrease in IGF-IR (if substantiated by additional studies) may represent an
attempt by established cancer cells to avoid the potential differentiating effects of IGF-
I at sites of metastasis. Alternatively, decreased expression of the IGF-IR may protect
tumor cells from a novel, nonapoptotic form of programmed cell death that has been
recently described as being triggered by the unliganded IGF-IR (43). It is clear, how-
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ever, that the prevailing notion that the IGF-IR is routinely overexpressed in trans-
formed cells is somewhat of an overgeneralization.

4.2. Epidemiological Studies
4.2.1. PROSTATE CANCER

4.2.1.1. IGF-I and Prostate Cancer. The potent mitogenic activity of IGF-I in cell
culture made it an obvious candidate risk factor in cancer development, but it was not
until 1998 that several prospective studies suggested that high circulating levels of
IGF-I were associated with an increased risk of developing prostate cancer (44–47).

A significant amount of data had been accumulated that suggested that the IGF sys-
tem plays an important role in the prostate. Prostatic stromal cells and epithelial cells in
primary culture secrete IGFBPs and stromal cells produce IGF-II, and both stromal and
epithelial cells express the IGF-I receptor and are responsive to IGF-I with respect to
proliferation (48–51). In vivo, it is likely that the prostate epithelial cells that are the pre-
cursors to prostatic intraepithelial neoplasia and prostatic adenocarcinoma respond to
both locally produced IGF-II and circulating IGF-I through paracrine and endocrine
mechanisms, respectively. Further support for the role of IGF action in prostate growth
has come from recent reports that systemic administration of IGF-I increases rat prostate
growth (52), that modulation of rat ventral prostate weight by finasteride is associated
with altered levels of IGF-I receptors and IGFBP-3 gene expression (53), and that IGF-I-
deficient mice exhibit decreased prostate size and complexity of prostate structure (54).

The strength of the association between IGF-I levels and prostate cancer risk was
questioned in subsequent cross-sectional studies (55,56), whereas Djavan et al. (57), in
a prospective study, found that the IGF-I/PSA ratio was superior to IGF-I or PSA mea-
surements alone for predicting prostate cancer risk. A meta-analysis of the data avail-
able to date in 2000 (58) concluded that high-circulating IGF-I levels posed a risk
equivalent to that associated with high testosterone.

In a screening trial, Finne et al. (59) did not find an association between serum IGF-
I levels and prostate cancer risk, whereas Baffa et al. (60) actually found that circulat-
ing IGF-I levels were lower in a group of patients undergoing radical prostatectomy as
compared to age-matched controls. In additional prospective studies, however, Harman
et al. (61) and Stattin et al. (62) found that IGF-I levels were associated with prostate
cancer risk, and that this association was especially evident in younger men. A second
meta-analysis of 14 case-controlled studies (63) concluded that high circulating IGF-I
levels are indeed associated with prostate cancer risk.

In a subsequent cross-sectional study, Latif et al. (64) did not find a correlation
between levels of IGF-I or IGFBP-3 and prostate cancer stage, whereas in the latest
prospective study (65), circulating IGF-I levels appeared to be most predictive of
advanced prostate cancer.

Although the conclusions of this extensive series of studies appear contradictory,
there is, in fact, some consistency. Prospective studies have consistently demonstrated
an association between high circulating IGF-I levels and prostate cancer risk, whereas
cross-sectional studies have generated variable results. These data are consistent with
the hypothesis that high serum IGF-I levels in younger men predict the occurrence of
advanced prostate cancer years later, whereas IGF-I levels at the time of diagnosis may
not be informative. This hypothesis suggests that long-term exposure of prostate
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epithelial cells to high levels of serum-derived IGF-I increases the probability of initi-
ating hyperplasia in the cellular precursors of prostatic intraepithelial neoplasia and
subsequent prostate adenocarcinoma.

Corroboration of the relationship between IGF-I levels and prostate carcinogenesis at
the molecular level has now come from analysis of transgenic mice with targeted expres-
sion of IGF-I in the basal prostatic epithelium. This dysregulated IGF-I biosynthesis
resulted in the appearance of hyperplastic lesions resembling prostatic intraepithelial
neoplasia by 6 mo of age (66), and prostatic adenocarcinomas or small cell carcinomas
were eventually seen in 50% of the transgenics. Specifically, deregulated expression of
IGF-I and constitutive activation of IGF-I receptors in basal epithelial cells resulted in
tumor progression similar to that seen in human disease. These studies also provide addi-
tional evidence for the prostate basal epithelial cell as a precursor to prostate cancer.

4.2.1.2. IGF-II and Prostate Cancer. A potential contribution of IGF-II levels to
prostate cancer risk is of potential interest, given that levels of circulating IGF-II in
humans are consistently several-fold higher than those of IGF-I throughout life. The only
study to date to directly address the relationship of IGF-II levels to prostate cancer risk
(61) found that serum levels of IGF-II were inversely related to risk. These authors sug-
gest that IGF-II may actually inhibit prostate cancer development. It is intriguing that
Gnanapragasam et al. (67) report that IGF-II increases androgen receptor expression in
prostate stromal cells and LNCaP prostate carcinoma cells, because loss of wild-type
androgen receptor function and androgen insensitivity is a hallmark of advanced disease.

4.2.2. BREAST AND OTHER CANCERS

In 1998, Hankinson et al. (68) and Bohlke et al. (69) reported that premenopausal
but not postmenopausal women in the highest tertile of serum IGF-I levels had a signif-
icantly increased risk of developing breast cancer. These findings have been generally
supported by most (70–72) but not all (73), subsequent studies. Racial factors may play
a role in the IGF-I-breast cancer association, in that Agurs-Collins et al. (74) found that
high serum IGF-I levels were strongly associated with breast cancer risk in post-
menopausal African-American women.

With respect to colorectal cancer, Ma et al. (75), Manousos et al. (76), Kaaks et al.
(77), and Palmqvist et al. (78) have reported positive associations between serum IGF-
I and colorectal cancer risk in the US, Greek, and Swedish cohorts, whereas Probst-
Hensch et al. (79) found an association between IGF-I or IGFBP-3 levels and
colorectal cancer risk in a Chinese cohort. The role of IGF-II is unclear, being posi-
tively associated in the Greek and Chinese studies, but not in the US cohort.

Yu et al. (80) reported a positive association between high IGF-I and low IGFBP-3
levels (but not IGF-II) and lung cancer risk. Lukanova et al. (81), however, found no
correlation between serum IGF-I or IGFBPs in a large female cohort.

Collectively, these studies continue to suggest a role for IGF-I as a risk factor for
breast, colorectal, and lung cancer, but its utility as a pragmatic marker is potentially
limited by ethnic and (for colorectal and lung cancer) gender factors.

5. RECOMMENDATIONS AND CHALLENGES FOR THE FUTURE

Despite decades of intensive investigation, there remain basic aspects of the IGF sys-
tem that are poorly understood. Principal among these is the role of IGF-II in human
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physiology. Additionally, the effects of IGF-I and IGF-II in combination at a cellular
level are entirely unknown, although most human tissues are routinely exposed to a com-
bination of endocrine, paracrine, and, often, autocrine IGF-I and IGF-II. Finally, the
strength of the association between circulating IGF-I and cancer risk requires additional
careful analysis in order to ascertain its usefulness in predicting disease.
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KEY POINTS

• The IGF system plays a central role in somatic growth in utero and after birth. Plasma
IGF-I concentrations correlate with birth weight, birth length, and gestational age.

• Maternal nutrition, growth hormone, IGF-binding proteins, and genetic factors comprise
the primary modulators of IGF action in the fetus.

• Congenital IGF-I deficiency (owing to gene depletion) presents with severe IUGR, glu-
cose intolerance, and impaired postnatal growth.

• Serum IGF-I, IGFBP-2, and IGFBP-3 levels indicate nutritional status in premature and
term infants.

• IGF-I plays a major role on retinal vessel growth in retinopathy of prematurity.
• IGF-I exerts a trophic effect on the gastrointestinal tract and may contribute to the patho-

physiology of bronchopulmonary dysplasia.
• Animal studies of variations to IGF-I gene expression suggest an association between low

birth weight, diabetes, and cardiovascular disease.
• Most sick neonates display normal serum IGF-I and IGFBP levels, despite cachexia and

serious illness. 

1. INTRODUCTION

Insulin-like growth factors (IGF-I and IGF-II) and their high-affinity binding pro-
teins (IGFBPs) comprise the major regulators of somatic growth during both intrauter-
ine and extrauterine life. IGFs exert their mitogenic actions via paracrine and endocrine
mechanisms at IGF receptors on the cell surface. IGFBPs regulate the bioavailability of
IGFs for the IGF receptors. Current and mounting evidence support the novel concept
that IGFBPs exert IGF receptor-independent actions related to programmed cell death
(apoptosis) and glucose metabolism. Fetal origins lay the foundation for health and dis-
ease in infancy and childhood. Thus, this chapter integrates current concepts of IGF
biology and pathophysiology during early life.

2. IGF CELLULAR BIOLOGY

IGFs and the high-affinity IGF binding proteins (IGFBPs) display tight regulation
across gestational age and tissue type. Animal models suggest that IGFs exert their
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actions during postnatal life primarily via the type 1 IGF receptors. Type 1 IGF recep-
tors are cell surface tetramers composed of two α subunits (identical to the α subunits
of the insulin receptor) and two β subunits. IGF binding to these protein tyrosine kinase
receptors activates several key intracellular phosphorelays, primarily the mitogen-acti-
vated protein kinase relays.

To date, six high-affinity IGFBPs and four low-affinity IGFBP-related proteins
(IGFBP-rPs) have been reported (1). IGFBPs are postulated to inhibit or enhance the
actions of IGFs (Table 1), respectively, by transporting IGFs to target tissues and by
sequestration of IGFs. Sequestration inhibits IGF binding to IGF receptors and also,
by reducing exposure of the IGFs to proteolysis, prolongs the half-life of IGFs in cir-
culation (1).

In addition to regulation of IGF and IGFBP release in patterns specific to tissue and
developmental stage, specific enzymes have been identified that proteolyze the IGF-
BPs, including prostate-specific antigen and members of the matrix metalloproteinase
family (2). Additional levels of regulation within the complex GH–IGF–IGF-BP axis
include the induction of IGF release by growth hormone (somatotropin) and variable
IGF binding affinity with the IGFBPs and the IGF receptors under local conditions
affected by pH and IGFBP proteolysis (Table 2). More extensive review of the molecu-
lar aspects of the IGF axis is provided in chapter 1.

3. FETAL IGF AXIS

Recent mouse models that manipulate components of the IGF system and clinical
reports have provided key support for the central role of IGFs in somatic growth in
utero and after birth (also discussed in chapters 6). The null IGF-I mouse displays
severe intrauterine growth retardation, resulting in birth weights that are just 60% that
of their wild-type counterparts (4,15). A boy with congenital IGF-I gene deletion at
12q was born at 37 wk gestation with length z-score –5.4, head circumference z-score
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Table 1
Functions of the Insulin-Like Growth Factor-Binding Proteins

Limit bioavailability of free IGFs to bind type 1 IGF receptors
Prevent IGF-induced hypoglycemia
Regulate transport of IGFs between intra-and extra vascular spaces
Prolong the half-life of IGFs in circulation
Enhance actions of IGFs by forming a slow-releasing pool of IGFs
Modulate cellular proliferation/death via putative IGFBP receptors

Table 2
Modulators of Fetal IGF-I Action

Maternal nutrition
Growth hormone-mediated induction of IGF-I
Indirect, rapid regulation of free IGFs via insulin’s suppression of IGFBP-1
Chronic regulation of free IGFs via other IGFBPs
Genetic factors (IGF1 gene deletion)
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–4.9, and weight z-score –3.9 (24). Although IGF-II is clearly essential for prenatal
growth in mice, its role in the human fetus remains uncertain. No clinical report of
IGF-II gene deletion exists, although one would predict, based on the mouse models,
that the clinical phenotype of congenital IGF-II deficiency will include severe
intrauterine growth retardation and possibly insulin resistance (3,10).

Low plasma concentrations of IGF-I and IGF-II in the preterm fetus rise by term and
correlate closely with birth weight, length, and gestational age (Fig. 1) (9). Glucose
and insulin significantly regulate the prenatal IGF axis. Insulin has been shown to
increase fetal uptake of glucose and amino acids from the placenta (in sheep), and fetal
IGF-I increases glucose transport from the placenta (10). Pancreatectomy of the ovine
fetus decreases the serum IGF-I level, suggesting that insulin exerts an important role
on fetal IGF-I release or turnover. Maternal malnutrition results in decreased concen-
trations of IGF-I in maternal serum and cord blood. Clearly, fetal IGF-I and maternal
nutrition are key regulators of intrauterine growth.

Human fetal serum contains significant amounts of IGFBP-1 and IGFBP-2, whereas
IGFBP-3 is the predominant IGFBP species in postnatal serum (Fig. 2). With advanc-
ing gestational age, serum levels of IGFBP-1 fall, whereas IGFBP-3 and ALS rise, par-
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Fig. 1. IGF axis profiles in human amniotic fluid. Early gestation = 15–20 wk; midgestation = 26–33
wk; late gestation = 37–40 wk (adapted from ref. 19 with permission).

Fig. 2. Fetal serum IGF axis profile.
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ticularly during the late third trimester. IGFBP-2 and ALS appear to be the superior
serum markers of fetal IGF axis function (9).

4. PERINATAL IGF AXIS

Milk contains IGF-I, IGF-II, and four IGFBPs (18). Concentrations are highest at
prepartum and early postpartum, coinciding with the maximal proliferation of mammary
cells and the time when the neonatal gut is least developed (Fig. 1). It is logical to con-
clude that IGFs in human milk promote enterocyte growth in the developing gastrointesti-
nal epithelium. IGF-I is present at similar concentrations in term as well as in preterm
human milk, and it is slightly higher than the concentration found in cow’s milk (26).

Because of recent developments demonstrating the critical role of IGFs and IGFBPs
in the infant’s intestinal development and their possible role in necrotizing enterocoli-
tis, the stability of the IGFs and IGFBPs by heat treatment has been tested and found to
be appropriate. The stability of IGF proteins under heat is quite important because of
the routine process of banked human milk, which is now widely used, especially in
premature infants (27).

Before birth, concentrations of IGF-II rise in the amniotic fluid, and the proportion
of type 2 IGF receptors (in rat fetal tissues) exceeds that for type 1 IGF receptors.
Shortly after term, this situation reverses and type 1 IGF receptors heavily dominate.
These data imply that IGF-II may be more important than IGF-I during fetal growth
and development, even though the fetal cord levels of IGF-I and -II are similar, and the
concentrations of IGF-I and -II do not differ in maternal serum (19,20).

5. POSTNATAL IGF AXIS

The free (unbound) IGFs are the biologically active molecules with respect to
growth. However, the high IGF binding affinity of the IGFBPs prevent reliable, direct
assay of free IGF levels in clinical specimens. Recent innovations that improve quan-
tification of unbound IGF levels in body fluids include centrifugation of samples at
low temperature and low pH as well as acid-ethanol extraction. Nevertheless, these
manipulations also change IGF binding affinity with multiple proteins and therefore
do not represent true assessments of the steady-state, free IGF level. A popular and
reasonable alternative to the elusive free IGF assay is calculation of the ratio of total
IGF-I to total IGFBP-3. The IGF-I:IGFBP-3 ratio has been reported by multiple inves-
tigators as a suitable surrogate assay of the easily dissociable IGF-I. Serum levels of
easily dissociable and total IGF-I parallel advancing gestation age (2). The IGF-
I:IGFBP-3 ratio correlates positively with birth weight, birth length, and head (fronto-
occipital) circumference at birth (9). Widespread use of commercial enzyme-linked
immunosorbent assays and enzyme immunoassays has established normative ranges
for multiple IGF axis components with respect to gestational age and sexual maturity
stage (see Tables 3, 4, and 5; normative data courtesy of Mark Skene, PhD, Esoterix
Endocrinology, Calabasas Hills, CA).

6. CONGENITAL IGF-I DEFICIENCY

IGF-I is the predominant IGF species in postnatal human serum. Multiple mouse
knockout models demonstrate that as much as 60% of intrauterine growth is attribut-
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Table 3
Serum Acid-Labile Subunit Profile in the Pediatric Population

Acid labile subunit Range (mg/L) Mean (mg/L) SD

Infants
0–2 mo 0.2–5.1 2.1 1.7
3–6 mo 0.7–5.6 3.4 1.3
7–12 mo 0.7–7.9 4.0 2.3

Prepubertal
1–2 yr 0.9–9.3 5.5 2.5
3–4 yr 1.9–10 6.8 2.7
5–7 yr 2.3–11 7.2 2.5
8–10 yr 4.2–13 8.9 2.5

Pubertal
11–13 yr 5.6–16 12 3.6
14–18 yr 5.6–16 12 4.2

Adults
19–25 yr 7.0–16 12 2.5
26–35 yr 7.0–16 12 2.1
36–45 yr 7.0–16 11 1.7
46–55 yr 7.0–16 11 2.1
56–65 yr 7.0–16 10 3.0

Normative data courtesy of Mark Skene, PhD, Esoterix Endocrinology, Cal-
abasas Hills CA.

Table 4
Serum IGF-I Profile in the Pediatric Population

Term Pre–Term*

IGF-I Range (ng/mL) Mean (ng/mL) Range (ng/mL) Mean (ng/mL)

Newborns and infants
Birth 15–109 59 21–93 51
2 mo 15–109 55 23–163 81
4 mo 7–124 50 23–171 74
6 mo 7–93 41 15–132 61
12 mo 15–101 56 15–179 77

Children and young adults Male Female
1–2 yr 30–122 76 56–144 100
3–4 yr 54–178 116 74–202 138
5–6 yr 60–228 144 82–262 172
7–8 yr 113–261 187 112–276 194
9–10 yr 123–275 199 140–308 224

11–12 yr 139–395 267 132–376 254
13–14 yr 152–540 346 192–640 416
15–16 yr 257–601 429 217–589 403
17–18 yr 236–524 380 176–452 314
19–20 yr 281–510 371 217–475 323

*Values from preterm infants were determined at these ages from expected term gestation.

Normative data courtesy of Mark Skene, PhD, Esoterix Endocrinology, Calabasas Hills CA.
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able to IGF-I and IGF-II action (3,4). Congenital IGF-I deficiency in a human appears
to be comparable with the mouse models. The absence of IGF-I in serum and other tis-
sues was observed in a boy with IGF-I gene deletion. The primary consequence of con-
genital IGF-I deficiency was severe intrauterine growth retardation, which continued
throughout postnatal development (5). In addition, IGF-I deficiency resulted in glucose
intolerance, which was ameliorated by recombinant human (rh) IGF-I replacement
therapy in a dose-dependent manner. Chronic (over 15 yr), untreated, congenital IGF-I
deficiency was also associated with sensorineural hearing loss; however, the absence of
supporting data from animal models limit the association that can be made between
hearing loss and IGF deficiency.

Current in vivo evidence and clinical studies of term and preterm infants associate
the IGF–IGFBP axis with specific disorders that are associated with intrauterine
growth restriction, such as pre-eclampsia. Based on extensive epidemiologic data gath-
ered by Barker since he proposed the fetal origins hypothesis of adult-onset insulin
resistance in 1963, small size at birth is associated with increased risk of cardiovascular
disease in adulthood (6). Small size appears to be one marker for the fetal origins of
life-long programming within the IGF axis (1,7).

7. REGULATION OF THE IGF AXIS DURING INFANCY

Immaturity of the growth hormone–IGF–IGFBP axis in the premature infant con-
tributes to morbidity and mortality (9). Euthyroid infants with congenital panhypopitu-
itarism display birth weight and length within the normal range (10). Newborns with
anencephaly also display normal serum IGF-I levels and normal birth weights adjusted
for gestational age. These clinical observations imply that intrauterine IGF action can
be independent of growth hormone (somatotropin) in humans. Follow-up of somatic
growth and serum IGF levels in euthyroid infants with growth hormone deficiency sug-
gest that beyond the sixth month of postnatal life, IGF production becomes dependent
on somatotropin. This may explain why caloric hyperalimentation can enhance linear
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Table 5
Serum IGFBP Profiles in the Pediatric Population

IGFBP-1 IGFBP-2 IGFBP-3

Range Mean Range Mean Range Mean
Age ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL

0–4 wk na na 321–1000 587 0.2–0.5 0.37
0–1 yr 348–922 567 271–814 470 0.7–2.5 1.3
1–2 yr 280–750 460 260–778 449 na na
2–6 yr 275–700 435 250–727 426 1.4–3.0 2.1
6–10 yr 255–540 370 226–568 358 1.5–4.2 2.7

10–15 yr 200–470 305 200–490 315 2–5.8 4.2
15–25 yr 215–518 325 180–490 300 2.5–4.8 3.8

Normative data courtesy of Mark Skene, PhD, Esoterix Endocrinology, Calabasas Hills, CA. Na, not
available.
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growth only during the first few months of life. Gender does not appear to affect serum
levels of IGFs or IGFBPs in the human fetus or infant (9).

8. PERINATAL NUTRITION AND IGF ACTION

Birth marks the transition from continuous placental glucose delivery to the
extrauterine pattern of fasting interrupted by feedings. Insulin is a potent regulator of
hepatic IGFBP-1 release, and fasting-induced hypoglycemia is a potent stimulus for
adrenal cortisol release (25). Acute suppression of serum IGFBP-1 release upon feed-
ing may integrate an increase in free IGF level with the increased caloric availability.
Total serum IGF-I level has been shown to decrease in normal adults during a fast, and
both in adults and children by short-term decrements in dietary protein or calories (see
Chapter 2). The latter, diet-related changes are detectable within 1–2 d after the diet
alters (11).

Both protein intake and total caloric intake determine circulating IGF concentrations
in premature infants. IGF-I values are reduced more than 50% when calorie intake is
low, an effect that can be independent of protein intake. As dietary protein increases,
serum IGF-I levels increase fourfold, with the most pronounced effect observed when
12–15% of dietary calories are derived from protein (11) Serum IGF-I may be a useful
nutritional assessment marker to monitor feeding in the early postnatal period
(reviewed in Chapter 4). Serum concentrations of IGFBP-3 are reduced by protein-
caloric malnutrition and rise with refeeding. The associations between dietary protein
with gestational age and postnatal age are significantly stronger with IGF-I than for
IGFBP-3 (11).

Serum levels of IGFBP-2 are highest in infancy and decline with age. Serum
IGFBP-2 concentrations appear to be the highest at 24-wk gestation in live infants,
with a linear decrement to the nadir values at 34 wk of gestation. Protein is a major reg-
ulator of prenatal serum IGFBP-2 concentrations. Serum IGFBP-2 levels increase with
protein-calorie malnutrition in young children and declines markedly upon refeeding
with a protein-enriched diet. Premature infants display over 50% decrease in serum
IGFBP-2 levels as the dietary protein intake increases from 6% to 15%. This effect is
observed regardless of gestation age. Thus, serum IGF-I and IGFBP-2 levels appear to
be useful indicators of nutritional status during premature and postnatal life (11).

9. BRONCHOPULMONARY DYSPLASIA 

Bronchopulmonary dysplasia (BPD) is a chronic illness associated commonly with
prematurity. Appropriate nutrient intake in these infants promotes lung growth and
development. Current methods for assessing the adequacy of protein and calorie intake
for these infants have numerous limitations. Weight gain is not a sensitive indicator of
short-term changes in lean body mass, particularly when edema or dehydration is pre-
sent (12) Serum IGFBP-2 concentration is a suitable marker of protein intake in infants
with BPD, but the determinants of weight gain are more complex in other premature
infants. IGF-I appears to exert a key role to facilitate the actions of vascular endothelial
growth factor with respect to vascular endothelial growth in vitro. Further work is
needed to determine the role of IGFs in vascularization of the premature or prenatal
lung to determine its contributions to the etiopathophysiology of BPD (12,22).
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10. RETINOPATHY OF PREMATURITY 

Retinopathy of prematurity (ROP) is a blinding disease initiated by lack of retinal
vascular growth associated with premature birth. Lack of IGF-I in knockout mice pre-
vents normal retinal vascular growth despite the presence of vascular endothelial
growth factor (13,22). Patients with IGF-I deficiency (despite normal somatotropin
receptors) display less retinal vascularization with lower number of vascular branching
points (22).

Clinical and animal studies suggest that when tissue IGF-I levels fall for an extended
time in premature infants, the vessels cease to grow, and this maturing avascular retina
becomes hypoxic. Vascular endothelial growth factor (VEGF) accumulates in the
hypoxic vitreous. As serum IGF-I levels rise above threshold in the presence of high
concentrations of VEGF, a rapid growth of new blood vessels is triggered. IGF-I and
VEGF complement endothelial cell function through the aforementioned mitogen-acti-
vated protein kinase and AKT signal-transduction pathways. Patients who do not
develop ROP have higher levels of IGF-I from birth and reach higher levels of IGF-I
faster than patients with ROP, which has led to some controversy in the etiopathophys-
iologic role of IGF-I in retinopathy (13,22).

It is reasonable to conclude that the timing of the increased IGF-I level is a critical
determinant of IGF action. Normalization of the IGF-I level during the first few weeks
of postnatal life might prevent ROP, while bearing in mind the therapeutic complica-
tions of hyperoxygenation (13).

11. IGF ACTION ON THE GASTROINTESTINAL TRACT

Mammals are the only mothers who control development of the intestine through
breast milk. The effect of growth factors and polyamines on intestinal development has
been studied most intensively in terms of intestinal repair, or restitution from short
bowel syndrome. Amniotic fluid exerts growth-promoting activity in cultured human
fetal small intestinal cells, but human milk possesses a greater trophic effect than amni-
otic fluid (14,23).

The mitogenic activity attributed to human milk is related to the presence of several
growth factors, including epidermal growth factor, IGF-I, fibroblast growth factor,
human growth factor, and transforming growth factor-β (14). Intestinal cell growth-
promoting activity equal to that of amniotic fluid or human milk has not yet been dupli-
cated artificially, even with recombinant growth factors. Many of these growth factors
also alter the proliferation of epithelial cells and their expression of brush border
enzymes. Numerous growth factors have been identified in human milk, but additional
growth factors are likely to be identified and linked to intestinal cell growth (14,23).

12. IGF AND DEXAMETHASONE

In adults, dexamethasone increases serum IGFBP-3 levels, induces protein catabo-
lism, and induces growth hormone release. Dexamethasone decreases the activity of
circulating IGF-I concentrations, which may explain the negative correlation of serum
IGF-I level with weight gain observed in infants treated with dexamethasone. Dexam-
ethasone disrupts the relations between nutritional intake and serum IGF-I and IGFBP-
3 concentrations (12).
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13. GENE VARIATIONS

Severe IGF deficiency results in severe intrauterine growth retardation; perinatal
lethality; postnatal growth retardation; delayed development in brain, muscle, bone,
and lung; and infertility in mice. Overexpression of IGF-I in transgenic mice is coupled
with widespread tissue hypertrophy in the brain, heart, muscle, and intestine. The con-
ventional gene knockout mice demonstrate the crucial role of IGF-I in intrauterine
development and perinatal survival. This model is unsuitable for postnatal studies on
animal growth because most of the mice die after birth (15).

It has been postulated that fetal genetic factors could underline the relationship
between low birth weight and predisposition of an infant to diabetes and cardiovascular
disease. Vaessen et al. reported that absence of the wild-type IGF-I (192-bp allele of a
polymorphism in the promoter region of the IGF-I gene) associates significantly with
low circulating IGF-I concentrations, reduced height in adulthood, diminished insulin-
secreting capacity, and a high risk of type 2 diabetes mellitus and myocardial infarction
(16). Individuals without the wild-type allele showed a strong postnatal gain in weight
up to that of wild-type carriers. Although genetically established expression of IGF-I and
insulin are important determinants of growth during the fetal period, other genetic fac-
tors and environmental factors (like nutrition) exert greater regulatory effects on weight.
These observations do suggest that association between low birth weight, diabetes, and
cardiovascular disease could be a result of genetic variation of IGF expression (16).

14. THE SICK NEONATE

Numerous studies have demonstrated a positive correlation between serum IGF con-
centrations and nutritional variables. Illness has shown to increase IGFBP-3 proteolytic
activity. This mechanism potentially maintains IGF bioavailability to critical tissues
during periods of caloric stress, thus ensuring survival, even growth. A recent study
comparing 24 hospitalized sick neonates to 8 newborn infants with congenital growth
hormone deficiency revealed normal serum IGF-I and IGFBP-3 levels in sick hospital-
ized neonates even in the face of cachexia and serious illness. These results suggest
that patients with congenital growth hormone deficiency could be diagnosed by assess-
ment of serum IGFBP-3 levels despite severe illness (17).

15. SUMMARY AND CONCLUSIONS

William Salmon and William Daughaday (21) first reported in June 1957 “a hor-
monally controlled serum factor which stimulates sulfate incorporation by cartilage in
vitro.” The molecular revolution of the 1970s revealed the genetic basis of these factors
as protein molecules sharing high levels of structural homology with insulin: the
insulin-like growth factors. IGFBPs and their own partners have been rapidly identified
throughout the 1980s and 1990s. With the 21st century well underway, the IGF-IGFBP
axis still remains provocative nearly 50 yr after its discovery.
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KEY POINTS

• Nutrition interacts with the IGF system to modify reproductive processes.
• The relative roles of the circulating vs tissue IGF systems in nutritional control of repro-

duction remains to be elucidated.
• There are profound species differences in IGF system expression and actions in reproduction.
• Use of multiple models and approaches is required to elucidate fundamental aspects of IGFs

in nutrition and reproduction of humans and domestic animals.

1. INTRODUCTION

Evidence has been steadily emerging to indicate that the “IGF system,” which con-
sists of two secreted growth factor ligands (insulin growth factor [IGF]-I and -II), six
secreted and/or membrane-localized IGF binding proteins (IGFBP-1, -2, -3, -4, -5, and -
6), the IGFBP-3 acid-labile subunit (ALS), two cell-surface receptors (type I and type II
IGF receptors), and potentially numerous ancillary participatory IGF and IGFBP pro-
teases, is a critical regulatory component for the orchestration of successful reproduction
in mammals and other vertebrates (1). The IGF system can be functionally divided into
two parallel entities, by virtue of whether its components are present in the circulation
(“endocrine IGF”) or are synthesized and act locally (“autocrine/paracrine” or ”tissue
IGF”). In many instances, the two IGF systems are not functionally equivalent or at most
are partially overlapping. Many of the IGF system components present in the circulation,
microvasculature, and extravascular spaces are under nutritional control with respect to
their concentrations, and in some cases this involves noncoordinate or even opposing
effects on different family members in the face of changing nutritional inputs or overall
energy balance. The physiological effects and endpoints of such changes are only now
being elucidated; similarly, questions of how nutritional status affects the expression and
functions of individual tissue IGF Systems have just recently emerged as an area of
intense investigation. Here, we review the present state of research that has implicated
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the IGF system in reproduction and how nutrition interacts with and/or modifies such
reproductive actions where known (Fig. 1). Lastly, we attempt to formulate possible
directions for future research that may have the potential to impact human reproductive
medicine as well as animal growth and reproduction via nutritional means.

2. OVARY

The functions of the ovary, among the reproductive organs/tissues of many species,
be it a human, mouse, or fruit fly, are affected in particular by the relative nutritional
state of the organism (2). The ovary is known to have a self-contained and fully opera-
tional IGF system, which is integral to the dynamic processes of folliculogenesis (pro-
liferation and differentiation), corpora lutea (CL) development and function
(transdifferentiation), and CL regression (apoptosis) during the estrous cycle and preg-
nancy (Fig. 2). In this tissue, local and/or systemic IGF-I and IGF-II are synergistic
with the gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone to
stimulate growth and differentiation of ovarian follicles and the subsequent synthesis
and secretion of estradiol, via induction and action of the P450 aromatase enzyme in
the granulosa cells. Local IGF-I appears to have as one of its key actions the stimula-
tion of expression of follicle-stimulating hormone receptors in ovarian follicles,
thereby making the developing follicles more responsive to gonadotropin (3). It seems
obvious based on studies using multiple animal models that the intraovarian IGF sys-
tem relies heavily on temporally regulated production as well as regulated proteolysis
of IGFBPs (the latter via serine proteases and metalloproteases) to affect the relative
IGF bioactivity, which likely underlies proliferation and differentiation in the develop-
ing follicle (4,5). In the rat ovary, the tissue-specific expression and functions of the
individual IGFBPs are suggested by the distinct expression of IGFBP-2, -3, and -4 in
specific cell types, which include the IGFBP-2 transcript mainly in thecal interstitial
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cells of Graafian follicles, the IGFBP-3 transcript in corpora lutea, and the IGFBP-4
transcript in granulosa cells of atretic follicles (6).

Lactating sows that are feed-restricted have reduced frequency of LH pulses, smaller
ovaries, and smaller and fewer number of follicles than do normally fed counterparts
(7). In addition, aspirated follicular fluids from the former group have lower IGF-I con-
centrations than do those from the latter group (7). Similarly, nutritionally induced
anovulation in cows is characterized by decreased growth rate of the ovulatory follicle
and lowered serum concentrations of LH, estradiol, and IGF-I (8). Cows underfed to
induce weight loss have smaller CLs than those fed to gain weight; interestingly, the
difference in growth of ovarian tissues between these two systems is not accompanied
by any changes in luteal IGF-I mRNA abundance (9). In a study using sheep, it was
found that under- as well as overfeeding affects the follicular fluid concentrations of
both IGF-I and IGF-II (10). This collective group of studies suggests that the systemic
as well as intraovarian IGF systems are under nutritional control and that such controls
may mediate, at least in part, the effects of altered nutrition on ovulation rate, ovarian
function, early embryo development, circulating reproductive hormone concentrations,
and overall pregnancy success.

3. OVIDUCT

The oviduct provides the site for fertilization and an optimal microenvironment for
the early cleavage stages of embryo development. Oviducts from human, pig, sheep,
and rat have documented expression of IGFs, IGFBPs, and IGF receptors, suggesting a
functional locally acting IGF system in this tissue (11–13). Rat oviduct expresses
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genes for many of the IGFBPs, with IGFBP-2, -4, -5, and -6 exhibiting stage of estrous
cycle and/or cell-type (epithelial, fibroblast, smooth muscle)-specific mRNA expres-
sion patterns (14). Interestingly, these same IGFBPs can be identified in oocyte–cumulus
complexes collected from oviducts, suggesting their possible uptake from oviduct lumi-
nal fluid and targeted actions in early developing embryos because the corresponding
mRNAs cannot be detected in the complexes (14). Similarly, oviductal fluid contains
both IGF-I and IGF-II (15), a finding that has significance for the various developmental
processes (i.e., cell division, metabolism, or apoptosis) occurring in the early preimplan-
tation embryo. Sheep oviduct at periestrus exhibits expression of IGFs, IGFBPs-3 and -
4, and type I IGF receptors (16). In this model, IGF-I gene expression was localized
primarily to the subepithelial stroma and the muscle layer and was maximal just before
ovulation, coincident with high circulating estrogens. IGF-I receptor mRNAs, in con-
trast, are maximally expressed in the mucosal epithelium, consistent with the occurrence
of a paracrine-type, stromal-epithelial communication mediated by IGF-I (16). Human
oviduct primarily expresses IGFBPs-2, -3, and -4 (12). With regard to the possible
effects of nutrition on the expression and/or actions of the IGF system components in the
oviduct, there is a virtual absence of published studies that have examined such ques-
tions. In the same vein, although it is clear that serum steroid hormones (estrogens [E2],
progesterone) can exert a major effect on oviductal IGF levels and bioactivity, the ramifi-
cations of such effects on overall reproductive efficiency remain unexplored.

4. UTERUS

The complete IGF system is operative in the uterus of humans, rodents, and domes-
tic farm animals, which strongly suggests autocrine and/or paracrine physiology but
with demonstrable species differences (1,11,17–24). The two IGF ligands are differen-
tially expressed in the uterine endometrium during pregnancy and the estrous cycle
(11,20), indicative of their unique as well as overlapping activities in the corresponding
uterine tissue(s). In the pig, endometrial IGF-I mRNA abundance is correlated with cir-
culating progesterone (mid-luteal stage of the cycle), whereas IGFBP-2 mRNA abun-
dance is best correlated with circulating estrogens (periestrus) (11). In this animal
model, abundance of endometrial IGF-I mRNA declines after implantation whereas
that for endometrial IGF-II increases (11). Correspondingly, parallel induction of
endometrial IGFBP-2 and placental IGF-II transcripts occur. In the sheep, cow, and rat,
however, uterine IGF-I transcript abundance is greatest at estrus and is correlated with
circulating estrogen (19,24,25); by contrast, the expression of endometrial IGF-II and
IGFBP-2 transcripts is positively correlated with presence of the embryo/fetus and
progesterone, respectively (17). In those species examined, the majority of the
endometrial IGF-I transcripts originate from the subepithelial stroma (19,20,24). The
corresponding receptor (type I IGF receptor) mRNAs, in contrast, are more enriched in
the endometrial epithelium (19), illustrating the prominent role of IGF-I as a stromal-
derived epithelial mitogen under distinct hormonal and perhaps nutritional control
(Fig. 3). The mitogenic actions of IGF-I in the uterus appear to involve its own receptor
(type I IGF receptor) as well as that for estrogen (26). Interestingly, IGFBP-2 also acts
as a uterine endometrial epithelial cell mitogen (27).

The stage of estrous cycle- or pregnancy-dependent uterine expression of a number of
the IGFBPs has also been described. In the rat, the temporal and cell type-specific
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expression of IGFBPs-2 through -6 during the estrous cycle are distinct (18). The
IGFBP-2 and IGFBP-4 genes, for example, are mainly expressed in this tissue’s epithe-
lial cells. In the pig, endometrial IGFBP-2 mRNAs are induced soon after embryo
attachment to the uterine endometrial epithelium (11), whereas, a transient expression of
IGFBP-1 mRNA is observed in uterine endometrium at or near the time of embryo
implantation/attachment in the human and ruminant species (sheep, cow) (21,24).
IGFBP-1 is considered to be a placental trophoblast integrin ligand (28) and is expressed
in endometrial epithelium at pregnancy d 14 and 15 in the sheep (21) and cow (22,24),
and in the human endometrium at the secretory phase of the estrous cycle (20). These
periods of expression represent the early stages of embryo–maternal interaction during
which time the trophoblast attaches to the uterine epithelium. Species differences in the
type(s) of endometrial IGFBPs expressed at early pregnancy may well be tied to differ-
ences in the type of placentation exhibited. In this regard, the pig, which exhibits a very
noninvasive type of placentation, does not have detectable endometrial expression of the
IGFBP-1 gene at any time during pregnancy (F. A. Simmen, unpublished observations).

A myriad of studies now indicate that there is a dynamic aspect to the regulated
expression of the IGF and IGFBP genes during early pregnancy, a time characterized
by significant embryo mortality in humans and animals. This effect is particularly evi-
dent within the oviduct and uterus. Moreover, the embryo–maternal interface appears
to be an important site of action for IGF ligands and IGFBPs (11,28–30). The tissue
targeting, as well as the timing, of the actions of uterine-elicited IGFs and IGFBPs rel-
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ative to the embryo/trophoblast and endometrial epithelium, appears to also involve the
actions of IGFBP-specific proteases. Human, porcine, ovine, and bovine uterine lumi-
nal fluids have IGFs, IGFBPs (mainly IGFBPs-1, -2 and -3), and IGFBP proteases as
part of their components (22,30–33). The physiological regulation of proteolysis of
IGF:IGFBP complexes in the uterine lumen involves the actions of IGFBP-specific
proteases under the control of maternal progesterone (30,31) and may also be depen-
dent on the overall phosphorylation state of the target IGFBP (33).

As noted for the oviduct, it is similarly unclear whether the nutritional status of the
organism has a major impact, if any, on the uterine IGF system. However, given the plas-
ticity of this system it is likely that its regulation by nutrition results in key effects on
multiple processes involving implantation, fetal development and pregnancy outcome.

5. TESTES

Male reproductive tissues, with the notable exception of prostatic tumor cells, have
not been as extensively examined with respect to a functioning IGF system as female
reproductive tissues. However, there are some provocative indications that the IGF sys-
tem is important to male reproductive success and that nutritional status may constitute
a primary interacting factor. In rams, testis size, plasma testosterone, plasma IGF-I,
peak pubertal reproductive activity, and body weight are positively correlated with feed
intake (34). There is a significant amount of IGFBP-3 immunoreactivity in human sem-
inal fluids, which appears to be the result of IGFBP-3 secretion from the prostate and
subsequent partial proteolysis via prostate-specific antigen (35). Physiological concen-
trations of IGF-I are also found in bovine seminal plasma (36). Moreover, bovine
sperm displays receptors for IGF-I localized to the acrosomal region. Perhaps most
interestingly, recombinant IGF-I or IGF-II can increase bovine sperm motility in vitro,
presumably by acting through sperm IGF receptors (36,37).

6. THE CIRCULATING IGF SYSTEM

GH, besides being a somatogenic hormone, is an important endocrine factor for repro-
duction (38). This hormone affects male and female sexual development, gonadal steroido-
genesis, gametogenesis, ovulation, fetal and placental growth, mammogenesis, and
lactation, all of which undoubtedly involve IGF system-dependent and -independent path-
ways. Exogenous GH stimulates the circulating levels of IGF-I, IGFBP-3, and ALS while
suppressing that for IGFBP-2 (38). Conversely, feeding restriction leads to an induction in
circulating IGFBP-2 and a concomitant decrease in circulating IGF-I/IGFBP-3 (9). Under
these two physiological conditions, IGF-I and IGFBP-2 may constitute counter-regulatory
principles. IGF-I, IGFBP-2, and IGFBP-3 concentrations in the circulation are relatively
constant during a normal estrous cycle (39) and would therefore appear to be independent
of or uninvolved with cyclical changes in ovarian and uterine physiology. However, it is
very likely that nutritional deficits that affect circulating IGF and/or IGFBP levels may
contribute to changes in reproductive physiology. Treatment of pregnant pigs with recom-
binant GH can, in some cases, augment fetal growth (29), but this effect does not appear to
involve any changes in endometrial production of IGF-I, IGF-II, or IGFBP-2 (29).

The studies described previously point to an association between nutritional status
and reproductive physiology with the circulating IGF system serving as the link between
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the two. In postpartum cattle subject to nutrient restriction, circulating concentrations of
IGF-I and IGFBP-3 are depressed, whereas that of IGFBP-2 is increased (40). Moreover,
nutrient restriction leads to decreased resumption of estrous cycles in this same model.
Long-term food restriction of guinea pigs has no effect on the relative size of the uterus,
and although circulating IGF-I, IGF-II, IGFBP-1, IGFBP-3, and IGFBP-4 levels are
severely depressed, IGFBP-2 levels are increased and many tissues are either increased
or decreased in relative size under these conditions (41). In fetal and neonatal sheep, the
relative state of nutrition can markedly affect the hepatic expression of many IGF system
components. In these animals, undernutrition leads to increased expression of the
IGFBP-2 gene and decreased expression of the IGF-I and ALS genes in the liver (42).

7. TRANSGENIC AND KNOCKOUT MOUSE MODELS:
“REPRODUCTIVE PHENOTYPES”

Growth hormone receptor-null mutant (“knockout”) mice exhibit a reduced or com-
plete lack of circulating IGF-I and have markedly reduced fertility (43,44). In males, this
partial defect in fertility resides at the levels of the hypothalamus, pituitary gland, and
testes and involves reduced basal as well as LH-stimulated testosterone release from the
testes (44). Female GH receptor knockouts have delayed sexual maturation, which can
be corrected with exogenous IGF-I treatment (43). Litter size and newborn body weights
are reduced for progeny of GH receptor-null females (43). Interestingly, the administra-
tion of IGF-I leads to an increase in uterine weights (43). These data clearly indicate that
in mice, GH and/or IGF-I are determinants of fertility for both genders.

That IGF-I is indeed critical for reproductive tissue development is demonstrated by
the phenotypes of IGF-I knockout mice. Male and female mice that have null muta-
tions of the IGF-I locus are infertile and exhibit severe reductions in the size of repro-
ductive organs (45,46). IGF-I-deficient males have reduced testes size, produce
markedly less testosterone, and fail to manifest mating behavior (46). Females do not
ovulate, even after the administration of gonadotropins, and have an infantile uterus
caused mostly by hypoplasia of the myometrium (46). More recently, Cre-induced,
liver-specific IGF-I gene targeting has been used to examine effects of hepatic IGF-I
gene knockouts on postnatal growth and development. These mice typically have mas-
sive decreases in liver IGF-I gene expression postnatally and manifest a decline in, or
the complete absence of, circulating IGF-I. Interestingly, these mice are normal with
respect to growth and development and are fertile, leading to the conclusion that
although liver is the main source of circulating IGF-I, it is not important for fertility in
mice (47,48). Consistent with this, mice lacking the acid-labile subunit gene had no
fertility defect despite a major deficit in postnatal circulating IGF-I levels (49).

Female mice genetically engineered for global overexpression of IGFBP-1 have
reduced reproductive performance characterized by decreased ovulation rate and
increased embryo mortality (reviewed in ref. 50). However, mice homozygous for the
null IGFBP-2 allele and thus completely lacking IGFBP-2 mRNA and protein are fully
viable and fertile (51). Moreover, global overexpression of IGFBP-2 in tissues and in the
circulation leads to postnatal growth inhibition but without reported effects on fertility
(50,52). Despite the lack of experimental confirmation, one might hypothesize from
these experiments that circulating IGFBP-1 and IGFBP-2 are not functionally equivalent
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and that nutritional deficits, which are known to lead to an induction in circulating
IGFBP-1 (as well as IGFBP-2), might be deleterious to female reproductive function.

8. SUMMARY AND CONCLUSIONS

Although it is apparent that the IGF system is used in the endocrine and paracrine reg-
ulation of male and female reproductive processes, much less is known about how nutri-
tion specifically interacts with these processes. Results from multiple animal models have
suggested that ovarian and testicular functions in particular may be compromised under
conditions of chronic under- or overnutrition. Attempts to link IGF system gene products
to these tissue phenotypes have, as in the cases of large animal models, pointed to circu-
lating IGF-I as being an important component in this regard. However, the recent elegant
gene targeting experiments in mice suggest that the locally expressed IGFs might have
more crucial roles in reproductive processes. This is an interesting dichotomy that awaits
further resolution. Consequently, it is not possible to conclusively state whether ovarian
and testicular IGF system components exhibit any profound degrees of nutritional regula-
tion either at the levels of synthesis, secretion, processing, and/or signal reception.

9. RECOMMENDATIONS AND CHALLENGES FOR THE FUTURE

It is obvious that nutrition is an important determinant of reproductive success. It is
equally apparent that conditions of low nutrient availability are not advantageous to
reproduction. One checkpoint for molecular control of reproduction might reside at the
level of gametogenesis. Perhaps the IGF system functions in this biological process by
serving as a stimulus under conditions of adequate nutrients and by restricting such
effects under low nutrient conditions. Once fertilization and early development have
been initiated, the IGF system may serve in numerous other important regulatory
capacities such as ensuring for adequate fetal nutrition by the stimulation of placental
growth, among other effects. The temporal linkage of the “early” and “late” compo-
nents of these IGF effects is suggested by the intriguing observation that exposure to
undernutrition at precisely the time of conception has profound effects on the circulat-
ing levels of IGF-I and IGFBP-3 in the fetus near term (53). Likewise, undernutrition,
specifically during later stages of fetal development, may delay the onset of the circu-
lating IGF System postnatally (42). Together, these observations may point to the exis-
tence of “nutritional imprinting” of the fetus as a consequence of maternal nutrition
and involving this fascinating growth factor-associated system (54–56). By necessity,
much of the published work to date is descriptive in nature. Clearly, future work is
needed to clarify more of the mechanistic aspects of how nutrients, energy, and the IGF
system interact during reproduction and pre- and postnatal development. Such studies
may eventually provide for novel nutritional means to augment reproduction of ani-
mals and alleviate infertility in women.
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KEY POINTS

• After puberty there is a continuous decline in IGF-I concentrations with age.
• Alterations in the IGF axis during aging contribute to age-related decreases in muscle and

bone mass.
• The fall in IGF-I may relate to reduced nutritional intake, as well as a decline in GH levels.
• The relative excess of circulating IGFBPs during aging may contribute to a further decline

in IGF availability to tissues.
• Survival to very old age (> 80 yr) is associated with higher IGF-I levels than predicted.
• The nutritional requirements for an appropriate IGF-I concentration at each stage of life

should be the focus of future research.

1. INTRODUCTION

Changes in the insulin growth factor (IGF) system are thought to have a major
impact on the altered body composition and cellular function that occurs with age.
Alterations in the growth hormone (GH)–IGF axis are believed to be responsible for
many age-related disabilities. Factors other than GH may contribute to the change in
IGF activity with age. Other components of the GH–IGF axis that may be altered by
the aging process include IGF sensitivity at the receptor and postreceptor level and the
profile of the IGF-binding proteins in the circulation and target tissues. Nutritional fac-
tors have an important influence at each of these levels.

2. SCOPE AND AIM

In this chapter, we outline what is known about the changes in the IGF system with
aging in adulthood and the effect of nutrition. The physiology of the IGF system is
covered in detail in chapter 1 and other chapters. Here, we will highlight aspects that
are relevant to aging. We emphasize the importance of this system in age-related dis-
abilities. Finally, we discuss the somewhat controversial area of the role of the IGF
system in longevity. In our concluding remarks, we will attempt to identify some key
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areas for future study. In this review we have used the terms “young adulthood” for
the ages 20 to 40 yr, “middle age” for 40 to 60 yr, “old age” for 60 to 80 yr and “very
old age” for over 80 yr.

3. PHYSIOLOGY

IGF-I and -II, acting through the IGF-I receptor and insulin receptors, have a wide
spectrum of activity, which is regulated to a large extent by a family of six specific
IGF-binding proteins. The IGFs have both endocrine and paracrine roles (1). GH
stimulates IGF-I expression, and IGF-I contributes to the regulation of GH by feed-
back inhibition. Rodent studies suggest the pattern of gene expression during aging
is similar to that of GH deficiency and can be partly restored with GH treatment (2).
Factors other than GH are important in the regulation of the IGF system with aging.
Insulin may be of particular importance in the positive regulation of IGF-I. The rela-
tive impact of insulin in the maintenance of IGF-I concentrations in aging is yet to
be clarified.

The clinical studies that we review in this chapter focus on the changes in the
endocrine IGF system with aging. Most of the circulating IGFs are in a ternary com-
plex, in association with IGFBP-3 and the acid labile subunit (ALS), which are also
both GH-dependent proteins. ALS circulates in excess of the other components of
the ternary complex, whereas IGF-I and IGFBP-3 can directly and positively influ-
ence each other’s circulating concentrations by promoting ternary complex forma-
tion (3). Thus the endocrine IGF level is dependent on ALS production. All six
IGFBPs participate in binary complex formation that influences the delivery of IGFs
to their target cells. Alterations in the endocrine profile of the IGFBPs with age
could significantly influence IGF tissue activity. The availability of IGF at the target
tissue is also dependent on IGF release from IGFBPs, which may be influenced by
the action of proteases. IGFBP-1, because of its dynamic nutritional regulation, may
be of specific importance in the relationship between nutrition, aging, and IGF avail-
ability. Paracrine IGFs and IGFBPs and the sensitivity of the tissues to IGF signaling
through receptors are also important considerations in the impact of age and nutri-
tion. The tissue levels and activity of the components of the IGF system are
unknown in most circumstances. However, it is generally assumed that the fraction
of unbound IGFs in the circulation represents the biologically active pool available
to the periphery.

In interpreting the results of clinical studies, one should be familiar with the assay
method, not only for the “free” IGF assays, but also for all the IGF system components.
For example, it is often important to consider what posttranslationally modified form of
IGFBP is being measured, the time of day, the relationship to a meal, and so on.

4. THE IGF SYSTEM THROUGHOUT ADULTHOOD

4.1. Overview
Normal IGF and IGFBP levels in healthy aging human populations have been deter-

mined from cross-sectional data. This introduces bias related to survival selection as
well as decreasing ability of even relatively healthy elderly individuals to participate in
a routine study assessment. At all postnatal ages most of the IGFs circulate in the
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ternary complex with IGFBP-3 and ALS. Total IGF-I concentrations fall with increas-
ing age. The net fall in IGFBPs is less pronounced, so that there is a relative increase in
IGF-binding. Although clinical studies give us an idea of changes in the endocrine IGF
system with age, the profile of paracrine IGFs, IGFBPs and receptors are important in
determining the available IGF activity. In rodents IGF-I receptor expression declines
with aging (4). In humans it is not yet known whether the paracrine IGF-I expression in
different tissues follows the age-dependent pattern of endocrine IGF-I. It is known that
IGFBP-3 secretion by fibroblasts increases with the age of the donor (5). This contrasts
with the changes in endocrine IGFBP-3 described below. Overall, the patterns that we
describe suggest that with age there is a fall in endocrine IGF bioavailability. The con-
tribution of nutritional changes to this fall has not yet been defined.

4.2. Total IGFs and the Ternary Complex
The progressive decline of total serum IGF-I concentrations from young adulthood

to old age is well established in several studies using different immunoassays (6–14).
In our own reference material of 448 healthy adults (13), we have found an inverse lin-
ear correlation between logarithmic transformed IGF-I levels and age (Fig. 1). From 20
yr of age, the geometrical mean of total IGF-I decreased by 50% for each 30 yr of
aging. Thus the mean IGF-I value at 80 yr of age is only 25% of the mean level at 20 yr.
In the very elderly, this age dependency may be lost. In healthy centenarians, the IGF-I
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Fig. 1. Progressive decline in total serum IGF-I concentrations in 448 healthy subjects from young
adulthood to old age. The correlation coefficient between IGF-I and age was r = –0.774, p < 0.001.
The regression lines for the mean and 2 SD are shown. Women are represented by the circles and men
by the triangles.
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levels in fact were higher than in elderly aged 80 yr (15). In each decade of life the
variation of IGF-I levels around the mean is wide. In our healthy reference material the
–2 SD value is 57% of the mean. Because of the lack of longitudinal studies, it is
unknown whether each individual follows a fixed IGF-I SD score throughout life as a
result of a genetically determined set point in IGF-I expression. Studies in twins, how-
ever, suggest that at least 40% of the variability in IGF-I is genetic (16,17).

Circulating IGF-II concentrations are less dependent on GH. Some studies docu-
ment a progressive fall in circulating IGF-II with age in middle to old age (10,12);
however, others show no variation (9,18).

Any fall in IGF-I and/or IGF-II could be secondary to changes in IGFBPs in the circu-
lation. IGFBP-3, which accounts for most of the IGF-binding in the circulation, declines
progressively during middle and old age (9–12,19), as does IGFBP-5, which can also
associate with ALS (20). Notably, the changes in IGFBP-3 and -5 are less pronounced
than the fall in IGF-I. Thus, there is a relative excess of IGFBP-3 and the IGF-I/IGFBP-3
ratio decreases (9), although this pattern is not observed in centenarians (15). An excess of
IGFBP-3 in relation to IGF-I is also seen in GH deficiency (21). Most of the IGF-I bound
to IGFBP-3 circulates in a complex with ALS. There is a body of evidence supporting the
role of GH as the primary transcriptional regulator of ALS (22). It is surprising therefore
that ALS concentrations decline only slightly with age in adult men and remain constant
in females (23). This observation supports the concept that factors other than declining
GH are important in determining the changes in ALS and IGF-I with age.

4.3. Binary Complexes and Free IGFs
IGFBP-1, which displays a slight increase throughout adulthood (9,19), is an impor-

tant determinant of the dynamic availability of endocrine and tissue IGF activity
(24,25). Insulin is the most important regulator of hepatic IGFBP-1 secretion. An
inverse relationship with insulin is maintained throughout life (9,26) but with an
upward shift in the regression line (9,19). This has been attributed to hepatic insulin
resistance (27) and this is further discussed in Chapter 14.

IGFBP-4 concentrations increase with age (20). Thus, there is excess of each of
IGFBP-1 to -5 in relation to the changes in IGF-I in studies of aging (20,28). IGF-I that
is not bound to IGFBPs or can be easily displaced from IGFBPs is considered to be
more biologically active. Overall, a relative excess of IGFBPs would be expected to
contribute to a decline in IGF bioavailability. When “free” IGF-I is measured by ultra-
filtration, it is found to fall progressively from young adulthood to old age, in parallel
with the total IGF-I concentration, so that there is no change in the percentage of total
IGF-I (29). In this study, total and free IGF-II concentrations were found to be inde-
pendent of age. Within an older study population (55–80 yr), using a different assay
that measures both free IGF-I and the fraction that is readily dissociated from IGFBPs,
the concentrations did not decrease with age and in fact increased in individuals above
70 yr (26). Thus it is not yet clear whether the amount of IGF available from the circu-
lation changes with aging.

4.4. Hormonal Regulation of the IGF System During Aging
The mean IGF-I value in a 90-yr-old individual corresponds to <4 SD of healthy

young adults. This is as low as that found in GH-deficient patients of younger age (13),
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who share many phenotypic features with those of old age (30). Because the amplitude
and duration of GH pulses decline with advancing age (31), it has been postulated that
the age-dependent decline in circulating IGF-I levels during adulthood is caused by a
decrease in GH secretion. However, in a recent study, a positive association between
IGF-I and integrated 24-h GH concentrations was observed in young and not old sub-
jects (32). In this study abdominal visceral fat and fasting insulin concentrations were
consistently the most important predictors of GH secretion.

Alteration of the set point in the hypothalamus or pituitary to the IGF feedback of the
GH axis is an attractive hypothesis to explain an age-dependent decline in IGF-I. We do
not believe it has been definitively excluded that in old age the pituitary is more sensitive
to the suppressive effect of IGF-I on GH release. One study has shown that the GH levels
achieved after IGF-I infusion did not differ between fasting old and young subjects
despite higher basal GH levels in the young individuals (33). However, it was not possible
to clearly determine sensitivity to suppression in this study. We speculate that increasing
free fatty acid (FFA) concentrations with age may have potentiating effects on IGF-I-
induced suppression of GH release. A nicotinic acid derivative, which suppresses FFAs, is
a strong stimulator of GH release in adults (34), restores the GH response to GH-releasing
hormone in elderly subjects (35), and partially prevents GH-induced insulin resistance in
GH-deficient subjects (36,37). Hyperinsulinemia induces a similar fall in FFAs but
impairs the GH response to GH releasing hormone (38). The role of FFAs and insulin in
determining the set point between GH and IGF-I will need to be elucidated in the future.

A decline in the peripheral IGF-I response to GH with age has been considered to
contribute to the fall in IGF-I levels with age. One study has documented a reduced
IGF-I response in older men to a single dose of GH (39). Against this concept GH
replacement doses do not change with age in GH-deficient patients (40).

Age-related changes of other hormones could inhibit IGF-I expression or attenuate
the GH-induced IGF-I response in the liver. A small attenuation of hepatic insulin sensi-
tivity or insulin production (41) could decrease both basal and GH-induced hepatic IGF-
I release in response to GH. Total IGF-I is inversely correlated to sex hormone binding
globulin (26,42,43), which is an insulin-regulated protein and which can change the
availability of gonadal steroids. However, estrogens, despite their stimulatory effect on
GH, are generally considered to attenuate IGF-I levels (39,44), and a higher GH replace-
ment dose is required in women than men (45). Administration of testosterone in high
concentrations has been reported to increase serum IGF-I levels when used in young
healthy men (46). Some researchers suggest that adrenal androgens have age-related
effects via the IGF system (47–49). The role of thyroid hormones (50) and leptin (12),
both of which correlate positively with IGF-I in older subjects, is yet to be defined. Also
worthy of consideration is the hypothalamus–pituitary–adrenal system, the activity of
which declines with age in humans (51,52). In rats glucocorticoids have been shown to
suppress hepatic IGF-I expression when adequate nutrition is provided (53).

5. NUTRITION AND THE IGF SYSTEM IN AGING

5.1. Overview
In the switch in metabolism from the use of exogenous nutrients to endogenous

sources, insulin, GH, IGFs, and IGFBPs are important signaling factors. During fasting
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declining insulin levels lead to a decrease in glucose uptake in muscle and adipose tis-
sue. There is also a contribution from decreased IGF-I expression and bioavailability
caused by increased IGFBP-1. Reduced bioavailability of IGFs also leads to feedback
inhibition in the pituitary and GH increases with fasting in humans. GH mobilizes FFA
from the adipose stores and causes insulin resistance. Concomitantly, there is induction
of GH resistance further reducing IGF-I expression. Humans and rats have different
patterns of GH regulation during fasting (54) and therefore extrapolation from rodent
studies to the human should be made with caution. There are additional differences in
the GH–IGF axis between species. For example in the rat, IGF-II is highest in the fetus,
declines rapidly and has disappeared from the circulation at the time of weaning (55).

An inverse relationship between IGF-I and IGFBP-1 is seen throughout the lifespan,
in health and in disease. Common nutritional regulators may have opposite effects on
the expression of IGF-I and IGFBP-1 (Fig. 2).

5.2. Effect of Nutrition on the IGF System
The IGF-I assays, first developed to evaluate GH status, have proven to be valuable

tools in the evaluation of undernutrition. The effect of prolonged fasting on IGF-I in
adults, and its correlation with the change in urinary urea nitrogen excretion, were
noted 20 yr ago (56,57). This occurs despite increased GH levels, leading to the con-
cept of acquired GH resistance leading to IGF-I deficiency (see Chapter 2). The rate of
decline in IGF-I level during fasting in patients with acromegaly (K. Brismar et al, per-
sonal communication) is similar to that previously reported in healthy nonobese adults
(58). The increase in IGF-I levels during refeeding after fasting requires both calories
and proteins containing essential amino acids (54). The balance between protein and
caloric intake and energy expenditure to optimize IGF levels has been studied in
healthy young adults and newborns but similar studies in older individuals are notably
lacking. There is a lesser effect of prolonged fasting on IGF-II (54), although this has
not been studied specifically in the elderly.
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With age, there may be different IGFBP responses to caloric and protein restriction.
For example, during protein restriction, IGFBP-3 decreases in young adults but not in
children, while the opposite occurs during caloric restriction (59). In both age groups
IGFBP-2 increased during protein restriction, but a rapid response to refeeding was
observed only in children. An increase in IGFBP-2 has also been observed in patients
with anorexia nervosa (60), suggesting that it might a useful marker of protein restric-
tion. In the latter study ALS concentrations were found to be decreased throughout life.
The effect of short term nutrition changes on ALS requires additional studies.

Reduced nutrition may make an important contribution to the wide variation of IGF-
I levels in elderly and to the fall in IGF-I with aging. It is well known that food intake
and its quality declines in later life. Aging is also associated with decreased nutrient
absorption, although this appears to relate to the diseases associated with aging, rather
than aging per se (61). In the Framingham study, in subjects 72 yr of age and older,
IGF-I was not related to body composition but strongly related to nutritional status
(62). In an ongoing longitudinal study of elderly above 80 yr, we have observed a sig-
nificant correlation between changes in IGF-I levels over a 3-yr period and changes in
the consumption of dairy products and fish, but not with changes in body weight (63).
Low insulin levels associated with low caloric content in the diet may contribute to an
IGF-I decrease. The role of insulin in the regulation of IGF-I may change with age, as
insulin resistance increases to peak at around 80 yr and is markedly decreased in sur-
vivors above 90 yr (41).

Specific nutritional components may have a marked effect on the IGF system.
Impaired IGF-I responses to protein malnutrition are due to a postreceptor defects in
GH action (64–66). During malnutrition, the concentrations of several essential amino
acids are decreased both in plasma and red blood cells in a pattern similar to hemodial-
ysis patients (67). Rat studies have shown that a low protein diet decreases IGF-I and
increases the hepatic expression of IGFBP-1 and -2 (68). In primary cultured hepato-
cytes withdrawal of single amino acids stimulates the expression of IGFBP-1 (69) and
a response element to amino acid withdrawal has been observed in the IGFBP-1 pro-
moter (70). Specific nutrient effects on the IGF system are reviewed more extensively
in Chapters 2 and 5.

5.3. The IGF System as a Marker of Nutrition
Serum IGF-I concentrations have been used in the assessments of nutritional status

of elderly. Some researchers who have used reliable assays without interference of
IGFBPs report that IGF-I is a better marker of nutritional status than commonly used
markers, while others have not found any advantage of using IGF-I determination. The
role of IGF-I as a marker of nutritional status is covered in more detail in Chapter 4.

Amongst the IGFBPs in the circulation only IGFBP-1 displays rapid variation,
reflecting the insulin levels and insulin sensitivity of the liver (Chapter 14). In short-
term studies of fasting and refeeding IGFBP-1 reflects prevailing insulin concentra-
tions. Although IGFBP-1 levels display this diurnal variation, the fasting IGFBP-1
level in the morning can be used as a marker of mean insulin levels throughout the day
(71). Elevated IGFBP-1 levels in relation to insulin levels are seen in many catabolic
conditions, such as GH deficiency and renal failure (67,71). Other regulators of
IGFBP-1, such as cytokines, glucagon, and catecholamines, may contribute to the
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stimulation in these conditions (25). IGFBP-1 is a predictor of survival in severe cata-
bolic stress (72). The cause of the increase in IGFBP-1 with age in not known. One
possibility is relative protein malnutrition, because amino acids activate a pathway that
inhibits IGFBP-1 (73,74).

6. AGING-RELATED DISORDERS

A change in the IGF system has been observed in a variety of disorders associated
with aging. Whether these changes are a cause or an effect of the disease is not estab-
lished. Many diseases are covered in detail in other chapters. Therefore, we will dis-
cuss briefly only a few conditions with a specific impact in the elderly.

6.1. Dementia
The role of the IGF system in brain function, as proposed by Sara et al. (75), is now

well documented in animal studies. It is postulated that many of the effects of brain aging,
including behavior and memory, are an outcome of IGF-I deficiency and decreased IGF-I
receptor expression (76,77). In a study in humans, lower IGF-I levels are associated with a
higher prevalence of dementia (78). Nutritional status may also be important in cognitive
function, although this is less clear in aging (79), and its interaction with the IGF system
needs to be defined. IGFBPs may have specific roles in the aging nervous system. IGF-
BPs are measurable in cerebral spinal fluid, where there are clear age-related changes,
including decreasing IGFBP-2 and -4 and increasing IGFBP-3 and -5 (80).

6.2. Osteoporosis
Apart from gonadal steroids, the IGFs and their binding proteins have been pro-

posed to play a role in the development of osteoporosis. There is conflicting evidence
in the literature of a relationship between bone composition and IGF-I with age with
some studies showing an association (81), and others none (78,82). Only longitudinal
studies can clarify whether IGF-I is a predictor of bone loss. Local IGF-I in iliac crest
cancellous bone predicts the bone volume better than circulating IGF-I (83). Study of
femoral cortical bone from men and women aged 20–64 yr shows linear declines in
IGF-I, transforming growth factor-β, and IGFBP-5 (84). The relationships among
IGF proteins, nutrition and osteoporosis are reviewed more extensively in Chapter 10.

6.3. Muscle Wasting
Clinical studies suggest that in old women IGF-I concentrations are associated with

poor muscle strength and reduced mobility (85). Studies in aging rodents have docu-
mented increasing skeletal muscle resistance to IGF-I, particularly to the stimulation of
protein synthesis (86), as the result of a decrease in IGF-I receptor number (87). In old
rats, continued exercise training can restore the lack of response in IGF-I and IGF-I
receptor mRNA to a mechanical load (88). Localized IGF-I transgene expression also
preserves muscle architecture and regenerative capacity during aging (89).

6.4. Insulin Resistance, Diabetes, and Cardiovascular Disease
Although the IGF system is a useful marker for insulin resistance in older age (90),

its role as a predictor of cardiovascular risk is less clear. Low serum IGFBP-1 has been
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associated with an unfavorable cardiovascular marker risk profile in old subjects
(11,19). In contrast to studies that use cardiovascular markers as end points, we have
observed that low IGFBP-1 levels, high levels of IGF-I, and high concentrations of
total cholesterol are significant predictors of 3-yr survival in 82- to 97-yr-olds. When
the IGFBP-1 level was used as continuous variable in logistic analyses, each doubling
of IGFBP-1 levels increased 3-year mortality threefold (91). This also suggests that the
relevance of cardiovascular markers, such as plasma lipid profiles, should be reevalu-
ated in very old age. A more detailed discussion of insulin resistance, diabetes mellitus,
and cardiac failure is presented in Chapters 14 and 17.

6.5. Reduced Immune Function
One study in old compared with young adults has suggested that reduction in circulating

IGF-I concentrations may contribute to a decrease in immunocompetence because concen-
trations correlate with a number of immune parameters (92). The connection between the
neuroendocrine and immune systems is well described. The effect of GH or IGF-I on thy-
mus architecture and cell function has been reviewed elsewhere (93). The administration of
IGF-I appears to improve immune function in aged female monkeys (94).

7. LONGEVITY AND THE IGF SYSTEM

The observation that caloric restriction can extend the life span in many species pro-
vides evidence of another possible link to IGF-regulated pathways in aging. It should
be noted that the “caloric restriction” in animal studies is defined as the controlled pro-
vision of a balanced caloric intake, which is 60 to 70% of ad libitum feeding, and does
not infer acute starvation or malnutrition, which decreases life expectancy. The fall in
IGF-I with age may contribute to the aging phenotype, but it may play an important
role in reducing the risk of pathologies, including malignancy (see Chapter 18). It is
important that these interrelationships are clarified before recommendations can be
made regarding manipulation of this system in human aging.

The IGF system is clearly involved in highly conserved pathways regulating longevity
in many organisms. However, whether IGFs are central to the aging process in mammals
is far from proven. Not all mutations in the insulin-IGF-I pathway extend lifespan, and
some decrease it (95). IGF-I has been shown to enhance telomerase activity in mononu-
clear cells and may play an essential role in the regulation of telomere length, thus par-
ticipating in the cell’s capacity for replication (96). Some patients with progeria, which is
a disease characterized by several features of premature aging, have reduced telomere
length (97). It has been reported that these patients also have low IGF-I levels (98).

7.1. Animal Models of Decelerated Aging
The insulin/IGF-I signaling system has been implicated in the control of longevity.

Single gene mutations in yeast, nematodes, and insects increase life span indepen-
dently of growth and body size (95). For example, in Caenorhabditis elegans, mutation
of daf-2, which encodes an insulin/IGF receptor, increases lifespan by 200% (99). In
the fruit fly, mutation of the insulin-like receptor (100) and loss of insulin receptor sub-
strate protein (101) significantly extends longevity.

Some IGF activity is essential for life. Many IGF-I and IGF-I receptor null mice die in
the early neonatal period (102). A number of mouse models of decelerated aging have
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been described. Most notably, those with decreased GH secretion or absent GH receptor
have increased life expectancy. The Ames dwarf mouse, which has the homozygous
mutation Prop-1df (103), and the Snell dwarf mice, which is homozygous for the Pit1dw
mutation show similar extensions of lifespan (104). These mouse models have a propen-
sity to obesity and, in the Snell dwarf mice, the increased longevity is most pronounced
when combined with caloric restriction (105). Animals with targeted disruption of the
GH receptor have longevity associated with decreased IGF-I and IGFBP-3 concentra-
tions and small size (106). The phenotype of each of these animal model shares many of
the characteristics described in animal models of caloric restriction.

7.2. Caloric Restriction in Rodents
Reductions in caloric intake have been shown to reduce age-related pathologies and

increase lifespan (77,107). In rodents it has been shown that caloric restriction prevents
the age-related decline in GH pulses. Although plasma IGF-I concentrations decrease
by about 40% early in life in relation to reduced food intake, there is no further age-
related decline (108). There are clear decreases in insulin concentrations and increases
in insulin sensitivity. Sonntag and coworkers propose that there is an increase in IGF
activity through increased paracrine IGF production and IGF receptor expression (4).
These effects of caloric restriction and aging on the GH/IGF axis in rodents are illus-
trated in Fig. 3. Because evidence points to an obligatory role for the IGF-I receptor in
carcinogenesis, it is also proposed that a decrease in IGF-I signaling mediates the anti-
carcinogenic effects of caloric restriction (109).

7.3. Longevity in Primates
At first glance, conclusions about survival from studies in rodents seem to be contra-

dictory to what we know in humans. Although there is anecdotal evidence that, similar to
the Ames mice (103), Prop-1 mutations in humans may be associated with delayed aging
(110), GH-deficient humans have increased mortality from cardiovascular disease (111).

Individuals who survive above 100 yr have higher-than-predicted IGF levels (15). In
the age group above 80 yr, the 3-yr survival is positively associated with IGF-I levels
and inversely related to IGFBP-1 levels (91). We should therefore be cautious about
extrapolating from the studies of caloric restriction in animals to humans. Studies of
dietary restriction in primates are underway (112).

8. SUMMARY AND CONCLUSIONS

Total IGF-I concentrations in adults decrease with age. IGFBP-3 and ALS, impor-
tant determinants of the ternary complex, decline to a lesser extent than IGF-I with
aging. It is not clear whether tissue IGF activity changes with age. The fall in circulat-
ing IGF-I has been attributed to a decline in GH activity but other factors are likely to
be involved. There is no definite evidence of a decrease in GH sensitivity with increas-
ing age. In caloric and protein malnutrition IGF-I also decreases and there is a clear
decline in GH-stimulated hepatic IGF-I production. Insulin could play a role in the
response to caloric undernutrition, whereas in protein deficiency post-receptor GH
resistance may predominate. IGFBP-1 is nutritionally regulated throughout life, with a
pattern that is opposite to IGF-I. In addition to IGF-I, IGFBP-1 has been used as a
marker of nutritional status as well as survival.
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9. CHALLENGES AND RECOMMENDATIONS FOR THE FUTURE

It is clear that we are a long way from understanding the relationship between vari-
ous nutritional factors and the IGF system during the aging process. Specific nutri-
tional recommendations that might optimally modify the IGF system or IGF-specific
therapies that might ameliorate aging-related problems are therefore impossible at this
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stage. Nevertheless, age-related disabilities are a growing social and economic burden
that may ultimately be addressed by such interventions.

9.1. Are the IGF/IGFBPs Better Indicators of Malnutrition in Adults 
Than Other Assessments?

A simple method of evaluating anabolism is needed for adults in the same way that
growth rate is used in children. The recently developed reliable IGF and IGFBP assays
are candidates and the levels need to be carefully validated in relation to lean body
mass and compared with currently used methods.

9.2. What Are the Nutritional Requirements Throughout Adulthood?
It is likely that nutritional requirements change with age, so that the optimum

caloric, protein, and micronutrient intake need to be defined for each decade of life.
This will only be achieved by well controlled longitudinal studies, such as those per-
formed in children.

9.3. Why Do IGF-I Levels Decline With Age?
Is a fall in GH production really the main cause of age-dependent decline in IGF-I?

How does increasing age change the effect of insulin and its sensitivity on the GH-
induced hepatic IGF-I release? More studies are required to determine the factors that
induce endocrine or paracrine IGF-I expression and secretion.

9.4. What Role Has IGF-I Sensitivity for the Wide Variation of IGF-I Levels?
Only longitudinal studies can clarify whether each healthy individual maintains their

IGF-I SD score throughout life. The presence and determinants of IGF resistance have
not received much attention compared to the study of insulin resistance. Further
research should focus on the changes in IGF sensitivity with age.

9.5. Is High IGF-I Appropriate and of Benefit in Older Age?
The finding of relatively high IGF-I levels in healthy centenarians may indicate a

beneficial effect of IGF-I for longevity, but we are lacking information about the IGF-I
SD score of these individuals earlier in life. Possible deleterious effects of more
bioavailable IGF with age should not be overlooked, such as the risk of malignancy or
cardiovascular disease.

9.6. If High IGF-I Is Good, Then How Do We Effectively Increase It?
At present, trials of exogenous treatment with GH alone or IGF-I alone in the elderly

should not be undertaken. The former has been linked to increased mortality in cata-
bolic patients and the latter would suppress endogenous GH with unknown effects on
paracrine IGF-I. We believe that the best approach would be one that promotes endoge-
nous IGF-I secretion and this may be achieved by providing optimal nutrition.

9.7. Is IGFBP-1 a Marker of Longevity?
The predictive value of IGFBP-1, as well as IGF-I, on survival and longevity needs

to be evaluated in prospective population-based studies.
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9.8. What Is the Role of Changes in the Profile and Function of IGFBPs
Throughout Life?

Study of the modulation and activity of IGFBP at the tissue level is a developing
field of research from which new therapeutic approaches might arise.
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KEY POINTS

• At the skeletal level, IGF-I exerts a positive effect on bone mineral mass by a direct action
on osteogenic cells.

• At the kidney level, IGF-I enhances both the renal reabsorption of inorganic phosphate
(Pi) and the production of calcitriol, the hormonal form of vitamin D that stimulates the
intestinal absorption of calcium and Pi, the two main bone mineral elements.

• Protein undernutrition reduces IGF-I production, decreases skeletal acquisition during
growth, and accelerates bone loss during adulthood.

• The stimulation of bone formation in response to IGF-I is impaired in presence of an
inadequately low intake of proteins.

• Protein undernutrition, probably by influencing negatively IGF-I production and action,
contributes to the pathogenesis of osteoporotic fractures in elderly.

1. INTRODUCTION

The impact of nutrition on the insulin growth factor (IGF) system in relation to bone
mineral mass gain and loss has been the subject of increasing attention over the last
decade. Accumulating evidence strongly suggests that IGF-I plays an important role in
bone metabolism. Both the production and action of this growth factor are selectively
influenced by the dietary supply of proteins. Deficiency in protein intake is associated
with low plasma IGF-I, decreased bone mineral mass, and increased risk of osteo-
porotic fracture. Observational and interventional human studies sustain the concept of
an essential role of protein intake on the IGF-I axis in bone health. Laboratory investi-
gations conducted in reliable animal models of osteoporosis bring strong support to
this concept. In this chapter, the main clinical and experimental data that relate the pro-
tein intake–IGF-I axis to calcium–phosphate metabolism, bone mineral mass, and
fragility fracture are considered.
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The strongest evidence for the relationship among protein intake, IGF-I, and osteo-
porosis has been obtained from observational and then interventional studies in the
elderly. Therefore, this aspect is presented first in this review. Then, the role of the pro-
tein intake–IGF-I axis in bone health and diseases at earlier adult periods and during
childhood and adolescence are discussed.

2. PROTEIN INTAKE, IGF-I, AND OSTEOPOROSIS 
IN ELDERLY POPULATIONS

Among the determinants of osteoporosis in elderly populations, nutritional deficien-
cies certainly play a major contributing role (1–6). Indeed, undernutrition is often
observed in elderly, and it appears to be more severe in patients with hip fracture than
in the general aging population (7–11). Low body mass index, which can be interpreted
as a crude “marker” of nutritional state, was found to be a major risk factor in a large
prospective study of hip fracture incidence in men aged 50 yr or more living in several
countries of southern Europe (12). A variety of evidence also leads to the conclusion
that protein intake below the Recommended Dietary Allowance could be particularly
detrimental for the conservation of bone integrity with aging (4,5). Indeed, undernutri-
tion can accelerate age-dependent bone loss (1,2,13,14). Protein undernutrition can
favor the occurrence of hip fracture by increasing the propensity to fall as a result of
muscle weakness, impairment in movement coordination, and/or by affecting protec-
tive mechanisms, such as reaction time, muscle strength, and/or by decreasing bone
mass (15–19). Furthermore, a reduction in the protective layer of soft tissue padding
decreases the force required to fracture an osteoporotic hip (10,20–23).

In association with the progressive age-dependent decrease in both protein intake
and bone mass, several reports have documented a decrement in IGF-I plasma levels
(24–27). In elderly patients hospitalized for hip fracture a state of undernutrition has
been consistently documented on admission (9,10). It is followed by an inadequate
food intake during hospital stay that can adversely influence the clinical outcome of hip
fracture patients (10,11). In hip fracture patients, in whom a lower femoral neck bone
mineral density (BMD) at the level of the proximal femur has been demonstrated (28),
a dietary survey based on 50 precise daily measurements of food intake confirmed that
nutritional requirements were not met while the patients were in the hospital, although
adequate quantities of food were offered (11). Undernutrition includes many nutrients,
and the specific role of a low protein intake besides low calorie consumption can be
difficult to appraise in the elderly (16). In hip fracture patients, the plasma level of IGF-
I was found to be decreased as compared with age-matched controls without fracture
(29). Serum IGF-I can be used as a sensitive marker of malnutrition in this population
(reviewed in Chapter 4).

3. PROTEIN REPLENISHMENT, IGF-I, AND OSTEOPOROSIS

Intervention studies using supplementary feeding by nasogastric tube or parenteral
nutrition (30) or even a simple oral dietary preparation that normalizes protein intake
(11) can improve the clinical outcome after hip fracture. It should be emphasized that in
the above-mentioned study (11), a 20-g protein supplement brought the protein intake
from low to a level still below the Recommended Daily Allowance (0.8 g/kg body
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weight). Follow-up showed a significant difference in the clinical course during subse-
quent rehabilitation hospitalization, with the supplemented patients doing better.
Although the mean duration of dietary supplementation did not exceed 30 d, the signifi-
cantly lower rate of complications (bedsore, severe anemia, undercurrent lung or renal
infections, 44% vs 87%), and deaths was still observed at 6 mo (40% vs 74%) (11). The
duration of hospital stay of elderly patients with hip fracture is not only determined by
the present medical condition but also by domestic and social factors (10,31,32). The
total length of stay in the orthopedic ward and convalescent hospital was significantly
shorter in supplemented patients than in controls (median: 24 vs 40 d).

After the favorable outcome shown in hip fracture patients receiving a protein-
calorie supplement (11), the question as to whether protein represented the key nutri-
ent responsible for the beneficial effect was addressed by comparing the clinical
outcome of elderly patients with hip fracture (mean age 82 yr) who received two dif-
ferent dietary supplements that differed only in protein content (33). A specific effect
of protein supplements on outcome was demonstrated with 79% in the group receiving
protein having a favorable course as compared with 36% in the control group during
the stay in the recovery hospital.

In undernourished elderly patients with a recent hip fracture, an increase in the pro-
tein intake, from low to normal, can also be beneficial for bone integrity. Indeed, in a
double-blind, placebo-controlled study, the effects of protein repletion were investi-
gated in patients with a recent hip fracture (29). Within 1 wk after an osteoporotic hip
fracture, 82 patients (80.7 ± 1.2 yr) were randomly allocated to a daily 20-g protein
supplement, which nearly corrected protein deficiency, or to an isocaloric placebo, for
6 mo. All were given 200,000 IU vitamin D once at baseline and 550 mg/d of calcium
supplementation. As compared with the placebo group, the protein-supplemented
patients had significantly greater gains in serum prealbumin, in IGF-I (Fig. 1), and in
IgM (29). In agreement with previous results (11,33), protein repletion after hip frac-
ture was associated with a more favorable outcome, including a shorter rehabilitation
hospital stay. In a multiple regression analysis, baseline IGF-I concentrations and biceps
muscle strength, together with the protein supplements, accounted for more than 30%
of the variance in the length of stay in rehabilitation hospitals (r2 = 0.312; p < 0.0005).
These results support the hypothesis that the beneficial effects of protein repletion after
hip fracture could be associated with a stimulation of the IGF-I system in the protein-
supplemented patients. Thus, the lower incidence of medical complications observed
after such a protein supplement (11,33) is also compatible with the hypothesis of IGF-I
improving the immune status, as this growth factor can stimulate the proliferation of
immunocompetent cells and modulate immunoglobulin secretion (34). Importantly, the
proximal femur BMD decrease observed at 1 yr in the placebo group was attenuated by
approximately 50% (Fig. 2) (29). These results are compatible with the hypothesis
implying that in patients with hip fracture, correction of low protein intake would lead
to normalization of IGF-I level, which in turn would increase both bone (35) and mus-
cle mass and thus reduce the risk of subsequent osteoporotic fracture while reducing
the number of medical complications (Fig. 3).

These results raise the question whether protein repletion of frail elderly could pre-
vent the age-dependent decrease in IGF-I levels and thereby help to prevent falls and
to increase bone mass. Indeed, a low IGF-I level has been shown to be a predictor of
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fracture risk (36). Our intervention study (29) stresses the impressive bone loss occur-
ring during the months after a hip fracture in the patients who did not receive a protein-
containing supplement (Fig. 2). This may explain why patients with osteoporotic
fracture have at least a twofold increase in the experience of another fracture, includ-
ing a second hip fracture (37–40). This prompted our group to set up a dedicated clini-
cal treatment pathway for the management of patients with low trauma fracture (41).
This pathway includes a multidisciplinary teaching program for patients and their fam-
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Fig. 2. Effect on change in femoral neck aBMD of 20 g/d of milk-derived protein supplement in
elderly subjects with a recent hip fracture. The protein supplement was taken during 6 mo. The con-
trol group received an isocaloric supplement containing no protein. Both groups were supplemented
in calcium and vitamin D. The study was randomized, double blind, and placebo controlled. Mean ±
SEM; *p < 0.05. From ref. 29.

Fig. 1. Effect on plasma IGF-I levels of 20 g/d of milk-derived protein supplement in elderly subjects
with a recent hip fracture. The protein supplement was taken over 6 mo. The control group received
an isocaloric supplement containing no protein. Both groups were supplemented in calcium and vita-
min D. The study was randomized, double blind, and placebo controlled. Mean ±SEM; *p < 0.06;
**p < 0.005. From ref. 29.
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ilies on physical therapy, daily living activities, and nutrition. Nutritional recommen-
dations include the intake required for calcium, vitamin D, and protein, as well as very
practical aspects.

4. EXPERIMENTAL STUDIES ON THE PROTEIN 
INTAKE–IGF-I–BONE AXIS

To evaluate the early cellular responses to protein deficiency in both cortical and tra-
becular bone, we submitted adult female rats to a diet with low protein content but
isocaloric to the control diet. Histomorphometric and biochemical analyses were per-
formed after 2 wk of protein deficiency, when plasma IGF-I was significantly lower in
protein-restricted rats (42,43). Thereafter, to investigate the bone cellular response to
IGF-I, we administered a pharmacological dose of rh IGF-I/IGFBP-3 to 15% and 2.5%
casein-fed rats for 10 d and evaluated its effects histologically and biochemically (43).
After 14 d of protein restriction, significant drops in periosteal formation and mineral
apposition rates were observed, indicating a decreased osteoblast recruitment and
activity. In rats fed the 15% casein diet, rh IGF/IGFBP-3 increased cancellous and
periosteal formation rates, indicating an increased osteoblast recruitment. However, in
protein-restricted rats, rh IGF/IGFBP-3 failed to increase cancellous or periosteal bone
formation. The early response of bone cells activities to isocaloric low protein intake in
adult female rats is envelope specific because short-term dietary protein restriction
impairs periosteal bone formation in cortical bone but not in cancellous bone. In addi-
tion, dietary protein restriction induces an osteoblastic resistance to IGF-I in both
envelopes. This may suggest that low plasma IGF-I and/or osteoblast resistance to IGF-
I in response to low protein intake could play an important role in the impairment of
periosteal osteoblasts. Moreover, these results suggest that therapeutic administration
of IGF-I to subjects with a dietary protein deficiency may be ineffective on bone. This
resistance to IGF-I action in states of undernutrition is in agreement with previous
experimental studies on body growth (44).
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Fig. 3. Implication of the correction of low protein intake on the IGF-I axis in the pathogenesis of
osteoporotic hip fracture and its medical complications in elderly.
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We investigated the influence of IGF-I on BMD in adult rats made osteoporotic by
ovariectomy (45–47). BMD was measured by dual-energy X-ray absorptiometry at the
levels of lumbar spine, proximal, and total tibia (48). This technique allows a precise and
accurate in vivo longitudinal measurement of bone mineral mass, areal BMD (aBMD),
and outer bone dimensions in rats, at various skeletal sites characterized by different pro-
portions of cortical and trabecular bone, and thereby by different rates of bone remodeling
and responses to dietary or hormonal manipulations. A 6-wk infusion of IGF-I induced a
dose-dependent increment of BMD at the three scanned skeletal sites (45). The increase
in BMD induced by IGF-I was associated with an increase in the resistance to mechanical
strain in relation also with an increase of bone shaft outer dimensions (45,46).

The local production of IGF-I by osteoblastic cells in relation with amino acid
concentrations could also play a role. Indeed, the amino acids arginine or lysine
increased IGF-I production and collagen synthesis in cultured mice osteoblastic
cells, in a time- and concentration-dependent manner (49). This study suggests a
possible influence of the local proteins or amino acid environment on IGF-I pro-
duction by bone cells and suggests a potential role of locally produced IGF-I
under the influence of extracellular amino acid concentration in the regulation of
osteoblast function.

To address the issue of a specific influence of protein deficiency in the pathogenesis
of osteoporosis, an experimental model in adult female or male rats of selective pro-
tein deprivation with isocaloric low protein diets supplemented by identical amounts
of minerals has been developed (42,43,50–52). This model enables the study of bone
mineral mass, bone strength, and remodeling. A decrease of BMD was observed at the
level of skeletal sites formed by trabecular or cortical bone only in animals fed 2.5%
casein. This was associated with a marked and early decrease in plasma IGF-I by 40%.
In this model, sex hormone deficiency or action was also observed, because estrous
cycles disappeared under a long-term low protein isocaloric diet. The effects of
ovariectomy and protein deficiency were additive, suggesting distinct mechanisms of
action. Histomorphometric analysis and biochemical markers of bone remodeling
indicate that the low protein intake-induced decrease in bone mineral mass and bone
strength was related to an uncoupling between bone formation and resorption
(42,50,51). Dietary essential amino acid supplements given to adult rats made osteo-
porotic by estrogen deficiency and reduced protein intake increase bone strength (53).
This beneficial effect was mediated through modifications of BMD, trabecular archi-
tecture, and cortical thickness possibly by the associated increase in IGF-I and consec-
utive stimulation in osteoblastic bone formation (53).

5. OTHER MECHANISMS POTENTIALLY INVOLVED 
IN PROTEIN-RELATED BONE LOSS

Beside the production and action of the growth hormone-IGF-I system, protein
undernutrition can be associated with alterations of cytokine secretion, such as inter-
feron gamma, tumor necrosis factor (TNF)-α, or transforming growth factor beta
(54,55). TNF-α and interleukin-6 generally increase with aging (56). In a situation of
cachexia, such as in chronic heart failure, an inverse correlation between BMD and
TNF-α levels has been found (57,58), further implicating a possible role of uncon-
trolled cytokines production in bone loss. Increased TNF-α can be a crucial factor in
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sex hormone deficiency-induced bone loss (59), but it also plays a role in the target
organ resistance to insulin and possibly to IGF-I (60). Along the same lines, certain
amino acids given to rats fed a low-protein diet can increase the liver protein synthesis
response to TNF-α (61). The amino acid oxidation rate is lower in children with
kwashiorkor replete with milk as compared with egg white, and protein breakdown and
synthesis correlated inversely with TNF-α levels (62). The modulation by nutritional
intake of cytokine production and action (63) and the strong implication of various
cytokines in the regulation of bone remodeling (64) suggest a possible role of certain
cytokines in the nutrition–bone link. As far as isocaloric protein deficiency-induced
bone loss is concerned, the role of TNF-α is supported by studies in female transgenic
mice expressing high levels of soluble TNF-α receptor (65). In these transgenic mice,
the increased bone resorption resulting in decreased bone mass and strength induced by
selective protein under nutrition, was attenuated compared with soluble TNF-α recep-
tor negative littermates. In contrast, the decrease in both IGF-I plasma level and bone
formation rate was not affected in the transgenic animals (65).

Figure 4 summarizes the factors (IGF-I, sex hormones, and TNF-α) that appear to
mediate the negative uncoupling between bone formation and resorption in response to
a selective protein deficiency, that is, without reducing the energy supply.

6. PROTEIN INTAKE AND BONE MASS IN YOUNG ADULTS

A positive correlation between protein intake and bone mass has been found in pre-
menopausal women (66–68). In women maintaining a low-calorie diet, insufficient
protein intake could be particularly deleterious for bone mass integrity. In athletes or
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Fig. 4. Mechanisms of accelerated bone loss induced by low protein diet. The decrease in both IGF-I
production and action could explain, at least in part, the negative influence of protein deficiency on
bone formation. The associated increase in bone resorption appears to be mediated by both sex hor-
mone dependent and independant mechanisms. Studies in transgenic animals suggest that TNF-α
could contribute to the increased bone resorption. See text for further explanation with references in
support of these relationships.
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ballet dancers, intense exercise can lead to hypothalamic dysfunction with delayed
menarche and disruption of menstrual cyclicity and bone loss (69–73). Nutritional
restriction can play an important role in disturbances of the female reproductive system
resulting from intense physical activity. The propensity to nutritional restriction is
more common when leanness confers a perceived advantage in athletic performance
(71). Insufficient energy intake with respect to energy expenditure supposedly impairs
the secretion of gonadotropin-releasing hormone and thereby leads to a state of hypoe-
strogenism. However, the relative contribution of insufficient protein intake with low
IGF-I remains to be assessed because it is frequently associated with reduction in
energy intake. As discussed above, bone loss induced by isocaloric protein restriction
in adult female rats is mediated by both reduced bone formation and increased bone
resorption, which involves both dependent and independent sex-hormone deficiency
mechanisms (42,50,51).

Anorexia nervosa is a condition frequently observed in young women. BMD is
reduced at several skeletal sites in most women with anorexia nervosa. It is not surprising
that young women with anorexia nervosa are at increased risk of fracture later in life (74).
Body weight, but not estrogen use, is a significant predictor of BMD in women with
anorexia nervosa (75). Abnormally low serum albumin levels (≤36 g/L) and low body
weight (≤60% of average body weight) at initial examination both were variables best
able to predict a lethal course (76). With estrogen and calcium deficiency, low protein
intake very likely contributes to the bone loss observed in anorexia nervosa. Experimental
evidence obtained in adult female rats indicates that supplying more carbohydrates cannot
compensate for the detrimental effect exerted by a low protein intake on bone mass (42).
Surrogate markers of bone formation, serum osteocalcin, and bone specific alkaline phos-
phatase are significantly reduced (77). Interestingly, IGF-I was the major correlate of
bone formation markers in mature adolescents with anorexia nervosa (77,78). Further-
more, IGF-I level changes were dependent on variations in the nutritional state (78).

7. PROTEIN INTAKE AND BONE GROWTH

Several physiological functions influence bone accumulation during growth. Animal
studies have identified physiological mechanisms that sustain increased bone mineral
demand in relation to variations in growth velocity. In this context, two adaptive mecha-
nisms affecting calcium-phosphate metabolism appear to be particularly important, namely
increase in the plasma concentration of 1,25-dihydroxyvitamin D3 (calcitriol), and stimu-
lation of the renal tubular reabsorption of inorganic phosphate (Pi). Elevation in the pro-
duction and plasma level of calcitriol enhances the capacity of the intestinal epithelium to
absorb both calcium and Pi. The increase in tubular reabsorption of Pi results in a rise in its
extracellular concentration. Without these two concerted adaptive responses, growth and
mineralization cannot be optimal. Note that the increase in tubular Pi reabsorption is not
mediated by a rise in renal production or in the plasma level of calcitriol (79).

Analysis of cross-sectional studies suggests that these two adaptive mechanisms
could be essential to cope with the increased bone mineral demand during the pubertal
growth spurt. An increase in plasma calcitriol concentrations has been reported during
pubertal maturation (80). A close relationship exists between the tubular reabsorption
of Pi, the plasma Pi level, and growth velocity in children (81). A rise in plasma Pi dur-
ing puberty has been reported (82).
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The mechanism underlying the parallel rise in calcitriol and the tubular reabsorption
of Pi has been clarified. One single factor, that is, IGF-I, appears to be responsible for
the stimulation of both calcitriol production and tubular Pi reabsorption (TmPi/GFR) in
relation to the increased calcium and Pi demand associated with bone growth (79,83).
In humans, plasma levels of IGF-I raise transiently during pubertal maturation, reach-
ing a peak during midpuberty, with the maximal level thus occurring at an earlier
chronological age in females than in males (84). The role of IGF-I in calcium phosphate
metabolism during pubertal maturation in relation with essential nutrients for bone
growth is illustrated in Fig. 5. The rise in plasma levels of IGF-I, calcitriol, and Pi are
correlated with elevation in indices of the bone appositional rate, such as alkaline phos-
phatase (85–88) and osteocalcin (87–90). Note that the plasma concentrations of
gonadal sex hormones, as well as those of adrenal androgens (dehydroepiandrosterone
and androstenedione), which increase before and during pubertal maturation, do not
seem to accord with the accelerated bone mass gain (91,92). Whether differences in the
adaptive responses, which control calcium and phosphate homeostasis, could play a
role in the increased variance in lumbar spine or femoral neck BMD/bone mineral con-
tent (BMC) remains to be explored. As recently reviewed, the interaction between the
growth hormone–IGF I axis and sex steroids is quite complex (88).
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Fig. 5. Role of IGF-I in calcium phosphate metabolism during childhood and pubertal maturation in
relation to essential nutrients for bone growth. During the pubertal bone growth spurt there is a rise in
circulating IGF-I. The hepatic production of IGF-I is under the positive influence of GH and essential
amino acids (aa). IGF-I stimulates bone growth. At the kidney level, IGF-I increases both the 1,25-
dihydroxyvitamin D (1,25 D) conversion from 25-hydroxyvitamin D (25D) and the maximal tubular
reabsorption of inorganic phosphate (TmPi). By this dual renal action IGF-I favors a positive calcium
and phosphate balance as required by the increased bone mineral accrual. Heredity, sex hormones,
mechanical forces, and risk factors can either positively or negatively influence the bone response to
IGF-I. See text for further details.
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During growth, undernutrition, including an inadequate supply of energy and pro-
tein, can severely impair bone development. Studies in experimental animals indicate
that isolated protein deficiency leads to reduced bone mass and strength, that is, to
osteoporosis, without histomorphometric evidence of osteomalacia (3,4). Thus, an
inadequate supply of protein appears to play a central role in the pathogenesis of the
delayed skeletal growth and reduced bone mass observed in undernourished children
(93). Dietary proteins play an essential role in the hormonal regulation of mineral
metabolism and skeletal growth (Figs. 4 and 5).

This role of dietary proteins should not be considered as merely that of “brick sup-
plier” to the osteogenic cells, thus conferring them the capacity to lay down the organic
bone matrix. As discussed for elderly and young adults, the functioning of the
endocrine axis (GH–IGF-I), can be markedly impaired by insufficient intake of protein
(5). Some amino acids, which remain to be identified, are required for the hepatic pro-
duction of IGF in response to GH as well as to the action of IGF-I on bone anabolism.
Protein restriction also affects nonhepatic IGF-I production (94). As already men-
tioned, the production of IGF-I by osteogenic cells can also be stimulated by certain
amino acids, such as arginine (49). This observation raises the possibility of a defined
modulating role of dietary proteins in the paracrine–autocrine regulation of the prolif-
eration-differentiation of osteogenic cells.

186 Bonjour et al.

Fig. 6. Relation between protein intake and change in lumbar BMC in pre-, peri-, postpubertal
female and male adolescents. The mean protein intake from dairy, vegetable, and mineral sources was
recorded in two 5-d diet diaries at a 1-yr interval. A positive correlation was found in prepupertal (P1)
but neither in peripubertal (P2–P4) nor in postpubertal (P5) subjects. Each dot corresponds to the
change in BMC adjusted for age and gender (Zscore) in 193 subjects aged from 9 to 19 yr. Data are
from refs. 99 and 100.
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In “well”-nourished children and adolescents, the question arises whether or not
variations in protein intake within the “normal” range can influence skeletal growth
and thereby modulate the influence of genetic factors on peak bone mass attainment
(95–97). In the relationship between bone mass gain at the lumbar and femoral levels
(98,99) and protein intake (100), it is not surprising to find a positive correlation
between these two variables. Similar to calcium intake (99,101), the association
appears to be particularly significant in prepubertal children (14). Indeed, in healthy
prepubertal subjects, a relatively low protein diet, independent of the intake of cal-
cium, is associated with a reduced gain in aBMD or BMC at both femoral and spinal
levels (Fig. 6). These results suggest that relatively high protein intakes could favor
bone growth accrual during childhood. Nevertheless, these prospective observational
results should not be interpreted as evidence for a causal relationship between bone
mass gain and protein intake. Indeed, it is quite possible that protein intake, which is
related to the overall amount of ingested calories, is to a large extent determined by
growth requirements during childhood and adolescence. Only interventional studies
testing different levels of protein intakes in otherwise isocaloric diets could eventu-
ally determine the quantitative relationship between protein intake and bone mass
acquisition during childhood and adolescence. Very recent data from our research
group suggest that in healthy prepubertal boys, the response to calcium supplementa-
tion can be influenced by the spontaneous protein intake (102). The individual cal-
cium requirement for optimal bone mass accrual could be less at high protein intake.
The possible positive interaction between protein and calcium intake deserves to be
investigated with the perspective of increasing peak bone mass by modifying bone
trophic nutrients.

8. SUMMARY AND CONCLUSIONS

In addition to calcium and vitamin D, protein intake exerts a strong influence on
bone metabolism. In elderly, reduced protein intake is associated with lower femoral
neck aBMD and poor physical performance. Furthermore, protein malnutrition is pre-
sent in many elderly women with low femoral neck aBMD and hip fracture. Clinical
outcome after hip fracture can be significantly improved by normalizing the protein
intake. This effect could be, at least in part, mediated by a positive influence on IGF-I
of which the plasma level decreases in both genders with advancing age. As compared
with nonfractured controls, patients with hip fractures have a lower IGF-I plasma level,
which is associated with reduced proximal femur aBMD, lower plasma levels of preal-
bumin, albumin, and lower upper extremities muscle strength. In undernourished
elderly subjects with hip fracture, a 6-mo intervention of increased protein intake, in
the form of milk proteins, induces a significantly greater gain in plasma prealbumin,
IGF-I and IgM as compared with an isocaloric placebo. The increased protein interven-
tion also attenuates femoral bone loss and is associated with a shorter rehabilitation
hospital stay. To understand the mechanism whereby protein intake influences bone
mineral mass, animal models using either adult female or male rats have been devel-
oped. In these models isocaloric protein under nutrition mimics osteoporosis observed
in elderly in whom both cortical and trabecular skeletal sites are affected with negative
uncoupling between bone formation and resorption. Reduced bone formation could be
mediated by decreased IGF-I production and action. Increased bone resorption appears
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to result from both sex hormone deficiency and increased cytokines such as TNF-α. In
animal models administration of essential amino acids normalizes IGF-I plasma level,
restores bone formation rate, and restores bone mass. In women, a consistent low-calo-
rie, insufficient protein diet could be particularly deleterious for bone mass integrity.
With estrogen and calcium deficiency, low protein intake probably contributes to the
reduced bone mass observed in some athletes and ballet dancers, and in anorexia ner-
vosa. In healthy prepubertal children, independent of the intake of calcium, a relatively
low protein diet is associated with a reduced gain in aBMD at both femoral and spinal
levels. Thus, dietary protein, probably by favoring both the production and the anabolic
actions of IGF-I, contributes to maintain bone integrity from early childhood to old
age. An adequate intake of protein should be recommended in the prevention and treat-
ment of postmenopausal and age-dependent osteoporosis.
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KEY POINTS

• IGF-I increases protein synthesis and decreases protein degradation in skeletal muscle.
• IGF-I-induced increases in muscle protein synthesis are mediated via alterations in trans-

lation initiation involving the increased formation of the eIF4E•eIF4G complex.
• IGF-I mRNA and peptide content are consistently decreased in a wide range of catabolic

conditions.
• In various catabolic states the decrease in IGF-I in muscle is proportional to the reduction

in protein synthesis.
• Increases in IGF binding proteins, particularly IGF binding protein-1, which is elevated in

catabolic conditions may decrease the bioavailability and bioactivity of IGF-I thereby
exacerbating the reduction in IGF-I and protein synthesis in skeletal muscle.

1. INTRODUCTION

During infection and traumatic injury, the acute loss of skeletal muscle protein
may be advantageous to the host. Amino acids derived from muscle protein stores
enhance hepatic gluconeogenesis and the synthesis of acute-phase proteins. An
enhanced rate of net muscle protein breakdown may also be important in supplying
amino acids necessary for various reparative processes and for mounting an optimal
immune response. The loss of muscle protein is probably of minor clinical impor-
tance when the disease is self-limiting. However, the depletion of muscle protein
that is observed during protracted hypermetabolic conditions carries a significant
cost to the host and clearly results in not only a loss of muscle function but also an
increase in mortality (1,2). The factors that regulate muscle protein balance under
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both physiological and pathophysiological conditions are therefore the subject of
intense interest.

Many hormones, cytokines, and growth factors impact muscle protein balance.
Recent studies suggest that insulin-like growth factor (IGF)-I plays a central role in
regulating both muscle protein synthesis and protein degradation. In addition, IGF
binding proteins (IGFBPs) provide an additional layer of regulation by altering the
stability, transport, and bioactivity of IGF-I. Some IGFBPs may also have IGF-inde-
pendent effects on muscle protein balance. In this chapter, we summarize studies
that address the importance of IGF-I in regulating muscle protein synthesis and, to a
lesser extent, protein degradation at the molecular, cellular and organismal level.
Studies related to the role of growth hormone per se in regulating muscle protein
metabolism during health and disease have not been reviewed.

2. EFFECT OF IGF-I ON PROTEIN METABOLISM UNDER NORMAL
POSTABSORPTIVE CONDITIONS

2.1. Whole-Body Protein Metabolism
In general, data from early studies indicate that the administration of IGF-I stimu-

lates growth in naive control rats leading to a greater increment in body weight gain
(3–5). The IGF-I-induced increase in weight gain apparently results from an increase in
food efficiency because the number of calories consumed is not concomitantly
increased (6). Moreover, the increase in body weight is a result of an increase in both
lean body mass (LBM; i.e., muscle) and the weight of noncarcass tissues (7,8). Fur-
thermore, the anabolic effect is enhanced when an equal amount of LR3IGF-I, a variant
that exhibits weak binding to the IGFBPs, is infused in place of native IGF-I (6,8).
These latter data suggest that under normal conditions the prevailing concentrations of
the various IGFBPs restrain the ability of IGF-I to stimulate protein accretion. Body
protein and nitrogen balance in the healthy subject are maintained within relatively
narrow limits. Numerous studies have consistently demonstrated that IGF-I decreases
whole-body net protein loss as evidenced by a decrease in urinary nitrogen excretion
(9,10). Although these types of nitrogen balance studies are generally considered the
“gold standard” for determining the balance between protein synthesis and degrada-
tion, they provide little insight into the mechanisms by which protein metabolism has
been altered.

Several in vivo approaches have been used to elucidate the dynamic aspects of pro-
tein metabolism and the possible mechanisms that may account for IGF-induced
changes in nitrogen balance. Essentially all of the early studies regarding the role of
IGF-I on protein balance were performed using an acute intravenous (IV) infusion of
the growth factor in conjunction with the infusion of isotopically labeled amino acids,
particularly leucine. These isotope-dilution studies, performed in a variety of different
species, consistently demonstrate that short-term infusion of IGF-I decreases the rate
of appearance (Ra) for leucine into the circulation, which provides an estimate of
whole-body protein degradation (9,11–14). Furthermore, IGF-I also proportionately
decreases the rate of leucine disappearance (Rd). Leucine disappearance from the cir-
culation can have two fates: reincorporation into protein (i.e., protein synthesis) or
catabolism. Leucine oxidation is generally used as an index of irreversible amino acid
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catabolism or degradation, whereas the measurement of nonoxidative leucine disposal
(NOLD) is used to estimate the rate of whole-body protein synthesis. In this regard, it
is noteworthy that NOLD is not determined directly but instead is calculated as the dif-
ference between leucine Ra and leucine oxidation. As a consequence, NOLD and esti-
mates of whole-body protein synthesis often demonstrate large variability. Some
studies (13,14), but not all (12), demonstrate that the acute administration of IGF-I also
decreases leucine oxidation, and several demonstrate the ability of IGF-I to decrease
NOLD (i.e., protein synthesis) (12,14). This latter finding of an IGF-induced decrease
in whole-body protein synthesis was, at the time, unexpected. This response is now
believed to be a consequence of the ability of IGF-I to reduce the availability of precur-
sors for synthesis of new proteins by reducing protein degradation. Alternatively, or in
addition to, the inability of IGF-I to produce a detectable increase in whole-body pro-
tein synthesis might be an artifact of the whole-body technique (15).

In contrast, several studies have failed to detect any IGF-induced change in whole
body leucine kinetics (16,17). However, in these studies the growth factor was adminis-
tered as a continuous infusion of IGF-I without a priming dose. It has been speculated
that in acute studies the circulating concentration of “free” IGF-I, which is believed to
represent the biologically active form of the peptide, is disproportionately increased by
the priming dose. In contrast, the primed constant infusion of an equal molar amount of
IGF-II has no demonstrative effect on whole-body protein kinetics (9).

The infusion of IGF-I has several metabolic “side effects” that are noteworthy
because they may alter the interpretation of the above-mentioned results. First, IGF-I
produces hypoglycemia, which, in turn, leads to a compensatory increase in the plasma
concentrations of glucagon, catecholamines, and glucocorticoids. Elevations in these
various counter-regulatory stress hormones, especially glucocorticoids, can potentially
alter protein balance (7,8,18). However, in studies where the plasma glucose concentra-
tion is clamped at euglycemic levels, the protein metabolic effect of IGF-I is compara-
ble to that observed under hypoglycemic conditions (11). Thus, these data indicate that
the occurrence of hypoglycemia and the concomitant increase in stress hormones do
not overtly influence the effect of IGF-I on protein metabolism, at least under acute
conditions. A second consequence of IGF-I infusion is a decrease in the circulating
concentration of insulin (11,12,16,19), which, based on the plasma C-peptide concen-
tration (12,16), results from a decreased rate of pancreatic insulin secretion. Poten-
tially, the decrease in insulin might be expected to influence protein metabolism. A
significant portion of this insulinopenia appears to be mediated by the decrease in
plasma amino acids seen after IGF-I infusion because the IGF-induced decrement in
insulin is partially attenuated by maintaining normal levels of plasma amino acids via
an exogenous infusion (20,21). Finally, acute and chronic administration of IGF-I
decreases the plasma concentration of essentially all amino acids (11,19,22), which
may be in part related to an increased amino acid uptake by the liver (22). It is now
appreciated that this IGF-induced decrease in plasma amino acids represents a major
limitation of essentially all early studies where the protein metabolic effects of IGF-I
were investigated. This reduction in amino acids markedly reduces substrate availabil-
ity for protein synthesis. Hence, a dramatically different picture of the effects of IGF-I
on whole-body protein metabolism is seen when the plasma amino acids levels are pre-
vented from falling (23). In the study by Russell-Jones et al. (23), where plasma amino
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acid levels were maintained at normal values, the infusion of IGF-I in healthy humans
was shown to increase leucine Rd, leucine oxidation, and NOLD (protein synthesis)
but did not significantly change leucine Ra (proteolysis).

2.2. Skeletal Muscle Protein Synthesis
A major limitation of the above-mentioned studies is that the isotope-dilution tech-

nique used measures whole-body amino acid flux, which represents a composite picture
of protein synthesis and degradation for all tissues in the body. Therefore, despite the fact
that skeletal muscle has been estimated to contain approx 50% of all body protein and
account for approximately one third of the whole-body protein turnover, such measure-
ments do not accurately estimate protein metabolism in skeletal muscle. To address the
role of IGF-I on muscle metabolism per se Fryburg (24) acutely infused IGF-I intra-arte-
rially into the forearm in postabsorptive humans. Based on phenylalanine balance across
the forearm, IGF-I was demonstrated to increase the rate of muscle protein synthesis and
decrease the rate of protein degradation. Likewise, based on the incorporation of isotopi-
cally labeled phenylalanine into muscle protein, the infusion of IGF-I with amino acid
replacement has been shown to increase muscle protein synthesis (20). However, no
IGF-induced increase in muscle protein synthesis is evident when plasma amino acid
concentrations are not maintained.

Several studies have now also directly demonstrated that IGF-I stimulates protein
synthesis under in vivo conditions in heart (9,19,21,25) and skeletal muscle
(9,20,24,25). The ability of IGF-I to increase protein synthesis occurs rapidly, within 1
h (25), and its effect is greatest in muscles composed predominantly of fast-twitch gly-
colytic fibers (e.g., gastrocnemius and plantaris) and lesser in slow-twitch oxidative
fibers (e.g., soleus). At lower doses of IGF-I, the stimulatory effect of IGF-I on soleus
wanes but is still present in the gastrocnemius and heart. This latter observation was
confirmed and extended by Young et al. (21), who demonstrated that IV infusion of
IGF-I not only increases global cardiac protein synthesis but also increases the synthe-
sis of the contractile proteins myosin and actin. The IGF-I induced increase in protein
synthesis appears to be muscle-specific and is not observed in various visceral organs,
such as the kidney, liver, spleen, lung, small intestine, colon, and brain (25).

2.3. Potential Mechanisms by Which IGF-I Stimulates Muscle 
Protein Synthesis

The ability of IGF-I to stimulate muscle protein synthesis dose dependently has
been clearly demonstrated using the isolated perfused hindlimb preparation (26,27).
Importantly, these studies have begun to address the potential mechanisms whereby
IGF-I increases protein synthesis. The perfusion of hindlimb muscles with IGF-I (10
nM) for a period of 1 h more than doubles the rate of protein synthesis. Alterations in
the number of ribosomes or the efficiency of mRNA translation may increase tissue
protein synthesis. Because approx 80% of the RNA in muscle is ribosomal RNA,
changes in total RNA content are used to estimate the number of ribosomes. However,
there is no significant change in muscle RNA content in response to acute IGF-I treat-
ment (27). Hence, an alteration in the relative abundance of ribosomes is not responsi-
ble for the IGF-I-induced increase in muscle protein synthesis. Alternatively, IGF-I
might stimulate protein synthesis by increasing the efficiency of translation. Efficiency,
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calculated by dividing the protein synthetic rate by the total RNA content, provides an
index of how rapidly the existing ribosomes are synthesizing protein. Translational effi-
ciency in gastrocnemius muscle is clearly increased in response to the acute adminis-
tration of IGF-I (27).

The synthesis of protein in eukaryotic cells is achieved through a complex series of
discrete reactions (as reviewed in refs. 28 and 29). The process involves the association
of the 40S and 60S ribosomal subunits, mRNA, initiator methionyl-tRNA (met-tRNAI),
other amino acyl-tRNAs, cofactors (i.e., GTP, ATP), and protein factors (collectively
known as eukaryotic initiation factors [eIFs], elongation factors, and releasing factors)
through a series of reactions resulting in the translation of mRNA into proteins. Transla-
tion of mRNA on the ribosome consists of three phases: initiation, elongation, and termi-
nation. Translational controls most frequently operate during the initiation phase. One of
the control points in translation initiation involves the binding of mRNA to the 43S
preinitiation complex. This step requires the participation of the three-subunit eIF4F
complex, which consists of eIF4A, eIF4E ,and eIF4G (29). eIF4E appears to be the lim-
iting translation initiation factor in muscle. Thus, the availability of eIF4E is important in
eIF4F formation and initiation. The binding of eIF4E to eIF4G is controlled in part by
the translation repressor protein 4E-BP1. Binding of 4E-BP1 to eIF4E is hypothesized to
limit eIF4E availability and formation of the active eIF4E•eIF4G complex. In turn, the
binding of 4E-BP1 to eIF4E is downregulated, in part, by the phosphorylation of 4E-BP1
(30). Infusion of IGF-I appears to increase mRNA initiation in muscle by specifically
increasing the relative amount of the active eIF4E•eIF4G complex, without concomitant
changes in the amount of eIF4E, the formation of the 4E-BP1•eIF4E complex, or the
phosphorylation state of 4E-BP1 (27). It is noteworthy that although insulin also
increases translational efficiency in muscle, its effect is mediated differently from that of
IGF-I. That is, although insulin similarly increases the amount of eIF4E bound to eIF4G,
this change is associated with an increased phosphorylation of 4E-BP1 and a concomi-
tant reduction in the amount of the inactive 4E-BP1•eIF4E complex (31).

The direct effect of IGF-I on muscle protein metabolism has also been investigated
in vitro using isolated muscle preparations. Under these in vitro conditions, IGF-I con-
sistently increases muscle protein synthesis as well as decreases both total protein
breakdown and myofibrillar protein degradation (32,33). The IGF-I-induced changes in
protein synthesis and degradation are dependent upon activation of phosphatidylinosi-
tol (PI)3-kinase, as evidenced by their reversal in muscles treated with the PI3-kinase
inhibitor LY294002 (32). In contrast, treatment of muscles with the p70 S6 kinase
inhibitor rapamycin only partially prevents the IGF-I-induced increase in protein syn-
thesis and fails to prevent the decrease in proteolysis, indicating that some of the
effects of IGF-I on muscle protein metabolism are independent of p70 S6 kinase acti-
vation. Similar observations have been made in human skeletal muscle cells (34).

3. IGF-I ALTERATIONS OF PROTEIN METABOLISM 
IN CATABOLIC CONDITIONS

3.1. Burn, Sepsis, and Endotoxemia
In response to various types of catabolic conditions, the circulating concentrations

of both total and free IGF-I have consistently been reported to be decreased. A
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marked reduction of IGF-I levels in the blood is observed in hypermetabolic infection
(35), sterile peritonitis (36), thermal injury (37), after the administration of endotoxin
or inflammatory cytokines (38–40), critical illness (41), AIDS (42), and alcohol
intoxication (43). This reduction is not species-specific, having been demonstrated in
humans, dogs, pigs, sheep, and rodents. Moreover, many of these catabolic insults
also decrease either the content of IGF-I protein and/or IGF-I mRNA in skeletal mus-
cle per se (35,37–40,43). Hence, because of the known anabolic effects of IGF-I, it
has been postulated that decreases in blood or tissue IGF-I may in part be responsible
for the catabolism of muscle protein (44). This hypothesis is supported, but not
proven, by data demonstrating a strong linear relationship between the rate of muscle
protein synthesis and the IGF-I content in various catabolic conditions (35). There-
fore, there is ample experimental evidence to support the use of IGF-I as an adjunct
therapy in reversing or preventing the extensive muscle wasting that accompanies
many hypermetabolic conditions.

The treatment of burned rats with IGF-I via a constant infusion (45) or via lipo-
some-encapsulated IGF-I cDNA (46) enhances body weight gain compared with pair-
fed control animals (47). Likewise, treatment of endotoxin-infused rats with IGF-I
also improves weight gain. At least a portion of this increase in body weight is attribut-
able to an improvement in overall nitrogen economy. In this regard, a 3-d infusion of
IGF-I in burned adults ameliorates the negative nitrogen balance and decreases whole-
body protein breakdown based on determinations of 15N-lysine flux (48). Similarly, a
2-d infusion of IGF-I in endotoxin-infused rats also improves whole body nitrogen
balance (47).

To circumvent the relatively short half-life of IV-injected IGF-I, several studies also
have reported the effectiveness of IGF-I when administered in a complex with IGFBP-
3. Injection of the IGF-I/IGFBP-3 binary complex is capable of forming a ternary com-
plex with the acid-labile subunit in vivo, thereby extending the half-life of IGF-I in the
circulation. Administration of this binary complex completely reverses the negative
phenylalanine net balance across the leg of burned children (49) and partially restores
leg protein balance in burned adults (50) when infused IV for 5 d. In the latter study,
the effectiveness of IGF-I appeared most pronounced in the most catabolic patients. In
addition, both studies demonstrated the ability of the binary complex to increase pro-
tein synthesis in skeletal muscle without producing overt hypoglycemia (49,50).

During a 5-d treatment protocol, the binary complex also effectively reverses the
decrease in muscle (gastrocnemius) protein synthesis observed after induction of
hypermetabolic infection (51). This improvement is associated with an increase in
translational efficiency but not a change in the number of ribosomes. The binary com-
plex-induced increase in muscle protein synthesis is not associated with a change in
eIF4E phosphorylation, 4E-BP1 phosphorylation, or the amount of eIF4E bound to the
translational repressor molecule 4E-BP1 (51). Given the known effect of IGF-I in the
perfused hindlimb (26), it seems likely that the ability of the binary complex to
improve muscle protein synthesis in septic rats is caused by the relatively selective
increase in the amount of eIF4E bound to eIF4G. These data are consistent with the
observation that perfusion of the isolated hindlimb with native IGF-I is capable of
increasing muscle protein synthesis, translational efficiency and translation initiation in
septic rats to the same extent as control animals (26). Of note, the administration of
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human binary complex into rats does not appear to exert feedback inhibition of the syn-
thesis and secretion of the native rat IGF-I and does not impair insulin secretion or
lower plasma amino acid concentrations, responses that would be expected to impair
the anabolic actions of IGF-I (51).

The IGF-I/IGFBP-3 binary complex also stimulates protein synthesis in cultured
human skeletal muscle cells (Fig. 1A). At low doses, free IGF-I and an equivalent
amount of IGF-I bound to IGFBP-3 show a similar ability to stimulate protein synthe-
sis. Yet the ability of the free peptide and the binary complex to maximally stimulate
protein synthesis is considerably different. Free IGF-I stimulates protein synthesis to a
level nearly twice that of the binary complex. The free and bound peptides also differ in
their ability to stimulate glucose uptake in human skeletal muscle cells (Fig. 1B). Free
IGF-I is fourfold more potent than the binary complex at stimulating glucose uptake.
This latter response is consistent with the binary complex being a less potent hypo-
glycemic agent under in vivo conditions.

The ability of IGF-I to modulate muscle protein balance appears to be caused by
direct effects of the growth factor. This conclusion is supported by studies in which rats
are burned and the extensor digitorum longus muscle is removed and incubated in vitro
with IGF-I. Under basal conditions, muscles from burned rats are characterized by a
decreased rate of protein synthesis as well as an increased rate of both total and myofib-
rillar protein degradation (52,53). Incubation of muscles with IGF-I completely prevents
the increase in proteolysis and partially reverses the burn-induced decrease in protein
synthesis. This partial IGF-induced increase in protein synthesis may be due to the lack
of amino acids in the incubation medium in this particular study. Similarly, under basal
conditions muscles from septic rats also show an increase in proteolysis and a decrease
in protein synthesis compared to muscles from control animals (54,55). Again, when the
extensor digitorum longus muscles are isolated and incubated in vitro with IGF-I, the
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tion of deoxy-D-[14C] glucose (34). Values are means ± SEM.
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growth factor significantly increased the rate of protein synthesis. In one study IGF-I
increased synthesis back to basal control values (55), whereas in a second study IGF-I
increased synthesis to the same extent as in control muscles incubated with the growth
factor (54). These data clearly demonstrate that sepsis and burn injury do not alter the
ability of IGF-I to increase skeletal muscle protein synthesis. However, for sepsis, the
available data pertaining to the effect of IGF-I on proteolysis are contradictory. Data
from one group of investigators demonstrate that muscle from septic rats is completely
unresponsive to the effects of IGF-I on muscle proteolysis (33,55), whereas a separate
group demonstrates that IGF-I indeed is able to reverse the sepsis-induced increase in
proteolysis back to basal control values (54). It is noteworthy that in this latter study the
ability of IGF-I to inhibit sepsis-induced proteolysis is greater than the anabolic effect of
insulin (54). These latter data are consistent with reports indicating that IGF-I decreases
sepsis- and burn-induced increases in mRNA for ubiquitin and the ubiquitin-conjugating
enzyme E2-14 kDa (52,55) and suggest that the actions of IGF-I are in part caused by a
reduction in proteosome-dependent protein degradation.

Tumor necrosis factor (TNF)-α is a pleiotropic cytokine that when administered to
naive animals induces hemodynamic and metabolic changes comparable with those
observed in many catabolic states, including a reduction in IGF-I (39) and a decrease in
muscle protein synthesis (56). In this regard, the acute IV infusion of IGF-I is also
capable of decreasing the net protein loss induced by TNF-α (57,58). This response
appears to be primarily caused by the inhibition of muscle protein breakdown and less
to the stimulation of muscle protein synthesis (57).

3.2. Postsurgery
In contrast to the results from studies on burn, sepsis and endotoxemia, IGF-I has

not been demonstrated to have a protein-sparing effect when administered to patients
postoperatively (59,60). The reason for this lack of improvement is unclear because
the same dosing regime was used as in previous studies demonstrating that IGF-I is
capable of increasing whole-body protein synthesis (17). However, because these stud-
ies used measurements of whole-body protein flux, it is possible that IGF-I is effective
at the level of the muscle, but that the lack of change in other organs and tissues
masked the change in muscle. This conclusion is consistent with results from a study
demonstrating that IGF-I is efficacious postoperatively at the level of the muscle where
it completely reversed the stress-induced increase in the efflux of amino acids from
muscle (61).

3.3. Alcohol Ingestion
Excessive alcohol consumption, whether acute intoxication or chronic alcoholism,

leads to numerous biochemical, morphological, and functional changes in skeletal
muscle, a condition generally referred to as alcoholic myopathy (62). Although there is
little consensus at this time regarding the effect of alcohol on muscle protein degrada-
tion, several groups have independently demonstrated that alcohol intoxication acutely
(<2.5 h ) decreases rates of skeletal muscle protein synthesis (62,63). A comparable
decrease in muscle protein synthesis is also observed in rats fed a nutritionally com-
plete diet for several weeks in which alcohol constitutes approx 36% of the total caloric
intake (64). This decreased rate of muscle protein synthesis appears to be primarily
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caused by a reduction in translational efficiency and not to a reduction in the number of
ribosomes (64). Moreover, both acute and chronic alcohol administration are associ-
ated with alterations in peptide-chain initiation. Specifically, muscle from alcohol-
treated rats demonstrates an increased phosphorylation of 4E-BP1 that is believed
responsible for the concomitant increase in the amount of inactive 4E-BP1•eIF4E com-
plex and the reciprocal decrease in the amount of active eIF4E•eIF4G complex (63,64).
Similar protein metabolic changes have been observed in cardiac tissue in response to
alcohol (65).

As seen in other catabolic conditions, chronic alcohol consumption decreases the
concentration of IGF-I in the blood and skeletal muscle (43,62). For muscle, the alco-
hol-induced decrease in tissue IGF-I peptide content is accompanied by a propor-
tional reduction in IGF-I mRNA expression (43). It is noteworthy that a strong linear
relationship exists between either the IGF-I peptide content or the abundance of IGF-
I mRNA and the in vivo rate of protein synthesis and translational efficiency deter-
mined in the same muscle (62). Although such relationships do not prove causality,
they are consistent with observations that decreases in IGF-I within the physiological
range are associated with a reduction in muscle protein synthesis (66).

Ethanol also impairs the responsiveness of cultured cells to the anabolic actions of
IGF-I and insulin. When human skeletal muscle cells are incubated with high physio-
logically relevant concentrations of alcohol the ability of both IGF-I and insulin to
stimulate protein synthesis is impaired (67). Likewise, alcohol renders myocytes com-
pletely refractory to the ability of IGF-I and insulin to slow protein degradation.
Although superficially the effect of alcohol on IGF-I and insulin action appears similar,
analysis of the early components of the signaling pathway in this study reveals differ-
ences between the two hormones. In this regard, whereas there is no alcohol-induced
change in IGF-I stimulation of IGF-I receptor phosphorylation, the ability of insulin to
stimulate the phosphorylation of its cognate receptor is markedly attenuated. These
alcohol-induced changes could not be attributed to a change in the cellular content of
either IGF-I or insulin receptors, or the proportion of insulin receptors that had formed
hybrid receptors (67). In addition, it is clear that insulin and IGF-I each use their own
cognate receptors to stimulate protein synthesis in human skeletal muscle cells. An
antibody (αIR3) that specifically prevents binding to the IGF-I receptor blocks the
IGF-I-induced increase in protein synthesis, but has no effect on the ability of insulin to
stimulate protein synthesis (34,67). The ability of IGF-I treatment to reverse the cata-
bolic effects of alcohol under in vivo conditions has not been reported.

3.4. Excess Glucocorticoids
Glucocorticoids are potent negative regulators of protein metabolism in muscle and

other tissues. The presence of excess glucocorticoids results in a marked reduction in
body weight, a negative nitrogen balance, and a decrease in muscle weight (7,8,68–70).
The results of several studies using isotope dilution are consistent and indicate that glu-
cocorticoids increase whole-body proteolysis (e.g., leucine Ra) and the irreversible loss
of amino acids (e.g., leucine oxidation), but not protein synthesis (e.g., NOLD) (71).
However, in other studies where the rate of protein synthesis in muscle is directly
assessed, glucocorticoids have been convincingly demonstrated to decrease protein
synthesis under in vivo conditions, in the in situ perfused muscle, in incubated muscle
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preparations, and in muscle cell lines (72–74). The glucocorticoid-induced increase in
whole-body proteolysis is accompanied by an increase in the urinary excretion of 3-
methylhistidine. This amino acid is methylated posttranscriptionally in myofibrillar
protein, and hence an increased excretion of the amino acid suggests an enhanced rate
of myofibrillar protein breakdown (8,68).

IGF-I clearly has an anabolic response in glucocorticoid-treated subjects. For exam-
ple, in dexamethasone-treated rats, IGF-I administration prevents or ameliorates the
decrease in body weight and markedly improves nitrogen retention (7,8,68,70). In
addition, the earlier IGF-I treatment is started relative to the first injection of steroid
the more pronounced its anabolic actions (75). However, the ability of IGF-I to
improve whole-body protein metabolism is less clear in this particular catabolic condi-
tion. That is, two studies failed to detect a significant IGF-I induced change in leucine
Ra or oxidation (76,77), whereas a single study demonstrated that IGF-I could par-
tially reverse the increased rate of whole-body proteolysis induced by prednisone (71).
Hence, at this time it is unclear as to whether IGF-I significantly affects whole-body
determinants of protein metabolism.

Direct measurements of muscle protein synthesis and degradation have yielded more
consistent results. Dexamethasone decreases the rate of muscle protein synthesis and
increases myofibrillar degradation (68,75). The dexamethasone-induced decrease in
muscle protein synthesis results from a decrease in both the capacity of protein synthe-
sis and a reduction in translational efficiency (68,72). The latter defect appears to be the
result of a decrease in initiation that is associated with a decrease in 4E-BP1 phospho-
rylation, an increase in 4E-BP1 binding to eIF4E, and a decrease in the binding of
eIF4E with eIF4G (72). Short-term exposure to dexamethasone has also been shown to
decrease p70 S6K activity (78). This ability of dexamethasone to impair protein synthe-
sis may be related to its attenuation of p70 S6K activity and hence a decreased phos-
phorylation of the S6 ribosomal protein (78). The ability of dexamethasone to alter
muscle protein synthesis is also preserved when the steroid is administered in vivo and
protein metabolism determined in isolated muscles in vitro. Epitrochlearis muscles
from dexamethasone-treated rats demonstrate an increase in proteolysis and a decrease
in protein synthesis (79).

The in vivo administration of IGF-I attenuates the dexamethasone-induced changes,
but rates of protein synthesis and degradation still did not return to basal values seen in
control animals (68). Likewise, in isolated epitrochlearis muscles from dexametha-
sone-treated rats, IGF-I was capable of stimulating protein synthesis and blunting pro-
teolysis but these responses were impaired compared with muscles from control
animals (79). In human cultured skeletal muscle cells, dexamethasone decreases basal
protein synthesis, and this response can be completely reversed by simultaneous expo-
sure of cells to IGF-I (Fig. 2). This response is consistent with the anabolic effect of
IGF-I in glucocorticoid-treated subjects. IGF-I has also been reported to decrease the
dexamethasone-induced increase in ubiquitin, E2-14 kDa, and ubiquitin-E2G mRNA
in gastrocnemius muscle (69).

4. MODULATION OF IGF-I ACTION BY IGF BINDING PROTEINS

The bioavailability and bioactivity of IGF-I can be modulated by changing the con-
centration of one or more of the six high-affinity IGFBPs. Early studies demonstrated
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that desIGF-I and LR3-IGF-I are both more potent at stimulating weight gain and nitro-
gen retention in control and glucocorticoid-treated rats than native IGF-I (6,68).
Because these IGF-I variants have a reduced affinity for the IGFBPs, these data imply
that the IGFBPs normally restrain the protein anabolic effects of IGF-I. This conclu-
sion is supported by in vivo studies in mice where the overexpression of IGFBP-3,
acid-labile subunit, IGFBP-2 or IGFBP-1 impairs normal postnatal growth (80–82).
However, to date, there are no studies that directly assess the ability of IGFBPs to reg-
ulate muscle protein metabolism in the basal state or in conditions where the blood
concentrations of the binding proteins are altered.

Data from cell culture experiments support the supposition that IGFBPs compete
with the IGF-I receptor for IGF-I and thereby have the potential to regulate protein
balance in muscle. For example, serum stimulates protein synthesis in human skele-
tal muscle cells and its biological activity can be enhanced by an IGF-I analog
(Leu24 Ala31 IGF-I) that displaces IGF-I from IGFBPs but itself has a very low affin-
ity for the IGF-I receptor. Therefore, this analog, in the absence of serum does not
stimulate protein synthesis but in the presence of serum presumably releases IGF-I
and enhances protein synthesis (Fig. 3A). The IGF-I analog also displaces IGF-I
from the IGFBP-3 binary complex. The binary complex itself shows a nominal abil-
ity to inhibit protein degradation as measured by [3H]tyrosine release from prela-
beled protein. However, when the IGF-I analog is added to the binary complex it
displaces sufficient IGF-I to inhibit protein degradation to the same extent as free
IGF-I (Fig. 3B).

The ability of increases in IGFBP-1 alone to modulate muscle protein synthesis has
generated much interest. The circulating concentration of IGFBP-1 is dramatically
increased in a variety of catabolic conditions, including burn, sepsis, endotoxemia,
AIDS, and alcoholism (35–43), and this increase appears to result from increases in
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Fig. 2. Effect of IGF-I on dexamethasone-treated human skeletal muscle cells. Cells were incubated
with either IGF-I (20 ng/mL), dexamethasone (1 µm), or a combination of the two for 6 h. Protein
synthesis was determined as previously described (34,65). Values are means ± SEM and values with
different letters (a, b, c) are significantly different (p < 0.05).
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various inflammatory cytokines (e.g., interleukin-1 and TNF-α) and glucocorticoids
(39,40,83). Moreover, although skeletal muscle does not synthesize IGFBP-1 per se,
elevated IGFBP-1 protein seems to be sequestered or trapped by muscle during cata-
bolic conditions (39,40,44). Hence, it has been speculated that elevations in IGFBP-1
within the blood or local environment of the muscle might impair the anabolic actions
of IGF-I and potentiate the concomitant reduction in IGF-I observed in these condi-
tions. In cultured human skeletal muscle cells, IGFBP-1 dose-dependently decreases
the ability of IGF-I to stimulate protein synthesis (34). Conversely, IGFBP-1 fails to
form a complex with desIGF-I and consequently IGFBP-1 fails to inhibit the ability of
desIGF-I to stimulate protein synthesis. Although phosphorylation of IGFBP-1 is
known to increase its affinity for IGF-I and its capacity to inhibit IGF-I action in some
cell systems, there is only a small difference in the efficacy of phosphorylated vs non-
phosphorylated IGFBP-1 in inhibiting protein synthesis in human myocytes (34). Para-
doxically, IGFBP-1 is incapable of preventing IGF-I from inhibiting muscle protein
degradation (34). In fact, IGFBP-1 itself has been demonstrated to dose-dependently
inhibit muscle protein degradation via an IGF-independent mechanism that involves
the β1-integrin receptor. Comparable results have been obtained using isolated
epitrochlearis muscle incubated with IGFBP-1 (Vary and Lang, unpublished observa-
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Fig. 3. The effect of Leu24 Ala31 IGF-I at displacing IGF-I from serum or the IGF-I/BP3 binary com-
plex and altering protein metabolism in human skeletal muscle cells. In A, cells were serum-deprived
for 24 h and treated with either Leu24Ala31 IGF-I alone or in combination with 0.125% serum. Protein
synthesis was determined as previously described (34,65). In B, cells were prelabeled with [3H]tyro-
sine for 72 h and subsequently treated with either IGF-I (100 ng/mL) or a binary complex of IGFBP-
3 and an equimolar amount of IGF-I. Some cells also received Leu24Ala31 IGF-I. Protein degradation
was measured as release of [3H]tyrosine into the medium.
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tions). Hence, the overall effect of elevations in IGFBP-1 on protein balance in muscle
appears multifaceted and not completely defined.

5. SUMMARY AND CONCLUSIONS

It is clear that IGF-I stimulates protein synthesis and inhibits protein degradation in
skeletal muscle under conditions where plasma amino acids are not limiting, and this
response may not be entirely analogous to that produced by equivalent doses of insulin.
The importance of maintaining an adequate substrate supply has potentially important
implications in clinical studies when IGF-I is used as an anabolic agent to reverse or
minimize the erosion of lean body mass. At the cellular level, the enhancement of muscle
protein synthesis by IGF-I is mediated via PI3 kinase and by a stimulation of peptide-
chain initiation via alterations in eIF4E availability. Although critical illness appears to
depress growth hormone responsiveness, the ability of IGF-I to stimulate muscle protein
synthesis in many catabolic conditions is not impaired. In animal and clinical studies, the
short-term (e.g., 5 d) exogenous administration of IGF-I, alone or complexed with
IGFBP-3, greatly ameliorates the negative nitrogen balance and the decrease in muscle
protein synthesis induced by thermal injury or infection, suggesting that IGF-I may be an
effective adjunct therapy for severely catabolic critically ill patients.

6. RECOMMENDATIONS AND CHALLENGES FOR THE FUTURE

Traditionally, IGF-I has been considered essential for normal postnatal growth
and development. However, it is becoming increasingly evident that IGF-I also plays
an important role in the accretion of muscle protein in the adult via its actions on
both protein synthesis and protein degradation. Continued research is needed into
how signal transduction pathways in the muscle discriminate and differentiate
between IGF-I and insulin in regulating in vivo protein metabolism. Moreover, addi-
tional studies are necessary to determine whether the trauma- and inflammation-
induced decrease in IGF-I is actually causally related to the concomitant impairment
in muscle protein balance, and the relative importance of the decrease in IGF-I in
blood and muscle in the regulation of tissue metabolism. Intriguing questions remain
as to the mechanism by which IGF-I regulates muscle proteolysis, which thus far has
only been superficially addressed. Numerous in vitro studies indicate an ability of
various IGFBPs to alter IGF-I availability and activity. However, the physiological
relevance of changes in circulating levels of IGFBPs, particularly IGFBP-1, in
response to catabolic stimuli remains to be elucidated. Finally, the relationship of
the IGF system to other determinants of muscle growth and repair, such as satellite
cell recruitment and myostatin production, might provide insights into the mecha-
nisms mediating muscle wasting and potential ways to ameliorate this response in
critical illness.
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KEY POINTS

• Deficits in the IGF system are not a primary cause of neurodegenerative disorders includ-
ing Parkinson’s, Huntington’s, or Alzheimer’s diseases or amyotrophic lateral sclerosis.

• Systemic decreases of IGF-I in diabetic patients may contribute to diabetic neuropathy.
• Because IGF-I is a potent neuroprotective protein, its use in neurodegenerative diseases is

under investigation.
• IGF-I protects neurons from traumatic injury and has proven effective in a clinical trial of

head injury.
• IGF-I promotes peripheral nerve regeneration following nerve damage.
• IGF-I promotes the growth of neurons and muscle cells and maintains a healthy interac-

tion between these cell types.
• IGF-I is an important growth factor for muscle development and is a potential treatment

of neuromuscular disorders.

1. INTRODUCTION

Insulin-like growth factors (IGFs) are important regulators of neuronal development
and survival (1). IGFs-I and -II, both IGF receptors, and the IGF binding proteins (IGF-
BPs) are expressed widely in the central and peripheral nervous systems in develop-
ment, adulthood, and in disease states. IGFs are neurotrophic to a variety of neuronal
cells, including cortical (2), hippocampal (3), motor (4,5), sensory (6), and sympathetic
(6,7) neurons. IGFs also stimulate neurite growth and are the only trophic factors iden-
tified thus far that promote regeneration in both sensory and motor neurons (8). The
integral involvement of IGFs in the nervous system would suggest that changes in their
function and availability could lead to nervous system disease or play a part in endoge-
nous responses to nervous system injury. IGFs have been used as experimental thera-
pies in models of nervous system disease and in several human studies. They represent
a promising frontier for the treatment of several disorders for which there are currently
few or no effective interventions. Detailed discussions of the signaling mechanisms
and developmental roles of IGFs in the nervous system have been published previously
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(1,9). This chapter will focus on the impact of nervous system diseases on the IGF sys-
tem, and the involvement of IGFs in the pathogenesis and treatment of nervous system
disease and injury.

2. ALZHEIMER’S DISEASE 

2.1. Pathophysiology
Alzheimer’s disease (AD) is a frequent cause of dementia, occasionally presenting as

early as age 50 and becoming more prevalent after age 65. AD is characterized by loss of
cortical, hippocampal, and basal forebrain cholinergic neurons. Histological examination
reveals the combination of intraneuronal tangles with high concentrations of phosphory-
lated tau protein, and extracellular plaques composed of β-amyloid (A-β) protein.
Research has been directed at understanding how the formation of tangles and plaques
relate to neuronal death and what interventions may abate this process. IGFs have been
implicated in the nervous system response to AD. IGF-I is a component of neuritic
plaques (10), and IGF-I levels in AD serum relate inversely to cognitive impairment (11).

2.2. Impact on the IGF System
Changes in IGF expression in patients with AD have led to the hypothesis that IGFs

are part of a compensatory response to neuronal death. An early study using radioim-
munoassays to measure IGF-I in serum from suspected patients with AD found that IGF-
I levels were significantly increased compared to normal controls (12). This elevation
was confirmed by acid-gel chromatography, which also detected elevated serum IGF-II
(13). However, a specific examination of serum IGF-I in patients with the Swedish amy-
loid precursor protein mutation found decreased IGF-I levels (14). This raises the possi-
bility that one AD etiology may affect the IGF system differently than another. In the
cerebral spinal fluid (CSF), IGF-II is elevated in AD compared with normal controls,
whereas IGF-I appears to be unchanged (13,15). IGF-I immunoreactivity in AD brain
appears to be induced only in some astrocytes in the hippocampus and frontal and tem-
poral cortices (10,16). Despite the elevated levels of IGF-II observed in the CSF, no
work has been published characterizing the expression of IGF-II in AD brain tissue.

It is not clear whether expression of the IGF-IR changes in the AD brain. In one
study, 125I-IGF-I binding was slightly elevated in membranes prepared from AD frontal
cortex (17,18), but a similar technique in another study detected no differences in bind-
ing (10). Quantitative autoradiography detects no changes in IGF-IR expression (19).

Two IGFBPs are highly elevated in AD CSF. They are 30 and 33 kDa and are
believed to be IGFBP-2 and -6 (13). In AD serum, IGFBP-1 is highly elevated, but
IGFBP-3 is decreased (11). The decrease in IGFBP-3 may be related to dysfunction of
the hypothalamic–pituitary–adrenal axis in AD. Elevated levels of cortisol lead to
decreased IGFBP-3. Dehyroepiandrosterone sulfate has the opposite effect but
decreases with aging. Thus, some of the changes seen in the IGF system in patients
with AD may be the result of dysfunction of the hypothalamic–pituitary–adrenal axis,
rather than compensation for neuronal cell death.

2.3. IGFs in AD Treatment
IGF-I has been implicated in the inactivation of two pathways that contribute to neu-

ronal death in AD (Fig. 1). A-β peptide increases JNK activation in cultured neuroblas-
toma cells and may induce cell death through the JNK/SAPK pathway (20). IGF-I
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inhibits JNK activation via phosphatidyl inositol 3 (PI-3K) signaling (20) and protects
cultured neuronal cells from A-β-induced death (20,21). IGF-I can protect cultured
neurons from a familial mutant of the A-β precursor protein (V642I). Increased expres-
sion of IGFBP-3 counters the protective effect of IGF-I (22). IGF-I also decreases tau
phosphorylation, by inhibiting glycogen synthase kinase-3 activity via PI-3K and Akt
signaling (23). Phosphorylated tau has decreased affinity for microtubules and is incor-
porated into neurofibrillary tangles.

3. PARKINSON’S DISEASE

Parkinson’s disease (PD) results from death of dopaminergic neurons in the substan-
tia nigra. The IGF system has not been implicated in this selective neuronal death,
whose cause remains unknown. Dopaminergic regulation of anterior pituitary hor-
mones from the hypothalamus appears to be intact in patients with PD and remains
functional after long-term Levodopa therapy (24). As with other conditions of neurode-
generation, neuroprotective growth factors like IGF-I have been suggested as potential
agents for preventing the loss of nigrostriatal neurons in PD (25). However, IGFs have
not been tested in the treatment of PD.

4. HUNTINGTON’S DISEASE 

A single study has identified an interesting function for IGFs in the pathophysiology
of Huntington’s disease (HD). Expansion of trinucleotide repeats in the huntingtin
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Fig. 1. IGF-I in the treatment of AD. A-β peptide increases JNK activation and may induce cell
death through the JNK/SAPK pathway. IGF-I:IGF-IR inhibits JNK activation via PI3K signaling
and may provide neuroprotection. Phosphorylated tau has decreased affinity for microtubules and is
incorporated into neurofibrillary tangles. IGF-I:IGF:IR decreases tau phosphorylation by inhibiting
glycogen synthase kinase-3 (GSK-3) activity via PI3K and Akt signaling and may decrease tangle
formation in AD.
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gene leads to a neurotoxic protein product. IGF-I is protective to cultured neurons
expressing mutant huntingtin. IGF-I causes activation of the Akt kinase, which phos-
phorylates the huntingtin protein on serine 421. Striatal neurons expressing a form of
mutant huntingtin lacking this phosphorylation site cannot be rescued by IGF-I. In
addition, mutating the phosphorylation site to mimic constitutive phosphorylation
decreases the toxicity of the protein (26). This novel mechanism for IGF-mediated neu-
roprotection could lead to further therapeutic investigations in HD (Fig. 2).

5. CEREBELLAR NEURODEGENERATIVE DISEASES

Numerous conditions, many of genetic etiology, cause selective degeneration of
cerebellar neurons. Ataxia-telangiectasia patients have elevated serum IGF-I and
IGFBP-2 levels (27). In contrast, patients with olivopontocerebellar atrophy or idio-
pathic cerebellar cortical atrophy show decreased serum IGF-I and high IGFBP-1 (28).
As a treatment for a chemically induced model of cerebellar degeneration in rats, IGF-
I administered intraventricularly or subcutaneously was neuroprotective and increased
performance on motor tests (29). This effect can be blocked by infusion of an IGF-IR
blocker in the ventricles. IGF-I also increased cerebellar neuronal expression of cal-
bindin, glutamate receptor 1, GABA, and bax, which are decreased by the chemical
used to induce the cerebellar neurodegeneration (30).

6. MULTIPLE SCLEROSIS 

6.1. Pathophysiology
Multiple sclerosis (MS) is a disease of central nervous system demyelination and is

presumed to be an autoimmune disorder, although the exact cause of the autoimmune
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Fig. 2. IGF-I in the Treatment of HD. IGF-I:IGF-IR activates Akt kinase, which phosphorylates the
huntingtin protein on serine 421, promoting neuronal survival. Striatal neurons expressing a form of
mutant huntingtin lacking this phosphorylation site cannot be rescued by IGF-I.
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assault remains under investigation. Areas that have been demyelinated become sclerotic
from reactive astrocytosis. IGF-IR expression appears to be same across normal,
demyelinated, and sclerotic white matter (31). Immunocytochemistry suggests that
macrophages and astrocytes and not oligodendrocytes are the primary cell types that
express the IGF-IR in MS plaques. Oligodendrocytes and astrocytes in normal white
matter express IGFBP-1, whereas macrophages express IGFBP-2 and -3, and IGF-II
(32). These results support the idea that IGFs could promote myelin phagocytosis and
astrogliosis in MS plaques.

6.2. Impact on the IGF System
Serum and CSF IGF levels have been examined in MS patients. No changes in

IGF-I, IGF-II, and IGFBP-1, -2, and -3 have been detected between MS patients and
controls (33,34).

6.3. IGFs in MS Treatment
Despite the low receptor expression in oligodendrocytes found in human MS tissue,

a large body of evidence has shown that IGFs are potent stimulators of myelination in
the central and peripheral nervous systems (for review, see ref. 1). IGFs have been con-
sidered as a potential therapy for multiple sclerosis, but the outcomes of several studies
have been contradictory. IGF-I has been used to alter the course of the main animal
model of MS, experimental autoimmune encephalomyelitis. In some studies, lesion
size and number, blood–brain barrier defects, and clinical progression are decreased in
animals treated with subcutaneous or intravenous IGF-I (35–37). IGF-I stimulates the
proliferation of oligodendrocyte-like cells in lesions (36,38) and increases the produc-
tion of myelin basic protein, proteolipid protein, and 2′,3′-cyclic nucleotide 3′ phos-
phodiesterase, all components of myelin (35,38). In other studies, however, IGF-I has
only transient effects on clinical improvement, remyelination, and progenitor prolifera-
tion (39,40). A small trial of IGF-I in humans with MS showed no decrease in lesion
frequency over a 24-wk period (41). So, although in vitro studies have recorded the
importance of IGFs in myelin development, their usefulness for promoting remyelina-
tion in the adult central nervous system appears at this time to be limited.

7. CEREBRAL HYPOXIC/ISCHEMIC INJURY

7.1. Pathophysiology
Hypoxia/ischemia (HI) is a major cause of nervous system injury and commonly

follows perinatal hypoventilation as well as cerebral hemorrhage or vascular occlu-
sions (stroke). Loss of neurons in HI conditions is selective and delayed and can
involve both apoptotic and necrotic mechanisms (42,43).

7.2. Impact on the IGF System
One study examined, in patients suffering acute ischemic stroke, plasma IGF-I and

IGFBP-3 levels at timepoints from 1 to 10 d after ischemia. Plasma IGF-I and IGFBP-
3 levels were diminished in the stroke patients compared with healthy controls. IGF-I
and IGFBP-3 levels were significantly lowered in patients with infarcts greater than 5
cm. Lowered IGF levels may reflect increased demand for trophic factors, central
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impairment of the growth hormone axis, altered tissue distribution, or altered IGF
metabolism (44). Astrocytes in experimentally infarcted brain regions increase expres-
sion of IGF-I and IGFBP-3 mRNA (45). IGFBP-2 and IGFBP-5 mRNAs are induced
as well in the infarcted region (46,47). IGF-IR binding increases 6 h after ischemia in
the CA1 and CA3 regions of the hippocampus and the dentate gyrus (48). IGF-II
mRNA is increased, apparently in glial cells in the infarcted regions, 5–7 d after HI
(49). IGF-IIR immunoreactivity increases in pyramidal neurons 4–7 d after infarct
(50). In sum, the data suggest that IGF system components are upregulated within sev-
eral days of cerebral HI, particularly in reactive astrocytes and microglia, and may be
critical to an endogenous protective response to neuronal injury.

7.3. IGFs in the Treatment of HI
Animal models of HI have been useful in evaluating the effectiveness of IGFs in res-

cuing neurons. Several studies have found that central administration of IGF-I 1–2 h
after carotid artery occlusion in rats reduces loss of neurons and infarct size
(45,51–54). One study found that reduction of neuronal apoptosis was partly responsi-
ble for this effect (54). Injury from spinal cord ischemia is also abated by IGF-I. IGF-I
given 30 min prior to cord ischemia in rabbits led to greater recovery of limb function
48 h after the injury (55). Single doses appear to have beneficial effects on functional
outcomes, whereas long-term treatment seems to be necessary to decrease infarct size.
For instance, a single dose of IGF-I 2 h after HI injury in rats resulted in improved
somatosensation and neuronal survival at 20 d, but infarct size was not affected (56). A
3-d course of intraventricular or subcutaneous IGF-I had positive effects on both func-
tional outcome and infarct size (57). Studies that have tried doses lower than 20 µg/rat
have not been successful at decreasing injury (48,57). Most studies have success with
an intraventricular delivery of IGF-I, but this would be impractical in human HI
patients. Intranasal delivery of IGF-I was tried in a rat HI model and was successful at
decreasing impairment and infarct size (58). Although these studies have outlined a
role for IGFs in rescuing neurons from HI injury, IGFs remain an exciting but untried
possibility for human stroke therapy.

8. AMYOTROPHIC LATERAL SCLEROSIS 

8.1. Pathophysiology
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is caused by death of

upper and lower motor neurons. The cause of this selective neuronal death in most
cases is unknown, although a small percentage of cases are familial and linked to muta-
tions of the superoxide dismutase gene. Glutamate neurotoxicity is proposed to be a
general mechanism of motor neuron loss in ALS. Because of their neuroprotective
functions, the therapeutic potential of IGFs in ALS has been studied extensively.

8.2. Impact on the IGF System
IGF-I levels are not changed in the sera of patients with ALS (59), although one

investigation found increased IGF-I expression in the skin (epidermis, dermal blood
vessels, and glands) of patients with ALS (60). In the ventral horn of the spinal cord,
free IGF-I is decreased, whereas expression of IGFBPs-2, -5, and -6 is increased (61).
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Total IGF-I and IGF-II do not appear to differ between patients with ALS and controls
(61,62). IGF-IR density, assayed by immunohistochemistry and radioligand binding, is
increased in the gray matter of patients with ALS (63–65). NGF receptor expression
(63) and insulin binding (65) were not changed in ALS. Together, these findings sug-
gest that motor-neuron regions of the spinal cord become more capable of specifically
binding IGFs in ALS, and are potentially sensitive to endogenous and exogenous
sources of IGFs.

8.3. IGFs in the Treatment of ALS
IGFs prevent neuronal death in the wobbler mouse, a model for motor neuron dis-

ease (66). The neuroprotective functions of IGFs and the increased availability of bind-
ing sites in ALS spinal cords led to clinical trials of IGF-I as a treatment for ALS. Two
major placebo-controlled trials produced different results. The North American
ALS/IGF-I Study Group found that disease progression slowed and quality of life
improved in patients treated with IGF-I daily for 9 mo (67). However, no measurable
benefit from IGF therapy was found in the European ALS/IGF Study Group’s trials
(68). A study of these trials found trends, although not significant, suggesting that IGFs
benefit patients with ALS (69).

Because there seems to be some positive effect of IGFs on ALS patients, they may
be useful in a combination therapy for ALS. IGF-I administered with glycosaminogly-
cans was even more effective at preventing neuronal death in the wobbler mouse (70).
A glutamate-toxicity model of ALS was treated with both IGF-I and GDNF. The two
growth factors together were additively neuroprotective (71). Although combination
paradigms have not yet been investigated in humans, a rat study combining IGF-I with
the glutamate-release inhibitor Riluzole, currently in use to treat patients with ALS, did
not find any significant additive effect (72). More study is needed to determine the ther-
apeutic potential of IGFs in the treatment of motor neuron disease.

9. DIABETIC NEUROPATHY

9.1. Pathogenesis
Neuropathy is a complication of poorly controlled diabetes. Painful sensory neu-

ropathies are common, and autonomic neuropathies, leading to critical autonomic dys-
function, may occur. The cause of neuropathy in diabetes has been the focus of much
investigation but remains elusive. Mechanisms that may contribute to the pathogenesis
of diabetic neuropathy include damaged nerve microvasculature, neuronal apoptosis
precipitated by high glucose, and impaired nerve regeneration. Studies suggest that the
IGF system may be depressed in diabetic neuropathy, leading to compromised periph-
eral nerve health.

9.2. Impact on the IGF System
Both IGF-I and IGF-II mRNAs are decreased in the peripheral nerves of rats with

experimental insulin-dependent diabetes (IDDM) (73). This deficiency is not unique
to peripheral nerves—decreased IGF mRNA can also be found in the liver, adrenal
glands, and spinal cord in this model (74). IGF-II in the brain is reduced in rat models
of both IDDM and noninsulin-dependent diabetes (NIDDM) (75). Insulin therapy in
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the IDDM model partially restores the levels of IGF mRNA in all these tissues.
NIDDM rats have diminished IGF-II mRNA in the peripheral nerves and spinal cord,
but IGF-I mRNA appears normal (76). IDDM rats’ dorsal root ganglia neurons have
reduced expression of IGF-I and the IGF-IR (77). IGF-I and IGF-IR expression is
also reduced in the superior cervical ganglia of these rats; expression can be partially
restored with insulin therapy (78).

Diabetic humans with neuropathy have significantly lower circulating levels of IGF-
I than non-neuropathic diabetic and normal controls (79,80). IGFBP-1 levels, con-
versely, are increased in diabetics with neuropathy (81). These findings support a
relationship between peripheral nerve damage in diabetic neuropathy and decreased
IGF availability.

9.3. IGFs in the Treatment of Diabetic Neuropathy
Several studies in rat models of diabetes have found that insulin therapy partially

restores IGF levels (73,74). Investigations in human diabetics have found a positive
relationship between insulin levels and IGF-I levels and a negative relationship
between IGF-I levels and neuropathy (80,81). Thus, good insulin maintenance may
lead to normal availability of IGFs and better nerve function.

A number of studies have examined the therapeutic potential of direct administra-
tion of IGFs to diabetic rats. IDDM rats subjected to sciatic nerve crush received IGF-I
locally via a miniosmotic pump at the injury site or systemically by subcutaneous
injection. Nerve regeneration was improved in IGF-treated animals, regardless of the
glycemic state of the animal, suggesting that IGFs have a direct effect on nerve regen-
eration (82). Subcutaneous IGF-I or IGF-II for 2 wk led to decreased hyperalgesia and
better nerve regeneration in IDDM rats (83). IGF-I protects against the development of
autonomic neuropathy in IDDM rats, as measured by the degree of neuroaxonal dystro-
phy of the superior mesenteric ganglion and ileal mesenteric nerve (84). IGFs may ben-
efit autonomic neurons by preventing apoptosis in response to high glucose and by
promoting neurite growth, which is inhibited by high glucose (85). IGF-IR distribution
in the autonomic neurite is abnormal in hyperglycemia and can be restored to normal
with IGF-I treatment. These studies indicate that the neurotrophic effects of IGFs could
be helpful in ameliorating diabetic neuropathy by promoting neuronal survival and
neurite growth.

10. TRAUMATIC BRAIN AND NERVE INJURY

The neuroprotective and neurite regenerative effects of IGF-I have been tested in
models of traumatic nervous system injury. IGF-I promotes nerve regeneration in
crushed sciatic nerves of rats (86). IGF-II has similar effects on the frog sciatic nerve
(87). IGF-I improves motor neuron survival and functional re-innervation of skeletal
muscle following sciatic transection in rats (4). Motor and cognitive functions are
improved when rats with traumatic brain injury are treated with IGF-I (88). The benefit
of IGF-I for humans with head trauma has been examined in only one clinical trial thus
far. A 14-d continuous intravenous infusion of IGF-I was given to patients with severe
isolated brain trauma. Six months after treatment, 8 of 11 patients who achieved high
levels of serum IGF-I had moderate-to-strong improvement, whereas only one of the
five patients with low serum IGF-I showed similar improvement (89). These promising
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results warrant further investigation of the therapeutic potential of IGFs in traumatic
nervous system injury.

11. MUSCLE DISEASES

Muscular dystrophies are characterized by defective muscle growth and develop-
ment. IGFs promote muscle growth and development and may be involved in the
pathogenesis and treatment of muscular dystrophies. A study of serum IGF-I and
IGFBP-3 in patients with Duchenne’s muscular dystrophy (DMD) found no abnormal-
ities (90), but an in vitro study of fibroblasts and myocytes from DMD patients sug-
gests that abnormalities of IGFBP expression may contribute to failure of muscle cell
growth. IGFBP-5 message and secretion were increased in DMD fibroblasts, whereas
IGFBP-3 message was decreased. DMD myocytes cultured with DMD fibroblasts or
with conditioned media from the same fibroblasts showed defective growth. Blocking
fibroblast IGFBP-5 expression with antisense oligonucleotides, or neutralizing IGFBP-
5 with an antibody, removed the inhibitory effect of the conditioned media on DMD
myocytes (91). How the genetic abnormality in DMD would cause altered IGFBP
expression in fibroblasts is unclear, but this study identifies a mechanism that can
potentially be manipulated therapeutically to promote muscle cell growth.

Myocytes express both IGF-I and a unique splice variant of IGF-I, called
mechanogrowth factor (MGF) (92). Proper structural and mechanical function of
myocytes leads to autocrine release of IGFs. MGF and IGF-I expression levels are
increased after muscle stretching. MGF and IGF-I expression are decreased in the mdx
mouse, a genetic model for DMD (93). This apparently depressed IGF function has
prompted examination of the effects of exogenous IGFs on dystrophic muscle. In the
mdx mouse, an 8-wk course of IGF-I improves diaphragm force, endurance, and
oxidative capabilities, and in addition increases the proportion of type IIa fibers (94).
Finally, IGF-I promotes glucose uptake in human myotonic dystrophy muscle cells,
which are typically resistant to insulin (95). The results from these studies extend the
beneficial functions of IGF-I to include improvement of the metabolic functioning of
dystrophic muscle.

Steroid myopathy is a common outcome of long-term glucocorticoid therapy (see
Chapter 11). This myopathy is characterized by type II fiber atrophy and an increase in
urine creatine excretion. Rat studies indicate that high-dose steroids decrease IGF-I and -
II expression in the liver and muscle (96) and may contribute to the pathogenesis of
myopathy. Further, hepatocytes exhibit increased IGFBP-1 expression, which could also
limit the availability of circulating IGF-I. Dexamethasone inhibits IGF-I signaling to PI-
3K and Akt, an important pathway for maintaining cell viability in the face of a variety
of stressors (97). IGF-I was given to rats simultaneously with triamcinolone to see if
exogenous IGFs could prevent myopathy. Compared with controls, IGF-I helped main-
tain muscle cell diameter and decreased urine creatine excretion (98). Further studies are
needed to determine whether IGFs can reverse pre-existing steroid myopathy.

Muscle wasting and malnutrition are common problems in a number of critical ill-
nesses, including cancer and AIDS (see Chapter 3). IGF-I has been tried, sometimes in
conjunction with GH, in the treatment of muscle wasting from cancer (99), osteoporo-
sis (100), renal failure (101), severe burns (102), and chronic obstructive pulmonary
disease (103). These have shown some success at increasing muscle mass and strength.
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IGF-I and GH, however, did not affect muscle wasting in AIDS patients. Adequate
nutritional support is needed to permit a response to GH and/or IGF administration
(103). Initial studies suggest that coadministration of IGF-I and IGFBP-3 may lead to
even more improvement in muscle growth and to fewer side-effects (105). A mouse
model of cancer muscle wasting showed better muscle protein synthesis when IGF-I
and IGFBP-3 were given together (106).

12. SUMMARY AND CONCLUSIONS

The IGF system is likely involved in the development of some nervous system dis-
eases and in the endogenous response to nervous system disease. IGF expression is
lowered in patients with diabetic neuropathy and in myocytes with the DMD mutation,
potentially contributing to defective axon and muscle growth. IGFs may stimulate reac-
tive astrocytosis in multiple sclerosis. IGF, IGF-IR, and IGFBP expression are altered
locally or systemically in AD, hypoxia/ischemia, and ALS, suggesting that upregulation
of IGF availability or sensitivity is part of an endogenous protection of injured neurons.

Effective treatment of nervous system disease remains a formidable challenge.
Understanding the factors that prevent neuronal death and restore functional neuronal
processes may lead to successful treatments of several nervous system diseases. The
neuroprotective and neurite-stimulating effects of IGFs make them strong candidates
for the treatment of nervous system disease. They have been used successfully in cul-
ture and animal models of AD, HD, MS, stroke, ALS, trauma, and neuropathy. IGFs
have been used in human trials of trauma, ALS, and critical-illness muscle wasting.
Although these trials show promise for effectiveness, much more work is needed to
understand how IGFs can be used to combat these diseases.

13. FUTURE CHALLENGES

Despite advances in understanding the involvement of IGFs in nervous system
development and health, there has been little direct investigation of the impact of nutri-
tion on IGF function in the nervous system. There are nervous system diseases caused
by improper nutrition, including various neuropathies and Wernicke–Korsakoff syn-
drome. For a number of these conditions, a specific insult—such as a vitamin defi-
ciency—has been identified. However, the impact of these deficiencies on the IGF
system in these diseases is unknown. Critical illness can certainly have a negative
impact on nutrition status, and whether poor nutrition from severe nervous system dis-
ease affects the IGF system awaits investigation.
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KEY POINTS

• Given the complexity of renal structure it is not surprising that the expression of the IGF-
I axis within the kidney is anatomically heterogeneous. As in other tissues, the local kid-
ney IGF-I system is nutrient sensitive.

• IGF-I stimulates renal growth, increases renal blood flow and glomerular filtration rate
and modifies several tubular processes including the transport of phosphate and sodium.

• Potassium depletion, metabolic acidosis and diabetes are conditions in which renal hyper-
trophy, growth retardation and muscle wasting occur simultaneously and in which local
and systemic changes in IGF-I levels are thought to play an important role.

• A number of studies have implicated GH/IGF-I in the development and progression of
kidney disease.

• An important area that merits further study is the resistance of IGF-I and GH that devel-
ops in uremia.

1.INTRODUCTION

Insulin-like growth factor-I (IGF-I) is produced in tissues throughout the body under
the influence of growth hormone (GH), and this system is highly sensitive to nutrients
(1–4). The liver is the main source of circulating IGF-I, and the kidney is a major
endocrine target for this growth factor. IGF-I stimulates renal growth, increases renal
blood flow and glomerular filtration rate (GFR), and modifies several tubular
processes, including the transport of phosphate and sodium (1). IGF-I mediates most
but not all of the renal actions attributed to GH. Circulating IGF-I is mostly bound to
high affinity insulin-like growth factor binding proteins (IGFBPs), especially IGFBP-
3, that together with an acid-labile subunit forms a 150-kDa complex (5). Lesser
amounts of IGF-I circulates bound to the lower molecular weight IGFBPs, namely
IGFBP-1, -2, -4, -5, and -6, forming smaller complexes, and typically less than 2% of
the serum IGF-I circulates in the freely bioavailable unbound form (5). In general IGF-
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BPs have an inhibitory effect on IGF-I action; however, some IGFBPs may actually
enhance IGF-I activity in certain cells. Some of the circulating lower molecular weight
IGF-I/IGFBP complexes are preferentially delivered to the kidney. The locally
expressed renal IGF-I system consists of IGF-I, IGF-I receptors, GH receptors, and six
IGFBPs (1). Although the IGF-I receptors are expressed throughout the kidney, the
other components of the IGF-I system are expressed in anatomically heterogeneous
manner. Local IGF-I and circulating IGF-I have a major impact on kidney structure and
function both in health and disease and these effects are modulated by nutrients (1,2).
In turn, loss of renal function has a negative impact on the IGF-I system. For example,
reduced IGF-I generation and bioavailability appears to play a key role in the growth
retardation that occurs in kidney failure (6).

In this chapter, we review the physiology of the renal IGF-I system and the impact
of nutrients thereon, the potential role of IGF-I in the pathogenesis of kidney disease
with emphasis on nutrient related disease processes, and the impact of renal failure on
the extra-renal IGF-I system. Finally, we will briefly review the role of nutrition, IGF-I,
and GH in the management of renal failure.

2. BACKGROUND

2.1. The Intrarenal IGF-I Axis
The kidney is a heterogeneous structure consisting of a vascular network from

which the glomerulus and peritubular vessels arise, an interstitial compartment, and
tubules composed of various cell types and functions delivering a modified glomerular
ultrafiltrate into a collecting system that terminates in the kidney pelvis. Given this
complexity of renal structure, it is not surprising that the expression of the IGF-I axis
within the kidney is anatomically heterogeneous (Fig. 1.) This has made it difficult to
evaluate the specific renal actions of the various components of this axis.

In the glomerulus, the mRNAs for the IGF-I and IGF-II receptors, IGF-I and IGFBP-
2, -4, and -5 are present (7–10). In the proximal tubule, the mRNAs for the GH and IGF-
I receptors, and IGFBP-4 and -5 are expressed (7,8,11). IGF-I is transiently expressed in
the proximal tubule after acute tubular necrosis but is undetectable in the uninjured
tubule (12). In contrast IGF-I peptide is detectable along the luminal and antiluminal
poles of the proximal tubule reflecting trapping by the abundant IGF-I receptors and pos-
sibly by IGFBPs (12–15). The IGF-I receptor, present throughout the kidney, is far more
abundant in the antiluminal plasma membranes than in the luminal membranes. The
thick ascending limb of Henle in the rat expresses all the most important components of
the IGF-I axis, namely the mRNA for the GH and IGF-I receptors, IGF-I and IGFBP-1
(7,8,11). IGF-I mRNA has not been detected in the human loop of Henle. The distal
tubule expresses the IGF-I and IGF-II receptor mRNAs, in the rat the mRNAs for
IGFBP-1, -2, and -4, and in humans IGFBP-2. Although the IGF-I peptide is detectable
at this site (16), it is controversial whether IGF-I is actually synthesized here. In the rat
renal interstitium, there is expression of the mRNAs for IGFBP-2 through IGFBP-5, and
in the human kidney, IGF-II mRNA and peptide are detectable (11,17,18).

Given the complexity and anatomical heterogeneity of the renal IGF-I system, it is
difficult to envisage how the various components interact and mediate their respective
actions. The presence of IGF-I receptors throughout the kidney is consistent with the

228 Rabkin et al.

227-248*/Houston13  6/29/04  6:11 PM  Page 228



Fig. 1. Expression of the IGF-I system in the kidney. Note the marked anatomical variation in expression. Rec, receptor.
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multifunctional nature of this growth factor. The colocalization of the GH receptor and
IGF-I receptor, IGF-I, and IGFBP-1 in the loop of Henle suggests that this nephron
segment is a major site of GH-induced renal IGF-I production and that IGFBP-I is a
major modulator of IGF-I action at this site. In addition to GH, IGF-I production is
stimulated by EGF (19), and this effect is affected by nutrient intake.

2.2. Renal Uptake and Excretion of IGF-I and IGFBPs
Insulin-like growth factor-1 has a molecular weight of 7.5 kDa. Proteins of this size

usually pass through the glomerular filtration barrier with little restriction, followed by
nearly complete absorption in the proximal tubule with urinary excretion of the balance
(20). Absorption occurs by a process of receptor-mediated endocytosis in the proximal
tubule and intracellular transport of IGF-I to the lysosomes where it is degraded (15). A
small amount of IGF-I may be delivered to the nucleus (21). IGF-I is also removed
from the peritubular circulation to be taken up through the antiluminal tubular cell
membrane by receptor-mediated endocytosis (15). Because of the normally high rate of
renal blood flow (approx 25% of the cardiac output) and glomerular filtration (180 L of
plasma water filtered per day), the kidney is a major site of low molecular weight pro-
tein clearance from the circulation (20). However, the renal handling of IGF-I is com-
plicated because of the binding of IGF-I to the IGFBPs with the formation of approx
45- and 150-kDa complexes that restrict the passage of the bound IGF-I through the fil-
tration barrier (5). Most of the bound IGF-I circulates complexed to IGFBP-3, that
together with an acid-labile subunit forming a 150-kDa complex. A lesser amount of
IGF-I circulates bound to IGFBP-1, -2, -4, and -6. Because normally less than 2% of
the circulating IGF-I is not bound to protein and relatively freely filtered, the role of the
kidney in its clearance is limited. This has been confirmed in human studies that found
similar serum clearance of IGF-I in patients with advanced chronic renal failure and
normal controls (22).

IGFBPs also undergo glomerular filtration and appear in the urine in small amounts.
Reflecting their higher circulating levels, the filtered IGF binding proteins are com-
posed predominantly of IGFBP-1, IGFBP-2, and IGFBP-3, with IGFBP-2 and IGFBP-
3 being the predominant binding proteins found in the urine (1). The excretion of IGF-I
in the urine tends to be higher in the young, reflecting their higher serum levels, and
falls with age. It is increased several fold in acromegalics and also in patients with
severe proteinuria, as discussed later.

2.3. Insulin-Like Growth Factors and Nephrogenesis
During fetal life, IGF-II is a major endocrine, paracrine, and autocrine regulator of tis-

sue growth and differentiation, whereas IGF-I plays a minor role in fetal growth and
organogenesis. IGF-II mRNA is strongly expressed in the fetal human kidney (24–26).
IGF-II expression is localized to interstitial cells, the renovascular system, glomerular
epithelium, undifferentiated but not mature tubular epithelium, and pelvic urothelium
(26). IGF-I is expressed with lower abundance than IGF-II in the rat and hardly
detectable in the human fetal kidney (24,27,28). Acting via IGF receptors expressed in
the metanephroi with a peak in early gestation (29,30), IGF-II and (at least in the rat)
IGF-I promote the formation and growth of nephrons (28). Whereas renal IGF-II expres-
sion is downregulated with progressive differentiation of the nephrogenic zone (25,31),
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renal IGF-I mRNA levels are constant during intrauterine life and increase only after
birth (32–34). The tissue actions of IGF-II are also regulated by the IGF-II/mannose
receptor, a clearance receptor that is highly expressed in fetal tissues, including the
developing kidney (35). In experimental maternal diabetes, altered nephrogenesis is
associated with increased IGF-II/mannose receptor expression in the metanephroi (36).

The expression of IGF-binding proteins in the kidney emerges with increasing dif-
ferentiation of renal cell types. IGFBP-2 is the most abundantly expressed binding
protein in the fetal kidney (31,33,37). In human kidneys, IGFBP-2 is mainly
expressed by differentiating glomerular epithelial cells (31). Although the local,
developmentally regulated IGF-II expression and impaired metanephroi development
of cultured organs exposed to neutralizing IGF-II antibodies suggest an important
growth promoting role of IGF-II in the nephrogenic zone (28), it is still unclear
whether IGF-II is an indispensable mediator of nephrogenesis. Mice lacking the IGF-
II gene are small but their kidneys are of normal morphology and function (38). In the
neonatal rat with urinary tract obstruction, treatment with IGF-I attenuates the tubu-
lointerstitial fibrosis but does not affect the impaired nephrogenesis caused by the
obstruction (39).

3. MODULATING EFFECTS OF IGF-I AND IGF BINDING PROTEINS
ON KIDNEY STRUCTURE AND FUNCTION

3.1. Effect of IGF-I on Normal Kidney Structure and Function
IGF-I is a potent promoter of renal growth. When administered to rats, it causes

renal hypertrophy by inducing both cellular hypertrophy and hyperplasia (40,41). Mice
transgenic for IGF-I have enlarged kidneys, as do GH transgenic mice (42,43). Renal
enlargement with increased renal blood flow and GFR is also seen in humans with
acromegaly and this regresses after treatment of the condition and the secondary fall in
IGF-I levels (44–46). The growth-promoting effect of IGF-I differs somewhat from
that of GH. GH causes a general increase in body growth with a proportional increase
in organ size, whereas IGF-I produces a disproportional increase in kidney, spleen, and
adrenal size and a lesser increase in body growth (47). Because the response to these
two growth promoters differs somewhat, it is not clear as to what extent the renotropic
action of GH is mediated through IGF-I or via a direct action of GH. The presence of
GH receptors in nephron segments, such as the proximal tubule, which normally do not
express the IGF-I mRNA, suggests that some of the GH-induced renotropic effects are
directly mediated by GH. However, as will be discussed later, the renal actions of GH
are predominantly mediated through IGF-I.

Renal blood flow and glomerular filtration rate increase markedly within minutes to
hours after the administration of IGF-I (48–50). In humans IGF-I causes a 20–30%
increase in RBF and GFR, which is sustained as long as IGF-I is administered. In con-
trast, it takes several days of GH treatment to induce a similar response, which corre-
lates with the rise in serum IGF-I levels (51–54), indicating that the renal hemodynamic
effects of GH are mediated by IGF-I. Administration of IGF-I to GH-deficient rats or to
Laron-type dwarfs (patients with mutated nonfunctional GH receptors) normalizes the
low GFR (55,56). In sophisticated physiologic studies, Hirschberg et al. (57) showed
that these effects of IGF-I were mediated by inducing glomerular arteriolar vasodilata-

Chapter 13 / Kidney IGF System 231

227-248*/Houston13  6/29/04  6:11 PM  Page 231



tion with a fall in afferent and efferent arteriolar resistance and by increasing the
glomerular ultrafiltration coefficient. The arteriolar vasodilation appeared to be caused
by metabolites of cyclooxygenase activity and the generation of nitrous oxide (58,59).

IGF-I also modulates renal tubular function. Most striking is its effect on tubular
phosphate reabsorption, which it stimulates by activating a specific sodium-phosphate
co-transporter in the brush border membrane of the proximal tubular cell (60). It
appears that GH-induced phosphate reabsorption is entirely mediated by IGF-I, for
exposure of isolated proximal tubules to IGF-I either on its luminal or antiluminal
aspect stimulates phosphate transport whereas GH exposure does not (61). IGF-I also
stimulates tubular sodium reabsorption, most likely through the activation of
amiloride-sensitive sodium channels located in the distal tubule (61,62). The attendant
sodium and water reabsorption that follows high-dose IGF-I treatment in humans is
usually modest in extent but can lead to edema formation (63,64). IGF-I may also
increase sodium and water reabsorption indirectly by stimulating renin release and sup-
pressing atrial natriuretic peptide secretion (64).

3.2. Effect of Insulin-Like Growth Factor Binding Proteins on the Kidney
Circulating and locally produced IGFBPs have profound effects on the delivery and

action of IGF-I on the kidney as well as possessing some limited IGF-I-independent
actions (5,65). Because of the high affinity of IGFBPs for IGF-I, relatively tight
IGFBP-IGF complexes are formed and this generally limits the bioactivity of IGF-I.
However, there are instances when selected IGFBPs actually enhance the bioactivity of
IGF-I or even exhibit IGF-I-independent actions.

In renal diseases, there are often profound changes in the circulating and local kid-
ney IGFBP profile, as described in later sections. However, it has been difficult to
understand what impact these various changes have on the action of IGF-I on the kid-
ney. This is largely because of the heterogeneity of cell types within the kidney and the
variable changes in renal expression of the individual IGFBPs within the kidney. There
are studies that indicate that IGFBP-1 can affect renal growth. When this binding pro-
tein is infused into GH-deficient dwarf mice, renal but not body growth is stimulated
(66,67). However, transgenic mice overexpressing IGFBP-1, show reduced nephron
number and glomerulosclerosis (68,69). In various conditions that cause renal hyper-
trophy, such as diabetes, K depletion, and compensatory renal growth, renal IGFBP-1
expression is elevated and it has been suggested that this results in trapping of IGF-I
within the kidney, which then promotes cellular growth (70–72).

IGFBP-3 may also play a role in modulating the action of IGF-I on the kidney.
Infusions of IGFBP-3 complexed with IGF-I into rodents increase the amount of
IGF-I localized to the glomerulus, although the biological effects thereof are
unknown (73). When IGFBP-3 and IGF-I are incubated together with cultured kidney
tubular cells, IGF-I receptor binding and internalization is inhibited, and the action of
IGF-I is depressed (74). IGFBP-3 may also inhibit DNA synthesis in cultured kidney
tubular cells independently of IGF-I (74). IGFBP-5 is another IGFBP that exhibits
IGF-I-independent actions. When incubated with cultured mesangial cells in the
absence of IGF-I, cell migration is activated by binding of IGFBP-5 to a serine-kinase
receptor (75).
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4. EFFECT OF NUTRIENTS ON THE RENAL IGF-I SYSTEM 
AND RENAL STRUCTURE AND FUNCTION

4.1. Starvation and Protein Energy Malnutrition
As in other tissues, the IGF-I system in the kidney is nutrient sensitive. Large varia-

tions in dietary intake or composition also affect renal structure and function and some
of these changes may be mediated by changes in the renal IGF-I system. For example,
starvation or protein calorie malnutrition reduces kidney IGF-I gene expression as it
does in liver and muscle, and renal mass decreases as does renal blood flow and GFR
(2,58,76). It has been suggested that the fall in IGF-I levels, both circulating and
intrarenal, accounts for the changes in kidney mass and function. Because similar
changes occur when the GH-deficient rat is exposed to these diets, it appears that the
nutrient regulation of renal mass and function is GH independent (76).

4.2. Dietary Protein Loading
Conversely to the effects of reduced food intake, dietary protein loading leads to

renal hypertrophy and an increase in renal blood flow, intraglomerular pressure and
GFR (77). Because of these renal hemodynamic effects, a high-protein diet can accel-
erate the progression of underlying kidney disease, and this is one of the rationales for
selectively restricting protein intake in patients with chronic renal failure. Hepatic,
whole kidney, and glomerular IGF-I levels increase in rats fed with a high-protein diet
(78). The expression of IGF-I mRNA increases in the medullary thick ascending limb
of Henle whereas the IGFBP-1 levels fall. This is the converse of what occurs when
dietary protein intake falls (79). Whether the increase in kidney IGF-I levels induced
by high protein feeding contributes to the progression of kidney disease remains to be
established. In a recent study it was noted that when soy protein was substituted for
casein in the diet of rats with polycystic kidney disease, kidney IGF-I levels fell and the
progression of the kidney disease was slowed, supporting the role of IGF-I in progres-
sive renal damage (80).

4.3. Potassium Depletion
Potassium depletion results in profound changes in kidney structure and function, and

IGF-I has been implicated as a potential mediator of these changes (72,81,82). In the
growing animal, K deficiency is followed by a substantial increase in renal mass as a
result of tubular cell proliferation and hypertrophy, whereas glomerular volume remains
unchanged (72,83,84). Unlike most other states of renal hypertrophy, renal blood flow
and GFR fall. There is central polydipsia and vasopressin-resistant polyuria and
increased renal ammoniagenesis. Paradoxically, body growth is attenuated, and there is
muscle wasting (83). Infants and young children with Bartter’s syndrome, a renal tubular
K wasting disorder, have severe growth retardation (72). If K deficiency persists, cellular
infiltrates appear in the renal interstitium, and this eventually leads to tubulointerstitial
fibrosis and kidney failure (85). Kidney cysts may also develop in chronically
hypokalemic patients, although this is not a uniform finding (86). In K-deficient rats total
kidney IGF-I levels are elevated for a few days after the intake of K is restricted, whereas
IGF-I mRNA levels fall. This increase in kidney IGF-I content has been suggested to be
one of the causes of the renal hypertrophy and appears to be the result of increased local
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trapping of IGF-I by local IGFBP-1 (83). Kidney IGF-I levels may also be elevated
because of decreased renal IGF-I degradation and enhanced renal delivery of circulating
IGF-I bound to the elevated serum low molecular weight IGFBPs. Interestingly, in mus-
cle there is a fall in GH receptor and IGF-I gene expression and IGF-I peptide levels are
low and this may account, in part, for the lack of muscle growth (83). With prolonged
hypokalemia, total kidney IGF-I mRNA and peptide levels fall but there is an increase in
IGF-I peptide in the hyperplastic collecting ducts and hypertrophied thick ascending
limbs of Henle where IGFBP-1 levels are increased (84). This suggests that local trap-
ping of IGF-I occurs and that this contributes to the progressive tubular cell hypertrophy,
hyperplasia and possibly the cellular interstitial infiltrates. There is also evidence for the
role of several other factors in the genesis of hypokalemic nephropathy including ammo-
nia, angiotensin II, vasopressin, aldosterone, and pituitary hormones (72).

4.4. Metabolic Acidosis
Metabolic acidosis is another condition in which renal hypertrophy, muscle wasting,

and growth retardation occurs simultaneously (87). Kidney IGF-I peptide levels increase
as early as 4 h after the induction of acidosis returning to baseline within 4 d. This occurs
without an increase in mRNA levels. However, the mRNA levels of several IGFBPs,
especially IGFBP-1 and -4, are elevated in the kidney. Thus the increase in IGF-I likely
results from increased local trapping and may play a role in inducing renal hypertrophy. 

5. IMPACT OF RENAL FAILURE ON THE IGF-I SYSTEM

Chronic renal failure induces a state of GH/IGF-I resistance (88). Children with
renal failure have stunted growth and adults often develop muscle wasting. Because
GH is largely cleared from the circulation through the kidneys, its metabolic clearance
rate is reduced in renal failure, and this largely accounts for the prolonged half-life and
the normal or elevated plasma GH levels (89). Several mechanisms have been proposed
to explain the resistance to GH in uremia, which include diminished GH receptor num-
ber, impaired GH-mediated signal transduction with reduced IGF-I expression, and
resistance to the action of IGF-I. In adult uremic patients serum IGF-I levels are
reduced in those that are malnourished (2). In children with advanced chronic renal
failure (CRF), normal or low serum IGF-I levels may also be present (90). In animals
with experimental CRF, IGF-I mRNA levels are reduced in liver, muscle, and long
bone growth plate, and this can be partly attributed to impaired food intake (91).

With respect to the GH receptor, there is some evidence to suggest that the levels are
decreased in uremia. Some studies in uremic rats have shown reduced hepatic and
growth plate GH receptor levels (91–93). Other animal studies have suggested that the
receptor levels are unaltered by uremia per se but that reduced food intake is the cause
of the GH receptor changes (94,95). In humans GHBP levels have been taken as surro-
gate indicators of GH receptor number since in humans GHBP is generated by prote-
olytic cleavage of the GHR with release of the soluble extracellular domain into the
circulation. Although most clinical studies have shown low serum GHPB concentra-
tions, suggesting reduced receptor number (6,96), a recent study of children with end-
stage renal disease (ESRD) failed to show any alteration in GHBP profile (97). Clearly
further work is required to resolve these discrepancies and to determine whether serum
GHBP levels are a valid marker of tissue GHR levels.
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Another potential cause of GH resistance is a defect in the post-receptor signaling
pathway at one or more sites. In a recent study of rats with CRF, a defect in the hepatic
GH-stimulated JAK/STAT pathway was identified (98). Although GH receptor binding
and the abundance of the downstream signaling proteins, namely JAK2, STAT5,
STAT3, and STAT1 were normal, tyrosine phosphorylation of these proteins was
depressed. Because activation of STAT5 is required for normal growth, it was con-
cluded that this defect in JAK-STAT phosphorylation contributed to the GH resistance.
It was also noted that the expression of inhibitors of JAK/STAT signaling known as
suppressors of cytokine signaling (SOCS)-2 and -3, were elevated in the uremic rats.
This provides one potential explanation for the depressed signal transduction. An
acquired defect in GH receptor-JAK-2/STAT signaling with upregulation of SOCS
expression has also been described in inflammatory conditions. This may be relevant to
the GH resistance in renal failure because patients with ESRD and malnutrition often
have underlying subclinical chronic inflammation (99).

Resistance to GH also arises because of changes affecting the sensitivity to IGF-I,
the mediator of most GH actions. Resistance to IGF-I in uremia has been mainly attrib-
uted to the accumulation of circulating IGFBPs that form high affinity complexes with
IGF-I and thus reduce the bioavailability of IGF-I (6,88). In children with chronic renal
failure serum concentrations of the binding proteins are inversely related to growth
rates, supporting an important role of IGFBP excess in the pathogenesis of clinical
GH/IGF-I insensitivity in uremia (98). Of the IGF binding proteins studied, IGFBP-1,
IGFBP-2, IGFBP-4, and IGFBP-6 are elevated in renal failure (90,100,101). The IGF-
BPs accumulate largely because of reduced renal clearance: elevation of their serum
levels is inversely related to glomerular filtration rate (102). Lower molecular weight
fragments of IGFBP-3 also accumulate in CRF and these fragments are capable of
binding to IGF-I, albeit with reduced affinity (102). In addition, there is some evidence
to suggest that production of IGFBP-1 is augmented in uremia (6,100). Because of the
accumulation in IGFBPs in the vascular compartment, the distribution volume of IGF-
I is decreased in renal failure. Thus when exogenous IGF-I is administered, higher
serum levels are achieved in subjects with CRF than in normals, even though the meta-
bolic clearance rate of IGF-I is unaltered in CRF (22). Despite the higher serum levels
achieved, the metabolic response to IGF-I is impaired in uremic subjects (103). Animal
studies indicate that IGF-I resistance in uremia may also be caused by end organ insen-
sitivity caused by a postreceptor signaling defect (104), although the location of the
defect is controversial (105). Tissue resistance may also arise because of altered local
IGFBP production and accumulation.

Renal failure is often complicated by chronic metabolic acidosis (106). Apart from
the effects of acidosis on kidney growth as discussed earlier, acidosis causes systemic
changes including alterations in the GH/IGF-I axis (106,107). Acidosis induces nega-
tive nitrogen balance, protein catabolism, bone demineralization, and growth retarda-
tion. Acidosis induces growth retardation by blunting secretion of GH, depressing
hepatic IGF-I gene expression resulting in reduced serum IGF-I levels (87,107,108). In
growth plate chondrocytes, acidosis depresses IGF-I and GH receptor density and
increases expression of IGFBP-2 and IGFBP-4, which further reduces IGF-I bioactiv-
ity (109). All of these effects may worsen GH resistance in uremia.

Chapter 13 / Kidney IGF System 235

227-248*/Houston13  6/29/04  6:11 PM  Page 235



6. THE INSULIN-LIKE GROWTH FACTOR SYSTEM 
IN KIDNEY DISEASE

6.1. Diabetes Mellitus
Several studies have suggested that GH and IGF-I may play a role in the develop-

ment of diabetic nephropathy (70,71,81). In early diabetes, the kidney enlarges, and
renal blood flow and GFR increase. In those patients who develop diabetic nephropa-
thy, typical structural changes occur and renal function declines with time. In rats dur-
ing the first few days of diabetes, but before the kidney hypertrophies, kidney IGF-I
content increases (81). In most reports this occurs in the absence of an increase in IGF-
I mRNA levels, and the increase in IGF-I peptide likely reflects increased trapping by
IGFBPs and IGF-I receptor binding (9,70,71,110,111). Cell culture studies have
demonstrated that mesangial cells from nonobese diabetic mice secrete increased
amounts of IGF-I and exhibit constitutive activation of the IGF-I signaling pathways
(112), whereas mesangial cells from db/db mice have an increase in IGF-I receptor
number (113). Exposing mesangial cells to IGF-I increases cell proliferation and
matrix production while inhibiting matrix degradation and mesangial cell motility
(114). Furthermore, high glucose levels increase the sensitivity of mesangial cells to
IGF-I possibly by decreasing mesangial cell IGFBP-2 secretion (115). Taken together
these findings suggest that local IGF-I activity may participate in the development and
progression of diabetic glomerular disease. Indeed administration of an IGF-I receptor
antagonist inhibits renal hypertrophy in diabetic rats (116).

Another way in which IGF-I may participate in the pathogenesis of diabetic
nephropathy is through the increase in filtration of IGF-I complexed to IGFBPs
through the altered glomerulus. As proteinuria develops the tubular cells are exposed to
higher levels of IGF-I, and it has been suggested that this may contribute to the sodium
retention and progressive tubulointerstitial disease present in diabetic nephropathy
(117,118).

A role for GH in the pathogenesis of diabetic nephropathy is strongly supported by
animal studies. For example, administration of a GHR antagonist or somatostatin or an
analog thereof to diabetic mice reduces the glomerular hypertrophy, the elevated GFR
and the proteinuria (119,120). Also mice homozygous for a disrupted GH
receptor/binding protein gene are protected against diabetic kidney disease, which
develops in heterozygotes and normal controls after the induction of diabetes (121).
Conversely, chronic exposure to exogenous GH in canines (122) or to endogenous GH
in GH transgenic mice (43) results in increased kidney weight, mesangial matrix,
glomerular hypertrophy, and diffuse glomerular sclerosis, findings similar to early
human diabetic nephropathy. Finally, a recent study demonstrated increased GH recep-
tor-mediated signal transduction in the kidneys of streptozotocin diabetic rats (123). In
regards to human studies, the data available is less compelling but do suggest that GH
may participate in the genesis of diabetic nephropathy. For example, when poorly con-
trolled diabetes is tightly controlled the elevated plasma GH levels normalize, whereas
glomerular hyperfiltration declines in parallel (124). Furthermore, the administration of
a somatostatin analog to diabetic subjects reduces renal hypertrophy and glomerular
hyperfiltration in the absence of a change in glycemic control (125). Taken together
with the animal studies, these results suggest a potential role for GH in the develop-
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ment of diabetic nephropathy and offer the hope that GH receptor antagonists may
have clinical utility in blocking the development of diabetic nephropathy (126).

6.2. Compensatory Renal Growth 
In a variety of renal diseases, the kidney compensates for loss of functioning tissue

by growth and hypertrophy of nonaffected segments and it has been suggested that the
GH/IGF-I axis may play a role in inducing this compensatory renal growth (CRG)
(81). In animal models, renal growth after uninephrectomy varies by species, gender,
and age (127–129). In mature male rats, growth occurs mainly by cellular hypertrophy
whereas in the immature rat and in the adult female rat, cellular hyperplasia predomi-
nates (127,128). In adult male rodents, renal growth is GH dependent (129), whereas in
adult females and in immature rats there is no requirement for GH (127). Thus, it
appears that the presence or absence of GH dependence plays a role in determining
whether CRG involves a predominantly hyperplastic or hypertrophic growth response.
Interestingly, adult female rats and immature rats exhibit an early increase in both IGF-
I receptor and gene expression (127,130). In males IGF-I receptor expression is
unchanged early after loss of renal mass, but when measured 1 mo later, the IGF-I
receptor levels are increased (131).

A role for IGF-I in CRG has been most clearly demonstrated in experiments where a
single kidney has been surgically removed or obstructed (81,132,133). In the adult rat
after a uninephrectomy, there is an early increase in IGF-I levels in the remaining kid-
ney that returns to basal levels after 4 d (81). Furthermore, administration of an IGF-I
receptor antagonist prevents the CRG (116). Surprisingly most although not all, studies
have failed to show an increase in IGF-I gene expression to account for the increase in
IGF-I peptide (81,134–136). It has been suggested that the source of the increase in
IGF-I peptide is the serum and that it accumulates in the kidney because of increased
trapping to local IGFBPs and IGF-I receptors (81).

6.3. Nephrotic Syndrome
The nephrotic syndrome occurs in patients with extensive glomerular damage. It is

caused by increased permeability of proteins through the glomerular filtration barrier
and characterized by heavy proteinuria, hypercholesterolemia, hypoalbuminemia, and
clinical edema. In these patients and in animal models, filtration of the smaller IGF1-
IGFBP complexes increases and a larger amount of IGF-I is excreted in the urine
(137–140). Urinary IGFBP-1, -2, and -3, and acid labile subunit excretion is also
increased (137,139). It has been suggested that the greater exposure of the tubular cells
to filtered IGF-I may play a role in the progressive tubulointerstitial disease that occurs
in most glomerular diseases causing the nephrotic syndrome (117,118). Another fea-
ture of the nephrotic syndrome is reduced serum IGF-I levels. This is mostly the result
of the protein malnutrition caused by the proteinuria; however, the excessive urinary
loss of IGF-I may also contribute (137,138).

Serum IGFBP levels are also altered in the nephrotic syndrome (137–139).
Immunoreactive IGFBP-3 levels are increased, but this is caused by the accumulation
of IGFBP-3 fragments; intact IGFBP-3 levels are reduced, as are the 150-kDa ternary
complexes. The reduced IGFBP-3 levels may in part be caused by increased losses into
the glomerular ultrafiltrate, although an animal study suggests that increased serum
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proteolysis of IGFBP-3 may contribute (140). In contrast to the low serum IGFBP-3
levels, serum IGFBP-2 levels are elevated (137). This may reflect a compensatory
increase in hepatic production, possibly a response to protein malnutrition (140). The
net effect of these changes in IGFBP levels is to increase the proportion of IGF-I bound
to IGFBP-2, which is more readily filtered than the larger MW IGF-I/IGFBP-3/acid
labile subunit complex.

6.4. Progression of Kidney Failure
Regardless of the underlying cause of renal insufficiency, many factors may con-

tribute to the progression of renal damage. These include increased systemic and intra-
glomerular blood pressure, increased angiotensin and aldosterone production,
overexpression of paracrine fibrogenic growth factors, and exposure of tubular cells to
the excessive amounts of filtered proteins and growth factors in heavy proteinuric states
(77,117,118). A number of studies have implicated GH/IGF-I in the development and
progression of kidney disease (141). For example, GH transgenic mice develop
glomerulosclerosis (42,43), and GH treatment accelerates the progression of kidney
disease in several animal models (142,143). Furthermore as discussed earlier, GHR or
GH blockade prevents the development of experimental diabetic kidney disease
(120,144). However, extended GH treatment has no detrimental effects on kidney dis-
ease progression in children with CRF (145,146). It has also been suggested that in
proteinuric states, the large amounts of filtered IGF-I may activate a tubulointerstitial
reaction that contributes to progression (118). However, IGF-I transgenic mice do not
develop glomerulosclerosis (43), and short-term IGF-I treatment does not cause a
decline in kidney function in adults with advanced CRF (63,147).

7. RECOMBINANT IGF-I AND NUTRITION IN THE MANAGEMENT
OF RENAL FAILURE

7.1. Protein Energy Malnutrition
Protein energy malnutrition manifests as loss of muscle mass and reduced serum

albumin and is quite common in patients with severe acute renal failure or advanced
CRF. It occurs in 20–50% of patients with ESRD and is associated with an increase in
morbidity and mortality (148,149). The causes of the malnourished state generally fall
into two major categories that usually overlap (149,150). These categories include
inadequate food intake, usually the result of anorexia, and increased catabolism, often
with impaired protein synthesis. Chronic subclinical infection with cytokine release is
a frequent cause of the increased catabolism (99). Even when kidney function is nor-
mal, malnutrition depresses GH and IGF-I production, resulting in low serum IGF-I
levels (2–4). The GH-IGF-I axis is also depressed by acidosis (106), which is common
in advanced kidney failure (150). Other endocrine abnormalities that occur with declin-
ing renal function further aggravate tissue catabolism. These include altered hormone
production, secretion, and metabolism and resistance to their action (88).

Because malnutrition adversely affects outcome in patients with advanced renal fail-
ure, there has been considerable interest in developing new therapeutic strategies to
improve the nutritional state of these patients (149,151). One approach is the use of
recombinant GH or IGF-I. Several clinical studies have been conducted and although
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they are limited in regard to patient number, study duration, and the presence or
absence of malnutrition or inflammation, it has been shown that short-term therapy
with GH or IGF-I does induce a positive anabolic response in adult ESRD patients
(152–154). Although these results are encouraging, it is important to keep in mind that
the mainstay of management of malnutrition in kidney failure is nutritional. This
includes ensuring that the patient receives and ingests the nutrients required to improve
lean body mass. An aggressive approach, even including tube feeding or parenteral
nutrition, may be required. In addition, it is essential to correct acidosis when present,
to eliminate any source of chronic inflammation, and to make sure that the patient with
ESRD receives optimal dialysis therapy. The use of IGF proteins as markers of nutri-
tional status in renal and other diseases is reviewed in chapter 4.

7.2. Growth Retardation
It is well established that administration of recombinant GH to children who are

growth retarded because of CRF induces significant catch-up body growth, and with
long-term treatment, most attain normal adult height (155,156). Side effects of this
treatment have been relatively minor. There have been concerns that GH might acceler-
ate the progression of renal disease, increase the rate of graft rejection or induce dia-
betes, but there is no evidence that such ill effects occur (145,146,157). However,
hyperinsulinemia occurs commonly during GH therapy and needs to be followed over
the long term for potential adverse effects on the cardiovascular system (146,158).

7.3. Acute Renal Failure
Several investigators have shown that IGF-I therapy accelerates recovery from

experimental acute renal failure in rats (159–161). This is thought to be mediated
through the renal hemodynamic, proliferative, and antiapoptotic actions of IGF-I.
Stimulated by the successful preclinical studies, a multicenter placebo-controlled study
of 72 patients with severe acute renal failure was conducted recently. Unfortunately,
IGF-I failed to modify the course of the illness (162). The reason for this failure despite
successful animal studies remains unresolved and merits further study.

7.4. Kidney Function in Chronic Renal Failure
Both recombinant GH and IGF-I have been administered to adults with advanced

CRF with the aim of increasing glomerular filtration rate. Although GH treatment did
not alter renal function in adults or children with advanced renal failure (51,146), sev-
eral small studies in adults have shown that recombinant IGF-I causes a modest
increase in GFR (63,147). However, large-scale studies are required to determine
whether IGF-I can effectively and safely induce a sustained increase in renal function
in patients with advanced CRF and thus delay the need for renal replacement therapy.

8. SUMMARY AND CONCLUSIONS

Insulin-like growth factor-I plays a role in promoting renal growth and modulating
renal blood flow, GFR, and renal transport function. Within the kidney IGF-I, IGFBPs,
and the GH receptor are expressed in an anatomically heterogenous and limited man-
ner, whereas the IGF-I receptor is expressed throughout the kidney. IGF-I production
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within the kidney is modulated by GH and is nutrient sensitive. However, the level of
IGF-I within the kidney depends not only on local IGF-I production, but also on the
rate of delivery of IGF-I to the kidney which is influenced by the serum IGFBP levels,
the level of intrarenal IGF-I receptor and IGFBP expression, and finally by the local
IGF-I degrading activity.

Recent work has shown that IGF-I plays an important role in the initiation of com-
pensatory renal growth and renal hypertrophy in several renal diseases and may con-
tribute to the progression of kidney damage. In turn, kidney failure leads to profound
alterations in the extrarenal GH/IGF-I system. These may in part be caused by the mal-
nutrition and metabolic acidosis commonly present in advanced kidney failure.
Advanced kidney failure also compromises the cellular response to GH and IGF-I. GH
and IGF-I resistance manifest as impaired body growth in children and as muscle wast-
ing in adults. Resistance can be overcome by administering pharmacologic doses of the
recombinant growth factors. GH is widely used in the management of growth retarda-
tion in children with CRF. Early studies indicate that GH may also be effective in treat-
ing wasting in adults with CRF.

9. RECOMMENDATIONS AND CHALLENGES

A major challenge to the physician caring for the patient with significant kidney
damage is to arrest progressive kidney destruction. Because several studies have sug-
gested that IGF-I/GH may contribute to this complex process and thus there is a need
to further characterize the true role of IGF-I and GH in mediating progression. In the
long term, this may well lead to the development of therapeutic strategies to halt the
progression of kidney failure, possibly by blocking renal IGF-I production or action.
Another important area that merits further study is the resistance to IGF-I and GH that
develops in uremia. Understanding the mechanisms causing resistance could poten-
tially lead to the development of therapies to restore normal sensitivity to the endoge-
nous growth factor or low doses of the recombinant moiety and thus avoid the risk of
adverse side effects that may occur with high dose therapy. Finally, although initial
studies suggest that IGF-I has the potential to enhance renal function in patients with
advanced chronic renal failure, large-scale controlled studies are required to establish
the efficacy and safety of this form of treatment before it enters into clinical usage.
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KEY POINTS

• The IGF system and insulin play complementary roles in the maintenance of glucose
homeostasis.

• The IGFs are important beta cell survival factors.
• IGFBP-1 is a marker of hepatic insulin action.
• Low levels of IGFBP-1 are associated with insulin resistance and cardiovascular disease risk.
• High IGFBP-1 levels indicate the need for increased insulin replacement in diabetes.

1. INTRODUCTION

Insulin resistance and diabetes mellitus are important public health issues, and their
management represents an enormous economic burden worldwide. The prevalence of
these disorders is increasing, particularly in the developing world, because of changes
in nutrition and increasing age of population. Insulin resistance is a fundamental defect
in the metabolic syndrome (also known as syndrome X), and is associated with an
adverse lipid profile, hypertension, and impaired glucose tolerance (1,2). The meta-
bolic syndrome is a major risk factor and target for the preventative management of
cardiovascular disease (2) and diabetes mellitus (3).

Nutritional disturbances are important in the pathophysiology of insulin resistance
and diabetes mellitus. This is reflected in changes in the insulin-like growth factor
(IGF) system, which, as we will discuss, can be used under certain conditions as mark-
ers of these disorders, for preventative care.

2. SCOPE AND AIM

In this chapter, we outline the importance of the IGF system, in relation to nutrition;
in the pathogenesis, prevention, and treatment of insulin resistance and diabetes melli-
tus; and their related complications. The physiology of the IGF system is covered in
detail in other chapters. Here, we focus on the specific role of the IGF system in the
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regulation of insulin sensitivity and glucose homeostasis. We then describe the changes
in the IGF system in insulin resistance, type 1 and type 2 diabetes mellitus. Among the
IGF binding proteins (IGFBPs), we concentrate largely on IGFBP-1, for which insulin
is a dominant regulator. After reviewing each of these conditions we will discuss in
more detail three issues of topical interest: (1) conditions associated with “inappropri-
ately” high IGFBP-1 concentrations; (2) the use of components of the IGF system in
the prediction and management of disease; and (3) the use of IGFs and IGFBPs in the
treatment of insulin resistance and diabetes mellitus.

3. PHYSIOLOGY

3.1. Role of the IGF System in Normal Glucose Homeostasis
Although the endocrine regulation of blood glucose is achieved by insulin, which

promotes glucose disposal, and by the opposing actions of several counter-regulatory
hormones, there is also strong evidence of a complementary role for the IGF system in
its regulation (4). It was recognized very early that serum contained a fraction of “non-
suppressible insulin-like activity,” the action of which could not be blocked by the use
of insulin antiserum (5). It is now known that this is caused by IGF-I and -II, which
share structural similarity with insulin and have similar metabolic actions and receptor
cross-reactivity. The IGFs stimulate glucose uptake and use in muscle, with a potency
that is approx 5% of insulin when administered intravenously (6). There are differences
in the spectrum and potency of biologic activities between insulin and IGFs caused in
part by differential distribution of receptors and the occurrence of heteroreceptor com-
plexes as well as intrinsic differences in signal transduction (see Chapter 1). Studies in
vivo show that, in the short-term, IGF-I decreases insulin secretion, probably as a
response to hypoglycemia (6) and, in the long-term, there is an increase in tissue sensi-
tivity to insulin (7). The IGFs are important pancreatic β-cell survival factors, prevent-
ing apoptosis (8). Insulin itself is a positive regulator of IGF-I in vivo (9) and in vitro
(10). Thus, in addition to being subject to the positive effect of GH, IGF-I is under
nutritional control (discussed in Chapter 2).

In contrast to insulin, which is synthesized, stored, and secreted by pancreatic β-cells,
IGFs are synthesized and secreted by a wide variety of tissues and have paracrine activ-
ity. Unlike insulin, they associate with a family of six specific IGF-binding proteins that
are important in determining IGF availability and activity (11). When the IGFs associ-
ate with IGFBP-3 or, to a lesser extent, IGFBP-5, these binary complexes can associate
with a third, acid labile subunit. These ternary complexes form a stable circulating stor-
age pool showing little diurnal variation and, in this way, block most of the hypo-
glycemic potential of the IGFs. Binary complexes between the IGFs and IGFBP-1 to -6,
unbound IGFs, and unbound IGFBPs are able to cross the capillary membrane rapidly
to reach the tissues. Posttranslational modifications of IGFBPs may alter their associa-
tion with IGFs (12) and thus may modify IGF action in glucose homeostasis. Phospho-
rylation of IGFBP-1, for example, is likely to promote the inhibitory effect of IGFBP-1
on IGF actions, whereas proteolysis of IGFBP-3 and other IGFBPs is likely to promote
IGF availability.

The concentrations of IGF-I and IGF-II in the human circulation represent at least
50 times the hypoglycemic potential of insulin (4). Although most of this is inhibited,
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even 1% availability to the tissues would represent a significant activity. Estimates of
steady-state free IGF levels support this concept and studies in rodents suggest that this
activity can be blocked by IGFBP administration or overexpression (13,14). Assays
have recently been developed for the “free” IGF fraction. In this review we use the
term “free” IGF for those assays that use ultrafiltration under near-physiological condi-
tions and “readily dissociable” IGF for values from immunoradiometric assays which
do not have an ultrafiltration step and which result in somewhat higher concentrations
(15).The patterns of regulation of the IGFBPs also suggest that they may play specific
roles in glucose homeostasis. IGFBP-1, with its characteristic diurnal rhythm (16,17)
associated with food intake, and a classical pattern of response after insulin-induced
hypoglycemia (18), appears to play a role as a glucose counter-regulatory hormone,
blocking the availability of IGFs (4). Hepatic IGFBP-1 secretion is inhibited by insulin
(9,19), and under normal conditions circulating concentrations are inversely related to
insulin or C-peptide levels (20), accounting for the response to food intake. After the
induction of hypoglycemia, IGFBP-1 concentrations increase dramatically (18,21).
This may be caused in part by falling insulin concentrations (21) with a contribution
from the stimulatory effect of glucose counter-regulatory hormones (22–24). IGFBP-1
has a similar pattern of regulation to phosphoenol pyruvate carboxykinase, and this is
reflected in the close relationship between hepatic IGFBP-1 production and hepatic
glucose production (19), which is also illustrated in Fig. 1.

Circulating concentrations of IGFBP-2, which binds IGF-II with a higher affinity than
IGF-I, are increased in fasting and in tumour hypoglycemia (25), and it is speculated that
it might target IGF-II to the tissues in these situations. Endocrine IGF-II may thus have
particular importance as a metabolic hormone, although there may be species differences
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Fig. 1. Correlation between hepatic IGFBP-1 secretion and glucose production in normal individu-
als. Blood samples were taken from the hepatic vein and brachial artery in five healthy men after an
overnight fast and used to calculate the splanchnic production of IGFBP-1 and glucose (19).
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in this role. In rodents circulating IGF-II levels decrease after birth and are absent in the
adult circulation, whereas in humans circulating IGF-II concentrations are high through-
out the lifespan. It appears that IGF-II may have a separate paracrine role in the develop-
ing pancreas where it co-localizes with insulin in β cells both in humans and in rats (26).

3.2. Glucose Homeostasis in IGF System Transgenic and Knockout Mice
Transgenic and knockout mice have been used specifically in the investigation of the

role of the IGF system, and the resulting phenotypes support a role for “available”
IGFs in glucose homeostasis. Transgenic mice with a dominant-negative insulin-like
growth factor-I receptor targeted to skeletal muscle have hybrid receptors that are inac-
tive. These animals develop insulin resistance and pancreatic β cell dysfunction at an
early age (27). Mice with liver-specific knockout of the IGF-I gene also have insulin
insensitivity, attributed to the loss of feedback on, and therefore increase in, GH levels
(28). When the liver IGF-I knockout is combined with a knockout of acid labile sub-
unit, which alone has normal fasting insulin concentrations, GH and insulin concentra-
tions increase to levels above that of the hepatic IGF-I knockout alone (29).

IGF-II-deficient mice have reduced glycogen stores and fasting hypoglycemia post-
natally (30), indicating a role for IGF-II in glycogen metabolism at this developmental
stage, at least in the mouse. Mice overexpressing hepatic IGF-II from 3–4 wk of age
have increased basal and insulin-stimulated glucose disposal (31), again supporting a
metabolic role in adult life for IGF-II. However, mice overexpressing IGF-II in β-cells
develop reduced apoptosis and islet cell hyperplasia (32), which may be associated
with hyperinsulinemia, mild hyperglycemia, fatty liver, and obesity (33).

Further evidence for a role of the IGF system in glucose homeostasis comes from
IGFBP transgenic mice (34). It has been clearly shown that transgenic mice overex-
pressing rat IGFBP-1 have increased fasting blood glucose (14), perhaps because of
enhanced gluconeogenesis and hepatic insulin resistance (35). They also have evi-
dence of inhibition of IGF-I action in adipose tissue (36). One strain of mice overex-
pressing human IGFBP-1 exhibited little change in glucose tolerance (37), a difference
that may be caused by the inability of mouse kinase activity to phosphorylate the
human isoform (38). Overexpression of human IGFBP-1, along with its regulatory
sequences, so that its inverse relationship to insulin is maintained, develop glucose
intolerance in later life, particularly in males, accompanied by a blunted hypoglycemic
response to IGF-I (39). IGFBP-3 transgenic mice also have impaired glucose home-
ostasis, with marked peripheral insulin resistance (40). A possible role of muscle
IGFBP-3 transgene expression in determining this response has not yet been clarified.

IGFBP-1 (14), IGFBP-2 (41), and IGFBP-3 (42) transgenic mice are all growth
retarded. However, in contrast to IGFBP-1 and -3, IGFBP-2 transgenic mice tend to
have reduced fasting glucose concentrations (41). Glucose homeostasis in these animals
has not been studied in detail; however, it has been noted that IGFBP-2 expression is
highest in the pancreas, where it may have an impact on local IGF activity and therefore
insulin secretion, in addition to endocrine effects on IGF availability for growth.

4. THE IGF SYSTEM IN INSULIN RESISTANCE

Insulin resistance is a heterogeneous disorder that may be present in up to 20% of
the population and in which peripheral insulin resistance (reduced insulin-mediated
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glucose uptake in peripheral tissues) and hepatic insulin resistance (reduced insulin-
mediated suppression of hepatic glucose production) are present to varying degrees.
Insulin resistance, along with other components of the metabolic syndrome, predicts
the development of type 2 diabetes (3). Plasma insulin concentrations increase to
maintain normoglycemia and fasting levels may be used, along with glucose concen-
trations, in the Homeostasis Assessment Model, which is a mathematical model
allowing for both insulin sensitivity and β-cell-function. The Homeostasis Assess-
ment Model is simple, gives an estimate of basal insulin resistance, and is convenient
for large epidemiological studies (43). The euglycemic clamp technique determines
resistance under insulin-stimulated conditions and is appropriate for smaller physio-
logical studies. Isotope studies under euglycemic clamp conditions are needed to
properly determine hepatic insulin resistance. Unfortunately, early studies of the role
of the IGF system have not clearly discriminated between peripheral and hepatic
resistance, and most of the following comments apply to whole body or predomi-
nantly peripheral insulin resistance. Hepatic insulin resistance is discussed in greater
detail (see Section 6 ). States of severe insulin resistance are usually characterized by
diabetes and are covered in Section 5.3.

4.1. Changes in the IGF System in Insulin Resistance
The most profound change in the IGF system in insulin resistance is suppression of

IGFBP-1. Because IGFBP-1 is inhibited by insulin, it reflects hepatic insulin action
and, therefore, under conditions of preserved hepatic insulin sensitivity, the prevailing
insulin concentrations. Under these conditions it is good a marker of peripheral insulin
sensitivity. Animal models with peripheral insulin resistance, such as Zucker diabetic
fatty rats have decreased IGFBP-1 concentrations (44). In human obesity associated
with hyperinsulinemia, circulating IGFBP-1 concentrations are low (45–47), and
lifestyle interventions (diet and exercise) in middle-aged men with the metabolic syn-
drome result in an IGFBP-1 increase (48). Total IGF-I concentrations may be normal,
and IGFBP-3 and IGF-II even increased, in obesity (49). In obese children low levels
of IGFBP-1 may be seen even in the presence of normal peripheral insulin levels (50).
This suggests that IGFBP-1 is a sensitive marker of portal insulin action and may be a
predictor of the later development of frank insulin resistance. IGFBP-2 has been
observed to decrease in adolescent obesity (51).

IGFBP-1 is also decreased in endocrinopathies associated with insulin resistance
and hyperinsulinemia, such as GH excess (52) and Cushing’s disease (52,54) or gluco-
corticoid administration (55,56). In HIV lipodystrophy, severe insulin resistance is
associated with reduced IGFBP-1 levels although there is a blunted response to hyper-
insulinemia (57).

Patients with acromegaly may experience marked improvement in symptoms during
nutritional deprivation, even in the presence of sustained, high GH levels. A case study
is described in Fig, 2. In this patient insulin sensitivity and glucose tolerance improved
during caloric restriction and IGF-I levels fell by 50%. As insulin sensitivity improved,
there was clinical improvement and a normal diurnal response for IGFBP-1 was seen,
with clear falls in IGFBP-1 levels in relation to the small meals consumed (approx 30
kcal, in the form of carbohydrate drinks).
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4.2. The IGF System and the Pathophysiology of Insulin Resistance
Genetic and environmental factors contribute to the pathogenesis of insulin resis-

tance. Nutritional factors play an important role and, during the normal lifespan hor-
monal changes, contribute to the relative insulin resistance that occurs during puberty
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Fig. 2. Response to nutritional deprivation in acromegaly. A 47-yr-old woman with acromegaly was
assessed with 2-h sampling during a period of nutritional deprivation (A). Throughout the study
meals or snacks were consumed at 0800 h, 1200 h, 1400 h, 1700 h, and 1930 h. She reported a
marked improvement in sweating and arthralgias while on 150 kcal/d. IGFBP-1, GH, and IGF-I con-
centrations, measured by radioimmunoassay, are shown in B. Solid lines indicate periods of sam-
pling. The mean blood glucose was 6.8, 3.9, and 5.7 mmol/L during each these study periods and the
mean insulin, 85, 16, and 237 pmol/L, respectively.
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and pregnancy. Genetic variations at the IGF-II and IGFBP-1 loci have been implicated
in insulin resistance (58), although a larger cohort study has not yet been reported.

It is proposed that low IGFBP-1 is responsible for the observed increase in “free”
IGF-I in obesity (49). “Readily dissociable” IGF-I also tends to increase in obesity
(51). Reduced GH concentrations may be a direct response to increased feedback inhi-
bition by IGF-I (51). An increase in available IGF-I would explain normal growth in
obese children despite the low levels of GH. The potential contribution of relative GH
deficiency to reduced insulin sensitivity (59) is entirely speculative.

Insulin resistance is characteristic of the polycystic ovarian syndrome, and IGFBP-1
is decreased in this disorder (60,61). It has been proposed that this results in increased
ovarian IGF activity and may contribute to the pathogenesis.

5. THE IGF SYSTEM IN DIABETES MELLITUS

Diabetes mellitus is a group of disorders characterized by hyperglycemia. The
American Diabetes Association recommends that diabetes be diagnosed on the basis
of (1) classical symptoms plus a random plasma glucose of ≥11.1mmol/L or (2) a
fasting plasma glucose of ≥7.0 mmol/L or (3) a 2-h plasma glucose after a 75-g oral
glucose load of ≥11.1mmol/L (62). There are a number of pathogenic processes
involved in the development of diabetes mellitus. The American Diabetes Association
has established a useful etiological classification, dividing the disorder into four
groups (62). Type 1 diabetes refers to the outcome of β-cell destruction, which is usu-
ally caused by an autoimmune process, so that individuals are insulin deficient and
prone to ketoacidosis. Type 2 diabetes is the most prevalent form and represents a
spectrum from predominantly insulin resistance with relative insulin deficiency to a
predominant insulin secretory defect with insulin resistance. Fat distribution and
nutritional factors may contribute to this variability. Other specific types of diabetes
include genetic defects of β-cell function and insulin action, endocrinopathies, and
diseases of the exocrine pancreas. One disease of the exocrine pancreas, fibrocalcu-
lous pancreatopathy, results in diabetes and is caused by both genetic and environ-
mental factors, including nutritional factors.

5.1. The IGF System in Type 1 Diabetes Mellitus
In poorly controlled type 1 diabetes IGF-I, IGF-II, and IGFBP-3 concentrations are

decreased (63), whereas IGFBP-1 is increased (63–67) because of high hepatic produc-
tion and not to a decreased clearance rate (9). The responses are thus similar to those
seen in nutritional deprivation. Very high concentrations of phosphorylated IGFBP-1
are seen in severe ketoacidosis (68). There are many facets of the IGF system that are
yet to be explored; for example, the report of increased urinary IGFBP protease activity
(69). Animal models of type 1 diabetes, such as streptozotocin-induced insulin defi-
ciency, are useful models for the IGF system in this disease (70).

In response to insulin treatment, total IGF-I increases, independently of a change in
GH levels (63). A reduction in IGFBP-1 (63) and increase in “free” IGF-I (71) also is
observed. The most effective suppression of IGFBP-1 is seen during intensive insulin
therapy (72,73) and particularly when insulin is delivered via the peritoneal or portal
route (67,74). Withdrawal of insulin results in a dramatic increase in IGFBP-1 levels 1
h later (see Fig. 3).
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It is speculated that elevated IGFBP-1 levels have a detrimental effect on metabolic
control (75–78), as well on growth (78,79). The increased IGFBP-1, by decreasing IGF
bioavailability, may contribute to the elevated GH concentrations, insulin resistance,
and hyperglycemia (77).

The IGF system has been shown to influence β-cell function in animal models (see
Section 3.2.), and it has been reported that IGF-I treatment delays the onset of obesity
in nonobese diabetic mice (80). However, the role of the IGF system in the pathogene-
sis of type 1 diabetes in humans has not been investigated.

5.2. The IGF System in Type 2 Diabetes Mellitus
There is marked phenotypic heterogeneity in type 2 diabetes mellitus. The changes

in IGFBP-1 levels reflect this, being variably reported from low (66) to high (72,81). It
has been suggested that the method of treatment may also affect it secretion. Patients
on sulfonylurea therapy have increased proinsulin and low IGFBP-1, and those on mul-
tiple insulin injections have increased concentrations (82). There are few animal mod-
els of type 2 diabetes in which the IGF system has been characterized. We have found,
in the Goto-Kakizaki rat, that IGFBP-1 clearly increases and there is no relationship to
circulating insulin, suggesting that there is significant hepatic insulin resistance in
these lean animals (unpublished data). IGFBP-3 proteolysis, speculated to be related to
insulin resistance, has been documented in human type 2 diabetes (83).

Insulin resistance often precedes type 2 diabetes, and individuals with the metabolic
syndrome are at increased risk of impaired glucose tolerance. This is also true for the
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Fig. 3. IGFBP-1 response to cessation of an insulin infusion in type 1 diabetes mellitus. Insulin was
infused intravenously in a 30-yr-old woman for 20 h, the rate adjusted to maintain euglycemia. 
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group of individuals born small-for gestational age (84). In individuals who are small
for gestational age, in which changes in the IGF system such as low IGF-I in early
childhood and low IGFBP-1 in later childhood, have been observed, it has been specu-
lated that the IGF system is involved in the pathogenesis of later insulin resistance and
cardiovascular consequences.

5.3. Other Types of Diabetes Mellitus and the IGF System
Severe insulin-resistant states are characterized by acanthosis nigricans, acromega-

loid features, and ovarian hyperandrogenism, in addition to hyperinsulinemia and dia-
betes. In a small series of women with congenital partial lipodystrophy decreases in
total and “readily available” IGF-I, and IGFBP-1 were observed, although the ratio of
“readily available” IGF-I to IGFBP-1 was increased (85). It is speculated that IGF-I is
responsible for the development of acromegaloid and other features in this disorder.

5.4. The Role of the IGF System in Diabetes Complications
Although a direct effect on macrovascular complications is yet to be proven, IGF-I

and IGFBP-1 are clearly markers of cardiovascular risk and disease (see Section 7).
Growth factors, including IGFs, are more strongly implicated directly in the develop-
ment of microvascular disease (86). In humans, studies are limited to observations on the
circulating IGF system, which may not precisely reflect changes in individual tissues.

Changes in the expression of various components of the IGF system occur early in
animal models of kidney disease (87) and are discussed in greater detail in Chapter 13.
The IGF system may participate in diabetic nephropathy by mediating increases in
mesangial extracellular matrix production (88,89).

Despite an early report linking IGF-I to retinopathy (90), there are few studies that
determine the precise role of the IGF system in this disorder. The few studies per-
formed report either no change, an increase or a decrease in circulating IGF-I levels
(91). IGFBP-1 is present in the vitreous of patients with diabetic retinopathy, with no
correlation with serum levels (92), and may relate to a nonspecific increase in intravit-
real proteins (93).

Animal studies support a potential role for IGF-I in diabetic neuropathy (86). One
clinical study in a group of type 1 diabetic patients failed to demonstrate a difference in
circulating IGF-I compared to matched control group (94). However, in this study,
IGFBP-1 levels were reported to be elevated.

6. CONDITIONS ASSOCIATED WITH INAPPROPRIATELY ELEVATED
IGFBP-1 LEVELS

In healthy individuals, fasting IGFBP-1 and insulin concentrations are closely
inversely related (95). However, in type 1 diabetes IGFBP-1 is elevated in relation to
the peripheral insulin levels (95). The fact that these peripheral levels of exogenous
insulin are much lower than the endogenous portal insulin concentrations that would
normally be present may contribute to this observation. Elevated levels of IGFBP-1 in
relation to insulin can also be seen in type 2 diabetes (81,82) when endogenous
insulin production fails to further increase with increasing insulin resistance. When
no change in glucose homeostasis is observed, this is consistent with the concept that
predominantly hepatic insulin resistance has developed. However reduced hepatic
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insulin extraction may also result in inappropriate elevations of IGFBP-1 in relation
to insulin, and in this situation C-peptide levels may more reliably reflect portal
insulin secretion (96). Another possible explanation for the relative high IGFBP-1 in
some patients with type 1 or type 2 diabetes is impaired renal clearance due to
reduced glomerular filtration rate.

An elevated IGFBP-1 in relation to insulin is a characteristic of catabolic states (97).
In these conditions there is increased secretion of glucose counter-regulatory hormones
and cytokines, both of which increase IGFBP-1. Cytokines may themselves induce
hepatic insulin resistance. Intensive care patients are a group with severe peripheral and
hepatic insulin resistance, in whom elevated IGFBP-1 is a marker of poor outcome and
resistance to insulin therapy (98). It is speculated that, in these critically ill patients,
hypoxia may play a role in the development of hepatic insulin resistance. IGFBP-1 is
also stimulated by hypoxia (99). Thus, in severe catabolic stress, hepatic insulin resis-
tance and factors (e.g., cytokines, glucose counter-regulatory hormones, and hypoxia),
which are direct stimulators of IGFBP-1, coexist, suggesting that IGFBP-1 cannot be
used as an independent marker of either parameter. Rodents may not be ideal experi-
mental models for dissecting out the relative contributions of hepatic insulin resistance
and these stimulators. Glucocorticoids, for example, stimulate IGFBP-1 potently in
vivo in rodents (100), whereas no elevation in IGFBP-1 is seen in dexamethasone-
treated humans (55,56). One study in obese rats has demonstrated that the decrease in
insulin levels after surgical removal of visceral fat (101) is associated with a decrease in
IGFBP-1; however, weight loss in humans with central adiposity is associated with an
increase IGFBP-1 (K. Brismar, unpublished observations).

7. THE IGF PROTEINS AS CLINICAL MARKERS IN INSULIN
RESISTANCE AND DIABETES

In subjects with normal pancreatic β-cell function, a low IGFBP-1 level is a sensi-
tive marker of portal insulin levels and therefore may be a valuable diagnostic tool for
whole body insulin resistance. Low levels of IGFBP-1 are a common finding in all con-
ditions with hyperinsulinemia. Moreover, even in healthy nonobese subjects with nor-
mal oral glucose tolerance, the basal IGFBP-1 can be used to predict the insulin and
C-peptide response to glucose infusion, more reliably than the fasting insulin concen-
trations (55). We believe that the stability of IGFBP-1 in serum and blood, and less
rapid response to environmental stimuli, give this measurement an advantage over cur-
rently available insulin and C-peptide methods.

Low levels of IGFBP-1 have been shown to be associated with impaired glucose tol-
erance (102), and cardiovascular disease risk both in healthy individuals (102–104) and
in those with type 2 diabetes (105,106). In one study a predictive role of IGFBP-1 for
impaired glucose tolerance was found to be dependent on the presence of low IGF-I
levels (107). Low total IGF-I levels predict worsening of insulin-mediated glucose
uptake over a 1-yr period in older (55–80 y) individuals (108) and low “readily disso-
ciable” IGF-I has been associated with signs of cardiovascular disease (103).

In type 1 diabetes, where there is no endogenous insulin secretion, IGFBP-1 cannot
be used as a marker of insulin sensitivity (109); however, we recommend that high
IGFBP-1 levels can be used to detect inadequate insulin replacement. Circulating IGF-
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I concentrations are low in poorly controlled type 1 diabetes and can be used to reflect
inadequate nutrition as well as insulin deficiency. In patients with type 2 diabetes on
oral hypoglycemic agents, increasing circulating concentrations of IGFBP-1 indicate
an inadequate insulin response to overcome the insulin resistance. Conversely, decreas-
ing IGFBP-1 levels may be a useful indicator of improved insulin sensitivity in
response to therapeutic intervention.

8. THE IGF SYSTEM IN THERAPEUTICS

The effects of recombinant human IGF-I administration in normal individuals and
its potential use in catabolic disease, bone, and neurological diseases are discussed in
detail in other chapters. Therefore we will limit our discussion here to the clinical use
of IGF-I in diabetes and insulin resistant states.

8.1. Type 1 Diabetes Mellitus
In 1992, intravenous IGF-I was reported to rapidly reverse hyperglycemia and

ketoacidosis in an adolescent with type 1 diabetes and severe insulin resistance (110). In
a group of adolescents a single subcutaneous injection of 40 µg/kg was found to reduce
overnight GH concentrations and insulin requirements (111). When, in a placebo-con-
trolled trial, 20–40 µg/kg IGF-I was given daily in addition to multiple-injection insulin
therapy, HbA1c decreased at 12 wk; however, this was not seen at 24 wk (112). There
are two reports of randomized, double-blind, placebo-controlled studies in young adults
with type 1 diabetes that show that 1-wk therapy with 40 µg/kg/d in combination with
insulin therapy reduces mean overnight GH concentrations (113,114), improves periph-
eral insulin sensitivity (114), and decreases hepatic glucose production (113).

8.2. Type 2 Diabetes Mellitus
Despite the observation that individuals with type 2 diabetes mellitus may have IGF-I

resistance in peripheral tissues (115), treatment with IGF-I results in improved glucose
and lipid metabolism (116). Improvements in muscle as well as hepatic insulin sensitiv-
ity can be demonstrated (117). The use of IGF-I in type 2 diabetes may result in changes
in IGFBP-1, -2, and -3, which may alter the tissue bioavailability of IGFs (118).

8.3. Insulin Resistance
Rats with a metabolic syndrome caused by maternal malnutrition respond to IGF-I

therapy with a reduction in food intake, obesity, and hypertension (119). Although
IGF-I has not been used in this circumstance in humans, it has been used in high doses
with metabolic improvement in patients with severe insulin resistance, such insulin
receptor mutations and congenital generalized lipodystrophy (120–123), although at
least two studies fail to demonstrate significant glucose lowering response (124,125).
In some of the individuals studied, there was an improvement in acanthosis nigricans
and hirsutism (121).

8.4. Side Effects
High-dose IGF-I infusion is associated with acute symptomatic hypophosphatemia

(110). IGF-I treatment may induce changes in the profile of circulating IGFBPs that
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may affect its bioavailability (25). Chronic low-dose subcutaneous therapy has been
associated with an unacceptable rate of adverse events, including facial and hand
edema, bilateral jaw tenderness, arthralgias, tachycardia, and flushing (126). The com-
bination of IGF-I and IGFBP-3 is more promising. Continuous subcutaneous infusion
of this combination or placebo for 2 wk reduced mean GH levels, insulin require-
ments, and blood glucose in young adults with type 1 diabetes with no reported side
effects (127).

9. SUMMARY AND CONCLUSIONS

IGF-I, IGF-II, and insulin have homology in structure and in their receptors.
Although they can partially replace each other, they have distinct roles in whole body
metabolism. The IGFs play a more long-term role, whereas insulin regulates meal-
related responses. The two systems are closely linked, with insulin regulating IGFBP-
1, and IGFs being important in pancreatic β-cell survival.

IGFBP-1 is marker of insulin production and action and has been used as a marker
for failure of insulin production, as well as insulin resistance. A low IGFBP-1 is an
early marker of insulin resistance and is emerging as useful predictor of those individu-
als who are at risk of developing cardiovascular disease and type 2 diabetes. Although,
theoretically, IGFBP-1 levels that are high in relation to insulin may reflect significant
hepatic insulin resistance, the clinical conditions in which this is seen are also accom-
panied by increased hormones and cytokines which themselves promote insulin resis-
tance but also directly stimulate hepatic IGFBP-1 secretion.

The low IGF-I and high IGFBP-1 levels seen in poorly controlled type 1 diabetes are
likely to contribute to short stature in children and may also have detrimental effects on
metabolic control.

The measurement of IGF-I is well established in the clinic as a marker of GH secre-
tion. IGFBP-1, alongside IGF-I, has now emerged as an even more valuable tool in
determining nutritional status and in the choice of treatment in both type 1 and type 2
diabetes mellitus. IGFs, in combination with IGFBPs, may also play a future role in
therapeutic regimens for diabetes mellitus associated with insulin resistance.

10. RECOMMENDATIONS AND CHALLENGES FOR THE FUTURE

Although it is clear that components of the IGF system are altered, sometimes pro-
foundly, in insulin-resistant states and in both type 1 and type 2 diabetes mellitus, their
role in the pathophysiology of these disorders is not yet clearly defined. Interventions
that might restore these responses to normal have important implications in the man-
agement of a group of disorders that are a growing social and economic burden.

10.1. What Are the Changes to the IGF System at the Tissue Level in Insulin
Resistance and Diabetes Mellitus?

We should be cautious in interpreting IGF activity at the tissue level from circulat-
ing concentrations. In addition to the circulating IGFBP profile, protease activity in the
circulation and tissues, and interaction with IGFBPs at the tissue level will influence
the final effect of the IGFs on glucose homeostasis. This is particularly important
when considering the role of the IGF system in diabetes complications. We propose
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that the use of knockout and transgenic mice for components of the IGF system,
including IGFBP proteases, generally and in specific tissues, in combination with the
induction of diabetes along with its complications is an experimental approach that
could be explored.

10.2. What Is the Predictive Value of a Low IGFBP-1 for the Long-Term Risk
of Type 2 Diabetes?

Although low circulating IGFBP-1 concentrations are related to diabetes mellitus in
cross-sectional studies, it’s role as a predictive marker is unclear. One study suggests
that it is useful only when combined with a low IGF-I level (107). Large prospective
studies are indicated to clarify its potential role in predicting this condition with its
associated morbidity and mortality.

10.3. What Is the Cause of the Early Postprandial Rise in IGFBP-1?
Some studies have demonstrated rapid meal-related rises in IGFBP-1, prior to the

fall due to rising insulin concentrations (82). This is more pronounced in patients with
type 2 diabetes. The reason is not immediately clear and requires careful study. We
speculate the role of altered blood flow and of IGFBP-1 degradation and clearance in
this phenomenon.

10.4. What Is the Outcome of a Low IGFBP-1 in Insulin Resistance?
The possibility of a direct effect of IGFBP-1 on IGF actions in the ovary in polycys-

tic ovarian syndrome (60,61), and in the pituitary to reduce GH secretion in obesity
(51) has been proposed. There is also the theoretical possibility of a role in increased
cancer risk seen in obesity (128). The pathophysiological consequences of low hepatic
IGFBP-1, independent of its effect on IGF activity, should be also considered, includ-
ing loss of the protective effect of IGFBP-1 on hepatic apoptosis (129). If low IGFBP-
1 concentrations are detrimental, should IGFBP-1 be replaced if other therapeutic
approaches, for example, diet and weight loss, are unsuccessful?

10.5. Can IGFBP-1 Be Used as a Marker of Hepatic Insulin Resistance?
There are a number of conditions, for example, catabolic states, where IGFBP-1 is

inappropriately elevated and hepatic insulin resistance is present. What is the cause of
the elevated IGFBP-1 in these circumstances? Is it a marker of hepatic insulin resis-
tance alone, or does it reflect more precisely other aspects of the catabolic response,
such as cytokine secretion and the presence of oxidative stress? These questions are yet
to be answered by carefully designed clinical studies.

10.6. What Is the Outcome of Inappropriately Elevated IGFBP-1?
When circulating IGFBP-1 is high in relation to insulin, what are the metabolic con-

sequences? What are the consequences of suppressing or blocking this “inappropriate”
activity? It has recently been observed that inhibitors of glycogen synthase kinase-3 are
able to reduce IGFBP-1 in the presence of insulin resistance in vitro (130) and this
indicates a possible approach to this question for future in vivo studies.
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KEY POINTS

• IGF-I is an intestinal mitogen that stimulates bowel growth via systemic or endocrine
actions as well as autocrine/paracrine actions of locally expressed IGFs in bowel.

• Studies in transgenic mice suggest that GH promotes differentiated function of the entero-
cytes whereas IGF-I exerts primarily mitogenic and anti-apoptotic actions in the small
intestine.

• The intestinal mucosa is resistant to the mitogenic effects of GH-stimulated endogenous
IGF-I during parenteral nutrition at the postreceptor level.

• Greater knowledge is needed regarding how local expression of IGFBP-3 and -5 modu-
late IGF-I action in order to fully understand the role of IGF-I in intestinal adaptation and
its potential to treat intestinal failure due to short bowel syndrome.

• A complete understanding of IGF-I action in the GI tract will require characterization of
the mechanisms of IGF interactions with other hormones and cytokines during normal
physiology and disease.

1. INTRODUCTION

The gastrointestinal (GI) tract is a major target organ for the insulin-like growth fac-
tor (IGF)-I system. However, a thorough understanding of the role of the IGF system in
proliferation, apoptosis, differentiation, and development of the GI tract is just begin-
ning to emerge. Growth hormone (GH) and IGF-I act on the GI tract in an endocrine
manner (1,2). In addition, IGFs expressed locally in the bowel have autocrine or
paracrine effects on specific cell types within the bowel (3). IGF-I is thought to mediate
many of the actions of GH although unique effects of each growth factor have been
noted in the GI tract (1,4). Evidence that systemically administered IGF-I stimulates
hyperplasia of the small intestinal epithelium suggests that the IGF-I system may have
therapeutic benefits in patients with GI disease. This chapter discusses current under-
standing of the role of the IGF-I system in normal physiology of the GI tract and in
conditions of intestinal adaptation including parenteral nutrition, intestinal resection,
and inflammatory bowel disease.
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2. BACKGROUND

This section provides a brief review of the structure of the intestinal wall, turnover
of the epithelial cell layer that composes the mucosal lining of the intestine, and the
process of intestinal adaptation.

2.1. Structure of the Intestinal Wall
The structure of the intestinal wall consists of an epithelial cell layer that faces the

lumen of the bowel, the underlying lamina propria, a thin layer of smooth muscle
called the submucosa or muscularis mucosa composed of fibroblasts and collagen, and
enteric smooth muscle called the muscularis externa (Figs. 1 and 2) (1). Epithelial cells
are separated by a basement membrane from a layer of mesenchymal cells (fibrob-
lasts/myofibroblasts) in the lamina propria where local IGF-I synthesis occurs, as dis-
cussed in the next section (Figs. 1 and 2). The lamina propria also contains capillaries,
immune cells, and smooth muscle cells. Interactions between epithelial cells and adja-
cent mesenchymal cells are integral to normal development, differentiation, and mor-
phogenesis of the intestinal epithelial lining (1,5).

The mucosal lining of the intestine or intestinal mucosa plays an essential role in
digestion and absorption of nutrients by producing electrolytes, digestive enzymes, and
transport proteins. Coordinated contraction of enteric smooth muscle provides mixing
of ingested foods to facilitate digestion and absorption. Moreover, the GI tract is the
largest immune organ in the body. The intestinal mucosa provides a barrier to prevent
entry of ingested microorganisms and toxins into the body and the lamina propria con-
tains a variety of immune cells that are central to gut mucosal immune function. 

The small intestinal epithelium is organized into a crypt-villus axis (Figs. 1 and 3),
and the colon is organized into crypts and surface epithelium (Figs. 2 and 3). In the
small intestine, cells migrate from the crypts onto the villi, and five to seven- crypts
feed onto one villus (6). The crypts in both the small intestine and colon contain a com-
partment of continuously proliferating cells. As cells exit the crypts, they undergo ter-
minal differentiation into one of three types of epithelial cells (1,5): (1) columnar
epithelial cells that express proteins involved in electrolyte secretion, nutrient diges-
tion, and nutrient absorption; (2) goblet cells that secrete mucus; or (3) enteroendocrine
cells that secrete a wide range of bioactive hormones and peptides that control gut
function and metabolism. There are distinct populations and proportions of particular
epithelial cell types along the length of the small intestine and colon. In the small intes-
tine, columnar epithelial cells and goblet cells migrate up the villus until they are
sloughed off at the villus tips. In the colon, migrating surface colonic enterocytes are
sloughed off into the lumen. The mechanisms underlying loss of enterocytes in the
small intestine and colon include programmed senescence that involves loss of cell
adhesion factors and possibly programmed cell death or apoptosis (7).

2.2. Turnover of the Mucosal Epithelial Layer
The epithelial lining of the small intestine and colon undergoes constant renewal and

has one of the fastest rates of cell turnover among tissues in the body. The intestinal
epithelial layer is completely replaced within 2 to 3 d in mice and rats and within 3 to 6 d
in humans (8). Maintenance of a steady-state functional mass of intestinal epithelium
requires a balance between the rates of cell proliferation and cell loss (Fig. 3). Cell differ-
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Fig. 1. Photomicrographs illustrating the microanatomy of the small intestine. (A) Low-power pho-
tomicrograph of a section through the wall of the small intestine. M, mucosa; SM, submucosa; ME,
muscularis externa. (B) Localization of mesenchymal cells that show positive immunostaining for α
smooth muscle actin illustrates positively stained pericryptal myofibroblasts, a core of positive-
stained cells within the villi, a thin layer of positively stained smooth muscle cells separating the
mucosa and submucosa (musclaris mucosa), and the intensely stained muscularis externa. (C) High-
power photomicrograph to illustrate crypts (C), villi (V), and lamina propria (LP). Reprinted with
permission from ref. 1.

Fig. 2. Low- (A) and high- (B) power photomicrographs illustrating the microanatomy of the colon.
SE, surface epithelial cells; L, lamina propria; SM, submucosa; ME, muscularis externa. Reprinted
with permission from ref. 1.

271-290/Houston15  6/29/04  6:15 PM  Page 273



entiation is also tightly regulated to maintain the normal array of different epithelial cell
types within a specific intestinal segment. Cells in the crypt undergo spontaneous apopto-
sis in response to excessive cell proliferation or exposure to the toxic environment of the
intestinal lumen (7). This provides a mechanism to dispose of genetically damaged crypt
progenitor cells that may protect the GI tract from cancer (7). IGF-I decreases apoptosis
in the crypt stem cell zone, thus mediating a net increase in epithelial cell mass; however,
excess IGF-I may also increase the risk of tumorigenesis in the GI tract (9,10).

2.3. Intestinal Adaptation 
Intestinal adaptation is defined as the process by which the small intestine, and to a

lesser degree the large intestine, adjust structural mass and functional capabilities to
meet physiologic needs (8,11). This process has been studied extensively in rodent
models using experimental designs that use fasting-refeeding, parenteral nutrition, and
intestinal resection as discussed in subsequent sections of this chapter. Limited data
suggest that small intestinal adaptation occurs in humans (11,12). Despite extensive
research, the regulation of intestinal adaptation by factors, including luminal nutrients
(13), hormones such as IGF, pancreaticobiliary secretions, and the enteric nervous sys-
tem, remains poorly defined (11). Defining the mechanisms that regulate intestinal
adaptation may lead to improved treatments for a variety of diseases of the GI tract (1). 

3. IGF-I AND NORMAL INTESTINAL PHYSIOLOGY

IGF-I and/or IGF-II are expressed throughout human and rodent small intestine
(14,15). In rats, IGF-II predominates in intestine during embryonic development
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Fig. 3. Schematic of the small intestine and colon showing the location of proliferating crypt cells,
differentiated cells, and cells that undergo spontaneous apoptosis in the crypts.
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whereas IGF-I predominates postnatally (14). Limited evidence in humans suggests
that, unlike the rat, significant levels of IGF-II mRNA are present in adult human intes-
tine (1). The IGF system stimulates intestinal growth by endocrine actions through
binding to specific GH and IGF-I receptors in the small and large intestine (2,16) as
well as through local IGF-I synthesis and autocrine/paracrine actions. The major sites
of local IGF-I or IGF-II synthesis in normal small intestine in vivo are mesenchymal
cells (fibroblasts, myofibroblasts, or smooth muscle cells) scattered within the
pericryptal regions and the lamina propria (1,17–19). Increased local IGF-I expression
during adaptive growth of intestinal epithelium in adult rat and a recent report in trans-
genic mice (3) indicate that IGF-I is an important mesenchymal cell-derived growth
factor that exerts paracrine/autocrine actions in the GI tract (1,3).

3.1. IGF-I Is an Intestinal Mitogen That Improves Transport Function
A number of lines of evidence demonstrate that IGF-I is an intestinal mitogen. IGF-I

stimulates proliferation of cultured intestinal epithelial cells, fibroblasts, myofibroblasts,
and smooth muscle cells (3,20,21). Subcutaneous administration of IGF-I increases
intestinal weight, length, villus height, and crypt cell proliferation in orally fed, normal
adult rats (22) and in suckling rats (23) in a dose-dependent manner. Increased crypt cell
proliferation is observed within 3 d of IGF-I treatment (24). In animal models of intestinal
adaptation, including parenteral nutrition (4,10), intestinal resection (25–28), and dexam-
ethasone-induced stress (29) administration of IGF-I induces selective increases in small
intestinal mass, villus height, and crypt depth that is correlated with increased enterocyte
proliferation. Oral administration of IGF-I does not consistently induce mucosal growth
perhaps due to degradation of IGF-I by gastric acid and digestive enzymes (30–33).

IGF-I administration also improves intestinal transport function. Subcutaneous
administration of IGF-I increases galactose transport in the intestine of cirrhotic rats
compared with controls (34). Intravenous administration of IGF-I normalizes aberrations
in intestinal ion transport induced by parenteral nutrition in conjunction with attenuation
of TPN-induced mucosal hypoplasia (35). Oral administration of IGF-I increases sodium
absorption, sodium-dependent nutrient absorption, and disaccharidase activity per unit
mass in neonatal piglets who do not show mucosal growth in response to oral adminis-
tration of IGF-I (30). Improved intestinal disaccharidase activity and lactase processing
were noted in piglets consuming formula containing IGF-I (36,37).

3.2. IGF Binding Proteins Modulate IGF-I Action in the GI Tract
The IGF binding proteins (IGFBPs) modulate IGF-I action in the GI tract based on

both systemic and local interactions with IGF-I. Subcutaneous administration of IGF
analogs with reduced affinity for IGFBPs have more potent enterotropic effects than
native IGF-I (23,24). Continuous intravenous administration of an IGF-I analog pre-
bound to IGFBP-3 shows reduced clearance and greater serum total IGF-I concentra-
tions but has reduced enterotropic potency compared with continuous infusion of free
IGF-I (38). These observations support the notion that circulating complexes of IGF-I,
IGFBP-3, and the acid labile subunit prolong the half life of IGF-I and decrease its
bioavailability to IGF-I receptors in the gut (38,39). These studies with systemic infu-
sion of IGF-I analogs suggest that the serum concentration of free IGF-I determines the
enterotropic potency of IGF-I (23,38).
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The major IGFBPs found in the intestine of normal adult rats and mice, and in
humans include IGFBP-3, IGFBP-4 and IGFBP-5 (1). Evidence suggests that IGFBP-
3 and IGFBP-5 act in a paracrine manner to modulate IGF-I bioavailability and ana-
bolic action on neighboring intestinal epithelial cells (1,17,18). Evidence for paracrine
effects of IGFBP-4 on IGF-I is limited (27,40). IGFBP-3 mRNA is expressed primar-
ily in the lamina propria of the normal intestine of the rat (17,18) and mouse (41)
based on in situ hybridization. In vitro, IGFBP-3 can inhibit or potentiate IGF-I action,
depending on the cell system (39,42). Expression of IGFBP-3 is reduced in the lamina
propria of small intestine during adaptive hyperplasia of the mucosa in association
with proximal small bowel resection (43), fasting followed by refeeding (18) and
myenteric denervation (1).

IGFBP-5 mRNA is expressed primarily in the muscularis propria of normal rat (17)
and human small intestine (44). IGFBP-5 appears to potentiate the anabolic effects of
IGF-I in cultured smooth muscle cells derived from the intestine (45). Systemic admin-
istration of IGF-I increases the expression of both IGFBP-3 and IGFBP-5 in rat small
intestine (17) and colon (46). Induction of IGFBP-5 mRNA in the pericryptal regions
of the lamina propria by systemic administration of IGF-I is linked with the
enterotropic effects of IGF-I on the small intestinal epithelium in humans (44) and in
the rat (17,46,47).

3.3. Insights From Transgenic Mice
Transgenic mice with overexpression of GH and IGF-I genes have helped to eluci-

date the role of the IGF-I system in proliferation, apoptosis, differentiation, and devel-
opment of the normal intestine. Publications describing the enterotropic effects of three
IGF system transgenic mouse models are available from the laboratory of Dr. P. Kay
Lund: (1) metallothionein-1 promoter driven expression of the bovine GH transgene
(MT-bGH) (48), which shows elevated levels of GH and IGF-I; (2) metallothionein-1
promoter driven expression of human IGF-I cDNA (MT-hIGF-I) (41), which shows
elevated levels of serum IGF-I but undetectable levels of serum GH; and (3) overex-
pression of IGF-I in mesenchymal cells via an α smooth muscle actin promoter
(SMP8-IGF-I) (3) that shows normal levels of serum IGF-I but elevated IGF-I trans-
gene expression in smooth muscle in the small intestine and other tissues (49). A dis-
cussion of information gained regarding IGF-I system action in the GI tract using these
three models follows.

A comparison of the MT-bGH and MT-hIGF-I transgenic mouse models provides
insights regarding the interrelated and unique enterotropic actions of GH and IGF-I (1).
Both models show similar elevated circulating levels of IGF-I; however, the MT-hIGF-I
mice show a much higher level of local IGF-I expression in the small intestine compared
with the MT-bGH mice. Overall, a comparison of the MT-bGH and MT-hIGF-I trangen-
ics indicates that the intestine is particularly responsive to excess IGF-I and that IGF-I
can mediate most but not all of the enterotropic effects of GH, even in the absence of
detectable GH in the circulation. For example, both models showed significant increases
in mass and length of the bowel although the MT-hIGF-I transgenics showed a 44%
increase in small bowel length compared with a 20% increase in MT-bGH transgenics.
This selective lengthening of the intestine in MT-hIGF-I transgenics is especially dra-
matic when expressed relative to body weight because the MT-bGH transgenics showed
a twofold greater increase in body weight than the MT-hIGF-I transgenics (1).
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Relative enterotropic effects observed in the MT-bGH and MT-hIGF-I transgenics
suggest that GH may promote differentiated function of the enterocytes whereas IGF-I
may exert primarily mitogenic and anti-apoptotic actions in the small intestine (1). MT-
bGH transgenics show increased activity of sucrase, a marker of villus cell differentia-
tion, and MT-hIGF-I transgenics do not (41,48). Moreover, MT-bGH transgenics do
not show sustained increases in crypt cell proliferation or alterations in crypt cell apop-
tosis whereas and MT-hIGF-I transgenics show sustained increases in crypt cell prolif-
eration (41).

Information about the effects of GH and IGF-I on apoptosis in the intestine is impor-
tant to understanding the potential risk of cancer associated with therapeutic use of
these growth factors. There is limited information about GH effects on apoptosis
whereas in vitro studies (50) and recent in vivo reports (9,10) indicate that IGF-I has
antiapoptotic actions in the intestine. MT-hIGF-I transgenics show reduction of sponta-
neous and irradiation-induced apoptosis and reduced effects of irradiation to arrest
enterocyte proliferation in the small intestine crypt stem cell compartment (9). IGF-I
preferentially promotes survival of crypt stem cells (9,10), in part, by decreasing the
accumulation of Bax protein expression (9). 

The SMP8-IGF-I transgenic mouse model provides insights regarding the endocrine
and local actions of IGF-I in the intestine. This model has been used to test the hypoth-
esis that IGF-I overexpressed in intestinal mesenchymal cells in vivo, in the absence of
altered circulating IGF-I, exerts paracrine actions on growth or function of the mucosal
epithelium (3). SMP8-IGF-I transgenics showed mucosal growth in ileum, but not
jejunum or colon, and muscularis growth throughout the small intestine and colon pro-
viding definitive evidence for autocrine and paracrine actions of mesenchymal cell-
derived IGF-I on intestinal smooth muscle and epithelium (3). Upregulation of
IGFBP-5 mRNA in ileal lamina propria is associated with preferential paracrine effects
of IGF-I in mesenchymal cells to stimulate ileal mucosal growth and sucrase activity.
This study suggests that upregulation of locally expressed IGF-I has distinct actions on
expression of IGFBP-3 and -5 in bowel compared with systemic administration of
IGF-I, possibly because of differences in blood supply to the intestinal mucosa (3).

The transgenic mouse models provide useful insights regarding the consequences of
a single genetic perturbation of the IGF-I system on intestinal growth. However, these
models have limitations in interpretation to normal in vivo conditions because sites of
transcript expression may differ compared to normal physiology. For example, the MT-
hIGF-I transgenics show increased expression of the IGF-transgene within the mucosal
epithelial cells whereas endogenous IGF-I is expressed in intestinal mesenchymal
cells. Systemic administration of IGF-I and GH, as discussed in the next section on
parenteral nutrition provide a useful complement to data from the transgenic models to
understand IGF-I action in the GI tract. 

4. PARENTERAL NUTRITION

Enteral nutrition or the presence of exogenous luminal nutrients in the GI tract pro-
vides growth-promoting signals that regulate functional mass of the intestine and con-
tinuous renewal of the mucosal epithelium (8,11). Total parenteral nutrition (TPN)
consists of infusion of all nutrients directly into the circulatory system thus bypassing
the GI tract. This feeding technique plays a vital role in the management of many gas-
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trointestinal and surgical conditions where patients cannot tolerate enteral feeding. The
experimental model of TPN provides a physiologic tool to examine how the absence of
exogenous luminal nutrients affects gut structure and function without the confounding
factor of malnutrition due to food deprivation. Insights can also be gained regarding the
role of the endogenous IGF-I system in mediating the enterotropic effects of luminal
nutrients. Moreover, systemic administration of IGF-I or GH in the TPN model pro-
vides a sensitive system for evaluating the enterotropic actions of these growth factors
because the magnitude of the mucosal growth response to IGF-I in the TPN model is
greater than that observed with oral feeding (22).

4.1. IGF-I Reverses TPN Mucosal Hypoplasia and Improves 
Transport Function

TPN induces hypoplasia of the small intestine mucosal epithelium in association
with a one-third reduction in enterocyte proliferation and increases in apoptosis in
growing rats maintained exclusively with TPN for 7 d (Table 1) (10). Pigs (51) and rab-
bits (52) also show similar reductions in jejunal epithelial proliferation rates after 6–10
d of parenteral nutrition. Moreover, decreased levels of total thymidine incorporation
into DNA were observed in small bowel biopsies from human patients receiving one
month of TPN for inflammatory bowel disease (53). Coinfusion of IGF-I with TPN
solution reverses the TPN mucosal hypoplasia, based on significant increases in
mucosal protein and DNA, in association with increased enterocyte proliferation and
decreased apoptosis (Table 1). The ability of IGF-I to stimulate mucosal hyperplasia is
correlated with increased IGFBP-5 expression in both the lamina propria and muscu-
laris (17,46,47) leading to the hypothesis that IGFBP-5 enhances IGF-I action in the
small intestine.

IGF-I treatment normalizes the dramatic increases in apoptosis in the crypt and vil-
lus compartments that are induced by TPN in the rat (10). Apoptosis is increased
approximately fourfold in the crypt compartment and is distributed throughout the
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Table 1

Coinfusion of IGF-I With TPN Solution Stimulates Body Weight Gain and Reverses TPN

Mucosal Hypoplasia in Association With Increased Enterocyte Proliferation and Reduced

Apoptosis in Growing Rats Maintained With TPN for 7 da

Weight gain Jejunal Villus
(g body Serum mucosa (apoptotic
weight IGF-I (mg dry cells/ (Apoptotic Mitotic cells/

Treatment gain/7 d) (µg/L) mass/cm) villus, n)b cells/crypt, n)b crypt, n)b

Oral 28 ± 4a 392 ± 28b 7.1 ± 0.4a 0.03 ± 0.02b 0.06 ± 0.02b 1.06 ± 0.10a

TPN 13 ± 2b 337 ± 23b 4.5 ± 0.5b 0.30 ± 0.11a 0.24 ± 0.07a 0.67 ± 0.06b

TPN+IGF-I 30 ± 2a 857 ± 43a 7.1 ± 0.4a 0.20 ± 0.06a 0.06 ± 0.03b 0.92 ± 0.05a

aValues are means ± SE, n = 6–9. Means in a column with different superscripts differ, p < 0.05. Adapted
from ref. 10.

bDefined as he number of apoptotic cells per villus column or the nmber of apoptotic or mitotic cells per
crypt column, one side of a villus or crypt in a longitudinal cross-section.

Crypt
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length of the crypt with TPN rather than being concentrated in the stem cell zone as
occurs with oral feeding (10). IGF-I treatment reduces apoptosis specifically in the
crypt stem cell zone, similar to that reported in transgenic mice with chronic IGF-I
excess (9). TPN-induced mucosal hypoplasia is characterized by villus atrophy,
reflected in villi that are 36% shorter compared with orally fed rats (Fig. 4A,B), and a
decrease in the rate of enterocyte migration (4). The TPN villus atrophy is associated
with a 7- to 13-fold increase in apoptosis in the villus, an effect that is not altered by
IGF-I treatment (Table 1). Thus, decreased enterocyte proliferation and increased
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Fig. 4. Photomicrographs of jejunum of ad libitum-fed rat (A), TPN-fed animal given TPN alone
(B), or TPN supplemented with GH (C), IGF-I (D), or GH + IGF-I (E). Note the mucosal atrophy
and hypoplasia induced by TPN and reversal of this effect by IGF-I alone or GH + IGF-I but not GH
alone. Reprinted with permission from ref. 1.
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apoptosis appear to mediate the mucosal hypoplasia that accompanies TPN in rats (10)
and pigs (51) and occurs to a lesser degree in humans (54,55). IGF-I acts to reverse
TPN mucosal atrophy by increasing enterocyte proliferation and decreasing apoptosis
specifically in the crypt stem cell zone.

TPN mucosal atrophy is associated with aberrations in intestinal ion transport
function in the rat (35) and intestinal dysfunction in humans requiring TPN as they
transition to enteral feeding (56). Interestingly, the transport characteristics of the
jejunum of TPN rats resemble those of fasted animals (57). The jejunum of TPN rats
has increased ionic permeability or is “leakier” than that of orally fed rats and shows
abnormal increases in ion transport responses to secretory and absorptive agents in
Ussing chambers (35). Coinfusion of IGF-I with TPN solution reverses the aberra-
tions in ion transport induced by TPN and improves ionic permeability in association
with IGF-induced mucosal growth (35). 

Given that IGF-I attenuates the mucosal hypoplasia induced by TPN, it is tempting
to speculate that TPN mucosal hypoplasia is caused by a deficiency of circulating
IGF-I or local expression of IGF-I in the gut. This is not the case as circulating IGF-I
(Table 1) and hepatic expression of IGF-I are not altered by TPN (2,17,47) with the
exception of excessive provision of parenteral energy that induces hepatic steatosis
and reduces abundance of hepatic IGF-I mRNA in the rat (58). Neonatal piglets do
show a decrease in circulating IGF-I with parenteral compared with enteral feeding
(59) and children with gut resection receiving partial parenteral nutrition also show
reduced serum IGF-I (60). Local expression of IGF-I mRNA in jejunum is also not
reduced by TPN in parallel with the mucosal hypoplasia (17). This contrasts with
fasting followed by refeeding, where both circulating IGF-I and jejunal IGF-I are
reduced by fasting and then increased in association with mucosal growth induced by
refeeding (18). The overall state of systemic nutrition, rather than the presence of
exogenous luminal nutrients in the gut, appears to regulate expression of both hepatic
and jejunal IGF-I mRNA.

4.2. GH Elevates Serum IGF-I Levels But Does Not Alter TPN 
Mucosal Hypoplasia

Using a TPN rat model of surgical stress and bowel disease (61), Lo et al. confirm
that simultaneous treatment with GH and IGF-I additively increases serum IGF-I levels
and whole-body anabolism as noted in humans (62). GH and IGF-I show unique tissue-
specific anabolic effects in that GH selectively increases skeletal muscle mass and pro-
tein synthesis in skeletal muscle and jejunal muscularis and IGF-I increases jejunal
mucosal mass and protein synthesis in jejunal mucosa and muscularis (63). Thus, IGF-
I but not GH reverses TPN mucosal atrophy but both peptides stimulate protein synthe-
sis in the jejunal muscularis layer (Fig. 4). These findings indicate that the intestinal
mucosa is resistant to the proliferative effects of GH-stimulated endogenous IGF-I dur-
ing TPN (17,64), similar to that noted in transgenic mice that overexpress GH and
show increased circulating endogenous IGF-I (48). The resistance to GH action is spe-
cific to mucosal growth because GH increases protein synthesis in the jejunal muscu-
laris (63) and modulates ion transport and sucrase activity within the mucosa 4. Studies
in human subjects, similar to the animal evidence, have shown mixed results regarding
the ability of GH to stimulate intestinal growth (65–67).
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Previous studies have tested several possible theories to explain the selective resis-
tance to the anabolic action of GH in the intestinal mucosa. Reduced expression of
IGFBP-5 in GH compared with IGF-I-treated rats may play a role but is unlikely to
fully explain the striking differences in the enterotropic effects of GH and IGF-I (17).
Differences in expression of the GH receptor or GH binding activity also cannot
explain the GH resistance (47,64). This has led to the current hypothesis that a state of
postreceptor resistance to GH action is responsible for the inability of GH to stimulate
mucosal hyperplasia during TPN (64). An elevated level of an intracellular inhibitor of
GH action, suppressor of cytokine signaling-2 (SOCS-2), may play a key role in the
resistance to GH action as a feedback inhibitor of the trophic actions of GH (68). 

A better understanding of GH and IGF-I action in the small intestine is needed to
fully define the potential benefit of GH or IGF-I therapy for patients with GI disease,
especially those individuals who require TPN because of intestinal failure because of
massive bowel resection as discussed in the next section.

5. INTESTINAL RESECTION 

Partial intestinal resection provides a strong stimulus for adaptive growth of intes-
tine that ultimately results in increases in length and functional mass of the residual
bowel in animal models and in some humans (11,12). Partial intestinal resection is the
strongest known stimulus to increase enterocyte proliferation and mucosal mass in ani-
mal models, although the mechanisms underlying this adaptive growth are incom-
pletely understood. Resection-induced growth of the intestine is the most extensively
studied and clinically relevant example of intestinal adaptation.

5.1. Short Bowel Syndrome
Short bowel syndrome is a form of intestinal failure defined as clinically significant

lack of absorption of nutrients and water after massive intestinal resection. Surgical
resection of the intestine is required for a variety of clinical situations including mesen-
teric infarction, Crohn’s disease, ulcerative colitis, neoplasia, congenital disorders, and
necrotizing enterocolitis. Failure of the intestine to adapt after massive intestinal resec-
tion in humans may be the result of a lack of endogenous enterotropic growth factors.
For example, the presence of residual ileum and/or colon, the primary sites of synthesis
and secretion of the enterotropic hormone glucagon-like peptide-2, appears to determine
whether resection-induced adaptation occurs in both animals (13,28) and humans (69).
The presence of nutrients in the gastrointestinal tract indirectly stimulates endogenous
production of enterotropic growth factors (59); however, luminal nutrients are not essen-
tial for resection-induced adaptation when residual ileum and colon are present (13). 

Patients who do not show sufficient intestinal adaptation after bowel resection are
dependent on parenteral nutrition to sustain nutritional status and life. In patients with
less than 100 cm of residual intestinal length, 45% require lifelong parenteral nutrition
to maintain their nutritional status with a 5-yr mortality rate of approximately 25%
(70). In the United States, it is estimated that 20,000 adult patients with intestinal dis-
ease are currently maintained on home parenteral nutrition at an average annual cost of
$150,000 per patient (71). Moreover, there are increasing numbers of children with
intestinal disease who require parenteral nutrition and the incidence of short bowel
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syndrome is increasing in premature infants who develop necrotizing enterocolitis and
require massive intestinal resection.

5.2. Role of the IGF System in Intestinal Adaptation to Resection
Evidence in laboratory rodents suggests that IGF-I promotes resection-induced

intestinal growth both as an endogenously synthesized and an exogenously adminis-
tered growth factor. With respect to endogenous paracrine effects of IGF-I, increased
expression of IGF-I mRNA in residual small intestine (27,40) and colon (46,72), and
decreased expression of IGFBP-3 mRNA (27) have been noted in association with
resection-induced adaptive growth in rats. However, increased intestinal IGF-I mRNA
in resected rats did not result in increased intestinal IGF-I protein suggesting posttran-
scriptional processing of IGF-I message (46). In addition, IGF-I receptor binding
capacity is increased in jejunal and colonic membranes after resection, suggesting
increased responsiveness of the residual intestine to IGF-I (46). Resection-induced
adaptive growth in colon occurs in association with local increases in both IGF-I and
IGFBP-5 mRNA, supporting the notion that IGFBP-5 positively modulates local IGF-I
action in the colon (46). Overall, resection upregulates the local IGF-I system in resid-
ual bowel of rats fed enterally or parenterally. 

Systemic growth factors play an important role in mediating intestinal adaptation to
resection (73). Systemic administration of glucagon-like peptide-2 (74), epidermal
growth factor (75), and IGF-I (25,26) augment resection-induced adaptation in the rat.
The ability of GH to augment intestinal adaptation is unclear; studies have shown both
positive (76) and neutral effects (77) regarding the ability of GH to stimulate intestinal
growth after intestinal resection in rats. 

In a rat model of human short bowel syndrome where minimal adaptation of the
proximal intestine occurs and prolonged diarrhea, malabsorption and weight loss
accompany enteral feeding, coinfusion of IGF-I with TPN solution induces structural
and functional adaptation of the jejunum that otherwise does not occur (28). This jeju-
nal adaptation includes increased jejunal mucosal mass, enterocyte proliferation and
migration rates, and improved intestinal barrier function (28). Moreover, acute IGF-I
treatment in this model produces increases in serum IGF-I concentration, body weight
and jejunal mucosal cellularity that are sustained after cessation of IGF-I treatment and
transition to oral feeding (78). These studies in rat models of intestinal resection sup-
port the therapeutic use of enterotropic growth factors, such as IGF-I, to improve
intestinal adaptation in humans with short bowel syndrome.

5.3. Treatment of Short Bowel Syndrome 
Improved treatments for short bowel syndrome, such as bowel transplantation,

bowel lengthening procedures, and/or use of enterotropic hormones, are needed.
Thus, there has been considerable interest in studying the potential for hormones,
such as glucagon-like peptide-2, GH, or IGF-I, to stimulate intestinal adaptation in
patients with short bowel syndrome so that they can transition from parenteral to
enteral feeding. Ideal use of enterotropic hormones would be acute treatment that
produces sustained effects so that long-term therapy with these mitogenic hormones
and the associated risk of cancer could be minimized (78). Treatment with glucagon-
like peptide -2 for 35 d in patients with short bowel syndrome improves intestinal
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absorption of energy and wet weight, resulting in an increase in body weight, lean
body, and bone mass (69). 

Treatment with GH alone or in combination with a high carbohydrate diet and gluta-
mine has shown controversial results in humans with short bowel syndrome (65,66,79).
However, positive effects of GH in humans with parenteral nutrition-dependent short
bowel syndrome were recently observed in a placebo-controlled, crossover study with
a threefold lower dose of GH than previously used combined with an ad libitum west-
ern hyperphagic diet with no glutamine supplementation (67). Three weeks of treat-
ment with low-dose GH increased intestinal absorption of energy by 15%, and
increased lean body mass and serum concentrations of IGF-I and IGFBP-3, without
any major adverse effect. The authors suggest that a hyperphagic diet and the absence
of malnutrition are needed for an optimal enterotropic response to low dose GH (67).

IGF-I has not been tested in humans with short bowel syndrome, but it has been
shown to promote whole body anabolism in humans without surgical stress (62) and
after large bowel resection (80). Treatment with IGF-I may be particularly useful for
children with short bowel syndrome who demonstrate growth failure, low serum IGF-I
levels, and appear to be resistant to GH induction of hepatic IGF-I synthesis (60).
Determining the optimum dose of glucagon-like peptide-2, GH and/or IGF-I will be an
important factor in assessing their efficacy in improving intestinal absorption and
allowing successful weaning from parenteral nutrition to oral feeding.

6. INFLAMMATORY BOWEL DISEASE 

Inflammatory bowel disease includes the immunologically mediated conditions of
ulcerative colitis and Crohn’s disease. Ulcerative colitis is limited to the colon and is
characterized by acute and chronic inflammation of the lamina propria with or without
epithelial cell destruction, epithelial ulceration, and crypt abscesses (81). Crohn’s dis-
ease differs from ulcerative colitis in that it may affect any region of the GI tract and is
characterized by transmural inflammation and fibrosis (82). Fibrosis involves disorga-
nized hyperplasia and collagen deposition throughout the bowel wall that can lead to
stricture formation and bowel obstruction. Intestinal resection is a frequent complica-
tion of Crohn’s disease that often results in short bowel syndrome.

Growth factors, such as GH and IGF-I, may have both positive and negative effects
during inflammatory bowel disease. They could protect against mucosal damage dur-
ing active inflammation or facilitate repair of damaged mucosa during disease remis-
sion by promoting mesenchymal cell proliferation and collagen deposition (1). In
contrast, growth factors may exacerbate inflammation by chemotactic or mitogenic
effects on immune cells or by stimulating the production of proinflammatory
cytokines. In excess, growth factors could promote aberrant proliferation of mucosal
cells and enhance susceptibility to colon cancer, a particular problem in inflammatory
bowel disease (81).

6.1. Altered IGF-I Expression Is Associated With Bowel Inflammation 
and Fibrosis

Given the ability of GH and IGF-I to regulate immune function it is not surprising
that altered IGF-I production in the bowel is associated with the chronic inflammation
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that characterizes these conditions (1,82). IGF-I expression is increased in rats with
experimentally induced colitis (83) or Crohn’s disease (84). Patients with Crohn’s dis-
ease show increased IGF-I and IGFBP-5 mRNAs in inflamed and strictured segments
of resected bowel; IGF-I mRNA is most highly expressed in fibroblast-like cells in the
submucosa and muscularis externa (44). In contrast, levels of IGF-I mRNA are not
altered in patients with ulcerative colitis who do not show fibrosis of the bowel (1). 

IGF-I has potent fibrogenic actions as evidenced by its ability to induce proliferation
of fibroblasts, myofibroblasts, and smooth muscle cells and to increase collagen syn-
thesis by these cells (21,85). In vitro studies support the hypothesis that proinflamma-
tory cytokines, such as interleukin-1 and tumor necrosis factor-α, induce IGF-I
expression in intestinal mesenchymal cells during chronic inflammation (1). Interest-
ingly, fasting inhibits experimentally induced murine colitis and prevents the increase
in interleukin-1 and IGF-I expression (86). Overall, these data suggest that locally pro-
duced IGF-I may promote tissue fibrosis during intestinal inflammation, in particular
during Crohn’s disease. It will be important to understand the relative effects of locally
produced IGF-I compared to circulating IGF-I on intestinal fibrosis when considering
treatment with GH or IGF-I in patients with inflammatory bowel disease.

6.2. Treatment of Inflammatory Bowel Disease 
Treatment of inflammatory bowel disease is aimed at reducing inflammation and

inducing remission through the use of immunosuppressive and antiinflammatory drugs.
Unfortunately, many of the drugs have severe side effects and may exacerbate tissue
catabolism in conjunction with the malabsorption and malnutrition that often accom-
pany inflammatory bowel disease. The use of high-protein diets has been partially suc-
cessful in treating the symptoms of Crohn’s disease in children (87). Nutritional
therapy that normalizes concentrations of circulating IGF-I appears to reverse growth
failure in children with inflammatory bowel disease (88). Results from a rat model of
acute colitis indicate that systemic IGF-I may reduce epithelial damage and/or submu-
cosal inflammation (89). Thus, administration of an anabolic hormone such as GH or
IGF-I in conjunction with nutritional therapy may promote remission, mucosal repair
and an increase in lean body mass in patients with inflammatory bowel disease.

The ability of GH administration to counteract the catabolic process of Crohn’s dis-
ease and reduce morbidity has recently been tested (90). In a placebo-controlled pilot
study, Slonim et al. reported a significant decrease in scores on the Crohn’s Disease
Activity Index, with improvements in terms of stool frequency, abdominal pain, and
well-being, among 19 patients with moderate-to-severe Crohn’s disease who received
subcutaneous GH for 4 mo in conjunction with a high-protein diet. The beneficial
effects of GH in this study did not appear to be caused by IGF-I action because the
degree of clinical improvement in individual patients did not correlate with their circu-
lating levels of IGF-I (90). Additional studies are needed to confirm these results and to
address many issues including optimal dosing of GH and long- term side effects such
as fibrogenic complications in patients with Crohn’s disease.

7. SUMMARY AND CONCLUSIONS 

IGF-I action in the GI tract is characterized by stimulation of proliferation or differ-
entiated cell function in a physiological or pathophysiological context that includes
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synergy with other hormones and cytokines (1). A complete understanding of the role
of the IGF-I system in the GI tract will require characterization of the mechanisms of
IGF interactions with other hormones and cytokines during normal physiology and dis-
ease. A better understanding of the relative effects of circulating IGF-I and local
expression of the IGF system, in particular the role of IGFBP-3 and -5, on intestinal
adaptation is needed. Evidence clearly indicates that the IGF system holds promise for
the treatment of GI disease in children and adults. Comprehensive knowledge of the
effects of the IGF system on apoptosis in the bowel is needed to appreciate the poten-
tial risks of tumorigenesis associated with administration of GH or IGF-I (91).
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KEY POINTS

• Pronounced changes in the GH/IGF/IGFBP axis occur immediately and uniformly in
response to all types of severe illnesses, independent of its cause.

• Prolonged critical illness, in which the onset of recovery does not occur within a few
days, reflects a novel pathophysiological condition characterized by a peculiar type of
hypercatabolism which occurs despite adequate parenteral and/or enteral nutrition.

• Low circulating levels of IGF-I and alterations in IGFBPs mark the hypercatabolic state
of critical illness. The origin of these changes appears differently during the first hours to
days after onset than in prolonged critical illness.

• Immediately after the onset of severe illness or injury, acute peripheral GH resistance is
indicated by low serum concentrations of IGF-I, IGFBP-3 and ALS in the presence of
activated GH secretion. Increased IGFBP-3 protease activity in serum, as well as
increased circulating levels of IGFBP-1, may alter IGF-1 tissue availability. 

• In prolonged critical illness, GH secretion is no longer elevated, becomes erratic and
almost nonpulsatilve, and occurs with low pulsative TSH and LH. The reduced pulsatile
component of GH secretion likely contributes to inadequate generation of IGF-I and IGF-
BPs and to impaired anabolism.

• High IGFBP-1 and low insulin levels predict a fatal outcome for prolonged critical illness.
• Treatment with releasing factors (GH secretagogues, TRH, and GnRH) takes advantage of

active feedback inhibition loops and may be safer and more effective than administration of
high-dose GH and/or IGF-I to counter the catabolic state in prolonged critical illness.

1. INTRODUCTION

By definition, critical illness is any condition requiring support of failing vital organ
functions, either with mechanical aids (e.g., mechanical ventilation, hemodialysis or fil-
tration, or cardiac assist devices) or pharmacological agents (such as inotropes or vaso-
pressors), without which death would ensue (1). According to this definition, critical
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illness can be caused by different types of insults, such as surgical or traumatic injury or
diseases, often of an infectious origin. Patients suffering from such a life-threatening
condition are generally treated in specialized intensive care units (ICUs), where perma-
nent monitoring and high technological interventions are available and medical treat-
ment is continuously adjusted to optimize chances for survival. In the predominantly
surgical intensive care unit, two thirds of the admitted patients recover quickly and are
discharged within 5 d. For the remaining one third of patients, onset of recovery does
not follow within a few days of intensive medical care; hence, critical illness becomes
“prolonged” and intensive care is further needed, often for weeks, sometimes months.
Prolonged critical illness in this setting reflects a novel pathophysiological condition.
Indeed, modern intensive care, providing mechanical ventilation, artificial feeding and
vital organ support, such as continuous hemofiltration or dialysis, has been available
only for the last three decades. Without these “high-tech” interventions, patients with
such life-threatening conditions would not survive more than a few days. Prolonged
critically ill patients suffer from a peculiar type of hypercatabolism, which occurs
despite adequate parenteral and/or enteral nutrition. Large amounts of protein continue
to be lost from lean tissue, such as skeletal muscle, bone, and solid organs, which
causes impairment of vital functions, weakness, and delayed or hampered recovery
(2,3). Furthermore, and in contrast with what occurs in the early phase of severe ill-
nesses when lipolysis provides fatty acids for metabolism, prolonged critically ill
patients no longer efficiently use fatty acids as metabolic substrates (3). They store fat
with feeding, both in adipose tissue and as fatty infiltrates in vital organs, such as the
pancreas and the liver (1,2). The lean tissue hypercatabolism, consisting of accelerated
breakdown of protein and impaired synthesis of protein in skeletal muscle and bone
(refs. 4–6 and discussed further in Chapter 3) is a major, frustrating, and resource-con-
suming clinical problem. It leads to persisting dependency on intensive medical care,
including mechanical ventilation, despite adequate and successful treatment of the
underlying disease that had initially warranted admission to the intensive care unit. In
addition, patients become increasingly susceptible to potentially lethal complications,
mostly of an infectious origin. Indeed, mortality from prolonged critical illness is high:
typically, the risk of death is around 20% for adult patients with an ICU stay of >5 d and
around 25–30% for those with an ICU stay of >21 d (4). In more than 80% of the fatal-
ities among long-stay ICU patients, multiple organ failure (with or without sepsis as the
underlying unresolved problem) is the cause of death. Incidentally, male patients suffer-
ing from prolonged critical illness seem to have a higher risk of adverse outcome than
female patients (4). The reason for this gender difference in outcome remains obscure.
Additionally, the classical scoring systems for severity of illness (7) are unable to pre-
dict mortality in an individual long-stay intensive care patient. This enigma reflects the
current absence of knowledge of the pathophysiological mechanisms underlying onset
of recovery or, conversely, the lack of recovery in prolonged critically ill patients.

The complex system interrelating growth hormone (GH), the insulin-like growth
factors (IGFs) and the IGF binding proteins (IGFBPs) is important for postnatal
growth, differentiation, metabolic homeostasis, and healing (8,9). GH and the IGFs,
either directly or indirectly, are involved with the function of almost every organ sys-
tem in the body, and the target tissue effects of IGFs are regulated by at least six bind-
ing proteins. Pronounced changes in the GH–IGF–IGFBP axis occur immediately and
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uniformly in response to all types of severe illnesses, independent of its cause being a
surgical or traumatic injury or a toxic/infectious challenge. It recently became clear
that the nature of these endocrine changes differs when an immediate lethal outcome of
a severe illness is avoided by intensive care and critical illness becomes prolonged for
weeks and months in the very unnatural setting of a modern ICU (10).

This chapter gives an overview of the dynamic alterations within the GH–IGF–IGFBP
system and its interrelation with other (neuro)endocrine changes in the human condition
of intensive care-treated critical illness. The distinction between the acute and the
chronic phases of critical illness is specifically highlighted.

2. CHANGES WITHIN THE IGF SYSTEM IN THE ACUTE PHASE 
OF CRITICAL ILLNESS

During the first hours or days after an acute, stressful insult, such as surgical or trau-
matic injury or severe infection, serum concentrations of IGF-I and the ternary com-
plex of GH-dependent binding protein IGFBP-3 and its acid-labile subunit (ALS)
decrease, all of which is preceded by a drop in serum levels of GH-binding protein
(11,12). The latter was found to occur in parallel with reduced GH receptor expression
in peripheral tissues in patients after elective abdominal surgery (12). Animal models
have shown that a rapid impairment of GH signaling at the intracellular level may also
be involved (13). Because all models of acute illness, including the postoperative con-
dition in patients, are accompanied by at least partial starvation, it is difficult to deter-
mine to what extent the alterations are the result of the insult or the concomitant
malnutrition (14). Furthermore, stress acutely stimulates GH secretion (Fig. 1) (15,16).
In normal physiology, GH is released from the somatotropes in a pulsatile fashion,
under the interactive control of the stimulatory hypothalamic GH-releasing hormone
(GHRH) and the inhibitory somatostatin (9). Since the 1980s, a series of synthetic GH-
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releasing peptides (GHRPs) and nonpeptide analogs have been developed that potently
release GH through a specific G protein-coupled receptor located in the hypothalamus
and the pituitary (17,18). It now appears that there exists at least one highly conserved
endogenous ligand for this receptor (19), named “ghrelin,” which originates in periph-
eral tissues such as the stomach as well as in the hypothalamic arcuate nucleus and
which seems to be another key factor in the complex physiological regulation of pul-
satile GH secretion. As originally shown in rodents (20), there is now also evidence
that in the human (21), the pulsatile nature of GH secretion is important for its meta-
bolic effects (4,22). In the acute phase of stress, as after surgery, trauma, or onset of
sepsis, circulating GH levels become elevated and the normal GH profile, consisting of
peaks alternating with virtually undetectable troughs, is altered: peak GH levels and
especially the interpulse concentrations are high, and the GH pulse frequency is ele-
vated (Fig. 1) (10,23,24). It is still unclear which factor ultimately controls the stimula-
tion of GH release in response to stress. As in starvation (25), more frequent
withdrawal of the inhibitory somatostatin and/or an increased availability of stimula-
tory (hypothalamic and/or peripheral) GH-releasing factors could hypothetically be
involved. The constellation of low circulating levels of IGF-I, IGFBP-3, and ALS and
amplified GH secretion, as uniformly occurs in experimental human and animal mod-
els of acute stress and in acutely ill patients, is therefore a classical example of
acquired peripheral GH resistance (11,23). This is most likely brought about by the
effects of cytokines such as tumor necrosis factor-�, interleukin-1, and interleukin-6.
The role of cytokines in critical illness is discussed further in Chapter 3. It has been
hypothesized, but remains unproved, that the primary events in acute illness are
cytokine and/or starvation-induced reduced GH receptor expression and impairment of
GH signaling at the intracellular level (13) and hence low circulating IGF-I levels
which, in turn, through reduced negative feedback inhibition, drive the abundant
release of GH. The large amounts of GH may then exert direct (IGF-I-independent)
lipolytic, insulin-antagonizing and immune-stimulatory actions, whereas the indirect
IGF-I-mediated somatotropic effects may be attenuated (26,27). This phenomenon
would make sense in stressful conditions. Indeed, the set of alterations within the
GH–IGF-I axis could contribute to the provision of metabolic substrates (glucose, free
fatty acids, amino-acids such as glutamine) for vital organs, such as the brain and the
heart and for host defense and thus could be conceived as adaptive and beneficial for
survival. However, the adaptive nature of low IGF availability is merely a theoretical
concept as it has never been proven. An alternative interpretation could be that
increased IGFBP-3 protease activity in plasma, also reported in acute illnesses (11,28),
results in facilitated dissociation of IGF-I from the ternary complex, which could theo-
retically be an adaptive escape mechanism to secure IGF-I activity at the tissue level
(28). Once more, proof for such a phenomenon is thus far lacking.

Circulating levels of the small, binary complex IGF-binding proteins, such as
IGFBP-1 and IGFBP-2, have been reported to be elevated in the acute phase of critical
illness (11,29). It is unclear whether the changes in these IGF-binding proteins enhance
or reduce the tissue effects of IGF-I. A high serum IGFBP-1 level on ICU admission
has been found to be associated with a more negative nitrogen balance during the first 2
d of intensive care (11). Part of this association can be explained by the effects of rela-
tive starvation, which is uniformly present in all models of acute stress, including acute
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critical illness in the ICU. Indeed, when patients are starved on admission to the ICU,
they will lose more lean tissue over the next few days.

3. CHANGES WITHIN THE IGF SYSTEM IN THE CHRONIC PHASE 
OF CRITICAL ILLNESS

In prolonged critical illness, the changes observed within the somatotropic axis are
different than the initial phases of critical illness. First, the pattern of GH secretion
becomes very chaotic and the amount of GH that is released in pulses is now much more
reduced compared with the acute phase (Fig. 1) (5,30,31). Moreover, although the non-
pulsatile fraction is still somewhat elevated and the number of pulses is still high, mean
nocturnal GH serum concentrations are hardly elevated when compared with the healthy,
nonstressed condition and substantially lower than in the acute phase of stress (10). We
observed that when intensive care patients are studied from 7–10 d of illness onward in
the absence of drugs known to exert profound effects on GH secretion, such as dopamine
(32,33), calcium entry blockers, or glucocorticoids (to name but a few), they present uni-
formly with mean nocturnal GH levels of about 1 �g/L, trough (interpulse) levels that
are easily detectable and thus still elevated, and peak GH levels that hardly ever exceed 2
�g/L. This, surprisingly, is independent of the patient’s age, body composition, and type
of underlying disease (4,10). Second, the pulsatile component of GH secretion, which is
substantially reduced, has been found to correlate positively with circulating levels of
IGF-I, IGFBP-3, and ALS, which are all low (5,30,31). In other words, the more the pul-
satile GH secretion is suppressed, the lower the circulating levels of the GH-dependent
IGF-I and ternary complex binding proteins become. This is not what one would expect
if GH resistance were the primary cause of the low IGF-I levels, which would result in
an inverse correlation or no correlation between GH secretion and circulating IGF-I. The
recently documented elevated serum levels of GH-binding protein (4), assumed to reflect
GH receptor expression in peripheral tissues, in prolonged critically ill patients com-
pared with those measured in a matched control group are in line with recovery of GH
responsiveness with time during severe illness (4,5). It seems that the lack of pulsatile
GH secretion in the condition of prolonged stress is contributing to the low circulating
levels of IGF-I and ternary complex binding proteins. Moreover, it was demonstrated
that these low serum levels of GH-dependent IGF-I and binding proteins (IGFBP-3,
ALS, IGFBP-5) are tightly related to biochemical markers of impaired anabolism, such
as low serum osteocalcin and leptin concentrations during prolonged critical illness (5).
Together, these findings suggest that a relative hyposomatotropism, as demonstrated by a
lack of pulsatile GH secretion, participates in the pathogenesis of the particular lean tis-
sue wasting condition distinctively occurring in the chronic phase of critical illness. In
line with a higher risk for adverse outcome associated with male gender (4), men appear
to do worse than women in the sense that they lose more of the pulsatility and regularity
within the GH-secretory pattern when critical illness progresses (despite indistinguish-
able total GH output) and concomitantly reveal even lower IGF-I and ALS levels than
their female counterparts (Fig. 2) (4). It remains unclear whether this sexual dimorphism
within the GH/IGF-I axis is causally related to the gender difference in outcome of pro-
longed critical illness or merely reflects a casual association.

Serum concentrations of the small binding proteins IGFBP-2, IGFBP-4, and
IGFBP-6 are clearly elevated in prolonged critical illness (5,6), the cause of which
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still remains unclear. Also, the consequences of these changes for metabolism are not
known. Serum IGFBP-1 concentrations in the chronic phase of critical illness are
much lower than those observed in the acute phase, which is probably caused by the
effect of feeding. Indeed, parenteral and/or enteral feeding is built up over the first
few days of intensive care to a maintenance level of about 25 kcal/kg bodyweight per
24 h, composed of normal and equilibrated amounts of glucose, protein, and lipids.
However, serum IGFBP-1 levels in prolonged critical illness still appears to correlate
with lean tissue wasting, which occurs despite feeding (4,5,10). In patients who sub-
sequently won’t survive, serum IGFBP-1 concentrations increase again when deterio-
ration starts, a noticeable distinction between survivors and nonsurvivors that is
present several weeks before death. Indeed, a high serum IGFBP-1 concentration in
the chronic phase of critical illness, in the fed state, seems to predict an adverse out-
come of chronic critical illness (Fig. 3) (ref. 5 and Van den Berghe, unpublished
observations). IGFBP-1 is distinct among the members of the IGFBP family in being
acutely regulated by metabolic stimuli (34). Studies with cultured human liver
explants suggest that the major regulatory influences on IGFBP-1 production are
insulin, which is inhibitory, and hepatic substrate deprivation, which is stimulatory,
acting through a cyclic AMP-dependent mechanism (35,36). Moreover, an inverse
correlation of IGFBP-1 with IGF-I and the GH-dependent proteins ALS and IGFBP-3
during critical illness is consistent with its inverse regulation by GH, as previously
suggested (37–39). The higher IGFBP-1 levels observed in prolonged critically ill
patients who did not survive coincide with lower insulin concentrations compared
with survivors, for the same range of blood glucose level; a surprising finding consid-
ering that these patients are thought to be insulin resistant (Fig. 3). Whether or not
this indicates that also insulin secretion is becoming impaired in the long-stay inten-
sive care patients remains unclear. It is clear, however, that in unfavorable metabolic
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Fig. 2. The more “feminized” pattern of GH secretion (more irregular and less pulsatile GH
secretory pattern for an identical mean nocturnal GH level) in prolonged critically ill men com-
pared to women is illustrated by the representative nocturnal (21:00–06:00 h) GH serum concen-
tration series (sampling every 20 min) obtained in a male (squares) and a matched female (circles)
patient. Concomitantly, protracted critically ill men have lower circulating levels of IGF-I than
female patients. IGF-I results are presented as mean ± SD. **p < 0.01. Adapted with permission
from ref. 4.
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conditions, the hepatocyte alters its production of IGF-regulatory proteins, for which
the trigger might be reduced hepatocyte substrate availability (theoretically caused by
either hepatic hypoperfusion or hypoxia, hypoglycemia, relative insulin deficiency, or
hepatic insulin resistance), leading to increased cyclic AMP production, which would
both suppress IGF-I and ALS (40) and stimulate IGFBP-1 (35). It is unclear to what
extent loss of GH pulsatility may contribute to this switch, but recent data (35) suggest
that activation of hepatic IGF-I and ALS expression may require pulsatile GH. Ani-
mal studies similarly suggest that suppression of hepatic IGFBP-1 expression by
insulin requires acute, rather than prolonged or nonpulsatile, GH action (41). Further
exploration of the apparent link among serum IGFBP-1 levels, insulin, and outcome
of prolonged critical illness will shed new light on the pathophysiological processes
crucial for recovery and survival. We recently showed that intensive insulin therapy to
strictly maintain normoglycemia indeed substantially reduces the morbidity and mor-
tality of intensive care-dependent critical illness (42).

4. PATHOPHYSIOLOGY OF CHRONIC CHANGES

Because impaired pulsatile GH secretion in the chronic phase of critical illness
seems to contribute to the low IGF-I and GH-dependent IGFBPs; the ensuing ques-
tion is, what is its cause? Is the pituitary taking part in the “multiple organ failure
syndrome,” becoming unable to synthesize and secrete GH? Or, alternatively, is the
lack of pulsatile GH secretion caused by increased somatostatin tone and/or to a
reduced stimulation by the endogenous releasing factors, such as GHRH and/or ghre-
lin? Studying GH responses to administration of GH secretagogues (GHRH and
GHRP), in a dose that is known to evoke a maximal GH response in healthy volun-
teers, enables, to a certain extent, differentiation between a primarily pituitary and a
hypothalamic origin of the relatively impaired GH release in critically ill patients.
Indeed, the combined administration of GHRH and GHRP appears to be the most
powerful stimulus for pituitary GH release in humans (43). A low GH response in
critical illness would thus be compatible with pituitary dysfunction and/or a high
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Fig. 3. Serum IGFBP-1 concentrations were found to be higher in nonsurvivors compared with sur-
vivors in prolonged critical illness. With permission from ref. 1. Concomitantly, nonsurvivors
revealed lower serum insulin levels for the same blood glucose level. Box plots represent medians,
P25-P75 and P10-P90 and circles represent the absolute values for outliers.
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somatostatin tone, whereas a high GH response would indicate reduced (hypothala-
mic) stimulation of the somatotropes.

We found that GH responses to a bolus injection of GHRP are high in long-stay inten-
sive care patients and several-fold higher than the response to GHRH, the latter being
normal or often subnormal (44). GHRH plus GHRP evokes a clear synergistic response
in this condition, revealing the highest GH responses ever reported in a human study
(44). The exuberant GH responses to secretagogues exclude the possibility that the rela-
tively impaired pulsatile GH secretion during protracted critical illness is caused by a
lack of pituitary capacity to synthesize GH or by accentuated somatostatin-induced sup-
pression of GH release. Inferentially, one of the mechanisms that could be involved is
reduced availability of ghrelin or another putative endogenous ligand for the GHRP
receptor. Ultimately, the combination of low availability of somatostatin and of an
endogenous GHRP-like ligand emerges as a plausible mechanism that clarifies (1) the
reduced GH burst amplitude, (2) the increased frequency of spontaneous GH secretory
bursts, and (3) the elevated interpulse levels as well as (4) the striking responsiveness to
GHRP alone or in combination with GHRH, and this without markedly increased
responsiveness to GHRH alone. Female patients with prolonged critical illness have a
markedly higher response to a bolus of GHRP compared with male patients, a difference
that is lost when GHRH is injected together with GHRP (Fig. 4) (4). Less endogenous
GHRH action in prolonged critically ill men, possibly because of the concomitant pro-
found hypoandrogenism (4) accompanying loss of action of an endogenous GHRP-like
ligand with prolonged stress in both genders, may explain this finding.

5. EFFECTS OF GH-RELEASING FACTORS ON THE IGF SYSTEM AND
ON METABOLISM IN THE CHRONIC PHASE OF CRITICAL ILLNESS

The hypothesis of reduced endogenous stimulation of GH secretion and recovery of
peripheral GH sensitivity in patients who are critically ill for a prolonged duration was
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Fig. 4. Responses (increments above baseline) of GH obtained 20, 40, 60, and 120 min after intra-
venous bolus administration of GHRH (1 �g/kg), GHRP-2 (1 �g/kg), and GHRH + GHRP-2 (1 + 1
�g/kg) in matched male and female protracted critically ill patients. Five men and five women were
randomly allocated to each secretagogue group. Results are presented as mean ± SEM. Circles depict
results from female and squares from male patients. p values were obtained using repeated measures
analysis of variance. Adapted with permission from ref. 4.
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further explored by examining the effects of continuous infusion of GHRP with or
without GHRH. Continuously infusing GHRP (1 �g/kg/h) alone, and even more so the
combination of GHRH and GHRP (1+1 �g/kg/h), for up to 2 d was found to substan-
tially amplify pulsatile GH secretion (>6-fold and >10-fold, respectively) in this condi-
tion, without altering the relatively high burst frequency (Fig. 5) (30,31). Reactivated
pulsatile GH secretion was accompanied by a proportionate rise in serum IGF-I (66%
and 106%, respectively), IGFBP-3 (50% and 56%), and ALS (65% and 97%), indicat-
ing peripheral GH-responsiveness (Fig. 5) (5,31). The presence of considerable respon-
siveness to reactivated pulsatile GH secretion in these patients and the high serum
levels of GH binding protein clearly delineate the distinct pathophysiological paradigm
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Fig. 5. Nocturnal serum GH profiles in the prolonged phase of illness illustrating the effects of con-
tinuous infusion of placebo, GHRH (1 �g/kg/h), GHRP-2 (1 �g/kg/h), or GHRH+GHRP-2 (1 + 1
�g/kg/h). Exponential regression lines have been reported between pulsatile GH secretion and the
changes in circulating IGF-I, ALS, and IGFBP-3 obtained with 45-h infusion of either placebo,
GHRP-2, or GHRH+GHRP-2. They indicate that the parameters of GH responsiveness increase in
proportion to GH secretion up to a certain point, beyond which further increase of GH secretion has
apparently little or no additional effect. It is noteworthy that the latter point corresponds to a pulsatile
GH secretion of approx 200 �g/Lv over 9 h, or less, a value that can usually be evoked by the infu-
sion of GHRP-2 alone. In the chronic, nonthriving phase of critical illness, GH sensitivity is clearly
present, in contrast to the acute phase of illness, which is thought to be primarily a condition of GH
resistance. From ref. 10 with permission.

291-310*/Houston16  6/29/04  6:17 PM  Page 299



present in the chronic phase of critical illness as opposed to the acute phase, which is
thought to be primarily a condition of GH-resistance. After 2 d of treatment with
GHRP, (near) normal levels of IGF-I, IGFBP-3, IGFBP-5, and ALS are reached and, as
shown in a subsequent study, maintained for at least up to 5 d (Fig. 6) (5). GH secretion
after 5 d of treatment with GH secretagogues was found to be lower than after 2 d, sug-
gesting active feedback inhibition loops that prevented overtreatment (5,31). In this
study in which GHRP was infused together with thyrotropin-releasing hormone (TRH)
for 5 d (see Section 6), the self-limited endocrine responses induced a shift towards
anabolism at the level of several peripheral tissues, as indicated by a rise in serum lev-
els of osteocalcin, insulin, and leptin and a decrease in urea production (5).

Usually, infusion of GHRP without GHRH suffices to reactivate pulsatile GH secre-
tion sufficiently in the prolonged critically ill patient and to elicit the IGF-I and IGFBP
responses in prolonged critical illness. However, in critically ill men, particularly those
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Fig. 6. Serum concentrations (mean ± SEM) of IGF-I, ALS, T4, and T3 in response to a randomized
treatment with either 5 d GHRP-2 + TRH infusion (1 + 1 �g/kg/h) followed by 5 d placebo (filled
symbols) or 5 d placebo followed by 5 d GHRP-2 + TRH infusion (1 + 1 �g/kg/h) (open symbols) in
a group of 10 male and 4 female prolonged critically ill patients. All p < 0.0001 with analysis of vari-
ance. The mean age of the patients was 68 yr. The mean intensive care stay at the time of study start
was 40 d. Adapted with permission from ref. 1.
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men who are being treated in the intensive care unit for a very long time (several
weeks), it may be necessary to add a low dose of GHRH (0.1 �g/kg/h) (ref. 1; Van den
Berghe G, unpublished observations) because of the simultaneous lack of endogenous
GHRH activity accompanying the reduced availability of the GHRP-like ligand (4).

6. INTERACTION OF THE IGF SYSTEM WITH THE THYROID 
AND GONADAL AXES DURING CRITICAL ILLNESS

The acute and prolonged phase of critical illness is also characterized by distinct
changes within the thyroid axis and the gonadal axis. Within 2 h after onset of severe
physical stress, such as surgery or trauma, serum levels of T3 decrease, whereas T4 and
thyroid-stimulating hormone (TSH) briefly rise (45). Apparently, low T3 levels at that
stage are mainly caused by a decreased peripheral conversion of T4 to T3 (46). Subse-
quently, circulating TSH and T4 levels often return to “normal” whereas T3 levels
remain low. Although mean serum TSH concentrations are indistinguishable from nor-
mal values at that time point, the normal nocturnal TSH surge has been shown to be
absent (47,48). The decrease in serum T3 during the first 24 h has been found to reflect
severity of illness (49,50). Although cytokines are capable of mimicking the acute
stress-induced alterations in thyroid status, cytokine antagonism in sick mice failed to
restore normal thyroid function (51). Low concentrations of binding proteins and inhi-
bition of hormone binding, transport, and metabolism by elevated levels of free fatty
acids and bilirubin have been proposed as factors contributing to the low T3 syndrome
at the tissue level (52). Teleologically, the acute changes in the thyroid axis have been
interpreted as an attempt to reduce energy expenditure at least when they occur during
starvation (53) and thus as an appropriate response that does not warrant intervention.
Whether this is also applicable to other acute stress conditions, such as surgery, infec-
tion, or the initial phase of critical illness, is still a matter of controversy (54–56).

Patients treated in intensive care units for several weeks, however, present with a dif-
ferent set of changes within the thyroid axis. A single sample usually reveals low or
low-normal TSH values and low T4 and T3 serum concentrations (57). However,
overnight repeated sampling revealed that, essentially, the pulsatility in the TSH secre-
tory pattern is dramatically diminished and that, as for the GH axis, it is the loss of
TSH pulse amplitude which is related to low serum levels of thyroid hormone (57).
Moreover, Fliers and co-workers elegantly provided evidence for reduced expression
of the TRH gene in hypothalamic paraventricular nuclei in the chronic phase of illness
(58). Together, these findings point to reduced hypothalamic stimulation of the thy-
rotrophs, leading to reduced drive of the thyroid gland in this phase. A rise of TSH
marking onset of recovery from severe illness (59) is in line with this concept. Because
circulating cytokine levels are usually much lower at that stage (60), other mechanisms
operational within the central nervous system are presumably involved. Endogenous
dopamine and prolonged hypercortisolism may each play a role because exogenous
dopamine as well as glucocorticoids are known to provoke or severely aggravate
hypothyroidism in critical illness (61,62). Low thyroid hormone levels in protracted
critical illness correlate inversely with urea production and bone degradation which
could reflect either an adaptive, protective mechanism against hypercatabolism or its
cause (5). However, restoring physiological levels of thyroid hormones by continu-
ously infusing TRH (together with a GH secretagogue) (Fig. 7) was found to reduce
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Fig. 7. Results of a prospective, randomized study of 32 men with prolonged critical illness who were treated for 5 d with either placebo, continu-
ous GHRP-2 infusion (1 �g/kg/h), continuous GHRP-2 + TRH infusion (1 + 1 �g/kg/h), or continuous GHRP-2 + TRH infusion (1 + 1 �g/kg/h) +
GnRH pulses of 0.1 �g/kg every 90 min. Serum IGF-I concentrations increased equally in all groups who had GHRP-2 in the treatment schedule;
serum T4 concentrations rose equally in the two groups who received TRH and serum testosterone rose only in the group who also received GnRH
pulses. Anabolic tissue responses, such as reduced protein breakdown in skeletal muscle and new bone formation, occurred only in the groups
treated with GHRP-2 + TRH and with GHRP-2 + TRH + GnRH, but not with GHRP-2 alone, as reflected by the studied biochemical markers. This
indicates that tissue “IGF-I-resistance” in critical illness may be partly explained by the concomitant suppression of the thyroid axis and the gonadal
axis. Adapted, with permission from ref. 69.
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rather than increase hypercatabolism (5,63), an effect that was related only to thyroid
hormone changes. During TRH infusion in prolonged critical illness, the negative feed-
back exerted by thyroid hormones upon the thyrotrophs was found to be maintained,
thus precluding overstimulation of the thyroid axis (31). This self-limitation may be
extremely important during critical illness in order to avoid hyperthyroidism, which
would inadvertently aggravate catabolism. The coinfusion of TRH and GH-releasing
factors appears a better strategy than the infusion of TRH alone because the combina-
tion, but not TRH alone, avoids a rise in circulating reverse T3 (31). The latter may
point to the effect of GH on the activity of type I deiodinase and eventually to other
important interactions among different anterior pituitary axes for optimal peripheral
responses (5). It remains controversial, however, whether correction of the low serum
and tissue concentrations of T3 by either T4 or T3 administration is required to
improve clinical problems distinctively associated with prolonged critical illness
(64–68). In contrast to treatment with thyroid hormones, infusing TRH allows for
peripheral shifts in thyroid hormone metabolism during intercurrent events and,
accordingly, permits the body to elaborate appropriate concentrations of thyroid hor-
mones in the circulation and at tissue level, thus setting the scene for a safer treatment
than the administration of T3 (5,31).

Also the peripheral tissue responses to the normalization of serum concentrations
of IGF-I and binding proteins as evoked by GHRP infusion seem to depend on the
coinfusion of TRH and the concomitant normalization of the thyroid axis. Indeed,
GHRP-2 infused alone evokes identical increments in serum concentrations of IGF-I,
IGFBP-3, and ALS but is devoid of the anabolic tissue responses that are present with
the combined infusion of GHRP and TRH (Fig. 7) (69). Outcome benefit of TRH
infusion alone or in combination with growth hormone-secretagogues in prolonged
critical illness is yet to be studied.

For luteinizing hormone (LH), too, the pulsatility in the secretory pattern is impor-
tant for its bioactivity (70,71). Because testosterone is the most important endogenous
anabolic steroid, changes within the LH/testosterone axis in the male could be relevant
for the catabolic state of critical illness. A variety of catabolic states are indeed accom-
panied by low serum testosterone levels in men. These conditions include starvation
(72,73), the postoperative phase (74), myocardial infarction (75,76), burn injury (8,77),
psychological and physical stress (79,80), and prolonged critical illness (69,81,82).

The low serum testosterone concentrations despite elevated LH levels documented
during the acute stress of surgery or myocardial infarction (74,76) suggest an immedi-
ate stress-induced Leydig cell suppression, the exact cause of which remains obscure.
A role for inflammatory cytokines (interleukin-1 and interleukin-2) is possible, as sug-
gested by experimental studies (83,84). It may be considered appropriate that the secre-
tion of anabolic androgens be switched off in circumstances of acute stress to reduce
the consumption of energy and substrates for, at that time at least, less vital functions.
When a severe stress condition, like critical illness, becomes prolonged, hypogo-
nadotrophism is present (77,85). Concomitantly, circulating levels of testosterone
become extremely low (often undetectable) in men. Total estradiol levels also appear
somewhat low but in view of suppressed levels of sex hormone binding globulin, it can
be inferred that bioavailable estradiol levels are maintained. This points to increased
aromatization of androgens (82). The progressive decrease of serum gonadotrophin
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levels appears to lag behind the rapid decline in serum testosterone (75,76,86). In pro-
longed critically ill men, a preserved LH pulse frequency with an abnormally low LH
pulse amplitude has been observed (81), which was interpreted as an impaired compen-
satory LH hypersecretion in response to the very low serum testosterone levels.
Endogenous dopamine, opiates, and in particular the maintained bioactive estradiol
levels (82) could be involved in the pathogenesis of hypogonadotrophism (69,81,82,87).
Animal data suggest that prolonged exposure of the brain to interleukin-1 may also
play a role through the suppression of gonadotropin-releasing hormone (GnRH) syn-
thesis (83). Pioneering studies evaluating the effects of androgen treatment in pro-
longed critical illness failed to demonstrate conclusive clinical benefit (88). In view of
the secretory characteristics of the other anterior pituitary hormones, we recently inves-
tigated the therapeutic potential of GnRH pulses in prolonged critically ill men, alone
(82) and together with GHRP-2 and TRH (69). GnRH alone appears only partially and
transiently effective (82). However, when GnRH pulses were given together with
GHRP-2 and TRH infusion, superior target organ responses and anabolic effects fol-
lowed (Fig. 7) that were far more pronounced than with either of the compounds sepa-
rately. These data underline the importance of correcting all the hypothalamic/pituitary
defects instead of applying a single hormone treatment.

7. SUMMARY AND CONCLUSIONS

Low circulating levels of IGF-I and alterations in IGFBPs mark the hypercatabolic
state of critical illness. The origin of these changes appears different during the first
hours to days after onset and in the more chronic phase of critical illness. The changes
immediately after onset of severe illness or after trauma are low serum concentrations
of IGF-I, IGFBP-3, and the ALS in the presence of activated GH secretion, indicating
peripheral GH resistance. Reduced GH receptor expression and/or impairment of GH
signaling at the intracellular level may play a role. In addition, increased IGFBP-3 pro-
tease activity in serum as well as increased circulating levels of IGFBP-1 may alter
IGF-I tissue availability. When recovery does not follow within hours to days and criti-
cal illness becomes prolonged, GH secretion is no longer elevated and sometimes low,
and the GH secretory pattern becomes erratic and almost nonpulsatile. The reduced
pulsatile component of GH secretion in this phase appears to contribute to inadequate
generation of GH-dependent IGF-I and binding proteins, such as ALS, IGFBP-3, and
IGFBP-5, and to impaired anabolism. High IGFBP-1 and low insulin levels predict a
fatal outcome for prolonged critical illness, and serum concentrations of IGFBP-2,
IGFBP-4, and IGFBP-6 are uniformly elevated. Continuous infusion of GH-secreta-
gogues, either GHRP and/or GHRH, reactivates pulsatile GH secretion in prolonged
critical illness and evokes a proportionate rise in the IGF-I and the ternary complex
binding proteins IGFBP-3, ALS, and IGFBP-5, indicating recovery of GH responsive-
ness in this phase of illness. However, only when GH secretagogues are infused
together with TRH, whereby the very low circulating levels of thyroid hormones are
also normalized, does metabolic improvement ensue. This suggests a form of “IGF-I
resistance” that can be resolved by also correcting the concomitant tertiary hypothy-
roidism. Biphasic changes are also present within the gonadotrope and corticotrope
axes. Pulsatile GnRH administration alone is unable to restore the tertiary hypogo-
nadism present in prolonged critical illness. However, when GnRH is administered
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together with GHRP and TRH infusion, LH secretion can be reamplifed and circulating
testosterone levels increased evoking superior endocrine and anabolic effects compared
with those obtained by either of the releasing factors separately. These studies indicate
a fundamental transition between acute and prolonged critical illness within the IGF
system, from acute GH resistance to a state of low (pulsatile) GH (and TSH and LH)
secretion but recovered GH responsiveness. Treatment with releasing factors (GH sec-
retagogues, TRH, and GnRH) takes advantage of active feedback inhibition loops and
thus prevents overstimulation. Hence, this strategy may not only be a more effective
but also a safer one than the administration of high-dose GH (89) and/or IGF-I to
counter the catabolic state in prolonged critical illness.
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KEY POINTS

• The RAS and the IGF-I system interact at multiple levels to regulate physiological and
pathological cardiac growth responses.

• IGF-I promotes growth and survival of cardiac and skeletal muscle which is salutary in
heart failure.

• AngII down regulates circulating and skeletal muscle IGF-I and IGF binding proteins,
leading to increased myocardial apoptosis and increased skeletal muscle proteolysis.

• Preliminary studies reveal significant alterations in the IGF-I system in heart failure.
• An imbalance between the RAS and the IGF-I system contributes to the progression from

compensated to decompensated heart failure.

1. INTRODUCTION

The renin-angiotensin system (RAS) and the insulin growth factor (IGF)-I system
interact at multiple levels to regulate both physiological and pathological cardiac
growth responses. Through its growth and antiapoptotic effects, IGF-I promotes physi-
ological cardiac growth, whereas chronic angiotensin-II (angII) stimulation promotes
left ventricular remodeling and progressive heart failure. Angiotensin-II downregulates
circulating and skeletal muscle IGF-I and IGF binding proteins, leading to increased
myocardial apoptosis and increased skeletal muscle protein degradation. In addition,
angiotensin II interferes with IGF-I receptor signaling. IGF-I, through a variety of
mechanisms, including a depressor effect on the cardiac RAS, promotes physiological
cardiac growth responses, reduces apoptosis, and has anabolic effects on skeletal mus-
cle, all of which are beneficial in chronic heart failure. Our preliminary studies reveal
significant alterations in total IGF-I, free IGF-I, and IGF binding proteins in patients
with congestive heart failure, and some of these changes are related to increased
angiotensin II. Further elucidation of the crosstalk between the IGF-I system and the
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RAS will likely lead to significant advances in the understanding of the cachexia of
heart failure and treatment of patients with cardiovascular disease.

2. MECHANISMS OF CARDIAC HYPERTROPHY AND THE
DEVELOPMENT OF HEART FAILURE: ROLE OF IGF-I AND ANGII

When stimulated by a variety of neurohumoral factors or when faced with an
increase in ventricular-wall tension, cardiomyocytes undergo hypertrophic growth as
an adaptive response. However, sustained cardiac hypertrophy is a leading predictor
of the subsequent development of heart failure (reviewed by Colucci et al., ref. 1). A
number of neurohumoral factors, including norepinephrine, angII, endothelin, IGF-I
and tumor necrosis factor (TNF)-α (2), are potential stimuli for myocyte hypertro-
phy. However, the contribution of each of these factors in the transition between ini-
tial compensated cardiac hypertrophy through decompensated hypertrophy and heart
failure are not fully understood. The roles of norepinephrine (3), endothelin (4), and
TNF-α (5–8) in the development of hypertrophy and progression to heart failure
have been reviewed elsewhere. This chapter focuses on the roles of angII and IGF-I.

2.1. AngII and Cardiac Hypertrophy
The RAS is a widely studied hormonal system that comprises substrate-enzyme

interactions (reviewed in refs. 9–11). The kidney produces and releases both renin and
its inactive precursor prorenin into the circulation. Liver-derived angiotensinogen is
cleaved in the circulating blood by renin to form angI, which is then converted by
angiotensin-converting enzyme (ACE), located on the luminal side of the vascular
endothelium, into angII. At least two subtypes of angII receptors have been identified:
AT1 and AT2 (9,10). The AT1 receptor mediates most of the known actions of angII on
blood pressure, cardiac contractility and glomerular filtration, renal tubular sodium
reabsorption, and cardiac and vascular hypertrophy. Less is known regarding the func-
tion of the AT2 receptor. Evidence suggests that activation of the AT2 receptor inhibits
cell proliferation and reverses AT1-induced hypertrophy, although it remains contro-
versial whether AT2 stimulation in the diseased myocardium would actually lead to a
net beneficial effect (11,12). AngII type 1A receptor knockout mice display less left
ventricular remodeling and improved survival after myocardial infarction (13), indi-
cating that angII plays an important role during the development of heart failure.
Agents that interfere with angII formation, the ACE inhibitors in particular, are now
widely used for the treatment of hypertension and heart failure (reviewed by Colucci et
al. 1). Both clinical and animal studies indicate that the beneficial effects of ACE
inhibitor treatment in heart failure and left ventricular hypertrophy are not solely
determined by the effect of ACE inhibition on systemic arterial pressure (14–20).

There is growing evidence to suggest that in cardiac tissue, angII is produced locally
and does not originate from circulating angI (21,22). All the components required for
angII production are present in the heart. Angiotensinogen and ACE mRNAs have been
detected in normal cardiac tissue (23–26). Angiotensinogen mRNA is increased during
postinfarction ventricular remodeling in the rat (24), and cardiac ACE mRNA is
increased in the setting of pressure overload-induced ventricular hypertrophy in the rat
(25) and heart failure in humans (26). Increased levels of ACE activity have been found
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in left ventricular aneurysms of patients after myocardial infarction (27). Thus, cardiac
angII formation appears to be regulated independently from the circulating RAS and in
animal models and in patients with heart failure, the cardiac RAS is activated and, pre-
sumably, local angII formation is enhanced. Historically, angII was only seen as a reg-
ulatory hormone that regulated blood pressure, aldosterone release, and sodium
reabsorption. Now, it is generally accepted that locally formed angII can regulate the
expression of many substances, including growth factors, cytokines, chemokines, and
adhesion molecules, which are involved in cell growth, fibrosis, and inflammation
(28–31). Interestingly, recent studies have provided evidence that chronically increased
angII formation may favor myocyte apoptosis (32,33).

2.2. IGF-I and Cardiac Hypertrophy
IGF-I is a 7.5-kDa protein that is structurally homologous to insulin. IGF-I circu-

lates in blood either free or bound to specific binding proteins (34,35). Six IGF-I bind-
ing proteins (IGFBPs) have been identified so far. The circulating IGF-I forms a
ternary complex with an acid-labile subunit and the binding proteins. All six IGFBPs
are found in the circulation in the free form or in binary complexes with IGFs (36).
IGFBP-3 is the most abundant circulating IGFBP; it carries 75% or more of serum
IGF-I and IGF-II. IGFBP-5, present at about 10% of the molar concentration of
IGFBP-3, can form similar ternary complexes (36). These complexes prolong the half-
life of IGF-I in the circulation. Studies using knockout approaches have confirmed that
IGF-I in the circulation is primarily produced in the liver, but many cell types can syn-
thesize IGF-I, which can exert autocrine/paracrine effects (37–42). The effects of IGF-
I are mediated by the IGF-IR, which is activated by IGF-I and IGF-II, and like the
insulin receptor has an α2β2 heterotetrameric structure (43). Once IGF-I binds to the
type 1 IGF receptor, it initiates tyrosine autophosphorylation of the receptor and phos-
phorylation of multiple intermediate substrates, including IRS-1, IRS-2, leading to
activation of signaling pathways that include Ras/Raf, phosphatidylinositol 3-kinase
(PI3) kinase, and mitogen-activated protein kinase (43–45).

The expression of the various components of the IGF system of ligands (IGF-I/2)
and receptors (IGF-IR, IGF-IIR) is ubiquitous throughout intrauterine and postnatal
development (43,46). Knockout studies have confirmed that the development of most
tissues and organs is regulated to some degree by the IGF system (47–55). Thus, mice
lacking either the IGF-I or IGF-II genes exhibited intrauterine growth retardation, and
mice lacking a functional IGF-IR gene were born weighing only 45% of normal and
died soon after birth from respiratory failure (47,48,56,57). Similarly to its effects in
many tissues, IGF-I has multifunctional activities in the heart, including the promotion
of cell growth, and thus of DNA, RNA, and protein synthesis; inhibition of apoptosis;
and induction of cell differentiation (58,59). In addition, IGF-I promotes myocardial
contraction (60), improves hemodynamics and energy metabolism (61), and protects
the heart against apoptosis induced by ischemia or oxidative stress (58,62,63).

In a variety of animal models of pressure and volume overload, there is an increase
in cardiac IGF-I expression, suggesting that IGF-I promotes the cardiac hypertrophic
response (64–68). Our group has shown that angiotensin infusion in rats increases car-
diac IGF-I expression concomitantly with the induction of cardiac hypertrophy and
that the increase in IGF-I is blocked by hydralazine and thus is likely mediated by a
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pressor mechanism (69). IGF-I protein was localized to cardiac myocytes. Interest-
ingly, angII infusion also increased cardiac IGF-IR mRNA levels; however, this
increase was also seen in sham-infused, pair-fed controls, but not in ad libitum-fed rats,
indicating that it was related to the anorexigenic effects of angII and to nutritional
intake. IGF-I expression has also been shown to be increased in the human hyper-
trophic left ventricle (70).

Serneri et al. (71) studied cardiac growth factor formation in patients with compen-
sated cardiac hypertrophy defined as end-systolic wall stress (ESS) <90 kdyne/cm2 or
decompensated (ESS >90 kdyne/cm2) cardiac hypertrophy. Compensated cardiac
hypertrophy secondary to aortic regurgitation and aortic stenosis with ESS <90
kdyne/cm2 was associated with a selective increased formation of IGF-I and mRNA
levels for IGF-I were detected mainly in cardiomyocytes. IGF-I formation was closely
associated with preserved ventricular contractility. When ESS was >90 kdyne/cm2,
IGF-I synthesis by cardiomyocytes was no longer detectable. In contrast, in these
patients with decompensated hypertrophy, there was a significant increase of angII for-
mation, which correlated positively with end-systolic and end-diastolic wall stress.
Angiotensinogen mRNA levels were high and were exclusively expressed in the inter-
stitial cells. These data indicated that IGF-I1-induced cardiomyocyte hypertrophy is
likely a compensatory response to the increased work load and beneficial to the heart.
However, the increase in angII formation in decompensated hypertrophy (which occurs
together with a reduction of IGF-I synthesis) could be an important determinant of
worsening heart function, potentially via the pro-fibrotic effects of angII (72), which
has been demonstrated in several in vitro and in vivo studies (73,74). Indeed, excessive
angII formation can produce detrimental effects on overloaded or failing myocytes,
including depression of contractility or impaired relaxation (75).

3. APOPTOSIS IN HEART FAILURE: ROLES OF ANGII AND IGF-I

Heart failure results from initial myocardial injury secondary to many causes, such
as ischemia, hypertension, myocarditis, toxic causes, for e.g., alcohol, and others
(reviewed by Colucci et al., ref. 1). In response to these conditions, the myocardium
initially hypertrophies to compensate for the increased workload. The development of
hypertrophy is the result of increased cardiomyocyte size. If the above-mentioned con-
ditions persist, the myocardium will eventually fail to compensate, and patients
develop heart failure. During the transition from compensated hypertrophy to decom-
pensated hypertrophy and to heart failure, myocardial cell death occurs. Although
some evidence suggests that cardiomyocytes may replicate in vivo (76), these cells are
terminally differentiated, and significant replicative repair processes cannot occur. The
mechanisms whereby cell death occurs are largely unknown, but emerging evidence
indicated that apoptosis might play a major role. 

Apoptosis is a highly organized, energy-dependent mechanism whereby a cell com-
mits suicide without causing damage to surrounding tissue and occurs normally during
development, tissue turnover, and in the immune system (77,78). In the heart, for
instance, apoptosis is involved in postnatal shaping of the right ventricle by eliminating
unnecessary cells (79). Morphologically, apoptosis is characterized by cell shrinkage,
chromatin condensation, DNA fragmentation, membrane blebbing, and formation of
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apoptotic bodies. Biochemically, a family of proteases termed caspases play a pivotal
role (80). Thus, apoptosis is regulated by the complex interaction of numerous prosur-
vival and prodeath signals. These include the Bcl-2 family of proteins, which may be
antiapoptotic (Bcl-2, Bcl-xL) or proapoptotic (Bax, Bid), and exert their effects primar-
ily at the level of mitochondria (81–84). Other important regulators of apoptosis act at
the level of caspases. Such proteins include cellular FADD-like inhibitory protein and
the inhibitor of apoptosis family (85–88). Dysregulated apoptosis has been implicated
in cardiomyocyte death. Over the past few years, there have been several reports of the
occurrence of cardiomyocyte apoptosis during such conditions as cardiomyopathy,
myocardial infarction, arrhythmogenic right ventricular dysplasia, hypertrophic car-
diomyopathy, ischemia/reperfusion injury (89–96), and heart failure (97–100).

Recent studies indicate that angII plays a major role in cardiomyocyte apoptosis.
AngII infusion in the rat induces apoptosis in the heart, which is associated with
increased Bax and caspase-3 activity (101,102). The angII effect seems to be mediated
via the AT1 receptor because co-infusion of losartan prevents apoptosis and activation
of Bax and caspase (3). Formation of angII in the myocardium and stimulation of AT1
receptors causes myocyte apoptosis in a streptozotocin-induced rat diabetes model
(103). AngII induces apoptosis in cultured adult rat ventricular myocytes through the
activation of AT1 receptors (33). AngII stimulation was associated with translocation
of the epsilon and delta isoforms of protein kinase C, which was coupled with an
increase in cytosolic Ca2+ in the cells (33). Analogous to its effect on blood vessels
(104,105), angII induces the formation of reactive oxygen species in neonatal
myocytes (106), and these are likely important in angII proapoptotic signaling path-
ways. Sarcomere stretching is coupled with the synthesis and release of angII (32,107)
and the transmission of a death signal to myocytes (32,33,108). Stretch-activated apop-
tosis in myocytes can be inhibited by an AT1 receptor blocker (109). 

Contrary to angII, IGF-I is not only an important growth factor for cardiomyocytes,
but it also has potent survival effects. Thus, both in vitro and in vivo studies support a
role for IGF-I in promoting myocyte survival and improving myocardial function
(58,99,110–112). It has been shown that IGF-I protein suppresses apoptosis in cultured
cardiomyocytes (63,113,114). IGF-I has also been shown to suppress myocardial apop-
tosis and improve myocardial function in various models of experimental cardiomy-
opathy (111,115–117). In a murine model of myocardial ischemia reperfusion, IGF-I
administered 1 h before ischemia significantly attenuated myocardial injury via two
different mechanisms, inhibition of polymorphonuclear leukocyte-induced cardiac
necrosis and inhibition of reperfusion-induced apoptosis of cardiac myocytes (63,111).
Normal rats receiving 4 wk of treatment with IGF-I had enhanced ventricular hypertro-
phy and myocyte function without development of significant fibrosis (118,119). In a
coronary occlusion model, left ventricular function was improved by 2 wk of treatment
with IGF-I (119). In a canine model of pacing-induced dilated cardiomyopathy, IGF-I
treatment improved cardiac output, stroke volume, left-ventricular end-systolic pres-
sure, and left ventricular end-diastolic pressure, and reduced pulmonary wedge pres-
sure and systemic vascular resistance (115). 

In addition to the systemic administration of IGF-I protein, transgenic mice overex-
pressing IGF-I in the myocardium have been generated to study the local effect of IGF-
I expression in the heart. Welch et al. (120) studied the effect of IGF-I overexpression
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in a mouse model that mimics the structural and functional characteristics of human
dilated cardiomyopathy. These mice were generated by overexpressing tropomodulin
(Tmod), an actin filament regulatory protein (121), in the myocardium. Tmod-overex-
pressing transgenic mice exhibit significant increases in resting levels of Ca2+ that pre-
cede the expansion in left ventricular volume, consistent with the reported involvement
of increased intracellular calcium in apoptotic and necrotic cell death (122,123). The
effect of IGF-I was tested by crossbreeding the Tmod-overpressing transgenic line with
homozygous transgenic mice overexpressing IGF-I in cardiac myocytes to create
Tmod-IGF-I-overexpressing mice. The rationale for this strategy was based on the abil-
ity of IGF-I to favor the alignment and organization of myofibrils in the cytoplasm
(124) and to interfere with myocyte apoptosis and necrosis triggered by the formation
of oxidative stress (125). Reactive oxygen represents the distal event in Ca2+-mediated
cell death (33,126), and IGF-I can attenuate the generation of reactive oxygen species
by limiting angII formation (127) and, thereby, cytosolic Ca2+ (33). The Tmod-IGF-I-
overexpressing mice showed increased myocyte number, normalization of heart mass,
anatomy, hemodynamics, and diminished apoptosis. Cellular analyses revealed that
IGF-I inhibited characteristic cardiomyocyte elongation in dilated hearts and restored
calcium dynamics comparable to that observed in normal cells. 

Other investigators have shown that constitutive overexpression of IGF-I prevented
apoptosis in the myocardium after myocardial infarction (116). Overexpression of
IGF-I in transgenic mice positively influences the performance of ventricular myocytes
by enhancing their shortening velocity and cellular compliance, with consequent
improvement of the Frank-Starling relation (128).

4. IGF-I AS A THERAPEUTIC AGENT FOR HEART FAILURE

As noted previously, the systemic administration of IGF-I protein or overexpression
of IGF-I in the heart has been shown to increase cardiomyocyte proliferation, reduce
apoptosis, and improve cardiac function in animal models of ischemic injury and heart
failure (58,99,110–112,116,129,130). Furthermore, IGF-I deficiency in humans has been
associated with cardiac atrophy and reduced ventricular function (131,132) and it is
known that myocytes are able to proliferate postnatally in the presence of elevated IGF-I
levels (129,133). These results have led to increased interest in the therapeutic potential
of the IGFs. Acute administration of IGF-I has been shown to improve myocardial func-
tion in healthy humans as well as in patients with chronic heart failure (134,135). Fur-
thermore, patients with a higher serum level of IGF-I immediately after an acute
myocardial infarction had better myocardial remodeling and ventricular function as well
as significantly better clinical outcome than patients with lower serum IGF-I levels
(115). The effects of growth hormone are mediated in large part via stimulation of
autocrine/paracrine IGF-I, and a variety of studies have explored the use of growth hor-
mone in heart failure, but results have been conflicting, potentially because of growth
hormone resistance (136–140). Although the data supporting a positive role for IGF-I in
the heart are now quite convincing, its therapeutic use is complicated by the finding that
circulating IGF-I may also play a role in tumor growth (141–143) and proliferative
retinopathy (144) and be associated with other side effects (145). Although clinical trials
that used lower doses of IGF-I to treat younger patients with diabetes reported nearly no
adverse reaction (146), chronic treatment with high doses of IGF-I in older patients with
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diabetes is associated with edema, jaw tenderness, arthralgias, tachycardia, and orthosta-
tic hypotension (145). Systemic delivery of IGFs is further complicated by the presence
of multiple IGF binding proteins in serum (34). Thus, a gene therapy-based approach for
local overexpression of IGFs in the heart appears to have potential substantial advan-
tages over systemic IGF protein delivery. Tissue-targeted overexpression of IGF-I via
gene transfer can augment the local production of IGF-I without increasing the serum
levels of IGF-I (147), although spill-over of IGF-I into the circulation can occur (129).
For this reason, methods to transiently express IGF-I using plasmid or viral vectors have
been tested. Transient expression of IGF-I by intramuscular injection of plasmid in the
rat augmented local production of IGF-I but did not increase plasma levels of IGF-I
(147). Liposomes containing the IGF-I gene construct proved effective in preventing
muscle protein wasting and preserving total body weight after a severe thermal injury in
rats (148). A recent study showed that adenoviral vectors expressing IGF-I were able to
efficiently transduce cardiomyocytes with consequent IGF expression and secretion
(149). This approach effectively protected cardiomyocytes from apoptosis induced by
ischemia/reoxygenation, ceramide, and heat shock and enhanced angiogenesis in vivo
(149).

5. MECHANISMS OF IGF-I ACTION: ROLE IN CARDIOMYOCYTE
GROWTH AND SURVIVAL

IGF-I promotes cellular proliferation and/or differentiation through binding to a spe-
cific heterotetrameric receptor with intrinsic tyrosine kinase activity (150–152). The acti-
vated IGF-I receptor phosphorylates several adaptor/docking proteins, including the
insulin receptor substrates 1 and 2 (IRS-1 and IRS-2), Crk and Shc, leading to signal
transduction through multiple downstream signaling proteins, including mitogen-acti-
vated protein kinases and PI3K. The regulatory subunit of PI3K contains an SH2 domain
that interacts with IRS-1, resulting in PI3K activation (153). PI3K then leads to Akt (pro-
tein kinase B) activation, which affects diverse intracellular processes, such as transla-
tional regulation and cell survival. Activated Akt kinase plays a central role in suppressing
apoptosis by modulating the activities of Bcl-2 family proteins (154), caspase (9,155) and
Fas ligand (156). Overexpression of an activated form of the PI3K catalytic subunit or Akt
in transgenic mice resulted in cardiac hypertrophy with a remarkable increase in cardiac
contractility (157). Transfer of mutationally activated PI3 kinase and Akt genes has been
shown to prevent apoptosis of cardiac myocytes in vitro (114), and a recent report indi-
cates that an adenoviral vector expressing activated Akt reduces the total number of apop-
totic cardiomyocytes and improves regional cardiac function in rat hearts subjected to
transient ischemia in vivo (158). Yamashita et al. (159) demonstrated that IGF-I ± trans-
genic mouse hearts are resistant to apoptosis or necrosis in three different models of
ischemia, confirming the disease-resistant phenotype of these hearts. The basal level of
phosphorylated Akt was increased sixfold as a result of continuous overproduction of
IGF-1 in these hearts. Both the induction of phospho-Akt by ischemia/reperfusion and the
resistance of the IGF-1 ± hearts to apoptosis were blocked by wortmannin. This confirms
the role of PI3 kinase in both responses.

Although the activation of PI3 kinase or Akt alone is sufficient to partially sup-
press cardiomyocyte apoptosis (113,160), the signals transmitting the anti-apoptotic
effect of IGF-I may involve more than one pathway. Thus, Mehrhof et al. (161)
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showed that IGF-I-stimulation is followed by a PI3K-dependent phosphorylation of
Akt and BAD and an MEK1-dependent phosphorylation of extracellular signal-regu-
lated kinase-1 and -2. IGF-I also induced phosphorylation of cyclic AMP response
element-binding protein (CREB) in a PI3K- and MEK1-dependent manner. Ectopic
overexpression of a dominant-negative mutant of CREB abolished the antiapoptotic
effect of IGF-I. Protein levels of the antiapoptotic factor bcl-2 increased after longer
periods of IGF-I-stimulation, and this could be reversed by pharmacological inhibi-
tion of PI3K as well as MEK1 and also by overexpression of dominant-negative
CREB. Therefore, in cardiomyocytes, the antiapoptotic effect of IGF-I requires both
PI3K- and MEK1-dependent pathways leading to the activation of the transcription
factor CREB, which then induces the expression of the antiapoptotic factor Bcl-2.

6. CACHEXIA ASSOCIATED WITH HEART FAILURE

Chronic heart failure is associated with significant malnutrition, progressive skeletal
muscle atrophy, leading to cardiac cachexia. Anker et al. (162) have shown that
cachexia or wasting is an important predictor of increased mortality in heart failure.
Recent evidence suggests that exercise intolerance in heart failure is not simply a result
of reduced perfusion of the exercising musculature, rather, it is a result of skeletal mus-
cle dysfunction (163–165). Minotti et al. (166) showed that loss of skeletal muscle
mass is an important determinant of muscle strength and that muscle wasting occurred
in even mild heart failure (167). The causes of muscle atrophy in heart failure are still
unknown. It has been hypothesized that loss of anabolic function (168) and cytokine
activation (169) may be of importance.

A recent study by Hambrecht et al. in 47 patients with severe congestive heart fail-
ure (left ventricular ejection fraction ≤30%) and 15 age-matched healthy subjects
showed that local muscle IGF-I mRNA expression was reduced by 52% in chronic
heart failure (168). Local IGF-I expression was significantly correlated with muscle
cross-sectional area and growth hormone resistance (168). High tumor necrosis factor-
α levels are associated with exercise intolerance and neurohormonal activation in
chronic heart failure patients (170). This cytokine is known to produce muscle wasting
either by triggering apoptosis or by activating ubiquitin (171).

The potential reduction in IGF-I anabolic effects in skeletal muscle of heart failure
patients coupled with the activation of cytokines and angII may induce apoptosis of
skeletal muscle cells. Thus, Vescovo et al. (172) showed that there was an increased
number of TdT-mediated-dUTP nick-end labeling-positive apoptotic myocyte nuclei in
biopsies taken from the vastus lateralis muscle of patients with severe chronic heart
failure caused by ischemic heart disease. Tissue concentrations of Bcl-2 were
decreased, whereas those of caspase-3 and ubiquitin were increased. There was a cor-
relation between the number of apoptotic nuclei and the fiber cross sectional area, but
no correlation between myosin heavy chains and the number of apoptotic nuclei. A
similar observation has been made by Adams et al. (173), who showed increased levels
of skeletal muscle apoptosis in patients with congestive heart failure. Skeletal muscle
apoptosis in heart failure is accompanied by higher expression of inducible nitric oxide
synthase (174). Muscle wasting has also been demonstrated in animal models of con-
gestive heart failure. Thus, Vescovo et al. have shown that in monocrotaline-induced
heart failure in the rat there is a progressive rise in interstitial and myocyte apoptosis in
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hind limb skeletal muscle (TdT-mediated-dUTP nick-end labeling-positive cells),
accompanied by a drop in fiber cross-sectional area and muscle weight/body weight
that was significant at 30 d (175).

Our group has shown that muscle wasting in the rat can be induced by angII infu-
sion, a model that mimics the condition of congestive heart failure, which is character-
ized by elevated angII levels (Fig. 1). We were the first to show that angII infusion
caused a significant reduction of circulating IGF-I levels, concordant with a marked
weight loss (176). The weight loss is secondary to both an anorexigenic and catabolic
effect of angII. We further showed that these responses are mediated by the AT1 recep-
tor but are independent of pressor responses to angII. We have subsequently explored
the mechanisms mediating this catabolic effect of angII (177). AngII did not signifi-
cantly decrease protein synthesis, but overall protein breakdown was accelerated;
inhibiting lysosomal and calcium-activated proteases did not reduce the angII-induced
increase in muscle proteolysis, indicating that other systems such as the ubiquitin-pro-
teasome pathway may be involved. In addition to reducing circulating IGF-I (via inhi-
bition of hepatic IGF-I synthesis), angII markedly decreased skeletal muscle IGF-I and
IGF binding protein-3 and -5 expression (177). Restoration of normal circulating IGF-I
levels did not block angII-induced skeletal muscle weight loss. Our data suggest that
angII causes a loss in skeletal muscle mass by enhancing protein degradation probably
via its inhibitory effect on the autocrine IGF-I system (176,177). Because skeletal mus-
cle may express low numbers of angII receptors (although this is not a consistent find-
ing; ref. 178), this catabolic effect could be mediated through intermediate molecules.
Possible candidates include glucocorticoids or the proinflammatory cytokine, TNF-α.
Indeed, we have shown that cortisol levels are markedly elevated in the angII-infused
rat (177,179).
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7. IGF-I LEVELS IN HEART FAILURE

Our animal findings provided a link between the RAS and IGF-I and prompted us to
conduct a prospective study to determine levels of circulating IGF-I, IGFBP-3, and free
IGF-I in patients with congestive heart failure treated with and without ACE inhibitors
(180). We found that serum levels of total IGF-I and of its main circulating carrier pro-
tein, IGFBP-3, were decreased irrespective of the mechanism and the severity of left
ventricular failure. In contrast, free IGF-I was greatly increased. Furthermore, the
decrease in total IGF-I was not observed when patients were treated with ACE
inhibitors. This was not the case for changes in IGFBP-3 and free IGF-I. Our data sug-
gest that one of the major regulators of circulating IGF-I in heart failure is an increased
level of angII (180). This is consistent with a report from Corbalan et al. (181) and with
our animal data demonstrating that angII infusion reduces hepatic IGF-I synthesis and
circulating total IGF-I (177). Reduced circulating IGF-I levels have also been reported
in patients with dilated cardiomyopathy and total IGF-I levels correlated positively to
systolic function (182,183). Animal data have suggested that an intact GH–IGF-I axis is
required for normal myocardial infarction healing. This was demonstrated by Cittadini
et al, (184) in a coronary ligation model using growth hormone-deficient dwarf rats and
in age-matched controls. They found that in dwarf rats, serum IGF-I levels were
reduced by 50%, and grow rate was 50% less than normal littermates. The dwarf rats
failed to develop compensatory hypertrophy of the noninfarcted posterior wall. Further-
more, the extent of remodeling as assessed by the increase in end-diastolic dimension
and depression of function were both greater in the dwarf group. Interestingly, Al-
Obaidi et al. have suggested that early heart failure is characterized by an increase in
IGF-I, which is then lost as heart failure progresses (185).

8. CROSSTALK BETWEEN IGF-I AND ANGII SIGNALING

As mentioned above, constitutive overexpression of IGF-I in myocytes protects
them from apoptosis whereas angII triggers apoptosis of myocytes and promotes car-
diac fibrosis. The opposing actions of these two factors have prompted Leri et al.
(127) to investigate a possible interaction of IGF-I and angII in cardiomyocytes
(Fig. 1). The hypothesis was that IGF-I interferes with the activity of p53, depressing
the myocyte RAS and the induction of p53-dependent genes such as angiotensinogen
(Aogen), AT1 receptor, and Bax. This hypothesis was based on previous findings that
the tumor suppressor p53 upregulates the local RAS, leading to the formation of
angII (32,108), decreasing the expression of genes opposing cell death, such as Bcl-2
(108 127,186,187), and enhancing genes promoting apoptosis, such as Bax (188).
The proto-oncogene mdm2, which possesses in its promoter two perfect consensus
sequences for p53 (189), has been shown to decrease the stability of p53 by enhanc-
ing the degradation of this protein (190,191). To test the potential interaction between
IGF-I and angII, Leri and collaborators generated a transgenic mouse FVB.IGF ± by
placing the human IGF-IB cDNA under the control of the rat α-myosin heavy-chain
promoter (129). Upregulation of IGF-I in cardiac myocytes from FVB.IGF ± mice
was associated with a protein-to-protein interaction between Mdm2 and p53, which
attenuated p53 transcriptional activity for Bax, angiotensinogen (Aogen), and AT1
receptor. Similarly, the amount of Bax, Aogen, and AT1 receptor proteins in these
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cells decreased. The downregulation of Aogen in myocytes from FVB/IGF ± mice
was characterized by a reduction in angII. Therefore, these elegant studies established
that IGF-I negatively influences the myocyte RAS through the upregulation of Mdm2
and its binding to p53. This may represent an important molecular mechanism
responsible for the effects of IGF-I on cell viability and myocyte hypertrophy in the
nonpathological and pathological heart in vivo. This model may mimic the early
stages of cardiac hypertrophy when IGF-I levels are high. However, when hypertro-
phy progresses to the decompensated stage, angII effects become dominant (71).

These findings raise the possibility that increased angII in later stages of cardiac
hypertrophy might inhibit the synthesis and/or availability of IGF-I. It has been shown
previously that angII inhibits insulin and IGF-I signaling systems (192). Using an
intact rat heart model, Folli et al. (193) demonstrated that angII stimulates tyrosine
phosphorylation of the insulin receptor substrates IRS-1 and IRS-2. However, unlike
insulin, angII inhibits both basal and insulin/IGF-I-stimulated IRS-1- and IRS-2-asso-
ciated PI 3-kinase activity. This effect occurs via angII-triggered serine phosphoryla-
tion of both the insulin receptor β-subunit and IRS-1, and the p85 regulatory subunit of
PI3 kinase and therefore interference with the docking of IRS-1 with the p85 regula-
tory subunit of PI3 kinase (192).

Our group has shown that angII infusion indeed caused a marked decrease of both
circulating and skeletal muscle IGF-I levels in the rat (176,177). In addition, angII
infusion reduced skeletal muscle IGFBP-3 and IGFBP-5 expression. Under such cir-
cumstances, exogenous introduction of IGF-I may be of therapeutic value. Recombi-
nant adeno-associated virus has been used to overexpress IGF-I in rat skeletal muscle
(194). It was shown that increased IGF-I expression promoted an average increase of
15% in muscle mass and a 14% increase in strength in young adult mice and, remark-
ably, prevented aging-related muscle changes in old adult mice, resulting in a 27%
increase in strength as compared with uninjected old muscles. Muscle mass and fiber
type distributions were maintained at levels similar to those in young adults (194).
These findings have important implications for devising strategies to ameliorate the
muscle wasting common in many chronic disease states.

9. SUMMARY AND CONCLUSIONS 

The RAS and the IGF-I system are important autocrine/paracrine regulators of car-
diac and skeletal muscle growth, differentiation, and survival. Complicated interac-
tions exist between these systems at the levels of regulation of their principal ligands,
angII and IGF-I, and at the level of regulation of their receptors and receptor signaling
pathways. Both these systems play an important role in the development of cardiac
hypertrophy and in the progression from compensated to decompensated heart failure.
In addition, these systems play a major role in skeletal muscle homeostasis. Further
understanding of the crosstalk between these systems will likely lead to significant
advances in the understanding and treatment of patients with cardiovascular disease. 
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KEY POINTS

• Nutrition plays a major role in regulating the IGF axis.
• IGF-I is implicated in mediating the effects of nutrition on somatic growth.
• Nutrition is associated with the incidence of a range of cancers.
• IGF system is implicated in cancer.
• IGF-I may mediate the effects of nutrition on neoplastic growth.

1. INTRODUCTION

Over the last 50 yr, cancer research has predominantly been focused upon identify-
ing and characterizing genes that when mutated may give rise to cancer. This research
has fostered huge advances in our understanding of the molecular controls of cell
cycle, apoptosis, and cell survival. Within the last decade, however, evidence has accu-
mulated to indicate that the progression of most cancers is dependent more on epige-
netic influences than on primary gene mutations (1). For most human cancers, the
problem is not that gene mutations occur, but how the body deals with damaged cells.
It has been estimated that only about 1% of human cancers can be accounted for by
unmistakable hereditary cancer syndromes, only up to 5% can be accounted because of
high penetrance single gene mutations, and in total only 5 to 15% of all cancers may
have a major genetic component (2). A study of cancers in nearly 45,000 pairs of twins
across three Nordic cohorts estimated that genetic factors contributed to between 27 to
42% of cancers of the breast, prostate, and colorectum (3) but that most of this was
probably the result of relatively common genes that alone would only carry moderate
risk, and the influence of many of these may be modified by environmental factors. The
predominant contribution to the causation of most sporadic cancers was considered to
be environmental factors contributing to between 58 and 82% of different cancers.
Despite the lack of direct evidence, the indirect evidence is compelling (3).

The most important environmental factor is undoubtedly nutrition. This chapter
summarizes the evidence implicating that the IGF system may mediate, at least in part,
the influence of nutrition on cancer.
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2. EVIDENCE IMPLICATING THE IGF SYSTEM IN CANCER

2.1. Local IGFs
In addition to being important general tissue growth factors, it is not surprising that

the IGFs have also been reported to be potent mitogens for a large number of different
human cancer cell lines (4,5). Furthermore, both IGF-I and IGF-II are expressed in
many tumors and IGF-II in particular has been observed to be overexpressed in a num-
ber of different tumors, including colon (6), liver (7), and in several pediatric cancers
(8). Transgenic mice overexpressing GH or IGFs have an increased susceptibility for
tumor development in specific tissues (9). Increased expression of either IGF-I (10) or
IGF-II (8,11,12) has been reported to be associated with more aggressive tumor pheno-
types. Similarly, increased expression of IGF-II and the IGF-I receptor (IGF-IR) have
been associated with a more metastatic phenotype (13).

2.2. Receptors
The mitogenic and survival actions of both IGF-I and IGF-II are primarily mediated

via the IGF-IR (14). In contrast, the IGF-II receptor/mannose-6-phosphate receptor is
considered to play an important role in the clearance and degradation of IGF-II, although
it additionally has an important role in the cellular trafficking of lysosomal enzymes and
also acts as a high affinity-binding site for latent transforming growth factor (TGF)-β and
retinoids (15). Increased expression of the IGF-IR has been reported in many cancer cell
lines and in human tumor biopsies (16–18). The IGF-IR appears to play a critical role in
malignant transformation and in the maintenance of a transformed cell phenotype (19).
At least partly this is the result of the remarkable efficacy with which the IGF-IR can
maintain cell survival and protect cells from apoptosis via multiple signaling pathways
(20). Overexpression of the IGF-IR has been reported to be associated with an aggres-
sive phenotype of a variety of tumors (21,22). In a rodent model of prostate cancer pro-
gression, however, levels of the IGF-IR were reported to be significantly reduced in
advanced disease as androgen independence developed (23). 

In addition to the IGF-IR, the insulin receptor (IR) and hybrid IR/IGF-IR may also
be present and play a role in mediating the actions of the IGFs in certain tumors
(24,25). In contrast to the IGF-I receptor, the IGF-IIR serves to limit IGF-II actions and
hence reduce its growth promoting and cell survival potential. A number of gene dis-
ruptions resulting in loss of IGF-IIR have been described in various tumor types,
including missense mutations, loss of heterozygosity, and microsatellite instability
(26,27). Loss of the IGF-IIR has been associated with increased tumor growth potential
(28), decreasing IGF-IIR expression has a similar effect (29), whereas introduction of
the IGF-IIR into cancer cells reduces growth and increases apoptosis (30).

2.3. Binding Proteins
The six IGF binding proteins (IGFBP-1 to -6) all have greater affinity for binding

to the IGFs, than the IGF-IR, and can therefore restrict IGF actions (4). The IGFBPs,
however, have the potential to either inhibit or enhance IGF actions in many cell
types. Several hypotheses have been proposed to explain enhanced IGF actions,
including presentation of IGF to cell surface receptors and preventing receptor down-
regulation. To date, most evidence suggests that IGFBPs generally restrict tumor
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growth and progression by limiting IGF-mitogenic and cell survival actions. The
actions of many antiproliferative agents appear to operate, at least in part, via upregu-
lation of endogenous IGFBPs produced by the tumor cells, including TGF-β (31),
retinoids (32), vitamin D (33), tamoxifen (34), and butyrate (35). Accumulating evi-
dence indicates that most of the IGFBPs can also act in an intrinsic manner, indepen-
dent of IGF-binding, affecting various aspects of cell function. Growth inhibition and
modulation of apoptosis have been described in a variety of cancer cell lines (36–40).

Prostate cancer cells transfected to overexpress IGFBP-4 have been reported to
exhibit higher rates of apoptosis in culture and reduced incidence of tumors when
injected into nude mice (41). Altered levels of different IGFBPs have been observed in
a variety of different tumors, and some of these perturbations have been proposed as
prognostic indicators of disease progression (42–44).

In addition to all the data relating to associations between IGFBP-3 and known
tumor cell inhibitors, there have also been suggestions from epidemiology that high
serum IGFBP-3 levels (described below) are associated with reduced cancer risk.
There have, however, been several reports that would appear to imply conflicting
actions. Tumor levels of IGFBP-3 have been found to correlate positively with breast
tumor size (45) and to be positively associated with poor prognosis (46). The nature of
IGFBP actions may well change with advancement of cancer. The change in extracel-
lular pH, proteolysis, and extracellular matrix in addition to changes in tumor cell
behavior could all result in a shift in balance between potentiating and inhibiting and
between IGF-dependent and independent actions of IGFBPs.

2.4. Binding Protein Proteases
The IGFBPs appear to be particularly susceptible to proteolytic cleavage; in most

cases, in vivo cleavage appears to be limited but with a resultant decrease in affinity of
IGF-binding (47). The IGFBPs are susceptible to cleavage by a range of proteinases,
including metalloproteinases, cathepsins, kallikreins, and plasmin. It has been widely
reported that many of these proteinases have increased activity in aggressive and inva-
sive tumors. Indeed breakdown and remodeling of the extracellular matrix is a require-
ment for tumor progression. This has led to the obvious postulation that tumor
associated proteases would be releasing IGFs to support tumor growth and progression.
This interpretation is, however, not that straightforward. Studies of IGFBP-proteases in
the circulation and in normal extravascular compartments have indicated that although
IGFBP proteolysis is normally limited within the circulation because of the presence of
inhibitors, in most normal tissues there appears to be high levels of protease activity,
and the main carrier protein IGFBP-3 is predominantly in a cleaved form (47). If
IGFBP-3 is mainly in a proteolytically cleaved form within normal tissues, the signifi-
cance of increased proteolysis around tumors is much more difficult to interpret. The
realization that proteolysis may also generate bioactive IGFBP fragments that can act
in an IGF-independent manner has further complicated this interpretation.

The demonstration that prostate-specific antigen (PSA) could cleave IGFBPs has
received particular attention. Proteolysis of IGFBP-3 in vitro by PSA was reported to
reduce its growth inhibitory potential (48). There has been much speculation that
raised circulating PSA levels in patients with prostate cancer may result in cleavage
of circulating IGFBP-3 with a consequent increase in tissue availability of the large
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pool of IGFs maintained with IGFBP-3. There is, however, no evidence indicating
that IGFBP-3 is cleaved by PSA in vivo and it would not be expected for PSA to be
active in the circulation. It has also been shown that there are no associations between
serum PSA levels and proteolytic cleavage of circulating IGFBP-3 (48). The potential
significance of PSA/IGFBP interactions in the local environment of a prostate tumor
has yet to be determined.

2.5. Circulating IGFs
The activity of IGFs within any tissue is almost certainly caused by a combination of

some locally expressed components together with IGFs and IGFBPs delivered to the tis-
sue from the circulation where high levels are maintained. This provides a mechanism
for integrating systemic and local regulation systems. The circulating IGF-system is
under the influence of GH, insulin, nutrition and systemic disease status, whereas the
locally expressed components are controlled by factors specific to each individual tissue.

There have been many studies documenting changes in circulating levels of IGFs and
IGFBPs in patients with different cancers. It is becoming clear that many of the changes
reported appear to be part of the general systemic response to serious illness. In the last
few years, however, considerable new interest has been generated by results from
prospective epidemiology studies linking circulating IGF-I concentrations, measured in
samples taken years prior to the onset of disease, with risk of subsequent development of
clinical cancer. The strongest associations were reported for individuals with relatively
high serum IGF-I levels together with relatively low levels of serum IGFBP-3. Increased
relative risks of the order of two- to sevenfold were found for prostate (49), breast (50),
and colorectal (51,52) cancers. In the subsequent few years there have been many further
epidemiological studies reported that generally confirm these disease associations. There
have been attempts to group these studies into meta-analyses, although in reality this is
probably not appropriate because most of the studies are case-control or studies of
screen-detected cancers and there are still relatively few prospective population studies.
The case-control studies are very different in that the systemic alterations to the circulat-
ing IGF system as a consequence of illness in patients with cancers of varying stages
would be expected to confound any analysis of disease risk. Patients with advanced can-
cer become anorectic and catabolic resulting in suppression of circulating IGF-I and
IGFBP-3, this would clearly obscure any investigation of whether raised IGF-I levels
increase the risk of developing cancer. Data from most studies do, however, generally
appear to be in accordance with the initial prospective studies. Similar risk associations
have been reported with childhood leukemia (53) and lung cancer (54). There was also a
reported interaction between high levels of IGF-I and mutagen sensitivity in the study of
lung cancer risk (54), suggesting that IGF-I may act synergistically with other known
risk factors. Although the association between relatively high circulating IGF-I level and
cancer risk has, to date, proven surprisingly robust, the association between circulating
IGFBP-3 levels and cancer risk has been more confused, both positive (55) and negative
(51) associations having been reported.

That circulating levels of IGF-I can impact upon the incidence and growth of tumors
has been supported by recent work in laboratory animals. The administration of a well-
characterized murine mammary gland carcinogen to transgenic mice overexpressing a
GH antagonist resulted in a reduction of tumor incidence of 68% in control mice to just
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32% in the transgenic mice (56). This reduction in tumor incidence occurred against a
background of a 44% reduction in circulating IGF-I concentration in the transgenic
mice. There was, however, a large difference in body size in the transgenic animals
considerably confounding interpretation of the mechanism underlying the reduced car-
cinogenesis. More direct evidence for a role of circulating IGF-I has come from exper-
iments with mice in which the IGF-I gene was disrupted specifically in the liver,
resulting in a 75% reduction in serum IGF-I, but without change in IGF-I expression in
non-hepatic tissues (57). This large reduction in circulating IGF-I did not have any sig-
nificant effect on normal growth and development, with no measured difference in
body size. When mouse adenocarcinoma tissue fragments were, however, grafted onto
the caecum of these mice this resulted in detectable tumors in 31% of animals with dis-
rupted IGF-I expression compared with 57% in control mice (58). Administration of
IGF-I to the mice to replace the deficiency of circulating IGF-I resulted in an increase
in tumor incidence to 64.5% of animals. There was also a longer latency period before
tumor development and fewer hepatic metastases in the IGF-deficient mice. This study
indicated that a large difference in circulating IGF-I could have a significant effect on
tumor development and metastasis in normal sized mice.

3. GH AND ANTHROPOMETRY

A large body of literature supports the existence of a significant, albeit relatively
weak, association between height and cancer risk (59). Together, these reports indicate
that taller individuals are at a 20–60% increased risk of a range of cancers. The much
fewer studies that have examined components of statural height suggest that the associ-
ation is largely attributed to variation in leg length (59). There are many potential
explanations for these associations. There could be many genes that may impact both
upon statural growth and upon cancer risk. Similarly, there are many potential expo-
sures, both prenatal and throughout childhood, that might affect both growth and can-
cer risk, including nutrition and infections. The well-recognized importance of the IGF
system for somatic growth and neoplastic growth suggests, however, that the anthropo-
metric evidence is, at least, compatible with an effect of IGF-I upon risk of cancer. 

More circumstantial evidence has arisen from reported associations between circulat-
ing growth hormone and cancer risk. Despite the problems of assessing exposure to a hor-
mone secreted in a pulsatile manner, an association between measured circulating GH
levels and subsequent cancer has been reported in one prospective study (60). There has
also been considerable debate regarding evidence from subjects with acromegaly, who are
chronically exposed to pathologically elevated levels of GH. Increased incidence of breast
and in particular colorectal cancer has been reported in cohorts of subjects with
acromegaly (61). The consequence of elevation of GH status is an increase in circulating
levels of both IGF-I and IGFBP-3; whether the increase in IGFBP-3 counter balances any
increased risk associated with high IGF-I levels, as suggested by the initial prospective
epidemiology, will await clarification when the role of IGFBP-3 is eventually resolved.

4. NUTRITION AND CANCER

The literature linking nutrition with incidence of cancer is far more extensive than
that linking anthropometry. The incidence of many different cancers varies hugely
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between different populations and all of the most common cancers that plague Western
societies are rare in populations somewhere in the world. Studies of immigrant popula-
tions indicate that within two to three generations cancer, incident rates converge,
either up or down, to that of the local population (62). This led to the acceptance that
most cancers cannot be attributed to genetic factors within populations but instead
must be attributable to lifestyle and environment. Nutrition has been widely regarded
as a main contributor to this large effect. The study of associations between diet and
cancer is confounded by numerous factors, not least because of the complexity and
variety of foods and their multiple constituents. As a result, the evidence linking most
single dietary constituents is not unequivocal. There is, however, consensus agreement
linking many cancers to a typical Western diet and lifestyle, with a direct relationship
between cancer risk and consumption of meat, total animal fat, and simple sugars, as
well as with obesity. In contrast, there is an inverse relationship with consumption of
fruit and vegetables, whole grains, and fiber, as well as with physical activity (63,64).
Experts in both the United States and Europe have concluded that around a third of
cancers could be prevented by dietary modifications (62) and that between 5 and 10%
of cancers are caused by individuals being overweight.

A large number of vitamins and other micronutrients have been linked to various
cancers; however, large-scale intervention studies with dietary supplements have to
date been disappointing or even harmful (64).

High calorie intake in children has been associated with subsequent increase in can-
cer incidence later in life (65) and in the same cohort there was a significant association
between prepubertal leg-length and subsequent incidence of hormone-dependent can-
cers (66). These studies implied that childhood nutrition may “program” the suscepti-
bility to certain cancers throughout subsequent life. 

These population studies were supported by many studies in laboratory rodents indi-
cating overfeeding promotes and diet restriction inhibits the incidence and growth of
spontaneous (67), transplanted (68), and hormonally (69) or clinically induced (70)
tumors within a variety of tissues.

5. NUTRITION, IGF-I, AND CANCER

As described throughout this book, nutrition has a major role in regulating the IGF
axis, and IGF-I is implicated in mediating the effects of nutrition on somatic growth. It
is therefore an attractive extrapolation to suggest that IGF-I may also mediate the
effects of nutrition on neoplastic growth. The association of nutrition with incidence of
a wide range of different cancers suggests mediation by a common regulatory pathway;
IGF-I could readily fulfill such a general effect in many tissues. The beneficial effects
of diet restriction in animal models have been associated with the diet-induced changes
in circulating IGF-I. The growth of chemically induced liver tumors in mice was
reduced by diet restriction, and this was accompanied by a decrease in IGF-I concen-
tration (70). Similarly, in a leukemia cell transplant model in rats, diet restriction
decreased the incidence and severity of cancers and increased the latency period, and
this was associated with a decrease in IGF-I concentration (71). There was also a
decrease in cell proliferation rate and this was restored by infusion of IGF-I. Diet
restriction in rats has also been shown to reduce the growth and increase apoptosis of
transplanted human prostate cancer cells in association with a decrease in circulating
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IGF-I (68). In a model in which p53-deficient mice received a bladder carcinogen, diet
restriction was again associated with a reduction in tumor incidence and progression
and a decrease in circulating IGF-I (72). Prevention of the decrease in circulating IGF-I
by IGF-I infusion negated the benefits of diet restriction, and this was associated with a
sixfold increase in cell proliferation and a 10-fold reduction in apoptosis in the hyper-
plastic foci.

These animal experiments imply that the associations between nutrition and cancer
and between circulating IGF-I concentrations and cancer in human populations may be
linked, although there is very little direct evidence to date to confirm this linkage.
Despite the lack of direct evidence, the indirect evidence is compelling. In a prospec-
tive study assessing the risk of colorectal cancer, there was a significant interaction
between milk intake and the ratio of circulating IGF-I/IGFBP-3 (73). The protective
effect of milk consumption on subsequent development of colorectal cancer was
strongest among individuals with high IGF-I/IGFBP-3. Nutrition can clearly affect the
systemic IGF-system and interventions, which reduce IGF-I levels, may reduce cancer
incidence or progression. Breast cancer risk can be reduced by the prophylactic use of
tamoxifen and possibly raloxifene (74), both of which lower circulating IGF-I concen-
trations (75,76). Octreotide, a more direct intervention that reduces IGF-I levels, may
retard growth of a number of tumors (77). 

There is a need for much more research to determine the components of human diet
that most influence the IGF-system and how this may impact cancer incidence and pro-
gression. Most animal and human epidemiological studies to date have examined
energy and/or total dietary restriction (partial starvation). Examination of specific
nutrients, foods, or bioactive components of foods (nutraceuticals) is a growing area of
research. A recent small study has shown a significant inverse association between
serum IGF-I and cooked tomato consumption (78); lycopene from cooked tomatoes
has been implicated as protective against prostate cancer; but much larger and more
extensive studies are required.

6. MECHANISMS UNDERLYING IGF-I –CANCER ASSOCIATIONS

6.1. Mitogenic Effects

There are many potential mechanisms that could underlie the associations between
IGF-I and cancer. The simplest explanation for the associations revealed from prospec-
tive human epidemiology, would be that in an environment with high IGF-I or high IGF-
I/IGFBP-3 any neoplastic lesion progresses more rapidly to clinical presentation. So
although more incident cases are observed in subjects with high IGF-I/IGFBP-3 in rela-
tively short follow-ups of 3–10 yr, if the same cohorts are revisited after 20 years, there
may be equal incidence of cancers in the subjects with lower IGF-I. The extensive data
from animal and cell models suggest that this is not the whole explanation. The simplest
mechanism to invoke would be that the mitogenic actions of IGF-I increased epithelial
cell number or turnover. The strongest and most consistent associations have been
observed for epithelial cancers of the breast, prostate, and colorectum. If there are more
epithelial cells or more cells going through the cell cycle, then there are more opportuni-
ties for a malignant transformation. There is some evidence for such an effect of sys-
temic IGF-I concentrations on such tissues in non-tumor individuals. A strong
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association between IGF-I/IGFBP-3 and mammographic breast density has been
observed in premenopausal women (79). A high mammographic breast density reflects
more glandular epithelial/stromal tissue relative to adipose tissue. Serum IGF-I/IGFBP-3
is associated with increased risk of premenopausal breast cancer (80) and high breast
density is also strongly associated with increased risk of breast cancer. Subjects with
acromegaly have high levels of IGF-I and hyperplasia of the prostate has been reported
in young subjects (81) and increased epithelial cell proliferation in the colon have been
correlated with circulating IGF-I concentration (82).

6.2. Apoptosis
The most fundamental defense against cancer is cellular apoptosis. Damaged cells

or cells growing inappropriately should activate apoptosis, the natural mechanism to
remove damaged, infected or superfluous cells from the body. A large amount of evi-
dence from cell biology indicates that IGF-I is a very potent cell survival factor and
IGFBP-3 not only has an important role in controlling IGF-I availability, but also has
intrinsic actions promoting apoptosis (83). Together, this evidence implies that the bal-
ance between IGF-I and IGFBP-3 may regulate the threshold for activation of apopto-
sis. A relatively high IGFBP-3 to IGF-I ratio would promote damaged cells to undergo
apoptosis and reduce the risk of cancer whereas a relatively high IGF-I to IGFBP-3,
would promote cell survival; if damaged cells survive inappropriately, this might
increase the risk of neoplasia.

7. SUMMARY AND CONCLUSIONS

The associations between nutrition, IGF-I, and cancer have many potential implica-
tions. The measurement of IGFs may enable identification of high-risk individuals for
more intensive screening and for risk reduction strategies. The efficacy of risk reduc-
tion strategies has been established by the prophylactic use of tamoxifen in women at
high of risk of breast cancer. The nutritional dependence of the IGF system raises the
potential for prophylactic risk reduction by dietary manipulations rather than by phar-
macological interventions. There are, however, in addition many different pharmaceuti-
cal strategies for targeting the IGF-system that are being developed.

Cancer is generally a disease of advancing years. The dramatic increase in survival of
individuals into their 80s and 90s in all Western societies suggests that cancer will remain a
growing epidemic. In the third world, it is projected that noncommunicable diseases will
overtake communicable diseases within the first half of this century. The shift of popula-
tions from rural to urban environments is accompanied by a switch from unprocessed agri-
cultural food to a processed Western-style diet. The spread of the cancer epidemic to the
third world will necessitate a new approach, as they will not have the economic resource to
deal with cancer in the same manner that Western societies have applied to date. The links
between nutrition, IGF-I, and the common epithelial cancers suggest further avenues of
research that might provide new approaches to prevent the spread of the cancer epidemic.
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PROFESSIONAL SOCIETIES AND ORGANIZATIONS

http://www.igf-society.org/h/join_igfs.html

With close to 1000 members from dozens of countries, the International Society for
IGF Research is a unique organization devoted to basic and applied research on a net-
work of molecules called insulin-like growth factors (IGFs), their receptors, and their
binding proteins (IGFBPs). Together, these scientists, educators, clinicians, and stu-
dents who make up the organization’s membership represent the spectrum of interests
in IGF research from molecular biology to clinical applications. Since its inception, the
IGF Society has worked to promote excellence and interest in research and education
on the role of these molecules in the etiology, pathogenesis, and treatment of diseases
such as cancer, diabetes, growth disorders, heart disease, and neurological illnesses.

http://www.asns.org/

The American Society for Nutritional Sciences (3500+ members) is the premier
research society dedicated to improving the quality of life through the science of nutri-
tion. The society fulfills its mission by: fostering and enhancing research in animal and
human nutrition; providing opportunities for sharing, disseminating, and archiving
peer-reviewed nutrition research results (at its annual meeting and in its official publi-
cation, the Journal of Nutrition): fostering quality education and training in nutrition;
upholding standards for ethical behavior in research, the protection of human subjects,
and the care and treatment of research animals; providing opportunities for fellowship
and support among nutritionists; and bringing scientific knowledge to bear on nutrition
issues through communication and influence in the public domain.  The clinical divi-
sion is the American Society of Clinical Nutrition (http://www.ascn.org/).  The offi-
cial publication is The American Journal of Clinical Nutrition, which focuses on basic
and clinical studies relevant to human nutrition.

http://www.endo-society.org/

The Endocrine Society is the world’s largest and most active professional organiza-
tion of endocrinologists in the world. Founded in 1916, the society is internationally
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known as the leading source of state-of-the-art research and clinical advancements in
endocrinology and metabolism. The Endocrine Society is dedicated to promoting
excellence in research, education, and clinical practice in the field of endocrinology.
The Endocrine Society is an international body with more than 11,000 members from
more than 80 countries. The diverse membership represents medicine, molecular and
cellular biology, biochemistry, physiology, genetics, immunology, education, industry,
and allied health.

http://www.clinnutr.org/

The American Society for Parenteral and Enteral Nutrition promotes professional
communication among and within professional disciplines in the broad field of clinical
nutrition including parenteral and enteral nutrition through national and regional meet-
ings, local seminars, scientific, and clinical and educational exhibits and publications.
The society promotes proper application of clinical and research experience to the
practice of nutritionally sound medicine. 

http://www.nih.gov

Founded in 1887, the National Institutes of Health (NIH) today is one of the world’s
foremost medical research centers, and the Federal focal point for medical research in
the United States. The NIH, comprising 27 separate institutes and centers, is one of
eight health agencies of the Public Health Service which, in turn, is part of the US
Department of Health and Human Services.  Simply described, the goal of NIH
research is to acquire new knowledge to help prevent, detect, diagnose, and treat dis-
ease and disability from the rarest genetic disorder to the common cold. NIH works
toward that mission by: conducting research in its own laboratories; supporting the
research of non-federal scientists in universities, medical schools, hospitals, and
research institutions throughout the country and abroad; helping in the training of
research investigators; and fostering communication of medical and health sciences
information.

http://www.nsf.gov/

The National Science Foundation (NSF) is an independent agency of the US Govern-
ment, established by the National Science Foundation Act of 1950.  NSF’s mission is to
promote the progress of science, to advance the national health, prosperity, and wel-
fare, and to secure the national defense.  

http://www.ilsi.org/

Founded in 1978, the International Life Sciences Institute (ILSI) is a nonprofit,
worldwide foundation that seeks to improve the well-being of the general public
through the pursuit of balanced science. Its goal is to further the understanding of
scientific issues relating to nutrition, food safety, toxicology, risk assessment, and
the environment by bringing together scientists from academia, government, and
industry.
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http://www.eatright.org/

The American Dietetic Association is the largest group of food and nutrition profes-
sionals in the United States, members are primarily registered dietitians and dietetic
technicians, registered.  Programs and services include promoting nutrition informa-
tion for the public; sponsoring national events, media and marketing programs, and
publications (The Journal of the American Dietetic Association), and lobbying for fed-
eral legislation. Also available through the web site are member services, nutrition
resources, news, classifieds, and government affairs.  Assistance in finding a dietitian,
marketplace news, and links to related sites also can be found.

http://www.faseb.org

The Federation of American Societies for Experimental Biology (FASEB) is a
coalition of member societies with the purpose of enhancing the profession of biomed-
ical and life scientists, emphasizing public policy issues.  FASEB offers logistical and
operational support as well as sponsoring scientific conferences and publications (The
FASEB Journal).

http://www.usda.gov

The United States Department of Agriculture (USDA) provides a broad scope of
service to the nation’s farmers and ranchers.  In addition, the USDA ensures open
markets for agricultural products, food safety, environmental protection, conservation
of forests and rural land, and the research of human nutrition.  The Food and Nutri-
tion Service administers the USDA’s 15 food assistance programs for children and
needy families with the mission to reduce hunger and food insecurity.
http://www.fns.usda.gov/fns/

http://www.who.int/nut/

The World Health Organization has regarded nutrition to be of fundamental importance
for overall health and sustainable development.  The global priority of nutritional issues,
activities, mandates, resources, and research are presented in detail.

http://www.diabetes.org

American Diabetes Association

http://www.aace.com

American Society of Clinical Endocrinologists

http://www.amcollnutr.org/

American College of Nutrition

http://www.asbmr.org/

American Society for Bone and Mineral Research
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http://wwww.jdf.org

Juvenile Diabetes Research Foundation

http://www.nmss.org

National Multiple Sclerosis Society

http://www.neuropathy.org

The Neuropathy Association

http://www.asas.org/

American Society of Animal Science

http://www.bsped.org.uk

British Society for Paediatric Endocrinology and Diabetes

http://www.hgfound.org/

Human Growth Foundation

http://www.ghresearchsociety.org/bin/Default.asp

Growth Hormone Research Society

http://www.endocrinology.org/default.htm

Society for Endocrinology

http://www.the-aps.org/about/index.htm

American Physiological Society

http://www.aacr.org/

American Association of Cancer Research

http://www.asbmb.org/ASBMB/ 

American Society for Biochemistry and Molecular Biology

http://www.ascb.org/

American Society for Cell Biology

http://www.ama-assn.org/

American Medical Association

http://www.ibmsonline.org/

International Bone and Mineral Society

http://www.nof.org/

National Osteoporosis Foundation
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JOURNALS 

http://www.harcourt-international.com/journals/ghir/

Growth Hormone and IGF Research

http://www.nutrition.org/

Journal of Nutrition

http://www.ajcn.org/

American Journal of Clinical Nutrition

http://jcem.endojournals.org/

Journal of Endocrinology and Metabolism

http://endo.endojournals.org/

Endocrinology 

http://mend.endojournals.org/

Molecular Endocrinology  

http://journals.endocrinology.org/JME/jme.htm

Journal of Molecular Endocrinology

http://edrv.endojournals.org/

Endocrine Reviews

http://www.blackwellpublishing.com/

Clinical Endocrinology

http://journals.endocrinology.org/JOE/joe.htm

Journal of Endocrinology

http://www.elsevier.com/

Trends in Endocrinology and Metabolism

http://www.the-aps.org/publications/ajpendo/index.htm

American Journal of Physiology – Endocrinology and Metabolism

http://www.the-aps.org/publications/ajpendo/index.htm

American Journal of Physiology – Cell Physiology

http://rphr.endojournals.org/

Recent Progress in Hormone Research  
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http://www.sciencemag.org/

Science 

http://www.nature.com/

Nature

http://www.cellpress.com/

Cell; Molecular Cell; Neuron; Cancer Cell; Immunity
Chemistry and Biology; Developmental Cell

http://annurev.org/

Annual Review of Nutrition

http://www.ilsi.org/

Nutrition Reviews

http://www.clinnutr.org

Journal of Parenteral and Enteral Nutrition

http://www.nature.com/ejcn 

European Journal of Clinical Nutrition

http://www.eatright.org/journaltoc.html

Journal of the American Dietetic Association

http://www.ingenta.com/journals/browse/els/09552863

Journal of Nutritional Biochemistry

http://www.thieme.com/SID1990087552676/journals/pubid-388413336.html

Hormone and Metabolic Research

http://www.jbc.org/

Journal of Biological Chemistry

http://bmj.bmjjournals.com/

British Medical Journal

http://embojournal.npgjournals.com/

EMBO Journal

http://www.pnas.org/

Proceeding of the National Academy of Sciences
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http://content.nejm.org/

New England Journal of Medicine

http://bmj.bmjjournals.com/

British Medical Journal

http://www.aacc.org/ccj/

Clinical Chemistry

http://www.currentopinion.com/

Current Opinion Series

http://www.elsevier.com/

Cytokine and Growth Factor Reviews

http://www.cabi-publishing.org/Journals.asp?SubjectArea=&PID=63

British Journal of Nutrition

http://journals.endocrinology.org/ERC/erc.htm

Endocrine Related Cancer

http://jas.fass.org/

Journal of Animal Science

http://www.thelancet.com/

The Lancet

http://www.annals.org/

Annals of Internal Medicine

http://diabetes.diabetesjournals.org 

Diabetes

http://www.harcourt-international.com/journals/cale 

Cancer Letters

http://www.jci.org 

Journal of Clinical Investigation

http://www.jbc.org 

Journal of Biological Chemistry
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http://cancerres.aacrjournals.org 

Cancer Research

http://content.karger.com

Hormone Research

http://www.elsevier.com 

Biochemical Biophysical Research Communications
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Index

A

AD, see Alzheimer’s disease
Aging, insulin-like growth factor axis

disease effects
cardiovascular disease, 165
dementia, 164
diabetes, 164, 165
immunodeficiency, 165
muscle wasting, 164
osteoporosis, see Osteoporosis

expression levels, 158–160
hormonal regulation, 160
longevity relationship

animal models, 165, 166
caloric restriction, 166
overview, 165
primate studies, 166

nutritional regulation, 161–164
physiology, 158
prospects for study, 168, 169

Alcohol, muscle protein metabolism effects, 200, 201
ALS, see Amyotrophic lateral sclerosis
Alzheimer’s disease (AD)

impact on insulin-like growth factor system, 212
insulin-like growth factor-I therapy, 212, 213
pathophysiology, 212

Ames mouse, longevity, 166
Amino acids

nutritional regulation of insulin-like growth
factor-I expression, 33, 34

requirements in critical illness, 59, 60
Amyotrophic lateral sclerosis (ALS)

impact on insulin-like growth factor system,
216, 217

insulin-like growth factor-I therapy, 217
pathophysiology, 216

Angiotensin II
cardiac hypertrophy role, 312, 313
cardiomyocyte apoptosis mechanisms, 314
crosstalk with insulin-like growth factor-I

signaling, 320, 321
Anorexia nervosa

bone loss role of protein malnutrition, 183, 184
insulin-like growth factor-I in nutritional

status assessment, 88, 89

Apoptosis
cardiomyocyte apoptosis mechanisms

in heart failure
angiotensin II, 314
insulin-like growth factor-I, 315, 316

insulin-like growth factor-I inhibition
in cancer, 338

Ataxia telangiectasia, impact on insulin-like
growth factor system, 214

B

Bone growth, protein intake relationship, 184–188
Bone mineral density, see Osteoporosis
BPD, see Bronchopulmonary dysplasia
Breast cancer, see Cancer
Breast milk

insulin-like growth factor system components,
136, 140

mitogenic activity, 140
Bronchopulmonary dysplasia (BPD), insulin-like

growth factor axis defects, 139

C

Caloric restriction, longevity effects, 166
cAMP, see Cyclic AMP
Cancer

breast cancer expression of insulin-like growth
factor system proteins, 128

genetics, 331
height and cancer risk, 335
insulin-like growth factor binding proteins

expression, 332, 333
protease expression, 333, 334

insulin-like growth factor-I expression
circulating levels, 334, 335
mechanisms

apoptosis inhibition, 338
mitogenic effects, 337, 338

nutrition effects, 335–337
tumors, 332

insulin-like growth factor-I receptor expression,
125–127, 332

insulin-like growth factor-II expression, 126,
128, 332

prospects for study, 128, 129
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prostate cancer
insulin-like growth factor-I expression,

127, 128
insulin-like growth factor-II expression, 128

Cardiovascular disease, insulin-like growth factor
axis defects in aging, 165

Cerebral hypoxic/ischemic injury
insulin-like growth factor-I therapy, 216
pathophysiology, 215, 216

CF, see Cystic fibrosis
Colon, see Intestine
Congestive heart failure, see Heart failure
Critical illness

anabolic hormone therapy, 63, 64
catabolism, 292
cytokine effects

anabolic hormone actions, 56–58
protein metabolism, 54–56

definition, 291, 292
insulin-like growth factor system

changes in acute phase, 293–295
changes in chronic phase, 295–297
growth hormone-releasing factors, effects

in chronic phase, 298–301
insulin-like growth factor-I

muscle metabolism role, see Muscle
protein metabolism

nutritional status assessment, 87, 88
pathophysiology of chronic changes,

297, 298
thyroid and gonadal axes interactions, 301,

303, 304
nutritional management

antioxidants, 64, 65
energy requirements, 60, 61
lipid metabolism and requirements, 61–63
micronutrients, 64, 65
overview, 58
prospects for study, 66
protein metabolism and requirements, 58–60

Crohn’s disease, see Inflammatory bowel disease
Cyclic AMP (cAMP), regulation of insulin-like

growth factor-I expression, 5
Cystic fibrosis (CF), insulin-like growth factor-I

in nutritional status assessment, 90

D

Dementia, insulin-like growth factor axis defects
in aging, 164

Dexamethasone, insulin-like growth factor axis
effects, 140

Diabetes
insulin-like growth factor system

defects in aging, 164, 165

glucose homeostasis role, 252–254
insulin-like growth factor binding protein-1

levels, 259, 260
prospects for study, 262, 263
type I diabetes, 257, 258
type II diabetes, 258, 259

insulin-like growth factor-I therapy
side effects, 261, 262
type I diabetes, 261
type II diabetes, 261

nephropathy and insulin-like growth factor
system, 236, 237, 259

neuropathy
impact on insulin-like growth factor

system, 217, 218
insulin-like growth factor-I therapy, 218
pathophysiology, 217

retinopathy and insulin-like growth factor
system, 259

DNA microarray, differentiation of insulin versus
insulin-like growth factor-I gene
upregulation, 13, 14

E

Elderly, see Aging

F

Fasting
insulin-like growth factor-I expression effects,

26, 27, 35, 81
insulin-like growth factor-I sensitivity effects,

38, 39
Fetal insulin-like growth factor axis, 134–136

G

GH, see Growth hormone
Glucocorticoids

muscle protein metabolism effects, 201, 202
nutritional regulation of secretion and insulin-

like growth factor-I expression effects,
32, 33

Glucose
insulin-like growth factor system in homeostasis,

252–254
nutritional regulation of insulin-like growth

factor-I expression, 33, 34
Growth hormone (GH)

binding protein, 29
cytokine effects on action, 57, 58
height and cancer risk, 335
inflammatory bowel disease management, 284
nutritional regulation of secretion and insulin-

like growth factor-I expression effects,
27–29
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regulation of insulin-like growth factor-I
expression, 5, 6, 27–29

releasing factors in critical illness, effects in
chronic phase, 298–301

therapy in critical illness, 63, 64
total parenteral nutrition studies, 280, 281
zinc effects, see Zinc

Growth hormone receptor (GHR)
nutritional regulation and insulin-like growth

factor-I expression effects, 29, 30
signal transduction, 30, 31

H

HD, see Huntington’s disease
Heart failure

cachexia effects on insulin-like growth factor
system, 318, 319

cardiac hypertrophy mechanisms
angiotensin II, 312, 313
insulin-like growth factor-I, 313, 314

cardiomyocyte apoptosis mechanisms
angiotensin II, 314
insulin-like growth factor-I, 315, 316

insulin-like growth factor-I
crosstalk with angiotensin II signaling,

320, 321
expression levels, 320
therapy

cardiomyocyte growth and survival
effects, 317, 318

overview, 316, 317
Huntington’s disease (HD), insulin-like growth

factor-I therapy prospects, 213, 214

I

IGF-I, see Insulin-like growth factor-I
IGF-IR, see Insulin-like growth factor-I receptor
IGF-II, see Insulin-like growth factor-II
IGFBPs, see Insulin-like growth factor binding

proteins
IL-1, see Interleukin-1
IL-6, see Interleukin-6
Immunodeficiency, insulin-like growth factor

axis defects in aging, 165
Infants

insulin-like growth factor axis regulation, 138,
139

nutritional status assessment using insulin-like
growth factor-I, 86

Inflammatory bowel disease
insulin-like growth factor-I in fibrosis and

inflammation, 283, 284
treatment

growth hormone, 284

insulin-like growth factor-I, 284
Insulin

cytokine effects on action, 56, 57
nutritional regulation of secretion and insulin-

like growth factor-I expression effects, 31
regulation of insulin-like growth factor-I

expression
aging, 161
overview, 5

therapy in critical illness, 63
Insulin-like growth factor-I (IGF-I)

congenital deficiency, 136, 138
gene mutations, 125
gene polymorphisms, 141
splice variants and nutritional regulation, 34

Insulin-like growth factor-I receptor (IGF-IR)
gene mutations, 125
homologs in lower organisms, 14–16
hybrid receptors, 122, 123
insulin receptor binding, 11
ligands, 122
signal transduction, 8–10, 13–16
structure, 8, 9
tumor expression, 125–127, 332

Insulin-like growth factor-II (IGF-II)
developmental expression, 122
forms, 7
tumor expression, 126, 128, 332

Insulin-like growth factor binding proteins (IGFBPs)
aging effects on levels, 158–160
cytokine effects on levels, 58
functional overview, 11, 12, 35, 123, 134,

227, 228
illness effects in neonates, 141
muscle protein metabolism effects, 202–205
nutrition effects on expression and metabolism,

35–38, 81
nutritional status assessment prospects, 91, 92
tumor expression, 332, 333
types, 11, 12, 123

Insulin receptor (IR)
homologs in lower organisms, 14–16
hybrid receptors, 122, 123
insulin-like growth factor-I receptor binding, 11
isoforms, 11, 122
pp120 modulation, 12, 13
signal transduction, 13–16

Insulin resistance, see also Diabetes
insulin-like growth factor-I therapy, 261
insulin-like growth factor system

changes, 255
glucose homeostasis role, 252–254
insulin-like growth factor binding protein-1

levels, 259, 260
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pathophysiology role, 256, 257
prospects for study, 262, 263
severe insulin resistance states, 259

Interleukin-1 (IL-1)
insulin action effects, 56, 57
nutritional regulation of secretion and insulin-

like growth factor-I expression
effects, 33

protein metabolism effects, 54–56
Interleukin-6 (IL-6)

nutritional regulation of secretion and insulin-
like growth factor-I expression
effects, 33

protein metabolism effects, 54–56
Intestine, see also Inflammatory bowel disease

adaptation, 274, 282
insulin-like growth factor-I

binding protein modulation, 275, 276
developmental role, 140
mitogenic effects, 275
short bowel syndrome and resection

changes and therapy, 281–283
therapy in total parenteral nutrition, 278–280
transgenic mouse studies of

overexpression, 276, 277
transport improvement, 275

mucosal epithelial layer turnover, 272, 274
wall structure, 272

IR, see Insulin receptor

J

Journals, listing for insulin-like growth factor
research, 349–352

K

Kidney, insulin-like growth factor system,
see also Renal failure

binding protein effects, 232
compensatory renal growth in failure, 237
diabetic nephropathy role, 236, 237
expression of components, 228–230
insulin-like growth factor-I effects

nephrogenesis, 230, 231
normal kidney structure and function,

231, 232
overview, 227

nephrotic syndrome, 237, 238
nutrition effects

metabolic acidosis, 234
potassium depletion, 233, 234
protein loading, 233
starvation and protein energy

malnutrition, 233

prospects for study, 240
uptake and excretion of components, 230

Knockout mouse
growth studies of insulin-like growth

factor system
conditional insulin-like growth factor-I

knockouts, 6, 7
postnatal growth, 124
prenatal growth, 124

insulin-like growth factor-I deletion effects, 6,
124, 141

insulin-like growth factor-II, 7, 124
insulin-like growth factor-I receptor, 124
mannose-6-phosphate/insulin-like growth

factor-II receptor, 11
reproduction studies of insulin-like growth

factor axis, 151, 152
Knockout mouse, insulin-like growth factor

system in glucose homeostasis, 254

L

Left ventricular hypertrophy, see Heart failure
LH, see Luteinizing hormone
Liver

disease and insulin-like growth factor-I in
nutritional status assessment, 90

regulation of insulin-like growth factor-I
expression, 5

Luteinizing hormone (LH), critical illness and
insulin-like growth factor system interac-
tions, 303, 304

M

Malnutrition, see also Critical illness
assessment, see Nutritional status assessment
bone loss in protein malnutrition, 178–183
cytokine effects on protein metabolism, 54–56
insulin-like growth factor-I

expression effects, 26, 27, 35, 81
sensitivity effects, 38, 39

protein energy malnutrition
incidence, 76
insulin-like growth factor-I therapy in renal

failure, 238, 239
types, 76, 77

renal effects, 233
stages, 77

Manganese, insulin-like growth factor-I effects, 116
Mannose-6-phosphate/insulin-like growth factor-

II receptor
functions, 11
tumor expression, 332

Metabolic acidosis, renal effects, 234
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MS, see Multiple sclerosis
Multiple sclerosis (MS)

impact on insulin-like growth factor system, 215
insulin-like growth factor-I therapy, 215
pathophysiology, 214, 215

Muscle protein metabolism
aging and insulin-like growth factor axis

defects in aging, 164
insulin-like growth factor-I regulation

catabolic conditions
alcohol ingestion, 200, 201
burns, 198–200
glucocorticoid excess, 201, 202
infection, 197, 198, 200
postsurgery, 200

skeletal muscle protein synthesis, 196, 197
whole-body protein metabolism, 194–196

insulin-like growth factor binding protein
effects, 202–205

overview of regulation, 193, 194, 205
prospects for study, 205

Muscular dystrophy
insulin-like growth factor-I therapy

prospects, 219
impact on insulin-like growth factor

system, 219

N

Nephrotic syndrome, insulin-like growth factor
system, 237, 238

Nutritional status assessment
anthropometry, 80
biochemical markers, 77–80
body composition, 80
data in assessment, 77, 78
insulin-like growth factor-I as marker

anorexia nervosa, 88, 89
chronic nutritional status marker relationships

elderly, 163, 164
healthy adult studies, 85
infancy, 86
obesity, 86
puberty, 86
severe malnutrition, 86, 87

critical illness studies, 87, 88
cystic fibrosis, 90
limitations, 90, 91
liver disease, 90
overview of nutrient effects, 81, 82
prospects, 91, 92
renal failure, 89
repletion and monitoring of nutritional

interventions, 82–85
standardization, 90, 91

undernourished children studies, 87
marker evaluation criteria, 77, 79
overview, 77

O

Olivopontocerebellar atrophy, impact on insulin-
like growth factor system, 214

Omega-3 fatty acids, requirements in critical
illness, 62, 63

Osteoporosis
insulin-like growth factor-I deficiency

and fracture risk, 179, 180
insulin-like growth factor axis defects

in aging, 164
protein intake relationship with bone mineral

density
animal studies, 181, 182
elderly, 178–181
mechanisms, 182, 183
young adults, 183, 184

Ovary, insulin-like growth factor axis, 146, 147
Oviduct, insulin-like growth factor axis, 147, 148

P

Parathyroid hormone (PTH), regulation of insulin-
like growth factor-I expression, 5

Parkinson’s disease (PD), insulin-like growth
factor-I therapy prospects, 213

PD, see Parkinson’s disease
Perinatal insulin-like growth factor axis

nutrition effects on action, 139
overview, 136

Phosphorous, metabolism in bone growth, 184, 185
Postnatal insulin-like growth factor axis, 136
Potassium, depletion effects on kidney, 233, 234
pp120, insulin receptor modulation, 12, 13
Professional societies and organizations, 345–238
Prostaglandin E2

regulation of insulin-like growth factor-I
expression, 5

Prostate cancer, see Cancer
Protein energy malnutrition, see Malnutrition
Protein metabolism, see Muscle protein metabolism
PTH, see Parathyroid hormone
Pygmies, insulin-like growth factor system

defects, 125

R

Renal failure
insulin-like growth factor-I

nutritional status assessment, 89
therapy

acute renal failure, 239
chronic renal failure, 239
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growth retardation, 239
protein energy malnutrition, 238, 239

insulin-like growth factor system
effects, 234, 235
progression role, 238

Reproduction, insulin-like growth factor axis
circulating system, 150, 151
nutrition interactions, 145, 146
ovary, 146, 147
oviduct, 147, 148
prospects for study, 152
testes, 150
transgenic and knockout mouse studies, 151, 152
uterus, 148–150

Retinopathy of prematurity (ROP), insulin-like
growth factor axis defects, 140

Review literature, insulin-like growth factors, 343
ROP, see Retinopathy of prematurity

S

Short bowel syndrome
indications for resection, 281
insulin-like growth factor system

in adaptation, 282
insulin-like growth factor-I therapy, 282, 283
parenteral nutrition, 281, 282

Small intestine, see Intestine
Snell mouse, longevity, 166
Steroid myopathy, impact on insulin-like growth

factor system, 219

T

Telomerase, insulin-like growth factor-I effects
on activity, 165

Testes, insulin-like growth factor axis, 150
Testosterone, therapy in critical illness, 64
TGF-α, see Tumor necrosis factor-α
Thyroid hormone

critical illness and insulin-like growth factor
system interactions, 301, 303, 304

nutritional regulation of secretion and insulin-
like growth factor-I expression effects,
31, 32

Thyroid-stimulating hormone (TSH), regulation
of insulin-like growth factor-I expression, 5

Total parenteral nutrition (TPN)
animal models, 278
growth hormone therapy, 280, 281
indications, 277, 278
insulin-like growth factor-I therapy, 278–280

TPN, see Total parenteral nutrition
Traumatic brain injury, insulin-like growth factor-I

therapy prospects, 218, 219
TSH, see Thyroid-stimulating hormone
Tumor necrosis factor-α (TGF-α)

bone loss role in protein malnutrition, 182, 183
insulin action effects, 56, 57
insulin-like growth factor-I action effects, 57, 58
muscle protein effects, 200
nutritional regulation of secretion and insulin-

like growth factor-I expression effects, 33
protein metabolism effects, 54–56

U

Ulcerative colitis, see Inflammatory bowel disease
Uterus, insulin-like growth factor axis, 148

Z

Zinc
deficiency

growth hormone response
expression, 108–110
sensitivity, 110

growth inhibition, 107, 108
insulin-like growth factor-I response

expression, 108–110
sensitivity, 110

effects on insulin-like growth factor-I and
growth hormone homeostasis, 112, 113

homeostasis and insulin-like growth factor-I
or growth hormone effects, 112

prospects for growth studies, 117
signal transduction in growth pathways,

113–117
supplementation studies with insulin-like

growth factor-I or growth hormone
therapy, 111
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