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PREFACE

The preparation of this second edition is motivated by the effectiveness of the first
edition in classroom instruction, so the original structure and content have been
retained. Our changes have been directed to the needs of students and other readers.
Most obviously, we have moved the review of mathematics, formerly an appendix, to
the front of the book (and, by labeling it Chapter 0, have conveniently preserved the
structure and numbering throughout the following body of the text). We have added
new textual material and figures in several places, most notably in Chapter 14, the
chapter treating noncovalent chemical interactions; it is this chapter that most clearly
distinguishes the content of this book from that of other thermodynamic texts. Two
new appendices provide ancillary material that expands certain matters bordering the
subject of classical thermodynamics.

Obviously, we have taken this opportunity to correct errors in the first edition, and
we hope that we have not introduced many new ones.

We thank our colleague Professor Lian Yu for valuable discussions.

KENNETH A. CONNORS

SANDRO MECOZz1

Madison, Wisconsin

xi






PREFACE TO THE
FIRST EDITION

Classical thermodynamics, which was largely a nineteenth-century development, is a
powerful descriptive treatment of the equilibrium macroscopic properties of matter. It
is powerful because it is general, and it is general because it makes no assumptions
about the fundamental structure of matter. There are no atoms or molecules in
classical thermodynamics, so if our ideas about the atomic structure of matter should
prove to be wrong (a very possible outcome to many nineteenth-century scientists),
thermodynamics will stand unaltered. What thermodynamics does is to start with a
few very general experimental observations expressed in mathematical form and then
develop logical relationships among macroscopic observables such as temperature,
pressure, and volume. These relationships turn out to have great practical value.

Of course, we now have firm experimental and theoretical reasons to accept the
existence of atoms and molecules, so the behavior of these entities has been absorbed
into the content of thermodynamics, which thereby becomes even more useful to us.
In the following we will encounter the most fundamental ideas of this important
subject, as well as some applications of particular value in pharmacy. In keeping with
our needs, the treatment will in places be less rigorous than that in many textbooks,
and we may omit descriptions of detailed experimental conditions, subtleties in the
arguments, or limits on the conclusions when such omissions do not concern our
practical applications. But despite such shortcuts, the thermodynamics is sound, so if
you later study thermodynamics at a deeper level, you will not have to “unlearn”
anything. Thermodynamics is a subject that benefits from, or may require, repeated
study, and the treatment here is intended to be the introductory exposition.

Here are a few more specific matters that may interest readers. Throughout the text
there will be citations to the Bibliography at the end of the book and to the Notes
sections that appear at the end of most chapters. Students will probably not find it
necessary to consult the cited entries in the Bibliography, but I encourage you to
glance at the Notes, which you may find to be interesting and helpful. Two of my
practices in the text may be regarded by modern readers as somewhat old-fashioned,
and perhaps they are, but here are my reasons. I make considerable use of certain units,
such as the kilocalorie and the dyne, that are formally obsolete; not only is the older
literature expressed in terms of these units, but they remain in active use, so the student

xiii



xiv PREFACE TO THE FIRST EDITION

must learn to use them. Appendix B treats the conversion of units. My second peculiar
practice, which may seem quaint to students who have never used a table of
logarithms, is often to express logarithmic relationships in terms of Briggsian
(base 10) logarithms rather than natural logarithms. There are two reasons for the
continued use of base 10 logarithms; one is that certain functions, such as pH and pK,
are defined by base 10 logs, and these definitions can be taken as invariant components
of chemical description; and the second reason, related to the first, is that order-of-
magnitude comparisons are simple with base 10 logarithms, since we commonly
operate with a base 10 arithmetic.

Obviously, there is no new thermodynamics here, and I have drawn freely from
several of the standard references, which are cited. Perhaps the only unusual feature of
the text is my treatment of entropy. The usual development of the entropy concept
follows historical lines, invoking heat engines and Carnot cycles. I agree with
Guggenheim (1957, p. 7), however, that the idea of a Carnot cycle is at least as
difficult as is that of entropy. Guggenheim then adopts a postulational attitude toward
entropy [a method of approach given very systematic form in a well-known book by
Callen (1960)], whereas I have developed a treatment aimed at establishing a stronger
intuitive sense in my student readers [Nash (1974, p. 35) uses a similar strategy]. My
approach consists of these three stages: (1) The basic postulates of statistical
mechanics are introduced, along with Boltzmann’s definition of entropy, and the
concept is developed that spontaneous processes take place in the direction of greater
probability and therefore of increased entropy; (2) with the statistical definition in
hand, the entropy change is calculated for the isothermal expansion of an ideal gas;
and (3) finally, we apply classical thermodynamic arguments to analyze the isother-
mal expansion of an ideal gas. By comparing the results of the statistical and the
classical treatments of the same process, we find the classical definition of entropy,
dS =dq/T, that will provide consistency between the two treatments.

Lectures based on this text might reasonably omit certain passages, only inciden-
tally to save time; more importantly, the flow of ideas may be better served by
making use of analogy or chemical intuition, rather than rigorous mathematics, to
establish a result. For a good example of this practice, see Eq. (4.1) and the subsequent
discussion; it seems to me to be more fruitful educationally to pass from Eq. (4.1),
which says that, for a pure substance, the molar free energies in two phases at
equilibrium are equal, to the conclusion for mixtures, by analogy, that the chemical
potentials are equal, without indulging in the proof, embodied in Eqgs. (4.2)—(4.6). But
different instructors will doubtless have different views on this matter.

I thank my colleague George Zografi for providing the initial stimulus that led to
the writing of this book. The manuscript was accurately typed by Tina Rundle. Any
errors (there are always errors) are my responsibility.

KeNNETH A. CONNORS

Madison, Wisconsin



REVIEW OF MATHEMATICS

0.1. INTRODUCTION

The extent of mathematics required in order to master the material in the professional
pharmacy curriculum is really quite modest, comprising the basic operations of
arithmetic and algebra; some fundamentals of plane geometry, analytic geometry,
and calculus; and ideas from mathematical statistics. Nearly everything mathematical
that you will need to know as a pharmacy student you have presumably already
mastered in high school or college courses, except perhaps for the mathematical
statistics content and the concept of partial differentiation (which will be treated in the
following pages). You already know, or you once knew, about 95% of the material in
this review (exclusive of the statistics section), which therefore should not present a
difficult intellectual challenge. Although our immediate concern is to provide a basis
for the mathematical needs of thermodynamics, this review goes beyond thermody-
namics to include the mathematical methods useful in other parts of the curriculum.

Mathematics is treated by scientists as a tool or a language, and it is this attitude
that you should adopt. Your goal in reviewing this material is to develop such a
familiarity with the mathematical operations that you need not worry about them or
even give much conscious thought to them. Such a capability will allow you to
concentrate your attention on the new ideas being presented in your courses, whether
they are physical chemical, pharmacokinetic, or biological. Not every bit of mathe-
matics that you may encounter in your future studies will be treated here, but nearly all
of it will be found here.

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.



2 REVIEW OF MATHEMATICS

As afirst step in developing this review of essential mathematics as the language of

Table 0.1. Common mathematical symbols

Symbol

Meaning

I LIV VIAA RS 2

X
]
=

~or/

Equals; is equal to

Is equivalent to

Is approximately equal to
Is not equal to

Is proportional to

Is less than

Is less than or equal to

Is greater than

Is greater than or equal to
Plus

Minus

Times

Divided by

Plus or minus

The square root of
Therefore

The absolute value of

science, Table 0.1 lists some standard mathematical symbols.

As you read the following pages, keep in mind that this is a review, not a logical
development of the subject. Results are usually presented without derivation; you have
already seen the derivations in your mathematics courses. Examples will draw on
chemical concepts that, in many instances, will already be familiar to you, but a few
ideas may appear that are new.

0.2. DIMENSIONS AND UNITS

Base and Derived Units. The value of a physical quantity is expressed as the

product of a numerical value and a unit; thus

For example,

Many systems of units have been used, and several systems are in use today, but in
scientific work the standard system of units is the Systeme International (SI),
occasionally varied with a few units from the older cgs system (IUPAC, 1993).
There are seven SI base units, each of these being independent of the others. Table 0.2
lists the ST base units. No punctuation is used with symbols, nor are symbols pluralized.

Physical quantity = numerical value X unit

Distance = 125 km
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Table 0.2. Sl base units

Symbol for Name of Symbol for
Physical Quantity Quantity (Dimension)  SI Unit SI Unit
Length 1 meter m
Mass m kilogram kg
Time t second S
Electric current 1 ampere A
Temperature T kelvin K
Amount of substance n mole mol
Luminous intensity I, candela cd
Table 0.3. Some Sl derived units
Physical Quantity Defining Relationship Derived SI Unit
Area Ix1 m?
Volume IxIx1 m’
Velocity Distance per second ms !
Density Mass per volume kgm™>
Concentration Amount per volume mol m™

All other units are called derived units; these can be obtained by appropriate
algebraic combination of the base units. Table 0.3 gives a few derived units to illustrate
the manner in which they are formed. Of course, in common practice we make wide use
of traditional alternatives. For example, we may express area in square centimeters
(cm?) if this is convenient to the problem. Density is usually expressed in grams
per milliliter (gmL~"); and concentration is expressed in moles per liter (mol L"),
which is sometimes written mol dm .

A few important physical quantities have special names and symbols for their units;
a selection of these is shown in Table 0.4. The expression of a derived unit in terms of
base units, as illustrated in Table 0.3, is obtained from the appropriate physical law or
definition. For example, from Newton’s law of motion, we have

Force = Mass x Acceleration

Table 0.4. Some named derived units

Physical Quantity SI Unit SI Symbol Base Unit Expression
Frequency hertz Hz 5!

Force Newton N mkgs 2

Pressure pascal Pa NmZ2=m' kg s72
Energy, heat, work joule J Nm=m’kgs™>
Electric charge coulomb C As

Electric potential volt v IC'=m? kgs 'A™!
Electric resistance ohm Q VA~ '=m’kg ' s* A?




4 REVIEW OF MATHEMATICS
and

Velocity  Distance

Acceleration = Time — Time2
so, in terms of SI units we have
N=mkgs>

Similarly,

Pressure = Force

Area

SO

Pascal = Nm >
Also

Work = Force x Distance

SO

Joule = Nm

Not all scientists restrict themselves to SI units, and a few quantities are occasionally
written in units from the cgs system. Moreover, the published scientific literature
obviously makes use of older units, and so it is essential to be able to interconvert units
of the several systems. Table 0.5 gives the relationships between the most important
of these.

Table 0.5. Some cgs units

Unit SI Equivalent

1 g (gram) 10 kg

1 mL (milliliter) 1073L

1L (liter) 1073m?

1 w (micron) 10°m
lA(angStrom) 107 %m (1078 cm)
1 atm (atmosphere) 101,325 Pa

1 dyn (dyne) 107°N

1 erg 10777

1 cal (calorie) 4.184]

1 D (debye) 3336 x107°°Cm
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Table 0.6. Submultiple and multiple prefixes

Submultiple Prefix Symbol Multiple Prefix Symbol
107! deci d 10 deca da
1072 centi c 107 hecto h
1073 milli m 10° kilo k
107°¢ micro I 10° mega M
107° nano n 10° giga G
10712 pico p 102 tera T
107" femto f 10" peta p
10718 atto a 10'8 exa E
1072 zepto z 10%! zetta Z
107> yocto y 10% yotta Y

It is often convenient to represent quantities in terms of multiples or submultiples
of SI units. Table 0.6 gives the prefixes and symbols for these multiplicative
operations.

Quantity Algebra. We earlier wrote this equation:
Physical quantity = Numerical value x Unit (0.1)

We now assert that each of the three quantities in this equation can be treated as an
algebraic quantity and manipulated by the rules of algebra. Thus Eq. (0.1) could be
written as

Physical quantity

- = Numerical value (0.2)
Unit

This equation is particularly convenient because, since the right-hand side is a pure
number (it has no dimensions), so is the left-hand side. To illustrate this with an
example, let us write

T =273.15K

in the form of Eq. (0.1). Transforming to the form of Eq. (0.2) gives

T
==273.1
K 3.15

We will call this method of manipulating units quantity algebra. It is particularly
convenient for designing headings of table columns and for labeling the axes of figures.
We will make use of the quantity algebra when converting from one unit to another.

Conversion of Units. We often find it convenient or necessary to convert from one
system of units to another. Setting up a proportion is one method for converting units.
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Example 0.1. Convert an energy change of 125 kJ mol ™" to kcal mol .
From Table 0.5 we have the essential relationship

lcal =4.1841]
Multiplying each side by 10* gives
1 kcal =4.184kJ

Now we form the proportion from statements:

Since 1 kcal = 4.184 kJ
xkcal = 125kJ

or

1 4184
x 125
x =299

Therefore 125kJ mol ™" is equal to 29.9 kcal mol .

Quantity algebra offers a general procedure for the interconversion of units. This is
the method: Multiply the quantity whose unit must be converted by one or more
quotients, each being equal to the pure number one, but having the units needed to get
the job done.

Example 0.2. Convert a wavelength of 560 nm to angstroms.
We know (Table 0.6) that 1 nm= 107° m, so it follows that 1nm/ 10° m=1.
Similarly, from Table 0.5, 1 A=10"""m, so 1 A/10~'®m = 1. Therefore we can write

10~° 1A .
560nm< m)( o ) — 5600 A
I nm 107" m

The method works because each quantity in parentheses is equal to 1, and we know that
we can multiply fearlessly by 1. These quantities in parentheses are chosen so that the
units that we do not want will cancel, and the units that we want will remain.

Example 0.3. The surface tension of water at 25°C is 71.8 ergcm ™2 Convert this
to SI units:

1 IN 10
7185 (L) m) (107em) _ 71 8% 103 Nm™!
cm* \ 10" erg 1] 1m
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This is usually written 71.8 mN'm~'. Note in this multiplication how the unitary
multipliers are oriented so as to achieve the desired cancellations. Incidentally,
71.8erg cm 2 also equals 71.8 dyncm ™', because 1 erg=1dyncm.

Extensive and Intensive Properties. A physical property whose magnitude is
additive is called an extensive property; its magnitude depends on the extent (size) of
the system. Mass, volume, and energy are examples of extensive properties.

A property whose magnitude is independent of the size of the system is called an
intensive property. Temperature, pressure, and concentration are intensive properties.

An extensive property can be converted to an intensive property by dividing it by
a mass or an amount of substance, thus placing it on a per unit basis. If an extensive
property is divided by mass, the adjective specific is often used to describe it. Usually
the mass unit gram (g) is used, so the specific property refers to the quantity per gram.
For example, the volume Vis an extensive property, but if Vs divided by the mass,
we get the specific volume (the volume per gram), which is intensive.

If we divide Vby the amount of substance in moles, we have V/n, which is called the
molar volume, and is interpreted as the volume per mole.

Example 0.4. The density of acetone is 0.788 at 25°C. Calculate the specific volume
and the molar volume of acetone.

The units of density, which are gmLfl (org cm73), are not always written out.
The specific volume is simply the reciprocal of the density, as we can deduce from
1ts units.

1 mL
0.788 g

1.269 mL) (58.08 g
g

Specific volume = ( ) =1.269mLg!

Molar volume = < ) = 73.7 mL mol™!

1 mol
These two statements have the same meaning:

1. The heat of solution of succinyl sulfathiazole is 12.0 kcal mol .
2. The molar heat of solution of succinyl sulfathiazole is 12.0 kcal.

Dimensional Consistency. We have seen that units can be treated algebraically in
that they undergo division and multiplication just as do numerical values. Units have
two additional characteristics of great importance when carrying out calculations:

1. In what may appear to be a disagreement with the assertion that units can be
treated algebraically, we note that when we add or subtract physical quantities,
they must possess the same units, but the units themselves do not add or subtract.

2. When using or deriving physicochemical equations, the left-hand and right-
hand sides of the equation must have the same units.
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Example 0.5. In Chapter 14 we will encounter this equation:

Ki1soL,

S, = 5o+ 105
(=St 1+ K150

We do not need to consider the detailed meaning of the equation at this point, because
our present interest is only in its dimensional nature. (Indeed, this example will show
how we can even bypass the detail and yet learn something useful). With the information
that the quantities S,, so, and L, are all molar concentrations, and that the equation is
dimensionally consistent (point 2 above), let us determine the units of K.

Evidently, S; (in mol L' or M) is given by the sum of sq (also in M) and the final
term, whose units must, by point 1 above, be M. Consider the denominator of this term.
Since 1 is dimensionless, the product K s, must be dimensionless, which requires that
the units of K, be M. Does this work out in the numerator? Yes, it does, because it
yields (Mfl)(M)(M) =M, as required by dimensional consistency.

Dimensional consistency in equations describing physical systems is a necessary
condition for their validity, but it is not a sufficient condition. Incidentally, if
approximations are introduced into equations, the approximations must not alter
the dimensional consistency.

0.3. LOGARITHMS AND EXPONENTS

Definition and Properties. Suppose we have the power function of Eq. (0.3):
a=>b" (0.3)
We define' the logarithm of a to the base b by
log, a =x (0.4)

There are only two logarithmic bases (values of b) in common use, namely, b = 10
(giving Briggsian logarithms) and b=e (giving natural logarithms). Briggsian
logarithms are denoted log, whereas natural logarithms are denoted /n. An important
property? of all logarithms is stated by Eq. (0.5):

log, b =1 (0.5)

It follows that
log10=1 (0.6)
Ine=1 (0.7)

! Equation (0.4) is not the standard definition, which requires calculus; rather, it is a consequence of the
standard definition.
2 From Eq. (0.3), if b=b", x=1, so log, b=1.
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Another property” is given by Egs. (0.8) and (0.9):

log1 =0 (0.8)
In1=0

The number e is extremely important in mathematics and science. It has the value
2.718....

At one time, Briggsian logarithms were widely used to carry out arithmetic
operations, but with electronic calculators and computers this use is obsolete.
However, the base 10 log function continues to be indispensable in the sciences,
for two reasons: (1) Some important physicochemical concepts (such as pH) are
defined in terms of Briggsian logarithms and (2) logarithms to the base 10 have the
convenient property of revealing order-of-magnitude changes or differences at a
glance, For example, log 10% = 2.00, log 10° = 3.00, and so on.

Let us obtain a relationship by means of which we can interconvert Briggsian and
natural logarithms of the same number. Let a be the number, and write

Ina =cloga (0.10)

where we want to find the conversion factor c¢. Suppose for convenience (any number
would do) that we set @ = 10. From Eq. (0.10), we obtain

10 2303...
“Tlogl0 1

(0.11)

where the numerator is found by means of an electronic calculator, and the
denominator is from Eq. (0.6). Therefore we can interconvert In and log values by
Eq. (0.12):

Ina =2.3031loga (0.12)

Operations with Logarithms. Suppose we have both Egs. (0.13) and (0.14):

a=>b" (0.13)
c=b (0.14)
We know from Eq. (0.4) that
log,a =x
log,c =y

But from Eqgs. (0.13) and (0.14) we can also write

ac=0b"-p =b"tY

3 From Eq. (0.3),if a=1 and b= 10, then x=0, so log 1 =0.
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It follows that
log,, ac = log, a +log, c (0.15)

Thus, the logarithm of a product of two numbers is equal to the sum of the logarithms of
the individual numbers. This very valuable result permits several other relationships to
be derived; these are stated as Egs. (0.16)—(0.19). Although these are written in terms
of log, exactly analogous equations can be given for In:

log pg =logp +1loggq (0.16)
logg = log p—log g (0.17)
q
1
log— = —logg (0.18)
q
logp" =nlogp (0.19)

Example 0.6. It is convenient to define, as a measure of the acidity of an aqueous
solution, the pH by

pH = —log [HT]

where [H "] is the hydrogen ion concentration in mol L', This means that*

1
H = log——
PE =08+
(a) Calculate the pH if [H"]1=15.00 x 10> M.

pH = —log 5.00 x 1073
= —(log 5.00 +log 107%)
= —(0.70—3.00)
=230

The pH is a positive number provided that [H " ] < 1 M. Seldom is it justifiable
to express pH values beyond the second decimal place (i.e., 0.01 pH unit).

4 We can only take the logarithm of a pure number, thus this definition of pH appears to be invalid (and so
shortly after we have considered dimensional consistency!). One way out of this dilemma is to say that we
are really defining the pH as

pH = —log([H"]/M)

because the quantity in parentheses is dimensionless.
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(b) What is the hydrogen ion concentration if pH =8.67?

pH = 8.67
—log [H"] = 8.67
log[H"] = —8.67 = —9.004-0.33
HY] =214 x10°M

This last step is called “taking the antilogarithm.” It is the reverse of taking the
logarithm, and it is easily accomplished on the electronic calculator. A useful check on
the calculation is to convert the [H " ] back to pH. Another check is to be sure that the
order of magnitude is reasonable; this means that the answer is as expected at least to
within a factor of 10.

Operations with Exponents. The following identities follow from the properties of
logarithms [actually we used Eq. (0.22) in order to derive Eq. (0.15)]:

=1 (0.20)

a'=a (0.21)

a‘a’ =a"*" (0.22)
1

(liu = E (023)

(a")" =a" (0.24)

(ab)" = a" b" (0.25)

Scientific Notation. Many quantities in theoretical and experimental science are
either extremely large or extremely small, so an exponential form of expressing them is
convenient. Nearly always these are written as an integral power of 10, as shown in
these examples:

51,000 = 5.1 x 10* = 51 x 10
0.00000417 = 4.17 x 107°°
As seen in Example 0.6, this is a very convenient way in which to express a number

whose logarithm is to be taken, because [as seen in Eq. (0.15)] the logarithm of a
product is equal to the sum of the logs and because log 10" =n log 10 =n. Thus

log4.17 x 1078 = (log4.17)—6 = —5.38
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0.4. ALGEBRAIC AND GRAPHICAL ANALYSIS

Setting Up Proportions. Tt often happens that we know three related items of
information and seek a fourth member of the set. In order to solve for this fourth,
unknown item, we write an equation. One way to do this is to express the relationships
in terms of sentences, by means of which we can more readily detect analogous
patterns. Then we replace the English words with mathematical symbols.

Example 0.7. How many moles of sodium chloride are contained in 5.00 g of NaCl?
The first of the following statements gives two pieces of known information;
the second analogous statement contains the unknown.

58.45 g of NaCl corresponds to 1 mol

SO

5.00 g of NaCl corresponds to how many moles?

Now we replace the words with symbols (and notice how the units cancel):

5845 1
500 «x
5.00

Generalizing this equation gives these important formulas:

mol = Wie) (0.26)
MW
_ W (mg)
mmol = MW (0.27)

Equation (0.27) is obtained from Eq. (0.26) by multiplying both sides by 10°.
A millimole (mmol) is one-thousandth of a mole.

Example 0.8. A sample of aspirin weighing 305 mg was found by analysis to contain
294 mg of aspirin. What is its percent purity?

If the sample contained 305 mg, it would be 100% pure. Actually it contains
294 mg, so it is x% pure. Therefore

305 _ 100
204 x

or 96.4% pure. Generalizing this result, we obtain

W,
% purity = WfO““d x 100 (0.28)

taken
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Example 0.9. Convert 75 min to hours.
If 60 min is equivalent to 1 h, then 75 min is equivalent to x h?

Ratios and Fractions. We are going to consider this subject in the context of
chemistry rather than of pure mathematics. To clarify the distinction between a ratio
and afraction, consider the dissociation of a weak acid (like a carboxylic acid) in water:

HA=H"+A"

Here we let HA represent any neutral weak acid, where A~ is the anion resulting
from the dissociation. We define the ratio of anion to neutral acid by

A
u = ratio of anion to acid = Ra-

[HA]
where square brackets signify molar concentrations. Similarly we have

HA
[[A‘]] = ratio of acid to anion = Rya

These ratios play an important role in describing chemical equilibria.
There can also be situations in which we wish to define the fraction of anion in the
mixture of A" and HA. This fraction, which we will label Fo-, is defined as

(A7]

————— = F'»- = fraction of anion
HAJ+[AT] 4

Similarly the fraction present as the neutral acid is given by

[HA[]H_?EA_] = Fya = fraction of acid
By substitution it is easily found that
Fa-+Fua =1
This is a general property of fractions as defined in this way; they sum to unity. As a

consequence, if the whole is divided into n fractions, only n—1 of these are
independent (i.e., capable of independent variation).
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Example 0.10. A solution made up to contain a fotal concentration (also called an
analytical concentration) of weak acid 3.50 x 107> M is found to have an anion
concentration of 8.95 x 10~*M. Calculate the fractions of solute in the anion and
neutral forms.

We are told that the total concentration is 3.50 x 10 > M. This is the sum
[HA] + [A™], since the solute can exist in either or both forms, and no other. Hence

[A7]  0.895x 107’

F - = =
A T HAJ+[AT] 3.50x 1070

=0.256

From the identity Fa- 4+ Fya = 1, we immediately obtain Fya = 1 —0.256 =0.744.
A fraction can be converted to a percentage through multiplication by 100,
Eq. (0.29); see also Eq. (0.28).

Percent = 100 x Fraction (0.29)

Thus in this example 25.6% is in the form of the anion and 74.4% is in the form of the
neutral acid.

Example 0.11. For the system in Example 0.10, calculate the ratios [A™]/[HA] and
[HAJ/[AT].

We know that [A7]=0.895x 10°M and [HA] + [A"]=3.50 x 10> M,
so we find that [HA] = 2.605 x 10> M. Therefore

[A7]  0.895
Ry-=—-=——-=0.344
A T HA]  2.605 03

The reciprocal gives us the other ratio:

Ruw = BAL_ L5
TTAT] 0344 T

Fractions must be less than (or equal to) unity, but a ratio can be greater than unity.
Ratios and fractions (in this context) are dimensionless.

Students sometimes wonder why, in calculations like this (the dissociation of HA
according to HA — H™" 4 A™) we were able to ignore the H" produced in the
reaction. The answer is that we are counting molecules or moles, not grams; each
molecule of HA that dissociates yields one H " ion and one A~ ion. If we counted both
ions, we would be double-counting, with the result that we would appear to be creating
matter, which we know is impossible.

Solving Simultaneous Equations. From algebra we know that if we have n
simultaneous independent equations in n unknowns, we can solve the equations to
find all n unknowns. Usually, of course, we encounter the simplest case in which we
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have one equation and one unknown. It is more interesting when we have two or more
unknowns.

Let us continue to discuss our earlier example of the dissociation of weak acid HA
to yield anion A™. Often it happens that we know the total concentration and can
measure the ratio of concentrations. From this information we seek the individual
concentrations [HA] and [A™].

We have two unknowns, so we hope that we can write two independent equations.
We begin by setting in equation form that which we know. We write

A7)
A = ke (0.30)
HA]+[A7] = ¢ (0.31)

where we know (have numerical values for) Ra- and c,. Equations (0.30) and (0.31)
are two independent equations in two unknowns.

There are several ways to solve simultaneous equations; the simplest is by
algebraic substitution. Solve Eq. (0.30) for [A™] and substitute this into Eq. (0.31).
From Eq. (0.30), [A"]=Ra-[HA], so from Eq. (0.31) we get

[HA]+Ra-[HA] = ¢,

We have reduced two equations with two unknowns to one equation with one
unknown, for which we solve

Ct
14 Ra-

[HA] =

Having found [HA], we can use Eq. (0.30) or (0.31) to find [A™].

The requirement that the equations be independent means that there is no
possible way to obtain (to derive) one of them from the others; that is, each equation
must contribute some additional information to the problem. For example, in the
preceding case suppose that we only know c,. There is no way from this knowledge
alone that we could deduce the value of Rs-, so we could not calculate individual
values of [HA] and [A™]; we would have a single equation [Eq. (0.31)] and two
unknowns.

The solution of simultaneous equations is usually easy. The difficult tasks are to
analyze the problem so as to identify and write down the equations and to collect the
necessary information so they can be solved numerically.

Solution of Quadratic Equations. Everyone learns in high school algebra how

to solve a quadratic equation, that is, an equation in which the unknown quantity
appears to the second power. In its “standard” form a quadratic equation can be written

ax* +bx+c=0 (0.32)
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where x is the unknown quantity and a, b, ¢ are known quantities; a, b, and ¢ can be
viewed as constants in the particular situation. The solution of Eq. (0.32) is given
by Eq. (0.33).

—b £ Vb2 —4ac
X=—

o (0.33)

This equation should be memorized. It shows that there are two solutions to Eq. (0.32),
corresponding to the use of either the plus or the minus sign in Eq. (0.33). Usually only
one of these solutions has physical significance; the other solution can be ignored. By
“physical significance” we mean that it makes sense in the context of the physical
situation. For example, if x is a concentration, obviously a negative value has no
physical significance.

Example 0.12. We will continue to use our example of the dissociation of weak acid
HA according to

HA=H" +A~
Let us define an equilibrium constant by

We also have the equation giving the total solute concentration:
¢, = [HA]+[A7] (0.35)

We now observe that each molecule of HA that dissociates yields one H™ and one
A~ suggesting (this is not quite true, but is nearly always a very good approximation)
that we can write

Making this substitution in Eq. (0.34) gives

o T

= oA (0.36)

This is a quadratic equation. First we rearrange it to place it in the standard form

[H+]2 +K, [H+ ]—Kac, =0 (0.37)
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Comparing Eqgs. (0.32) and (0.37) gives these identities:

a =1

b =K,
c =K,c,
x =[HT]

The solution is accordingly

K, + /K?—4K,
[H*]=—"¢ o P at (0.38)

2

Example 0.13. Calculate the pH in a solution that is 0.010 M with respect to a weak
acid if K, =1.00 x 10>,
We use Eq. (0.38):

SLOX 10704 /1.0 x 1070+ (4 x 10°)(1 x 1072)
2

10X 1054+ V1.0x 1071914 x 1077
2

~1.0x 10754+ /0.0 x 108 +40 x 10°8
2

—1.0 x 107 +v40.01 x 10~8
2

—1.0x 1077 +6.325 x 10~*
2

—1.0x 1075 +63.25 x 107
2

=31.125x 107> =3.11 x 107*

HY) =

So pH=-log[H*]=3.51. Note that the solution employing the negative sign has
been rejected.

Approximations. Scientists, unlike mathematicians, are often satisfied with
approximate rather than exact solutions. The level of approximation that is acceptable
is determined by practical criteria and is not completely arbitrary. If we cannot
experimentally detect or measure an effect, we may feel justified in neglecting it.
Or how we use the result may determine the acceptable level of approximation;
for example, if we are to measure the pH of Lake Mendota water, we may be satisfied
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with aresult accurate to 0.1 pH unit (for various practical reasons), whereas if we are
measuring the equilibrium constant of a weak acid, we will surely hope for measure-
ments accurate to +0.01 pH unit. This kind of thinking is then extended to the
equations that enable us to describe and interpret the measurements. If we make an
approximation in an equation, it is no longer exact in a mathematical sense,” but it may
be acceptably accurate in a scientific sense.

Example 0.14. Calculate the pH in a solution that is 0.010 M with respect to a weak
acid if K,=1.00 x 107>,

This is the same problem for which we obtained an accurate solution in
Example 0.13. In that calculation we used the equation

g T

= 7c,—[H+] (0.39)

Now suppose that the hydrogen ion concentration is much smaller than is the total
concentration c,. Then we can reasonably make this approximation:

c—[H'] = ¢
Making this substitution in Eq. (0.39) gives

P

Cy

K, ~

or

[H™] ~ VKac (0.40)

Applying Eq. (0.40) to our problem, we get

H] = \/(1 x 1073)(1 x 1072)

=v1x10"’

=316 x 107*M

or pH = 3.50. Our approximation has led to a very simple solution, and comparison
with Example 0.13 shows the level of error that has been introduced.

When is it acceptable to use such an approximation? This depends on those factors
already mentioned. In the present example we might examine the quantity ¢, — [H " Jto

5 The equation probably never was truly exact in a physicochemical sense anyway because of the
complexity of chemical systems.
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seeif [H " ]is indeed much smaller than ¢, (because that is the assumption on which the
approximation is based). In Example 0.14 we can compare these numbers:

Exact: ¢,=1.00 x 107 2=3 x 107*=0.97 x 1072
Approximate: ¢, — [H" ] ~c¢,=1.00 x 1072

Therefore the approximation introduces about a 3% error into the denominator
of Eq. (0.39). The error in the final answer is even smaller than this, and for most
purposes the approximate result would be acceptable. This is the practical point of
view that is adopted, and it can be seen that decisions of this sort depend greatly on
experience with making calculations and with interpreting experimental results.

Graphical Properties of Linear Functions. Let us begin this treatment by writing
this linear equation in a standard form:

y=mx+b (0.41)

We call this “linear” because y depends on x to the first power. The following
terminology is used:

X, y are variables

m, b are parameters (i.e., constants of the system)

More specifically, x is often called the independent variable and y the dependent
variable. This terminology signifies that the value of x is under our control and that the
value of y then depends on x.

If paired x, y data are related by Eq. (0.41), when plotted on graph paper they yield
a straight line (which is another reason why we call Eq. (0.41) “linear”). Figure 0.1
shows how the plot is conventionally made. It is traditional to plot the x values on the
horizontal axis (the abscissa) and the y values on the vertical axis (the ordinate).

0
X

Figure 0.1. A typical straight-line plot of data points.
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Xy

XY

x

Figure 0.2. lllustrating the calculation of the slope of a straight line; see text.

Let us set x =0 in Eq. (0.41); we get y = b; that is, b is the value of y when x =0.
We call this the intercept on the y axis. The parameter m describes the steepness
with which y increases (or decreases) as x increases; m is called the slope. Evidently,
if we know the values of m and b, we know everything there is to know about Eq. (0.41).

Now let us review the calculation of m, the slope. In Fig. 0.2, two points,
on the line, having coordinates (x;, y;) and (x,, y,), are identified. We write the
equation of the line for each of these points (for the equation is satisfied at every point
on the line):

y, =mx;+b
y, =mxy+b

Now subtract y; from y, and solve for m:

—V1

Xp—X]

(0.42)

This equation allows us to calculate the slope of any straight line. The slope m can be
positive (y increases as x increases), negative (y decreases as x increases), Or Zero
(y does not depend on x). We can read b from the graph as the value of y when x = 0;
or more accurately and sometimes more conveniently (because sometimes the plot
doesn’t include the x = 0 region), b can be calculated from Eq. (0.41), since we now
know m. Simply choose any point on the line and substitute the corresponding
numerical values into b =y — mx.

Here are two interesting special cases of Eq. (0.41).

1. m=0. Then the line is horizontal, parallel to the x axis, since substituting this
value of m into Eq. (0.41) gives y=>.
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Table 0.7. Solubility of theophylline in water at 25.0°C as a
function of added sodium salicylate

Sodium Salicylate Theophylline
Concentration/(M) Concentration /(M)
0 0.0387
0.0252 0.0517
0.0504 0.0622
0.1009 0.0860
0.1261 0.0946
0.1514 0.1094
0.2018 0.1288

2. b=0. Then Eq. (0.41) yields
y=mx (0.43)

showing that the line passes through the origin at y =0, x=0.

Example 0.15. Table 0.7 lists experimental data (Cohen and Connors, 1967) giving
the solubility of the drug theophylline (in water at 25°C) as a function of the
concentration of added sodium salicylate. Analyze the data.

The first thing to do is to plot the data. Use graph paper having fine enough
divisions to preserve the accuracy of the data; 1-mm divisions usually work well,
whereas 1/4” divisions are too coarse. Figure 0.3 shows the plot of the data. Since the
sodium salicylate concentration was set by the experimenter, we consider it to be the
independent variable x.

The data points appear to describe a straight line. There is a theoretical reason for
this, but we can view it purely experimentally as a pleasingly simple result. Note that

14f
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Figure 0.3. Plot of the data in Example 0.10.
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the data points show some small but significant “scatter” about the line that has been
drawn. This scatter introduces ambiguity into the question of how best to draw the line.
Later, in Section 0.6, we will deal with this issue of the “best straight line,” but for the
present it is sufficient to note that we draw a line that appears to approximately balance
the deviations of the points above and below the line.

Next we calculate the slope of the line. Because of the scatter seen in the
experimental points, our two points for the slope calculation will be taken from
the line itself, because it is the slope of the line that we want.® Any two points will do,
but they should be far enough apart to yield an accurate result. Points corresponding
to x; = 0.060 and x, =0.160 were chosen. Reading directly from Fig. 0.3 gives

At x; =0.060 M, y; =0.0669 M
Atx, =0.160M, y,=0.1122 M

These numbers are used in Eq. (0.42):

~0.1122-0.0669

01600060 _ 043

Now we calculate b using (for convenience, because we already have the values)
point x,y;:

b =y—mx
= 0.0669—(0.453)(0.060)
= 0.0397M

Note that b has the units of y whereas m has the units of y/x. Also observe that b as
calculated from the line is slightly different from the experimental value of 0.0387 M
whenx = 0. Such discrepancies are common in scientific work. They add interest to the
interpretation of experimental data.

We can now state that the set of data given in Example 0.15 can be described by the
equation

y = 0.453x+40.0397

where x is the sodium salicylate concentration in M, y is the theophylline concentration
inM, and the equation is valid over the range x = 0 — 0.20 M. The physical interpretation
is that the presence of sodium salicylate increases the theophylline solubility in a linear
manner. The chemical interpretation of this phenomenon has to do with the mutual
binding interaction between theophylline and the salicylate ion (Cohen and Connors,
1967). A more detailed explanation of this interaction, along with a rigorous treatment
of the binding between two or more drug molecules, can be found in Chapter 14.

S Here is the attitude we have adopted. The experimental points have led us to the line as the best
interpretation of the dependence of the y values on the x values, so henceforth we base our interpretation on
the line and not on the data points.
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Linearization of Nonlinear Functions. The experimental data of Example 0.15
consisted of molar concentrations, and we found empirically that a plot of theophylline
solubility as a function of sodium salicylate concentration gave a straight line.
We could conclude that the concentrations were linearly related, and we obtained
the parameters of the straight-line relationship.

It is not always this simple. Often, perhaps usually, the data are smoothly but
nonlinearly related. In such circumstances we may be able to carry out a mathematical
transformation that converts a nonlinear function to a linear function. This is often
very desirable, because of the simplicity with which we can describe straight lines.
‘We may have theoretical reasons to expect certain transformations to work in this way,
or we may just try different plotting forms empirically, hoping that we will generate
a straight line. Here are some of the most common transformations.

1. Exponential Functions. These have the general form
y = ae®” (0.44)

where, as before, x and y are variables, a and b are parameters, and e is the base
of natural logarithms. We take the natural logarithm of both sides:

Iny =Ina+ bx (0.45)

This operation has converted the nonlinear function Eq. (0.44) to the linear function
Eq. (0.45), which has the form of Eq. (0.41) for a straight line. In other words, if
Eq. (0.44) describes the data, a plot of In y against x should be linear with slope value b
and intercept (on the vertical axis when x =0) equal to In a. This is often called a
semilog plot. It is widely used in kinetic studies.

2. Power Functions
y =ax’ (0.46)
Again we take the logarithm:
Iny=Ina+blnx (0.47)

A plot of In y against In x will be linear if Eq. (0.46) describes the data. This is called
a log—log plot.

3. Polynomial Functions
y=a-+bx+cx’ (0.48)
This equation is a quadratic function, which can be linearized as in

Y74 ptex (0.49)
X

Evidently a plot of (y — a)/x against x will give a straight line if Eq. (0.48) describes the
data. Of course, the parameter a must be known in order to construct this plot.
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4. Rectangular Hyperbola Any equation having the following form is called a
rectangular hyperbola:

_ax
~1+bx

y (0.50)

This is nonlinear when plotted as y against x. We can linearize it in several ways. Taking
the reciprocals of both sides gives

=42 (0.51)

so a plot of 1/y against 1/x (this is called a double-reciprocal plot) will be linear.
You may encounter this plot in your study of enzyme kinetics, where it is called
the Lineweaver—Burk plot. Algebraic manipulation also leads to the following
equation, another linear plotting form:

1
x_b o1 (0.52)
y a a

In this version, x/y is plotted against x. A third linear transformation can be obtained;
this is shown as

Y= a—by (0.53)
X

A plot of y/x against y is linear. Notice that the slope is negative. In protein binding
studies a plot according to Eq. (0.53) is called a Scatchard plot. The rectangular
hyperbola arises naturally in mathematical descriptions of chemical equilibria.

It will be evident that a facility for recognizing the standard linear form y = mx + b
(where the definitions of the variables and parameters depend on the particular system)
is invaluable in seeking linear forms from nonlinear functions.

Example 0.16. Table 0.8 gives kinetic data for the decomposition of nitrogen
pentoxide in carbon tetrachloride solution at 45°C.” Analyze the data.

The experimental data consist of the concentration of N,Os(c) as a function of time
(t). Figure 0.4 is a direct plot of ¢ (as the dependent variable) against ¢. The plot is
obviously nonlinear. As it happens, we have some theoretical guidance for this
reaction (and for many other processes that follow the same functional dependence

7 See Daniels and Alberty (1955), p. 323). The reaction yields oxygen and N,O,, which exists in
equilibrium with NO,.

1
N205 g N204 + 502
N,O4=2NO,



ALGEBRAIC AND GRAPHICAL ANALYSIS 25

Table 0.8. Kinetics of N;Os decomposition at 45°C in CCl,

1/(s) c/(M) log [¢/(M)]
0 2.33 0.367
184 2.08 0.318
319 1.91 0.281
526 1.67 0.223
867 1.36 0.134
1198 1.11 0.045
1877 0.72 —0.143
2315 0.55 —0.260
3144 0.34 —0.469

on time). We anticipate that the progress of the reaction is described by Eq. (0.54),
where ¢ is the reactant concentration when t = 0 (the beginning of the reaction) and ¢
is the concentration at any time #:

c=coe ™ (0.54)

The parameter k is called the rate constant.
We recognize Eq. (0.54) as an exponential function, which we can linearize by
taking the logarithm

Inc¢ = In co—kt (0.55)
or
kt
1 =1 — 0.56
oge = logco— 5= (0.56)
‘_
2
s |
[&]
1=
0 ] ] 1 | ] - ] | I
0 500 1000 1500 2000
t (s)

Figure 0.4. Direct plot of data in Example 0.11.
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logc

1 L
0 1000 2000 3000
t/s

Figure 0.5. Semilog plot of data in Example 0.16.

We can use either Eq. (0.55) or Eq. (0.56). The table of data shows values of log ¢, and
Fig. 0.5 is the plot of log ¢ against ¢ as suggested by Eq. (0.56). Evidently we have
succeeded in linearizing the data, which we interpret to mean that Eq. (0.54) describes
the reaction.

From Fig. 0.5 we calculate the slope as follows:

Slone _ —0167—(+0.100)
P = T3000—1000
=267 x107*s7!

Observe the sign and units of the slope. Now, from Eq. (0.56) we can write

Slope = = 5303

SO

k=6.15x 107*s7!

0.5. DEALING WITH CHANGE

Change in Physical and Chemical Processes. We are often interested in
some sort of process that has happened, is happening, or is expected to happen; in other
words, something changes. We need to be able to describe and analyze such changes.
Table 0.9 shows the kinds of processes that may concern us.

Suppose that we want to specify quantitatively the value of some property P
that changes as the physical or chemical system passes from its initial state A to its
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Table 0.9. Types of physicochemical processes

melting (fusion)

Solid — Liquid

crystallization
L vaporization

Liquid _— Gas (vapor)

condensation
. sublimation
Solid —_— Gas
. dissolution .

Solvent + solid —_— Solution

precipitation
. partitioning i

Solute in solvent A —— Solute in solvent B
compression

Gas at volume 1 _— Gas at volume 2

expansion
heating
System at temperature 1 _— System at temperature 2
cooling
chemical reaction
Reactants _ Products

final state Z. The process itself is symbolized A — Z, and the change (or increment)
in P is defined as

Change in P = (Value of Pin final state)—(Value of Pin initial state)
or
AP = P;—P, (0.57)

If P increases during the process, then P, > P, and AP is positive; if P decreases, then
AP is negative.

Incremental and Differential Change. We have defined an increment in a quantity
by Eq. (0.57). Let us now revert to our study of a straight-line function

y=mx+b (0.58)

and recall how we calculated the value of the slope m. We chose two points on the
line (see Fig. 0.2) and found that m is equal to the function in Eq. (0.59):

m=22" (0.59)

X2 —X1

If we think of larger positive values of x (values increasing toward the right on the
abscissa) as “later,” then we can identify the point (x;, y;) as an initial state and point
(x2, ¥») as a final state. Then we see that m can be written in our delta symbolism as

m="= (0.60)
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X

Figure 0.6. A curvilinear function y = f(x)

Carrying out the division on the right-hand side with numerical quantities yields anumber
equal to m. Since this result can be viewed as the number divided by 1, we interpret
m = Ay/Ax as the change in 'y per unit change in x. In Example 0.15 we found m = 0.453,
which we interpret to mean that as x increases by one unit, y increases by 0.453 unit.
Recall also that m can be negative; this would mean that y decreases as x increases.
Now the essence of a straight line is that its slope m is a constant, so that we
would obtain the same value for m no matter which two points, wherever they may be
on the line, we choose for its calculation. But suppose the plot of y against x yields a
curved (nonlinear) line, as in Fig. 0.6? Obviously if we calculate the slope value using
points (x;, y1) and (x,, y,), we will get a different value from that using points (x,, y,)
and (x3, y3). In fact, we have to ask if the concept of “slope” has meaning in this

X

Figure 0.7. The slope at point p is the value of the tangent to the curve at p.
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circumstance. The answer is that we can expand our definition of the slope to include
such circumstances. We will now define the slope of any line at a point p as the value
of the tangent to the line at p, as shown in Fig. 0.7.

How can we evaluate the numerical value of the slope at point p? We simply return
to our original definition

Ay
m=—
Ax

and require that Ax (in the immediate vicinity of point p) be made smaller and smaller
until it is so small that m approaches an essentially constant value; that is, making
Axstill smaller doesn’t sensibly alter the value of m. Now the ratio Ay/Ax gives the slope
(tangent) of the line at point p. We write this

m= lim = (0.61)

which is read “m is the limiting value of Ay/Ax as Ax approaches zero.” Of course,
it would be cumbersome to write Eq. (0.61) repeatedly, so a new terminology is
introduced, namely

Ay d
lim = =%

= —_— . 2
A—0Ax  dx 0.62)

m
where dy and dx are individually referred to as differentials and the ratio dy/dx is called
the derivative of y with respect to x.

We interpret the derivative dy/dx of any function y = f{x) as the slope of the function
(when plotted in the usual manner). If the function is a straight line, dy/dx is a constant
(its value does not depend on x), whereas for curved functions the slope dy/dx depends
on (varies with) x. Thus dy/dx, for both straight and curved lines, is a measure of
change.

Formulas for Derivatives. One of the interesting properties of derivatives is that the
individual differentials can be treated as algebraic quantities. Thus we can write

dy

—dx=d 0.63

S =dy (0.63)
and

dy dydu

dx  dudx (0.64)

Equation (0.64) is known as the “chain rule.” Evidently we also have dx/dx = 1.
Table 0.10 collects some formulas [Egs. (0.65)—(0.72)] for derivatives and differ-
entials that will be found useful in scientific settings. In these formulas « and v are
functions of x, ¢ and n are constants, and e is the base of natural logarithms. The
differential form is obtained from the derivative through multiplication by dx.
Table 0.10 is a compact way of summarizing these formulas, and a more expanded
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Table 0.10. Some derivatives and differentials?®

Derivative Differential Eq.

dc - dc=0

o0 (0.65)
d(cu)  du B

=% d(cu) = cdu (0.66)
du+v) du dv B

& & @& dlutv) =du+dv (0.67)
d(uv) dv  du

—u— s d =ud d

& eV (w) = wdv+vdu (0.68)
d(u/v) _ v(du/dx)—u(dv/dx) g vdu—udy

dx V2 v (0.69)
du" _,du -1

_ n—1 U d ny — n d

" dx () = md™"du (0.70)
dinu _ 1ldu dlnu— du

dx  udx T (0.71)
de" du

= e — de" = é'd

¢ @ cTed (0.72)

“u, v, x are variables; ¢, n are constants.

form might express the results as follows, where we take Eq. (0.67) as an example:

Function: y =u+v
Derivative: dy du n dv
erivative : e

Differential : dy = du+dv

Observe also that some entries can be derived from others; for example, Eq. (0.66) isa
special case of Eq. (0.68), and Eq. (0.69) can be obtained from Eq. (0.68) by writing the
quotient u/v as the product uv~".

All the derivatives in Table 0.10 are first derivatives. We can also define higher

derivatives. Suppose that we define u = dy/dx; then

du _ d(dy/dx) d*y

dx dx T2

is called a second derivative. A second derivative is a measure of change of the first
derivative.
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Figure 0.8. The rectangular hyperbula, Eq. 0.73, for the case a=10, b=1.

Example 0.17. Find the slope of the hyperbolic function

ax
1+bx

y= (0.73)

We want the slope dy/dx. Equation (0.73) is a quotient, so we use Eq. (0.69) combined
with Eq. (0.66):

dy _ (1+bx)a—(ax)b
dx  (14bx)
(1+bx)*

(0.74)

Thus the slope depends on x, as can be seen graphically in Fig. 0.8. As x — 0,
dy/dx — a, a constant; this is the “limiting slope” or “initial slope,” that is, the tangent
to the curve at the point x = 0. On the other hand, when x — e [x becomes so large that
the denominator of Eq. (0.73) becomes much greater than the numerator], dy/dx — 0;
in this circumstance the value of y becomes essentially independent of x.

Maxima, Minima, and Inflection Points. Figure 0.9 shows a function y = f{x) that
passes through a maximum.

Picture how the slope dy/dx changes as x increases from left to right. This is
indicated by the tangent lines. In the vicinity of the maximum, whose location
is labeled x,,,«.the slope decreases as x approaches x,,x from the left. At x = x;ax,
dyldx = 0; then as x leaves x,,,,, moving to the right, dy/dx becomes an increasingly
large negative number.
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Figure 0.9. The tangent lines show how dy/dx changes as y passes through a maximum.

This behavior provides a criterion for the location of a maximum in a function.
At a maximum, dy/dx =0, dy/dx is positive at x < x.c.and dy/dx is negative at
X > Xmax. (In addition, the second derivative a’zy/dx2 is negative at a maximum.)
Analogous conditions locate a minimum: dy/dx = 0, dy/dx is negative for x < xin, dy/
dx is positive for x > x,;, and the second derivative is positive.

An inflection point in a plot of y against x is a point where the first derivative passes
through a maximum; hence it is also detectable as the point where the second
derivative is equal to zero. This idea is clarified with some experimental data in
Example 0.18 (Connors, 1967, Chapter 6).

Example 0.18. Given: 0.3070 g of a weak base dissolved in glacial acetic acid was
titrated with 0.1138 M acetous perchloric acid; the data in Table 0.11 are the titrant
volume V and the electrochemical cell potential E in the vicinity of the endpoint.
Estimate the endpoint volume by the second derivative method.

The third column in Table 0.11 shows AE/AV (an approximation to the first
derivative) as calculated from the V, E data; note how the values of AE/AVare centered
on the V, E intervals. In column 4 the “second derivative” A’E/AV? is similarly
calculated from

A’E  (AE/AV),—(AE/AV),
AV2 Vo—Vi

Figure 0.10 shows plots of E against V, of AE/AVagainst V, and of A°’E/AV? against V.

The endpoint could be estimated directly from Fig. 0.10a as the volume corre-
sponding to the steepest point of the curve, but Fig. 0.10b shows how this point can also
be found through extrapolation from the AE/AV values on either side of the maximum.
Figure 0.10c uses an interpolation from the A>E/A V2calculation to find the endpoint;
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Table 0.11. Potentiometric titration data (Example 0.18)

AE/AV A’EIAV?

V (mL) E (mV) (mV/mL) (mV/mL?)

7.50 490
44

7.75 501 112
72

8.00 519 192
120

8.25 549 48
132

8.50 582 —~176
88

8.75 604 -112
60

9.00 619

the calculation, from the table, is

48
Vendpoint =8.25 +025(m) = 8.30mL

Thus, the point at which A?’E/AV? = 0 is found by linear interpolation between the two
data points on either side of zero. (We now have enough data to calculate the equivalent
weight of the weak base).

Integration. Integration is the opposite of differentiation; starting from the deriv-
ative, we seek to recover the original function. An equation of the form

dy

poatAC) (0.75)

is called a differential equation; we have seen many examples. We wish to learn how y
is related to x; our only clue is Eq. (0.75). We rearrange to the form

dy = f(x) dx (0.76)
and integrate both sides as directed by the integral signs:

de = Jf(x) dx (0.77)

(Anintegral sign must always be accompanied by a differential.) On the left-hand side
of Eq. (0.77) the integral sign reverses the action of the differential sign, since y is the
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Figure 0.10. Plots of the data in Example 0.18. The dashed line shows the endpoint of the
titration. [Reproduced by permission from Connors (1967).]
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function whose differential is dy. Hence

y= Jf(x) dx (0.78)

To proceed, we will take some special cases.
Example 0.19.

(a) Integrate dy/dx = a, where a is a constant. In the form of Eq. (0.78) we have

y= Ja d (0.79)

One rule of integration is that we can take constants outside the integral sign, so
y=a de (0.80)

This suggests that y = ax. But consider the following. Suppose that the original
function was y=ax + 2, or y=ax + 106, or y=ax — 15, or the like. All of
these functions (and there are an infinite number of them) have the derivative
dyldx = a, because the derivative of a constant is zero. So when we integrate
Eq. (0.80) we must restore the constant that might have been there. Our final
result is therefore

y=ax+C (0.81)

where C is called the constant of integration.

(b) Integrate dy/dx = 24x”. Experience with derivatives leads us to expect [see
Eq. (0.70) in Table 0.10] that if dy/dx = 24x?, then y is some function of x°.
A bit of guessing shows us that if y=8x°, then dy/dx = 24x*. We therefore
have

3
y = 24Jx2dx: (24)(2) +C=8"+C

Integrals of the type discussed above are called indefinite integrals, at least in part
because the value of the constant C is unspecified. A short tabulation of indefinite
integrals is given in Table 0.12 [which contains Egs. (0.82)—(0.90)]. The CRC
Handbook of Chemistry and Physics gives a table with hundreds of integrals.

A definite integral has specified initial and final points over which the integral is to
be evaluated. We will develop this concept with an example of great importance in
many types of scientific work.
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Table 0.12. Some indefinite integrals

du=u+C (0.82)
adu = ajdu (0.83)
(du+dv) = Jdu—i— Jdv (0.84)
n+1
n = —] .
u'du n+1(n7é ) (0.85)
du _ Inu+C (0.86)
J u
e(lu
edu=""1C (0.87)
a
wgu = 4 ¢ (0.88)
a‘du = — .
b n+1
(a+bu)"du = (“(L”l)) —+Cn# 1) (0.89)
du 1
— .
win_p ™ (a+ bu) (0.90)

Example 0.20. Letus study achemical reaction described by the scheme A — Z, where
A is the reactant and Z is the product. It is often observed experimentally, for reactions
fitting this scheme, that the rate of loss of reactant is directly proportional to the
concentration of A at that moment. Expressed mathematically, this observation becomes

——2 =k 0.91
dt A ( )

Here dc4/dt is the reaction rate; the negative sign arises because c,4, the concentration
of A, is decreasing as time ¢ increases. The quantity k is the rate constant. Because ca



DEALING WITH CHANGE 37

appears on the right-hand side to the first power, Eq. (0.91) is called the first-order
differential rate equation, and k is a first-order rate constant. [In Problem 0.22,
Eq. (0.91) is obtained from a set of experimental kinetic data.]

Equation (0.91) expresses a rate as a function of a concentration, but it is more
convenient experimentally to measure a concentration as a function of time.
Integration will convert Eq. (0.91) into such a form. Let us make these definitions:

¢} is the concentration of A when =0, which means “at the beginning of the
reaction.”

c4 1s the concentration of A at any time 7.

Now, to place Eq. (0.91) into an integrable form, we collect like variables; in this
case we want ¢4 and dc, on the same side of the equation. Algebraic rearrangement
gives

dCA o

A~ kar (0.92)
CA

We are going to carry out a definite integration between the limits ¢4 = ¢ whent=0
and ¢4 = c4 when r=t. This is indicated as in

Ca

t

J dea _ —det (0.93)

ca
0

0
CA

Note that the initial state is at the lower end of the integral sign and the final state at the
upper end. Next we integrate both sides, making use of Egs. (0.82) and (0.86) (from
Table 0.12):

In 4] = —kil (0.94)
A
This symbolism shows that we have carried out the integration but have not yet applied

the integration limits, so next we do this, writing the final state first and subtracting off
the initial state, exactly as in our earlier definitions of changes:

Incy—Inc = —k(1—0)

This is obviously equivalent to

In A — —kt (0.95)
€A
or, in Briggsian logarithms,
CA —kT
log—=—— 0.96
%80 72303 (0.96)



38 REVIEW OF MATHEMATICS

Yet another rearranged form is shown as
ca =cle ™ (0.97)

Equations (0.95)-(0.97) are equivalent forms of the integrated first-order rate
equation (this is sometimes called the first-order rate law, first-order decay, or the
exponential rate law). We have seen here that it appears naturally in the field of
chemical kinetics. It is also important for describing radioactive decay, pharmacoki-
netic processes, and other applications. Mastery of the material in Example 0.20 is
essential. Note also how Example 0.16 and Problem 0.22 are related to this treatment.

More complicated rate equations will sometimes be encountered, but a thorough
treatment is not appropriate here. Sometimes the kinetic scheme and the differential

rate equation can suggest the qualitative nature of the integrated equation. Consider
this scheme of two first-order reactions in series:

AtLp e

The differential equations are

dCA
—— =k
dt 1
de
% = k]CA—kch
dc,
=k
dr 2CB

We can therefore anticipate that the dependence of c4 on r will be given by
Eq. (0.97), since the rate of loss of A depends only on rate constant kj.
Intermediate B, however, involves both k; and k,, so we expect that cz will be a
biexponential function. The integrated result for ¢z [which we will not derive here
(Connors, 1990, Chapter 3)], is

0
_ CAk1 —kit __ kot 0.98
Ch [ e e ] (0.98)

except for the special case k| = k,. The dependence of ¢ on time can be found from the
conservation equation cg =cs + cp + cc combined with Egs. (0.97) and (0.98) for
Ca and Cp.

Partial Differentiation and the Total Differential. Up to this point in our treatment
of change, we have dealt with functions of a single variable. For example, if y is a
function of the variable x alone, we write y = f(x), and we can evaluate the derivative dy/
dx. Very often, however, we encounter functions of two or more variables, and here we
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consider how to describe changes in such quantities. This material may not have been
covered in an introductory calculus course.

Suppose that we have a function z =f{x, y), meaning that the value of z depends
on both of the variables x and y. We wish to describe how z changes when we alter x or y,
or both x and y. We do this as follows. First take the derivative of z with respect to x
while holding y constant. In order to make transparently clear what is going on, we use
a slightly different symbolism for this derivative, writing

0z
ox/,
Note the subscript y; this tells us that y is held constant while x is changing.

In like manner we can take the derivative of z with respect to y while x is held
constant, writing the result as
ay/

Observe the use of the symbol 0 in these expressions. The operation just described is
called partial differentiation and the quantities written above are partial derivatives.
Next we make use of a chain rule to define the total differential dz of the function

z=f(x y):
0z 0z

These considerations may seem somewhat abstract, but it happens that many quanti-
ties of scientific interest are functions of more than one variable. Incidentally,
Eq. (0.99) can be generalized to functions of more than two variables; the pattern
will be evident from Eq. (0.99) (see also Problem 0.31).

Example 0.21. The volume V of a fixed amount of a homogeneous gas depends
only on its temperature 7 and its pressure P. Write the total differential dV.
By analogy with the foregoing, we write

vV =f(T,P)
SO
dv = <av) dT + (av> dp (0.100)
o), opP),

Experimental measurements can provide numerical quantities for these partial
derivatives, so Eq. (0.100) has a definite physical meaning.

Recall from our earlier definition of change in a chemical process that we defined
an increment as the difference between values in final and initial states.
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Taking volume Vas an example of a property undergoing change, using the language
of calculus, we have,

Viinal
AV = J dV = Viinar— Vinitial (0.101)
Vinitial

Now suppose that we carry out the change in two steps, first A — B and then B — C.
What is the change AV for the overall process A — C? We apply Eq. (0.101):

Vg Ve
AV = J av+ J AV = (Va—V) + (Ve—Vg)
Va Vg
AV = V=V,

We have found that state B plays no role in determining AV. State B is an
intermediate state on the path from A to C, and since B could have been any
intermediate state, evidently the change AV is independent of the path or mecha-
nism of the process.

Ifthe change in a property or function between two states of a system is independent
of the path taken between the states, the total differential is called an exact differential
and the property or function is called a state function. Whether or not a function is a
state function (path-independent) is ultimately based on experimental observations,
but extensive laboratory studies have clarified the situation. The subject of thermo-
dynamics (which describes systems at equilibrium) deals largely with state functions,
including the temperature, volume, pressure, and energy.® On the other hand, chemical
kinetics, which describes systems changing in time, largely treats path-dependent
quantities; in this context, the path taken by areaction is the reaction mechanism, and a
major role of chemical kinetics studies is to investigate reaction mechanisms.

0.6. STATISTICAL TREATMENT OF DATA

The results of a quantitative experimental study often consist of a set of numbers
obtained from replicate determinations made under essentially identical conditions, or
a set of numbers corresponding to one quantity as a function of another quantity. These
numbers may represent concentrations, weights, equilibrium constants, rate constants,
pH values, and so on. The interpretation of these data by the experimentalist answers
two general questions:

1. What is the best estimate of the quantity or function being investigated?
2. How reliable is this estimate as a measure of the true value?

8 Heat and work, however, which are important thermodynamic quantities, are not, in general, state
functions.
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The branch of mathematics called statistics deals with such issues. Our present
treatment will be very brief, intended to provide an immediately usable tool for the
interpretation of data obtained in laboratory coursework.

Random Errors and the Normal Distribution. Every measurement has some error
associated with it. These errors may be of two types. Systematic errors are errors
introduced by some inadequacy in the experimental technique (such as an improperly
calibrated balance or an interference caused by impurities in reagents) or poor
judgment or unconscious bias on the part of the experimentalist (as may happen
through parallax error when reading the meniscus in a burette). Systematic errors can
be tracked down and substantially eliminated (or the method may have to be
abandoned); we will not consider them further.

Even after all systematic errors have been eliminated, it is a familiar observation
that repeated determinations of a quantity almost never result in the same number.
This variability in experimental data is a manifestation of random error. We usually
observe that replicate observations are grouped about a most frequently observed
value and that large deviations from this value are rarer than small deviations. Random
errors are the consequence of limitations inherent in the observational method.
They can perhaps be reduced in magnitude by careful work, but they cannot be
eliminated. Statistics helps the experimentalist to interpret the data, given this
inevitable presence of random error.

The statistician adopts a point of view concerning experimental data that may
seem peculiar to the experimentalist. The statistician considers an experimental
observation to be a single member that has been randomly selected from an
infinite population of individual observations that are characteristic of the system
being investigated. Replicate observations will exhibit variation owing to the
operation of random errors. If we draw a graph of the value of each experimental
observation on the horizontal (x) axis against the number of times each value is
observed (its frequency) on the vertical (y) axis, a symmetric figure usually is
obtained, with a maximum corresponding to the most frequently observed value.
As the number of observations increases toward the (unattainable) limit of
infinity, the graph will assume the form of a smooth curve. This curve is called
a frequency distribution.

In scientific practice, experimental frequency distributions can usually be closely
fitted to a theoretical frequency distribution that is called the normal distribution,
the Gaussian error curve, or the normal error curve. The equation of the normal
distribution is

1
flx) = 40_ = e-('/Z)[(X—M)/tT]2 (0.102)

where f(x) is the frequency of occurrence of the value x of the “random variable,”
which is the experimental observable, and o and w are parameters of the population.
The symbol u signifies the population mean, which is the value of x corresponding
to the maximum in the distribution; and o, the population standard deviation,
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Figure 0.11. The normal error curve with mean u and standard deviation o-.

determines the “spread” or width of the bell-shaped curve. Figure 0.11 shows a plot of
the normal distribution. Graphically, the quantity o is the horizontal distance from the
mean to either inflection point of the curve, as shown in Fig. 0.11. Approximately 68%
of the area under the normal curve, and therefore 68% of the members of the
population, lie within one standard deviation of the mean, u 4+ o. About 95% of
the population are found in the range w =+ 20, and over 99% in the range u + 30.
Scientists usually assume that their data can be described by the normal distribution,
and we will adopt this assumption in the following treatment.

Estimation of Statistical Parameters. The population parameters ¢ and u are not
accessible to us because we would have to sample an infinity of random variables in
order to define the population frequency distribution. Nevertheless, we desire esti-
mates of u and . Because of the symmetry of the normal distribution, the best estimate
of the population mean is the arithmetic average, or mean, defined by

x:% (0.103)

where x is the value of the ith observation (i = 1, 2, 3, . . ., n) and n is the total number of
observations.

The accuracy of an experimental result is the closeness with which the experimen-
tal mean X approaches the population mean w. Since we do not know u, we cannot in
general assess the accuracy. Sometimes, however, an experiment can be designed so
that the experimental X can be compared with a known value that has been set by the
experimentalist with a standard sample. There also exist a few quantities that have
been measured by so many workers, using different methods in different laboratories,
that we have developed great confidence in their accuracy. For example, the K, value
of benzoic acid at 25°C is 6.26 x 107, an average of many experimental results;
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and so much care and effort has gone into this number that we may reasonably take it as
very accurate.

The median is sometimes used as an estimate of the population mean, especially if
the set of experimental results includes one or two widely divergent results. The median
is that value that exceeds as many values as ititselfis exceeded by, forn odd. If nis even,
the median is the average of the two values satisfying the same criterion. The median is
easily picked out if the numbers are arranged in order of increasing magnitude.

It is a valuable result of statistical theory that, even if the experimental variable is
not normally distributed, the means of small sets of the variable are normally
distributed. Since the mean X is our best estimate of the true value, we are assured
that these x estimates follow a normal distribution.

We have next to obtain an estimate of o, the population standard deviation, which
we see from Fig. 0.11 to be a measure of the width of the normal distribution. This
width reflects the reproducibility of the measurements; the more reproducible, the
narrower the curve, and the smaller the value of o. Precision is the term usually used to
describe reproducibility. Our estimate of o is labeled s and is called the experimental
standard deviation; s is our measure of the precision of x, and sometimes s is said to
measure the “uncertainty” of x. Its calculation begins with the definition of the
following equation, where s> is called the variance:

2
@ = 2 i) (0.104)
n—1

The standard deviation is then found as the square root of the variance. Note the
denominator in this equation; the quantity n — 1 is called the degrees of freedom,
because it specifies the number of independently assignable quantities needed to
completely determine the system. This is n — 1 because we already have calculated
one parameter, namely, X. The units of s are the same as those of x.

At one time (before electronic calculators and computers made statistical calcula-
tions easy), the average deviation, expressed as follows, was often used as a measure of
precision:

Average deviation = ZL]_H (0.105)
n—

The range w is the difference between the largest and the smallest results in a set; w
can be a useful indicator of the spread of results when # is small.

The precision can be expressed in relative terms as the quotient s/x, or more
frequently on a percent basis by 100s/x, which is called the coefficient of variation or
the relative standard deviation (RSD). Similarly, we might report

3

. 0°s
Precision in parts per thousand = —

C . o 0%s

Precision in parts per million =-——
X

It is important to appreciate that the accuracy and precision of an experimental result
are very different concepts. In the best of circumstances we may have good accuracy (x
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closely approximates w) and high precision (s is small relative to X), but it is also
possible to encounter poor accuracy with high precision.

A more complete description of s is that it is the standard deviation of a single
observation. However, it is the mean x that we take as our best estimate, so we really
would like a measure of the precision of the mean. This is provided by the standard
deviation of the mean, s,,:

s
Sp = ——=
"n

Some authors call s, the standard error.

(0.106)

Example 0.22. The following numbers are the percent recoveries in seven identical
nonaqueous titrations of a urea sample: 98.4, 100.2,99.3, 101.7,97.4, 98.2, and 100.8.
Calculate the mean, median, range, variance, standard deviation, relative standard
deviation, and standard deviation of the mean.

Itis best to arrange the work in tabular form. Notice that the variance is calculated
according to Eq. (0.104) with the arithmetic operations carried out in the following
order: (1) differences are taken, (2) differences are squared, and (3) squares are
summed:

TITRATION DATA

Titration, i Percent Recovery (x;) (x;—%) (x,'—)f)2

1 98.41 —1.01 1.00
2 100.2 0.8 0.64
3 99.3 —0.1 0.10
4 101.7 23 5.29
5 97.4 -2.0 4.00
6 98.2 1.2 1.44
7 100.8 1.4 1.96

696.0 14.34

Mean: x=696.0%/7 = 99.4%

Median: 99.3%

Range: 101.7% — 97.4% =4.3%

Variance: s° = [14.34(%))/6 = 2.39(%>)

Standard deviation: s = v/2.39 = 1.55%

RSD: 100(1.55/99.4) = 1.56%

Standard deviation of the mean: s,, = 1.55/2.65 =0.58%

Equation (0.104) for the variance can be placed in other forms that are more
convenient for electronic calculation. You will undoubtedly use your electronic
calculator or computer (which should be capable of the routine statistical calculations
described in this section), but make sure that the program uses n — 1 rather than n in the
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Table 0.13. Some values of student’s t distribution

Degrees of Freedom P=0.10 0.05 0.01

1 6.314 12.706 63.657
2 2.920 4.303 9.925
3 2.353 3.182 5.841

4 2.132 2.776 4.604
5 2.015 2.571 4.032
6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3.555
9 1.833 2.262 3.250
10 1.812 2.228 3.169

denominator of Eq. (0.104). Of course, if n is very large (an unusual circumstance in
much experimental work), the difference between n and n — 1 becomes negligible.

Confidence Limits of the Mean. We have seen that the mean x can be treated as a
normally distributed random variable. X is our best estimate of the quantity we seek,
and now we would like some measure of the reliability of x. It might seem that we could
achieve this by taking note of the properties of the normal distribution. For example,
we saw that 95% of the members of a normally distributed population fall within two
standard deviations of the mean, so perhaps we could state that the interval X £ 2s
should include 95% of any future estimates of x for the same quantity.

This sounds plausible, but as it happens, if n is fairly small, the actual distribution
of x is somewhat wider than is specified by the normal distribution. The actual
distribution for small n is given by a different function called Student’s ¢ distribu-
tion,” which approaches the normal distribution as n becomes large. Table 0.13
lists some values of Student’s . In this table the column headed “Degrees of
Freedom” is to be interpreted as n — 1. The headings of the other columns give the
value of P, which is the probability that the limits to be calculated may be exceeded
by chance. The values in the table are the Student’s z. Observe how ¢ seems to be
approaching 2 for the column P = 0.05 and recall that for the normal distribution
95% of the population lies in the interval X £ 2s; this comparison gives some
meaning to the 7 values.

We now wish to measure the reliability of our X estimate. This measure of reliability
is called the confidence limits of the mean, and it is calculated with the aid of Student’s
tdistribution. We suppose that nreplicate observations have been made, and x, s, and s,,,
have been calculated. We then calculate the confidence limits of x by

X *ts,

9 “Student” was the pen name of W. S. Gosset, a British statistician and chemist who worked at Guinness
Breweries.
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where 7 is read from the appropriate column in Table 0.13. For example, if we wish
to know the limits within which 95% of further values would fall (if we undertook to
measure them), we would choose the column P = 0.05, where the quantity P is the
fraction of results that are expected to fall outside the limits. Similarly, the P =0.01
column gives the 99% confidence limits.

Example 0.23. Find 95% and 99% confidence limits of the mean calculated in
Example 0.22.

95% Confidence Limits. For P =0.05 and 6 degrees of freedom, Table 0.13 gives
t=2.447. The confidence limits (P = 0.05) are therefore x = +ts,,, or 99.4 +£2.447
(0.58)% =99.4 £ 1.4%. The meaning of this result is that, if many additional sets of
seven observations were made, about 95% of the means of these sets would be
expected to fall within the range 98.0-100.8% (the confidence interval).

99% Confidence Limits. For P=0.01, t=3.707. The limits (P=0.01) are
99.4 +2.2%. The limits are wider at P =0.01 than at P 0.05 because we have used
the same information but have required that a larger percentage of additional results
will fall within specified limits; that is, we have asked for a greater level of confidence,
so we must pay for this with a wider confidence interval.

Comparison of Two Means. 1ltis often required that two experimental results are to
be compared to determine whether they are different. For example, we might wish to
know if a newly developed chromatographic method yields the same analytic result as
a well-tested spectrophotometric method. Such problems are dealt with by fests of
significance, meaning that a decision is sought concerning whether the difference
between the two results is significant or negligible.

In statistical terms, one tentatively assumes that there is no difference between the
two results—this is called the null hypothesis—and then tests this assumption. Usually
two means are to be compared. Let us symbolize these means as x and y. According to
the null hypothesis, x and ¥ describe the same population. To show the basis of the
significance test, suppose that x and y have the same value s,, for the standard deviation
of the mean. As we have seen, confidence intervals can be defined by

Confidence interval for X = X =+ ts,,
Confidence interval for y = y + ts,,

We can therefore say that X and y are not significantly different (at the P level of
confidence expressed by 7) if X lies within the confidence interval of y (and vice versa),
as indicated graphically in Fig. 0.12.

3
-+ x|
3

A
w
4 <«
+
@

Figure 0.12. The means x andy are not significantly different if their confidence intervals overlap.
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Therefore X = y =+ ts,, expresses the null hypothesis; by rearranging, we obtain

r="" (0.107)

Sm

=

The approach is to calculate ¢ by Eq. (0.107). If the calculated ¢ exceeds the
tabulated ¢ value at the chosen level of significance, the null hypothesis may be
rejected; that is, x and y are significantly different.

This demonstrates the principle. Some subtleties enter when, as may happen, the
numbers of observations contributing to X and y are different and when s, for X is
different from s,, for y. We will not pursue these matters here, except as seen in the
following example.

Example 0.24. These are analytical results for the analysis of two lots of aspirin
tablets, given in milligrams of aspirin per tablet. Are the aspirin contents of the two
lots different at the 95% significance level?

Xi Yi
12954 300.5
301.1 3109
297.8 307.1
305.0 302.6
297.5 305.9

For lot x we find x =299.4, s=3.755, s;, = 1.679.
For lot y we find y =305.4, s=4.039, s = 1.806.

m
We now introduce this modification. Somewhat later in this section we will
discover that variances of both sums and differences are additive. Since the numerator
of Eq. (0.107) is a difference, we really want the standard deviation of the mean of this
difference in the denominator. We therefore take the square root (to get the standard
deviation) of the sum of the variances:

sm =1/ (s3)” + (sh)" = 2.466

Now we calculate ¢ with Eq. (0.107):

©305.4-299.4

2466 =2.433

Consulting Table 0.13, we find that the tabulated [P = 0.05; (n, — 1) + (n,— 1) =38
degrees of freedom] is 2.306. The calculated ¢ exceeds the tabulated #, so the null
hypothesis may be rejected, and we conclude that the two batches are different at the
95% significance level.
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Itis interesting that at the 99% significance level the tabulated ¢ = 3.555, so the null
hypothesis may not be rejected; the two batches are not different at this significance
level. This result shows that statistics alone cannot make decisions; the experimentalist
must exercise judgment. When reporting statistical results of this type, it is essential to
specify the chosen level of significance.

Linear Correlation. In Section 0.4 we discussed linear relationships in detail. Our
general formula for a linear correlation is

y=mx+b (0.108)

where m is the slope and b is the intercept on the y axis. When confronted with a set of x,
y data, we constructed a plot of y against x, determined by inspection whether it was
linear, and drew our best straight line using a straightedge (ruler) and our intuition. We
now wish to learn how statistics can assist us in such an analysis.

Our first task is to decide whether the correlation between x and y is linear. Visual
inspection is usually adequate, but many scientists like to calculate a quantity r called
the correlation coefficient:

I (0.109)

SxSy

where s, is the standard deviation of all the x values, calculated in the usual way, and
similarly s, is the standard deviation of the y values. The quantity s,, is called the
covariance and is given by

Electronic calculators and computers yield r directly without requiring the user to
proceed through Eqgs. (0.109) and (0.110).

The numerator of Eq. (0.109) is a measure of how strongly correlated the x and y
values are, and the denominator “normalizes” r so that it must lie in the interval O to 1
(for positive slope) or 0 to —1 (for negative slope). The closer risto 1 (or —1), the more
linear the correlation. That, at least, is the conventional interpretation, but it must be
treated with caution. This is because r depends not only on the linearity of the
relationship but also on the slope of the line (a steeper slope giving a larger r value) and
on the scatter of the points (more scatter giving a smaller » value).

Figures 0.13 and 0.14 illustrate these points. These figures have been constructed so
that the slopes of the lines are very similar. Figure 0.13 has more scatter than does
Fig. 0.14, and this is reflected in their » values: r =0.990 for Fig. 0.13; »=0.999 for
Fig. 0.14. But close observation will reveal that although the points in Fig. 0.13 show
considerable scatter, they very reasonably follow a straight line. The points in
Fig. 0.14, however, clearly describe a curve, although a straight line has been drawn
through them. The lesson is that one should not rely on the correlation coefficient
alone, but should also plot the data and examine the graph critically. A good way to do
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Figure 0.13. The points yield r=0.990; the straight line has the equation y=1.16x + 1.15.

Figure 0.14. The points yield r=0.999; the straight line has the equation y=1.07x + 2.49.
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this is by “sighting” along the data points as a carpenter sights along the edge of a board
to determine how straight it is.

If we conclude that the data are linearly correlated, the next step is to draw the “best”
straight line. This is nearly universally done now by a statistical technique called the
method of least squares or linear regression analysis. The line is drawn such that the

sum of the squares of the vertical distances of the points from the line is a minimum.'®
Let the least-squares line be written
y;=mx;+b (0.111)

where m and b are the slope and intercept of the line (not yet known) and ¥, is the value
of y on the least squares line corresponding to x;. Then we write

G=3 (i) (0.112)

where y; is the experimental value of y for observation i and y; is the corresponding
value from the line. Thus the right-hand side expresses the sum of squares of
differences of the points from the line. To minimize this sum, we use the methods
of calculus, taking the partial derivatives 0G/0m and 0G/0b, setting these equal to
zero, and solving for the parameters. The results are

b= j—mx (0.113)
> Xy—nxy

In these equations, X and y are the mean values of these variables, and n is the number of
data points. Inasmuch as scientific electronic calculators and computers are capable of
generating the parameters m and b of the least-squares regression line, itis unlikely that
you will make direct use of Egs. (0.113) and (0.114). This is how the calculator or
computer does it, however.

Example 0.25. In Example 0.15, the data in Table 0.7 were analyzed as a linear
correlation. Repeat the analysis using the method of least squares.

Using an electronic calculator, we obtain the following for the least-squares
regression line:

y = 0.447x +0.0397

In Example 0.15 the line was drawn “by eye,” and its equation turned out to be y =
0.453x + 0.0397. These two results compare quite favorably. The reason for the general
preference for the least-squares treatment is that it is objective; any number of scientists
applying the least squares method to the same set of data will obtain the same result.

10 1¢ might seem simpler to minimize the sum of the vertical distances themselves, but this sum is zero,
because some points are above the line and some are below the line. By squaring the distances, all quantities
are converted to positive numbers. It will be seen that this procedure has much in common with the
calculation of the variance, Eq. (0.104).
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Since the slope and intercept values of the least-squares regression line are
themselves estimates of statistical parameters, they possess uncertainties that can
be expressed as their standard deviations. We will not go into the evaluation of the
standard deviations of the slope and intercept values.

Propagation of Errors. We nearly always subject our raw experimental data to
arithmetic operations in order to arrive at a number that is useful to us, as when we
convert a titrant volume to a concentration or a weight of sample or when we operate on
aparameter of an equation to give us arate constant. When we make such calculations,
we are ultimately interested in the uncertainty (expressed as a standard deviation) of
the final calculated result, whereas what we may know are the standard deviations of
the quantities that are used in the calculation. We therefore wish to learn how the
errors (uncertainties) in the primary quantities are propagated through the calculation
into the final result.

Suppose that we let Q represent our final result, which is obtained by carrying
out calculations on the two primary quantities x and y; that is, we have

o :f(xay)

Then the equation for the propagation of the uncertainties in x and y into Q,
which we will not derive here, is

2 2
sy = (%f) 52+ (%g) 5 (0.115)

where the quantities in parentheses are partial derivatives, and s, 57, 5, are the

variances of the subscripted quantities. We will apply Eq. (0.115) to the basic
arithmetic operations.

Sum
Q=x+y
0
g =1; 6£ -1
Ox Oy
so, from eq. (0.115), we have
sp=Si 45, (0.116)
Difference
Q=x—y
0
2 =1; 6£ =1
Ox Oy
sp=Si 45, (0.117)
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Thus the errors (variances) add for both sums and differences. (We used this result
in Example 0.24.) This is why the relative error of a difference of two numbers similar
in magnitude may be very large.

Product
0=uxy
oQ oQ
—_— : —_— =X
ox dy
sZQ = yzsf( +x2s§
which is equivalent to
2 2 2
SQ Sx Sy
L _x ) 0.118
0r X + 32 ( )
Quotient
-7
0= by

Equation (0.118) is again obtained.

The essential result of these demonstrations is that variances are additive. For sums
and differences, the absolute variances add [Egs. (0.116) and (0.117)]; for products
and quotients, relative variances add [Eq. (0.118))]. To find the standard deviation of
0, we first calculate sé as in the examples above and then take its square root.

Example 0.26. Suppose that we titrate a solution of acetic acid with 15.00 mL of
0.1000N NaOH. What is the uncertainty in the weight of acetic acid found if
sy=10.0003 and sy, =0.02 mL?

Since mmol of HOAc = VN =w/M, where V is volume of titrant, N is titrant
normality (molarity), w is weight of acetic acid in milligrams, and M is the molecular
weight of acetic acid, our function is w = MVN. Thus

ow ow
N AW awy 5
= ()3 (G)s

We have (0w/0V) = MN and (OwON) = MYV, so
52 = M*N?sy, + M*V?s3,
= (60)*(0.1)*(4 x 107*) + (60)*(15)*(9 x 10°%)
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=144%x1074+8.1x 107 =225 % 102 mg?
sy = 0.15mg

Since w = (60)(15)(0.1) = 90 mg, the relative standard deviation (RSD, or coefficient
of variation) is (100)(0.15)/90 =0.17%.

A practical consequence of the propagation of error treatment is that if one of the
uncertainties (say, 0')26) is very much larger than the other, then the uncertainty 0'2Q will
receive its largest contribution from 2. Any experimental attempts to reduce the error
in Q should obviously focus on reducing the error in x, because the error in y makes a
negligible contribution to the error in Q.

Significant Figures. In reporting a final numerical result, it is necessary to decide
how many digits will be retained. This is especially pertinent in modern science
because electronic calculators and computers routinely generate numbers having 10 or
more digits. There is a temptation to record the entire display, but this is seldom
justified. Instead we should retain and report only those digits that have physical
significance.

Here is a simple criterion for deciding on how many digits to retain. The final digit
should possess some uncertainty, whereas the digit preceding this one should be
essentially certain. Some flexibility (within one digit) is acceptable. The number of
significant figures in a result is then the total number of digits (exclusive of zeros that
are needed solely to establish the position of the decimal point).

In order to use this criterion, we need a means for establishing whether a digit is
essentially certain or is uncertain. We have this means at hand in the standard deviation
s (or the standard deviation of the mean s,, if it is a mean that we are reporting).
Consider, for example, the analytical results reported in Example 0.24. For the x series
we calculated x =299.4, 57, =1.679, and for the y series we calculated, y = 305.4, s}, =
1.806. For both series, therefore, the s,, values indicate variability in the unit place,
suggesting that the means are uncertain in the unit place. Accordingly, we would report
these results as x =299, 53, = 1.7 and y = 305, 57, = 1.8. Incidentally, it is good practice
to retain more digits than otherwise may be justified throughout the calculation in
order that “rounding errors” not be inadvertently introduced. Then the significant-
figure criterion is applied to the final result.

Another guide may be available in experimental practice and experience. For
example, much laboratory experience has shown us that very precise titrimetric
analysis can routinely be accomplished with precision corresponding to standard
deviations in the fourth decimal place of molar concentrations; this is the justification
for expressing solution concentrations to the fourth place. Another example occurs in
pH measurements, where experience shows that, in careful but nevertheless routine
work, the tenth unit is certain and the hundredth unit is uncertain, so we usually write
pH values with two decimal places. The experimental procedure itself may determine
the significance. For example, on a typical buret the finest graduations are in tenths of a
milliliter, and we estimate to the hundredths place; thus we write the volume to two
decimal places.
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PROBLEMS

0.1.

0.2.

0.3.
0.4.

0.5.

0.6.

0.7.

0.8.

0.9.

0.10.

0.11.

0.12.

0.13.

Convert these pH values to hydrogen ion concentrations:
(a) pH=4.75

(b) pH=11.13

(¢c) pH=7.19

(d) pH=2.00

Convert these hydrogen ion concentrations to pH values:
(a) [H"]=3.85x10"°M

(b) H ' 1=1.15x10"°M

(¢) [H"]1=6.46x 107*M

(d [H"]=1.15M

Convert In x to the corresponding Briggsian logarithm.

How much more acidic is a solution of pH 3.00 compared with a solution of pH
9.00?

Solve for g in the equation
13.527 = 5.62 x 10*

Calculate the product 6,942, 821 x 0.0057384 by using logarithms. Check the
result by direct multiplication on an electronic calculator.

How many grams of benzoic acid are required to prepare 500 mL of a 0.0025 M
solution?

Ethyl acetate hydrolyzes according to the reaction
CH;COOC,Hs + H,0 — C,HsOH + CH;COOH

How much acetic acid is produced by the hydrolysis of 10.00 g of ethyl acetate?

LetRa-=[A")/[HA]and Fao-=[A"]J/([HA] + [A™]). Then derive an equation
giving Ra- as a function of Fa- (or the reverse).

Given [HA] =[A ], calculate the ratios Rya, Ra- and the fractions Fyya, Fa-.

A solution of weak acid is prepared to have a total concentration of
7.50 x 107*M, and analysis shows that the ratio [A™]/[HA] is 0.15.
Calculate the individual concentrations [HA] and [A7].

Vinegar contains ~5% acetic acid (i.e., 5 g of acetic acid per 100 mL). The K,
of acetic acid is 1.78 x 10~°. Calculate the pH of vinegar.

Repeat Problem 0.12 using the approximate solution [Eq. (0.40)].
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0.14. Find the value of the intercept on the x axis for the straight line of Eq. (0.41).

0.15. Carry out the algebraic manipulations that give Egs. (0.51)—(0.53) from
Eq. (0.50).

0.16. In this set of data, ¢ is the molar concentration of trans-cinnamic acid
(C¢HsCH=CHCOOH) in acidic solution, and A is a dimensionless measure
of light-absorbing ability of the solution called the absorbance. It is anticipated
that the data are described by the equation A = ¢bc, which is called Beer’s law,
where b is the “pathlength” of light through the solution (b= 1cm in this
experiment) and ¢ is called the molar absorptivity. Analyze the data:

10°0c (M) A
0 0
1.083 0.224
2.165 0.450
3.248 0.679
4.330 0.901

0.17. The noncovalent interaction of cinnamic acid anion with theophylline was
studied optically with a pathlength b of 1 cm. These are the data, where we let ¢
be the theophylline concentration.

c (M) A

0 0.98 (Ao)
0.0111 1.375
0.0125 1.418
0.0143 1.472
0.0167 1.544
0.0200 1.638
0.0250 1.767

We expect the system to be described by
AA BKc

b 1+Kc

where AA = A—Ay. Find the equilibrium constant K.

0.18. The equilibrium solubility of a solute usually varies with temperature
according to

AH
Ins=—-——+C
ns RT+
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where s is the solubility corresponding to absolute temperature 7, R is the gas
constant, C is a constant, and AH is the molar heat of solution. These are
solubility data for y-cyclodextrin in water, where s is the mole fraction

solubility:
t (°C) s
25 0.003539
30 0.004456
35 0.005476
40 0.006239
42 0.007583

Find the heat of solution.

0.19. The total solubility S; of 4,4’-dihydroxybiphenyl varies with the concentration
[L] of a-cyclodextrin according to

S = o+ Ki1so[L] + K11 Ki250[L)
where s is the solubility when [L] =0, and K;; and K|, are equilibrium
constants for the formation of 1:1 (SL) (substrate:ligand) and 1:2 (SL,)

complexes. Here are data for 25°C:

102 [L] (M) 10*S, (M)

0 1.98
0.311 2.53
0.412 2.74
0.512 3.13
0.611 3.51
0.709 4.02
0.806 4.39
0.810 4.62
0.902 4.94
0.998 5.74
1.19 6.86

Find Kll and K]z.

0.20. Therate of hydrolysis of 4-nitrophenyl glutarate at 25°C and pH 7 follows arate
law like Eq. (0.54). When the absorbance A is measured as a function of time,



0.21.

0.22.

0.23.

0.24.
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the equation is written
_ —kt
A—A; = (A—Ap)e

where A, is the absorbance at time 7, Ag at# = 0, and A.. at f = oo (“infinity” time,
when the reaction is essentially complete). Here are the data; find the rate
constant k:

t(s) A t(s) Ay
10  0.129 120 0.453
20 0.168 140 0.492
30  0.200 160 0.531
40  0.237 180 0.565
50 0270 200 0.598
60  0.300 240 0.650
70 0.330 280 0.692
80 0357 320 0.729
90 0.381 360 0.758
100 0.407 400 0.783
oo 0.900

Rearrange this equation to give a linear plotting form

_1—|—ax
y_1+bx

Consult the set of data in Example 0.16. For each pair of adjacent time points,
calculate the increment in time (Af) and the increment in concentration (Ac).
Take their quotient Ac/At as a crude estimate of dc/dt. Now plot each Ac/At
value against the mean value of ¢ (i.e., c= (¢; + ¢»)/2] corresponding to the
time interval. Interpret the result.

If y = a", find dy/dx, where a is a constant and u is a function of x. (Hint: Start by
taking the logarithm of y.)

Equation (0.46), a power function, has the form y = ax”.

(a) Find dy/dx.
(b) For the special case b = 2, evaluate both y and dy/dx when x =0.5, 1, and 2.
Compare the x dependencies of y and dy/dx.
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Equation (0.48) is a polynomial, y = a + bx + cx”. Find the first derivative dy/
dx and the second derivative d”y/dx>.

Assuming that 48.2mg of an acid of unknown structure was titrated with
0.0988 M NaOH, the following data (pH as a function of titrant volume V) were
recorded. Find the endpoint volume by the second-derivative technique and
calculate the equivalent weight of the acid (for a monoprotic acid, the
equivalent weight equals the molecular weight):

V(mL) pH
1.40 2.74
1.50 2.86
1.60 3.12
1.70 3.60
1.80 6.15
1.90 9.74
2.00 10.40
2.10 10.62
2.20 10.75

This equation arises in the study of the effect of pH on the rate of hydrolysis of
many drugs, where k is an observed rate constant and ky, k,, k3 are constants of
the system:

k=k [H+] + ko +k3[OH7]

Find the value of pH at which the rate of hydrolysis is a minimum.
Evaluate this definite integral.

4
y= 24J xdx
1

Derive an expression giving the time elapsed for the concentration in a first-
order reaction to decrease to one-half its initial value. (This time is called the
half-life of the reaction; it is symbolized #;,,).

Why is the constant of integration omitted when evaluating a definite integral?
Write the total differential dw for the function w=f (x, y, z).

The equilibrium constant K for the complexation of 4-nitrophenol anion with
a-cyclodextrin (in water at 25°C) has been measured by many laboratories;
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these are the reported values (units are Mfl): 2290, 2200, 2500, 2700, 1590,
2439, 1890, 2720, 2143, 2408, 2270, 3550. Calculate the mean, standard
deviation, standard deviation of the mean, and the relative standard deviation.

The acetylation of isopropyl alcohol by acetic anhydride is a second-order
reaction:

Ac,0 + (CH3),CHOH — HOAc + CH;COOCH(CH3;),
It is described by this integrated rate equation

e (4—cY)kt o
log B =B | 1 B
%8 T 2303 B

where A is isopropyl alcohol and B is acetic anhydride. These are experimental
kinetic data for this reaction:

t (min) ca(M) cg(M)
0 0.456 0.876
1.50 0.248  0.668
3.13 0.138  0.558
4.50 0.088 0.508
6.10 0.062 0.482
8.00 0.040 0.460
12.10  0.012 0.432

Analyze the data by the method of least squares, and report the value of the
second-order rate constant k.

These values have been reported in the literature for the dipole moment of
phenol at25°C: 1.45,1.53,1.54,1.65,1.72,1.86, 1.53, 1.43, 1.64. Calculate the
usual statistical parameters, and give 95% confidence limits for the mean.

Return to Problem 0.32 and express the mean with an appropriate number of
significant figures.

The activation energy for the hydrolysis of aspirin in acid solution is 16.7 kcal
mol . Convert this to kJ mol™".

A rate constant for the uncatalyzed hydrolysis of succinylcholine chloride has
been reported to be 5.0 x 107°h~!. Convert this to s~ ' (reciprocal seconds).

Convert a density of 1.86 gmL ™" to SI units.

The tetrahedral covalent radius of carbon is 0.77 A. Convert this to
nanometers.
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0.40.

0.41.

0.42.

0.43.

REVIEW OF MATHEMATICS

R (the gas constant) is equal to 8.314JK 'mol~'. Convert this to
cal K™ "mol .

Physicochemical equations often call for taking the logarithm of a quantity
having units. It is difficult to conceive of the logarithm of a unit. Describe a way
out of this quandary.

Beer’s law for the absorption of light is written A = ebc, where b is pathlength
in centimeters, ¢ is molar concentration, and A is absorbance, defined by
A =log(ly/I), where the I quantities are light intensities. Deduce the units of ¢,
which is called the molar absorptivity.

Both of these equations have been published in the scientific literature (by co-
author KAC of the present book). One of them is incorrect. The quantities k;, k;,
and k;; all have the same units. K;; is defined K;; =[SLJ/[S][L]. The F
quantities are fluorescent intensities. Use dimensional analysis to detect the
incorrect equation.

F 1+ (ki /k)Kn[L] ke

s N A

(b) F _ 1+ (ki1 /kg) K11 [L] (kg /ks)[L]
Fy 1+ Ku[L] [S](1+ K1 [L])
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ENERGY AND THE FIRST
LAW OF THERMODYNAMICS

1.1. FUNDAMENTAL CONCEPTS

Temperature and the Zeroth Law. The concept of temperature is so familiar to us
that we may not comprehend why scientists two centuries ago tended to confuse
temperature with heat. We will start with the notion that temperature corresponds to
“degree of hotness” experienced as a sensation. Next we assign a number to the
temperature based on the observation that material objects (gases and liquids
in particular) respond to “degree of hotness” through variations in their volumes.
Thus we should be able to associate a number (its temperature) with the volume
of a specified amount of material. We call the instrument designed for this purpose
a thermometer.

The first requirement in setting up a scale of temperatures is to choose a zero
point. In the common Celsius or centigrade scale we set the freezing point of water
(which is also the melting point of ice) at 0 °C [more precisely, 0 °C corresponds to
the freezing point of water (called the “ice point”) in the presence of air at a pressure
of 1 atmosphere (atm)]. The second requirement is that we must define the size of the
degree, which is done for this scale by setting the boiling point of water (the “steam
point”) at 100 °C. The intervening portion of the scale is then divided linearly into 100
segments. We will let ¢ signify temperature on the Celsius scale.

Experience shows that different substances may give different temperature read-
ings under identical conditions even though they agree perfectly at 0 °C and 100 °C.
For example, a mercury thermometer and an alcohol thermometer will not give
precisely the same readings at (say) room temperature. In very careful work it would be
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advantageous to have available an ‘“absolute” temperature scale that does not
depend on the identity of the thermometer substance. Again we appeal to laboratory
experience, which has shown that the dependence of the volume of a fixed amount
of a gas on temperature, at very low pressures of the gas, is independent of the chemical
nature of the gas. Later we will study the behavior of gases at low pressures in more
detail; for the present we can call such gases “ideal gases” and use them to define an
absolute ideal-gas temperature scale. We define the absolute temperature as directly
proportional to the volume of a given mass of ideal gas at constant pressure (i.e.,
letting T be the absolute temperature and V the gas volume):

TxV

For convenience we define the size of the absolute temperature degree to be identical to
the Celsius degree. If Vy and V( are the volumes of the ideal gas at the ice and steam
points of water, respectively, the size of the degree is given by

Vioo — Vo
100
Then our absolute temperature scale is defined by
Vv
T=——— (L.1)

(Vioo — V)/100

Now suppose that we apply our ideal-gas thermometer to water at the ice point. In this
special case, Eq. (1.1) becomes

Vo

Tp=— 0
O (Vigo — Vo) /100

(1.2)
Careful experimental work with numerous gases has revealed that 7y =273.15K.
Thus the Celsius and absolute scales are related by

T =1t+273.15

The absolute temperature scale is also called the thermodynamic scale or the Kelvin
scale, and temperatures on this scale are denoted K (pronounced Kelvin, with no
degree symbol or word).

According to Eq. (1.1), when T= 0 K, V = 0; the volume of the ideal gas goes to zero
atthe absolute zero. Modern experimental techniques have achieved temperatures within
microdegrees of the absolute zero, but 7= 0 K appears to be an unattainable condition.

The concept and practical use of temperature scales and thermometers is based on
the experimental fact that if two bodies are each in thermal equilibrium with a third
body, they are in thermal equilibrium with each other. This is the zeroth law of
thermodynamics.

Work and Energy. Let us begin with the mechanical concept of work as the product
of a force and a displacement:

Work = Force x Displacement (1.3)
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The units of work are consequently those of force and length. Now from Newton’s laws
of motion,

Force = Mass x Acceleration (1.4)

In SI units, force therefore has the units kgms&, which is also called a newton,
N. Hence the units of work are either kg m*s > or Nm.

Energy is defined as any property that can be produced from or converted into work
(including work itself). Therefore work and energy have the same dimensions,
although different units may be used to describe different manifestations of energy
and work. For example, 1 Nm = 1] (joule), and energy is often given in joules or
kilojoules. Here are relationships to earlier energy (cgs) units:

17=10"erg
4.184J = 1 cal (calorie)

Note from the definition (1.3) that work is a product of an intensive property (force)
and an extensive property (displacement). In general, work or energy can be expressed
as this product:

Work (energy) = intensity factor x capacity factor (1.5)
Here are several examples of Eq. (1.5):

Mechanical work = Mechanical force x Distance
Work of expansion = Pressure X Volume change
Electrical work = Electric potential x Charge

Surface work = Surface tension x Area change

All forms of work are, at least in principle, completely interconvertible. For
example, one could use the electrical energy provided by a battery to drive a
(frictionless) piston that converts the electrical work to an equivalent amount of
work of expansion.

Heat and Energy. Heathasbeen described as energy in transit (Glasstone 1947, p.7)
or as amode of energy transfer (Denbigh 1966, p. 18). Heat is that form of energy that is
transferred from one place to another as a consequence of a difference in temperature
between the two places. Numerically, heat is expressed in joules (J) or calories (cal).
Heat is not “degree of hotness,” which, as we have seen, is measured by temperature.]

Since both work and heat are forms of energy, they are closely connected. Work
can be completely converted into an equivalent amount of heat (e.g., through friction).

! Note that temperature is an intensive property, whereas heat is an extensive property. Two hot potatoes
differing in size may have the same temperature, but the larger potato possesses more heat than the smaller
one.
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Table 1.1. The energy of a thermodynamic system

Total energy of a body
|
[ 1

Thermodynamic energy (U) Mechanical energy
|
[ 1
Kinetic energy Internal energy Kinetic energy Potential energy
(translational (vibrational, as a result of as a result of
energy) rotational, and the body’s the body’s
electronic energy) motion as a position
whole

The converse is not possible, howevers; it is found experimentally that heat cannot be
completely converted into an equivalent amount of work (without producing changes
elsewhere in the surroundings). This point will be developed later; for the present we
observe that this finding is the basis for the impossibility of a “perpetual-motion
machine.”

We find it convenient to divide energy into categories. This is arbitrary, but there is
nothing wrong with it provided that we are careful to leave nothing out. Now, we have
seen that thermodynamics is not built on the atomic theory; nevertheless, we can very
usefully invoke the atomic and molecular structure of matter in our interpretation of
energy. In this manner we view heat as thermal energy, equivalent to, or manifesting
itself as, motions of atoms and molecules. The scheme shown in Table 1.1 clarifies the
several “kinds” of energy that a body (the “system™) can possess.”

Chemical thermodynamics is concerned with the energy U. This energy is a
consequence of both (a) the electronic distribution within the material and (b) three
types of atomic or molecular motion: (1) translation, the movement of individual
molecules in space; (2) vibration, the movement of atoms or groups of atoms with
respect to each other within a molecule; and (3) rotation, the revolution of molecules
about an axis. If a material object is subjected to an external source of heat, so that the
object absorbs heat and its temperature rises, the atoms and molecules increase their
translational, vibrational, and rotational modes of motion. Energy is not a “thing” but
is, instead, one way of describing and measuring these molecular and atomic
distributions and motions, as well as the electronic distribution within atoms and
molecules.

Systems and States. In order to carry out experimental studies and to interpret the
results, we must focus on some part of the universe that interests us. In thermody-
namics, this portion of the universe is called a system. The system typically consists of
a specified amount of chemical substance or substances, such as a given mass of a gas,

2 This scheme is consistent with the usage of most authors, but some variation is found in the literature.
The thermodynamic energy U may also be symbolized E, and some authors label the thermodynamic energy
the internal energy. The internal energy shown Table 1.1 may be identified with the potential energy of the
molecules (to be distinguished from the potential energy of the body as a whole).
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liquid, or solid. Whatever exists outside of the system is called the surroundings.
Certain conditions give rise to several types of systems:

Isolated Systems. These systems are completely uninfluenced by their surround-
ings. This means that neither matter nor energy can flow into or out of the
system.3

Closed Systems. Energy may be exchanged with the surroundings, but there can be
no transfer of matter across the boundaries of the system.

Open Systems. Both energy and matter can enter or leave the system.

We can also speak of a homogeneous system, which is completely uniform in
composition, or speak of a heterogeneous system, which consists of two or more
phases.

Experiment has shown that the state of a system can be completely defined by
specifying four observable thermodynamic variables: the composition, temperature,
pressure, and volume. If the system is homogeneous and consists of a single chemical
substance, only three variables suffice. Moreover, it is known that these three variables
are not all independent; if any two are known, the third is thereby fixed. Thus the
thermodynamic state of a pure homogeneous system is completely defined by
specifying any two of the variables pressure (P), volume (V), and temperature (7).
The quantitative relationship, for a given system, among P, V, and T is called an
equation of state. Generally the equation of state of a system must be established
experimentally.

The fact that the state of a system can be completely defined by specifying so few
(two or three) variables constitutes a vast simplification in the program of describing
physicochemical systems, because this means that all the other macroscopic physical
properties (density, viscosity, compressibility, etc.) are fixed. We don’t know their
values, but we know that they depend only on the thermodynamic variables and
therefore are not themselves independent. With this terminology we can now say that
thermodynamics deals with changes in the energy U of a system as the system passes
from one state to another state.

Thermodynamic Processes and Equilibrium. A system whose observable prop-
erties are not undergoing any changes with time is said to be in thermodynamic
equilibrium. Thermodynamic equilibrium implies that three different kinds of equi-
librium are established: (1) thermal equilibrium (all parts of the system are at the
same temperature), (2) chemical equilibrium (the composition of the system is not
changing), and (3) mechanical equilibrium (there are no macroscopic movements of
material within the system).

Many kinds of processes can be carried out on thermodynamic systems, and some
of these are of special theoretical or practical significance. Isothermal processes are

3 A truly isolated system is an idealization, but a very close approximation can be achieved inside a closed
thermos (derived from the original trade name Thermos in 1907) bottle. (The laboratory version is called a
Dewar flask.)
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those in which the system is maintained at a constant temperature. (This is easy to do
with a constant-temperature bath or oven.) Since it is conceivable that heat is given off
or taken up by the system during the process, maintaining a constant temperature
requires that the heat loss or gain be offset by heat absorbed from or given up to the
surroundings. Thus an isothermal process requires either a closed or an open system,
both of these allowing energy to be exchanged with the surroundings. An adiabatic
process is one in which no heat enters or leaves the system. An adiabatic process
requires an isolated system. Obviously, if the process is adiabatic, the temperature of
the system may change.

A spontaneous process is one that occurs “naturally”; it takes place without
intervention. For example, if a filled balloon is punctured, much of the contained
gas spontaneously expands into the surrounding atmosphere. In an equilibrium
chemical reaction, which we may write as

A+B—M+N

it is conventional to consider the reaction as occurring from left to right as written.
Thus if the position of equilibrium favors M + N (the products), the reaction is said to
be spontaneous. If the reactants (A + B) are favored, the reaction is nonspontaneous
as written. (Obviously we can change these designations simply by writing the
reaction in the reverse direction.)

It is the business of thermodynamics to tell us whether a given process is
spontaneous or nonspontaneous. However, thermodynamics, which deals solely
with systems at equilibrium, cannot tell us how fast the process will be. For example,
according to thermodynamic results, a mixture of hydrogen and oxygen gases will
spontaneously react to yield water. This is undoubtedly correct—but it happens that
(in the absence of a suitable catalyst) the process will take millions of years.

There is one more important type of thermodynamic process: the reversible
process. Suppose we have a thermodynamic system at equilibrium. Now let an
infinitesimal alteration be made in one of the thermodynamic variables (say, T
or P). This will cause an infinitesimal change in the state of the system. If the
alteration in the variable is reversed, the process will reverse itself exactly, and the
original equilibrium will be restored. This situation is called thermodynamic
reversibility. Reversibility in this sense requires that the system always be at, or
infinitesimally close to, equilibrium and that the infinitesimally small alterations in
variables be carried out infinitesimally slowly. Because of this last factor, thermody-
namically reversible processes constitute an idealization of real processes, but the
concept is theoretically valuable. One feature of a reversible process is that it can yield
the maximum amount of work; any other (irreversible) process would generate less
work, because some energy would be irretrievably dissipated (e.g., by friction).

Now suppose that a system undergoes a process that takes it from state A to state B:

A—B

We define a change in some property Q of the system by

AQ = Q0 —Qa (1.6)
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In other words, the incremental change in the property is equal to its value in the final
state minus its value in the initial state.
Next consider this series of processes, which constitutes a thermodynamic cycle:

1

A ——> B AQ =05 -0,
AszQciQB
4 2 AQ, =0, 0
AQ4:QA7QD
b 3 ¢ Sum: AQ=0

In any cycle in which the system is restored exactly to its original state, the total
incremental change is zero.

1.2. THE FIRST LAW OF THERMODYNAMICS

Statement of the First Law. To this point we have been establishing a vocabulary
and some basic concepts, and now we are ready for the first powerful thermodynamic
result. This result is solidly based on extensive experimentation, which tells us that
although energy can be converted from one form to another, it cannot be created or
destroyed [this statement is completely general in the energy regime characteristic of
chemical processes; relativistic effects (i.e., the famous equation E = mc?) do not
intrude here]. This is the great conservation of energy principle, which is expressed
mathematically as Eq. (1.7), the first law of thermodynamics.

AU =qg—w (1.7)

Here AU is the change in thermodynamic energy of the system, g is the
amount of energy gained by the system as heat, and w is the amount of energy lost
by the system by doing work on its surroundings. These are the sign conventions
that we will use:

q is positive if the heat is taken up by the system (i.e., energy is gained by the
system).
w is positive if work is done by the system (i.e., energy is lost by the system).*

Equation (1.7) is the incremental form of the first law. The differential form is

dU = dq — dw (1.8)

* This is the sign convention used by most authors, but the International Union of Pure and Applied
Chemistry (IUPAC) reverses the convention for w, giving as the first law AU=¢q + w.
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But now we must make a very clear distinction between the quantity dU and the
quantities dq and dw. U is a state function and dU is an exact differential. This
terminology means that the value of AU, which is obtained by integrating dU over
the limits from the initial state to the final state, is independent of the path (i.e., the
process or mechanism) by which the system gets from the initial state to the final
state. A state function depends only on the values of the quantity in the initial and
final states.

It is otherwise with g and w, for these quantities may be path-dependent. For
example, the amount of work done depends on the path taken (e.g., whether the process
isreversible or irreversible). Therefore dg and dw are not exact differentials, and some
authors use different symbols to indicate this. Nevertheless, although ¢ and w
individually may be path-dependent, the combination g—w is independent of path,
because it is equal to AU.

The Ideal Gas. Experimental measurements on gases have shown that as the
pressure is decreased, the volume of a definite amount of gas is proportional to the

5 This analogy will clarify the difference between path-dependent and path-independent quantities.
Suppose we wish to drive from Madison (WI) to Green Bay. Obviously there are numerous routes we
might take. We could drive via Milwaukee, or via Oshkosh, or via Stevens Point, and so on. Graphically, the
possibilities can be represented on a map, as shown in the accompanying figure. Now, no matter which path
we take, the changes in latitude, ALat, and in longitude, ALon, will be exactly the same for each route; for
example, ALat =Lat(GB) — Lat(MAD), and this quantity is independent of the route. Thus latitude and
longitude are state functions. But the amount of gasoline consumed, the time spent driving, and the number
of miles driven all depend on the path taken; these are not state functions. This analogy is taken from Smith
(1977).

Stevens Point Green Bay

Oshkosh

Lattitude

Madison Milwaukee

Longitude
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reciprocal of the pressure:

Vol
*p

As Pisdecreased toward zero, all gases (at constant temperature) tend to behave in the
same way, such that Eq. (1.9) is satisfied:

PV = constant (1.9)

This result can be generalized as Eq. (1.10), which is called the ideal-gas equation (or
the ideal-gas law):

PV = nRT (1.10)

where P, V, and T have their usual meanings; » is the number of moles of gas; and Ris a
proportionality constant called the gas constant. Equation (1.10) is the equation of
state for an ideal gas (sometimes called the “perfect gas”), and it constitutes a
description of real-gas behavior in the limit of vanishingly low pressure. The
macroscopic properties of an ideal gas such as pressure, volume, and temperature
are related to the continuous motion of the gas molecules. A theory called the kinetic
theory of gases has been developed to derive these properties and their relationship
(ideal gas law) from first principles. Details on the kinetic theory of gases can be found
in Appendix B.

Example 1.1. Experiment has shown that 1 mol of an ideal gas occupies a volume of
22414 L at 1 atm pressure when T=273.15 K. Calculate R:

PV (latm)(22.414L)
~ nT (1 mol)(273.15K)

= 0.082057 L atm mol~!' K~!

We can use a dimensional analysis treatment to convert to other energy units, as
described in Chapter O:

R_ 0.082057 L atm /101,325Pa\ /1 Nm 2\ /10° cm? 1J Im \’
- mol K 1 atm 1Pa 1L 1Nm/ \10?cm

= 8.3144 Y mol 'K !

andsince 1 cal =4.184 J, R =1.987 cal mol ! K~ '. Notice that in this calculation of R,
its units are energy per mol per K. That is, since R = PV/nT, the units of the product PV
are energy, which we expressed in the particular units L atm, J, or cal. These several
values of R are widely tabulated, and they can serve as readily accessible conversion
factors among these energy units.

We earlier mentioned a type of work called work of expansion. This is the work done
by a gas when it expands against a resisting pressure, as happens when a piston moves
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in a cylinder. We can obtain a simple expression for work of expansion. Suppose thata
piston of cross-sectional area A moves against a constant pressure P. We know that
mechanical work is the product of force (F) and distance, or

w=F(L,— L)
where L, is the initial position of the piston and L, is its final position. Pressure is force
per unit area (A), so F = PA, giving

w = PA (L2 — Ll)
But A(L, — L;) =V, —V;, where V; and V, are volumes, so

W:P(VQ—V1>=PAV (1.11)

where AV is the volume displaced. Thus work of expansion is the product of the
(constant) pressure and the volume change; in fact, we often refer to work of expansion
as PAV work.

Now, if the process is carried out reversibly, so that the pressure differs only
infinitesimally from the equilibrium pressure, the volume change will be infinitesimal,
and Eq. (1.11) can be written

dw=PdV (1.12)

We can integrate this between limits:
Vo
w= J pPdv (1.13)
Vi
(In the case of an isothermal, reversible expansion, w does not depend upon the path,

but this is a special case.) Now suppose that the gas is ideal and that the process is
carried out isothermally. From the ideal gas law, P =nRT/V, so

av
w:nRTJ— (1.14)
1%
Vi
v
w =nRTIn — (1.15)
Vi

If V, > V, the system does work on the surroundings, and w is positive. If V| > V,, the
surroundings do work on the system, and w is negative.

In developing Eq. (1.15) we saw an example of thermodynamic reasoning, and
we obtained a usable equation from very sparse premises. Here is another example,
again based on the ideal gas. Suppose that such a gas expands into a vacuum. Since the
resisting pressure is zero, Eq. (1.11) shows that w = 0; that is, no work is done. Careful
experimental measurements by Joule and Kelvin in the nineteenth century showed that
there is no heat exchange in this process, so ¢ = 0. The first law therefore tells us that
AU = 0. Since the energy depends on just two variables, say, volume and temperature,



THE ENTHALPY 73

we can express the result as

(29) w10

which says that the energy of an ideal gas is independent of its volume at constant
temperature. We can interpret this thermodynamic result in molecular terms as
follows. A gas behaves ideally when the intermolecular forces of attraction and
repulsion are negligible. (This is why real gases approach ideality at very low
pressures, because then the molecules are so far apart that they do not experience
each others’ force fields.) If there are no forces between the molecules, no energy is
required to change the intermolecular distances, and so expansion (or compression)
results in no energy change.

1.3. THE ENTHALPY

Definition of Enthalpy. In most chemical studies we work at constant pressure.
(The reaction vessel is open to the atmosphere, and P =1 atm, approximately.)
Consequently the system is capable of doing work of expansion on the surroundings.
From the first law we can write ¢ =AU + w; and since w = P AV, we have

q = AU + PAV
at constant P. Writing out the increments, we obtain
g=U—U)+P(V,—Vy)
Rearranging, we have

g = (Uy+PVy)— (U +PVy) (1.17)

where U, P, and V are all state functions. We define a new state function H,
the enthalpy, by

H=U+PV (1.18)

giving, from Eq. (1.17), the following:
qg=AH (1.19)

Although Eq. (1.18) defines the enthalpy, it is usually interpreted according to
Eq. (1.19), because we can only measure changes in enthalpy (as with all energy
quantities). The enthalpy change is equal to the heat gained or lost in the process,
at constant pressure (there is another restriction, namely, that work of expansion is the
only work involved in the process). Since enthalpy is an energy, it is measured in the
usual energy units.
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From Eq. (1.18) we can write
AH = AU + PAV (1.20)

For chemical processes involving only solids and liquids, AVis usually quite small, so
AH =~ AU, but for gases, where AV may be substantial, AH and AU are different. We
can obtain an estimate of the difference by supposing that 1 mol of an ideal-gas is
evolved in the process. From the ideal gas law we write

PAV = (An)RT

For 1 mol we obtain An =1, so from Eq. (1.20) we have
AH = AU +RT

At 25°C, this gives

AH = AU+ (1.987 cal mol ' K~1)(298.15K)
= AU + 592 cal mol ~!

which is a very appreciable difference.

When a chemical process is carried out at constant pressure, the heat evolved or
absorbed, per mole, can be identified as AH. Specific symbols and names have been
devised to identify AH with particular processes. For example, the heat absorbed
by a solid on melting is called the heat of fusion and is labeled AH,,,, or AHy. The heat
of solution is the enthalpy change per mole when a solute dissolves in a solvent.
For a chemical reaction, AH is called a heat of reaction. The heat of reaction may be
positive (heat is absorbed) or negative (heat is evolved). By writing a reaction on
paper in reverse direction its AH changes sign. For example, this reaction absorbs
heat:

6C(s) 4 3Hy(g)—CeHg(1) AH = +11.7k calmol ™!

This reaction, its reverse, therefore evolves heat:
CeHg(1)—6C(s) +3Hy(g) AH = —11.7kcalmol ™!
We will later see how enthalpy changes for chemical processes can be measured.

Heat Capacity. A quantity C, called the heat capacity, is defined as

_da

C=
dr

(1.21)

Cis ameasure of the temperature change in a body produced by an increment of heat.
The concept of the heat capacity is essential in appreciating the distinction between
heat and temperature.
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Chemical processes can be carried out at either constant volume or constant
pressure. First consider constant volume. If only work of expansion is possible,
atconstant volume we obtain AV = 0, sow = 0, and from the first law we have dg = dU.
We therefore define the heat capacity at constant volume by

Cy = (‘;I;)V (1.22)

At constant pressure, on the other hand, we have, from Eq. (1.19), dg=dH,
and we define the heat capacity at constant pressure by

Cp = (Z;I)P (1.23)

In the preceding section we had obtained, for one mole of an ideal gas, Eq. (1.24).
AH = AU +RT (1.24)

Let us differentiate this with respect to temperature. Using Eqgs. (1.22) and (1.23), we
get

Cp=Cy+R (1.25)

For argon, at room temperature, Cp=20.8 JK 'mol~' and C, =12.5JK 'mol;
hence Cp — Cy=28.3] K 'mol~"!, which is R.

For most compounds only Cp has been measured. Values of Cp for typical organic
compounds lie in the range 15-50cal K~ 'mol~'. As seen here, heat capacity
is expressed on a per mole basis, and is sometimes called the molar heat capacity.
When the heat capacity is expressed on a per gram basis it is called the specific heat.

Taking the constant-pressure condition of Eq. (1.23) as understood, we can write
Cp=dH/dT, or dH = Cp dT. If we suppose that Cp is essentially constant over the
temperature range 7 to T», integration gives

AH = Cp AT (1.26)

Example 1.2. The mean specific heat of wateris 1.00 cal g~' K~ '.Calculate the heat
required to increase the temperature of 1.5 L of water from 25 °C to the boiling
point.®

As a close approximation we may take the density of water as 1.00 gmL ™" and the
boiling point as 100 °C, so from Eq. (1.26) we obtain

1.00 cal
AH = < Ca)(lSOOg)(75 K) = 112,500 cal

or 112.5kcal.

6 Itis not a coincidence that the specific heat of wateris 1.00 cal g~' K™ ', because this is how the calorie was
originally defined: One calorie was the amount of heat required to raise the temperature of one gram of water
by 1°C. Actually the specific heat of water varies slightly with the temperature.
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PROBLEMS

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

A piston 3.0 in. in diameter expands into a cylinder for a distance of 5.0 in.
against a constant pressure of 1 atm. Calculate the work done in joules.

What is the work of expansion when the pressure on 0.5 mol of ideal gas is
changed reversibly from 1atm to 4atm at 25°C? (Hint: For an ideal gas
P\Vi=PV3)

Derive an equation giving the heat change in the isothermal reversible
expansion of an ideal gas against an appreciable pressure. [Hint: Make use
of Eq. (1.16) and the first law.]

What is the molar heat capacity of water? (See Example 1.2 for the specific
heat.)

The molar heat capacity of liquid benzene is 136.1 Jmol ' K~'. What is its
specific heat?

The specific heat of solid aluminum is 0.215cal g~ ' K '. If a 100-g block of
aluminum, initially at 25 °C, absorbs 1.72 kcal of heat, what will be its final
temperature?

A 500-g piece of iron, initially at 25 °C, is plunged into 0.5 L of water at 75 °Cin
a Dewar flask. When thermal equilibrium has been reached, what will the
temperature be? The specific heat of iron is 0.106calg ' K"

A thermally unstable drug needs to be mailed to a patient. The drug is put into
a 100-mL bottle, and the bottle is put in a 2-L Styrofoam box. Dry ice (solid
carbon dioxide) is added to the box in the amount of 352 g to cool the drug and
maintain it cold until it reaches its destination. Dry ice has the property of
sublimating upon heating. No liquid carbon dioxide is formed. The box is
sealed and it represents a thermodynamic closed system. Assume that the initial
temperature of dry ice is its sublimation temperature, —78 °C. The package
takes two days to be delivered. Every day, the package absorbs 600J of heat
from the environment. Calculate the pressure inside the box when the package
reaches its destination (neglect the amount of air initially present in the
container) and the temperature of the drug when the package is opened. Dry
ice heat of sublimation =416 J/mol, molecular weight of dry ice =44 g/mol,
density of dry ice =1.56 g/mL.

A sample of an unknown gas at atmospheric pressure weighs 2.3 g/L. at the
temperature of 25 °C. Calculate the molecular weight of the gas. Using the
information in Appendix B, calculate the square root velocity of the gas
molecules at 25 °C. Express the velocity in cm/s.

Consider 3 mol of an ideal gas having a molecular weight of 32 g/mol. The gas
is at the temperature of 300 °C and at the pressure of 6.3 atm. The gas is then
expanded until it reaches a pressure of 0.001 atm. What is the gas density in
g/mL in the initial and final states?
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An experimenter wishes to determine the partial pressure of chloroform
required to anesthetize a 28.0-g mouse in a 2.37-L container at 20°C.
If 2.00mL of liquid chloroform is introduced into the closed vessel
through a valve, what is the partial pressure of chloroform in the container?
Assume complete evaporation of the chloroform. Calculate the partial pressure
using the ideal gas equation. Assume the density of the mouse to be 1 g/mL.
The density of liquid chloroform at 20 °C is 1.484 g/mL.

Nitrous oxide (N,O) is used for the rapid induction of anesthesia. Using
the ideal gas equation, calculate the molecular weight of this gas, giventhat 1 L
at the temperature of 0°C and at the pressure of 760 mmHg weighs 1.97 g.
In addition, calculate the root mean square velocity, w, of nitrous oxide
and from w calculate the density of gaseous N,O at 1atm and 0°C. (See
Appendix B).

In the following thermodynamic cycle, AHy, AH, and AH,, are, respectively,
molar heats of fusion, vaporization, and sublimation for a pure substance.
Obtain an equation connecting these three quantities. (Hint: Pay careful
attention to the directions of the arrows.)

Solid

VA

Gay —————— e Liquid



THE ENTROPY CONCEPT

2.1. THE ENTROPY DEFINED

Why Energy Alone Is Not a Sufficient Criterion for Equilibrium. Let us try to
develop an analogy, based on what we know from classical mechanics, between a
mechanical system and a chemical (thermodynamic) system. The position of equi-
librium in a mechanical system is controlled by potential energy. Consider a rock
poised near the top of a hill. It possesses potential (gravitational) energy as a
consequence of its position. If it is released, its potential energy will be converted
to heat (through friction) and to kinetic energy as it rolls down the hill. It will come to
rest, having zero potential energy, at the foot of the hill (since we can measure only
changes in energy, we mean that the potential energy is zero relative to some arbitrary
reference value, which we are free to take as the value at the foot of the hill). It is now at
mechanical equilibrium. Thus the criterion for a spontaneous mechanical process is
that the change in potential energy be negative (it gets smaller), and the criterion for
mechanical equilibrium is that the change in potential energy be zero.

Why don’t we simply apply an analogous criterion to chemical systems? We might
argue that AU(for a system at constant volume) or AH (for a system at constant
pressure) plays the role of potential energy in the mechanical system. But we find
experimentally that this suggestion is inadequate to account for the observations.
Consider first the following experiment (Smith 1977, p. 6):

1. Dissolve some solid NaOH in water. The solution becomes warm; that is, heat
is liberated in the process. This means that AH is negative in the spontaneous

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.
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process of NaOH dissolving in water. (The reaction is said to be exothermic.)
This is entirely in accord with the proposal we are examining.

2. Dissolve some solid NaNOj; in water. The solution becomes cool; that is, heat
is absorbed as the dissolution occurs, and this cools the solution. Therefore
AH is positive in this spontaneous process. (It is an endothermic reaction.) This
behavior is in conflict with the proposal.

Here is another pertinent experiment. Suppose that we have two identical chambers
connected by a stopcock. With the stopcock closed, we let one chamber contain a gas
and the other chamber be evacuated (i.e., it “contains” a vacuum). Now we open the
stopcock. We know what will happen—the gas will spontaneously distribute itself
uniformly throughout the two chambers. If the gas is ideal (and most gases behave
nearly ideally at low pressures), we know [see Eq. (1.16)] that AU=0 for this
spontaneous process. Thus, with no energy change at all, the system spontaneously
underwent a change to an equilibrium position.

This inability to predict the direction of chemical change based on energy
considerations alone was one of the great nineteenth-century scientific problems.
Since energy minimization alone is not an adequate criterion for chemical equilibrium,
something else must be involved. This is our next concern, and we are going to use an
approach somewhat different from that taken in many textbooks, which adopt an
argument based on the historical development of the ideas. We are going to sidestep
classical thermodynamic history by turning to a description based on the particulate
(i.e., atomic) nature of matter.

The Statistical Mechanical Entropy. We have seen that classical thermodynamics
is based on macroscopic observations and makes no assumptions about the ultimate
structure of matter. An alternative viewpoint, called statistical mechanics (or statisti-
cal thermodynamics when applied to thermodynamic problems), adopts the assump-
tion that matter is composed of vast numbers of very small particles (which we now
identify as electrons, atoms, molecules, etc.). In many circumstances this point of view
provides physical insight not available from classical thermodynamics, and we will
turn to it to illuminate our present problem.

Let us reconsider the example of the apparatus with two chambers, in one of which
a gas was initially confined. Suppose that only a single molecule of gas had been
present. After the stopcock is opened (and presuming that both chambers have equal
volumes), evidently the probability that the molecule will be in one specified chamber
(say, the left chamber) is % Next suppose we were to start with two molecules—say,
a and b—and ask for the probability that both will be found, at equilibrium, in the left
chamber. These are the only possible distributions:

Left Right
a b
b a
a,b —

— a,b
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Thus, of four possible distributions, only one places both a and b in the left chamber,
so the probability" of this distributionis } = (})”. Generalizing to N molecules, we get
(%)” for the probability that at equilibrium all N molecules will be found in the left
chamber. Since for chemical systems the number of atoms or molecules, N, can be very
large indeed, we see that the probability is extremely small that all of the molecules will
end up in one chamber. On the other hand, the probability is extremely high that the
molecules will be distributed equally between the two chambers.

This simple example (Glasstone 1947, p. 184) suggests a general statement,
which in fact constitutes a basic premise of statistical mechanics, namely, that all
spontaneous processes represent changes from a less probable to a more probable
state. This postulate leads us to the next stage of our inquiry, which consists essentially
of counting all possible distributions that are accessible to a system, because this is how
the probability of a state is to be established.

In this next example the system is more complicated, although still artificially
simple. We imagine that two crystals of different elements, A and B, are placed in
contact, so that atoms of A may diffuse into the B crystal and vice versa [this example
is given by Denbigh (1966, p. 49)]. In this simple example we suppose that crystal A
contains four A atoms (4A), and likewise crystal B contains four B atoms (4B). We can
distinguish between A and B atoms, but all A atoms are indistinguishable among
themselves, and similarly for B. The sites that the atoms occupy in the crystals are
distinguishable. Initially, let all A atoms be in the left-hand crystal and let all B atoms
be in the right-hand crystal.

We are going to count all possible configurations (called microstates) of our
system. There are 4A and 4B to be distributed among eight sites. (We assume that the
energies ofinteraction areidentical nomatter which type ofatomis on whichsite.) Clearly,
there is only one microstate having 4A in the left crystal and 4B in the right crystal:

A A|B B
A A|B B

Similarly, there is only one microstate with 4B in the left and 4A in the right crystal.

But now consider the number of ways we can have 3A + 1B on the left and
3B + 1A ontheright. We could argue in this way: The A atom on the right has any one
of four right-hand sites available to it, and likewise the B atom on the left has four sites
available, making 4 x 4 =16 configurations. These 16 microstates are explicitly
shown in Fig. 2.1. Obviously the symmetrical arrangement of 1A + 3B on the left
and 3A + 1B on the right will also have 16 microstates.

The remaining arrangement of 2A + 2B (left) and 2A + 2B (right) is slightly
more difficult. First consider the left crystal. The first B atom has four sites available,
whereas the second B atom has only three accessible sites. Hence there appear to be
4 x 3 possible configurations. However, the two B atoms are indistinguishable, so we

! We are making the unstated assumption that the molecules behave independently, so that each has a
probability of % of being in the left chamber. The probability that both will be in the left chamber is the
product of the individual probabilities.
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A B B A B A B A A A B A A A B A
A A B B A A B B B A B B A B B B
A B A B B A A B A A A B A A A B
A A B B A A B B B A B B A B B B
A B B B B A B B A A B B A A B B
A A A B A A A B B A A B A B A B
A B B B B A B B A A B B A A B B
A A B A A A B A B A B A A B B A

Figure 2.1. The 16 microstates possessing 3A + 1B on the left and 3B + 1A on the right.

have double-counted, and must compensate, giving (4 x 3)/2 as the number of
microstates. But an equal number is contributed by the right-hand side, making in
all (4 x 3)/2 x (4 x 3)/2 =36 microstates. Here are the results summarized.’

Atoms to Left  Atoms to Right  Number of Microstates

4A 4B 1
3A+ 1B 1A +3B 16
2A +2B 2A+2B 36
1A +3B 3A+1B 16

4B 4A 1

70

In modern terminology, the microstates are called quantum states.

2 Probability theory gives a simple expression for calculating the number of ways N objects can be
distributed into n; of type 1, n, of type 2, and so on; this is the expression:

N!
I’l]'}’lz'

where N!isread N factorial and is the product 1 x 2 X 3 x 4 x...(N — 1) x N. For our system this gives 8!/4!
41=170.
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Now, another key premise of statistical mechanics is that the system is as likely
to be in any one microstate as in another. That is, all microstates are equally
probable. In our example above, there is a probability of % that all of the A atoms
will be found in a single crystal (either left or right); but there is a probability of %
that the atoms will be uniformly distributed. All the microstates are accessible, and
the system is simply more likely to be found (at equilibrium) in the state possessing
the largest number of microstates. (It can also be stated that the system spends an
equal amount of time in each microstate, so it spends the most time in the system
with the most microstates.)

For chemical systems the number of particles is extremely large (recall that
Avogadro’s number is about 6 X 1023), so the number of microstates is vast, and
the consequence is that the most probable state of the system is so probable that
all other states (although possible in principle) may be disregarded in practice. The
total number of microstates accessible to a system (which, we have just noted, is
essentially equal to the number of microstates in the most probable state) we label W.
(Some authors use 2.) We now define a quantity S, called entropy, by Eq. (2.1), which
is due to Boltzmann:

S=klnW (2.1)

This is a definition. We will later establish the significance of the proportionality
constant k. The equation says that the entropy S of a system increases logarithmically
as W, the number of accessible microstates, increases.

We have noticed in our crystal diffusion example how W is composed of con-
tributions from various configurations, and within each configuration the contribu-
tions are multiplicative; for example, for the 3A + 1B (left) and 1A + 3B (right)
state we had 4 x 4 =16 microstates. If, more generally, we write W= W x Wy,
then Eq. (2.1) gives us

S:kanR:kIHWL+k1nWR:SL+SR

Thus, entropy is additive. (This is one reason why Boltzmann used a logarithmic
function in his definition.)

Another point is to be made here. Our crystal diffusion example involved micro-
states all having the same energy, and we calculated all possible configurations. The
resulting entropy is known as the configurational entropy. More generally, in chemical
systems we must also consider a very large number of quantum states, most of which
occupy different energy levels. The total entropy receives contributions from both
sources: the microstates counting all configurations and those counting all energies.

Summarizing to this point, we conclude that spontaneous processes occur in a
direction of increasing probability and that entropy as calculated by the statistical
mechanical definition is a quantitative measure of this probability. Therefore sponta-
neous processes occur with an increase in entropy.3

3 In making this statement we are neglecting concurrent energy changes; specifically, we are assuming
AU =0 (for the present). Note also that we measure changes in entropy, AS, so the statement says that if ASis
positive, the process is spontaneous.
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Before leaving the statistical mechanical treatment, let us apply our results to the
calculation of the entropy change accompanying the isothermal expansion of an ideal
gas from volume V; to volume V, (Glasstone 1947, p. 186; Denbigh 1966, p. 55;
Rossini 1950, p. 73). (We will shortly see the point of this particular calculation.)
Recall that AU=0 in this process, so the only driving force for the expansion is the
increase in probability of the system.

If W, and W, are the numbers of microstates associated with volumes V; and V5,
then S; = kIn W, and S, = k1n W,, so

W,
AS=S5,—-S =kln Wi (2.2)

The probability that a single molecule will be found in any volume V is proportional
to that volume, and the number of microstates accessible to amolecule is proportional to
V (Hill 1960, Chapter 4). For a single molecule we therefore can write, Wo/W; = V,/ V],
and for N, (one mole of) molecules we have

Wi _ (V2" (2.3)
Wi A ’

Combining Egs. (2.2) and (2.3) gives as the statistical mechanical result
Va

AS = kN In -2 (2.4)
Vi

Entropy in Classical Thermodynamics. Now we are going to treat the isothermal
reversible expansion of an ideal gas classically. Our goal is to establish the classical
thermodynamic equivalent of the statistical mechanical entropy. We begin with the
first law:

dU = dg —dw (2.5)

On expanding from volume V; to volume V, against pressure P, the gas is capable
of doing work of expansion dw = P dV. Moreover, we know from our earlier discussion
that dU = O for this process, so we have dqg = P dV. For one mole of anideal gas we have
P =RT/V, giving dq = RT(dV/V), or

d av
dg _ v

= v (2.6)

We will integrate Eq. (2.6) between our expansion limits of V| and V,, giving

state 2 d
\%
Jﬁ:mn—2 (2.7)
T Vi

state 1

Now let us compare Eq. (2.7), derived classically, with Eq. (2.4), derived statistically.
These equations describe the same process, and they reveal that consistency between
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the classical and statistical treatments can be achieved by writing the identities

kNy =R (2.8)
stateZd
q
2 _A 2.
| F=as 29)
state |
and Eq. (2.9) implies
dq
—=dS 2.10
- (2.10)

These are powerful results. From Eq. (2.8) we achieve a physical interpretation of the
proportionality constant k in Eq. (2.1), Boltzmann’s definition of entropy, as

k= & (2.11)
Na
where k is the gas constant per molecule; this quantity is known as the Boltzmann
constant. Ithas the value k = 1.38 x 1072> JK~'. Any equation containing R is on a per
mole basis; replace the R with k and the equation is on a per molecule basis.
According to Eq. (2.10), the differential entropy change is equal to the differential
heat change divided by the absolute temperature. Moreover, from Eq. (2.7), since Visa
state function, the entropy S is a state function. With a combination of statistical and
classical arguments we can make some general statements about entropy changes.
From statistical mechanics we had seen that AS increases during a spontaneous
process, so we infer that AS = 0 at equilibrium. Reverting to a differential symbolism,

these results give us

ds >0 for a spontaneous (irreversible) process

as=20 for a system at equilibrium
Recall thatin areversible process the system is always virtually at equilibrium, and the
system is then capable of performing the maximum work (because irreversible losses,
such as to friction, are minimized). In a spontaneous (irreversible) process, the amount

of work that can be done is less than the maximum. From the first law, since dU is a state
function and is the same no matter what path is taken, we have

dU = dgrey — AWrey = dgire — dWiy
SO

dqrev — dqir = AWrey — dWir
Since dw,ey > dwyy,, it follows that dgq., > dg;., . We therefore can write

dqrev inrr
>
T T
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The entropy is a state function, independent of path, so the differential dS has a definite
value for a given process regardless of whether that process is carried out reversibly.
Equation (2.10) for the classical definition of entropy can be more explicitly written

_ g

T

Classically, then, the entropy increase is equal to the heat change in an isothermal
reversible process divided by the absolute temperature at which the heat change
occurs. All spontaneous (i.e., natural) processes occur with a gain of entropy by the
system and the surroundings. Note that itis conceivable for the system to experience an
entropy decrease (dS < 0), but this will inevitably be accompanied by a more-than-
compensating entropy increase in the surroundings.

ds

2.2. THE SECOND LAW OF THERMODYNAMICS

Statement of the Second Law. Entropy plays a critical role in thermodynamic
analysis, because it is the missing factor that we were seeking to allow us to predict
the direction of change in atomic or molecular systems. The essential result constitutes
the second law of thermodynamics, which can be stated in several ways, not all of them
obviously equivalent, but in fact all of them providing the same message. Here are
some of them:

1. Heat does not spontaneously flow from a cold body to a hot body.
2. Spontaneous processes are not thermodynamically reversible.

3. The complete conversion of heat into work is impossible without leaving
some effect elsewhere.

4. It is impossible to convert heat into work by means of a constant temperature
cycle.

5. All natural processes are accompanied by a net gain in entropy of the system
and its surroundings.

This last statement is most useful to us. Let us write
dSnet = dSsystem + dSsurmundings
Then the second law says

dSpet > 0 (spontaneous process)

dSpet =0 (reversible process)

Interpretations of Entropy. Entropy is an abstract concept of thermodynamics and
statistical mechanics that plays a practical role in providing a criterion for equilibrium.
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Despite its technical and abstract nature, it has passed into popular culture and
language, where its use is sometimes casual and inexact. Let us consider some
interpretations that have been given to entropy. The statistical mechanical picture is
clearest. We found that the entropy increases logarithmically with the number of
microstates accessible to the system, and we concluded that entropy is correlated with
the increase in “mixed-up-ness” of the system [Denbigh (1966, p. 55) attributes this
term to Gibbs]. Entropy is widely interpreted as a measure of randomness or of
disorder, an increase in entropy being associated with an increase in these properties.
This is because spontaneous processes occur with an increase in entropy and lead to
more extensive mixing of the units in a system. This interpretation directly concerns
the configurational entropy, which measures the spatial disposition of units; in
addition, there is the thermal entropy, which measures the distribution of quantum
states having different energies. (But note that an increase in configurational entropy
might conceivably be accompanied by a decrease in thermal entropy; it is the net
entropy change that is decisive.) E. A. Guggenheim [cited by Denbigh (1966, p. 56)]
refers to entropy as a measure of spread—that is, dispersion over a larger number of
quantum states, either configurational or thermal.

A fundamental basis of the second law is closely connected to these interpretive
notions. As we have seen, it is possible to convert work completely into heat, but we
cannot completely convert heat into work. The reason for this dissymmetry lies in the
atomic structure of matter. Doing work means making use of the directed motion of an
assemblage of particles (as by rubbing a metal block on a surface, or drilling a hole
inasolid with a drill bit). This work is converted (through friction) to heat, which raises
the temperature of the contacting bodies. The temperature increase reflects the
increased kinetic energy of the atoms in the bodies, and (this is the essential point)
the motions of these atoms are undirected, because they are largely chaotic. Without
adding energy from the surroundings, there is no possible way to transform completely
this undirected motion (heat) back into work. The basis of this irreversibility is the
increased randomness on the atomic scale. There is a modern tendency to describe this
phenomenon (increased spread or randomness, therefore increased entropy) as
reflecting a loss of information about the system, but this usage is not helpful and
may be misleading. Let us consider this further.

Some authors give as examples of processes that involve an increase in entropy
(and a corresponding loss of information) the change of a new deck of cards to a
randomly shuffled deck, or the change from the orderly arrangement of books and
papers in a student’s room at the beginning of the semester to a disorderly distribution
of these objects about the room by the time of final exams. But we can easily be led
astray by such examples, which as analogies to the atomic scale are erroneous.
There are two factors to be kept in mind: (1) We earlier reached the conclusion that
spontaneous processes occur with an increase in entropy. But a deck of cards does not
spontaneously shuffle itself into randomness, nor do the books in a student’s room
spontaneously adopt new locations. So the examples were incomplete; they omitted to
consider the second factor: (2) The system and its surroundings must both be taken
unto account. In the case of the playing cards, the cards themselves constitute
the sytem; the shuffler of the cards constitutes the effective surroundings, and the
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Table 2.1. The laws of thermodynamics

Law State Function Characteristic
0 T Determines thermal equilibrium
1 U Conservation of energy

(The energy of the universe is constant)
(You can’t get something for nothing)

2 S Determines direction of spontaneous change
(The entropy of the universe is increasing)
(You can’t break even)

surroundings did work on the system; this was not a spontaneous process. Nor was
there any change in the number of microstates available to the cards before and after
shuffling, so there was no entropy increase in the cards.

What is the essential difference between a collection of playing cards and a
collection of atoms and molecules? Fundamentally, it is a matter of size. Atoms and
molecules are in incessant motion because of their thermal energy; through such
motion they undergo collisions resulting in energy exchange and distribution, and they
spontaneously adopt configurations with larger number of microstates. Cards, how-
ever, are macroscopic objects; their movement in space is not spontaneous, but rather
requires action by an external agent (which does experience an entropy increase in the
process because of the accompanying dispersal of energy). Lambert (1999, 2002) has
given interesting discussions of these issues.

Summary of Fundamental Thermodynamics. Our development of the first and
second laws of thermodynamics has provided the entire basis of this subject.
Everything else (and there is a great deal more) follows from this by introducing
definitions of new quantities or functions and manipulating them mathematically.
Before we proceed, we summarize our results* in Table 2.1.

2.3. APPLICATIONS OF THE ENTROPY CONCEPT

Entropy Relationships A few simple manipulations will demonstrate the involve-
ment of entropy in thermodynamic relationships. The first law is dU = dg — dw. If the
only work done in a process is work of expansion, then dw = P dV. Moreover, we have
seen that dS=dq/T, so dg=T dS, and we get

dU =TdS—PdV (2.12)

4 The concept of entropy was introduced by Clausius in 1854, and he introduced the word entropy in 1865.
This is how Clausius expressed the first and second laws:

Die Energie der Welt ist constant.

Die Entropie der Welt strebt einem Maximum zu.
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as another statement of the first law. The product 7dS (or TAS) is pervasive in

thermodynamics, and this is its source; observe that this product is an energy.
Now rearrange Eq. (2.12) to

_dU+PdV

T

and consider processes at constant pressure. From the definition of enthalpy applied
to Eq. (2.12) we find

ds (2.13)

dH
s === 2.14
5= (2.14)

We recall that the heat capacity at constant pressure is defined Cp=dH/dT,
so dH = Cp dT. Using this in Eq. (2.14) gives

dT
ds = Cp— (2.15)

where the constant pressure condition is understood and is not explicitly indicated.
We can integrate Eq. (2.15) between the limits 7 and T,:

T T
dT
AS =S, -8 = JCP7: JCPdlnT (2.16)
T, T,

If Cpis substantially independent of temperature over the integration range, Eq. (2.16)
becomes

T
AS = Cpln =2 (2.17)
T,

at constant pressure [a corresponding equation, AS = C, In (T,/T,), applies at constant
volume].
An interesting case of Eq. (2.16) arises when we set T} = 0K, giving

T
S:S0+JdelnT (2.18)
0

The quantity S, is to be interpreted as the value of the entropy at the absolute zero.
Planck in 1912 proposed that Sy may assume the value zero at O K for a perfect crystal,
which possesses no disorder. This proposal is known as the third law of thermody-
namics. By means of the third law combined with Eq. (2.18), it is possible to evaluate
the entropy S of substances from measurements of Cp as a function of temperature.
The procedure is to plot experimental values of Cp against In T for the entire range of
experimental temperatures. Since 7= 0 K is unattainable, the curve thus generated is
extrapolated to 0 K with the aid of a theoretical function. The area under the curve,
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from 0 K up to any specified temperature, is then equal to the entropy of the substance
at that temperature.

Entropy Changes. Despite the possibility afforded by the third law to evaluate
absolute entropies of substances, in nearly all practical applications of the entropy
concept we evaluate changes in entropy. Here we will see some examples of such
determinations. Later in the book we will consider the estimation of entropy changes
for additional types of processes.

From the definition dS =dq /T itis evident that the units of entropy are energy per
Kelvin, and it is expressed either in JK ™' or cal K~'. Since entropy is an extensive
property, we convert it to an intensive property by expressing it on a per mole basis.
Consequently, AS values will always be encountered in the units JK~ ' mol~" or cal
K 'mol ™! (the combination cal K~' mol ' is sometimes referred to as the entropy
unit, abbreviated e.u.).

We will calculate the entropy changes accompanying phase changes, as when a
solid melts (fusion) or a liquid evaporates (vaporization). These processes can be
carried out reversibly at constant temperature (the temperature being called the
melting point, T, for fusion, or the boiling point, T}, for vaporization.)® The system
is not isolated, because heat must be supplied in order that the process take place.
The heat supplied in the fusion process is AHy, the heat of fusion; whereas AH,, the heat
of vaporization, is furnished in the vaporization process. These enthalpy changes
are expressed on a per mole basis. Many experimental AHy and AH, values are
available in the common reference handbooks.

From Eq. (2.14) applied to our present concern we can write

AH;

ASy = —~ 2.19

=T (2.19)
AH,

AS, = (2.20)
Ty

Table 2.2 shows enthalpy data for a few phase changes.

Table 2.2. Heats of fusion and vaporization for some solids and liquids

Substance mp® (°C) AHj (kcalmol ") bp® (°C) AH, (kcalmol ™)
Benzoic acid 122.1 4.32 — —
Phenol 40.9 2.75 — —
Acetone — — 56.2 6.95

Water 0.0 1.436 100.0 9.717

“Melting Point.
®Boiling Point.

5 The boiling point is commonly considered to be the temperature at which the liquid and vapor are in
equilibrium at atmospheric pressure. However, Eq. (2.20) can also be applied to data at other pressures, with
the appropriate temperature inserted.
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Table 2.3. Entropies of fusion and vaporization

Substance AS; (cal K~ ' mol ) AS, (calK ' mol™1)
Benzoic acid +10.93 —

Phenol +8.76 —
Acetone — +21.11
Water +5.26 +26.04

Example 2.1. Calculate the entropy of fusion of benzoic acid.

AH;  4320calmol '

— = = +10.93calK~ ' mol !
T, 39525K * calh - mo

AS; =

Table 2.3 gives ASy and AS, results for the processes described in Table 2.2.

It has been known since 1884 that for very many nonassociated liquids (i.e., liquids
whose molecules do not interact strongly with each other), AS, ~ 21 cal K~ 'mol .
This empirical observation is known as Trouton’s rule, and it provides a simple though
approximate estimate of AH,,, by means of Eq. (2.20), since the boiling point is easily
measured. Such a convenient generalization cannot be made for ASy values, although
some definite patterns have been observed [see Yalkowski and Valvani (1980);
in Chapter 10 we make use of these observations].

Notice that all ASyand AS,, values are positive, because the system in each case is
proceeding from a state of relative order to a state of relative disorder. Molecules in the
liquid state possess a larger number of accessible quantum states (both configurational
and thermal) than in the more restricted solid state, and similarly for the vaporization
process.

We will subsequently learn how to calculate AS for chemical reactions, where we
will find that AS can be either positive or negative, just as with AH values, depending on
the direction in which the reaction is written. Very generally we anticipate that if the
product state (the right-hand side of the equation) possesses more particles (molecules
or ions) than the reactant state, AS will be positive, reflecting the availability to the
system of more microstates.

PROBLEMS

2.1. Predict the sign of AS for these processes.
(a) Crystallization of benzoic acid from its melt.
(b) Evaporation of spilled gasoline.
(¢) This chemical reaction

Me,C = CH, + Cl, — Me,CCICH,Cl
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Look up the boiling point of benzene, and estimate its molar heat of
vaporization.

The heat of fusion of 4-nitroaniline is 5.04 kcal mol~'. Look up its melting
point, and calculate its entropy of fusion.

Sublimation is the process in which a solid is transformed directly to the vapor
state. The heat of sublimation of naphthalene is 17.6kcalmol ' at 25°C.
Calculate its entropy of sublimation.

Calculate the entropy change during the isothermal expansion of 0.5 mol of an
ideal gas from 100mL to 1 L.

The heat capacity of chloroform in the vicinity of 600 K is 20.4 cal K~ mol ™.
Calculate the entropy change per mole when chloroform is brought from 550 K
to 625 K.

Derive an equation for the molar entropy change when the pressure on an ideal
gas is isothermally changed from P, to P, atm. [Hint: Start with Eq. (2.4).]

Inhalation of a low-boiling-point anesthetic is a common way of inducing
general anesthesia. A commonly used gaseous anesthetic is isoflurane (1-
chloro-2,2,2-trifluoroethyl difluoromethyl ether). Its boiling point is 48.5°C
and its molecular weight is 184.50 gmol . In a certain anesthetic procedure,
92.25 g of isoflurane is mixed with 90% pure oxygen by blowing a flow of
oxygen at 25 °C on the liquid isoflurane. The final mixture, at the pressure of
1 atm, contains all the isoflurane and 144 g of oxygen. Calculate the change in
entropy of isoflurane in going from a liquid state at 25 °C to a vapor state at
25 °C mixed with oxygen. Assume that all heat needed for the vaporization of
isoflurane is given from the surrounding environment (open system) and that
the isoflurane heat of vaporization is 275 cal mol .

A thermos jug contains 108 mL of water at the temperature of 13 °C. Ice (90 g)
at the temperature of —3 °C is added Assume no exchange of energy and mass
with the environment. Calculate the change in entropy of the system if the
process proceeds at constant pressure. Heat capacity of liquid water = 18 cal
mol ™", density of liquid water=1gmL~", heat of fusion of ice = 1437 cal
mol ™!, heat capacity of ice=9calmol™!, and molecular weight of
water = 18 gmol .

A 500-g piece of iron at the temperature of 978 °C is plunged into 200 mL of
water at the temperature of 25 °C in a Dewar flask. Knowing that the specific
heat of iron is 0.106 calg~' K, atomic weight of iron =56 gmol ', heat of
vaporization of liquid water = 10,400 calmol !, and molecular weight of
water = 18 gmol ', specific heat of water=1calg 'K~' (assume this is
the specific heat for both liquid and gaseous (Cp) water, density of
water = 1 gmL ™", boiling point of water = 100 °C, calculate the final temper-
ature of the iron and the change in entropy of the system.
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A block of ice weighing 360 g at the temperature —20°C is poured in a
bucket containing 4L of water at 31°C. Consider the system to be in
adiabatic conditions. What is the change in entropy of the system?
Molecular weight of water =18 gmol ', density of water=1gmL™", heat
capacity of ice =9 cal mol ', heat capacity of liquid water = 18 cal mol ', and
heat of fusion of water = 1437 calmol .



THE FREE ENERGY

3.1. PROPERTIES OF THE FREE ENERGY

The Gibbs Free Energy. Wehave seen that for a mechanical system (which consists
of relatively few bodies or “particles”) the condition for a spontaneous process is
that the potential energy change be negative, whereas for a chemical system (which
consists of an almost unimaginably large number of particles) we learned that, even
when no energy change occurs, spontaneous processes can take place, and we
concluded that spontaneous processes occur with an increase in entropy. Now we
are going to bring this together, recognizing that there are two factors involved in
determining the direction of chemical change: The system seeks to minimize its
energy and to maximize its entropy, and the position of equilibrium depends upon a
combination of (and perhaps a compromise between) these factors. Several thermo-
dynamic functions have been proposed to describe the situation, but we will make
use of only one of these, which is particularly useful for our purposes because it invokes
the commonly controlled experimental conditions of temperature and pressure. This
function, termed Gibbs free energy G,' is defined as follows:

G=H-TS (3.1)

! After J. Willard Gibbs, a physicist at Yale University, who provided much of the theoretical development
of thermodynamics and statistical mechanics in the second half of the nineteenth century. The Helmholtz
free energy A, defined A =U — TS, is more useful than G under conditions of constant volume. We will not
make use of A (but see also note 2).

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
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This equation is actually a definition. Since H, T, and S are state functions, G is also
a state function. As seen from its definition, the Gibbs free energy (which is often
referred to simply as the “free energy” for convenience) is an energy quantity. We are,
for the present, restricting attention to a closed system, which is one across whose
boundaries no matter is exchanged with the surroundings.

Since by definition H= U + PV, Eq. (3.1) can be written

G=U+PV-TS (3.2)
and its complete differential is
dG =dU+PdV+VdP—-TdS—-SdT (3.3)

We saw earlier [Eq. (2.12)] that if the only work done in a reversible process is work of
expansion, the first law can be written

dU=TdS—PdV (3.4)
which, combined with Eq. (3.3), gives
dG =V dP—-SdT (3.5)

Equation (3.5) shows how the free-energy change depends on changes in the pressure
and the temperature for a reversible process in a closed system.” If the temperature is
constant, dT =0, and from Eq. (3.5) we obtain

() v »

2 Each of the functions U, H, G, and A can be written in parallel form as a function of two variables, namely
(for closed systems)

dU=TdS—PdvV
dH =TdS+V dP
dA=—-8dT —PdV
dG =V dP—-SdT

These all contain the same information, butitis because G is expressible as a function of the variables Pand T
that we find it especially useful. If a system is at equilibrium, any infinitesimal change is reversible. The
preceding four relationships, which are called characteristic functions, provide equivalent criteria for
equilibrium. From the first one, at constant entropy and volume (i.e., dS =0, dV=0), the condition for
equilibrium is dU = 0. From the second, at constant entropy and pressure, dH = 0 defines equilibrium; from
the third, at constant temperature and volume, dA =0 at equilibrium; finally, at constant pressure and
temperature, the condition for equilibrium is dG =0.
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If the pressure is constant, dP = 0 and from Eq. (3.5) we obtain

() s 5

From the definition Eq. (3.1), if the temperature is constant, we obtain

dG =dH—-TdS (3.3)
or, in incremental form,

AG =AH —-TAS (3.9)

This last equation is an especially useful relationship because experimentally we
measure these incremental quantities. Observe in this equation how AG, the change in
free energy, is composed of an energy component, AH, and an entropic term, —7 AS.

We can obtain some insight into the meaning of free energy from the following
development. We can write the work done by or on the system as

dw = dwexpansion + dWagditional

where dWeypansion = P dV and dw,qditional Tepresents work other than P dV work (such
as electrical work). The first law is dU = dq — dw, and for a reversible process we have
dg =T dS. Combining these relationships gives

— dWadditional = dU +PdV — T dS

But dU + P dV =dH, so finally, by comparison with Eq. (3.8), we have —dG =
dW,dditional-

It is for this reason that the free energy change is said to be a measure of the
maximum work available from a process (exclusive of work of expansion). That is,
—dG =dw — P dV. When the system can do no useful work, dG = 0; a spontaneous
process has a negative value of dG (or of AG). In a chemical reaction the approach to
the position of equilibrium may be from either direction, depending on the initial
conditions (i.e., the concentration of the reacting species). Figure 3.1 shows this
schematically.

The essential characteristic of the Gibbs free-energy function is its combination
of both the energy and entropy components in a form that reveals how these two
thermodynamic concepts compete to generate a compromise that determines the
position of equilibrium in a chemical process.> A more negative AH favors

3 Itis not too fanciful to draw an analogy with a political science setting, in which each society must choose
its own compromise position between the extremes of maximum security (the energy component) and
maximum liberty (the entropy component).
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Position of equilibrium

Extent of reaction

Figure 3.1. Free energy of a reacting chemical system, showing how the direction of the reaction
depends on the initial state of the system.

spontaneous reaction, and a more positive AS favors spontaneous reaction, in both
instances by making AG more negative.

We are now in a position to better understand our earlier calculations of entropies
of fusion and vaporization. These systems were at equilibrium, so AG =0, and, from
Eq. (3.9), AS=AHIT.

Pressure Dependence of the Free Energy. From either Eq. (3.5) or Eq. (3.6),
at constant temperature, we obtain

dG = —VdP (3.10)

Now let us consider the special case of one mole of an ideal gas, so PV=RT and
V=RT/P, giving

dp
dG:RT?:RlenP (3.11)
Integrating between the limits of P; and P,, we obtain

P
AG =RTIn =2 (3.12)
P

which could alternatively have been integrated to the form
G =G +RTInP (3.13)

where G* is the constant of integration.
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Although Egs. (3.12) and (3.13) apply only to ideal gases, the mathematical form
of these equations turns out to be ubiquitous, and we will subsequently encounter the

form of Eq. (3.13) in several contexts.

Temperature Dependence of the Free Energy. 1If the definition G=H — TS is
combined with Eq. (3.7), we obtain

0G
G:H+T(8T>P (3.14)

Next divide through by 77 and rearrange to the form of Eq. (3.15):

G 1 /0G H
_T2+T<8T>P_ _ﬁ (3‘15)

Now we call attention to the nonobvious fact that the left-hand side of Eq. (3.15)
is equal to the derivative d(G/T)/dT

dG/T) G 1[G

Combining Egs. (3.15) and (3.16) therefore yields

[(WL __ % (3.17)

The incremental form of Eq. (3.17) is
0(AG/T AH
9(AG/T)| _ _AH (3.18)
oT P T?
Equations (3.14), (3.17), and (3.18) are equivalent forms of the Gibbs—Helmholtz
equation. We will later make use of Eq. (3.18).

3.2. THE CHEMICAL POTENTIAL

Definition of the Chemical Potential. All of the relationships that we have seen to
this point deal with closed systems (no matter can enter or leave the system) in
complete internal equilibrium (no chemical reactions are occurring in the system).
But of course we are very interested in chemical reactions, and we would also like to be
able to describe open systems, in which matter may be exchanged between the
system and its surroundings. In order to do this, we expand our concept of the free
energy to include the amounts (numbers of moles) of the chemical constituents of
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the system, writing
G:f<T7Panlan27-~~) (319)

where 1, is the number of moles of chemical substance 1, and so on. From Eq. (3.19)
we write out the total differential

w6=(5) are(Gp) ars(5l) am
6T P.onyny,... aP T.ny,ny,... anl T,Pny,...

0G
+ (5 dny+ -
anz T.,Pny,...

where the subscripts indicate the quantities that are held constant during the evaluation
of the partial derivatives. We have already dealt with the partial derivatives (0G/0T)
and (O0G/0P), and now we turn our attention to the new quantities appearing in
Eq. (3.20). These partial derivatives are called partial molar free energies. They have
this significance: They represent the change in the total free energy of the system when
one mole of constituent i (=1, 2,...) is added while T, P, and all other constituent
amounts are held constant. This quantity is so important that it has been given the
special name chemical potential and its own symbol w. Thus we define*

86)
— (3.21)
(ani T,Pnj#n;

Now let us rewrite Eq. (3.20), making use of Egs. (3.6), (3.7) and (3.21):

(3.20)

dG = —SdT +V dP+ pdny +uy dny + - -- (3.22)
which can be written more succinctly as

dG = —SdT+VdP+ > dn; (3.23)

The chemical potential w is an intensive property, its units being energy per mole,
as can be seen from its definition, Eq. (3.21).
Now let us consider Eq. (3.22) at constant temperature and pressure:

dGrp = p,dny + p, dny + - - - (3.24)
On integration this gives

GT‘p = niu +n2M2 -+ .- (325)

# Partial molar quantities are sometimes indicated with the conventional letter symbol and a bar above it, so
the chemical potential may also be written G;.
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which can be generally differentiated to give
dGrp = (nidpy +py dny) + (nadpy + py dno) + - (3.26)
which is rearranged to
dGrp = (mdw, +npdpy + -+ )+ (py dny + py dny + - -+ (3.27)
Comparison of Egs. (3.24) and (3.27) leads to
mdw,+npduy,+ - =0 (3.28)
This last equation is called the Gibbs—Duhem equation.
Dependence of Chemical Potential on Pressure. We had earlier applied
Eq. (3.6), reproduced here, to establish the dependence of the free energy of a closed

system on pressure [Eq. (3.13)]:
oG
— | =V 3.29
(59), 2)

We are now interested in mixtures, that is, systems of more than one substance, so we
must make use of chemical potentials (partial molar free energies). We state without
derivation the analog to Eq. (3.9), which is intuitively evident®:

@’;") = Vi (3.30)

where V; is the partial molar volume of substance i. The physical interpretation
of this quantity is that it is the volume per mole of i at the composition specified.
(In general, V; is not equal to V;, the molar volume of pure i, because of intermolecular
interactions in the mixture.)

Now let us consider a mixture of ideal gases. From Eq. (3.30), the variation in
chemical potential for constituent i can be written du,; = V; dP, where P is the total
pressure. Since the total number of moles # in the ideal-gas equation PV = nRTis just
the sum (n; + n, + - --), we obtain

RT

so the partial molar volume of i is

_ ov RT
v — ( ) _ (3.31)
On; T,Pnj#n; P
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which is nicely simple (because we are dealing with ideal gases). Therefore we can
write

_ dp
dp; =VidP =RT - =RT dIn P (3.32)

For a mixture of ideal gases, we have
pi = x;P (3.33)

where p; is the partial pressure of gas i and x; is its mole fraction. At constant x;,
therefore, d Inp; = d InP, giving from Eq. (3.32)

dw; = RT dnp; (3.34)

which is integrated to

;= m; +RT Inp; (3.35)

where ! is the constant of integration. According to Eq. (3.35), the chemical potential
of i is logarithmically related to its partial pressure. The value of w! can be evaluated
by setting p; =1 atm; then we see that u; is the chemical potential of gas i when
p;=1atm.

Although these ideas seem rather remote from our main interests, they are leading
to an important result. In particular, Eq. (3.35) and its predecessor Eq. (3.13) possess
the general form

w; = constant + RT In(composition variable)

which will recur in important contexts. We will also have to pay some attention to the
constant term.

The Fugacity. In the development leading to Eq. (3.35), we supposed that we were
dealing with a mixture of ideal gases, and the resulting expression for the chemical
potential was very simple. In real circumstances, gases are not ideal (although at low
pressures their behavior may closely approach ideality). We therefore must accept
that Eq. (3.35) will not be an exact description for real-gas mixtures. The simplicity
of the equation is so attractive, however, that standard practice is to preserve the form
of the equation by replacing the partial pressure p; with a quantity symbolized f; and
called the fugacity. Thus Eq. (3.35) applied to real gases becomes

w; = ui +RT Inf; (3.36)

The fugacity may be thought of as a measure of the “escaping tendency” of the gaseous
constituent (consider Latin fugio, to flee; Italian fuggire, to flee; French fugace,
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fleeting; English fugitive). Again u; is the value of w; when the logarithmic term
vanishes, that is, when f; = 1. Of course, when f; = 1, p, probably does not equal 1 for a
real gas, but as the pressure becomes smaller, p;, and f; approach each other, and
ultimately as p; — 0 we obtain f;/p; — 1. Thus the ratio fi/p; is a measure of the extent
of nonideal behavior of gas i in the mixture.

Experimental methods are available for the measurement of fugacities. We will not
pursue this aspect of the problem, except to note that fugacity has the units of pressure.

Activity and Activity Coefficient. We now turn to liquid mixtures, which are of great
importance in pharmaceutical, chemical, and biological systems. Equation (3.36)
applies to each constituent in a liquid solution because (as we will prove in Chapter 4)
at equilibrium the chemical potential of each constituent is equal in the liquid phase
and in the vapor phase in contact with it; therefore the fugacity f; of component i is
the same in the liquid and the vapor phases. But it is more convenient to express the
chemical potential in a liquid solution in terms of a quantity having units more familiar
than those of pressure. We therefore build on the foregoing developments, anticipat-
ing that the form of Eq. (3.36) is applicable, to write, for constituent i in a liquid
mixture,

p;=pm +RTIng (3.37)

This equation is of great importance to us. The quantity a;, is called the activity
of constituent 7, u, is its chemical potential, and M? is the standard chemical potential
of i. Evidently, M? = w,when a;=1. Of course, the activity a;, and the chemical
potential u; depend on the conditions of temperature, pressure, and composition of the
system.

At this stage in our treatment the activity is still a concept without a context. Let us
relate this concept to an experimental observable by focusing attention on a solution of
solute 7 in a liquid solvent. Let ¢ be the concentration (in mol LY of the solute.
Then we write the activity of i as

a; = 'YiCi (338)

where 7;, a proportionality constant, is called the activity coefficient. Combining
Egs. (3.37) and (3.38), we obtain

w; = m +RT Iny,c; (3.39)

Why do we need the activity and the activity coefficient at all? Why not just write
wi=pd+RTInc; (3.40)

The answer to these questions is that real solutions do not behave ideally (just as

real gases do not behave ideally). When treating gases we replaced the pressure p;
with the fugacity f; and saw that the ratio f;/p; is a measure of nonideal behavior.
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Now in treating liquids we replace the concentration c;, with the activity a;, and use
the ratio a,/c;=";, as a measure of nonideal behavior. The source of the nonideal
behavior is the noncovalent forces of interaction between molecules and ions. These
interactions perturb the chemical and physical properties of the molecules character-
istic of their isolated states, when they are sufficiently far apart that they are not
sensibly affected by other particles. We therefore expect that deviations from
ideal behavior will become greater as the molecules are forced closer together, which
will happen as the pressure increases (for gases) or as the concentration increases
(for liquids).

Let us now return to our consideration of Egs. (3.37) and (3.39). At the moment
we cannot use these equations, because the only quantity that we presumably know is
the concentration c;. It is necessary to introduce some definitions and to adopt some
conventions. First, here are the definitions:

The standard state (with respect to constituent i) is that state of the system in which
a;=1; then u; = ,u?.

The reference state (with respect to constituent 7) is that state of the system in which
Y:=1; then a;=c;.

From this point on, the rigor with which applications are made depends on the level of
accuracy required in the results. Here are conventions that provide realistic approx-
imations for practical calculations that do not require the highest accuracy.

1. The fugacity of a gas may be taken equal to its pressure (or partial pressure) in
atm, at low to moderate pressures.

2. The activity of a liquid solvent in a solution is equal to its mole fraction.
It follows that the activity of a pure liquid is 1.00.

3. The activity of a pure solid is 1.00. (This is consistent with convention 2.)

4. The activity of a solute in an infinitely dilute liquid solution (concentrations
of ~< 10~* M may be considered infinitely dilute for this purpose) may be
taken equal to its molar concentration. Thus, y; =1.00; the solute is in its
reference state.

5. The activity coefficient of an uncharged solute may be taken as 1.00 at any
concentration (because uncharged molecules experience much weaker forces
of interaction than do ions).

The reference state of a solute is usually taken to be the infinitely dilute solution,
sothaty; — 1 as ¢; — 0. (Activity coefficients of ions are more complex than has been
implied by our treatment, as a consequence of the impossibility of experimentally
studying anionic solution of either a cation or an anion by itself.) Table 3.1 (Harned and
Owen 1958, pp. 484, 488) lists some experimental values of activity coefficients
to give a sense of the extent to which solution behavior may depart from ideality. It is
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Table 3.1. Activity coefficients of hydrochloric acid and
sodium chloride in aqueous solution at 25°C

v

m* HCl NaCl
0.001 0.965 —
0.002 0.952 —
0.005 0.928 0.928
0.007 — 0.917
0.01 0.905 0.903
0.02 0.875 0.873
0.03 — 0.851
0.04 — 0.835
0.05 0.831 0.822
0.06 — 0.812
0.08 — 0.794
0.10 0.797 0.780
“Molality.

Source: Harned and Owen (1958, pp. 484, 488).

also possible to calculate theoretically the activity coefficients of ions by means of
the Debye—Huckel theory. Chapter 8 treats ionic activity coefficients in more detail.

In most of the practical situations of interest to us we deal with mixtures, so the
proper notation and terminology consists of w, the chemical potential, and Aw, the
change in chemical potential. For pure substances, there is no difference between
w and G, the molar free energy, or between An and AG. In common practice we
tend to be careless and to use G and AG where we really should be using p and Apu,
but this should cause no confusion. Note, however, that when we are talking about
the free energy or free-energy change of the system, G or AG is appropriate even
for mixtures. The chemical potential rightly applies to specific constituents of the
mixture.

It may be helpful to collect the several equations having the form characteristic of,
for example, Eq. (3.37). Table 3.2 lists these equations.

Table 3.2. Equations relating chemical potentials to composition variables

System Equation Equation Number
Pure ideal gas G=G +RTInP (3.13)
Mixture of ideal gases ;= i +RTInp; (3.35)
Mixture of real gases W; = pu; +RTInf; (3.36)
Ideal liquid mixture u; = u +RTIng; (3.40)
Real liquid mixture w; = u) +RT Ina; (3.37)

Real liquid mixture w; = u +RT Invy,c; (3.39)
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PROBLEMS

3.1.
3.2

3.3.

34.

3.5.

Calculate the activity of 0.02 m HC1 at 25 °C.

Calculate the free-energy change accompanying the process

NaCl (0.005 m) — NaCl (0.05 )

Estimate the free-energy difference A = u — u® for a solution 0.25M in
sucrose.

On the basis of the results of Problems 3.2 and 3.3, comment on the spontaneity
or nonspontaneity of making a solution more concentrated.

A certain substance undergoes a phase transition at the temperature 7,.. What is
the change of free energy of that compound at the temperature 7,.?



EQUILIBRIUM

4.1. CONDITIONS FOR EQUILIBRIUM

We have concluded that a spontaneous process, at constant temperature and pressure,
possesses a negative value of dG (or of AG) and that the condition for equilibrium is
that dG=0 (or AG=0). We are now going to examine some specific systems to
uncover an important consequence of the preceding statements.

First, suppose that the system consists of a single pure substance at constant
temperature and pressure, the substance existing (at this temperature and pressure) in
two phases at equilibrium. A solid and its melt at the melting point, or a liquid and its
vapor at the boiling point, are the most common examples of such a system. We will use
the solid (s)-liquid (1) equilibrium in what follows. Since the system is at equilibrium,
we know that AG = 0, where AG is the free energy change per mole associated with the
process. Writing the process as

Solid === Liquid
we have, from our general definition of incremental change in a process,
AG = G, — G;

where G; and G, are the molar free energies of the substance in the liquid and solid
phases, respectively. But since AG =0, we conclude

G, =G (4.1)

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
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at equilibrium. Thus, for a pure substance, whenever two (or three) phases are in
equilibrium, at fixed temperature and pressure, the molar free energy of the substance
has the same value in each phase.

Now we will extend this argument to a closed system at constant temperature and
pressure, where the system is at equilibrium and contains P phases (P =a, b, c,. . .) and
C components (C=1, 2, 3,.. .).l Since this is a mixture, we use chemical potentials
(partial molar free energies) rather than molar free energies. Imagine infinitesimally
small amounts dn of components being transferred from one phase to another. Since
the system remains at equilibrium during this reversible process, dG = 0, and we write
out Eq. (3.24) for the system, obtaining (Glasstone 1947, p. 238)

M (o) + Bapydmp) + -+ By pydme)

+ Mo o) + Ropydnam) + -+ + Hopydnyp)

+ Ko dnca) + Bepydncw) + -+ + tepydnee) =0

which is succinctly written

Z ,bLC<P)dl’lc(p) =0 (43)

Since the system is closed, the total amount of each component is constant, giving
dl/ll(a) +dn1(b) + .- +dn1(P) =0

d}’lz(a) + dl’lz(b) + - —l—dnz(p) =0
(4.4)

dnc(a) +dncp) + - +dnC(P> =0

or

> dncipy =0 (4.5)

The only way in which Eqs. (4.2) and (4.4) [or Egs. (4.3) and (4.5)] can simultaneously
be satisfied is if

Mi@) = M) = " Mup)
Maa) = Mop) = " " Mo(p)

(4.6)
Mc@) = Mcwp) = Mep)

' A component is defined in this way: C, the number of components, is the minimum number of substances
needed to make up the equilibrium mixture. For example, pure water contains H,O, H3O+, OH 7, and a
mixture of hydrogen-bonded water multimers, but these are all connected by (established by) equilibria, so
C=1; you need take only one substance, water, to create this system.
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Thus, under these conditions (consisting of P phases, C components, where the closed
system is at equilibrium at fixed temperature and pressure), the chemical potential of each
individual component has the same value in all phases. This is an obvious generalization
of our earlier result for a pure substance. Since, from Eq. (4.6), we have
Mi(a) = Mip) = - - - Mi(p) for component i, it follows that, at equilibrium, du; = 0 for
the transfer of an infinitesimal amount of component i from one phase to another.”

4.2. PHYSICAL PROCESSES

Phase Transitions (Single Component). We now return to a system consisting of a
single component in a closed system at fixed temperature and pressure. This substance
is capable of existing in three states of matter: the solid, the liquid, and the gas (vapor).
The manner in which these states are controlled by the values of temperature and
pressure is readily displayed on a pressure—temperature phase diagram. Figure 4.1
shows a schematic phase diagram. For each chemical substance the phase diagram
must be experimentally determined.

Any selected pair of coordinates P, T determine the state of the system. Of special
interest are those coordinates describing the lines in the phase diagram, because along
these lines two phases coexist in equilibrium. Thus line OC describes the melting

Pressure

Temperature

Figure 4.1. Pressure-temperature phase diagram of a pure substance.

2 The equilibrium condition du; = Oalso applies to the case P = 1, as in a liquid solution, and it determines
the direction in which solute diffusion takes place. If a nonequilibrium distribution of solute exists, the
solute particles will diffuse in the direction so as to achieve the condition du,; = 0 throughout the solution.
This means that the direction of diffusion is from regions of higher chemical potential to regions of lower
chemical potential.
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transition; at any point on this line the solid and liquid phases are in equilibrium, and the
value of T corresponding to any given value of P is the melting point at that pressure.
The line is very steep because the melting point is not very sensitive to pressure changes
(i.e., the melting point does not change much when the pressure is changed).

Along the line OB the liquid and its vapor are in equilibrium, so the value of Ton this
line is the boiling point corresponding to the selected P value. Observe that the boiling
point is quite sensitive to pressure.® Along the line OA the solid and the vapor are in
equilibrium. The direct conversion of solid to vapor is called sublimation.* At point O
all three phases coexistin equilibrium. This is obviously a unique set of circumstances;
it is called the triple point. The triple point of water is 273.16 K (i.e., 0.01 °C) and
4.58 mmHg pressure.

Now we treat phase transitions thermodynamically. Consider a pure substance at
temperature and pressure such that two phases, 1 and 2 (which may be gas, liquid, or
solid), are in equilibrium. Thus G| = G,, and so dG; = dG,, which means that if the
temperature or pressure is changed infinitesimally, the changes in free energy
of the two phases will be identical and the phases will remain in equilibrium.
From Eq. (3.5) we write dG =V dP — S dT, or

VidP—8,dT = V,dP —S,dT

Rearranging, we obtain
ASdT = AV dP
where AS = S, — 8 and AV = V, — V. Therefore

dP AS
—_—=— 4.7
dT AV (47)

But the system is at equilibrium, so AG = AH — T AS = 0, giving AS = AH /T, or,
from Eq. (4.7)

dP  AH
= 4.8
dl  TAV (48)
This is the Clapeyron equation. It describes the slope of the line in the phase diagram
for a pure substance.

The Clapeyron equation is especially useful when applied to the liquid—vapor
transition (boiling), and in this application we usually can employ an approximate

3 Conventionally, the boiling point is considered to be the temperature at which the liquid and vapor are in
equilibrium at atmospheric pressure. This definition can be assumed when the pressure is not stated.

4 Sublimation is less familiar than melting or boiling, but it can be important. Salicylic acid readily
sublimes. An old bottle of aspirin tablets may contain partially hydrolyzed aspirin (acetylsalicylic acid). The
products are acetic acid (a liquid whose vapor smells like vinegar) and salicylic acid, which may sublime and
then condense in white crystals on the wall of the bottle.
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version. Writing Eq. (4.8) specifically for this transition, we obtain

dP  AHyy
dT TAVyy

(4.9)

where T'is the boiling temperature and AVy,p = Vyapor — Viiquia- We neglect the molar
volume of the liquid as being very small relative to the molar volume of the vapor. We
will also assume that the vapor phase behaves ideally, so V,,, =RT/P. Combining
these approximations with Eq. (4.9) yields

1dP AH,y
el 4.10
pPdr RT? ( )
or
dInP  AHy,,
= 4.11
dT RT? ( )

These two equations are versions of the Clausius—Clapeyron equation, which relates
the boiling point T to the vapor pressure P.

If AH,,, should happen to be essentially constant (independent of temperature), we
can integrate the Clausius—Clapeyron equation. First integrating generally gives

AH,,
InP = — TTP + constant (4.12)
or
AH,,
logP = — L +C 4.13
o8 23RT © (4.13)

where C is a constant. Equation (4.12) or (4.13) provides a means for evaluating the
molar heat of vaporization AH,,, from vapor pressure-temperature data.

Example 4.1. Table 4.1 gives vapor pressure—temperature data for n-octane.
Calculate AH,p,.

Table 4.1. Vapor pressure—temperature data for n-octane

t(°C) T(K) T P(mmHg) log[P(mmHg)]
—14.0 259.15 0.00386 1 0.000
+19.2 292.35 0.00342 10 1.000
45.1 318.25 0.00314 40 1.602
65.7 338.85 0.00295 100 2.000
104.0 377.15 0.00265 400 2.602

125.6 398.75 0.00251 760 2.881
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3.-_

log(P/mmHg)
n
T T

-
I

2.4 2.8 32 3.6 40
108T-1K

Figure 4.2. Plot of Eq. (4.13) for n-octane. Data from Table 4.1.

Figure 4.2 is a plot of the data according to Eq. (4.13). From the plot we evaluate
the slope as —2091 K. Equation (4.13) shows this identity:

vap

23R

Slope = —

Thus we calculate

AHy,, = —2.3(1.987 cal mol ™' K ') (~2091 K)
= 9658 cal mol
= 9.57 kcal mol !
= 40.0kJ mol !

The heat of vaporization is positive because heat is absorbed by the system during the
vaporization process.

We can also integrate the Clausius—Clapeyron equation between the limits 7' and
T, presuming that AH,,, is essentially constant in this temperature range. From
Eq. (4.11), we obtain

P T,
AH,,, (dT
J dInP = P J —
R T?

P1 Tl
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which gives

P AHyo (11 AHyy (To —T
2= (o ) v (27 7] (4.14)
P| R T2 T] R Tl T2

or

1

Py AHy (Tz—ﬂ) @.15)

°®p, T 23R \T\»

Example 4.2. The vapor pressure of water is 17.535 mmHg at 20.0°C and
31.824 mmHg at 30.0 °C. Calculate the heat of vaporization of water in this tempera-
ture interval.

Using Eq. (4.15), we have

31.824 AH 10
log =
17.535  (2.3)(1.987) \293.15 x 303.15

AH,,, = 10,530 cal mol ™
= 10.53 kcal mol !

In Examples 4.1 and 4.2 we see how heats of transition are determined. With such
AH values at hand, we can calculate entropies of transition as shown in Example 2.1.

The Phase Rule (Multiple Components). We have already developed the condi-
tion for equilibrium in a system at equilibrium containing multiple phases and
components; the condition is that the chemical potential of each component be the
same in all phases [Eq. (4.6)]. This will lead us to a general rule connecting the number
of phases, the number of components, and the number of variables (this last factor is
called the degrees of freedom F) that must be specified in order to define the system
completely (in a thermodynamic sense). Let P be the number of phases and C the
number of components (see note 1). Here are the steps in the reasoning:

1. The composition of a phase containing C components can be specified by
giving C — 1 concentrations. This is because the final concentration can be
obtained by difference.

2. If there are P phases, in order to completely define the compositions of all
phases, P(C — 1) concentrations must be specified. This is the total number of
concentration variables in the system.

3. The temperature and pressure variables must be added to the P(C—1)
concentration variables. This gives us

Total number of variables = P(C —1) +2
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4. Since for component 1 we know that u;(ypae a) = Mi(phases) = ---» and
similarly for all C components, this condition gives C(P — 1) independent
equations, which fix C(P — 1) variables.’

5. The number of variables left undetermined (i.e., the number of degrees of
freedom) is equal to the total number of variables minus the number of variables
that are determined by the equilibrium condition. Thus

Number of degrees of freedom = P(C—1)+2—C(P—1)
or
F=C-P+2 (4.16)
This last equation is the phase rule of Gibbs.

We will apply the phase rule to the phase diagram of Fig. 4.1 in order to learn how it
works. First consider the liquid—gas equilibrium. There are two phases and one
component, so F=1—2 + 2= 1. This means that specifying one degree of freedom
suffices to completely define the system. If we choose to specify the temperature (as
our one degree of freedom), the condition of equilibrium uniquely guarantees that the
pressure will be fixed at the value given by the line OB corresponding to the specified
temperature. Alternatively, we might have specified the pressure; then the temperature
would be defined by the system. In this system as described, we cannot independently
choose both the temperature and the pressure.

Next consider the triple point O. Here P=3 and C=1, so F=0. There is no
freedom to alter the system variables while maintaining the system at the triple point.

A very practical kind of system is that of a pure solid substance placed in contact
with a second pure substance, a liquid, which we call the solvent. To be specific, let us
add solid benzoic acid to water. Presuming that sufficient benzoic acid has been added
so that at equilibrium some solid is present, how many degrees of freedom does the
system possess?

The process that occurs is dissolution of benzoic acid in water. Evidently P =2, for
two phases, solid benzoic acid and liquid solution, are present. Moreover, C =2,
because the system can be prepared from benzoic acid and water. The phase rule
gives us F=2 —2 + 2=2 degrees of freedom. These are the temperature and the

> The multiplier is P — 1 rather than P because if we know C(P — 1) relationships, we have exhausted the
independent equations. For instance, suppose C = 2 (components numbered 1,2) and P = 3 (phases labeled
a, b, ¢). Then the C(P — 1) =2 x 2 =4 independent equations are

M) = M), Moga) = Mo(b)
M) = Mi(e), Mob) = Mo(c)
The equations ;) = py() and py) = o) are not independent, but follow from the preceding four

equations.
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pressure, both of which must be fixed in order to completely define the position of
equilibrium of the system. (In practice this system is not very sensitive to pressure,
which is commonly the ambient atmospheric pressure, but it is very sensitive to the
temperature.) An equivalent description of this system is that at fixed temperature and
pressure, the concentration of dissolved benzoic acid is invariant; no further degrees of
freedom remain. We call this invariant dissolved concentration the equilibrium
solubility of benzoic acid at the experimental temperature.

4.3. CHEMICAL EQUILIBRIUM

The Equilibrium Constant. We now turn to a treatment of chemical reactions,
namely, processes in which chemical bonds (covalent bonds) or noncovalent inter-
actions are formed or broken, or both. Because liquid systems are of special interest to
us, suppose that the process occurs in ahomogeneous (single phase) liquid system. Let
the generalized balanced chemical reaction be written

aA +bB —=mM +nN (4.17)

where A and B represent the reactant chemical species; M and N are the product
chemical species; and a, b, m, n are stoichiometric coefficients in the balanced
reaction.® For the moment we do not require that the system be at equilibrium, but the
temperature and pressure are fixed.

As is our usual practice, the incremental change in free energy is defined (on a per
mole basis) as the difference between the final state and the initial state:

AG = Z Gproducts - Z Greaclanls (418)

Recognizing that our reaction system is a mixture, we know that we should express the
free energies of reactants and products in terms of chemical potentials; thus Eq. (4.18)
becomes

AG = mpuy + npuy — apy — bug (4.19)

Notice that each term on the right is the product of an intensity factor (e.g., ty,
chemical potential per mole) and a capacity factor (m, number of moles).

Next we call on our fundamental relationship for the chemical potential in terms of
activity [Eq. (3.37)]:

w = ud +RT Ing; (4.20)
§ Our modern interpretation of a balanced chemical reaction views the species symbols as representing

atoms, molecules, or ions, but the balanced reaction does not necessarily imply an atomic viewpoint. The
reaction simply describes an experimental observation and is a classical thermodynamic concept.
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We simply substitute from Eq. (4.20) into Eq. (4.19):

AG = m,u,g,I + mRT Inay + np& + nRT Inay
—ap® — aRT Inas — buy — bRT Inag

Collecting terms and making use of one of the properties of logarithms gives

AG = (mupg +npy — apg, — bug)
+ RT Inagy + RT Inay
— RT Ina$ — RT Ind},

which can be written

m n

AG = AG? + RT InMN
a ab

AYB

(4.21)

where AG® = mu; +nud — apd — buy.” Equation (4.21) is called the reaction
isotherm (the term isotherm merely signifies that the equation or phenomenon takes
place at, or applies to, a constant temperature).

Recall that we have not yet required that the system be at equilibrium.
Equation (4.21) gives the free energy change as a function of the activities of reactants
and products of the reaction. But it is the equilibrium condition that specifically
interests us. Let the activities now be the activities at equilibrium, and define

m n
_ aMmAn

— _a b
apag

(4.22)

Moreover, we recall that the condition for equilibrium is that AG = 0. Putting this
condition and the definition of Eq. (4.22) into Eq. (4.21) gives the simple but very
important result:

AG’ = —RTInK (4.23)

The quantity K is called the equilibrium constant for the reaction; its general form can
be inferred from Eq. (4.22). It is conventional to write the products in the numerator
and the reactants in the denominator. Notice, therefore, that the reciprocal of K as
thus defined is the equilibrium constant for the reaction when written in the reverse
direction.

Equilibrium constants can be measured experimentally; in effect, one needs to
determine each activity in the definition and then to calculate K according to

7 It would be perfectly correct to write Au” instead of AG®. The latter symbolism is used in order to be
consistent with conventional practice.



CHEMICAL EQUILIBRIUM 115

Eq. (4.22). Then, with Eq. (4.23), the quantity AG® (which is pronounced “delta G
naught”) is calculated. AG? is called the standard free-energy change for the reaction,
and it is interpreted as the change in free energy per mole when the reactants in their
standard states are transformed into the products in their standard states. This concept
is difficult to visualize in physical terms, and it may be better to note the obvious,
namely, that [see Eq. (4.23)] AG® and K contain the same information about the system.
The logarithmic relationship between AG® and K, as well as the form of the equilibrium
constant definition, is a direct consequence of the form of Eq. (4.20) for the chemical
potential.

In the chemical literature many equilibrium constants are described by adjectives
that provide information on the chemical process and on the definition of the constant.
For example, a weak acid HA dissociates according to

Kq
HA=—H" +A"

Placing the equilibrium constant symbol over the arrows tells the reader how the
constant is to be defined; in this case
o ay+aa-

K, =———— (4.24)
AaHA

This particular equilibrium constant is called an acid dissociation constant (or
acid ionization constant). For a reaction, especially a reaction involving noncovalent
interactions, having the form

A+B—M
the equilibrium constant
K =M
aadp

may be called an association constant, formation constant, stability constant, or
binding constant. Turn the reaction around, and its equilibrium constant (which will be
the reciprocal of K) becomes a dissociation constant or instability constant.

Example 4.3. For the acid dissociation of acetic acid in water at 25 °C, the experi-
mental value of K, is 1.75 x 10>, Calculate AG® for this process.
We can use Eq. (4.23) directly or in the form

AG® = —2.303 RT logk,
= —(2.303)(1.987 cal mol ' K")(298.15K)( —4.757) 425)
= + 6490 cal mol ! .

= +6.49 kcal mol !
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From either Eq. (4.23) or (4.25) we obtain these correspondences:

If K< 1, then AG® > 0.
If K=1, then AG®=0.
If K> 1, then AG° < 0.

In Example 4.3, AG® has a positive sign because K is smaller than unity. This tells us
that, at equilibrium, the reactant state is “favored” in this process.

The units of the equilibrium constant require comment. From its definition in terms
of activities, it is clear that we need to know the units of activities. Our earlier
conventions concerning standard states and reference states provide guidance.
Evidently the activities of solvents and solids, which are taken equal to their mole
fractions in practical work, are dimensionless, because the mole fraction is dimen-
sionless. The activities of uncharged molecules are taken equal to the concentrations
(usually in mol L") of these molecules, so the activities are reasonably given the same
units. To maintain consistency, it is advisable to assign the units of concentration to the
activities of other solution species.

According to these recommendations, the unit of the acid dissociation constant K|,
is [from Eq. (4.24)] M (i.e., mol Lfl). However, units are conventionally not stated for
K, values.®

The standard free-energy change AG® can be related to a standard enthalpy change
AH" and a standard entropy change AS° by the usual form:

AG® = AH® — TAS° (4.26)

AH" and AS° are interpreted analogously to AG®, that is, in terms of the process in
which reactants are transformed into products, and all species are in their standard
states.

Temperature Dependence of the Equilibrium Constant. The Gibbs—Helmholtz
equation [Eq. (3.18), repeated here as Eq. (4.27)] has a useful form for our present
purpose:

d(AG/T)  AH

_ 2 427
dT T? ( )
From Eq. (4.23), AG® = — RT In K, rearrangement gives
AG°
& Rk (4.28)

8 Analternative viewpoint is that activities are dimensionless, thus requiring the activity coefficient to have
units. Each point of view is acceptable, provided that it is consistently applied throughout a calculation.
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Combination of Eqgs. (4.27) and (4.28) yields

dinkK  AH°
dT ~ RT?

(4.29)

Equation (4.29), the van’t Hoff equation, describes how the equilibrium constant
varies with the temperature. The quantity AH" is the standard enthalpy change,
sometimes called the heat of reaction. If AH® is essentially independent of tempera-
ture, general integration of Eq. (4.29) gives

AH°
InK = — RT -+ constant (4.30)
or
log K SLCANS (4.31)
ogK = — .
g 23RT

Alternatively, integration between the temperature limits 7', and 7, gives

K, AH® (T,—T
In=2="0 (2222 (4.32)
Ki R \ T\
K» AH® (T, —T,
log —2=—— 433
e 2.3R< T, (4.33)

These integrated equations may seem familiar; they have the same form as the vapor
pressure equations (4.12)—(4.15), and they are used similarly.

Free-Energy, Enthalpy, and Entropy Changes in Chemical Reactions. We now
have at hand all the thermodynamic theory needed to calculate (from the appropriate
experimental data) these standard thermodynamic quantities for a chemical reaction:
AGO, AH' , and AS°. These are the steps:

1. From measurement of the equilibrium constant K at a given temperature,
calculate AG® from

AG’ = —RTInK (4.34)

2. From measurements of K at several temperatures, calculate AH° by means of
one of Egs. (4.30)—(4.33).
3. From AG®=AH® — T AS°, calculate AS°.

Since K in general varies with temperature, evidently AG® does as well.
When integrating the van’t Hoff equation, we assumed that AH® is a constant,
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Table 4.2. Dependence of equilibrium constant on temperature for the binding
of methyl trans-cinnamate and 8-chlorotheophylline anion in water

7(°C) KM T(K) T log K
15.5 11.6 288.65 0.00346 1.064
25.0 8.7 298.15 0.00335 0.940
40.0 5.9 313.15 0.00319 0.771

independent of temperature, and although this may constitute an acceptable approxi-
mation for many reactions, it is not generally true, and it may lead to poor estimates
of AH® and AS°. The data themselves, if carefully interpreted, will reveal whether
AH is reasonably constant over the temperature range that was investigated

experimentally.

Example 4.4. These are data (Table 4.2) for the equilibrium constant (a stability
constant) describing the noncovalent association between methyl trans-cinnamate
and 8-chlorotheophyllinate in aqueous solution. Find AGO, AH® , and ASY at 25°C.

1. From Eq. (4.34), or its equivalent, we have

AG® = —(2.303)(1.987 cal mol 'K ') log 8.7

= — 1282 cal mol !

—1.28 kcal mol !

2. AH® will be obtained from a plot according to Eq. (4.31); this is called a van’t

Hoff plot:
0

logK = — —~_
g 23RT

+C
0

AH
lope = — —_
Slope 23R

Figure 4.3 shows the plot, which is acceptably straight over the temperature
range given in the table; this linearity is consistent with the constancy of
AH° over this temperature range. The slope of the line is 1083 K, giving for

AH®

AH® = —(2.3)(1.987 cal mol 'K ')(1083 K)
= —4996 cal mol !

= —5.00kcal mol !



CHEMICAL EQUILIBRIUM 119

12

11 F

09

log(KM-1)

08 |

0.7 -

I | 1 | 1

3.1 3.2 3.3 3.4 3.5 3.6

103K/T

Figure 4.3. van't Hoff plot of the data in Table 4.2.

3.
ASQ _ _ (AGO —AHO)
T
~ —1.28—(5.00) kcal mol "
N —298.15K

= —0.0125 kcal mol 'K !
= —12.5cal mol "'K!

We can interpret these results chemically. The reaction has the form

A+B—=C

where A is methyl cinnamate and B is 8-chlorotheophyllinate; C is the complex
formed from these. Since K> 1, we have AG® < 0; the product C is favored over
the reactants. But this result is seen to be a consequence of a competition between AH”
and AS°. AH? is negative, so the enthalpy change makes a favorable contribution to
AG® (it makes AG® more negative). The negative value of AH suggests that fairly
strong noncovalent binding is occurring between A and B, because AH’ is an
energy value. On the other hand, the negative value of AS® opposes product formation
by making a positive contribution to AG’ (because of the negative sign in
AG® = AH® — T AS°). The negative entropy change may arise because two particles
(A and B) are being transformed into a single C particle, with a resultant decrease in
number of configurational and thermal microstates of the system. If we were to write
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this reaction as

/

C=—A+B

we would find that K’ = 1/K and that AGO, AHO, and AS° each possesses the same
numerical value as found in this example, but with the opposite sign.

A subtlety of such calculations, often overlooked, is that the numerical values
of AG® and AS° (but not of AHY) depend on the concentration scale in which
the equilibrium constant is expressed. In thermodynamic terms, this is stated as
follows: The numerical values of AG® and AS° depend on the choice of standard state.

PROBLEMS

4.1. The vapor pressure of heptane, C;H ¢, is 100 mmHg at 41.8 °C and 760 mmHg
(i.e., 1 atm) at 98.4°C. Calculate its molar heat of vaporization over this
temperature range.

4.2. The equilibrium constant for this reaction in aqueous solution at 25°C is
21.5M "

K
Theophylline + Salicylate anion === Complex

Calculate the standard free energy change for this reaction.

4.3. These are literature data for the vapor pressure of ethyl acetate, CH;COOC,Hs,
as a function of temperature. Calculate the heat of vaporization.

T(°C) P(mmHg)
—43.4 1
—13.5 10

9.1 40
27.0 100
59.3 400
77.1 760

4.4. A quantity pK, is defined by the relationship
pK, =—1logK,

where K, is the acid dissociation constant of a weak acid in water. Obtain an
equation by which the standard free-energy change can be calculated directly
from the pK,,.

4.5. The pK, value of phenol is 10.0 at 25 °C. Write the chemical reaction, define
K, and calculate AG® for the process.
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The pK,, value of chloroacetic acid, CICH,COOH, is 2.87 at 25 °C, and its heat
of ionization (AH®) has been measured to be —1.12 kcal mol~'. Calculate its
standard entropy of ionization.

The ionization (acid dissociation) of chloroacetic acid takes place in aqueous
solution according to

Kq
CICH,COOH —= H" + CICH,COO ~

In view of this, attempt to rationalize the sign of AS® obtained in Problem 4.6.

The equilibrium constant for the addition of hydrogen cyanide to acetaldehyde
is 7100M ™" at 25 °C. Calculate AG®.

(I)H
H3C_$H

CN

H;C—CHO + HCN

A pharmacy has received 0.5 kg of a certain drug with a molecular weight of
250 g mol . The drug undergoes a degradation reaction with a heat of reaction
of 750 cal mol ' and an equilibrium constant equal to 1.2 x 10>. The drug is
kept in a thermostated stockroom at 25°C. Calculate the entropy of the
degradation reaction.

The pH of a 0.01 M solution of chloroacetic acid is 2.44 at 25 °C. The entropy
change AS® of the acid dissociation is —16.9 calmol ' K. Calculate the heat
of dissociation AH? of chloroacetic acid. Based on the value of the calculated
AH®, predict if the equilibrium constant of chloroacetic acid at 50 °C is smaller
or larger than the equilibrium constant at 25 °C.

The vapor pressure of n-octane is 100 mmHg at 65.7 °C and 400 mmHg at
104.0 °C. Knowing that the boiling point of n-octane is 126.5 °C and assuming
that the heat of vaporization is constant in the range of temperatures
40°C-126.5°C, calculate the entropy of vaporization of n-octane.

Calculate the number of degrees of freedom F of the following systems:

(a) Carbonated water.

(b) A suspension of erythromycin stearate (a powerful antibiotic) in water.

The dissociation of aqueous ammonia NH,OH yields the ions NH, ~ and OH .
Knowing that the dissociation constant of NH,;OH is 1.652 x 10~ at 15 °C and

1.892 x 1073 at 50 °C, calculate the standard AG® (AG at 25 °C) knowing that
AS?is —19.3 cal K.
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SCOPE

The separation of properties or processes into physical and chemical categories is
arbitrary but useful, and in most instances it is not notably ambiguous. Here are the
criteria adopted in making the present separation:

1. All covalent bond changes (which necessarily result in alterations in primary

molecular structure) are chemical. This category includes most of the reactions
of interest in organic chemistry, inorganic chemistry, and biochemistry. Part III
deals with such processes.

. All changes in physical state or phase that do not involve covalent bond changes
are physical. Such processes include melting, vaporization, sublimation,
dissolution, partitioning, and adsorption. These are of concern in Part II.

. There is an exception: electrolyte dissociation and behavior are treated
generally, in PartII, as a physical phenomenon, but the special case of acid—base
equilibrium is discussed as a chemical phenomenon in Part III.

. An ambiguous area remains, consisting of changes in noncovalent interactions
roughly in the AG” range of 0~10 kcal mol . These processes include molec-
ular complex formation (binding phenomena of many types) and conforma-
tional changes. We classify these as chemical, and treat them in Part III.

Some slight repetition of material from Part I will be encountered in Part II, where it is
inserted for convenience.

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.
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5.2. CONCENTRATION SCALES

Solution composition can be expressed on a physical (empirical) basis in terms of the
quantities measured in the laboratory. These are the common concentration scales of
this type:

Percent by Weight. The number of grams of solute contained in 100 g of solution.
The concentration of the strong mineral acids, as available commercially, are
expressed as percent by weight.

Percent Weight/Volume (% w/v). The number of grams of solute contained in
100 mL of solution. This scale is often used to describe the composition of
solutions of solids in liquids.

Percent by Volume. The number of milliliters of solute contained in 100 mL of
solution. Solutions of liquids in liquids are commonly specified in this way. It is
important to note a possible ambiguity in this designation. Consider these
two operations: (1) 80.0 mL of ethanol is dissolved in water to make a final total
volume of 100 mL; (2) 80.0 mL of ethanol is mixed with 20.0 mL of water.
These solutions have different compositions, because preparation 2 does not
yield a final volume of 100 mL. In thermodynamic terms, the partial molar
volume of ethanol is not equal to its molar volume. In molecular terms, the
spatial and energetic character of the ethanol-water interaction is different from
those of ethanol—ethanol or water—water interactions. Solution 1 has a compo-
sition of 80.0% by volume of ethanol. The composition of solution 2 is most
easily specified in terms of its volume fraction ¢, where the volume fraction ¢;
of component i is defined

Thus solution 2 has volume fraction ¢; = 0.20 of water and ¢, = 0.80 of ethanol. In
order to communicate without possible confusion, statements of solution composition
should specify clearly, as, for example, by describing the manner of preparing the
solution, which concentration scale is meant.

Observe that these physical concentration scales constitute the three combina-
tions of mass/mass, mass/volume, and volume/volume. Other units may, however,
often be encountered. For example, milligram percent is the number of milligrams
of solute contained in 100 mL of solution. Another common unit is milligrams per
milliliter (mg/mL), which is numerically equal to grams per liter (g/L). Very dilute
solutions may be expressed in parts per million (ppm), which is the number of grams
of solute contained in 10° g of solution. (If the solvent is water, this is effectively the
number of grams of solute in 10®mL of solution.) Similarly, ppb means parts per
billion.
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The chemical concentration scales are based on the concept of the amount of
substance as expressed in number of moles:

Molarity (c)—the number of moles of solute contained in 1000 mL of solution.
Molarity has the units mol L ™", which is often designated M; it is expressed as
mol dm > in SI units. Some investigators use the unit millimolar (mM), which
denotes the number of millimoles contained in 1000 mL of solution; for
example, 0.030M and 30 mM have the same meaning. Molarity is a very
practical concentration scale, but it has the disadvantage that the molarity of a
solution depends on the temperature, because the volume is temperature-
dependent.

Molality (m)—the number of moles of solute per 1000 g of solvent. The molality is
temperature-independent, and for this reason it is often preferred in precise
physical chemical experimental work.

Mole fraction (x)—the number of moles of solute divided by the total number of
moles in the solution. The mole fraction is temperature-independent.
A convenient attribute of the mole fraction (as of all fractional quantities) is
that the sum of the mole fractions of all constituents in a solution is unity.

In general the molarity, molality, and mole fraction scales are not directly proportional
to each other, but in very dilute solutions of a solute i the relationships are

ciM,

P = i 1 1

X 1000p, (xi<1) (5.1)
miM

X = 1000 (X, < 1) (52)

where subscript 1 refers to the solvent and i to the solute. In these dilute solutions,
Egs. (5.1) and (5.2) show that the various concentration scales are proportional to each
other; M, is the molecular weight of the solvent, and p, is its density.

5.3. STANDARD STATES

In Chapter 3 we encountered the concept of the standard state, and here we will extend
the treatment by explicitly invoking the concentration scales used in laboratory work.
We begin with Eq. (3.37), repeated here:

Wi =pm) +RT In @ (5.3)
In this equation, u; is the chemical potential (partial molar free energy) of constituent i

in a liquid mixture, w? is its standard chemical potential, and a; is its activity. The
activity, which can be thought of as an “effective concentration,” is related to the actual
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concentration by
Activity = Activity coefficient x Concentration

where the activity coefficient is a number that accounts for deviations from ideal
behavior. Let us recall these definitions:

The standard state (with respect to constituent i) is that state of the system in which
.. . . . . _ 0
the activity of i is unity; then, from Eq. (5.3), u; = w;
The reference state (with respect to constituent 7) is that state of the system in which
the activity coefficient of i is unity; then its activity equals its concentration.

For the present let us suppose that the system is in its reference state (for constituent i),
so the activity coefficient is unity, and the activity is equal to the concentration. But we
have seen that concentrations can be expressed in molarity, molality, or mole fraction.
For constituent i in a given system, Eq. (5.3) may be written in terms of each of these
concentration units:

wi = pm) +RT In ¢ (5.4)
w; = ud +RT In m; (5.5)
wi = p)+RT In x; (5.6)

The situation represented by Egs. (5.4)—(5.6) is analogous to the specification of
mechanical potential energy, say, of a rock on top of a hill. We can only speak
numerically of energy differences, and we calculate the potential energy of the rock as
the product mgh, where m is its mass, g is the gravitational acceleration, and 7 is its
height. But before we can make the calculation, we must define a state at which 4 =0,
and this is arbitrary, meaning that we can choose any state we wish. We might, in the
case of the rock on the hill, choose to measure 4 from the valley floor, but we could just
as well choose sea level as this state. Equations (5.4)—(5.6) present the same kinds of
choices. In each case, u; is the same definite quantity (corresponding to the potential
energy of the rock on the hill). Each equation can be rearranged to the form

w;—ud =RT In ¢;

using Eq. (5.4) as an example. Since, for a given solution, c;, m;, and x; have different
numerical values, so, too, do the quantities (u; — u2), (1; — n2), and (u; — u2). Each
of these quantities gives the value of the chemical potential w;, relative to its standard
state value. Each expression is thermodynamically acceptable; they differ only in the
values they assign to the standard potential. We can easily find the relationship
between these different standard chemical potentials. Let us compare Eqs. (5.4)
and (5.6). Recalling that we have assumed that the system is in its reference state,
which usually is the infinitely dilute solution, we can use Eq. (5.1), substituting it
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into (5.6) to eliminate x;, and setting Egs. (5.4) and (5.6) equal to yield

M,

0 0
= RT1
/.LC I“Lx + n 1000p1

For example, if the solvent is water, then M; =18 and p, =1.0, and we find
= uY —RT In 55.5. Concluding this exposition, we see that the selection of a
standard state is arbitrary and that we select a standard state when we choose a
concentration scale. [Some authors write of “adopting the 1 M standard state,” for
example, which merely means that the molar scale was used, with Eq. (5.4) showing
that when ¢;=1, then w; = pu’.]

In the more general case where activity coefficients may deviate from unity,
Egs. (5.4)—(5.6) become

pi = p+RT In ye
1 = py, +RT In y,m
M = +RT In y,x; (5.9)

where the subscript i has been omitted from the 1 and y terms to reduce typographical
clutter. In general v, v,,, and v, differ for the same system, although in dilute solutions
they have nearly the same value (Glasstone 1947, p. 355). Certain conventions allow us
to carry out calculations to levels of accuracy appropriate to many practical situations
where extreme accuracy is not required. We will adopt these conventions, which are
repeated from Chapter 3 for convenience:

1. The fugacity of a gas is taken equal to its pressure (or partial pressure) in atm, at
low to moderate pressures.

2. The activity of a liquid solvent in a solution is equal to its mole fraction.
It follows that the activity of a pure liquid is 1.00 and that this is its standard
state. (This convention also applies to liquid solutes if desired.)

3. The activity of a pure solid is 1.00; this is the same as convention 2.

4. The activity of a solute in an infinitely dilute solution will be taken equal to its
molar concentration; that is, Y, = 1.00; the solute is in its reference state. The
standard state is rather peculiar; it approximates to the 1 M solution, but at this
concentration the solution probably does not behave ideally, so although its
activity is unity by definition, some of its properties are those of the reference
state. (We further expand on this in Section 7.2.)

5. The activity of an uncharged solute will be taken as 1.00 at any concentration.
This is an approximation justified by recognizing that uncharged molecules
experience much weaker forces of interaction than do ions. The approximation
improves as the solution is made more dilute.

6. The activity coefficient of an ion can be drawn from experimentally determined
results (Harned and Owen 1958) or calculated from theory, as will be described
in Section 8.3.
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It is instructive to write Eq. (5.7) in this expanded form
i =pd+RT In ¢; +RT In vy, (5.10)

This equation shows how the numerical value of the chemical potential u; receives a
contribution from the arbitrarily assigned standard state (,u?), a contribution from
RT In ¢;, which describes the composition dependence of the ideally behaved
constituent, and a contribution from RT In 7;, which describes the nonideal behavior
of the constituent. Although not explicitly indicated, y; is also composition-dependent,
andasc¢;— 0,7, — 1.

PROBLEMS

5.1. Calculate the mole fraction x, of benzoic acid in an aqueous solution 1.5 mM in
benzoic acid. Also calculate the mole fraction x; of water in this solution.

5.2. Concentrated hydrochloric acid is labeled to contain about 38.0% by weight of
HCI, and its density is about 1.19 gmL~". Calculate the approximate molar
concentration of HCI in this solution.

5.3. What is the molar concentration of pure water?

5.4. Calculate the difference between standard chemical potentials in dilute aqueous
solution based on the molar and the mole fraction standard states, at 25 °C.

5.5. Obtain an equation with which molar and molal concentrations may be inter-
converted in dilute solution.

5.6. Consider aliquid solution of solvent 1 and solute 2. Let n; and n,, respectively, be
the numbers of moles of solvent and solute in a given mass of solution, whose
density is p. Then derive an exact equation relating x, and c,. [Hint: The correct
result must reduce to Eq. (5.1) in very dilute solution.]

5.7. A 0.1 Msolution of glucose (MW = 180 g/mol) has a density of 1.04 g/mL. What
is the molality of the solution?

5.8. Consider a 0.28 m solution of glucose. Calculate the mole fraction and the %w/w
of glucose in this solution.



PHASE
TRANSFORMATIONS

6.1. PURE SUBSTANCES

Phase Diagrams. 1In this section we treat equilibria in heterogeneous systems, that
is, systems consisting of more than one phase. A phase of matter is uniform in chemical
composition and physical state. [t may be subdivided, but it remains a single phase. For
example, a system consisting of ordinary crushed ice dispersed in water possesses two
phases: ice and water. These types of systems were treated briefly in Chapter 4.
Figure 6.1, which appeared earlier as Fig. 4.1, is a pressure—temperature phase
diagram for the simplest case, a pure substance possessing only one form of each
of the three phases solid, liquid, and vapor (gas). (A pure substance can have only a
single vapor phase, and most pure substances have only a single liquid phase,' but
many solid phases may exist, as will be described below.)

The line OC in Fig. 6.1 describes all systems in which the solid and liquid phases
coexist in equilibrium; that is, any pair of P, T coordinates on this line describe the
melting temperature of the solid at that pressure. Similarly, line OB gives the boiling
temperature as a function of pressure, and line OA gives the sublimation temperature.
Point O is called the triple point, a unique pair of P, T values at which the solid, liquid,
and vapor are in mutual equilibrium. The slopes of these lines are given by Eq. (6.1),
the Clapeyron equation, from Chapter 4:

! Some substances reveal the existence of a second liquid phase called the liquid crystalline phase. It is
recognized by its optical properties.

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.
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Pressure

Temperature

Figure 6.1. Pressure—temperature phase diagram of a pure substance.

dP _ AH

= .1
dl'  TAV (6.1)

where AH is the enthalpy change for the process and AVis the volume change. For the
special case of the liquid—vapor transition (boiling), this equation is usually used in the
approximate version called the Clausius—Clapeyron equation:

dInP  AHy
= 6.2
ar RT? (62)
In its integrated forms the Clausius—Clapeyron equation becomes
AHy,,
log P = 6.3
T (6:3)
or
P, AHy, (T—Ti
log — = — 6.4
% p, 23R \ T\T, (64)

where Cis a constant; AH,,,,,the molar heat of vaporization, is assumed to be a constant
throughout the temperature range of interest; and the equations relate boiling
temperature to pressure.
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The Gibbs phase rule is
F=C-P+2 (6.5)

where P is now the number of phases in the system at equilibrium, C is the number of
components, and F is the number of degrees of freedom.>F is the number of variables
that must be fixed in order to completely define the system. For example, along line OC
in Fig. 6.1 there are two phases (solid and liquid) and one component (since this is the
diagram for a pure substance), so F=1—2 + 2=1. According to this result, the
system along line OC possesses one degree of freedom. This means that we can select
either the pressure or the temperature at will (provided the value lies within the OC
range); the other variable is then established by the equilibrium.

Atthetriple point O, F =1 — 3 + 2 =0; the system has no degrees of freedom. The
three phases solid, liquid, and vapor are all in equilibrium, and if this condition is to be
maintained, neither the temperature nor the pressure may be altered.

Figure 6.1 and the Clausius—Clapeyron equation show that the pressure may be a
fairly sensitive function of temperature along the vaporization line OB. By definition,
the normal boiling point T, is the boiling temperature when P =1 atmy; this is the
boiling temperature usually measured in the laboratory (or the kitchen). The melting
point (also called the freezing point) is not very sensitive to pressure.

Polymorphism. A pure substance may be capable of existing in more than one
crystalline solid form. Each such crystalline solid is a separate phase, and these forms
are called polymorphs. The phenomenon of polymorphism (also known as allotropy)
is widespread, and it has pharmaceutical ramifications. Polymorphs have different
arrangements of the molecules in their crystal structures, but chemically they
are identical. The two or more polymorphs of a substance possess different free
energies, and the polymorph that has the lowest free energy is the thermodynamically
most stable form. The other forms are thermodynamically unstable relative to the
stable form, but it may happen that the rate of transformation from the unstable to
the stable forms is so slow as to be negligible or practically unimportant, in which case
the unstable polymorph is said to be metastable. For example, the element carbon can
exist in two polymorphic forms called graphite and diamond. Graphite is the
thermodynamically stable form, and diamond is metastable with respect to it, but
although diamond is thermodynamically unstable, the timescale on which it trans-
forms to the more stable form is of no human concern. Some polymorphic transforma-
tions may be quite fast, however.

A given substance may possess numerous polymorphs—phenobarbital has at least
8 and may have 11 of them—but according to the phase rule, the maximum number of
phases, including solid phases, that can coexist in equilibriumis P=C + 2 (i.e., Pis
maximized when F is set to 0); for a pure substance this is three phases. Figure 6.2

2 The number of components may differ from the number of constituents. Here is a simple way to determine
C, the number of components: C is equal to the minimum number of bottles of pure substances required to
prepare the system in the laboratory.
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Figure 6.2. Pressure—-temperature phase diagram of water at high pressures, showing the six ice
polymorphs. [Reproduced by permission from Findlay et al. (1951).]

is the phase diagram of water at extremely high pressures (Findlay et al. 1951).
This phase diagram (which is based on the experimental work of P. W. Bridgman)
shows six ice polymorphs; these are labeled ice I (this is ordinary ice), ice II, ice III, ice
V, ice VI, and ice VII (the reported discovery of ice IV was erroneous). Observe that a
maximum of three phases may exist at any fixed combination of temperature and
pressure.’

The pharmaceutical significance of polymorphism lies in two features: (1) The
different crystal forms have different physical properties and (2) polymorphs may
interconvert on a pharmaceutically pertinent timescale. These features have led
to much pharmaceutical research in this area (Carstensen 1973, pp. 113-124;
Haleblian and McCrone 1969; Haleblian 1975; Florence and Attwood 1981,
Chapter 2; Yu 2007; Chen et al. 2005). It has been found that the solubilities of
polymorphic forms of a drug are different. If the solubility of the less stable form is
greater than that of the more stable form, its solution will be unstable with respect to
the more stable solid form because it is supersaturated with respect to this form.
Precipitation may occur unexpectedly in such a situation unless some form of
stabilization can be devised. The bioavailability of a drug may depend on the drug’s

3 For a fictional use of the concept of polymorphism see the note on ice-nine in Wikipedia (http://en.
wikipedia.org/wiki/Ice-9).
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polymorphic form. Chemical stability of drugs, as well as the physical stability of
pharmaceutical dosage forms, may be dependent on the polymorphic form of the drug
and its propensity for transformation to a more stable polymorph. The presence of
more stable inactive polymorphs of a drug can lead to very serious problems. The case
of the AIDS drug Ritonavir is exemplary. This very effective drug could not be used
after the sudden appearance of a new, more stable but less soluble polymorph. This
new inactive polymorph completely overcame the original drug. Any attempt at
making the original polymorph only resulted in the inactive form of the drug.
Eventually, the production of Ritonavir was abandoned (Bauer et al. 2001). It is
also possible that a single solid compound may form a number of different poly-
morphs. ROY, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, a syn-
thetic drug-substance intermediate, dramatically illustrates this latter concept.
ROY takes its name from the colors (red, orange, and yellow) of three of its
polymorphs. Further studies identified up to seven more polymorphs, making
ROY the most polymorphic organic compound in the Cambridge Structural
Database (Chen 2005). The recognition of the possible existence of inactive, more
stable polymorphs of a certain drug makes polymorph screening an important
component of modern drug development. One subtle aspect of polymorphism is
that polymorphs can form not only upon crystallization from solutions, but also from
cooling of pure melted compounds and as the result of crystal conversion directly in
the solid state.

Note that the formation of a crystalline hydrate (or other solvate), in which the
compound crystallizes with one or more molecules of solvent in its crystal structure, is
not true polymorphism; a crystal hydrate is not chemically the same substance as the
unhydrated substance.

The Amorphous State. We have seen that a pure substance may assume any one of
several crystalline solid forms called polymorphs. There exists yet another possibility
called the amorphous or glassy state, in which the substance appears to be solid in its
consistency, yet X-ray diffraction data show the absence of the periodic array of
molecules characteristic of the crystalline state. The amorphous (i.e., formless) state is
really the supercooled liquid, which, although below its normal freezing point, has not
adopted the orderly arrangement of molecules characteristic of the crystal. Although it
appears to be a solid, it is really a highly viscous liquid. Presumably some kinetic
barrier to crystallization permits supercooling to take place. This pathway to the
amorphous state is not the only one, however, and it has been found possible to
generate amorphous samples by subjecting crystalline solids to high-energy processes
such as grinding, milling, and freeze drying. The amorphous state is best detected by
means of X-ray powder spectra.

The amorphous state is unstable with respect to (it is of higher energy than) the
crystalline solid, to which it may revert on a generally unpredictable timescale. Its
pharmaceutical advantages and disadvantages follow from these properties. Higher
solubility and bioavailability may be achieved with amorphous solids, but transfor-
mation to the crystalline state is a possibility. Experimental study of each substance is
required to establish its characteristic behavior.
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Figure 6.3. DSC traces of two amorphous samples of indomethacin. See text for explanation.
[Reproduced by permission from Yoshioka et al. (1994).]

The amorphous state is often studied by means of differential scanning calorimetry
(DSC), in which the temperature of the sample is raised while the heat absorbed or
released by the sample is monitored. Figure 6.3 shows DSC curves for two amorphous
samples of the drug indomethacin (Yoshioka et al. 1994). One sample (dashed lines)
had been prepared by rapidly cooling the melted drug; the other sample (solid lines)
had been more slowly cooled. Besides these amorphous samples, indomethacin also
forms two crystalline polymorphs: the o form with melting point 155 °C and the y form
with melting point 161 °C.

As the temperature sweeps through the range 35-65°C, in Fig. 6.3a, both
amorphous samples show endothermic peaks (they are absorbing heat) as they
undergo a transition. The onset of this transition, at about 50 °C, is called the glass
transition temperature, T,. With increased temperatures, the samples undergo crys-
tallization in Fig. 6.3b, with the release of heat (the heat of crystallization, which can be
measured from the areas under the crystallization peaks). Finally, in Fig. 6.3c, both
samples melt. Observe that the two melting crystalline samples are actually mixtures
of the oc and Y polymorphs (each curve has two components), but they differ in terms of
which polymorph is present in major fraction.

The properties of the amorphous state are a consequence of its high energy content,
which is its dominant characteristic. It is a relatively unstudied state of matter, for
which increasing pharmaceutical applications may be expected.

6.2. MULTICOMPONENT SYSTEMS

This is an abbreviated treatment of this topic, limited in these two ways:
(1) We consider only binary (i.e., two-component) systems, and (2) we omit certain
topics as not particularly pertinent to our interests (fractional distillation is an
example). Fuller treatments are available (Rossini 1950, Chapter 32; Atkins 1994,
Chapter 8).
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Liquid-Liquid Systems. We will omit consideration of the vapor phase, in principle
by postulating that it is excluded from the system, in practice by working (usually)
under the ambient fixed atmospheric pressure. We begin by considering a system of
two liquids. Of course, whether a substance is a liquid or a solid depends (at fixed
pressure) on the temperature, but common usage denotes as liquids those substances
that exist in this state at or near room temperature. Pairs of liquids often are classified as
essentially completely immiscible (such as mercury and water), as completely
miscible in all proportions (e.g., ethanol and water), or as partially miscible (e.g.,
diethyl ether and water). The completely immiscible case need not concern us, since it
effectively consists of two separate pure substances. Completely miscible systems are
dealt with in Chapter 7. We are left to consider those pairs of liquids that are miscible in
some proportions but are immiscible in other proportions.

Inasmuch as we have fixed the pressure, the two experimental variables by means
of which the system may be manipulated are the temperature and the composition of
the system, and phase diagrams are commonly constructed with these variables as the
coordinates. Usually the composition is expressed as mole fraction or as percent by
weight. Figure 6.4 shows a schematic temperature—composition phase diagram for a
partially miscible pair of liquids, 1 and 2. Any combination of temperature and
composition giving a point outside the phase boundary line describes a homogeneous
system; in this region, 1 and 2 are mutually miscible. Note that small concentrations of
1 will dissolve in 2, and vice versa; moreover, as the temperature increases, the extent

Homogeneous

2(._______

p Xq

Xz

Figure 6.4. Schematic temperature-composition phase diagram for two partially immiscible
liquids 1 and 2; x, is the mole fraction of 2 and T is the upper critical temperature.
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of mutual solubility increases. At any temperature above 7, (which is called the upper
critical temperature), the two liquids are miscible in all proportions.

But if the temperature—composition combination places the system under (within)
the phase boundary line, two phases form. One phase is predominantly 1 saturated with
2, the other is largely 2 saturated with 1. At any given temperature, say, 7" in Fig. 6.4,
the horizontal tieline pr connects the arms of the phase diagram, and the compositions
of the two phases are given by x,, and x,. Moreover, if x, is the overall composition of the
system, the amounts of the two phases are in the ratio of the distances pg/gr. Figure 6.5
shows the experimental phase diagram for the phenol-water system [see Findlay et al.
(1951, p. 95); the melting point of phenol is 41°C, and phenol is being treated as a
liquid in this context]. This diagram is helpful in determining the ranges of composi-
tions that will yield homogeneous solutions of phenol in water at room temperature
(25°C). Liquefied Phenol U.S.P. contains 89% by weight of phenol, placing it in the
single-phase region of the diagram.

Example 6.1. 50.0 g of Liquefied Phenol U.S.P. is diluted with 50.0 mL of water at
room temperature. Analyze the outcome of this procedure.

70

50 -

40 -

t/°C
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0 20 40 60 80 100
% Phenol (w/w)

Figure 6.5. Phase diagram for the phenol-water system. See discussion in Example 6.1.
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Since Liquefied Phenol contains 89% w/w of phenol and the density of water is
1.0gmL ™", the system as prepared contains 44.5% w/w phenol with a total weight of
100 g. Figure 6.5 shows the 25°C tieline with point g given by the 44.5% system
composition. This point lies within the two-phase boundary, so the system will
separate into two layers. Reading the compositions of the layers at points p and r
tells us that one phase will contain 8% phenol and the other phase will contain 71%
phenol. The ratio pg/qr=(44.5 — 8)/(71 —44.5) = 1.38.

We can go further than this. Since 100 g of total system contains 44.5 g of phenol,
we can write

Weight of phenol in aqueous layer + weight of phenol in phenolic layer=44.5¢g

Letting x be the weight of the aqueous layer in 100 g of sample gives
0.08x+0.71(100—x) = 44.5

resulting in x =42.1 g as the weight of the aqueous layer and therefore 57.9 g as the
weight of the phenolic layer. The aqueous layer contains (0.08) (42.1) =3.4¢g of
phenol, and the phenolic layer contains (0.71)(57.9)=41.1g of phenol. Note,
incidentally, that pg/gr=1.38 =57.9/42.1.

In these two-component systems each phase is a solution, which can be defined as a
phase of variable composition. Notice that we have not identified one of the
components as the solute and the other as the solvent; such a designation has no
thermodynamic significance and is done solely for our convenience.

Liquid—Solid Systems. Imagine a two-component system consisting of two solids
A and B brought to a temperature above the melting points of both. Then in the simplest
instance a one-phase system will form consisting of a liquid solution of A and B
(Findlay etal. 1951, p. 135). Referring to Fig. 6.6, the area labeled L (for liquid phase)
willinclude the system as described, with its precise location in the diagram depending
on the temperature and the composition.

The points A and Bin Fig. 6.6 represent the melting points of solids A and B. Now let
the temperature be lowered (always allowing the system to remain at equilibrium).
Suppose the system initially is represented by point £. When the temperature reaches
point G, pure solid Awill begin to form, and as the temperature continues to fall (as heat
is withdrawn from the system), more solid is formed. Throughout the area ADC the
system consists of pure solid A dispersed in a solution of A and B. Its composition is
given by tielines, such as HK in the figure.

When the system temperature reaches level C, the temperature ceases to fall, even
though heat continues to be withdrawn from the system; point C has no degrees of
freedom. (Recall that we have fixed the pressure.) At point C, solid A, solid B, and
solution phase are in mutual equilibrium. The solid phase at this point is a finely
divided two-phase dispersion of crystalline A and B called a eutectic, and C is the
eutectic point. Microscopic examination reveals that the eutectic is a mixture and not a
single phase. The composition of the eutectic mixture is fixed for a given pair of
substances. Observe that the eutectic melts at a lower temperature than does either of
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Figure 6.6. The simplest solid-liquid phase diagram for a two-component system of A and B,
where L represents the liquid (solution) phase; Cis the eutectic point. [Reproduced by permission
from Findlay et al. (1951).]

its pure components. Eutectic formation is observed widely in geologic deposits and
metal alloys, and the phenomenon is of pharmaceutical importance. Numerous drugs
form eutectic mixtures, with the consequence that they may liquefy at ambient
temperature owing to the melting point decrease characteristic at the eutectic point.
Acetaminophen, aspirin, menthol, phenacetin, phenol, and thymol are some of these
substances that are prone to eutectic formation. Special care in formulating or
compounding these compounds is necessary (Thompson 1998, pp. 34-35).

We tend to think of curves suchas ACand BCinFig. 6.1 as freezing point (or melting
point) curves, but from the thermodynamic point of view they can just as well be
viewed as solubility curves. Suppose, for example, that A is a liquid at room
temperature but that B is a solid. Then the curve BC can be interpreted as the solubility
of B in A. We will not pursue this line of interpretation because Chapter 10 is entirely
concerned with solubility.

A traditional laboratory technique for the confirmation of identity of a solid
substance is to mix some of the sample with an authentic specimen and to measure
the melting point. If this mixed melting point is the same as that of the melting point of
the authentic specimen, the sample is very likely the same compound. If, on the other
hand, the melting point of the mixture is decreased, the two substances are different.
This is a consequence of the mutual depression of melting points seen in Fig. 6.6 when
two components are mixed.*

# The melting of ice on winter roads by spreading salt is another manifestation of the phenomenon. NaCl
and H,O form a eutectic of composition 23.3% NaCl at a eutectic temperature of —21.1°C.
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The region in Fig. 6.6 labeled A 4+ B and lying entirely below point C may consist
merely of the two crystalline phases of A and B (leaving aside the phenomenon of
polymorphism). But another possibility is that A and B may form a solid solution,
which is a homogeneous single-phase state of matter, no different in principle from a
liquid solution. Some drugs are known to form solid solutions (Carstensen 1977,
pp- 23-26).

PROBLEMS

6.1. Suppose that a solution is prepared at 70°C to contain 65% by weight of phenol in
water. The solution is slowly cooled. At what temperature will it separate into
two phases?

6.2. Calculate the degrees of freedom at the eutectic point C in Fig. 6.6.



SOLUTIONS OF
NONELECTROLYTES

7.1. IDEAL SOLUTIONS

A nonelectrolyte is a substance that is uncharged and that does not sensibly give rise
to ions. Our analysis will be sufficiently general if we consider solutions of two
nonelectrolytes, labeled 1 and 2; the results can be extended to more components if
necessary. For the present we limit discussion to single-phase systems.

A convenient starting place is with the experimental observation known as
Raoult’s law, which describes a particularly simple type of solution behavior in
the form of

*

Pi :xiP,' (71)

Raoult’s law states that the partial pressure p; of constituent i over its solution is
directly proportional to its mole fraction in the solution, where the proportionality
constant P; is the vapor pressure of the pure liquid (i.e., when x; = 1). Anideal liquid
solution is then one in which Raoult’s law is obeyed over the entire range of
composition, at all temperatures and pressures. As may be imagined, Raoult’s law
represents a limit of simple behavior toward which certain systems tend, rather than
an exact description; but if the solution components are chemically very similar and
are nonpolar molecules, behavior very close to the ideal may be observed. A solution
of benzene and toluene illustrates such behavior.

It can be proved (Glasstone 1947, p. 320) that if Raoult’s law applies to one of the
constituents of a solution, then it must also apply to the other. Figure 7.1 shows Raoult’s
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0 X, 1

Figure 7.1. Raoult’s law behavior of both components of an ideal solution; p; and p, are the partial
pressures; P is the total pressure.

law behavior for an ideal solution. Since the total pressure is the sum of the partial
pressures, then

P =xP| +x:P, (7.2)

This is the equation of the topmost line in Fig. 7.1.

We know from Chapter 4 that at equilibrium the chemical potentials of constituent
i are equal in the vapor and liquid phases, or u;(g) = u,(1). For amixture of ideal gases,
we also can write [see Eq. (3.35)], that

1i(g) = w; () +RT In P;

If we combine this relationship with the foregoing equality and with Raoult’s law, we
obtain

wil) = () + RT nx; (7.3)

where w? (1) = p;(g) +RT In P;. Equation (7.3) may be taken as an alternative
description of an ideal-liquid solution (Smith 1977, p. 78). The standard chemical
potential u?(I) is the chemical potential of pure component i (i.e., when x;=1).

We can develop the thermodynamic properties of the ideal solution as follows.
The total free energy of the solution is given by

G = pyx1 + Myx2 (7.4)
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where x;and x, are mole fractions. The free-energy change on mixing 1 and 2 is equal

to the free energy of the solution after mixing minus the free energy of the pure
components before mixing, or

AGpix = Z X — Z M;)xi (7'5)
Substituting from Eq. (7.3) into Eq. (7.5) leads to

AG® — RTx,Inx; + RTx; Inx, (7.6)

mix

as the ideal free energy of mixing. Since the mole fractions are less than one, the free
energy of mixing is negative and the process is spontaneous.
The entropy of mixing is easily obtained by applying the relationship [Eq. (3.7)]

(agf)P — _AS (7.7)

to Eq. (7.6). The result is

AS9 — _ Ry Inx; — Rx;Inx, (7.8)

mix

Therefore the entropy of mixing is positive, as we would expect. From the identity
AG = AH — T AS we obtain, making use of Egs. (7.6) and (7.8),

AHS = 0 (7.9)
Finally, from Eq. (3.6) we obtain

OAG

() v (7.10)

oP ),

Applying this to Eq. (7.6), we get
ideal __
AV SE =0 (7.11)

Equations (7.6), (7.8), (7.9) and (7.11) give the essential thermodynamic properties of
the ideal solution. We can make some molecular interpretations of these results. In an
ideal solution, the three pairwise interactions between 1—1 molecules, 2—2 molecules,
and 1-2 molecules are all energetically and spatially identical, so replacement of a 1
molecule by a 2 molecule anywhere in the solution leads to no energy or volume
changes; hence AH!Y = () and AV = (. (It is these stringent constraints that

mix
account for the rarity of experimental examples of ideal solutions, because if two real
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molecules have different identities, their energies and space-filling requirements will
differ to at least some degree.) The ideal entropy of mixing is positive because the
mixed system is more disordered than is the initial system of separated species and the
number of configurational microstates is greater. Since AH'% = 0 and AS9¢d! > 0,

y mix mix
the negative value of AG%! is entirely entropy-driven.

7.2. NONIDEAL SOLUTIONS

It will be no surprise to learn that few real solutions behave ideally. Nevertheless, fairly
simple behavior is widely observed in solutions that are very dilute with respect to
one component. It will now be convenient to designate the component (to be labeled
component 1) that is present in great excess as the solvent and designate component 2,
present in low concentration, as the solute. The solvent is obviously a liquid, but the
solute may be either a liquid or a solid.

First consider Fig. 7.2, which shows vapor pressure—composition curves for both
solution components when derivations from ideality occur. In this figure the dashed
lines show ideal Raoult’s law behavior (compare with Fig. 7.1), whereas the solid
lines show positive deviations from Raoult’s law (Fig. 7.2a) and negative deviations
(Fig.7.2b).' The two components may exchange roles as solvent and solute, depending
on which is in excess.
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Figure 7.2. Nonideal solution behavior showing positive deviations (a) and negative deviations (b)
from Raoult’s law. The mole fraction scale runs from 0 to 1 for one of the components and from 1to 0
for the other.

A solution having the composition corresponding to either a maximum (Fig. 7.2a) or a minimum
(Fig. 7.2b) in the vapor pressure curve will distill as a constant boiling mixture of constant composition,
called an azeotrope. For instance, 95% alcohol is an azeotrope containing 95.57% by weight (94.9% by
volume) of C,HsOH.
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Now, in a dilute solution (i.e., dilute with respect to component 2, the solute), the
solvent, component 1, approaches a mole fraction of unity, and its vapor pressure
approaches that expected from Raoult’s law; this behavior can be seen in Fig. 7.2,
where the dashed and solid lines approach asymptotically as x approaches unity. This is
reasonable behavior, since in this circumstance (the very dilute solution) the solvent
molecules are surrounded essentially only by other solvent molecules, and hence
are practically unperturbed by solute molecules. But it is otherwise for the solute
molecules in dilute solution, because then each solute molecule finds itself in an
environment of essentially only solvent molecules, which is clearly not typical of the
purely solute environment. Consequently the solute does not follow Raoult’s law in
dilute solution.

Despite this result, a certain simplicity of behavior by the solute can be discerned.
Experiment shows that in the very dilute solution the vapor pressure of the solute is,
in the limit of zero concentration, a linear function of its mole fraction, as in

p2 = xk; (7.12)

which should be compared with Raoult’s law, Eq. (7.1). Equation (7.12) is called
Henry’s law, and the constant of proportionality k; is the Henry’s law constant. The
distinction between Raoult’s law and Henry’s law is easily seen graphically in Fig. 7.3.

The thermodynamic description of solute behavior in very dilute solutions is based
on Henry’s law, and it leads, by the same kind of argument used for ideal solutions,
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Figure 7.3. P; is the vapor pressure of the pure solute (xo =1), and the actual vapor pressure
curve tends to this value. The Henry’s law constant 3 is a hypothetical value obtained by linear
extrapolation to x, =1 of the tangent to the actual curve at x, =0.
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to Eq. (7.13), which is very similar to Eq. (7.3) for the ideal solution, except that the
standard chemical potential incorporates the Henry’s law constant:

My = 3 +RT Inx, (7.13)

We saw in Chapter 5 that we may base our standard state definitions on either the mole
fraction, the molal, or the molar concentration scales. Equations (7.12) and (7.13)
make use of the mole fraction convention, and this is shown in Fig. 7.3 and again in
Fig. 7.4a. Figure 7.4b shows the significance of the standard state convention on the
molar scale. Note how the superscript x or ¢ is used with the Henry’s law constant to
clarify the definition. Of course, k5 and k5 are different; their relationship can be
worked out as we did in Chapter 5 [see also Grant and Higuchi (1990, p. 93)].
Finally we must consider nonideal solution behavior outside the very dilute
solution range. We have seen how to cope with this behavior (Section 5.3) by defining
activity coefficients, so that the actual behavior is quantitatively expressed by an
activity coefficient that measures the deviation between real and ideal behavior.
Now we can see that the adoption of a criterion of ideal behavior is critical to
expressing the extent of deviation from this ideal. We are here approaching from a
different direction an issue already faced in Section 5.3. At that point we had defined
the activity of the solvent to be equal to its mole fraction. We now see that this is
equivalent to assuming that Raoult’s law is obeyed by the solvent, which is a
reasonable assumption in the dilute solution range. The activity of the solute,
on the other hand, we took as equal to its molar concentration in the very dilute
range. This is a Henry’s law reference state; the standard state is as shown in Fig. 7.4b.
In Chapter 8 we will learn how to estimate activity coefficients for ionic species, which
are notorious for their nonideal behavior; except in very concentrated solutions,

™
Standard state, unit mole fraction 2
(hypothetical)
Standard State, unit molar

(hypothetical) /
P2 kS

Actual |
Actual

- e ——

0 Xy 1 0 c,
(a) (b)
Figure 7.4. Henry’s law constant £} on (a) the mole fraction scale and (b) the molar scale. These

standard states are different. They are both hypothetical, because real behavior (solid curves)
deviates from these linear extrapolations based on very dilute behavior.
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however, the activity coefficients of nonelectrolytes can be taken as unity for most
practical work.

The thermodynamic properties of real solutions are sometimes expressed in terms
of excess functions, which are defined as the difference between the actual value of
the function and the ideal value. For example, the excess entropy of mixing is

SE _ ASreal _ ASideal

mix mix

. .. . 2
The excess functions can be positive or negative.

7.3. PARTITIONING BETWEEN LIQUID PHASES

The Partition Coefficient. Suppose that we bring two immiscible liquids in contact
and then incorporate a nonelectrolyte solute such that its concentration is in the dilute
solution range. The solute will distribute itself between the two phases, each of which
constitutes a solution.® Since the phases will arrange themselves according to their
densities, let us identify them as the upper (U) and lower (L) phases. The distribution of
solute between the phases is called partitioning. The typical separatory funnel
operation exemplifies this system. We take the pressure and temperature as fixed.

At equilibrium the chemical potentials of the solute in the upper and lower phases
are equal:

WY = b (7.14)

These chemical potentials will be written out for the Henry’s law molar standard state
definition, giving

wy +RTIncy = p) +RT Incy (7.15)

where for convenience the subscript 2 is omitted, assuming that the solute is meant.
Rearrangement of Eq. (7.15) gives
Al = —RTIn &Y (7.16)
L
where Ap® = uy; — p; . Comparison of Eq. (7.16) with the important equation
[Eq. (4.23)]
AG® = —RT InK (7.17)

shows that the ratio cy/cy has the character of an equilibrium constant. In fact, it is the
equilibrium constant of this “reaction”:

2 A class of solutions called regular solutions is defined to have S = 0 and H* #0, so that entropically such
solutions behave ideally, but they undergo nonideal energy changes. Regular solutions are commonly
formed from nonpolar components [see Hildebrand et al. (1970); see also Chapter 10 (below)].

? Besides the phenomenon in which the solute distributes between the two phases, the upper phase will be
saturated with respect to the lower phase solvent, and vice versa. This mutual saturation alters the solvent
properties of the two phases, but it does not affect the thermodynamic argument.
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Solute in phase L = Solute in phase U

This quantity is labeled P and is called the partition coefficient

p== (7.18)
cL
Partition coefficients are usually expressed in terms of their base 10 logarithms, log P.
This makes the numerical values directly proportional to the standard free-energy
change, according to Eq. (7.17), and it provides convenient magnitudes, since P itself
can be much smaller or larger than unity.

Log P values have great utility in drug discovery and drug delivery research
programs. For these purposes the solvent of the upper phase is usually selected to be
1-octanol, with water serving as the lower phase solvent. The partition coefficient is
then defined as

p— Coctanol (7 19)

Cwater

Since water is more polar than is octanol, very polar solutes tend to have greater affinity
for the aqueous phase and therefore to have P values smaller than unity, whereas
nonpolar solutes have P values greater than unity. Consequently, log Pis oftenused as a
quantitative measure of a compound’s polarity.*

Log P values can be measured experimentally by the separatory funnel technique,
or modifications of it. Sometimes it is useful to be able to predict a log P value, as for
example if a compound of interest is not available or has not yet been synthesized.
Empirical methods, making use of a large body of experimental log P values, have
been developed that allow log P to be estimated solely on the basis of knowledge of
the solute’s molecular structure (Leo et al. 1971; Nys and Rekker 1974).

Table 7.1 lists a few log P values. Notice, for the series of normal alcohols, how the
trend of log P values appears to accord with our qualitative notions of the polarities
in this series. The log P of the aromatics is also consistent with expectations.

Table 7.1. Log P (octanol/water) for some solutes

Solute Log P Solute Log P
Methanol —-0.74 Benzene 2.13
Acetic acid —-0.24 Phenol 1.46
Ethanol —-0.32 Aniline 0.94
1-Propanol 0.34 Toluene 2.69
1-Butanol 0.88 Naphthalene 3.37
1-Pentanol 1.40 Aspirin 1.21

4 P (and therefore also log P) is a perfectly well-defined thermodynamic quantity. The concept that log P is
ameasure of polarity is not a part of thermodynamics, however, and since this concept, and others like it, lie
outside of thermodynamics, it is said to be extrathermodynamic. Appendix C is a brief introduction to
extrathermodynamic arguments and relationships.



150 SOLUTIONS OF NONELECTROLYTES

Example 7.1. 170.0 mg of benzylpenicillin (MW 334.4) was shaken with 10.0 mL of
1-octanol and 25.0 mL of water. After the phases separated, the aqueous phase was
analyzed and found to contain 7.20 x 10~* M benzylpenicillin. Calculate the partition
coefficient of benzylpenicillin in this system.

The total number of moles of benzylpenicillin is 72, = W/M, where w is the weight
in grams and M is the molecular weight. Obviously, 7 is the sum of the amounts
in the octanol and aqueous phases, or

Noct + Naq = Niotal

We also have the partition coefficient definition,

~ Coct

P=—
Caq

and the concentrations (in mol L") are given by

Noct Naq

= Cor =
) aq
Voct Vaq

Coct =

where the volumes are in liters. These equations suffice to solve the problem. We
find nyo =0.170/334.4 =5.08 x 10"*mol. Then, from the definition of Caqr WE
obtain
Nag = CaqVaq
= (7.20 x 10" *mol L~ 1)(0.025L)
= 0.18 x 10~ *mol

It follows that foe = fiotal — Mags OF Mot =5.08 x 107*-0.18 x 10 *=4.90 x 0*
mol, and therefore that

4.90 x 10~ * mol

Cot = 001 L
=490x 10" ?>mol L~!
Finally
p Cot _ 4.90 x 1072
G 720x 1074
=68.1
or log P=1.83.

Example 7.2. Log P (octanol/water) of caffeine is —0.07 at 25°C. Calculate the
standard free-energy change for the partitioning process.



PARTITIONING BETWEEN LIQUID PHASES 151

From Eq. (7.17), we have

Ap’ = —2.303RT log P
= (—2.303)(1.987 cal mol ' K~ ')(298.15K)( —0.07)
= 96 cal mol ~ ! =400J mol !

The interpretation of Au’ is that it is the free-energy change when one mole of caffeine
in its standard state in water is transferred to its standard state in octanol. (This quantity
is sometimes called the transfer free energy.)

From the log P value we find P = 0.85. Caffeine partitions nearly equally between
the octanol and water phases, with a very slight preference for the water.

Solvent Extraction. Partitioning of a solute between immiscible phases is a valuable
analytical technique, and it forms the basis of some chromatographic separation
methods. In the simplest case we have the type of system described in the preceding
discussion. Let p be the fraction of solute present in the upper phase and g the fraction in
the lower phase, so p + ¢ = 1. This quantity p is defined as

__amount of solute in upper phase

7.2
total amount of solute (7.20)

If cy and ¢y, are the concentrations and Vy and Vi are the volumes of the upper and
lower phases, then

Vi
p= _ v (7.21)
Ccy VU +cL VL
Let us define the ratio of phase volumes as
1%
R=-2 (7.22)
VL

and of course P = cy/c from Eq. (7.18). Combining these relationships gives

PR
= 7.23
P=Pr11 (7.23)
and so
1
q= (7.24)
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Table 7.2. Calculation of the progress of extraction

Fraction of

Total Extracted Total Fraction
n in nth Extraction Extracted Fraction Remaining
1 P P l-p=gq s
2 Pa, P+ pq ) 1—(17+17q):q2 :
3 Pq P+ pq+ pq l—(p+pg+pq)=q
n pq"" S g q

Note that the product PR is equal to the ratio (amount in upper phase)/(amount in lower
phase); this quantity is called the capacity factor. Equation (7.23) gives the fraction of
solute extracted into the upper phase, and 100p is the percent extracted.

Example 7.3. Log P (octanol/water) =0.70 for ethyl acetate. If 10.0mL of an
aqueous solution of ethyl acetate is extracted with one 25.0 mL portion of octanol,
what percentage of the ethyl acetate will be extracted into the octanol layer?

Since log P=0.70, P =5.0. We also have R =2.50. Applying Eq. (7.23) gives
p =0.926, so0 92.6% will be found in the octanol.

Unless P is very large or very small, a significant fraction of solute will be found in
both phases after a single extraction, as seen in Example 7.3. If the experimental goal is
to remove essentially all the solute from one phase into the other, common practice is
to reextract with fresh portions of the extracting solvent, pooling the extracts, until the
solute has been quantitatively removed. We can calculate the number of extractions
required to extract any specified fraction of solute.

As earlier, p is the fraction of solute extracted into the upper phase in a single
extraction, and g is the fraction in the lower phase. The first line in Table 7.2. shows the
state of the extraction after the first extraction.

If we accept the assumption that P is a true equilibrium constant, so that P has the
same value irrespective of the absolute concentrations,” then the same fraction p of
solute remaining in the lower phase will be extracted into the upper phase each time.
(We assume that identical volumes of fresh upper phase are used in each extraction.)
Then the fraction of total solute removed in the nth extraction is equal to the product
of the fraction remaining and the fraction extracted in a single extraction:

Fraction of total extracted in nth extraction = fraction of total left after

(n— 1)th extraction x p (7.25)

5 From Eq. (7.18), cy = Pcy, which states that a plot of ¢y versus ¢, should be linear if P is a constant
independent of concentration. This plot is called a partition or distribution isotherm. A linear partition
isotherm shows that P is independent of concentration.
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Applying this equation to the second extraction gives
Fraction of total extracted in 2nd extraction = pg

This is entered on the second line of Table 7.2. The total fraction extracted is now equal
to the sum of the fractions extracted in the first and second extractions, which is
p + pg, and the fraction remaining is 1 — (total fraction extracted), which is equal to 7
as seen in Table 7.2. In this way Table 7.2 is completed.

A final convenient expression is obtained by noting that

Total fraction extracted = 1 — Fraction remaining
or, from the final entry in Table 7.2, after n extractions

Total fraction extracted = 1 —¢" (7.26)

Example 7.4. For the system described in Example 7.3, calculate the total fraction
extracted after 1, 2, 3, 4, and 5 extractions, if R =1.0.

Since P=15.0 and R = 1.0, we find with Eq. (7.24) that ¢ :%: 0.167. Applying
Eq. (7.26) gives the results in Table 7.3.

Observe the asymptotic approach to complete extraction, which in principle can
never be achieved because, in the terms of classical thermodynamics, at equilibrium
(which is reached at each stage of the extraction process) the chemical potential
of the solute must be identical in both phases, so the solute cannot be absent from
one phase and present in the other. In practice, of course, we can often carry out the
extraction to an extent that is practically indistinguishable from completion.

Example 7.5. Using the same system of Examples 7.3 and 7.4, for which P =35.0,
compare the efficiency of extraction of a 15-mL aqueous solution of ethyl acetate with
(a) one 60-mL portion of octanol and (b) four 15-mL portions of octanol.

(a) With Eq. (7.23) and the quantities P=5.0, R=4.0, we find p=0.952, or
95.2% extracted in this experiment.

(b) With Eq. (7.26) and the quantities p =5.0, R=1.0, n =4 we find ¢ =0.0476
and total fraction extracted = 0.9992, or 99.92% extracted in this experimental
design.

Table 7.3. Multiple extractions of a solute with P=5 and R=1

Number of Total
Extractions, n Extracted (%)
1 83.33
2 97.21
3 99.53
4 99.92
5 99.99
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Example 7.4 demonstrates an important result of extraction theory. A more
efficient extraction is achieved with several extractions than with a single extrac-
tion, even when the same volume of extracting solvent is employed in the different
operations.

Countercurrent Distribution. Although a single solute can be exhaustively ex-
tracted from solution by means of multiple extractions, it is not possible to separate two
solutes (leaving one in each phase) by this technique unless the partition coefficient of
one of them is effectively zero or infinite. An alternative experimental design, called
countercurrent distribution (CCD), has been invented to allow solutes having similar
(yet quantitatively different) partition coefficients to be separated. The term
“countercurrent” means that the two phases move in opposite directions, although
actually one phase is held motionless and the other moves, so the phases are in relative
motion. Although CCD as a separation technique has been superseded by chroma-
tography, a description is worthwhile for two reasons: (1) Since thermodynamic
equilibrium can be achieved at each stage of the process, an exact mathematical
analysis is possible, and the mathematics turn out to be of a much wider applicability;
and (2) CCD constitutes an excellent introduction to the technique of partition
chromatography, which in fact was initially developed as a modification of CCD [the
present treatment of CCD draws heavily on earlier work (Connors 1982, pp.
357-364)].

The countercurrent distribution experiment uses a train of tubes within which
the individual equilibrations occur. At the beginning of the experiment each tube is
charged with an identical volume of the lower phase (e.g., water or an aqueous
buffer). These tubes are numbered 0, 1, 2, .. ., ~ Into tube 0 a suitable volume of the
upper-phase solvent (e.g., ether) is introduced. The solute is added to tube 0; it is
immaterial whether the solute is added in the upper or the lower phase. Figure 7.5is a
schematic rendering of a countercurrent distribution of a single solute; it is assumed,
in this case, that p =g =0.5. Figure 7.5a represents the train of tubes as it has
been described above, with 16 parts of solute added to the lower phase of tube 0.
Now the tube is shaken to allow distribution to occur; in Fig. 7.5b the resulting
partitioning of the solute is shown as 8 parts in each phase, since p =g for this
particular solute.

Next the upper phase of tube 0 is transferred to tube 1 (this is called the first transfer)
and fresh solvent is added to tube O (Fig. 7.5c). The tubes are equilibrated to give the
distribution shown in Fig. 7.5d. This sequence is repeated until three transfers have
been effected (n = 3), as shown in Fig. 7.5h.

The result of these operations has been to transfer the solute in the direction of
motion of the upper phase. This process may be repeated many times. Since only the
upper phase is transferred, clearly the solute can progress along the train of tubes only
by being extracted into the upper phase. Therefore the greater the value of p, the further
along the tube train the solute will progress in a given number of transfers. Actually the
solute is distributed over many tubes, as can be seen by the sample shown in Fig. 7.5.
If the original sample contains two solutes with different partition coefficients,
they will progress along the tubes at different “rates,” the substance with the larger
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Figure 7.5. Schematic representation of countercurrent distribution with three transfers of a solute
with p=0.5. [Reproduced by permission from Connors (1987).]

partition coefficient traveling faster. In order to separate the solutes, itis necessary only

to perform enough transfers.

It is possible to predict quantitatively the countercurrent distribution behavior of
a solute if its partition coefficient is known for the liquid-liquid system. Since P and R
are known quantities, p and ¢ may be calculated.
Suppose that one unit of a single solute is placed in the lower phase of tube 0;
the situation may be represented as in the first row of Table 7.4, where, as in the
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Table 7.4. Calculation of the distribution through four transfers?

Tube Number, r

Transfer
Number, n 0 1 2 3 4
0 B¢ 0/1
A? Plq
1 B 0/q p/0
A Palq’ p’lpq
2 B 0/¢* Pa/rq P20
A Pl 2°4/2pq° Pr’q
3 B 0lq® pa2pq’ 2p°qlp’q P
A pqlq’ 3’4" 3pq’ 3p’al3p’q’ p4lp’q
4 B 0/q" pq’3pq’ 3’ 13p°q 3p’alp’q p*N
Totals after four 4 4pg° 6p°¢* 4p’q pt
transfers
“Before equilibration.
b After equilibration.
“Source: Reproduced by permission from Connors (1987).
earlier discussion, the tubes are numbered O, 1, 2, ..., r and transfers are numbered
0, 1, 2, ..., n. Before equilibration all the solute is in the lower phase, and

after equilibration a fraction p of the solute is in the upper phase and g is in the
lower phase.

Next the upper phase of tube 0 is transferred to tube 1 (which contains fresh lower
phase) and fresh upper phase is placed in tube 0. The phases are equilibrated. The
fraction of total solute extracted into the upper phase of tube 0 will be p times the
fraction of solute in the tube, or pq. Similarly, the fraction of solute in the lower phase
is g times the fraction of solute in the tube, or ¢°. In this way the distribution has been
calculated through four transfers, as seen in Table 7.4.

In the last row of the table the total fraction of original solute in each tube is listed.
The distribution exhibits a marked symmetry in p and g. Obviously, the calculation
of such a distribution for many transfers would be extremely laborious, but it is
fortunately not necessary to proceed as in the previous example. It has been observed
that the total fraction of original solute in each tube is given by the corresponding term
in the binomial expansion, (¢ + p)". Two implications of this result are as follows:
(1) For n transfers there are n + 1 terms and therefore n + 1 tubes; and (2) the sum
of all the terms is 1, since p + ¢=1, and 1 to any power is 1.

The expansion of the function (¢ 4+ p)" is laborious for large n, and an easier
calculation is available. The binomial expansion may be written

nn—1) , 5,

(a+p)" =" +ng" 'p+=——4""p + - 41"
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which can be expressed

n
n!

n__ r (n—r)

where 7 is the number of the corresponding term in the expansion (the quantity n! is
called “n factorial” and means n! =1 x 2 x 3 x 4 x ... n; the relationship 0! =1 is a
definition). Interpreting this in the context of CCD, we write Eq. (7.27) for the rth term
in the binomial expansion

n!
Ty =—pg"") 7.27
r!(n—r)!p 1 (7.27)

where the quantity T, is read “the fraction of total solute contained in both layers of
the rth tube after n transfers.” A calculated countercurrent distribution is usually
exhibited as a plot of T, versus r. Equation (7.27) is called the binomial distribution.

Calculation of the CCD curve may be further simplified. According to statistical
theory, the mean of the binomial distribution is equal to np. The mean corresponds to
the maximum; therefore the tube number of the maximum in the curve,r,y, is given by

I'max = np (728)

This simple expression permits one to calculate the maximum in the CCD curve if p is
known. Although n must be an integral number, r,,,x need not be. Note that 7.«
is directly proportional to p. If Eq. (7.27) is written for Ty, and for T,.), these
expressions can be combined to give

T, :p(n—r—|—1) (7.29)
Tn(rf 1) qr

with which the fraction of solute in any tube can be calculated if the fraction in an
adjacent tube is known.

The easiest way to calculate an entire distribution curve with these equations
(assuming that p is known) is to first find r,,,,x with Eq. (7.28). Next calculate T, with
Eq. (7.27) for one tube in the vicinity of r,,,,«. Finally, calculate the fractions of solute in
all surrounding tubes by means of Eq. (7.29). Figure 7.6 shows the results of such a
calculation for a typical separation of two solutes; it was assumed that P; =0.5,
P>=2.0, and R = 1.00 for this system. In Fig. 7.6a the distribution of each solute is
shown after four transfers. In an actual experiment the tube contents would be analyzed
for total solutes present, and the experimental curve would therefore represent the
sum of the fractions of the individual solutes; this curve is shown as the solid line in
Fig. 7.6a. Separation is not yet apparent in this curve. The individual distribution
curves, however, show that a partial resolution has occurred, with tubes 0 and 1
enriched in solute 1, tubes 3 and 4 enriched in solute 2, and tube 2 containing equal
fractions of solutes 1 and 2.
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Figure 7.6. Countercurrent distribution of two solutes in a system where P;=0.5, P,=2.0,
R=1.0: (a) Distribution after 4 transfers; (b) distribution after 24 transfers. The calculated points
are connected by smooth curves, although in fact the distribution is discontinuous. [Reproduced by
permission from Connors (1987).]

Figure 7.6b shows the same system after 24 transfers. Separation of the solutes is
now apparent. Tubes 0-9 contain essentially only solute 1, whereas tubes 15-24
contain only solute 2. Portions of both solutes will be found in tubes 10-14. If the
experiment were extended to a larger number of transfers, a complete separation could
eventually be achieved. Note, however, that the width of the “zones,” or distribution
curves, increases as the number of transfers increases.

In a real experimental situation, the quantity plotted on the vertical axis would
usually be an analytical quantity, such as weight of solute per tube, rather than the
fraction T,,,.. It may be noted that from such an experimental distribution curve the
quantity r,.x may be read and, by utilizing Egs. (7.28) and (7.23), the partition
coefficient may be estimated.

The countercurrent distribution curve is not symmetric (unless p =g), but as n
becomes larger, the curve approaches very closely a symmetric distribution.

The binomial distribution is a mathematical function that yields the probability of
“success” in what are known as Bernoulli trials. These are events, such as coin tosses,
in which there are only two possible outcomes (heads or tails). The analogy to CCD is
that a molecule of solute has only two possible choices: It must take up residence
in either the upper phase or the lower phase. As the number of transfers becomes very
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large, the discontinuous (i.e., stepwise) binomial distribution approaches closely a
continuous function, the normal distribution, which provides for a faster means of
calculating the CCD curve (Connors 1982, pp. 357-364).

PROBLEMS

7.1.

7.2

7.3.

74.

Calculate the ideal entropy of mixing and free energy of mixing when 10.0 g
of benzene and 15.0 g of toluene are mixed at 25°C.

For alanine, log P (octanol/water) = —2.94. For phenothiazine, log P =4.15.
Calculate the standard free energy changes for these phase transfer processes
at 25°C.

These are experimental partial pressures of benzene (B) and toluene (T) over
their solutions at 20°C:

XB Py (mmHg) P (mmHg)
0.00 0 22
0.27 18 17
0.44 34 12
0.55 41 11
0.67 49 8
1.00 75 0

Confirm the validity of Raoult’s law for this system by plotting the data. By
calculation, determine the solution composition at which the partial pressures
of benzene and toluene are equal, and check your result on the graph you
have plotted. What is the total vapor pressure over the solution at this
composition?

These are partial pressures of chloroform over chloroform—acetone solutions
at 35°C:

x (CHCl5) P (mmHg)
0.0 0
0.2 34
0.4 82
0.6 148
0.8 225
1.0 293

Plot the data, confirming the asymptotic approach to Raoult’s law in the nearly
pure chloroform, and the nonideal behavior in dilute solutions of chloroform.
Estimate the Henry’s law constant.
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7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

SOLUTIONS OF NONELECTROLYTES

How many extractions are necessary to remove 99.9% of a drug from 30 mL of
an aqueous solution if it is extracted with 20 mL portions of ether and log P
(ether/water) = 0.54?

(a) Consider the distribution of neutral weak acid HA between an organic
phase and an aqueous phase. Define the true partition coefficient as
P=[HA],/[HA],q. Presuming that the anion does not detectably parti-
tion into the organic phase, derive this relationship between the true
partition coefficient P and the apparent partition coefficient Pypp:

P — P[H™)
app — [ H*] +K,
where K, is the acid dissociation constant of HA, [H*] is the aqueous
phase concentration of hydrogen ion, and P,,, is the ratio of total
concentrations of solute in the organic and aqueous phases.
(b) Show how P, is related to P at the limits of very low and very high
hydrogen ion concentration. How are P and P,p, related when pH = pK,,?

(¢) Calculate P, as a function of pH for an acid having pK,=4.0 and for
which log P =1.00. Plot P,,, against pH.

Consider a system consisting of a single solute partitioned among three
mutually immiscible phases A, B, and C, the system being at equilibrium.

(a) Define the three partition coefficients.
(b) Derive an equation relating one of the partition coefficients to the other two.

(¢) Derive an equation relating the fraction of solute in phase A to the partition
coefficients and the volumes of the two phases.

A mixture of three compounds was subjected to countercurrent distribution.

After 150 transfers, with each tube containing 5 mL of water and SmL of ether,

the maxima in the CCD curve appeared at tubes 30, 75, and 120. Calculate

the partition coefficients of the three compounds.

Ordinary water contains small amounts of dissolved oxygen. What is the unit
of the ratio between the oxygen Henry’s constant and the partial pressure of
the water vapor in equilibrium with the solution?

Calculate the ideal entropy and free energy of mixing when 36 g of water
(MW = 18 g/mol) are mixed with 230 g of ethanol (MW = 46 g/mol) at 25 °C.
Express the results in cal/mol K (AS) and cal/mol ((AG).



SOLUTIONS OF
ELECTROLYTES

8.1. COULOMBIC INTERACTION AND IONIC DISSOCIATION

Anelectrolyte is a substance that produces ions. Since the ions are charged species, the
force of interaction between them is a convenient starting point for our discussion.
The force of interaction between two particles having charges Q; and Q,, separated
by distance r, is given by Coulomb’s law:

F_Qle

4mer?

(8.1)

where ¢ is a property of the medium, to be dealt with shortly. The potential energy of
interaction, V, is equal to the product of force and distance. The Coulombic potential
energy is therefore

V_Qle

 dner

(8.2)

Since the charge on an ion can be written as the product of its valence z (including its
sign) and the electronic charge e (e = 1.602 x 10~'? C), Eq. (8.2), for our purposes, is
equivalent to

. 21226
dmer

(8.3)

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.
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For twoions of like charge, V and F are both positive and the force is repulsive, whereas
if the ions are of unlike charge, Vand F are negative and are attractive. The zero of
potential energy is taken to be when the ions are separated to infinity (r = 00).
The quantity ¢ is called the permittivity, and it is best introduced through the
expression
6 = — (8.4)
€0

where ¢ is the permittivity of the vacuum and ¢, is called the relative permittivity.
Chemists, however, have traditionally referred to ¢, as the dielectric constant. The
relative permittivity or dielectric constant is measured as the electrical capacitance

of the medium (solvent) relative to the capacitance of the vacuum. It follows that ¢, is
a dimensionless number greater than one. Equation (8.3) is often written in the form

- Z1Z2€2
dmege,r

(8.5)

The permittivity of the vacuum & has the value 8.854 x 10 '2C*J"'m™". Table 8.1
gives some dielectric constant values.

Example 8.1. Calculate the energy of the Coulombic interaction between a sodium
ion and a chloride ion, at contact distance, in vacuum and in water.

The ionic radii of Na™t and of Cl~ (available in reference handbooks) are 0.95
and 1.81 A, respectively, equivalent to an internuclear distance of r=2.76 x 10~'m.
In vacuum

B (1.602 x 10~ 12 C)?
47(8.854 x 1012 C2 7~ 1 m~1)(1)(2.76 x 10~ " m)
= —836x 1077

V(vacuum) =

Table 8.1. Dielectric constants of some solvents

Solvent & Solvent &
n-Hexane 1.89 Methanol 32.6
Cyclohexane 2.02 Nitrobenzene 35
1,4-Dioxane 221 Acetonitrile 36.2
Benzene 2.28 N,N-Dimethylformamide 36.7
Diethyl ether 4.34 Ethylene glycol 37.7
Ethyl acetate 6.02 N,N-Dimethylacetamide 37.8
Acetic acid 6.19 Glycerol 42.5
n-Butyl alcohol 17.1 Dimethyl sulfoxide 49
i-Propyl alcohol 17.7 Formic acid 58
Acetone 20.7 Water 78.5
Ethanol 24.3 Formamide 110
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This is the energy of interaction between one Na ™ and one C1~. If we multiply by
Avogadro’s number to find the energy per mole of sodium chloride, we get

V(vacuum) = — 504 kJ mol ~!
= — 120 kcal mol !

a very strong interaction. In water ¢,=78.5, and the calculation gives

—0.106 x 10~ ' J per ion pair = — 6.42kJmol !
V(water) = — 1.53 kcal mol ~ !

Example 8.1 shows that the dielectric constant of the medium markedly influences the
strength of the interionic interaction energy. The dielectric constant is a measure of
the ability of the medium to separate charges of unlike sign. (Not coincidentally, the
dielectric constant roughly parallels our chemical notion of solvent polarity and is
often taken as a quantitative measure of polarity.) The larger the dielectric constant,
the more easily two unlike charges can be separated. The high dielectric constant of
water is a manifestation of the very unusual nature of water as a solvent. In fact, the
classification of electrolytes into the categories of strong electrolytes (i.e., essentially
completely dissociated into ions in solution) and weak electrolytes (incompletely
dissociated) is based on the use of water as the solvent. Substances that are strong
electrolytes in water act as weak electrolytes in low dielectric constant solvents.' Let
us pursue this issue by writing Eq. (8.6) for an electrolyte, schematically denoted AB,
when dissolved in a solvent:

ionization tr— dissociation i B
——= A'B- =——= A" +B (8.6)

Tonization is the production of ions,” and dissociation is the separation of species
(whether ionic or uncharged). The extent of ionic dissociation is reasonably described
by Coulomb’s law. This is why we do not distinguish between ionization and
dissociation for aqueous solutions; because water’s dielectric constant is quite large,
the force between ions is relatively small, and as soon as ions form, they dissociate. Ion

! The dielectric constant is a bulk property of matter, and its incorporation into Coulomb’s law means that
we are treating the solvent as a continuum; that is, the molecular (particulate) nature of the solvent is ignored
in this treatment.

2 The molecular interpretation of the ionization process may be complex and will depend on the molecular
identity. One possibility is that two kinds of ion pairs may form. One of these, represented A "B, is an
intimate ion pair, the other, shown as A* SB™, where S is a molecule of solvent, is a solvent-separated ion
pair.
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pairs (the species A B™) are seldom detectable in water. But in solvents of low
dielectric constant (typically with ¢, values less than ~25), the extent of dissociation is
reduced, as may be demonstrated by repeating Example 8.1 with some different ¢,
values. Glacial acetic acid (the term “glacial” simply means essentially pure in this
context) is an important analytical solvent that has been carefully studied. Because of
its low dielectric constant, ionpairs can be detected in acetic acid solutions. Letting
HOACc represent acetic acid (since acetic acid is CH;COOH, the symbol Ac represents
the acetyl group CH3CO), a solute acid HX reacts according to

HX + HOAc =H,0Ac "X~ =H,0Ac™ + X~

In this scheme, HOAc is acting to solvate the hydrogen ion, and H,OAc * in acetic acid
is analogous to H;0 " in water. For convenience we usually omit the solvent, writing
simply

HX=H"X =H" +X" (8.7)

Now, in the conventional manner we define an ionization constant K;, and
a dissociation constant K, as follows, using Eq. (8.7) as the defining reaction.

H*X"]

K; = X (8.8)
Ky = [;Ii]g(‘]] (8.9)

Next we define an overall dissociation constant Kyyx; we place all dissociated species
in the numerator and all undissociated species in the denominator:

[HT][X"]

8.10
- (8.10)

Kux =

where cpyx = [HX] + [H " X]. In these equations brackets signify molar concentra-
tions. Combining Egs. (8.8)—(8.10) gives

KiKy
1+K;

Kix = (8.11)

Similar equations can be written for bases and for salts. One of the consequences
is that the pH, which in water is the controlling factor in acid—base equilibria, does
not play a comparable role in glacial acetic acid. This is because very little of the
acidic species is present as dissociated H ™" ; most of the acid is in the undissociated-
form cyx.
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8.2. MEAN IONIC ACTIVITY AND ACTIVITY COEFFICIENT

Let us now consider a strong electrolyte, such as a salt in aqueous solution. The solute
is completely dissociated into its constituent ions according to

M, X, =pMI* +¢XP~ (8.12)
where p and g denote the number of positive and negative ions, respectively, generated
by one molecule of the salt. The following development is motivated by the
impossibility of separately varying and studying the cations and the anions; electro-
neutrality dictates that only their combination in the ratio p/g can be manipulated.

We will adopt the infinite dilution Henry’s law reference state in the molar
concentration scale for all species. Then we can write for the cation and the anion

p, =p’ +RT Ina, (8.13a)
pw_=p’ +RT Ina_ (8.13a)
and for the solute as a whole
Mo = 3 +RT In a (8.14)
Now we postulate (assuming complete dissociation)
Mo =P +qh_ (8.15)

and analogously
uy = pp’y +qu’ (8.16)
Simple algebraic combination of Egs. (8.13)—(8.16) yields
a, =d’ al. (8.17)
We define v as the number of ions generated by one molecule of solute, so

It is now conventional to define the mean ionic activity a by a'. = a,, giving the
following, from Eq. (8.17):

a, =d' a? (8.19)
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A self-consistent set of relations is obtained by making these further definitions;
the mean ionic activity coefficient is

YL =Y (8.20)
and the mean ionic molarity is

¢, =\t (8.21)
so that we can write

a+ ="Y1C+ (8.22)

The significance of these relationships is easiest to comprehend for the simplest case of
a 1:1 electrolyte such as NaCl. For this case p =1, ¢ = 1, v =2, and we write from the
foregoing

i =a,a_ (8.23a)
TE=Y. (8.23b)
ct=cyc (8.23¢)

Although we separately know c ;. and c_ from c,, the solute concentration, we cannot
separately determiney | ,y_,a , ,and a_. The effect of the definitions given above is to
assign the extent of nonideality equally (when p = ¢g) to the cation and the anion.

Example 8.2

(a) What is the mean ionic molarity of an aqueous solution 0.15M in sodium
chloride? Since sodium chloride is completely dissociated, ¢, =0.15M and
c_=0.15M, giving, from Eq. (8.23c), c. =0.15M.

(b) What is the mean ionic molarity of an aqueous solution 0.25M in K,SO,?
For this system p =2, g =1, v=3. The concentration of potassium ions, ¢, ,
is 0.50 M and ¢ _, the concentration of sulfate ions, is 0.25 M. From Eq. (8.21),
we have

¢ =(0.50)*(0.25)
cr = 0.397M

8.3. THE DEBYE-HUCKEL THEORY

In an infinitely dilute solution each solute ion is resident in an environment that
consists effectively only of the solvent (which we continue to treat as a continuum).
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In such a situation the ion is free to exert whatever effects are characteristic of its
identity, unperturbed by other solute species; itisinits Henry’s law reference state, and
it behaves ideally.

If the ionic concentration of the solution is raised, either by increasing the
concentration of the solute of interest or by adding ions of a different electrolyte
solute, the environment of our ion changes. As the ionic concentrations increase, the
distance between ions decreases, and the Coulombic interaction energies come into
play. Ions of like charge tend to repel each other, and ions of unlike charge attract each
other. The consequence of these interactions is that instead of a random distribution
of ions throughout the solution, an ionic atmosphere develops such that the volume
centered on a cation possesses a net negative charge, whereas the volume centered
on an anion possesses a net positive charge (of course, the solution as a whole is
electrically neutral). These charge distributions, constituting perturbations of the
infinite dilution environment, are manifested in solute behavior that we interpret as
nonideal and that we measure in terms of a mean ionic activity coefficient.

In 1923 Debye and Hiickel developed a quantitative theory of this ionic atmosphere
effect. Although the Debye—Hiickel theory is not itself part of thermodynamics, its
final result has been absorbed into thermodynamics, and it is routinely used to interpret
and to predict nonideal behavior in electrolyte solutions. The Debye—Hiickel equation
1S written

A|Z+Zf |\/i

oW (8.24)

Logy, = —

where A and B are constants whose values depend on the dielectric constant and the
temperature, and a is closely related to an ionic radius. The quantity 7 is the ionic
strength and is defined by Eq. (8.25), where c; is the molar concentration of ion i and z
is its charge.

1 2
I:gZCiZi (825)

In Eq. (8.24), z, and z_ are the (absolute values of the) charges on the electrolyte of
interest; in Eq. (8.25), the ¢; and z; include all the ions in the solution.
For aqueous solutions at 25°C, Eq. (8.24) takes the specific form

0.509|z 2z [V

logy, = — T (8.26)

and at very low ionic strengths Eq. (8.26) approaches Eq. (8.27), which is known as
the Debye—Hiickel limiting law:

logy, = —0.509|z, z_|VI (8.27)
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Example 8.3. What is the ionic strength of (a) a solution 0.10 M in NaCl and 0.05 M
in HCI; (b) a solution 0.25M in K,SO,4?

(@) engt = 0.10M, cy+ = 0.05M, ¢cq- = 0.15M; ziz = 1 for all ions. From
Eq. (8.25), we have

1
1=5(010+0.05+0.15) = 0.15M

The ionic strength of a solution of 1:1 electrolytes is equal to the total solute
concentration.
(b) ck+ =0.50M, K+ = +1, Csor- = 0.25M, g0 = —2

—_—

I1==(050 x 14+0.25 x 4) = 0.75M

2
The ionic strength of a solution containing polyvalent ions reflects the
dominant effect of the square of the charge on the ionic atmosphere. Notice
that the concentrations of H* and OH ™ arising from the dissociation of water
are not included in the calculation because they make a negligible contribution
to the ionic strength.

Example 8.4. Calculate the mean ionic activity coefficient of a 1:1 electrolyte
at concentrations of 0.001, 0.010, and 0.10molL~!, in water at 25°C. Use the
Debye-Hiickel equation in the form of Eq. (8.26), and also use the limiting law,
Eq. (8.27).

From the given data, z, = +1,z_=—1, s0 |z4z_| = 1, and I =c¢, the molar
concentration. These results are found:

T+
¢ (M) Eq. (8.26) Eq. (8.27)
0.001 0.965 0.964
0.010 0.899 0.889
0.100 0.756 0.690

The results in Example 8.4 show that the limiting law and the full Debye—Hiickel
equation agree closely in extremely dilute solution, but they begin to differ signifi-
cantly in the concentration region of ~0.01 M (i.e., when VI=0. 1). Above this ionic
strength Eq. (8.26) is necessary, but even this equation fails to agree closely with
experimental results at ionic strengths above about 0.05 M, where effects specific to
each electrolyte are observed. Table 8.2 lists some experimentally determined mean
ionic activity coefficients.® We expect, from the appearance of the product |z4z-|in
the Debye—Hiickel equation, that different charge types of electrolytes will behave

3 See Glasstone (1947, p. 402). These activity coefficients can be measured in various ways. One approach
is to measure the deviation from ideality of the solvent and to relate this to the nonideality of the solute.
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Table 8.2. Mean ionic activity coefficients in water at 25°C

Y+

m HCl NaCl CaCl, ZnSO,
0.001 0.966 0.966 0.888 0.734
0.005 0.928 0.929 0.789 0.477
0.01 0.905 0.904 0.732 0.387
0.02 0.875 0.875 0.669 0.298
0.05 0.830 0.823 0.584 0.202
0.1 0.796 0.778 0.531 0.148
0.2 0.767 0.732 0.482 0.104
0.5 0.757 0.679 0.457 0.063
1.0 0.809 0.656 0.509 0.044
2.0 1.009 0.670 0.807 0.35
3.0 1.316 0.719 1.55 0.041

Source: Data from Glasstone (1947, p. 402).

differently, and this is seen. However, it is also observed that electrolytes of the same
charge type display behavior characteristic of the individual electrolyte; compare HCI
and NaCl in Table 8.2. Empirical extensions of the Debye—Hiickel equation have been
proposed of the form (at 25°C in water)

0.509|z.z— |V1 N
1 +aBVI
where the parameters aB and C are chosen to best fit the experimental data.

Figure 8.1 is a plot of the data from Table 8.2 in a format consistent with the
manner in which the Debye—Hiickel equation is written, that is, as a plot of log 7y

logy, = — CI (8.28)

0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
-1.4

-1.6
0

logy

Figure 8.1. Plot of data in Table 8.2. Limiting law slopes are drawn for 1:1, 1:2, and 2:2
electrolytes.
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against /7. Figure 8.1 shows several interesting features. The individual character of
the nonideal behavior is clearly evident in the curves for HCI and NaCl. The minima
observed in these curves are not predicted by the Debye—Hiickel equation, and in
some instances the mean ionic activity coefficients rise to values greater than unity.
From the limiting law, Eq. (8.27), we can predict the slope of the plot for each charge
type of electrolyte at infinite dilution, and these slopes are drawn in Fig. 8.1. The
Debye-Hiickel limiting law gives a satisfactory account of nonideal electrolyte
behavior in very dilute solutions.

The Debye—Hiickel theory finds very practical application in obtaining thermody-
namic acid dissociation constants for weak acids and bases. An apparent constant is
measured experimentally at, necessarily, finite ionic strength, and the theory is used to
correct the value to zero ionic strength. This calculation is described in Chapter 13.
One powerful consequence of the Debye—Hiickel theory is that it provides a firm
theoretical basis for the extrapolation of electrolyte experimental data to infinite
dilution; the appropriate independent variable is the square root of the ionic strength.

PROBLEMS

8.1. Write the reactions for ionization and dissociation of a base B in glacial acetic
acid.

8.2. Calculate the ionic strengths of these three solutions (from Table 8.2): 3.0m
NaCl; 3.0m CaCl,; 3.0m ZnSO,.

8.3. Calculate the mean ionic activity coefficient of 0.05 m NaCl in water at 25°C,
and compare your result with the experimental value in Table 8.2.

8.4. Estimate the mean ionic activity of 0.001M HCI in an aqueous solution
containing 0.025 M KCI at 25°C.

8.5. Calculate the ionic strength of a solution containing 0.10M Na3PO, and
0.05M KBr.

8.6. Obtain an estimate of the parameter C in Eq. (8.28) for CaCl, by use of the datain
Fig. 8.1. [Hint: find the derivative d log 'y /d\/I of Eq. (8.28), set equal to zero
(at the minimum), and solve for C.]



COLLIGATIVE PROPERTIES

Several properties of solutions depend (mainly) only on the number of solute particles
(molecules or ions) and not on their identity. These are called the colligative
properties. They are pharmaceutically relevant.

9.1. BOILING POINT ELEVATION

The boiling point of a solution of a nonvolatile solute is higher than the boiling point of
the pure solvent. This observation is readily explicable on the following basis. The
normal boiling point T}, of the solvent is the temperature at which its vapor pressure is
equal to 1 atm. When a solute is incorporated into the solvent, according to Raoult’s
law the vapor pressure over the solutionis p; = x; P| [Eq. (7.1)]. (We will use subscript
1 to designate the solvent and 2 for the solute.) Since x; + x, =1, an increase in x,
results in adecrease in x; and therefore a decrease in py, ata given temperature. In order
to cause the solvent to boil, it is now necessary to raise the temperature until p,
becomes 1 atm. This phenomenon is known as the boiling point elevation, and it is seen
to be a consequence of the vapor pressure lowering by the presence of solute particles.
As ordinarily discussed, the boiling point elevation is treated as a phenomenon of
nonelectrolyte solutions, but solutions of electrolytes show the same effect. It is
necessary to keep in mind that the number of solute particles (i.e., their concentration)
is the controlling factor, and if the solute is an electrolyte, the number of particles
depends on the charge type and the extent of dissociation. For example, in a 0.10 M
aqueous solution of NaCl the effective concentration, as concerns the colligative
properties, is 0.20 M.

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.
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A thermodynamic description of the boiling point elevation effect can be achieved
by the application of concepts that we have already developed. At equilibrium (i.e., at
the boiling point), the chemical potential of the solvent is equal in the vapor and
liquid phases:

p(g) = my (1) (9.1)

By restricting attention to dilute solutions, we can treat the solution as an ideal
solution, writing

w (1) = w1 +RT Inx, (9.2)

i (2) = 1} (g) +RT Inp, (9.3)

Setting these equal, noting that p; =1 atm at the boiling point, and writing
AGY,, = uf(g) — ui(l) gives

AG®, = RT Inx; (9.4)

vap

Putting Eq. (9.4) into the form AGgap /T = R1n x; and applying the Gibbs—Helmholtz
equation [Eq. (3.18)] leads to

dlnx AH,,
dT RI? (9:5)

where constant pressure is understood.’
When x; =1, we obtain T=T, (the normal boiling point). Equation (9.5) is
integrated between the limits shown:

X1 T

0
dln)ﬁ = — AHvap dl
R T2
1 T,
The result is

AH) O (1 1

1 _ vap (1 %
i R (Tb T)

' AGyp = 1y (2) — 1 (1) = 0, since the system is at equilibrium, but AG‘Jap = wd(g) — n(1) is not zero; it
is the standard free-energy change. It is therefore correct to label the enthalpy change AHY, . However,
AH?ap is numerically identical to AHy,,, which appears in the Clausius—Clapeyron equation [Eq. (4.11)].
The reason for this equality is that we have postulated ideal solution behavior, and for the ideal solution, the
enthalpy of mixing is zero (Section 7.1). Consequently there is no enthalpy change on bringing the solution

fromx;=1tox; <l.
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which can be written

AH® /T _T,
Inx = — —2 ( b) (9.6)
R \TT,

Now define the boiling point elevation as AT, = T — T}, and, since Tand T}, are quite
close together, approximate 77}, by T;. Making these substitutions in Eq. (9.6) gives

AH), AT,

Inx; = —
. RT?

Since x, is small (the solution is dilute), we write® In x; =In (1 — x2) &~ —x,. We also
convert x,, the mole fraction of solute, to m,, the molality of solute, with x, = m,M,/
1000, where M| is the molecular weight of solvent [Eq. (5.2)]. The final result of these
substitutions is

RT?M
AT, = i U (9.7)
1000AH§,)&1p
which can be written AT, = K,m,, where
RT?M,
K,=—b"—" 9.8
* "~ 1000H0,, ©8)

The proportionality constant K}, is called the boiling point elevation constant or the
ebullioscopic constant. Note that K, can be calculated solely from properties of the
solvent and that AT, depends only on the identity of the solvent and the concentration
(not the identity) of the solute.

Example 9.1. The heat of vaporization of water is 9.717 kcalmol ™" at its boiling
point. Calculate the ebullioscopic constant of water:

(1.987 cal mol ~ ' K~ 1)(373.15K)*(18.02 g mol ~ ')
(1000)(9717 cal mol ~ 1)

= 0.513Kgmol !

K, =

Theresultin Example 9.1 may appear to say that the boiling pointof a 1 m solution will
be raised 0.513 K, but of course a 1 m solution lies outside the dilute solution range
where this equation is valid.?

2 We are using the series expansion In (1 —x) = —x 4+ x%2 —x*/3 +----

3 Some discrepancies in the form of Eq. (9.8) for K, will be noted in the literature. Some authors
(Williamson 1967, p. 102; Atkins 1994, p. 229) omit the factor 1000 in the denominator. Others (Smith
1977, p. 90; Gupta 2000) include the 1000 and assign K}, the unit K. The distinction lies in the units given to
the molality m,, that is, whether molality has the units mol kg ' or mol (1000) g~ or is considered to be a
dimensionless number.
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9.2. FREEZING POINT DEPRESSION

We have seen in Chapter 6 that the freezing point (melting point) of a two-component
system is lowered (relative to a pure substance). A simple quantitative treatment can be
based on the assumption that the solute does not dissolve in solid solvent; then the solid
that forms is pure solvent. The method is identical in form with that used for the
analysis of the boiling point elevation; we replace the chemical potential of the gaseous
solvent with that of the solid solvent. The result can be written

ATf == Kfmz (99)
where ATy = Ty — T and
RT/?MI
Kr=——- (9.10)
IOOOAHf

where AHJ‘? is the heat of fusion and K is the cryoscopic constant or freezing point
depression constant.

Example 9.2. The heat of fusion of water is 6.01 kJmol~'. Calculate the freezing
point depression constant of water:

(8.314Jmol ~ ' K~ 1)(273.15K)*(18.02 g mol ~ ')
(1000)(6010 J mol ~ 1)
1.86 K gmol ~ !

Ky =

9.3. OSMOTIC PRESSURE

Consider the experimental arrangement in Fig. 9.1, which shows a solvent compart-
ment (left) and a compartment containing a dilute solution in the same solvent (right),
the two compartments separated by a semipermeable membrane, which permits the
passage of solvent molecules but prevents the passage of solute molecules. The
presence of solute in the right-hand compartment reduces the mole fraction of solvent
in that compartment and thereby reduces its activity and chemical potential below their
values in the pure solvent in the left-hand compartment.

In order to achieve equilibrium, the chemical potential of the solvent must be equal
on both sides of the membrane. There is thus a driving force for the passage of solvent
molecules from left to right. (Although it is actually the chemical potential difference
that is responsible for this effect, it can also be rationalized as a simple concentration
effect, because the solvent concentration is higher on the left.) The flow of solvent from
left toright continues until it is opposed by the backpressure generated by the increased
height of solution in the right-hand column. (Or alternatively, the experiment can be
arranged so as to apply an excess pressure to the right until the flow of solventis exactly
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P+m

l

=

Solvent Solution

-

Semipermeable membrane

Figure 9.1. Principle of osmosis and the osmotic pressure =.

balanced.) This phenomenon of the passage of solvent through a semipermeable
membrane under the influence of a difference in chemical potentials is called osmosis,
and the excess pressure (7 in Fig. 9.1) that equalizes the chemical potentials is the
osmotic pressure.

Our thermodynamic analysis of osmosis begins with the statement of osmotic
equilibrium

WP, T) = i (P+m, T, x1) (9.11)

where the left side of the equation refers to pure solvent (the left-hand compartment in
Fig. 9.1) and the right side, to the solution. The parentheses contain the variables
controlling the particular quantities, in order to make explicit how the two sides differ.
We assume that the solution is dilute and behaves ideally. Then, on expanding w, in the
usual manner, Eq. (9.11) becomes

wI(P, T) = p(P+m, T)+RT Inx, (9.12)

where now u! (P + n, T) designates the chemical potential of pure solvent at pressure
P + m. We now develop this quantity as in

P+n
wd(P+m, T) = (P, T)+ J Vi dP (9.13)
P

where V is the molar volume of solvent [Eq. (3.6)]. Putting Eq. (9.13) into Eq. (9.12)
results in

P+m
J Vl dP = —RTIH)C] (914)

P
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Treating V; as independent of pressure and integrating yields
TCV[ = —RTlIl.X] (915)

Using once again (see note 2) the approximation (for dilute solution) that In x; = —x,,
Eq. (9.15) becomes V| = x;RT. Now, x, = ny/(n; + n,), which in dilute solution is
nearly equal to the mole ratio n,/n;. This gives

7'm1V1 = }’lzRT (916)
The product n,V; equals V, the total volume of the solution, or
nV = mRT (9.17)

The formal resemblance of Eq. (9.17) to the ideal-gas law is obvious. We can take one
further step by noting that the ratio n,/Vis the molar concentration ¢, of the solute:

= RT (9.18)

Example 9.3. Calculate the osmotic pressure of an 0.01 M solution at 25°C.
Since we find it convenient to express pressure in atmospheres, we use R as
0.08206 L atm mol ' K™'. From Eq. (9.18), we have

7 = (0.01 mol L~ ")(0.08206 L atm mol ~' K ~')(298.15 K)
= 0.245 atm

Example 9.3 shows that osmosis is a very sensitive effect, much more so than are the
other colligative properties. This same solution would exhibit a boiling point elevation
0f 0.0051 K (Example 9.1) and a freezing point depression of 0.0186 K (Example 9.2).
This sensitivity forms the basis of an experimental method, called osmometry, for
measuring molecular weights of solutes. Solutions are prepared with known con-
centrations in grams per liter (gL~ "and their osmotic pressures are measured. From
Eq. (9.18) the corresponding molar concentration ¢, is calculated. Since ¢, has the
units mol L™! and mol = g/M, (where M, is the molecular weight of the solute), the
quantity M, can be obtained. In practice, deviations from ideality must be taken into
account (Atkins 1994, p. 229).

Osmotic Pumps. The phenomenon of osmosis has found important applications in
the delivery of drugs by both oral tablets and implantable systems. The concept in all
cases is very simple: A membrane semipermeable to water but not to the drug to be
delivered is used to encapsulate the drug, which occupies one chamber in the tablet
(one layer in the implant).Additives such as osmotic agents (salts like magnesium
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Figure 9.2. (a) An osmotic pump can be used to release drug at a controlled rate from an oral
tablet. (b) The same concept applied to the delivery of two drugs through one tablet.

sulfate) or water-swellable polymers occupy a second chamber (different layer in an
implant). Figure 9.2a shows the simplest osmotic pump. The tablet (or the implant) is
equipped with one or more micro-orifices drilled in the system with a laser. Upon
exposure to an aqueous environment, the semipermeable membrane will allow
water to enter the tablet. The chamber where the salt or the polymer is contained
will increase in volume, and this increase will generate enough pressure to push the
drug out of the orifice as an aqueous suspension. The rate of release will be determined
by the rate of water-diffusion and the orifice diameter. This conceptually remarkably
simple concept can be extended to tablets containing more than one drug as shown
in Fig. 9.2b.

The use of a number of different additives as well as complexing agents for
enhancing the water-solubility of hydrophobic drugs (cyclodextrins, an important
class of drug-complexing agents are described in Chapter 14) has led to a number of
modifications of the original osmotic pump design. Osmotic pumps present the
advantage of leading to zero-order kinetics in drug release, that is, constant drug
release over time. This consistent, stable drug release helps to achieve better
therapeutic control.

9.4. ISOTONICITY CALCULATIONS

Body membranes, including cell membranes, are semipermeable membranes to some
degree. They are generally permeable to water and are impermeable, or nearly so, to
many (but obviously not all) solutes. Thus we anticipate the existence of osmotic
pressure differences across these membranes. It is known that irritation caused by
foreign solutions is in part related to their osmotic pressure; the closer the osmotic
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pressure of an administered solution is to that of the physiological solution on the other
side of the membrane, the less the discomfort that is experienced.

Two solutions are said to be isoosmotic if they have the same osmotic pressure.
Isoosmoticity is therefore a physical property, based on the thermodynamic concept of
Section 9.3. A solution is said to be isotonic if it has the same osmotic pressure as a
reference body fluid, measured with respect to the appropriate body membrane.
Isotonicity is therefore a physiological concept. It is possible for a pair of solutions to
be both isoosmotic and isotonic, but they need not be, as when the biological
membrane is not perfectly impermeable to the solute. For example, 1.9% boric
acid solution (in water, the solvent for all solutions in this section) is both isoosmotic
and isotonic with respect to the eye, because the corneal membrane is impermeable to
boric acid. On the other hand, 1.9% boric acid is isoosmotic with the red blood cell
contents, but it is not isotonic toward this biological medium, because the red blood
cell membrane is permeable to boric acid. (Boric acid is often used to render
ophthalmic solutions isotonic.)

A solution having an osmotic pressure greater than that of physiological fluids is
hypertonic; if its osmotic pressure is less than that of physiological fluids, it is
hypotonic. Consider a red blood cell surrounded by a hypertonic solution. Since
the osmotic pressure of the surrounding solution is greater than that inside the cell
(i.e., the water activity is less outside than inside the cell), water will flow out of the
cell, which shrinks and shrivels. If the red blood cell should be immersed in ahypotonic
solution, water will flow into the cell, which swells and may burst. The goal of
rendering pharmaceutical solutions isotonic is directed toward preventing or mini-
mizing such physiological consequences.

Experimental work has shown that the freezing point of human blood is —0.52°C.
We consider that all other physiological fluids are effectively in equilibrium with
blood, and so they are isotonic with blood. Although we saw that osmotic pressure is
the most sensitive of the colligative properties, the freezing point depression is much
the easiest to measure, and so it forms the basis of all isotonicity calculations. Here we
will describe the simplest of these, called straightforwardly the freezing point
depression method. For other methods the literature may be consulted (Thompson
1998, Chapter 10; Windholz 1983, pp. MISC-47-MISC-69; Reich et al. 2000). The
basis of the method is the assumption that contributions to the freezing point
depression from multiple solutes are additive, and so the goal of the calculation is
to achieve a freezing point depression of —0.52°C.

Example 9.4. Estimate the concentration of sodium chloride required to produce an
isotonic aqueous solution.

The calculation is based on Eq. (9.9), AT; = Kym,, with K,=1.86°C (see
Example 9.2). We seek ATy =0.52°C; hence we need m,=0.52/1.86 =0.28. But
NaClisal : 1 strongelectrolyte, so each molecule yields two particles on dissociation;
therefore we actually need to prepare a solution 0.28/2 = 0.14 m. Commonly this molal
concentration is expressed as a molar concentration, neglecting the difference; to
obtain 0.14M NaCl, whose molecular weight is 58.5, we take (0.14)
(58.5)=8.19 gL_l, or 0.82 g/100 mL, which is 0.82%.
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Experimentally it is observed that a solution 0.5% in NaCl exhibits a freezing point
depression of 0.289°C. Setting up the proportion

0.289°C _ 0.52°C
05%  «x

we find x=0.9% NaCl. The slight discrepancy with the result in Example 9.4
probably is a consequence of nonideal solution behavior. An aqueous solution
containing 0.9% (w/v) sodium chloride is isotonic. This solution is called normal
saline or physiological saline.

Because of nonideal solution behavior or incomplete electrolyte dissociation, it is
preferable to make use of published freezing point depression data. However, if such
data are not available, a very reasonable calculation can be based on the known K¢value
of 1.86 together with chemical knowledge of the nature of the solute.

Example 9.5. Give directions for the preparation of 100 mL of isotonic 1% hexa-
methonium tartrate. The following data are available (Windholz 1983, pp. MISC-
47-MISC-69; Reich et al. 2000):

Concentration AT
0.5 0.045
1 0.089
2 0.181
3 0.271
5 0.456

We set up the problem in tabular form:

Desired ATy value 0.52°C
ATy of 1% of drug 0.089°C
Difference to be made up 0.431°C

We will use NaCl to make the solution isotonic. From the proportion
09%  «x
0.52°C  0.431°C

we find x =0.75%. Therefore we proceed by dissolving 1.0 g of hexamethonium
tartrate and 0.75 g of NaCl in enough water to make 100 mL.

If data are not available for the concentration we require, interpolation or
extrapolation may give the information.
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Figure 9.3. Freezing point depression of hexamethonium tartrate. See Example .

Example 9.6. Prepare 2 oz of 2% isotonic imipramine hydrochloride.

Sources give AT;= 0.058°C at0.5% and 0.110°C at 1%. We can plot these data as in
Fig.9.3 and obtain the estimate AT, = 0.225°Cat 2%. (Extrapolationis risky, butit may
be our best recourse.) We proceed as before:

Desired ATy value 0.52°C
ATy of 2% of drug 0.225°C
Difference to be made up 0.295°C

Again using NaCl, we obtain

0.9% B X
0.52°C ~ 0.295°C
x = 0.51%

If we needed to prepare 100 mL of the solution we would take 2.0 g of drug and 0.51 g
of NaCl. However, only 2 oz (60 mL) of solution is required, so we take (60/100)
(2)=1.2 g of drug and (60/100) (0.51) =0.31 g of NaCl in enough water to make
60 mL.

If the prescription calls for more than one drug, the AT} contributions of the several
drugs are summed. In ophthalmic solutions, boric acid may be used to make the
solution isotonic; 1.9% boric acid solution is isotonic.

Although the several alternative methods of isotonicity calculation are all
derived from the freezing point depression method, one of these approaches merits
comment because of its simplicity and utility. The principle is as follows. If two
isotonic solutions are mixed, the resulting solution is isotonic. For example, if the
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prescribed amount of drug is dissolved in just enough water to make an isotonic
solution, this solution could be diluted to the desired volume with normal saline and the
result will be isotonic. The United States Pharmacopeia gives formulas for isotonic
phosphate buffer solutions that can be used in this way, particularly for ophthalmic
solutions.

PROBLEMS

9.1.

9.2.

9.3.

94.

9.5.

9.6.

9.7.

9.8.

Starting with Raoult’s law, show that the extent of vapor pressure lowering is
directly proportional to solute concentration.

Calculate the boiling point elevation constant of ethanol, whose heat of
vaporization is 38.6kJ mol .

Calculate the freezing point depression constant of glacial acetic acid, whose
heat of fusion is 11.7 kJmol .

Give directions for the preparation of 1 oz of this ophthalmic solution; AT} for
2% pilocarpine nitrate is 0.247:

Pilocarpine nitrate 2%
Make isotonic with boric acid

Estimate ATy of 5% dextrose solution. Dextrose (glucose) is available as the
monohydrate, MW 198.2. What concentration of dextrose will yield an isotonic
solution?

A and B are two pure liquids of similar freezing points and molecular weights.
Liquid A freezing-point depression constant is twice that of liquid B. What is the
relationship between the heats of melting of A and B?

A solution is made at 25°C by mixing 0.50 g of liquid C (molecular weight =
250 g/mol) and 1.60 g of liquid D (molecular weight =200 g/mol). The vapor
pressure of liquid C at 25°C is 268 mmHg. The vapor pressure of liquid D at 25°C
is 236 mmHg. It is found experimentally that the partial vapor pressure of C and
D above this solution are 45 mmHg and 177 mmHg, respectively. What are the
activity coefficients of C and D in this solution?

What are the freezing point and the osmotic pressure of an aqueous 0.2m

solution of sucrose at 25°C? Consider the solution as dilute and assume

density = 1.02 gem >,



SOLUBILITY

10.1. SOLUBILITY AS AN EQUILIBRIUM CONSTANT

The topic of solubility merits special attention because of its great importance in
pharmaceutical systems. We can generally anticipate that a drug must be in solution if
it is to exert its effect. Typically, the type of system we encounter is a pure solid
substance (the solute) in contact with a pure liquid (the solvent). We allow equilibrium
to be achieved at fixed temperature and pressure, such that at equilibrium the system
consists of (excess) pure solid phase and liquid solution of solute dissolved in solvent.
According to Gibbs’ phase rule, P=2 and C=2, so F=C — P + 2 =2 degrees of
freedom. These are the temperature and pressure, which we have specified as fixed.
Thus there remain no degrees of freedom; the system is invariant. This means that at
fixed temperature and pressure, the concentration of dissolved solute is fixed. We call
this invariant dissolved concentration the equilibrium solubility of the solute at this
pressure and temperature. (We say that the solution is saturated.) Our present concern
is with how the equilibrium solubility depends on the temperature and on the chemical
natures of the solute and the solvent.
Expressed as a reaction, the dissolution process is

Pure solvent + Pure solute = Solute in solution

At equilibrium the chemical potentials of the solute in the two phases are equal; or,
letting component 1 be the solvent and component 2 the solute, we obtain

W, (solid) = w,(solution)

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
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Writing out the chemical potentials gives
wI(solid) + RT In ay(solid) = w(solution) 4+ RT In a,(solution) (10.1)

where the standard state of the solid is the pure solid, and we will adopt as the standard
state of the solute in solution the Henry’s law definition on the molar concentration
scale. Rearranging Eq. (10.1) leads to

ay(solution)

A’ = —RT 1
H ! s (solid)

(10.2)

where Ap® = u9(solution) — u9(solid). But the solid is in its standard state, so
a;(solid) = 1.0 by definition and we obtain

Ap’ = —RT In ay(solution) (10.3)

We have seen that a(solution) is invaiant—it is the activity corresponding to the
equilibrium solubility—so comparison of Eq. (10.3) with the fundamental thermo-
dynamic result

AG’ = —RTInK (10.4)

leads to the conclusion that a;(solution), the activity of the solute in a saturated
solution, must have the character of an equilibrium constant. As a consequence, we can
evaluate standard free energy, enthalpy, and entropy changes for the soution process in
the usual manner (Chapter 4). These quantities are respectively called the free energy,
heat, and entropy of solution.

For nonelectrolyte solutes, particularly those of limited solubility, so that the
saturated solution is fairly dilute, it will be acceptable to approximate the activity a,
(soln) by the equilibrium solubility concentration. This is usually in molar concen-
tration units and is often symbolized s.

10.2. THE IDEAL SOLUBILITY

A thermodynamic argument can predict the equilibrium solubility of a nonelectrolyte,
provided that it dissolves to form an ideal solution. Ideal behavior does not mean that
intermolecular interactions are absent. On the contrary, solids and liquids would not
exist without the intermolecular forces of interaction. In the present context, ideal
behavior means that the energy of interaction between two solvent molecules is
identical to that between one solvent and one solute molecule, so that a solvent
molecule may be replaced with a solute molecule without altering the intermolecular
energies. (This requires that the solvent and solute molecules have the same size,
shape, and chemical nature, a demanding set of limitations.)
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Quantitatively, an ideal solution can be defined as one having the following
properties (Chapter 7):

AHpix = 0 (10.5)
AVix = 0 (10.6)
ASmix = — R(.Xl In X1 +x; In )Cg) (107)

According to Eqgs. (10.5) and (10.6), there is no heat or volume change on mixing the
solute and solvent in an ideal solution, and the entropy change is given by Eq. (10.7).
Sincex; + x, =1, the logarithmic terms are necessarily negative, so ASy is positive,
and this constitutes the “driving force” for dissolution, because of the relationship
AG = AH —TAS.

If the entropy of mixing is the driving force for dissolution, what s the “resistance”?
It is the solute—solute interaction forces, which, for solids, lead to the “crystal lattice
energy.” These must be overcome for the solute to dissolve. Now, the free-energy
change for the dissolution process is the same no matter what reversible mechanism
(path) is taken to pass from the initial state (pure solute) to the final state (saturated
solution), so we can divide the process as follows (for a solid solute):

Crystalline solute = Supercooled liquid solute
Pure liquid solvent = Solvent containing cavity

Supercooled liquid solute + Solvent = Saturated solution
containing cavity

Sum : Crystalline solute 4 Pure liquid solvent = Saturated solution

Since in an ideal solution the solvent—solvent interactions match the solvent—solute
interactions, the energy required to create molecule-sized cavities in the solvent is
offset by the energy recovered when the solute molecules are inserted into these
cavities. The energetic cost of the dissolution process then appears in the first step,
the melting of the solid. An equivalent viewpoint (Grant and Higuchi, 1990, p. 16)
is that the enthalpy of solution is given by

AHgo, = AI_Ifusion + AHyix

But AH,;x = 0 for an ideal solution, so AH, = AHfusion-
The saturation solubility, we have seen, is an equilibrium constant, so the van’t Hoff
equation [Eq. (4.29)] is applicable:

dinx, AHy
dT  RT?

(10.8)

where the solubility is expressed as the mole fraction simply to maintain consistency
with Eq. (10.7) and where AH is the heat of fusion and T'is the absolute temperature.
We have seen above why the heat of fusion appears in a solubility expression.
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(Incidentally, a dissolved solid should be viewed as possessing some of the properties
of the liquid state, consistent with the above view that fusion is the first step in the
dissolution process.) Now suppose that AHy is independent of temperature, which is
equivalent to writing for the solute, from Eq. (1.23),

AC, =Cl—CYM =0 (10.9)

Then integrating Eq. (10.8) from 7,, to T gives

AH; (T,,—T
Inx,=— —1 () (10.10)
R \ 7T,

where T,, is the melting temperature and T is the experimental temperature.
Equation (10.10) allows us to calculate the ideal solubility.

Example 10.1. The melting point of naphthalene is 80.2 °C, and its heat of fusion
at the melting point is 4.54 kcalmol~'. What is the ideal solubility of naphthalene
at 20°C?

— 4540 cal mol ~! 60.2 K
Logx;, = ———3
(2.303)(1.987 cal mol 'K ') \353.35K x 293.15K
= —0.577
x, = 0.265

Deviations from ideality will be manifested by discrepancies from the ideal
solubility as calculated with Eq. (10.10). Table 10.1 lists equilibrium solubilities
for naphthalene in many solvents. Observe that those solvents most chemically like

Table 10.1. Naphthalene solubility at 20°C

Solvent Xo
(Ideal) 0.265
Chlorobenzene 0.256
Benzene 0.241
Toluene 0.224
Carbon tetrachloride 0.205
Hexane 0.090
Aniline 0.130
Nitrobenzene 0.243
Acetone 0.183
n-Butanol 0.0495
Methanol 0.0180
Acetic acid 0.0456

Water (25°C) 0.0000039
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naphthalene—that is, aromatic and nonpolar solvents—show behavior most closely
approximating ideal behavior.

At the melting temperature 7, the solid and liquid forms of the solute are in
equilibrium, so AGy = 0 and we get AH; = T,,, ASy, giving Eq. (10.11) as an alterna-
tive form of Eq. (10.10):

ASH(T —T)

10.11
RT (10.11)

1I1)C2 = —

10.3. TEMPERATURE DEPENDENCE OF THE SOLUBILITY

Since AHy is always a positive quantity, Eq. (10.10) predicts that the solubility of a
solid will increase with temperature. Moreover, Eq. (10.10) shows that if two solid
substances have the same heat of fusion, the one with the higher melting point will have
the lower solubility. Conversely, if they have the same melting point, the one with the
lower heat of fusion will have the higher solubility. All of these inferences from
Eq. (10.10) refer to systems forming ideal solutions, so deviations from the predictions
can occur for real systems. Nevertheless, the increase of solubility with temperature
is very widely observed for solids. Even the relationship of solubility to melting point
can be a useful guide, though confounding phenomena can introduce complications;
for example, hydrogen-bonding or other polar interactions may raise both the melting
point and the aqueous solubility. The comparison of the temperature dependence
of solubility of solids and gases is instructive; see Table 10.2.
Equation (10.10) can be rearranged to Eq. (10.12):

AH AH,
Inx, = — A Ay

(10.12)
RT ' RT,

If AHy is essentially constant over the experimental temperature range, Eq. (10.12)
predicts that a plot of In x, against 1/Twill be linear with a slope equal to — AH;/R.
The line should terminate at the melting point, where 1/T' = 1/T,,,. Often such lines are
straight, probably because the usual range of temperatures is small. The slope gives
AHp in principle, but in actuality the quantity evaluated from the slope is not precisely

Table 10.2. The contrary effects of temperature on the solubilities of solids and gases

AH; AH,
Solid = Liquid = Gas
AH,

Solids Gases
Solution is the process of passing from Solution is the process of passing from gas
solid to liquid (fusion, AH)) to liquid (condensation, AH,.), which is
the reverse of vaporization (AH,)
AHis positive, so x, increases as AH,, is positive, so AH,. is negative;

T increases thus x, decreases as T increases
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Figure 10.1. Hypothetical solubility van't Hoff plots for polymorphs.

AH; because the solution is seldom ideal, and instead the quantity found in this way is
termed the heat of solution.

Throughout this discussion we have been assuming that the solid phase consists
of the pure solid and not a solid solution. Another possible complication arises if the
solid substance can exist in two crystalline forms (polymorphs; Chapter 6), which
interconvert at transition temperature 7;. The van’t Hoff plot can resemble Fig. 10.1a or
Fig. 10.1b, depending primarily on the kinetics of the transformation. In Fig. 10.1a,
the two forms are sufficiently stable that their solubilities can be separately measured
at the same temperatures, which are below the transition temperature. Nevertheless,
the crystal form having the higher solubility (at a given temperature) is thermody-
namically unstable (it is said to be metastable, since its kinetics of transformation
permit it to exist for some period during which it acts as if it were stable) and will
ultimately be converted to the stable form. Extrapolation of the lines to the transition
temperature may be possible. Sulfathiazole in 95% ethanol shows the Fig. 10.1a
behavior (Milosovich 1964; Carstensen 1977, p. 7).

In Fig. 10.1b, one form exists in one temperature range, while the other form exists
in a temperature range on the other side of 7;. The melting point observed will be that of
the higher-melting polymorph. Carbon tetrabromide exemplifies this behavior
(Hildebrand et al., 1970, p. 23).

Let us return to the assumption that the change in heat capacities, AC,, is zero,
for all the subsequent discussion was based on this assumption. If AH; in fact is a
function of temperature, then AC,, is not zero. Suppose we make the more reasonable
assumption that AC, is a nonzero constant, and write AHy as

AH; = AH}" — AC,(T,, — T) (10.13)
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where AHY! is the heat of fusion at T,,. Equation (10.13) is inserted into Eq. (10.8),
which can be rearranged and integrated to give Eq. (10.14):

AH!" (T,,—T\ AC, (T,—T\ AC, T,
Inx, = — —L +=2 — P2 (10.14)
R \ TT, R T R T

This equation is useful for assessing the error that may be introduced by making the
simple assumption AC,, = 0. Suppose, for example, that the experimental temperature
is 25 °C and the melting point is 100 °C. Then the last two terms in Eq. (10.14) become
equal to 0.25AC,/R — 0.22 AC,,/R = 0.03AC,/R. Thus considerable compensation can
take place, making the approximation AC,, =0 more acceptable than it might have
seemed.

Example 10.2. These are solubility data for nitrofurantoin in water (Chenetal. 1976).
Analyze the data to obtain the heat of solution.

T(°C) 10°x,

24 6.01
30 8.57
37 13.16
45 18.99

The data are manipulated as required to make the van’t Hoff plot according to
Eq. (10.12):

10°K/T  logx,

3.37 —-5.22
3.30 —5.06
3.23 —4.88
3.14 —4.72

The plot is shown in Fig. 10.2. It is possible that the points describe a curve, but this
is uncertain with the data as given, because conceivably the scatter is a consequence
of experimental random error. A straight line has therefore been drawn. Its slope is
—2300 K, so we calculate

AHqy = (2300K)(1.987 cal mol ' K~ 1)
= 4570 cal mol !
= 4.57 kcal mol !
=19.1kJ mol !

Note that the enthalpy change is labeled AH , to indicate explicitly that this is a heat
of solution.
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Figure 10.2. van’t Hoff plot for nitrofurantoin solubility.
10.4. SOLUBILITY OF SLIGHTLY SOLUBLE SALTS
Many salts exhibit very low solubilities in water. Silver chloride is an example;
If aqueous solutions of silver nitrate and sodium chloride are mixed, solid silver
chloride precipitates. It is conventional to describe this process as the reverse of the
precipitation reaction, namely, as the dissolution of the salt. Let us begin with the
simplest case of a 1 : 1 sparingly soluble salt MX. The solid crystalline form is ionic.
When it dissolves in water the ions dissociate, and no ion pairs are detectable.
We therefore write the equilibrium as

MX(s) =M* + X~ (10.15)

Proceeding as we have done for several earlier processes, we equate the chemical
potentials of the solid and the dissolved solute at equilibrium:

K(s) = p(soln)
Expanding these gives
p’(s)+RT Ina(s) =p’ +RTIna, +p’ +RT Ina_
and collecting terms (and noting that a(s) = 1 by our standard state definition),
Ap’ = —RTIna,a_ (10.16)

where Ap® = pu° +p® — uO(s). Evidently then [compare with Eq. (10.4)1, the
product a . a_ is an equilibrium constant. By Eq. (8.23a) we see that a ya_ = ai,
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where a.. is the mean ionic activity, and since a2 = y%.¢2, Eq. (10.16) can be written
A’ = —RTIny’icl (10.17)

If no extraneous ions are present, so that the ionic strength is due solely to the ions from

the sparingly soluble salt (and hence is very low), the activity coefficient term is

essentially unity. Moreover, the molar concentrations of the cation M+ and the anion

X" are equal, and each is numerically equal to the equilibrium molar solubility of the
salt, which is commonly denoted s. Thus Eq. (10.17) becomes

Ap’ = —RTIns* (10.18)
Equation (10.17) is exact; Eq. (10.18) is usually a reasonable approximation, and both
implicitly define the equilibrium constant for Eq. (10.15). This constant is symbolized
K, and is called the solubility product. Since solubility products are very small
numbers, it is common to state them as pK,, where pK, = —log K. Table 10.3 lists
some pKj, values.
Example 10.3. What is the solubility of silver chloride in water? From Table 10.3,
pKy,=9.75 for AgCl, so K,,=1.78x 10" '°. From Eq. (10.18), K,=s, so
s= /Ky =133 x10"°M.

In the general case of the salt whose formula is M, X, the solubility product is
defined, in accordance with the usual formulation of equilibrium constants:

Kip = ciyc (10.19)
The quantity that we label s then depends on the stoichiometry.

Example 10.4. What is the molar solubility of ferrous hydroxide?

Table 10.3. Solubility products for slightly soluble salt?

Salt pKsp Salt pKsp
BaSO, 9.96 PbCO; 13.13
CaCO;3 8.54 PbS 27.9
Ca(OH), 5.26 MgCO3 7.46
Ca;3(POy), 28.7 Hg,S 47.0
Cul 11.96 HgS (red) 524
AuCl 12.7 HgS (black) 51.8
AuCl; 24.5 AgBr 12.30
Fe(OH), 15.1 AgCl 9.75
Fe(OH); 374 Agl 16.08

“In the temperature range 18-25 °C; water is the solvent.
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From Table 10.3, pK, = 15.1, or Ko, =7.9 x 107", The dissolution reaction is
Fe(OH), =Fe’ " +20H "~

so Ky, = creCon. (The charges on the subscripts are omitted for clarity.) Since each

molecule of Fe(OH), that dissolves yields one Fe " ion, we define the solubility as the

concentration of ferrous ion, or cge, = 5. The stoichiometry yields cog = 2¢Fe, SO the
.1

result is

Ky =s % (25)* = 4s°
Therefore s =5.8 x 107 °M.

Example 10.5. What is the solubility of silver chloride in 0.02 M KCI1? Assume that
activity coefficients are unity.

Again we set ca = s, the solubility. The solubility product is defined Ky, = cagcci;
however, the chloride concentration has been augmented by the addition of potassium
chloride, so we write cc; = 0.02 + s; thatis, the chloride concentration is the sum from
two sources, the KCI and the AgCl. We therefore have Ky, = 5(0.02 + ), which is a
quadratic equation that can be solved for s. Before doing that, however, it is worth
trying the approximation cc; = 0.02, which involves neglecting the relatively small
contribution from dissolution of the AgCl. Thus

Ksp = 0.025 = 1.78 x 10~ '°
s =89x107°M

First note that the approximation seems well justified. More interestingly, observe that
the solubility of silver chloride has been reduced from about 1 x 107> M in water
(Example ) to about 1 x 10~ M in 0.02 M KCI. This is an example of the common ion
effect. The solubility of any slightly soluble salt can be reduced by adding an excess of
one of its constituent ions.

The accuracy of such calculations can be improved by making use of the
Debye-Hiickel equation to estimate the values of mean ionic activity coefficients.

10.5. SOLUBILITIES OF NONELECTROLYTES: FURTHER ISSUES

Salt Effects. InExample 10.5 we encountered one type of salt effect. There is another
type of salt effect that is observed when the solubility of a nonelectrolyte is studied
as a function of ionic strength (or of the concentration of an added electrolyte).

! Equations like this one in Example 10.4 are easily solved by a logarithmic technique. We have
7.9%x 1079 =45 or 1.975 x 1076 =>. Take logarithms of both sides, obtaining —15.70 =3 log s, or
—5.235=1logs. The antilogarithm gives s.
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Compare the nonelectrolyte solubility in the absence and presence of added salt. Since
the solid solute is present in both cases, we obtain

p(solid) = u(c; = 0) = u(cy)
where ¢, is the concentration of added salt. Therefore a(c, =0) = a(cy), or
S0V = Y (10.20)

where sy and s are the solubilities in the two cases. Thus y/y, = so/s; and since y, = 1
is a reasonable assumption, y = s /s, and we have a method for measuring nonelec-
trolyte activity coefficients. Moreover, it is found experimentally that the quantity log
(s0/s) often varies linearly with c;, or

Log™2 = kyc, (10.21)
S

If 59/s > 1, then ky is positive, and the nonelectrolyte is said to be “salted out”; if
so/s < 1, then k; is negative, and the solute is “salted in.” These are called the “salting-
out and salting-in effects,” and the constant &, is known as the Setschenow constant.

Regular Solution Theory. We have seen that an ideal solution has thermodynamic
mixing quantities AHyix = 0and ASyix = — R(x; Inx; 4+ x5 In xy). A regular solution
is defined to be one having an ideal entropy of mixing but a nonideal enthalpy of
mixing. Recall also that the ideal solubility of anonelectrolyte (i.e., the solubility when
a nonelectrolyte forms an ideal solution) is given by

—AH; (T, —T
Inx, = ! ( ) (10.22)
R 1T,

where AC, is assumed to be zero or negligible. The molecular interpretation of an
ideal solution is that the energy of interaction of a solute molecule with a solvent
molecule is identical with the energy of interaction of two solvent molecules.

The molecular interpretation of regular solution theory is quite different; in regular
solution theory the energy of 1-2 interactions (where 1 is the solvent, 2 is the solute)
is approximated as the geometric mean of 1-1 and 2-2 interaction energies, or >

U = (U Un)'"? (10.23)

This approximation results in regular solution theory being applicable mainly to
fairly nonpolar systems, that is, nonpolar nonelectrolytes dissolved in nonpolar
solvents. For our present interest, the essential result (Hildebrand and Scott, 1964,
p- 271) of regular solution theory is embodied in Eq. (10.24), which may be compared

2 The arithmetic mean of two numbers is (@ + b)/2; their geometric mean is (ab)">.
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with Eq. (10.22):

(61 —8,)* (10.24)

—AHy (T, —T Va?
Inx, = f( )— 291

R T, RT

where V), is the molar volume of solute and ¢, is the volume fraction concentration of
solvent in the solution. The quantities 6; and 8, are the solubility parameters of the
solvent and solute. These are physical properties with the following significance.
The term AH,;,, the molar heat of vaporization, is the enthalpy required to effect the
transformation of one mole of liquid to its vapor state. During this process all the
solvent—solvent interactions (which are responsible for the existence of the liquid
phase) are overcome. A quantity called the cohesive energy density (CED) is defined

AH,yp — RT

CED =
Vv

(10.25)

where V is the molar volume of the liquid. We anticipate, and we find, that liquids with
strong intermolecular interactions (especially polar “associated” liquids having the
potential for strong dipole—dipole and hydrogen-bonding interactions) have larger
CED values than do nonpolar liquids. Table 10.4 lists some CED values.

Because of the manner in which CED appears in regular solution theory equations,
Hildebrand (Hildebrand et al. 1970; Hildebrand and Scott 1964, p. 271) defined the
solubility parameter 6 by Eq. (10.26). Table 10.4 also gives 6 values.

8 = (CED)'/? (10.26)

Table 10.4. Cohesive energy densities and solubility parameters

Solvent CED (calcm ™) 8 (cal?em ™)
n-Pentane 50.2 7.0
Cyclohexane 67.2 8.2
1,4-Dioxane 96 10.0
Benzene 84.6 9.2
Diethyl ether 59.9 7.4
Ethyl acetate 83.0 9.1
Acetic acid 102 10.1
n-Butyl alcohol 130.0 114
n Propyl alcohol 141.6 11.9
Acetone 95 9.9
Ethanol 168 12.7
Methanol 212 14.5
Acetonitrile 141.6 11.9
Dimethylformamide 146.4 12.1
Ethylene glycol 212 14.6
Glycerol 272 16.5
Dimethylsulfoxide 144 12.0

Water 547.6 23.4
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Referring now to Eq. (10.24), note that if 5, = &,, we recover Eq. (10.22) for the ideal
solution; in other words, the condition 6; = 8, is equivalent to the condition
AHix = 0. The greater the difference 6; — 6, (or 8, — &1, because the difference
is squared), the greater the deviation from ideality, and, as Eq. (10.24) shows, the lower
the solubility that is predicted. This provides a guide for experimental design; to
achieve maximal solubility according to regular solution theory, strive to equate the
solubility parameters of solvent and solute. Since the solute identity is usually
established by the nature of the problem, the experimental variable is the solvent
identity. Sometimes mixed solvent systems function better than pure solvents for this
reason. For example, a mixture of ether (6 = 7.4) and ethanol (6 = 12.7) dissolves
nitrocellulose (6 = 11.2), although neither pure liquid serves as a good solvent for this
solute.”

Although the cohesive energy density, and therefore the solubility parameter,
is a well-defined physical property for any solvent, regular solution theory is limited
(e.g.,by the geometric mean approximation) to solutions of nonpolar substances.
It should therefore not be expected to apply quantitatively to polar systems such as
aqueous solutions.

Example 10.6. Predict the solubility of naphthalene in n-hexane at 20°C. The
solubility parameters are &; =7.3 and 8, = 9.9 (both in cal”?em ™ 2),and the molar
volumes are V; =132 cm®mol ™! and V, =123 cm’mol . See Example 10.1 for
additional data.

We use Eq. (10.24), which in Example 10.1 was expressed in terms of log x,. In that
form the first term on the right had the value —0.577, which we need not recalculate.
Now we consider the second term. We lack only the quantity ¢, the volume fraction of
solvent. This appears to be adilemma, because we cannot estimate ¢; until we know x5,
which is what we want to calculate.

If we anticipate that the solute has a low solubility, it may be acceptable to make the
approximation ¢; =1. An alternative is to take the result for an ideal solution
(Example 10.1, which gave x, =0.265) as a basis for estimating ¢,;. We will do
the problem in both ways.

(a) Let ¢; = 1. Then from Eq. (10.24), we obtain

(123 em?)(1)*(7.3 — 9.9 cal'/2cm —3/2)?
(2.303)(1.987cal mol ~ 'K~ 1)(293.15K)
= —0.577-0.620 = —1.197

xy = 0.064

logx, = —0.577 —

3 As a strategy for optimizing solvent selection, evidently this approach requires an estimate of the
solubility parameter of the solute. There are several ways to obtain this. One method is suggested by the
example; presumably the solubility parameter of the solvent mixture that maximizes solubility is also the
solubility parameter of the solute.
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(b) The volume fraction is defined as follows:
n V]

= mr (10.27)
mVi+nmV;

@1

Suppose n; + n, = 1; from Example 10.1, x, =0.265, or n, =0.265 and n; =0.735.
Using these numbers in Eq. (10.27) gives ¢; =0.748. (Note how close ¢, is to xy,
because V| and V, are similar.) Repeating the calculation gives

logx, = —0.577—0.335 = —0.912
x, = 0.122

We therefore predict that x; is between 0.064 and 0.122, and we might take the average
as our best estimate. The experimental result (Table 10.1) is x, = 0.090.

Prediction of Aqueous Solubilities. Water is the preferred solvent for liquid
dosage forms because of its biological compatibility, but unfortunately many drugs
are poorly soluble in water. To be able to predict the aqueous solubility of compounds,
even if only approximately, is a valuable capability because it can guide or reduce
experimental effort. Water is a highly polar and structured medium in which
nonideal behavior is commonly observed, so we must abandon hope that the ideal
solubility prediction of Eq. (10.10) will be useful, and even the regular solution
theory [Eq. (10.24)] is ineffectual in solving this problem. Effective approaches may
be guided by thermodynamic concepts, but they incorporate much empirical
(i.e., experimental) content.

Although the ideal solubility equation will not suffice to predict nonelectrolyte
solubility in water, the solute—solute interactions responsible for maintaining the
crystal lattice must nevertheless be overcome, so Eq. (10.10) will still be applicable as
ameans of estimating the solute-solute interaction. What must be done in addition is to
take account of the solvent—solvent and solvent—solute interactions, because these will
in general not offset each other. In a paper that includes a valuable collection of
solubility data, Yalkowsky and Valvani (1980) have developed a very useful method
based on this approach. They start with Eq. (10.10), which they transform to
Eq. (10.11), repeated here:

ASH(Tp —T)

o (10.28)

Inx, = —

They then carry out an analysis of experimental entropies of fusion, reaching these
conclusions:

For spherical (or nearly so) molecules: AS; = 3.5 cal mol 'K™!

For rigid molecules: AS; =13.5 cal mol 'K™!

For molecules having n>35 flexible chain atoms: AS; =13.5 + 2.5 (n—Y5)
calmol "K'

In the following we will use only the result for rigid molecules.
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Yalkowsky and Valvani then take the log P value of the solute (where P is the
1-octanol/water partition coefficient) as an empirical measure of the solution phase
nonidealities. They combine this with Eq. (10.28), convert to molar concentration,
and apply a small statistical adjustment, finally getting Eq. (10.29) for the calculation
of rigid nonelectrolyte molar solubility in water at 25 °C:

logc, = —0.0011(z,, —25) —log P+ 0.54 (10.29)

where 1,, is the solute melting point in centigrade degrees. For liquid nonelectrolytes,
1, 18 set to 25, so the first term vanishes. Log P may be available from experimental
studies, but it may have to be estimated by methods cited in Chapter 7.

Yalkowsky and Valvani applied Eq. (10.29) to solubility data on 167 compounds
whose solubilities ranged over nine orders of magnitude, finding that the estimated
solubilities agreed with the observed solubilities to within 0.5 log unit for all but eight
compounds, and in no case was the error greater than a factor of 10. Equation (10.29) is
a very practical solution to the problem of predicting aqueous solubilities.

Amidon and Williams (1982) refined the approach of Yalkowsky and Valvani,
achieving better accuracy but at the cost of increased complexity in the equation. Grant
and Higuchi (1990) describe alternative methods of calculation that are based on
different pathways from the initial to the final state.

Equation (10.10) and equations derived from it, such as Eqgs. (10.28) and (10.29),
contain the difference (7,,— T), showing that a higher melting temperature is
reflecting stronger solute—solute interactions in the solid state. As a general but
not precise rule, we may anticipate that very polar molecules (or functional groups)
will conduce to strong intermolecular interactions by means of electrostatic forces,
which for certain groups may include hydrogen bonding. Thus high molecular polarity
tends to be associated with high melting temperature, and higher melting temperatures
lead to lower solubilities, at least as they are described by Eq. (10.10).

Now consider the special case of water as a solvent. Water is a very polar solvent and
is capable of functioning as a hydrogen bond donor and acceptor. Very polar solute
molecules will tend to interact strongly with the solvent water; these are the
solvent—solute or solvation interactions that increase solubility. But we have seen
that highly polar substances tend to have high melting temperatures, so we are led to the
tentative conclusion that melting temperature may be an approximate indicator of the
extent of solvent—solute interaction. It follows (still arguing in this approximate mode)
that the opposing factors of solute—solute (crystal lattice) and solvent—solute (solva-
tion) interactions are both measured by, or at least indicated by, the same quantity,
namely, the melting temperature.* Thus in some degree we may anticipate that
these two factors will compensate each other, with the consequence that the solubility
will become essentially independent of the melting temperature. But then the first
term in Eq. (10.29) will (approximately) vanish, leading to a dependence solely on
log P.

* Polarity is just one factor controlling the melting temperature. Symmetry is another; the more symmetric
the molecule, the higher the melting temperature (when comparing “similar” molecules).
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Correlations of log ¢ with log P are well known (Yalkowsky and Valvani 1980;
Grant and Higuchi, 1990, Chapter 8). Equations (10.30a) and (10.30b) are such
correlations, based on solubility data for compounds having a considerable range of
structural features. These equations are to be judged solely by their success in
reproducing or predicting solubilities; they are purely empirical.

logcy; = —log P —1.00 (for solids) (10.30a)

logc, = —log P+0.27 (for liquids) (10.30b)

A comparison of the performance of Eq. (10.29) with Egs. (10.30) indicates that
Eq. (10.29) is slightly superior, but there are some reversals. If the solute melting point
is not available, Eq. (10.30a) offers an alternative method of estimation.

Example 10.7. Estimate the aqueous solubility at 25 °C of isophthalic acid, for which
log P=1.73 and whose melting temperature is 346 °C.

With Eq. (10.29), log ¢, = —4.72; with Eq. (10.30a), log ¢, = —2.73. The experi-
mental result is log ¢, = —3.40. Evidently neither Eq. (10.29) nor Eq. (10.30a) yields
a fully satisfactory answer in this case. (Although interestingly their average is 3.73,
in error by only about a factor of 2 in the solubility c,.) Obviously there is scope for
improved methods of estimation.

Solubility in Mixed Solvents. 1If the equilibrium solubility of a solute in water is too
low to achieve the desired “target” concentration, a preferred approach in many
instances is to incorporate an organic solvent in the aqueous solution, in this way
increasing the solubility of the solute. This organic solvent (often called the cosolvent)
must be miscible with water, at least in the proportions used, and if the solution is to be
a dosage form, the cosolvent must be physiologically acceptable. These requirements
severely limit the cosolvent selection. But beyond this issue is the matter of the
optimal cosolvent concentration in the mixed solvent system of water and cosolvent.
As in our treatment of aqueous solubility, we seek methods that are rapid and easy to
apply, even though approximate in their accuracy, because the calculation will always
be followed by laboratory studies to confirm or refine the numerical estimate.

If the solute and solvent molecules in a solution differ greatly in size, plots
of various experimental quantities against solvent composition tend to be more
symmetrical when solvent composition is given in volume fraction than in mole
fraction (Williamson 1967, p. 44). This observation forms the basis of a model
proposed by Yalkowsky and Rubino (1985). For these three-component systems,
let water be component 1, the cosolvent component 2, and the solute component 3.
The molar solubility of solute in water is written (c3); and its molar solubility in pure
cosolvent as (c3),. In solvent of any composition the solute solubility is written c3.
Then the Yalkowsky—Rubino model becomes

log c3 = ¢, log(c3), + @, log(c3), (10.31)
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where ¢; and ¢, are the volume fractions of water and cosolvent, respectively.
Since ¢; 4+ ¢, = 1, an equivalent form of Eq. (10.31) is

log c3 = @, [log(c3), — log(c3), | +log(cs), (10.32)

This equation predicts that log c; will be a linear function of ¢,.

Equation (10.31) is a postulate. It can be described as a linear combination model,
or as aweighted average; thatis, log c3 is postulated to be an average of log (c3); and log
(c3)2, each of these making a contribution according to (weighted by) its volume
fraction.

The procedure for testing and using this model is simple. On a graphical scale of ¢,,
one plots log (c3); at ¢, =0.0 and log (c3), at ¢, = 1.0. These points are connected
by a straight line, which is the graphical representation of Eq. (10.32). A test of the
model consists of plotting experimental solubilities at intermediate values of ¢, to
learn how well they agree with the straight-line prediction. Alternatively, if (as is
usually the case) such data are not available, the model is assumed to be (approxi-
mately) valid, and that value of ¢, is read off the line that will achieve a desired target
solubility. It is not necessary to carry this operation out graphically, because
by rearrangement of Eq. (10.32) we obtain

log ¢; — 1
g, — Lo Ca Tlog(ca), (10.33)

~ log(cs), —log(cs),

With this equation the required volume fraction of cosolvent can be calculated,
according to this model.

Figure 10.3 shows solubility data for the system water (1)—ethanol (2)—naphthalene
(3) (LePreeetal., 1994). The straight line connecting the extreme points constitutes the
linear combination model, Eq. (10.32); the points are experimental. Obviously the
points do not describe a straight line, so in this sense, and for this system, the model
does not appear to be valid. On the other hand, as an approximate guide to the
dependence of solubility on solvent composition it may be helpful to the experimen-
talist, and it is in this sense that the model should be judged. It is not a precise
description of physicochemical behavior, but rather is a useful tool in formulation
development.

Example 10.8. Propose a water/ethanol mixed solvent composition that will dissolve
2.5mg mL ™" of naphthalene. The solubility of naphthalene in wateris 2.14 x 10~ M,
and in ethanol it is 0.675 M.

The target concentration of 2.5 mg mL ™" is equivalent to 2.5 g L™ ". The molecular
weight of naphthalene is 128.2, so the molar target concentration c3 is 0.0195M, or
log c3 = —1.71. From the given data we have log (c3); = —3.67 and log (¢3), = —0.17.
Applying Eq. (10.33), we obtain

—1.71-3.67
—0.17—(—3.67)
=0.56

Py =
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log Cq

Figure 10.3. The linear combination model for naphthalene solubility in aqueous ethanol
solutions.

Thus we predict that a volume fraction of 0.56 ethanol will dissolve the target
concentration. This result could also have been obtained by reading from the straight
line of Fig. 10.3. It is interesting to note, from the experimental points in Fig. 10.3,
that a volume fraction ¢, =0.51 will actually dissolve the target concentration.

More accurate models of solvent effects are available, but these require much
experimental effort and are computationally more elaborate (see Khossravi and
Connors, 1992).

PROBLEMS

10.1. The melting point of benzoic acid is 122.4°C, and its heat of fusion is
4.44kcal mol . Calculate its ideal solubility at 25°C.

10.2. From the data in Example 10.2, convert the mole fraction solubilities to molar
solubilities, construct the van’t Hoff plot, and evaluate the heat of solution.
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10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

SOLUBILITY

Derive an equation relating the molar solubility of calcium phosphate to its
solubility product, and calculate its molar solubility.

A solution containing NaBr, NaCl, and Nal is titrated with silver nitrate
solution. Predict the order in which the silver halides will precipitate.

Predict the solubility of iodine in carbon tetrachloride at 25 °C. The melting
point of iodine is 113.6°C, its heat of fusion is 3.71 kcal molfl, its molar
volume is 59 cm?, and its solubility parameter is 14.1. The solubility parameter
of carbon tetrachloride is 8.6.

Predict the molar solubility of progesterone in water at 25 °C. The melting point
of progesterone is 131 °C and its log P value is 3.87.

The solubility of naphthalene in water at 25°C is 2.14 x 107*M, and its
solubility in dimethylsulfoxide (DMSO) is 1.920 M. Estimate the mixed
solvent composition required to dissolve 4 mgmL ™" of the solute.

The salt form of warfarin has a solubility in water of 2 x 10~ g/mL at 25 °C.
Calculate the standard free energy of solubilization of the warfarin salt. Assume
activity = concentration. Warfarin salt molecular weight =330 g/mol.



SURFACES AND
INTERFACES

Up to this point in our study of thermodynamics we have dealt with bulk phases only;
that is, we have ignored possible influences of the surfaces of these phases. This
attitude is justified when the surface constitutes a very small fraction of the system.
In some circumstances, however, the surface:volume ratio of the system becomes
relatively large, and then the properties of the surface may dominate the behavior of the
system. In the pharmaceutical field, the dosage forms called emulsions, suspensions,
and foams exemplify such circumstances; collectively these are known as disperse
systems; emulsions are dispersions of liquid droplets in an immiscible liquid,
suspensions are dispersions of solid particles in a liquid, and foams are dispersions
of gases in liquids.

Let us begin with a clarification of terminology. Strictly speaking, the boundary
between any two phases constitutes an interface, but it is conventional to call this
interface a “surface” when one of the phases is a vapor or gas (especially, and usually,
when it is air). We therefore have these identifications:

Surfaces Interfaces
Solid—gas Solid-solid
Liquid—gas Solid-liquid

Liquid-liquid

Despite these definitions, it is common to use the word “surface” in a generic sense to
embrace all such phase boundaries.

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.
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(a) (b)

Figure 11.1. (a) A column of liquid 1cm? in cross section; (b) the column separated to create
two surfaces, each with area 1cm? and surface tension y.

11.1. THERMODYNAMIC PROPERTIES

Surface Tension and Interfacial Tension. Let us carry out this thought experi-
ment. Figure 11.1a illustrates a column of a liquid, constituting a single phase and
having a cross-sectional area of 1. cm?. Now imagine this column to be pulled apart
cleanly into two parts, as shown in Fig. 11.1b. The result of this imagined experiment
has been to create two surfaces of the liquid, each of area 1 cm?.

Energy was required to create these surfaces, because molecules had to be pulled
apart and the forces of intermolecular interaction had to be overcome. The work of
carrying out this process is called the work of cohesion, w., and it is set equal to the
energy of the surfaces that were created. (Because we can neither create nor destroy
energy, the work w. done on the system is now possessed by the system in the form
of surface energy.) We write

We =2y (11.1)

where 7y is the surface energy per square centimeter and is called the surface tension.
(The factor 2 appears because 2 cm? of surface was created in Fig. 11.1.)

We can now connect this concept of surface energy to other kinds of energy by
recalling (Chapter 1) that work (or energy) can be expressed as the product of an
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Table 11.1. Surface tensions at 25°C

Solvent y(dyn cm ™Y Solvent y(dyn cm ™Y
n-Hexane 17.9 Acetone 22.9
Cyclohexane 19.8 Ethanol 21.8
Benzene 28.2 Methanol 22.4
Diethyl ether 16.5 Acetonitrile 28.5
Chloroform 26.5 Glycerol 62.5
Ethyl acetate 23.2 Dimethylsulfoxide 42.8
n-Butyl alcohol 242 Water 71.8
n-Propyl alcohol 23.4 Mercury 485.5

intensity factor and a capacity factor. For surface work or energy we have

Surface energy = Surface tension x Change in surface area
AG = yAA (11.2)

If AA is positive (surface area is created), AG is positive and the process is
nonspontaneous; work must be done to create new surface area. If A Ais negative, AG is
negative and the process is spontaneous. The surface energy is identified with the
change in Gibbs free energy if the temperature and pressure are constant.

Table 11.1 lists the surface tensions of some liquids. First consider the units of 7,
namely energy per unit area. Thus in SI units, J m 2 is a correct designation for the
units of y. Moreover, since work (energy) is the product of force and length
and 1J=1Nm, the units N m~' are also acceptable. In the older cgs system, in
which most of the literature values of y are recorded, the corresponding units are erg
cm Zand dyncm™ ! However, in order that the numerical values of ybeidentical in the
cgs and SI systems, the SI units are multiplied by 10°. Thus we can state the surface
tension of water in these equivalent units:
mN

= 71.8% =71.8—
m m

erg dyn

y=71.8—2 =718

cm? cm
Inasmuch as the surface tension is a measure of the energy required to create unit area
of surface, we might expect y to be larger for solvents having stronger intermolecular
forces of interaction, and generally we see that this expectation is borne out. Very polar
molecules and those capable of hydrogen bonding tend to have higher values of y than
do nonpolar substances.

As the temperature of a liquid is increased, the liquid acquires more thermal
energy, and so less additional energy needs to be supplied to create new surface.
As a consequence, the surface tension is smaller at higher temperatures.

Another point of view may be helpful in visualizing the physical nature of the
surface tension. The properties of a system consisting of a liquid in contact with its
vapor do not change discontinuously at the surface, but rather change in a smooth
continuous fashion. Another way to say this is to point out that the surface is not a
mathematical boundary, but is a region having a thickness of several molecular
diameters. Consider the density as a property that varies from a relatively high value in
the bulk liquid (expressed as g mL ™' or as number of molecules per unit volume) to a
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(a) (b)

Figure 11.2. (a) A column of 1-cm? cross-sectional area of phases 1 and 2 in contact; (b) the
phases are separated to create two surfaces; one of liquid 1, the other of liquid 2.

very low value in the vapor. Evidently the density will have an intermediate value in the
surface region. Taking a slice coplanar with the surface, then, the number of molecules
per unit area in the surface is smaller than in the bulk. In other words, the surface
isanalogous to an extended spring; energy is required to create the surface (or to stretch
the spring), and this energy is manifested as a tension in the plane of the surface;
this is the surface tension (Fowkes 1964).

Now we will carry out another thought experiment in the style of Fig. 11.1, this one
as shown in Fig. 11.2. Here we have a column of 1-cm? cross-sectional area,
but consisting of two immiscible liquid phases, 1 and 2, in contact. We now imagine
the phases separated at their boundary.

According to our earlier analysis, we can expect an amount of work to be required
equal to the sum y; + y,, because 1 cm? of surface of each 1 and 2 is created in this
process. But there is a further factor to consider, because in the initial state of the
system there existed an interface between 1 and 2, and this interface itself possesses
surface (or interface) energy, labeled vy,,. In the final state of the system this interface
no longer exists, so neither does its energy, which has, in effect, been applied to defray
the energetic cost of creating the two new surfaces. The work involved in passing
from the initial state in Fig. 11.2a to the final state in Fig. 11.2b is called the work
of adhesion, w,, and is given by

We =71 +72 =712 (11.3)
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Table 11.2. Interfacial tensions at 20°C

Liquids p(dyn cm ™) Liquids p(dyn cm ™)
Water/mercury 375 Water/n-hexane 51.1
Water/n-octane 50.8 Water/CCly, 45
Water/benzene 35.0 Water/ether 10.7
Mercury/benzene 375

The quantity y,, is the interfacial tension. It has the same units and the same physical
significance as the surface tension. Table 11.2 gives some interfacial tensions. It must
be realized that in such systems the two liquids are mutually saturated.

The interfacial tension can be measured, or it can be calculated with reasonable
accuracy by means of

V2 == 2009 (11.4)
where y‘f and 4 are the London dispersion force contributions to 7, and 7, (Fowkes
1964). The dispersion force is an attractive force (sometimes called the van der Waals
force) between all molecules. For nonpolar molecules such as saturated hydrocarbons,
itis the only attractive force, soy¢ = y for such liquids. For mercury y¢is 200 dyn cm ™'
and for water y¢ =21.8dyncm ™', Equation (11.4) incorporates the geometric mean
approximation of regular solution theory (Section 10.5); see Eq. (10.23) in particular.

Example 11.1. Estimate the interfacial tension at the water/n-hexane interface.
We use Eq. (11.4):

7, =71.8417.9 —2(21.8 x 17.9)"/* = 50.2 dyn cm ™

The experimental value (Table 11.2) is 51.1dyncm .

Because a surface is of relatively high energy compared to the bulk, there is a
thermodynamic driving force for minimization of surface area. A sphere is the
geometric form having the minimum surface:volume ratio; thus under the influence
of surface tension alone, units of matter will tend to assume a spherical shape, as with
droplets of liquids. This tendency may be opposed by other forces, such as the
gravitational force. The trend to surface minimization also accounts for the tendency of
a dispersion of liquid drops in a liquid (an emulsion) to coalesce into two bulk phases.

Spreading of Liquids on Liquids. Picture a small volume of liquid 2 placed on the
planar surface of liquid 1. What will happen? Will it just sit there as a globule (flattened
by gravity into a “lens” shape), or will it spread out into a very thin film? This question
can be answered by considering the work of adhesion (which measures the attraction
between 1 and 2) and the work of cohesion (which measures the attraction within 2)
(Adamson 1960, p. 107; Bummer 2000). The spreading coefficient S,;, for the
spreading of 2 on 1 is defined as

S2/1 = W4 — Wc(z) (1 15)
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where w,(2) is the work of cohesion of liquid 2. Similarly, the spreading coefficient S}
for the spreading of 1 on 2 is

Sl/ZZWa_WC(l) (116)
Incorporating Eqgs. (11.1) and (11.3) into these definitions gives

Soyt=11— (2 +712) (11.7)
Si2=72— (1 +712) (11.8)

Let us try to anticipate the possible outcomes of numerical calculations of spreading
coefficients. If w, > w,(2), evidently the attraction between 1 and 2 is greater than the
self-attraction of liquid 2, so the spreading coefficient will be positive and we may
expect 2 to spread on 1. Compare the rather extreme cases in Example 11.2.

Example 11.2. Calculate the spreading coefficients of water on mercury and of
mercury on water and interpret the results. (Ignore the density difference!)

Let mercury be liquid 1 and water liquid 2. From Eqgs. (11.7) and (11.8) and data
in Tables 11.1 and 11.2, we have

Sy = 485.5 — (71.8+375) = +38.7
Sijy = 71.8 — (485.5+375) = —788.7

Thus water will spread on mercury, but mercury will not spread on water.

In general a liquid of lower surface tension will spread on a liquid of higher
surface tension. However, spreading does not continue indefinitely, because the
phenomenon in which liquid 2 spreads on liquid 1 creates a new surface tension,
leading to a situation in which the spreading coefficient is negative and addition of
further 2 leads to formation of a lens rather than continued spreading.

Wetting of Solids by Liquids. Consider the system of a drop of liquid L on a planar
surface of a solid S, where the system is at equilibrium with the vapor V of the liquid.
The shape of the drop can be specified in terms of the angle 0 that a tangent makes to the
surface of the liquid at its point of contact with the solid. This angle is called the contact
angle. It can be measured experimentally.

A simple relationship can be obtained connecting 6 with the system surface and
interfacial tensions. Figure 11.3 shows the construction, the lengths of the arrows
(vectors) being proportional to the indicated tensions. At equilibrium, the force
associated with tension ygy is exactly balanced by the sum of the forces due to
ys.» and the component of y; y lying in the same plane and direction as yg; . This
component has the magnitude ab in the figure, and is seen to be equal to y; ycos 6. Thus
Eq. (11.9) can be written.

Ysv = JsL +7LvCos 0 (11.9)
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Ny

Figure 11.3. Contact angle ¢ of a solid on a solid.

The tension )y y is, of course, simply the surface tension of the liquid. yg; is the liquid/
solid interfacial tension, and ygy is the surface tension of the solid.

If the liquid wets the solid, the liquid spreads out on the surface, reducing the angle
0; commonly a liquid that wets a solid is considered to have a contact angle of 0°.
If 6 > 90°, the liquid does not wet the solid. Examination of Fig. 11.3 shows that 6 will
be reduced under the influence of these factors: a larger value of ygy, or smaller
values of y; y and of yg; . For a given solid, wetting will be favored by liquids with
lower surface tensions. For a given liquid, wetting will be favored by solids with
higher surface tensions.'

Pressure Difference across Spherical Surfaces. A bubble is a region of vapor
(often including air) surrounded by a thin film of liquid. A cavity is a hole (containing
vapor) in a liquid. A droplet is a small volume of liquid. Bubbles, cavities, and
droplets are approximately spherical; they would be spheres if surface forces only
were active, but other forces distort their shape. We will assume that they are spheres.
Bubbles actually have double walls, an inner film and an outer film, so they have twice
the surface area of a sphere their size. Cavities and droplets have single surfaces.

An interesting property of these systems has been known for a long time. Consider
a spherical system (we may think of a bubble, while neglecting the double wall),
of radius r. There is a driving force for reducing r as a consequence of two factors.
One of these is the external pressure on the bubble, and the other is the surface
energy. At equilibrium this combined force is just balanced by that due to the internal
pressure. We seek the condition of equilibrium balance. First we write the external
and internal work terms, then differentiate these with respect to r (giving forces),
and then equate the forces.

The external work is a sum of a work of expansion contribution and a surface
work term:

AWeyt = Pexe dV +7 dA

! Solids with higher surface tensions are said to be higher energy solids. Such solids tend to possess polar
functional groups. A solid such as paraffin, which is a saturated hydrocarbon, is a low-energy solid. Silica
(glass) is of higher energy.



208 SURFACES AND INTERFACES

The force is dwex/dr, or

AWext av dA

:P _— e
dr *dr 7 dr

For a sphere V = (4/3)nr and A = 4nr?, so we get

dwex
7Wet:4nrzpexl+8ﬂ?ry (]1'10)

The internal work is dwi,, = PindV, giving in the same way

Awing

e = 4nr? Py (11.11)
Equating Egs. (11.10) and (11.11) yields
2
Pim:Pext‘FTy (11.12)

According to this surprising result, the pressure inside the bubble or cavity is greater
than that outside by the amount 2y /r.

Example 11.3. Calculate the pressure difference inside and outside a cavity in water
whose radius is 0.01 mm.
We use eq. (11.12) with r= 107> m and y="71.8mN m !, finding

Pint — Pexe = 1.436 x 10'mN'm >
This quantity can be converted to more familiar units by using the identities

1Pa=1Nm?
1 atm = 101325 Pa

The result is 0.142 atm.

For a planar surface, r is infinite, so the pressure difference vanishes.

Two practical consequences of Eq. (11.12), which we will not develop here,
are as follows: (1) The vapor pressure of very small droplets is greater than that of
large droplets, so the small droplets evaporate; and (2) the solubility of very small
particles is greater than that of larger particles (Glasstone 1947, p. 247).

11.2. ADSORPTION

The Surface Phase. To the eye a surface or interface at equilibrium appears to be
a quiescent, two-dimensional element; but since matter is atomic or molecular in
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structure, we have to consider the nature of the surface in molecular terms. We know
that molecules possess thermal energy; in particular, they possess translational
energy and are incessantly in motion. Thus at the boundary between a liquid and
its vapor, molecules are passing from the liquid state to the vapor state, and vice versa.
If the system is at thermodynamic equilibrium, these two rates are equal, so the net
transport between the phases is zero, but the extent of molecular traffic is prodigious.
The molecules within the liquid phase are also in thermal motion. We noted earlier
that the surface region extends several molecular diameters in thickness into the
liquid phase. This surface region or phase cannot be sharply demarcated at either of its
boundaries (with the bulk liquid or with the vapor) because of the molecular motion.
Far from being a quiescent two-dimensional construction, the surface region is a
turbulent three-dimensional “interphase.”

Molecules in the surface region experience a force field different from that
experienced by those in the bulk. A molecule within a bulk liquid is enveloped in
a homogeneous force field (on average), because its molecular environment is the
same in every direction. Consequently, the forces on the molecule are everywhere
balanced out, so it experiences no net force. At the surface, on the other hand,
the molecule’s environment is disymmetric; it experiences more intermolecular forces
from the bulk liquid side than from the vapor side. (This disymmetric nature of the
forces is treated by some authors as the source of the surface tension.)

Notwithstanding our recognition that the surface region is ill-defined geometrically
on the molecular scale, we find it convenient, and also justifiable, as we will see, to treat
the surface as a two-dimensional mathematical abstraction. First, treating the surface
region realistically as a phase, we may conclude from standard thermodynamics
that the chemical potentials of all constituents in a system at equilibrium are identical
in all phases, including the surface phase. Next, turning to the surface region
treated abstractly as a mathematical surface dividing two phases, refer to
Fig. 11.4a, which depicts two phases, a and 3, divided by surface s, whose location
is arbitrarily chosen to separate chemically bulk « from chemically bulk B; that is, s is
located somewhere within the surface region. Suppose the system consists of two
components, 1 and 2. The element shown in the figure has cross-sectional area A.
If nand n, are the total numbers of moles of 1 and 2 contained between the limits aa
and bb, respectively, we can write these mass balances:

ne 4P +nl = n (11.13a)
ng +nb +nl =n, (11.13b)

Now since the molar concentration of 1 inphase ais ¢ = n{/V®, where V* = xA, and
so on, we expand Eq. (11.13) to

XACE +YACP 41 = n (11.14a)

XACS +YACE 4+ 1 = ny (11.14b)
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Figure 11.4. (a) Two-phase system, with aa and bb located within bulk phases « and 8 and s
the dividing boundary within the surface phase; (b) the same as (a) but with the dividing boundary
moved to s'.

We divide by A and define I" = n*/A, obtaining

X +yf 4+ :% (11.15a)
xcg-l—ycg-l—l"z:% (11.15b)

This quantity I' is called the surface excess of the specified constituent. Referring to
Eq. (11.13a), we can write

ny n‘l‘—l—nlﬁ
I'=—-
A A

which shows that I'j can be zero, positive, or negative. If I'j, is positive, an excess of
constituent 1 (relative to the bulk) is located at the surface, whereas a negative value of
I'1, indicates a deficiency at the surface (although it is still called the surface excess).

Returning to our mathematical treatment, let us suppose that phase 3 is a vapor
phase and that c? is negligible. We then have

ni

xc{ +T =— (11.16a)

A
o n
xc2+F2:X (11.16b)

Next we construct Fig. 11.4b for the same system, altering the construction
only by displacing boundary s to position s’ (but still within the surface region).
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Repeating the treatment gives the following, by analogy with Eq. (11.16):

nj

xef+T =7 (11.17a)
XG4T, = % (11.17b)

Since n; and n, are fixed and independent of the choice of s or s’, we write from
Egs. (11.16) and (11.17)

xcf +T =X 4T (11.18a)
x5+ =xc§+T (11.18b)
These two equations combine to give

-, Ih-T,

(o3

(03
a S5)

which further rearranges to
I1¢§ —Tac] =T ¢ —Tac] = constant (11.19)

That s, the left-hand portion of Eq. (11.19) refers solely to dividing line s’, whereas the
right-hand portion refers solely to dividing line s, and these are equal. If we created yet
more dividing surfaces (within the surface region), say, s, s/, and so on, the
corresponding terms would all be the same. The conclusion is that the choice of
dividing surface is arbitrary and irrelevant, provided that it lies within the surface
region. Of course, the numerical values of the surface excesses depend on the location
of the dividing line, so practical issues may lead to a preferred location, but there is no
fundamental issue involved (Adamson 1960, pp. 73-79).

This consideration leads to a very convenient simplification in our next develop-
ment, because, if we can place the dividing surface as we wish, why not place it so that
one of the surface excesses is equal to zero?

The Gibbs Adsorption Equation. We are going to develop a famous equation of
Gibbs by following a path used earlier in analyzing an open system without
consideration of a surface phase. Where we earlier wrote the free energy as the
general function [Eq. (3.19)]

(;:f(T7 P7 np, I’lz)

we now expand the description, writing

G=f(T, P,yni,n,...) (11.20)
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In order to simplify the treatment, we will consider that the temperature and pressure
are constant and that only two components are present. Carrying through the earlier
development gives the surface phase analog to the Gibbs—Duhem equation [Eq. (3.28)]

Ady +nidw, +nidu, =0 (11.21)

where u; and u, are the chemical potentials of the two components in the surface
phase (but we do not need to distinguish them as surface potentials because at
equilibrium the potential is the same everywhere).

Now dividing through by A and recalling the definition of surface excess gives

dy —‘rrld[.Ll —‘erd[.Lz =0 (1122)

Next we make use of the demonstration of the preceding analysis, where we saw that
the dividing surface can be arbitrarily placed, and we choose to place it such that '}, the
surface excess of component 1 (which we can take as the solvent), is zero. Thus

dy = —Thdu, (11.23)

At low solute concentrations, where the solute activity coefficient may be taken
as essentially unity, we have

15%) :/»L0+RT1I1C2 (1124)

Combining Eqs. (11.23) and (11.24) gives the Gibbs adsorption equation™:

C2 dy
NL=-—=(" 11.25
? RT (dcz) (1125)

The great value of the adsorption equation is that it connects the readily measurable
quantities on the right-hand side with the somewhat abstract concept of the surface
excess. Qualitatively, we can see that if the surface tension of a solution of solute 2 in
solvent 1 decreases as the concentration of 2 increases, then I'; is positive, meaning
that solute 2 is more concentrated at the surface than in the bulk of the solution.
Substances that exhibit positive surface excesses, and therefore produce surface
tension decreases, are called surface active agents, or surfactants. Soaps and deter-
gents are surfactants. Such agents tend to be fairly large molecules, having one end

2 See Gibbs (1876, 1878). Equations (11.23) and (11.25) are obtained on pp. 232 and 235, respectively, of
the Dover (1961) edition. Much of Gibbs’ massive work on thermodynamics is difficult for the modern
reader to follow, in part because his symbolism differs from our usage, but two of the symbols Gibbs
introduced, u for chemical potential and I for surface excess, are still used, so his surface equations are more
accessible. Incidentally, Gibbs would write Eqgs. (11.23) and (11.25) with the symbol I'y(;), thus explicitly
noting that this is the value of I'; given that I'; is set to zero.
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of the molecule polar (and therefore attracted to a polar solvent like water) and the
other end nonpolar (and therefore preferring to reside in a nonpolar phase). Even quite
small molecules with these molecular attributes exhibit positive surface excesses.
Organic solvents such as alcohols, acetone, acetonitrile, and dimethylsulfoxide
decrease the surface tension of water.’ Inorganic salts, on the other hand, increase
the surface tension of water.

Equation (11.25) can be written in the equivalent form

1 dy
rz__RT(dlncz) (11.26)

or
dy=—RTThdInc, (11.27)

Of course, I'; is a function of concentration, so simple integration is unwarranted, but
Egs. (11.26) and (11.27) suggest that plots of y against In c, may be fruitful forms
of data analysis. Such plots are curved, but their slopes (tangents to the curve) yield
estimates of I', as a function of concentration (Bummer 2000).

Adsorption Isotherms. Adsorption is that process in which a substance develops a
positive surface excess at a surface or interface. In our present discussion we will
restrict attention to those systems in which a component of a gas or vapor phase is
adsorbed to a solid surface, or in which a component of aliquid solution is adsorbed to a
solid surface. The substance that is adsorbed is called the adsorbate, * and the solid is
called the adsorbent. It might seem that the Gibbs surface excess I is the quantity that
should be sought experimentally in a study of adsorption, but usually some more
accessible measure of the extent of adsorption is determined. A graph of this measure
of extent of adsorption against the partial pressure of the adsorbate in the vapor
(for vapor—solid systems) or against its solution concentration (for liquid—solid
systems) is called an adsorption isotherm. (The term isotherm simply means that
the temperature is held constant.)

Many shapes of adsorption isotherms have been found experimentally, but we will
consider only one of these in detail. This function, called the Langmuir adsorption
isotherm, is widely observed, its physical basis is simple, and its mathematics turn
out also to be applicable to other types of systems involving noncovalent interactions,
such as enzyme—substrate complexing and molecular complex formation. To focus
attention, suppose that we have a two-component solution of solvent 1 and solute

3 Equations have been described with which the surface tensions of binary aqueous—organic solvent
mixtures can be modeled over the entire composition range; see Connors and Wright (1989) and Khossravi
and Connors (1993).

“1In adsorption the adsorbate adheres to the surface of the solid. In absorption the solute is taken up
throughout the volume of the solid. When the nature of the process is unknown, the generic term sorption
may be used.
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(adsorbate) 2 in contact, and at equilibrium, with solid. The process can be portrayed as

adsorption

Adsorbate in solution Adsorbate on surface

desorption

Our approach, oddly, is a kinetic one. At equilibrium the rate at which molecules of
adsorbate adsorb to the surface is just equal to the rate at which they desorb from the
surface. We write these expressions for these rates:

Rate of adsorption = k,c2Af (11.28)
Rate of desorption = k;A, (11.29)

In these equations, c; is the solution concentration of adsorbate; k, and k, are rate
constants for adsorption and desorption, respectively; Ais the solid surface area per
unit mass (usually per gram) that is “free,” namely, unoccupied by adsorbate
molecules; and A, is the solid surface area per unit mass that is “bound,” or occupied
by adsorbate molecules. Equation (11.28) postulates that the rate of adsorption is
directly proportional to the concentration (actually activity) of adsorbate and to the
amount of space available for adsorption on the surface. Equation (11.29) says that the
rate of desorption is directly proportional to the extent of surface already covered by
adsorbate molecules. It is important to recognize that, for any given system,
Egs. (11.28) and (11.29) a priori may or may not be valid; they constitute hypotheses,
to be justified by subsequent testing against experimental data.

At equilibrium these two rates are equal. Let us work out the ramifications of this
equality:

kaCZAf = de;, (1130)
Define the total surface area per unit mass as A,, so
A =Ar+A, (11.31)

Eliminating A, defining K = k,/k,; (K is an equilibrium constant), and rearranging give

Ay
Kcy) = 11.32
2T A —a, (11.32)

We now define 6, the degree of saturation, by

Ap
0=— 11.33
. (11.33)
Combining Eqgs. (11.32) and (11.33) gives
0
Kc, = (11.34)

1-96
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which is one form of the Langmuir adsorption isotherm. More commonly, it is
encountered in this rearranged form:

KC2
0= 11.35
1+ Kco ( )
Equation (11.35) is equivalent to
KAtCZ
A, = 11.36
=11 Kes (11.36)

Now let o be the area occupied per molecule on the surface, so A,/o is the number of
molecules adsorbed per gram of solid, and n, =A,/0N, (where N, is Avogadro’s
number) is the number of moles of adsorbate bound per gram of solid. Similarly, A,/
ONpNyax 18 the maximum number of moles that can be bound per gram of solid.
Making substitutions in Eq. (11.36) gives finally

_ KnmaxCZ
1 + K62

1y (11.37)

This is a very practical form of the Langmuir adsorption isotherm. Experimentally, we
know c,, the solution concentration of adsorbate, and we measure n,, the number
of moles of adsorbate per gram of solid.

Two practical problems remain. We wish to test the hypothesis against the data
(i.e., we wish to establish whether the system is described by the Langmuir isotherm),
and, if Eq. (11.37) is in fact descriptive of the system, we wish to evaluate the model
parameters K and n,,«. Both problems have traditionally been solved by rearranging
Eq. (11.37) to this form:

@_c | (11.38)

Np  Nmax Knax

This is the equation of a straight line. If the Langmuir isotherm is obeyed, a plot of c¢,/ny,
against ¢, should be linear, with slope= 1/n,x, and intercept= 1/Kng,x.
Thus ny,,x = 1/slope, and K = slope/intercept.

From Eq. (11.37) we can analyze Langmuirian behavior. If ¢, is very low, so that
Kcr,k1, then ny, = Knpaxco; the isotherm is nearly linear at very low adsorbate
concentrations. At relatively high ¢, values, where Kc,>>>1, then n, ~ np,x; the extent
of adsorption reaches a maximum value and becomes independent of the solution
concentration. The physical interpretation of this result is that the surface is complete-
ly covered with adsorbate molecules and that no further adsorption can occur because
no more solid surface is accessible. This is interpreted to mean that the surface is
covered with a layer of adsorbate one molecule thick (a monomolecular layer). This is
one of the physical implications of the Langmuir isotherm. Another implication is that
adsorption “sites” on the solid surface are independent in the sense that the energy of
adsorption of an adsorbate molecule to a surface site is independent of whether an
adjacent site is already occupied.
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Figure 11.5. Plots of milligrams of dye absorbed per gram of cornstarch [x(M)], versus milligrams
of dye per 100 mL of solution at equilibrium for FD&C Red No. 3 (a), FD&C Blue No. 2 (b), Ext. D&C
Red No. 15 (c), FD&C Yellow No. 5 (d), and FD&C Green No. 1 (e). [Reproduced with permission
from Zografi and Mattocks (1963).]

These physical restrictions are rather severe, so it may seem unlikely that the
Langmuir isotherm will be followed by real systems, yet many adsorption systems fit
the equation well or at least reasonably so as a good approximation. Figure 11.5 shows
some isotherms for the adsorption of dyes on cornstarch (Zografi and Mattocks 1963).
The shapes of these curves are typical of Langmuirian adsorption, and the plots
according to Eq. (11.38), in Fig. 11.6, confirm the validity of Eq. (11.37) as a
description of the phenomenon.

Example 11.4. Figure 11.7 is the isotherm for the adsorption of indolinospiropyran
from cyclohexane solution onto alumina of specific area 155m?g~" (Connors and
Jozwiakowski 1987; Jozwiakowski 1987). The quantity y is the amount adsorbed in

40
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=
= d
€
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0 L 1 1 1 1 ' 1

concn., mg./100 mL.

Figure 11.6. Plots accordingto Eq. (11.38) for the isotherms shownin Fig. 11.5. [Reproduced with
permission from Zografi and Mattocks (1963).]
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Figure 11.7. Adsorption isotherm at 25 °C for indolinospiropyran from cyclohexane onto alumina.
The smooth line was drawn with Eq. (11.37) and the parameters given in Example 11.4.
[Reproduced with permission from Connors and Jozwiakowski (1987).]

mgg~'. From the plot according to Eq. (11.38), these parameters were found:

K=810M ' and y.x=53.9mgg . The molecular weight of the adsorbate is
327. Calculate the area occupied per molecule of adsorbate on the surface of the solid.

The area we want is o, which appears in the relationship A/ONjy = npax-
We therefore first convert ymax t0 max; Ymax = 33.9mg g~ ' =0.0539 g g~ '; dividing
by the molecular weight gives us fyax = 1.65 x 10~* mol.

We solve for o in 0 =A/Njgnm,., where A,=155 ngfl, finding o=
1.56 x 10718 mzmoleculefl, which is equivalent to 156 A% molecule™ .
Incidentally, the specific area A, is itself determined by a gas adsorption method.

Solids as adsorbents have limited but important application as pharmaceutical
agents; they serve mainly to adsorb toxic agents in the gastrointestinal tract. Activated
charcoal is used for this purpose, being administered as soon as possible after ingestion
of a toxic dose of a drug or poison, which on adsorption to the solid is effectively
inactivated and is excreted. Besides this emergency application, adsorbents are widely
used in the purification of chemicals, because they are effective in adsorbing colored
impurities (colored molecules tend to have large surface areas and numerous polar
groups) and in separation processes such as chromatography.

PROBLEMS

11.1. Calculate the work of adhesion at the water—diethyl ether interface.

11.2. Calculate the spreading coefficients of water on ether and of ether on water, and
interpret the results.
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11.3. Calculate the surface work required to enlarge a cavity in water from a diameter

11.4.

11.5.

SURFACES AND INTERFACES

of 0.1 mm to a diameter of 1 mm.

Equation (11.38) is a linearized version of Eq. (11.37). There exist two
additional linearized forms of Eq. (11.37). Find these linear equations, and
show how the model parameters can be obtained from the slope and intercept of

the plots.

These are data for the adsorption of 6-methoxybenzoindolinopyran from
cyclohexane solution onto silica gel of specific area 300 m”> g~ '. The quantity
y is the amount of adsorbate adsorbed in mg g~'. The molecular weight of the
adsorbate is 307. Analyze the data; that is, determine if the data fit the Langmuir
isotherm and, if so, evaluate the model parameters (Connors and Jozwiakowski

1987; Jozwiakowski 1987).

10°c;(M)  y(mgg™")

1.18
2.08
4.26
5.75
8.65
10.62
12.27
14.13
16.06
16.98
19.81

58.2

60.6

94.7
103.5
105.8
107.4
119.7
123.8
124.8
127.6
134.3



THERMODYNAMICS OF
CHEMICAL PROCESSES

Parts I and II of this book provide most of the concepts and quantitative relationships
that we will need in our treatment of chemical processes. Occasional reference will be
made to passages or equations in earlier chapters so as to minimize repetition of
material. For brevity we state here that, except when indicated otherwise, constant
temperature and pressure may be assumed; thus minimization of the Gibbs free energy
is the criterion for equilibrium. Commonly, the fixed pressure is the ambient
(atmospheric) pressure and the fixed temperature is 25°C or “room temperature.”
Usually, solute concentrations are given in moles per liter (molarity), symbolized
either c, or [A]; these represent concentrations at equilibrium unless noted otherwise.
The solute reference state is the infinitely dilute solution, and very often we will
suppose that the solute is in its reference state so that its activity coefficient is unity and
its activity is equal to its concentration; this condition will allow us to focus on the
essential chemistry of the process without being needlessly distracted by considering
corrections for nonideal behavior. Such corrections can always be brought into the
description as they are found to be required.






ACID-BASE EQUILIBRIA

Most drug molecules and biomolecules include one or more acidic or basic functional
groups, so acid-base chemistry is pervasive in pharmaceutical systems. Acid—base
equilibria therefore deserve detailed attention.

12.1. ACID-BASE THEORY

Definitions. Acid-base phenomena were observed very early in the development
of chemical science, but their systematic understanding is a twentieth-century accom-
plishment. The Arrhenius theory of acids and bases, dating from the close of the
nineteenth century, postulated that an acid is a substance that in water gives rise to
hydronium ions, and that a base is a substance that in water gives rise to hydroxide ions.
Thus HCl is an acid and NaOH is a base. The admittedly basic properties of compounds
like amines, which do not contain the elements of the hydroxide ion, were proposed to
result from reaction with water (hydrolysis) to generate hydroxide ions, as in

RNH, + H,O ==RNH; + OH "~

The Arrhenius theory provided a satisfactory conceptual basis for understanding
acid-base behavior in aqueous solution, but it was limited by its dependence on water
as a solvent.

Acid-base behavior is observable in many solvents other than water, and such
systems became comprehensible with the introduction, in 1923, of an acid—base theory

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.
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by Bronsted (and independently by Lowry) based on these definitions; an acid is a
species that can donate a proton, and a base is a species that can accept a proton.
In reaction form, this is

HA =H' + A~ 12.1
id
H* + B =BH" (12.2)
base

Observe that the Bronsted definitions are built on the proton, and not the hydronium
ion, so the new definition is independent of the solvent. We now proceed to explore the
ramifications of this powerful definition.’

The Conjugate Pair Concept. ObserveinEq.(12.1), onreading it from right to left,
that the species A~ is accepting a proton, and so it must, by definition, be a base.
Similarly, in Eq. (12.2) read from right to left, BH s donating a proton, so it must be
an acid. The Bronsted acid-base definitions can be generally represented by

Acid=H™" + base (12.3)

An acid-base pair related by Eq. (12.3) is called a conjugate acid—base pair. Thus,
referring to Eq. (12.1), we speak of A~ as the conjugate base of acid HA; from
Eq. (12.2), BH™ is the conjugate acid of base B.

Equation (12.3) and the associated definitions make no mention of the charge types
of the acid or base; the only requirement is that an acid be one positive charge greater
than its conjugate base. Here are examples of equilibria that fit Eq. (12.3), showing
acids and bases of various charge types:

Acid Base
CH;CH,COOH=H T CH;CH,COO ™

HCO; ==H™ +CO5%~
CH;CH,NH; " ==H " + CH3;CH,NH,

“Hy;N - CeHy —NH3; ¥ ==H™ + H;N — CgHy — NH; +

! G.N. Lewis, also in 1923, proposed an even more general acid—base theory. Just as Bronsted improved on
the Arrhenius theory by eliminating the hydroxide ion as a defining feature, so Lewis generalized the
Bronsted theory by eliminating the proton. Lewis defined an acid as an electron pair acceptor and defined a
base as an electron pair donor. Thus every Bronsted base is also a Lewis base, but the Lewis acid concept
greatly expands our ideas of acid character. In the reaction

BF; +NH3; =F;B : NH3

boron trifluoride is a Lewis acid.
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The proton of Eq. (12.3), which is a naked nucleus, is a species of extremely
high reactivity, a reactivity so high that in ordinary chemical systems the proton
will not be detectable (because it will certainly combine with some other species in its
vicinity). Consequently, we never actually observe Eq. (12.3) by itself. But if we
combine two conjugate pairs, the proton donated by the acid of one pair can be
accepted by the base of the other pair, and we observe an overall proton transfer
reaction. Writing the conjugate pair reactions separately and adding them to give the
net reaction:

Pair 1 : dA]:H++A’

aci basel

Pair2: B +H'=BH"
base 2 acid 2
Overall: HA+B=A" +BH"

The net result is that a proton has been transferred from the first pair to the second pair
(reading from left to right), or vice versa when reading from right to left.

Next suppose that one of the pairs is the solvent. In particular, let it be water, our
most important solvent. Water reacts in the pattern of Eq. (12.3):

H,0 =H" + OH™ (12.4)

acid base

Thus H,O is an acid, and OH™ is its conjugate base. But water is also capable of
functioning in this version of Eq. (12.3):

H;0 " =H" + H,0 (12.5)

acid base

Thus H,O is the conjugate base of H;0 * . A substance that (like water) can be either an
acid or a base is said to be amphoteric. The amphoteric nature of water allows it to play
the role of the second conjugate pair for either acids or bases. If the solute is an acid
(say, HA), then H,O functions as a base:

HA+H,0=A" +H;0" (12.6)
whereas if the solute is a base (say, B), then H,O functions as an acid:
B+H,0=BH" +OH" (12.7)

Throughout most of Chapter 12 we will be concerned with reactions like those in
Egs. (12.6) and (12.7).
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Dissociation Constants. Consider the system described by Eq. (12.6) at equilibrium.?
We can apply the thermodynamic concept of the equilibrium constant (Section 4.3) to
define the quantity K,;:

[H;0"J[A7]

Ke=""THa]

(12.8)
where we assume that activity coefficients are unity. (The activity of water is equal to
its mole fraction, essentially unity in dilute solution.) Very commonly, when water is
understood to be the solvent, Eq. (12.6) is abbreviated to

HA=H" +A"~
and Eq. (12.8) becomes
[HT][AT]
K,=—F—- 12.9
¢ [HA] (129)

The equilibrium constant K, is known as the acid dissociation constant (also called the
acid ionization constant or the acidity constant). In like manner, from Eq. (12.7) we
define the base dissociation constant K,:

_ [BH*][OH"]
Ko =g — (12.10)

We can apply the same formalism to water. From Eq. (12.4), we have
K, = [H'][OH] (12.11)

where again the activity of water in the denominator is unity. K,, is called the ion
product or autoprotolysis constant of water.

We are now prepared to develop the most powerful quantitative result of the
Bronsted acid-base theory. Consider the equilibria of HA as an acid and of A~ as its
conjugate base:

HA=H"' +A"~ K“:[HFH]EQ_} (12.12)
A~ +H,O==HA +OH" K,,[HA[L[OI}{_] (12.13)

Now multiply together the K, of Eq. (12.12) and the K, of Eq. (12.13). The result is
[HT][OH ™|, or

K, = K.K, (12.14)

2 Proton transfer reactions are extremely fast, so as soon as the solution has been made macroscopically
homogeneous by mixing, the system is at equilibrium.
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where the K, and K, of Eq. (12.14) refer to a conjugate acid-base pair. Since K, is a
constant (at a given temperature), Eq. (12.14) says that K, and K}, are reciprocally
related; that is, K, = K,,/K,. Values of K,, are known over the entire practical
temperature range, so a result of Eq. (12.14) is that if we know either K, or K;,, we
can calculate the other. It is not necessary to measure both quantities.

We will subsequently see that K, is a measure of acid strength and that K, is a
measure of base strength. Thus Eq. (12.14) shows that the strengths of an acid and its
conjugate base are not independent; on the contrary, the stronger the acid, the weaker
the base, and vice versa. Because of this relationship, we commonly specify acid
strength in terms of K ,, but we do not use K, to describe the strength of a base. Instead
we use the K, of the conjugate acid of the base. This may seem illogical, but it is
traditional, and we will return to the issue in Section 12.7.

Asithappens, K, and K}, values are usually very small numbers, so for convenience
(as one motive) we define

pK = —logK (12.15)

where K may be K, K,,, or K,,. The symbol p is a mathematical operator that turns a
quantity into its negative logarithm. Applying Eq. (12.15) to Eq. (12.14) gives

pK,, = pK, +pKp (12.16)

which is a very convenient form.

Conventionally, we divide acids and bases into the classes of strong acids and bases
and of weak acids and bases. Strong acids and bases are strong electrolytes, essentially
completely dissociated in water; HCI, H,SO,4, HNO3, NaOH, and KOH are examples.
Weak acids and bases are incompletely dissociated in water; carboxylic acids, phenols,
and amines are examples. The concept of the equilibrium constant is usefully applied
only to the weak acids and bases.

pH. Let us apply the p operator to the hydrogen ion concentration. We write
pH= —log H"] (12.17)
Extending this formalism to Eq. (12.11) gives
pK,, = pH+ pOH (12.18)

from which we see that the acidity of a solution (measured by pH) and its alkalinity
(measured by pOH) are coupled, so we do not need to measure both quantities. In the
laboratory itis much easier to measure pH, so this is the quantity that we use to describe
solution acidity or alkalinity. Table 12.1 lists pK,, values at several temperatures
(Harned and Owen 1958, p. 638). Note that pK,, = 14.00 at 25°C.

A solution in which pH = pOH is said to be neutral; hence a neutral solution has
pH =7.00 (but only at 25°C). The practical pH range in water is essentially defined by
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Table 12.1. lon product of water as a function of

temperature

1°C) PK.,
0 14.94
10 14.54
20 14.17
25 14.00
30 13.83
40 13.54
50 13.26
60 13.02

the value of pK,,, or 14 pH units. The lower the pH, the more acidic the solution; the
higher the pH, the more alkaline the solution.’

Example 12.1 (a) Convert K, =2 x 10~* to pK..

pK, = —logk,
= —(log2+log10~*)
= —(030—-4)
= —(—-3.70)
= 3.70

If pK,=5.30, what is K,?
—logK, =5.30
logk, = —5.30
= —6.00+0.70

K, =50x10"°

Example 12.2. pK,=4.75 for acetic acid at 25°C. What is K, of acetate ion?
From pK,=4.75 we find K,=1.78x 107>, Using either Eq. (12.14) or
Eq. (12.16), we find pK), =9.25 or K, =5.62 x 10~'°.

Example 12.3. What is the hydroxide ion concentration of a solution having
pH=06.50 at 25°C?
From Eq. (12.18), pOH = 14.00 — 6.50 =7.50, so [OH ] =3.16 x 10" * M.

3 Itis important to appreciate a critical difference in the meanings of Eq. (12.16), pK,, = pK, + pKj; and of
Eq. (12.18), pK,,=pH + pOH. Equation (12.16) refers to a conjugate acid—base pair; pK, and pK,, are
constants, although mutually dependent. Equation (12.18) refers to a solution; pH and pOH are variables,
although mutually dependent.
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Example 12.4. The pK, of the conjugate acid of methylamine is 10.64 at 25°C.
Calculate the standard free energy change for the acid dissociation process.
From the basic thermodynamic result

AG’ = —RTInK
and the definition pK, =-log K, we derive

AG’ = 2.303 RT pK,
= (2.303)(1.987 cal mol ~' K~ ')(298.15 K)(10.64)
= 14517 cal mol !
= 14.5kcal mol !
= 60.7 kJ mol !

AGY is positive because K, is smaller (much smaller) than one. pK,, is seen to be
directly proportional to AG.

12.2. pH DEPENDENCE OF ACID-BASE EQUILIBRIA

Fractional Distribution of Acid—Base Species. Some of the treatment described
here follows Connors (1982). Picture a very dilute solution of a given weak acid or
base in an aqueous medium whose pH can be controlled, independently of the solute
of interest, by the experimenter. Such pH control is easy to accomplish. We now
assert, and will shortly demonstrate, that the fractions of solute present in the
conjugate acid and base forms depend only on the pH of the solution and the pK,,
of the acid. Thus the pH is a “master variable” that controls all acid—base equilibria in
the solution.

Consider acid HA (whose charge type is irrelevant in what follows), having acid
dissociation constant K. Let ¢ be its total molar concentration, so that the mass balance
expression Eq. (12.19) can be written.

c=[HA]+]A7] (12.19)

We introduce the fractions of solute in the conjugate acid and base forms with these
definitions:

Fia = [T (12.20)

Fp= (12.21)
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Algebraic combination of Egs. (12.9) and (12.19)—(12.21) gives

Fua = [HE—;—&—]KQ (12.22)
Fa= ﬁ (12.23)

which relate the fractions of solute in the conjugate acid and base forms to the acid
dissociation constant and the hydrogen ion concentration of the medium.
Equations (12.22) and (12.23) confirm the earlier assertion that the solution pH
(which we recall can be established independently of the solute acid) is the only
variable controlling the position of the acid—base equilibrium. Figure 12.1 is a plot of
Fyaand F against pH, calculated with Eqgs. (12.22) and (12.23) for ahypothetical acid
having pK,=4.0. This curve is called a sigmoid curve because of its shape.

From Egs. (12.22) and (12.23) we can deduce these general properties of such
distribution curves. At any given pH, Fya + Fa=1 [a conclusion implicit in
Eq. (12.19)]. At the point where the two curves cross, Fya = Fa =0.5, and at this
point [H" ] =K, or pH=pK,. At pH values much less than pK,, Fy, approaches
unity and F4 approaches zero; at pH values much greater than pK,, F5 approaches
unity and Fya approaches zero. The curves in Fig. 12.1 apply to any monoprotic
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Figure 12.1. Variation with pH of the fraction Fya (conjugate acid) and Fx (conjugate base) for an
acid with pK,;=4.0. [Reproduced by permission from Connors (1982).]
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acid-base pair (i.e., one having only a single acid—base group and therefore only a
single pK, value) merely by sliding the curves along the pH axis until their pH of
intersection matches the solute pK,,. From Fig. 12.1 we also can see that most of the
interesting acid—base chemistry of this system takes place in the approximate pH range
of pK,, = 2 units; outside this range the solute exists largely either as HA (at low pH) or
as A (at high pH).

Rearrangement of Eqgs. (12.20) and (12.21) gives [HA] = cFya and [A™] = cFa; if,
therefore, the total concentration ¢ is known (c is sometimes called the analytical
concentration), and if the pH and pK,, are known, the individual conjugate acid and
base species concentrations are easily calculated.

Example 12.5. The pK, of benzoic acid is 4.20. Calculate the concentrations of
benzoic acid and benzoate ion in a solution whose pH = 5.20 and which was prepared
to contain 0.005 M benzoic acid.

The preceding wording may seem confusing, but it is a fair example of the
terminology that might be used in a laboratory. Its meaning is that ¢ =0.005 M.

From the pK, we find K,=6.31x 10> and from the pH we find [H"]=
6.31 x 107°. Equations (12.22) and (12.23) then give Fys=0.0909 and Fj=
0.909. Thus [HA]=0.005 x 0.0909 =4.55 x 10~*M and [A"]=0.005 x 0.909 =
4.55 x 107* M. The slight discrepancy between the given value of ¢ and the value
obtained by summing [HA] and [A™] results from rounding errors (and is probably
experimentally negligible). Notice that pH=pK, + 1 and that at this condition
[A7]1=10 [HA]L

A diprotic acid (sometimes called a dibasic acid) possesses two acidic groups and

two pK, values. We can symbolize such an acid as H,A and write the acid-base
equilibria as follows:

K
H,A = H* +HA~

K, )
HA- =Ht +A%~

The placement of K; and K, over the arrows effectively defines these constants.
We proceed to define fractions as before, except that now we have three solute
species:

H>A
FHZA:[ 2A]
¢
[HA™]
Fya =
c
A2~
po_ 7]
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where ¢ = [H,A] + [HA™] + [A%7). Combining these relations with the two disso-
ciation constants gives

H*P?
Fia = —— - (12.24)
HT]"+ K [H"]+ K K>
Fia = —— KiH] (12.25)
H]"+ K [H"]+ KK,
KiK.
Fa = 122 (12.26)

HT?+K[HT]+K K,

Obviously Fu,o + Fua+ Fa=1. Observe how the three terms that make up the
denominator constitute in turn the numerators of Eqs. (12.24)—(12.26). At high values
of the hydrogen ion concentration the term [H " ]2 dominates; as [H '] decreases, the
middle term, K; [H ], takes over as the largest contributor, and finally at small values
of [H " ] the last term, K, K>, becomes the largest. Again some general relationships can
be derived from Eqgs. (12.24)—(12.26). Where the curves for Fy,n and Fya cross,
equating Eqs. (12.24) and (12.25) gives pH = pK. Similarly, where Fy5 and F4 are
equal, pH=pK,. The pH at which the maximum in Fyasappears is found by
differentiating Eq. (12.25) with respect to [H " ] and setting the derivative equal to
zero; the result is

PHimax = @ (]227)
Figure 12.2 is a plot of Egs. (12.24)—(12.26) for a hypothetical diprotic acid having
pK; =5.0and pK, = 10.0. Note that the fraction Fiy4 rises essentially to unity at a pH
given by Eq. (12.27).
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Figure 12.2. Species distribution diagram for a dibasic acid H,A with pK; =5.0 and pK> =10.0.
[Reproduced by permission from Connors (1982).]
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Figure 12.3. Species distribution diagram for a dibasic acid H,A with pK; =7.0 and pK, =8.0.
[Reproduced by permission from Connors (1982).]

Now compare Fig. 12.3 with Fig. 12.2. Again the curves are calculated with
Egs. (12.24)—(12.26), but now pK; =7.0 and pK,=8.0. Equation (12.27) is still
obeyed, but now the fraction Fy, fails torise to anywhere near unity. The behavior seen
here is closely connected with the observation, in Fig. 12.1, that the essential acid—base
chemistry occurs largely in the pH region pK,, £ 2 units. In Fig. 12.2 the pK; and pK,
values differ by 5 units, so the two acid—base equilibria described by K and K, act
essentially independently. In Fig. 12.3, however, ApK, = pK, — pK is only 1 unit. As,
in imagination, the pH is raised, swept from left to right across Fig. 12.3, H,A is
converted to HA ™; this transformation commences at about pK; — 2 units, or pH 5. But
before it can be carried to completion (which would not occur until pK; + 2, or pH9),
the system has been brought to within the range pK, — 2, or pH 6, so the second
transformation, of HA™ to AZ_, must take place. The consequence is that Fy cannot
rise as high as it did in Fig. 12.2, where ApK, was 5 units. Generally, one may expect
successive pK,, values to control essentially independent equilibria if ApK, > 4. The
consequence in Fig. 12.2 is that the system contains essentially only two acid—base
species (H,A + HA orHA™ + A?")atany given pH. InFig. 12.3, however, the three
species coexist in a wide pH range.*

4 Of course, these are equilibria, and all species are, strictly speaking, present in all solutions. From the
practical point of view, however, we are often justified in neglecting the presence of a species if it is
experimentally undetectable or exhibits no detectable influence.
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These principles can be extended to acids and bases with any number of acid-base
groups. The form of the expressions for the fractions is seen to take on a predictable
pattern, and it is possible to write these expressions down without derivation. For
the tribasic acid H3A, these expressions become

+13
Fua = [H7)
T HTP+K[HT P+ K K[HT]+K KK
s = KI[H+]2
2

H* P+ K [H' P+ K K [HY ] + K1 KK
and so on.

Example 12.6. Calculate the concentration of monoanion in an aqueous solution
0.01 M in phthalic acid at pH 5.00. pK; =2.95; pK, =5.41.
Phthalic acid is

CO,H
CO,H

1

The two ionizable groups are obviously equivalent. We calculate K; =1.12 x 107>
and K, =3.89 x 10~°. From Eq. (12.25), we obtain

(1.12x 1073)(1 x 1077)
(1x1073)2+(1.12x 1073)(1 x 107 3) + (1.12 x 10~ 3)(3.89 x 10~°)
0.713

Fua =

Then from [HA™] = cFya, we have

[HA"] = 0.01 x0.713
=713x107*M

Buffer Solutions. Suppose that an aqueous solution is prepared to contain  mol L~
of a weak acid HA and b mol L™ of its conjugate base A~. (Of course A~ will be
accompanied by b mol L~! ofits counterion, a cation.) As we have done earlier, the K,
for this system is defined

K,=—1— (12.28)
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and we now apply the p operator to Eq. (12.28) to obtain the convenient form

pK, = pH —log [[II:A]] (12.29)

The quantities a and b are the formal concentrations of HA and A™; the actual
equilibrium concentrations are somewhat different from these values because both of
these equilibria must be mutually satisfied:

HA=H" +A"
H,O=H" +OH"~

We can find exact expressions for these concentrations by making use of mass balance
and electroneutrality relationships. To be specific, suppose that the cationic counterion
is labeled M " . Then these two mass balance expressions can be written as follows:

b=[MT] (12.30)
a+b=[HA]+[A] (12.31)
The electroneutrality principle asserts that any macroscopic volume of solution is
electrically neutral. This means that the sum of positive charges equals the sum of
negative charges. For the aqueous solution under discussion we have
HY]+M"]=[OH ]+[A"] (12.32)
Algebraic combination of Egs. (12.30)—(12.32) gives the desired relationships:
[HA] =a—[H"]+[OH ] (12.33)
[A"]=b+[H"]—[OH] (12.34)
Combining Eqgs. 12.29), (12.33) and (12.34), we obtain

+[H*]—[OH]
~HT]F[OH |

b
pK, = pH —log (12.35)
a

If the solution pH is in the approximate range 4—10, the contributions of [H " ] and
[OH ] in Eq. (12.35) are usually negligible, and Eq. (12.35) becomes

b
pK, = pH —log— (12.36)
a

In this form, Eq. (12.36) is known as the Henderson—Hasselbalch equation. This is a
very convenient form for carrying out calculations.
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A solution that contains comparable and appreciable concentrations of a conjugate
weak acid—base pair is called a buffer solution because it resists a change in pH on the
addition of a small amount of acid or base. This phenomenon can be demonstrated with
an example. Suppose a solution is prepared to be 0.1 M in acetic acid (pK, 4.76) and
0.1 M in sodium acetate. Then b/a = 1.00 and, according to Eq. (12.36), pH = pK,,, or
pH=4.76. Now let 1.0 mL of 0.1 M NaOH be added to 100 mL of this solution; what
will be the new value of pH? It may be assumed that the sodium hydroxide converts an
equivalent amount of acetic acid to sodium acetate. The solution therefore contains,
after addition of the sodium hydroxide, (100)(0.1) — (1)(0.1) = 9.9 mmol of acetic
acid, and (100)(0.1) + (1)(0.1) = 10.1 mmol of acetate, all in 101 mL of solution. The
ratio b/a is now 1.02, its logarithm is 0.01, and Eq. (12.36) shows that the new pH is
4.77. Addition of the alkali has resulted in a pH change of only 0.01 unit. If the same
volume of the sodium hydroxide solution had been added to 100 mL of pH 4.76 strong
acid, the pH would have changed to about 11.

Equation (12.36) will sometimes be encountered in different guises, because
some authors consider that a weak acid, on treatment with a strong base, is converted
to its salt; thus the equation could be written pH = pK,, + log (salt/acid); when a
weak base is treated with a strong acid to form its salt, the equivalent form is
pH =pK, + log (base/salt). Because of the possible confusion resulting from this
terminology, we will use the Bronsted terminology by speaking of conjugate acid
and base species. Thus Eq. (12.36) and equivalent versions always can be written in
the form

[conjugate base]

Ka =pH-1 N "
P P ©8 [conjugate acid]

(12.37)

This equation relates the three quantities pH, pK,, and the ratio b/a. Often two of these
are known and the third may then be calculated.

Example 12.7. Calculate the pH of a buffer solution prepared by dissolving 242.2 mg
of tris(hydroxymethyl)aminomethane in 10.0 mL of 0.170 M HC1 and diluting to
100 mL with water. The molecular weight of the soluteis 121.1.Itis a primary amine of
structure (HOCH,)3;CNH,, with pK, = 8.08 for the conjugate acid.

A total of 2.00 mmol of solute was weighed out, and 1.70 mmol of HC1 was added.
Since the HCI reacts with the amine to convert an equivalent amount to its conjugate
acid (protonated) form, this means that ¢ =1.7/100M and b = (2.0 — 1.7)/100 M.
Using these figures in the Henderson—Hasselbalch equation, we obtain

0.003 0.017
pH = pK, + log 0o = 8.08 —log 0003

= 8.08 —log 5.67 =7.25

In this calculation the ratio was inverted merely to give a value greater than unity, for
ease in taking the logarithm.
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Figure 12.4. Species distribution diagram for phosphoric acid: pK;=2.23, pK>=7.21,
pKs=12.32. [Reproduced by permission from Connors (1982).]

Example 12.8. Calculate the pH of a buffer prepared to contain 0.09 M NaH,PO, and
0.01 M K,HPO,. pK; =2.23, pK, =7.21, pK5 = 12.32 for phosphoric acid.

In general a buffer of a polyprotic acid may be a very complex mixture, and a species
distribution diagram is helpful in clarifying the problem. Figure 12.4 shows this
diagram for phosphoric acid. The pK values of this acid are widely spaced, and
phosphoric acid behaves essentially as if it were an equimolar mixture of three
monobasic acids of the given pK values. From the experimental values a = 0.09 M and
b=0.01 M, Fig. 12.4 clearly shows that the pH will be approximately 6.3 and that the
solution contains practically no H;PO, or PO5*~at this pH. We have now simplified the
problem to that of a monobasic acid (H,PO,4 ) and its conjugate base (HPO42_), with
the dissociation constant pK, =7.21. Applying the Henderson—Hasselbalch equation
gives pH="7.21 —log 9 =6.26.

Table 12.2 was constructed by means of Eq. (12.36). Table 12.2 illustrates the
symmetry and simplicity provided by the logarithmic form of the dissociation constant
expression. The table also confirms the suggestion derived from Fig. 12.1 that most of
the acid-base “action” takes place in the approximate pH range pK, £ 2.

Inasmuch as the function of a buffer is to minimize changes in pH, it is useful to have
ameasure of the “buffering capacity” of a buffer solution. This is provided by the buffer
index 3. Let b be the concentration of strong base added to a solution containing total
concentration ¢ of a weak acid. Then 8 is defined by

db

Thus 3 is the concentration of strong base required to change the pH by a given amount;
the larger the value of 3, the greater is the buffer capacity of the solution. Since the
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Table 12.2. Relationship of pH, pK,, and the conjugate
base/acid ratio

bla pH

0.001(1073) pK,—3
0.01(107%) pK,—2
0.1(107H pK,—1
1(10% pK.

10(10") pK, + 1
100(10%) pK, + 2
1000(10%) pK, +3

strong base converts the weak acid to its conjugate base, b has the meaning given to it
earlier, and from Eqgs. (12.21) and (12.23), we write Fa =b/c =K, /(H*] + K,), or

b— cK,
- HY+K,
Therefore
b —cK,
dHT]  (H']+K,)
and
db db
—— = —23H"
dpH [ ]d[Hﬂ
,8 = 2.3CFHAFA (]239)

Equation (12.39) shows that 3 is directly proportional to total buffer concentration c, as
well as to the product FyaFa. It is easy to show (e.g., by inserting numbers for the
fractions) that this product is maximal when Fya = Fa = 0.5, which, we have seen,
occurs when pH = pK,,. This result, together with extensive laboratory experience,
leads to the guideline that buffer capacity is maximal when pH = pK, and is acceptable
in the approximate range of pH = pK, = 1. This is the information needed to design
effective buffer solutions.’

12.3. CALCULATION OF SOLUTION pH

We have already seen some calculations of solution pH, but here the treatment will be
more systematic. There are two kinds of aqueous solutions to consider: (1) a solution

5 Buffers are commonly described in an abbreviated terminology that must be understood. For example, a
0.10M pH 5.00 acetate buffer means that the total buffer concentration ¢ is 0.10M and the pH is 5.00;
obviously the solution contains both acetate and acetic acid, in concentrations that can be worked out from
the Henderson—Hasselbalch equation. Similarly, a 0.05 M pH 7.0 phosphate buffer contains both dihydro-
gen phosphate (H,PO, ") and monohydrogen phosphate (HPO,*"), usually taken as their salts.
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prepared with a single solute, whether a strong acid, strong base, weak acid, or weak
base; and (2) a solution prepared to contain two conjugate species, namely a weak
acid and its conjugate base. Obviously, all acid—base systems contain both species; the
distinction being made is that in (1) one of these arises solely from the operation of
the solution equilibria, whereas in (2) the experimenter ensures by manipulation that
appreciable concentrations of both are present.

Any aqueous acid-base system can be completely described by carrying through
the following procedure:

Write the electroneutrality equation for the solution.
Write the mass balance expressions for each solute.
Define all pertinent K, values.

Define K,,.

Algebraically combine the preceding expressions.

M S

Seldom is it necessary to carry through the system in its full generality, and we will see
that shortened versions, often employing chemically reasonable approximations, will
usually suffice. The level of accuracy sought is determined by the typical accuracy in
an experimental measurement, which is, at best, about 0.01 pH unit.

Strong Acid or Base. A strong acid or base is essentially completely dissociated in
dilute aqueous solution. The common strong acids are hydrochloric (HCI), sulfuric
(H,SO,), nitric (HNO3), and perchloric (HC10,); the common strong bases are
sodium and potassium hydroxides (NaOH, KOH).

Let ¢ be the total (analytical) molar concentration of strong acid HX. According to
the electroneutrality principle applied to this solution, we obtain

H"]=[OH ]| +[X"] (12.40)

The source of the hydroxide ion is the dissociation of water. The mass balance
expression for this solution is

c=[X"] (12.41)

Equations (12.40) and (12.41) can be combined with the definition of K,, to give a
quadratic equation, which can be solved for [H 1. However, if the concentration ¢ is
greater than ~1 0~ %M, then [X] will be much greater than [OH ], and we can write
the acceptable approximation [H*]=[X"], or

HT]=c (12.42)
which states that the hydrogen ion concentration is numerically equal to the total

concentration of strong acid. Similarly for a strong base MOH the electroneutrality
equation is
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[H*]+[M*] =[OH] (12.43)

which simplifies to ¢ = [OH ], where c is the analytical concentration of the strong
base.

These calculations have ignored nonideality effects, which, we have seen, set in at
fairly low ionic strengths for ionic species (Chapter 8). For example, the calculated pH
of 0.10M HCl is 1.00, whereas the measured pH is 1.10.

Example 12.9

(a) What is the pH of 0.005M H,SO,? Sulfuric acid dissociates according to
H,SO; — 2H " + SO,>~. Thus in this solution [H]=2¢=0.010M, and
pH =2.00.

(b) Whatis the pH of 0.025 M NaOH? We have [OH ] =0.025 M, so pOH = 1.60
and pH = 14.00 — 1.60 = 12.40.

Weak Acid. Let HA be a monoprotic weak acid at total concentration c¢. The
dissociation reaction is

Kq
HA=H"+A"
From the electroneutrality principle we write
[H"]=[OH ] +[A"] (12.44)

and the mass balance expression is
¢ = [HA]+[A7] (12.45)

An exact solution combines Eqs. (12.44) and (12.45) with the definitions of K, and K,
Usually, however, it is reasonable to approximate Eq. (12.44) by [H*]=[A"]. Using
this equality in the definition of K, yields

2
K, = c[i{[;]ﬂ (12.46)
which can be rearranged to the quadratic form
H*)?+K,JH"]—K,c =0 (12.47)
Application of the quadratic formula gives
H*] = — K, £+ /K?>+4K,c (12.48)

2

One uses the physically meaningful solution.
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Suppose that [H " | < c¢; then the denominator in Eq. (12.46) can be approximated
by ¢ — [H" ] =c. If this is acceptable, we obtain K, = [H*]*/c, or

Ht] = VKqe (12.49)

This equation offers an extremely simple solution to the problem. Whether this
approximation is reasonable can be assessed by comparing the results calculated by
Eqgs. (12.48) and (12.49).

The preceding derivations are applicable to aqueous solutions of monoprotic acids
regardless of charge type, so Egs. (12.48) and (12.49) apply to neutral acids (such as
RCOOH), to positively charged acids (like RNH; "), and to negatively charged acids
(like HPO4>7).

Example 12.10

(a) Calculate the pH of 0.02M trans-cinnamic acid (pK,=4.30). We can use
Eq. (12.49) with ¢=0.02 and K,=50x 1075 the result is [H"]=
1.0x 107>M, or pH=3.00. Assessing the validity of the approximation
leading to Eq. (12.49), we see that c=0.020M and [H"]=0.001M (as
calculated), so [H"] is about 5% of c. Let us repeat the calculation with
Eq. (12.48):

=5 1077 £ /(5 x 10777 + (4)(0.02)(5 x 10~

HY] = .

5% 1075+/25x 10719104 x 1075
2

—5x107°+vV4x10°°
2

~0.002 —0.00005
N 2

=0.975 x 1073

so pH=2.99. The approximate solution, Eq. (12.49), gave pH =3.00, which
usually would be considered acceptable, because pH seldom can be measured to
better than 0.01 unit.

(b) Calculate the pH of 0.05M ammonium chloride (pK,=9.25). Ammonium
chloride is a salt. It dissociates completely according to

NH,Cl — NHy ™ +Cl1~
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The ammonium ion NH, " is a weak acid:
NH; " =H™" +NH;
Therefore we anticipate that the solution will be acidic.® The given pK, is for the
acid NH, ". Using Eq. (12.49) with ¢=0.05 and K,=5.62x 107" gives

[H"1=5.30 x 10" °M, or pH=15.28. Our experience with Example 12.10(a)
convinces us that this is an acceptably accurate solution.

Weak Base. The base dissociation reaction is

Ky
B+H,0 = BH* +OH"
and by reasoning identical with that applied to the weak acid case, we derive

P

~ —on- (12.50)

When [OH ] < ¢, Eq. (12.50) becomes
[OH ] = VK¢ (12.51)

where c is the total base concentration. Equations (12.50) and (12.51) apply to neutral
bases (like RNH,), to positively charged bases (like H,NCH,CH,NH; "), and to
negatively charged bases (like RCOO™).

Example 12.11. What is the pH of 0.10 M potassium acetate? (pK, =4.76).

We will use Eq. (12.51) with ¢ =0.10. The pK,, that is given is for the conjugate
acid, namely, acetic acid. The chemistry of this system mimics what we saw in
Example 12.10(b). First the salt potassium acetate (symbolized KOAc) completely
dissociates:

KOAc —K* +0Ac™

The potassium ion is neutral, but OAc™ is a weak base; it is the conjugate base of acetic
acid, and it makes the solution basic because of the equilibrium

OAc™ +H,O=HOAc +OH"™

6 The chloride ion is neutral, as may be deduced by noting that HCl is a strong acid; that is, its “conjugate
base” C1™ is so weak that it is completely ineffectual at capturing the proton.
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From pK,, 4.76 we find pK, = 14.00 — 4.76 =9.24, or K, =5.75 x 10~'°. Applying
Eq. (12.51), we obtain

[OH™ | = \/(5.75 x 10719)(0.1)

=v575x 10" 1
=v575x 1012

=76x%x10"°

so pOH =5.12 and pH = 8.88. It is helpful to check that the calculated pH is on the
correct side of neutrality.

Mixture of Weak Acid and Its Conjugate Base. We have already treated this case
under Buffer Solutions. The appropriate relationship is

pK, = pH —log [[Iél;]] (12.52)

and we have seen how this equation can be applied to calculate the pH of buffers. Of
course, if we wish to prepare a buffer of given pH, we use the equation in an alternative
manner. First a buffer substance is selected according to the criterion that the desired
pH be in the range pK,, £ 1. Then we use Eq. (12.52) to find the ratio [A™]/[HA] that is
needed to deliver this pH. Finally we decide on a total buffer concentration c. Then,
since we have the sum ¢ =[HA] + [A] and the ratio [A™]/[HA], we solve for the
individual concentrations [HA] and [A™] and prepare the solution to contain these
concentrations.

Some mixtures of acids and bases can be quite complex, consisting of polyprotic
acids or bases, or of a weak acid and a weak base (not its conjugate). A complete
analytical description can always be obtained by means of the general scheme outlined
at the beginning of this section, but the solution of the final equation will usually
require approximations of the type we have made use of above.’

12.4. ACID-BASE TITRATIONS

A titration is an experimental operation in which a solution of one reactant (the titrant),
this solution having an accurately known concentration, is added to a solution of a
substance (the sample or analyte) with which it will stoichiometrically and quantita-
tively react, until chemically equivalent amounts of titrant and sample have been
mixed. From the stoichiometry of the known reaction between the titrant and sample
substances, along with the known concentration of titrant, the amount or concentration

7 The exact equation obtained by applying this general scheme will be a polynomial in [H * |, whose highest
power will be equal to the number of dissociation constants (including K,,) plus one.
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of the sample substance can be calculated. The theoretical point at which the amounts
of titrant and sample are equivalent is called the equivalence point, and its experi-
mental estimate is the endpoint of the titration. If the titrant is an acid and the sample a
base, or the reverse, the operation is called acid—base titration. The analytical
calculations, which are simple, lie outside our present concern. Here we are interested
in how the pH of the sample solution varies, throughout the course of the titration, as
increasing volumes of titrant solution are added to it. A plot of this pH [on the vertical
axis (ordinate; y axis)] against the volume of titrant added [on the horizontal axis
(abscissa; x axis)] is called an acid—base titration curve. We will see how it is possible
to calculate such a titration curve, along with the information to be derived from it.

Strong Acid-Strong Base Titration. A strong acid is completely dissociated into
H™ and its anion, which is neutral; a strong base is completely dissociated into OH ™ and
its cation, which is neutral. Consequently, the reaction that occurs in the sample solution

1S
H™ +0OH™ =H,0

This is the reverse of the autoprotolysis of water, so its equilibrium constant is 1/K,,, or
1 x 10'*. The reaction is obviously quantitative; in casual terms, “it goes completely to
the right.” At each stage in the titration the sample solution consists of a solution of a
strong acid or a strong base, so the calculation of the titration curve involves no new
concepts.

Example 12.12. Calculate the titration curve for the titration of 25.0 mL of 0.05 M
HCI with 0.10M NaOH.

In this titration HCl is the sample and NaOH is the titrant. Before any titrant has
been added, the solution consists of 0.05M HCI, so [H"]=0.05M and pH=1.30.
Now suppose we add 1.0 mL of titrant. We can arrange the work in tabular form:

Initially the sample had (25)(0.05) = 1.25mmol H ™"
We have added (1)(0.10) = 0.10 mmol OH ~

Remaining in the solution are 1.15mmol H™

This 1.15 mmol of H" is contained in 26 mL of solution, so the new concentration is
[H"]=1.15mmol/26 mL = 0.04423 M, and the new pH s 1.35. Obviously the pH has
risen because we have added a strong base to the solution.

This calculation is repeated with increasing volumes of titrant. Here are some
results: at SmL of titrant, pH = 1.60; at 8 mL, pH =1.87; at 10mL, pH=2.15; at
12mL, pH=2.87; at 12.2mL, pH=3.09; at 12.4 mL, pH =13.57.

The equivalence point occurs at 12.5 mL of titrant, because at this volume the
number of millimoles (mmol) of NaOH added exactly matches the number of mmol of
HCl initially present; and at this point the foregoing method of calculation gives an
embarrassing result, because it leads to the conclusion that the number of mmol of H +
remaining is zero. But of course there always will be hydrogen ions in water. At the
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equivalence point we simply have a solution of sodium and chloride ions, and
(neglecting impurities from the atmosphere) the solution is neutral, so pH =7.00.

Let us continue to add titrant; suppose that 13 mL has been added. All that is
happening is that the titrant is being diluted. Since the first 12.5 mL of titrant was
consumed in the titration reaction, we have added 0.5mL in excess, or (0.5)
(0.1)=0.05mmol of OH . This is contained in 38mL of solution, so
[OH"]1=0.05/38=0.001316 M, pOH=2.88, and pH=11.12.

Itis left as an exercise to plot the titration curve and to locate the equivalence point.
The calculation of a few more points in the titration, especially after the equivalence
point, may be helpful in defining the shape of the curve.

Weak Acid-Strong Base Titration. We could apply the systematic treatment
outlined at the beginning of Section 12.3 to obtain a general equation applicable
throughout the course of the titration, but it is simpler to recognize that at any stage in
the titration the solution consists of an example of a type that we have already
considered. For the titration of a weak acid HA with a strong base MOH, here are the
four such stages into which we divide the titration:

Stage 1: Before the Titration Begins. The sample solution is simply a solution of a
weak acid, and Eq. (12.48) or (12.49) is applicable.

Stage 2: During Titration. Since some strong base has been added and has
converted an equivalent amount of weak acid to its conjugate base according to

HA+OH™ =A~ +H,0
the solution contains appreciable quantities of both HA and A™. It is a buffer

solution throughout much of this stage, and Eq. (12.36) applies.

Stage 3: At the Equivalence Point. Now the weak acid HA has been quantitatively
converted to A™. The sample solution consists of this weak base in water, and
Eq. (12.50) or Eq. (12.51) may be used.

Stage 4: After the Equivalence Point. The solution contains excess strong base and
the weak base A, whose dissociation is repressed by the common ion effect of
the hydroxide from the strong base. We therefore ignore the contribution of A™,
and we calculate the concentration of hydroxide exactly as in Example 12.12.

Example 12.13. Calculate the titration curve for the titration of 10.0 mL of 0.2 M
weak acid (pK, =5.0) with 0.2 M sodium hydroxide.

Stage 1. We have K, =1 X 10> and ¢=0.2, so, from Eq. (12.49),
[HT]=1/(1 x 1073)(0.2)
=141x10?

or pH=2.85.
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Stage 2. Let 2.0 mL of titrant be added. This is the situation:

Initially in the sample : (10.0)(0.2) = 2.00 mmol HA
Strong base added : (2.0)(0.2) = 0.40mmol OH "~
Weak acid remaining 1.60 mmol HA

Using Eq. (12.36), we have

0.40
pH 5.00 +log 160

4.40

Of course, the logarithmic term is strictly a ratio of concentrations, so we should
have written

0.40/12

1.60/12

pH = 5.00 + log

where 12mL is the total volume, but these volumes cancel, so we effectively

calculate a ratio of amounts. Using the same calculational method, we obtain these

further results: at 5.0 mL, pH 5.00; at 7.0 mL, pH =5.37.

Stage 3. The equivalence point obviously corresponds to 10.0 mL of titrant added.
Initially we had (10.0) (0.2) =2.00 mmol of HA, and this has now been
converted to 2.00 mmol of A™, which is contained in 20.0 mL of solution.
Using Eq. (12.51), with K, =1 x 10~ and ¢ =0.10M, we obtain

[OH ] (1 x107)(0.1)

I1x107°M

so pOH =5.00, and pH = 9.00. Obviously the solution is basic at the equivalence

point, since it contains only a weak base.

Stage 4. Let 12.0 mL of titrant be added. This constitutes an excess of 2.0 mL of
0.2M strong base in a total volume of 22.0mL, so [OH ]=(2.0)(0.2)/
22=0.0182M, giving pOH =1.74 and pH = 12.26.

Figure 12.5 is a plot of the full titration curve. Three important lessons are to be learned
from this graphical display:

Detection of the Endpoint. Observe the relatively sharp “break” in the curve
corresponding to the equivalence point at 10.0mL of titrant. The point at which
the slope has its maximum value gives us our experimental estimate of the endpoint. In
the laboratory we make use of this information in either of two ways: (1) If we know
the pH at the endpoint by either calculation or experience, we can titrate to that pH
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Figure 12.5. Calculated curve for the titration of 10.0mL of 0.2N weak acid (pK,=5.00) with
0.2 N strong base. [Reproduced by permission from Connors (1982).]

(usually as detected with a visual indicator); or (2) we can experimentally measure
the pH, plot the curve, and establish the endpoint graphically.

Buffer Properties. We have seen that the sample solution throughout much of the
titration is a buffer, and this property is manifested in the slope of the titration curve,
which is seen to be the reciprocal of B, the buffer index [Eq. (12.38)]. Thus the
shallower the slope, the greater the buffer capacity. Recall our earlier claim that buffer
capacity is acceptable in the range pH =pK, £ 1, and observe how this range is
reflected on the titration curve.®

Determination of pK,. We will subsequently learn how to measure the pH experi-
mentally, so the titration curve can be determined. Writing Eq. (12.37) again

[conjugate base]

H = Ka 1 . "
P pRatlog [conjugate acid]

we see that if we know the ratio appearing in the logarithmic term and can measure the
pH of the solution, we can calculate pK,,. In particular, consider the point in the titration
corresponding to one-half way to the endpoint, as measured in titrant volume. At this
point (call it the midpoint), one-half of the weak acid has been converted to its
conjugate base, so the ratio [conjugate base]/[conjugate acid] = 1.00, and pH = pK,,.
This relationship is shown on Fig. 12.5. (Of course, the pK,, thus determined is not a
“thermodynamic pK,” because we have not yet applied activity coefficient correc-
tions; these are discussed in Chapter 13.) An interesting capability of this technique is

8 Figure 12.5 also shows that fairly high concentrations of a strong base (seen well beyond the endpoint in
Fig. 12.5) constitute good buffers. The same is true of strong acids.
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that it allows us to determine the pK,, of an acid whose identity is unknown; we merely
need to determine the titration curve, read off the endpoint volume, and then, by
interpolation, establish the pH corresponding to one-half the endpoint volume.

This equality pH = pK,, at the titration midpoint is yet another manifestation of a
condition we have encountered before, notably in discussing Eqs. (12.22) and (12.23),
Eqgs. (12.24)-(12.26), Table 12.2, and Eq. (12.39).

Calculation of the titration curve for the titration of a weak base with a strong acid is
analogous to the preceding treatment. For such a titration the pH will initially be on the
alkaline side of neutrality and will decrease throughout the titration. At the endpoint
the solution contains the conjugate acid of the sample base, so the solution is acidic.

The titration curves of polyfunctional acids and bases, if their successive pK,, values
differ by about 4 or more units, show a “break” at each endpoint for the successive
titration of the groups (in the order strongest to weakest). If, however, the successive
pK, values are not widely spaced, the successive breaks are less distinct because the
phenomenon seen in Fig. 12.3, in which more than two solute species coexist at some
pH values, intrudes. Such systems can be algebraically described, and in this manner
the experimental data can be fitted to the equation to extract the pK,, values. We will not
pursue this analysis.

Acid-Base Indicators. An acid-base indicator is acompound whose conjugate acid
and base forms exhibit different colors. There is no limitation on the charge type of the
indicator. Indicators are used to detect the endpoint in a titration; the selection of an
indicator is based on the simple principles to be discussed here.

Consider the indicator acid HI. This acid will undergo dissociation in aqueous
solution:

HI=H" +1"

The acid dissociation constant has the form of K,, but it is often symbolized K:

K=t (12.53)

The acid form HI is responsible for the acid color of the indicator solution, and 1™
shows the base color. The color that our eyes see is related to the relative concentrations
of these two forms of the indicator. Rearranging Eq. (12.53) gives

T (12.54)

Two important conclusions follow from Eq. (12.54). The color is controlled by the pH
of the solution; and the color change during a titration is not abrupt but occurs in a
continuous manner, since the pH changes continuously, as we saw earlier.

Itis characteristic of the typical human eye that in order to detect the first deviation
from the pure acid color in a solution of the indicator, the ratio [I]/[HI] must be at least
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1/10; that is, about 10% of the indicator must be in the base form. Similarly, about 10%
of the indicator must be in the acid form to detect any acid color. (These statements
apply to two-color indicators.) In between these limits the eye recognizes that a
mixture of colors is present and that the indicator color change is taking place if a
titration is being carried out. These limits for [I”]/[HI] of 0.1 to 10 have no theoretical
chemical significance but are related to the sensitivity of the observer’s eyes and to the
particular indicator used; some colors are more readily detected than others.
The pH values at which these limits of observable color change occur are easily
calculated. From Eq. (12.54):
pH = pK; +log u (12.55)
[HI]

For the limit on the acid side, [ ]/[HI] = 0.1, or pH = pKj — 1. For the limit on the base
side, [I"]/[HI] = 10, or pH = pK; + 1. The pH range within which the indicator can be
observed to be changing color is thus given approximately by pH = pK; £ 1. This is
called the transition interval of the indicator, and it clearly depends on the pKj of the
indicator. This is why indicators of different structure change color at different pH
values.

Table 12.3 gives the colors and transition intervals of some useful acid-base
indicators. Many of the intervals are less than 2 pH units, suggesting that the limits
pKi£ 1 are rather conservative. One-color indicators, in which only one of the
conjugate forms possesses a visible color, will not behave visually in accordance
with the above-mentioned treatment, although of course their equilibria will be

Table 12.3. Acid-base indicators

Indicator Transition Interval Acid Color Base Color
Methyl violet 0.15-3.2 Yellow Violet
Thymol blue 1.2-2.8 Red Yellow
Quinaldine red 1.4-32 Colorless Red
2,4-Dinitrophenol 2.4-4.0 Colorless Yellow
Methyl yellow 2.9-4.0 Red Yellow
Bromcresol blue 3.0-4.6 Yellow Blue
Methyl orange 3.1-44 Red Yellow
Bromcresol green 3.8-5.4 Yellow Blue
Methyl red 4.4-6.2 Red Yellow
Bromcresol purple 5.2-6.8 Yellow Purple
4-Nitrophenol 5.6-7.6 Colorless Yellow
Bromothymol blue 6.0-7.6 Yellow Blue
Phenol red 6.4-8.2 Yellow Red
Cresol red 7.2-8.8 Yellow Red
Thymol blue 8.0-9.6 Yellow Blue
Phenolphthalein 8.2-10 Colorless Red
Thymolpthalein 9.3-10.5 Colorless Blue

a-Naphtholbenzein 9.8-11.0 Yellow Blue
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described by the same equations. The pK; of an indicator, and therefore its transition
interval, can be affected by the salt concentration of the solution and by organic
solvents incorporated into the aqueous medium.

In order to achieve an accurate visual detection of the endpoint in an acid-base
titration, evidently the pH of the solution must change by about 2 units in the immediate
vicinity (say, £0.2%) of the endpoint. Whether this condition is satisfied in any given
circumstance can be determined by calculating the titration curve. Figure 12.5 shows
the results of such a calculation, indicating that this would be a feasible titration with
visual endpoint detection because of the sharp break in the region of the theoretical
equivalence point. Calculations show that the more concentrated the solution and the
stronger the acid (for titrations with base), the greater this break.

An indicator should now be chosen such that the pH at the titration equivalence
point falls within the transition interval of the indicator. In the titration of a weak acid
with a strong base, at the endpoint the solution contains the conjugate base of the
acid, so its pH is in the alkaline range, as shown in Fig. 12.5. Weak acids therefore
are usually titrated using thymol blue, phenolphthalein, or thymolphthalein as
indicators. In titrations of weak bases with strong acids the endpoint pH will be in
the acidic range, and methyl red, methyl orange, and bromcresol green are commonly
used indicators.

Without some understanding of the relationship of molecular structure to optical
absorption spectra, a full accounting for the color changes of indicators is not possible,
but an approximate treatment is feasible. The essential fact about acid-base indicators
is that the acid and base forms have different colors. All acid-base indicators in
common use are organic compounds. Apparently the reason for the different colors
must be sought in the different structures of the acid and base forms of the indicator.
Itis possible to account for the fact of color differences on this basis: if two forms of the
indicator differ markedly in their electronic distribution, and particularly in their
extents of resonance delocalization, two colors will be observed. Color is associated
with the capability of the compound to absorb visible light, and this capability can be
related to the electronic structure. In the resonance hybrid several factors may
contribute, but we can simplify and say that a change in the length of conjugation
pathorinextent of electronic delocalization will result in absorption of a different color
component of white light, with a resultant color change. For a simple example we take
4-nitrophenol, one of the indicators in Table 12.3. The acid—base dissociation is

OQNQOH H* + 02N4©70’

2 3

The acid form is colorless, but the base form is yellow. This yellow color can be
correlated with electron delocalization in the base form as indicated in this conven-
tional depiction of a resonance hybrid:

oo —m on

4 5
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Possibilities for such electron delocalization increase with the size of the molecule,
and most indicators are quite large molecules. Here is the kind of electron distribution
responsible for the color change in methyl orange:

H+
o Dren{sor =

Base (yellow)

6
B +
(HsC)2N O N= H OSOS_

Acid (red) I
N J—

+ H B
i i)

12.5. AQUEOUS SOLUBILITY OF WEAK ACIDS AND BASES

Many acidic and basic drugs possess a limited solubility in water, and we have a
practical interest in being able to increase their solubility. We can often accomplish this
by means of pH control. The pH of an aqueous solution can usually be adjusted
independently of the acid—base equilibrium of the solute drug by means of a buffer
solution.

This is the general principle that we apply—the total solubility is limited by the
intrinsic solubility of the uncharged (nonionic) form of the drug. We can assume that
the ionic form has unlimited solubility; this is not strictly true, but the assumption
carries no practical drawbacks. Notice that for the first time in our consideration of
acid-base chemistry we are directing our attention to the charge types of the species.

The experimental approach is to place enough of the solute in its ionic (charged)
form to achieve the desired total concentration. This is accomplished either by raising
the pH if the drug is an acid (thus deprotonating it) or lowering the pH if the drug is a
base (thus protonating it). We therefore must recognize whether the drug is an acid or a
base, and we require the pK,, in order to calculate the needed pH of the solution.

As noted in the preceding paragraph, we have two cases to consider: (1) a neutral
weak acid, such as a carboxylic acid, to be symbolized HA; and (2) a neutral weak
base, such as an amine, symbolized B. For the present, concentrations will be in molar
units. We make these definitions:

Let s, be the equilibrium solubility of the neutral (uncharged) form of the drug.
Let S, be the total (apparent) solubility of the drug at any given pH of the solution.

We take it that the pH of the solution is under our control, for example by adding a
buffer. Also note that we are restricting attention to compounds having a single



250  ACID-BASE EQUILIBRIA
ionizable group. Then we can write in general

Total concentration = Solubility of uncharged form +
Concentration of charged form

We will develop the two cases in parallel:

Neutral Acid, HA Neutral Base, B
S;=[HA]+[A ] =s0+[A7] S; = [B]+[BH"] =so+ [BH"]
x — HAT] [HS —s) x — B} _[H"]so
a — - a — -
[HA] S0 [BH+] S, — 80
S, —
pK, = pH —log— % (12.56a) pK, =pH —log % (12.56b)
S0 St — 80

Observe that Egs. (12.56a) and (12.56b) are simply forms of the familiar
Henderson—Hasselbalch equation. The physical interpretation of these equations is
that S, is the maximum concentration of drug that can be achieved at the given pH. An
alternative view is that the pH given by the equation is the limit beyond which
precipitation of the uncharged drug will occur at the given S,; the pH directional change
that will produce such precipitation depends on the solute; acids will precipitate as the
pH is lowered, and bases will precipitate as the pH is raised.

Equations (12.56) contain two parameters (pK, and sy) and two variables (pH and
S;). In the most desirable situation, pK, and sy will be available as experimentally
measured quantities; otherwise they must be estimated. Methods for estimating the
solubilities of nonelectrolytes are available (Chapter 10).

Letus examine Eqgs. (12.56) more closely. As noted above, these equations contain
the four quantities pK,, pH, S;, and s,. In most applications we will know pK, and s,
and will either set a “target” S, value and calculate pH, or set a target pH and calculate
S;. The concentrations appear as the ratio (S, — so)/so or its reciprocal, so it makes no
difference whether molar units or physical units (such as mg mL ") are used, so long as
S; and sq are expressed in the same units.

The nonlogarithmic form of Eq. (12.56a) can be arranged to Eq. (12.57):

S; = 5o+ (12.57)

Ka
HTY
When [H*]>>>> K, (i.e., when pH << pK,), for this neutral acid, Eq. (12.57)
becomes S;=s(. Essentially all of the solute is in the conjugate acid form.When
[HY 1<K, (pH>>>> pK,), Eq. (12.57) approaches

Kq
Sl == WSO

which can be written

log S, = log so + pH — pK,, (12.58)
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log S,

pH

Figure 12.6. Plot of Eq. (12.56a); pK,=5.0, so=2 x 1073M.

Under these conditions the slope of a plot of log S; versus pH is unity; that is, for each
unit increase in pH the concentration increases tenfold. At the point where pH = pK,,
log S; =1log sq [but this is an extrapolated condition, because Eq. (12.58) does not hold
when pH = pK,]. The reverse pH dependence (slope of the plot of log S, vs. pH is
—1.00) will be seen for a neutral base. Figure 12.6 shows this behavior for a
hypothetical weak acid having pK, = 5.00 and so=2 x 10"* M.

In applying either Eq. (12.56a) or Eq. (12.56b), we must first establish whether the
drug is a neutral acid or a neutral base. Consider sodium benzoate, useful as a
preservative. We recognize this as the sodium salt of benzoic acid, prepared by reacting
benzoic acid with sodium hydroxide. The solute in this case is a neutral weak acid, even
though we weigh it out and dissolve it as the salt (the charged conjugate base). Benzoic
acid has a limited water solubility, whereas sodium benzoate is quite soluble. But we
realize that sodium benzoate, in solution, is in equilibrium with benzoic acid, as the
position of equilibrium is determined solely by the pK, of benzoic acid and the pH of
the solution. Despite the high solubility of sodium benzoate, if at the experimental pH
the concentration placed in solution exceeds the S; value given by Eq. (12.56a), free
benzoic acid will precipitate until the equation is satisfied. We reiterate: The original
form of the solute is irrelevant; this is an equilibrium situation entirely controlled by
pK., pH, and sy,



252 ACID-BASE EQUILIBRIA

We mentioned earlier that the pH is under our control, but this may not always be so,
and in some cases the pH may be established by a complex mixture of buffers or other
formulation components. Calculation of the pH may not be feasible in such circum-
stances; instead the pH should be measured. Even pH indicator paper may be adequate
to this purpose.

Example 12.14

(a) Suppose a drug is available as the sodium salt of a carboxylic acid whose
molecular weight is 150, pK,, = 5.00, and solubility of the unionized acid form
is 2 x 107*M. What is the maximum concentration of drug that can be
dissolved at pH 5.00? Applying Eq. (12.56a) with so=2x 10> M gives
S, =4 x 107> M. Compare this with Fig. 12.6, which was calculated with these
same parameters. Note that in this problem pH = pK, so equal concentrations
of the ionized and unionized forms are present.

(b) Can 0.5% of the sodium salt described in Example 12.14(a) be dissolved at pH
4.00? Using Eq. (12.56a) gives S,= 2.2 x 10> M. The desired concentration
is 0.5g/100mL =5 g/L = 3.3 x 10~ M, which far exceeds the calculated S,.
All drug exceeding 2.2 x 10~ M will precipitate as the free acid, at pH 4.00.

(c) For the drug of Examples 12.14(a) and 12.14(b), what pH range will per-
mit 0.5% to be dissolved? Now we let §,=3.3 x 1072 M, So=2 X 1073 M,
and pK,=5.00, applying Eq. (12.56a) to get pH=06.19. Thus any pH
equal to 6.19 or higher will allow 0.5% to be dissolved. (See Fig. 12.6; log
0.033=-1.48.)

Example 12.15. In what pH range is it possible to prepare an aqueous solution of
chlordiazepoxide (9) at a concentration of 10 mg/5 mL?
NHCH;

Chlordiazepoxide, pK,4.6, MW 299.8
solubility 1 g/10,000 mL H,O

=

+

Cl =N_

? CeHs °

Chlordiazepoxide is obviously a neutral weak base. It is not obvious to which nitrogen
atom the pK, should be assigned, but its value is reasonable for an aromatic amine. The
reported aqueous solubility corresponds to 0.01%. (The drug is also available as the
hydrochloride salt, which is quite soluble, but as noted in the earlier discussion, this is
entirely irrelevant to the problem.)

The desired concentration of 10 mg/5 mL is equivalent to 200 mg/100 mL or
0.2%. We can use Eq. (12.56b) with so=0.01 and S,=0.2. The result is pH =3.3;
that is, at any pH of 3.3 or below (more acidic), this concentration of drug can be
dissolved.

We have emphasized that the form (neutral molecule or its salt) used experimen-
tally is irrelevant, with the total achievable concentration depending solely on the
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parameters pK, and sy and on the assigned pH. This is true when the pH is fixed by the
experimentalist, by means of a buffer. But if control of pH is not important, then the
simplest procedure is merely to dissolve the salt form, which is usually very soluble, to
the desired concentration. The pH will shift to a value determined by pK, and
concentration. [And we know how to calculate this pH by using either Eq. (12.49)
or Eq. (12.51).] But this procedure may be unacceptable if the resulting pH is outside
the desired range. Such a solution, moreover, is unbuffered and is susceptible to
perturbation of its pH by other ingredients.

12.6. NONAQUEOUS ACID-BASE BEHAVIOR

Although water is our most important solvent, in some applications we often make use
of nonaqueous solvents. Acid—base behavior (reaction of acids with bases, attainment
of acid-base equilibrium, acid-base indicator color changes) is widely observable in
nonaqueous media, and here we survey this very large class of substances. It would be
possible to develop quantitative acid—base theories for these solvents, but the results
would be much more complicated than the acid—base theory of aqueous solutions owing
to the lower dielectric constants of organic solvents. This circumstance leads to the
formation of ion pairs (and even of ion triplets and higher aggregates), whose existence
complicates the description, so we will be satisfied with a qualitative treatment.

Dissociating Solvents. Let us take water as our model of a dissociating solvent.
Omitting the molecule of water that hydrates the hydrogen ion:

H,O=H" +0OH"

A large number of dissociating solvents fit this pattern. Methanol and other alcohols
give alkoxide ions, analogous to hydroxide in water:

MeOH=H" +MeO "~

It is important to realize that the symbol H™ represents a different species in these two
equations; in water it means H;O " and in methanol it means MeOH, *.

Liquid carboxylic acids, of which glacial acetic acid is the most important, also are
dissociating solvents. Letting Ac represent CH;CO, the acetyl group, we obtain

AcCOH=H" + AcO~
(glacial acetic acid simply denotes pure acetic acid). In this equation, H" represents

AcOH, *. The proton is not a necessary product of solvent dissociation. Here is how
acetic anhydride dissociates:

Ac,O=Ac" +AcO~

The symbol Ac " represents the acetylium ion, CH;CO .



254 ACID-BASE EQUILIBRIA

Table 12.4. Properties of some solvents

Solvent pK; Dielectric Constant
Water 14.00 78.5
Methanol 16.70 32.6
Ethanol 19.10 24.3

Acetic acid 14.45 6.19
Formic acid 6.20 58

Acetic anhydride 14.5 21
Acetonitrile 26.5 36.2

There are also many nondissociating solvents, such as hydrocarbons, ethers, and
carbon tetrachloride. Actually the distinction between dissociating and nondissociat-
ing solvents is a matter of degree, because with sufficiently sensitive techniques we
might detect some level of dissociation by nearly any solvent. We adopt a practical
viewpoint based on ordinary laboratory experience.

Let us generally represent a dissociating solvent by the symbol CA, where C is
the cationic component and A is the anionic component. Then the solvent dissocia-
tion 1s

CA=C" +A"~
and, just as we did for water, we define an ion product, K:
K, =[CT][A7] (12.59)

Table 12.4 lists some ion products as pK, = —log K.

Here is an interesting consequence of the pK; value. We will compare water and
ethanol. In water, in order to pass from an acidic solution in which pC (i.e., pH) =1 to
an alkaline solution in which pA (i.e., pOH) = 1, a range of acidity corresponding to
12 pH units must be traversed, since pC + pA = 14 for water. For ethanol, however,
pC + pA=19.1, so to go from pC=1 to pA=1 requires that 17.1 orders of
magnitude be covered. Very roughly, we may expect that the smaller the value of
K, for a solvent, the greater the range of the acidity scale available for studying or
titrating sample solutes.

Acid-Base Properties. Solvents may be discussed as acids or bases just as are any
other substances. The Bronsted theory forms the basis of the discussion, and the terms
used are given in Table 12.5. Very generally we recognize that protogenic and
amphiprotic solvents are dissociating solvents, whereas protophilic and aprotic
solvents are nondissociating solvents.

A useful analogy may now be made between water, whose acid—base properties
we understand, and several nonaqueous solvents. The dissociating solvent CAyields
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Table 12.5. Solvent classifications

Class Characteristics Examples
Protogenic Acidic; donate a proton Glacial HOAc; H,SO4
Protophilic Basic; accept a proton Amines; ethers; esters
Amphiprotic Both acidic and basic; can Water; alcohols
donate or accept a proton
Aprotic Neither acidic nor basic. Hydrocarbons, CCl,,CH3;CN,
dioxane

the cation C1, which is called the lyonium ion, and the anion A, called the
lyate ion:

Solvent

1)

Lyonium ion + Lyate

2H,0 = H;0" +0OH~
2MeOH = MeOH, " +MeO~
2AcOH = AcOH," +AcO~
Ac,O = Ac" +AcO~
2NH;3(liqg) = NHs" +NH,~

With water as the solvent, we are accustomed to regarding its lyonium ion, H;0 ", as
the strongest possible acid, and OH ™, the lyate ion, as the strongest possible base. Let
us extend this concept to the other solvents. In glacial acetic acid as a solvent, we would
conclude that the acetate ion AcO™ is the strongest possible base. In other words,
sodium acetate (which we recall is a weak base in water) should be a strong base in
glacial acetic acid, just as sodium hydroxide is a strong base in water. This expectation
is borne out by experiment. Similarly, we predict that ammonium chloride should be a
strong acid in liquid ammonia. This analogy is a powerful concept for the design of
experiments.

The Leveling and Differentiating Effects. Since solvents can be acids or bases, an
acidic or basic solute reacts with such a solvent to a degree determined by their relative
strengths. We can distinguish two possibilities. Let S represent a basic solvent and HX
a strongly acidic solute. Then one possibility is that the reaction

HX+S=SH" +X~

goes essentially completely to the right. Thus, the solute is quantitatively transformed
into the lyonium ion of the solvent, which is the strongest acid that can exist in this
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solvent. (Any acid stronger than SH T such as HX, will be transformed to SH ™ ; this
lowers the free energy of the system.) We say that the solvent Sis a leveling solvent for HX,
orthatHXisleveled by S.If we alsohad asecond very strong acid HY that wasleveled by S,
the acids HX and HY would appear to be of the same strength, because they both have been
converted to SH ™. This is what happens when the familiar strong acids (HCI, HNOs,
H,S0,, HCIO,) are dissolved in water; they are leveled to H;O ™ and all appear to be of the
same acid strength. Glacial acetic acid as a solvent, which is fairly acidic, levels many
bases, such as amines, by quantitatively transforming them to its lyate ion:

RNH; + AcOH =RNH;3 © + AcO ™~

The other possibility, of course, is that the reaction between solvent and solute does
not go to completion. Imagine the acid HA reacting with solvent S:

HA+S=SH" +A~

If the reaction does not go completely to the right, we can measure an equilibrium
constant for it, and this constant is a quantitative measure of the extent of reaction. Now
if we take a second comparable acid HB and measure its equilibrium constant, we can
compare the acid strengths of HA and HB with respect to the reference base S. We call
S a differentiating solvent for HA and HB. This is just what we do in water when we
measure K, values for weak acids and bases.

Figure 12.7is aschematic representation of these ideas. Here we have supposed that
there exists for every solute an innate absolute acidity or basicity (which is not true, but
is a reasonable practical approximation), and as solutes we have taken, in order of
decreasing acidity and increasing basicity, HCIO4, AcOH, ArOH (a phenol), H,O,
ArNH, (an aromatic amine), RNH, (an aliphatic amine), NaOH. These are spread out
on scales, which may be taken as proportional to pH or pK,,.

The key idea is that the pure solvent is taken as the neutral point of the scale. Thus in
the upper scale, showing H,O as the solvent, H,O is the neutral point. Any solute, acid
or base, lying very far from this point, will be leveled by water, because the difference
in their acid—base properties is great. Those solutes not falling very distant from the
neutral point are differentiated by water, as we know that AcOH, ArOH, ArNH,, and
RNH; are differentiated, because we can measure their K, values.

Now turn to the scale for glacial acetic acid as solvent. Acetic acid now becomes our
neutral point, and we may question whether even such a strong acid as perchloric acid
(HCIQ,) is leveled by acetic acid. On the other hand, we readily accept that aliphatic
amines are leveled, because they lie distant from the neutral point.

( Neutral )
HCIO, HOAc ArOH H,O AINH, RNH, NaOH
Acidity < t + y t f t » Basicity
H,O as solvent
( Neutral )
HCIO, HOAc ArOH H,O ArNH, RNH, NaOH
Acidity < + + t t t t » Basicity

HOAC as solvent

Figure 12.7. lllustrating acidity/basicity relative to the solvent, and the leveling and differentiating
effects.
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These considerations of acid—base strength are somewhat complicated by the
concomitant phenomenon of limited dissociation as a result of the low dielectric
constant of some nonaqueous solvents, but as a qualitative guide they are useful. The
role of dielectric constant and the distinction between ionization and dissociation was
treated earlier, in Chapter 8.

12.7. ACID-BASE STRUCTURE AND STRENGTH

Principles. We should be able to look at a molecular structure and to make
reasonable, even though approximate, estimates of the acid or base strengths of
functional groups. The ability to do this from fundamental theoretical principles is
almost nonexistent at present and need not be considered. Quite sophisticated yet
practical empirical techniques are available, but they are beyond our present require-
ments (Perrin et al., 1981). Our treatment will be very brief.

We begin by repeating Eq. (12.16),

pK,, = pK, +pK)

along with the insight provided by the Bronsted theory that acid and base strength, for
a conjugate pair, are reciprocally related, thatis, K, = K,,/K,or K, = K,,/K . Now, it is
the essence of the acid-base definitions that we can make these statements:

1. As K, increases, pK, decreases, and acid strength increases.
2. As K, increases, pK,, decreases, and base strength increases.

Foraconjugate pair, asmaller pK,, (stronger acid) must be accompanied by a larger pK;,
(weaker base); this is the reciprocal effect. Observe in Table 12.6, these pairs of pK,,
and pK, values for (hypothetical) conjugate acid—base pairs.

Itis obvious that pK,, is a reasonable quantitative measure of acid strength. What is
not so obvious is that it has become conventional to use the pK,, of the conjugate acid to
specify base strength! And Table 12.6 shows that a stronger base is associated with a
larger pK,, (of its conjugate acid—but this parenthetical addition is seldom stated). So

Table 12.6. Measures of acid and base strength for
hypothetical conjugate pairs

Conjugate Acid, pK, Conjugate Base, pK,,

3 11

4 10
g 5 9 %
‘5 6 8 5
: 7 7 °§
& 8 6 -
: 0 5
e 10 4 1

11 3
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Table 12.7. pK, and pK, of some acids and bases

Conjugate Acid pK, Conjugate Base pK,
CH;COOH 4.76 CH;COO™ 9.24
H,PO, 7.21 HPO,*~ 6.79
NH 9.25 NH; 4.75

our chemical problem is twofold: (1) We mustbe able to recognize, by examination of
the molecular structure, whether a functional group is acidic or basic and (2) we must
estimate its pK, value. Alternatively, if the pK, is known, we must examine the
structure to determine whether the pK, describes an acid or a base.

Table 12.7 gives data for some important acid—base pairs. Thus we see that acetic
acid is a stronger acid than is dihydrogen phosphate, which is stronger than ammonium
ion. It follows inevitably that ammonia is a stronger base than monohydrogen
phosphate, which is stronger than acetate ion. To find this set of data in the literature,
one looks for the pK,, of acetic acid; the second pK ,(pK>) of phosphoric acid, H;POy;
and the pK, of ammonia.

Avery simplified view of pK,, prediction is often adequate. First we note that these
commonly seen functional groups can be considered to have essentially no acidic or
basic character in aqueous solution:

Alcohols and sugars, ROH
Amides, RCONH,

Ethers, ROR’

Esters, RCOOR’
Carbonyls, RCOR’; RCHO

Table 12.8 gives pK, ranges that will include many of the commonly encountered
acidic and basic functional groups. Recall that an aromatic amine has the nitrogen-
either as part of the ring system (as in pyridine) or directly attached to an aromatic ring
(aniline).

It is valuable to memorize (or otherwise keep readily available) a few typical pK,,
values to serve as reference points. Here are some examples:

Acetic acid, CH;COOH pK, 4.76
Benzoic acid, CsHsCOOH pK, 4.20
Phenol, C¢HsOH pK, 10.00
4-Nitrophenol, O,N-C¢H,OH pK, 7.14
Triethylamine, Et;N pK, 10.78

Aniline, C¢HsNH, pK, 4.69
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Table 12.8. pK, ranges of acids and bases

Type Pk,
Acids

Carboxylic acids, RCOOH 2-6 (3-5 typical)

Sulfonic acids, RSO;H —1tol

Phenols, ArOH 7-11

Thiols, RSH 7-10

Imides—-CONHCO- 8-11
Bases

Aliphatic amines 8-11

Aromatic amines 4-7

Guanidines, (RNH),C=NH 11-14

Bearing in mind the definitions of acid (proton donor) and base (proton acceptor), it is
clear that a structural change that increases the electron density at a functional group
will weaken an acid (raise its pK,) by making it more difficult for the proton to leave;
and it will strengthen a base (raise its pK,) by more avidly attracting the proton, and
vice versa for electron withdrawal from the functional group. This is why 4-
nitrophenol is a much stronger acid than is phenol. With the few pK, values given
here and the ranges of Table 12.8, quite useful estimates can be made by analogy.

Structural Effects. We have seen that electron-withdrawing structural features are
acid-strengthening and base-weakening, whereas electron-donating structural fea-
tures are acid-weakening and base-strengthening. Discrete charges display these
effects very clearly. Compare these data:

* HyN-CH,COOH = " H;N-CH,COO~ +H™' pK, =231
H3C-CH,COOH =H;3;C-CH,COO~ +H" pK, =4.88

~0,C-CH,COOH= ~0,C-CH,CO0~ +H*  pK, = 5.69

Taking propionic acid as our reference, the pK,, of the positively substituted acid lies as
expected, because a simple electrostatic argument states that like charge repulsion will
facilitate the departure of the proton, thus enhancing acid strength. Just the opposite
effect is seen with the negative substituent, which through unlike charge attraction
inhibits the dissociation of the proton, weakening the acid. This is why pK; of adiprotic
acid is always larger than pK;.

More subtle effects are seen with substituents capable of exerting electron release
or electron withdrawal by inductive or resonance mechanisms. The aromatic ring
provides good examples of such effects, and in fact much of our information on the
electronic effects of substituents has come from pK, measurements. Table 12.9 lists
pK, values for monosubstituted benzoic acids.

Some of the effects are easy to rationalize. For example, the nitro group is electron-
withdrawing from any position. (The ortho substituent often is atypical because steric
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Table 12.9. pKj, values of benzoic acids at 25°C

Position
Substituent Ortho Meta Para
-H 4.20 4.20 4.20
-NO, 2.17 3.45 344
-Cl 2.94 3.83 3.99
-OCH; 4.09 4.09 4.47
-CH; 391 4.24 4.34
-C(CH3); 3.46 4.28 4.40
-COOH 2.95 3.54 3.51
-COO~ 5.41 4.60 4.82
-OH 2.98 4.08 4.58
-NH, 498 4.79 4.92

as well as electronic effects operate.) Similarly, the amino group is electron-releasing
from every position. But some of the results may seem anomalous. Thus methoxy is
acid-weakening in the para position but acid-strengthening in the meta position. How
can this be explained?

Recall that both the inductive and resonance effects are present. The inductive
effect (a through-bond displacement of electron density) is governed mainly by the
electronegativity difference of the bonded atoms. The resonance effect is an electron
delocalization resulting from molecular orbital overlap. These two effects may operate
in the same directions, thus largely adding their effects; or they may oppose each other.
In the methoxy case such opposition occurs; the methoxy group is electron-releasing
by the resonance effect but electron-withdrawing by the inductive effect. In the para
position the resonance effect dominates, but in the meta position resonance is largely
ineffective, and the inductive effect dominates.

Table 12.10 gives pK,, values for phenols. The substituent effects on phenolic pK,,
values are more marked than those on the benzoic acid series because the phenolic
group can enter into direct conjugation with the substituent (as we saw in describing 4-
nitrophenol as an acid—base indicator).

Table 12.10. pK, values for monosubstituted phenols in water

Position
Substituent Ortho Meta Para
-H 10.00 10.00 10.00
-NO, 7.23 8.35 7.14
-Cl 8.48 9.02 9.35
-OCH; 9.93 9.65 10.20
-CH; 10.28 10.08 10.19

-NH, 9.71 9.87 10.30
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Table 12.11. Amine pK, values

Amine pK,

Ammonia, NH3 9.25

Methylamine 10.64

Ethylamine 10.67

Dimethylamine 10.73

Ethanolamine, HOCH,CH,NH, 9.50
Hydroxylamine, HONH, 5.96

Hydrazine, H,NNH, 8.12

Aniline 4.58 }ApKa =6.06
Cyclohexylamine 10.64

Pyridine 5.17 } -5
Piperidine 11.13 ApK, =396

Table 12.11 lists a few pK,, values of amines. These display the range of pK,, values
typically seen with this class of compound, although even more dramatic substituent
effects may be encountered; for example, pK, = 1.11 for 4-nitroaniline. Comparison
of the aromatic amine aniline 10 with its saturated analog cyclohexylamine 11 shows
that the aromatic ring decreases base strength by a millionfold (ApK, = 6.06):

10 11
The same effect is seen with the pair pyridine and piperidine:
H
N N
| N
0 U
12 13

Although it may seem counterintuitive, the only conclusion that can be drawn is that
the aromatic ring is responsible for reducing the electron density on the nitrogen and
therefore must be functioning as an electron-withdrawing substituent (Brown et al.,
1955). This is a resonance delocalization effect.

The appearance of the imide structure as an acid in Table 12.8 may be surprising, so
let us view an imide as a product of successive acylations of ammonia:

O O

O
NH; HeC—< L
NH, HsC H CHs
Basic Neutral Acidic

14 15 16
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It follows that the acyl group is electron-withdrawing, reducing the electron density on
nitrogen to such an extent that the basic ammonia molecule is converted to the neutral
acetamide, with a second acetyl group producing an imide, which has an ionizable
hydrogen. Many drug molecules, including the barbituric acid derivatives and the
hydantoins, include the imide group. The sulfonamide drugs contain the functional

group
1
Ar ﬁNHR

17

which bears some relationship to the imide group, and is likewise acidic.

Assignment of pK, Values.. To this point we have been considering the problem of
predicting, to a semiquantitative level, the pK, of a molecule from knowledge of its
molecular structure, the method being based on analogy with pK, values of model
compounds. Now we face a related but distinctly different problem. Suppose a
compound of known structure is studied experimentally and its pK,, value or values
are measured. The problem is to associate these pK,, values with the functional groups
responsible for them. This is called assigning the pK, values.

If only a single pK,, is measurable, the problem is usually trivial, because there will
be only a single reasonable choice of functional group to associate with the experi-
mental value.” We therefore turn to the more interesting case of a diprotic acid, which
we symbolize HABH. In general the two ionizable hydrogens are associated with
chemically different functional groups, so we must expand our description of the
acid—base equilibria to accommodate two possible pathways:

\

HABH (12.60)

N
N A

Here HAB™ and ~ABH represent the two possible monoprotic species. The
constants are called microscopic dissociation constants and are obviously defined
as follows:

/

[H*][HAB ]

K= TiABH]

° The choice is not always obvious, however, as is illustrated by the data in Example 12.15 for
chlordiazepoxide.
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v, — H'][  ABH]
>~ [HABH]
+ 2-
ks% (12.61)
i, [HT][AB?7]
4 [ ABH]

The observed stepwise dissociation constants are given by

[H"](HAB ]+ [ ABH])

K, = 12.62
: [HABH] (1262)
[H*][AB*"]
K, = 12.63
> 7 [HAB |+[ ABH] (12:63)
Algebraic combination of Egs. (12.61)—(12.63) gives
Ki=k +k (1264)
1 1 1
—_— =4 — 12.65
K2 k3 + k4 ( )
From Egs. (12.61) we find
kiks = koky (12.66)

showing that only three of the four microscopic constants are independent. We might
even define a fifth microscopic constant according to

Kiso
HAB~ = ~ABH

and further manipulation results in

ky k3
kiso = — = — 12.67
S kl k4 ( )

Before continuing with this general case, let us pause to analyze the special case in
which the two ionizable groups are chemically identical and are independent of each
other. The fact that they are identical means that k; = k, and that k3 = k4. The fact that
they are independent means that k; = k3 and k, = k4. Inserting these special conditions
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into Egs. (12.64) and (12.65) gives K; = 2k and 1/K, = 2/k, or by combining these we
obtain

i =4 (12.68)

K
This result is usually described as a statistical effect. Equation (12.68) is not closely
obeyed by long-chain dicarboxylic acids because of the superimposed electrostatic
effects of the anionic charges (Brown et al., 1955); in other words, the two groups,
although identical, are not independent.

We now return to the general case in which the two functional groups are different.
From Eqs. (12.64),(12.65) and (12.67) we get

Ky =k (1 +kiso) (12.69)
k3

K, = - 12.70

2 1 + kiso ( )

Now suppose that kg, is very much smaller than one. From Eq. (12.67), this means that
ky << kjand k3 << ky, or from Eqgs. (12.69)—(12.70)

Ky = ki (12.71)

K, = k3 (12.72)

In this case the observed K, values can be equated to microscopic constants.
Chemically, this means that essentially only the uppermost pathway in Eq. (12.60)
is followed, and the only monoprotic species is HAB ™. The condition ks, << 1 (orthe
reverse, kiso>3> 1), which leads to a single ionization pathway, is satisfied if the
observed pK, values are widely spaced.

‘We now turn to specific chemical compounds. In making pK, assignments, begin by
writing the compound in its fully protonated form, whether this is uncharged or
cationic. First consider 4-hydroxybenzoic acid. We place this in the center, with its
measured pK; and pK, values, and flank it with very obvious model compounds and
their pK, values:

COOH COOH OH

OH
4.2 4.6;9.3 10.0
18 19 20
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Itis reasonable and even obvious to assign pK to the carboxylic acid and pK to the
phenolic group. Moreover, since K| >> K,, we can expect that only a single pathway is
followed and that the only monoprotic species present in significant concentration is
the carboxylate. Thus for this compound the ionization pathway is

COOH

Incidentally, the differences between 4.6 and 4.2 and between 9.3 and 10.0 are to be
ascribed to electronic substituent effects.
Next consider 3-aminophenol:

O Q.C

4.4;9.8 10.0
21 22 23

By analogy we assign the pK; to the amine and pK, to the phenol. Again the two
dissociation constants are widely spaced, and this is the sequence:

OH (0}
K . @\ 5 o @\ (12.74)
NH* NH, NH

2

OH

Finally consider glycine, 25:

CH;NH; +H,NCH,COOH CH;COOH
10.7 2.4;938 4.8
24 25 26

Once again by using model compounds as guides we make our assignment, this
time of pK to ionization of the carboxylic acid and pK, to the amine function. The
ionization sequence is therefore

K; K:
*H,NCH,COOH = *H,;NCH,COO~ = H,NCH,COO - (12.75)

The intermediate species, carrying both a positive charge and a negative charge, is
called a zwitterion.
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What is the difference between 3-aminophenol (which does not yield a zwitterion)
and glycine? Representing both molecules in the scheme

H,Nw~OH

k k3

N
/A

*HaNwvOH HoN~ O

ks ky

/
N

*HaNwO"

we see that 3-aminophenol follows the k; — k3 pathway, because the protonated
amine, which is the conjugate acid of an aromatic amine, is a stronger acid than is the
phenol. For glycine, on the other hand, the carboxylic acid is stronger than is the
protonated amine (which in this compound is the conjugate acid of an aliphatic amine),
so the k, — k4 route predominates.

If K; and K, are not widely separated, then both ionization routes are followed, and
both monoprotic species may be present in the solution in significant concentration.
Unique assignment of the pK; and pK, values then is not possible, and the interesting
problem, which we will not pursue here, is to determine the values of the microscopic
constants.

During our discussion of the relationship of acid-base strength to chemical
structure, we have strayed from the path of classical equilibrium thermodynamics,
because we have invoked nonthermodynamic concepts or “models” (such as the
inductive and resonance effects of electron displacement) in aid of molecular-level
interpretations. The equilibrium constants that we have called upon are thermo-
dynamic, and the treatment embodied in Eqgs. (12.60)—(12.71) is thermodynamic,
but the assignment of pK, values to functional groups lies outside of thermody-
namics. Such interpretations are therefore referred to as extrathermodynamic. The
distinction is worth keeping in mind because, valuable as the extrathermodynamic
insights may be, they are provisional, subject to modification as new data or ideas
become available, unlike the thermodynamic results, which do not rely on
molecular models. Appendix C provides an introduction to the extrathermody-
namic approach.

PROBLEMS

12.1. Calculate the pH of each of these aqueous solutions at 25°C.
(a) 2.50 x 10~*M HCI
(b) 2.50 x 107*M H,SO,
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12.3.

12.4.

12.5.

12.6.

12.7.

12.8.
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(¢) 0.04 M ammonia
(d) 0.04 M ammonium chloride
(e) 3.0x 107*M KOH

A buffer was prepared by mixing 25.0 mL of 0.10 M acetic acid and 15.0 mL of
0.075M KOH and then diluting to 50.0 mL with water. Calculate its pH
(pK,=4.76).

Give directions for the preparation of 500 mL of 0.10 M pH 8.35 tris buffer,
starting with pure tris and 0.10M HCI. (See Example 12.7 for needed
information.)

Sorensen buffer solutions are prepared by mixing appropriate volumes of
these stock solutions:

Stock solution A. 9.91 g of NaH,PO,H,O (MW 138.0) is dissolved in water to
make 1L.

Stock solution B. 9.47 g of Na,HPO, (MW 142.0) is dissolved in water to

make 1L.

(a) Calculate the molar concentrations of stock solutions A and B.

(b) Calculate the pH of a Sorensen’s buffer prepared by mixing 40 mL of A and
60 mL of B. Use pK, =6.80 as the effective pK, of phosphoric acid.

Calculate the titration curve for the titration of 24.0 mL of 0.20 M n-butyla-
mine (pK, = 10.60) with 0.30 M HCl when the following volumes of titrant
have been added: OmL, 2mL, SmL, 8mL, 12mL, 16 mL, 18 mL. Suggest a
suitable indicator for the titration.

Calculate and plot the species distribution curves for these solutes.

(a) Phenol, pK,=10.00.

(b) Hydroxylamine, pK, =5.96.

(¢) Phthalic acid, pK; =2.95, pK, =5.41.

(d) Citric acid, pK;=3.06, pK, =4.74, pK5 = 5.40.

(e) Is there any pH range within which significant concentrations of the
uncharged forms of phenol and hydroxylamine can coexist in solution?

Give numerical values for the equilibrium constants of these reactions.
(a) C¢H5sCOOH + CH3NH, =C¢HsCOO ™ + CH:;NH3+
(b) C¢HsOH+ OH™ =C¢Hs0~ +H,0

Assign the pK, values of these compounds. (Look up the structures as
necessary.)

(a) Salicylic acid; pK; =2.98, pK, =13.00.
(b) Arginine; pK; =2.17, pK>, =9.04, pK5=12.48.
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12.12.

12.13.

12.14.

12.15.

12.16.

12.17.

12.18.

12.19.
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(¢) Quinine; pK; =6.66, pK, =9.48.
(d) Theophylline; pK, =8.77.

For the titration of weak acid HA with strong base MOH, let b=[M "] and
c=[HA] + [A7]. Derive an exact equation relating [H*], K,, K, b, and ¢
throughout the entire titration. (Hint: Apply the systematic procedure outlined
at the beginning of Section 12.3.)

Write the electroneutrality equation for aqueous solutions of each of these
solutes.

(a) Ammonium chloride.

(b) The triprotic neutral acid H3A.

(¢) A pH 7 phosphate buffer (assume sodium ion is the counterion).

What is the pH of a 2.00% solution of ephedrine hydrochloride (MW 211.7,
pK, 9.60)?

Given: 5.444 g of KH,PO, (MW 136.1) was dissolved in 100.0 mL of 0.300 M
KOH and the solution was diluted to 1000 mL. Calculate the pH (pK; =2.23,

Given: 50.0 mL of an aqueous solution of ammonia (pK, 9.25) titrated with
0.100 M HCI, 9.50 mL of titrant being required.

(a) What was the pH of the solution when 4.75 mL of titrant had been added?
(b) What was the pH of the solution at the endpoint?

Calculate the standard free-energy change at 25°C for the dissociation of
phenol in water (pK, = 10.00).

What weight of anhydrous sodium acetate (MW 82.0) must be added to 1.00L
of pH 3.75 acetate buffer containing a total buffer concentration of 0.055 M in
order to change the pH to 3.90 (pK,=4.75)?

Show how a fraction and a ratio are related; in particular, how are the
fraction F=[HA]/c and the ratio R=[HA]/[A™] related (¢ is the total
concentration)?

What is the concentration of benzoate ion in a solution prepared to be 0.10 M
in acetic acid, 0.10 M in potassium acetate, and 5 x 10~*Min (total) benzoic
acid (pK,=4.75 for acetic acid; pK, =4.20 for benzoic acid)?

Suppose that the pH of a solution of a diprotic weak acid H,A is adjusted to be

equal to (pK; + pK>)/2.

(a) Will the concentration of the monoanion HA ™ increase or decrease when
some HCI is added?

(b) Will the concentration of the monoanion HA ™ increase or decrease when
some KOH is added?

What is the pH at the midpoint of the titration of 15.0 mL of 0.050 M HC1 with

0.10M NaOH?
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12.20. You wish to prepare 1.00L of pH 7.00 phosphate buffer containing a total
phosphate concentration of 0.100M. You have available crystalline
NaH,PO4-H, O (MW 138.0) and Na,HPO, (MW 142.0). For phosphoric
acid, pK; =2.23, pK,=7.21, pK3=12.32. Neglecting activity coefficient
effects, what weights of the two solutes must be taken?

12.21. What is the standard free energy change of this reaction at 25°C?

H* +OH =H,0



ELECTRICAL WORK

13.1. INTRODUCTION

In Chapter 1 we saw that work can be expressed as the product of an intensive property
and an extensive property

Work(energy) = Intensity factor x Capacity factor
and these four examples were given:

Mechanical work = Mechanical force x Distance
Work of expansion = Pressure X Volume change
Surface work = Surface tension x Area change

Electrical work = Electric potential x Charge

Mechanical work is dealt with in classical mechanics. In earlier chapters we treated
expansion work and surface work. The present section develops the idea of electrical
work. Recall from Chapter 3 that the Gibbs free-energy change in a reversible process
when carried out reversibly is equal to the maximum work obtainable from the system
(exclusive of work of expansion). One kind of useful work measured by the free-
energy change is electrical work. We routinely exploit this application of thermody-
namics when we use batteries.

Thermodynamics of Pharmaceutical Systems, Second Edition, by Kenneth A. Connors and Sandro Mecozzi
Copyright © 2010 by John Wiley & Sons, Inc.

270



OXIDATION-REDUCTION REACTIONS 271

The essential phenomenon that we will study consists of a transfer of charge
between an electrolyte solution and another phase (usually a solid). There are two
ways in which this charge can be transferred: by electron transfer (the subject of
Sections 13.2-13.4) and by ion transfer (Section 13.5), commonly called ion
exchange.

13.2. OXIDATION-REDUCTION REACTIONS

Inorganic Redox Reactions. We saw in Chapter 12 that acid—base reactions are
manifested as proton transfers from one conjugate acid—base pair to another. Now we
encounter a formal analogy in the phenomenon of electron transfer. First we define
an oxidation—reduction (redox) half-reaction:

oxidation

Red

Ox +ne (13.1)

reduction

where “Red” is the reduced form of the reacting species (also known as the reductant
or reducing agent), “Ox” is the oxidized form (the oxidant or oxidizing agent), e is the
electron, and # is the number of electrons in the balanced half-reaction. Of course,
in ordinary chemical systems we do not observe the half-reaction; instead two half-
reactions are coupled, and the net process consists of one or more electrons being
transferred from one redox pair to another:

Red(1) Ox(1) +ne
ne+0x(2) = Red(2)

Net: Red(1) + Ox(2) = Ox(1)+Red(2)

Equation (13.1) shows that oxidation is the process in which a substance loses
electrons and reduction is the process in which a substance gains electrons. Here
are some simple examples of redox half-reactions.

H, = 2H" +2¢
Na = Na't +e¢
Fe’* = Fe’* + ¢
2C17 = Clp +2e
As in other types of chemical processes, redox reactions must be written in balanced
form in order to express the experimental stoichiometry and to define equilibrium

constants. For the simple examples shown above, it is easy to combine half-reactions
into balanced net reactions, such as
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H, +2Na’™ = 2H" +2Na
2Fe?** +Cl, = 2Fe’*t +2C1~

Observe that a balanced redox reaction (whether a half-reaction or a net reaction) is
balanced both chemically and electrically.

Some inorganic redox species take part in more complicated processes, and the
balancing of their reactions is not intuitively obvious. For example, Cr,0,> "~ isreduced
to Cr’ . There is a systematic balancing procedure that serves to generate balanced
redox reactions in all instances.

Step 1. Balance each half-reaction both chemically and electrically, using water
and hydrogen ions where necessary. (We assume that the solvent is water.)

Step 2. Equate the electron yield in the oxidation to the electron consumption in
the reduction.

Step 3. Add the balanced half-reactions, thus canceling electrons.

Step 4. If necessary, reduce stoichiometric coefficients to whole numbers, and, if
desired, express the balanced equation in molecular rather than ionic form.

Example 13.1. Balance the reaction in which potassium dichromate oxidizes ferrous
jon. The unbalanced dichromate half-reaction is Cr,0,>2~ =Cr’ *.

6e +Cr,0,2~ + 14HT = 2C° T +7H,0

(Step 1)
Felt = Fe’ T +e¢

In balancing the dichromate half-reaction, two Cr’ * are placed on the right side.
Then 7H,0 are added to make up the oxygens in dichromate, and 14H " are added
to the left side to balance the water. Finally the 6 electrons balance the half-reaction
electronically.

6¢ +Cr, 0,2~ +14HT = 2CP* 4+ 7H,0

(Step 2)

6Fe’™ = 6Fe’ " 4 6e
Cr,07%~ +6Fe’ " + 14HT = 2Cr* T 4 6Fe* ™ + 7H,0 (Step 3)
K,Cr,07 + 6FeCl, 4 14HCl == 2CrCl; + 6FeCl; + 7H,0 + 2KCl (Step 4)

Very effective analytical methods have been based on redox reactions. In redox
titrations a reductant is titrated with an oxidant (or vice versa). The endpoint can be
detected with a redox indicator, which is a substance whose oxidized and reduced
forms exhibit different colors. Alternatively, an instrumental method of detection, to
be described in Section 13.3, may be applied.

Organic Redox Reactions. The oxidation of organic compounds can be extremely
complicated, and many of these reactions are not effectively reversible. Nevertheless,
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this kind of reaction is important pharmaceutically because many drug molecules
undergo degradative oxidation (Connors et al. 1986), and a brief discussion is
appropriate. The essential concept is that the oxidation state of a carbon atom is a
result of the number of bonds from carbon to oxygen; the greater the number of
carbon—oxygen bonds, the more highly oxidized the carbon atom is.' The simplest
example of this concept is provided by these one-carbon compounds:

oxidation
H H
| | H_ 0
H—?—H H—?—OH _C=0 H% 0=C=0
H H H OH
reduction

Now, if oxidation is the addition of oxygen, then the reverse reaction must be
reduction. This leads to the identification of reduction with the addition of hydrogen.
Let us broaden this idea to consider the addition of hydrogen to an olefin:

reduction

H,; + RCH = CHR RCH,CH;R

oxidation

Since the hydrogenation reaction is a reduction, the reverse of this, a dehydrogenation,
must be an oxidation. And now we see that we have an organic oxidation process that
doesnotinvolve oxygen. We can apply the same idea to other reactions, as in the formal
conversion of a sulthydryl (mercaptan) group to a disulfide:

oxidation

2RSH RSSR + H,

reduction
In the presence of oxygen (as the oxidizing agent) this reaction proceeds according to

oxidation

1
2RSH + 502 RSSR +H,0

reduction

The mechanisms of organic redox reactions are seldom simple. Mechanisms (the
detailed pathways from the initial to the final states) are investigated by the methods of
kinetics and do not form part of the field of classical thermodynamics. (Despite this
rather flat statement, a connection between the fields of thermodynamics and chemical
kinetics can be made, and this connection is discussed in Appendix C.)

' This concept is really the genesis of the term oxidation as it is also applied to inorganic reactions. Compare
FeO (ferrous oxide) and Fe,Oj3 (ferric oxide). The conceptual transformation from oxygen gain to electron
loss is very broadening, but it obscures the historical basis. The term reduction originally arose in the
processing of ores, when it can be said that an ore is reduced to the pure metal, the term referring to both a
typical process (also historically called revivification) and a diminution in volume.
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We have now seen oxidation described as an electron loss, as an addition of oxygen,
or as a loss of hydrogen, with reduction as the reverse process. Here is a yet broader
context. We noted that a reducing agent is a substance that yields electrons and, from
Chapter 12, that a base is a substance that donates an electron pair. More generally we
label as a nucleophile (“nucleus lover”) a substance that furnishes electrons; thus
reducing agents and bases are special cases of nucleophiles. Similarly, the class of
electrophiles (“electron lovers”) includes oxidizing agents and Lewis acids.

13.3. ELECTROCHEMICAL CELLS

Electrodes. Inthe present context, anelectrode is a conductor of electricity immersed
in an electrolyte solution. A transfer of charge may take place at the interface between
the electrode surface and the solution. This charge transfer may result from the transfer
either of electrons or of ions across the interface. Our present concern is with electron
transfer, which arises from the occurrence of oxidation—reduction reactions.

Suppose that we assemble a system consisting of two electrodes, one each of two
different redox half-reactions. One of these might be a piece of zinc metal partly
immersed in a solution of zinc sulfate, with the other a piec