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FOREWORD

Such excitement awaits the person doing research! It is an experience that
is hard to describe, but it has to do with the delight of discovery, of having
‘gone where no-one has gone before’ and of having something to say that
is unique. Of course, there’s an awful lot of sheer drudgery: after every good
meal there’s the washing up! And the research person needs to be endowed
with a keen competitive spirit and persistence, and also with a willingness
to confront mistakes, to tolerate failed hypotheses, to see one’s bright ideas
hit the dust, to be wrong, and to recognise it. So besides being exhilarating,
research can be boring, depressing and difficult!

What makes for good research? It certainly helps to have a research
question that excites you. Beyond that there is a need for money to do the
work, a good team to support you, and others to be firmly critical so that
mistakes are detected early and false leads are abandoned before you
become too fond of them to say good-bye. The architecture of the research
is also critical and it is here that this book should prove its worth beyond
diamonds.

The research process, beginning with the confirmation that your
research question really IS new, that it hasn’t been answered ages ago or
that you have not been gazumped while you were thinking about it, leads
through careful sketched plans to choosing the appropriate measures, and
so forth. The research methods described in this book focus on questions
that require you to go into the community, either the community of patients
or the community of the walking well, to obtain your answers. The research
methods described are directed at fundamentally epidemiological and clinical
questions and so are quantitative, medically orientated and reductionist.
This form of research is one that is used to investigate the causes of health
problems and to give answers that enable medical and other interventions
to be designed for prevention or alleviation. This approach does not include
qualitative research methods that provide answers to questions that have to
do with attitudes, feelings and social constructs. These forms of research
require different methods.

This book will clearly be a great help to young and, to some extent,
experienced research workers, focusing on epidemiological and clinical
questions framed either in terms of the broad community or patient groups.
I recommend it most warmly to these researchers and for this purpose.

Stephen R Leeder, BSc(Med), MBBS, PhD, FRACP, FFPHM, FAFPHM
Dean
Faculty of Medicine
University of Sydney
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INTRODUCTION

In selecting evidence for any health care practice, the only studies of value
are those that have been carefully designed and implemented. Inevitably,
these will be the studies that adhere to the highest standards of scientific
practice. There is no such thing as a perfect research study, but some studies
have more inherent limitations that lead to more profound effects on the
results than others. However, all well designed studies have the potential
to contribute to existing evidence even though they may not provide
definitive results. Under such circumstances, a small study well done may
be better than no study at all.1

In health research, a merging of the sciences of epidemiology and clinical
studies has led to better information about the effectiveness of health
practices. Epidemiology is the study of populations in which prevalence
(incidence, surveillance, trends) and risk factors for disease (aetiology,
susceptibility, association) are measured using the best available methods.
Many research methods were first established in this discipline but are
now applied widely in clinical settings in order to measure the effectiveness
of new treatments, interventions and health care practices with both accuracy
and precision. Thus, clinical epidemiology has emerged as a research prac-
tice in its own right that can be used to develop reliable diagnostic and
measurement tools, to minimise possible sources of error such as bias and
confounding, and to report research findings in a scientifically rigorous
way. It is also important that any research study has sufficient statistical
power to ensure that the results have not arisen by chance and are as precise
as possible. Properly conducted research studies that use these methods are
able to provide the most reliable evidence of the effects of health care
practices and, as such, are a fundamental requirement of evidence-based
practice.

This book provides an overview of the essential features of the methods
that require careful consideration at all points in the planning, execution
or appraisal of a quantitative research study. We have included checklists
for a number of research processes including critical appraisal, study design,
data management, data analysis and preparing a funding application. In
addition, we have provided information and examples of the many
methodological issues that must be considered. We hope that this informa-
tion will help all researchers who are striving to answer questions about
effective health care to obtain research funding and to conduct studies of
the highest scientific quality. We also hope that this information will be
of value to all health care practitioners who need to critically appraise the
literature in order to make decisions about the care of their patients. This
is essential because only the research studies that aspire to a high scientific
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standard can be helpful in developing high standards of health care in
clinical practice.

Glossary

Term Meaning

Prevalence Proportion of a population who have a disease at
any one point in time

Incidence Number of new cases of disease in a population
in a specified time period

Aetiology A descriptor of the processes that cause disease

Bias Systematic difference between the study results
and the truth

Confounding Process by which the study design leads to a
‘mixing’ together of the effects of two or more risk
factors

Validity Extent to which an instrument accurately
measures what we want it to measure

Repeatability Accuracy with which a measurement can be
replicated
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Reviewing the literature



2

Health science research

Reviewing the literature

The objectives of this chapter are to understand:
• how critical appraisal is used;
• the role of systematic reviews;
• the process of Cochrane reviews; and
• how to facilitate evidence-based practice.

Improving health care delivery 2
Critical appraisal 4

Scientific merit 4
Using critical appraisal to prioritise research 4
Critical appraisal checklist 5

Systematic reviews 6
Narrative and systematic reviews 6
Cochrane collaboration 7
Cochrane library 8
Cochrane review groups 8
Undertaking a Cochrane review 9

Evidence-based practice 10
Procedures for evidence-based practice 10
Benefits of evidence-based practice 11

Improving health care delivery

Two essential components in the process of delivering high quality health
care are the availability of scientifically valid research studies and the prac-
tice of good critical appraisal skills in order to select the most appropriate
evidence. Critical appraisal skills are essential for helping to decide whether
published research is of a sufficiently high quality to indicate that changes
in health practice are required. In this process, the disciplines of critical
appraisal and research methods both complement and overlap one another
because critical appraisal is a process that helps to identify and foster
research studies that use methods of the highest scientific integrity.
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Glossary

Term Meaning

Critical appraisal Application of rules of scientific evidence to
assess the validity of the results of a study

Systematic review Procedure to select and combine the evidence
from the most rigorous scientific studies

Evidence-based
practice

Patient care based on the evidence from the best
available studies

High quality evidence of health care practices can only be acquired
through the implementation of accurate research methods at all stages of a
research study, especially the critical stages of study design, data collection
and data management, statistical analyses and the interpretation and pre-
sentation of the findings. The fundamental issues that must be considered
in collecting accurate research data are shown Table 1.1.

Table 1.1 Fundamental issues in research design

Study methods
• merit—type of study
• accuracy—differential and non-differential bias
• randomisation and allocation concealment
• blinding—single or double
• confounding—control in design or analyses
• precision—validity and repeatability of tools
• stopping rules—reducing type I errors
• sample size—statistical power and accuracy

Analysis
• data management
• interim analyses
• statistical and reporting methods

Interpretation
• generalisability
• clinical importance
• level of evidence
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Critical appraisal

Scientific merit
Critical appraisal, which is the process used to evaluate the scientific merit
of a study, has become an essential clinical tool. The fundamental skills of
appraisal are to ask questions about whether a reported association between
an intervention or exposure and a health outcome is causal or can be ex-
plained by other factors such as chance, bias or confounding. This approach
is essential because we can only have confidence in results that could not
have arisen by chance, are not affected by bias or confounding, and are not
influenced by the statistical methods chosen to analyse the data.

Critical appraisal skills are essential for making decisions about whether
to change clinical practice on the basis of the published literature, and for
making decisions about the most important directions for future research.
In judging an article as valuable evidence, the conclusions reached must be
justified in terms of the appropriateness of the study methods used and the
validity of the results reported. Judging these merits comes from a sound
understanding of the limitations and the benefits of different research
methods.

Table 1.2 Steps for critical appraisal

❑ Identify hypothesis
❑ Identify study design
❑ Note criteria for subject selection and sample size
❑ Identify sources of bias
❑ Consider possible effects of confounding
❑ Appraise statistical methods
❑ Consider whether results are statistically significant and/or magnitude

is of clinical importance
❑ List strengths and weaknesses
❑ Decide whether conclusion is warranted

Using critical appraisal to prioritise research

A valuable aspect of critical appraisal is that the process can help to prior-
itise new research by highlighting gaps in knowledge and inadequacies in
existing studies. This is important because, at best, poor studies cannot
provide answers to questions about the effectiveness of practices but, at
worst, they can be misleading. The process of critical appraisal can also
provide a formalised system of peer review before published results are con-
sidered for incorporation into clinical practice. By highlighting clinical
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practices for which the evidence of efficacy or effectiveness is poor, the
process of critical appraisal also helps to identifiy questions that can only
be answered by conducting research studies that are more rigorous than
those previously undertaken. The steps for undertaking the critical appraisal
of a study that has been designed to address a health care question are
shown in Table 1.2.

Critical appraisal checklist

When reviewing an article, it is often useful to have a checklist to help
evaluate scientific merit. The checklist shown in Table 1.3 provides a short
list of questions to ask when reviewing a journal article for research pur-
poses. Other critical appraisal checklists for more specialised purposes are
available. For example, an evaluation method has been developed that ranks
studies into five levels of evidence according to the risk of bias.1 Many
journals also provide their own checklists and formats that have to be fol-
lowed when submitting or reviewing articles and the British Medical Journal
has excellent checklists for writers, statisticians and reviewers that can be
accessed through its website. In addition, other question lists2, 3 and check-
lists4–9 provide specific questions that should be asked when deciding whether
the evidence reported in an article should be applied in a specific clinical
practice.

Not all questions in Table 1.3 apply to all studies—the list is put forward
as core questions that can be abbreviated, amended or supplemented accord-
ing to requirements. The terms and concepts used in the checklist are
described in later chapters.

Table 1.3 Checklist of questions for critical appraisal

Introduction
❑ What does this study add to current knowledge?
❑ What are the study aims or what hypotheses are being tested?
Study design
❑ What type of study design has been used?
❑ What are the inherent strengths and weaknesses of this design?
❑ Are the methods described in enough detail to repeat the study?
Subjects
❑ Are the characteristics of the study sample described in detail?
❑ What are the selection methods, including the exclusion/inclusion

criteria?
❑ Are the subject numbers adequate to test the hypothesis?
❑ What is the generalisability of the results?

Cont’d
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Table 1.3 Cont’d Checklist of questions for critical appraisal

Measurements
❑ Are the validity and repeatability of the measurements described?
❑ Are the outcome measurements clinically relevant?
Minimisation of bias
❑ What was the response rate?
❑ What is the profile of the refusers or non-responders?
❑ Were the cases and controls sampled from similar populations?
❑ Were all subjects studied using exactly the same protocol?
❑ Could there be any recall or reporting bias?
❑ Was double blinding in place?
Control of confounding
❑ How was the randomisation and allocation concealment carried out?
❑ Have confounders been measured accurately and taken into account?
❑ Were the study groups comparable at baseline?

Results
❑ What are the outcomes (dependent) and explanatory (independent)

variables?
❑ Do the results answer the study question?
Reporting bias
❑ Are the statistical analyses appropriate?
❑ Are all of the subjects included in the analyses?
❑ Are confidence intervals and P values given?
❑ Could any results be false positive (type I) or false negative (type II)

errors?
Discussion
❑ Did the choice of subjects influence the size of the treatment effect?
❑ Are the critical limitations and potential biases discussed?
❑ Can the results be explained by chance, bias or confounding?
❑ Are the conclusions justified from the results presented?
❑ Do the results have implications for clinical practice?

Systematic reviews

Narrative and systematic reviews

Narrative reviews and editorials, which appear regularly in most journals,
often selectively quote the literature that supports the authors’ points of
view. These types of articles are essential for understanding new concepts
and ideas. However, it is important that health care is based on systematic
reviews that include and summarise all of the relevant studies that are
available.
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Systematic reviews use highly developed methods for finding and crit-
ically appraising all of the relevant literature and for summarising the find-
ings. The process of systematic review involves progressing through the
prescribed steps shown in Table 1.4 in order to ensure that the review is
relevant, comprehensive and repeatable. Once articles have been selected,
their results can be combined using meta-analysis. By combining the results
of many studies, the precision around estimates of treatment effects and
exposure risks can be substantially improved.10

Table 1.4 Steps for undertaking a systematic review

❑ Define outcome variables
❑ Identify intervention or exposure of interest
❑ Define search strategy and literature databases
❑ Define inclusion and exclusion criteria for studies
❑ Conduct search
❑ Review of studies by two independent observers
❑ Reach consensus about inclusion of studies
❑ Conduct review
❑ Pool data and conduct meta-analysis
❑ Submit and publish final review

Many systematic reviews have been restricted to the inclusion of ran-
domised controlled trials, although this concept has been relaxed in some
areas where such trials cannot be conducted because of practical or ethical
considerations. In health areas where there have been few randomised
controlled trials, other formal systems for incorporating alternative study
designs, such as prospective matched pair designs, are being developed.11 In
terms of summarising the results, this is not a problem because the methods
of combining odds ratios from each study into a meta-analysis12, 13 can also
be applied to studies with a less rigorous design.14

Cochrane collaboration

The Cochrane collaboration has developed into an important inter-
national system of monitoring and publishing systematic reviews. Archie
Cochrane was an epidemiologist who, in the late 1970s, first noted that the
medical profession needed to make informed decisions about health care
but that reliable reviews of the best available evidence were not available
at that time. Cochrane recognised that a systematic review of a series of ran-
domised controlled trials was a ‘real milestone in the history of randomised
controlled trials and in the evaluation of care’. Since that time, this has
become the ‘gold standard’ method of assessing evidence for health care in
that it is the method that is widely accepted as being the best available.
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In 1993, the Cochrane collaboration was established in recognition of
Cochrane’s insights into the need for up-to-date reviews of all relevant trials
in order to provide good health care. Cochrane also recognised that to have
ongoing value, reviews must be constantly updated with any new evidence
and must be readily available through various media.15

Since being established, the Cochrane collaboration has quickly grown
into an international network. The collaboration is highly organised with
several Internet websites from which the latest information can be accessed
in the form of pamphlets, handbooks, manuals, contact lists for review
groups and software to perform a review. Many regional Cochrane centres
throughout the world can also be contacted via the Internet. Currently,
the aims of the Cochrane collaboration are to prepare, maintain and
disseminate all systematic reviews of health care procedures. In addition,
the collaboration can direct better methods for future research, for example
by recommending the inclusion of outcomes that should be measured in
future studies.16

Cochrane library

Once complete, all Cochrane reviews are incorporated into the Cochrane
Database of Systematic Reviews that is disseminated through the Cochrane
library. Because of the wide dissemination of information and the process
of registering titles and protocols before the final review is complete, any
duplication of effort in planned reviews is easily avoided. To be included in
a review, the methods used in a trial must conform with strict guidelines,
which usually includes randomisation of subjects to study groups and the
inclusion of a control group.

The Cochrane database contains completed systematic reviews and
approved protocols for reviews that are in progress. The first database was
released in 1995 and, since then, the number of reviews has increased
substantially. Some Internet sites provide free access to the Cochrane data-
base so that completed reviews are readily accessible to all establishments
where appropriate computer equipment is available.

Cochrane review groups

The organisation of the Cochrane collaboration comprises a tiered struc-
ture that includes review groups, method working groups and centres. A
Cochrane review group is a network of researchers and/or clinicians who share
an interest in a particular health problem and who provide their own
funding. Clinicians and researchers who have an interest in conducting a
review of a specific topic first approach the relevant review group to register
the title of their review. The next step involves the submission of a pro-
tocol, which the review group critically appraises and then asks the authors
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to amend. Once a protocol is approved, the authors undertake the review
by carrying out systematic searches for relevant trials, rating each trial for
relevance and quality, assembling and summarising the results, and drawing
conclusions of how the net result should be applied in health care. The
submitted review is then critically appraised by the review group and
amended by the authors before being published as part of the Cochrane
library. The authors responsible for a review are also responsible for updating
their review each time more information becomes available.

Review groups, who are coordinated by an editorial team, synthesise
review modules into the Cochrane database. To support review groups,
method working groups are responsible for developing sound methods for
establishing evidence, synthesising the results and disseminating the
reviews. Cochrane centres share the responsibility for managing and co-
ordinating the collaboration. These centres maintain a register of all
involved parties and of all reviews, help to establish review groups and
are responsible for developing policies, protocols and software to promote
the undertaking of reviews and their use.

Undertaking a Cochrane review

The Cochrane collaboration is based on the principles of encouraging the
enthusiasm and interests of clinicians and researchers, minimising dupli-
cation of effort, avoiding bias and keeping up to date. The aims of the
scheme are to provide volunteer reviewers with the encouragement, skills
and supervision that are needed to complete the task to the standard
required. The Cochrane collaboration helps its reviewers by providing doc-
uments, organising workshops and developing software for summarising the
results. The basic principles of the collaboration are shown in Table 1.5.

Table 1.5 Methods used by the Cochrane collaboration to promote
high standards of review

• address specific health problems
• train experts in the review process
• provide a network of people with common interests
• avoid duplication of literature reviews
• teach efficient search strategies
• conduct meta-analyses

There is a common perception that the process of undertaking a Coch-
rane review is by ‘invitation only’. However, anyone, regardless of their
position, can volunteer to conduct a review simply by identifying a clinical
problem that has not been reviewed previously and by registering their
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proposed review title with a regional review group. The people who have
undertaken Cochrane reviews encompass a wide range of professions
including clinicians, health care practitioners, consumers, nurses and
research scientists.17 Information about the collaboration is available in
both electronic and printed forms. Anyone interested in learning more
should contact their local Cochrane centre.

In recent years, Cochrane reviews have become an integral part of eval-
uating the effectiveness of health care processes. However, reliable and
informative reviews depend on maintaining up-to-date reviews and on
identifying as many relevant studies as possible.18 In the future, the con-
tinuation of the Cochrane review process will be complemented with an
ongoing development of the methods to include disease conditions that do
not lend themselves to investigation by randomised trials. In turn, this
process has the exciting potential to guide decisions about better care and
better research across a much broader range of health areas.

Evidence-based practice

Procedures for evidence-based practice

Evidence-based practice is an approach that uses the best scientific evi-
dence available to help deliver the best patient care at both an individual
and a population level. Cochrane reviews focus mainly on the evidence
from randomised controlled trials. However, evidence-based practice is not
restricted to these types of studies but is more encompassing in that it
involves tracking down the best evidence that is available about the assess-
ment and management of specific health care problems.19

The approach of evidence-based practice is based on the principles that
it is better to know, rather than believe, what the likely outcome of any
intervention will be.20 Judgments of likely effectiveness are best achieved
by using systematic methods to appraise the literature in order to provide
valid answers to specific questions about patient care. This process has
developed from the acknowledgement that increasing numbers of research
studies are being published that have not been conducted to a sufficiently
high standard to warrant the incorporation of their results into clinical care
practices. The basic procedures of evidence-based practice, which are sum-
marised in Table 1.6, have been widely reported.21–23

In the approach of evidence-based practice, both clinical and research
experience is needed in order to frame the questions, interpret the evi-
dence, make decisions about treatment policies and direct relevant research
questions and research skills. Using this combined approach, a body of
corporate knowledge from many diverse experiences can be synthesised to
answer questions about health care.
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Table 1.6 Procedures for evidence-based practice

❑ Define the problem
❑ Break the problem down into questions that can be answered

formally
❑ Find relevant clinical articles by conducting an effective literature search
❑ Select the best studies
❑ Appraise the evidence using criteria such as validity, repeatability,

relevance, study strengths and weaknesses, generalisability, results etc.
❑ Make clinical decisions, review policy and implement the findings
❑ Where information is not available, design and conduct new studies
❑ Evaluate the outcomes of changes in practice

Benefits of evidence-based practice

The benefits of evidence-based practice are shown in Table 1.7. Use of
scientific reviews of the evidence to assess the effectiveness of clinical
practices increases the likelihood that the benefits for patients will be
maximised and the use of health services will be more efficient. These
processes are facilitated by ready access to systematic reviews, for example
through the Cochrane collaboration, and by the publication of appraisals
of studies in journals such as Evidence-Based Medicine.

Components of care that can be scrutinised using an evidence-based
approach include the usefulness of diagnostic tests and the effectiveness of
all medications, treatments or health care interventions. However, any
changes to health care practice must also take account of other integral
factors such as clinician and patient preferences, cost, risk, quality of life,
and ability to provide.24 Because of this, clinical decision-making will
always remain a complex process and evidence-based practice should be seen
as a reliable tool that helps to facilitate better health care rather than a
definitive process that dictates health care practices.25, 26

Table 1.7 Benefits of evidence-based practice

• focuses new research on important or practical issues
• can be used to evaluate existing practices or support the

implementation of new practices
• has the potential to lead to more informative decision making and more

effective health care
• saves time when systematic reviews are available or when appraisals

of studies are published
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Section 1—Study design

The objectives of this section are to understand:
• the types of study designs used in research;
• the strengths and weaknesses of each type of study design;
• the appropriate uses of different study designs;
• the type of study design needed to answer a research question;

and
• the type of study design needed to measure the repeatability of an

instrument or the agreement between two different instruments.
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Designing a study

In designing your own study and appraising the results of studies con-
ducted by other research groups, it is important to recognise the strengths
and the limitations of the different types of study design that can be used.
The choice of a particular study design is a fundamental decision in design-
ing a research study to answer a specific research question. Once the study
design has been decided, then the confidence with which a hypothesis can
be tested, or to which causation can be implied, becomes clearer.

Glossary

Term Meaning

Study design Methods used to select subjects, assess
exposures, administer interventions and collect
data in a research study

Hypothesis Study question phrased in a way that allows it to
be tested or refuted

Informed consent Voluntary participation of subjects after receiving
detailed information of the purposes of the study
and the risks involved

Generalisability or
external validity

Extent to which the study results can be applied
to the target population

General terms to describe studies

In addition to the specific names used to identify the types of studies that
are described in this chapter, Table 2.1 shows the general terms that are
often used. An important distinction between descriptive and experi-
mental studies is that descriptive studies are the only method for measuring
the effects of non-modifiable risk factors, such as genetic history or gender,
or exposures to which subjects cannot be allocated, such as air pollutants
or environmental tobacco smoke. On the other hand, experimental studies
are more powerful in that they can provide information about the effects
of manipulating environmental factors such as allergen exposures, behav-
iours such as exercise interventions or dietary choices, and new treatments
and health care interventions such as drug treatments or health care
practices.
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Table 2.1 General terms to describe research studies

Term Features of study

Descriptive,
non-experimental or
observational studies

• used to describe rates of disease in a specific
population or study group

• used to describe associations between
exposure and disease, i.e. to measure risk
factors

• can be cohort, case-control, cross-sectional,
ecological, a case series or a case report

• can be quantitative or qualitative
• often used to generate rather than test

hypotheses

Experimental studies • used to test the effect of a treatment or
intervention

• can be randomised or non-randomised trials
• can also be case-control and cohort studies

that are used to test the effect of an exposure
when a randomised controlled trial cannot be
used

Clinical trials • used to demonstrate that a new treatment is
better than no treatment, better than an
existing treatment or equivalent to an existing
treatment

Quantitative studies • studies in which the data can be analysed
using conventional statistical methods

Qualitative studies • used to gain insight into domains such as
attitudes or behaviours

• information is collected using unstructured
open-ended interviews or questions that cannot
be analysed using conventional statistical
methods

• the subject and not the researcher determines
the content of the information collected

• useful for generating hypotheses

Methodological
studies

• used to establish the repeatability or validity of
research instruments
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Studies that have outcome information that is collected over a period
of time are often described as being either retrospective or prospective
studies. However, these terms can be applied to data collected in all types
of studies. In the past, case-control and cross-sectional studies have often
been called ‘retrospective’ studies whereas cohort studies and randomised
controlled trials have been called ‘prospective’ studies. This nomenclature
is misleading because in cohort studies and in clinical trials, both retrospec-
tive and prospective data may be collected during the course of the study.
For example, by using a questionnaire that asks ‘Have you ever had a
migraine headache?’ retrospective information is collected, whereas a study
in which subjects are called once a week and asked ‘Do you have a head-
ache today?’ collects information using a prospective approach.

Glossary

Term Meaning

Retrospective data Data collected using subjects’ recall about
illnesses or exposures that occurred at some time
in the past or collected by searching medical
records

Prospective data Data collected about subjects’ current health
status or exposures as the study progresses

Order of merit of studies

In general, the study design that is chosen must be appropriate for answer-
ing the research question and must be appropriate for the setting in which
it is used. The order of merit of different study types for assessing associ-
ation or causation is shown in Table 2.2. The placing of a systematic
review above a randomised controlled trial really depends on the quality
of the systematic review and the scope of the randomised controlled trial.
Because of methodological differences, a meta-analysis of the results of a
number of small randomised controlled trials may not always agree with
the results of a large randomised controlled trial.1 Obviously, a meta-
analysis of the results from a number of small studies in which the methods
have not been standardised cannot be considered better evidence than the
results from a large, multicentre randomised controlled trial in which bias
is reduced by carefully standardising the methods used in all centres.



18

Health science research

Table 2.2 Ability of studies in terms of relative strength for assessing
causation or association

Order of merit Type of study Alternative terms or subsets

1 Systematic review
or

Meta-analysis

Randomised
controlled trials

Effectiveness and efficacy trials
Equivalence studies
Cross-over trials

2 Cohort studies Longitudinal studies
Follow-up studies

3 Non-randomised
clinical trials

Pragmatic trials
Patient preference studies
Zelen’s design
Comprehensive cohort studies

4 Case-control
studies

Matched case-control studies
Trials with historical controls
Open trials

5 Cross-sectional
studies

Population studies

6 Ecological studies

7 Case reports

It is difficult to place qualitative studies in this hierarchy because they use
a completely different approach. In some situations, qualitative data can
uncover reasons for associations that cannot be gained using quantitative
methods.

There is also another class of studies called methodological studies that
are designed to measure the repeatability or validity of an instrument, the
agreement between two methods or the diagnostic utility of a test. In such
studies, more precise results are obtained if a large random sample with
wide variability is enrolled. Bias will occur if subjects are chosen specifically
on the basis of the presence or absence of disease so that potential ‘false
negative’ or ‘false positive cases’ are effectively excluded.
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Glossary

Term Meaning

Outcome variable Measurement used to describe the primary illness
indicator being studied

Exposure A suspected harmful or beneficial effect being
studied

Association Relation between the exposure and outcome
variables

Causation Direct relation between an exposure variable and
the disease that this causes

Risk factor Exposure factor that is associated with the
disease outcome

Confounder Nuisance variable whose effect is a result of
selection bias and must be minimised

Prognostic factor Factor that predicts that a disease or outcome will
develop

Efficacy, effectiveness, efficiency and equivalence

Initially, the safety and effects of using a new treatment are usually estab-
lished in animal models and then in a small group of volunteers who may
not necessarily have the disease that the new drug is intended to treat
(Phase I studies). Phase I studies should only ever be used for ensuring that
it is safe and feasible to use a new treatment in the community.

Glossary

Term Meaning

Phase I studies Initial trial of a new treatment to assess safety and
feasibility in a small group of volunteers

Phase II studies Clinical trials to measure efficacy in a group of
patients with the disease

Phase III studies Large randomised controlled trials or multicentre
studies to measure effectiveness or equivalence

Phase IV studies Post-marketing surveillance to measure rare
adverse events associated with a new treatment
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Following this, a clinical trial is usually conducted in a larger group of
patients to establish efficacy under ideal clinical conditions (Phase II
studies). Efficacy is a measure of whether an intervention does more good
than harm under ideal circumstances.2 In such studies, a placebo control
group may be used so that this type of study can only be conducted for
new treatments that have not previously been tested in the target
population.

Glossary

Term Meaning

Efficacy Effect of treatment under ideal conditions in a
research trial

Effectiveness Effect of treatment in routine clinical practice or in
the community

Equivalence Extent to which a new treatment is equivalent to
an existing treatment

Efficiency Relation between the amount of resources needed
to conduct a study and the results achieved

Equipoise Uncertainty of value of a treatment

Placebo Sham treatment that has no effect and which
subjects cannot distinguish from the active
treatment

In studies of efficacy, high-risk patients who are carefully diagnosed and
who are likely to adhere to the new treatment regimen are often selectively
enrolled. Because of the nature of the study, physicians are usually required
to follow a carefully developed protocol and the patients receive regular
and more personalised attention from the research team than is usually
provided to patients in a community setting. New treatments have to be
first tested in this way because if they are not efficacious under these
conditions, they will not be effective under less ideal conditions.3
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Once safety and efficacy are established, a more rigorous full-scale
evaluation can be undertaken in larger groups of subjects in order to
obtain a more definitive measure of effectiveness or equivalence (Phase III
studies). Studies of effectiveness, that is the effect of the treatment or
intervention when used in the general community or in routine clinical
practice, are established in a broader, less controlled setting.4 These types
of studies provide a measure of whether an intervention does more good
than harm under the usual circumstances of health care practice in
which factors such as misdiagnosis and poor patient compliance are more
common. In assessing effectiveness, a new treatment or intervention is
usually compared with the effects of current ‘best-practice’ health care
methods.

The logical steps in testing whether an intervention or a treatment is
beneficial are shown in Table 2.3.

Table 2.3 Sequence of studies to test a new treatment or intervention

Type of study Purpose

Case series and case reports

Pilot studies

Open label clinical trials

Trials with historical controls

To measure appropriateness and

feasibility

Cross-sectional studies

Cohort studies

Case control studies

Ecological studies

To measure associations between

exposures and outcomes

Clinical trials, preferably

randomised and with a control

group

To measure efficacy or

equivalence and to assess

common side effects

Community trials

Public health interventions

To measure effectiveness,

including cost, and to assess

infrequent adverse events
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Efficiency is a measure of the resources that are needed to apply a new
treatment or intervention. Efficiency studies are often described as cost-
effectiveness or cost-benefit studies because their purpose is to measure
whether a new intervention is worth its cost in terms of the time or
resources that are needed for its administration. The term ‘efficiency’ is also
used when considering the amount of resources needed to conduct a study
and, in this context, the cost of conducting the study is usually balanced
against the level of evidence collected.

Equivalence studies are designed to show that a new treatment is equiv-
alent to an existing treatment in terms of both its efficacy and the potential
for harmful effects associated with its use. An equivalence study is usually
planned by first defining an acceptable range for the difference in outcome
measurements between the new treatment and established treatment groups
such that any value in the range is clinically unimportant.5 This difference
should not encompass an unacceptable risk. Equivalence is then established
if the confidence interval around the difference measured between groups
is within the defined range.

In equivalence studies, a large sample size is usually needed to avoid the
result being ambiguous and thus inconclusive. If the sample size in an
equivalence trial is too small, neither equivalence nor difference between
the treatments will be established.6, 7 However, decisions about the size of
the difference between treatments that is required to demonstrate equiva-
lence depends on a clinical judgment about the severity and the con-
sequences of the illness condition, and therefore on the size of differences
between the outcome measurements that is acceptable.

Randomised controlled trials

Randomised controlled trials are studies in which the subjects are randomly
allocated to a new treatment, to a control group or to an existing treatment
group. The basic design of a randomised controlled trial with two study
groups is shown in Figure 2.1. The control group may be a placebo group
or a current best-treatment group. Many studies involve randomisation
to three or more treatment groups to compare more than one treatment or
to compare the effects of different treatments in isolation and in com-
bination with one another. In randomised controlled trials, the results are
obtained by comparing the outcomes of the study groups.
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Figure 2.1   Design of a randomised controlled trial

The random allocation of subjects to a treatment group minimises the
influences of many factors, including selection bias, known and unknown
confounders and prognostic factors, on estimates of efficacy or effective-
ness. In addition, measurement bias can be reduced by ‘double blinding’,
that is by ensuring that the researchers who are assessing patient outcomes
are unaware of the group status of the subjects and by ensuring that the
subjects are unaware of which treatment they are receiving.

Glossary

Term Meaning

Selection bias Inappropriate selection of subjects that leads to
an over-estimation or under-estimation of the
results

Measurement bias Error that results when an instrument consistently
under- or over-estimates a measurement

Misclassification
bias

Inaccurate random or directional classification of
the outcome or the exposure being investigated

Randomised controlled trials can be used to test the efficacy, effective-
ness or equivalence of treatments and to test other health care practices
and intervention strategies. Of all study designs, randomised controlled
trials provide the highest level of evidence for the effects of an intervention
and for causation. Examples of the strengths and limitations of three ran-
domised controlled trials that have been used to measure efficacy, effect-
iveness and equivalence are shown in Examples 2.1, 2.2 and 2.3.

 

 

Image Not Available 
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Example 2.1 Randomised controlled trial to measure efficacy
Lebel et al. Dexamethasone therapy for bacterial meningitis8

Characteristic Description

Aims To evaluate the efficacy of dexamethasone therapy in
children with bacterial meningitis as an adjunct to
antimicrobial therapy

Type of study Double-blinded placebo controlled randomised trial

Subjects 200 infants and older children admitted to hospital
with meningitis

Treatment groups The four study groups comprised two schedules for
administering cefuroxime (antimicrobial therapy) each
with saline (placebo) or dexamethasone (experimental
treatment) as follows:
Group 1: regular cefuroxime plus saline (n�49)
Group 2: regular cefuroxime plus dexamethasone
(n�51)
Group 3: staged cefuroxime plus saline (n�49)
Group 3: staged cefuroxime plus dexamethasone
(n�51)

Randomisation Computer generated list of random therapy
assignments

Outcome
measurements

Concentrations of glucose, lactate and protein in
cerebrospinal fluid; time to become afebrile; death or
severe hearing loss

Statistics Fisher’s exact test; ANOVA with Bonferroni post-hoc
tests

Conclusion • total days with fever, time to resolution of fever and
hearing impairment all significantly reduced in both
active treatment (dexamethasone) groups

• dexamethasone is a beneficial treatment for infants
and children with bacterial meningitis, particularly in
preventing deafness

Strengths • confounders (gender, ethnicity, duration of illness,
clinical score) evenly balanced between groups

• evidence of efficacy helps resolve contradictory
results from previous, less rigorous studies

Limitations • equal numbers in study groups suggests a method
other than simple randomisation was used

• rate of recruitment to study not given therefore
generalisability not known

• sample size too small to measure efficacy in terms
of less common outcomes, e.g. prevention of death
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Example 2.2 Randomised controlled trial to test the effectiveness of an
intervention

Nishioka et al. Preventive effect of bedding encasement with microfine
fibres on housedust mite sensitisation9

Characteristic Description

Aims To investigate whether bedding encasing made from
microfine fibres can prevent high-risk infants from
becoming sensitised to housedust mite allergens

Type of study Randomised controlled trial

Sample base Infants attending an outpatient clinic for allergic
symptoms

Subjects 57 infants with atopic dermatitis and positive skin prick
tests to food allergens but not to housedust mites
randomised to an active (n�26) or control (n�27) group

Randomisation Randomisation method not stated

Intervention Encasing of mattresses and doonas of all family
members in active group; advice about bedding
cleaning to both groups

Outcome
measurements

Levels of housedust mite allergens in child’s bedding;
skin prick tests to housedust mite allergens

Statistics Chi square tests to compare rates of allergic responses

Results • Sensitisation to housedust mites was 31% in active
group and 63% in control group (P�0.02)

• Occurrence of wheeze was 11% of active group and
37% of control group (P�0.05)

Conclusion • the intervention significantly reduced housedust mite
exposure levels

• bedding encasing is effective for preventing
sensitisation to housedust mites and early symptoms
of wheeze in atopic infants

Strengths • randomisation would have reduced effects of
confounding

• similar rates of contact and collection of outcomes
data in both groups would have reduced bias

• objective exposure measurements collected

Limitations • independent effects of each part of intervention not
known

• long follow-up time will be required to determine
effect of intervention in reducing the incidence of
asthma

• sample size may not be large enough to detect
future clinically important differences after allowing
for loss to follow-up
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Example 2.3 Randomised controlled trial to test the equivalence of
treatments for severe asthma

Idris et al. Emergency department treatment of severe asthma. Metered
dose inhaler plus holding chamber is equivalent in effectiveness to
nebuliser10

Characteristic Description

Aims To investigate the equivalence of administration of
bronchodilator by nebuliser or metered-dose inhaler
for treating acute asthma in an emergency department

Type of study Double-blinded, randomised trial

Population Patients with moderate to severe asthma attending for
treatment at two emergency centres

Subjects 35 patients age 10–45 years

Treatment groups 20 patients who received treatment by nebuliser and
15 patients who received treatment by inhaler and
placebo treatment by nebuliser

Randomisation No methods given

Outcome
measurements

Lung function measurements (FEV1 and FVC) and
airflow limitation (peak expiratory flow rate) as
percentage of predicted normal values

Statistics Student t-tests

Conclusion • no statistical or clinical important difference in the
efficacy of the two treatments was found

• the metered dose inhaler delivered a complete dose
of bronchodilator more quickly and at no additional
cost

Strengths • patients randomised to treatment groups and
objective outcome measurements used

• placebo nebuliser treatment incorporated

Limitations • small sample size precluded estimating differences
in equivalence between age, severity and other
treatment groups

• randomisation with small sample size did not
balance prognostic factors equally between groups
e.g. use of other medications

• equivalence in mild asthmatics not established
• differences in outcomes important to patient (time in

emergency department, number of treatments to
discharge, etc.) not measured
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Before subjects are enrolled in a randomised controlled trial, their
eligibility in terms of inclusion and exclusion criteria must be ascertained
and informed consent must be obtained. Following this, subjects are then
randomly allocated to their study group. Although a randomised controlled
trial is the most scientifically rigorous method available with which to
evaluate a new treatment and the design confers many benefits providing
the sample size is adequate, Table 2.4 shows that this method may still have
some inherent limitations.

Table 2.4 Strengths and limitations of randomised controlled trials

Strengths
• most scientifically rigorous method for measuring short-term outcomes
• study groups are comparable in regard to confounders, environmental

exposures and important prognostic factors
• each subject has an equal chance of being allocated to a treatment or

control group
• willingness to participate and other factors that may influence outcome

do not influence group allocation
Limitations
• need a very large sample size to measure the effects of infrequent

adverse outcomes or beneficial outcomes that are rare events
• unsuitable for subjects with strong treatment preferences
• groups may not be comparable if subjects in the control group are

disappointed to receive the current treatment and subjects in the
experimental group are pleased to receive the new treatment

• may exclude some types of patients to whom the results will
subsequently be applied

• may not be continued for a sufficient period to measure long-term or
adverse events

Sample size is a fundamental issue in randomised controlled trials. If
only small improvements in the outcome measurements between groups are
expected, as may be the case for many chronic diseases, or if the expected
outcome occurs infrequently in either group, then a large sample size will
be required before these differences achieve statistical significance. This is
discussed in more detail in Chapter 4. In many trials, the sample size is
not large enough to measure side effects that are serious but occur only
rarely.11 Furthermore, the length of trial may be too short to measure
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adverse effects that take some time to develop. Because of this, the
monitoring of adverse events associated with new treatments is usually
undertaken in post-marketing surveillance surveys (Phase IV studies) when
large numbers of patients have been using the drug for a long period.

In randomised controlled trials, the quality of the evidence is improved
if measurement bias, such as observer or reporting bias, is reduced by using
objective outcome measurements and if observers are blinded to the group
status of the subjects. The methods that are commonly used to minimise
bias in randomised controlled trials are summarised in Table 2.5. Random
allocation and efficient allocation concealment practices need to be put
in place to prevent the recruiting team having prior knowledge of group
allocation. It is also important to collect information about the people who
choose not to enter the study in addition to collecting some follow-up
information of people who drop out of the study. This information is
essential for describing the generalisability of the results and for use in
intention-to-treat analyses (see Chapter 7).

Table 2.5 Methods to reduce bias in randomised controlled trials

• efficient randomisation methods that achieve balance in numbers
between study groups must be used

• the randomisation method must be concealed from the researchers
who are responsible for recruiting the subjects

• double-blinding is used to reduce the effects of expectation on the
measurement of outcome data

• objective and clinically important outcome measurements are used
• intention-to-treat analyses are used to report the findings
• a large sample size is enrolled in order to measure effects with

precision
• pre-planned stopping rules are administered by an external safety

committee
• interim analyses are planned and are conducted by a data monitoring

committee who conceal the results from the staff responsible for data
collection

In studies in which the effectiveness of a treatment or intervention is
measured, a group of subjects who have an identifiable disease or medical
problem are enrolled. However, in studies in which the effect of a primary
prevention is being measured, a group of subjects who are ‘at risk’ of
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developing the disease are ideally enrolled before any early signs of the
disease have developed. Because nearly all treatments or interventions have
some unwanted or harmful effects, the benefits of the study have to be
estimated in relation to the associated risks. Also, because a large amount
of confidence is placed on randomised controlled trials in the application
of evidence-based practice, comprehensive reporting of the methods is
essential. The methods and results of many clinical trials have not been
adequately reported12 although guidelines for complete reporting of the study
procedures are now available.13, 14

Glossary

Term Meaning

Primary prevention Treatment or intervention to prevent onset of a
disease

Secondary
prevention

Treatment of early signs to prevent progression to
establishment of a disease

Tertiary prevention Treatment of symptoms after the disease is
established

Placebo controlled trials

The use of a placebo group in a trial always requires careful consideration.
A trial may be unethical when subjects in the control group are admin-
istered a placebo treatment so that they are denied the current best treat-
ment that has proven effectiveness.15, 16 In studies in which a placebo
treatment is included, the researchers must be in a position of equipoise,
that is they must be uncertain about which treatment is ‘best’ before sub-
jects are enrolled.17–19

The main use of placebo controlled trials is to assess the benefits of a
new treatment whose effects are not yet known but for which a scientifi-
cally rigorous method to assess efficacy is required. The most appropriate
application for trials with a placebo group is Phase II studies, that is the
initial stages of testing new treatments or health care practices.20 For
example, a new class of drug called leukotriene receptor agonists were first
tested as a therapy for asthma against a placebo to ensure that they had a
beneficial effect.21 Now that efficacy is established, effectiveness will need
to be compared with other treatments in Phase III and Phase IV studies.
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Placebo controlled trials usually have a small sample size and, as such,
are an intermediate rather than a definitive step in establishing the efficacy
of a new treatment.22 However, there have been many examples of placebo
controlled trials being conducted, some for long periods, even though sub-
jects in the control group were withheld from receiving treatments with an
established beneficial effect.23 On the other hand, trials without a placebo
group that are conducted in clinical settings where no ‘gold standard’ treat-
ment exists may provide misleading results because the ‘placebo’ effect of
treatment cannot be taken into account in the evaluation process.24, 25

Pragmatic trials

Pragmatic trials, which are an adaptation of the randomised controlled
trial design, are used to assess the effect of a new treatment under the
conditions of clinical practice. Thus, pragmatic trials are often used to
help decide whether a new treatment has advantages over the best current
treatment. In this type of trial, other existing treatments are often allowed,
complex treatment methods are often compared and outcome measure-
ments that are patient-orientated, such as quality of life or survival rates,
are often used. The processes of recruitment and randomisation are the
same as those used in randomised controlled trials but because the dif-
ference between the two treatment methods will reflect the likely response
in practice, pragmatic trials can only be used to measure effectiveness, and
not efficacy.

In pragmatic trials, blinding is not always possible so that bias as a
result of subject and observer awareness is more difficult to control. Prag-
matic trials are often used to test methods to improve the health care of
specific groups of patients and, as such, are designed to help clinicians
choose the best treatment for a particular group of patients. However, a
large sample size is needed to measure the separate beneficial effects in
different groups of patients, or in patients who are using different additional
treatments.

An example of a pragmatic trial in which patients were randomised
to surgery or to a waiting group is shown in Example 2.4. The strengths
of this trial in collecting new information about the effectiveness of the
treatment were balanced against the limitations of loss of generalisability
because many subjects were not randomly allocated to a study group.

In common with randomised controlled trials, the data from pragmatic
trials are analysed by ‘intention-to-treat’ methods. Intention-to-treat anal-
yses are conducted regardless of changes in treatment and, to be most
informative, the outcome measurements must include improvements in
patient relevant outcomes, such as quality of life, in addition to objective
indicators of improvements in illness, such as biochemical tests.
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Example 2.4 Pragmatic trial to measure effectiveness of second eye
surgery

Laidlaw et al. Randomised trial of effectiveness of second eye cataract
surgery26

Characteristic Description

Aims To examine the effectiveness of surgery on the
second eye following surgery on the first eye

Type of study Randomised clinical trial

Sample base 807 healthy patients awaiting surgery

Subjects 208 patients who consented to participate

Randomisation By numbered sealed envelopes in blocks of 20;
envelopes generated by researchers not in contact
with patients

Outcome
measurements

Questionnaire responses about visual difficulties;
visual function tests

Statistics Intention-to-treat between-group comparisons

Conclusion Second eye surgery marginally improves visual
acuity and substantially reduces self-reported visual
difficulties

Strengths • balanced numbers achieved in study groups
• confounders (gender, age, symptoms) balanced

between groups
• careful development and choice of outcome

variables
• more rigorous methods than previous case

studies and uncontrolled trials
• good evidence of effectiveness collected

Limitations • modest consent rate limits generalisability
• possible reporting bias by patients not blinded to

group status could account for disparity of
results between objective outcome (visual acuity)
and subjective outcome (self reported visual
difficulties)
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Run-in phases and effects of non-compliance

Run-in phases prior to randomisation in any clinical trial can be useful
in that they give the subjects time to decide whether or not they want
to commit to the trial, and they give the researchers time to identify non-
compliant subjects who may be excluded from the study. Such exclusions
have an important impact on the generalisability of the results but they
also significantly reduce the dilution of non-compliance on any estimates
of effect. The advantage of recruiting subjects who are likely to be com-
pliant is that a smaller sample size and fewer resources are required and
therefore the study is more efficient. In addition, because a smaller sample
size is required, the completion of the trial and the dissemination of the
results are not unnecessarily delayed.

Cross-over trials

In cross-over trials, subjects are randomly allocated to study groups in
which they receive two or more treatments given consecutively.27 In this
type of trial, the randomisation procedure simply determines the order in
which the subjects receive each treatment. Figure 2.2 shows the simplest
type of cross-over trial in which one group receives the new treatment
followed by the current best treatment, whilst the other group receives
the current best treatment followed by the new treatment.

Figure 2.2   Study design for a cross-over trial

Cross-over trials are most appropriate for measuring the effects of new
treatments or variations in combined treatments in subjects with a chronic
disease. The advantage of this type of study is that any differences in
outcomes between treatments can be measured in the same subjects.
Because the outcomes of interest are the within-subject differences, cross-
over trials require fewer subjects and therefore are more efficient than
randomised controlled trials with parallel groups. A disadvantage of cross-
over trials is that bias can occur when the data from subjects who do not

 

 

Image Not Available 
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go on to the second phase, because they drop out during or after the first
treatment period, have to be excluded in the analyses. An outline of a
typical cross-over trial is shown in Example 2.5.

Another disadvantage with cross-over trials is that there may be a
‘carry-over’ effect in subjects who begin the second phase with better
health as a result of the first phase. This effect can be minimised with a
‘wash-out’ period between the treatments. Because of the impact of the
wash-out period, the time that is needed for the treatment to have an
effect and the time that is needed for the effect to dissipate before the
cross-over to the alternative treatment must be carefully considered at
the study design stage. The wash-out period must be sufficient to allow the
treatment effect to dissipate and the patient must also be able to manage
with no treatment during this period.

It is possible to minimise the ‘carry-over’ effect at the data analysis stage
of a cross-over trial. The simplest method is to only use the outcome data
collected at the end of each treatment period in the primary data analyses.
Another method is to explore whether there is a statistically significant
interaction between the treatment sequence and the outcome.28 However,
cross-over trials usually have a small sample size and often do not have the
power to explore these types of interactions. In such studies, a subjective
judgment about the size of the effect in addition to the statistical signifi-
cance will need to be made. If an effect seems likely, the analyses can be
confined to the first period alone but this approach not only reduces the
statistical power but also raises questions about the ethics of conducting a
trial with too few subjects to fulfil the study aims.

Glossary

Term Meaning

Preference group Group who have self-selected their treatment or
who have had their group decided by the researcher

Placebo group Group receiving a sham treatment that has no effect

Control group Group with which a comparison is made

Blinding Mechanism to ensure that observers and/or
subjects are unaware of the group to which the
subject has been allocated

Randomisation Allocation of subjects to study groups by chance

Allocation
concealment

Concealment of randomisation methods from
observers



34

Health science research

Example 2.5 Cross-over trial to measure the effectiveness of a
treatment

Ellaway et al. Randomised controlled trial of L-carnitine29

Characteristic Description

Aim To measure the effectiveness of L-carnitine in
improving functional limitations in girls with Rett
Syndrome

Type of study Randomised double-blind cross-over trial

Sample base 39 girls with Rett Syndrome ascertained via a national
register

Subjects 35 girls who consented to take part

Treatment Subjects randomised to receive sequential treatments
of 8 weeks of L-carnitine, wash-out of 4 weeks then
placebo for 8 weeks, or to receive 8 weeks placebo,
wash-out for 4 weeks and then
L-carnitine for 8 weeks.

Outcome
measurements

Behavioural and functional ratings by scores on a
5-point scale; qualitative data collected by semi-
structured interview

Statistics Non-parametric Wilcoxon matched-pairs signed-ranks
tests to measure within-subject differences between
placebo and active treatment periods

Conclusion • L-carnitine may be of more benefit to patients with
classical Rett Syndrome than to atypical variants

• subtle improvements in some patients had a
significant impact on families

Strengths • compliance verified using plasma L-carnitine levels
• appropriate study design for estimating the effect of a

new treatment on girls with a chronic condition
• long wash-out period included
• carry-over effect minimised by only using data from

the end of each placebo/treatment period in the
analyses

Limitations • 4 institutionalised girls with inconsistent carers had to
be omitted from data analyses

• validity of outcomes data collected by institution
carers not known

• blinding may have been incomplete because of fishy
body odour and loose bowel actions associated with
L-carnitine

• outcome measurement scales not responsive enough
to detect small changes in functional ability that had
an important impact on families
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Zelen’s design

Zelen’s design,30, 31 which is also called a randomised consent design, is a
modified randomised controlled trial design in which randomisation occurs
before informed consent is obtained, and consent is only obtained from the
group who are allocated to receive the experimental treatment. This type
of study design is only used in situations in which the new or experimental
treatment is invasive and the illness condition is severe, such as in some
trials of cancer therapies.

If randomisation to a standard treatment or a placebo group is unacceptable
or impossible, then this type of less rigorous clinical trial reduces problems
caused by low rates of subject consent. In studies with Zelen’s design, subjects
are randomised to receive the experimental or standard treatment but only
remain in the experimental treatment group if they find it acceptable.
Subjects who do not consent to be in the experimental group are assigned
to the standard treatment group but their data are analysed as if they were
in the experimental group. The design of this type of study is shown in
Figure 2.3.

Figure 2.3   Zelen’s double randomised consent design

In this type of trial, a subject agrees to receive the experimental treat-
ment only if it is their personal treatment preference or if they have no
preference. This study design is especially useful for overcoming the low
recruitment rates that often occur when a new type of invasive treatment
is being introduced and has the advantages that generalisability and
statistical power in terms of subject numbers are maximised. However,
this is achieved at the cost of not being able to control for possible
confounders.
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Glossary

Term Meaning

Statistical power Ability of the study to demonstrate an association
if one exists or to measure the size of an effect
with a specified precision

Precision Accuracy with which an effect is demonstrated,
usually measured by the standard error or the
confidence interval around the estimate

Interaction Ability of two factors to increase or decrease each
other’s effects, often described by a multiplicative
term in regression analyses

Comprehensive cohort studies

A comprehensive cohort study, which is also called a prospective cohort study
with a randomised sub-cohort, is a study design whereby subjects consent to be
randomised or are offered their choice of treatment as shown in Figure 2.4.
This study design produces two cohorts of subjects, one that is randomised
to a treatment regime and one who self-select their treatment. A compre-
hensive cohort study design, which is useful when a large proportion of
subjects are likely to refuse randomisation, is commonly used in trials such
as those in which the results of radiotherapy are compared to surgery as
a cancer therapy. An example of a comprehensive cohort study is shown in
Example 2.6.

Figure 2.4   Comprehensive cohort study design
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In comprehensive cohort studies, the effects of group allocation on
outcome and the association with psychosocial factors can be explored. This
study design has an advantage over Zelen’s design because all eligible subjects
can be included and the subject’s freedom of choice is respected. Other
more complex types of studies that have both an informed consent and
randomised consent group have also been suggested.32 Comprehensive cohort
studies are similar to trials with a preference group in that they only provide
supplemental results rather than providing definitive information about the
efficacy or effectiveness of a new treatment.

By using randomisation status as an indicator variable in the analysis, it
is possible to measure the extent to which results from the small proportion
who consent to randomisation can be extrapolated to the larger group with
disease. Although this helps to establish the generalisability of the results,
the randomised sub-group needs to be large enough to establish a significant
effect of treatment in its own right, and the study cannot be a substitute
for a well designed randomised controlled trial. Ultimately, an independent
randomised controlled trial will still be needed to provide definitive evidence
that has broader generalisability.

Example 2.6 Comprehensive cohort study
Agertoft et al. Effects of long-term treatment with an inhaled
corticosteroid on growth and pulmonary function in asthmatic children33

Characteristic Description

Aim To measure the effects of long-term treatment with
inhaled corticosteroids on growth and lung function
in asthmatic children

Type of study Comprehensive cohort study with patient preference
groups

Sample base Children with mild or moderate asthma and no other
chronic disease who had attended a clinic for 3
visits over 1 year

Subjects The cases were 216 children whose parents
consented to their taking inhaled corticosteroids for
3–6 years.
The controls were 62 children, most of whom were
treated with cromoglycate, whose parents did not
want them to receive inhaled corticosteroids

Cont’d
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Example 2.6 Cont’d Comprehensive cohort study

Characteristic Description

Outcome
measurements

Growth velocity, weight gain, hospital admissions for
asthma, improvement in % predicted FEV1

Statistics Analysis of variance and regression to measure
effects over time

Conclusions • treatment associated with reduced hospital
admission for asthma and improved FEV1

• no difference in growth velocity or weight gain
between groups

Strengths • baseline information collected during a run-in
period

• results of bias minimised by using a cohort study
design and objective outcome measurements

• information obtained that was otherwise not
available

Limitations • no randomised group to control for confounders
• only supplemental evidence gained

Non-randomised clinical trials

In non-randomised trials, the subject or the researcher decides the group
to which subjects are assigned. This type of trial is only appropriate for
distinguishing between therapeutic effects and patient preference effects
that cannot be measured in a randomised trial. The decision to conduct a
non-randomised trial needs careful consideration because a major dis-
advantage is that the information obtained is only supplemental to
evidence of efficacy or effectiveness obtained from a randomised trial. For
this reason, non-randomised trials should only be used to answer questions
that cannot be addressed using a randomised controlled trial.

The results of trials in which subjects are allocated by personal prefer-
ence to a new treatment will give very different information to that
obtained from randomised controlled trials, although one method does not
necessarily give a consistently greater effect than the other.34 Subjects who
participate in different types of trials tend to have quite different charac-
teristics. In randomised trials to evaluate the treatment of existing illnesses,
subjects tend to be less affluent, less educated and less healthy whereas the
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subjects in trials of preventive interventions tend to be the opposite.35 An
advantage of non-randomised trials is that the information gained may
have greater generalisability. In randomised trials, the response rate may be
low because the inclusion criteria are strict or because large numbers of
subjects decline to enrol. Also, subjects who agree to enrol because they
will obtain a new and otherwise unavailable treatment are more likely to
drop out if they are randomised to the standard care group. These factors
may cause significant selection bias that detracts from the generalisability
of the results.36

Selection bias is less likely to occur in trials with a preference group
because patients are more likely to consent to enrol in the study. However,
non-randomised allocation naturally creates a greater potential for alloca-
tion bias to distort the results because important confounders may not be
balanced evenly between the study groups. In addition, compliance with
the new treatment or intervention is likely to be higher in the preference
group than would occur in a general clinical setting. Because a preference
group will provide information about the effect of a treatment that is
chosen by subjects who already believe it will help them, the results may
suggest that the treatment is more effective than results obtained from a
trial in which allocation is random.

Although many subjects prefer to make their own choices about factors
such as diet, self-medication, monitoring and trial entry, the ways in which
such preferences alter outcomes are not easily measured and are not always
clear. It is possible to reduce bias as a result of patient preference with the
use of objective outcome measurements and blinded observers. If random-
ised and non-randomised groups are included and if the sample size is large
enough, the extent of the bias can also be estimated by analysing the ran-
domised and personal preference groups separately and then comparing the
results.

Open trials

Open trials, which are often called open label trials, are clinical studies in
which no control group is enrolled and in which both the patient and the
researcher are fully aware of which treatment the patient receives. These
types of trials only have a place in the initial clinical investigation of a new
treatment or clinical practice (Phase I studies). From an ethical point of
view, subjects must understand that the treatment is in a developmental
stage and that they are not taking part in a trial that will answer questions
of efficacy. In general, open trials are likely to produce results that are over-
optimistic because bias in a positive direction as a result of expectation of
benefit cannot be minimised.
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Cohort studies

Cohort studies, which are sometimes called prospective studies or longitudinal
studies, are conducted over time and are used to describe the natural history
or the ‘what happens next?’ to a group of subjects. In these studies, subjects
are enrolled at one point in time and then followed prospectively to
measure their health outcomes. The time of enrolment is usually specific,
for example at birth when subjects are disease-free or at a defined stage of
disease, such as within twelve months of diagnosis. As such, cohort studies
are usually used to compare the health outcomes of groups of subjects in
whom exposures or other attributes are different. The design of a cohort
study is shown in Figure 2.5. In such studies, the risk of developing a
disease is calculated by comparing the health outcomes of the exposed and
unexposed groups.

Figure 2.5   Design of a cohort study

In the study of populations, cohort studies are the only type of study
that can be used to accurately estimate incidence rates, to identify risk
factors, or to collect information to describe the natural history or prognosis
of disease. However, these types of studies are often expensive to conduct
and slow to produce results because a large study sample and a long follow-
up time are needed, especially if the outcome is rare. Also, cohort studies
have the disadvantage that the effects of exposures that change over the
study period are difficult to classify and to quantify. On the other hand,
these types of studies have the advantage that the effects of risk factors
can be measured more accurately than in cross-sectional or case-control
studies because the rate of development of a disease can be compared
directly in the exposed and non-exposed groups. As a result, cohort studies
are the most appropriate study design with which to establish temporal
relationships. The desirable features of a cohort study are shown in
Table 2.6.
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Table 2.6 Desirable features of cohort studies

Subjects
• a random population sample is enrolled as an inception cohort, that is

very early in life or at a uniform point in time
• follow-up rates of at least 80% are achieved throughout the study
• the inclusion and exclusion criteria are easily reproducible
• there is good comparability between the subjects who continue or who

drop out of the study
• no intervention is applied during the follow-up period
• the follow-up time is long enough for the disease to resolve or develop
Measurements
• more than one source of outcome variable is investigated
• objective outcome measurements are used
• subjective outcomes are assessed by observers who are blinded to the

subject’s exposure status
Analyses
• analyses are adjusted for all known confounders

In cohort studies, the enrolment of a random sample of the population
ensures generalisability and methods to minimise non-response, follow-up
and measurement bias are essential for maintaining the scientific integrity
of the study. In addition, exposure must be ascertained before the disease or
outcome develops and the disease must be classified without knowledge of
exposure status. An outline of a cohort study is shown in Example 2.7.

Example 2.7 Cohort study
Martinez et al. Asthma and wheezing in the first six years of life37

Characteristic Description

Aims To measure the association of symptoms of wheeze
in early life with the development of asthma, and to
measure risk factors that predict persistent wheeze at
age 6 years

Type of study Prospective cohort study

Sample base Cohort of 1246 newborns enrolled between 1980–1984

Follow-up period 6 years

Subjects 826 children remaining in cohort

Outcome
measurements

Classification by wheeze severity (none, transient,
late onset or persistent)

Cont’d
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Example 2.7 Cont’d Cohort study

Characteristic Description

Explanatory
measurements

Respiratory symptoms, maternal asthma, ethnicity,
gender, parental smoking

Statistics Analysis of variance to measure associations; odds
ratios to measure risk factors

Conclusions • Wheeze in early life is associated with low lung
function in early life but not with later asthma or
allergy

• Risk factors associated with persistent wheeze at
age 6 are maternal asthma, ethnicity, gender,
maternal smoking and a high serum IgE, but not
low lung function

Strengths • large inception cohort enrolled with long follow-up
period achieved

• some objective measurements used (lung function,
serum IgE)

• risk factors are measured prospectively, i.e. more
accurately

• exposure to risk factors was measured before the
outcomes developed

Limitations • moderate follow-up rate may have biased estimates
of incidence to some extent and estimates of risk to
a lesser extent

• information of non-responders is not available
• effects of different treatment regimes on outcomes

are not known

Case-control studies

In case-control studies, subjects with a disease of interest are enrolled and
compared with subjects who do not have the disease. Information of pre-
vious exposures is then collected to investigate whether there is an
association between the exposure and the disease. Because past exposure
information is collected retrospectively, case-control studies often rely on
the subject’s recall of past events, which has the potential to lead to bias.

The design of a case-control study is shown in Figure 2.6. These types
of studies are widely used in research because they are usually cheaper and
provide answers more quickly than other types of study design. In case-
control studies, the controls are selected independently of the cases,
whereas in matched case-control studies each control is selected to match
the defined characteristics, such as age or gender, of each case.
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Figure 2.6   Case-control study design

There are many methods of selecting cases and controls.38, 39 Cases may
be chosen to represent either mild or severe disease, or both, but either way
the inclusion criteria must be specific. The ideal controls are those who are
randomly selected from the same study base or the same population from
which the cases are drawn. Although controls may be selected from the
same hospital or clinic population as the cases, it is preferable to select from
friends, schools or neighborhoods, or ideally from registers such as telephone
directories or electoral lists. Whatever the source, the most appropriate
controls are subjects who would have been enrolled as cases if they had
developed the disease. To increase statistical power, more than one control
can be enrolled for each case (see Chapter 4). An example of a case-control
study is shown in Example 2.8.

In case-control studies, the results are based on comparing the charac-
teristics, or exposures, of the cases with those of the controls. The risk of
disease is often estimated by comparing the odds of the cases having an
exposure with the odds of the controls having the same exposure. However,
when exposures are reported retrospectively by the subjects themselves, the
measurements may be subject to recall bias. Case-control studies cannot be
used to infer causation because it is difficult to control for the influence of
confounders and for selection bias. Uncontrolled confounding and bias can
lead to distorted estimates of effect and type I errors (the finding of a false
positive result), especially if the effect size is small and the sample size is
large.

Because the results from case-control studies are most useful for generating
rather than testing hypotheses about causation, these types of studies are
often used in the first stages of research to investigate whether there is any
evidence for proposed causal pathways. However, the findings of case-control
studies are often overturned in subsequent studies that have a more rigorous
scientific design. For example, the results from a case-control study in
England suggested that there was a relation between neonatal intra-muscular
administration of vitamin K and childhood cancer, with a statistically
significant odds ratio of 2.0 (95% CI 1.3, 3.0, P�0.01).40 This result was
later overturned in a study that had a more rigorous cohort design and a
large sample size, and in which a non-significant odds ratio of 1.0 (95% CI
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0.9, 1.2) was found.41 In this later study, hospital records were used to
measure vitamin K exposure in infants born in the period 1973–1989 and
the national cancer registry was accessed to measure the number of cases of
cancer. These methods were clearly more reliable than those of the case-
control study in which self-reported exposures were subject to recall bias.

Nested case-control studies

Nested case-control studies can be conducted within a cohort study. When
a case arises in the cohort, then control subjects can be selected from the
subjects in the cohort who were at risk at the time that the case occurred.
This has the advantage that the study design controls for any potential
confounding effects of time.

Nested case-control studies are often used to reduce the expense of
following up an entire cohort. The advantage is that the information gained
is very similar to the information that would be gained from following the
whole cohort, except that there is a loss in precision.

Example 2.8 Case-control study to measure risk factors
Badawi et al. Antepartum and intrapartum risk factors for newborn
encephalopathy: the Western Australian case-control study42, 43

Characteristic Description

Aim To identify predictors of newborn encephalopathy in
term infants

Type of study Population based, unmatched case-control study

Sample base Births in metropolitan area of Western Australia
between June 1993 and September 1995

Subjects Cases: all 164 term infants with moderate or severe
newborn encephalopathy born in described period
Controls: 400 controls randomly selected from term
babies born during same period as cases

Outcome
measurement

Risk of outcome in presence of several measures of
exposure

Statistics Descriptive statistics, odds ratios and 95% confidence
intervals

Conclusions • many causes of newborn encephalopathy relate to
risk factors in the antepartum period

• intrapartum hypoxia accounts for only a small
proportion of newborn encephalopathy

• elective caesarean section has an inverse relation
with newborn encephalopathy

Cont’d



45

Planning the study

Example 2.8 Cont’d Case-control study to measure risk factors

Characteristic Description

Strengths • able to investigate all risk factors by avoiding the use
of matching and by avoiding the use of presumed
aetiological factors in the case definition

• controls randomly selected from population and
demonstrated to be representative in terms of
important exposures and confounders

• larger number of controls enrolled to increase
statistical power

• multiple t-tests not performed to test numerous
relationships

• multivariate analyses used to assess independent
effects raises many hypotheses about causes of
newborn encephalopathy

Limitations • causation between risk factors and newborn
encephalopathy could not be inferred because of the
chosen study design information of a small number
of risk factors based on retrospective data may be
biased by different recall of antepartum and
intrapartum events in cases and controls

Matched case-control studies
In matched case-control studies, each of the control subjects is selected on
the basis that they have characteristics, such as a certain age or gender, that
match them with one of the study subjects. The design of a matched case-
control study is shown in Figure 2.7.

Figure 2.7   Matched case-control study design

Matching is useful because it achieves a balance of important prognostic
factors between the groups that may not occur by chance when random
selection of controls is used, especially in small studies. Also, by effectively
removing the effects of major confounders in the study design, it becomes
easier to measure the true effect of the exposure under investigation. The
underlying assumption is that if cases and controls are similar in terms of
important confounders, then their differences can be attributed to a different
exposure factor. An example of a typical matched case-control study is
shown in Example 2.9.
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Example 2.9 Matched case-control study
Salonen et al. Relation between iron stores and non-insulin dependent
diabetes in men: case-control study44

Characteristic Description

Aim To measure the relationship between iron stores and
non-insulin dependent diabetes

Type of study Matched case-control study

Sample base Random cross-sectional sample of 1038 men age 42–60

Follow-up period 4 years

Subjects Cases: 41 men who developed non-insulin dependent
diabetes during the follow-up period
Controls: 82 diabetes-free subjects selected from
sample base

Matching factors Age, year, month of examination, place of residence,
number of cigarettes smoked daily, exercise taken,
maximal oxygen uptake, socioeconomic status, height,
weight, hip and waist circumference and other serum
vitamin and fatty acids

Outcome
measurement

Diabetes defined as abnormal blood glucose level or
receiving treatment for diabetes

Explanatory
measurement

High iron store defined as ratio of concentration of
ferritin receptors to ferritin in frozen serum samples in
top quartile of sample

Statistics Odds ratios

Conclusion Men in the top quarter of the range of iron scores were
at increased risk of developing diabetes (OR�2.4, 95%
CI 1.0,5.5, P�0.04)

Strengths • cases were drawn from a large random population
sample

• controls were selected from the same population
• statistical power was increased by enrolling 2 controls

for each case
• objective measurements were used for defining the

outcome and explanatory variables

Limitations • the response rate at enrolment and the follow-up rate
at 4 years are not reported so the effects of selection
bias cannot be judged

• controls are almost certainly over-matched, which may
have reduced the estimate of effect

• because of over-matching, the effects of other
confounders in this study cannot be estimated

• it is unclear whether an appropriate matched data
analysis was used
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Variables that are used for matching are often factors such as age, gender
and ethnicity because these are strong confounders for many disease
conditions. To match for these confounders, cases are often asked to
nominate siblings or friends as controls. However, this type of matched
control may also be more similar to the cases in regard to the exposure of
interest. More appropriate controls are those that are matched by other
population characteristics, such as by selecting the next live birth from a
hospital at which a case is identified or by identifying the next person on
the electoral register. The strengths and limitations of using matched con-
trols are summarised in Table 2.7.

Table 2.7 Strengths and limitations of matched case-control studies

Strengths
• matching is an efficient method of controlling for major confounders
• matching for one factor (e.g. sibling) may also match for a range of

other confounders such as ethnicity or socioeconomic status which
may not be easy to measure

• selecting friends or family members increases the feasibility of
recruiting control subjects

Limitations
• the effects of confounders that are used as matching variables cannot

be investigated in the analyses
• selection bias occurs when cases are more likely to nominate friends

who have similar exposures
• generalisability is reduced when the control group is more similar to the

cases than to the general population
• controls need to be recruited after the cases are enrolled
• some cases may have to be excluded if a suitable control cannot be

found
• analyses are limited to matched analyses in which only the exposures

or characteristics of the discordant pairs are of interest
• the effective sample size is the number of pairs of subjects, not the

total number of subjects in the study

In practice, matching is most useful for testing the effects of variables
that are strongly related to both the exposure and to the outcome meas-
urement with at least a four- or five-fold increase in risk. Matching does
not provide an advantage in situations where the relation between the con-
founders and the exposure and outcome measurements is relatively weak.
A disadvantage is that when friends or family members are recruited as
matched controls, the exposures of the controls may not be independent
of those of the cases. In this situation, the selection bias in the controls,
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because their exposures are not independent, can distort the odds ratio of
effect by as much as two-fold magnitude in either direction, depending on
the size and the direction of the bias.45

It is also important to avoid over-matching, which can be counterpro-
ductive46 and which usually biases the results towards the null. The effects
of this bias cannot be adjusted in the analyses. The concept of over-matching
includes matching on too many confounders, on variables that are not
confounders, or on inappropriate variables such as factors that are on the
intermediate causal pathway between the disease and exposure under
investigation. An example of over-matching is a study in which controls
are matched to the cases on age, gender, ethnicity, occupation and
socioeconomic status. In this type of study, the effects of smoking history
would be expected to have a close association with both occupation and
socioeconomic status and, as a result, the measured association between
smoking history and the disease being investigated would be underestimated.

Despite the disadvantages, matching is a more efficient method with
which to adjust for the effects of confounding than the use of multivariate
statistical analyses.47 However, the increase in precision that is achieved by
matching is usually modest, that is a less than 20 per cent reduction in
variance compared with the estimate obtained from multivariate analyses.
In addition, matching on a factor that is strongly associated with the disease
but not the exposure, or that is strongly associated with the exposure but
not the disease, will give the correct estimate of effect but is likely to
decrease precision. The advantages of matching also need to be balanced
with the feasibility of recruiting the controls—in practice, if a match cannot
be found then the case has to be excluded from the analyses, which leads
to a loss of efficiency and generalisability.

Studies with historical controls

A study with a historical control group is one that compares a group of
subjects who are all given the new treatment with a group of subjects who
have all received the standard current treatment at some time in the past.
An example of an intervention study with a historical control group is
shown in Example 2.10.

Historical controls are usually used for convenience. The results from
these types of studies will always be subject to bias because no blinding can
be put in place and there are no methods that can be used to control for
the effects of potential confounders. In such studies, no adjustment can be
made for unpredicted differences between study groups such as subject
characteristics that have not been measured, changes in inclusion criteria
for other treatments, changes in methods used to measure exposure and
outcome variables, or available treatments that change over time.
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Example 2.10 Intervention study with a historical control group
Halken et al. Effect of an allergy prevention program on incidence of
atopic symptoms in infancy48

Characteristic Description

Aims To investigate the effectiveness of allergen avoidance
in the primary prevention of allergic symptoms in
infancy

Type of study Population based case-control study with historical
controls

Sample base ‘High-risk’ infants, that is infants with high cord IgE
and/or bi-parental atopic symptoms, born in specified
region of Denmark

Subjects Intervention group � 105 ‘high-risk’ infants born in 1988
Controls � 54 ‘high-risk’ infants born in 1985

Intervention Avoidance of exposure to environmental tobacco
smoke, pets and dust-collecting materials in the
bedroom in the first 6 months of life

Follow-up period Infants followed until age 18 months

Outcome
measurements

Symptoms of recurrent wheeze, atopic dermatitis, etc.
measured

Statistics Chi-square tests used to determine differences in
prevalence of symptoms between cases and controls

Conclusion Allergen avoidance until the age of 6 months reduced
the prevalence of recurrent wheeze during the first
18 months of life from 37% to 13% (P�0.01)

Strengths • first study to test the effectiveness of allergen
avoidance as a primary preventive measure

• birth cohort enrolled and intervention begun at
earliest stage

• results encourage the need for more rigorous trials

Limitations • intervention not continued throughout trial
• mixed intervention used so that the potentially

effective or non-effective components are not known
• no allergen exposure measurements collected
• no measures used to reduce bias (randomisation,

blinding etc.)
• effects could be explained by factors other than the

intervention (treatment, awareness, changed diet or
use of childcare etc.)
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Cross-sectional studies

In cross-sectional studies, a large random selection of subjects who are rep-
resentative of a defined general population are enrolled and their health
status, exposures, health-related behaviour, demographics and other rele-
vant information are measured. As such, cross-sectional studies provide a
useful ‘snap-shot’ of what is happening in a single study sample at one point
in time.

Because both the exposures of interest and the disease outcomes are
measured at the same time, no inference of which came first can be made.
However, cross-sectional studies are ideal for collecting initial information
about ideas of association, or for making an initial investigation into
hypotheses about causal pathways. The design of a cross-sectional study is
shown in Figure 2.8.

Figure 2.8   Design of a cross-sectional study

Glossary

Term Meaning

Point prevalence Number of cases of disease in a population within
a specified time period

Cumulative
prevalence

Total number of cases in the population who have
ever had the disease

Incidence Rate at which new cases of disease occur in a
population

Mortality rate Proportion of population that dies in a specified
period

Cross-sectional studies are used to measure ‘point’ or ‘cumulative’ prev-
alence rates, associations between outcome and exposure measurements, or
the effects of risk factors associated with a disease. The most appropriate
use of cross-sectional studies is to collect information about the burden of
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disease in a community, either in terms of its prevalence, morbidity or mor-
tality rates. In addition, serial cross-sectional studies are often used as a
cheaper alternative to cohort studies for measuring trends in the changes
of health status in a population, usually in chronic diseases such as diabetes,
asthma or heart disease, or in health-related behaviours such as smoking.
An example of a cross-sectional study is shown in Example 2.11.

Cross-sectional studies are an inexpensive first step in the process of
identifying health problems and collecting information of possible risk
factors. In cross-sectional studies, exposure and disease status is often col-
lected by questionnaires that ask for current or retrospective information.
To obtain a precise estimate of prevalence, a high response rate of over
80 per cent needs to be achieved in order to minimise the effects of selec-
tion bias.49 Results from studies with a small sample size but with a high
response rate are preferable to studies with a large sample but a low
response rate because the generalisability of the results will be maximised.
The features of study design that lead to bias in cross-sectional studies are
shown in Table 2.8.

Table 2.8 Major sources of bias that influence estimates of prevalence
and association in cross-sectional studies

Subjects
• non-random selection or a low response rate can lead to selection

bias
• recall and reporting bias can influence the information collected
Measurements
• precision is reduced by large measurement error or poor validity of

the methods
• may be influenced by observer bias

Example 2.11 Cross-sectional study
Kaur et al. Prevalence of asthma symptoms, diagnosis, and treatment
in 12–14 year old children across Great Britain (ISAAC)50

Characteristic Description

Aims To measure variations in the prevalence of asthma
symptoms in 12–14 year old children living in the UK

Type of study Cross-sectional study

Sample base All pupils in years with mostly 13–14 year-olds in
selected state schools in specific regions in
England, Wales and Scotland

Cont’d
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Example 2.11 Cont’d Cross-sectional study

Characteristic Description

Sampling criteria Schools randomly selected from prepared sampling
frames

Subjects 27 507 children age 12–14 years enrolled of whom
49.2% were male; response rate was 86%

Outcome
measurements

Symptoms and medication use collected by
standardised questionnaire

Explanatory
measurements

Regions throughout the world where similar studies
conducted

Statistics Prevalence rates

Conclusion • 33% of children had wheezed in the last
12 months, 21% had a diagnosis of asthma and
16% used an asthma medication

• these levels are higher than in previous studies or
in studies of younger age groups and are amongst
the highest in the world

Strengths • schools were chosen randomly
• methods were standardised between centres
• a high response rate was achieved to minimise

selection bias

Limitations • only subjective outcome measurements collected
• estimates of the presence of asthma may be

influenced by reporting bias due to awareness,
mis-diagnosis etc.

• results apply only to these centres at the one
point in time

• no information of possible risk factors for asthma
was collected

Ecological studies

In ecological studies, the units of observation are summary statistics from
a population rather than measurements from individual subjects. Thus, the
units of disease status may be assessed by incidence, prevalence or mortality
rates from a population group such as a school, a geographic region, or a
country, rather than from a sample of individual subjects. In addition,
information on exposures is collected by proxy measurements such as infor-
mation on socioeconomic status from a national census or regional humidity
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levels from a national bureau. An example of an ecological study is shown
in Example 2.12.

Ecological studies are useful for describing variations between populations.
As such, they can be used to assess whether an outcome of interest is
different between groups rather than between individuals. A major limitation
of ecological studies is that they provide a very weak study design for
inferring causation because it is impossible to control for confounders. Also,
associations may be difficult to detect if an unknown lag time occurs between
secular trends in disease rates and in exposures to any explanatory risk
factors.51

Example 2.12 Ecological study of SIDS mortality
Douglas et al. Seasonality of sudden infant death syndrome in mainland
Britain and Ireland 1985–1995.52

Characteristic Description

Aim To examine whether sudden infant death syndrome
(SIDS) occurs with a seasonal pattern

Type of study Ecological

Outcome variable SIDS death occurrences as documented by national
database records

Explanatory
variables

Season, year, age of child

Statistics Effect of year and age on trends (curve fitting)

Conclusions SIDS deaths occur with a seasonal peak in winter,
especially in children aged less than 5 months old

Strengths • informative collation and reporting of national data
• useful background information for designing

studies to measure risk factors

Limitations • the accuracy of case ascertainment and its
relation to other seasonally occurring illnesses is
not known

• there is no biological plausibility for the effect of
season per se

• no information was gained about the many
possible confounders associated with season
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Qualitative studies

Although this book is largely concerned with quantitative research, a
description of qualitative studies is included for completeness. Qualitative
studies are descriptive studies that use in-depth interviews to collect
information. The characteristics of qualitative studies are described in
Table 2.9. These types of studies are particularly useful for collecting
information about the attitudes, perceptions or opinions of the subjects.
As such, the content is dictated by the subject rather than by the measure-
ment tools chosen by the researcher.

Table 2.9 Characteristics of qualitative studies

• they are an investigation of meaning and processes
• ask opinions rather than ranking feelings on a scale
• study behaviour from the subjects’ perspectives
• lead to a better understanding of how the subjects think, feel or act
• can complement quantitative studies
• can identify broad questions that may be refined as the study

progresses
• should aim, as far as possible, to study the subjects in their own

environment
• can be used to formulate hypotheses or answer questions in their own

right

Qualitative studies document behaviour and experience from the per-
spective of the patient or carer. As a result, qualitative studies are invalu-
able for collecting information about questions such as why some patients
do not adhere to treatments, what patients require from their local health
care systems, or what patients feel about changes in their health care. An
example of a qualitative study is shown in Example 2.13.

Qualitative studies provide important information both in their own
right54, 55 and as an adjunct to quantitative studies.56 In studies of effective-
ness, it is often useful to collect qualitative data to explore the acceptability
of the new treatment or intervention in addition to quantitative informa-
tion to assess benefit. If an intervention proves to be ineffective, only
qualitative data will provide information of whether the procedure or its
side effects was unacceptable, or whether the treatment or intervention was
too impractical to incorporate into daily routines. The value of collecting
this type of information is shown in Example 2.14.
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Example 2.13 Qualitative study
Butler et al. Qualitative study of patients’ perceptions of doctors’ advice
to quit smoking: implications for opportunistic health promotion53

Characteristic Description

Aims To assess the effectiveness and acceptability of
opportunistic anti-smoking interventions conducted
by general practitioners

Characteristic Description

Type of study Qualitative

Subjects 42 subjects in a smoking intervention program

Methods Semi-structured interviews

Outcome
measurements

Information about attempts to quit, thoughts on
future smoking, past experiences with health
services, and most appropriate way for health
services to help them

Data analyses Considered reduction of information into themes

Conclusions Smokers
• made their own evaluations about smoking
• did not believe doctors could influence their

smoking
• believed that quitting was up to the individual
• anticipated anti-smoking advice from their doctors,

which made them feel guilty or annoyed

Implications • a more informed approach to smoking cessation is
needed

• different approaches to smoking cessation by GPs
may lead to better doctor–patient relationships for
smokers

Strengths • the information collected was much broader than
could be obtained using a structured questionnaire

• explanations for the failure of anti-smoking
campaigns carried out by GPs can be used to
further develop effective interventions

Limitations • the generalisability of the results is not known
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Example 2.14 Use of qualitative data to extend the information gained
from a quantitative clinical trial

The effectiveness of a diet supplement in improving social function in
girls with a congenital disorder was investigated in the blinded, placebo-
controlled cross-over trial shown in Example 2.5. Analysis of the
qualitative outcome measurements on a 5-point Likert scale suggested
that the girls’ functional abilities did not improve significantly during the
active arm of the trial. However, qualitative data collected at semi-
structured interviews showed that more than 70% of the parents or
carers were able to judge when the subject was receiving the active
treatment because of marked improvements in some specific functional
abilities. In this study, the quantitative scales were not sensitive enough to
detect improvements that were subtle but nevertheless of particular
importance to parents and carers. If qualitative data had not been collected
the treatment would have been judged to be ineffective, even though it
resulted in substantial benefits for some patients and their carers.

Case reports or case series

Case reports or case series are a record of interesting medical cases. Case
reports present a detailed medical history of the clinical and laboratory
results for one patient or a small number of patients, whereas case series are
descriptions of the medical history of larger numbers of patients.57 These
studies are entirely descriptive in that a hypothesis cannot be tested and
associations cannot be explored by comparing the findings with another
group of cases.

In both case reports and case series, the pattern of treatment and response
is reported from a limited number of individual cases. An example of a case
study is shown in Example 2.15.

Example 2.15 Case report of an unusual metabolic disorder
Ellaway et al. The association of protein-losing enteropathy with
cobalamin C defect58

Characteristic Description

Aim To document a previously unreported association
between protein-losing enteropathy and cobalamin C
metabolic disorder

Type of study Descriptive case report
Cont’d
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Example 2.15 Cont’d Case report on an unusual metabolic disorder

Characteristic Description

Patient Male infant of first cousin parents with birthweight
below 10th percentile, poor feeding ability, failure to
thrive and hospitalised for vomiting, diarrhoea and
lethargy at age 4 weeks

Outcomes Signs and symptoms; various haematological and
biochemical tests

Statistics None

Importance Association not previously documented

Conclusion • That physicians should consider this metabolic
disorder in infants who fail to regain their birth weight

Strengths • educational

Limitations • the frequency and strength of the association is not
known

Pilot studies and preliminary investigations

Pilot studies, which are sometimes called feasibility studies, are necessary to
ensure that practical problems in the study protocol are identified. This
ensures that the protocol does not need to be changed once the planned
study is underway and therefore, that standardised, high quality data will
be collected. The uses of pilot studies are shown in Table 2.10. An essential
feature of a pilot study is that the data are not used to test a hypothesis or
included with data from the actual study when the results are reported.

Table 2.10 Processes that can be evaluated in pilot studies

• the quality of the data collection forms and the accuracy of the
instruments

• the practicalities of conducting the study
• the success of recruitment approaches
• the feasibility of subject compliance with tests
• estimates for use in sample size calculations

The uses of internal pilot studies, in which the data are part of the data
set that is used to test the study hypothesis on completion of the study, are
discussed in Chapter 4.

Occasionally, studies with a small sample size are conducted to evaluate
whether a larger, more definitive study to test a hypothesis is warranted.
These studies are not pilot studies in the classical sense described in
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Table 2.10 and, to avoid confusion, are probably best described as a
preliminary investigation. Because such studies should always be capable of
answering a research question in their own right, the study design and
subject selection should be appropriate and the sample size should be
adequate.

Strengths and limitations of study designs

Each type of study design has its own inherent strengths and limitations.
However, all studies have their place in the larger scheme of collecting
data that is sufficiently convincing for a new treatment or health care
practice to be introduced, for a new method to replace previous methods,
or for a public health intervention to be implemented. The inherent
strengths and limitations of each of the types of study design that have been
described are summarised in Table 2.11.

In epidemiological research, associations between exposures and diseases
are usually investigated in a progressive way in order to avoid wasting val-
uable research resources. In many situations, it is pragmatic to tread a con-
servative path and first assess whether a relation exists in cheaper studies
that provide more rapid answers, such as ecological, cross-sectional or case-
control studies. If a study of this type confirms that a significant association
is likely to exist, then it is reasonable to progress to a more definitive study.
This may involve undertaking a cohort study or non-randomised trial
before finally conducting a randomised controlled trial to test the effects
of intervening, if this is feasible and appropriate.

It is also important to tread a considered path that conserves research
resources when planning a clinical study to test the effects of new treat-
ments or interventions on morbidity due to ill health. For this reason, evi-
dence of new treatment modalities is usually first collected in preliminary
investigations such as Phase I studies, or by using a cheaper study design
such as a case-control study before more definitive evidence of efficacy,
effectiveness or equivalence is collected in various forms of randomised
controlled trials.

Table 2.11 Strengths and limitations of study design

Type of study Strengths Limitations

Systematic review • summarises current
information

• directs need for new
studies

• bias can occur if
methods for each
study are not
standardised and
some studies have a
small sample size

Cont’d
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Table 2.11 Cont’d Strengths and limitations of study design

Type of study Strengths Limitations

Randomised
controlled trials

• scientifically rigorous
• provide the most

convincing evidence
• control for known and

unknown confounders

• expensive and difficult
to conduct

• generalisability may
be poor

• may not be ethically
feasible

Cohort studies • can document
progression of disease

• reduce effects of recall
bias

• can be used to measure
incidence rates

• provide information of
the timing of events and
risk factors

• expensive to conduct
• prevention of loss to

follow-up may be
impossible

• require large sample
size especially for
studies of rare diseases

• exposure may be
linked to unknown
confounders

• blinding is not always
possible

Non-randomised
clinical trials

• can answer important
clinical questions

• evidence is only
supplemental to
randomised controlled
trials

Case-control studies • easy to conduct and
provide rapid results

• large sample size not
required

• suitable for study of rare
diseases

• important first stage in
investigating risk factors

• difficult to control for
bias and confounding

• may be difficult to
recruit suitable
controls

• information about
exposure relies on
subject recall

Cross-sectional
studies

• fast and easy to conduct
• can provide accurate

estimates of prevalence
• provide initial information

of associations and risk
factors

• random sample may
be difficult to recruit

• prone to bias if
response rate low

• effect of timing of
exposure cannot be
estimated

Ecological studies • quick and easy
• can generate

hypotheses

• not possible to control
for confounders

• time lags may
influence results

Cont’d
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Table 2.11 Cont’d Strengths and limitations of study design

Type of study Strengths Limitations

Qualitative studies • provide information from
a patient perspective

• cannot be used to test
a hypothesis

Case reports or
case series

• provide new information • cannot be used to test
a hypothesis

Preliminary
investigations

• help decide whether a
study is warranted

• need to be followed
by a more definitive
study

Pilot studies • ensure quality data • cannot be used to test
a hypothesis

Methodological studies

In research studies, the extent to which measurements are accurate
(repeatable) or to which one instrument can be used interchangeably with
another instrument (agreement) are fundamental issues that influence the
study results. Because of this, it is important that these issues are estab-
lished before data collection begins. To conserve accuracy, studies in which
the repeatability or agreement is being evaluated must be designed so that
they do not produce a falsely optimistic or a falsely pessimistic impression
of the accuracy of the instrument. The important issues when designing a
study to estimate repeatability or agreement are shown in Table 2.12.

Table 2.12 Study design for measuring repeatability or agreement

• the conditions under which measurements are taken are identical on
each occasion

• the equipment is identical and the same protocol is followed on each
occasion

• at subsequent tests, both subject and observer are blinded to the
results of the prior tests

• each subject must have exactly the same number of observations
• subjects are selected to represent the entire range of measurements

that can be encountered
• no new treatment or clinical intervention is introduced in the period

between measurements
• the time between measurements is short enough so that the severity of

the condition being measured has not changed
• a high follow-up rate is attained
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Section 2—Random error and bias

The objectives of this section are to understand:
• how bias can arise in a research study;
• how to minimise bias in the study design; and
• how to assess the influence of bias.

Measuring associations 61
Bias 62
Random error 62
Systematic bias 63
Types of bias 66

Selection bias 66
Intervention bias 70
Measurement bias 71
Analysis and publication bias 72

Estimating the influence of bias 73

Measuring associations

Most clinical and epidemiological research studies are designed to measure
associations between an exposure and the presence of a disease, which may
be measured as improvement, prevention or worsening of symptoms. An
exposure can be an environmental factor, a treatment or an intervention.
Figure 2.9 shows how the strength of the association that is measured in
any type of study can be significantly influenced by factors that are a direct
result of the study design and the methods used. This section discusses how
random error and bias can arise, and can be prevented, in order to make
an estimate of association that is closer to the truth.

Figure 2.9   Factors that influence associations

 

 

Image Not Available 
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Bias

Bias is the difference between the study results and the truth. As such, bias
is a major problem that has to be considered in the design of research
studies because it is not possible to adjust for the effects of bias at a later
stage, such as in the data analyses. Thus, the research studies that are
designed to have the least potential for bias are the studies that have the
most potential to produce reliable results. Because systematic bias distorts
the study results and because the magnitude and direction can be difficult
to predict, detection and avoidance are fundamental considerations in all
research studies.

Bias is not related to sample size. The effects of bias on the study results
remain the same whatever the sample size, so that a large study that has a
significant bias is no better than a small study with a significant bias—it
only serves to waste more resources. The only satisfactory methods for
minimising the potential for bias are to design studies carefully to ensure
that the sampling procedures are reliable and to implement all procedures
using standardised methods to ensure that the measurements are accurate
when the data are collected.

Random error

Random error is sometimes called non-systematic bias. Most measurements
have some degree of random error but, because this occurs to a similar
extent in all subjects regardless of study group, it is less of a problem than
non-random error, or systematic bias. Measurements that are more suscept-
ible to interpretation and that therefore have a low degree of repeatability,
such as a tape measure for estimating height, will have far more random
error than an item of calibrated equipment such as a stadiometer, which
provides much better precision by reducing random error. In clinical and
epidemiological studies, misclassification errors in assigning subjects to the
correct disease or exposure groups can also cause random error.

Random error always results in a bias towards the null, that is a bias
towards a finding of no association between two variables. Thus, the effects
of random error are more predictable, and therefore less serious, than the
effects of systematic bias. In Figure 2.10, the solid curves show the frequency
distribution of a continuous measurement taken from two groups, A and B.
If random error is present, the ‘noise’ around the measurements is greater
and the distributions will be broader as shown by the dotted curves. Because
this type of error always tends to make the study groups more alike by
increasing the amount of overlap in their distributions, it will lead to an
increase in the standard deviation of the measurement, and therefore to
under-estimation of effect.
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Figure 2.10   Effect of random error
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The solid lines show the frequency distribution of a measurement in two study groups, A and 
B. The dotted lines show how the frequency of the same measurement would be distributed if 
there was additional random error around the estimates.

Systematic bias

Systematic bias, which is often called differential bias or non-random error, is
the most serious type of bias because it leads to an under-estimation or an
over-estimation of results, or to an incorrect statistically significant or
insignificant difference between study groups. In many situations, systematic
bias has an unpredictable effect so that the direction of the bias on the
results is difficult to detect. The types of bias that are likely to lead to an
over-estimation or under-estimation of effect are shown in Figure 2.11.

Figure 2.11   Effects of systematic bias

 

 

Image Not Available 
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Systematic bias often occurs when the response rate in a study is low
or when the study methods or sampling criteria create an artificial differ-
ence in the association between the exposure and the outcome in the cases
and controls, or in the sampled group and the population. The effect of
systematic bias may be to either increase or decrease a measured incidence
or prevalence rate, or to increase or decrease the association between two
variables, such as between an exposure and an outcome or between a treat-
ment and the severity of symptoms. An over-estimation of association can
occur if the assessment of outcome becomes biased because an association
is thought to exist by either the subject or the observer.59

Glossary

Term Meaning

Under-estimation Finding of a weaker association between two
variables or a lower prevalence rate than actually
exists

Over-estimation Finding of a stronger association between two
variables or a higher prevalence rate than actually
exists

Misclassification of
subjects

Classification of cases as controls, or vice-versa

Misclassification of
exposure

Classification of exposed subjects as non-exposed,
or vice-versa

Some common sources of systematic bias are shown in Table 2.13, and
an example of the effect of systematic recall bias is shown in Example 2.16.
The association shown in the study outlined in Example 2.16 would be
rendered non-significant by a very modest degree of recall bias.60

Table 2.13 Sources of systematic bias

Subjects
• have an interest in the relationship being investigated
• have different exposures or outcomes to non-responders
• selectively recall or over-report exposures that are not a personal choice,

such as occupational or industrial exposures
• selectively under-report exposures that are a personal choice, such as

smoking or alcohol use
Researchers
• have an interest in the relationship being investigated
• are not blinded to study group
• estimate the exposure or outcome differently in the cases and controls
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Example 2.16 Study with potential systematic recall bias
Fontham et al. Environmental tobacco smoke and lung cancer in
non-smoking women61

Characteristic Description

Aims To measure the risk of lung cancer in lifetime
non-smokers exposed to environmental tobacco smoke

Type of study Population based case-control study

Sample base Female lifetime non-smokers in five metropolitan centres
in the USA

Subjects 653 cases with confirmed lung cancer and 1253 controls
selected by random digit dialing and random sampling
from health registers

Outcome
measurements

Lung cancer confirmed with histology

Exposure
measurements

In-person interviews to measure retrospective reporting
of tobacco use and exposure to environmental tobacco
smoke (proxy reporting by next of kin for sick or
deceased cases); tobacco smoke exposure from mother,
father, spouse or other household members measured

Statistics Logistic regression to estimate odds ratios adjusted for
confounders, e.g. age, race, study centre, anti-oxidant
intake

Conclusion exposure to smoking by a spouse increases the risk of
lung cancer in lifetime non-smokers with an odds ratio of
approximately 1.3 (P�0.05)

Strengths • large sample size allowed effect to be measured with
precision, i.e. with small confidence interval

• disease status of cases confirmed with diagnostic tests
i.e. misclassification bias of cases is minimised

• controls sampled randomly from population i.e.
selection bias is minimised

• demographic characteristics well balanced in case and
control groups i.e. effects of confounders minimised

Limitations • information bias likely to be high in 37% of cases for
whom proxy measurements had to be collected

• likely to be significant systematic recall of tobacco and
diet exposures between cases and controls

• the odds ratios of effect are small so that only a
modest degree of systematic recall bias may explain
the result62
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Types of bias

Bias can arise from three sources: the subjects, the researchers or the
measurements used. The terms that are used to describe specific sources of
bias are listed in Table 2.14. The studies that are most prone to measurement
bias, because they often rely on retrospective reporting by the subjects who
are aware of their disease classification, are case-control and cross-sectional
studies. Cohort studies in which exposures and symptom history are measured
prospectively rather than relying on recall tend to be less prone to some
biases.

Table 2.14 Types of bias that can occur in research studies

Bias Alternative terms and subsets

Selection bias Sampling bias
Non-response bias
Volunteer or self-selection bias
Allocation bias
Follow-up or withdrawal bias
Ascertainment bias

Intervention bias Bias due to poor compliance
Different treatment of study groups

Measurement bias Observer or recorder bias
Information bias
Misclassification bias
Recall or reporting bias

Analysis and publication bias Interpretation bias
Assumption bias

Selection bias

Selection bias, which is sometimes called sampling bias, is a systematic
difference in terms of exposures or outcomes between subjects enrolled for
study and those not enrolled. This leads to an under-estimation or over-
estimation of descriptive statistics, such as prevalence rates, or of association
statistics, such as odds ratios. When subjects are selected using non-random
methods or when subjects self-select themselves into groups, there is a large
potential for selection bias to occur. There is also potential for selection
bias between patients who consent to enrol in a clinical study or in a
population study and those who choose not to participate.

A major effect of selection bias is that it reduces the external validity of
the study; that is, the generalisability of the results to the community. For
this reason, it is important to use careful sampling procedures and to adhere
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strictly to any inclusion and exclusion criteria so that the characteristics of
the study sample can be described precisely and the generalisability of the
results can be accurately described.

Glossary

Term Meaning

Generalisability Extent to which the study results can be applied to
the target population

Confounders Factors that are associated with the outcome and the
exposure being studied but are not part of the causal
pathway

Prognostic factors Factors that predict a favourable or unfavourable
outcome

In cross-sectional studies, a major source of selection bias is non-response
bias. Non-response bias causes an under-estimation or an over-estimation
of prevalence rates if a non-representative sample is enrolled. Because the
amount of bias may increase as the response rate decreases, a minimum
response rate of 80 per cent is thought necessary for cross-sectional studies
from which prevalence rates are being reported, and response rates below
60 per cent are thought to be inadequate.63

The situations in which selection bias can occur in non-randomised
clinical trials, cohort studies and case-control studies are shown in Table 2.15.
The many sources of bias that can arise and the difficulties in controlling
the bias preclude these types of studies from being useful for providing
definitive evidence of causation between an exposure and a disease, or
evidence of the effectiveness of a treatment.

Table 2.15 Situations in which selection bias may occur in non-random
trials, and in cohort and cross-sectional studies

Subjects
• self-select themselves into a trial or a study
• have different characteristics that are related to outcome than the refusers
• are more educated or lead a healthier lifestyle than refusers
• have a better or worse prognosis than refusers
Researchers
• selectively allocate subjects to a treatment group
• use different selection criteria for the intervention and control groups, or the

exposed and non-exposed groups
• are aware of the purpose of the study and of the subject’s exposure to the

factor of interest
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In matched case-control studies, matching is used to control for factors,
such as age or gender, that are important confounders in a relationship
between an exposure and a disease. In these types of studies, it is often both
convenient and cost effective to ask cases to nominate control subjects
who are their friends or relatives. Selection bias is a significant problem
when this type of selection process is used. The use of friends and relatives
as controls can inadvertently result in ‘over-matching’ for the exposure of
interest, which will bias the results towards the null.

Glossary

Term Meaning

Inclusion criteria Subject characteristics that determine inclusion in a study

Exclusion criteria Subject characteristics that determine exclusion from
being enrolled in a study

Response rate Proportion of eligible subjects who are enrolled in a study

Compliance Regularity with which subjects adhere to study protocol,
e.g. take medications or record outcome measurements

A type of selection bias called allocation bias occurs when there is a
difference in the characteristics of subjects who are allocated to the separate
treatment groups in a clinical trial.64, 65 Differential allocation may result in
an imbalance in prognostic factors or confounders and can have a strong
influence on the results. The effects of these types of allocation biases can
be minimised by using efficient randomisation methods to allocate subjects
to treatment or to control groups, and by blinding the observers to the
allocation procedures.

Glossary

Term Meaning

Exposure group Group who have been exposed to the environmental
factor being studied

Intervention group Group receiving the new treatment being studied or
undertaking a new environmental intervention

Placebo group Group receiving a sham treatment that has no effect
and is indistinguishable by subjects from the active
treatment

Control group Group with which the effect of the treatment or
exposure of interest is compared
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Follow-up bias is a major problem in cohort studies. This type of bias
occurs when the subjects remaining in the study are systematically different
from those who are lost to follow-up. Follow-up bias becomes a systematic
bias when follow-up rates are related to either the measurements of exposure
or to the outcome. For example, subjects who have a disease that is being
studied may be more likely to stay in a study than healthy control sub-
jects, who may be more likely to drop out. An example of a study in which
there was a strong potential for follow-up bias is shown in Example 2.17.

Follow-up bias can also occur when subjects who suspect that their
disease is related to a past occupational exposure may be more likely to
remain in the study than control subjects who have no such suspicions. In
clinical trials, follow-up bias has an important effect when cases drop out
because of side effects due to the intervention, or because they recover
earlier than the subjects in the control group. Estimates of effect can
become distorted when the follow-up rate is different in the intervention
and control groups. The only way to minimise this type of bias is to use
multiple methods to maximise follow-up rates in all of the study groups.

Example 2.17 Study with potential for follow-up bias
Peat et al. Serum IgE levels, atopy and asthma in young adults: results
from a longitudinal cohort study66

Characteristic Description

Aims To explore the natural history of asthma from
childhood to early adulthood and its relation to
allergic responses

Type of study Longitudinal cohort study

Sample base Population sample of 718 children studied at age
8–10 years

Subjects 180 subjects restudied at age 18–20 years

Outcome
measurements

Asthmatic symptoms, airway hyper-responsiveness
to histamine (AHR), skin prick tests and serum IgE

Statistics Analysis of variance, trends and chi-square tests of
association

Conclusion • serum IgE and atopy have an important dose-
response relation with AHR in young adults, even
in the absence of asthmatic symptoms

• subjects who had AHR or symptoms in early
childhood had a high probability of very high
serum IgE levels in later life

Cont’d
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Example 2.17 Cont’d Study with potential for follow-up bias

Characteristic Description

Strengths A lifelong history of asthma symptoms could be
collected prospectively thereby reducing recall bias

Limitations • only 57% of the original sample were enrolled in
the follow-up study and less than half of these
subjects agreed to have blood taken for serum IgE
measurements (25% of original sample)

• no inferences about the prevalence of any
characteristics could be made

• effects of follow-up bias unknown so that
generalisability is unclear

Intervention bias

Intervention bias occurs when the intervention and control groups act, or
are treated, differently from one another. Intervention bias may lead to an
over-estimation of effect when there is a greater use of diagnostic or treat-
ment procedures in the intervention group than in the control group, or
when subjects in the intervention group are contacted or studied more fre-
quently than those in the control group. Intervention bias can also lead to
an under-estimation of effect between groups when there is an unidentified
use of an intervention in the control group. To reduce intervention bias,
it is important to standardise all of the treatment and data collection
methods that are used.

An example of potential intervention bias was identified in a randomised
controlled trial of the effects of the Buteyko method, which is an alternative
breathing therapy for asthma.67 The results from this study suggested that
the Buteyko method significantly reduced the self-reported use of pharma-
cological medications and marginally improved quality of life in patients
with asthma. However, the effect may have been over-estimated because
the active intervention group was contacted by telephone much more
frequently than the control group subjects. This failure to standardise the
amount of contact with all study subjects could have influenced the self-
reporting of outcomes by creating a greater expectation of benefit in the
active treatment group.68 When designing a study, it is important to antici-
pate these types of bias so that their effects can be minimised when con-
ducting the study.

Poor compliance in the intervention group can also bias results towards
the null by leading to an inaccurate estimation of the dose required to
achieve a specific effect. If 25 per cent of subjects are non-compliant, the
sample size will need to be increased by up to 50 per cent in order to
maintain the statistical power to demonstrate an effect. Common methods
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that are used to improve compliance include the use of written instructions,
frequent reminders, and providing supplies. Any methods that improve
compliance will have the potential to lead to more accurate estimates of
the true effects of new treatments or interventions. However, the methods
used become an integral part of the intervention.

Measurement bias

Measurement bias, which is sometimes called information bias, occurs when
the outcome or the exposure is misclassified. The situations in which
measurement bias commonly occur are shown in Table 2.16. Solutions to
avoid measurement bias include the use of measurements that are as accu-
rate as possible, ensuring that both the observers and the subjects are
blinded to study group status, and employing objective measurements wher-
ever possible.69

The term measurement bias is usually used if the measurement is con-
tinuous, or misclassification bias if the measurement is categorical. A situa-
tion in which measurement bias can occur is when heart rate is
documented when the subject is nervous or has been hurrying rather than
when the subject is calm and sedentary. Because of the potential for meas-
urement bias to occur, it is important to ensure that all measurements are
collected using standardised methods so that both observer and subject
biases are minimised. An example of a study that was designed to measure
the extent to which systematic misclassification bias was present is shown
in Example 2.18. Although misclassification bias affects the classification
of exposures and outcomes in almost all studies, its effects cannot usually
be quantified unless an appropriate validation study has been conducted.

Table 2.16 Sources of measurement bias

Subjects
• selectively under-report or over-report exposure to lifestyle choices

such as dietary intakes, cigarette smoking, or alcohol intake
• do not answer sensitive questions, such as income, accurately
• selectively recall events once the disease of interest occurs
Researchers
• are aware of group status
Measurements
• conditions under which measurements are taken are not standardised
• questionnaires developed for one particular age group or clinical

setting are used in a different setting
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Observer bias may occur when the subject or the investigator is aware of
the group to which the subject has been allocated or the status of the
exposure being investigated. It is important to minimise observer bias by
using objective outcome measurements70 or by having carefully trained
investigators with efficient blinding procedures in place.71 Observer bias can
also be minimised by using more than one source of information, for
example by verifying the outcomes or exposures with information available
from external sources such as medical or vaccination records.

Another type of measurement bias is recall bias. This type of bias can
occur in case-control and cross-sectional studies in which retrospective data
are collected from the subjects. Recall bias arises when there are differences
in the memory of significant past exposures between cases and controls. For
example, parents of children with a neurodevelopment disorder, such as
cerebral palsy, often have a much sharper recall of exposures and events
that occurred during pregnancy or during delivery than the parents of
healthy children.

Reporting bias may lead to over- or under-estimates of prevalence rates.
This commonly occurs in situations in which subjects report information
about other members of their family, such as parents reporting on behalf
of their children. For example, parents may under-report symptoms of
wheeze following exercise in their child if they are not always present when
their child has been exercising. Another example of reporting bias is proxy
reports by women of the number of cigarettes or amount of alcohol con-
sumed by their partners. In a study of pregnant women, approximately
30 per cent of replies between women and their partners were not in agree-
ment.72 Reporting bias may also distort measures of association when sub-
jects selectively report or withhold information. For example, a systematic
under-reporting of smoking in pregnancy will tend to underestimate the
association between maternal smoking and low birth weight because some
smokers will be classified as non-smokers.

Analysis and publication bias

Bias can also arise during data analysis when data are ‘dredged’ before a
positive result is found, when interim analyses are repeatedly undertaken as
the study progresses, or when problem cases (such as those with exclusion
criteria or with outlying or missing values) are mishandled. Analysis bias
can also arise if ‘intention-to-treat’ analyses are not used when reporting
the results from randomised controlled trials, when only selected subjects
are included in the analysis, or when subjects are regrouped for analysis
by their exposure status rather than by initial group allocation. These
methods will tend to remove the balance of confounding that was achieved
by randomising the subjects to groups.
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Glossary

Term Meaning

Categorical variable Variable that can be divided into discrete categories,
e.g. Yes/No or 1, 2, 3, 4

Continuous variable Variable measured on a continuous scale,
e.g. height or weight

Intention-to-treat
analysis

Analysis with all subjects included in group to which
they are originally randomised regardless of
non-compliance, completion in trial etc.

Missing values Data points that were not collected, e.g. due to
non-attendance, inability to perform tests etc.

Interim analyses Analyses conducted before entire subject enrolment
is completed

Assumption bias may arise from mistaken interpretations of the associa-
tion between variables as a result of illogical reasoning or inappropriate
data analyses. Similarly, interpretation bias may arise from a restricted inter-
pretation of the results that fails to take account of all prior knowledge.

Publication bias occurs because positive findings are more likely to be
reported and published in the journals73 or because covert duplicate pub-
lication of data can occur.74 Publication bias may also arise as a result of
hypotheses being based on a single piece of positive evidence rather than
all of the evidence available, or as a result of authors omitting to discuss
reservations about the conclusions. Other sources of publication bias
include the delayed or failed publication of studies with negative results.

In systematic reviews, bias can be introduced in meta-analyses if the
review is more likely to include positive trials, a large proportion of small
trials that have greater random fluctuation in their estimates, or trials
published in only one language.75, 76 Results can also be biased if data from
subgroups that are expected to respond differently are combined. In addi-
tion, results will be biased towards a more favourable outcome if fixed
rather than random effects models are used to summarise the results when
heterogeneity between studies is expected.77

Estimating the influence of bias

While it is impossible to adjust for bias in data analyses, it is sometimes
possible to make an estimation of its effect on the results or on the
conclusions of a study. The effect of selection bias can be estimated using
sensitivity analyses if some information of non-responders has been collected.



74

Health science research

Sensitivity analyses simply involves the recalculation of statistics such as
the prevalence rate or odds ratio using one of the methods shown in
Table 2.17. The application of a sensitivity analysis is shown in Example 2.18.

Table 2.17 Methods for sensitivity analyses

• assume that all, or a proportion of non-responders, do or do not have the
disease of interest and then recalculate upper and lower bounds of
prevalence

• estimate the extent of misclassification, e.g. the proportion of non-smokers
who are thought to be smokers, and then recalculate the odds ratio

• exclude or include the expected proportion of inaccurate replies

In some situations, it is possible to collect data that can be used to assess
the effect of any systematic bias on the results. For example, questionnaires
may be used in a study in which it is not practical or economically feasible
to measure true exposures in the entire sample. In this case, it is sometimes
possible to collect accurate information of true exposures in a smaller study
and use this to validate the questionnaire responses in order to ascertain
whether there is any measurement bias.78

Example 2.18 Application of a sensitivity analysis

Say, for example, that a prevalence study of asthma in young children is
conducted and the response rate is only 70%. If no information of non-
responders can be obtained, a sensitivity analysis can be conducted to
estimate the effect on prevalence if the rate of asthma in the non-responders
was, say, half or double that in the responders. The calculations are as
follows.
Total size of population � 1400 children
Number of children studied � 980 (response rate 70%)
Number of non-responders � 420 children
Number of children with asthma in study sample of 980 children � 186
Prevalence of children with asthma in study sample � 186 / 980 � 18.9%
Prevalence of children with asthma in population if rate in

non-responders is 9.5% � (186 � 40) / 1400 � 16.1%
Prevalence of children with asthma in population if rate in

non-responders is 38% � (186 � 160 ) / 1400 � 24.7%
The estimates in the non-responders and the effect they have on the
estimation of prevalence are shown in Figure 2.12. The sensitivity analysis
suggests that the true rate of asthma in the population is likely to be in the
range of 16.1% to 24.7%. However, this estimate is not precise because it
relies on a subjective judgment of the response rate in the non-responders.



75

Planning the study

Figure 2.12   Sensitivity analysis
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For cross-sectional studies, more complicated methods are available,
including the use of sampling weights to adjust for the effects of greater
non-response from some sections of a population. These methods can be
used to adjust for systematic bias due to the effects of factors such as
socioeconomic status on the response rate.79

For case-control studies, statistical methods have been developed to
quantify the extent of systematic recall bias that would be required to
overturn the results of the study.80 Such analyses involve recalculating the
odds ratio using estimations of the probability that an exposed subject has
been recorded as being unexposed, or an unexposed subject has been
recorded as being exposed. These probabilities can be estimated if prior
studies to validate exposure measurements, such as measurements estimated
by questionnaires, have been undertaken. By conducting such analyses, it
is possible to determine the extent to which the conclusions remain valid
under a range of systematic recall bias situations.
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Section 3—Blinding and allocation
concealment

The objectives of this section are to understand:
• the importance of blinding in reducing bias;
• how to implement blinding;
• why allocation methods have to be concealed; and
• the problems of conducting interim analyses.

Subject blinding 76
Observer blinding 77
Allocation concealment 77
Documentation 78
Methodological studies 79
Interim analyses 79
Resources required 79

Blinding is an essential tool for reducing bias in research studies. Studies
are called ‘single-blinded’ when either the subjects or the observers are
unaware of the group to which subjects have been allocated, or ‘double-
blinded’ when both the subjects and the observers are unaware of group
status. Subject blinding is a fundamental consideration in clinical trials,
whereas observer blinding is a fundamental issue in all types of research
studies.

Subject blinding

In clinical trials, subjects should be unaware of, that is blinded to, the group
to which they have been allocated.81 Blinding is sometimes achieved with
the use of a placebo treatment, that is an inert substance that looks and
tastes the same as the active treatment. Alternatively, in intervention
studies, a sham intervention can be used in the control group. This is
important in trials of new treatments or interventions in which a ‘placebo
effect’ may occur, that is a situation in which patients perceive a psycho-
logical benefit from a treatment that is not related to the inherent efficacy
of the treatment.
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The direction of any ‘placebo effect’ can be difficult to judge because
this may arise from the expectation that the new treatment will have a
greater benefit, or the assurance that the standard treatment is more effec-
tive. It is not uncommon for patients who are involved in clinical trials to
report a more optimistic account of their symptoms simply out of willing-
ness to please the researchers who have been trying to help and who are
interested in all aspects of their clinical outcomes.

In epidemiological studies in which questionnaires or subject interviews
are used to collect outcome and exposure data, subjects should be unaware
of the relationship that is being investigated. This is also important in case-
control studies in which subjects are asked to recall exposures that
happened at some time in the past.

Observer blinding

In all research studies, procedures need to be in place to ensure that observ-
ers or assessors are as objective as possible when assessing outcomes. In
most studies, bias can be minimised by the assessors being unaware
(blinded) to the group or exposure status of the subjects. Most clinical trials
are designed with the expectation that there will be a difference between
groups. However, the very expectation that the new or active treatment
will be better or worse than the current or placebo treatment has the
potential to lead to a difference in the conduct or frequency of follow-up
procedures between the groups. These expectations may also lead to a more
optimistic or pessimistic interpretation of the outcome measurements in the
active or new treatment groups.

In epidemiological studies in which an association between an exposure
and an outcome is being investigated, bias can be avoided by the research-
ers who are assessing outcomes being blinded to the subjects’ exposure
status, and by the researchers who are assessing the subjects’ exposure status
being blinded to subjects’ outcome status.

Allocation concealment

In randomised and non-randomised trials, all correct guesses about group
allocation by the researchers responsible for recruiting subjects have the
potential to lead to allocation bias. Because of this, random allocation and
allocation concealment are important tools that overcome any intentional
or unintentional influences in the researcher who is responsible for alloc-
ating subjects to a trial group. With efficient allocation and concealment
in place, the group allocation of the subjects should be determined entirely
by chance.
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Allocation concealment is important because some researchers indulge
in ingenious efforts to decipher allocation codes. In studies in which the
researchers who are responsible for enrolling the subjects are curious about
group allocation and treat breaking the code as an intellectual challenge,
only a strategic randomisation allocation plan and an efficient concealment
policy can reduce bias.82

A basic requirement of allocation concealment is that researchers who
prepare the random allocation scheme should not be involved in the
recruitment processes or in assessing outcomes. Conversely, researchers
who are recruiting subjects should not be involved in selecting and
undertaking the random allocation procedure. Concealment is essential
because it has been estimated that larger treatment effects are reported from
trials with inadequate allocation concealment.83 Because the methods of
concealment are just as important as those of allocation, many journals now
require that these methods are reported.

Many ways of concealing allocated codes can be used. In small trials,
sealed envelopes are commonly used because of their simplicity, but lists
held by a third person such as a pharmacy or central control by phone
are the preferred method. Obviously, the sequence is more easily determined
if the observers are not blinded to the treatment group but in studies in
which effective double-blinding is in place, the use of a placebo that is as
similar as possible to the active drug can help to maintain concealment. In
this type of study, the preferred concealment method is the use of previously
numbered or coded containers.

When minimisation methods are being used to randomise subjects to
groups, it is especially important to conceal information of the predictive
factors being used in the process and to conceal their distribution in the
trial groups from the researchers who are responsible for recruiting the
subjects.

Documentation

Although random allocation should follow a pre-determined plan, specifi-
cations of the precise methods are not usually included in the protocol or
in other documentation because this would make them accessible to the
staff responsible for data collection and would circumvent effective alloca-
tion concealment. However, once recruitment is complete, the method can
be openly reported. When publishing the results of the trial, it is essential
that both the methods of randomisation and of concealment are reported
together.84
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Methodological studies

Blinding is an important concept for reducing bias in methodological studies
such as those designed to measure the repeatability of an instrument, the
agreement between two different instruments or the diagnostic utility of a
clinical tool. In these types of studies, it is important that the observers
who make the measurements are blinded to the ‘gold standard’, to other
measurements or to the results of prior diagnostic tests in each subject.85

In such studies, blinding is the only method to ensure that expectation on
the part of the observers does not make the instruments that will be used
to assess clinical outcome measurements seem better or worse than they
actually are.

Interim analyses

In all research studies but in clinical trials particularly, interim analyses
should be planned before data collection begins. More importantly, the
results of interim analyses that are undertaken before data collection is
complete should not be available to the team who are continuing to collect
the data. If the results become available, there may be an expectation
on the part of the research team or the subjects that further data collec-
tion should follow a certain pattern. The expectation may be that further
data will follow the direction of the interim results, or that larger differ-
ences will need to be found before a difference between groups becomes
significant. These expectations have the potential to bias all data collection
that follows the interim analysis.

In many large trials, bias is avoided by blinding the data management
and data analysis teams to the coding of the ‘group’ variable in the data-
base. In this way, expectations that the data should behave in one way or
another are less likely to influence the final results.

Resources required

In any research study, efficient blinding practices require adequate resources
in order to implement the procedures. To reduce bias, the people who are
responsible for randomly allocating subjects to study groups should be
different to the people responsible for collecting data, and both positions
should be independent of the responsibility for maintaining the database
and conducting the interim analyses. This requires a greater commitment
of resources than in studies in which researchers are required to perform
multiple roles, but is always worthwhile in terms of minimising bias.
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Section 1—Outcome measurements

The objectives of this section are to understand:
• how to select appropriate outcome measurements;
• the relative benefits of objective and subjective measurements;

and
• how to reduce measurement error in clinical trials.

Choice of outcome measurements 82
Subjective and objective measurements 83
Responsiveness 85
Multiple outcome measurements 86
Impact on sample size requirements 87
Surrogate end-points 88

Choice of outcome measurements

Much care is needed when choosing the outcome and explanatory variables
that will be used to test the main hypotheses in a research study. Because
no adjustment for unreliable or invalid measurements can be made in the
analyses, it is important to use both outcome and explanatory measure-
ments that are as precise and as valid as possible. This will improve the
likelihood of being able to accurately measure the impact of interventions,
or to measure the associations between two factors with accuracy. The
essential features of accurate outcome measurements are shown in Table 3.1.

Table 3.1 Essential qualities of accurate measurements

• good face and content validity
• good criterion or construct validity
• repeatable
• good between-observer agreement
• responsive to change
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Good face and content validity are both essential characteristics of
outcome measurements because they ensure that the measurement identi-
fies the symptoms and illnesses that are important in clinical terms and
that are relevant to the aims of the study. In addition, measurements with
good criterion or construct validity are valuable because they measure what
they are expected to measure with as much accuracy as possible. It is also
essential that measurements have good between-observer agreement and
are precise, or repeatable. The issues of validity are described later in this
chapter, and the methods that can be used to establish repeatability and
agreement are described in Chapter 7.

Glossary

Term Meaning

Subject error Error caused by subject factors such as
compliance with exertion when taking
measurements of lung function, or recent exercise
when taking measurements of blood pressure

Observer error Variations in assessment due to differences
between observers in the method used to
administer a test or to interpret the result

Instrument error Changes in the measurement due to instrument
calibration, ambient temperature etc.

Subjective and objective measurements

The characteristics of subjective and objective measurements are shown
in Table 3.2. Measurements are described as being subjective when they
are open to interpretation by the subject or the observer. Examples of
subjective measurements include questionnaires that collect information
such as symptom severity or frequency, quality of life, or satisfaction with
medical services using coded responses or scores. When questionnaires are
administered by the research staff rather than being self-administered by
the subjects themselves, blinding and training are important practices that
reduce observer bias. Poor between-observer agreement for subjective
assessments can make it very difficult to make between-group comparisons
when different observers are used, or to compare the results from studies
conducted by different research groups.1
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Table 3.2 Subjective and objective measurements

Subjective measurements
• can be a subject report or a researcher observation
• are prone to inconsistency and observer bias
• collect information that may be similar to that collected in a clinical

situation
• time is not a problem so that retrospective information can be

collected in addition to current information
• ask questions of importance to the patient

Objective measurements
• are measured by an observer (blinded or unblinded)
• are often more precise than subjective measurements
• can include archival data
• ideal for measuring short-term conditions at a single point in time,

such as X-rays, blood pressure, or lung function
• preferable as the main study outcomes because the potential for

bias is reduced

The inherent disadvantage with questionnaires is that they only provide
subjective information, but this is balanced by the advantage that they
are a cheap and efficient method of collecting information that is relevant
to the subject, and for which the time of events is not a problem. For
this reason, clinical trials in which the most important outcome is whether
the patient feels better use self-reported health status as the primary
outcome. In many research situations, such as in community studies, ques-
tionnaires are the only instruments that can be used to collect information
of illness severity and history.

In contrast, objective measurements are collected by instruments that
are less easily open to interpretation or to influence by the subject or the
observer. Examples of objective measurements include those of physiology,
biochemistry or radiology measured by laboratory or clinical equipment.
Objective measurements have the advantage that they reduce observer and
measurement bias. However, these types of measurements also have the
disadvantage that, in general, they only collect short-term information such
as lung function or blood pressure at the time of data collection, and they
usually require contact with the subject, which may reduce the response
rate for study.

Because objective measurements are less prone to observer and reporting
bias than subjective measurements, they are preferred for testing the main
study hypotheses. Some examples in which subjective questionnaire meas-
urements can be replaced by objective outcome measurements are shown in
Table 3.3.
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Table 3.3 Examples of subjective and objective outcome measurements

Example 1
Subjective: ‘Do you ever forget to take the capsules?’
Objective: Counts of returned capsules or biochemical tests

Example 2
Subjective: ‘How mobile is your child?’
Objective: Tracking of movements with a mobility monitor

Example 3
Subjective: ‘Has your chest felt tight or wheezy in the last week?’
Objective: Lung function tests or peak flow meter readings

Responsiveness

In trials to measure the efficacy or effectiveness of an intervention, it is
crucial that the main outcome measurement is responsive to essential dif-
ferences between subjects or to changes that occur within a subject. In
common with measuring validity and repeatability, methodology studies to
demonstrate that an instrument is responsive to clinically important
within-subject changes need to be designed and conducted appropriately.2, 3

Methods for measuring responsiveness are based on comparing the
minimum clinically important difference indicated by the measurement to
the variability in stable subjects over time.4, 5

Many measurements are inherently unresponsive to small changes in
disease severity and are not suitable for use as primary outcome variables
in studies designed to document the effects of treatment or environmental
interventions. For example, measurements such as a 5-point score in which
symptom frequency is categorised as ‘constant, frequent, occasional, rare or
never’ are not responsive for measuring subtle changes in symptom fre-
quency or severity. When using scales such as this, it is quite unlikely that
any new treatment or intervention would improve symptom frequency by
an entire category in most subjects. To increase the responsiveness of this
type of scale, the range would need to be lengthened by adding sub-
categories between the main scores.

In estimating which subjects are most likely to benefit from a treat-
ment, it may be important to include measurements of quality of life and
symptom or functional status. These outcomes may identify within-subject
changes that are small but that are important to the patient.6 In this way,
the proportion of subjects who experience an improvement in their illness
that has a positive impact on their quality of life can be estimated. Inclu-
sion of these types of outcomes often provides more clinically relevant
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information than measures of physiological parameters that may not reflect
the importance of the clinical condition to the patient.

Multiple outcome measurements

Many studies use multiple outcome measurements in order to collect
comprehensive data. This is common when efficacy or effectiveness needs
to be measured across a broad range of clinical outcomes. If this approach
is used, then methods to avoid inaccurate reporting are essential. Such
methods include specification of the primary and secondary outcome vari-
ables before the study begins, corrections for multiple testing, combining
several outcomes into a single severity score, or using a combined outcome
such as time to first event.7

It is essential that a study has the power to test the most important
outcomes (Example 3.1). In practice, a single outcome measurement will
rarely be adequate to assess the risks, costs and diverse benefits that may
arise from the use of a new intervention.8 For example, in the randomised
trial shown in Example 2.1 in Chapter 2, the efficacy of the drug
dexamethasone was evaluated in children with bacterial meningitis. In this
study, the many outcome measurements included days of fever, presence of
neurological abnormalities, severity scores, biochemical markers of cerebro-
spinal fluid, white cell counts, hearing impairment indicators and death.9
Without the collection of all of these data, any important benefits or
harmful effects of the drug regime may not have been documented.

Example 3.1 Use of alternate outcome measurements

A meta-analysis of the results of thirteen studies that investigated the
use of aminophylline in the emergency treatment of asthma was reported
in 1988.10 This meta-analysis concluded that aminophylline was not
effective in the treatment for severe, acute asthma in a hospital
emergency situation because it did not result in greater improvements in
spirometric measurements when compared to other bronchodilators.
However, a later randomised controlled trial found that the use of
aminophylline decreased the rate of hospital admissions of patients
presenting to emergency departments with acute asthma.11 In the former
studies, the use of spirometric measurements may have been an
inappropriate outcome measurement to estimate the efficacy of
aminophylline in an emergency situation because spirometric function is
of less importance to most patients and hospital managers than avoiding
hospitalisation and returning home and to normal function.
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When designing a study, it is important to remember that the outcomes
that are significant to the subjects may be different from the outcomes that
are significant to clinical practice. For example, a primary interest of
clinicians may be to reduce hospital admissions whereas a primary interest
of the subject may be to return to work or school, or to be able to exercise
regularly. To avoid under-estimating the benefits of new interventions in
terms of health aspects that are important to patients, both types of out-
comes need to be included in the study design.12 In studies in which children
or dependent subjects are enrolled, indicators of the impact of disease on
the family and carers must be measured in addition to measurements that
are indicators of health status.

Impact on sample size requirements

Statistical power is always a major consideration when choosing outcome
measurements. The problems of making decisions about a sample size that
balances statistical power with clinical importance are discussed in more
detail in Chapter 4.

In general, continuously distributed measurements provide greater statis-
tical power for the same sample size than categorical measurements. For
example, a measurement such as blood pressure on presentation has a
continuous distribution. This measurement will provide greater statistical
power for the same sample size than if the number of subjects with an
abnormally high blood pressure is used as the outcome variable. Also, if a
categorical variable is used, then a larger sample size will be required to
show the same absolute difference between groups for a condition that
occurs infrequently than for a condition that occurs frequently.

In any study, the sample size must be adequate to demonstrate that a
clinically important difference between groups in all outcome meas-
urements is statistically significant. Although it is common practice to
calculate the sample size for a study using only the primary outcome meas-
urements, this should not leave the findings unclear for other important
secondary outcome measurements. This can arise if a secondary outcome
variable occurs with a lower frequency in the study population or has a
wider standard deviation than the primary outcome variable. Provided that
the sample size is adequate, studies in which a wide range of outcome meas-
urements is used are usually more informative and lead to a better
comparability of the results with other studies than studies in which only
a single categorical outcome measurement is used.
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Surrogate end-points

In long-term clinical trials, the primary outcome variable is often called an
end-point. This end-point may be a more serious but less frequent outcome,
such as mortality, that is of primary importance to clinical practice. In
contrast, variables that are measured and used as the primary outcome
variable in interim analyses conducted before the study is finished are called
surrogate end-points, or are sometimes called alternative short-term outcomes.

The features of surrogate outcome measurements are shown in Table 3.4.
Surrogate outcomes may include factors that are important for determining
mechanisms, such as blood pressure or cholesterol level as a surrogate for
heart disease, or bone mineral density as a surrogate for bone fractures. For
example, the extent of tumour shrinkage after some weeks of treatment may
be used as a surrogate for survival rates over a period of years. In addition,
surrogate outcomes may include lifestyle factors that are important to the
patient, such as cost, symptom severity, side effects and quality of life.
The use of these outcomes is essential for the evaluation of new drug
therapies. However, it is important to be cautious about the results of interim
analyses of surrogate outcomes because apparent benefits of therapies may
be overturned in later analyses based on the primary end-points that have
a major clinical impact.13

Table 3.4 Features of surrogate outcome measurements

• reduce sample size requirements and follow-up time
• may be measures of physiology or quality of life rather than measures

of clinical importance
• useful for short-term, interim analyses
• only reliable if causally related to the outcome variable
• may produce unnecessarily pessimistic or optimistic results

Because the actual mechanisms of action of a clinical intervention
cannot be anticipated, only the primary outcome should be regarded as the
true clinical outcome. The practice of conducting interim analyses of sur-
rogate outcomes is only valid in situations in which the surrogate variable
can reliably predict the primary clinical outcome. However, this is rarely
the case.14 For example, in a trial of a new treatment for AIDS, CD4 blood
count was used as an outcome variable in the initial analyses but turned
out to be a poor predictor of survival in later stages of the study and there-
fore was a poor surrogate end-point.15

Because clinical end-points are used to measure efficacy, they often
require the long-term follow-up of the study subjects. The advantage of
including surrogate outcomes in a trial is that they can be measured much
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more quickly than the long-term clinical outcomes so that some results of
the study become available much earlier. Also, the use of several surrogate
and primary outcome measurements make it possible to collect information
of both the mechanisms of the treatment, which is of importance to
researchers, and information of therapeutic outcomes, which is of impor-
tance to the patient and to clinicians. However, a treatment may not
always act through the mechanisms identified by the surrogate. Also, the
construct validity of the surrogate outcome as a predictor of clinical
outcome can only be assessed in large clinical trials that achieve comple-
tion in terms of measuring their primary clinical indicators.
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Section 2—Confounders and
effect-modifiers

The objectives of this section are to understand how to:
• explore which variables cause bias;
• identify and distinguish confounders, effect-modifiers and

intervening variables;
• reduce bias caused by confounding and effect-modification;
• use confounders and effect-modifiers in statistical analyses; and
• categorise variables for use in multivariate analyses.
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Using multivariate analyses to describe confounders and

effect-modifiers 99
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Distinguishing between confounders, effect-modifiers and intervening

variables 103

Measuring associations

In health research, we often strive to measure the effect of a treatment or
of an exposure on a clinical outcome or the presence of disease. In deciding
whether the effect that we measure is real, we need to be certain that it
cannot be explained by an alternative factor. In any type of study, except
for large randomised controlled trials, it is possible for the measure of asso-
ciation between a disease or an outcome and an exposure or treatment to
be altered by nuisance factors called confounders or effect-modifiers. These
factors cause bias because their effects get mixed together with the effects
of the factors being investigated.
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Confounders and effect-modifiers are one of the major considerations
in designing a research study. Because these factors can lead to a serious
under-estimation or over-estimation of associations, their effects need to be
taken into account either in the study design or in the data analyses.

Glossary

Term Meaning

Bias Distortion of the association between two factors

Under-estimation Finding a weaker association between two
variables than actually exists

Over-estimation Finding a stronger association between two
variables than actually exists

The essential characteristics of confounders and effect-modifiers are
shown in Table 3.5. Because of their potential to influence the results, the
effects of confounders and effect-modifiers must be carefully considered and
minimised at both the study design and the data analysis stages of all
research studies. These factors, both of which are related to the exposure
being measured, are sometimes called co-variates.

Table 3.5 Characteristics of confounders and effect-modifiers

Confounders
• are a nuisance effect that needs to be removed
• are established risk factors for the outcome of interest
• cause a bias that needs to be minimised
• are not on the causal pathway between the exposure and outcome
• their effect is usually caused by selection or allocation bias
• should not be identified using a significance test
• must be controlled for in the study design or data analyses

Effect-modifiers
• change the magnitude of the relationship between two other variables
• interact in the causal pathway between an exposure and outcome
• have an effect that is independent of the study design and that is not

caused by selection or allocation bias
• can be identified using a significance test
• need to be described in the data analyses
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Confounders

Confounders are factors that are associated with both the outcome and the
exposure but that are not directly on the causal pathway. Figure 3.1 shows
how a confounder is an independent risk factor for the outcome of inter-
est and is also independently related to the exposure of interest. Confound-
ing is a potential problem in all studies except large, randomised controlled
trials. Because of this, both the direction and the magnitude of the effects
of confounders need to be investigated. In extreme cases, adjusting for the
effects of a confounder may actually change the direction of the observed
effect between an exposure and an outcome.

Figure 3.1   Relation of a confounder to the exposure and the outcome

An example of a confounder is a history of smoking in the relationship
between heart disease and exercise habits. A history of smoking is a risk
factor for heart disease, irrespective of exercise frequency, but is also assoc-
iated with exercise frequency in that the prevalence of smoking is generally
lower in people who exercise regularly. This is a typical example of how,
in epidemiological studies, the effects of confounders often result from sub-
jects self-selecting themselves into related exposure groups.

The decision to regard a factor as a confounder should be based on
clinical plausibility and prior evidence, and not on statistical significance.
In practice, adjusting for an established confounder increases both the
efficiency and the credibility of a study. However, the influence of a con-
founder only needs to be considered if its effect on the association being
studied is large enough to be of clinical importance. In general, it is less
important to adjust for the influence of confounders that have a small
effect that becomes statistically significant as a result of a large sample size,
because they have a minimal influence on results. However, it is always
important to adjust for confounders that have a substantial influence, say
with an odds ratio of 2.0 or greater, even if their effect is not statistically
significant because the sample size is relatively small.

In randomised controlled trials, confounders are often measured as base-
line characteristics. It is not usual to adjust for differences in baseline
characteristics between groups that have arisen by chance. It is only nec-
essary to make a mathematical adjustment for confounders in randomised
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controlled trials in which the difference in the distribution of a confounder
between groups is large and in which the confounder is strongly related to
the outcome.

An example of a study in which the effect of parental smoking as a
confounder for many illness outcomes in childhood was measured is shown
in Example 3.2. If studies of the aetiology or prevention of any of the
outcome conditions in childhood are conducted in the future, the effects of
parental smoking on the measured association will need to be considered.
This could be achieved by randomly allocating children to study groups or
by measuring the presence of parental smoking and adjusting for this effect
in the data analyses.

Example 3.2 Study of confounding factors
Burke et al. Parental smoking and risk factors for cardiovascular disease
in 10–12 year old children16

Characteristic Description

Aims To examine whether parent’s health behaviours influence
their children’s health behaviours

Type of study Cross-sectional

Sample base Year 6 students from 18 randomly chosen schools

Subjects 804 children (81%) who consented to participate

Outcome
measurements

Dietary intake by mid-week 2-day diet record; out-of-
school physical activity time by 7-day diaries; smoking
behaviour by questionnaire; height, weight, waist and hip
circumference, skin fold thickness

Statistics Multiple regression

Conclusion • parental smoking is a risk factor for lower physical
activity, more television watching, fat intake, body mass
index and waist-to-hip ratio in children

• studies to examine these outcomes will need to take
exposure to parental smoking into account

Strengths • large population sample enrolled therefore good
generalisability within selection criteria and effects
quantified with precision

• objective anthropometric measurements used

Limitations • size of risk factors not quantified as adjusted odds ratios
• R2 value from regression analyses not included so that

the amount of variation explained is not known
• results cannot be generalised outside the restricted age

range of subjects
• no information of other known confounders such as

height or weight of parents collected
• possibility of effect modification not explored
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Effect of selection bias on confounding

Confounders become a major problem when they are distributed unevenly
in the treatment and control groups, or in the exposed and unexposed
groups. This usually occurs as a result of selection bias, for example in
clinical studies when subjects self-select themselves into a control or treat-
ment group rather than being randomly assigned to a group. Selection
bias also occurs in epidemiological studies when subjects self-select them-
selves into a related exposure group. In the example shown in Figure 3.2,
smokers have self-selected themselves into a low exercise frequency group.
When this happens, the presence of the confounding factor (smoking status)
will lead to an under-estimation or over-estimation of the association
between the outcome (heart disease) and the exposure under investigation
(low exercise frequency).

Figure 3.2   Role of smoking as a confounder in the relation between
regular exercise and heart disease

Using random allocation to control for confounding

The major advantage of randomised controlled trials is that confounders
that are both known and unknown will be, by chance, distributed evenly
between the intervention and control groups if the sample size is large
enough. In fact, randomisation is the only method by which both the
measured and unmeasured confounders can be controlled. Because the
distribution of confounders is balanced between groups in these studies, their
effects do not need to be taken into account in the analyses.
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Glossary

Term Meaning

Randomisation Allocating subjects randomly to the treatment,
intervention or control groups

Restriction Restricting the sampling criteria or data analyses
to a subset of the sample, such as all females

Matching Choosing controls that match the cases on
important confounders such as age or gender

Multivariate
analyses

Statistical method to adjust the exposure–outcome
relationships for the effects of one or more
confounders

Stratification Dividing the sample into small groups according to
a confounder such as ethnicity or gender

Testing for confounding

When there are only two categories of exposure for the confounder, the
outcome and the exposure variable, the presence of confounding can be
tested using stratified analyses. If the stratified estimates are different from
the estimate in the total sample, this indicates that the effects of confound-
ing are present. An example of the results from a study designed to measure
the relationship between chronic bronchitis and area of residence in which
smoking was a confounder are shown in Table 3.6.

Table 3.6 Testing for the effects of confounding

Sample Comparison Relative risk for having chronic bronchitis

Total sample Urban vs rural 1.5 (95% CI 1.1, 1.9)

Non-smokers Urban vs rural 1.2 (95% CI 0.6, 2.2)

Smokers Urban vs rural 1.2 (95% CI 0.9, 1.6)

In the total sample, living in an urban area was a significant risk factor
for having chronic bronchitis because the 95 per cent confidence interval
around the relative risk of 1.5 does not encompass the value of unity.
However, the effect is reduced when examined in the non-smokers and
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smokers separately. The lack of significance in the two strata examined
separately is a function of the relative risk being reduced from 1.5 to 1.2,
and the fact that the sample size is smaller in each strata than in the total
sample. Thus, the reduction from a relative risk of 1.5 to 1.2 is attributable
to the presence of smoking, which is a confounder in the relation between
rural residence and chronic bronchitis.17 We can surmise that the prevalence
of smoking, which explains the apparent urban–rural difference, is much
higher in the urban region.

If the effect of confounding had not been taken into account, the
relationship between chronic bronchitis and region of residence would have
been over-estimated. The relation between the three variables being studied
in this example is shown in Figure 3.3.

Figure 3.3   Relation of a confounder (smoking history) to the exposure
(urban residence) and the outcome (chronic bronchitis)

Adjusting for the effects of confounders

Removing the effects of confounding can be achieved at the design stage
of the study, which is preferable, or at the data analysis stage, which is less
satisfactory. The use of randomisation at the recruitment stage of a study
will ensure that the distribution of confounders is balanced between each
of the study groups, as long as the sample size is large enough. If potential
confounders are evenly distributed in the treatment and non-treatment
groups then the bias is minimised and no further adjustment is necessary.
The methods that can be used to control for the effects of confounders are
shown in Table 3.7.

Clearly, it is preferable to control for the effects of confounding at the
study design stage. This is particularly important in case-control and cohort
studies in which selection bias can cause an uneven distribution of con-
founders between the study groups. Cross-sectional studies and ecological
studies are also particularly vulnerable to the effects of confounding.
Several methods, including restriction, matching and stratification, can be
used to control for known confounders in these types of studies.
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Table 3.7 Methods of reducing the effects of confounders in order of
merit

Study design
• randomise to control for known and unknown confounders
• restrict subject eligibility using inclusion and exclusion criteria
• select subjects by matching for major confounders
• stratify subject selection, e.g. select males and females separately

Data analysis
• demonstrate comparability of confounders between study groups
• stratify analyses by the confounder
• use multivariate analyses to adjust for confounding

Compensation for confounding at the data analysis stage is less effective
than randomising in the design stage, because the adjustment may be
incomplete, and is also less efficient because a larger sample size is required.
To adjust for the effects of confounders at the data analysis stage requires
that the sample size is large enough and that adequate data have been
collected. One approach is to conduct analyses by different levels or strata
of the confounder, for example by conducting separate analyses for each
gender or for different age groups. The problem with this approach is that
the statistical power is significantly reduced each time the sample is stratified
or divided.

The effects of confounders are often minimised by adjustments in
multivariate or logistic regression analyses. Because these methods use a
mathematical adjustment rather than efficient control in the study design,
they are the least effective method of controlling for confounding. However,
multivariate analyses have the practical advantage over stratification in that
they retain statistical power, and therefore increase precision, and they allow
for the control of several confounders at one time.

Effect-modifiers

Effect-modifiers, as the name indicates, are factors that modify the effect
of a causal factor on an outcome of interest. Effect-modifiers are sometimes
described as interacting variables. The way in which an effect-modifier oper-
ates is shown in Figure 3.4. Effect-modifiers can often be recognised because
they have a different effect on the exposure–outcome relation in each of
the strata being examined. A classic example of this is age, which modifies
the effect of many disease conditions in that the risk of disease becomes
increasingly greater with increasing age. Thus, if risk estimates are calcu-
lated for different age strata, the estimates become larger with each increas-
ing increment of age category.
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Figure 3.4   Relation of an effect-modifier to the exposure and the outcome

Effect-modifiers have a dose–response relationship with the outcome
variable and, for this reason, are factors that can be described in stratified
analyses, or by statistical interactions in multivariate analyses. If effect-
modification is present, the sample size must be large enough to be able to
describe the effect with precision.

Table 3.8 shows an example in which effect-modification is present. In
this example, the risk of myocardial infarction is stronger, that is has a
higher relative risk, in those who have normal blood pressure compared to
those with high blood pressure when the sample is stratified by smoking
status.18 Thus blood pressure is acting as an effect-modifier in the relation-
ship between smoking status and the risk of myocardial infarction. In this
example, the risk of myocardial infarction is increased to a greater extent
by smoking in subjects with normal blood pressure than in those with ele-
vated blood pressure.

Table 3.8 Example in which the number of cigarettes smoked daily is
an effect-modifier in the relation between blood pressure and
the risk of myocardial infarction in a population sample of
nurses19

Relative risk of myocardial infarction

Smoking status Normal blood pressure High blood pressure

Never smoked 1.0 1.0

1–14 per day 2.8 (1.5, 5.1) 1.4 (0.9, 2.2)

15–24 per day 5.0 (3.4, 7.3) 3.5 (2.4, 5.0)

25 or more per day 8.6 (5.8, 12.7) 2.8 (2.0, 3.9)

If effect-modification is present, then stratum specific measures of effect
should be reported. However, it is usually impractical to describe more than

 

 

Image Not Available 
 



99

Choosing the measurements

a few effect-modifiers in this way. If two or more effect-modifiers are pre-
sent, it is usually better to describe their effects using interaction terms in
multivariate analyses.

Using multivariate analyses to describe confounders and
effect-modifiers

Confounders and effect-modifiers are treated very differently from one
another in multivariate analyses. For example, a multiple regression model
can be used to adjust for the effects of confounders on outcomes that are
continuously distributed. A model to predict lung function may take the
form:

Lung function � Intercept � �1 (height) � �2 (gender)

where height is a confirmed explanatory variable and gender is the predictive
variable of interest whose effect is being measured. An example of this type
of relationship is shown in Figure 3.5 in which it can be seen that lung
function depends on both height and gender but that gender is an
independent risk factor, or a confounder, because the regression lines are
parallel.

Figure 3.5   Relation between lung function and height showing the
mathematical effect of including gender as an independent
predictor or confounder
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Alternatively, a logistic regression model can be used to adjust for
confounding when the outcome variable is categorical. A model for the
data in the example shown in Table 3.2 would take the form:

Risk of chronic bronchitis �
odds for

urban residence
�

odds for
ever smoked

When developing these types of multivariate models, it is important
to consider the size of the estimates, that is the � coefficients. The con-
founder (i.e. the gender or smoking history terms in the examples above)
should always be included if its effects are significant in the model. The
term should also be included if it is a documented risk factor and its effect
in the model is not significant.

A potential confounder must also be included in the model when it is
not statistically significant but its inclusion changes the size of the effect of
other variables (such as height or residence in an urban region) by more
than 5–10 per cent. An advantage of this approach is that its inclusion
may reduce the standard error and thereby increase the precision of the
estimate of the exposure of interest.20 If the inclusion of a variable inflates
the standard error substantially, then it probably shares a degree of collin-
earity with one of the other variables and should be omitted.

A more complex multiple regression model, which is needed to investi-
gate whether gender is an effect-modifier that influences lung function, may
take the form:

Lung function � Intercept + �1 (height) � �2 (gender) � �3 (height*gender)

An example of this type of relationship is described in Example 3.3. Figure
3.6 shows an example in which gender modifies the effect of height on lung
function. In this case, the slopes are not parallel indicating that gender is
an effect-modifier because it interacts with the relation between height and
lung function. Similarly, the effect of smoking could be tested as an effect-
modifier in the logistic regression example above by testing for the statistical
significance of a multiplicative term urban*smoking in the model, i.e.:

Risk of
chronic
bronchitis

�
odds for
urban

residence
�

odds for
ever smoked

�
odds for
urban

smoking

Suppose that, in this model, urban region is coded as 0 for non-urban and
1 for urban residence, and smoking history is coded as 0 for non-smokers
and 1 for ever smoked. Then, the interaction term will be zero for all
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Figure 3.6   Relation between lung function and height showing the
mathematical effect when gender is an effect-modifier
that interacts with height
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The two lines show the relation between lung function and height in males and females. The 

slopes of the two lines show the mathematical effect of gender, an effect-modifier that 

interacts with height to explain the explanatory and outcome variables.

subjects who are non-smokers and for all subjects who do not live in an
urban region, and will have the value of 1 for only the subjects who both
live in an urban region and who have ever smoked. In this way, the
additional risk in this group is estimated by multiplying the odds ratio for
the interaction term.

When testing for the effects of interactions, especially in studies in
which the outcome variable is dichotomous, up to four times as many sub-
jects may be needed in order to gain the statistical power to test the inter-
action and describe its effects with precision. This can become a dilemma
when designing a clinical trial because a large sample size is really the only
way to test whether one treatment enhances or inhibits the effect of
another treatment, that is whether the two treatment effects interact with
one another. However, a larger sample size is not needed if no interactive
effect is present.
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Example 3.3 Effect-modification
Belousova et al. Factors that effect normal lung function in white
Australian adults21

Characteristic Description

Aims To measure factors that predict normal lung function
values

Type of study Cross-sectional

Sample base Random population sample of 1527 adults (61% of
population) who consented to participate

Subjects 729 adults with no history of smoking or lung disease

Main outcome
measurements

Lung function parameters such as forced expiratory
volume in one second (FEV1)

Explanatory
variables

Height, weight, age, gender

Statistics Multiple regression

Conclusion • normal values for FEV1 in Australian adults
quantified

• interaction found between age and male gender in
that males had a greater decline in FEV1 with age
than females after adjusting for height and weight

• gender is an effect-modifier when describing FEV1

Strengths • large population sample enrolled, therefore results
generalisable to age range and effects quantified
with precision

• new reference values obtained

Limitations • estimates may have been influenced by selection
bias as a result of moderate response rate

• misclassification bias, as a result groups being
defined according to questionnaire data of
smoking and symptom history, may have led to an
underestimation of normal values

Intervening variables

Intervening variables are an alternate outcome of the exposure being
investigated. The relationship between an exposure, an outcome and an
intervening variable is shown in Figure 3.7.
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Figure 3.7   Relation of an intervening variable to the exposure and to
the outcome

In any multivariate analysis, intervening variables, which are an alterna-
tive outcome of the exposure variable being investigated, cannot be included
as exposure variables. Intervening variables have a large degree of collinearity
with the outcome of interest and therefore they distort multivariate models
because they share the same variation with the outcome variable that we
are trying to explain with the exposure variables.

For example, in a study to measure the factors that influence the
development of asthma, other allergic symptoms such as hay fever would
be intervening variables because they are part of the same allergic process
that leads to the development of asthma. This type of relationship between
variables is shown in Figure 3.8. Because hay fever is an outcome of an
allergic predisposition, hay fever and asthma have a strong association, or
collinearity, with one another.

Figure 3.8   Example in which hay fever is an intervening variable in the
relation between exposure to airborne particles, such as
moulds or pollens, and symptoms of asthma

Distinguishing between confounders, effect-modifiers and
intervening variables

The decision about whether risk factors are confounders, effect-modifiers
or intervening variables requires careful consideration to measure their
independent effects in the data analyses. The classification of variables also
depends on a thorough knowledge of previous evidence about the deter-
minants of the outcome being studied and the biological mechanisms that
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explain the relationships. The misinterpretation of the role of any of these
variables will lead to bias in the study results. For example, if effect-modifiers
are treated as confounders and controlled for in the study design, then the
effect of the exposure of interest is likely to be underestimated and, because
the additional interactive term is not included, important etiological infor-
mation will be lost. Similarly, if an intervening variable is treated as an
independent risk factor for a disease outcome, the information about other
risk factors will be distorted.

Confounders, effect-modifiers and intervening variables can all be either
categorical variables or continuously distributed measurements. Before
undertaking any statistical analysis, the information that has been collected
must be divided into outcome, intervening and explanatory variables as
shown in Table 3.9. This will prevent errors that may distort the effects of
the analyses and reduce the precision of the estimates.

Table 3.9 Categorisation of variables for data analysis and presentation
of results

Variable Subsets Alternative names

Outcome variables Dependent variables (DVs)

Intervening variables Secondary or alternative
outcome variables

Explanatory
variables

Confounders
Effect-modifiers

Independent variables (IVs)
Risk factors
Predictors
Exposure variables
Prognostic factors
Interactive variables

The effects of confounders and effect-modifiers are usually established
from previously published studies and must be taken into account whether
or not they are statistically significant in the sample. However, it is often
difficult to determine whether effect-modification is present, especially if
the sample size is quite small. For these reasons, careful study design and
careful analysis of the data by researchers who have insight into the
mechanisms of the development of the outcome are essential components
of good research.
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Section 3—Validity

The objectives of this section are to understand how to:
• improve the accuracy of a measurement instrument;
• design studies to measure validity; and
• decide whether the results from a study are reliable and

generalisable.

Validity 105
External validity 105
Internal validity 106
Face validity 108
Content validity 108
Criterion validity 110
Construct validity 111
Measuring validity 112
Relation between validity and repeatability 113

Validity

Validity is an estimate of the accuracy of an instrument or of the study
results. There are two distinct types of validity, that is internal validity
which is the extent to which the study methods are reliable, and external
validity which is the extent to which the study results can be applied to a
wider population.

External validity

If the results of a clinical or population study can be applied to a wider
population, then a study has external validity, that is good generalisability.
The external validity of a study is a concept that is described rather than
an association that is measured using statistical methods.

In clinical trials, the external validity must be strictly defined and can
be maintained by adhering to the inclusion and exclusion criteria when
enrolling the subjects. Violation of these criteria can make it difficult to
identify the population group to whom the results apply.
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Clinical studies have good external validity if the subjects are recruited
from hospital-based patients but the results can be applied to the general
population in the region of the hospital. In population research, a study
has good external validity if the subjects are selected using random sampling
methods and if a high response rate is obtained so that the results are
applicable to the entire population from which the study sample was
recruited, and to other similar populations.

Internal validity

A study has internal validity if its measurements and methods are accurate
and repeatable, that is if the measurements are a good estimate of what they
are expected to measure and if the within-subject and between-observer
errors are small. If a study has good internal validity, any differences in
measurements between the study groups can be attributed solely to the
hypothesised effect under investigation. The types of internal validity that
can be measured are shown in Table 3.10.

Table 3.10 Internal validity

Type Subsets Meaning

Face validity Measurement validity
Internal consistency

Extent to which a method
measures what it is intended to
measure

Content validity Extent to which questionnaire
items cover the research area
of interest

Criterion validity Predictive utility
Concurrent validity
Diagnostic utility

Agreement with a ‘gold
standard’

Construct
validity

Criterion-related
validity
Convergent validity
Discriminant validity

Agreement with other tests

An important concept of validity is that it is an estimate of the accuracy
of a test in measuring what we want it to measure. Internal validity of an
instrument is largely situation specific; that is, it only applies to similar
subjects studied in a similar setting.22 In general, the concept of internal
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validity is not as essential for objective physical measurements, such as
scales to measure weight or spirometers to measure lung function. However,
information of internal validity is essential in situations where a measure-
ment is being used as a practical surrogate for another more precise instru-
ment, or is being used to predict a disease or an outcome at some time
in the future. For example, it may be important to know the validity of
measurements of blood pressure as indicators of the presence of current
cardiovascular disease, or predictors of the future development of cardio-
vascular disease.

Information about internal validity is particularly important when
subjective measurements, that is measurements that depend on personal
responses to questions, such as those of previous symptom history, quality
of life, perception of pain or psychosocial factors, are being used. Responses
to these questions may be biased by many factors including lifetime experi-
ence and recognition or understanding of the terms being used. Obviously,
instruments that improve internal validity by reducing measurement bias
are more valuable as both research and clinical tools.

If a new questionnaire or instrument is being devised then its internal
validity has to be established so that confidence can be placed on the
information that is collected. Internal validity also needs to be established
if an instrument is used in a research setting or in a group of subjects in
which it has not previously been validated. The development of scientific
and research instruments often requires extensive and ongoing collection of
data and can be quite time consuming, but the process often leads to new
and valuable types of information.

Glossary

Term Meaning

Items Individual questions in a questionnaire

Constructs Underlying factors that cannot be measured
directly, e.g. anxiety or depression, which are
measured indirectly by the expression of several
symptoms or behaviours

Domain A group of several questions that together
estimate a single subject characteristic, or
construct

Instrument Questionnaire or piece of equipment used to
collect outcome or exposure measurements

Generalisability Extent to which the study results can be applied in
a wider community setting
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Face validity

Face validity, which is sometimes called measurement validity, is the extent
to which a method measures what it is intended to measure. For subjective
instruments such as questionnaires, validity is usually assessed by the judg-
ment of an expert panel rather than by the use of formal statistical
methods. Good face validity is essential because it is a measure of the
expert perception of the acceptance, appropriateness and precision of an
instrument or questionnaire. This type of validity is therefore an estimate
of the extent to which an instrument or questionnaire fulfils its purpose in
collecting accurate information about the characteristics, diseases or expo-
sures of a subject. As such, face validity is an assessment of the degree of
confidence that can be placed on inferences from studies that have used
the instrument in question.

When designing a questionnaire, relevant questions increase face valid-
ity because they increase acceptability whereas questions that are not
answered because they appear irrelevant decrease face validity. The face
validity of a questionnaire also decreases if replies to some questions are
easily falsified by subjects who want to appear better or worse than they
actually are.

Face validity can be improved by making clear decisions about the
nature and the purpose of the instrument, and by an expert panel reaching
a consensus opinion about both the content and wording of the questions.
It is important that questions make sense intuitively to both the researchers
and to the subjects, and that they provide a reasonable approach in the
face of current knowledge.

Content validity

Content validity is the extent to which the items in a questionnaire
adequately cover the domain under investigation. This term is also used to
describe the extent to which a measurement quantifies what we want it
to measure. As with face validity, this is also a concept that is judged
by experts rather than by being judged by using formal statistical analyses.
The methods to increase content validity are shown in Table 3.11.

Within any questionnaire, each question will usually have a different
content validity. For example, questionnaire responses by parents about
whether their child was hospitalised for a respiratory infection in early life
will have better content validity than responses to questions about the
occurrence of respiratory infections in later childhood that did not require
hospitalisation. Hospitalisation in early childhood is a more traumatic event
that has a greater impact on the family. Thus, this question will be sub-
ject to less recall or misclassification bias than that of less serious infections
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Table 3.11 Methods to increase content validity

• the presence and the severity of the disease are both assessed
• all characteristics relevant to the disease of interest are covered
• the questionnaire is comprehensive in that no important areas are

missed
• the questions measure the entire range of circumstances of an

exposure
• all known confounders are measured

that can be treated by a general practitioner and may have been labelled as
one of many different respiratory conditions.

When developing a questionnaire that has many items, it can be diffi-
cult to decide which items to maintain or to eliminate. In doing this, it is
often useful to perform a factor analysis to determine which questions give
replies that cluster together to measure symptoms of the same illness or
exposure, and which belong to an independent domain. This type of analysis
provides a better understanding of the instrument and of replies to items
that can either be omitted from the questionnaire, or that can be grouped
together in the analyses. If a score is being developed, this process is also
helpful for defining the weights that should be given to the items that
contribute to the score.

In addition, an analysis of internal consistency (such as the statistical
test Cronbach’s alpha) can help to determine the extent to which replies to
different questions address the same dimension because they elicit closely
related replies. Eliminating items that do not correlate with each other
increases internal consistency. However, this approach will lead to a
questionnaire that only covers a limited range of domains and therefore has
a restricted value. In general, it is usually better to sacrifice internal
consistency for content validity, that is to maintain a broad scope by
including questions that are both comprehensive in the information they
obtain and are easily understood.

The content validity of objective measuring instruments also needs to
be considered. For example, a single peak flow measurement has good
content validity for measuring airflow limitation at a specific point in time
when it can be compared to baseline levels that have been regularly
monitored at some point in the past.23 However, a single peak flow
measurement taken alone has poor content validity for assessing asthma
severity. In isolation, this measurement does not give any indication of the
extent of day-to-day peak flow variability, airway narrowing or airway
inflammation, or other factors that also contribute to the severity of the
disease.
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Criterion validity

Criterion validity is the extent to which a test agrees with a gold standard.
It is essential that criterion validity is assessed when a less expensive, less
time consuming, less invasive or more convenient test is being developed.
If the new instrument or questionnaire provides a more accurate estimate
of disease or of risk, or is more repeatable, more practical or more cost
effective to administer than the current ‘best’ method, then it may replace
this method. If the measurements from each instrument have a high level
of agreement, they can be used interchangeably.

The study design for measuring criterion validity is shown in Table 3.12.
In such studies, it is essential that the subjects are selected to give the
entire range of measurements that can be encountered and that the test
under consideration and the gold standard are measured independently
and in consistent circumstances. The statistical methods that are used to
describe criterion validity, which are called methods of agreement, are
described in Chapter 7.

Table 3.12 Study design for measuring criterion and construct validity

• the conditions in which the two assessments are made are identical
• the order of the tests is randomised
• both the subject and the observer are blinded to the results of the first

test
• a new treatment or clinical intervention is not introduced in the period

between the two assessments
• the time between assessments is short enough so that the severity of

the condition being measured has not changed

Predictive utility is a term that is sometimes used to describe the ability of a
questionnaire to predict the gold standard test result at some time in the
future. Predictive utility is assessed by administering a questionnaire and
then waiting for an expected outcome to develop. For example, it may be
important to measure the utility of questions of the severity of back pain
in predicting future chronic back problems. In this situation, questions of
pain history may be administered to a cohort of patients attending
physiotherapy and then validated against whether the pain resolves or is
ongoing at a later point in time. The predictive utility of a diagnostic tool
can also be validated against later objective tests, for example against
biochemical tests or X-ray results.
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Construct validity

Construct validity is the extent to which a test agrees with another test in
a way that is expected, or the extent to which a questionnaire predicts a
disease that is classified using an objective measurement or diagnostic test,
and is measured in situations when a gold standard is not available. In
different disciplines, construct validity may be called diagnostic utility, criterion-
related or convergent validity, or concurrent validity.

Example 3.4 Construct validity
Haftel et al. Hanging leg weight—a rapid technique for estimating total
body weight in pediatric resuscitation24

Characteristic Description

Aims To validate measurements of estimating total body
weight in children who cannot be weighed by usual
weight scales

Type of study Methodological

Subjects 100 children undergoing anesthesia

Outcome
measurements

Total body weight, supine body length and hanging
leg weight

Statistics Regression models and correlation statistics

Conclusion • Hanging leg weight is a better predictor of total
body weight than is supine body length

• Hanging leg weight takes less than 30 seconds
and involves minimal intervention to head, neck or
trunk regions

Strengths • wide distribution of body weight distribution
(4.4–47.5 kg) and age range (2–180 months) in
the sample ensures generalisability

• ‘gold standard’ available so criterion validity can
be assessed

Limitations • unclear whether observers measuring hanging leg
weight were blinded to total body weight and
supine body length

• conclusions about lack of accuracy in children less
than 10 kg not valid—less than 6 children fell into
this group so validity not established for this age
range
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New instruments (or constructs) usually need to be developed when an
appropriate instrument is not available or when the available instrument
does not measure some key aspects. Thus, construct validity is usually
measured during the development of a new instrument that is thought to
be better in terms of the range it can measure or in its accuracy in pre-
dicting a disease, an exposure or a behaviour. The conditions under which
construct validity is measured are the same as for criterion validity and are
summarised in Table 3.12. An example of a study in which construct validity
was assessed is shown in Example 3.4.

Construct validity is important for learning more about diseases and for
increasing knowledge about both the theory of causation and the measure
at the same time. Poor construct validity may result from difficult wording
in a questionnaire, a restricted scale of measurement or a faulty construct.
If construct validity is poor, the new instrument may be good but the theory
about its relationship with the ‘best available’ method may be incorrect.
Alternatively, the theory may be sound but the instrument may be a poor
tool for discriminating the disease condition in question.

To reduce bias in any research study, both criterion and construct valid-
ity of the research instruments must already have been established in a
sample of subjects who are representative of the study subjects in whom
the instrument will be used.

Measuring validity

Construct and criterion validity are sometimes measured by recruiting
extreme groups, that is subjects with a clinically recognised disorder and
subjects who are well defined, healthy subjects. This may be a reasonable
approach if the instrument will only be used in a specialised clinical setting.
However, in practice, it is often useful to have an instrument that can
discriminate disease not only in clearly defined subjects but also in the
group in between who may not have the disorder or who have symptoms
that are less severe and therefore characterise the disease with less cer-
tainty. The practice of selecting well-defined groups also suggests that an
instrument that can discriminate between the groups is already available.
If this approach is used, then the estimates of sensitivity and specificity will
be over-estimated, and therefore will suggest better predictive power than
if validity was measured in a random population sample.

The statistical methods used for assessing different types of validity are
shown in Table 3.13 and are discussed in more detail in Chapter 7. No
single study can be used to measure all types of validity, and the design of
the study must be appropriate for testing the type of validity in question.
When a gold standard is not available or is impractical to measure, the
development of a better instrument is usually an ongoing process that
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involves several stages and a series of studies to establish both validity and
repeatability. This process ensures that a measurement is both stable and
precise, and therefore that it is reliable for accurately measuring what we
want it to measure.

Table 3.13 Methods for assessing validity

Type of
validity

Sub-categories
Type of

measurement
Analyses

External
validity

Categorical or
continuous

Sensitivity analyses
Subjective judgments

Internal
validity

Face and
content validity

Categorical or
continuous

Judged by experts
Factor analysis
Cronbach’s alpha

Criterion and
construct
validity

Both categorical Sensitivity
Specificity
Predictive power
Likelihood ratio
Logistic regression

Continuous to predict
categorical

ROC curves

Both continuous and
the units the same

Measurement error
ICC
Mean-vs-differences
plot

Both continuous and
the units different

Linear or multiple
regression

Relation between validity and repeatability

Validity should not be confused with repeatability, which is an assessment
of the precision of an instrument. In any research study, both the validity
and the repeatability of the instruments used should have been established
before data collection begins.

Measurements of repeatability are based on administering the instru-
ment to the same subjects on two different occasions and then calculating
the range in which the patient’s ‘true’ measurement is likely to lie. An
important concept is that a measurement with poor repeatability cannot
have good validity but that criterion or construct validity is maximised if
repeatability is high. On the other hand, good repeatability does not guar-
antee good validity although the maximum possible validity will be higher
in instruments that have a good repeatability.
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Section 4—Questionnaires
and data forms

The objectives of this section are to understand:
• why questionnaires are used;
• how to design a questionnaire or a data collection form;
• why some questions are better than others;
• how to develop measurement scales; and
• how to improve repeatability and validity.

Developing a questionnaire 114
Mode of administration 115
Choosing the questions 116
Sensitive questions 117
Wording and layout 117
Presentation and data quality 120
Developing scales 121
Data collection forms 122
Coding 123
Pilot studies 123
Repeatability and validation 124
Internal consistency 124

Developing a questionnaire

Most research studies use questionnaires to collect information about demo-
graphic characteristics and about previous and current illness symptoms,
treatments and exposures of the subjects. A questionnaire has the advan-
tage over objective measurement tools in that it is simple and cheap to
administer and can be used to collect information about past as well as
present symptoms. However, a reliable and valid questionnaire takes a long
time and extensive resources to test and develop. It is important to remem-
ber that a questionnaire that is well designed not only has good face,
content, and construct or criterion validity but also contributes to more
efficient research and to greater generalisability of the results by minimising
missing, invalid and unusable data.
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The most important aspects to consider when developing a questionnaire
are the presentation, the mode of administration and the content. The
questionnaires that are most useful in research studies are those that have
good content validity, and that have questions that are highly repeatable
and responsive to detecting changes in subjects over time. Because
repeatability, validity and responsiveness are determined by factors such as
the types of questions and their wording and the sequence and the overall
format, it is essential to pay attention to all of these aspects before using a
questionnaire in a research study.

New questionnaires must be tested in a rigorous way before a study
begins. The questionnaire may be changed several times during the pilot
stage but, for consistency in the data, the questionnaire cannot be altered
once the study is underway. The checklist steps for developing a question-
naire are shown in Table 3.14.

Table 3.14 Checklist for developing a new questionnaire

❑ Decide on outcome, explanatory and demographic data to be
collected

❑ Search the literature for existing questionnaires
❑ Compile new and existing questions in a logical order
❑ Put the most important questions at the top
❑ Group questions into topics and order in a logical flow
❑ Decide whether to use categories or scales for replies
❑ Reach a consensus with co-workers and experts
❑ Simplify the wording and shorten as far as possible
❑ Decide on a coding schedule
❑ Conduct a pilot study
❑ Refine the questions and the formatting as often as necessary
❑ Test repeatability and establish validity

Mode of administration

Before deciding on the content of a questionnaire, it is important to decide
on the mode of administration that will be used. Questionnaires may be
self-administered, that is completed by the subject, or researcher-
administered, that is the questions are asked and the questionnaire filled
in by the researcher. In any research study, the data collection procedures
must be standardised so that the conditions or the mode of administration
remain constant throughout. This will reduce bias and increase internal
validity.
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In general, self-administered questionnaires have the advantage of being
more easily standardised and of being economical in that they can be
administered with efficiency in studies with a larger sample size. However,
the response rate to self-administered questionnaires may be low and the
use of these types of questionnaires does not allow for opportunities to
clarify responses. In large population studies, such as registers of rare dis-
eases, the physicians who are responsible for identifying the cases often
complete the questionnaires.

On the other hand, interviewer-administered questionnaires, which can be
face-to-face or over the telephone, have the advantages of being able to
collect more complex information and of being able to minimise missing
data. This type of data collection is more expensive and interviewer bias
in interpreting responses can be a problem, but the method allows for
greater flexibility.

Choosing the questions

The first step in designing a questionnaire is to conduct searches of the
literature to investigate whether an appropriate, validated questionnaire or
any other questionnaires with useful items is already available. Established
questionnaires may exist but may not be helpful if the language is in-
appropriate for the setting or if critical questions are not included.

The most reliable questionnaires are those that are easily understood,
that have a meaning that is the same to the researcher and to the respon-
dent, and that are relevant to the research topic. When administering
questionnaires in the community, even simple questions about gender,
marital status and country of birth can collect erroneous replies.25 Because
replies can be inconsistent, it is essential that more complex questions about
health outcomes and environmental exposures that are needed for testing
the study hypotheses are as simple and as unambiguous as possible.

The differences between open-ended and closed-ended questions are
shown in Table 3.15. Open-ended questions, which are difficult to code and
analyse, should only be included when the purpose of the study is to develop
new hypotheses or collect information on new topics.

If young children are being surveyed, parents need to complete the
questionnaire but this means that information can only be obtained about
visible signs and symptoms and not about feelings or less certain illnesses
such as headaches, sensations of chest tightness etc.

A questionnaire that measures all of the information required in the
study, including the outcomes, exposures, confounders and the demographic
information, is an efficient research tool. To achieve this, questions that
are often used in clinical situations or that are widely used in established
questionnaires, such as the census forms, can be included. Another method
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for collating appropriate questions is to conduct a focus group to collect
ideas about aspects of an illness or intervention that are important to the
patient. Finally, peer review from people with a range of clinical and
research experience is invaluable for refining the questionnaire.

Table 3.15 Differences between closed- and open-ended questions

Closed-ended questions and scales
• collect quantitative information
• provide fixed, often pre-coded, replies
• collect data quickly
• are easy to manage and to analyse
• validity is determined by choice of replies
• minimise observer bias
• may attract random responses
Open-ended questions
• collect qualitative information
• cannot be summarised in a quantitative way
• are often difficult and time consuming to summarise
• widen the scope of the information being collected
• elicit unprompted ideas
• are most useful when little is known about a research area
• are invaluable for developing new hypotheses

Sensitive questions

If sensitive information of ethnicity, income, family structure etc. is
required, it is often a good idea to use the same wording and structure as
the questions that are used in the national census. This saves the work of
developing and testing the questions, and also provides a good basis for
comparing the demographic characteristics of the study sample with those
of the general population.

If the inclusion of sensitive questions will reduce the response rate, it
may be a good idea to exclude the questions, especially if they are not
essential for testing the hypotheses. Another alternative is to include them
in an optional section at the end of the questionnaire.

Wording and layout

The characteristics of good research questions are shown in Table 3.16.
The most useful questions usually have very simple sentence constructions
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that are easily understood. Questions should also be framed so that respon-
dents can be expected to know the correct answer. A collection of ques-
tions with these characteristics is an invaluable research tool. An example
of the layout of a questionnaire to collect various forms of quantitative
information is shown in Table 3.22 at the end of this chapter.

Table 3.16 Characteristics of good research questions

• are relevant to the research topic
• are simple to answer and to analyse
• only ask one question per item
• cover all aspects of the illness or exposure being studied
• mean the same to the subject and to the researcher
• have good face, content and criterion or construct validity
• are highly repeatable
• are responsive to change

In general, positive wording is preferred because it prompts a more
obvious response. ‘Don’t know’ options should only be used if it is really
possible that some subjects will not know the answer. In many situations,
the inclusion of this option may invite evasion of the question and there-
by increase the number of unusable responses. This results in inefficiency
in the research project because a larger sample size will be required to answer
the study question, and generalisability may be reduced.

When devising multi-response categories for replies, remember that they
can be collapsed into combined groups later, but cannot be expanded
should more detail be required. It is also important to decide how any
missing data will be handled at the design stage of a study, for example
whether missing data will be coded as negative responses or as missing var-
iables. If missing data are coded as a negative response, then an instruction
at the top of the questionnaire that indicates that the respondent should
answer ‘No’ if the reply is uncertain can help to reduce the number of
missing, and therefore ambiguous, replies.

To simplify the questions, ensure that they are not badly worded, ambig-
uous or irrelevant and do not use ‘jargon’ terms that are not universally
understood. If subjects in a pilot study have problems understanding the
questions, ask them to rephrase the question in their own words so that a
more direct question can be formulated. Table 3.17 shows some examples
of ambiguous questions and some alternatives that could be used.
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Table 3.17 Ambiguous questions and alternatives that could be used

Ambiguous
questions

Problem Alternatives

Do you smoke
regularly?

Frequency not
specified

Do you smoke one or more
cigarettes per day?

I am rarely free of
symptoms

Meaning not clear I have symptoms most of the
time, or I never have symptoms

Do you approve of
not having regular
X-rays?

Meaning not clear Do you approve of regular
X-rays being cancelled?

Did he sleep
normally?

Meaning not clear Was he asleep for a shorter
time than usual?

What type of
margarine do you
use?

Frequency not
specific

What type of margarine do you
usually use?

How often do you
have a blood test?

Frequency not
specific

How many blood tests have
you had in the last three years?

Have you ever
had your AHR
measured?

Uses medical
jargon

Have you ever had a breathing
test to measure your response
to inhaled histamine?

Has your child
had a red or itchy
rash?

Two questions in
one sentence

Has your child had a red rash?
If yes, was this rash itchy?

Was the workshop
too easy or too
difficult?

Two questions in
one sentence

Rate your experience of the
workshop on the 7-point scale
below

Do you agree or
disagree with the
government’s
policy on health
reform?

Two questions in
one sentence

Do you agree with the
government’s policy on health
reform?

Table 3.18 shows questions used in an international surveillance of
asthma and allergy in which bold type and capitalisation was used to
reinforce meaning.

When translating a questionnaire into another language, ask a second
person who is fluent in the language to back-translate the questions to
ensure that the correct meaning has been retained.
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Table 3.18 Questions with special type to emphasise meaning26

In the last 12 months, have you had wheezing or
whistling in the chest when you HAD a cold or flu?

□1 No □2 Yes

In the last 12 months, have you had wheezing or
whistling in the chest when you DID NOT HAVE a
cold or flu?

□1 No □2 Yes

Presentation and data quality

The visual aspects of the questionnaire are vitally important. The ques-
tionnaire is more likely to be completed, and completed accurately, if it is
attractive, short and simple. Short questionnaires are likely to attract a
better response rate than longer questionnaires.27 A good questionnaire has
a large font, sufficient white space so that the questions are not too dense,
numbered questions, clear skip instructions to save time, information of
how to answer each question and boxes that are large enough to write in.

Because of their simplicity, tick boxes elicit more accurate responses
than asking subjects to circle numbers, put a cross on a line or estimate a
percentage or a frequency. These types of responses are also much simpler
to code and enter into a database. An example of a user-friendly question-
naire is shown in Table 3.24 at the end of this chapter.

Questions that do not always require a reply should be avoided because
they make it impossible to distinguish negative responses from missing data.
For example, in Table 3.19, boxes that are not ticked may have been
skipped inadvertently or may be negative responses. In addition, there is
inconsistent use of the terms ‘usually’, ‘seldom’ and ‘on average’ to elicit
information of the frequency of behaviours for which information is
required. A better approach would be to have a yes/no option for each
question, or to omit the adverbs and use a scale ranging from always to
never for each question as shown in Table 3.20.

Table 3.19 Example of inconsistent questions

Tick all of the following that apply to your child:

Usually waves goodbye □

Seldom upset when parent leaves □

Shows happiness when parent returns □

Shy with strangers □

Is affectionate, on average □
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To improve accuracy, it is a good idea to avoid using time responses
such as regular, often or occasional, which mean different things to differ-
ent people, and instead ask whether the event occurred in a variety of
frequencies such as:

❑ �1/yr
❑ 1–6 times/yr
❑ 7–12 times/yr
❑ �12 times/yr

Other tools, such as the use of filter questions or skips to direct the flow
to the next appropriate question, can also increase acceptability and improve
data quality.

Remember to always include a thank you at the end of the questionnaire.

Developing scales

It is sometimes useful to collect ordered responses in the form of visual
analogue scales (VAS). A commonly used example of a 5-point scale is
shown in Table 3.20. Because data collected using these types of scales
usually have to be analysed using non-parametric statistical analyses, the
use of this type of scale as an outcome measurement often requires a larger
sample size than when a normally-distributed, continuous measurement is
used. However, scales provide greater statistical power than outcomes based
on a smaller number of categories, such as questions which only have ‘yes’
or ‘no’ as alternative responses.

Table 3.20 Five-point scale for coded responses to a question

Constant □1 Frequent □2 Occasional □3 Rare □4 Never □5

In some cases, the usefulness of scales can be improved by recognising
that many people are reluctant to use the ends of the scale. For example,
it may be better to expand the scale above from five points to seven points
by adding points for ‘almost never’ and ‘almost always’ before the endpoints
‘never’ and ‘always’. Expanded scales can also increase the responsiveness
of questions. If the scale is too short it will not be responsive to measuring
subtle within-subject changes in an illness condition or to distinguishing
between people with different severity of responses. A way around this is
to expand the 5-point scale shown in Table 3.20 to a 9-point Borg score
as shown in Table 3.21 with inclusion of mid-points between each of the
categories. This increases the responsiveness of the scale and improves its
ability to measure smaller changes in symptom severity.

If the pilot study shows that responses are skewed towards one end of
the scale or clustered in the centre, then the scale will need to be re-
aligned to create a more even range as shown in Table 3.22.
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Table 3.21   Example of a Borg score for coding responses to a question
about the severity of a child’s symptoms28

Please indicate on the line below your daughter’s level of physical activity from constant
(always active) to never (not active at all). Circle the most appropriate number.

8 7 6 5 4 3 2 1 0
Constant Frequent Occasional Rare Never

Table 3.22   Borg score for collecting information of
sensations of breathlessness and modified to create a
more even range29

Please indicate the point on the line that best describes the severity of any sensation of
breathlessness that you are experiencing at this moment:

Not at
all

Just
notice-

able

Very
slight

Slight Moderate Some-
what

severe

Severe Very
severe

Maximal

0 0.5 1 2 3 4 5 6 7 8 9 10

Data collection forms

As with questionnaires, data collection forms are essential for recording
study measurements in a standardised and error-free way. For this, the forms
need to be practical, clear and easy to use. These attributes are maximised
if the form has ample space and non-ambiguous self-coding boxes to ensure
accurate data recording. An example of a self-coding data collection form
is shown in Table 3.25 at the end of this chapter. Although it is sometimes
feasible to avoid the use of coding forms and to enter the data directly into
a computer, this is only recommended if security of the data file is abso-
lutely guaranteed. For most research situations, it is much safer to have a
hard copy of the results that can be used for documentation, for back-up
in case of file loss or computer failure, and for making checks on the quality
of data entry.

For maintaining quality control and for checking errors, the identity
of the observer should also be recorded on the data collection forms. When
information from the data collection forms is merged with questionnaire
information or other electronic information into a master database, at least
two matching fields must be used in order to avoid matching errors when
identification numbers are occasionally transposed, missing or inaccurate.
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Coding

Questionnaires and data collection forms must be designed to minimise any
measurement error and to make the data easy to collect, process and
analyse. For this, it is important to design forms that minimise the potential
for data recording errors, which increase bias, and that minimise the
number of missing data items, which reduce statistical power, especially in
longitudinal studies.

It is sensible to check the questionnaires for completeness of all replies
at the time of collection and to follow up missing items as soon as possible
in order to increase the efficiency of the study and the generalisability of
the results. By ensuring that all questions are self-coding, the time-
consuming task of manually coding answers can be largely avoided. These
procedures will reduce the time and costs of data coding, data entry and
data checking/correcting procedures, and will maximise the statistical power
needed to test the study hypotheses.

Pilot studies

Once a draft of a questionnaire has been peer-reviewed to ensure that it
has good face validity, it must be pre-tested on a small group of volunteers
who are as similar as possible to the target population in whom the ques-
tionnaire will be used. The steps that are used in this type of pilot study
are shown in Table 3.23. Before a questionnaire is finalised, a number of
small pilot studies or an ongoing pilot study may be required so that all
problems are identified and the questionnaire can be amended.30 Data col-
lection forms should also be subjected to a pilot study to ensure that they
are complete and function well in practice.

Table 3.23 Pilot study procedures to improve internal validity of a
questionnaire

• administer the questionnaire to pilot subjects in exactly the same way as it
will be administered in the main study

• ask the subjects for feedback to identify ambiguities and difficult questions
• record the time taken to complete the questionnaire and decide whether it

is reasonable
• discard all unnecessary, difficult or ambiguous questions
• assess whether each question gives an adequate range of responses
• establish that replies can be interpreted in terms of the information that is

required
• check that all questions are answered
• re-word or re-scale any questions that are not answered as expected
• shorten, revise and, if possible, pilot again
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Repeatability and validation

To determine the accuracy of the information collected by the question-
naire, all items will need to be tested for repeatability and to be validated.
The methods for measuring repeatability, which involve administering the
questionnaire to the same subjects on two occasions, are described in
Chapter 7. The methods for establishing various aspects of validity are
varied and are described earlier in this chapter.

Internal consistency

The internal consistency of a questionnaire, or a subsection of a question-
naire, is a measure of the extent to which the items provide consistent
information. In some situations, factor analysis can be used to determine
which questions are useful, which questions are measuring the same or dif-
ferent aspects of health, and which questions are redundant. When devel-
oping a score, the weights that need to be applied to each item can be
established using factor analysis or logistic regression to ensure that each
item contributes appropriately to the total score.

Cronbach’s alpha can be used to assess the degree of correlation
between items. For example, if a group of twelve questions is used to
measure different aspects of stress, then the responses should be highly cor-
related with one another. As such, Cronbach’s alpha provides information
that is complementary to that gained by factor analysis and is usually most
informative in the development of questionnaires in which a series of scales
are used to rate conditions. Unlike repeatability, but in common with
factor analysis, Cronbach’s alpha can be calculated from a single adminis-
tration of the questionnaire.

As with all correlation coefficients, Cronbach’s alpha has a value
between zero and one. If questions are omitted and Cronbach’s alpha
increases, then the set of questions becomes more reliable for measuring
the health trait of interest. However, a Cronbach’s alpha value that is too
high suggests that some items are giving identical information to other
items and could be omitted. Making judgments about including or exclud-
ing items by assessing Cronbach’s alpha can be difficult because this value
increases with an increasing number of items. To improve validity, it is
important to achieve a balanced judgment between clinical experience, the
interpretation of the data that each question will collect, the repeatability
statistics and the exact purpose of the questionnaire.
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Table 3.24   Self-coding questions used in a process evaluation of
successful grant applications

1. Study design? (tick one) RCT 1

Non-randomised clinical trial 2

Cohort study 3

Case control study 4

Cross-sectional study 5

Ecological study 6

Qualitative study 7

Other (please specify) ______________ 8

2. Status of project? Not yet begun 1

If not begun, please go to Question 5 Abandoned or suspended 2

In progress 3

Completed 4

3. Number of journal articles from this project? Published

Submitted

In progress

4. Did this study enable you to obtain external funding from:

Industry 1 No 2 Yes

An external funding body 1 No 2 Yes

Commonwealth or State government 1 No 2 Yes

Donated funds 1 No 2 Yes

Other (please state) ________________________ 1 No 2 Yes

 Amount received Very satisfied 1 Satisfied 2 Dissatisfied 3

Guidelines Very satisfied 1 Satisfied 2 Dissatisfied 3

iii. Feedback from committee Very satisfied 1 Satisfied 2 Dissatisfied 3

5. Please rate your experience with each of the following:

ii.

i.

Thank you for your assistance
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Table 3.25   Data recording sheet

ATOPY RECORDING SHEET

Project number

Subject number  
Date (ddmmyy)

CHILD’S NAME Surname _____________________ First name _____________________

Height . cms

Weight . kg

Age years

Gender Male  Female

SKIN TESTS
Tester ID    Reader ID

Antigen Diameters of Mean Diameters of Mean
skin wheal (mm) skin wheal (mm)
(mm x mm) (mm x mm)

Control  x  x 

Histamine  x  x 

Rye grass pollen  x  x 

House-dust mite  x  x 

Alternaria mould  x  x 

Cat  x  x 

OTHER TESTS UNDERTAKEN

Urinary cotinine 1 No 2 Yes

Repeat skin tests 1 No 2 Yes

Repeat lung function 1 No 2 Yes

Parental skin tests 1 No 2 Yes

10 minutes 15 minutes
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Section 1—Sample size
calculations

The objectives of this section are to understand:
• the concept of statistical power and clinical importance;
• how to estimate an effect size;
• how to calculate the minimum sample size required for different

outcome measurements;
• how to increase statistical power if the number of cases available

is limited;
• valid uses of internal pilot studies; and
• how to adjust sample size when multivariate analyses are being used.

Clinical importance and statistical significance 128
Power and probability 130
Calculating sample size 131
Subgroup analyses 132
Categorical outcome variables 133

Confidence intervals around prevalence estimates 135
Rare events 137
Effect of compliance on sample size 138

Continuous outcome variables 139
Non-parametric outcome measurements 140

Balancing the number of cases and controls 141
Odds ratio and relative risk 141
Correlation coefficients 142
Repeatability and agreement 143
Sensitivity and specificity 144
Analysis of variance 144
Multivariate analyses 145
Survival analyses 146
Describing sample size calculations 146

Clinical importance and statistical significance

Sample size is one of the most critical issues when designing a research
study because the size of the sample affects all aspects of conducting the
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study and interpreting the results. A research study needs to be large
enough to ensure the generalisability and the accuracy of the results, but
small enough so that the study question can be answered within the
research resources that are available.

The issues to be considered when calculating sample size are shown in
Table 4.1. Calculating sample size is a balancing act in which many factors
need to be taken into account. These include a difference in the outcome
measurements between the study groups that will be considered clinically
important, the variability around the measurements that is expected, the
resources available and the precision that is required around the result.
These factors must be balanced with consideration of the ethics of studying
too many or too few subjects.

Table 4.1 Issues in sample size calculations

• Clinical importance—effect size
• Variability—spread of the measurements
• Resource availability—efficiency
• Subject availability—feasibility of recruitment
• Statistical power—precision
• Ethics—balancing sample size against burden to subjects

Sample size is a judgmental issue because a clinically important differ-
ence between the study groups may not be statistically significant if the
sample size is small, but a small difference between study groups that is
clinically meaningless will be statistically significant if the sample size is
large enough. Thus, an oversized study is one that has the power to show
that a small difference without clinical importance is statistically signifi-
cant. This type of study will waste research resources and may be unethical
in its unnecessary enrolment of large numbers of subjects to undergo
testing. Conversely, an undersized study is one that does not have the power
to show that a clinically important difference between groups is statistically
significant. This may also be unethical if subjects are studied unnecessarily
because the study hypothesis cannot be tested. The essential differences
between oversized and undersized studies are shown in Table 4.2.

There are numerous examples of results being reported from small
studies that are later overturned by trials with a larger sample size.1
Although undersized clinical trials are reported in the literature, it is clear
that many have inadequate power to detect even moderate treatment
effects and have a significant chance of reporting false negative results.2
Although there are some benefits from conducting a small clinical trial, it
must be recognised at all stages of the design and conduct of the trial that
no questions about efficacy can be answered, and this should be made clear
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to the subjects who are being enrolled in the study. In most situations, it
is better to abandon a study rather than waste resources on a study with a
clearly inadequate sample size.

Before beginning any sample size calculations, a decision first needs to
be made about the power and significance that is required for the study.

Table 4.2 Problems that occur if the sample size is too small or large

If the sample is too small (undersized)
• type I or type II errors may occur, with a type II error being more likely
• the power will be inadequate to show that a clinically important

difference is significant
• the estimate of effect will be imprecise
• a smaller difference between groups than originally anticipated will fail

to reach statistical significance
• the study may be unethical because the aims cannot be fulfilled
If the sample is too large (oversized)
• a small difference that is not clinically important will be statistically

significant (type I error)
• research resources will be wasted
• inaccuracies may result because data quality is difficult to maintain
• a high response rate may be difficult to achieve
• it may be unethical to study more subjects than are needed

Power and probability

The power and probability of a study are essential considerations to ensure
that the results are not prone to type I and type II errors. The character-
istics of these two types of errors are shown in Table 4.3.

The power of a study is the chance of finding a statistically significant
difference when in fact there is one, or of rejecting the null hypothesis. A
type II error occurs when the null hypothesis is accepted in error, or, put
another way, when a false negative result is found. Thus, power is expressed
as 1–b, where b is the chance of a type II error occurring. When the
b level is 0.1 or 10 per cent, the power of the study is then 0.9 or 90 per
cent. In practice, the b level is usually set at 0.2, or 20 per cent, and the
power is then 1–b or 0.8 or 80 per cent. A type II error, which occurs
when there is a clinically important difference between two groups that
does not reach statistical significance, usually arises because the sample size
is too small.

The probability, or the ‘a’ level, is the level at which a difference is
regarded as statistically significant. As the probability level decreases, the
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statistical significance of a result increases. In describing the probability
level, 5 per cent and 0.05 mean the same thing and sometimes are con-
fusingly described as 95 per cent or 0.95. In most studies, the a rate is set
at 0.05, or 5 per cent. An a error, or type I error, occurs when a clinical
difference between groups does not actually exist but a statistical associa-
tion is found or, put another way, when the null hypothesis is erroneously
rejected. Type I errors usually arise when there is sampling bias or, less
commonly, when the sample size is very large or very small.

Table 4.3 Type I and type II errors

Type I errors
• a statistically significant difference is found although the magnitude of

the difference is not clinically important
• the finding of a difference between groups when one does not exist
• the erroneous rejection of the null hypothesis
Type II errors
• a clinically important difference between two groups that does not

reach statistical significance
• the failure to find a difference between two groups when one exists
• the erroneous acceptance of the null hypothesis

The consequences of type I and type II errors are very different. If a
study is designed to test whether a new treatment is more effective than an
existing treatment, then the null hypothesis would be that there is no
difference between the two treatments. If the study design results in a type I
error, then the null hypothesis will be erroneously rejected and the new
treatment will be judged to be better than the existing treatment. In
situations where the new treatment is more expensive or has more severe
side effects, this will impose an unnecessary burden on patients. On the
other hand, if the study design results in a type II error, then the new
treatment may be judged as being no better than the existing treatment
even though it has some benefits. In this situation, many patients may be
denied the new treatment because it will be judged as a more expensive
option with no apparent advantages.

Calculating sample size

An adequate sample size ensures a high chance of finding that a clinically
important difference between two groups is statistically significant, and
thus minimises the chance of finding type I or type II errors. However, the
final choice of sample size is always a delicate balance between the expected
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variance in the measurements, the availability of prospective subjects and
the expected rates of non-compliance or drop-outs, and the feasibility of
collecting the data. In essence, sample size calculations are a rough estimate
of the minimum number of subjects needed in a study. The limitations of
a sample size estimated before the study commences are shown in Table 4.4.

Table 4.4 Sample size calculations do not make allowance for the
following situations:

• the variability in the measurements being larger than expected
• subjects who drop out
• subjects who fail to attend or do not comply with the intervention
• having to screen subjects who do not fulfil the eligibility criteria
• subjects with missing data
• providing the power to conduct subgroup analyses

If there is more than one outcome variable, the sample size is usually
calculated for the primary outcome on which the main hypothesis is based,
but this rarely provides sufficient power to test the secondary hypotheses,
to conduct multivariate analyses or to explore interactions. In intervention
trials, a larger sample size will be required for analyses based on intention-
to-treat principles than for analyses based on compliance with the inter-
vention. In most intervention studies, it is accepted that compliance rates
of over 80 per cent are difficult to achieve. However, if 25 per cent of
subjects are non-compliant, then the sample size will need to be much
larger and may need to be doubled in order to maintain the statistical
power to demonstrate a significant effect.

In calculating sample size, the benefits of conducting a study that is too
large need to be balanced against the problems that occur if the study is
too small. The problems that can occur if the sample size is too large or
too small were shown in Table 4.2. One of the main disadvantages of small
studies is that the estimates of effect are imprecise, that is they have a large
standard error and therefore large confidence intervals around the result.
This means that the outcome, such as a mean value or an odds ratio, will
not be precise enough for meaningful interpretation. As such, the result
may be ambiguous, for example a confidence interval of 0.6–1.6 around an
odds ratio does not establish whether an intervention has a protective or
positive effect.

Subgroup analyses

When analysing the results of a research study, it is common to examine
the main study hypothesis and then go on to examine whether the effects
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are larger or smaller in various subgroups, such as males and females or
younger and older patients. However, sample size calculations only provide
sufficient statistical power to test the main hypotheses and need to be mul-
tiplied by the number of levels in the subgroups in order to provide this
additional power. For example, to test for associations in males and females
separately the sample size would have to be doubled if there is fairly even
recruitment of male and female subjects, or may need to be increased even
further if one gender is more likely to be recruited.

Although computer packages are available for calculating sample sizes
for various applications, the simplest method is to consult a table. Because
sample size calculations are only ever a rough estimate of the minimum
sample size, computer programs sometimes confer a false impression of
accuracy. Tables are also useful for planning meetings when computer
software may not be available.

Categorical outcome variables

The number of subjects needed for comparing the prevalence of an outcome
in two study groups is shown in Table 4.5. To use the table, the prevalence
of the outcome in the study and control groups has to be estimated and
the size of the difference in prevalence between groups that would be
regarded as clinically important or of public health significance has to be
nominated. The larger the difference between the rates, the smaller the
sample size required in each group.

Table 4.5 Approximate sample size needed in each group to detect a
significant difference in prevalence rates between two
populations for a power of 80 per cent and a significance of
5 per cent

Smaller
rate

Difference in rates (p1–p2)

5% 10% 15% 20% 30% 40% 50%

5% 480 160 90 60 35 25 20
10% 730 220 115 80 40 25 20
20% 1140 320 150 100 45 30 20
30% 1420 380 180 110 50 30 20
40% 1570 410 190 110 50 30 20
50% 1610 410 190 110 50 30 –

This method of estimating sample size applies to analyses that are
conducted using chi-square tests or McNemar’s test for paired proportions.



134

Health science research

However, they do not apply to conditions with a prevalence or incidence
of less than 5 per cent for which more complex methods based on a Poisson
distribution are needed. When using Table 4.5, the sample size for prevalence
rates higher than 50 per cent can be estimated by using 100 per cent minus
the prevalence rate on each axis of the table, for example for 80 per cent
use 100 per cent–80 per cent, or 20 per cent. An example of a sample size
calculation using Table 4.5, is shown in Example 4.1.

Figure 4.1

Group A

Group B

Group C

Group D

0 10 20 30 40 50 60 70 80

Per cent of group

STUDY 1

STUDY 2

Prevalence rates of a primary outcome in two groups in two different studies (1 and 2).

Example 4.1 Sample size calculations for categorical data

For example, if the sample size that is required to show that two
prevalence rates of 40% and 50% as shown in Study 1 in Figure 4.1
needs to be estimated, then
Difference in rates � 50%–40% � 10%
Smaller rate � 40%
Minimum sample size required � 410 in each group
If the sample size that is required to show that two prevalence rates of
30% and 70% as shown in Study 2 in Figure 4.1 needs to be estimated, then
Difference in rates � 70%–30% � 40%
Smaller rate � 30%
Minimum sample size required � 30 in each group
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Examples for describing sample size calculations in studies with cate-
gorical outcome variables are shown in Table 4.13 later in this chapter.

Confidence intervals around prevalence estimates

The larger a sample size, the smaller that the confidence interval around
the estimate of prevalence will be. The relationship between sample size
and 95 per cent confidence intervals is shown in Figure 4.2. For the same
estimate of prevalence, the confidence interval is very wide for a small
sample size of ten subjects but quite small for a sample size of 1000 subjects.

Figure 4.2 Influence of sample size on confidence intervals

N = 10

N = 100

N = 1000

0 10 20 30 40 50 60 70 80 90 100

Per cent of population

Prevalence rate and confidence intervals showing how the width of the confidence interval, 

that is the precision of the estimate, decreases with increasing sample size.

In Figure 4.3, it can be seen that if 32 subjects are enrolled in each
group, the difference between an outcome of 25 per cent in one group
and 50 per cent in the other is not statistically significant as shown by the
confidence intervals that overlap. However, if the number of subjects in
each group is doubled to 64, then the confidence intervals are reduced to
no overlap, which is consistent with a P value of less than 0.01.

One method for estimating sample size in a study designed to measure
prevalence in a single group is to nominate the level of precision that is
required around the prevalence estimate and then to calculate the sample
size needed to attain this. Table 4.6 shows the sample size required to
calculate prevalence for each specified width of the 95 per cent confidence
interval. Again, the row for a prevalence rate of 5 per cent also applies to
a prevalence rate of 100 per cent–5 per cent, or 95 per cent.
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Table 4.6 Approximate sample size required to calculate a prevalence
rate with the precision shown

Width of 95% confidence interval (precision)

Prevalence 1% 1.5% 2% 2.5% 3% 4% 5% 10% 15%

5% 2000 800 460 290 200 110 70 35 –
10% 3400 1550 870 550 380 220 140 40 20
15% 5000 2200 1200 780 550 300 200 50 20
20% 6200 2700 1500 1000 700 400 250 60 25
25% 8000 3200 1800 1150 800 450 290 70 32

Thus, if the prevalence of the outcome in a study is estimated to be
15 per cent, a sample size of 300 will be required to produce a confidence
interval of 4 per cent, 550 for a confidence interval of 3 per cent and 1200
for a confidence interval of 2 per cent. An example of how confidence
intervals and sample size impact on the interpretation of differences in
prevalence rates is shown in Figure 4.3 and Example 4.2.

Figure 4.3 Interpretation of confidence intervals

0 10 20 30 40 50 60 70

N = 32

N = 32

N = 64

N = 64

Per cent of sample

P>0.05, NS

P<0.01

Similar prevalence rates in two studies with different sample sizes showing how the 
confidence intervals no longer overlap and the difference between the groups becomes 
significant when the sample size is increased.
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Figure 4.4

0 10 20 30 40 50 60

Allergic
symptoms

Allergy

Asthma

Intervention group, n = 58
Control group, n = 62

Per cent of group

Prevalence of three outcomes variables in a control and intervention group in a randomised 
controlled trial to measure the effectiveness of an intervention in preventing the onset of 
asthma in early childhood.3

Example 4.2 Possible type II error

Figure 4.4 shows the results from a study in which various symptoms of
asthma and allergy were measured in an intervention study.3 In this
study, there were 58 subjects in the intervention group (shaded bars)
and 62 subjects in the control group (white bars). The study had
sufficient power to show that the prevalence of allergic symptoms and
reactions to specific allergens were different between the study groups
but was under-powered to show that a difference of 11% in the
prevalence of asthma between groups was statistically significant. From
Table 4.5, a sample size of 320 subjects in each group would have been
needed to show that a 10% difference in the prevalence of asthma
between groups was significantly different.

Rare events

It can be difficult to estimate a required sample size when the main
outcome of interest is rare. This can occur in studies such as surgical trials
when a new procedure is being investigated and the aim of the study is to
confirm that serious adverse outcomes do not occur. It is important to
remember that a study in which an event does not occur does not nec-
essarily mean that the intervention or procedure has no risk. In this type
of study, the upper limit of risk can be computed as 3 divided by the sample
size (3/n).4
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For estimating sample size for studies designed to measure rare events,
an upper limit of risk needs to be nominated, and then by substitution
the sample size can be calculated. If the upper limit of risk is one in ten
patients, that is 10 per cent or a proportion of 0.1, then the sample size
required to confirm that the risk of an event is less than 10 per cent is
3/0.1, or 30 subjects. If the upper limit of risk is much lower at 1 per cent,
or 0.01, then a sample size of 3/0.01, or 300 subjects, is required to confirm
that the intervention has an acceptably low rate of adverse events.

Effect of compliance on sample size

In clinical trials, the power of the study to show a difference between the
study groups is reduced if some of the subjects do not comply with the
intervention. If the proportion of non-compliers in the active intervention
arm, or the proportion of non-compliers plus subjects who change to the
standard treatment arm, is NC then the sample size has to be increased by a
factor size of 1 divided by (1–NC)2. The inflation factors for various estimates
of non-compliance are shown in Table 4.7. If the rate of non-compliance
is as high as 30 per cent, then the sample size of the intervention group
may need to be increased by 100 per cent, that is doubled. For this reason,
methods that can be used to increase and maintain compliance in the
active intervention arm are usually cost-effective because they maintain the
statistical power of a study to demonstrate a clinically important effect.

Table 4.7 Size of inflation factor to increase sample size if a proportion
of subjects in the active intervention arm are non-compliant
or change to the standard treatment arm

Rate non-compliance in active
intervention group (%)

Approximate inflation factor for
sample size calculation (%)

10 20
15 40
20 56
30 100

Another method of maintaining power is to have a run-in period in
clinical trials. During the run-in period, baseline measurements can be
monitored and compliance with the medication regime and with complet-
ing the outcome forms can be assessed. Eliminating non-compliant subjects
during the run-in phase and prior to randomisation is an effective method
of maintaining the power of the study and may be appropriate in studies
that are designed to measure efficacy. However this approach limits the
generalisability of the study and is not appropriate in studies of
effectiveness.
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Continuous outcome variables

The sample size that is needed for analyses of continuous outcome variables
is shown in Table 4.8.5 This table can be used for estimating sample size
for analyses that require an unpaired two-tailed t-test to compare the mean
values in two independent groups, or that require a paired t-test to assess
the significance of the mean change from baseline in a single sample.

To use Table 4.8, a decision needs to be made about the study outcome
that is of greatest importance to the study aims, that is the primary outcome
variable. The next step is to estimate the expected mean and standard
deviation of this measurement in the reference or control group. From this,
a nominated effect size, that is the size of the minimum difference between
cases and controls, or between study groups, that would be regarded as
clinically important can be estimated. The effect size, which is expressed in
units of the standard deviation, is sometimes called the minimal clinically
important difference.

Figure 4.5

–4 –3 –2 –1 0 1 2 3 4 5 6

Standard deviations

Normal distribution of a continuously distributed measurement in two groups of subjects 
showing that the means are separated by a distance, or effect size, of one standard 
deviation.

Example 4.3 Calculation of effect size

Figure 4.5 shows the distribution of a continuous outcome variable in two
groups who differ by an effect size of one standard deviation, shown by
the distance between the two dotted vertical lines. For this effect size,
18–24 subjects per group would be required to demonstrate a significant
difference.
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Table 4.8 Sample size for unpaired and paired means (a rate � 0.05)
The sample size shown is the number of subjects per group for unpaired
data and the total number of subjects for paired data

Effect sizea Unpaired data Paired datab

power�80% power�90% power�80% power�90%

0.25 255 375 128 190
0.35 130 175 66 88
0.5 64 95 34 50
0.75 30 45 16 24
1.0 18 24 10 14
1.25 12 16 7 9
1.5 9 12 – 8
2.0 6 7 – –

a in units of standard deviations
b for paired data, the standard deviation of the difference is required

For paired data, effect size is the distance of the mean from zero, estimated
in units of the standard deviation of the paired differences. Thus a smaller
sample size is needed because there is no variation around the zero value.
However, if a change from baseline is being compared in two independent
groups, such as cases and controls, then the problem becomes a two-sample
t-test again in which the outcome being considered in each group is change
from baseline. In this case, the column for unpaired data is used and the
estimate of effect size is based on the mean and standard deviation of the
differences from baseline in the control group.

Non-parametric outcome measurements

If the outcome is not normally distributed and non-parametric statistics
will be used, then the sample size can also be estimated using Table 4.8.
Since the effect size cannot be based on a standard deviation, a nominal
effect size has to be proposed. For safety, the higher power value of 90 per
cent needs to be used and at least 10 per cent should also be added to the
sample size.

There is only a modest saving in the required sample size if the outcome
has more than two categories compared to a binary outcome.6 Therefore,
sample size for data collected using three-, five- or seven-point Borg scores
or Likert scales can be estimated from Table 4.5. In this case, the sample
size is calculated as the power to detect a difference in the number of
subjects above or below a nominated point on the scale.
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Balancing the number of cases and controls

When an illness is rare and only a small number of potential subjects are
available, statistical power can be increased by enrolling a greater number
of control subjects; that is, two or more controls for every case. Unbalanced
studies are also sometimes used to test the efficacy of new treatments when
more information is required about the new treatment than about current
best practice. The approach of using unbalanced groups is also useful if the
number of subjects who receive a treatment or intervention has to be limited
because it is expensive. Table 4.9 shows the trade-off between an increase
in power and the extra number of subjects who need to be studied. In
studies in which unbalanced groups are used, there is a decreasing efficiency
as the degree of unbalance increases, with little gain in extending the ratio
of cases to controls beyond 1:3 or 1:4.

Table 4.9 ‘Trade-off’ effect by increasing the number of control subjects

Ratio of cases:
controls

Number of
cases: controls Total subjects

Sample size
required if

numbers equal

1:1 25:25 50 50
1:2 25:50 75 66
1:3 25:75 100 76
1:4 25:100 125 80
1:5 25:125 150 84
1:10 25:250 275 90

Odds ratio and relative risk

The sample size that is required to measure a statistically significant odds
ratio or relative risk is shown in Table 4.10 with an example of how to
describe the sample size calculation shown in Table 4.13 at the end of this
section. If logistic regression is used, a general rule of thumb is to add at
least 10 per cent to the sample size for each variable in the model. If
stratification by confounders is being used, then the sample size require-
ments shown in Table 4.10 will apply to each strata in the analyses.

The sample size for an odds ratio of r is the same as the sample size for
an odds ratio of 1/r, for example the sample size for an odds ratio of 2 is
the same as for an odds ratio of 0.5. However, in epidemiological studies in
which the measure of exposure is poor, then the sample size needs to be
increased accordingly. The sample size may need to be doubled if the
correlation between the measurement and the true exposure is less than
0.8, and tripled for a correlation less than 0.6.7
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Table 4.10 can also be used as an approximation for calculating the
sample size for measuring odds ratios in matched case-control studies in
which the effects of confounders are controlled in the study design. How-
ever, unnecessary matching of subjects results in a loss of efficiency and
therefore the need for a larger sample size. A sample size that is up to 50 per
cent higher may be required in matched studies if the outcome is rare (less
than 10 per cent) or if the matching variable is a weak or uncertain risk
factor for the disease being investigated.8

Table 4.10 Approximate total minimum sample size for detecting a
statistically significant odds ratio in an unmatched case-
control study given the proportion of controls who are
exposed to the factor of interest (power�80%,
significance�0.05)

Proportion of Odds ratio
controls exposed 1.5 2.0 2.5 3.0 4.0 5.0

0.1 960 310 170 120 70 50
0.2 570 190 110 70 50 40
0.3 450 160 90 65 45 35
0.4 410 150 90 65 45 35
0.5 410 150 90 65 45 35

Correlation coefficients

The sample size required to find a significant association between two
continuous measurements is shown in Table 4.11. Because a correlation
coefficient is significant if it is statistically different from zero, a P value of
less than 0.05 does not always mean that one variable explains a clinically
important proportion of the variability in the other variable.

Table 4.11 Total sample size for detecting a correlation coefficient
which is statistically significant from zero at the P�0.05
level

Correlation
��0.05

power�80%
��0.05

power�90%

0.1 780 1050
0.2 200 260
0.3 85 120
0.4 50 60
0.5 30 40
0.6 20 25
0.7 15 20
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Repeatability and agreement

Very little attention has been given to the power of studies used to calculate
repeatability and agreement although, in common with all studies, pre-
cision is an important concept.

The methods of expressing repeatability and agreement between observ-
ers and between methods are varied with no formal methods for calculating
minimum sample size requirements. Obviously, a larger sample size will
provide a more precise estimate of both the measurement error and the
intraclass correlation coefficient (ICC). The measurement error is an abso-
lute estimate of how much reliance can be placed on a measurement
whereas the ICC is a relative estimate of the proportion of variance that
can be attributed to ‘true’ differences between the subjects (Chapter 7). If
repeatability is being measured, increased precision can be obtained by
increasing the sample size or by increasing the number of measurements
taken from each subject, which is useful in situations in which the number
of subjects is limited.

For estimating repeatability from two measurements, a sample size of
30 subjects is the bare minimum, 50 subjects is adequate and 100 subjects
gives good precision. A sample size larger than 100 subjects is usually
unnecessary. For estimating agreement between two continuously distrib-
uted measurements, a sample size of 100 gives good precision and above
this, the efficiency in reducing the standard error rapidly declines.9
However, larger numbers are often need for categorical data, such as data
collected by questionnaires.

Both the size of the ICC expected and the number of measurements
taken from each subject will influence the precision with which estimates
of repeatability are calculated. Thus, a sample size requirement for a study
in which three repeated measures are collected may be a minimum of 50
subjects but for only two repeated measures, the sample size will need to
be larger for the same ICC value. Also, a rule of thumb is that a larger
number is needed for the same precision in an ICC value calculated from
two-way analysis of variance (ANOVA) than for an ICC value calculated
from one-way ANOVA, although there are no simple methods to calculate
the difference.

For estimates of kappa, which is a measure of repeatability of categorical
data, a minimum sample size of 2 � (number of categories)2 is required so
that for five categories the estimated minimum sample size would be 50
subjects.10 In practice, this number may be too small and, as for ICC, a
sample size of over 100 subjects with duplicate measurements is usually
needed to estimate kappa with precision. The sample size required also
depends on the prevalence of the outcome, with factors that have a low
prevalence requiring a larger sample size than factors that occur commonly.
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Sensitivity and specificity

There are no formal tables for calculating the number of subjects needed
to measure the sensitivity and specificity of an instrument. However, these
two statistics are merely proportions and the confidence interval around
them is calculated in exactly the same way as a confidence interval around
any proportion. The sample size required to obtain a confidence interval of
a certain width can be estimated separately for the expected sensitivity
and specificity statistics using Table 4.6. The sample sizes for calculating
sensitivity and specificity are then added together to obtain the total sample
size requirement.

Analysis of variance

It is possible to estimate sample size when a one-way analysis of variance
(ANOVA) will be used to analyse the data, and this can be extended to a
two-way ANOVA by estimating the sample size for each level of the factors
included. There are two options—one is to use a nomogram to calculate
sample size for up to five groups.11 The other is to use a method that allows
for the expected dispersion of the means between the study groups.12 The

Table 4.12 Sample size requirements, that is number per group, for
one-way analysis of variance13

Effect size
Number of

groups
power�80%

��0.05
power�90%

��0.05

0.1 3 315 415
4 270 350
5 240 310

0.2 3 80 105
4 68 90
5 60 80

0.3 3 36 48
4 32 40
5 28 35

0.4 3 22 28
4 18 24
5 16 20

0.5 3 14 18
4 12 15
5 12 14
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approximate adjustment factor is 0.4 for three or four groups and 0.3 for
five or six groups. However, if the mean values are dispersed at the ends of
the range with none in the middle, an adjustment factor of 0.5 is used.

The sample size is then estimated by calculating the effect size, that is
the difference between the lowest and the highest means, in units of the
standard deviation, and multiplying this by the adjustment factor, that is:

highest mean – lowest mean
Effect size �

standard deviation

Adjusted effect size � effect size � adjustment factor

The adjusted effect size can then be used to calculate sample size using
Table 4.12. In practice, 0.1 to 0.2 is a small effect size, 0.25 to 0.4 is a
medium effect size, and effect sizes of 0.5 or more are large.

For repeated measures ANOVA, sample size per group can be estimated
by using paired data tables and increasing the estimated sample size. A more
precise method is to calculate the sample size as for a standard ANOVA
and then decrease the sample size because the repeated measurements help
to reduce the variance. To make a final decision, it is a good idea to use
both methods and then compare the results. For multivariate analysis
variance (MANOVA) specialised methods for calculating sample size based
on the number of variables and the number of groups are available.14

Multivariate analyses

When no formal sample size methods are available for multivariate
applications, estimates for continuous outcome variables or ANOVA can
be used and the sample size adjusted according to the number of strata or
number of variables in the analysis. Remember that covariates that increase
the correlation coefficient between the outcome and the explanatory vari-
able also increase statistical power and therefore result in a smaller sample
being required.

For all multivariate analyses, an ad-hoc method to confirm the adequacy
of the estimated sample size is to consult published studies that have used
similar data analyses and assess whether the sample size has provided ade-
quate precision around the estimates.

A minimum requirement for logistic regression is that the subjects must
number at least ten times the number of variables.15 However, this may not
provide sufficient precision for estimating the confidence intervals around
the odds ratios. Another approach to use Table 4.10 to estimate a sample
size for an expected odds ratio, and increase the sample size by at least
10 per cent for every extra variable included in the analysis. Other more
detailed and more complicated methods are available in the literature.16
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Survival analyses

For survival analyses, the power to compare survival in two or more groups
is related more to the number of events (e.g. deaths) than to the total
sample size, with a very large sample size being needed if the risk of the
event occurring is very small. In such studies, power can be increased by
increasing the length of follow-up or by increasing the number of subjects.
For this, formal sample size calculation tables are available in specialised
texts.17

Describing sample size calculations

Table 4.13 Describing sample size calculations

Comparing prevalence rates

1. The sample size has been calculated with the aim of being able to
demonstrate that the prevalence of the outcome is 50% lower in the
intervention group, that is it will be reduced from 60% to 30%. For a
power of 90% and a significance level of 0.05, a minimum number of
118 children will be needed in each group. To allow for a 20% drop-out
rate in the first three years, at least 150 children will be enrolled in each
group.
2. We expect that the prevalence of the outcome will be approximately
10% in the reference group. Therefore, a minimum of 220 subjects will
be enrolled in each of the two study groups. This sample size will give
an 80% power of detecting a difference in prevalence between the two
groups of 10% with significance at the P�0.05 level.

Single prevalence rates

The prevalence of this condition in the community is expected to be in
the order of 10%–15%. Therefore, a sample size of 1200 has been
chosen with the aim of being able to estimate the prevalence with a 95%
confidence interval of � 2%.

Continuous outcome variables

1. This sample size will allow us to detect a significant difference if the
mean of the outcome variable for the cases is at least 1 standard
deviation higher than the mean value for the control group (power�80%,
significance�0.05).
2. A total number of 50 subjects will allow us to demonstrate that a
mean within-subject change from baseline of 0.5 standard deviations is
significant at the 0.05 level with a power of 90%.

Cont’d
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Table 4.13 Cont’d Describing sample size calculations

3. A total of 64 subjects will be required in each group in order to detect
a difference between groups of 0.5 standard deviations in height.
However, only 50 cases are expected to be available in the next year.
Therefore, two control subjects will be enrolled for each case in order to
maintain statistical power. This will give a total study sample of 150
subjects.

Odds ratios

Assuming that 30% of the controls will be exposed to (the study factor of
interest), a sample size of 180 subjects, that is 90 cases and 90
controls, will be needed. This will allow us to detect an odds ratio of 2.5
with statistical significance (power�80%, significance�95%). This
magnitude of odds ratio represents a clinically important increase of risk
of illness in the presence of (outcome of interest).

Analysis of variance

We are comparing the outcome of interest between four study groups.
An effect size of one standard deviation between the lowest and highest
groups is expected with the mean values of each of the other two groups
falling within this. The adjustment factor is therefore calculated to be 0.37
and the minimum number of subjects required in each group will be 40.
Thus, for a power of 90% and a significance level of 0.05, we will require
a minimum sample size of 160 subjects.
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Section 2—Interim analyses and
stopping rules

The objectives of this section are to understand:
• when interim analyses are justified;
• when to make the decision to stop a clinical trial; and
• the problems caused by stopping a study prematurely.

Interim analyses 148
Internal pilot studies 149
Safety analyses 150
Stopping a study 150
Stopping rules 151
Equipoise 152

Interim analyses

Any analyses that are undertaken before all of the subjects have been
recruited and the study is completed are called interim analyses. These
types of analysis can play a useful part in the management of clinical trials.
Interim analyses can be used to decide whether to continue a trial to
compare the efficacy of two treatments as it was planned, or whether to
only continue the study of the ‘superior’ treatment group. Interim analyses
are also useful for re-assessing the adequacy of the planned sample size.
However, the number of interim analyses must be planned, must be limited
and must be carried out under strictly controlled conditions so that the
scientific integrity of the study is maintained and unbiased evidence about
the benefits of a new treatment or intervention is collected.

If interim analyses are undertaken regularly, they increase the chance of
finding a false positive result. To avoid this, it is essential to plan the
number and the timing of all interim analyses, as far as possible, in the
study design stage of the study before the data are collected.18 Also, when
unplanned interim analyses are performed, the significance level that is
used must be altered. Thus, if ten annual interim analyses are planned, a
simple strategy is to use a significance level of P�0.01 or P�0.005 for each
analysis rather than P�0.05.19 Another suggestion is to use a nominal
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significance level of P�0.001 in unplanned interim analyses and then to
redesign the study so that any further interim analyses are only conducted
when planned.20

To avoid increasing or creating bias, the interim analyses should be
undertaken by members of a data monitoring committee who have no active
involvement in the study. Whenever interim analyses are conducted, it is
essential that the results are not released to the research team who are
responsible for collecting the data because this information may increase
observer bias, and selection bias if recruitment is continuing.

Glossary

Term Meaning

Interim analysis An analysis that is conducted before all of the
subjects have been enrolled and have completed
the study

Type I and II errors False positive and false negative research results
(see Table 4.3)

Statistical power The ability of the study to show that a clinically
important result is statistically significant

Internal pilot studies

Internal pilot studies can be used to confirm sample size calculations.
A priori sample size calculations underestimate the sample size required
when the variance in the reference group is wider than expected. This
commonly occurs when the variance has been estimated in previous studies
that have a small sample size or different inclusion criteria. One way to
confirm that the sample size is adequate is to conduct an internal pilot
study. This involves analysing the data from the first control subjects
enrolled into a study in order to recalculate the variance in this reference
group, and then using this information to recalculate the required sample
size. As with all interim analyses, the researchers collecting the data must
remain blinded to the results. It is also crucial that the internal pilot study
data are not used to prematurely test the study hypotheses.

Internal pilot studies are different from classical pilot studies. Classical
pilot studies are small studies that are conducted prior to the commence-
ment of a research study with the express purpose of ensuring that the
recruitment procedures are practical, the evaluation tools are appropriate,
and the protocol does not need to be changed once the study is underway
(Chapter 2). The data from pilot studies are not included with the study
data when the results are analysed because they are not collected using the
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same standardised methods as the study data. In contrast, the data used in
an internal pilot study are part of the study data and are therefore included
in final analyses.

Internal pilot studies have the advantage that they only have a small
effect on the � level of the study but, by estimating sample size more accu-
rately, they have a significant effect on both power and efficiency. A major
benefit of recalculating sample size at an early stage in a study is that it
provides the opportunity to plan to recruit larger numbers of subjects if this
is necessary. Because it is also important that only one internal pilot study
is undertaken, a judgment of when the internal pilot will be conducted
must be made before the study begins. An internal pilot study should be
as large as possible with a minimum sample size of twenty subjects.21, 22 For
example, the internal pilot study may be after the first twenty subjects if
the total sample size is expected to be 40, but after the first 100 if the
expected sample size is 1000.

Safety analyses

In studies designed to test a new treatment or intervention, processes need
to be in place to detect adverse effects at an early stage. In addition, if any
adverse effects are suspected, then a safety analysis to estimate whether the
effects are significantly higher in the new treatment group will be required.
Before a safety analysis is conducted, the difference between groups in the
frequency of the adverse event that would be considered clinically impor-
tant has to be nominated. The sample size that would be required to
demonstrate that this difference is statistically significant can then be cal-
culated. Once the required sample size has been recruited, a planned safety
analysis can be undertaken and the results evaluated by an external
monitoring committee. As with internal pilot studies, the researchers who
are responsible for collecting the data must be blinded to the results of the
safety analysis.

Stopping a study

Ideally, the decision to stop any research study before the planned sample
size is reached should be based on both statistical and ethical issues. This
decision needs to balance the interests of the subjects who have not yet
been recruited with the interests of the study. There have been examples
of interim analyses demonstrating harmful effects of a new treatment, such
as toxic effects of cancer treatments. The identification of harmful effects
leads to the dilemma that although a large sample size is needed to answer
questions about efficacy, there will be reluctance to recruit subjects to receive
the more toxic treatment,23 and the more serious the disease is, the more
serious the dilemma becomes.24
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Glossary

Term Meaning

Stopping rules Prior decisions made about when recruitment of
subjects may be stopped

Observer bias Distortion of the results because the observers are
aware of the study purpose or the results of the
interim analyses

External monitoring
committee

Committee with no involvement in conducting the
study or interpreting the analyses but who are
appointed to oversee the scientific validity of the
study

Stopping rules

Clinical trials are sometimes stopped prematurely because a statistically
significant result is found that indicates that the new treatment is clearly
better or clearly worse than the old treatment. Occasionally, a study may
also be stopped because a non-significant result has been reached, that is
the new treatment appears to be no better or no worse than the old
treatment. However, there are examples in the literature of studies being
stopped early25 and subsequent trials then finding very different results.26 It
is not unusual for interim analyses to produce a false positive result and
then for the results of further sequential interim analyses to sequentially
converge to null. Thus, the significant result at the first interim analysis
becomes increasingly less significant as the study progresses. The adverse
effects of stopping a study too early are shown in Table 4.14.

Table 4.14 Adverse outcomes of stopping a study too early27

• lack of credibility—results from small studies are not convincing
• lack of realism—dramatic treatment differences are not convincing
• imprecision—wider confidence intervals for the treatment effect
• bias—studies are likely to stop on a ‘random high’ of treatment

differences
• excessive speed—insufficient time to consider balance of benefits and

costs
• undue pressure—over-enthusiastic and unreasonable

recommendations may follow
• mistakes—the risk of a false positive result
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If there is a possibility that the study will be stopped on the basis of an
interim analysis before the full sample size is recruited, then ideally, the
stopping rules should be decided before the study begins. The decision to
stop a study should not be taken lightly because a statistically significant
effect of treatment on outcome may be found, but the precision of the
estimate will be reduced and the 95 per cent confidence intervals will be
much wider than expected. Also, a smaller sample size markedly reduces the
statistical power to measure treatment effects in specific subgroups or to
conduct multivariate analyses.

To avoid a study resulting in a false positive result, the decision to stop
should be based on a high level of significance, that is very small P values.
Other formal methods, such as adjusting the significance levels for making
formal stopping rules can be used.28 When the decision to stop is not clear,
it is best handed over to an external monitoring committee who have all
of the internal and external evidence available to them.29

Equipoise

Equipoise is a term that is used to describe the uncertainty in the minds of
the researchers of the clinical effectiveness of currently used or experimental
treatments. Researchers need to be in this situation of equipoise for the
commencement or continuation of a clinical trial to be ethical.30 Ethical
considerations are the most important factor to consider when deciding
to continue or stop a study. However, it is inevitable that the decision to
continue a study will almost always result in statistical benefits because the
optimal sample size requirement will be achieved and power will be
maintained to conduct subgroup analyses, or to adjust for confounders in
the analyses. Continuation of any clinical trial until the planned stopping
time will almost always ensure that the results will have better precision
and are less likely to produce a false positive or false negative result than a
trial that is stopped early.31, 32
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Section 1—Project management

The objectives of this section are to understand:
• how to manage a study; and
• how to ensure that high quality data is collected.

Study management 154
Data quality assurance 154
Monitoring committees 156
Team management 157
Research skills 158

Study management

Once the funding for a research study is received, the data collection
stages must be properly planned and conducted so that the scientific integrity
of the study is maintained throughout. It is not only unethical to conduct
a study that is poor science, it is also unethical to produce poor quality data
that inevitably lead to poor quality results.

The principal investigators of a study are responsible for ensuring that
the data are collected to a high scientific standard, but this can only be
achieved with good management practices.1 Good management not only
involves pro-active forward planning but also involves regular meetings of
the study team in order to make collaborative decisions about the study
progress and the study processes. A collaborative approach between the
management and research teams will help to promote strict adherence to
the study protocol by staff at all levels of subject recruitment, data collection
and data management.

Data quality assurance

Table 5.1 shows the procedures that can be used to ensure quality control
when data are being collected either at a single centre, or by different
groups at different centres. There are many advantages of putting these pro-
cedures in place, including the prevention of problems and errors that
reduce the scientific integrity of the data.2 The process of involving all
researchers in the research process is important for empowering research
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staff to take pride in their work. This in turn will lead to a climate in
which research staff enjoy being part of a collaborative team and will also
encourage the development of professional skills.

Table 5.1 Procedures to maintain data quality

❑ Conduct pilot studies to test recruitment procedures and study tools
❑ Hold regular meetings, tele-conferences and site visits that involve all

of the research staff
❑ Document all protocol variations
❑ Maintain an up-to-date handbook of all procedures and protocols
❑ Train all data collection staff centrally
❑ Only use pre-tested questionnaires and instruments once the study is

underway
❑ Rotate staff regularly between locations to ensure standardisation of

data collection methods
❑ Undertake continuous monitoring of the data for errors etc.
❑ Check all data for completeness before data entry
❑ Minimise the number of interim and safety analyses
❑ Ensure that data collection staff are blinded to results of any analyses

It is usually the responsibility of the study co-ordinator to compile and
maintain an up-to-date study handbook. Table 5.2 shows a list of some of
the methods, protocols and policies that should be included in the hand-
book. The purpose of the handbook is to maintain a document that itemises
all of the methods being used in the study, and that catalogues all of the
data collection forms. In any research study, this is an invaluable tool. This
handbook must be updated regularly so that all changes to the study protocol
and the rationale for making the changes are carefully listed. Any deviations
from the protocol should also be documented.

An updated copy of the handbook must be readily available to everyone
in the research team. The study handbook should also document informa-
tion of the location and content of the study databases, the dates and details
of any errors that are detected and corrections that are made, and any data
coding or recoding schedules. A separate file should also be maintained that
contains all of the minutes and the actions from the study meetings.

Table 5.2 Study handbook contents

• position and contact details of investigators and all research staff
• aims or hypotheses
• background and rationale for study
• study design

Cont’d
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Table 5.2 Cont’d Study handbook contents

• subject details including inclusion and exclusion criteria
• method details
• randomisation and allocation concealment procedures
• intervention details
• goods and equipment required
• recruitment strategies
• consent forms and information for participants
• data collection instruments
• rationale for including new questions or questionnaires
• policies for managing anticipated problems
• details of withdrawals and procedures for follow-up
• ethics approvals
• budget and details of donations, incentives, etc.
• data management including confidentiality and access issues
• data coding and recoding schedules
• management of adverse effects and details of safety committee
• changes to protocol, including dates and rationale for changes
• dissemination of study outcomes to participants
• planned data analyses and publications

Monitoring committees

All research studies need a hierarchy of committees to oversee the conduct
of the study, the handling of the data and the scientific reports from the
study. As well as ensuring that adequate resources are available for conduct-
ing the study with scientific integrity, the principal investigators will need
to make decisions about the responsibilities and composition of these
committees prior to any data being collected. In running a study, especially
a large or multi-centre study, it is important to hold regular meetings that
are attended by the entire research team, including the researchers who are
responsible for collecting the data and the data managers. In addition, closed
management meetings to make decisions about protocol details, financial
matters and other sensitive issues will also be needed.

The level of responsibility of different committees will vary consider-
ably. Internal committees may only include the investigators and their
research staff. However, the membership of an external committee may
include a number of experts, such as peers with expertise in medical,
statistical or research areas. This type of external committee may be appointed
as an impartial panel to oversee the scientific and ethical integrity of a
research study.3 As such, an external committee can direct the progress of
a research study, approve interim analyses and advise in decision-making
processes about important matters such as whether to change the study
protocol or stop the study. For example, the monitoring committee can
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direct interim analyses to confirm sample size requirements, can oversee
safety analyses to investigate unexpected adverse events and can make
decisions about the continuation of the study.

A monitoring committee may also have the responsibility of putting
procedures in place to ensure the integrity of the database, the quality of
the data entry, and other important aspects such as data security arrange-
ments and documentation. All studies should have a management committee
that is responsible for planning the data analyses and the publication of
results prior to the data collection being completed or the study code being
broken.

Team management

Managing a research team is no different from managing any other type of
team. Most well balanced teams have a diversity of skills and personalities,
and have systems in place to make group decisions and problem-solve on a
regular and ongoing basis. It is important to create a culture of personal
satisfaction by conducting a study in the best way possible so that the staff
are proud to be involved. It is also important to create a purpose orientated
working environment in which roles and responsibilities are clearly defined.
This will help to foster an atmosphere in which people enjoy working
together and being supportive of one another.

Some of the basic principles of effective team management are shown
in Table 5.3. Good team management will ensure a more positive work-
place atmosphere and will encourage greater personal commitment from the
team members. This is an important component in the chain of activities
that lead to the conduct of high quality research studies.

Table 5.3 Team management

• maintain a reliable level of trust and credibility
• encourage a commitment to quality data and research practices
• set realistic priorities
• ensure balance between interesting and mundane tasks for all team

members
• encourage staff to take responsibility for tasks they enjoy most
• recognise that everyone in the team contributes to the final results
• hold regular meetings to foster good communication and co-operative

problem solving skills
• ensure that team members have clearly defined roles and responsibilities
• have a clear management structure and methods for dealing with

problems
• focus on personal achievements and professional development
• celebrate successes
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Remember that regular meetings and regular interactions within the
study team not only facilitate the decision-making process but also foster
a sense of teamwork and belonging. It is also important to foster good com-
munications in order to create a positive flow of information between team
members. These systems help to facilitate good science, which in turn con-
tributes to the establishment of good research reputations.

Research skills

Research staff who are good team members usually turn out to be the
people who are able to take responsibility for their own mistakes, which
can happen at all levels of management and data collection, and are able
to learn from them. In facilitating this process, it is important that all
research staff are actively involved in the decision-making processes of the
study so that they feel able to accept decisions that are taken to ensure
the scientific integrity of the study. In this way, research staff can be
acknowledged as professional workers who have the knowledge required for
their work and who are committed to the best interests of the research
project. The staff who are highly competent and professional, who find
their job rewarding and who gain fulfilment from being part of a research
team are most likely to collect research data to a high scientific standard.
This will ensure that the study hypotheses can be tested in the best way
possible.

It is essential that the study co-ordinator is familiar with all aspects of
the study. It is also important that this person is pro-active and works to
make life easier for the data collectors and study managers.4 This will
involve all aspects of facilitating subject recruitment and follow-up inclu-
ding identifying and solving day-to-day problems, tracking and organising
the paperwork, keeping adequate stores of equipment and goods required,
and making constant checks on data quality. This role can only be under-
taken by a person who is both professional and competent, and who likes
their job and enjoys helping other people.
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Section 2—Randomisation
methods

The objectives of this section are to understand:
• why randomisation is important;
• how to design a randomised study;
• how to select subjects randomly from a population;
• how to allocate subjects randomly to a study group;
• how to produce even numbers in the study groups; and
• how to deal with clusters in the randomisation process.

Randomisation 159
Random selection 160
Random allocation 162

Simple randomisation 163
Quasi-randomisation 166
Restricted randomisation 166
Block randomisation 166
Replacement randomisation 168
Biased coin randomisation 169

Minimisation 170
Dynamic balanced randomisation 172
Unequal randomisation 173
Randomisation in clusters 173

Randomisation

Randomisation is used in two situations in research; that is, in randomly
selecting subjects to ensure that they are a representative sample of the
general population or of a specific group of patients, or in randomly allocating
subjects to different study groups in order to minimise the effects of
confounding. Whatever the situation, it is important that the methods used
to achieve randomisation are carefully chosen to ensure that any systematic
bias is minimised. Randomisation is such an important aspect of clinical
trials that some journals have a policy of declining to publish studies in
which the allocation processes have not been properly randomised.5

The methods that can be used to randomly select subjects for inclusion
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in a study, to randomly allocate subjects to treatment groups and then
conceal the allocation methods from the researchers who are responsible
for collecting the data, are shown in Table 5.4.

Table 5.4 Random selection and random allocation

Random selection Random number table or computer
generated sequence

Random allocation—unbalanced
Simple randomisation Random number table or computer

generated sequence
Quasi-randomisation Selection by age, date, number etc.

Random allocation—balanced
Restricted randomisation Allocation by sealed envelopes
Block randomisation Randomisation in small blocks
Replacement randomisation Sequences that exceed balance

are rejected
Dynamic balanced randomisation Allocation forced when groups

unbalanced
Biased coin randomisation Probability changed when groups

unbalanced
Minimisation Allocation by prognostic factors

when groups unbalanced

Random selection

Random selection of subjects is the most effective method to reduce sam-
pling error and therefore to ensure representativeness of the sample in order
to maximise generalisability. In general, selection is from an ordered list in
which each unit, such as the subjects, schools, towns, GP practices etc.,
has a unique identifying number. The unique numbers are then selected
randomly from the list.

Glossary

Term Meaning

Sampling frame Target population from whom a sample is selected

Study strata Subsets of sample divided according to a group
e.g. age or gender

Imbalance Failure to produce equal numbers in the study
groups
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If the number of units that are included in the sampling frame is less
than 100, then a random number table, which can be found in most sta-
tistics books, may be the simplest method to use. It is important to decide
a pattern for extracting numbers before beginning, for example the table
can be read by row, by column or by block. Once the pattern has been
decided, it has to be maintained until a sequence of sufficient length is
obtained. To begin, a starting point in the table is chosen, and the random
number sequence that is generated is used to select subjects by their serial
numbers in the order that the numbers are selected. If a number is gen-
erated that has already been selected, it is discarded.

For randomly selecting subjects from a list of more than 100 people, it
is more efficient to use a random number sequence that is generated using
computer software. The procedure for doing this using Excel software is
shown in Table 5.5. Other statistical software packages can also be used in
a similar way. Once the sequence is obtained, the subjects are selected by
beginning at the top of the randomised sequence and selecting subjects
whose identification number matches the random number. Because any
duplicates in the list have to be ignored, it is a good idea to generate a
list that is longer than anticipated.

Table 5.5 Steps to generate a random number sequence using Excel
software

To generate then numbers
❑ Use Tools, Data analysis, Random number generator
❑ Number of variables � 1
❑ Number of random numbers � 100 (or however many are needed)
❑ Distribution � Uniform
❑ Parameters, Between � 1 to 4 if there are 4 groups to be allocated or

1 to 200 if there are 200 subjects in the list—this parameter indicates
the highest number required

❑ Random seed � enter a different number each time, e.g. 123, 345, etc.
❑ New worksheet � a1:a100 to complement number needed
To round the numbers
❑ Highlight the column of numbers
❑ Use Format, Cells
❑ Number, Decimal places � 0

For example, to select six names at random from the list of names in
Table 5.6, a random number sequence is first generated. Using Excel
random number generator as shown in Table 5.5, the first random sequence
that is generated is 2, 3, 19, 13, 3, 4, 3, 19, 8, . . . The duplicate numbers
in the sequence, which are 3, 3 and 19, are ignored. The resulting six
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randomly selected subjects are shown with an asterisk. When selecting ran-
domly from a list, the order of the list is of no concern. It does not matter
whether the list is ordered alphabetically, by date, or simply in the sequence
in which subjects present.

Table 5.6 List of names and numbers

No. Name No. Name

1 Broderick J 11 Leslie T
2 * Park J 12 Yoon H
3 McDonald D 13 * Dixon D
4 * Wenham D 14 Border A
5 Hennesay A 15 Johnson T
6 McKenna C 16 Black J
7 Thompson A 17 Fernando M
8 * Muller S 18 McLelland J
9 Martin K 19 * Brown N

10 King G 20 Mitchell J

Random allocation

Random allocation is the process of randomly allocating subjects to two or
more study groups. This is the most effective method of removing the influ-
ence of both known and unknown confounders. Thus, clinical trials
in which randomisation is used to allocate subjects to treatment groups are
better able to answer questions about the efficacy or effectiveness of treat-
ments. Although it is possible to compensate for the influence of known
confounders and prognostic factors in the analyses, post-hoc methods
conducted using multivariate data analyses are less efficient and cannot
compensate for factors that are not known or have not been measured. The
failure to use effective randomisation procedures can result in otherwise sat-
isfactory studies being rejected for publication.6

When randomly allocating subjects to a study group, it is important to
use a method that generates an unpredictable allocation sequence. It may
also be important to produce balanced numbers in the study groups, espe-
cially when they are distributed between different study groups or centres.
Once random allocation has been achieved, it is essential to have a pro-
tocol to conceal the random allocation methods from the research team so
that they remain blinded to the potential study group of all subjects who
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are being recruited. Methods to achieve allocation concealment are
presented in Chapter 2. The essential features of random allocation and
concealment are shown in Table 5.7.

Table 5.7 Features of random allocation and concealment

• ensures that each subject has an equal chance of being allocated to
each group

• ensures that differences between groups are due to treatment and not
to differences in the distribution of prognostic factors or confounders

• are superior to systematic methods that allow the investigator to be
‘unblinded’

• the allocation code is not available before the subject has been
assessed as eligible and has consented to participate

• the research team responsible for subject recruitment is blinded to the
methods of random allocation until recruitment is complete

Simple randomisation

Simple randomisation, which is also called complete unbalanced or unrestric-
ted randomisation, is the gold standard in random allocation. The process is
shown in Figure 5.1. The random sequence can be generated by tossing a
coin but this is not recommended. A better method is to use a random
number table or a random number sequence generated by computer soft-
ware. For allocating a relatively small number of subjects to treatment
groups, a random number table may be the simplest method to use.

Figure 5.1   Method of simple randomisation

When using a random number table, the interpretation of the two digit
numbers that are given by the table first needs to be decided. The choices
are to use both digits as one number or, if numbers of 10 and over are not
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required, to use either the first digit, the second digit or both digits. For
example, a sequence of

34 15 09

can be used as

34, 15, 9
3, 4, 1, 5, 0, 9
3, 1, 0
4, 5, 9

The pre-determined selection sequence can then be used to allocate subjects
to the study groups. An example of how the numbers might be used is
shown in Table 5.8. Similar sequences can be used for a larger number of
groups.

The advantage of simple randomisation is that it balances prognostic
factors perfectly between the study groups, provided that the sample size is
large enough. A disadvantage is that it may result in uneven numbers in
each group, especially if the sample size is small. Imbalance of subject
numbers in different treatment groups is more of a problem in small studies
in that the result may be difficult to interpret if the groups are very different
in size. This problem is shown in Example 5.1.

However, imbalance is less of a problem in large studies in which the
degree of imbalance will always be small in relation to the sample size.
Remember that imbalance affects efficiency because a larger number of
subjects will need to be recruited in order to maintain the same statistical
power. Also, if imbalance is unpredictable between different study centres,
then bias due to recruitment and measurement practices at each centre
cannot be ruled out.

Table 5.8 Use of random numbers to allocate subjects to groups

Number Group

Method 1 0–4
5–9

A
B

Method 2 1, 3, 5, 7, 9
2, 4, 6, 8, 0

A
B

Method 3 1–3
4–6
7–9
0

A
B
C

Ignore
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Example 5.1 Inadvertent unequal randomisation in a clinical trial
Quinlan et al. Vitamin A and respiratory syncitial virus infection7

Characteristic Description

Aim To determine whether oral vitamin A
supplementation reduces symptoms in children with
respiratory syncitial virus (RSV)

Type of study Randomised controlled trial

Sample base Children recruited from a hospital setting

Subjects 32 RSV infected patients age 2–58 months
randomised to receive treatment or placebo
35 inpatient controls with no respiratory infection
and 39 healthy outpatient controls

Treatment 21 children in RSV group received a single dose of
oral vitamin A and 11 received placebo; allocation
by randomisation

Outcome
measurements

Serum vitamin A and retinol binding protein levels
Clinical indicators of severity, e.g. days of
hospitalisation, oxygen use, intensive care,
intubation and daily severity scores

Statistics T-tests, Fisher’s exact test, ANOVA and non-
parametric tests

Conclusion • no benefit of vitamin A supplementation in children
hospitalised for RSV

• children hospitalised with RSV had lower serum
vitamin A and retinol binding protein levels than
outpatient control subjects

Strengths • efficacy of a simple intervention to reduce severity
of RSV not known

• two external control groups enrolled

Limitations • description of randomisation method as being
carried out in relatively large blocks and resultant
imbalance in group numbers suggests that
randomisation was not achieved

• only one-third of sample base enrolled therefore
generalisability limited

• blood unable to be obtained for 10 of the 32
children in the randomised controlled trial therefore
serum outcome data could not be evaluated

Cont’d
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Example 5.1 Cont’d Inadvertent unequal randomisation in a clinical trial

Characteristic Description

• small numbers in randomised trial resulted in a
lack of statistical power to test for clinically
important differences in most outcome
measurements between groups

Quasi-randomisation

Quasi-randomisation, or systematic assignment, involves allocating subjects
to a study group using available numbers such as their birth date, medical
record number or the day of the week. This method is sometimes used for
convenience but does not guarantee the balance of confounders between
groups. In fact, these types of methods are likely to increase bias because
the group is not determined entirely by chance and the group allocation
is extremely difficult to conceal. Knowledge of group allocation when a
patient is being considered for entry into a study may influence the deci-
sion on the part of the research staff whether to recruit that patient to a
particular study group. Any practices that result in the differential recruit-
ment or allocation of subjects are likely to lead to treatment groups in
which important confounders are not balanced.8

Restricted randomisation

In small studies, imbalance can be overcome by restricted randomisation.
For this, opaque envelopes with equal numbers of cases and controls are
prepared, manually shuffled, and then given a sequential number. The
envelopes are then opened in sequence as each subject is recruited. For
stratification (for example by gender or by age group), two colours of
envelopes or two types of identifying labels can be used.

This type of randomisation is not a preferred method because there is
a large potential for non-concealment. For example, envelopes may be
transparent or may be opened prior to the subject giving consent to
be entered into the study. In addition, the predictability of the group allo-
cation may increase towards the end of the study. Say, for example, that
four subjects remain to be recruited and that group A has four more sub-
jects already allocated than group B. In situations such as this, it is clear
that the remaining recruits will be allocated to group B to produce equal
study groups. If the observers are not blinded to study group, there is a
potential for selection bias to be introduced if some subjects are recruited
because of a perception that they are more ‘suitable’ for certain groups.

Block randomisation

The basis of block randomisation is that subjects are randomised within
small groups, that is in blocks, of say, three, four or six subjects. This method
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is most useful for random allocation in large studies or multi-centre trials in
which an equal number of subjects need to be allocated to each group in
each centre. The basis of the random allocation is to generate all possible
combinations of the group allocation sequence for the block size that is
selected.

For example, for a block size of four subjects who are being allocated to
one of two treatments, there are six sequences in which we could allocate
subjects to either treatment A or treatment B, that is AABB, ABAB,
ABBA, BABA, BAAB and BBAA. To undertake block randomisation,
these sequences are numbered from one to six and selected randomly, as
discussed in the random selection section above, to determine the order in
which they are used for allocation. Each consecutive sequence determines
the group allocation of the next four subjects.

An example of block randomisation using a block size of three units to
randomly allocate subjects to three different groups A, B and C at one time
is shown in Table 5.9. The process involves first numbering all possible
sequences in which the allocation of subjects to groups could occur, then
using unbalanced randomisation to select the order of the sequences that
will be used. This method has the advantage that it ensures that group
numbers are balanced after any number of allocations and it can be used
for both simple and stratified randomisation.

Table 5.9 Randomisation by blocks

For a block size of 3, the following combinations of 3 groups are
possible:

1. ABC
2. ACB
3. BAC
4. BCA
5. CAB
6. CBA

If the order of numbers selected randomly is 6, 2, 3, 6, 1 etc. then the
order of allocation of subjects to groups is CBA ACB BAC CBA ABC etc.

A disadvantage with block randomisation is that the block size may
become obvious to the observers so that concealment is lost for a signifi-
cant proportion of subjects. If a study is relatively small, then a block size
of less than six can be discerned from the pattern of past allocations. A
method to prevent this is to occasionally change the block size over the
course of the study as an added measure to safeguard concealment. Thus,
a block size of three may be used for the first three subjects, five for the
next five subjects, four for the next four subjects etc.
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Although the practice of block randomisation is effective for small block
sizes, it can become complex when larger block sizes that have many possible
combinations are used. For example, if a block size of ten is chosen for
randomising subjects to only two treatment groups, there are 252 possible
sequences. However, for studies with only two treatment groups, the
allocation process is simpler. For example, if the block size is six, then
simple randomisation can be used to allocate three subjects to group A and
the remainder are placed in group B. Thus, if three random numbers four,
three, one are selected from a table, the allocation of the first six subjects
would be ABAABB. This process is then repeated for each successive block.
The study presented in Example 2.49 in Chapter 2 used block randomisation
in a pragmatic clinical trial and resulted in the numbers of subjects in study
groups shown in Figure 5.2.

Figure 5.2   Outcome of recruitment and randomisation strategy

Replacement randomisation

In replacement randomisation, a maximum imbalance between groups is
pre-specified and sequences that exceed the imbalance are rejected.10 Using
this method, new sequences are continually generated using simple random-
isation until a random sequence that meets the specification is met. Table 5.10
shows a situation in which the first set of random numbers generated
produced nine subjects in group A and six in group B, and the second set
produced five in group A and ten in group B. Both produced an imbalance
that was greater than the pre-specified criteria of two. The third sequence,
which produced seven subjects in group A and eight in group B, was the
first acceptable sequence.

Table 5.10 Three sequential treatment assignments using replacement
randomisation

Subject No: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st set A A A B B B A B A A A B A B A

2nd set A A B A B B B A B B A B B B B

3rd set A A B B A A B A B A B A B B B
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The disadvantage of all balanced random allocations is that they are
easily unblinded in the final stages of trial. For example in the 3rd set in
Table 5.10, which was the first acceptable set, the first twelve allocations
produced seven subjects in group A and five in group B. From this, it could
easily be guessed that at least two of the remaining three would in all like-
lihood be allocated to group B. This method is only suitable for small
studies with few treatment groups because the number of replacements that
are required become larger as the group size increases and the sample size
decreases.

However, the advantages of replacement randomisation are that it guar-
antees an upper boundary on imbalance, the method is easy to implement
and the assignments remain more unpredictable than for block random-
isation. In addition, this method can be used in stratified trials although
the total imbalance limit across the study may need to be considered.

Biased coin randomisation

Biased coin randomisation, which is also called adaptive randomisation, is
a randomisation method in which the probability of assigning subjects to
each group is altered at points when the groups become unbalanced. At
the point when groups become unbalanced, the probability of a subject
being assigned to the group with the least number of subjects is increased.
An example of biased coin randomisation is shown in Figure 5.3. In this
example, 4:6 ratio of allocating subjects to groups B and A is used when
group A is larger than group B, but an equal probability when the group
sizes are equal.

Figure 5.3   Biased coin randomisation

Probability theory shows that changing to a probability of 3/4 maintains
the best control over imbalance. Because this may be predictable once an
imbalance exists, changing to a probability of 2/3 for small studies or 3/5
for larger studies is preferred.11 For example, suppose that numbers 0–4 are
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used to allocate subjects to group A and 5–9 are used for group B but only
at points when the size of groups A and B are equal. At all other times,
the numbers 0–5 (i.e. P�3/5) will be used to assign subjects to the group
with the smaller number of subjects and the numbers 6–9 (i.e. P�2/5) will
be used to assign subjects to the group with the larger number of subjects.
Table 5.11 shows an example in which biased coin randomisation is used
to balance two groups in a study.

Table 5.11 Allocation sequence using biased coin randomisation with
P�3/5

Random
number

1 5* 4 5* 8 7 3 2* 4 1* 6 8 3 8 5 0*

Group A B A B B B A A A B B B A B A A

A/B 1/0 1/1 2/1 2/2 2/3 2/4 3/4 4/4 5/4 5/5 5/6 5/7 6/7 6/8 7/8 8/8

* when groups are equal 0–4�A and 5–9�B, otherwise 0–5�smaller group and
6–9�larger group

This method can also be used when the imbalance exceeds a pre-specified
limit, say when the imbalance between groups exceeds three. For studies
with more than two groups, the method becomes complex and block
randomisation is much simpler to administer.

Glossary

Term Meaning

Selection bias Distortion in the results caused by non-random
methods to select the subjects

Allocation bias Distortion in the results caused by the processes
of allocating subjects to a case or control group

Minimisation

Minimisation is a method of randomisation that ensures that any prognos-
tic factors are balanced between study groups. This method is especially
useful for balancing subject numbers over two or more levels of important
characteristics. This can be a critical issue in small clinical trials in which
a large difference in important confounders between groups can occur
purely by chance.12 If this happens, it becomes difficult to decide whether
differences between the groups can be ascribed to the treatment in question
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or are largely due to the imbalance in prognostic factors. Imbalance also
has the potential to reduce the statistical power of large clinical trials that
are designed to measure small differences between study groups.

To use minimisation, a tally of the number of subjects in each of the
subgroups has to be continually updated. Before the study begins, the
important prognostic characteristics are listed and then, during enrolment,
the running total of the numbers is used to decide group allocation of the
next subject.13 From Table 5.12, the sum of the top rows for each factor
in the table is calculated. Thus, the sums are as follows:

Group A � 20 � 12 � 20 � 52

Group B � 19 � 8 � 16 � 43

In this situation, the next patient would be allocated to group B, which
has the lowest total. At points when the two totals are equal, simple ran-
domisation would be used.

Table 5.12 Group assignment for 55 subjects using minimisation

Group A Group B Subgroup
total

Group
total

Age �40 yrs 20 19 39 55

�40 yrs 8 8 16

Gender Male 12 8 20 55

Female 22 13 35

Smoking No 20 16 36 55

Yes 8 11 19

Minimisation ensures similarity between the groups. At the point of
entry into the study, each subject is assigned to the group with the lowest
frequency of their characteristics. For example, if smoking predicts out-
come then a smoker would be assigned to the group that has the lowest
proportion of smokers already enrolled. However, as the number of strata
increase, the complexity of this method increases. For example, for three
strata with two levels in each as shown in Table 5.12, a total of six groups
have to be balanced. Alternatively, the odds for entry into each group can
be changed as described in the biased coin method so that an element of
chance always remains. At points of balance, simple randomisation is again
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used. A disadvantage with the use of minimisation in small studies is that
specific strata may not have a balance of treatment groups and thus any
effects of confounders will be poorly controlled.

Dynamic balanced randomisation

A method of randomisation that can be useful in unblinded studies is
dynamic balanced randomisation.14 This method is a variation of replace-
ment randomisation in that unbalanced randomisation is used until a crit-
ical, pre-specified imbalance is reached after which subjects are assigned
to the group with the smallest enrolment number in order to redress
the imbalance. The method of this type of randomisation is shown in
Figure 5.4. The advantage of this method is that it is simple to use in
studies in which randomisation by several strata is required and for which
other methods become complex to administer. Dynamic balanced random-
isation balances the numbers of treatment allocations within groups whilst
retaining an element of randomisation. The disadvantage is that conceal-
ment is easily unblinded once an imbalance is reached.

Figure 5.4   Dynamic balanced randomisation

In some situations, this method has advantages over randomised block
designs, which can become predictable if the researchers who are recruiting
subjects have deduced the block size, or minimisation, which can be poor
in controlling for confounding in specific groups of subjects. Dynamic bal-
anced randomisation reduces imbalance, results in a smaller risk of selection
bias than randomised block designs and may offer greater protection against
unbalanced group numbers than is achieved with minimisation.
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Unequal randomisation

Clinical trials with an equal number of subjects in each group are most
efficient in terms of the total number of subjects who need to be enrolled
to answer the study questions. However, if a new treatment is being com-
pared to a currently used treatment, then a larger number of subjects are
sometimes randomised to the new treatment group. This type of unequal
randomisation is often used when there is a need to gain experience with
the new treatment including collecting information about possible advan-
tages and disadvantages with its use. If the ratio of new treatment to stan-
dard treatment subjects is 2:1 or 3:2, the small loss of statistical power may
be balanced by the value of the information gained. However, a random-
isation ratio greater than 3:1 becomes quite inefficient.15

Methods for randomising to groups of unequal size require adaptation of
the methods discussed above. For example, if simple randomisation is used
then numbers 1–6 may be used to assign subjects to the new treatment
group, 7–9 to the standard treatment group and 0 ignored. For randomising
in a 2:1 ratio using block randomisation, subjects can be randomised to
three groups as shown above where A and B are the new treatment group
and C is the standard treatment group. Similar adaptations of other methods
can also be made.

Randomisation in clusters

In epidemiological studies, subjects are often selected or allocated to study
groups in clusters. For example, when selecting children from a population
in order to measure the prevalence of a disease, the schools often form
the sampling frame and are selected as units, rather than randomising the
individual children within them.

For many types of community interventions, it is simply not feasible
to randomise individual participants to different study groups. In studies to
test the effectiveness of an intervention in communities, it is common
to randomise individual communities to receive the active or control treat-
ment. For example, in a study of the impact of fly control on childhood
diarrhoea in Pakistan, six study villages were randomly assigned to two
study groups.16 The problem with this type of randomisation is that it does
not control for possible differences between the communities. In the study
in the example, this was partly overcome with the use of a cross-over study
design, in that three of the villages were sprayed in the first year and the
remaining three in the second year. Despite the limitations in the study
design, cluster randomisation is often the only practical method with which
to gain information of whether community interventions have potential
benefits to health.
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Cluster randomisation is also sometimes used to randomise clinical
practices to arms of an intervention. In this situation, all subjects within
a practice will be in the same treatment arm. This procedure is effective
in maintaining subject blinding by decreasing the likelihood that patients
in different groups will interact with one another. However, in this type of
study, the analyses have to take account of both the variation between
subjects and the variation between practices. One of the major limitations
in cluster designs is that this approach leads to a loss of efficiency and
statistical power.

Cluster designs are not such a problem in studies in which the number
of practices is large and the number of subjects per practice is quite small.
However, in studies in which there are only a small number of practices or
in which the number of subjects per practice is large, any analyses that
ignore the clusters will tend to under-estimate the standard error of the
treatment effect.17 A simple method to take account of the clusters is to
calculate a summary measure of the outcome variable for each practice and
to use that in the analyses. In this type of analysis, the effective sample size
is the number of practices and not the number of subjects. A disadvantage
with this approach is that the standard error will be over-inflated and a
type II error may occur if the number of units is small.



175

Conducting the study

Section 3—Data management

The objectives of this section are to understand:
• how to manage the data collected during a research study;
• how to minimise errors in the results; and
• the importance of security and subject confidentiality.
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Missing values 178
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Security and subject confidentiality 179
Exporting data for data analyses 180

Steps in data management

All studies, no matter what type of study design is used, require a high
standard of accuracy in storing the research data. To achieve this, a series
of logical steps in data management must be followed before data analyses
begin. A checklist for this process is shown in Table 5.13. In order to pro-
gress in this way, it is important to develop a timeline and leave enough
time to complete each step diligently. There is always a temptation to jump
in and analyse new data files as soon as they become available. However,
the results from this type of approach may be spurious if the data have not
been treated carefully, and it is unethical to mislead others by reporting
results that turn out to be a mistake at a later date.

Table 5.13 Checklist for managing data

❑ Code data appropriately
❑ Enter data into a database
❑ Conduct range and visual checks
❑ Make all corrections that are needed
❑ Check for duplicate records in key fields

Cont’d
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Table 5.13 Cont’d Checklist for managing data

❑ Merge data from different instruments if they have been used
❑ Archive a copy of the database in a safe, fireproof place
❑ Limit access to sensitive data

Database design

For statistical analysis, the data will need to be entered into a database.
Although database design is time-consuming, it is important that this task
is the responsibility of someone who has established database skills because
small errors and inconsistencies at the planning stage can lead to insur-
mountable difficulties during the data analyses.

It is much better to enter data into a well-designed database than to
enter it directly into an electronic spreadsheet. An advantage of using
a database is that it forces the person who is responsible for managing the
data to address many of the essential data management issues before
the data are entered. This not only facilitates the integrity of the data but
is also an efficient process because it simplifies the data analyses at a later
stage. The issues that need to be considered when designing a database are
shown in Table 5.14. The type, physical length (size) and categorisation of
each variable are essential features that need to be defined. By defining the
data correctly and using cross-checks to ensure that values outside permit-
ted ranges are not admissible, the quality of the data will be optimised.

Table 5.14 Issues to consider when designing a database

• data type, e.g. numeric, alphabetic, binary, date, etc.
• data size or maximum allowable length
• permitted categories, or permitted range of values
• definitions of pre-determined study groups
• coding to identify sub-categories of explanatory variables
• validation of permitted values
• codes to identify missing data

Remember that, if an item needs to be recoded in order to categorise
subjects by an accepted definition, the original data should be entered into
the database rather than the recoded version. This will maintain flexibility
to adjust for changes in the definition at a later stage. For example, an
epidemiological definition that was widely used for many years to define
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the presence of airway abnormalities associated with asthma was a 20 per
cent fall in lung function after administering 7.8 �mol of histamine.
However, following large-scale validation studies, this was later changed to
a 20 per cent fall at 3.9 �mol histamine. By entering the original data, the
definition could be changed by reclassifying subjects at a later date so that
a valid comparison could be made between the results from the historical
and contemporary studies. This would not have been possible if a binary
response of a positive or negative result was the only data that had been
stored in the database.

Data entry

Data entry is a simple task if self-coding questionnaires have been used but,
if not, decisions about whether to enter items as alphabetic or numeric
information will need to be made. Data must be thoroughly checked and
corrected before being entered into the database, and any further errors
that require correction should be dealt with as soon as possible. If data
entry is undertaken soon after the subject is studied, any ambiguous or
missing information can be replaced by contacting the subject to verify the
data. Also, if data collection is ongoing, information of recurring errors can
lead to more accurate data collection techniques being developed for use
in the remainder of the study.

Data entered into a computer database must always be verified, that is
checked by a second operator, to ensure they are correct. Commercial com-
panies often ‘double enter’ the data for this purpose. If this procedure is
not adopted, then a random one in five or one in ten sample of the data
should be re-entered by an operator who is blinded to the initial data entry
values. The two databases can then be cross-checked to identify the rate
of occurrence of any inconsistencies in data entry. All errors that are
detected in a research database, together with details about their correc-
tions, should be recorded in the data management manual.

If data are commercially entered they will need to be exported (sent
back to you) in a suitable format. The most versatile format is ‘comma
delimited’, i.e. the items are separated in the electronic file by commas,
because this can be easily read into most programs. An alternative format
is ‘tab delimited’ and can be read by most programs but because this for-
mat requires extra storage space, it is only practical if the records for each
subject are quite short. If the records are long, it may be better to use ‘field
format’ with each data item appearing in a set column and without any
gaps left between fields. In this case, the field positions need to be very
carefully specified when importing the data into the database.
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Alphabetic strings

Numeric coding usually simplifies data analysis because statistical packages
and spreadsheets are primarily designed to handle this type of information.
Although many packages can handle alphabetic strings, the strings need to
be kept short and have to be case, length and spelling consistent. Some
statistical packages are able to group subjects using alphabetic strings, but
others are not so that the information has to be recoded eventually.
Computer packages usually allow most types of data to be recoded if
necessary, although the process can be tedious. In general, it is more time
and cost effective for both data management and data analysis to code
replies numerically at the time of data collection using efficient data
recording forms (see Chapter 3). This maintains the efficiency of the study
by minimising the amount of missing data and optimises repeatability and
validity by minimising the number of errors and inconsistencies.

Missing values

For efficient data analyses, missing values should be given a non-numerical
missing code so that they cannot be inadvertently incorporated into analy-
ses. Missing values that are coded as ‘.’ (i.e. a full stop) are preferable
because they are consistently treated as missing values in all analyses. On
the other hand, missing values that are coded as numeric values such as
0, 9 or 99 can be inadvertently incorporated into analyses. It is also impor-
tant to decide if ‘don’t know’ replies will be coded as negative responses
or treated as missing values.

Database management

After the data are entered into the database, they need to be examined
carefully using range checks to identify any outliers in the data. Other
techniques such as sorting the data or conducting visual checks of data lists
can be used to ensure any obvious inadvertent errors and illogical values
have not occurred. This needs to be undertaken for all data sets, but
especially when a commercial company or other data entry personnel
who have no knowledge or insight into the meaning of the data values,
have entered the data. In addition, if indirect methods of data entry are
used, the accuracy of all fields in the database should be cross-checked to
ensure that all transfers and recodes or recalculations are correct. Value
labels and variable labels need to be coded into the database at this stage
to ensure that all statistical output is self-documented.
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If more than one instrument has been used to collect data, then several
records may have to be matched together. To do this, it is important to
match on at least two unique fields such as name and identification
number. Matching by a single field alone is not enough to ensure that
errors in collation do not occur. Before matching begins, be sure to check
for duplicates in all of the key fields being used.

Connectivity software

Connectivity software is a computer facility that allows statistical and
spreadsheet packages to ‘look into’ the database and read the data. For
research purposes, a relational database is the most appropriate method
for storing data. If connectivity software is available, an added advantage of
using a relational database is that the data can be analysed directly without
being exported to another file and then imported into specialist statistical
software.

The use of connectivity software prevents the need for multiple versions
of the data being stored as separate files and, as such, ensures optimal data
integrity at all stages in the data collection, data management and data
analyses processes. To facilitate summarising or analysing the data, the
database can be accessed in read-only mode to protect its integrity. More-
over, data analyses can be very readily updated following any corrections or
additions to the data set. This approach also circumvents the processes of
exporting, importing and documenting various versions of data sets at
several points during the data analyses. The investment made in setting up
a relational database and becoming competent in methods of using connec-
tivity software are more than offset by an increased confidence in the data
analyses and in the results.

Security and subject confidentiality

The security of the database will need to be addressed in terms of access by
other users, subject confidentiality and back-up in case of loss. In order that
the data in the database cannot be altered inadvertently, the write privileges
of the researchers who need to access the database can be restricted.

Only one master database for each data set should be maintained, and
this should be the entire data set in which all errors are corrected, as they
become obvious. An archived copy of the final, corrected database can
then be used reliably at a later date, for example for a follow-up study. At
all times, a back-up (duplicate) copy of the master database must be kept
in safe storage in case of fire, theft or computer failure. In institutions where
a computer network is in place, this process is often the responsibility of
the computer department.
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Exporting data for data analyses

When connectivity software is not available, abbreviated working files or
spreadsheets can be created for undertaking essential clerical tasks and data
analyses. In such situations, corrections should always be made on the main
file so that a single, high quality master database is maintained at all times.

Working files are often abbreviated files that do not have identifying or
contact information of the study subjects or information that is not being
used in specific analyses. In their shortened forms, working files save
computing time during data analyses. To maintain subject confidentiality
and ethics agreements, fields that identify the subject can be omitted from
work files and made invisible to people who have access to the database.
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Section 1—Planning analyses

The objectives of this section are to understand how to:
• plan the data analysis stage of a research study;
• deal with missing data and errors;
• categorise variables for statistical analysis; and
• document the process of data management and analysis.

Sequence for data analysis 182
Beginning the analyses 183
Missing data 184
Outliers 184
Categorising variables 184
Documentation 185
Limiting the number of analyses 185

Sequence for data analysis

Analysing the data and interpreting the results is one of the most excit-
ing stages in a research study because this provides the answers to the
study questions. However, this stage is one of the crucial stages in the quest
for truth so it is important that the process is undertaken in a careful
and considered way.

There have been many examples of results being published and the
conclusions then being reversed following a later re-analysis of the data.1
To avoid this, it is important that data are treated carefully and analysed
slowly by people who are familiar with their content and their nature.
Data analyses also need to be planned and undertaken in a logical and
considered sequence to avoid errors or misinterpretation.

It is especially important that all steps in data analyses are documented
so that anyone can see how the results were obtained. This is easily
achieved by maintaining a log book in which programs that are run to
obtain results are recorded together with the results of the data analyses
and the date that they were generated, and information of the location and
documentation of the files. With this approach, the results of analyses can
be easily back-tracked and cross-checked if any anomalies become apparent.
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When analysing data, it is always prudent to tread a conservative path
and to maintain scientific correctness when considering procedures such as
omitting records, recoding outliers or re-grouping data, and when choosing
the types of analysis that will be used. Keep in mind that it is misleading,
and perhaps unethical, to use numbers in a way that produces statistically
significant but clinically spurious results. Conversely, it is extremely satis-
fying and professional to conclude a study in the knowledge that the data
have been correctly analysed and reported. The sequential procedures for
data analysis are discussed below and are shown as a checklist in Table 6.1.

Table 6.1 Checklist for analysing data

Univariate analyses
❑ Conduct distribution and frequency checks of variables
❑ Deal with missing values and outliers
❑ Recode groups and transform continuous variables if necessary
❑ Re-run distribution and frequency checks
❑ Document variable profiles in study handbook
Bivariate and multivariate analyses
❑ Categorise information into outcome, intervening or explanatory

variables
❑ Conduct bivariate analyses to test for significant associations
❑ Check pair-wise plots for non-linearity and for outliers
❑ Limit analyses to those needed to test prior hypotheses
❑ Undertake multivariate analyses

Beginning the analyses

In general, any data analyses should progress through the logical steps of
first conducting univariate analyses before progressing to the bivariate and
then the multivariate analyses. By conducting univariate analyses before
beginning any bivariate analyses, frequency distributions and content of
each variable can be carefully inspected. This allows the data analyst to
become familiar with the nature of data and gain insight into the range of
values, possible miscoded or missing data, and any skewness in each vari-
able. Without doing this, anomalies in the results of analyses may not
always be obvious. When data are not normally distributed, transformations
or the use of non-parametric statistics will be required. Once the data are
corrected or transformed, information on their ranges and summary statis-
tics should be stored in the data log book for future reference.
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Missing data

Missing data must be treated very carefully. Missed data that occur in a
random pattern reduce statistical power but rarely affect the results.
However, missing data that occur in a non-random pattern may affect
generalisability. For example, if people in high income brackets consistently
omit to reply to a question about their salary range, then the results that
are categorised by this variable can only be generalised to people in lower
income brackets. The extent to which this type of bias is unacceptable
can be assessed by examining the differences in outcome values or in the
proportion of subjects with a disease in the groups with and without
missing data.

Data with missing values should always be included in statistics such
as prevalence rates but usually have to be excluded from bivariate or
multivariate analyses. For continuous data, missing values can sometimes
be substituted with a median or mean value. Using the mean for the total
sample is a conservative substitution that leads to a loss of variance in
the data. However, use of the subgroup mean or median is a less con-
servative approach.

Outliers

Outliers may be incorrect values or may be anomalies. Because these values
have a larger influence on summary statistics than each of the valid data
points, they have the potential to lead to type I or type II errors especially
when the sample size is small. If outliers are included in the analyses, it is
possible that the results may not generalise to an average population
because the summary statistics are over- or under-estimated. To remedy
this, the outlying value can be deleted or replaced. If the value is replaced,
it is probably better to recode it to a value closer to the mean so that it
is not unduly influential.

Categorising variables

Before beginning any bivariate or multivariate analyses, the variables need
to be categorised into the types shown in Table 6.2. This will help to avoid
distortion or lack of precision in summary estimates that occur when var-
iables are not considered appropriately. The appropriate methods for clas-
sifying variables and for including confounders and effect-modifiers in
multivariate models are outlined in Chapter 3.
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Table 6.2 Categorisation of variables for data analysis

Variable Alternative names Axis for plots

Outcome variables Dependent variables (DVs) y-axis

Intervening variables Secondary or alternative
outcome variables

y-axis

Explanatory variables Independent variables (IVs)
Risk factors
Exposure variables
Predictors

x-axis

Documentation

Every stage in the process of collecting data, coding responses, and making
decisions about data management must be documented clearly in a data
management file. In addition to keeping information about file structures,
file locations, coding protocols and treatment of missing values and outliers,
print-outs of all analyses should be stored together with the data transfor-
mations that were used for each one. All print-outs should be labelled with
a date and information of the file location. Science is a quest for truth,
and it is important that fellow researchers can access a database and obtain
identical results from repeat analyses in order to validate the findings or
further explore the data.

Limiting the number of analyses

If the data are being accrued gradually, it is important to avoid bias that
can be caused by undertaking sequential interim analyses. It is usual, and
prudent, to wait until the data set is complete and has been edited
and corrected before statistical analyses begin. The processes for reducing
bias that occurs as a result of conducting interim analyses are discussed in
Chapter 4.

Careful thought should also be given to using data for purposes for
which it was not collected. This practice is often called ‘data dredging’ or
‘fishing expeditions’. Analyses that test all possible relationships between
all variables are much more likely to produce spurious information than
analyses that test relationships that have a sound scientific background.
Cross-sectional and case-control studies lend themselves most to these
practices. To avoid random significant findings (type I errors), it is best to
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limit the analyses to those that provide information about the frequency
distribution of the variables and that only test hypotheses that were formed
prior to data analysis.

On the other hand, new ideas emerge over time and the use of existing
data sets to explore new ideas can conserve resources and maximise effi-
ciency. If the study design is appropriate, existing data can be used to
explore possible relations between potential risk factors and outcomes, or
to generate new hypotheses. The need to reduce the possibility of type I
errors has to be balanced with the possibility of type II errors. The failure
to detect an association if one exists, which may occur if the analysis is
not conducted, can be considered to be a type II error.2 Also, the reality
is that adjustments for multiple comparisons in the form of reducing the
critical P value to �0.01 or �0.001 do not allow for a valid comparison
of the results from different studies.3 If the data are of high quality, then
the validity of results that were not anticipated at the beginning of the
study will not be affected and the quality of the data does not change if
another hypothesis is tested.4

When undertaking data analyses, it is clearly important to only test a
hypothesis that has biological plausibility, whether it be a prior hypothesis
or a new hypothesis that has arisen since the study began. This approach
will conserve resources and stimulate research ideas whilst minimising the
potential to provide misleading information.
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Section 2—Statistical methods

The objectives of this section are to understand how to:
• use a logical pathway for conducting statistical analyses;
• decide which statistical tests to use;
• describe the accuracy of the estimates; and
• judge whether to adjust for baseline characteristics.

Statistical analyses 187
Univariate methods 188
Categorical data analyses 188
Categories with small numbers 188
Continuous data 189
Confidence intervals 193
Baseline comparisons 195
Bivariate and multivariate methods 196
Intention-to-treat analyses 199

Statistical analyses

Conducting the statistical analyses can be one of the most exciting parts of
a study. Once all of the error corrections to the data have been made, it is
vital that the correct statistical analyses are used so that the results can be
interpreted accurately and correctly. There are many excellent statistical
books that explain how to conduct, understand and interpret the multitude
of statistical tests that are available. This section is intended as a guide to
proceeding logically through the data analyses stage of a study by handling
the data correctly and by selecting the correct statistical test. When critically
appraising a published study, the statistics pathways can also be used as a
guide to deciding whether the correct statistics have been used.

In designing research studies, we often plan to select a sample of subjects
and use their data as a ‘best estimate’ of the population from which they
were sampled. Thus, we use statistical analyses to produce summary infor-
mation for a sample of subjects. In practice though, statistics such as the
mean value or prevalence rate that we obtain from our sample are usually
slightly different from those of the population from which the subjects were
drawn. This is known as ‘sampling variability’. In this chapter, we describe
the statistics that can be used to describe the characteristics of study samples
and to make inferences about the population in general.
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Univariate methods

The first step in data analysis is to examine the frequencies of the categorical
variables and the distributions of the continuous variables. This process will
lead to an inherent understanding of the nature of the data that has been
collected and to selecting the correct statistics that must be used for the
analyses.

Categorical data analyses

For categorical data, histograms and frequency counts will show whether
any groups with small numbers need combining with other categories. These
counts will also indicate whether chi-square statistics, non-parametric tests
or exact statistics need to be used in analyses and, if chi-square is being
used, whether Pearson’s chi-square, a continuity-correction chi-square or
Fisher’s exact test is the appropriate method (Chapter 7). A pathway for
deciding which chi-square test to use for categorical data is shown in
Figure 6.1.

Figure 6.1   Pathway for analysis of categorical data

Categories with small numbers

Because categories with small numbers can have surprisingly large effects
on statistical results, it is often prudent to merge some categories together
if it makes sense to do so. This can be undertaken by inspecting the dis-
tribution of each variable to decide which cells need to be combined or
where new boundaries for grouping variables are most sensibly created. To
avoid post-hoc analyses, this procedure should be undertaken before any
bivariate or multivariate analyses are performed.

 

 

Image Not Available 
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The categories that are used in the data analyses must be meaningful
and must preferably be in concordance with any prior evidence of effect.
For example, if an effect has been shown to be different between subjects
above and below the age of 35 years, then it is best not to divide the sub-
jects into groups of �30 years, 30–39 years and �40 years of age. If the
data are particularly sparse, the optimum number of categories will be two
or three and it is unlikely that anything will be gained by maintaining a
larger number. In multivariate analyses, an average of at least ten subjects
in each cell in a contingency tabulation of the data is required. Table 6.3
shows how reducing each variable to a small number of categories helps to
maintain statistical power.

Table 6.3 Increase in sample size required for multivariate analyses as
the number of categories for each variable increases

Number of categories

Disease outcome 2 2 3

Exposure variable 2 2 3

Confounder I 2 3 4

Confounder II 2 3 4

Number of cells in contingency table 16 36 144

Minimum sample size required 160 360 1440

Continuous data

When variables are continuous in nature, it is important to know whether
they are normally distributed or whether the distribution is skewed. If the
distribution does not approximate normality, then methods to transform
the data need to be explored or non-parametric statistics will need to be
used. In practice, it is preferable to use parametric statistics whenever possible
because they provide greater statistical power than non-parametric statistics
for the same sample size. A pathway for analysing continuous data is shown
in Figure 6.2.
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Figure 6.2   Pathway for analysis of continuous data

Much information about the distribution of continuous variables can be
gained from simply calculating summary statistics such as the mean, stan-
dard deviation, median and range for each variable.5 The data will be close
to normally distributed if the mean is close to the centre of the range, that
is the median value. It is also useful to inspect a frequency histogram of
the data to assess whether the distribution is truly skewed or whether a few
outliers are responsible for the mean and the median being unequal.
Figures 6.3 and 6.4 show how the mean and median values are very close
to one another for a normal distribution but become increasingly different
if the distribution is skewed.

Figure 6.3   A normal distribution
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A normal distribution showing that the mean and median are identical.
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Figure 6.4   A skewed data distribution
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A skewed data distribution showing how the mean is an over-estimate of the median
value, and is therefore not an accurate description of the centre of the distribution.

Glossary

Term Interpretation Meaning

Mean Average value Measure of the central tendency of
the data

Median ‘Centre’ of data Point at which half of the
measurements lie below and half lie
above this value

Standard
deviation

Measure of
spread

95% of the measurements lie within
two standard deviations above and
below the mean

Range Measure of
spread

Lowest to highest value

Standard error Measure of
precision

The interval of two standard errors
above and below the mean indicates
the range in which we can be 95%
certain that the ‘true’ mean lies

95% confidence
interval

Measure of
precision

Interval around a summary statistic in
which we are 95% certain that the
‘true’ estimate lies
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Because normal statistics do not describe skewed data with any accu-
racy, data that are not normally distributed have to be transformed to nor-
mality or non-parametric statistics need to be used. If the mean and median
values are not known, as is often the case when judging published results,
a useful trick to judge whether normal statistics are reliable for describing
the data is to calculate the 95 per cent range as follows:

95% range � Mean � 2 SDs to Mean � 2 SDs

These two values should represent the range in which 95 per cent of the
data points would lie if the measurement were normally distributed. If either
of these two values is an important distance outside the true range of the
measurements, then the distribution must be skewed. This problem can be
seen in Example 6.1.

Example 6.1 Reporting of baseline characteristics6

% predicted normal value Nebulizer group Inhaler group P
For FEV1 37.5 � 16.6 36.1 � 15.2 0.80
For FVC 55.4 � 18.8 54.2 � 18.4 0.86

The baseline characteristics of the lung function of the groups in the
study shown in Example 2.3 in Chapter 2 were reported as the mean
and 1 standard deviation as shown above. If the data were described
well by these statistics, the 95% range of the FEV1 in the nebulizer
group can be calculated as follows:

95% range � 37.5 � (2 � 16.6)
� 4.3–70.7%

No subject could have an FEV1 as low as 4.3% of predicted. What is
more likely is that there were a few subjects with very low values so
that the data were skewed with a tail to the left and the mean under-
estimated the median value. In this case, the median and inter-quartile or
absolute range would have been more accurate statistics with which to
describe these data.

In addition, it was not necessary to undertake statistical tests and
compute P values because the study hypothesis was not that the two
groups would have different values. In fact, the P value will be
inaccurate because a t-test has been used when the data are not
normally distributed. A simple visual inspection of the data is sufficient to
show that the two groups do not have a clinically important difference in
terms of baseline lung function.

When reviewing journal articles in which only the standard error is
given, the standard deviation can be simply derived using the formula:

SD � SE � �n

If normal statistics have been used when the data are skewed, then the
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mean value will be inaccurate and the conclusions drawn from the results
of the parametric analyses may be inaccurate. If the data are skewed to
the right, the mean will be an over-estimate of the median value, and if
the data are skewed to the left, the mean will be an under-estimate of the
median value. However, it is often difficult to estimate whether the
significance of the difference between two groups will have been under-
estimated or over-estimated as a result of skewness in the data.

Confidence intervals

The 95 per cent confidence interval is an estimate of the range in which
there is a 95 per cent probability that the true summary statistic lies and,
as such, indicates the precision with which the summary statistic has been
measured. The 95 per cent confidence interval should not be confused
with the interval defined by the mean � 2 SDs. The interval defined by
the mean � 2 SDs is the range in which 95 per cent of the data points
lie. The 95 per cent confidence interval, which is an estimate of pre-
cision, complements the information obtained by summary statistics such
as estimates of incidence, prevalence, mean values, odds ratios etc., and can
easily be calculated using a statistical computer program or the computer
program CIA.7

When comparing summary statistics between two or more groups, the
extent to which the confidence intervals overlap indicates whether there
are any statistically significant differences between groups. Some simple rules
that can be applied to confidence intervals are shown in Table 6.4. An
explanation of how the extent of the overlap reflects the P value is shown
in Example 6.2. These rules can be applied to many summary statistics such
as prevalence rates, mean values, mean differences and odds ratios.

Table 6.4 Visual interpretation of confidence intervals for summary
statistics such as prevalence or incidence rates, mean
values, odds ratios etc.

Relative position of confidence
intervals

Statistical significance between
groups

Do not overlap Highly significant difference
Overlap, but one summary statistic
is not within the confidence interval
for the other

Possibly significant, but not highly

Overlap and one summary statistic
is within the interval for the other

Probably not significant

Overlap to a large extent Definitely not significant
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Figure 6.5   Interpretation of the overlap of the 95% confidence intervals
in three study groups
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Example 6.2 Interpretation of overlap of confidence intervals

Group A vs C P�0.002
Group A vs B P�0.402
Group B vs C P�0.048

An example of the relation between the overlap of 95% confidence
intervals and P values is shown in Figure 6.5. From the figure, it can be
seen that the incidence rates in groups A and C are significantly different
because the 95% confidence intervals for the two groups do not overlap.
This confirms the P value of 0.002 for the difference between groups A
and C.

Similarly, it can be seen that the incidence rates in groups A and B
are not significantly different because the 95% confidence intervals
overlap and the incidence in group B is with the upper interval of
group A. This confirms the P value of 0.402 for the difference between
groups A and B.

However, the incidence rate in group C is not within the upper interval
for group B and the 95% confidence intervals overlap to a small extent.
This confirms the P value of 0.048 for the difference between groups B
and C, which is of marginal significance.
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Baseline comparisons

In many studies, the first analysis is usually to compare the characteristics
of the subjects in each group in order to estimate whether important con-
founders are evenly balanced between the study groups or whether there
are any important biases that may explain the results. In randomised trials,
the randomisation procedures should ensure that characteristics are quite
evenly balanced between the study groups but in other studies such as non-
randomised trials, small trials or case-control studies, further statistical
methods may be needed to reduce the effects that can result from an im-
balance of confounders.

When reporting the baseline characteristics of continuously distributed
variables, it is important that information of the mean and its standard
deviation is given. The standard error and the closely related 95 per cent
confidence interval are not appropriate statistics to use in this situation
because they are estimates of precision.8 When comparing baseline char-
acteristics, we are actually interested in whether the spread of the data is
comparable in the study groups, not whether we have estimated the mean
value of each characteristic with precision.

Similarly, significance tests are not a valid method with which to assess
whether the groups are comparable. Statistical significance depends on
many features of the data including the sample size, the size of the standard
deviation and the number of tests conducted. If twenty characteristics were
compared with significance tests, we would expect that one of the tests
would be significant at the P�0.05 level merely by chance variation.
Rather than using statistical tests, the absolute differences in baseline
characteristics between groups are better judged in terms of their clinical
importance, prior knowledge of their effects and their ability to influence
the outcomes of the study. Any differences that are judged to be important,
regardless of statistical significance, should be adjusted for using multi-
variate analyses such as multiple or logistic regression.9 If no important
differences are evident, then the data analyses are usually a quite simple
comparison of outcomes between study groups.

Table 6.5 shows the baseline characteristics of four study groups enrolled
in a randomised controlled trial.10 The authors have correctly reported the
number of each gender in each group and the means of other baseline char-
acteristics without performing any significance tests. However, in this study,
the standard deviations are not a good description of the spread of the data
of age and duration of illness because a quick calculation of the mean
� 2 standard deviations gives a range that includes negative values for
both variables. In this study, the data for these variables are skewed and
therefore the median age and duration of illness with the inter-quartile
range would have been more accurate statistics with which to describe the
baseline characteristics.
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Table 6.5 Baseline characteristics of study groups in the double-blind
randomised controlled trial shown in Example 2.1 in
Chapter 211

Treatment group

Characteristic Placebo
group 1
N�49

Placebo
group 2
N�49

Active
group 1
N�51

Active
group 2
N�51

Gender

Male 21 24 29 31

Female 28 25 22 20

Age in months

(mean � SD)

(range)

14.0 � 14.3

(2–71)

17.8 � 29.0

(2–187)

15.1 � 10.4

(2–52)

15.2 � 12.3

(2–62)

Duration of illness

before admission

(hr) (mean � SD)

34 � 21 42 � 26 35 � 30 55 � 42

Bivariate and multivariate methods

Once the research question has been framed, the distribution of each variable
is evident, the variables have been categorised into outcome, intervening
or explanatory variables (Chapter 3) and the baseline characteristics have
been investigated, the statistical analyses are usually quite straightforward.
Table 6.6 shows how to use the flowcharts shown in Figures 6.6 to 6.8 that
provide a guide to selecting the correct statistical analysis for the data set
being analysed.

Table 6.6 Guide to statistical decision flowcharts

Condition Figure

One outcome variable Figure 6.6

Two variables Figure 6.7

More than two variables Figure 6.8
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When selecting a statistical method to calculate P values, it may be
more informative to also calculate complementary descriptive statistics.12

For example, if 30 per cent of the control group in a study develop an
illness compared to 10 per cent of the intervention group, then it may be
more relevant to report this as a risk reduction of 20 per cent rather than
to simply compute a chi-square value. The confidence interval around this
risk reduction, which will depend on the sample size in each study group,
will provide further information of the precision of this estimate. Finally, a
graph to demonstrate the size of the difference between any reported statistics
will help in the clinical interpretation of the results.

Figure 6.6   Decision flowchart for analyses with only one outcome variable

 

 

Image Not Available 
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Figure 6.7   Decision flowchart for analyses with two variables

 

 

Image Not Available 
 



199

Analysing the data

Figure 6.8   Decision flowchart for analyses involving more than
two variables

Intention-to-treat analyses

Intention-to-treat analyses are based on maintaining all of the subjects in
the groups into which they were initially randomised regardless of any sub-
sequent events or unexpected outcomes. In randomised trials in which
intention-to-treat analyses are not used, the clinical effect that a treatment
can be expected to have in the general community may be over-
estimated.13

In intention-to-treat analyses, it is important not to re-categorise sub-
jects according to whether they changed treatment, were non-compliant or
dropped out of the study. In essence, intention-to-treat analyses have the
effect of maintaining the balance of confounders between groups that the
randomisation process ensured. Intention-to-treat analyses also minimise
the effects of selection bias caused by subjects who drop out of the study
or who are non-compliant with the study treatments.

It is sometimes difficult to include drop-outs in intention-to-treat anal-
yses because the data of their final outcomes are not available. For subjects
who do not complete the study, the final data collected from each subject
should be included in the intention-to-treat analysis regardless of the
follow-up period attained.

The benefits of using intention-to-treat analysis are shown in Table 6.7.
Intention-to-treat analyses provide an estimation of the expected effect that
a new treatment or intervention will have in a similar sample of patients.
However, these types of analyses will almost always under-estimate the
absolute effect of the intervention on the study outcome in subjects who
are highly compliant. For this reason, intention-to-treat analyses may be

 

 

Image Not Available 
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Glossary

Term Meaning

Intention-to-treat
analyses

Analyses based on maintaining all subjects in the
analyses in the groups to which they were
originally randomised and regardless of dropping
out

Restricted or
preferred analyses

Analyses limited to compliant subjects only, that
is subjects who complete the study and who are
known to have maintained the treatment to which
they were randomised

As-treated analyses Analyses in which subjects are re-grouped
according to the treatment they actually received,
which may not be the treatment to which they
were randomised

misleading if the study is badly designed or is conducted in a way that does
not maximise compliance.14 In practice, intention-to-treat analyses are a
good estimate of the effectiveness of treatments or interventions in which
the effects of bias and confounding have been minimised, but they will
almost certainly under-estimate efficacy.

Table 6.7 Features of intention-to-treat analyses

• maintain the balance of confounders achieved by randomisation
• avoid a preferred analysis based on only a subset of subjects
• ensure that subjective decisions about omitting some subjects from

the analysis do not cause bias
• minimise the problems of drop-outs and protocol violations
• may require ‘last values’ being used in the analysis if subjects cannot

be followed
• usually under-estimate ‘pure’ treatment effects and thus are used to

measure effectiveness and not efficacy

In some studies, a pragmatic approach may be adopted in which both
an intention-to-treat analysis and an ‘as-treated’ analysis that includes only
the subjects who are known to have complied with the protocol are pre-
sented. It is appropriate to included as-treated analyses, which are some-
times called per-protocol analyses, when the condition of the patient changes
unexpectedly and it becomes unethical to maintain the treatment to which
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they have been allocated. However, analyses by intention-to-treat, by com-
pliers only or using ‘as-treated’ criteria may provide very different results
from one another and should be interpreted with caution.15 The process of
adjusting for estimates of compliance using more sophisticated analyses that
take into account compliance information, such as pill counts, can become
complicated. Compliance often fluctuates over time and is rarely an all or
nothing event so that odds ratios of effect in groups of subjects with poor,
moderate and good compliance may need to be compared.16

An example of dual reporting is shown in Table 6.8. In studies such as
this, in which the two analyses provide different results, it is important to
recognise that the restricted analysis is likely to be biased, may not be bal-
anced for confounders and will provide an over-optimistic estimate of the
treatment effects than could be attained in practice.

Table 6.8 Results of an intention-to-treat analysis and an analysis
restricted to children actually receiving the active treatment
in a controlled trail of diazepam to prevent recurrent febrile
seizures17

Reduction of seizures Relative risk of seizure
when treated with

diazepam

Intention-to-treat
analysis

44% 0.56 (95% CI 0.38, 0.81)

Restricted analyses 82% 0.18 (95% CI 0.09, 0.37)
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Section 1—Repeatability

The objectives of this section are to understand how to:
• assess the precision of a measurement;
• design a study to measure repeatability;
• estimate various measures of repeatability and understand how

they relate to one another;
• estimate repeatability when there are more than two

measurements per subject; and
• interpret the results when they are displayed graphically.

Measuring repeatability 205
Repeatability of continuous measurements 206
Influence of selection bias 209
Sample size requirements 209
Measurement error from two measurements per subject 209
Use of paired t-tests 212
Comparing repeatability between two groups 212
Mean-vs-differences plot 213
Measurement error calculated from more than two measurements

per subject 217
Interpretation 220
Intraclass correlation coefficient 221

Method 1 221
Method 2 223
Method 3 224
P values and confidence intervals 224

Relation between measurement error and ICC 224
Inappropriate use of Pearson’s correlation coefficient and coefficient

of variation 226
Coefficient of variation 226
Repeatability of categorical data 226
Repeatability and validity 228
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Measuring repeatability

In any research study, the accuracy with which the observations have been
measured is of fundamental importance. Repeatability is a measure of the
consistency of a method and, as such, is the extent to which an instrument
produces exactly the same result when it is used in the same subject on
more than one occasion. Measurements of repeatability are sometimes
referred to as reproducibility, reliability, consistency or test-retest variability—
these terms are used interchangeably to convey the same meaning.

An instance of a study in which the repeatability of an instrument was
measured is shown in Example 7.1. The statistical methods that can be used
to assess repeatability are summarised in Table 7.1.

Example 7.1 Study to test repeatability
Childs et al. Suprasternal Doppler ultrasound for assessment of stroke
distance.1

Characteristic Description

Aims To assess the repeatability of Doppler ultrasound
measurements for measuring cardiac output (stroke
distance) in children

Type of study Methodology study

Sample base Healthy primary and pre-school children

Subjects 72 children age 4–11 years

Outcome
measurements

Six measurements of stroke distance using Doppler

Explanatory
measurements

Heart rate, age, height, weight, gender

Statistics Measurement error, mean-vs-differences plot

Conclusion • the stroke distance measurements vary by up to 2 cm
• between-operator variation was � 5.3 cm
• there was a modest correlation between stroke

distance and age and heart rate

Strengths • the order of the operators was randomised
• the operators were blinded to the stroke distance value
• correct statistical analyses were used

Limitations • only healthy children were enrolled so the results
cannot be extrapolated to children with cardiac
problems
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Table 7.1 Statistical methods for assessing within-subject, within-
observer and between-observer repeatability

Type of data Statistical test

Continuous
data

Measurement error
Paired t-test and Levine’s test of equal variance
Mean difference and 95% confidence interval
Mean-vs-differences or mean-vs-variance plot
Intraclass correlation coefficient

Categorical
data

Kappa
Proportion in agreement
Average correct classification rate

For continuously distributed measurements, repeatability is best assessed
using both the measurement error and the intraclass correlation coefficient
(ICC) to give an indication of how much reliance can be placed on a single
measurement. In addition, a mean-vs-differences plot, or a mean-vs-variance
plot for when more than two repeated measurements are taken, can be
used to estimate the absolute consistency of the method or whether there
is any systematic bias between measurements taken for example on different
days or by two different observers.2

Measurement error is used to assess the absolute range in which a sub-
ject’s ‘true’ measurement can be expected to lie. For continuous measure-
ments, measurement error is often called the standard error of the
measurement (SEM) or described as Sw. To complement the information
provided by estimates of the measurement error, ICC is used to assess
relative consistency and a mean-vs-differences or mean-vs-variance plot is
used to assess the absolute consistency of the measurements and the extent
of any systematic bias.

For categorical measurements, repeatability is often called misclassifi-
cation error and can be assessed using kappa, the proportion in agreement
and the average correct classification rate.

When assessing the repeatability of either continuous or categorical
measurements, we recommend that the full range of repeatability statistics
shown in Table 7.1 is computed because the calculation of one statistic in
the absence of the others is difficult to interpret.

Repeatability of continuous measurements

Variation in a measurement made using the same instrument to test the
same subject on different occasions can arise from any one of the four
sources shown in Table 7.2.
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Table 7.2 Sources of variation in measurements

• within-observer variation (intra-observer error)
• between-observer variation (inter-observer error)
• within-subject variations (test-retest error)
• changes in the subject following an intervention (responsiveness)

Within-observer variation may arise from inconsistent measurement
practices on the part of the observer, from equipment variation or from vari-
ations in the ways in which observers interpret results. Similarly, within-
subject variations may arise from variations in subject compliance with the
testing procedure, or from biological or equipment variations. These sources
of variation from the observer, the subject, and the equipment prevent us
from estimating the ‘true’ value of a measurement. The two statistics that
can be used to estimate the magnitude of these sources of variation are the
measurement error, which is an absolute estimate of repeatability, and the
ICC, which is a relative estimate of repeatability. The interpretation of
these statistics is shown in Table 7.3 and the methods for calculating these
statistics are described in detail below.

Table 7.3 Methods of describing repeatability such as within-observer,
between-observer and between-day variations in
measurements

Measurement Interpretation

Measurement error Measure of the within-subject test-retest
variation—sometimes called the standard error
of the measurement (SEM)

95% range Range in which there is 95% certainty that the
‘true’ value for a subject lies—sometimes
called the ‘limits of agreement’

Mean-vs-differences or
mean-vs-variance plot

Plot used to demonstrate absolute
repeatability and to investigate whether the
test-retest error is systematic or random
across the entire range of measurements

Intraclass correlation
coefficient

Ratio of the between-subject variance to the
total variance for continuous measurements—
a value of 1 indicates perfect repeatability
because no within-subject variance would be
present

Cont’d
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Table 7.3 Cont’d Methods of describing repeatability such as within-
observer, between-observer and between-day variations
in measurements

Measurement Interpretation

Paired t-test, mean
difference and 95%
confidence interval

Statistical method to test whether the test-
retest variation is of a significant magnitude
and to describe the average magnitude of the
test-retest differences

Levine’s test of equal
variance

Statistical method to test whether there is a
significant difference in repeatability between
two different study groups

Kappa A statistic similar to ICC that is used for
categorical measurements—a value of 1
indicates perfect agreement

Proportion in
agreement and
average correct
classification rate

Measurements used to describe the absolute
repeatablility for categorical measurements

The ICC is a relative estimate of repeatability because it is an estimate
of the proportion of the total variance that is accounted for by the vari-
ation between subjects. The remaining variance can then be attributed to
the variation between repeated measurements within subjects. Thus, a high
ICC indicates that only a small proportion of the variance can be attrib-
uted to within-subject differences. In contrast, the measurement error gives
an estimate of the absolute range in which the ‘true’ value for a subject is
expected to lie.

When we test a subject, we hope to obtain the ‘true’ value of a meas-
urement but factors such as subject compliance and equipment errors result
in variation around the true estimate. The amount of measurement error
attributable to these sources can be estimated from the variation, or stan-
dard deviation, around duplicate or triplicate measurements taken from the
same subjects.

The study design for measuring repeatability was discussed in Chapter 2.
Basically, repeatability is estimated by taking multiple measurements from a
group of subjects. It is common to take only two measurements from each
subject although a greater number, such as triplicate or quadruple measure-
ments, gives a more precise estimate and can be used to increase precision
when the number of subjects is limited.
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Influence of selection bias

Because both the measurement error and the ICC are influenced by selec-
tion bias, the unqualified repeatability of a test cannot be estimated. The
measurements of ICC and measurement error calculated from any study
are only applicable to the situation in which they are estimated and cannot
be compared between studies in which methods such as the subject selection
criteria are different.

Estimates of ICC tend to be higher and measurement error tends to be
lower (that is both indicate that the instrument is more precise) in studies
in which there is more variation in the sample as a result of the inclusion
criteria.3 This occurs because the between-subject variation is larger for the
same within-subject variation, that is the denominator is larger for the same
numerator. For this reason, measurements of ICC will be higher in studies
in which subjects are selected randomly from a population or in which
subjects with a wide range of measurements are deliberately selected.
Conversely, for the same instrument, measurements of ICC will be lower
in studies in which measurements are only collected from clinic attenders
who have a narrower range of values that are at the more severe end of the
measurement scale.

In addition, estimates of measurement error and ICC from studies in
which three or four repeated measurements have been taken cannot be
compared directly with estimates from studies in which only two repeated
measurements are used. Such comparisons are invalid because a larger
number of repeat measurements from each subject gives a more precise
estimate of repeatability.

Sample size requirements

The sample size that is required to measure repeatability is discussed in
Chapter 4. To calculate ICC, a minimum of 30 subjects is needed to ensure
that the variance can be correctly estimated. Of course, a sample size of
60–70 subjects will give a more precise estimate, but a sample larger than
100 subjects is rarely required.

Measurement error calculated from two measurements per
subject

To establish the measurement error attributable to within-subject variation,
analyses based on paired data must be used. For this, the mean difference
between the two measurements and the standard deviation of the differ-
ences has to be calculated. The measurement error can then be calculated
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by dividing the standard deviation of the differences by the square root of
2, that is the number of measurements per subject,4 i.e.:

Measurement error � SD of differences / �2

Table 7.4 shows measurements of weight in 30 subjects studied on two
separate occasions. The four columns of the differences, differences squared,
sum and mean are used for calculations of repeatability and ICC that are
described later in this section. From the table, the mean difference between
the weights measured on two occasions is 0.22 kg and the standard deviation
of the differences is 1.33 kg. From the equation shown above:

Measurement error � SD of differences / �2
� 1.33 / 1.414
� 0.94 kg

Table 7.4 Weight measured in 30 subjects on two different occasions

Number Time 1 Time 2 Difference Difference2 Sum Mean

1 50.0 51.6 1.6 2.6 101.6 50.8

2 58.0 57.9 �0.1 0.0 115.9 58.0

3 47.7 50.9 3.2 10.2 98.6 49.3

4 43.6 42.9 �0.7 0.5 86.5 43.3

5 41.1 41.9 0.8 0.6 83.0 41.5

6 54.6 55.4 0.8 0.6 110.0 55.0

7 48.6 47.3 �1.3 1.7 95.9 48.0

8 56.2 55.5 �0.7 0.5 111.7 55.9

9 56.0 55.4 �0.6 0.4 111.4 55.7

10 41.8 39.8 �2.0 4.0 81.6 40.8

11 51.5 52.4 0.9 0.8 103.9 52.0

12 49.2 51.0 1.8 3.2 100.2 50.1

13 54.5 54.9 0.4 0.2 109.4 54.7

14 46.8 45.5 �1.3 1.7 92.3 46.2

15 44.7 45.0 0.3 0.1 89.7 44.9

16 58.0 59.9 1.9 3.6 117.9 59.0

17 54.0 53.9 �0.1 0.0 107.9 54.0

18 47.5 47.2 �0.3 0.1 94.7 47.4

19 45.3 45.2 �0.1 0.0 90.5 45.3

20 47.5 50.6 3.1 9.6 98.1 49.1
Cont’d
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Table 7.4 Cont’d Weight measured in 30 subjects on two different
occasions

Number Time 1 Time 2 Difference Difference2 Sum Mean

21 44.7 44.0 �0.7 0.5 88.7 44.4

22 52.9 52.2 �0.7 0.5 105.1 52.6

23 53.8 52.9 �0.9 0.8 106.7 53.4

24 44.9 45.2 0.3 0.1 90.1 45.1

25 47.5 49.9 2.4 5.8 97.4 48.7

26 49.3 47.4 �1.9 3.6 96.7 48.4

27 45.0 44.9 �0.1 0.0 89.9 45.0

28 62.4 61.7 �0.7 0.5 124.1 62.1

29 46.4 47.1 0.7 0.5 93.5 46.8

30 52.0 52.6 0.6 0.4 104.6 52.3

Sum 1495.50 1502.10 6.60 53.04 2997.60 —

Mean 49.85 50.07 0.22 1.77 99.92 —

Variance 27.90 29.63 1.78 7.08 113.07 —

SD 5.28 5.44 1.33 2.66 10.64 —

The measurement error can then be converted into a 95 per cent range
using the formula:

95% range � Measurement error � t

Note that, for this calculation, t is not determined by the study sample size
because a confidence interval is not being computed around the sample
mean. In this calculation, a value for t of 1.96 is used as a critical value to
estimate the 95 per cent range for an individual ‘true’ value. Thus:

95% range � Measurement error � t
� (SD of differences / �2) � t
� (1.33 / 1.414) � 1.96
� 0.94 � 1.96
� 1.85 kg

This value indicates that the ‘true’ value for 95 per cent of the subjects lies
within this range above and below the value of actual measurement taken.
In practice, there is no way of knowing whether the first or the second
measurement taken from a subject is nearer to their ‘true’ value because it
is impossible to know what the ‘true’ value is. However, for a subject whose
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weight was measured as 60.0 kg, we can say that we would be 95 per cent
certain that the subject’s ‘true’ value lies within the range 60 � 1.85 kg;
that is, between 58.15 and 61.85 kg.

Use of paired t-tests

From Table 7.4, we can see that the mean difference between the time 1
and time 2 measurements is 0.22 kg with a standard deviation of 1.33 kg.
The 95 per cent confidence interval around this difference, calculated using
a computer program, is an interval of �0.24 to 0.68 kg. Because this
encompasses the zero value of no difference, it confirms that the two
measurements are not significantly different. In practice, this is not sur-
prising since we would not expect to find a significant difference between
two measurements made in the same people on two different occasions.

A problem with using a paired t-test to describe repeatability is that
large positive within-subject differences are balanced by large negative
within-subject differences. Thus, this statistic tends to ‘hide’ large errors
such as the four subjects in Table 7.4 who had a difference of 2 kg or
greater between days of measurements. However, t-tests are useful for
assessing the extent of any systematic bias between observers or over time
and the confidence interval around the mean difference provides an esti-
mate of the precision of the difference that has been measured.

Comparing repeatability between two groups

A test of equal variance can be useful for comparing the repeatability of a
measurement between two separate groups of subjects. For example, we may
have measured the repeatability of pain scores in two groups of subjects,
that is one group of surgical patients and one group of non-surgical
patients. To judge whether the scores are more repeatable in one group
than the other, we could calculate the mean difference in scores for each
patient in each group, and then compare the variance around the mean
difference in each group using Levine’s test of equal variances. Some com-
puter package programs calculate this statistic in the procedure for an
unpaired t-test.

A significant result from Levine’s test would indicate that the standard
deviation around the mean differences is significantly lower in one group
than the other, and therefore that the test is more repeatable in that group.
Calculation of the measurement error for each group will also give us a
good idea of the difference in the absolute repeatability of the pain scores
in each group.
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Mean-vs-differences plot

A plot of the mean value against the difference between measurements for
each subject that are shown in Table 7.4 can be used to determine whether
the measurement error is related to the size of the measurement. This type
of plot is called a mean-vs-differences plot or a ‘Bland & Altman’ plot after
the statisticians who first reported its merit in repeatability applications.5

The mean-vs-differences data from Table 7.4 are plotted in Figure 7.1. This
plot gives an impression of the absolute differences between measurements
that are not so obvious in the scatter plot of the same data. A scatter plot
is shown in Figure 7.2 but this is not a good method with which to describe
repeatability.

Figure 7.1   Mean-vs-differences plot   
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A mean-vs-differences plot of readings taken on two separate occasions from the same 
group of subjects in order to estimate the repeatability of the measurements.

A rank correlation coefficient for the mean-vs-differences plot, called
Kendall’s correlation coefficient, can be used to assess whether the differ-
ences are related to the size of the measurement. For the data shown in
Figure 7.1, Kendall’s tau b � 0.07 with P�0.6, which confirms the lack of
any statistically significant systematic bias.
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The shape of the scatter in the means-vs-differences plot conveys a
great deal of information about the repeatability of the measurements. To
examine the scatter, we recommend that the total length of the y-axis rep-
resent one-third to one-half of the length of the x-axis. The interpretation
of the shape of the scatter is shown in Table 7.5. Clearly, measurements
that are highly repeatable with only a small amount of random error, as
indicated by a narrow scatter around the line of no difference, will provide
far more accurate data than measurements that are less repeatable or that
have a systematic error. Obviously, a scatter that is above or below the line
of zero difference would indicate that there is a systematic bias. This is
easily adjusted for in the situation in which it is measured, but ultimately
detracts from the repeatability of the instrument because the extent of the
error will not be known for situations in which it has not been measured,
and therefore cannot be adjusted for.

Figure 7.2   Scatter plot   
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Table 7.5 Interpretation of mean-vs-differences plots

Example Shape of scatter Interpretation

Figure 7.3 Close to line of zero
difference

Measurement is repeatable
and the error is random

Figure 7.4 Wide scatter around line of
zero difference

Measurement is not
repeatable but the error is
random

Figure 7.5 Funnel shaped Measurement is quite
repeatable at the lower end
of the scale but increases
as the measurement
increases, i.e. is related to
the size of the measurement

Figure 7.6 Scatter is not parallel to line
of zero difference

The error is not constant
along the entire scale
indicating a systematic bias

Figure 7.3   Mean-vs-differences plot
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Mean-vs-differences plot of readings taken on two separate occasions from the same group 
of subjects showing that there is good repeatability between the measurements as indicated 
by a narrow scatter around the zero line of no difference.
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Figure 7.4   Mean-vs-differences plot
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Mean-vs-differences plot of readings taken on two separate occasions from the same group 
of subjects showing that there is poor repeatability between the measurements as indicated 
by a wide scatter around the zero line of no difference.

Figure 7.5   Mean-vs-differences plot
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Mean-vs-differences plot of readings taken on two separate occasions from the same group 
of subjects showing that there is a systematic error in the repeatability between the 
measurements as indicated by a funnel shaped scatter around the zero line of no difference.
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Figure 7.6   Mean-vs-differences plot
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Mean-vs-differences plot of readings taken on two separate occasions from the same group 
of subjects showing that there is good repeatability between the measurements at the lower 
end of the scale but a bias that increases towards the higher end of the measurement scale.

Measurement error calculated from more than two
measurements per subject

If more than two measurements are taken for each subject, as shown in
Table 7.6, the measurement error is calculated slightly differently. Firstly,
the variance is calculated for each subject and from this, the mean of the
variances for each subject (the within-subject variances) can be derived.
From the example data shown in Table 7.6 in which four measurements
were taken from each subject, the mean within-subject variance is 1.42.
The square root of the mean variance is then used to estimate the meas-
urement error as follows:

Measurement error � Sw
� � mean within-subject variance
� � 1.42
� 1.19

The measurement error expressed as a 95 per cent range is then as follows:

95% range � � Measurement error � t
� � 1.19 � 1.96
� � 2.34 kg.
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This is slightly wider than the estimate of a 95 per cent range of
� 1.85 kg calculated from two measurements per subject as in the example
from the data shown in Table 7.4. The larger value is a result of the larger
number of measurements per subject, which leads to a wider variation in
the mean values for each subject. However, this is a more precise estimate
of the measurement error.

Table 7.6 Weight measured in 30 adults on four different occasions

Number Time 1 Time 2 Time 3 Time 4 Mean Variance

1 50.0 51.6 50.0 52.1 50.9 1.18

2 58.0 57.9 58.7 59.1 58.4 0.33

3 47.7 50.9 50.9 49.1 49.7 2.41

4 43.6 42.9 44.8 42.8 43.5 0.85

5 41.1 41.9 41.5 43.2 41.9 0.83

6 54.6 55.4 56.3 55.4 55.4 0.48

7 48.6 47.3 49.7 46.5 48.0 2.00

8 56.2 55.5 57.4 58.5 56.9 1.75

9 56.0 55.4 56.9 56.5 56.2 0.42

10 41.8 39.8 42.0 40.1 40.9 1.29

11 51.5 52.4 50.1 52.3 51.6 1.13

12 49.2 51.0 52.0 49.5 50.4 1.72

13 54.5 54.9 55.8 55.2 55.1 0.30

14 46.8 45.5 46.4 48.5 46.8 1.58

15 44.7 45.0 46.8 44.2 45.2 1.28

16 58.0 59.9 59.2 59.8 59.2 0.76

17 54.0 53.9 54.7 51.8 53.6 1.57

18 47.5 47.2 49.7 46.9 47.8 1.62

19 45.3 45.2 46.3 48.1 46.2 1.81

20 47.5 50.6 49.1 51.3 49.6 2.85

21 44.7 44.0 46.3 43.7 44.7 1.35

22 52.9 52.2 53.9 50.6 52.4 1.93

23 53.8 52.9 51.3 53.4 52.9 1.20

24 44.9 45.2 48.0 45.6 45.9 2.00
Cont’d



219

Reporting the results

Table 7.6 Cont’d Weight measured in 30 adults on four different
occasions

Number Time 1 Time 2 Time 3 Time 4 Mean Variance

25 47.5 49.9 48.6 51.2 49.3 2.57

26 49.3 47.4 47.9 50.8 48.9 2.34

27 45.0 44.9 47.4 44.4 45.4 1.80

28 62.4 61.7 61.4 61.7 61.8 0.18

29 46.4 47.1 46.9 49.4 47.5 1.78

30 52.0 52.6 52.7 50.2 51.9 1.34

Mean 49.9 50.1 50.8 50.4 50.3 1.42

The mean within-subject variance for the data shown in Table 7.6 can
also be estimated using a one-way analysis of variance (ANOVA) with the
‘subjects’ assigned as the ‘group’ variable. In this case, a table or a spread-
sheet with a different format from that shown in Table 7.6 would be
needed. To perform the ANOVA, the four values for each subject would
have to be represented on separate data lines but with the data for each
subject identified with a unique identification number that is used as the
‘group’ variable in the analysis. Thus, for the data above, the number
of ‘cases’ would become 120 with 119 degrees of freedom and the number of
‘groups’ would be 30 with 29 degrees of freedom. The one-way analysis
of variance table for these data is shown in Table 7.7.

Table 7.7 One-way analysis of variance for data shown in Table 7.6

Degrees of
freedom

Sum of
squares

Mean
square

Variance
ratio (F)

P

Subjects 29 3155.5 108.8 76.55 �0.0001

Residual 90 127.9 1.42
Total 119 3283.5

As can be seen, the mean square of the residuals is 1.42, which is the same
number as the mean variance calculated in Table 7.6.

When more than two measurements are taken, a mean-vs-standard
deviations plot, which is shown in Figure 7.7, can be used to check for a
systematic relation between the differences as indicated by the standard
deviation for each subject and the size of the measurement. Again, a rank
correlation coefficient can be used to investigate whether a systematic error
exists. For the data shown in Figure 7.7, Kendall’s tau b is �0.19 with
P�0.13 which confirms the absence of systematic bias.
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Figure 7.7   Mean-vs-standard deviations plot
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A mean-vs-standard deviations plot of readings taken on four separate occasions from the 
same group of subjects in order to estimate the repeatability of the measurements.

Interpretation

An estimate of measurement error that is small indicates that the method
of obtaining a measurement is reliable, or consistent. However, a measurement
error that is large indicates that a single measurement is an unreliable
estimate of the ‘true’ value for the subject. This is a problem if the instrument
has to be used in a research project because no better alternative is available.
In this case, several measurements may need to be taken from each subject
and a decision to use the highest, the lowest or the mean will need to be
made, depending on a consensus decision of people who are expert in
interpreting measurements from the equipment.

In clinical studies, the measurement error around a subject’s readings
taken at baseline can be regarded as the range in which ‘normal’ values for
that particular subject can be expected to lie. If the subject has an outcome
measurement at a later study or following an intervention that lies outside
their own estimated ‘normal’ range, they can be regarded as having an
‘abnormal’ response; that is, a measurement that has significantly improved
or significantly decreased from baseline. This approach is much the same as
regarding the result of a screening test as ‘abnormal’ if a measurement is
less than 1.96 standard deviations below the mean for normal subjects. This
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approach is also similar to regarding an intervention as successful if an
individual subject improves from the ‘abnormal’ range into the ‘normal’
range for the population.

Intraclass correlation coefficient

The ICC is used to describe the extent to which multiple measurements
taken from the same subject are related. This correlation, which is a
measure of the proportion of the variance in within-subject measurements
that can be attributed to ‘true’ differences between subjects, is often called
a reliability coefficient. The ICC is calculated from the ratio of the variance
between subjects to the total variance, which is comprised of both the sub-
jects’ variance plus the error variance. Thus, a high ICC value such as 0.9
indicates that 90 per cent of the variance is due to ‘true’ variance between
subjects and 10 per cent is due to measurement error, or within-subject
variance.

The advantage of the ICC is that, unlike Pearson’s correlation, a value
of unity is obtained only when the values for the two measurements are
identical to one another. Thus, if either a random or systematic difference
occurs, the ICC is reduced. Unlike other correlation coefficients, the ICC
does not have to be squared to interpret the percentage of the variation
explained.

Calculating the ICC is particularly appropriate when the order of the
measurements has no meaning, for example when subjects undergo each of
two methods in random order or when the error between different observ-
ers using the same method (inter-rater agreement) is being estimated.
However, there are different methods for calculating ICC that depend on
the selection of the study sample.

Care must be taken when selecting the type of ICC calculation that is
used because the results can be quite different.6 Few computer programs
estimate ICC directly but values can be fairly easily calculated manually
from an analysis of variance table. Three methods of calculation are shown
below that either include or exclude observer bias. Two of the methods
make different assumptions about the observers and the third method is a
simplified formula that can be used when only two measurements are taken
for each subject.

Method 1

This method is used when the difference between observers is fixed, that is
the proportion of measurements taken by each observer does not change.
For this method, a one-way analysis of variance table is used. This ICC is
appropriate for studies in which the same observers are always used. There
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are small variations in the calculation of this ICC in the literature but the
different calculations all give similar results, especially when the number of
subjects is large.

Table 7.8 One-way analysis of variance for data shown in Table 7.4

Degrees of
freedom

Sum of
squares

Mean
square

Variance
ratio (F)

P

Subjects 29 1642.4 56.64 64.07 �0.0001

Residual 30 26.5 0.88
Total 59 1668.9

Using the data shown in Table 7.4, a one-way analysis of variance table
as shown in Table 7.8 can be computed. To calculate this table, a table or
spreadsheet with the readings from each day for each subject on separate
lines is required, and each subject needs an identification number which
is used as the ‘group’ variable. Thus, there will be 60 lines in the file. From
the analysis of variance table, the calculation of ICC is as follows.7 In the
calculation, m is the number of repeated measurements and SS is the sum
of squares as calculated in the analysis of variance:

(m � Between subjects SS) � Total SS
ICC �

(m�1) � Total SS

(2 � 1642.4) � 1668.9
�

1 � 1668.9

� 0.984

The interpretation of this coefficient is that 98.4 per cent of the variance
in weight results from the ‘true’ variance between subjects and that 1.6 per
cent can be attributed to the measurement error associated with the
equipment used.

If the data from Table 7.6 with four readings a subject was used and
the values were substituted into the equation above, then ICC can be com-
puted from the analysis of variance table shown in Table 7.7 as follows:

(4 � 3155.5 � 3283.5)
ICC �

3 � 3283.5

� 0.948

The interpretation of this coefficient is that 94.8 per cent of the variance
in weight estimation results from the ‘true’ variance between subjects and
that 5.2 per cent can be attributed to the method of measurement. This
value is quite close to that calculated from two repeat readings per subject,
but is more accurate as a result of the study design in which four measure-
ments per subject rather than two measurements per subject were obtained.
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Method 2

This method is used when it is important to include the random effects that
result from a study having a number of different observers. In this case, the
ICC is calculated using a two-way analysis of variance with the variance
partitioned between the subjects, the method and the residual error. The
error is then attributed to the variability of the subjects, to systematic errors
due to equipment and observer differences, and to the amount of random
variation.

The two-way analysis of variance table for the data in Table 7.6 is shown
in Table 7.9. Again, to obtain the analysis of variance table, a table or
spreadsheet in a different format from that shown in Table 7.6 is required.
The spreadsheet will have three columns to indicate subject number, day
and reading so that for 30 subjects with four measurements each there will
be 120 rows.

Table 7.9 Two-way analysis of variance for data shown in Table 7.6

Degrees of
freedom

Sum of
squares

Mean
square

Variance
ratio (F)

P

Subjects 29 3155.5 108.8 75.69 �0.0001

Days 3 14.08 4.69

Residual 87 113.9 1.31
Total 119 3283.5

The calculation is then as follows where MS is the mean square. Using
common notation, the bracketed terms are calculated first, followed by the
product terms and finally the sums and differences. The calculation is as
follows in which m is the number of days and N is the number of subjects:

Subjects MS � Residual MS
ICC �

Subjects MS � (m�1) � Residual MS � m/N � (Days MS � Residual MS)

108.8 � 1.31
�

108.8 � (4�1) � 1.31 � 4/30 (4.69 � 1.31)

107.49
�

108.8 � 3.93 � 0.45

� 107.49 / 113.18

� 0.950
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Method 3

A simplified formula is available for estimating ICC when only two meas-
urements are available for each subject.8 This formula is based on the var-
iance of the sums and differences that are shown at the base of Table 7.4.
As above, the bracketed terms are calculated first followed by the product
terms and finally the sums and differences.

Sum variance � Differences variance
ICC �

2Sum variance � Differences variance � 2/N � ((N � Mean difference ) � Differences variance)

For the data in Table 7.4:

113.07 � 1.78
ICC �

2113.07 � 1.78 � 2/30 (30 � (0.22) � 1.78)

111.29
�

113.07 � 1.78 � 0.33

� 111.29 / 114.52

� 0.972

P values and confidence intervals

It is possible to calculate a P value for the ICC. However, measurements
in the same subjects, that are taken in order to measure repeatability and
agreement, are highly related by nature and the test of significance is gen-
erally of no importance. To test if the ICC is significantly different from
zero, an F test can be used. The test statistic is F, which is computed as
subjects MS/residual MS, with the mean square values from the analysis of
variance table being used. The F value has the usual (N�1) and (N�1)
� (m�1) degrees of freedom. The methods for calculating confidence
intervals for ICC are somewhat complicated but have been described.9, 10

Relation between measurement error and ICC

Although measurement error and ICC are related measures, they do not
convey the same information. The approximate mathematical relationship
between the measurement error and the ICC for estimating the repeat-
ability of an instrument is as follows:

Measurement error � Total SD � � 1 � ICC
or

2Measurement error
ICC � 1 � � �Total SD
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where the total SD is the standard deviation that describes the variation
between all of the measurements in the data set. This relationship is
plotted in Figure 7.8.

Figure 7.8   Standard error of mean and intraclass correlation
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The formula above shows that ICC is a relative measure of repeatability
that relies on the ratio of the measurement error to the total standard
deviation. However, measurement error is an absolute term that is posi-
tively related to the total standard deviation. These two statistics give very
different types of information that complement each other and should be
reported together.

It is important to note that, for measurements for which the ICC is
reasonably high, say above 0.8, there may still be quite a substantial
amount of measurement error. For example, the ICC for Table 7.4 is 0.967
even though four subjects had differences in weights of 2 kg or larger. If
the ICC is 0.8, then from the formula above we can calculate that the
measurement error is 0.45 standard deviations. This translation from meas-
urement error to ICC can be interpolated from Figure 7.8.
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Inappropriate use of Pearson’s correlation coefficient and
coefficient of variation

The inappropriate use of Pearson’s correlation coefficient (R) to describe
repeatability or agreement between two methods has been widely discussed
in the literature. This coefficient is inappropriate because a perfect corre-
lation of one would be found if there was a systematic difference between
occasions, for example if the second set of measurements was twice as large
as the first. In this case, the repeatability between measurements would be
very poor but the correlation would be perfect. A perfect correlation could
also be obtained if the regression line through the points deviates from the
line of identity.

In practice, Pearson’s R is usually higher than the ICC but if the
predominant source of error is random, then values computed for
Pearson’s R and for the ICC will be very close. In any case, the closeness
of the two numbers is not of interest since each has a different inter-
pretation. Moreover, consideration of Pearson’s R is irrelevant because any
two measurements that are taken from the same subject will always be
closely related.

Coefficient of variation

It is always better to use the ICC than the coefficient of variation, which
is the within-subject standard deviation divided by the mean of the meas-
urements. The interpretation of the coefficient of variation is as a
percentage, that is a coefficient of 0.045 is interpreted as 4.5 per cent.
However, this figure implies that there is a systematic error even in data
sets in which no such bias exists because 4.5 per cent of the lowest meas-
urement in the data set is much smaller than 4.5 per cent of the highest
measurement. In addition, coefficients of variation can clearly only ever be
compared between study samples in which the means of the measurements
are identical.

Repeatability of categorical data

The repeatability of categorical data such as the presence of exposures or
illnesses or other types of information collected by questionnaires can also
be estimated. In such situations, the measurement error is usually called
misclassification error. The conditions under which the repeatability of
questionnaires can be measured are shown in Table 7.10. If a questionnaire
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is to be used in a community setting, then repeatability has to be estab-
lished in a similar community setting and not in specific samples such as
clinic attenders, who form a well-defined subsample of a population. Also,
the repeatability of an instrument should not be established in patients
who frequently answer questions about their illness and whose responses to
questions may be well rehearsed.

Table 7.10 Study design for measuring repeatability of questionnaires

• the questionnaire and the method of administration must be identical

on each occasion

• at the second administration, both subject and observer must be

blinded to the results of the first questionnaire

• the time to the second administration should be short enough so that

the condition has not changed but long enough for the subject to have

forgotten their previous reply

• the setting in which repeatability is established must be the same as

the setting in which the questionnaire will be used

The most commonly used statistics for describing the repeatability of
categorical data are kappa, the observed proportion in agreement and the
average correct classification rate. Both kappa and proportion in agreement
are easily calculated using most software packages.

Kappa is appropriate for assessing test-retest repeatability of self-admin-
istered questionnaires and between-observer agreement of interviewer-
administered questionnaires. In essence, kappa is an estimate of the
proportion in agreement between two administrations of a questionnaire
after taking into account the amount of agreement that could have
occurred by chance. Thus, kappa is an estimate of the difference between
the observed and the expected agreement expressed as a proportion of
the maximum difference and, in common with ICC, is the proportion
of the variance that can be regarded as the between-subject variance.

Table 7.11 shows the format in which data need to be presented in order
to calculate kappa. From this table, the observed proportion in agreement
is the number of subjects who give the same reply on both occasions, that
is (61�18)/85 � 0.93. The value for kappa, calculated using a statistics
package, is 0.81.
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Table 7.11 Responses on two occasions to the question ‘Has your child
wheezed in the last 12 months?’

Time 1
No

Time 1
Yes

Total

Time 2
No

61 4 65

Time 2
Yes

2 18 20

Total 63 22 85

As for correlation coefficients, a kappa value of zero represents only
chance agreement and value of one represents perfect agreement. In general,
a kappa above 0.5 indicates moderate agreement, above 0.7 indicates good
agreement, and above 0.8 indicates very good agreement. Kappa is always
a lower value than the observed proportion in agreement. However, kappa
is influenced substantially by the prevalence of the positive replies, with the
value increasing as the prevalence of the positive value (outcome) increases
for the same proportion in agreement.

To overcome this, average correct classification rate was suggested as an
alternative measurement of repeatability.11 However, this measurement,
which is usually higher than the observed proportion in agreement, has not
been widely adopted. This statistic represents the probability of a consistent
answer and, unlike kappa, is an ‘absolute’ measure of repeatability that is
not influenced by prevalence. The average correct classification rate for the
data shown in Table 7.11 is 0.96. In estimating the repeatability of ques-
tionnaires, we recommend that all three measurements are computed and
compared in order to assess which questions provide the most reliable
responses.

If there are three or more possible reply categories for a question, then
a weighted kappa statistic must be calculated. In this, replies that are two
or more categories from the initial response contribute more heavily to the
statistic than those that are one category away from the initial response. In
fact, questionnaire responses with three or more categories can be analysed
using ICC, which is an approximation of weighted kappa when the number
of subjects is large enough.

Repeatability and validity

The differences in study design for measuring repeatability and validity are
discussed in Chapter 3. In essence, poor repeatability will always compro-
mise the validity of an instrument because it limits accuracy, and therefore
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the conclusions that can be drawn from the results. However, a valid
instrument may have a degree of measurement error. A problem with using
ICC in isolation from other statistics to describe repeatability is that it has
no dimension and is not a very responsive statistic. A high ICC may be
found in the presence of a surprisingly large amount of measurement error,
as indicated by the repeatability statistics computed for the data shown in
Table 7.4. In isolation from other statistics, the presentation of ICC alone
is usually insufficient to describe the consistency of an instrument. Because
the measurement error is an absolute indication of consistency and has a
simple clinical interpretation, it is a much more helpful indicator of
precision.12

In any research study, it is important to incorporate steps to reduce
measurement error and improve the validity of the study protocol. These
steps may include practices such as training the observers, standardising
the equipment and the calibration procedures, and blinding observers to
the study group of the subjects. All of these practices will lead to the
reporting of more reliable research results because they will tend to mini-
mise both bias and measurement errors. The effects of these practices will
result in a lower measurement error and a higher ICC value for the
measurement tools used.
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Section 2—Agreement between
methods

The objectives of this section are to understand how to:
• validate different measurements or measurements using different

instruments against one another;
• use various measurements to describe agreement between tests;

and
• interpret graphical and statistical methods to describe agreement.

Agreement 230
Continuous data and units the same 231
Mean-vs-differences plot 231
The 95 per cent range of agreement 234
Continuous data and units different 235
Both measurements categorical 237
Likelihood ratio 239
Confidence intervals 241
One measurement continuous and one categorical 241

Agreement

It is important to know when measurements from the same subjects, but
taken using two different instruments, can be used interchangeably. In any
situation, it is unlikely that two different instruments will give identical
results for all subjects. The extent to which two different methods of meas-
uring the same variable can be compared or can be used interchangeably
is called agreement between the methods. This is also sometimes called the
comparability of the tests.

When assessing agreement, we are often measuring the criterion validity
or the construct validity between two tests, which was discussed in
Chapter 3. The study design for measuring agreement is exactly the same
as for measuring repeatability, which is summarised in Chapter 2. The sta-
tistics that are available to estimate the agreement between two methods
are shown in Table 7.12.
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Table 7.12 Statistics used to measure agreement

Both measurements continuous
and units the same

Measurement error
Mean-vs-differences plot
Paired t-test
Intra-class correlation (ICC)
95% range of agreement

Both measurements continuous
and units different

Linear regression

Both measurements categorical Kappa
Sensitivity and specificity
Positive and negative predictive

power
Likelihood ratio

One measurement categorical and
one continuous

ROC curve

Continuous data and units the same

It is unlikely that two different instruments, such as two different brands
of scales to measure weight, will give an identical result for all subjects.
Because of this, it is important to know the extent to which the two meas-
urements can be used interchangeably or converted from one instrument
to the other and, if they are converted, how much error there is around
the conversion.

If two instruments provide measurements that are expressed in the same
units, then the agreement can be estimated from the measurement error or
the mean within-subject difference between measurements. Because these
statistics are calculated by comparing a measurement from each instrument
in the same group of subjects, they are often similar to the methods
described for repeatability in the previous section of this chapter. Methods
of calculating measurement error can be used to estimate the bias that can
be attributed to the inherent differences in the two instruments or which
results from factors such as subject compliance or observer variation.

Mean-vs-differences plot

As with repeatability, important information about the extent of the
agreement between two methods can be obtained by drawing up a mean-
vs-difference plot.13 Calculation of the 95 per cent range of agreement also
provides important information.14 A mean-vs-differences plot gives more
information than a simple correlation plot because it shows whether there



232

Health science research

is a systematic bias in the agreement between the methods, and whether a
systematic adjustment will be needed so that results from either method
can be interchanged. If the slope of the regression line through the mean-
vs-differences plot and the mean difference are both close to zero, no
conversion factor is required. However, if the slope of the regression line
through the plot is equal to zero and the mean difference is not close to
zero, then the bias between the methods can be adjusted by adding or
subtracting the mean difference.

The shape of the scatter in the plot conveys much information about
the agreement between the measurements. As for repeatability, we
recommend that the total length of the y-axis represents one-third to
one-half of the length of the x-axis. If the scatter is close to the zero line,
as shown for repeatability in Figure 7.3, then we can infer that there is a
high level of agreement between the two instruments and that they can be
used interchangeably.

Figure 7.9   Mean-vs-differences plot
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A scatter that is narrow but that falls above or below the line of zero
difference as shown in Figure 7.9 indicates that there is a high level of
agreement between the two instruments but that a conversion factor is
needed before one measurement can be substituted for the other. If the
scatter is wide as shown for repeatability in Figure 7.4, then we can conclude
that the two instruments do not agree well, perhaps because they are
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measuring different characteristics, or because one or both instruments are
imprecise. An outline of a study that demonstrates this problem is shown
in Example 7.2.

Figure 7.10
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Mean-vs-differences plot of pulse readings of infants made by the mother using fingers over 
the infant’s wrist compared with simultaneous readings by a nursing using a stethoscope over 
the infant’s chest.15

Example 7.2 Measurement of construct validity, or agreement, between
two methods of measuring infants’ pulse rates

Figure 7.10 shows a mean-vs-differences plot for the pulse readings of
infants made by the mother using fingers over the wrist pulse of the
infant compared with readings made by a nurse using a stethoscope to
assess the infant’s heart beat.16 The plot shows that there is fairly poor
agreement between the readings with the nurse almost always obtaining
a higher reading than the parent. The shape of the plot also indicates
that the construct validity at higher pulse rates is better than at lower
rates. The Kendall’s correlation for this plot is �0.50, P�0.001, which
confirms the systematic bias that is evident. The ICC value is also low at
0.17, which confirms the poor agreement between the two methods. In
this case, good agreement would not be expected since the nurse had
the advantage of experience and the use of superior equipment
designed for this purpose. In this situation, there is little point in
computing the 95% range of agreement or a regression equation to
convert one measurement to the other, since the parent readings are not
a good estimate of the gold standard.
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The presence of a consistent bias can be ascertained by computing the
rank correlation coefficient for a plot. As for repeatability, a rank correlation
coefficient such as Kendall’s correlation coefficient, can be used to assess
whether the agreement between instruments is related to the size of the
measurement. A significant correlation would indicate that there is a
systematic bias in the agreement between the two instruments; that is, the
bias increases or decreases with the size of the measurement. This can be
interpreted to mean that the difference between the measurements increases
or decreases in a systematic way as the measurements become larger or
smaller.

If a systematic bias exists, then the regression equation through a scatter
plot of measurements taken using the two methods can be used to determine
the relationship between the two measurements. The equation can then be
used to convert measurements taken with one method to an approximation
of the other.

The 95 per cent range of agreement

In 1986, Bland and Altman described the extent to which the methods
agree as the 95 per cent range of agreement, or simply the range in which
95 per cent of the individual differences can be expected to lie.17 This is
calculated by the formula:

95% range � mean difference � (t � SD of differences)

If the two measurements shown in Table 7.4 had been calculated using
different types of weight scales, then:

95% range � mean difference � (t � SD of differences)

� 0.22 � (1.96 � 1.33)

� 0.22 � 2.61

� �2.39 to 2.83 kg

which indicates that we are 95 per cent certain that the measurement from
the second instrument will lie within the interval of 2.39 kg less to 2.83 kg
more than the measurement from the first instrument.

In a more recent publication, Bland and Altman describe the limits of
agreement as the range in which 95 per cent of the difference between two
measurements can be expected to lie.18, 19 These limits are estimated around
a mean difference of zero between measurements and are calculated as
follows:

95% range � � 2 � 1.96 � within-subject SD

in which

within-subject SD � � (sum of differences2 / 2n)
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If the two measurements shown in Table 7.4 had been calculated using
different types of weight scales, then the 95 per cent range would be as
follows:

95% range � � 2 � 1.96 � within-subject SD
2� 1.414 � 1.96 � � (sum of differences / 2n)

� 1.414 � 1.96 � � (53.04 / 60)

� 1.414 � 1.96 � 0.94

� 2.61 kg

This can be interpreted to mean that we can be 95 per cent certain that
the difference between the two weight scales being used to make the same
measurement in any subject would be less than 2.61 kg. In practice, the
judgment of good agreement needs to be based on clinical experience.
Obviously, two instruments can only be used interchangeably if this range
is not of a clinically important magnitude. In addition, the repeatability of
each method has to be considered because an instrument with poor
repeatability will never agree well with another instrument.

Glossary

Term Meaning

Construct validity Extent to which a test agrees with another test

Criterion validity Extent to which a test agrees with the gold
standard

Subject compliance Extent to which a subject can perform a test
correctly

Observer variation Variation due to researchers administering tests in
a non-standardised way

Continuous data and units different

Occasionally, it is important to measure the extent to which two entirely
different instruments can be used to predict the measurements from one
another. In this situation, estimates of measurement error are not useful
because we expect the two measurements to be quite different. To estimate
the extent to which one measurement predicts the other, linear regression
is the most appropriate statistic and the correlation coefficient gives an
indication of how much of the variation in one measurement is explained
by the other.
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An example of a study to measure criterion validity is shown in
Example 7.3. This study was designed to measure the extent to which the
true body weight of immobilised, supine children can be estimated by
weighing their leg when hanging it in a sling. This is important for
immobilised children who are undergoing urgent treatment or surgery and
whose body weight is needed to accurately estimate their drug dose
requirements. The study showed that hanging leg weight was able to predict
total body weight more accurately than other measurements such as
supine length.

Example 7.3 Methodology study to measure criterion validity
Haftel et al. Hanging leg weight—a rapid technique for estimating total
body weight in pediatric resuscitation.20

Characteristic Description

Aims To assess the accuracy of two methods of estimating
body weight

Type of study Methodology study

Subjects 100 children undergoing general anesthesia in a
hospital

Outcome
measurements

Body weight measured using scales pre-anesthesia
and estimated by supine length and hanging leg
weight after induction of anesthesia

Data analyses Supine length and hanging leg weight compared to the
‘gold standard’ body weight using regression analyses

Conclusions Hanging leg weight was a more accurate predictor of
body weight than supine length

Implications In emergency and other situations when children are
inert, their body weight can be estimated within 10% of
their actual weight so that drug doses can be more
accurately estimated

Strengths • A large sample size was used so that the agreement
between methods could be calculated with precision

• Many of the conditions under which agreement has
to be measured (Table 2.12) were fulfilled

Limitations • It is not clear if observers were blinded to the
information of body weight or the first of the two
measurements taken

• The comparison of R2 values between subgroups
may not have been appropriate because R2 is
influenced by the range of the data points
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Both measurements categorical

The level of agreement between categorical measurements is often an
important concept in testing the utility of diagnostic tests. The extent to
which the presence or absence of a disease is predicted by a diagnostic test
is an essential part of clinical practice, and is another aspect of agreement
between test methods. Patients are often classified as the disease being
present or absent on the basis of their signs, symptoms or other clinical
features in addition to having the probability of their illness confirmed on
the basis of diagnostic tests such as X-rays, biopsies, blood tests, etc. In this
case, the ability of the diagnostic test to predict the patient’s true disease
status is measured by the sensitivity and specificity of the test. The method
for calculating these diagnostic statistics is shown in Table 7.13.

Table 7.13 Calculation of diagnostic statistics

Disease
present

Disease
absent

Total

Test positive a b a+b
Test negative c d c+d
Total a+c b+d

Notes: Sensitivity � a/(a+c)
Specificity � d/(b+d)
Positive predictive value � a/(a+b)
Negative predictive value � d/(c+d)
Likelihood ratio � Sensitivity/(1–specificity)

An example of the sensitivity and specificity of pre-discharge total
serum bilirubin (TSB) levels of newborn infants in diagnosing subse-
quent significant hyperbilirubinemia has been reported21 and is shown in
Table 7.14.

Glossary

Term Meaning

Sensitivity Proportion of disease positive subjects who are
correctly diagnosed by a positive test result

Specificity Proportion of disease negative subjects who are
correctly diagnosed by a negative test result

Positive predictive
value

Proportion of subjects with a positive test result
who have the disease

Negative predictive
value

Proportion of subjects with a negative test result
who do not have the disease
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Table 7.14 Example of diagnostic statistics22

Hyperbilirubinemia
present

Hyperbilirubinemia
absent

Total

TSB test
positive

114
a

414
b

528

TSB test
negative 12

d
2300

2312

Total 126 2714 2840

From the data in Table 7.14, the sensitivity of the diagnostic test, that
is the proportion of newborn infants who were correctly identified by the
TSB test, is calculated as follows:

Sensitivity � proportion of newborn infants with hyperbilirubinemia who had a positive test

� a/a+c

� 114/126

� 0.905

The specificity of the test, that is the proportion of newborn infants who
had a negative screening test and who did not have iron deficiency is
calculated as follows:

Specificity � proportion of newborn infants who had a negative test but no iron deficiency

� d/b+d

� 2300/2714

� 0.847

The sensitivity and specificity of tests are useful statistics because they
do not alter if the prevalence of the subjects with a positive diagnosis is
different between study situations. As a result, the statistics can be applied
in different clinical populations and settings. Thus, these statistics can be
reliably compared between different studies especially studies that use
different selection criteria, or can be used to compare the diagnostic potential
of different tests.

However, the purpose of a diagnostic test is usually to enable a more
accurate diagnosis in a patient who presents for treatment, that is to be
inductive. For this, it is more useful to know the probability that the test
will give the correct diagnosis than to know the sensitivity and specificity.23

The predictive power of a test is judged by the positive predictive value
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(PPV), which can be calculated as the proportion of patients with a positive
diagnostic test result who are correctly diagnosed. In addition, the negative
predictive value (NPV) is also useful—this is the proportion of patients
with a negative diagnostic test result who are correctly ruled out of having
the disease.

From Table 7.14, the positive and negative predictive values of the TSB
test are calculated as follows:

Positive predictive value � proportion with TSB test positive have hyperbilirubinemia

� a/a+b

� 114/528

� 0.216

Negative predictive value � proportion with TSB test negative without hyperbilirubinemia

� d/c+d

� 2300/2312

� 0.995

Although essential in a clinical setting, the major limitation of positive
and negative predictive values is that they are strongly influenced by the
prevalence of subjects with a positive diagnosis. Both the PPV and NPV
will be higher when the prevalence of the disease is common and, when
a disease is rare, the positive predictive value will never be close to one.
In the example above, the positive predictive value is low because only
4 per cent of babies (114/2840) have a TSB test positive and also develop
hyperbilirubinemia. In this situation, we can be more sure that a negative
test indicates no disease and less sure that a positive result really indicates
that the disease is present.24

Because both the positive and negative predictive values are heavily
dependent on the prevalence of the disease in the study sample, they are
difficult to apply in other clinical settings or compare between different
diagnostic tests. These statistics cannot be applied in clinical settings in
which the profile of the patients is different from the sample for which
PPV and NPV were calculated, or between studies in which the prevalence
of the disease is different.

Likelihood ratio

A statistic that is inductive and that avoids these problems of comparability
between studies and applicability in different clinical settings is the likelihood
ratio. The likelihood ratio gives an indication of the value of a diagnostic
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test in increasing the certainty of a positive diagnosis. The likelihood ratio
is the probability of a patient having a positive diagnostic test result if they
truly have the disease compared to the corresponding probability if they
were disease-free.25 As such, the likelihood ratio indicates the value of a
test in increasing the certainty of a positive diagnosis.

The likelihood ratio is calculated as follows:

Likelihood ratio � Sensitivity/(1 – Specificity)

that is, the true positive rate as a proportion of the false positive rate. This
can be used to convert the pre-test estimate that a patient will have the
disease into a post-test estimate, thereby providing a more effective diagnostic
statistic than PPV.

For the data shown in Table 7.14:

Likelihood ratio � 0.905/(1 – 0.847)

� 5.92

The following statistics can also be calculated from Table 7.14:

Pre-test prevalence (p) of TSB positive � (a+c)/Total

� 528/2840

� 0.186

Pre-test odds of subjects having hyperbilirubinemia � p / (1 – p)

� 0.186 / (1 � 0.186)

� 0.23

The likelihood ratio of the diagnostic test can then be used to calculate
the post-test odds of a patient having a disease as follows:

Post-test odds � pre-test odds � likelihood ratio

� 0.23 � 5.92

� 1.32

The higher the likelihood ratio, the more useful the test will be for
diagnosing disease.26 The increase of a newborn having hyperbilirubinemia
from a pre-test odds of 0.23 to a post-test odds of 1.32 gives an indication
of the value of conducting a newborn screening test of TSB when ruling in
or ruling out the presence of hyperbilirubinemia. A simple nomogram for
using the likelihood ratio to convert a pre-test odds to a post-test odds has
been published by Sackett et al.27
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Confidence intervals

Of course, none of the diagnostic statistics above are calculated without a
degree of error because all have been estimated from a sample of subjects.
To measure the certainty of the statistics, confidence intervals can be
calculated as for any proportion and the level of precision will depend on
the number of subjects with and without the diagnosis. For the diagnostic
statistics shown in Table 7.14, the estimates shown as percentages with
their 95 per cent confidence intervals calculated using the computer program
CIA28 are as follows:

Sensitivity � 90.5% (95% CI 84.0, 95.0)
Specificity � 84.7% (95% CI 83.4, 86.1)
Postive predictive value � 21.6% (95% CI 18.1, 25.1)
Negative predictive value � 99.5% (95% CI 99.1, 99.7)

The confidence intervals for specificity and negative predictive value
are quite small and reflect the large number of newborn infants who had
negative tests. Similarly, the larger confidence intervals around sensitivity
and positive predictive value reflect the smaller number of infants with
positive tests. The confidence intervals around some diagnostic statistics
can be surprisingly large and reflect the imprecision always obtained when
estimates are calculated from samples in which the number of subjects is
relatively small.

One measurement continuous and one categorical

Sometimes it is important to know the extent to which continuously dis-
tributed measurements, such as biochemical tests, can predict the presence
or absence of a disease. In this situation, a cut-off value that delineates a
‘normal’ from an ‘abnormal’ test result is usually required. The cut-off point
that most accurately predicts the disease can be calculated by plotting a
receiver-operating characteristic (ROC) curve.29

To construct a ROC curve, the sensitivity and specificity of the
measurement in predicting the disease is computed, as a percentage, for
several different cut-off points along the distribution of the continuous
variable. Then, for each cut-off value, the sensitivity (the rate of true
positives) is plotted against 1 – specificity (the rate of false positives). An
example of a ROC plot is shown in Figure 7.11.

In the study shown in Table 7.14, the cut-off point for a positive TSB
test was defined as a value above the 75 per cent percentile. Although
other cut-off points of 40 per cent and 90 per cent were investigated, the
cut-off of above the 75 per cent percentile had the highest predictive value
as indicated by a ROC plot.30
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Figure 7.11 Receiver operating curve (ROC)
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ROC curve showing the sensitivity of a test measurement plotted against 1 – Specificity for 
various cut-off values of the test measurement constructed from the results of Bhutani.

In practice, the larger the area under the curve then the more reliable
the measurement is for distinguishing between disease and non-disease
groups. A completely useless test would follow the line of identity across
the plot.31 A cut-off point that maximises the rate of true positives (sen-
sitivity) whilst minimising the rate of false positives (1 – specificity) is
obviously the point at which the test best discriminates between subjects
with or without the disease of interest. This cut-off point is indicated by
the point on the curve that is closest to the top of the y-axis, that is the
top left-hand corner of the figure.

The ability of a test to discriminate between two different illness con-
ditions can be assessed by plotting a ROC curve for one illness on the same
graph as the other. The plot with the largest area under the curve and
which passes closest to the upper left-hand corner of the figure will indicate
which of the two disease conditions the test can most accurately identify.32, 33
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Section 3—Relative risk, odds
ratio and number
needed to treat

The objectives of this section are to understand how to:
• describe associations between categorical exposure and outcome

variables; and
• translate the association into a clinically meaningful statistic.

Measures of association 243
Relative risk 244
Odds ratio 245
Adjusted odds ratios 247
Interpretation of confidence intervals 248
Comparison of odds ratio and relative risk 249
Number needed to treat 252

Measures of association

The relative risk (RR), odds ratio (OR) and number needed to treat (NNT)
are statistics that are used to describe the risk of a disease or outcome in
subjects who are exposed to an environmental factor, an active interven-
tion or a treatment. The relative risk and odds ratio are sometimes described
using the alternative nomenclature shown in Table 7.15.

Table 7.15 Terms used to describe relative risk and odds ratio

Term Alternative terms

Relative risk (RR) Risk ratio
Rate ratio
Relative rate
Incidence rate ratio

Odds ratio (OR) Relative odds
Cross ratio

To calculate these statistics, the data need to be summarised as a 2�2
table as shown in Table 7.16. For clinical epidemiology, the subjects in the
‘exposed’ group are the patients who are in the active treatment group or
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who have undergone a new clinical intervention, and the subjects in the
‘not exposed’ group are the patients in the control group.

Table 7.16 Format used to measure odds ratios, relative risk and
number needed to treat

Exposed Not exposed Total

Disease present a b a+b

Disease absent c d c+d

Total a+c b+d Total
sample

Relative risk

Relative risk (RR) is usually used to describe associations between exposures
and outcomes in prospective cohort or cross-sectional studies. This statistic
cannot be used for data from case-control studies. Relative risk is computed
by comparing the rate of illness in the exposed and unexposed groups.
Relative risk is a useful statistic that can be computed from population
studies in which subjects are exposed as a result of personal choice (e.g.
smoking), or as a result of occupational exposures (e.g. asbestos) or
environmental exposures (e.g. industrial air pollutants).

Relative risk is calculated as follows from a table in the format shown
in Table 7.16:

a/(a+c)
RR �

b/(b+d)

Table 7.17 shows the prevalence of bronchitis in early infancy measured
retrospectively in 8–11 year-old children studied in a large cross-sectional
population study and categorised according to exposure to parental smoking.

Table 7.17 Population study of 8–11 year-old children in which
information of parental smoking and bronchitis in the child in
early life were collected retrospectively34

Exposed to
parental smoking

Not exposed Total

Bronchitis in infancy 97
(29%)

87
(18%)

184
(22%)

No bronchitis in infancy 244 411 655

Total 341 498 839
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From the data shown in Table 7.17, the relative risk of children having
bronchitis in infancy if they are exposed to parental smoking is as follows:

RR � 97/341 / 87/498

� 0.284 / 0.175

� 1.62

This statistic is simply the proportion of subjects with infancy bronchitis
in the exposed group (29 per cent) divided by the proportion in the non-
exposed group (18 per cent). The 95 per cent confidence intervals around
the relative risk are based on logarithms. The use of logarithms gives inter-
vals that are asymmetric around the relative risk, that is the upper limit is
wider than the lower limit when the numbers are anti-logged. This is a
more accurate estimate of the confidence interval than could be obtained
using other methods. Because of the complexity in the calculations, the
confidence intervals are best calculated using computer software. For the
above example, the relative risk and its 95 per cent confidence intervals
are as follows:

RR � 1.62 (95% CI 1.26, 2.10)

Relative risk differs from the odds ratio because it is usually time
dependent; that is, influenced by the time taken for the disease to develop.
Because relative risk is the ratio of two cumulative risks, it is important to
take the time period into account when interpreting the risk or when
comparing different estimates. In some cases, relative risk is most accurate
over a short time period, although not too short because the disease has to
have time to develop. Over a long time period, the value may approach
unity, for example if the outcome is risk of death then over a long period
all subjects in both groups will eventually die and the risk will become 1.0.

Odds ratio

The odds ratio (OR) is an estimate of risk that can be calculated in studies
such as case-control studies when the relative risk cannot be estimated
because the proportions of cases and controls is determined by the sampling
method. Because the odds ratio only closely approximates to relative risk
when the exposure is rare, the magnitude of these two statistics can be
quite different, especially when the exposure rate is a common event.

The odds ratio is the odds of exposure in the group with disease (cases)
compared to the odds in the non-exposed group (controls). From a table
in the format shown in Table 7.16, the odds ratio is calculated as follows:

Odds ratio � a/c / b/d

� ad / bc
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This statistic was developed for the analysis of case-control studies, in
which the prevalence of the disease does not approximate to the prevalence
in the community. However, odds ratios are now used to summarise data
from cohort and cross-sectional studies following the increased availability
of logistic regression, which is a multivariate analysis that is often used to
calculate odds ratios that are adjusted for the effects of other confounders
or risk factors.

Figure 7.12   Calculation of odds ratio

0 10 20 30 40 50 60

Per cent (%) of group

Cases
N=100

Controls
N=100

Exposed N=40
Not exposed N=60

Exposed N=25
Not exposed N=75

Two theoretical samples of subjects in a case-control study showing that 25% of the controls 
have been exposed to a factor of interest compared to 40% of the cases.

Figure 7.12 shows an example of a study in which 40 of the 100 cases
were exposed to the factor of interest compared with 25 of the 100 con-
trols. In this case, the odds ratio would be as follows:

OR � 40/60 / 25/75

� 2.0

The size of this statistic shows how the odds ratio can over-estimate the
relative risk. Although the odds ratio is 2.0, the cases in this example do
not have twice the rate of exposure as the controls.

From the data shown in Table 7.17, the odds ratio for children to have
had a respiratory infection if they had been exposed to parental smoking is
calculated as follows:

OR � a/c / b/d

� 97/244 / 87/411

� 1.88



247

Reporting the results

This number can also be interpreted as the odds of children having
been exposed to parental smoking if they had bronchitis in early life, which
is calculated as follows:

OR � a/b / c/d

� 97/87 / 244/411

� 1.88

As with relative risk, the 95 per cent confidence intervals are best
calculated using a computer program because of the complexity of the
calculations. For odds ratio, an alternative method is to calculate the
confidence intervals from the standard error (SE) that is produced using
logistic regression. Logistic regression can be used with only one explanatory
variable (in this case, parental smoking) and then produces an unadjusted
estimate of the odds ratio with a standard error that is usually shown in
logarithmic units.

For the example above, the calculation of the 95 per cent confidence
intervals is as follows where the OR is 1.88 and the SE of 0.168 in
logarithmic units has been calculated using logistic regression:

95% CI � exp (loge OR � (SE � 1.96))

� exp (loge (1.88) � (0.168 � 1.96))

� 1.35, 2.62

Adjusted odds ratios

When confounding occurs, it is important to remove the effect of the
confounder from the odds ratio that describes the association between an
exposure and an outcome. For example, in Figure 7.13, factor A is a
confounder in the relation between factor B and the disease outcome.
Thus, the effects of factor A, as shown by the higher prevalence of disease
in group 2 compared to group 1, have to be removed from group 3 before
the true association between exposure B and the disease can be computed.
This process can be undertaken using logistic regression.

Odds ratios calculated this way are called adjusted odds ratios and are
less dependent on the effects of known confounders. This method of adjust-
ing for the effects of confounder is the weakest method possible, but does
not need as large a sample size as other methods such as matching or strat-
ification (see Chapter 3).
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Figure 7.13 Separating multiple effects   
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Three theoretical groups of subjects showing that 12% of the non-exposed group 1 have a 
disease, compared to 16% of group 2 who have been exposed to factor A and 22% of 
group 3 who have been exposed to both factor A and factor B.

Interpretation of confidence intervals

When interpreting the significance of either an odds ratio or relative risk,
it is important to consider both the size of the effect and the precision of
the estimate. If the 95 per cent confidence interval around an odds ratio
or a relative risk encompasses the value of 1.0 then the effect is not stat-
istically significant. However, we also need to examine the upper confi-
dence interval to make a judgment about whether it falls in a clinically
important range. It is important to judge whether to accept a true negative
conclusion or whether to conclude that a type II error may have occurred,
that is the odds ratio indicates a clinically important risk but has failed to
reach statistical significance because the sample size is too small. This can
be a problem in studies in which the sample size is small and logistic regres-
sion is used to test the effects of several factors simultaneously.

Figure 7.14 shows an example in which we can be certain of a true
positive effect of factor A, or a true protective effect of factor D. The effect
measured for factor B is larger than that for factor A but the estimate is
less precise, as indicated by the wide confidence intervals. In some cases,
such as for factor C, the effect may be ambiguous because it is clinically
important in magnitude but has wide 95 per cent confidence intervals that
overlap the value of unity. Thus, we cannot be 95 per cent certain whether
factor C has a protective or risk effect on the outcome.
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Figure 7.14 Odds ratios   
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Four odds ratios demonstrating the importance of taking both the size and direction of the 
odds ratio together with its precision as indicated by the 95% confidence intervals into 
account when interpreting the results of a study.

Comparison of odds ratio and relative risk

Both the relative risk and the odds ratio can be difficult to interpret. In
some cases, the absolute effect of the exposure in the two study groups may
differ and the relative risk and odds ratio may be the same, or the absolute
effect may be the same and the relative risk and odds ratio may be differ-
ent. For example, if we halve the prevalence of the outcome (bronchitis
in infancy) shown in Table 7.17 from 22 per cent to 11 per cent in both
the exposed and the non-exposed groups then the numbers will be as
shown in Table 7.18.

Table 7.18 Data from Table 7.17 modified to reduce prevalence of
infancy bronchitis in both the exposed and non-exposed
groups to half the prevalence measured in the actual study

Exposed to
parental smoking

Not exposed Total

Bronchitis in infancy 48
(14%)

44
(9%)

92
(11%)

No bronchitis in infancy 293 454 747

Total 341 498 839
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From Table 7.18, the relative risk will 1.59 and the odds ratio will be
1.69, which are very close to the estimates of 1.62 and 1.88 respectively
that were calculated from the data shown in Table 7.17. However, if the
prevalence in the non-exposed group only is halved, then the numbers will
be as shown in Table 7.19.

Table 7.19 Data from Table 7.17 modified to reduce prevalence of
infancy bronchitis in the non-exposed group only to half that
measured in the actual study

Exposed to
parental smoking

Not exposed Total

Bronchitis in infancy 97
(29%)

44
(9%)

184

No bronchitis in infancy 244 454 655

Total 341 498 839

From the data in Table 7.19, the relative risk is 3.21 and the odds ratio
is 4.10, which is very different from the estimates calculated from Tables 7.17
and 7.18. Thus, a large difference in estimates occurs if the prevalence of
the outcome changes in only one of the exposure groups, but similar estimates
of effect can occur when the prevalence changes with a similar magnitude
in both groups.

Both the odds ratio and the relative risk have advantages and disadvantages
when used in some situations. The features of both of these statistics are
shown in Table 7.20.

Table 7.20 Features of odds ratio and relative risk estimates

Odds ratio Relative risk

• results can be combined across
strata using Mantel-Haenszel
methods

• results are difficult to combine
across strata

• can be used to summarise data
from most studies

• can only be used for data from
studies with a randomly selected
sample, e.g. cohort and cross-
sectional studies

• give an estimate of risk when the
prevalence of the outcome is not
known

• can be used to calculate
attributable risk
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Although the odds ratio and relative risk always go in the same direc-
tion, discrepancies between them can be large enough to become mis-
leading. For this reason, it is better to limit the use of odds ratios to
case-control studies and logistic regression analyses.35 For the same data set,
the odds ratio will be larger than the relative risk and thus may over-
estimate the ‘true’ association between the disease and exposure under
investigation, especially for diseases that are a common event. Because of
this, the odds ratio has been criticised as a statistic with which to report
the results of randomised controlled trials in which an accurate estimate of
effect is required.36 However, for the data shown in Table 7.17, the odds
ratio is 1.88 and the relative risk is very close at 1.62.

The odds ratio only gives a good approximation to the relative risk
when treatment or exposure rate is a relatively rare event and the sample
size is large and balanced between the exposed and non-exposed group. In
cohort and cross-sectional studies, the odds ratio and relative risk can be
quite different, especially when the exposure rate is a common event.

Table 7.21 Results of an intervention study to test the effects of a
smoking prevention program

Exposed to
intervention

Not exposed Total

Smoker 20
(20%)

40
(40%)

60
(30%)

Non-smoker 80 60 140

Total 100 100 200

In practice, the difference between the odds ratio and the relative risk
becomes smaller as the prevalence of the disease outcome decreases. For
odds ratios over 2.5 that are calculated from cohort or cross-sectional
studies, a correction of the odds ratio may be required to obtain a more
accurate estimate of association.37 For example, from the data shown in
Table 7.21, the odds ratio is 2.6 and the relative risk is 2.0. How-
ever, Table 7.22 shows that these two statistics become increasingly closer
as the prevalence of smokers decreases.

Table 7.22 Comparison between relative risk and odds ratio when the
prevalence of the outcome changes

% smokers in
intervention

% smokers in
control group

Odds ratio Relative risk

20 40 2.60 2.0

10 20 2.25 2.0

5 10 2.10 2.0

1 2 2.02 2.0
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Number needed to treat

The odds ratio is not a useful statistic at the patient level because it is
difficult to apply to an individual. However, a statistic called the number
needed to treat (NNT) can be calculated from the results of studies such
as randomised controlled trials and is useful in clinical practice.38 This
number can also be calculated from meta-analyses, which combine the
results from several trials. The number needed to treat is an estimate of the
number of patients who need to receive a new treatment for one additional
patient to benefit. Clearly, a treatment that saves one life for every ten
patients treated is better than a treatment that saves one life for every
50 patients treated.39

Table 7.23 Results from a randomised controlled trial to test the
efficacy of a new treatment to prevent death as presented
by Guyatt et al.40

Treatment Controls Total

Died 15
(15%)

20
(20%)

35
(17.5%)

Survived 85 80 165

Total 100 100 200

To estimate NNT41 from Table 7.23, the absolute risk reduction (ARR);
that is, the difference in the proportion of events between the two treat-
ment groups, needs to be calculated as follows:

Absolute risk reduction � 20% � 15%

� 5%, or 0.05

The number needed to treat is then calculated as the reciprocal of this
risk reduction as follows:

NNT � 1/ARR

� 1/0.05

� 20

This indicates that twenty patients will need to receive the new treat-
ment to prevent one death. This effect has to be balanced against the cost
of the treatment, the risk of death if the patient is not treated and the risk
of any adverse outcomes if the patient is treated. Obviously, when there is
no risk reduction, ARR will be zero and NNT then becomes infinity.
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However, when NNT becomes negative it gives an indication of the
number of patients that need to be treated to cause harm.

The 95 per cent confidence interval (CI) for ARR is calculated as for
any difference in proportions.42 These intervals are then inverted and
exchanged to produce the 95 per cent CIs for NNT.43 In the example
above:

95% CI for ARR � �0.16, 0.06

and therefore,

NNT � 20 (95% CI � 18.2 to 6.5)

This is interpreted as NNT � 20 (95% CI NN to benefit�6.5 to infinity
to NN to harm�18.2).44 A method for plotting NNT with its 95 per cent
confidence intervals on an axis that encompasses infinity as the central
value has been described by Altman.45

It is important to recognise that there is no association between the
P value, which is an estimate of whether the difference between the
treatment groups is due to chance, and the NNT, which is the clinical
impact of a treatment.46 It is also important to remember that, when applying
NNT in clinical decision-making, the clinical population must be similar
to the study population from which NNT was derived.
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Section 4—Matched and paired
analyses

The objectives of this section are to understand how to:
• conduct matched or non-matched analyses;
• decide whether matched case-control studies are reported

correctly; and
• control for confounders in case-control studies.

Matched and paired studies 254
Presentation of non-matched and matched ordinal data 255
Using more than one control for each case 257
Logistic regression 258
Presentation of matched or paired continuous data 258

Matched and paired studies

In case-control studies, cases are often matched with controls on the basis
of important confounders. This study design can be more effective in
removing the effects of confounders than designs in which confound-
ing factors are measured and taken into account at a later stage in the
analyses. However, the correct matched statistical analyses must be used in
all studies in which matching is used in the study design or in the recruit-
ment process.

The strengths and limitations of matched case-control studies were
discussed in Chapter 2. The appropriate analyses for this type of study are
methods designed for paired data, including the use of conditional logistic
regression. In effect, the sample size in matched studies is the number of
pairs of cases and controls and not the total number of subjects. This
effective sample size also applies to all studies in which paired data are
collected, such as studies of twins, infection rates in kidneys, or changes
in events over time. The effect of pairing has a profound influence on
both the statistical power of the study and the precision of any estimates
of association, such as the 95 per cent confidence intervals around an
odds ratio.
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The basic concepts of using analyses that take account of matching and
pairing are shown in Table 7.24.

Table 7.24 Concepts of matched and paired analyses

• if matching or pairing is used in the design, then matched or paired
statistics must be used in the data analyses

• the outcomes and exposures of interest are the differences between
each case and its matched control or between pairs, that is the within-
pair variation

• the between-subject variation is not of interest and may obscure the
true result

• treating the cases and controls as independent samples, or the paired
measurements as independent data, will artificially inflate the sample
size and lead to biased or inaccurate results

Presentation of non-matched and matched ordinal data

In studies such as cross-sectional and case-control studies, the number of
units in the analyses is the total number of subjects. However, in matched
and paired analyses, the number of units is the number of matches or pairs.
An example of how the odds ratio and difference in proportions is calcu-
lated in non-matched and matched analyses is shown in Tables 7.25 and
7.26. Confidence intervals, which are best obtained using a statistics
package program, can be calculated around both the odds ratios and the
differences in proportions.

Table 7.25 Calculation of chi-square and odds ratio for non-matched or
non-paired data

Exposure
positive

Exposure
negative

Cases a b a�b
Controls c d c�d
Total a�c b�d N

Notes:
2N (|ad � bc| � N/2)

Continuity-adjusted chi-square �
(a�b)(c�d)(a�c)(b�d)

Odds ratio � (a/c)/(b/d)

Difference in proportions � (a/(a�c)) � (b/(b�d))
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Table 7.26 Calculation of chi-square and odds ratio for matched or
paired data

Exposure
positive

Exposure
negative

Cases a b a�b
Controls c d c�d
Total a�c b�d N

Notes:
2(|b-c| � 1)

McNemar’s chi-square �
(b�c)

Matched odds ratio � b/c

Difference in proportions � (b-c)/N

The difference in the statistics obtained using these two methods is
shown in Table 7.27. In this example, the data were matched in the study
design stage and therefore the matched analyses are the correct statistics
with which to present the results.

In the upper table in Table 7.27, the effective sample size is the total
number of children in the study whereas in the lower table, the effective
size of the sample is the number of pairs of children. The unmatched odds
ratio of 3.0 under-estimates the risk of children having infection if they
are exposed to maternal smoking which is 4.8 when calculated from the
matched data. Also, although the difference in proportions is the same in
both calculations and indicates that the rate of infection is 27 per cent
higher in exposed children, the matched analysis provides a less biased esti-
mate with more precise confidence intervals.

The odds ratio will usually be quite different for the same data set when
matched and unmatched analyses are used. If the subjects have been
matched in the study design, then the matched odds ratio and its confi-
dence interval will provide a more precise estimate of effect than the
unmatched odds ratio. If non-matched and matched analyses give the
same estimate of the odds ratio, this suggests that the matching character-
istics were not confounders. Even if the effects are the same, confidence
intervals using a matched approach should be used because they are more
accurate.

Using more than one control for each case

To increase statistical power, more than one control can be recruited for
each case. In this situation, the differences between the cases and controls
are still the outcomes of interest but the effective sample size is the number
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Table 7.27 Calculating non-matched and matched statistics in a case-
control study in which 86 children with respiratory infection
were age and gender matched with 86 children who had
not had a respiratory infection and exposure to maternal
smoking was measured

i. Non-matched presentation and statistics

Exposed Not exposed Total

Infection (cases) 56
(65.1%)

30
(34.9%)

86
(100%)

No infection
(controls)

33
(38.4%)

53
(61.6%)

86
(100%)

Total 89 83 172

Notes: Continuity-adjusted chi-square � 11.27, P�0.0005

Odds ratio � 3.0 (95% CI 1.6, 5.5)

Difference in proportions � 26.7% (95% CI 12.4, 41.1)

ii. Matched presentation and statistics

Control
exposed

Control not
exposed

Case exposed 27
(31.4%)

29
(33.7%)

56

Case not exposed 6
(7.0%)

24
(27.9%)

30

Total 33 53 86

100%

Notes: McNemar’s chi-square � 13.82, P�0.0004

Matched odds ratio � 4.8 (95% CI 2.0, 11.6)

Difference in proportions � 26.7% (95% CI 13.3, 35.4)

of control subjects. Thus, if 50 cases and 100 controls are enrolled, the
number of matched pairs would be 100. Because there are 100 matches,
the data from each case is used twice and the data from each control is
used once only. This method can also be used if data for some controls are
missing because a match could not be found. If 40 cases had two matched
controls and 10 cases had only one matched control, the sample size would
then be 90 pairs. The bias that results from using the data for some cases
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in more than one pair is not so large as the bias that would result from
treating the data as unpaired samples.

Logistic regression

Adjusted odds ratios are calculated for non-matched data using logistic
regression, and can be calculated for matched data using conditional logis-
tic regression. Conditional logistic regression is particularly useful in studies
in which there is more than one control for each case subject, including
studies in which the number of control subjects per case is not consistent.

Obviously, in the results shown in Table 7.27, the effects of age and
gender on rate of infection cannot be investigated since they were the
matching variables. However, interactions between another exposure factor,
say breastfeeding, and age could be investigated by including the inter-
action factor age*breastfeeding without including the main effect of age.
Clearly, length of time of breastfeeding will be closely related to the age
of the infant and because the subjects are matched on age, the effect of
breastfeeding may be under-estimated if included in the model.

Presentation of matched and paired continuous data

As with ordinal data, the outcome of interest when estimating differences
in continuous variables in matched or paired studies is the difference in
the outcome variable between each of the pairs. Thus, the sample size is
also the number of pairs of subjects. A statistical difference in outcomes
for the cases and controls can be tested using a paired t-test. Alternatively,
multiple regression can be used with the outcome variable being the dif-
ference in outcomes between each pair and the explanatory variables being
the differences in the explanatory variable between the pairs, or between
each case and control subject.
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Section 5—Exact methods

The objectives of this section are to understand how to:
• decide when normal or exact methods are required;
• use exact methods to report results; and
• decide whether studies in the literature are reported accurately.

Applications for exact methods 259
Differences between normal and exact methods 260
Incidence and prevalence statistics 260
Confidence intervals 261
Chi-square tests 264

Applications of exact methods

It is essential to use accurate statistical methods in any research study so
that the results can be correctly interpreted. Exact statistical methods need
to be used whenever the prevalence of the disease or the exposure variable
in the study sample is rare. This can occur in epidemiological studies
conducted by surveillance units such as the British and the Australian
Paediatric Surveillance Units in which national data of the incidence and
characteristics of rare diseases of childhood are collected.47, 48 Exact methods
also need to be used in clinical studies in which a small sample size can
lead to very small numbers in some groups when the data are stratified.
Because these situations do not conform to the assumptions required to use
‘normal’ statistics, specialised statistics that are called ‘exact methods’ are
needed.

In situations where the assumptions for normal methods are not met,
‘exact’ methods conserve accuracy. These ‘gold standard’ methods give a
more precise result no matter what the distribution or frequency of the
data. Of course, if the assumptions for normal methods are met, then both
methods give similar answers. Whenever there is any doubt about the
applicability of normal statistics, the use of exact statistics will lead to a
more accurate interpretation of results.
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Difference between normal and exact methods

The statistical methods that are usually used for reporting data are ‘asymp-
totic’ or ‘normal’ methods. These methods are based on assumptions that
the sample size is large, the data are normally distributed and the condition
of interest occurs reasonably frequently, say in more than 5 per cent of the
population or study sample. If these assumptions are not met, as is often
the case in studies of rare diseases, normal methods become unreliable and
estimates of statistical significance may be inaccurate. This is especially
problematic when calculating confidence intervals, or when judging the
meaning of a P value that is on the margins of significance, say 0.055, and
it is important to know whether the true P value is 0.03 or 0.08.

Exact methods do not rely on any assumptions about sample size or dis-
tribution. Although these methods were developed in the 1930s, they have
been largely avoided because they are based on complex formulae that are
not usually available in statistics packages or because they require factorial
calculations that desktop computers have not been able to handle. How-
ever, technological developments in the last decade have meant that soft-
ware to calculate exact methods is now more readily accessible so that the
calculation of accurate statistics is no longer a problem.49

Incidence and prevalence statistics

The rate of occurrence of a rare disease is usually expressed as the inci-
dence; that is, the number of new cases that occur in a defined group with
a defined time period. For reporting purposes, very low incidence rates are
best expressed as the number of cases of the disease per 10 000 or per
100 000 children. Examples of the denominators that are commonly used
in such calculations are the number of live births, the number of children
less than five years old or the number of children living in a region in a
particular year. For example, an incidence rate may be reported as 10 cases/
100 000 live births/year.

The term incidence has a very different meaning to prevalence. Incidence
is the rate of occurrence of new cases each year whereas prevalence is cal-
culated from the total number of cases of a given disease in a population
in a specified time, for example 20 per cent of the population in the last
year. The number of remissions and deaths that occur influences the prev-
alence rate, but has no influence on the incidence rate.

Data from the Australian Paediatric Surveillance Unit shows that, in
1994, 139 cases of Kawasaki disease were confirmed in children under
fifteen years of age.50 This was correctly reported as a incidence rate of 3.70
cases per 100 000 children less than five years of age and 0.59 cases per
100 000 children age five to fifteen years. In oral presentations and in more



261

Reporting the results

informal documents in which an approximation is acceptable, these rates
can be expressed as being approximately one case per 27 000 children less
than five years of age or one case per 17 000 children age five to fifteen
years.

Glossary

Term Explanation

Gold standard The best method available

‘Exact’ methods Accurate statistical methods that are not based on
approximations

‘Normal’ methods Methods based on the assumption that the data
are normally distributed, the sample size is large
and the outcome of interest occurs frequently

95% confidence
intervals

Range in which we are 95% certain that the true
population value lies

Confidence intervals

Figures of percentages, such as incidence and prevalence rates, sensitivity,
specificity etc., should always be quoted with 95 per cent confidence inter-
vals. Between the range of 10–90 per cent, confidence intervals calculated
using exact and normal methods are quite similar. However, when the per-
centage is below 10 per cent or above 90 per cent, and especially if the
sample size is quite small, then exact methods are required for calculating
the 95 per cent confidence intervals. Differences between the two methods
arise because normal confidence intervals are based on a normal approxi-
mation to the binomial distribution whereas exact confidence intervals are
based on the Poisson distribution.

Figure 7.15 shows a series of prevalence rates estimated in a sample
size of 200 subjects and calculated using exact confidence intervals. The
exact confidence intervals are uneven but are accurate. In Figure 7.16, the
confidence intervals have been estimated using normal methods showing
how the normal estimates become increasingly inaccurate as the prevalence
rate becomes lower. The confidence intervals are even around the esti-
mate but their inaccuracy means that the lower interval extends below
zero at low prevalence rates, which is a nonsense rate. Because confidence
intervals are calculated in units of a percentage, they cannot exceed
100 per cent or fall below 0 per cent.
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Figure 7.15 Exact confidence intervals   

0 1 2 3 4

Four incidence rates of a disease that occur rarely plotted with exact 95% confidence 
intervals.

Incidence (number of cases per 100 children)

Figure 7.16 Normal confidence intervals   

0 1 2 3 4

Four incidence rates of a disease that occur rarely plotted with normal 95% confidence 
intervals showing how nonsense values below 0% can occur when the correct statistic is not 
used.

Incidence (number of cases per 100 children)

Table 7.28 shows the incidence of deaths from external causes in 1995
in Australian children less than one year old, categorised according to
State.51 Confidence intervals can be calculated in this type of study even
when no cases are found; that is, when the incidence rate is zero. In most
studies in which only a sample of the population is enrolled, the 95 per



263

Reporting the results

cent confidence intervals are used to convey an estimate of the sampling
error. However, 95 per cent confidence intervals can also be used when
the sample is the total population and we want to make inferences about
precision or compare rates, such as between States or between one year and
the next, whilst taking the size of the population into account.

Table 7.28 Number and incidence (cases per 10 000 children) of
deaths due to external causes in children less than one
year old in 1995

State Number
of cases

Total births Incidence 95% CI

New South Wales 14 85 966 1.63 0.89, 2.73

Victoria 7 61 529 1.14 0.46, 2.34

Queensland 12 47 613 2.52 1.30, 4.40

South Australia 3 19 114 1.57 0.32, 4.59

Western Australia 7 24 800 2.82 1.14, 5.81

Northern Territory 0 3 535 0 0.0, 10.43

Tasmania 0 6 431 0 0.0, 5.73

Australian Capital
Territory

0 4 846 0 0.0, 7.61

TOTAL 43 253 834 1.69 1.23, 2.28

From this table, we might have assumed that there was a statistically
significant difference in incidence between States because there were four-
teen cases in New South Wales and twelve in Queensland compared to
no cases in Tasmania, the Northern Territory and the Australian Capital
Territory. When these numbers are standardised for population size, the
incidence rate varies from zero to 2.82 cases/100 000 children less than one
year old. Whenever zero values occur in cells, as in this table, Fisher’s exact
test has to be used to test for between-State differences. For this table, an
exact test gives a P value of P�0.317 which indicates that there is no
significant differences between States. By plotting the data as shown in
Figure 7.17, we can easily see that the 95 per cent confidence intervals for
the States overlap one another to a large extent and this confirms that
there is no significant difference in the incidence rates.
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Figure 7.17 Exact confidence intervals   
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Incidence (cases/10,000 children) & 95% CI

Incidence and exact 95% confidence intervals of rate of deaths due to external causes in 
children less than one year of age in Australia in 1994.52

Glossary

Term Explanation

Contingency table Cross-classification of data into a table of rows
and columns to indicate numbers of subjects in
subgroups

Pearson’s
chi-square

Chi-square statistic based on assumption that the
sample size is large (greater than 1000) and that
there are more than 5 subjects in each cell

Continuity adjusted
chi-square

Chi-square statistic adjusted for a small sample
size, say of less than 1000 subjects

Fisher’s exact test Chi-square statistic used when there are less
than 5 expected cases in one or more cells

Chi-square tests

We often want to test whether there is an association between a disease
and other potentially explanatory factors, such as age or gender. In such
cases, the data can be cross-tabulated as counts in a contingency table as
shown in Table 7.29 (Personal communication, APSU). For these types of
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tables, a chi-square statistic that indicates whether there is a significant
difference in incidence between subgroups is the correct test to use. In
ordinary circumstances, Pearson’s chi-square is used when the sample size
is very large, that is in the thousands, or a more conservative ‘continuity-
corrected’ chi-square test is used when the sample size is smaller, say in the
hundreds. For small samples, the continuity-corrected chi-square produces
a more conservative and therefore less significant value than Pearson’s
chi-square.

Table 7.29 Incidence of cases of Kawasaki disease in Australia in
1994 stratified by gender of the child

Gender Non-Kawasaki
cases

Cases Total
population

Incidence and
95% CI

Males 1 979 444 81 1 979 525 4.09 (3.25, 5.08)

Females 1 880 464 48 1 880 512 2.55 (1.88, 3.38)

TOTAL 3 859 908 129 3 860 037

However, when the number of cases is very small compared to the size
of the study sample, Fisher’s exact test must be used. For tables larger than
2�2, exact methods must be used when more than 20 per cent of the cells
have an expected count less than five. Most computer packages do not
calculate exact methods for larger tables so that a specialised program is
required. However, for 2�2 tables, most computer programs print out a
warning and automatically calculate Fisher’s exact test when there is an
expected count of less than five in any cell of a contingency table. The
expected cell count for any table is calculated as follows:

Expected count � (Row total � Column total)/Grand total

In Table 7.30, data about the incidence of Kawasaki disease collected
by the Australian Paediatric Surveillance Unit is stratified by gender in a
2�2 table. Data from a total of 139 children were collected of whom 129
had information of gender available. From the table, the expected number
of cases of Kawasaki disease for females is (1 880 512 � 129)/3 860 037
which is 62.8. Because this is quite large, Fisher’s exact test is not required.
The Pearson’s chi-square statistic is 6.84 with P�0.01, which indicates that
the incidence of disease is significantly higher in male children.

Chi-square tests are also used to investigate subsets of the data.
Table 7.30 shows the data for children with Kawasaki disease categorised
according to both age of diagnosis and whether the child was admitted
to hospital. The expected number of children aged five years or older who
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Table 7.30 Cases of Kawasaki disease in 1994 categorised according
to age and admission to hospital53

Admitted to
hospital

Not admitted TOTAL

Children �5 years old 92 (91.1%) 9 (8.9%) 101

Children �5 years old 27 (79.4%) 7 (20.6%) 34

TOTAL 119 16 135

Note: The cells show the number of cases with the row percentage shown in brackets.

did not require admission is (16 � 34)/135 which is 4.0, indicating that
Fisher’s exact test is required. The P value for this test is 0.12 indicating
that the difference of 91 per cent children younger than five years being
admitted to hospital compared to 79 per cent of older children is not
statistically significant. A Pearson’s chi-square value calculated for this table
gives a value of 0.07, which suggests a difference of marginal significance,
and outlines the importance of computing the correct statistic so that correct
inferences from small P values such as this are made.
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Section 1—Designing a study
protocol

The objectives of this section are to provide resources
for:
• designing a research study; and
• reviewing a study protocol.

Designing a research study 268
Core checklist 270

Aims or hypotheses 270
Background 271
Research methods 271
Statistical methods 271

Methodological studies 273
Clinical studies 274
Epidemiological studies 276

Designing a research study

The studies that are most likely to provide meaningful and useful infor-
mation about health care are the studies in which the most appropriate
design for the setting and the most appropriate methods to answer an
important research question are used. The most elegant studies are those
that use the most robust study design, that use the most reliable methods
to collect data and that incorporate strategies to overcome problems of bias
and confounding. In addition, to attract funding, research studies must be
entirely feasible to conduct, have adequate power to test the hypotheses,
use appropriate statistical methods, and ensure that the conclusions that
will be drawn are justified by the data.

The steps for developing a new study are shown in Table 8.1. The
strengths and merits of various study designs were discussed in Chapter 2.
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Table 8.1 Checklist for developing a new study

❑ Focus on the areas of health care for which the current evidence is
inadequate

❑ Develop research questions into clear testable hypotheses or study
aims

❑ Choose an optimal study design for each hypothesis or aim
❑ Select valid and repeatable methods to measure the outcome and

exposure variables
❑ Identify and minimise potential effects of bias and confounding
❑ Plan the statistical methods needed to test each hypothesis
❑ Prepare study protocol and timelines
❑ Obtain ethical approval
❑ Estimate budget
❑ Identify appropriate funding bodies and apply for funding

It is vital to ensure that a study protocol is complete in that it explains
the purpose of the study and addresses all of the fundamental design issues.
Study protocols that adhere to these standards will be regarded more highly
by the scientific community, including peer reviewers and the scientific
advisory, ethics and granting committees.

The checklists that follow in this chapter are intended as reminders of
problems that need to be addressed in order to design the best possible
research study for the question or questions being asked. These checklists
can also be used when reviewing protocols prepared by other researchers
to ensure that no fundamental flaws in study design have been overlooked.
Other checklists that have been developed to minimise the effects of bias
have been published in the literature.1

Glossary

Term Meaning

Null hypothesis A hypothesis stating that there is no significant
difference or relationship between two variables

A priori or alternate
hypothesis

A hypothesis that states the direction of the
relationship between two variables

Topic sentence A sentence used at the beginning of a paragraph
which summarises the topic of the paragraph

Research ethics Procedures in place to ensure that the welfare of
the subject is placed above the needs of the
research investigator
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Core checklist

A core checklist that applies to all studies is shown in Table 8.2. This
checklist is intended for use in combination with the supplementary check-
lists shown in Tables 8.3 to 8.5 that have been specifically designed for
methodology studies, clinical trials and epidemiological studies respectively.
Each checklist shows the issues that need to be addressed in order to
develop a well thought out protocol with a rigorous scientific design.

Most studies are planned with the ultimate intention of collecting
information that can be used to improve health care. It is important to
think carefully about how new results from a research study be used and
particularly about whether the study is intended to improve knowledge,
medical care, clinical understanding or public health.

Aims and hypotheses

The aims or hypotheses that arise from the research question need to be
specific, succinct and testable. As such, each hypothesis should be encap-
sulated in a single short sentence. Remember that hypotheses that are non-
specific, complex or have multiple clauses usually reflect a lack of clarity
in thinking and make it difficult for reveiwers and granting panels to
discern the exact aims of the study.

This first section must be written clearly because it sets the scene
for the rest of the document. It is preferable to have only two or three
clear specific hypotheses or specific aims—having too many often confuses
rather than clarifies the main issues. It is usually more practical and clearer
for the reviewer if hypotheses are presented for experimental study designs
and aims are presented for descriptive studies and, for clarity, to avoid
having both.

The decision of whether to state the hypothesis as a null hypothesis
is a personal one—it is often more straightforward to simply have an a
priori hypothesis. It is helpful if the aims or hypotheses are numbered in
order of importance so that they can be referred to in later stages in the
protocol.

The aims and hypotheses section should also have a paragraph that
states very clearly what the study will achieve and why. Many researchers
find it easy to succinctly verbalise why they want to conduct their study,
but have difficulty writing it down. It is therefore a useful exercise to
imagine what you would say to a friend or a family member if they asked
why you were doing the study and then, once you had told them, they
replied ‘so what?’. If the aims and importance of the study can be conveyed
in simple, plain language to people to whom research is a mystery, then
they will also be easily understood by other scientists whose role is to peer
review the protocol.
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Background

The background section is like the introduction of a journal article—it
needs to describe what is known and what is not known, and to justify
why this study is needed. To make this section more readable, liberal sub-
headings can be used together with short paragraphs that begin with topic
sentences. This section can be used to ‘sell’ the project by including infor-
mation about prior experience in the field, any pilot data, the relationship
of this project to previous studies, and reasons why this study will provide
new and exciting information.

Research methods

The methods section is the part of the protocol that needs most time to
think through—this section should be flawless, and should be linked
directly to the specific aims or hypotheses. In making this section clear,
tables, figures and time-lines are essential for clarifying the research process
that will be used.

This section must be comprehensive. All of the details of the study
design should be outlined, together with the subject characteristics and
recruitment procedures, the approximate size of the pool of subjects avail-
able, the sample size, and the treatment or intervention details. This will
allow reviewers to judge how generalisable the study results will be and how
the effects of bias and confounders will be minimised. Remember to include
details of how any potential problems that could be anticipated will be
dealt with, and to address any issues of feasibility.

Statistical methods

The statistical methods section must outline how the data being collected
will be used to test each of the study hypotheses or fulfil each aim. This
section should include a description of the type of data that will be col-
lected, for example whether it will be continuous, normally distributed, or
categorical.

For each aim or hypothesis, it is a good exercise to list all of the vari-
ables under subheadings of outcomes, alternate outcomes or surrogate
variables, confounders and explanatory variables. This simplifies the process
of deciding how these variables will be used in the analyses, which statis-
tical methods will be appropriate, and which subjects will be included in
or excluded from each analysis.

Remember that it is unethical to collect any data that is not needed.
This can be avoided by giving details of how all of the data will ultimately
be used. Finally, give details of how the results of the statistical analyses
will be interpreted so that the study aims are fulfilled.



272

Health science research

Table 8.2 Core checklist for designing or reviewing a research study

Aims—describe concisely:
❑ each study hypotheses and how you intend to test it
❑ why the study is important
❑ the specific hypotheses and/or aims

Significance—say how the study will lead to:
❑ better patient care
❑ better methods for research
❑ improved treatment or public health
❑ disease prevention

Background—describe:
❑ what is known and not known about the research topic
❑ why this study is needed
❑ your experience in the field
❑ the relationship of this study to existing projects
❑ how this study will provide new information

Study design—give concise details of:
❑ the study design
❑ the sampling methods
❑ the recruitment strategies
❑ inclusion and exclusion criteria
❑ sample size calculations

Bias and confounding—outline in detail:
❑ the representativeness of the sample
❑ the expected response rate
❑ any planned interim analyses or stopping rules
❑ methods to control for confounders

Conducting the study—describe:
❑ details of the data collection methods
❑ composition of the management and monitoring committees
❑ the location, content and documentation of the data files
❑ the statistical analyses that will be used
❑ how the results will be reported and interpreted

Budget and staff requirements—give details of:
❑ itemised unit costs
❑ justification of requests
❑ duties of required staff
❑ required staff training and/or qualifications
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Methodological studies

Methodological studies are used to establish the repeatability and/or the
validity of new or existing questionnaires, instruments or pieces of medical
equipment that have been designed to measure outcome, confounding or
exposure variables. The design and interpretation of these types of studies
was discussed in Chapters 3 and 7.

There is sometimes an implicit assumption that established research
methods are reliable, perhaps because they have been used for a long time
or perhaps because they are the most practical method available. However,
this is not always the case. Indeed, the majority of methods used in medical
research have some degree of error or may lack validity. Some commonly
used methods also have a surprisingly low repeatability for estimating
health conditions or environmental exposures. Until rigorous studies to test
the repeatability, validity and responsiveness of methods are undertaken,
then the effects of the methods themselves on the interpretation of the
results will not be clear.

It is essential that repeatability and validation studies are conducted
whenever a new method is being introduced or whenever an existing
method is being used in a study sample in which its reliability or validity
is not known. There is no study design that can overcome bias that is an
inevitable outcome of unreliable or imprecise instruments. Furthermore,
there are no statistical methods for adjusting for the effects of unreliable
or imprecise measurements at the data analyses stage of any study. For these
reasons, methodology studies need to be conducted in the most rigorous
way so that accurate information of the precision of research instruments
is available. This will not only lead to high quality research data but also
avoids the use of unnecessarily large sample sizes.

A checklist to help ensure that these issues are all addressed, and which
is intended for use as a supplement to the core checklist (Table 8.2), is
shown in Table 8.3.

Table 8.3 Checklist for designing or reviewing a methodology study

Study objectives—state whether the following will be measured:
❑ validity (face, content, construct, etc.)
❑ sensitivity and specificity
❑ repeatability of a single measurement
❑ agreement between instruments or between observers
❑ responsiveness of an instrument to changes over time

Cont’d
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Table 8.3 Cont’d Checklist for designing or reviewing a methodology study

Methods—give details of the following:
❑ potential risks and benefits
❑ feasibility of methods
❑ development of questionnaires
❑ timetable for data collection
❑ pilot study and how the pilot study data will be used

Reducing bias—describe:
❑ the blinding procedures
❑ the randomisation method for ordering the tests
❑ standardisation of conditions
❑ appropriateness of time between measurements

Statistical methods—give details of:
❑ the statistical method used to test each aim or hypothesis
❑ how the results of each data analysis will be interpreted
❑ the use of measurements not related to aims or hypotheses

Clinical studies

Experimental clinical studies are conducted to establish the equivalence,
efficacy or effectiveness of new treatments or other health care practices
in subjects who have an established illness. Alternatively, non-experimental
studies can be used to assess whether subjects with disease (cases) have been
exposed to different environmental factors than subjects who do not have
the disease (controls). Whatever the study design, only the studies that are
conducted with a high degree of scientific merit can lead to improved health
care. Clearly, to achieve this, the effects of treatments and of confounders
and environmental factors must be measured with both accuracy and
precision.

In clinical trials and case-control studies, the selection of the subjects
will have profound effects on the generalisability of the results. In both
randomised and non-randomised clinical trials, it is vital that attention is
given to improving subject compliance, to eliminating or reducing the
effects of bias, and to minimising the effects of confounders. If data are
being collected at more than one site, a management structure is needed
to ensure quality control at all collection centres. A checklist for clinical
studies that is supplemental to the core checklist (Table 8.2) is shown in
Table 8.4.
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Table 8.4 Checklist for designing or reviewing a clinical study

Study design—describe in detail:
❑ whether efficacy, equivalence or effectiveness is being measured
❑ the defining characteristics of the subjects
❑ any matching strategies that will be used
Treatment or intervention—give details of:
❑ the placebo or control group treatment
❑ methods to assess short-term and long-term effects
❑ methods for measuring compliance
❑ the evaluation of potential risks
Methods—describe:
❑ the sampling methods
❑ ability to recruit the required number of subjects
❑ feasibility of data collection methods
❑ how the response rate will be maximised
❑ the questionnaires to be used
❑ the subjective, objective and surrogate outcome variables
❑ the methods to measure outcomes, such as quality of life, that are

important to the patient
❑ the pilot study and how pilot data will be used
❑ a time-line to completion of the study
❑ feedback to subjects
Validity of measurements—give information of:
❑ repeatability of outcome and exposure measurements
❑ responsiveness of outcome measurements to change
❑ criterion or construct validity of measurements
❑ applicability of measurements to the aims of this study
Reducing bias and confounding—say how you will manage:
❑ selection bias
❑ observer bias and any blinding procedures
❑ follow-up procedures
❑ balancing confounders and prognostic factors
❑ randomisation of subjects to groups and allocation concealment
Statistical methods—give details of:
❑ the inclusion criteria for each analysis (intention to treat, selection, etc.)
❑ the statistical method used to test each hypothesis
❑ how any stratified analyses will be conducted
❑ how the results of each data analysis will be interpreted
❑ whether the sample size will allow a clinically important difference

between study groups to be statistically significant
❑ how data not related to study aims will be used
❑ how threshold or dose–response effects will be assessed
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Epidemiological studies

Epidemiological studies can be used for many purposes, including the
measurement of estimates of incidence and prevalence, the quantification
of risk factors, and the effects of environmental interventions. In such
studies, the measurements of disease and exposure must be as precise as
possible, and the sampling strategies must be designed to minimise bias and
to maximise generalisability. In addition, sample size is a fundamental issue
because many epidemiological studies are designed to make comparisons
between populations or over time or between subgroups of the population,
for which a large sample size is usually required. The way in which the
study is designed will inevitably influence the extent to which populations
or subgroups can be reliably compared, and the extent to which causation
can be inferred from the identification of apparent risk factors.

The many issues that influence the generalisability and the precision
of the results obtained from conducting a study of a population sample of
subjects are shown in Table 8.5. This checklist is supplemental to the core
checklist shown in Table 8.2.

Table 8.5 Checklist for designing or reviewing an epidemiological study

Study design—describe whether this study is:
❑ an ecological study
❑ a cross-sectional study (to measure prevalence, incidence, risk

factors)
❑ a case-control or cohort study (to measure risk factors, prognosis)
❑ a population intervention (to measure effectiveness)
Subjects—give details of:
❑ how the subjects will be recruited
❑ whether a cohort is an inception or birth cohort
❑ whether only subjects with a disease of interest will be included
❑ the methods of random sampling
Methods—outline in detail:
❑ the feasibility of study
❑ the definitions used to identify the disease of interest
❑ measurement of confounders
❑ the pilot study and how the data will be used
❑ time-line for events
❑ feedback to subjects or community
Measurements—describe for the exposure and outcome measurements:
❑ repeatability
❑ criterion or construct validity
❑ applicability to this study

Cont’d
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Table 8.5 Cont’d Checklist for designing or reviewing an epidemiological
study

Reducing bias and confounding—describe how you will:
❑ maximise the response rate
❑ improve follow-up procedures
❑ assess non-responders to measure potential bias
❑ reduce observer bias
❑ measure and control for confounders
Statistical methods—give details of:
❑ the statistical method used to test each hypothesis
❑ how the results of each data analysis will be interpreted
❑ use of data not related to study aims
❑ methods to assess threshold or dose–response effects
❑ implications for causation
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Section 2—Grantsmanship

The objectives of this section are to understand:
• how to prepare a competitive funding application;
• the importance of a team approach; and
• how to combine good science with excellent presentation.

Attracting research funding 278
Peer review 279
Presentation 280
Granting process 281
Justifying the budget 281
Research rewards 281

Attracting research funding

Having a good idea for a study is an exhilarating moment in research, but
obtaining funding to undertake the study is a daunting task. To attract
funding, the study needs to be an innovative and achievable project that
uses good science to produce clinically relevant information. For this, the
study must be scientific, practical and likely to succeed, and the application
must be beautifully thought out and superbly presented. The features that
contribute to a successful application are shown in Table 8.6.

In contrast to the excitement of having a good idea for a study, devel-
oping the study design and completing the application forms is usually an
endurance task that ensures that only the most dedicated will succeed. In
addition to the knowledge needed to design a scientifically rigorous pro-
ject, many other resources are required of which team support, time, peer
review, patience and a competitive nature are essential. It is vital to be well
organised because grant deadlines are not flexible. However, by planning a
clear strategy, the chances of success can be maximised.2

Few researchers prepare a successful application all by themselves—a
team approach is usually essential. Once a research idea has been translated
into a testable hypothesis, the study design has been decided and the ideas
are beginning to be documented, then it is time to consider a team
approach to the paper work. It is enormously helpful if one person prepares
the ‘front-and-back’ pages of a grant application—that is the budget, the
principal investigators’ bibliographies, the ethics applications, the signature
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Table 8.6 Features of successful grant applications

Study design
• based on novel ideas and good science
• has clear relevance to evidence-based practice
• designed to answer an important question
• practical and likely to succeed
• good value for money

Application
• beautifully thought out
• nicely presented
• readable and visually attractive
• well ordered

pages and so on. In this way, the principal investigators can focus on the
science and the presentation with the confidence that someone else is
taking responsibility for the clerical process.

To maximise the chances of being awarded a grant, you have to prepare
one of the best applications in the granting round. This takes time—in
fact, an amazing amount of time. Time is needed to work through and
develop the study design, to get meaningful and ongoing peer review and
feedback, and to take it on board and process it. It also takes a lot of time
to edit and process many drafts. Only the allocation of sufficient resources
will ensure that an application is both brilliantly thought out and perfectly
presented.

It is prudent to remember that it is more ethical and more satisfying to
design a study that uses the best science available, and that studies designed
in this way also contribute to the research reputations of the investigators.
Furthermore, this type of study is far more likely to attract funding. The
benefit of all of this work is that striving for high marks will maximise the
chances that the highest level of evidence will be collected in order to
answer the study question. This is the only level of evidence that can
contribute to the processes of evidence-based practice.

Peer review

The corner-stone of good science is peer review. When writing a funding
application, it is important to elicit as much internal and external peer
review as possible. This will ensure that the project becomes feasible and
scientifically rigorous, uses the best study design to answer the research
question, and has departmental support. Ideal people to ask are those who
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have been involved in research and have held a grant themselves, or have
first-hand knowledge of the granting process. It is also essential to get feed-
back from ‘outsiders’—for this, colleagues who work in a different research
field and friends or family are ideal. If the application can be understood
by people who are not research experts, then it stands a good chance of
being easily understood by everyone involved in the peer review and grant-
ing processes.

It is a good idea to start as early as possible and to be realistic in allow-
ing plenty of time for ideas to develop and for others to read the proposal,
digest the concepts and give useful feedback. However, the very process of
peer review can be both helpful and frustrating. Asking for advice from
many quarters always elicits a wide diversity of opinions. When receiving
peer review, the practical advice needs to be sifted out from the impractical
advice, the scientific suggestions from the unscientific suggestions, and the
personal agendas from your own agenda.

When receiving feedback, it can be dispiriting to have someone revise
text that has taken many hours to compose, or suggest new ideas for a study
that you have spent long hours designing. Nevertheless, for success, it
is better to stand back and consider that if your peers have problems
following your writing and understanding your rationale, then the granting
committee will also have problems.

Presentation

Applications that are based on novel ideas, answer an important question,
use good science and are value for money are prime candidates for funding.
In addition, applications that are well thought out, readable and visually
attractive are more likely to appeal to committee members who may not be
content experts in your particular field.

Grantsmanship is a competitive process because only the applications
with the highest marks are assured of success. Being competitive involves
being prepared to edit many drafts in order to improve clarity and ensure a
logical flow of ideas. It is a good idea to include diagrams, figures, tables
and schematic time-lines to enable reviewers to grasp ideas at a glance.
Paying attention to detail in the application signals to the committee that
you are the type of person who will pay attention to detail when running
the study.

For readability, be sure to use a topic sentence at the top of each
paragraph. Also, delete the redundant phrases and sentences, use a large
font and lots of white space, and avoid long words, abbreviations and
adjectives. Be straightforward and substitute simple language such as ‘is’
instead of ‘has been found to be’, and direct terms such as ‘will measure’
instead of ‘intends to detect’ or ‘aims to explore’. Remember that each of
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the reviewers and committee members have to process a large number of
applications. It is inevitable that the applications that are a pleasure to read
will be viewed more favourably.

Granting process

Essentially, only a handful of key readers will review an application in
detail, that is the external reviewers who are content experts, and the
granting committee, especially your spokesperson. These people, who
have the responsibility of reading your protocol carefully, have a profound
influence on whether your study is presented favourably to the rest of the
committee. For this, the application needs to present good science pack-
aged in such a way that it can be clearly and easily understood by the
remainder of the committee who may not have had time to read it in depth.
Remember that these people may not be experts in your research area.

Also, the committee members will be faced with a limited budget and a
pile of applications—inevitably, their job is to avoid funding the majority
of the applications before them. The committee will focus on any potential
flaws in the logic and the study design, any problems that are likely to arise
when conducting the study, and any better ways in which the research
question could be answered. A good application addresses any limitations
in the study design and gives clear reasons for the plan of action. The
committee must also be convinced that the resources and expertise needed
to bring the study to a successful conclusion will be available. Pilot data is
very useful in this context. Conveying a sense of importance of the research
topic and enthusiasm of the researchers will help too.

Justifying the budget

Finally, make sure that the budget is itemised in detail and is realistic. Unit
costs and exact totals should be calculated. Budgets with everything
rounded to the nearest $100 or $1000 not only suggest that they have been
‘best guessed’ but also suggest inattention to accuracy. Each item in the
budget may need to be justified, especially if it is expensive and a cheaper
alternative could be suggested. The cost benefits to the project of employ-
ing senior, and therefore more expensive, researchers rather than less
experienced junior staff will also need to be made clear.

Research rewards

Most research requires a great deal of dedication to design the study, obtain
the funding, recruit the subjects, collect and analyse the information, and
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report the data. However, there are some important events that make it
all worthwhile, such as presenting an abstract at a scientific meeting,
having an article published in a prestigious journal or having your results
incorporated into current practice. One of the best rewards of all is obtain-
ing a competitive funding grant. This always calls for celebration because
it means that you have been awarded an opportunity to answer an impor-
tant research question. This also means that the funding is deserved
because a high quality application has been prepared for a study that plans
to use the best science available to help improve health care.
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Section 3—Research ethics

The objectives of this section are to understand:
• why ethical approval needs to be obtained;
• the issues that need to be considered in designing an ethical

study; and
• research situations that may be unethical.

Ethics in human research 283
Ethics committees 284
Unethical research situations 285
Care of research subjects 286

Ethics in human research

Ethical research always places the welfare and rights of the subject above
the needs of the investigator. An important concept of research ethics is
that a research study is only admissible when the information that will be
collected cannot be obtained by any other means. Obviously, if it becomes
clear during the course of a study that the treatment or intervention that
is being investigated is harmful to some subjects, then the study must be
stopped or modified. The ethical principles of research, which are widely
published by governments and national funding bodies, are summarised in
brief in Table 8.7.

Table 8.7 Ethical principles of research

• all research should be approved by an appropriate ethics committee
• the study findings will justify any risk or inconvenience to the subjects
• researchers should be fully informed of the purpose of the study and

must have the qualifications, training and competence to conduct the
study with a high degree of scientific integrity

• subjects must be free to withdraw consent at any time, and withdrawal
must not influence their future treatment

• the rights and feelings of subjects must be respected at all times
• subjects must be provided with information on the purpose,

requirements and demands of the protocol prior to their giving consent
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There are special ethical considerations when studying vulnerable
people or populations.3 There are also special considerations that relate to
the study of children, the mentally ill, and unconscious or critically ill
patients who are not empowered to give consent for study themselves.
When conducting research in children, consent should be obtained from
the parent or guardian in all but the most exceptional circumstances, and
also from the child themselves when they reach sufficient maturity.4

The problems that arise from paying subjects to take part in research
studies have been widely debated. In principle, subjects can be reimbursed
for inconvenience and their time and travel costs but should not be
induced to participate. Subjects should never be coerced into taking part
in a research study and, for this reason, it is unethical to recruit subjects
from groups such as friends, family or employees who do not feel that they
have the freedom to refuse consent.

Ethics committees

Because almost all health care research is intrusive, it is essential that ethical
approval is obtained from the appropriate local ethics committees. Members
of ethics committees generally include a selection of people who provide a
collective wide experience and expertise. Ethics committees often include
laypersons, ministers of religion, lawyers, researchers and clinicians. The
process of having the committee scrutinise each research study ensures that
subjects are not placed under undue risk or undue stress. The process also
ensures that the subjects will be fully informed of the purposes of the study
and of what will be expected of them before they consent to take part. The
responsibilities of ethics committees are shown in Table 8.8.

Table 8.8 Responsibilities of ethics committees

Ethics committees are convened to:
• protect the rights and welfare of research subjects
• determine whether the potential benefits to clinical practice in the long

term warrant the risks to the subjects
• ensure that informed consent is obtained
• prevent unscientific or unethical research

It is widely accepted that clinical trials of new treatments or interven-
tions are only ethical when the medical community is genuinely uncertain
about which treatment is most effective. This is described as being in a
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situation of equipoise, that is uncertainty about which of the trial treat-
ments would be most appropriate for the particular patient.5 When patients
are enrolled in clinical trials, there should always be concern about whether
the trial is ethical because patients are often asked to sacrifice their own
interests for the benefit of future patients. However, in practice, patients
may participate in clinical trials out of self-interest and doctors may enter
patients who have a personal preference for one of the treatments, which
suggests that researchers and practitioners may have different attitudes to
ethically acceptable practices.6

Unethical research situations

In research studies, situations that may be considered unethical sometimes
occur. Because these situations usually occur inadvertently, it is always a
good idea to consider the risks and benefits of a study from the subjects’
perspectives and balance the need to answer a research question with the
best interests of the study subjects. A list of some common potentially
unethical situations is shown in Table 8.9.

Table 8.9 Research situations that may be unethical

Study design
• conducting research in children or disadvantaged groups if the

question could be answered by adults
• using a placebo rather than standard treatment for the control group
• conducting a clinical study without an adequate control group
• any deviations from the study protocol
• beginning a new study without analysing data of the same topic from

previous studies
• conducting studies of mechanisms that have no immediate impact on

better health care

Research methods
• inclusion of questionnaires or measurements not specified in the ethics

application
• enrolment of too few subjects to provide adequate statistical power
• stopping a study before the planned study sample has been recruited

Data analysis and reporting
• failure to analyse the data collected
• failure to report research results in a timely manner
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Care of research subjects

In endeavouring to collect the ‘best’ available evidence about health care,
it is important that the design of research studies is based on sound scientific
principles to ensure that definitive conclusions will be obtained. It is also
important that the selection of the subjects, the way in which consent is
obtained, the manner in which trials are stopped, and the continuing care
of the subjects are all considered.7 In essence, all issues that relate to the
care and respect of the subjects are a fundamental aspect of ethical research
studies.
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