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PREFACE

The preparation of this second edition is motivated by the effectiveness of the first
edition in classroom instruction, so the original structure and content have been
retained. Our changes have been directed to the needs of students and other readers.
Most obviously, we have moved the review of mathematics, formerly an appendix, to
the front of the book (and, by labeling it Chapter 0, have conveniently preserved the
structure and numbering throughout the following body of the text). We have added
new textual material and figures in several places, most notably in Chapter 14, the
chapter treating noncovalent chemical interactions; it is this chapter that most clearly
distinguishes the content of this book from that of other thermodynamic texts. Two
new appendices provide ancillary material that expands certain matters bordering the
subject of classical thermodynamics.

Obviously, we have taken this opportunity to correct errors in the first edition, and
we hope that we have not introduced many new ones.

We thank our colleague Professor Lian Yu for valuable discussions.

KENNETH A. CONNORS

SANDRO MECOZZI

Madison, Wisconsin

xi





PREFACE TO THE
FIRST EDITION

Classical thermodynamics, which was largely a nineteenth-century development, is a
powerful descriptive treatment of the equilibriummacroscopic properties ofmatter. It
is powerful because it is general, and it is general because it makes no assumptions
about the fundamental structure of matter. There are no atoms or molecules in
classical thermodynamics, so if our ideas about the atomic structure of matter should
prove to be wrong (a very possible outcome to many nineteenth-century scientists),
thermodynamics will stand unaltered. What thermodynamics does is to start with a
few very general experimental observations expressed inmathematical form and then
develop logical relationships among macroscopic observables such as temperature,
pressure, and volume. These relationships turn out to have great practical value.

Of course, we now have firm experimental and theoretical reasons to accept the
existence of atoms and molecules, so the behavior of these entities has been absorbed
into the content of thermodynamics, which thereby becomes even more useful to us.
In the following we will encounter the most fundamental ideas of this important
subject, as well as some applications of particular value in pharmacy. In keeping with
our needs, the treatment will in places be less rigorous than that in many textbooks,
and we may omit descriptions of detailed experimental conditions, subtleties in the
arguments, or limits on the conclusions when such omissions do not concern our
practical applications. But despite such shortcuts, the thermodynamics is sound, so if
you later study thermodynamics at a deeper level, you will not have to “unlearn”
anything. Thermodynamics is a subject that benefits from, or may require, repeated
study, and the treatment here is intended to be the introductory exposition.

Here are a fewmore specific matters that may interest readers. Throughout the text
there will be citations to the Bibliography at the end of the book and to the Notes
sections that appear at the end of most chapters. Students will probably not find it
necessary to consult the cited entries in the Bibliography, but I encourage you to
glance at the Notes, which you may find to be interesting and helpful. Two of my
practices in the text may be regarded by modern readers as somewhat old-fashioned,
and perhaps they are, but here aremy reasons. Imake considerable use of certain units,
such as the kilocalorie and the dyne, that are formally obsolete; not only is the older
literature expressed in terms of these units, but they remain in active use, so the student
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must learn to use them. Appendix B treats the conversion of units.My second peculiar
practice, which may seem quaint to students who have never used a table of
logarithms, is often to express logarithmic relationships in terms of Briggsian
(base 10) logarithms rather than natural logarithms. There are two reasons for the
continued use of base 10 logarithms; one is that certain functions, such as pH and pK,
are defined by base 10 logs, and these definitions can be taken as invariant components
of chemical description; and the second reason, related to the first, is that order-of-
magnitude comparisons are simple with base 10 logarithms, since we commonly
operate with a base 10 arithmetic.

Obviously, there is no new thermodynamics here, and I have drawn freely from
several of the standard references, which are cited. Perhaps the only unusual feature of
the text is my treatment of entropy. The usual development of the entropy concept
follows historical lines, invoking heat engines and Carnot cycles. I agree with
Guggenheim (1957, p. 7), however, that the idea of a Carnot cycle is at least as
difficult as is that of entropy. Guggenheim then adopts a postulational attitude toward
entropy [a method of approach given very systematic form in a well-known book by
Callen (1960)], whereas I have developed a treatment aimed at establishing a stronger
intuitive sense in my student readers [Nash (1974, p. 35) uses a similar strategy]. My
approach consists of these three stages: (1) The basic postulates of statistical
mechanics are introduced, along with Boltzmann�s definition of entropy, and the
concept is developed that spontaneous processes take place in the direction of greater
probability and therefore of increased entropy; (2) with the statistical definition in
hand, the entropy change is calculated for the isothermal expansion of an ideal gas;
and (3) finally, we apply classical thermodynamic arguments to analyze the isother-
mal expansion of an ideal gas. By comparing the results of the statistical and the
classical treatments of the same process, we find the classical definition of entropy,
dS= dq/T, that will provide consistency between the two treatments.

Lectures based on this text might reasonably omit certain passages, only inciden-
tally to save time; more importantly, the flow of ideas may be better served by
making use of analogy or chemical intuition, rather than rigorous mathematics, to
establish a result. For a good example of this practice, see Eq. (4.1) and the subsequent
discussion; it seems to me to be more fruitful educationally to pass from Eq. (4.1),
which says that, for a pure substance, the molar free energies in two phases at
equilibrium are equal, to the conclusion for mixtures, by analogy, that the chemical
potentials are equal, without indulging in the proof, embodied in Eqs. (4.2)–(4.6). But
different instructors will doubtless have different views on this matter.

I thank my colleague George Zografi for providing the initial stimulus that led to
the writing of this book. The manuscript was accurately typed by Tina Rundle. Any
errors (there are always errors) are my responsibility.

KENNETH A. CONNORS

Madison, Wisconsin
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0

REVIEW OF MATHEMATICS

0.1. INTRODUCTION

The extent of mathematics required in order to master the material in the professional
pharmacy curriculum is really quite modest, comprising the basic operations of
arithmetic and algebra; some fundamentals of plane geometry, analytic geometry,
and calculus; and ideas frommathematical statistics. Nearly everythingmathematical
that you will need to know as a pharmacy student you have presumably already
mastered in high school or college courses, except perhaps for the mathematical
statistics content and the concept of partial differentiation (whichwill be treated in the
following pages). You already know, or you once knew, about 95% of the material in
this review (exclusive of the statistics section), which therefore should not present a
difficult intellectual challenge. Although our immediate concern is to provide a basis
for the mathematical needs of thermodynamics, this review goes beyond thermody-
namics to include the mathematical methods useful in other parts of the curriculum.

Mathematics is treated by scientists as a tool or a language, and it is this attitude
that you should adopt. Your goal in reviewing this material is to develop such a
familiarity with the mathematical operations that you need not worry about them or
even give much conscious thought to them. Such a capability will allow you to
concentrate your attention on the new ideas being presented in your courses, whether
they are physical chemical, pharmacokinetic, or biological. Not every bit of mathe-
matics that youmay encounter in your future studies will be treated here, but nearly all
of it will be found here.

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
Copyright � 2010 by John Wiley & Sons, Inc.
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As a first step in developing this reviewof essential mathematics as the language of
science, Table 0.1 lists some standard mathematical symbols.

As you read the following pages, keep in mind that this is a review, not a logical
development of the subject.Results are usually presentedwithout derivation; youhave
already seen the derivations in your mathematics courses. Examples will draw on
chemical concepts that, in many instances, will already be familiar to you, but a few
ideas may appear that are new.

0.2. DIMENSIONS AND UNITS

Base and Derived Units. The value of a physical quantity is expressed as the
product of a numerical value and a unit; thus

Physical quantity ¼ numerical value� unit

For example,

Distance ¼ 125 km

Many systems of units have been used, and several systems are in use today, but in
scientific work the standard system of units is the Syst�eme International (SI),
occasionally varied with a few units from the older cgs system (IUPAC, 1993).
There are seven SI base units, each of these being independent of the others. Table 0.2
lists theSIbaseunits.Nopunctuation isusedwith symbols, nor are symbolspluralized.

Table 0.1. Common mathematical symbols

Symbol Meaning

¼ Equals; is equal to
� Is equivalent to
� or � or ffi Is approximately equal to
6¼ Is not equal to
a Is proportional to
< Is less than
� Is less than or equal to
> Is greater than
� Is greater than or equal to
þ Plus
	 Minus
� or 
 Times
� or / Divided by
� Plus or minusffip The square root of� Therefore
|| The absolute value of

2 REVIEW OF MATHEMATICS



All other units are called derived units; these can be obtained by appropriate
algebraic combination of the base units. Table 0.3 gives a fewderivedunits to illustrate
themanner inwhich theyare formed.Of course, in commonpracticewemakewideuse
of traditional alternatives. For example, we may express area in square centimeters
(cm2) if this is convenient to the problem. Density is usually expressed in grams
per milliliter (gmL	1); and concentration is expressed in moles per liter (mol L	1),
which is sometimes written mol dm	3.

A few important physical quantities have special names and symbols for their units;
a selection of these is shown in Table 0.4. The expression of a derived unit in terms of
base units, as illustrated in Table 0.3, is obtained from the appropriate physical law or
definition. For example, from Newton�s law of motion, we have

Force ¼ Mass � Acceleration

Table 0.2. SI base units

Physical Quantity
Symbol for

Quantity (Dimension)
Name of
SI Unit

Symbol for
SI Unit

Length l meter m
Mass m kilogram kg
Time t second s
Electric current I ampere A
Temperature T kelvin K
Amount of substance n mole mol
Luminous intensity Iv candela cd

Table 0.3. Some SI derived units

Physical Quantity Defining Relationship Derived SI Unit

Area l� l m2

Volume l� l� l m3

Velocity Distance per second m s	1

Density Mass per volume kgm	3

Concentration Amount per volume molm	3

Table 0.4. Some named derived units

Physical Quantity SI Unit SI Symbol Base Unit Expression

Frequency hertz Hz s	1

Force Newton N mkg s	2

Pressure pascal Pa Nm	2�m	1 kg s	2

Energy, heat, work joule J Nm�m2 kg s	2

Electric charge coulomb C A s
Electric potential volt V JC	1�m2 kg s	1 A	1

Electric resistance ohm W VA	1�m2 kg	1 s3 A2

DIMENSIONS AND UNITS 3



and

Acceleration ¼ Velocity

Time
¼ Distance

Time2

so, in terms of SI units we have

N � m kg s	2

Similarly,

Pressure ¼ Force

Area

so

Pascal � Nm	2

Also

Work ¼ Force� Distance

so

Joule � Nm

Not all scientists restrict themselves to SI units, and a few quantities are occasionally
written in units from the cgs system. Moreover, the published scientific literature
obviouslymakes use of older units, and so it is essential to be able to interconvert units
of the several systems. Table 0.5 gives the relationships between the most important
of these.

Table 0.5. Some cgs units

Unit SI Equivalent

1 g (gram) 10	3 kg
1mL (milliliter) 10	3 L
1L (liter) 10	3m3

1m (micron) 10	6m
1A



(angstrom) 10	10m (10	8 cm)

1 atm (atmosphere) 101,325 Pa
1 dyn (dyne) 10	5 N
1 erg 10	7 J
1 cal (calorie) 4.184 J
1 D (debye) 3.336� 10	30 C m

4 REVIEW OF MATHEMATICS



It is often convenient to represent quantities in terms of multiples or submultiples
of SI units. Table 0.6 gives the prefixes and symbols for these multiplicative
operations.

Quantity Algebra. We earlier wrote this equation:

Physical quantity ¼ Numerical value� Unit ð0:1Þ

We now assert that each of the three quantities in this equation can be treated as an
algebraic quantity and manipulated by the rules of algebra. Thus Eq. (0.1) could be
written as

Physical quantity

Unit
¼ Numerical value ð0:2Þ

This equation is particularly convenient because, since the right-hand side is a pure
number (it has no dimensions), so is the left-hand side. To illustrate this with an
example, let us write

T ¼ 273:15 K

in the form of Eq. (0.1). Transforming to the form of Eq. (0.2) gives

T

K
¼ 273:15

We will call this method of manipulating units quantity algebra. It is particularly
convenient fordesigningheadingsof table columns and for labeling theaxesof figures.
We will make use of the quantity algebra when converting from one unit to another.

Conversion of Units. We often find it convenient or necessary to convert from one
system of units to another. Setting up a proportion is one method for converting units.

Table 0.6. Submultiple and multiple prefixes

Submultiple Prefix Symbol Multiple Prefix Symbol

10	1 deci d 10 deca da
10	2 centi c 102 hecto h
10	3 milli m 103 kilo k
10	6 micro m 106 mega M
10	9 nano n 109 giga G
10	12 pico p 1012 tera T
10	15 femto f 1015 peta P
10	18 atto a 1018 exa E
10	21 zepto z 1021 zetta Z
10	24 yocto y 1024 yotta Y

DIMENSIONS AND UNITS 5



Example 0.1. Convert an energy change of 125 kJmol	1 to kcalmol	1.
From Table 0.5 we have the essential relationship

1 cal ¼ 4:184 J

Multiplying each side by 103 gives

1 kcal ¼ 4:184 kJ

Now we form the proportion from statements:

Since 1 kcal ¼ 4:184 kJ

x kcal ¼ 125 kJ

or

1

x
¼ 4:184

125

x ¼ 29:9

Therefore 125 kJmo1	1 is equal to 29.9 kcal mol	1.

Quantity algebra offers a general procedure for the interconversion of units. This is
the method: Multiply the quantity whose unit must be converted by one or more
quotients, each being equal to the pure number one, but having the units needed to get
the job done.

Example 0.2. Convert a wavelength of 560 nm to angstroms.
We know (Table 0.6) that 1 nm¼ 10	9m, so it follows that 1 nm/10	9 m¼ 1.

Similarly, from Table 0.5, 1A

 ¼ 10	10m, so 1A



/10	10m¼ 1. Thereforewe can write

560 nm
10	9m

1 nm

� �
1 A




10	10m

 !
¼ 5600 A




Themethodworksbecause eachquantity in parentheses is equal to 1, andweknow that
we canmultiply fearlessly by 1. These quantities in parentheses are chosen so that the
units that we do not want will cancel, and the units that we want will remain.

Example 0.3. The surface tension of water at 25
C is 71.8 erg cm	2. Convert this
to SI units:

71:8
erg

cm2

1 J

107 erg

� �
1 Nm

1 J

� �
102 cm

1m

� �
¼ 71:8� 10	3 N m	1

6 REVIEW OF MATHEMATICS



This is usually written 71.8mNm	1. Note in this multiplication how the unitary
multipliers are oriented so as to achieve the desired cancellations. Incidentally,
71.8 erg cm	2 also equals 71.8 dyn cm	1, because 1 erg¼ 1 dyn cm.

Extensive and Intensive Properties. A physical property whose magnitude is
additive is called an extensive property; its magnitude depends on the extent (size) of
the system. Mass, volume, and energy are examples of extensive properties.

A property whose magnitude is independent of the size of the system is called an
intensive property. Temperature, pressure, and concentration are intensive properties.

An extensive property can be converted to an intensive property by dividing it by
a mass or an amount of substance, thus placing it on a per unit basis. If an extensive
property is divided by mass, the adjective specific is often used to describe it. Usually
the mass unit gram (g) is used, so the specific property refers to the quantity per gram.
For example, the volume V is an extensive property, but if V is divided by the mass,
we get the specific volume (the volume per gram), which is intensive.

Ifwe divideVby the amount of substance inmoles, we haveV/n, which is called the
molar volume, and is interpreted as the volume per mole.

Example 0.4. The density of acetone is 0.788 at 25
C. Calculate the specific volume
and the molar volume of acetone.

The units of density, which are gmL	1 (or g cm	3), are not always written out.
The specific volume is simply the reciprocal of the density, as we can deduce from
its units.

Specific volume ¼ 1 mL

0:788 g

� �
¼ 1:269 mL g	1

Molar volume ¼ 1:269 mL

g

� �
58:08 g

1 mol

� �
¼ 73:7 mLmol	1

These two statements have the same meaning:

1. The heat of solution of succinyl sulfathiazole is 12.0 kcalmol	1.

2. The molar heat of solution of succinyl sulfathiazole is 12.0 kcal.

Dimensional Consistency. We have seen that units can be treated algebraically in
that they undergo division and multiplication just as do numerical values. Units have
two additional characteristics of great importance when carrying out calculations:

1. In what may appear to be a disagreement with the assertion that units can be
treated algebraically, we note that when we add or subtract physical quantities,
theymust possess the same units, but the units themselves do not add or subtract.

2. When using or deriving physicochemical equations, the left-hand and right-
hand sides of the equation must have the same units.

DIMENSIONS AND UNITS 7



Example 0.5. In Chapter 14 we will encounter this equation:

St ¼ s0 þ K11s0Lt
1þK11s0

We do not need to consider the detailed meaning of the equation at this point, because
our present interest is only in its dimensional nature. (Indeed, this example will show
howwecanevenbypass thedetail andyet learnsomethinguseful).With the information
that the quantities St, s0, and Lt are all molar concentrations, and that the equation is
dimensionally consistent (point 2 above), let us determine the units of K11.

Evidently, St (in mol L	1, or M) is given by the sum of s0 (also in M) and the final
term,whose unitsmust, by point 1 above, beM.Consider the denominator of this term.
Since 1 is dimensionless, the productK11s0must be dimensionless,which requires that
the units of K11 be M

	1. Does this work out in the numerator? Yes, it does, because it
yields (M	1)(M)(M)¼M, as required by dimensional consistency.

Dimensional consistency in equations describing physical systems is a necessary
condition for their validity, but it is not a sufficient condition. Incidentally, if
approximations are introduced into equations, the approximations must not alter
the dimensional consistency.

0.3. LOGARITHMS AND EXPONENTS

Definition and Properties. Suppose we have the power function of Eq. (0.3):

a ¼ bx ð0:3Þ

We define1 the logarithm of a to the base b by

logb a ¼ x ð0:4Þ

There are only two logarithmic bases (values of b) in common use, namely, b¼ 10
(giving Briggsian logarithms) and b¼ e (giving natural logarithms). Briggsian
logarithms are denoted log, whereas natural logarithms are denoted ln. An important
property2 of all logarithms is stated by Eq. (0.5):

logb b ¼ 1 ð0:5Þ

It follows that

log 10 ¼ 1 ð0:6Þ
ln e ¼ 1 ð0:7Þ

1 Equation (0.4) is not the standard definition, which requires calculus; rather, it is a consequence of the
standard definition.
2 From Eq. (0.3), if b¼ bx, x¼ 1, so logb b¼ 1.
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Another property3 is given by Eqs. (0.8) and (0.9):

log 1 ¼ 0 ð0:8Þ
ln 1 ¼ 0 ð0:9Þ

The number e is extremely important in mathematics and science. It has the value
2.718 . . ..

At one time, Briggsian logarithms were widely used to carry out arithmetic
operations, but with electronic calculators and computers this use is obsolete.
However, the base 10 log function continues to be indispensable in the sciences,
for two reasons: (1) Some important physicochemical concepts (such as pH) are
defined in terms of Briggsian logarithms and (2) logarithms to the base 10 have the
convenient property of revealing order-of-magnitude changes or differences at a
glance, For example, log 102¼ 2.00, log 103¼ 3.00, and so on.

Let us obtain a relationship by means of which we can interconvert Briggsian and
natural logarithms of the same number. Let a be the number, and write

ln a ¼ c log a ð0:10Þ
where we want to find the conversion factor c. Suppose for convenience (any number
would do) that we set a¼ 10. From Eq. (0.10), we obtain

c ¼ ln 10

log 10
¼ 2:303 . . .

1
ð0:11Þ

where the numerator is found by means of an electronic calculator, and the
denominator is from Eq. (0.6). Therefore we can interconvert ln and log values by
Eq. (0.12):

ln a ¼ 2:303 log a ð0:12Þ

Operations with Logarithms. Suppose we have both Eqs. (0.13) and (0.14):

a ¼ bx ð0:13Þ
c ¼ by ð0:14Þ

We know from Eq. (0.4) that

logb a ¼ x

logb c ¼ y

But from Eqs. (0.13) and (0.14) we can also write

ac ¼ bx 
 by ¼ bxþ y

3 From Eq. (0.3), if a¼ 1 and b¼ 10, then x¼ 0, so log 1¼ 0.

LOGARITHMS AND EXPONENTS 9



It follows that

logb ac ¼ logb aþ logb c ð0:15Þ

Thus, the logarithmofaproduct of twonumbers is equal to the sumof the logarithmsof
the individual numbers. This very valuable result permits several other relationships to
be derived; these are stated as Eqs. (0.16)–(0.19). Although these are written in terms
of log, exactly analogous equations can be given for ln:

log pq ¼ log pþ log q ð0:16Þ
log

p

q
¼ log p	log q ð0:17Þ

log
1

q
¼ 	log q ð0:18Þ

log pn ¼ n log p ð0:19Þ

Example 0.6. It is convenient to define, as a measure of the acidity of an aqueous
solution, the pH by

pH ¼ 	log ½Hþ �

where [Hþ ] is the hydrogen ion concentration in mol L	1. This means that4

pH ¼ log
1

½H þ �

(a) Calculate the pH if [Hþ ]¼ 5.00� 10	3M.

pH ¼ 	log 5:00� 10	3

¼ 	ðlog 5:00þ log 10	3Þ
¼ 	ð0:70	3:00Þ
¼ 2:30

The pH is a positive number provided that [Hþ ]< 1M. Seldom is it justifiable
to express pH values beyond the second decimal place (i.e., 0.01 pH unit).

4 We can only take the logarithm of a pure number, thus this definition of pH appears to be invalid (and so
shortly after we have considered dimensional consistency!). One way out of this dilemma is to say that we
are really defining the pH as

pH ¼ 	logð½Hþ �=MÞ

because the quantity in parentheses is dimensionless.
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(b) What is the hydrogen ion concentration if pH¼ 8.67?

pH ¼ 8:67

	log ½Hþ � ¼ 8:67

log ½Hþ � ¼ 	8:67 ¼ 	9:00þ 0:33

½Hþ � ¼ 2:14� 10	9 M

This last step is called “taking the antilogarithm.” It is the reverse of taking the
logarithm, and it is easily accomplished on the electronic calculator.A useful check on
the calculation is to convert the [Hþ ] back to pH. Another check is to be sure that the
order of magnitude is reasonable; this means that the answer is as expected at least to
within a factor of 10.

Operations with Exponents. The following identities follow from the properties of
logarithms [actually we used Eq. (0.22) in order to derive Eq. (0.15)]:

a0 ¼ 1 ð0:20Þ
a1 ¼ a ð0:21Þ

au av ¼ auþ v ð0:22Þ

a	u ¼ 1

au
ð0:23Þ

ðauÞv ¼ auv ð0:24Þ
ðabÞu ¼ au bu ð0:25Þ

Scientific Notation. Many quantities in theoretical and experimental science are
either extremely largeor extremely small, so anexponential formof expressing them is
convenient. Nearly always these are written as an integral power of 10, as shown in
these examples:

51; 000 � 5:1� 104 � 51� 103

0:00000417 � 4:17� 10	6

As seen in Example 0.6, this is a very convenient way in which to express a number
whose logarithm is to be taken, because [as seen in Eq. (0.15)] the logarithm of a
product is equal to the sum of the logs and because log 10n¼ n log 10¼ n. Thus

log 4:17� 10	6 ¼ ðlog 4:17Þ	6 ¼ 	5:38

LOGARITHMS AND EXPONENTS 11



0.4. ALGEBRAIC AND GRAPHICAL ANALYSIS

Setting Up Proportions. It often happens that we know three related items of
information and seek a fourth member of the set. In order to solve for this fourth,
unknown item, wewrite an equation. Oneway to do this is to express the relationships
in terms of sentences, by means of which we can more readily detect analogous
patterns. Then we replace the English words with mathematical symbols.

Example 0.7. Howmany moles of sodium chloride are contained in 5.00 g of NaCl?
The first of the following statements gives two pieces of known information;

the second analogous statement contains the unknown.

58:45 g of NaCl corresponds to 1 mol

so

5:00 g of NaCl corresponds to how many moles?

Now we replace the words with symbols (and notice how the units cancel):

58:45

5:00
¼ 1

x

x ¼ 5:00

58:45
¼ 0:0855

Generalizing this equation gives these important formulas:

mol ¼ W ðgÞ
MW

ð0:26Þ

mmol ¼ W ðmgÞ
MW

ð0:27Þ

Equation (0.27) is obtained from Eq. (0.26) by multiplying both sides by 103.
A millimole (mmol) is one-thousandth of a mole.

Example 0.8. A sample of aspirin weighing 305mgwas found by analysis to contain
294mg of aspirin. What is its percent purity?

If the sample contained 305mg, it would be 100% pure. Actually it contains
294mg, so it is x% pure. Therefore

305

294
¼ 100

x

or 96.4% pure. Generalizing this result, we obtain

% purity ¼ Wfound

Wtaken
� 100 ð0:28Þ
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Example 0.9. Convert 75min to hours.
If 60min is equivalent to 1 h, then 75min is equivalent to x h?

60

75
¼ 1

x

x ¼ 1:25 h

Ratios and Fractions. We are going to consider this subject in the context of
chemistry rather than of pure mathematics. To clarify the distinction between a ratio
and a fraction, consider thedissociationofaweakacid (likea carboxylic acid) inwater:

HA > Hþ þA	

Here we let HA represent any neutral weak acid, where A	 is the anion resulting
from the dissociation. We define the ratio of anion to neutral acid by

½A	�
½HA� ¼ ratio of anion to acid ¼ RA	

where square brackets signify molar concentrations. Similarly we have

½HA�
½A	� ¼ ratio of acid to anion ¼ RHA

These ratios play an important role in describing chemical equilibria.
There can also be situations in which wewish to define the fraction of anion in the

mixture of A	and HA. This fraction, which we will label FA	 , is defined as

½A	�
½HA� þ ½A	� ¼ FA	 ¼ fraction of anion

Similarly the fraction present as the neutral acid is given by

½HA�
½HA� þ ½A	� ¼ FHA ¼ fraction of acid

By substitution it is easily found that

FA	 þFHA ¼ 1

This is a general property of fractions as defined in this way; they sum to unity. As a
consequence, if the whole is divided into n fractions, only n	 1 of these are
independent (i.e., capable of independent variation).
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Example 0.10. A solution made up to contain a total concentration (also called an
analytical concentration) of weak acid 3.50� 10	3M is found to have an anion
concentration of 8.95� 10	4M. Calculate the fractions of solute in the anion and
neutral forms.

We are told that the total concentration is 3.50� 10	3M. This is the sum
[HA] þ [A	], since the solute can exist in either or both forms, and no other. Hence

FA	 ¼ ½A	�
½HA� þ ½A	� ¼

0:895� 10	3

3:50� 10	3 ¼ 0:256

From the identity FA	 þFHA ¼ 1, we immediately obtain FHA¼ 1	 0.256¼ 0.744.
A fraction can be converted to a percentage through multiplication by 100,

Eq. (0.29); see also Eq. (0.28).

Percent ¼ 100� Fraction ð0:29Þ

Thus in this example 25.6% is in the form of the anion and 74.4% is in the form of the
neutral acid.

Example 0.11. For the system in Example 0.10, calculate the ratios [A	]/[HA] and
[HA]/[A	].

We know that [A	]¼ 0.895� 10	3M and [HA] þ [A	]¼ 3.50� 10	3M,
so we find that [HA]¼ 2.605� 10	3M. Therefore

RA	 ¼ ½A	�
½HA� ¼

0:895

2:605
¼ 0:344

The reciprocal gives us the other ratio:

RHA	 ¼ ½HA�
½A	� ¼

1

0:344
¼ 2:91

Fractions must be less than (or equal to) unity, but a ratio can be greater than unity.
Ratios and fractions (in this context) are dimensionless.

Students sometimes wonder why, in calculations like this (the dissociation of HA
according to HA ! Hþ þ A	) we were able to ignore the Hþ produced in the
reaction. The answer is that we are counting molecules or moles, not grams; each
molecule ofHA that dissociates yields oneHþ ion and oneA	 ion. If we counted both
ions, wewould be double-counting, with the result that wewould appear to be creating
matter, which we know is impossible.

Solving Simultaneous Equations. From algebra we know that if we have n
simultaneous independent equations in n unknowns, we can solve the equations to
find all n unknowns. Usually, of course, we encounter the simplest case in which we
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have one equation and one unknown. It is more interesting when we have two or more
unknowns.

Let us continue to discuss our earlier example of the dissociation of weak acid HA
to yield anion A	. Often it happens that we know the total concentration and can
measure the ratio of concentrations. From this information we seek the individual
concentrations [HA] and [A	].

We have two unknowns, so we hope that we can write two independent equations.
We begin by setting in equation form that which we know. We write

½A	�
½HA� ¼ RA	 ð0:30Þ

½HA� þ ½A	� ¼ ct ð0:31Þ

where we know (have numerical values for) RA	 and ct. Equations (0.30) and (0.31)
are two independent equations in two unknowns.

There are several ways to solve simultaneous equations; the simplest is by
algebraic substitution. Solve Eq. (0.30) for [A	] and substitute this into Eq. (0.31).
From Eq. (0.30), [A	]¼RA	 ½HA�, so from Eq. (0.31) we get

½HA� þRA	 ½HA� ¼ ct

We have reduced two equations with two unknowns to one equation with one
unknown, for which we solve

HA½ � ¼ ct
1þRA	

Having found [HA], we can use Eq. (0.30) or (0.31) to find [A	].
The requirement that the equations be independent means that there is no

possible way to obtain (to derive) one of them from the others; that is, each equation
must contribute some additional information to the problem. For example, in the
preceding case suppose that we only know ct. There is no way from this knowledge
alone that we could deduce the value of RA	 , so we could not calculate individual
values of [HA] and [A	]; we would have a single equation [Eq. (0.31)] and two
unknowns.

The solution of simultaneous equations is usually easy. The difficult tasks are to
analyze the problem so as to identify and write down the equations and to collect the
necessary information so they can be solved numerically.

Solution of Quadratic Equations. Everyone learns in high school algebra how
to solve a quadratic equation, that is, an equation in which the unknown quantity
appears to the second power. In its “standard” form a quadratic equation can bewritten

ax2 þ bxþ c ¼ 0 ð0:32Þ
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where x is the unknown quantity and a, b, c are known quantities; a, b, and c can be
viewed as constants in the particular situation. The solution of Eq. (0.32) is given
by Eq. (0.33).

x ¼ 	b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2	4ac

p

2a
ð0:33Þ

This equation should bememorized. It shows that there are two solutions toEq. (0.32),
corresponding to the use of either the plus or theminus sign in Eq. (0.33). Usually only
one of these solutions has physical significance; the other solution can be ignored. By
“physical significance” we mean that it makes sense in the context of the physical
situation. For example, if x is a concentration, obviously a negative value has no
physical significance.

Example 0.12. Wewill continue to use our example of the dissociation of weak acid
HA according to

HA > Hþ þA	

Let us define an equilibrium constant by

Ka ¼ ½Hþ �½A	�
½HA� ð0:34Þ

We also have the equation giving the total solute concentration:

ct ¼ ½HA� þ ½A	� ð0:35Þ

We now observe that each molecule of HA that dissociates yields one Hþ and one
A	, suggesting (this is not quite true, but is nearly always a very good approximation)
that we can write

½A	� ¼ ½Hþ �

Making this substitution in Eq. (0.34) gives

Ka ¼ ½Hþ �2
ct	½Hþ � ð0:36Þ

This is a quadratic equation. First we rearrange it to place it in the standard form

½Hþ �2 þKa½Hþ �	Kact ¼ 0 ð0:37Þ
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Comparing Eqs. (0.32) and (0.37) gives these identities:

a ¼ 1

b ¼ Ka

c ¼ Kact

x ¼ ½Hþ �

The solution is accordingly

H þ½ � ¼ 	Ka �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
a	4Kact

p
2

ð0:38Þ

Example 0.13. Calculate the pH in a solution that is 0.010M with respect to a weak
acid if Ka¼ 1.00� 10	5.

We use Eq. (0.38):

½Hþ � ¼
	1:0� 10	5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0� 10	10 þð4� 10	5Þð1� 10	2Þ

q
2

¼ 	1:0� 10	5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0� 10	10 þ 4� 10	7

p
2

¼ 	1:0� 10	5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01� 10	8 þ 40� 10	8

p
2

¼ 	1:0� 10	5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40:01� 10	8

p

2

¼ 	1:0� 10	5 � 6:325� 10	4

2

¼ 	1:0� 10	5 � 63:25� 10	5

2

¼ 31:125� 10	5 ¼ 3:11� 10	4

So pH¼ –log[Hþ ]¼ 3.51. Note that the solution employing the negative sign has
been rejected.

Approximations. Scientists, unlike mathematicians, are often satisfied with
approximate rather than exact solutions. The level of approximation that is acceptable
is determined by practical criteria and is not completely arbitrary. If we cannot
experimentally detect or measure an effect, we may feel justified in neglecting it.
Or how we use the result may determine the acceptable level of approximation;
for example, if we are to measure the pH of LakeMendota water, we may be satisfied
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with a result accurate to�0.1 pH unit (for various practical reasons), whereas if we are
measuring the equilibrium constant of a weak acid, we will surely hope for measure-
ments accurate to �0.01 pH unit. This kind of thinking is then extended to the
equations that enable us to describe and interpret the measurements. If we make an
approximation in an equation, it is no longer exact in amathematical sense,5 but itmay
be acceptably accurate in a scientific sense.

Example 0.14. Calculate the pH in a solution that is 0.010M with respect to a weak
acid if Ka¼ 1.00� 10	5.

This is the same problem for which we obtained an accurate solution in
Example 0.13. In that calculation we used the equation

Ka ¼ ½Hþ �2
ct	½Hþ � ð0:39Þ

Now suppose that the hydrogen ion concentration is much smaller than is the total
concentration ct. Then we can reasonably make this approximation:

ct	½Hþ � � ct

Making this substitution in Eq. (0.39) gives

Ka � ½Hþ �2
ct

or

½Hþ � � ffiffiffiffiffiffiffiffiffi
Kact

p ð0:40Þ

Applying Eq. (0.40) to our problem, we get

½Hþ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10	5Þð1� 10	2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10	7

p
¼ 3:16� 10	4 M

or pH¼ 3.50. Our approximation has led to a very simple solution, and comparison
with Example 0.13 shows the level of error that has been introduced.

When is it acceptable to use such an approximation? This depends on those factors
alreadymentioned. In thepresent examplewemight examine thequantityct	 [Hþ ] to

5 The equation probably never was truly exact in a physicochemical sense anyway because of the
complexity of chemical systems.
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see if [Hþ ] is indeedmuch smaller than ct (because that is the assumption onwhich the
approximation is based). In Example 0.14 we can compare these numbers:

Exact: ct¼ 1.00� 10	2	 3� 10	4¼ 0.97� 10	2

Approximate: ct	 [Hþ ]� ct¼ 1.00� 10	2

Therefore the approximation introduces about a 3% error into the denominator
of Eq. (0.39). The error in the final answer is even smaller than this, and for most
purposes the approximate result would be acceptable. This is the practical point of
view that is adopted, and it can be seen that decisions of this sort depend greatly on
experience with making calculations and with interpreting experimental results.

Graphical Properties of Linear Functions. Let us begin this treatment by writing
this linear equation in a standard form:

y ¼ mxþ b ð0:41Þ

We call this “linear” because y depends on x to the first power. The following
terminology is used:

x, y are variables

m, b are parameters (i.e., constants of the system)

More specifically, x is often called the independent variable and y the dependent
variable. This terminology signifies that the value of x is under our control and that the
value of y then depends on x.

If paired x, y data are related by Eq. (0.41), when plotted on graph paper they yield
a straight line (which is another reason why we call Eq. (0.41) “linear”). Figure 0.1
shows how the plot is conventionally made. It is traditional to plot the x values on the
horizontal axis (the abscissa) and the y values on the vertical axis (the ordinate).

Figure 0.1. A typical straight-line plot of data points.
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Let us set x¼ 0 in Eq. (0.41); we get y¼ b; that is, b is the value of y when x¼ 0.
We call this the intercept on the y axis. The parameter m describes the steepness
with which y increases (or decreases) as x increases; m is called the slope. Evidently,
ifweknow thevalues ofm andb,weknoweverything there is to knowaboutEq. (0.41).

Now let us review the calculation of m, the slope. In Fig. 0.2, two points,
on the line, having coordinates (x1, yi) and (x2, y2), are identified. We write the
equation of the line for each of these points (for the equation is satisfied at every point
on the line):

y1 ¼ mx1 þ b

y2 ¼ mx2 þ b

Now subtract y1 from y2 and solve for m:

m ¼ y2	y1
x2	x1

ð0:42Þ

This equationallowsus to calculate the slopeof anystraight line.The slopem canbe
positive (y increases as x increases), negative (y decreases as x increases), or zero
(y does not depend on x). We can read b from the graph as the value of y when x¼ 0;
or more accurately and sometimes more conveniently (because sometimes the plot
doesn�t include the x¼ 0 region), b can be calculated from Eq. (0.41), since we now
know m. Simply choose any point on the line and substitute the corresponding
numerical values into b¼ y	mx.

Here are two interesting special cases of Eq. (0.41).

1. m¼ 0. Then the line is horizontal, parallel to the x axis, since substituting this
value of m into Eq. (0.41) gives y¼ b.

Figure 0.2. Illustrating the calculation of the slope of a straight line; see text.
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2. b¼ 0. Then Eq. (0.41) yields

y ¼ mx ð0:43Þ
showing that the line passes through the origin at y¼ 0, x¼ 0.

Example 0.15. Table 0.7 lists experimental data (Cohen and Connors, 1967) giving
the solubility of the drug theophylline (in water at 25
C) as a function of the
concentration of added sodium salicylate. Analyze the data.

The first thing to do is to plot the data. Use graph paper having fine enough
divisions to preserve the accuracy of the data; 1-mm divisions usually work well,
whereas 1/400 divisions are too coarse. Figure 0.3 shows the plot of the data. Since the
sodium salicylate concentration was set by the experimenter, we consider it to be the
independent variable x.

The data points appear to describe a straight line. There is a theoretical reason for
this, but we can view it purely experimentally as a pleasingly simple result. Note that

Figure 0.3. Plot of the data in Example 0.10.

Table 0.7. Solubility of theophylline in water at 25.0
C as a

function of added sodium salicylate

Sodium Salicylate
Concentration=(M)

Theophylline
Concentration=(M)

0 0.0387
0.0252 0.0517
0.0504 0.0622
0.1009 0.0860
0.1261 0.0946
0.1514 0.1094
0.2018 0.1288
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the data points show some small but significant “scatter” about the line that has been
drawn. This scatter introduces ambiguity into the question of howbest to draw the line.
Later, in Section 0.6, wewill deal with this issue of the “best straight line,” but for the
present it is sufficient to note thatwe drawa line that appears to approximately balance
the deviations of the points above and below the line.

Next we calculate the slope of the line. Because of the scatter seen in the
experimental points, our two points for the slope calculation will be taken from
the line itself, because it is the slope of the line that wewant.6 Any two points will do,
but they should be far enough apart to yield an accurate result. Points corresponding
to x1¼ 0.060 and x2¼ 0.160 were chosen. Reading directly from Fig. 0.3 gives

At x1¼ 0.060M, y1¼ 0.0669 M

At x2¼ 0.160M, y2¼ 0.1122 M

These numbers are used in Eq. (0.42):

m ¼ 0:1122	0:0669

0:160	0:060
¼ 0:453

Now we calculate b using (for convenience, because we already have the values)
point x1,yl:

b ¼ y	mx

¼ 0:0669	ð0:453Þð0:060Þ
¼ 0:0397M

Note that b has the units of y whereas m has the units of y/x. Also observe that b as
calculated from the line is slightly different from the experimental value of 0.0387M
whenx¼ 0.Suchdiscrepancies are common in scientificwork.Theyadd interest to the
interpretation of experimental data.

We can now state that the set of data given in Example 0.15 can be described by the
equation

y ¼ 0:453xþ 0:0397

where x is the sodium salicylate concentration inM, y is the theophylline concentration
inM,and theequation isvalidover the rangex¼ 0 – 0.20M.Thephysical interpretation
is that the presence of sodium salicylate increases the theophylline solubility in a linear
manner. The chemical interpretation of this phenomenon has to do with the mutual
binding interaction between theophylline and the salicylate ion (Cohen and Connors,
1967). Amore detailed explanation of this interaction, alongwith a rigorous treatment
of the binding between two or more drug molecules, can be found in Chapter 14.

6 Here is the attitude we have adopted. The experimental points have led us to the line as the best
interpretation of the dependence of the y values on the x values, so henceforth we base our interpretation on
the line and not on the data points.
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Linearization of Nonlinear Functions. The experimental data of Example 0.15
consistedofmolar concentrations, andwe found empirically that a plot of theophylline
solubility as a function of sodium salicylate concentration gave a straight line.
We could conclude that the concentrations were linearly related, and we obtained
the parameters of the straight-line relationship.

It is not always this simple. Often, perhaps usually, the data are smoothly but
nonlinearly related. In such circumstanceswemay be able to carry out amathematical
transformation that converts a nonlinear function to a linear function. This is often
very desirable, because of the simplicity with which we can describe straight lines.
Wemay have theoretical reasons to expect certain transformations towork in thisway,
or we may just try different plotting forms empirically, hoping that we will generate
a straight line. Here are some of the most common transformations.

1. Exponential Functions. These have the general form

y ¼ aebx ð0:44Þ
where, as before, x and y are variables, a and b are parameters, and e is the base
of natural logarithms. We take the natural logarithm of both sides:

ln y ¼ ln aþ bx ð0:45Þ
This operation has converted the nonlinear function Eq. (0.44) to the linear function
Eq. (0.45), which has the form of Eq. (0.41) for a straight line. In other words, if
Eq. (0.44) describes the data, a plot of ln y against x should be linear with slope value b
and intercept (on the vertical axis when x¼ 0) equal to ln a. This is often called a
semilog plot. It is widely used in kinetic studies.

2. Power Functions

y ¼ axb ð0:46Þ
Again we take the logarithm:

ln y ¼ ln aþ b ln x ð0:47Þ
A plot of ln y against ln x will be linear if Eq. (0.46) describes the data. This is called
a log–log plot.

3. Polynomial Functions

y ¼ aþ bxþ cx2 ð0:48Þ
This equation is a quadratic function, which can be linearized as in

y	a

x
¼ bþ cx ð0:49Þ

Evidently a plot of (y	 a)/x against xwill give a straight line if Eq. (0.48) describes the
data. Of course, the parameter a must be known in order to construct this plot.
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4. Rectangular Hyperbola Any equation having the following form is called a
rectangular hyperbola:

y ¼ ax

1þ bx
ð0:50Þ

This is nonlinearwhenplotted as y against x.Wecan linearize it in severalways.Taking
the reciprocals of both sides gives

1

y
¼ 1

ax
þ b

a
ð0:51Þ

so a plot of 1/y against 1/x (this is called a double-reciprocal plot) will be linear.
You may encounter this plot in your study of enzyme kinetics, where it is called
the Lineweaver–Burk plot. Algebraic manipulation also leads to the following
equation, another linear plotting form:

x

y
¼ b

a
xþ 1

a
ð0:52Þ

In this version, x/y is plotted against x. A third linear transformation can be obtained;
this is shown as

y

x
¼ a	by ð0:53Þ

A plot of y/x against y is linear. Notice that the slope is negative. In protein binding
studies a plot according to Eq. (0.53) is called a Scatchard plot. The rectangular
hyperbola arises naturally in mathematical descriptions of chemical equilibria.

It will be evident that a facility for recognizing the standard linear form y¼mx þ b
(where the definitions of thevariables andparameters dependon the particular system)
is invaluable in seeking linear forms from nonlinear functions.

Example 0.16. Table 0.8 gives kinetic data for the decomposition of nitrogen
pentoxide in carbon tetrachloride solution at 45
C.7 Analyze the data.

The experimental data consist of the concentration ofN2O5(c) as a function of time
(t). Figure 0.4 is a direct plot of c (as the dependent variable) against t. The plot is
obviously nonlinear. As it happens, we have some theoretical guidance for this
reaction (and for many other processes that follow the same functional dependence

7 See Daniels and Alberty (1955), p. 323). The reaction yields oxygen and N2O4, which exists in
equilibrium with NO2.

N2O5 !N2O4 þ 1

2
O2

N2O4>2NO2
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on time). We anticipate that the progress of the reaction is described by Eq. (0.54),
where c0 is the reactant concentration when t¼ 0 (the beginning of the reaction) and c
is the concentration at any time t:

c ¼ c0e
	kt ð0:54Þ

The parameter k is called the rate constant.
We recognize Eq. (0.54) as an exponential function, which we can linearize by

taking the logarithm

ln c ¼ ln c0	kt ð0:55Þ

or

log c ¼ log c0	 kt

2:303
ð0:56Þ

Table 0.8. Kinetics of N2O5 decomposition at 45
C in CCl4

t=(s) c=(M) log [c=(M)]

0 2.33 0.367
184 2.08 0.318
319 1.91 0.281
526 1.67 0.223
867 1.36 0.134
1198 1.11 0.045
1877 0.72 	0.143
2315 0.55 	0.260
3144 0.34 	0.469

Figure 0.4. Direct plot of data in Example 0.11.
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We can use either Eq. (0.55) or Eq. (0.56). The table of data shows values of log c, and
Fig. 0.5 is the plot of log c against t as suggested by Eq. (0.56). Evidently we have
succeeded in linearizing the data, whichwe interpret tomean that Eq. (0.54) describes
the reaction.

From Fig. 0.5 we calculate the slope as follows:

Slope ¼ 	0:167	ðþ 0:100Þ
2000	1000

¼ 	2:67� 10	4 s	1

Observe the sign and units of the slope. Now, from Eq. (0.56) we can write

Slope ¼ 	 k

2:303

so

k ¼ 6:15� 10	4 s	1

0.5. DEALING WITH CHANGE

Change in Physical and Chemical Processes. We are often interested in
some sort of process that has happened, is happening, or is expected to happen; in other
words, something changes. We need to be able to describe and analyze such changes.
Table 0.9 shows the kinds of processes that may concern us.

Suppose that we want to specify quantitatively the value of some property P
that changes as the physical or chemical system passes from its initial state A to its

Figure 0.5. Semilog plot of data in Example 0.16.
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final state Z. The process itself is symbolized A ! Z, and the change (or increment)
in P is defined as

Change in P ¼ ðValue of P in final stateÞ	ðValue of P in initial stateÞ

or

DP ¼ PZ	PA ð0:57Þ

If P increases during the process, then PZ>PA and DP is positive; if P decreases, then
DP is negative.

Incremental and Differential Change. We have defined an increment in a quantity
by Eq. (0.57). Let us now revert to our study of a straight-line function

y ¼ mxþ b ð0:58Þ

and recall how we calculated the value of the slope m. We chose two points on the
line (see Fig. 0.2) and found that m is equal to the function in Eq. (0.59):

m ¼ y2	y1
x2	x1

ð0:59Þ

If we think of larger positive values of x (values increasing toward the right on the
abscissa) as “later,” then we can identify the point (x1, y1) as an initial state and point
(x2, y2) as a final state. Then we see that m can be written in our delta symbolism as

m ¼ Dy
Dx

ð0:60Þ

Table 0.9. Types of physicochemical processes

Solid Ð
melting ðfusionÞ

crystallization
Liquid

Liquid Ð
vaporization

condensation
Gas (vapor)

Solid Ðsublimation
Gas

Solventþ solid Ðdissolution

precipitation
Solution

Solute in solvent A Ð
partitioning

Solute in solvent B

Gas at volume 1 Ð
compression

expansion
Gas at volume 2

System at temperature 1 Ð
heating

cooling
System at temperature 2

Reactants Ðchemical reaction
Products
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Carryingout thedivisiononthe right-handsidewithnumericalquantitiesyieldsanumber
equal to m. Since this result can be viewed as the number divided by 1, we interpret
m¼Dy/Dx as the change in y per unit change in x. In Example 0.15we foundm¼ 0.453,
which we interpret to mean that as x increases by one unit, y increases by 0.453 unit.
Recall also that m can be negative; this would mean that y decreases as x increases.

Now the essence of a straight line is that its slope m is a constant, so that we
would obtain the same value form no matter which two points, wherever they may be
on the line, we choose for its calculation. But suppose the plot of y against x yields a
curved (nonlinear) line, as in Fig. 0.6? Obviously if we calculate the slope value using
points (x1, y1) and (x2, y2), we will get a different value from that using points (x2, y2)
and (x3, y3). In fact, we have to ask if the concept of “slope” has meaning in this

Figure 0.6. A curvilinear function y¼ f(x)

Figure 0.7. The slope at point p is the value of the tangent to the curve at p.
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circumstance. The answer is that we can expand our definition of the slope to include
such circumstances. We will now define the slope of any line at a point p as the value
of the tangent to the line at p, as shown in Fig. 0.7.

How can we evaluate the numerical value of the slope at point p?We simply return
to our original definition

m ¼ Dy
Dx

and require that Dx (in the immediate vicinity of point p) be made smaller and smaller
until it is so small that m approaches an essentially constant value; that is, making
Dx still smaller doesn�t sensibly alter thevalueofm.Nowthe ratioDy/Dxgives the slope
(tangent) of the line at point p. We write this

m ¼ lim
Dx! 0

Dy
Dx

ð0:61Þ

which is read “m is the limiting value of Dy/Dx as Dx approaches zero.” Of course,
it would be cumbersome to write Eq. (0.61) repeatedly, so a new terminology is
introduced, namely

m ¼ lim
Dx! 0

Dy
Dx

¼ dy

dx
ð0:62Þ

where dy and dx are individually referred to as differentials and the ratio dy/dx is called
the derivative of y with respect to x.

We interpret the derivativedy/dx of any function y¼ f(x) as the slope of the function
(when plotted in the usual manner). If the function is a straight line, dy/dx is a constant
(its value does not depend on x), whereas for curved functions the slope dy/dx depends
on (varies with) x. Thus dy/dx, for both straight and curved lines, is a measure of
change.

Formulas for Derivatives. One of the interesting properties of derivatives is that the
individual differentials can be treated as algebraic quantities. Thus we can write

dy

dx
dx ¼ dy ð0:63Þ

and

dy

dx
¼ dy

du

du

dx
ð0:64Þ

Equation (0.64) is known as the “chain rule.” Evidently we also have dx/dx¼ 1.
Table 0.10 collects some formulas [Eqs. (0.65)–(0.72)] for derivatives and differ-

entials that will be found useful in scientific settings. In these formulas u and v are
functions of x, c and n are constants, and e is the base of natural logarithms. The
differential form is obtained from the derivative through multiplication by dx.
Table 0.10 is a compact way of summarizing these formulas, and a more expanded
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form might express the results as follows, where we take Eq. (0.67) as an example:

Function :

Derivative :

Differential :

y ¼ uþ v

dy

dx
¼ du

dx
þ dv

dx
dy ¼ duþ dv

Observe also that some entries can be derived from others; for example, Eq. (0.66) is a
special case ofEq. (0.68), andEq. (0.69) can be obtained fromEq. (0.68) bywriting the
quotient u/v as the product uv	1.

All the derivatives in Table 0.10 are first derivatives. We can also define higher
derivatives. Suppose that we define u¼ dy/dx; then

du

dx
¼ dðdy=dxÞ

dx
¼ d2y

dx2

is called a second derivative. A second derivative is a measure of change of the first
derivative.

Table 0.10. Some derivatives and differentialsa

Derivative Differential Eq.

dc

dx
¼ 0 dc ¼ 0 ð0:65Þ

dðcuÞ
dx

¼ c
du

dx
dðcuÞ ¼ c du ð0:66Þ

dðuþ vÞ
dx

¼ du

dx
þ dv

dx
dðuþ vÞ ¼ duþ dv ð0:67Þ

dðuvÞ
dx

¼ u
dv

dx
þ v

du

dx
dðuvÞ ¼ u dvþ v du ð0:68Þ

dðu=vÞ
dx

¼ vðdu=dxÞ	uðdv=dxÞ
v2

d
u

v
¼ v du	u dv

v2 ð0:69Þ
dun

dx
¼ nun	1 du

dx
dðunÞ ¼ nun	1du ð0:70Þ

d ln u

dx
¼ 1

u

du

dx
d ln u ¼ du

u ð0:71Þ
deu

dx
¼ eu

du

dx
deu ¼ eudu ð0:72Þ

au, v, x are variables; c, n are constants.
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Example 0.17. Find the slope of the hyperbolic function

y ¼ ax

1þ bx
ð0:73Þ

Wewant the slope dy/dx. Equation (0.73) is a quotient, sowe use Eq. (0.69) combined
with Eq. (0.66):

dy

dx
¼ ð1þ bxÞa	ðaxÞb

ð1þ bxÞ2

¼ a

ð1þ bxÞ2
ð0:74Þ

Thus the slope depends on x, as can be seen graphically in Fig. 0.8. As x! 0,
dy=dx! a, a constant; this is the “limiting slope” or “initial slope,” that is, the tangent
to the curve at the point x¼ 0. On the other hand, when x!¥ [x becomes so large that
the denominator of Eq. (0.73) becomesmuch greater than the numerator], dy=dx! 0;
in this circumstance the value of y becomes essentially independent of x.

Maxima, Minima, and Inflection Points. Figure 0.9 shows a function y¼ f(x) that
passes through a maximum.

Picture how the slope dy/dx changes as x increases from left to right. This is
indicated by the tangent lines. In the vicinity of the maximum, whose location
is labeled xmax,the slope decreases as x approaches xmax from the left. At x¼ xmax,
dy/dx¼ 0; then as x leaves xmax, moving to the right, dy/dx becomes an increasingly
large negative number.

Figure 0.8. The rectangular hyperbula, Eq. 0.73, for the case a¼ 10, b¼1.
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This behavior provides a criterion for the location of a maximum in a function.
At a maximum, dy/dx¼ 0, dy/dx is positive at x< xmax,and dy/dx is negative at
x> xmax. (In addition, the second derivative d2y/dx2 is negative at a maximum.)
Analogous conditions locate aminimum: dy/dx¼ 0, dy/dx is negative for x< xmin, dy/
dx is positive for x> xmin and the second derivative is positive.

An inflection point in a plot of y against x is a point where the first derivative passes
through a maximum; hence it is also detectable as the point where the second
derivative is equal to zero. This idea is clarified with some experimental data in
Example 0.18 (Connors, 1967, Chapter 6).

Example 0.18. Given: 0.3070 g of a weak base dissolved in glacial acetic acid was
titrated with 0.1138M acetous perchloric acid; the data in Table 0.11 are the titrant
volume V and the electrochemical cell potential E in the vicinity of the endpoint.
Estimate the endpoint volume by the second derivative method.

The third column in Table 0.11 shows DE/DV (an approximation to the first
derivative) as calculated from theV,E data; note how the values ofDE/DVare centered
on the V, E intervals. In column 4 the “second derivative” D2E/DV2 is similarly
calculated from

D2E

DV2
¼ ðDE=DVÞ2	ðDE=DVÞ1

V2	V1

Figure 0.10 shows plots of E against V, of DE/DVagainst V, and of D2E/DV2 against V.
The endpoint could be estimated directly from Fig. 0.10a as the volume corre-

sponding to the steepest point of the curve, but Fig. 0.10b shows how this point can also
be found through extrapolation from theDE/DV values on either side of themaximum.
Figure 0.10c uses an interpolation from the D2E/D V2calculation to find the endpoint;

Figure 0.9. The tangent lines show how dy/dx changes as y passes through a maximum.
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the calculation, from the table, is

Vendpoint ¼ 8:25þ 0:25ð 48

48þ 176
Þ ¼ 8:30 mL

Thus, the point at whichD2E/DV2¼ 0 is found by linear interpolation between the two
data points oneither side of zero. (Wenowhaveenoughdata to calculate the equivalent
weight of the weak base).

Integration. Integration is the opposite of differentiation; starting from the deriv-
ative, we seek to recover the original function. An equation of the form

dy

dx
¼ f ðxÞ ð0:75Þ

is called a differential equation; we have seenmany examples.Wewish to learn how y
is related to x; our only clue is Eq. (0.75). We rearrange to the form

dy ¼ f ðxÞ dx ð0:76Þ

and integrate both sides as directed by the integral signs:

ð
dy ¼

ð
f ðxÞ dx ð0:77Þ

(An integral signmust always be accompanied by a differential.) On the left-hand side
of Eq. (0.77) the integral sign reverses the action of the differential sign, since y is the

Table 0.11. Potentiometric titration data (Example 0.18)

V (mL) E (mV)
DE/DV

(mV/mL)
D2E/DV2

(mV/mL2)

7.50 490
44

7.75 501 112
72

8.00 519 192
120

8.25 549 48
132

8.50 582 	176
88

8.75 604 	112
60

9.00 619
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Figure 0.10. Plots of the data in Example 0.18. The dashed line shows the endpoint of the

titration. [Reproduced by permission from Connors (1967).]
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function whose differential is dy. Hence

y ¼
ð
f ðxÞ dx ð0:78Þ

To proceed, we will take some special cases.

Example 0.19.

(a) Integrate dy/dx¼ a, where a is a constant. In the form of Eq. (0.78) we have

y ¼
ð
a dx ð0:79Þ

One rule of integration is that we can take constants outside the integral sign, so

y ¼ a

ð
dx ð0:80Þ

This suggests that y¼ ax. But consider the following. Suppose that the original
function was y¼ ax þ 2, or y¼ ax þ 106, or y¼ ax	 15, or the like. All of
these functions (and there are an infinite number of them) have the derivative
dy/dx¼ a, because the derivative of a constant is zero. So when we integrate
Eq. (0.80) we must restore the constant that might have been there. Our final
result is therefore

y ¼ axþC ð0:81Þ

where C is called the constant of integration.
(b) Integrate dy/dx¼ 24x2. Experience with derivatives leads us to expect [see

Eq. (0.70) in Table 0.10] that if dy/dx¼ 24x2, then y is some function of x3.
A bit of guessing shows us that if y¼ 8x3, then dy/dx¼ 24x2. We therefore
have

y ¼ 24

ð
x2dx ¼ ð24Þ x3

3

� �
þC ¼ 8x3 þC

Integrals of the type discussed above are called indefinite integrals, at least in part
because the value of the constant C is unspecified. A short tabulation of indefinite
integrals is given in Table 0.12 [which contains Eqs. (0.82)–(0.90)]. The CRC
Handbook of Chemistry and Physics gives a table with hundreds of integrals.

A definite integral has specified initial and final points over which the integral is to
be evaluated. We will develop this concept with an example of great importance in
many types of scientific work.
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Example 0.20. Letus studyachemical reactiondescribedby the schemeA ! Z,where
A is the reactant and Z is the product. It is often observed experimentally, for reactions
fitting this scheme, that the rate of loss of reactant is directly proportional to the
concentration ofA at thatmoment. Expressedmathematically, this observation becomes

	 dcA
dt

¼ kcA ð0:91Þ

Here dcA/dt is the reaction rate; the negative sign arises because cA, the concentration
of A, is decreasing as time t increases. The quantity k is the rate constant. Because cA

Table 0.12. Some indefinite integralsð
du ¼ uþC ð0:82Þ

ð
a du ¼ a

ð
du ð0:83Þ

ð
ðduþ dvÞ ¼

ð
duþ

ð
dv ð0:84Þ

ð
undu ¼ unþ 1

nþ 1
ðn 6¼ 	1Þ ð0:85Þ

ð
du

u
¼ ln uþC ð0:86Þ

ð
eaudu ¼ eau

a
þC ð0:87Þ

ð
audu ¼ au

ln a
þC ð0:88Þ

ð
ðaþ buÞndu ¼ ðaþ buÞnþ 1

ðnþ 1Þb þCðn 6¼ 	1Þ ð0:89Þ

ð
du

aþ bu
¼ 1

b
ln ðaþ buÞ ð0:90Þ
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appears on the right-hand side to the first power, Eq. (0.91) is called the first-order
differential rate equation, and k is a first-order rate constant. [In Problem 0.22,
Eq. (0.91) is obtained from a set of experimental kinetic data.]

Equation (0.91) expresses a rate as a function of a concentration, but it is more
convenient experimentally to measure a concentration as a function of time.
Integration will convert Eq. (0.91) into such a form. Let us make these definitions:

c0A is the concentration of A when t¼ 0, which means “at the beginning of the
reaction.”

cA is the concentration of A at any time t.

Now, to place Eq. (0.91) into an integrable form, we collect like variables; in this
case we want cA and dcA on the same side of the equation. Algebraic rearrangement
gives

dcA
cA

¼ 	k dt ð0:92Þ

We are going to carry out a definite integration between the limits cA ¼ c0A when t¼ 0
and cA¼ cAwhen t¼ t. This is indicated as in

ðCA

C0
A

dcA
cA

¼ 	k

ðt
0

dt ð0:93Þ

Note that the initial state is at the lower end of the integral sign and the final state at the
upper end. Next we integrate both sides, making use of Eqs. (0.82) and (0.86) (from
Table 0.12):

ln cA�cAc0A ¼ 	kt�t0 ð0:94Þ

This symbolism shows thatwe have carried out the integration but havenot yet applied
the integration limits, so nextwe do this, writing the final state first and subtracting off
the initial state, exactly as in our earlier definitions of changes:

ln cA	ln c0A ¼ 	kðt	0Þ
This is obviously equivalent to

ln
cA
c0A

¼ 	kt ð0:95Þ

or, in Briggsian logarithms,

log
cA
c0A

¼ 	kT

2:303
ð0:96Þ
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Yet another rearranged form is shown as

cA ¼ c0Ae
	kt ð0:97Þ

Equations (0.95)–(0.97) are equivalent forms of the integrated first-order rate
equation (this is sometimes called the first-order rate law, first-order decay, or the
exponential rate law). We have seen here that it appears naturally in the field of
chemical kinetics. It is also important for describing radioactive decay, pharmacoki-
netic processes, and other applications. Mastery of the material in Example 0.20 is
essential. Note also how Example 0.16 and Problem 0.22 are related to this treatment.

More complicated rate equations will sometimes be encountered, but a thorough
treatment is not appropriate here. Sometimes the kinetic scheme and the differential
rate equation can suggest the qualitative nature of the integrated equation. Consider
this scheme of two first-order reactions in series:

A	!k1 B	!k2 C

The differential equations are

	 dcA
dt

¼ k1cA

dcB
dt

¼ k1cA	k2cB

dcc
dt

¼ k2cB

We can therefore anticipate that the dependence of cA on t will be given by
Eq. (0.97), since the rate of loss of A depends only on rate constant k1.
Intermediate B, however, involves both k1 and k2, so we expect that cB will be a
biexponential function. The integrated result for cB [which we will not derive here
(Connors, 1990, Chapter 3)], is

cb ¼ c0Ak1
k2	k1

e	k1t	e	k2t
� � ð0:98Þ

except for the special case k1¼ k2. The dependence of cCon time can be found from the
conservation equation c0A ¼ cA þ cB þ cC combined with Eqs. (0.97) and (0.98) for
cA and cB.

Partial Differentiation and the Total Differential. Up to this point in our treatment
of change, we have dealt with functions of a single variable. For example, if y is a
functionof thevariablexalone,wewritey¼ f(x), andwecanevaluate thederivativedy/
dx. Very often, however, we encounter functions of two ormore variables, and herewe

38 REVIEW OF MATHEMATICS



consider how to describe changes in such quantities. This material may not have been
covered in an introductory calculus course.

Suppose that we have a function z¼ f(x, y), meaning that the value of z depends
on both of thevariables x and y.Wewish to describe how z changeswhenwe alter xor y,
or both x and y. We do this as follows. First take the derivative of z with respect to x
while holding y constant. In order tomake transparently clear what is going on, we use
a slightly different symbolism for this derivative, writing

qz
qx

� �
y

Note the subscript y; this tells us that y is held constant while x is changing.
In like manner we can take the derivative of z with respect to y while x is held
constant, writing the result as

qz
qy

� �
x

Observe the use of the symbol q in these expressions. The operation just described is
called partial differentiation and the quantities written above are partial derivatives.

Next we make use of a chain rule to define the total differential dz of the function
z¼ f (x, y):

dz ¼ qz
qx

� �
y

dxþ qz
qy

� �
x

dy ð0:99Þ

These considerations may seem somewhat abstract, but it happens that many quanti-
ties of scientific interest are functions of more than one variable. Incidentally,
Eq. (0.99) can be generalized to functions of more than two variables; the pattern
will be evident from Eq. (0.99) (see also Problem 0.31).

Example 0.21. The volume V of a fixed amount of a homogeneous gas depends
only on its temperature T and its pressure P. Write the total differential dV.

By analogy with the foregoing, we write

V ¼ f ðT;PÞ
so

dV ¼ qV
qT

� �
P

dT þ qV
qP

� �
T

dP ð0:100Þ

Experimental measurements can provide numerical quantities for these partial
derivatives, so Eq. (0.100) has a definite physical meaning.

Recall from our earlier definition of change in a chemical process that we defined
an increment as the difference between values in final and initial states.
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Taking volume Vas an example of a property undergoing change, using the language
of calculus, we have,

DV ¼
ðVfinal

Vinitial

dV ¼ Vfinal	Vinitial ð0:101Þ

Now suppose that we carry out the change in two steps, first A!B and then B!C.
What is the change DV for the overall process A!C? We apply Eq. (0.101):

DV ¼
ðVB

VA

dV þ
ðVC

VB

dV ¼ ðVB	VAÞþ ðVC	VBÞ

DV ¼ VC	VA

We have found that state B plays no role in determining DV. State B is an
intermediate state on the path from A to C, and since B could have been any
intermediate state, evidently the change DV is independent of the path or mecha-
nism of the process.

If the change in aproperty or functionbetween two statesofa system is independent
of the path taken between the states, the total differential is called an exact differential
and the property or function is called a state function. Whether or not a function is a
state function (path-independent) is ultimately based on experimental observations,
but extensive laboratory studies have clarified the situation. The subject of thermo-
dynamics (which describes systems at equilibrium) deals largely with state functions,
including the temperature, volume, pressure, and energy.8On the other hand, chemical
kinetics, which describes systems changing in time, largely treats path-dependent
quantities; in this context, the path taken by a reaction is the reactionmechanism, and a
major role of chemical kinetics studies is to investigate reaction mechanisms.

0.6. STATISTICAL TREATMENT OF DATA

The results of a quantitative experimental study often consist of a set of numbers
obtained from replicate determinationsmadeunder essentially identical conditions, or
a set of numbers corresponding to one quantity as a function of another quantity. These
numbersmay represent concentrations,weights, equilibriumconstants, rate constants,
pH values, and so on. The interpretation of these data by the experimentalist answers
two general questions:

1. What is the best estimate of the quantity or function being investigated?

2. How reliable is this estimate as a measure of the true value?

8 Heat and work, however, which are important thermodynamic quantities, are not, in general, state
functions.
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The branch of mathematics called statistics deals with such issues. Our present
treatment will be very brief, intended to provide an immediately usable tool for the
interpretation of data obtained in laboratory coursework.

Random Errors and the Normal Distribution. Every measurement has some error
associated with it. These errors may be of two types. Systematic errors are errors
introduced by some inadequacy in the experimental technique (such as an improperly
calibrated balance or an interference caused by impurities in reagents) or poor
judgment or unconscious bias on the part of the experimentalist (as may happen
through parallax error when reading the meniscus in a burette). Systematic errors can
be tracked down and substantially eliminated (or the method may have to be
abandoned); we will not consider them further.

Even after all systematic errors have been eliminated, it is a familiar observation
that repeated determinations of a quantity almost never result in the same number.
This variability in experimental data is a manifestation of random error. We usually
observe that replicate observations are grouped about a most frequently observed
value and that large deviations from this value are rarer than small deviations. Random
errors are the consequence of limitations inherent in the observational method.
They can perhaps be reduced in magnitude by careful work, but they cannot be
eliminated. Statistics helps the experimentalist to interpret the data, given this
inevitable presence of random error.

The statistician adopts a point of view concerning experimental data that may
seem peculiar to the experimentalist. The statistician considers an experimental
observation to be a single member that has been randomly selected from an
infinite population of individual observations that are characteristic of the system
being investigated. Replicate observations will exhibit variation owing to the
operation of random errors. If we draw a graph of the value of each experimental
observation on the horizontal (x) axis against the number of times each value is
observed (its frequency) on the vertical (y) axis, a symmetric figure usually is
obtained, with a maximum corresponding to the most frequently observed value.
As the number of observations increases toward the (unattainable) limit of
infinity, the graph will assume the form of a smooth curve. This curve is called
a frequency distribution.

In scientific practice, experimental frequency distributions can usually be closely
fitted to a theoretical frequency distribution that is called the normal distribution,
the Gaussian error curve, or the normal error curve. The equation of the normal
distribution is

f ðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e	ð1=2Þ½ðx	mÞ=s�2 ð0:102Þ

where f ðxÞ is the frequency of occurrence of the value x of the “random variable,”
which is the experimental observable, and s and m are parameters of the population.
The symbol m signifies the population mean, which is the value of x corresponding
to the maximum in the distribution; and s, the population standard deviation,
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determines the “spread” or width of the bell-shaped curve. Figure 0.11 shows a plot of
the normal distribution. Graphically, the quantitys is the horizontal distance from the
mean to either inflection point of the curve, as shown in Fig. 0.11.Approximately 68%
of the area under the normal curve, and therefore 68% of the members of the
population, lie within one standard deviation of the mean, m� s. About 95% of
the population are found in the range m� 2s, and over 99% in the range m� 3s.
Scientists usually assume that their data can be described by the normal distribution,
and we will adopt this assumption in the following treatment.

Estimation of Statistical Parameters. The population parameters s and m are not
accessible to us because we would have to sample an infinity of random variables in
order to define the population frequency distribution. Nevertheless, we desire esti-
mates ofmands.Becauseof the symmetryof thenormal distribution, thebest estimate
of the population mean is the arithmetic average, or mean, defined by

�x ¼
P

xi
n

ð0:103Þ

where x is thevalue of the ith observation (i¼ 1, 2, 3, . . ., n) and n is the total number of
observations.

The accuracy of an experimental result is the closeness with which the experimen-
tal mean �x approaches the population mean m. Since we do not know m, we cannot in
general assess the accuracy. Sometimes, however, an experiment can be designed so
that the experimental �x can be compared with a known value that has been set by the
experimentalist with a standard sample. There also exist a few quantities that have
been measured by so manyworkers, using different methods in different laboratories,
that we have developed great confidence in their accuracy. For example, the Ka value
of benzoic acid at 25
C is 6.26� 10	5, an average of many experimental results;

Figure 0.11. The normal error curve with mean m and standard deviation s.
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and somuch care and effort has gone into this number thatwemay reasonably take it as
very accurate.

Themedian is sometimes used as an estimate of the population mean, especially if
the set of experimental results includes oneor twowidely divergent results. Themedian
is that value that exceeds asmanyvalues as it itself is exceededby, for n odd. Ifn is even,
themedian is the average of the two values satisfying the same criterion. Themedian is
easily picked out if the numbers are arranged in order of increasing magnitude.

It is a valuable result of statistical theory that, even if the experimental variable is
not normally distributed, the means of small sets of the variable are normally
distributed. Since the mean �x is our best estimate of the true value, we are assured
that these �x estimates follow a normal distribution.

We have next to obtain an estimate of s, the population standard deviation, which
we see from Fig. 0.11 to be a measure of the width of the normal distribution. This
width reflects the reproducibility of the measurements; the more reproducible, the
narrower the curve, and the smaller thevalue ofs.Precision is the termusually used to
describe reproducibility. Our estimate of s is labeled s and is called the experimental
standard deviation; s is our measure of the precision of �x, and sometimes s is said to
measure the “uncertainty” of �x. Its calculation begins with the definition of the
following equation, where s2 is called the variance:

s2 ¼
P ðxi	�xÞ2

n	1
ð0:104Þ

The standard deviation is then found as the square root of the variance. Note the
denominator in this equation; the quantity n	 1 is called the degrees of freedom,
because it specifies the number of independently assignable quantities needed to
completely determine the system. This is n	 1 because we already have calculated
one parameter, namely, �x. The units of s are the same as those of �x.

At one time (before electronic calculators and computers made statistical calcula-
tions easy), theaveragedeviation, expressed as follows,was often usedas ameasure of
precision:

Average deviation ¼
P jxi	�xj
n	1

ð0:105Þ
The rangew is the difference between the largest and the smallest results in a set;w

can be a useful indicator of the spread of results when n is small.
The precision can be expressed in relative terms as the quotient s/�x, or more

frequently on a percent basis by 100s/�x, which is called the coefficient of variation or
the relative standard deviation (RSD). Similarly, we might report

Precision in parts per thousand ¼ 103s

x�

Precision in parts per million ¼ 106s

x�

It is important to appreciate that the accuracy and precision of an experimental result
arevery different concepts. In the best of circumstanceswemay havegood accuracy (�x

STATISTICAL TREATMENT OF DATA 43



closely approximates m) and high precision (s is small relative to �x), but it is also
possible to encounter poor accuracy with high precision.

A more complete description of s is that it is the standard deviation of a single
observation. However, it is the mean �x that we take as our best estimate, so we really
would like a measure of the precision of the mean. This is provided by the standard
deviation of the mean, sm:

sm ¼ sffiffiffi
n

p ð0:106Þ

Some authors call sm the standard error.

Example 0.22. The following numbers are the percent recoveries in seven identical
nonaqueous titrations of a urea sample: 98.4, 100.2, 99.3, 101.7, 97.4, 98.2, and 100.8.
Calculate the mean, median, range, variance, standard deviation, relative standard
deviation, and standard deviation of the mean.

It is best to arrange the work in tabular form. Notice that the variance is calculated
according to Eq. (0.104) with the arithmetic operations carried out in the following
order: (1) differences are taken, (2) differences are squared, and (3) squares are
summed:

TITRATION DATA

Titration, i Percent Recovery (xi) ðxi	�xÞ ðxi	�xÞ2

1 98.41 	1.01 1.00
2 100.2 0.8 0.64
3 99.3 	0.1 0.10
4 101.7 2.3 5.29
5 97.4 	2.0 4.00
6 98.2 1.2 1.44
7 100.8 1.4 1.96

696.0 14.34

Mean: �x¼ 696.0%/7¼ 99.4%
Median: 99.3%
Range: 101.7%	 97.4%¼ 4.3%
Variance: s2¼ [14.34(%2)]/6¼ 2.39(%2)
Standard deviation: s ¼ ffiffiffiffiffiffiffiffiffi

2:39
p ¼ 1:55%

RSD: 100(1.55/99.4)¼ 1.56%
Standard deviation of the mean: sm¼ 1.55/2.65¼ 0.58%

Equation (0.104) for the variance can be placed in other forms that are more
convenient for electronic calculation. You will undoubtedly use your electronic
calculator or computer (which should be capable of the routine statistical calculations
described in this section), butmake sure that the programuses n	 1 rather than n in the
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denominator of Eq. (0.104). Of course, if n is very large (an unusual circumstance in
much experimental work), the difference between n and n	 1 becomes negligible.

Confidence Limits of the Mean. We have seen that the mean �x can be treated as a
normally distributed random variable. �x is our best estimate of the quantity we seek,
andnowwewould like somemeasure of the reliability of �x. Itmight seem thatwe could
achieve this by taking note of the properties of the normal distribution. For example,
we saw that 95% of the members of a normally distributed population fall within two
standard deviations of the mean, so perhaps we could state that the interval �x � 2s
should include 95% of any future estimates of �x for the same quantity.

This sounds plausible, but as it happens, if n is fairly small, the actual distribution
of �x is somewhat wider than is specified by the normal distribution. The actual
distribution for small n is given by a different function called Student�s t distribu-
tion,9 which approaches the normal distribution as n becomes large. Table 0.13
lists some values of Student�s t. In this table the column headed “Degrees of
Freedom” is to be interpreted as n	 1. The headings of the other columns give the
value of P, which is the probability that the limits to be calculated may be exceeded
by chance. The values in the table are the Student�s t. Observe how t seems to be
approaching 2 for the column P¼ 0.05 and recall that for the normal distribution
95% of the population lies in the interval �x � 2s; this comparison gives some
meaning to the t values.

Wenowwish tomeasure the reliability of our �x estimate. Thismeasure of reliability
is called the confidence limits of the mean, and it is calculatedwith the aid of Student�s
tdistribution.Wesuppose thatn replicateobservationshavebeenmade, and �x, s, and sm
have been calculated. We then calculate the confidence limits of �x by

�x� tsm

Table 0.13. Some values of student�s t distribution

Degrees of Freedom P¼ 0.10 0.05 0.01

1 6.314 12.706 63.657
2 2.920 4.303 9.925
3 2.353 3.182 5.841
4 2.132 2.776 4.604
5 2.015 2.571 4.032
6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3.555
9 1.833 2.262 3.250
10 1.812 2.228 3.169

9 “Student” was the pen name of W. S. Gosset, a British statistician and chemist who worked at Guinness
Breweries.
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where t is read from the appropriate column in Table 0.13. For example, if we wish
to know the limits within which 95% of further values would fall (if we undertook to
measure them), we would choose the column P¼ 0.05, where the quantity P is the
fraction of results that are expected to fall outside the limits. Similarly, the P¼ 0.01
column gives the 99% confidence limits.

Example 0.23. Find 95% and 99% confidence limits of the mean calculated in
Example 0.22.

95% Confidence Limits. For P¼ 0.05 and 6 degrees of freedom, Table 0.13 gives
t¼ 2.447. The confidence limits (P¼ 0.05) are therefore �x ¼ �tsm, or 99.4� 2.447
(0.58)%¼ 99.4� 1.4%. The meaning of this result is that, if many additional sets of
seven observations were made, about 95% of the means of these sets would be
expected to fall within the range 98.0–100.8% (the confidence interval).

99% Confidence Limits. For P¼ 0.01, t¼ 3.707. The limits (P¼ 0.01) are
99.4� 2.2%. The limits are wider at P¼ 0.01 than at P 0.05 because we have used
the same information but have required that a larger percentage of additional results
will fall within specified limits; that is, we have asked for a greater level of confidence,
so we must pay for this with a wider confidence interval.

Comparison of TwoMeans. It is often required that two experimental results are to
be compared to determine whether they are different. For example, we might wish to
know if a newly developed chromatographicmethod yields the same analytic result as
a well-tested spectrophotometric method. Such problems are dealt with by tests of
significance, meaning that a decision is sought concerning whether the difference
between the two results is significant or negligible.

In statistical terms, one tentatively assumes that there is no difference between the
two results—this is called thenull hypothesis—and then tests this assumption.Usually
twomeans are to be compared. Let us symbolize these means as �x and �y. According to
the null hypothesis, �x and �y describe the same population. To show the basis of the
significance test, suppose that �x and �y have the samevalue sm for the standard deviation
of the mean. As we have seen, confidence intervals can be defined by

Confidence interval for �x ¼ �x� tsm
Confidence interval for �y ¼ �y� tsm

We can therefore say that �x and �y are not significantly different (at the P level of
confidence expressed by t) if �x lies within the confidence interval of �y (and vice versa),
as indicated graphically in Fig. 0.12.

Figure 0.12. Themeans �x and �y are not significantly different if their confidence intervals overlap.
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Therefore �x ¼ �y� tsm expresses the null hypothesis; by rearranging, we obtain

t ¼ �x	�y

sm
ð0:107Þ

The approach is to calculate t by Eq. (0.107). If the calculated t exceeds the
tabulated t value at the chosen level of significance, the null hypothesis may be
rejected; that is, �x and �y are significantly different.

This demonstrates the principle. Some subtleties enter when, as may happen, the
numbers of observations contributing to �x and �y are different and when sm for �x is
different from sm for �y. We will not pursue these matters here, except as seen in the
following example.

Example 0.24. These are analytical results for the analysis of two lots of aspirin
tablets, given in milligrams of aspirin per tablet. Are the aspirin contents of the two
lots different at the 95% significance level?

xi yi

295:4 300:5

301:1 310:9

297:8 307:1

305:0 302:6

297:5 305:9

For lot x we find �x ¼ 299.4, s¼ 3.755, sxm ¼ 1.679.

For lot y we find �y ¼ 305.4, s¼ 4.039, sym ¼ 1.806.

We now introduce this modification. Somewhat later in this section we will
discover that variances of both sums and differences are additive. Since the numerator
of Eq. (0.107) is a difference, we really want the standard deviation of themean of this
difference in the denominator. We therefore take the square root (to get the standard
deviation) of the sum of the variances:

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxm
� �2 þ symð Þ2

q
¼ 2:466

Now we calculate t with Eq. (0.107):

t ¼ 305:4	299:4

2:466
¼ 2:433

Consulting Table 0.13, we find that the tabulated t[P¼ 0.05; (nx	 1) þ (ny	 1)¼ 8
degrees of freedom] is 2.306. The calculated t exceeds the tabulated t, so the null
hypothesis may be rejected, and we conclude that the two batches are different at the
95% significance level.
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It is interesting that at the 99% significance level the tabulated t¼ 3.555, so the null
hypothesis may not be rejected; the two batches are not different at this significance
level.This result shows that statistics alonecannotmakedecisions; the experimentalist
must exercise judgment.When reporting statistical results of this type, it is essential to
specify the chosen level of significance.

Linear Correlation. In Section 0.4 we discussed linear relationships in detail. Our
general formula for a linear correlation is

y ¼ mxþ b ð0:108Þ

wherem is the slope andb is the intercept on they axis.When confrontedwith a set of x,
y data, we constructed a plot of y against x, determined by inspection whether it was
linear, and drewour best straight line using a straightedge (ruler) and our intuition.We
now wish to learn how statistics can assist us in such an analysis.

Our first task is to decide whether the correlation between x and y is linear. Visual
inspection is usually adequate, but many scientists like to calculate a quantity r called
the correlation coefficient:

r ¼ sxy
sxsy

ð0:109Þ

where sx is the standard deviation of all the x values, calculated in the usual way, and
similarly sy is the standard deviation of the y values. The quantity sxy is called the
covariance and is given by

sxy ¼
P

xi	�xð Þ yi	�yð Þ
n	1

ð0:110Þ

Electronic calculators and computers yield r directly without requiring the user to
proceed through Eqs. (0.109) and (0.110).

The numerator of Eq. (0.109) is a measure of how strongly correlated the x and y
values are, and the denominator “normalizes” r so that it must lie in the interval 0 to 1
(for positive slope) or 0 to	1 (for negative slope). The closer r is to 1 (or	1), themore
linear the correlation. That, at least, is the conventional interpretation, but it must be
treated with caution. This is because r depends not only on the linearity of the
relationship but also on the slope of the line (a steeper slope giving a larger r value) and
on the scatter of the points (more scatter giving a smaller r value).

Figures 0.13 and0.14 illustrate thesepoints. These figures havebeen constructed so
that the slopes of the lines are very similar. Figure 0.13 has more scatter than does
Fig. 0.14, and this is reflected in their r values: r¼ 0.990 for Fig. 0.13; r¼ 0.999 for
Fig. 0.14. But close observation will reveal that although the points in Fig. 0.13 show
considerable scatter, they very reasonably follow a straight line. The points in
Fig. 0.14, however, clearly describe a curve, although a straight line has been drawn
through them. The lesson is that one should not rely on the correlation coefficient
alone, but should also plot the data and examine the graph critically. A goodway to do
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Figure 0.14. The points yield r¼0.999; the straight line has the equation y¼ 1.07x þ 2.49.

Figure 0.13. The points yield r¼ 0.990; the straight line has the equation y¼1.16x þ 1.15.
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this is by “sighting” along the data points as a carpenter sights along the edge of a board
to determine how straight it is.

Ifweconclude that thedata are linearly correlated, thenext step is todraw the “best”
straight line. This is nearly universally done now by a statistical technique called the
method of least squares or linear regression analysis. The line is drawn such that the
sum of the squares of the vertical distances of the points from the line is a minimum.10

Let the least-squares line be written

ŷi ¼ mxi þ b ð0:111Þ
wherem and b are the slope and intercept of the line (not yet known) and ŷi is the value
of y on the least squares line corresponding to xi. Then we write

G ¼
X

ðyi	ŷiÞ2 ð0:112Þ

where yi is the experimental value of y for observation i and ŷi is the corresponding
value from the line. Thus the right-hand side expresses the sum of squares of
differences of the points from the line. To minimize this sum, we use the methods
of calculus, taking the partial derivatives qG=qm and qG=qb, setting these equal to
zero, and solving for the parameters. The results are

b ¼ �y	m�x ð0:113Þ
m ¼

P
xy	n�x�yP
x2	n�x2

ð0:114Þ

In these equations, �x and �y are themeanvalues of thesevariables, andn is the number of
data points. Inasmuch as scientific electronic calculators and computers are capable of
generating theparametersm andbof the least-squares regression line, it is unlikely that
you will make direct use of Eqs. (0.113) and (0.114). This is how the calculator or
computer does it, however.

Example 0.25. In Example 0.15, the data in Table 0.7 were analyzed as a linear
correlation. Repeat the analysis using the method of least squares.

Using an electronic calculator, we obtain the following for the least-squares
regression line:

y ¼ 0:447xþ 0:0397

In Example 0.15 the line was drawn “by eye,” and its equation turned out to be y¼
0.453x þ 0.0397.These two results comparequite favorably.The reason for thegeneral
preference for the least-squares treatment is that it is objective; any number of scientists
applying the least squares method to the same set of data will obtain the same result.

10 It might seem simpler to minimize the sum of the vertical distances themselves, but this sum is zero,
because some points are above the line and some are below the line. By squaring the distances, all quantities
are converted to positive numbers. It will be seen that this procedure has much in common with the
calculation of the variance, Eq. (0.104).
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Since the slope and intercept values of the least-squares regression line are
themselves estimates of statistical parameters, they possess uncertainties that can
be expressed as their standard deviations. We will not go into the evaluation of the
standard deviations of the slope and intercept values.

Propagation of Errors. We nearly always subject our raw experimental data to
arithmetic operations in order to arrive at a number that is useful to us, as when we
convert a titrant volume to a concentration or aweight of sample orwhenweoperate on
a parameter of an equation to give us a rate constant.Whenwemake such calculations,
we are ultimately interested in the uncertainty (expressed as a standard deviation) of
the final calculated result, whereas what we may know are the standard deviations of
the quantities that are used in the calculation. We therefore wish to learn how the
errors (uncertainties) in the primary quantities are propagated through the calculation
into the final result.

Suppose that we let Q represent our final result, which is obtained by carrying
out calculations on the two primary quantities x and y; that is, we have

Q ¼ f ðx; yÞ
Then the equation for the propagation of the uncertainties in x and y into Q,

which we will not derive here, is

s2Q ¼ qQ
qx

� �2

s2x þ
qQ
qy

� �2

s2y ð0:115Þ

where the quantities in parentheses are partial derivatives, and s2Q, s
2
x , s

2
y are the

variances of the subscripted quantities. We will apply Eq. (0.115) to the basic
arithmetic operations.

Sum

Q ¼ xþ y

qQ
qx

¼ 1;
qQ
qy

¼ 1

so, from eq. (0.115), we have

s2Q ¼ s2x þ s2y ð0:116Þ
Difference

Q ¼ x	y

qQ
qx

¼ 1;
qQ
qy

¼ 	1

s2Q ¼ s2x þ s2y ð0:117Þ
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Thus the errors (variances) add for both sums and differences. (We used this result
in Example 0.24.) This iswhy the relative error of a difference of twonumbers similar
in magnitude may be very large.

Product

Q ¼ xy

qQ
qx

¼ y;
qQ
qy

¼ x

s2Q ¼ y2s2x þ x2s2y

which is equivalent to

s2Q
Q2

¼ s2x
x2

þ s2y
y2

ð0:118Þ

Quotient

Q ¼ y

x

Equation (0.118) is again obtained.

The essential result of these demonstrations is that variances are additive. For sums
and differences, the absolute variances add [Eqs. (0.116) and (0.117)]; for products
and quotients, relative variances add [Eq. (0.118))]. To find the standard deviation of
Q, we first calculate s2Q as in the examples above and then take its square root.

Example 0.26. Suppose that we titrate a solution of acetic acid with 15.00mL of
0.1000N NaOH. What is the uncertainty in the weight of acetic acid found if
sN¼ 0.0003 and sV¼ 0.02mL?

Since mmol of HOAc¼VN¼w/M, where V is volume of titrant, N is titrant
normality (molarity), w is weight of acetic acid in milligrams, andM is the molecular
weight of acetic acid, our function is w¼MVN. Thus

s2w ¼ qw
qV

� �
s2V þ

qw
qN

� �
s2N

We have (qw/qV)¼MN and (qwqN)¼MV, so

s2w ¼ M2N2s2V þM2V2s2N

¼ ð60Þ2ð0:1Þ2ð4� 10	4Þþ ð60Þ2ð15Þ2ð9� 10	8Þ
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¼ 14:4� 10	3 þ 8:1� 10	3 ¼ 2:25� 10	2 mg2

sw ¼ 0:15 mg

Sincew¼ (60)(15)(0.1)¼ 90mg, the relative standard deviation (RSD, or coefficient
of variation) is (100)(0.15)/90¼ 0.17%.

A practical consequence of the propagation of error treatment is that if one of the
uncertainties (say, s2

x) is very much larger than the other, then the uncertainty s2
Q will

receive its largest contribution froms2
x . Any experimental attempts to reduce the error

inQ should obviously focus on reducing the error in x, because the error in ymakes a
negligible contribution to the error in Q.

Significant Figures. In reporting a final numerical result, it is necessary to decide
how many digits will be retained. This is especially pertinent in modern science
because electronic calculators and computers routinely generate numbers having10or
more digits. There is a temptation to record the entire display, but this is seldom
justified. Instead we should retain and report only those digits that have physical
significance.

Here is a simple criterion for deciding on howmany digits to retain. The final digit
should possess some uncertainty, whereas the digit preceding this one should be
essentially certain. Some flexibility (within one digit) is acceptable. The number of
significant figures in a result is then the total number of digits (exclusive of zeros that
are needed solely to establish the position of the decimal point).

In order to use this criterion, we need a means for establishing whether a digit is
essentially certain or is uncertain.Wehave thismeans at hand in the standard deviation
s (or the standard deviation of the mean sm if it is a mean that we are reporting).
Consider, for example, the analytical results reported in Example 0.24. For the x series
we calculated x¼ 299.4, sxm¼1.679, and for the y series we calculated, �y¼ 305.4, sym¼
1.806. For both series, therefore, the sm values indicate variability in the unit place,
suggesting that themeans are uncertain in the unit place.Accordingly,wewould report
these results as �x¼ 299, sxm¼ 1.7 and �y¼ 305, sym¼ 1.8. Incidentally, it is good practice
to retain more digits than otherwise may be justified throughout the calculation in
order that “rounding errors” not be inadvertently introduced. Then the significant-
figure criterion is applied to the final result.

Another guide may be available in experimental practice and experience. For
example, much laboratory experience has shown us that very precise titrimetric
analysis can routinely be accomplished with precision corresponding to standard
deviations in the fourth decimal place of molar concentrations; this is the justification
for expressing solution concentrations to the fourth place. Another example occurs in
pH measurements, where experience shows that, in careful but nevertheless routine
work, the tenth unit is certain and the hundredth unit is uncertain, so we usually write
pH values with two decimal places. The experimental procedure itself may determine
the significance. For example, on a typical buret the finest graduations are in tenths of a
milliliter, and we estimate to the hundredths place; thus we write the volume to two
decimal places.
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PROBLEMS

0.1. Convert these pH values to hydrogen ion concentrations:

(a) pH¼ 4.75

(b) pH¼ 11.13

(c) pH¼ 7.19

(d) pH¼ 2.00

0.2. Convert these hydrogen ion concentrations to pH values:

(a) [Hþ ]¼ 3.85� 10	3M

(b) [Hþ ]¼ 1.15� 10	9M

(c) [Hþ ]¼ 6.46� 10	8M

(d) [Hþ ]¼ 1.15M

0.3. Convert ln x to the corresponding Briggsian logarithm.

0.4. Howmuchmore acidic is a solution of pH 3.00 compared with a solution of pH
9.00?

0.5. Solve for q in the equation

13:52q ¼ 5:62� 104

0.6. Calculate the product 6, 942, 821� 0.0057384 by using logarithms. Check the
result by direct multiplication on an electronic calculator.

0.7. Howmany grams of benzoic acid are required to prepare 500mL of a 0.0025M
solution?

0.8. Ethyl acetate hydrolyzes according to the reaction

CH3COOC2H5 þH2O!C2H5OHþCH3COOH

Howmuch acetic acid is produced by the hydrolysis of 10.00 g of ethyl acetate?

0.9. LetRA	¼ [A	]/[HA] andFA	¼ [A	]/([HA] þ [A	]). Then derive an equation
giving RA	 as a function of FA	 (or the reverse).

0.10. Given [HA]¼ [A	], calculate the ratios RHA, RA	 and the fractions FHA, FA	 .

0.11. A solution of weak acid is prepared to have a total concentration of
7.50� 10	4M, and analysis shows that the ratio [A	]/[HA] is 0.15.
Calculate the individual concentrations [HA] and [A	].

0.12. Vinegar contains�5% acetic acid (i.e., 5 g of acetic acid per 100mL). The Ka

of acetic acid is 1.78� 10	5. Calculate the pH of vinegar.

0.13. Repeat Problem 0.12 using the approximate solution [Eq. (0.40)].
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0.14. Find the value of the intercept on the x axis for the straight line of Eq. (0.41).

0.15. Carry out the algebraic manipulations that give Eqs. (0.51)–(0.53) from
Eq. (0.50).

0.16. In this set of data, c is the molar concentration of trans-cinnamic acid
(C6H5CH¼CHCOOH) in acidic solution, and A is a dimensionless measure
of light-absorbing ability of the solution called the absorbance. It is anticipated
that the data are described by the equation A¼ ebc, which is called Beer�s law,
where b is the “pathlength” of light through the solution (b¼ 1 cm in this
experiment) and e is called the molar absorptivity. Analyze the data:

105c ðMÞ A

0 0

1:083 0:224

2:165 0:450

3:248 0:679

4:330 0:901

0.17. The noncovalent interaction of cinnamic acid anion with theophylline was
studied optically with a pathlength b of 1 cm. These are the data, wherewe let c
be the theophylline concentration.

c ðMÞ A

0 0:98 ðA0Þ
0:0111 1:375

0:0125 1:418

0:0143 1:472

0:0167 1:544

0:0200 1:638

0:0250 1:767

We expect the system to be described by

DA
b

¼ BKc

1þKc

where DA ¼ A	A0. Find the equilibrium constant K.

0.18. The equilibrium solubility of a solute usually varies with temperature
according to

ln s ¼ 	DH
RT

þC
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where s is the solubility corresponding to absolute temperature T, R is the gas
constant, C is a constant, and DH is the molar heat of solution. These are
solubility data for g-cyclodextrin in water, where s is the mole fraction
solubility:

t ð
CÞ s

25 0:003539

30 0:004456

35 0:005476

40 0:006239

42 0:007583

Find the heat of solution.

0.19. The total solubility St of 4,4�-dihydroxybiphenyl varies with the concentration
[L] of a-cyclodextrin according to

St ¼ s0 þK11s0½L� þK11K12s0½L�2

where s0 is the solubility when [L]¼ 0, and K11 and K12 are equilibrium
constants for the formation of 1 : 1 (SL) (substrate:ligand) and 1 : 2 (SL2)
complexes. Here are data for 25
C:

102 ½L� ðMÞ 104 St ðMÞ
0 1:98

0:311 2:53

0:412 2:74

0:512 3:13

0:611 3:51

0:709 4:02

0:806 4:39

0:810 4:62

0:902 4:94

0:998 5:74

1:19 6:86

Find K11 and K12.

0.20. The rate of hydrolysis of 4-nitrophenyl glutarate at 25
Cand pH7 follows a rate
law like Eq. (0.54). When the absorbance A is measured as a function of time,
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the equation is written

A¥	At ¼ ðA¥	A0Þe	kt

whereAt is the absorbance at time t,A0 at t¼ 0, andA¥ at t¼¥ (“infinity” time,
when the reaction is essentially complete). Here are the data; find the rate
constant k:

t ðsÞ At t ðsÞ At

10 0:129 120 0:453

20 0:168 140 0:492

30 0:200 160 0:531

40 0:237 180 0:565

50 0:270 200 0:598

60 0:300 240 0:650

70 0:330 280 0:692

80 0:357 320 0:729

90 0:381 360 0:758

100 0:407 400 0:783

¥ 0:900

0.21. Rearrange this equation to give a linear plotting form

y ¼ 1þ ax

1þ bx

0.22. Consult the set of data in Example 0.16. For each pair of adjacent time points,
calculate the increment in time (Dt) and the increment in concentration (Dc).
Take their quotient Dc/Dt as a crude estimate of dc/dt. Now plot each Dc/Dt
value against the mean value of c (i.e., �c¼ (c1 þ c2)/2] corresponding to the
time interval. Interpret the result.

0.23. If y¼ au, find dy/dx, where a is a constant and u is a function of x. (Hint:Start by
taking the logarithm of y.)

0.24. Equation (0.46), a power function, has the form y¼ axb.
(a) Find dy/dx.

(b) For the special case b¼ 2, evaluate both y and dy/dxwhen x¼ 0.5, 1, and 2.
Compare the x dependencies of y and dy/dx.

PROBLEMS 57



0.25. Equation (0.48) is a polynomial, y¼ a þ bx þ cx2. Find the first derivative dy/
dx and the second derivative d2y/dx2.

0.26. Assuming that 48.2mg of an acid of unknown structure was titrated with
0.0988MNaOH, the following data (pH as a function of titrant volumeV) were
recorded. Find the endpoint volume by the second-derivative technique and
calculate the equivalent weight of the acid (for a monoprotic acid, the
equivalent weight equals the molecular weight):

V ðmLÞ pH

1:40 2:74

1:50 2:86

1:60 3:12

1:70 3:60

1:80 6:15

1:90 9:74

2:00 10:40

2:10 10:62

2:20 10:75

0.27. This equation arises in the study of the effect of pH on the rate of hydrolysis of
many drugs, where k is an observed rate constant and k1, k2, k3 are constants of
the system:

k ¼ k1½Hþ �þ k2 þ k3½OH	�

Find the value of pH at which the rate of hydrolysis is a minimum.

0.28. Evaluate this definite integral.

y ¼ 24

ð4
1
x2dx

0.29. Derive an expression giving the time elapsed for the concentration in a first-
order reaction to decrease to one-half its initial value. (This time is called the
half-life of the reaction; it is symbolized t1/2).

0.30. Why is the constant of integration omitted when evaluating a definite integral?

0.31. Write the total differential dw for the function w¼ f (x, y, z).

0.32. The equilibrium constantK11 for the complexation of 4-nitrophenol anion with
a-cyclodextrin (in water at 25
C) has been measured by many laboratories;
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these are the reported values (units are M	1): 2290, 2200, 2500, 2700, 1590,
2439, 1890, 2720, 2143, 2408, 2270, 3550. Calculate the mean, standard
deviation, standard deviation of the mean, and the relative standard deviation.

0.33. The acetylation of isopropyl alcohol by acetic anhydride is a second-order
reaction:

Ac2OþðCH3Þ2CHOH!HOAcþCH3COOCHðCH3Þ2
It is described by this integrated rate equation

log
cB
cA

¼ ðc0B	c0AÞkt
2:303

þ log
c0B
c0A

whereA is isopropyl alcohol andB is acetic anhydride. These are experimental
kinetic data for this reaction:

t ðminÞ cAðMÞ cBðMÞ
0 0:456 0:876

1:50 0:248 0:668

3:13 0:138 0:558

4:50 0:088 0:508

6:10 0:062 0:482

8:00 0:040 0:460

12:10 0:012 0:432

Analyze the data by the method of least squares, and report the value of the
second-order rate constant k.

0.34. These values have been reported in the literature for the dipole moment of
phenol at 25
C: 1.45, 1.53, 1.54, 1.65, 1.72, 1.86, 1.53, 1.43, 1.64. Calculate the
usual statistical parameters, and give 95% confidence limits for the mean.

0.35. Return to Problem 0.32 and express the mean with an appropriate number of
significant figures.

0.36. The activation energy for the hydrolysis of aspirin in acid solution is 16.7 kcal
mol	1. Convert this to kJmol	1.

0.37. A rate constant for the uncatalyzed hydrolysis of succinylcholine chloride has
been reported to be 5.0� 10	6 h	1. Convert this to s	1 (reciprocal seconds).

0.38. Convert a density of 1.86 gmL	1 to SI units.

0.39. The tetrahedral covalent radius of carbon is 0.77 A. Convert this to
nanometers.
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0.40. R (the gas constant) is equal to 8.314 JK	1mol	1. Convert this to
cal K	1mol	1.

0.41. Physicochemical equations often call for taking the logarithm of a quantity
having units. It is difficult to conceive of the logarithm of a unit. Describe away
out of this quandary.

0.42. Beer�s law for the absorption of light is written A¼ ebc, where b is pathlength
in centimeters, c is molar concentration, and A is absorbance, defined by
A¼ log(I0/I), where the I quantities are light intensities. Deduce the units of e,
which is called the molar absorptivity.

0.43. Both of these equations have been published in the scientific literature (by co-
authorKACof the present book). One of them is incorrect. The quantities ks, kL,
and k11 all have the same units. K11 is defined K11¼ [SL]/[S][L]. The F
quantities are fluorescent intensities. Use dimensional analysis to detect the
incorrect equation.

(a)
F

F0
¼ 1þðk11=ksÞK11½L�

1þK11½L� þ kL
Ks

L½ �

(b)
F

F0
¼ 1þðk11=ksÞK11½L�

1þK11½L� þ ðkL=ksÞ½L�
½S�ð1þK11½L�Þ
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BASIC THERMODYNAMICS





1

ENERGY AND THE FIRST
LAWOFTHERMODYNAMICS

1.1. FUNDAMENTAL CONCEPTS

Temperature and the Zeroth Law. The concept of temperature is so familiar to us
that we may not comprehend why scientists two centuries ago tended to confuse
temperature with heat. We will start with the notion that temperature corresponds to
“degree of hotness” experienced as a sensation. Next we assign a number to the
temperature based on the observation that material objects (gases and liquids
in particular) respond to “degree of hotness” through variations in their volumes.
Thus we should be able to associate a number (its temperature) with the volume
of a specified amount of material. We call the instrument designed for this purpose
a thermometer.

The first requirement in setting up a scale of temperatures is to choose a zero
point. In the common Celsius or centigrade scale we set the freezing point of water
(which is also the melting point of ice) at 0 
C [more precisely, 0 
C corresponds to
the freezing point of water (called the “ice point”) in the presence of air at a pressure
of 1 atmosphere (atm)]. The second requirement is that we must define the size of the
degree, which is done for this scale by setting the boiling point of water (the “steam
point”) at 100 
C. The intervening portion of the scale is then divided linearly into 100
segments. We will let t signify temperature on the Celsius scale.

Experience shows that different substances may give different temperature read-
ings under identical conditions even though they agree perfectly at 0 
C and 100 
C.
For example, a mercury thermometer and an alcohol thermometer will not give
precisely the same readings at (say) room temperature. Invery carefulwork itwouldbe
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advantageous to have available an “absolute” temperature scale that does not
depend on the identity of the thermometer substance. Again we appeal to laboratory
experience, which has shown that the dependence of the volume of a fixed amount
of a gas on temperature, at very lowpressures of thegas, is independent of the chemical
nature of the gas. Later we will study the behavior of gases at low pressures in more
detail; for the present we can call such gases “ideal gases” and use them to define an
absolute ideal-gas temperature scale.We define the absolute temperature as directly
proportional to the volume of a given mass of ideal gas at constant pressure (i.e.,
letting T be the absolute temperature and V the gas volume):

T / V

For conveniencewedefine the sizeof the absolute temperature degree to be identical to
the Celsius degree. If V0 and V100 are the volumes of the ideal gas at the ice and steam
points of water, respectively, the size of the degree is given by

V100 	V0

100

Then our absolute temperature scale is defined by

T ¼ V

ðV100 	VÞ=100 ð1:1Þ

Now suppose that we apply our ideal-gas thermometer towater at the ice point. In this
special case, Eq. (1.1) becomes

T0 ¼ V0

ðV100 	V0Þ=100 ð1:2Þ

Careful experimental work with numerous gases has revealed that T0¼ 273.15K.
Thus the Celsius and absolute scales are related by

T ¼ tþ 273:15

The absolute temperature scale is also called the thermodynamic scale or the Kelvin
scale, and temperatures on this scale are denoted K (pronounced Kelvin, with no
degree symbol or word).

According to Eq. (1.1), whenT¼ 0K,V¼ 0; thevolume of the ideal gas goes to zero
at theabsolutezero.Modernexperimental techniqueshaveachievedtemperatureswithin
microdegrees of the absolute zero, but T¼ 0K appears to be an unattainable condition.

The concept and practical use of temperature scales and thermometers is based on
the experimental fact that if two bodies are each in thermal equilibrium with a third
body, they are in thermal equilibrium with each other. This is the zeroth law of
thermodynamics.

Work and Energy. Let us begin with the mechanical concept ofwork as the product
of a force and a displacement:

Work ¼ Force� Displacement ð1:3Þ
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Theunits ofworkare consequently thoseof force and length.NowfromNewton’s laws
of motion,

Force ¼ Mass � Acceleration ð1:4Þ
In SI units, force therefore has the units kgm s	2, which is also called a newton,
N. Hence the units of work are either kgm2 s	2 or Nm.

Energy is defined as any property that can be produced fromor converted intowork
(including work itself). Therefore work and energy have the same dimensions,
although different units may be used to describe different manifestations of energy
and work. For example, 1Nm¼ 1 J (joule), and energy is often given in joules or
kilojoules. Here are relationships to earlier energy (cgs) units:

1 J ¼ 107 erg

4:184 J ¼ 1 cal ðcalorieÞ

Note from the definition (1.3) that work is a product of an intensive property (force)
and an extensive property (displacement). In general, workor energy can be expressed
as this product:

Work ðenergyÞ ¼ intensity factor� capacity factor ð1:5Þ

Here are several examples of Eq. (1.5):

Mechanical work ¼ Mechanical force� Distance

Work of expansion ¼ Pressure � Volume change

Electrical work ¼ Electric potential� Charge

Surface work ¼ Surface tension� Area change

All forms of work are, at least in principle, completely interconvertible. For
example, one could use the electrical energy provided by a battery to drive a
(frictionless) piston that converts the electrical work to an equivalent amount of
work of expansion.

Heat and Energy. Heat has been described as energy in transit (Glasstone 1947, p. 7)
or as amode of energy transfer (Denbigh 1966, p. 18). Heat is that formof energy that is
transferred from one place to another as a consequence of a difference in temperature
between the two places. Numerically, heat is expressed in joules (J) or calories (cal).
Heat is not “degree of hotness,” which, as we have seen, is measured by temperature.1

Since both work and heat are forms of energy, they are closely connected. Work
can be completely converted into an equivalent amount of heat (e.g., through friction).

1 Note that temperature is an intensive property, whereas heat is an extensive property. Two hot potatoes
differing in size may have the same temperature, but the larger potato possesses more heat than the smaller
one.
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The converse is not possible, however; it is found experimentally that heat cannot be
completely converted into an equivalent amount of work (without producing changes
elsewhere in the surroundings). This point will be developed later; for the present we
observe that this finding is the basis for the impossibility of a “perpetual-motion
machine.”

We find it convenient to divide energy into categories. This is arbitrary, but there is
nothing wrong with it provided that we are careful to leave nothing out. Now, we have
seen that thermodynamics is not built on the atomic theory; nevertheless, we can very
usefully invoke the atomic and molecular structure of matter in our interpretation of
energy. In this manner we view heat as thermal energy, equivalent to, or manifesting
itself as, motions of atoms andmolecules. The scheme shown in Table 1.1 clarifies the
several “kinds” of energy that a body (the “system”) can possess.2

Chemical thermodynamics is concerned with the energy U. This energy is a
consequence of both (a) the electronic distribution within the material and (b) three
types of atomic or molecular motion: (1) translation, the movement of individual
molecules in space; (2) vibration, the movement of atoms or groups of atoms with
respect to each other within a molecule; and (3) rotation, the revolution of molecules
about an axis. If a material object is subjected to an external source of heat, so that the
object absorbs heat and its temperature rises, the atoms and molecules increase their
translational, vibrational, and rotational modes of motion. Energy is not a “thing” but
is, instead, one way of describing and measuring these molecular and atomic
distributions and motions, as well as the electronic distribution within atoms and
molecules.

Systems and States. In order to carry out experimental studies and to interpret the
results, we must focus on some part of the universe that interests us. In thermody-
namics, this portion of the universe is called a system. The system typically consists of
a specified amount of chemical substance or substances, such as a givenmass of a gas,

Table 1.1. The energy of a thermodynamic system

Total energy of a body

Mechanical energyThermodynamic energy (U)

Kinetic energy
  as a result of
  the body’s
  motion as a
  whole

Internal energy
  (vibrational,
  rotational, and
  electronic energy)

Kinetic energy
  (translational
  energy)

Potential energy
  as a result of
  the body’s
  position

2 This scheme is consistent with the usage of most authors, but some variation is found in the literature.
The thermodynamic energyUmayalso be symbolizedE, and some authors label the thermodynamic energy
the internal energy. The internal energy shown Table 1.1 may be identified with the potential energy of the
molecules (to be distinguished from the potential energy of the body as a whole).
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liquid, or solid. Whatever exists outside of the system is called the surroundings.
Certain conditions give rise to several types of systems:

Isolated Systems. These systems are completely uninfluenced by their surround-
ings. This means that neither matter nor energy can flow into or out of the
system.3

Closed Systems. Energymay be exchangedwith the surroundings, but there can be
no transfer of matter across the boundaries of the system.

Open Systems. Both energy and matter can enter or leave the system.

We can also speak of a homogeneous system, which is completely uniform in
composition, or speak of a heterogeneous system, which consists of two or more
phases.

Experiment has shown that the state of a system can be completely defined by
specifying four observable thermodynamic variables: the composition, temperature,
pressure, and volume. If the system is homogeneous and consists of a single chemical
substance, only threevariables suffice.Moreover, it is known that these threevariables
are not all independent; if any two are known, the third is thereby fixed. Thus the
thermodynamic state of a pure homogeneous system is completely defined by
specifying any two of the variables pressure (P), volume (V), and temperature (T).
The quantitative relationship, for a given system, among P, V, and T is called an
equation of state. Generally the equation of state of a system must be established
experimentally.

The fact that the state of a system can be completely defined by specifying so few
(two or three) variables constitutes a vast simplification in the program of describing
physicochemical systems, because this means that all the other macroscopic physical
properties (density, viscosity, compressibility, etc.) are fixed. We don’t know their
values, but we know that they depend only on the thermodynamic variables and
therefore are not themselves independent. With this terminology we can now say that
thermodynamics deals with changes in the energyU of a system as the system passes
from one state to another state.

Thermodynamic Processes and Equilibrium. A system whose observable prop-
erties are not undergoing any changes with time is said to be in thermodynamic
equilibrium. Thermodynamic equilibrium implies that three different kinds of equi-
librium are established: (1) thermal equilibrium (all parts of the system are at the
same temperature), (2) chemical equilibrium (the composition of the system is not
changing), and (3) mechanical equilibrium (there are no macroscopic movements of
material within the system).

Many kinds of processes can be carried out on thermodynamic systems, and some
of these are of special theoretical or practical significance. Isothermal processes are

3 A truly isolated system is an idealization, but a very close approximation can be achieved inside a closed
thermos (derived from the original trade name Thermos in 1907) bottle. (The laboratory version is called a
Dewar flask.)
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those in which the system is maintained at a constant temperature. (This is easy to do
with a constant-temperature bath or oven.) Since it is conceivable that heat is given off
or taken up by the system during the process, maintaining a constant temperature
requires that the heat loss or gain be offset by heat absorbed from or given up to the
surroundings. Thus an isothermal process requires either a closed or an open system,
both of these allowing energy to be exchanged with the surroundings. An adiabatic
process is one in which no heat enters or leaves the system. An adiabatic process
requires an isolated system. Obviously, if the process is adiabatic, the temperature of
the system may change.

A spontaneous process is one that occurs “naturally”; it takes place without
intervention. For example, if a filled balloon is punctured, much of the contained
gas spontaneously expands into the surrounding atmosphere. In an equilibrium
chemical reaction, which we may write as

AþB	*)	MþN

it is conventional to consider the reaction as occurring from left to right as written.
Thus if the position of equilibrium favorsM þ N (the products), the reaction is said to
be spontaneous. If the reactants (A þ B) are favored, the reaction is nonspontaneous
as written. (Obviously we can change these designations simply by writing the
reaction in the reverse direction.)

It is the business of thermodynamics to tell us whether a given process is
spontaneous or nonspontaneous. However, thermodynamics, which deals solely
with systems at equilibrium, cannot tell us how fast the process will be. For example,
according to thermodynamic results, a mixture of hydrogen and oxygen gases will
spontaneously react to yield water. This is undoubtedly correct—but it happens that
(in the absence of a suitable catalyst) the process will take millions of years.

There is one more important type of thermodynamic process: the reversible
process. Suppose we have a thermodynamic system at equilibrium. Now let an
infinitesimal alteration be made in one of the thermodynamic variables (say, T
or P). This will cause an infinitesimal change in the state of the system. If the
alteration in the variable is reversed, the process will reverse itself exactly, and the
original equilibrium will be restored. This situation is called thermodynamic
reversibility. Reversibility in this sense requires that the system always be at, or
infinitesimally close to, equilibrium and that the infinitesimally small alterations in
variables be carried out infinitesimally slowly. Because of this last factor, thermody-
namically reversible processes constitute an idealization of real processes, but the
concept is theoretically valuable. One feature of a reversible process is that it can yield
the maximum amount of work; any other (irreversible) process would generate less
work, because some energy would be irretrievably dissipated (e.g., by friction).

Now suppose that a system undergoes a process that takes it from state A to state B:

A	!B

We define a change in some property Q of the system by

DQ ¼ QB 	QA ð1:6Þ
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In other words, the incremental change in the property is equal to its value in the final
state minus its value in the initial state.

Next consider this series of processes, which constitutes a thermodynamic cycle:

Q1 QB QA

Q2 QC QB

Q3 QD QC

Q4 QA QD

Sum: Q 0

1

2

3

4

A

D C

B

In any cycle in which the system is restored exactly to its original state, the total
incremental change is zero.

1.2. THE FIRST LAW OF THERMODYNAMICS

Statement of the First Law. To this point we have been establishing a vocabulary
and some basic concepts, and nowwe are ready for the first powerful thermodynamic
result. This result is solidly based on extensive experimentation, which tells us that
although energy can be converted from one form to another, it cannot be created or
destroyed [this statement is completely general in the energy regime characteristic of
chemical processes; relativistic effects (i.e., the famous equation E¼mc2) do not
intrude here]. This is the great conservation of energy principle, which is expressed
mathematically as Eq. (1.7), the first law of thermodynamics.

DU ¼ q	w ð1:7Þ

Here DU is the change in thermodynamic energy of the system, q is the
amount of energy gained by the system as heat, and w is the amount of energy lost
by the system by doing work on its surroundings. These are the sign conventions
that we will use:

q is positive if the heat is taken up by the system (i.e., energy is gained by the
system).

w is positive if work is done by the system (i.e., energy is lost by the system).4

Equation (1.7) is the incremental form of the first law. The differential form is

dU ¼ dq	 dw ð1:8Þ

4 This is the sign convention used by most authors, but the International Union of Pure and Applied
Chemistry (IUPAC) reverses the convention for w, giving as the first law DU¼ q þ w.
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But now we must make a very clear distinction between the quantity dU and the
quantities dq and dw. U is a state function and dU is an exact differential. This
terminology means that the value of DU, which is obtained by integrating dU over
the limits from the initial state to the final state, is independent of the path (i.e., the
process or mechanism) by which the system gets from the initial state to the final
state. A state function depends only on the values of the quantity in the initial and
final states.

It is otherwise with q and w, for these quantities may be path-dependent. For
example, the amount ofworkdonedependson the path taken (e.g.,whether the process
is reversible or irreversible). Therefore dq and dw are not exact differentials, and some
authors use different symbols to indicate this. Nevertheless, although q and w
individually may be path-dependent, the combination q–w is independent of path,
because it is equal to DU.5

The Ideal Gas. Experimental measurements on gases have shown that as the
pressure is decreased, the volume of a definite amount of gas is proportional to the

5 This analogy will clarify the difference between path-dependent and path-independent quantities.
Suppose we wish to drive from Madison (WI) to Green Bay. Obviously there are numerous routes we
might take.We could drive viaMilwaukee, or via Oshkosh, or via Stevens Point, and so on. Graphically, the
possibilities can be represented on amap, as shown in the accompanying figure. Now, nomatter which path
we take, the changes in latitude, DLat, and in longitude, DLon, will be exactly the same for each route; for
example, DLat¼Lat(GB) – Lat(MAD), and this quantity is independent of the route. Thus latitude and
longitude are state functions. But the amount of gasoline consumed, the time spent driving, and the number
of miles driven all depend on the path taken; these are not state functions. This analogy is taken from Smith
(1977).

Stevens Point Green Bay

MilwaukeeMadison

La
tti

tu
de

Longitude

Oshkosh
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reciprocal of the pressure:

V / 1

P

AsP is decreased toward zero, all gases (at constant temperature) tend to behave in the
same way, such that Eq. (1.9) is satisfied:

PV ¼ constant ð1:9Þ
This result can be generalized as Eq. (1.10), which is called the ideal-gas equation (or
the ideal-gas law):

PV ¼ nRT ð1:10Þ
whereP, V, and T have their usual meanings; n is the number ofmoles of gas; andR is a
proportionality constant called the gas constant. Equation (1.10) is the equation of
state for an ideal gas (sometimes called the “perfect gas”), and it constitutes a
description of real-gas behavior in the limit of vanishingly low pressure. The
macroscopic properties of an ideal gas such as pressure, volume, and temperature
are related to the continuous motion of the gas molecules. A theory called the kinetic
theory of gases has been developed to derive these properties and their relationship
(ideal gas law) from first principles. Details on the kinetic theory of gases can be found
in Appendix B.

Example 1.1. Experiment has shown that 1mol of an ideal gas occupies a volume of
22.414 L at 1 atm pressure when T¼ 273.15K. Calculate R:

R ¼ PV

nT
¼ ð1 atmÞð22:414 LÞ

ð1 molÞð273:15 KÞ
¼ 0:082057 L atm mol	1 K	1

We can use a dimensional analysis treatment to convert to other energy units, as
described in Chapter 0:

R ¼ 0:082057 L atm

mol K

� �
101; 325 Pa

1 atm

� �
1 Nm	 2

1 Pa

� �
103 cm3

1 L

� �
1 J

1 Nm

� �
1 m

102 cm

� �3

¼ 8:3144 J mol	1K	1

and since 1 cal¼ 4.184 J,R¼ 1.987 calmol	1 K	1.Notice that in this calculationofR,
its units are energy permol per K. That is, sinceR¼PV/nT, the units of the productPV
are energy, which we expressed in the particular units L atm, J, or cal. These several
values of R are widely tabulated, and they can serve as readily accessible conversion
factors among these energy units.

Weearliermentioned a typeofworkcalledworkof expansion.This is theworkdone
by a gas when it expands against a resisting pressure, as happens when a pistonmoves
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in a cylinder.We can obtain a simple expression for work of expansion. Suppose that a
piston of cross-sectional area A moves against a constant pressure P. We know that
mechanical work is the product of force (F) and distance, or

w ¼ FðL2 	 L1Þ
where L1 is the initial position of the piston andL2 is its final position. Pressure is force
per unit area (A), so F¼PA, giving

w ¼ PAðL2 	 L1Þ
But A(L2 	 L1)¼V2 	V1, where V1 and V2 are volumes, so

w ¼ PðV2 	V1Þ ¼ PDV ð1:11Þ
where DV is the volume displaced. Thus work of expansion is the product of the
(constant) pressure and thevolume change; in fact,we often refer toworkof expansion
as PDV work.

Now, if the process is carried out reversibly, so that the pressure differs only
infinitesimally from the equilibriumpressure, thevolume changewill be infinitesimal,
and Eq. (1.11) can be written

dw ¼ P dV ð1:12Þ
We can integrate this between limits:

w ¼
ðV2

V1

P dV ð1:13Þ

(In the case of an isothermal, reversible expansion, w does not depend upon the path,
but this is a special case.) Now suppose that the gas is ideal and that the process is
carried out isothermally. From the ideal gas law, P¼ nRT/V, so

w ¼ nRT

ðV2

V1

dV

V
ð1:14Þ

w ¼ nRT ln
V2

V1
ð1:15Þ

IfV2>V1, the system does work on the surroundings, andw is positive. IfV1>V2, the
surroundings do work on the system, and w is negative.

In developing Eq. (1.15) we saw an example of thermodynamic reasoning, and
we obtained a usable equation from very sparse premises. Here is another example,
again based on the ideal gas. Suppose that such a gas expands into a vacuum. Since the
resisting pressure is zero, Eq. (1.11) shows thatw¼ 0; that is, nowork is done. Careful
experimentalmeasurements by Joule andKelvin in the nineteenth century showed that
there is no heat exchange in this process, so q¼ 0. The first law therefore tells us that
DU¼ 0. Since the energy depends on just twovariables, say, volume and temperature,
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we can express the result as

@U

@V

� �
T

¼ 0 ð1:16Þ

which says that the energy of an ideal gas is independent of its volume at constant
temperature. We can interpret this thermodynamic result in molecular terms as
follows. A gas behaves ideally when the intermolecular forces of attraction and
repulsion are negligible. (This is why real gases approach ideality at very low
pressures, because then the molecules are so far apart that they do not experience
each others’ force fields.) If there are no forces between the molecules, no energy is
required to change the intermolecular distances, and so expansion (or compression)
results in no energy change.

1.3. THE ENTHALPY

Definition of Enthalpy. In most chemical studies we work at constant pressure.
(The reaction vessel is open to the atmosphere, and P¼ 1 atm, approximately.)
Consequently the system is capable of doing work of expansion on the surroundings.
From the first law we can write q¼DU þ w; and since w¼P DV, we have

q ¼ DUþPDV

at constant P. Writing out the increments, we obtain

q ¼ ðU2 	U1ÞþPðV2 	V1Þ

Rearranging, we have

q ¼ ðU2 þPV2Þ	 ðU1 þPV1Þ ð1:17Þ

where U, P, and V are all state functions. We define a new state function H,
the enthalpy, by

H ¼ UþPV ð1:18Þ

giving, from Eq. (1.17), the following:

q ¼ DH ð1:19Þ
Although Eq. (1.18) defines the enthalpy, it is usually interpreted according to
Eq. (1.19), because we can only measure changes in enthalpy (as with all energy
quantities). The enthalpy change is equal to the heat gained or lost in the process,
at constant pressure (there is another restriction, namely, that work of expansion is the
only work involved in the process). Since enthalpy is an energy, it is measured in the
usual energy units.
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From Eq. (1.18) we can write

DH ¼ DUþPDV ð1:20Þ
For chemical processes involving only solids and liquids, DV is usually quite small, so
DH � DU; but for gases, where DVmay be substantial, DH and DU are different. We
can obtain an estimate of the difference by supposing that 1 mol of an ideal-gas is
evolved in the process. From the ideal gas law we write

PDV ¼ ðDnÞRT
For 1mol we obtain Dn¼ 1, so from Eq. (1.20) we have

DH ¼ DUþRT

At 25 
C, this gives

DH ¼ DUþð1:987 cal mol	1 K	1Þð298:15 KÞ
¼ DUþ 592 cal mol	 1

which is a very appreciable difference.
When a chemical process is carried out at constant pressure, the heat evolved or

absorbed, per mole, can be identified as DH. Specific symbols and names have been
devised to identify DH with particular processes. For example, the heat absorbed
by a solid onmelting is called the heat of fusion and is labeledDHm, or DHf. The heat
of solution is the enthalpy change per mole when a solute dissolves in a solvent.
For a chemical reaction, DH is called a heat of reaction. The heat of reaction may be
positive (heat is absorbed) or negative (heat is evolved). By writing a reaction on
paper in reverse direction its DH changes sign. For example, this reaction absorbs
heat:

6CðsÞþ 3H2ðgÞ	!C6H6ðlÞ DH ¼ þ11:7 k cal mol	1

This reaction, its reverse, therefore evolves heat:

C6H6ðlÞ	!6CðsÞþ 3H2ðgÞ DH ¼ 	11:7 k cal mol	1

We will later see how enthalpy changes for chemical processes can be measured.

Heat Capacity. A quantity C, called the heat capacity, is defined as

C ¼ dq

dT
ð1:21Þ

C is a measure of the temperature change in a body produced by an increment of heat.
The concept of the heat capacity is essential in appreciating the distinction between
heat and temperature.
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Chemical processes can be carried out at either constant volume or constant
pressure. First consider constant volume. If only work of expansion is possible,
at constant volumeweobtainDV¼ 0, sow¼ 0, and from the first lawwehavedq¼ dU.
We therefore define the heat capacity at constant volume by

CV ¼ @U

@T

� �
V

ð1:22Þ

At constant pressure, on the other hand, we have, from Eq. (1.19), dq¼ dH,
and we define the heat capacity at constant pressure by

CP ¼ @H

@T

� �
P

ð1:23Þ

In the preceding section we had obtained, for one mole of an ideal gas, Eq. (1.24).

DH ¼ DUþRT ð1:24Þ
Let us differentiate this with respect to temperature. Using Eqs. (1.22) and (1.23), we
get

CP ¼ CV þR ð1:25Þ
For argon, at room temperature, CP¼ 20.8 JK	1mol	1 and Cv¼ 12.5 JK	1mol	1;
hence CP	CV¼ 8.3 J K	1mo1	1, which is R.

For most compounds only CP has been measured. Values of CP for typical organic
compounds lie in the range 15–50 cal K	1mol	1. As seen here, heat capacity
is expressed on a per mole basis, and is sometimes called the molar heat capacity.
When the heat capacity is expressed on a per gram basis it is called the specific heat.

Taking the constant-pressure condition of Eq. (1.23) as understood, we can write
CP¼ dH/dT, or dH¼CP dT. If we suppose that CP is essentially constant over the
temperature range T1 to T2, integration gives

DH ¼ CP DT ð1:26Þ

Example 1.2. Themean specific heat of water is 1.00 cal g	1 K	1.Calculate the heat
required to increase the temperature of 1.5 L of water from 25 
C to the boiling
point.6

As a close approximation we may take the density of water as 1.00 gmL	1 and the
boiling point as 100 
C, so from Eq. (1.26) we obtain

DH ¼ 1:00 cal

g K

� �
1500 gð Þ 75 Kð Þ ¼ 112; 500 cal

or 112.5 kcal.

6 It is not a coincidence that the specific heat ofwater is 1.00 cal g	1 K	1, because this is how the caloriewas
originally defined:One caloriewas the amount of heat required to raise the temperature of one gramofwater
by 1 
C. Actually the specific heat of water varies slightly with the temperature.
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PROBLEMS

1.1. A piston 3.0 in. in diameter expands into a cylinder for a distance of 5.0 in.
against a constant pressure of 1 atm. Calculate the work done in joules.

1.2. What is the work of expansion when the pressure on 0.5mol of ideal gas is
changed reversibly from 1 atm to 4 atm at 25 
C? (Hint: For an ideal gas
P1V1¼P2V2.)

1.3. Derive an equation giving the heat change in the isothermal reversible
expansion of an ideal gas against an appreciable pressure. [Hint: Make use
of Eq. (1.16) and the first law.]

1.4. What is the molar heat capacity of water? (See Example 1.2 for the specific
heat.)

1.5. The molar heat capacity of liquid benzene is 136.1 Jmol	1 K	1. What is its
specific heat?

1.6. The specific heat of solid aluminum is 0.215 cal g	1 K	1. If a 100-g block of
aluminum, initially at 25 
C, absorbs 1.72 kcal of heat, what will be its final
temperature?

1.7. A500-g piece of iron, initially at 25 
C, is plunged into 0.5 L ofwater at 75 
C in
a Dewar flask. When thermal equilibrium has been reached, what will the
temperature be? The specific heat of iron is 0.106 cal g	1 K	1.

1.8. A thermally unstable drug needs to be mailed to a patient. The drug is put into
a 100-mL bottle, and the bottle is put in a 2-L Styrofoam box. Dry ice (solid
carbon dioxide) is added to the box in the amount of 352 g to cool the drug and
maintain it cold until it reaches its destination. Dry ice has the property of
sublimating upon heating. No liquid carbon dioxide is formed. The box is
sealed and it represents a thermodynamic closed system.Assume that the initial
temperature of dry ice is its sublimation temperature, 	78 
C. The package
takes two days to be delivered. Every day, the package absorbs 600 J of heat
from the environment. Calculate the pressure inside the box when the package
reaches its destination (neglect the amount of air initially present in the
container) and the temperature of the drug when the package is opened. Dry
ice heat of sublimation¼ 416 J/mol, molecular weight of dry ice¼ 44 g/mol,
density of dry ice¼ 1.56 g/mL.

1.9. A sample of an unknown gas at atmospheric pressure weighs 2.3 g/L at the
temperature of 25 
C. Calculate the molecular weight of the gas. Using the
information in Appendix B, calculate the square root velocity of the gas
molecules at 25 
C. Express the velocity in cm/s.

1.10. Consider 3mol of an ideal gas having a molecular weight of 32 g/mol. The gas
is at the temperature of 300 
C and at the pressure of 6.3 atm. The gas is then
expanded until it reaches a pressure of 0.001 atm. What is the gas density in
g/mL in the initial and final states?
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1.11. An experimenter wishes to determine the partial pressure of chloroform
required to anesthetize a 28.0-g mouse in a 2.37-L container at 20 
C.
If 2.00mL of liquid chloroform is introduced into the closed vessel
through a valve, what is the partial pressure of chloroform in the container?
Assume complete evaporation of the chloroform. Calculate the partial pressure
using the ideal gas equation. Assume the density of the mouse to be 1 g/mL.
The density of liquid chloroform at 20 
C is 1.484 g/mL.

1.12. Nitrous oxide (N2O) is used for the rapid induction of anesthesia. Using
the ideal gas equation, calculate themolecular weight of this gas, given that 1 L
at the temperature of 0 
C and at the pressure of 760mmHg weighs 1.97 g.
In addition, calculate the root mean square velocity, m, of nitrous oxide
and from m calculate the density of gaseous N2O at 1 atm and 0 
C. (See
Appendix B).

1.13. In the following thermodynamic cycle, DHf, DHv and DHs, are, respectively,
molar heats of fusion, vaporization, and sublimation for a pure substance.
Obtain an equation connecting these three quantities. (Hint: Pay careful
attention to the directions of the arrows.)
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2

THE ENTROPY CONCEPT

2.1. THE ENTROPY DEFINED

Why Energy Alone Is Not a Sufficient Criterion for Equilibrium. Let us try to
develop an analogy, based on what we know from classical mechanics, between a
mechanical system and a chemical (thermodynamic) system. The position of equi-
librium in a mechanical system is controlled by potential energy. Consider a rock
poised near the top of a hill. It possesses potential (gravitational) energy as a
consequence of its position. If it is released, its potential energy will be converted
to heat (through friction) and to kinetic energy as it rolls down the hill. It will come to
rest, having zero potential energy, at the foot of the hill (since we can measure only
changes in energy, wemean that the potential energy is zero relative to some arbitrary
reference value, whichwe are free to take as thevalue at the foot of the hill). It is nowat
mechanical equilibrium. Thus the criterion for a spontaneous mechanical process is
that the change in potential energy be negative (it gets smaller), and the criterion for
mechanical equilibrium is that the change in potential energy be zero.

Why don’t we simply apply an analogous criterion to chemical systems?Wemight
argue that DU(for a system at constant volume) or DH (for a system at constant
pressure) plays the role of potential energy in the mechanical system. But we find
experimentally that this suggestion is inadequate to account for the observations.
Consider first the following experiment (Smith 1977, p. 6):

1. Dissolve some solid NaOH in water. The solution becomes warm; that is, heat
is liberated in the process. This means that DH is negative in the spontaneous
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process of NaOH dissolving in water. (The reaction is said to be exothermic.)
This is entirely in accord with the proposal we are examining.

2. Dissolve some solid NaNO3 in water. The solution becomes cool; that is, heat
is absorbed as the dissolution occurs, and this cools the solution. Therefore
DH is positive in this spontaneous process. (It is an endothermic reaction.) This
behavior is in conflict with the proposal.

Here is another pertinent experiment. Suppose thatwe have two identical chambers
connected by a stopcock. With the stopcock closed, we let one chamber contain a gas
and the other chamber be evacuated (i.e., it “contains” a vacuum). Now we open the
stopcock. We know what will happen—the gas will spontaneously distribute itself
uniformly throughout the two chambers. If the gas is ideal (and most gases behave
nearly ideally at low pressures), we know [see Eq. (1.16)] that DU¼ 0 for this
spontaneous process. Thus, with no energy change at all, the system spontaneously
underwent a change to an equilibrium position.

This inability to predict the direction of chemical change based on energy
considerations alone was one of the great nineteenth-century scientific problems.
Since energyminimization alone isnot anadequate criterion for chemical equilibrium,
something elsemust be involved. This is our next concern, and we are going to use an
approach somewhat different from that taken in many textbooks, which adopt an
argument based on the historical development of the ideas. We are going to sidestep
classical thermodynamic history by turning to a description based on the particulate
(i.e., atomic) nature of matter.

The Statistical Mechanical Entropy. We have seen that classical thermodynamics
is based on macroscopic observations and makes no assumptions about the ultimate
structure of matter. An alternative viewpoint, called statistical mechanics (or statisti-
cal thermodynamics when applied to thermodynamic problems), adopts the assump-
tion that matter is composed of vast numbers of very small particles (which we now
identify as electrons, atoms,molecules, etc.). Inmanycircumstances this point of view
provides physical insight not available from classical thermodynamics, and we will
turn to it to illuminate our present problem.

Let us reconsider the example of the apparatus with two chambers, in one of which
a gas was initially confined. Suppose that only a single molecule of gas had been
present. After the stopcock is opened (and presuming that both chambers have equal
volumes), evidently the probability that themoleculewill be in one specified chamber
(say, the left chamber) is 1

2. Next suppose we were to start with two molecules—say,
a and b—and ask for the probability that both will be found, at equilibrium, in the left
chamber. These are the only possible distributions:

Left Right

a b
b a
a,b —

— a,b
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Thus, of four possible distributions, only one places both a andb in the left chamber,
so the probability1 of this distribution is 14 ¼ 1

2

� �2
. Generalizing toNmolecules, we get

ð12Þn for the probability that at equilibrium all N molecules will be found in the left
chamber. Since for chemical systems the number of atoms ormolecules,N, can bevery
large indeed,we see that theprobability is extremely small that all of themoleculeswill
end up in one chamber. On the other hand, the probability is extremely high that the
molecules will be distributed equally between the two chambers.

This simple example (Glasstone 1947, p. 184) suggests a general statement,
which in fact constitutes a basic premise of statistical mechanics, namely, that all
spontaneous processes represent changes from a less probable to a more probable
state.This postulate leads us to the next stage of our inquiry,which consists essentially
of counting all possibledistributions that are accessible to a system,because this is how
the probability of a state is to be established.

In this next example the system is more complicated, although still artificially
simple. We imagine that two crystals of different elements, A and B, are placed in
contact, so that atoms of Amay diffuse into the B crystal and vice versa [this example
is given by Denbigh (1966, p. 49)]. In this simple example we suppose that crystal A
contains fourA atoms (4A), and likewise crystal B contains fourB atoms (4B).We can
distinguish between A and B atoms, but all A atoms are indistinguishable among
themselves, and similarly for B. The sites that the atoms occupy in the crystals are
distinguishable. Initially, let all A atoms be in the left-hand crystal and let all B atoms
be in the right-hand crystal.

We are going to count all possible configurations (called microstates) of our
system. There are 4A and 4B to be distributed among eight sites. (We assume that the
energiesofinteractionareidenticalnomatterwhichtypeofatomisonwhichsite.)Clearly,
there is only one microstate having 4A in the left crystal and 4B in the right crystal:

A A B B

A A B B

Similarly, there is only one microstate with 4B in the left and 4A in the right crystal.
But now consider the number of ways we can have 3A þ 1B on the left and

3B þ 1Aon the right.Wecould argue in thisway: TheAatomon the right has anyone
of four right-hand sites available to it, and likewise the B atom on the left has four sites
available, making 4� 4¼ 16 configurations. These 16 microstates are explicitly
shown in Fig. 2.1. Obviously the symmetrical arrangement of 1A þ 3B on the left
and 3A þ 1B on the right will also have 16 microstates.

The remaining arrangement of 2A þ 2B (left) and 2A þ 2B (right) is slightly
more difficult. First consider the left crystal. The first B atom has four sites available,
whereas the second B atom has only three accessible sites. Hence there appear to be
4� 3 possible configurations. However, the two B atoms are indistinguishable, so we

1 We are making the unstated assumption that the molecules behave independently, so that each has a
probability of 1

2 of being in the left chamber. The probability that both will be in the left chamber is the
product of the individual probabilities.
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have double-counted, and must compensate, giving (4� 3)/2 as the number of
microstates. But an equal number is contributed by the right-hand side, making in
all (4� 3)/2� (4� 3)/2¼ 36 microstates. Here are the results summarized.2

Atoms to Left Atoms to Right Number of Microstates

4A 4B 1
3Aþ 1B 1Aþ 3B 16
2Aþ 2B 2Aþ 2B 36
1Aþ 3B 3Aþ 1B 16

4B 4A 1_
70

In modern terminology, the microstates are called quantum states.

Figure 2.1. The 16 microstates possessing 3A þ 1B on the left and 3B þ 1A on the right.

2 Probability theory gives a simple expression for calculating the number of ways N objects can be
distributed into n1 of type 1, n2 of type 2, and so on; this is the expression:

N!

n1!n2! . . .

whereN! is readN factorial and is the product 1� 2� 3� 4�. . .(N	 1)�N. For our system this gives 8!/4!
4!¼ 70.
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Now, another key premise of statistical mechanics is that the system is as likely
to be in any one microstate as in another. That is, all microstates are equally
probable. In our example above, there is a probability of 1

35 that all of the A atoms
will be found in a single crystal (either left or right); but there is a probability of 36

70
that the atoms will be uniformly distributed. All the microstates are accessible, and
the system is simply more likely to be found (at equilibrium) in the state possessing
the largest number of microstates. (It can also be stated that the system spends an
equal amount of time in each microstate, so it spends the most time in the system
with the most microstates.)

For chemical systems the number of particles is extremely large (recall that
Avogadro’s number is about 6� 1023), so the number of microstates is vast, and
the consequence is that the most probable state of the system is so probable that
all other states (although possible in principle) may be disregarded in practice. The
total number of microstates accessible to a system (which, we have just noted, is
essentially equal to the number of microstates in the most probable state) we labelW.
(Some authors useW.)We now define a quantity S, called entropy, by Eq. (2.1), which
is due to Boltzmann:

S ¼ k lnW ð2:1Þ
This is a definition. We will later establish the significance of the proportionality
constant k. The equation says that the entropy S of a system increases logarithmically
as W, the number of accessible microstates, increases.

We have noticed in our crystal diffusion example how W is composed of con-
tributions from various configurations, and within each configuration the contribu-
tions are multiplicative; for example, for the 3A þ 1B (left) and 1A þ 3B (right)
state we had 4� 4¼ 16 microstates. If, more generally, we write W¼WL�WR,
then Eq. (2.1) gives us

S ¼ k lnWR ¼ k lnWL þ k lnWR ¼ SL þ SR

Thus, entropy is additive. (This is one reason why Boltzmann used a logarithmic
function in his definition.)

Another point is to be made here. Our crystal diffusion example involved micro-
states all having the same energy, and we calculated all possible configurations. The
resulting entropy is knownas the configurational entropy.Moregenerally, in chemical
systems we must also consider a very large number of quantum states, most of which
occupy different energy levels. The total entropy receives contributions from both
sources: the microstates counting all configurations and those counting all energies.

Summarizing to this point, we conclude that spontaneous processes occur in a
direction of increasing probability and that entropy as calculated by the statistical
mechanical definition is a quantitative measure of this probability. Therefore sponta-
neous processes occur with an increase in entropy.3

3 In making this statement we are neglecting concurrent energy changes; specifically, we are assuming
DU¼ 0 (for the present).Note also thatwemeasure changes in entropy,DS, so the statement says that ifDS is
positive, the process is spontaneous.
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Before leaving the statistical mechanical treatment, let us apply our results to the
calculation of the entropy change accompanying the isothermal expansion of an ideal
gas from volume V1 to volume V2 (Glasstone 1947, p. 186; Denbigh 1966, p. 55;
Rossini 1950, p. 73). (We will shortly see the point of this particular calculation.)
Recall that DU¼ 0 in this process, so the only driving force for the expansion is the
increase in probability of the system.

If W1 and W2 are the numbers of microstates associated with volumes V1 and V2,
then S1 ¼ k lnW1 and S2 ¼ k lnW2, so

DS ¼ S2 	 S1 ¼ k ln
W2

W1
ð2:2Þ

Theprobability that a singlemoleculewill be found in anyvolumeV is proportional
to that volume,and thenumberofmicrostatesaccessible toamolecule isproportional to
V (Hill 1960, Chapter 4). For a singlemoleculewe therefore canwrite,W2/W1¼V2/V1,
and for NA (one mole of) molecules we have

W2

W1
¼ V2

V1

� �NA

ð2:3Þ

Combining Eqs. (2.2) and (2.3) gives as the statistical mechanical result

DS ¼ kNA ln
V2

V1
ð2:4Þ

Entropy in Classical Thermodynamics. Now we are going to treat the isothermal
reversible expansion of an ideal gas classically. Our goal is to establish the classical
thermodynamic equivalent of the statistical mechanical entropy. We begin with the
first law:

dU ¼ dq	 dw ð2:5Þ
On expanding from volume V1 to volume V2 against pressure P, the gas is capable
of doingworkof expansiondw¼PdV. Moreover,weknowfromour earlier discussion
thatdU¼ 0 for this process, sowehavedq¼PdV. Foronemole ofan ideal gaswehave
P¼RT/V, giving dq ¼ RTðdV=VÞ, or

dq

T
¼ R

dV

V
ð2:6Þ

We will integrate Eq. (2.6) between our expansion limits of V1 and V2, giving

ðstate 2
state 1

dq

T
¼ R ln

V2

V1
ð2:7Þ

Now let us compare Eq. (2.7), derived classically, with Eq. (2.4), derived statistically.
These equations describe the same process, and they reveal that consistency between
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the classical and statistical treatments can be achieved by writing the identities

kNA ¼ R ð2:8Þðstate2
state1

dq

T
¼ DS ð2:9Þ

and Eq. (2.9) implies

dq

T
¼ dS ð2:10Þ

These are powerful results. From Eq. (2.8) we achieve a physical interpretation of the
proportionality constant k in Eq. (2.1), Boltzmann’s definition of entropy, as

k ¼ R

NA
ð2:11Þ

where k is the gas constant per molecule; this quantity is known as the Boltzmann
constant. It has thevalue k¼ 1.38� 10	23 J K	1.Any equation containingR is on aper
mole basis; replace the R with k and the equation is on a per molecule basis.

According to Eq. (2.10), the differential entropy change is equal to the differential
heat change dividedby the absolute temperature.Moreover, fromEq. (2.7), sinceV is a
state function, the entropy S is a state function. With a combination of statistical and
classical arguments we can make some general statements about entropy changes.
From statistical mechanics we had seen that DS increases during a spontaneous
process, sowe infer that DS¼ 0 at equilibrium. Reverting to a differential symbolism,
these results give us

dS > 0 for a spontaneous ðirreversibleÞ process
dS ¼ 0 for a system at equilibrium

Recall that in a reversible process the system is always virtually at equilibrium, and the
system is then capable of performing themaximumwork (because irreversible losses,
such as to friction, areminimized). In a spontaneous (irreversible) process, the amount
ofwork that canbedone is less than themaximum.From the first law, sincedU is a state
function and is the same no matter what path is taken, we have

dU ¼ dqrev 	 dwrev ¼ dqirr 	 dwirr

so

dqrev 	 dqirr ¼ dwrev 	 dwirr

Since dwrev> dwirr , it follows that dqrev> dqirr . We therefore can write

dqrev
T

>
dqirr
T

84 THE ENTROPY CONCEPT



The entropy is a state function, independent of path, so the differential dShas a definite
value for a given process regardless of whether that process is carried out reversibly.
Equation (2.10) for the classical definition of entropy can be more explicitly written

dS ¼ dqrev
T

Classically, then, the entropy increase is equal to the heat change in an isothermal
reversible process divided by the absolute temperature at which the heat change
occurs. All spontaneous (i.e., natural) processes occur with a gain of entropy by the
systemand the surroundings.Note that it is conceivable for the system toexperience an
entropy decrease (dS< 0), but this will inevitably be accompanied by a more-than-
compensating entropy increase in the surroundings.

2.2. THE SECOND LAW OF THERMODYNAMICS

Statement of the Second Law. Entropy plays a critical role in thermodynamic
analysis, because it is the missing factor that we were seeking to allow us to predict
the direction of change in atomic ormolecular systems.The essential result constitutes
the second lawof thermodynamics,which can be stated in severalways, not all of them
obviously equivalent, but in fact all of them providing the same message. Here are
some of them:

1. Heat does not spontaneously flow from a cold body to a hot body.

2. Spontaneous processes are not thermodynamically reversible.

3. The complete conversion of heat into work is impossible without leaving
some effect elsewhere.

4. It is impossible to convert heat into work by means of a constant temperature
cycle.

5. All natural processes are accompanied by a net gain in entropy of the system
and its surroundings.

This last statement is most useful to us. Let us write

dSnet ¼ dSsystem þ dSsurroundings

Then the second law says

dSnet > 0 ðspontaneous processÞ
dSnet ¼ 0 ðreversible processÞ

Interpretations of Entropy. Entropy is an abstract concept of thermodynamics and
statisticalmechanics that plays a practical role in providing a criterion for equilibrium.
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Despite its technical and abstract nature, it has passed into popular culture and
language, where its use is sometimes casual and inexact. Let us consider some
interpretations that have been given to entropy. The statistical mechanical picture is
clearest. We found that the entropy increases logarithmically with the number of
microstates accessible to the system, andwe concluded that entropy is correlated with
the increase in “mixed-up-ness” of the system [Denbigh (1966, p. 55) attributes this
term to Gibbs]. Entropy is widely interpreted as a measure of randomness or of
disorder, an increase in entropy being associated with an increase in these properties.
This is because spontaneous processes occur with an increase in entropy and lead to
more extensive mixing of the units in a system. This interpretation directly concerns
the configurational entropy, which measures the spatial disposition of units; in
addition, there is the thermal entropy, which measures the distribution of quantum
states having different energies. (But note that an increase in configurational entropy
might conceivably be accompanied by a decrease in thermal entropy; it is the net
entropy change that is decisive.) E. A. Guggenheim [cited by Denbigh (1966, p. 56)]
refers to entropy as a measure of spread—that is, dispersion over a larger number of
quantum states, either configurational or thermal.

A fundamental basis of the second law is closely connected to these interpretive
notions. As we have seen, it is possible to convert work completely into heat, but we
cannot completely convert heat into work. The reason for this dissymmetry lies in the
atomic structure ofmatter. Doingworkmeansmaking use of the directedmotion of an
assemblage of particles (as by rubbing a metal block on a surface, or drilling a hole
in a solidwith adrill bit). Thiswork is converted (through friction) to heat,which raises
the temperature of the contacting bodies. The temperature increase reflects the
increased kinetic energy of the atoms in the bodies, and (this is the essential point)
the motions of these atoms are undirected, because they are largely chaotic. Without
adding energy from the surroundings, there is nopossibleway to transformcompletely
this undirected motion (heat) back into work. The basis of this irreversibility is the
increased randomness on the atomic scale. There is amodern tendency to describe this
phenomenon (increased spread or randomness, therefore increased entropy) as
reflecting a loss of information about the system, but this usage is not helpful and
may be misleading. Let us consider this further.

Some authors give as examples of processes that involve an increase in entropy
(and a corresponding loss of information) the change of a new deck of cards to a
randomly shuffled deck, or the change from the orderly arrangement of books and
papers in a student’s room at the beginning of the semester to a disorderly distribution
of these objects about the room by the time of final exams. But we can easily be led
astray by such examples, which as analogies to the atomic scale are erroneous.
There are two factors to be kept in mind: (1) We earlier reached the conclusion that
spontaneous processes occur with an increase in entropy. But a deck of cards does not
spontaneously shuffle itself into randomness, nor do the books in a student’s room
spontaneously adopt new locations. So the exampleswere incomplete; they omitted to
consider the second factor: (2) The system and its surroundings must both be taken
unto account. In the case of the playing cards, the cards themselves constitute
the sytem; the shuffler of the cards constitutes the effective surroundings, and the
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surroundings did work on the system; this was not a spontaneous process. Nor was
there any change in the number of microstates available to the cards before and after
shuffling, so there was no entropy increase in the cards.

What is the essential difference between a collection of playing cards and a
collection of atoms and molecules? Fundamentally, it is a matter of size. Atoms and
molecules are in incessant motion because of their thermal energy; through such
motion theyundergo collisions resulting in energy exchange and distribution, and they
spontaneously adopt configurations with larger number of microstates. Cards, how-
ever, are macroscopic objects; their movement in space is not spontaneous, but rather
requires action by an external agent (which does experience an entropy increase in the
process because of the accompanying dispersal of energy). Lambert (1999, 2002) has
given interesting discussions of these issues.

Summary of Fundamental Thermodynamics. Our development of the first and
second laws of thermodynamics has provided the entire basis of this subject.
Everything else (and there is a great deal more) follows from this by introducing
definitions of new quantities or functions and manipulating them mathematically.
Before we proceed, we summarize our results4 in Table 2.1.

2.3. APPLICATIONS OF THE ENTROPY CONCEPT

Entropy Relationships A few simple manipulations will demonstrate the involve-
ment of entropy in thermodynamic relationships. The first law is dU¼ dq	 dw. If the
only work done in a process is work of expansion, then dw¼P dV.Moreover, we have
seen that dS¼ dq / T, so dq¼ T dS, and we get

dU ¼ T dS	P dV ð2:12Þ

Table 2.1. The laws of thermodynamics

Law State Function Characteristic

0 T Determines thermal equilibrium
1 U Conservation of energy

(The energy of the universe is constant)
(You can’t get something for nothing)

2 S Determines direction of spontaneous change
(The entropy of the universe is increasing)
(You can’t break even)

4 The concept of entropy was introduced by Clausius in 1854, and he introduced theword entropy in 1865.
This is how Clausius expressed the first and second laws:

Die Energie der Welt ist constant.
Die Entropie der Welt strebt einem Maximum zu.
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as another statement of the first law. The product TdS (or TDS) is pervasive in
thermodynamics, and this is its source; observe that this product is an energy.

Now rearrange Eq. (2.12) to

dS ¼ dUþP dV

T
ð2:13Þ

and consider processes at constant pressure. From the definition of enthalpy applied
to Eq. (2.12) we find

dS ¼ dH

T
ð2:14Þ

We recall that the heat capacity at constant pressure is defined CP¼ dH/dT,
so dH¼CP dT. Using this in Eq. (2.14) gives

dS ¼ CP
dT

T
ð2:15Þ

where the constant pressure condition is understood and is not explicitly indicated.
We can integrate Eq. (2.15) between the limits T1 and T2:

DS ¼ S2 	 S1 ¼
ðT2
T1

CP
dT

T
¼
ðT2
T1

Cpd ln T ð2:16Þ

IfCP is substantially independent of temperature over the integration range, Eq. (2.16)
becomes

DS ¼ CP ln
T2
T1

ð2:17Þ

at constant pressure [a corresponding equation,DS¼Cv ln (T2/T1), applies at constant
volume].

An interesting case of Eq. (2.16) arises when we set T1¼ 0K, giving

S ¼ S0 þ
ðT
0

CPd ln T ð2:18Þ

The quantity S0 is to be interpreted as the value of the entropy at the absolute zero.
Planck in 1912 proposed that S0may assume the value zero at 0K for a perfect crystal,
which possesses no disorder. This proposal is known as the third law of thermody-
namics.Bymeans of the third law combined with Eq. (2.18), it is possible to evaluate
the entropy S of substances from measurements of CP as a function of temperature.
The procedure is to plot experimental values of CP against ln T for the entire range of
experimental temperatures. Since T¼ 0K is unattainable, the curve thus generated is
extrapolated to 0K with the aid of a theoretical function. The area under the curve,
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from 0K up to any specified temperature, is then equal to the entropy of the substance
at that temperature.

Entropy Changes. Despite the possibility afforded by the third law to evaluate
absolute entropies of substances, in nearly all practical applications of the entropy
concept we evaluate changes in entropy. Here we will see some examples of such
determinations. Later in the book we will consider the estimation of entropy changes
for additional types of processes.

From the definition dS¼ dq / T it is evident that the units of entropy are energy per
Kelvin, and it is expressed either in JK	1 or cal K	1. Since entropy is an extensive
property, we convert it to an intensive property by expressing it on a per mole basis.
Consequently, DS values will always be encountered in the units J K	1mo1	1 or cal
K	1mo1	1 (the combination cal K	1mol	1 is sometimes referred to as the entropy
unit, abbreviated e.u.).

We will calculate the entropy changes accompanying phase changes, as when a
solid melts (fusion) or a liquid evaporates (vaporization). These processes can be
carried out reversibly at constant temperature (the temperature being called the
melting point, Tm, for fusion, or the boiling point, Tb, for vaporization.)

5 The system
is not isolated, because heat must be supplied in order that the process take place.
Theheat supplied in the fusion process isDHf, the heat of fusion;whereasDHv, the heat
of vaporization, is furnished in the vaporization process. These enthalpy changes
are expressed on a per mole basis. Many experimental DHf and DHv values are
available in the common reference handbooks.

From Eq. (2.14) applied to our present concern we can write

DSf ¼ DHf

Tm
ð2:19Þ

DSv ¼ DHv

Tb
ð2:20Þ

Table 2.2 shows enthalpy data for a few phase changes.

Table 2.2. Heats of fusion and vaporization for some solids and liquids

Substance mpa (
C) DHf (kcalmol	1) bpb (
C) DHv (kcalmol	1)

Benzoic acid 122.1 4.32 –– ––
Phenol 40.9 2.75 –– ––
Acetone –– –– 56.2 6.95
Water 0.0 1.436 100.0 9.717

aMelting Point.
bBoiling Point.

5 The boiling point is commonly considered to be the temperature at which the liquid and vapor are in
equilibrium at atmospheric pressure. However, Eq. (2.20) can also be applied to data at other pressures, with
the appropriate temperature inserted.

APPLICATIONS OF THE ENTROPY CONCEPT 89



Example 2.1. Calculate the entropy of fusion of benzoic acid.

DSf ¼ DHf

Tm
¼ 4320 cal mol	 1

395:25K
¼ þ 10:93 cal K	 1 mol	 1

Table 2.3 gives DSf and DSv results for the processes described in Table 2.2.

It has been known since 1884 that for verymany nonassociated liquids (i.e., liquids
whose molecules do not interact strongly with each other), DSv � 21 cal K	1mo1	1.
This empirical observation is known asTrouton’s rule, and it provides a simple though
approximate estimate of DHv, by means of Eq. (2.20), since the boiling point is easily
measured. Such a convenient generalization cannot be made for DSf values, although
some definite patterns have been observed [see Yalkowski and Valvani (1980);
in Chapter 10 we make use of these observations].

Notice that all DSf and DSv values are positive, because the system in each case is
proceeding from a state of relative order to a state of relative disorder.Molecules in the
liquid state possess a larger number of accessible quantum states (both configurational
and thermal) than in the more restricted solid state, and similarly for the vaporization
process.

We will subsequently learn how to calculate DS for chemical reactions, where we
will find thatDS canbe either positiveornegative, just aswithDHvalues, dependingon
the direction in which the reaction is written. Very generally we anticipate that if the
product state (the right-hand side of the equation) possessesmore particles (molecules
or ions) than the reactant state, DS will be positive, reflecting the availability to the
system of more microstates.

PROBLEMS

2.1. Predict the sign of DS for these processes.

(a) Crystallization of benzoic acid from its melt.

(b) Evaporation of spilled gasoline.

(c) This chemical reaction

Me2C ¼ CH2 þCl2 !Me2CClCH2Cl

Table 2.3. Entropies of fusion and vaporization

Substance DSf (cal K	1mol	1) DSv (cal K	1mol	1)

Benzoic acid þ 10.93 —
Phenol þ 8.76 ––
Acetone –– þ 21.11
Water þ 5.26 þ 26.04
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2.2. Look up the boiling point of benzene, and estimate its molar heat of
vaporization.

2.3. The heat of fusion of 4-nitroaniline is 5.04 kcalmol	1. Look up its melting
point, and calculate its entropy of fusion.

2.4. Sublimation is the process in which a solid is transformed directly to the vapor
state. The heat of sublimation of naphthalene is 17.6 kcal mol	1 at 25 
C.
Calculate its entropy of sublimation.

2.5. Calculate the entropy change during the isothermal expansion of 0.5mol of an
ideal gas from 100mL to 1 L.

2.6. The heat capacity of chloroform in the vicinity of 600K is 20.4 cal K	1mol	1.
Calculate the entropy change permolewhen chloroform is brought from 550K
to 625K.

2.7. Derive an equation for the molar entropy change when the pressure on an ideal
gas is isothermally changed from P1 to P2 atm. [Hint: Start with Eq. (2.4).]

2.8. Inhalation of a low-boiling-point anesthetic is a common way of inducing
general anesthesia. A commonly used gaseous anesthetic is isoflurane (1-
chloro-2,2,2-trifluoroethyl difluoromethyl ether). Its boiling point is 48.5 
C
and its molecular weight is 184.50 gmol	1. In a certain anesthetic procedure,
92.25 g of isoflurane is mixed with 90% pure oxygen by blowing a flow of
oxygen at 25 
C on the liquid isoflurane. The final mixture, at the pressure of
1 atm, contains all the isoflurane and 144 g of oxygen. Calculate the change in
entropy of isoflurane in going from a liquid state at 25 
C to a vapor state at
25 
C mixed with oxygen. Assume that all heat needed for the vaporization of
isoflurane is given from the surrounding environment (open system) and that
the isoflurane heat of vaporization is 275 cal mol	1.

2.9. A thermos jug contains 108mL of water at the temperature of 13 
C. Ice (90 g)
at the temperature of	3 
C is added Assume no exchange of energy and mass
with the environment. Calculate the change in entropy of the system if the
process proceeds at constant pressure. Heat capacity of liquid water ¼ 18 cal
mol	1, density of liquid water¼ 1 gmL	1, heat of fusion of ice¼ 1437 cal
mol	1, heat capacity of ice¼ 9 calmol	1, and molecular weight of
water¼ 18 gmol	1.

2.10. A 500-g piece of iron at the temperature of 978 
C is plunged into 200mL of
water at the temperature of 25 
C in a Dewar flask. Knowing that the specific
heat of iron is 0.106 cal g	1 K	1, atomic weight of iron¼ 56 gmol	1, heat of
vaporization of liquid water¼ 10,400 calmol	1, and molecular weight of
water¼ 18 gmol	1, specific heat of water¼ 1 cal g	1 K	1 (assume this is
the specific heat for both liquid and gaseous (CP) water, density of
water¼ 1 gmL	1, boiling point of water¼ 100 
C, calculate the final temper-
ature of the iron and the change in entropy of the system.
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2.11. A block of ice weighing 360 g at the temperature 	20 
C is poured in a
bucket containing 4 L of water at 31 
C. Consider the system to be in
adiabatic conditions. What is the change in entropy of the system?
Molecular weight of water¼ 18 gmol	1, density of water¼ 1 gmL	1, heat
capacity of ice¼ 9 calmol	1, heat capacity of liquid water¼ 18 calmol	1, and
heat of fusion of water¼ 1437 cal mol	1.
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3

THE FREE ENERGY

3.1. PROPERTIES OF THE FREE ENERGY

TheGibbsFreeEnergy. Wehave seen that for amechanical system (which consists
of relatively few bodies or “particles”) the condition for a spontaneous process is
that the potential energy change be negative, whereas for a chemical system (which
consists of an almost unimaginably large number of particles) we learned that, even
when no energy change occurs, spontaneous processes can take place, and we
concluded that spontaneous processes occur with an increase in entropy. Now we
are going to bring this together, recognizing that there are two factors involved in
determining the direction of chemical change: The system seeks to minimize its
energy and to maximize its entropy, and the position of equilibrium depends upon a
combination of (and perhaps a compromise between) these factors. Several thermo-
dynamic functions have been proposed to describe the situation, but we will make
useofonlyoneof these,which isparticularlyuseful for ourpurposes because it invokes
the commonly controlled experimental conditions of temperature and pressure. This
function, termed Gibbs free energy G,1 is defined as follows:

G ¼ H	 TS ð3:1Þ

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
Copyright � 2010 by John Wiley & Sons, Inc.

1 After J. Willard Gibbs, a physicist at Yale University, who provided much of the theoretical development
of thermodynamics and statistical mechanics in the second half of the nineteenth century. The Helmholtz
free energy A, defined A¼U	 TS, is more useful thanG under conditions of constant volume.Wewill not
make use of A (but see also note 2).
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This equation is actually a definition. Since H, T, and S are state functions, G is also
a state function. As seen from its definition, the Gibbs free energy (which is often
referred to simply as the “free energy” for convenience) is an energy quantity.We are,
for the present, restricting attention to a closed system, which is one across whose
boundaries no matter is exchanged with the surroundings.

Since by definition H¼U þ PV, Eq. (3.1) can be written

G ¼ UþPV 	 TS ð3:2Þ

and its complete differential is

dG ¼ dUþP dV þV dP	 T dS	 S dT ð3:3Þ

We saw earlier [Eq. (2.12)] that if the onlywork done in a reversible process is work of
expansion, the first law can be written

dU ¼ T dS	P dV ð3:4Þ

which, combined with Eq. (3.3), gives

dG ¼ V dP	 S dT ð3:5Þ

Equation (3.5) shows how the free-energy change depends on changes in the pressure
and the temperature for a reversible process in a closed system.2 If the temperature is
constant, dT¼ 0, and from Eq. (3.5) we obtain

@G

@P

� �
T

¼ V ð3:6Þ

2 Each of the functionsU, H, G, andA can bewritten in parallel form as a function of two variables, namely
(for closed systems)

dU ¼ T dS	P dV

dH ¼ T dSþV dP

dA ¼ 	 S dT 	P dV

dG ¼ V dP	 S dT

These all contain the same information, but it is becauseG is expressible as a functionof thevariablesPandT
that we find it especially useful. If a system is at equilibrium, any infinitesimal change is reversible. The
preceding four relationships, which are called characteristic functions, provide equivalent criteria for
equilibrium. From the first one, at constant entropy and volume (i.e., dS¼ 0, dV¼ 0), the condition for
equilibrium is dU¼ 0. From the second, at constant entropy and pressure, dH¼ 0 defines equilibrium; from
the third, at constant temperature and volume, dA¼ 0 at equilibrium; finally, at constant pressure and
temperature, the condition for equilibrium is dG¼ 0.
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If the pressure is constant, dP¼ 0 and from Eq. (3.5) we obtain

@G

@T

� �
P

¼ 	 S ð3:7Þ

From the definition Eq. (3.1), if the temperature is constant, we obtain

dG ¼ dH	 T dS ð3:8Þ

or, in incremental form,

DG ¼ DH	 T DS ð3:9Þ

This last equation is an especially useful relationship because experimentally we
measure these incremental quantities. Observe in this equation howDG, the change in
free energy, is composed of an energy component, DH, and an entropic term, 	T DS.

We can obtain some insight into the meaning of free energy from the following
development. We can write the work done by or on the system as

dw ¼ dwexpansion þ dwadditional

where dwexpansion¼P dVand dwadditional represents work other than P dV work (such
as electrical work). The first law is dU¼ dq	 dw, and for a reversible process we have
dq¼ T dS. Combining these relationships gives

	 dwadditional ¼ dUþP dV 	 T dS

But dU þ P dV¼ dH, so finally, by comparison with Eq. (3.8), we have 	dG¼
dwadditional.

It is for this reason that the free energy change is said to be a measure of the
maximum work available from a process (exclusive of work of expansion). That is,
	dG¼ dw	P dV. When the system can do no useful work, dG¼ 0; a spontaneous
process has a negative value of dG (or of DG). In a chemical reaction the approach to
the position of equilibrium may be from either direction, depending on the initial
conditions (i.e., the concentration of the reacting species). Figure 3.1 shows this
schematically.

The essential characteristic of the Gibbs free-energy function is its combination
of both the energy and entropy components in a form that reveals how these two
thermodynamic concepts compete to generate a compromise that determines the
position of equilibrium in a chemical process.3 A more negative DH favors

3 It is not too fanciful to draw an analogywith a political science setting, in which each societymust choose
its own compromise position between the extremes of maximum security (the energy component) and
maximum liberty (the entropy component).
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spontaneous reaction, and a more positive DS favors spontaneous reaction, in both
instances by making DG more negative.

We are now in a position to better understand our earlier calculations of entropies
of fusion and vaporization. These systems were at equilibrium, so DG¼ 0, and, from
Eq. (3.9), DS¼DH/T.

Pressure Dependence of the Free Energy. From either Eq. (3.5) or Eq. (3.6),
at constant temperature, we obtain

dG ¼ 	V dP ð3:10Þ

Now let us consider the special case of one mole of an ideal gas, so PV¼RT and
V¼RT/P, giving

dG ¼ RT
dP

P
¼ RT d ln P ð3:11Þ

Integrating between the limits of P1 and P2, we obtain

DG ¼ RT ln
P2

P1
ð3:12Þ

which could alternatively have been integrated to the form

G ¼ G* þRT lnP ð3:13Þ

where G� is the constant of integration.

Figure 3.1. Free energy of a reacting chemical system, showing how the direction of the reaction

depends on the initial state of the system.
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Although Eqs. (3.12) and (3.13) apply only to ideal gases, the mathematical form
of these equations turns out to be ubiquitous, and we will subsequently encounter the
form of Eq. (3.13) in several contexts.

Temperature Dependence of the Free Energy. If the definition G¼H	 TS is
combined with Eq. (3.7), we obtain

G ¼ Hþ T
@G

@T

� �
P

ð3:14Þ

Next divide through by T 2 and rearrange to the form of Eq. (3.15):

	 G

T2
þ 1

T

@G

@T

� �
P

¼ 	 H

T2
ð3:15Þ

Now we call attention to the nonobvious fact that the left-hand side of Eq. (3.15)
is equal to the derivative d(G/T)/dT

d G=Tð Þ
dt

¼ 	 G

T2
þ 1

T

@G

@T

� �
P

ð3:16Þ

Combining Eqs. (3.15) and (3.16) therefore yields

@ G=Tð Þ
@T

	 

P

¼ 	 H

T2
ð3:17Þ

The incremental form of Eq. (3.17) is

@ DG=Tð Þ
@T

	 

P

¼ 	 DH
T2

ð3:18Þ

Equations (3.14), (3.17), and (3.18) are equivalent forms of the Gibbs–Helmholtz
equation. We will later make use of Eq. (3.18).

3.2. THE CHEMICAL POTENTIAL

Definition of the Chemical Potential. All of the relationships that we have seen to
this point deal with closed systems (no matter can enter or leave the system) in
complete internal equilibrium (no chemical reactions are occurring in the system).
But of coursewe arevery interested in chemical reactions, andwewould also like to be
able to describe open systems, in which matter may be exchanged between the
system and its surroundings. In order to do this, we expand our concept of the free
energy to include the amounts (numbers of moles) of the chemical constituents of
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the system, writing

G ¼ f ðT ;P; n1; n2; . . .Þ ð3:19Þ

where n1 is the number of moles of chemical substance 1, and so on. From Eq. (3.19)
we write out the total differential

dG ¼ @G

@T

� �
P;n1;n2;...

dT þ @G

@P

� �
T ;n1;n2;...

dPþ @G

@n1

� �
T ;P;n2;...

dn1

þ @G

@n2

� �
T ;P;n1;...

dn2 þ 
 
 

ð3:20Þ

where the subscripts indicate the quantities that are held constant during the evaluation
of the partial derivatives. We have already dealt with the partial derivatives @G=@Tð Þ
and @G=@Pð Þ, and now we turn our attention to the new quantities appearing in
Eq. (3.20). These partial derivatives are called partial molar free energies. They have
this significance: They represent the change in the total free energy of the systemwhen
one mole of constituent i (i¼ 1, 2,. . .) is added while T, P, and all other constituent
amounts are held constant. This quantity is so important that it has been given the
special name chemical potential and its own symbol m. Thus we define4

@G

@ni

� �
T ;P;nj „ ni

¼ mi ð3:21Þ

Now let us rewrite Eq. (3.20), making use of Eqs. (3.6), (3.7) and (3.21):

dG ¼ 	 S dT þV dPþm1dn1 þm2 dn2 þ 
 
 
 ð3:22Þ

which can be written more succinctly as

dG ¼ 	 S dT þV dPþ
X

mi dni ð3:23Þ

The chemical potential m is an intensive property, its units being energy per mole,
as can be seen from its definition, Eq. (3.21).

Now let us consider Eq. (3.22) at constant temperature and pressure:

dGT ;P ¼ m1 dn1 þm2 dn2 þ 
 
 
 ð3:24Þ

On integration this gives

GT ;P ¼ n1m1 þ n2m2 þ 
 
 
 ð3:25Þ

4 Partialmolar quantities are sometimes indicatedwith the conventional letter symbol and a bar above it, so
the chemical potential may also be written Gi.
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which can be generally differentiated to give

dGT ;P ¼ n1 dm1 þm1 dn1ð Þþ n2 dm2 þm2 dn2ð Þþ 
 
 
 ð3:26Þ

which is rearranged to

dGT ;P ¼ n1 dm1 þ n2 dm2 þ 
 
 
ð Þþ m1 dn1 þm2 dn2 þ 
 
 
ð Þ ð3:27Þ

Comparison of Eqs. (3.24) and (3.27) leads to

n1 dm1 þ n2 dm2 þ 
 
 
 ¼ 0 ð3:28Þ

This last equation is called the Gibbs–Duhem equation.

Dependence of Chemical Potential on Pressure. We had earlier applied
Eq. (3.6), reproduced here, to establish the dependence of the free energy of a closed
system on pressure [Eq. (3.13)]:

@G

@P

� �
T

¼ V ð3:29Þ

We are now interested in mixtures, that is, systems of more than one substance, so we
must make use of chemical potentials (partial molar free energies). We state without
derivation the analog to Eq. (3.9), which is intuitively evident4:

@mi

@P

� �
T

¼ Vi ð3:30Þ

where Vi is the partial molar volume of substance i. The physical interpretation
of this quantity is that it is the volume per mole of i at the composition specified.
(In general,Vi is not equal toVi, themolar volume of pure i, because of intermolecular
interactions in the mixture.)

Now let us consider a mixture of ideal gases. From Eq. (3.30), the variation in
chemical potential for constituent i can be written dmi ¼ Vi dP, where P is the total
pressure. Since the total number of moles n in the ideal-gas equation PV¼ nRT is just
the sum (n1 þ n2 þ 
 
 
), we obtain

V ¼ n1 þ n2 þ 
 
 
ð ÞRT
P

so the partial molar volume of i is

Vi ¼ @V

@ni

� �
T ;P;nj „ ni

¼ RT

P
ð3:31Þ
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which is nicely simple (because we are dealing with ideal gases). Therefore we can
write

dmi ¼ Vi dP ¼ RT
dP

P
¼ RT d ln P ð3:32Þ

For a mixture of ideal gases, we have

pi ¼ xiP ð3:33Þ

where pi is the partial pressure of gas i and xi is its mole fraction. At constant xi,
therefore, d lnpi ¼ d lnP, giving from Eq. (3.32)

dmi ¼ RT d ln pi ð3:34Þ

which is integrated to

mi ¼ m�
i þRT ln pi ð3:35Þ

wherem�
i is the constant of integration.According toEq. (3.35), the chemical potential

of i is logarithmically related to its partial pressure. The value of m�
i can be evaluated

by setting pi¼ 1 atm; then we see that m�
i is the chemical potential of gas i when

pi¼ 1 atm.
Although these ideas seem rather remote from our main interests, they are leading

to an important result. In particular, Eq. (3.35) and its predecessor Eq. (3.13) possess
the general form

mi ¼ constantþRT lnðcomposition variableÞ

which will recur in important contexts. Wewill also have to pay some attention to the
constant term.

The Fugacity. In the development leading to Eq. (3.35), we supposed that we were
dealing with a mixture of ideal gases, and the resulting expression for the chemical
potential was very simple. In real circumstances, gases are not ideal (although at low
pressures their behavior may closely approach ideality). We therefore must accept
that Eq. (3.35) will not be an exact description for real-gas mixtures. The simplicity
of the equation is so attractive, however, that standard practice is to preserve the form
of the equation by replacing the partial pressure pi with a quantity symbolized fi and
called the fugacity. Thus Eq. (3.35) applied to real gases becomes

mi ¼ m�
i þRT ln fi ð3:36Þ

The fugacitymaybe thought of as ameasure of the “escaping tendency” of the gaseous
constituent (consider Latin fugio, to flee; Italian fuggire, to flee; French fugace,
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fleeting; English fugitive). Again m�
i is the value of mi when the logarithmic term

vanishes, that is, when fi¼ 1. Of course, when fi¼ 1, pi probably does not equal 1 for a
real gas, but as the pressure becomes smaller, pi, and fi approach each other, and
ultimately as pi ! 0 we obtain fi=pi ! 1. Thus the ratio fi/pi is a measure of the extent
of nonideal behavior of gas i in the mixture.

Experimental methods are available for themeasurement of fugacities.Wewill not
pursue this aspect of the problem, except to note that fugacity has the units of pressure.

Activity andActivityCoefficient. Wenow turn to liquidmixtures, which are of great
importance in pharmaceutical, chemical, and biological systems. Equation (3.36)
applies to each constituent in a liquid solution because (as wewill prove in Chapter 4)
at equilibrium the chemical potential of each constituent is equal in the liquid phase
and in the vapor phase in contact with it; therefore the fugacity fi of component i is
the same in the liquid and the vapor phases. But it is more convenient to express the
chemical potential in a liquid solution in terms of a quantity having unitsmore familiar
than those of pressure. We therefore build on the foregoing developments, anticipat-
ing that the form of Eq. (3.36) is applicable, to write, for constituent i in a liquid
mixture,

mi ¼ m0
i þRT ln ai ð3:37Þ

This equation is of great importance to us. The quantity ai, is called the activity
of constituent i,mi is its chemical potential, andm0

i is the standard chemical potential
of i. Evidently, m0

i ¼ miwhen ai¼ 1. Of course, the activity ai, and the chemical
potentialmi depend on the conditions of temperature, pressure, and composition of the
system.

At this stage in our treatment the activity is still a concept without a context. Let us
relate this concept to an experimental observable by focusing attention on a solution of
solute i in a liquid solvent. Let c be the concentration (in mol L	1) of the solute.
Then we write the activity of i as

ai ¼ g ici ð3:38Þ

where g i, a proportionality constant, is called the activity coefficient. Combining
Eqs. (3.37) and (3.38), we obtain

mi ¼ m0
i þRT ln g ici ð3:39Þ

Why do we need the activity and the activity coefficient at all? Why not just write

mi ¼ m0
i þRT ln ci ð3:40Þ

The answer to these questions is that real solutions do not behave ideally (just as
real gases do not behave ideally). When treating gases we replaced the pressure pi
with the fugacity fi and saw that the ratio fi/pi is a measure of nonideal behavior.
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Now in treating liquids we replace the concentration ci, with the activity ai, and use
the ratio ai/ci¼ g i, as a measure of nonideal behavior. The source of the nonideal
behavior is the noncovalent forces of interaction between molecules and ions. These
interactions perturb the chemical and physical properties of the molecules character-
istic of their isolated states, when they are sufficiently far apart that they are not
sensibly affected by other particles. We therefore expect that deviations from
ideal behavior will become greater as the molecules are forced closer together, which
will happen as the pressure increases (for gases) or as the concentration increases
(for liquids).

Let us now return to our consideration of Eqs. (3.37) and (3.39). At the moment
we cannot use these equations, because the only quantity that we presumably know is
the concentration ci. It is necessary to introduce some definitions and to adopt some
conventions. First, here are the definitions:

The standard state (with respect to constituent i) is that state of the system inwhich
ai¼ 1; then mi ¼ m0

i .

The reference state (with respect to constituent i) is that state of the system inwhich
g i¼ 1; then ai¼ ci.

From this point on, the rigor with which applications are made depends on the level of
accuracy required in the results. Here are conventions that provide realistic approx-
imations for practical calculations that do not require the highest accuracy.

1. The fugacity of a gasmay be taken equal to its pressure (or partial pressure) in
atm, at low to moderate pressures.

2. The activity of a liquid solvent in a solution is equal to its mole fraction.
It follows that the activity of a pure liquid is 1.00.

3. The activity of a pure solid is 1.00. (This is consistent with convention 2.)

4. The activity of a solute in an infinitely dilute liquid solution (concentrations
of �� 10	 4 M may be considered infinitely dilute for this purpose) may be
taken equal to its molar concentration. Thus, g i ¼ 1.00; the solute is in its
reference state.

5. The activity coefficient of an uncharged solute may be taken as 1.00 at any
concentration (because uncharged molecules experience much weaker forces
of interaction than do ions).

The reference state of a solute is usually taken to be the infinitely dilute solution,
so that g i ! 1 as ci ! 0. (Activity coefficients of ions are more complex than has been
implied by our treatment, as a consequence of the impossibility of experimentally
studying an ionic solutionof either acationor ananionby itself.)Table3.1 (Harnedand
Owen 1958, pp. 484, 488) lists some experimental values of activity coefficients
to give a sense of the extent to which solution behavior may depart from ideality. It is
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also possible to calculate theoretically the activity coefficients of ions by means of
the Debye–Huckel theory. Chapter 8 treats ionic activity coefficients in more detail.

In most of the practical situations of interest to us we deal with mixtures, so the
proper notation and terminology consists of m, the chemical potential, and Dm, the
change in chemical potential. For pure substances, there is no difference between
m and G, the molar free energy, or between Dm and DG. In common practice we
tend to be careless and to use G and DG where we really should be using m and Dm,
but this should cause no confusion. Note, however, that when we are talking about
the free energy or free-energy change of the system, G or DG is appropriate even
for mixtures. The chemical potential rightly applies to specific constituents of the
mixture.

It may be helpful to collect the several equations having the form characteristic of,
for example, Eq. (3.37). Table 3.2 lists these equations.

Table 3.1. Activity coefficients of hydrochloric acid and

sodium chloride in aqueous solution at 25 
C

g

ma HCl NaCl

0.001 0.965 —
0.002 0.952 —
0.005 0.928 0.928
0.007 — 0.917
0.01 0.905 0.903
0.02 0.875 0.873
0.03 — 0.851
0.04 — 0.835
0.05 0.831 0.822
0.06 — 0.812
0.08 — 0.794
0.10 0.797 0.780

aMolality.

Source: Harned and Owen (1958, pp. 484, 488).

Table 3.2. Equations relating chemical potentials to composition variables

System Equation Equation Number

Pure ideal gas G ¼ G* þRT lnP (3.13)
Mixture of ideal gases mi ¼ m*

i þRT ln pi (3.35)
Mixture of real gases mi ¼ m*

i þRT ln fi (3.36)
Ideal liquid mixture mi ¼ mo

i þRT ln ci (3.40)
Real liquid mixture mi ¼ mo

i þRT ln ai (3.37)
Real liquid mixture mi ¼ mo

i þRT ln g ici (3.39)
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PROBLEMS

3.1. Calculate the activity of 0.02m HC1 at 25 
C.

3.2. Calculate the free-energy change accompanying the process

NaCl ð0:005mÞ!NaCl ð0:05mÞ

3.3. Estimate the free-energy difference Dm ¼ m	m0 for a solution 0.25M in
sucrose.

3.4. On the basis of the results of Problems 3.2 and 3.3, comment on the spontaneity
or nonspontaneity of making a solution more concentrated.

3.5. A certain substance undergoes a phase transition at the temperature Tc. What is
the change of free energy of that compound at the temperature Tc?
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4

EQUILIBRIUM

4.1. CONDITIONS FOR EQUILIBRIUM

We have concluded that a spontaneous process, at constant temperature and pressure,
possesses a negative value of dG (or of DG) and that the condition for equilibrium is
that dG¼ 0 (or DG¼ 0). We are now going to examine some specific systems to
uncover an important consequence of the preceding statements.

First, suppose that the system consists of a single pure substance at constant
temperature and pressure, the substance existing (at this temperature and pressure) in
two phases at equilibrium. A solid and its melt at the melting point, or a liquid and its
vapor at theboilingpoint, are themost commonexamplesof sucha system.Wewill use
the solid (s)–liquid (l) equilibrium in what follows. Since the system is at equilibrium,
we know thatDG¼ 0,whereDG is the free energy change permole associatedwith the
process. Writing the process as

Solid>Liquid

we have, from our general definition of incremental change in a process,

DG ¼ Gl 	Gs

where Gl and Gs are the molar free energies of the substance in the liquid and solid
phases, respectively. But since DG¼ 0, we conclude

Gs ¼ Gl ð4:1Þ
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at equilibrium. Thus, for a pure substance, whenever two (or three) phases are in
equilibrium, at fixed temperature and pressure, the molar free energy of the substance
has the same value in each phase.

Now we will extend this argument to a closed system at constant temperature and
pressure,where the system is at equilibrium and containsPphases (P¼ a, b, c,. . .) and
C components (C¼ 1, 2, 3,. . .).1 Since this is a mixture, we use chemical potentials
(partial molar free energies) rather than molar free energies. Imagine infinitesimally
small amounts dn of components being transferred from one phase to another. Since
the system remains at equilibriumduring this reversible process, dG¼ 0, andwewrite
out Eq. (3.24) for the system, obtaining (Glasstone 1947, p. 238)

m1ðaÞdn1ðaÞ þm1ðbÞdn1ðbÞ þ . . . þm1ðPÞdn1ðPÞ

þm2ðaÞdn2ðaÞ þm2ðbÞdn2ðbÞ þ . . . þm2ðPÞdn2ðPÞ

..

.

þmCðaÞdnCðaÞ þmCðbÞdnCðbÞ þ . . . þmCðPÞdnCðPÞ ¼ 0

ð4:2Þ

which is succinctly written X
mCðPÞdnCðPÞ ¼ 0 ð4:3Þ

Since the system is closed, the total amount of each component is constant, giving

dn1ðaÞ þ dn1ðbÞ þ . . . þ dn1ðPÞ ¼ 0

dn2ðaÞ þ dn2ðbÞ þ . . . þ dn2ðPÞ ¼ 0

..

.

dnCðaÞ þ dnCðbÞ þ . . . þ dnCðPÞ ¼ 0

ð4:4Þ

or

X
dnCðPÞ ¼ 0 ð4:5Þ

The onlyway inwhichEqs. (4.2) and (4.4) [or Eqs. (4.3) and (4.5)] can simultaneously
be satisfied is if

m1ðaÞ ¼ m1ðbÞ ¼ . . .m1ðPÞ
m2ðaÞ ¼ m2ðbÞ ¼ . . .m2ðPÞ

..

.

mCðaÞ ¼ mCðbÞ ¼ . . .mCðPÞ

ð4:6Þ

1 A component is defined in this way:C, the number of components, is the minimum number of substances
needed to make up the equilibrium mixture. For example, pure water contains H2O, H3O

þ , OH	, and a
mixture of hydrogen-bonded water multimers, but these are all connected by (established by) equilibria, so
C¼ 1; you need take only one substance, water, to create this system.
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Thus, under these conditions (consisting ofPphases,C components,where the closed
systemisat equilibriumat fixed temperatureandpressure), thechemicalpotentialofeach
individual component has the same value in all phases.This is an obvious generalization
of our earlier result for a pure substance. Since, from Eq. (4.6), we have
miðaÞ ¼ miðbÞ ¼ . . . miðPÞ for component i, it follows that, at equilibrium, dmi ¼ 0 for
the transfer of an infinitesimal amount of component i from one phase to another.2

4.2. PHYSICAL PROCESSES

PhaseTransitions (SingleComponent). Wenow return to a systemconsistingof a
single component in a closed system at fixed temperature and pressure. This substance
is capable of existing in three states ofmatter: the solid, the liquid, and the gas (vapor).
The manner in which these states are controlled by the values of temperature and
pressure is readily displayed on a pressure–temperature phase diagram. Figure 4.1
shows a schematic phase diagram. For each chemical substance the phase diagram
must be experimentally determined.

Any selected pair of coordinates P, T determine the state of the system. Of special
interest are those coordinates describing the lines in the phase diagram, because along
these lines two phases coexist in equilibrium. Thus line OC describes the melting

Figure 4.1. Pressure-temperature phase diagram of a pure substance.

2 The equilibrium condition dmi ¼ 0 also applies to the caseP¼ 1, as in a liquid solution, and it determines
the direction in which solute diffusion takes place. If a nonequilibrium distribution of solute exists, the
solute particles will diffuse in the direction so as to achieve the condition dmi ¼ 0 throughout the solution.
This means that the direction of diffusion is from regions of higher chemical potential to regions of lower
chemical potential.
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transition; at any point on this line the solid and liquid phases are in equilibrium, and the
value of T corresponding to any given value of P is the melting point at that pressure.
The line is very steep because themelting point is not very sensitive to pressure changes
(i.e., the melting point does not change much when the pressure is changed).

Along the lineOB the liquid and its vapor are in equilibrium, so thevalue ofTon this
line is the boiling point corresponding to the selectedP value. Observe that the boiling
point is quite sensitive to pressure.3 Along the line OA the solid and the vapor are in
equilibrium. The direct conversion of solid to vapor is called sublimation.4 At point O
all three phases coexist in equilibrium.This is obviously aunique set of circumstances;
it is called the triple point. The triple point of water is 273.16K (i.e., 0.01 
C) and
4.58mmHg pressure.

Now we treat phase transitions thermodynamically. Consider a pure substance at
temperature and pressure such that two phases, 1 and 2 (which may be gas, liquid, or
solid), are in equilibrium. Thus G1¼G2, and so dGi¼ dG2, which means that if the
temperature or pressure is changed infinitesimally, the changes in free energy
of the two phases will be identical and the phases will remain in equilibrium.
From Eq. (3.5) we write dG¼V dP	 S dT, or

V1 dP	 S1 dT ¼ V2 dP	 S2 dT

Rearranging, we obtain

DS dT ¼ DV dP

where DS ¼ S2 	 S1 and DV ¼ V2 	V1. Therefore

dP

dT
¼ DS

DV
ð4:7Þ

But the system is at equilibrium, soDG ¼ DH	 T DS ¼ 0, givingDS ¼ DH=T , or,
from Eq. (4.7)

dP

dT
¼ DH

T DV
ð4:8Þ

This is the Clapeyron equation. It describes the slope of the line in the phase diagram
for a pure substance.

The Clapeyron equation is especially useful when applied to the liquid–vapor
transition (boiling), and in this application we usually can employ an approximate

3 Conventionally, the boiling point is considered to be the temperature at which the liquid and vapor are in
equilibrium at atmospheric pressure. This definition can be assumed when the pressure is not stated.
4 Sublimation is less familiar than melting or boiling, but it can be important. Salicylic acid readily
sublimes.Anold bottle of aspirin tabletsmay contain partially hydrolyzedaspirin (acetylsalicylic acid). The
products are acetic acid (a liquidwhosevapor smells likevinegar) and salicylic acid,whichmay sublime and
then condense in white crystals on the wall of the bottle.
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version. Writing Eq. (4.8) specifically for this transition, we obtain

dP

dT
¼ DHvap

TDVvap
ð4:9Þ

where T is the boiling temperature and DVvap¼Vvapor	Vliquid. We neglect the molar
volume of the liquid as being very small relative to the molar volume of the vapor.We
will also assume that the vapor phase behaves ideally, so Vvap¼RT/P. Combining
these approximations with Eq. (4.9) yields

1

P

dP

dT
¼ DHvap

RT2
ð4:10Þ

or

d lnP

dT
¼ DHvap

RT2
ð4:11Þ

These two equations are versions of the Clausius–Clapeyron equation, which relates
the boiling point T to the vapor pressure P.

IfDHvap should happen to be essentially constant (independent of temperature), we
can integrate the Clausius–Clapeyron equation. First integrating generally gives

lnP ¼ 	 DHvap

RT
þ constant ð4:12Þ

or

logP ¼ 	 DHvap

2:3RT
þC ð4:13Þ

where C is a constant. Equation (4.12) or (4.13) provides a means for evaluating the
molar heat of vaporization DHvap from vapor pressure-temperature data.

Example 4.1. Table 4.1 gives vapor pressure–temperature data for n-octane.
Calculate DHvap.

Table 4.1. Vapor pressure–temperature data for n-octane

t(
C) T(K) 1/T P(mmHg) log[P(mmHg)]

	14.0 259.15 0.00386 1 0.000
þ 19.2 292.35 0.00342 10 1.000
45.1 318.25 0.00314 40 1.602
65.7 338.85 0.00295 100 2.000
104.0 377.15 0.00265 400 2.602
125.6 398.75 0.00251 760 2.881
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Figure 4.2 is a plot of the data according to Eq. (4.13). From the plot we evaluate
the slope as 	2091K. Equation (4.13) shows this identity:

Slope ¼ 	 DHvap

2:3R

Thus we calculate

DHvap ¼ 	2:3ð1:987 cal mol	1 K	1Þð	2091 KÞ
¼ 9658 cal mol	1

¼ 9:57 kcal mol	1

¼ 40:0 kJ mol	1

The heat of vaporization is positive because heat is absorbed by the system during the
vaporization process.

We can also integrate the Clausius–Clapeyron equation between the limits T1 and
T2, presuming that DHvap is essentially constant in this temperature range. From
Eq. (4.11), we obtain

ðP2

P1

d lnP ¼ DHvap

R

ðT2
T1

dT

T2

Figure 4.2. Plot of Eq. (4.13) for n-octane. Data from Table 4.1.
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which gives

ln
P2

P1
¼ 	 DHvap

R

1

T2
	 1

T1

� �
¼ DHvap

R

T2 	 T1
T1T2

� �
ð4:14Þ

or

log
P2

P1
¼ DHvap

2:3R

T2 	 T1
T1T2

� �
ð4:15Þ

Example 4.2. The vapor pressure of water is 17.535mmHg at 20.0 
C and
31.824mmHg at 30.0 
C. Calculate the heat of vaporization of water in this tempera-
ture interval.

Using Eq. (4.15), we have

log
31:824

17:535
¼ DHvap

ð2:3Þð1:987Þ
10

293:15� 303:15

� �

DHvap ¼ 10; 530 cal mol	1

¼ 10:53 kcal mol	1

In Examples 4.1 and 4.2 we see how heats of transition are determined. With such
DH values at hand, we can calculate entropies of transition as shown in Example 2.1.

The Phase Rule (Multiple Components). We have already developed the condi-
tion for equilibrium in a system at equilibrium containing multiple phases and
components; the condition is that the chemical potential of each component be the
same in all phases [Eq. (4.6)]. Thiswill lead us to a general rule connecting the number
of phases, the number of components, and the number of variables (this last factor is
called the degrees of freedom F) that must be specified in order to define the system
completely (in a thermodynamic sense). Let P be the number of phases and C the
number of components (see note 1). Here are the steps in the reasoning:

1. The composition of a phase containing C components can be specified by
giving C	 1 concentrations. This is because the final concentration can be
obtained by difference.

2. If there are P phases, in order to completely define the compositions of all
phases, P(C	 1) concentrations must be specified. This is the total number of
concentration variables in the system.

3. The temperature and pressure variables must be added to the P(C	 1)
concentration variables. This gives us

Total number of variables ¼ PðC	1Þþ 2
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4. Since for component 1 we know that m1ðphase aÞ ¼ m1ðphase bÞ ¼ . . . ; and
similarly for all C components, this condition gives C(P	 1) independent
equations, which fix C(P	 1) variables.5

5. The number of variables left undetermined (i.e., the number of degrees of
freedom) is equal to the total number of variablesminus the number of variables
that are determined by the equilibrium condition. Thus

Number of degrees of freedom ¼ PðC	1Þþ 2	CðP	1Þ

or

F ¼ C	Pþ 2 ð4:16Þ

This last equation is the phase rule of Gibbs.

Wewill apply the phase rule to the phase diagram of Fig. 4.1 in order to learn how it
works. First consider the liquid–gas equilibrium. There are two phases and one
component, so F¼ 1	 2 þ 2¼ 1. This means that specifying one degree of freedom
suffices to completely define the system. If we choose to specify the temperature (as
our one degree of freedom), the condition of equilibrium uniquely guarantees that the
pressure will be fixed at the value given by the lineOB corresponding to the specified
temperature.Alternatively,wemight have specified the pressure; then the temperature
would be defined by the system. In this system as described, we cannot independently
choose both the temperature and the pressure.

Next consider the triple point O. Here P¼ 3 and C¼ 1, so F¼ 0. There is no
freedom to alter the system variables while maintaining the system at the triple point.

A very practical kind of system is that of a pure solid substance placed in contact
with a second pure substance, a liquid, which we call the solvent.To be specific, let us
add solid benzoic acid towater. Presuming that sufficient benzoic acid has been added
so that at equilibrium some solid is present, how many degrees of freedom does the
system possess?

The process that occurs is dissolution of benzoic acid in water. EvidentlyP¼ 2, for
two phases, solid benzoic acid and liquid solution, are present. Moreover, C¼ 2,
because the system can be prepared from benzoic acid and water. The phase rule
gives us F¼ 2	 2 þ 2¼ 2 degrees of freedom. These are the temperature and the

5 The multiplier is P	 1 rather than P because if we know C(P	 1) relationships, we have exhausted the
independent equations. For instance, supposeC¼ 2 (components numbered 1,2) and P¼ 3 (phases labeled
a, b, c). Then the C(P	 1)¼ 2� 2¼ 4 independent equations are

m1ðaÞ ¼ m1ðbÞ; m2ðaÞ ¼ m2ðbÞ
m1ðbÞ ¼ m1ðcÞ; m2ðbÞ ¼ m2ðcÞ

The equations m1ðaÞ ¼ m1ðcÞ and m2ðaÞ ¼ m2ðcÞ are not independent, but follow from the preceding four
equations.
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pressure, both of which must be fixed in order to completely define the position of
equilibrium of the system. (In practice this system is not very sensitive to pressure,
which is commonly the ambient atmospheric pressure, but it is very sensitive to the
temperature.) An equivalent description of this system is that at fixed temperature and
pressure, the concentration of dissolved benzoic acid is invariant; no further degrees of
freedom remain. We call this invariant dissolved concentration the equilibrium
solubility of benzoic acid at the experimental temperature.

4.3. CHEMICAL EQUILIBRIUM

The Equilibrium Constant. We now turn to a treatment of chemical reactions,
namely, processes in which chemical bonds (covalent bonds) or noncovalent inter-
actions are formed or broken, or both. Because liquid systems are of special interest to
us, suppose that the process occurs in a homogeneous (single phase) liquid system.Let
the generalized balanced chemical reaction be written

aAþ bB>mMþ nN ð4:17Þ

where A and B represent the reactant chemical species; M and N are the product
chemical species; and a, b, m, n are stoichiometric coefficients in the balanced
reaction.6 For the moment we do not require that the system be at equilibrium, but the
temperature and pressure are fixed.

As is our usual practice, the incremental change in free energy is defined (on a per
mole basis) as the difference between the final state and the initial state:

DG ¼
X

Gproducts 	
X

Greactants ð4:18Þ

Recognizing that our reaction system is amixture, we know thatwe should express the
free energies of reactants and products in terms of chemical potentials; thus Eq. (4.18)
becomes

DG ¼ mmM þ nmN 	 amA 	 bmB ð4:19Þ

Notice that each term on the right is the product of an intensity factor (e.g., mM,
chemical potential per mole) and a capacity factor (m, number of moles).

Next we call on our fundamental relationship for the chemical potential in terms of
activity [Eq. (3.37)]:

m ¼ m0
i þRT lnai ð4:20Þ

6 Our modern interpretation of a balanced chemical reaction views the species symbols as representing
atoms, molecules, or ions, but the balanced reaction does not necessarily imply an atomic viewpoint. The
reaction simply describes an experimental observation and is a classical thermodynamic concept.
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We simply substitute from Eq. (4.20) into Eq. (4.19):

DG ¼ mm0
M þmRT lnaM þ nm0

N þ nRT lnaN

	 am0
A 	 aRT lnaA 	 bm0

B 	 bRT lnaB

Collecting terms and making use of one of the properties of logarithms gives

DG ¼ ðmm0
M þ nm0

N 	 am0
A 	 bm0

BÞ
þRT lnamM þRT lnanN

	RT lnaaA 	RT lnabB

which can be written

DG ¼ DG0 þRT ln
amMa

n
N

aaAa
b
B

ð4:21Þ

where DG0 ¼ mm0
M þ nm0

N 	 am0
A 	 bm0

B.
7 Equation (4.21) is called the reaction

isotherm (the term isotherm merely signifies that the equation or phenomenon takes
place at, or applies to, a constant temperature).

Recall that we have not yet required that the system be at equilibrium.
Equation (4.21) gives the free energy change as a function of the activities of reactants
and products of the reaction. But it is the equilibrium condition that specifically
interests us. Let the activities now be the activities at equilibrium, and define

K ¼ amMa
n
N

aaAa
b
B

ð4:22Þ

Moreover, we recall that the condition for equilibrium is that DG¼ 0. Putting this
condition and the definition of Eq. (4.22) into Eq. (4.21) gives the simple but very
important result:

DG0 ¼ 	RT ln K ð4:23Þ

The quantityK is called the equilibrium constant for the reaction; its general form can
be inferred from Eq. (4.22). It is conventional to write the products in the numerator
and the reactants in the denominator. Notice, therefore, that the reciprocal of K as
thus defined is the equilibrium constant for the reaction when written in the reverse
direction.

Equilibrium constants can be measured experimentally; in effect, one needs to
determine each activity in the definition and then to calculate K according to

7 It would be perfectly correct to write Dm0 instead of DG0. The latter symbolism is used in order to be
consistent with conventional practice.
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Eq. (4.22). Then, with Eq. (4.23), the quantity DG0 (which is pronounced “delta G
naught”) is calculated. DG0 is called the standard free-energy change for the reaction,
and it is interpreted as the change in free energy per mole when the reactants in their
standard states are transformed into the products in their standard states. This concept
is difficult to visualize in physical terms, and it may be better to note the obvious,
namely, that [seeEq. (4.23)]DG0 andK contain the same information about the system.
The logarithmic relationshipbetweenDG0 andK, aswell as the formof the equilibrium
constant definition, is a direct consequence of the form of Eq. (4.20) for the chemical
potential.

In the chemical literature many equilibrium constants are described by adjectives
that provide information on the chemical process and on the definition of the constant.
For example, a weak acid HA dissociates according to

HA>
Ka

Hþ þA	

Placing the equilibrium constant symbol over the arrows tells the reader how the
constant is to be defined; in this case

Ka ¼ aHþ aA	

aHA
ð4:24Þ

This particular equilibrium constant is called an acid dissociation constant (or
acid ionization constant). For a reaction, especially a reaction involving noncovalent
interactions, having the form

AþB>M

the equilibrium constant

K ¼ aM
aAaB

may be called an association constant, formation constant, stability constant, or
binding constant.Turn the reaction around, and its equilibriumconstant (whichwill be
the reciprocal of K) becomes a dissociation constant or instability constant.

Example 4.3. For the acid dissociation of acetic acid in water at 25 
C, the experi-
mental value of Ka is 1.75� 10	5. Calculate DG0 for this process.

We can use Eq. (4.23) directly or in the form

DG0 ¼ 	 2:303 RT logKa

¼ 	ð2:303Þð1:987 cal mol	1 K	1Þð298:15 KÞð	 4:757Þ
¼ þ 6490 cal mol	1

¼ þ 6:49 kcal mol	1

ð4:25Þ
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From either Eq. (4.23) or (4.25) we obtain these correspondences:

If K< 1, then DG0> 0.

If K¼ 1, then DG0¼ 0.

If K> 1, then DG0< 0.

In Example 4.3, DG0 has a positive sign because K is smaller than unity. This tells us
that, at equilibrium, the reactant state is “favored” in this process.

The units of the equilibrium constant require comment. From its definition in terms
of activities, it is clear that we need to know the units of activities. Our earlier
conventions concerning standard states and reference states provide guidance.
Evidently the activities of solvents and solids, which are taken equal to their mole
fractions in practical work, are dimensionless, because the mole fraction is dimen-
sionless. The activities of uncharged molecules are taken equal to the concentrations
(usually inmol L	1) of thesemolecules, so the activities are reasonably given the same
units. Tomaintain consistency, it is advisable to assign the units of concentration to the
activities of other solution species.

According to these recommendations, the unit of the acid dissociation constant Ka

is [fromEq. (4.24)]M (i.e., mol L	1). However, units are conventionally not stated for
Ka values.

8

The standard free-energy change DG0 can be related to a standard enthalpy change
DH0 and a standard entropy change DS0 by the usual form:

DG0 ¼ DH0 	 TDS0 ð4:26Þ

DH0 and DS0 are interpreted analogously to DG0, that is, in terms of the process in
which reactants are transformed into products, and all species are in their standard
states.

Temperature Dependence of the Equilibrium Constant. The Gibbs–Helmholtz
equation [Eq. (3.18), repeated here as Eq. (4.27)] has a useful form for our present
purpose:

d DG=Tð Þ
dT

¼ 	 DH
T2

ð4:27Þ

From Eq. (4.23), DG0 ¼ 	RT ln K, rearrangement gives

DG0

T
¼ 	R ln K ð4:28Þ

8 An alternative viewpoint is that activities are dimensionless, thus requiring the activity coefficient to have
units. Each point of view is acceptable, provided that it is consistently applied throughout a calculation.
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Combination of Eqs. (4.27) and (4.28) yields

d lnK

dT
¼ DH0

RT2
ð4:29Þ

Equation (4.29), the van’t Hoff equation, describes how the equilibrium constant
varies with the temperature. The quantity DH0 is the standard enthalpy change,
sometimes called the heat of reaction. If DH0 is essentially independent of tempera-
ture, general integration of Eq. (4.29) gives

lnK ¼ 	 DH0

RT
þ constant ð4:30Þ

or

log K ¼ 	 DH0

2:3RT
þC ð4:31Þ

Alternatively, integration between the temperature limits T1 and T2 gives

ln
K2

K1
¼ DH0

R

T2 	 T1
T1T2

� �
ð4:32Þ

log
K2

K1
¼ DH0

2:3R

T2 	 T1
T1T2

� �
ð4:33Þ

These integrated equationsmayseemfamiliar; theyhave the same formas thevapor
pressure equations (4.12)–(4.15), and they are used similarly.

Free-Energy, Enthalpy, andEntropyChanges inChemical Reactions. Wenow
have at hand all the thermodynamic theory needed to calculate (from the appropriate
experimental data) these standard thermodynamic quantities for a chemical reaction:
DG0, DH0, and DS0. These are the steps:

1. From measurement of the equilibrium constant K at a given temperature,
calculate DG0 from

DG0 ¼ 	RT ln K ð4:34Þ

2. From measurements of K at several temperatures, calculate DH0 by means of
one of Eqs. (4.30)–(4.33).

3. From DG0¼DH0	 T DS0, calculate DS0.

Since K in general varies with temperature, evidently DG0 does as well.
When integrating the van’t Hoff equation, we assumed that DH0 is a constant,
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Table 4.2. Dependence of equilibrium constant on temperature for the binding

of methyl trans-cinnamate and 8-chlorotheophylline anion in water

T(
C) K(M	1) T(K) 1/T logK

15.5 11.6 288.65 0.00346 1.064
25.0 8.7 298.15 0.00335 0.940
40.0 5.9 313.15 0.00319 0.771

independent of temperature, and although this may constitute an acceptable approxi-
mation for many reactions, it is not generally true, and it may lead to poor estimates
of DH0 and DS0. The data themselves, if carefully interpreted, will reveal whether
DH0 is reasonably constant over the temperature range that was investigated
experimentally.

Example 4.4. These are data (Table 4.2) for the equilibrium constant (a stability
constant) describing the noncovalent association between methyl trans-cinnamate
and 8-chlorotheophyllinate in aqueous solution. Find DG0, DH0, and DS0 at 25 
C.

1. From Eq. (4.34), or its equivalent, we have

DG0 ¼ 	ð2:303Þð1:987 cal mol	1K	1Þ log 8:7
¼ 	 1282 cal mol	1

¼ 	 1:28 kcal mol	1

2. DH0 will be obtained from a plot according to Eq. (4.31); this is called a van’t
Hoff plot:

log K ¼ 	 DH0

2:3RT
þC

Slope ¼ 	 DH0

2:3R

Figure 4.3 shows the plot, which is acceptably straight over the temperature
range given in the table; this linearity is consistent with the constancy of
DH0 over this temperature range. The slope of the line is 1083 K, giving for
DH0

DH0 ¼ 	ð2:3Þð1:987 cal mol	1K	1Þð1083 KÞ
¼ 	 4996 cal mol	1

¼ 	 5:00 kcal mol	1
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3.

DS0 ¼ 	ðDG0 	DH0Þ
T

¼ 	 1:28	ð5:00Þ kcal mol	1

	 298:15 K

¼ 	 0:0125 kcal mol	1K	1

¼ 	 12:5 cal mol	1K	1

We can interpret these results chemically. The reaction has the form

AþB>C

where A is methyl cinnamate and B is 8-chlorotheophyllinate; C is the complex
formed from these. Since K> 1, we have DG0< 0; the product C is favored over
the reactants. But this result is seen to be a consequence of a competition betweenDH0

and DS0. DH0 is negative, so the enthalpy change makes a favorable contribution to
DG0 (it makes DG0 more negative). The negative value of DH0 suggests that fairly
strong noncovalent binding is occurring between A and B, because DH0 is an
energy value. On the other hand, the negative value of DS0 opposes product formation
by making a positive contribution to DG0 (because of the negative sign in
DG0¼DH0	 T DS0). The negative entropy change may arise because two particles
(A and B) are being transformed into a single C particle, with a resultant decrease in
number of configurational and thermal microstates of the system. If we were to write

Figure 4.3. van’t Hoff plot of the data in Table 4.2.
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this reaction as

C>
K 0

AþB

we would find that K0 ¼ 1/K and that DG0, DH0, and DS0 each possesses the same
numerical value as found in this example, but with the opposite sign.

A subtlety of such calculations, often overlooked, is that the numerical values
of DG0 and DS0 (but not of DH0) depend on the concentration scale in which
the equilibrium constant is expressed. In thermodynamic terms, this is stated as
follows: The numerical values of DG0 and DS0 depend on the choice of standard state.

PROBLEMS

4.1. The vapor pressure of heptane, C7H16, is 100mmHg at 41.8 
C and 760mmHg
(i.e., 1 atm) at 98.4 
C. Calculate its molar heat of vaporization over this
temperature range.

4.2. The equilibrium constant for this reaction in aqueous solution at 25 
C is
21.5M	1:

Theophyllineþ Salicylate anion>
K

Complex

Calculate the standard free energy change for this reaction.

4.3. These are literature data for the vapor pressure of ethyl acetate, CH3COOC2H5,
as a function of temperature. Calculate the heat of vaporization.

T(
C) P(mmHg)

	43.4 1
	13.5 10

9.1 40
27.0 100
59.3 400
77.1 760

4.4. A quantity pKa is defined by the relationship

pKa ¼	 logKa

where Ka is the acid dissociation constant of a weak acid in water. Obtain an
equation by which the standard free-energy change can be calculated directly
from the pKa.

4.5. The pKa value of phenol is 10.0 at 25 
C. Write the chemical reaction, define
Ka, and calculate DG0 for the process.
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4.6. The pKa value of chloroacetic acid, ClCH2COOH, is 2.87 at 25

C, and its heat

of ionization (DH0) has been measured to be 	1.12 kcal mol	1. Calculate its
standard entropy of ionization.

4.7. The ionization (acid dissociation) of chloroacetic acid takes place in aqueous
solution according to

ClCH2COOH>
Ka

Hþ þClCH2COO
	

In view of this, attempt to rationalize the sign of DS0 obtained in Problem 4.6.

4.8. The equilibrium constant for the addition of hydrogen cyanide to acetaldehyde
is 7100M	1 at 25 
C. Calculate DG0.

H3 CHO + HCNC

OH

CH

CN

H3C

4.9. A pharmacy has received 0.5 kg of a certain drug with a molecular weight of
250 gmol	1. The drug undergoes a degradation reaction with a heat of reaction
of 750 cal mol	1 and an equilibrium constant equal to 1.2� 10	3. The drug is
kept in a thermostated stockroom at 25 
C. Calculate the entropy of the
degradation reaction.

4.10. The pH of a 0.01M solution of chloroacetic acid is 2.44 at 25 
C. The entropy
change DS0 of the acid dissociation is	16.9 cal mol	1 K	1. Calculate the heat
of dissociation DH0 of chloroacetic acid. Based on the value of the calculated
DH0, predict if the equilibrium constant of chloroacetic acid at 50 
C is smaller
or larger than the equilibrium constant at 25 
C.

4.11. The vapor pressure of n-octane is 100mmHg at 65.7 
C and 400mmHg at
104.0 
C. Knowing that the boiling point of n-octane is 126.5 
C and assuming
that the heat of vaporization is constant in the range of temperatures
40 
C–126.5 
C, calculate the entropy of vaporization of n-octane.

4.12. Calculate the number of degrees of freedom F of the following systems:

(a) Carbonated water.

(b) A suspension of erythromycin stearate (a powerful antibiotic) in water.

4.13. The dissociation of aqueous ammoniaNH4OHyields the ionsNH4
þ andOH	.

Knowing that the dissociation constant of NH4OH is 1.652� 10	5 at 15 
C and
1.892� 10	5 at 50 
C, calculate the standard DG0 (DG at 25 
C) knowing that
DS0 is 	19.3 cal K	1.
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5

INTRODUCTION TO
PHYSICAL PROCESSES

5.1. SCOPE

The separation of properties or processes into physical and chemical categories is
arbitrary but useful, and in most instances it is not notably ambiguous. Here are the
criteria adopted in making the present separation:

1. All covalent bond changes (which necessarily result in alterations in primary
molecular structure) are chemical. This category includes most of the reactions
of interest in organic chemistry, inorganic chemistry, and biochemistry. Part III
deals with such processes.

2. All changes in physical state or phase that do not involve covalent bond changes
are physical. Such processes include melting, vaporization, sublimation,
dissolution, partitioning, and adsorption. These are of concern in Part II.

3. There is an exception: electrolyte dissociation and behavior are treated
generally, in Part II, as a physical phenomenon, but the special case of acid–base
equilibrium is discussed as a chemical phenomenon in Part III.

4. An ambiguous area remains, consisting of changes in noncovalent interactions
roughly in the DG0 range of 0–10 kcalmol	1. These processes include molec-
ular complex formation (binding phenomena of many types) and conforma-
tional changes. We classify these as chemical, and treat them in Part III.

Some slight repetition ofmaterial from Part I will be encountered in Part II, where it is
inserted for convenience.
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5.2. CONCENTRATION SCALES

Solution composition can be expressed on a physical (empirical) basis in terms of the
quantities measured in the laboratory. These are the common concentration scales of
this type:

Percent by Weight. The number of grams of solute contained in 100 g of solution.
The concentration of the strong mineral acids, as available commercially, are
expressed as percent by weight.

Percent Weight/Volume (% w/v). The number of grams of solute contained in
100mL of solution. This scale is often used to describe the composition of
solutions of solids in liquids.

Percent by Volume. The number of milliliters of solute contained in 100mL of
solution. Solutions of liquids in liquids are commonly specified in this way. It is
important to note a possible ambiguity in this designation. Consider these
twooperations: (1) 80.0mLof ethanol is dissolved inwater tomake a final total
volume of 100mL; (2) 80.0mL of ethanol is mixed with 20.0mL of water.
These solutions have different compositions, because preparation 2 does not
yield a final volume of 100mL. In thermodynamic terms, the partial molar
volume of ethanol is not equal to its molar volume. In molecular terms, the
spatial and energetic character of the ethanol–water interaction is different from
those of ethanol–ethanol or water–water interactions. Solution 1 has a compo-
sition of 80.0% by volume of ethanol. The composition of solution 2 is most
easily specified in terms of its volume fraction w, where the volume fraction wi

of component i is defined

wi ¼
ViPn

i¼1
Vi

Thus solution 2 has volume fraction w1 ¼ 0:20 of water and w2 ¼ 0:80 of ethanol. In
order to communicatewithout possible confusion, statements of solution composition
should specify clearly, as, for example, by describing the manner of preparing the
solution, which concentration scale is meant.

Observe that these physical concentration scales constitute the three combina-
tions of mass/mass, mass/volume, and volume/volume. Other units may, however,
often be encountered. For example, milligram percent is the number of milligrams
of solute contained in 100mL of solution. Another common unit is milligrams per
milliliter (mg/mL), which is numerically equal to grams per liter (g/L). Very dilute
solutionsmay be expressed in parts per million (ppm), which is the number of grams
of solute contained in 106 g of solution. (If the solvent is water, this is effectively the
number of grams of solute in 106mL of solution.) Similarly, ppb means parts per
billion.
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The chemical concentration scales are based on the concept of the amount of
substance as expressed in number of moles:

Molarity (c)—the number of moles of solute contained in 1000mL of solution.
Molarity has the units mol L	1, which is often designated M; it is expressed as
mol dm	3 in SI units. Some investigators use the unit millimolar (mM), which
denotes the number of millimoles contained in 1000mL of solution; for
example, 0.030M and 30mM have the same meaning. Molarity is a very
practical concentration scale, but it has the disadvantage that the molarity of a
solution depends on the temperature, because the volume is temperature-
dependent.

Molality (m)—the number ofmoles of solute per 1000 g of solvent. Themolality is
temperature-independent, and for this reason it is often preferred in precise
physical chemical experimental work.

Mole fraction(x)—the number of moles of solute divided by the total number of
moles in the solution. The mole fraction is temperature-independent.
A convenient attribute of the mole fraction (as of all fractional quantities) is
that the sum of the mole fractions of all constituents in a solution is unity.

In general themolarity,molality, andmole fraction scales are not directly proportional
to each other, but in very dilute solutions of a solute i the relationships are

xi ¼ ciM1

1000r1
xi � 1ð Þ ð5:1Þ

xi ¼ miM1

1000
ðxi � 1Þ ð5:2Þ

where subscript 1 refers to the solvent and i to the solute. In these dilute solutions,
Eqs. (5.1) and (5.2) show that the various concentration scales are proportional to each
other; M1 is the molecular weight of the solvent, and r1 is its density.

5.3. STANDARD STATES

In Chapter 3we encountered the concept of the standard state, and herewewill extend
the treatment by explicitly invoking the concentration scales used in laboratory work.
We begin with Eq. (3.37), repeated here:

mi ¼ m0
i þRT ln ai ð5:3Þ

In this equation,mi is the chemical potential (partialmolar free energy) of constituent i
in a liquid mixture, m0

i is its standard chemical potential, and a1 is its activity. The
activity,which canbe thought of as an “effective concentration,” is related to the actual
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concentration by

Activity ¼ Activity coefficient� Concentration

where the activity coefficient is a number that accounts for deviations from ideal
behavior. Let us recall these definitions:

The standard state (with respect to constituent i) is that state of the system inwhich
the activity of i is unity; then, from Eq. (5.3), mi ¼ m0

i .

The reference state (with respect to constituent i) is that state of the system inwhich
the activity coefficient of i is unity; then its activity equals its concentration.

For the present let us suppose that the system is in its reference state (for constituent i),
so the activity coefficient is unity, and the activity is equal to the concentration. Butwe
have seen that concentrations can be expressed inmolarity, molality, or mole fraction.
For constituent i in a given system, Eq. (5.3) may be written in terms of each of these
concentration units:

mi ¼ m0
i þRT ln ci ð5:4Þ

mi ¼ m0
m þRT ln mi ð5:5Þ

mi ¼ m0
x þRT ln xi ð5:6Þ

The situation represented by Eqs. (5.4)–(5.6) is analogous to the specification of
mechanical potential energy, say, of a rock on top of a hill. We can only speak
numerically of energy differences, andwe calculate the potential energy of the rock as
the product mgh, where m is its mass, g is the gravitational acceleration, and h is its
height. But beforewe canmake the calculation, wemust define a state at which h¼ 0,
and this is arbitrary, meaning that we can choose any state we wish. We might, in the
case of the rock on the hill, choose tomeasure h from thevalley floor, but we could just
as well choose sea level as this state. Equations (5.4)–(5.6) present the same kinds of
choices. In each case, mi is the same definite quantity (corresponding to the potential
energy of the rock on the hill). Each equation can be rearranged to the form

mi 	m0
c ¼ RT ln ci

using Eq. (5.4) as an example. Since, for a given solution, ci, mi, and xi have different
numerical values, so, too, do the quantities ðmi 	m0

cÞ, ðmi 	m0
mÞ, and ðmi 	m0

xÞ. Each
of these quantities gives the value of the chemical potential mi, relative to its standard
state value. Each expression is thermodynamically acceptable; they differ only in the
values they assign to the standard potential. We can easily find the relationship
between these different standard chemical potentials. Let us compare Eqs. (5.4)
and (5.6). Recalling that we have assumed that the system is in its reference state,
which usually is the infinitely dilute solution, we can use Eq. (5.1), substituting it
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into (5.6) to eliminate xi, and setting Eqs. (5.4) and (5.6) equal to yield

m0
c ¼ m0

x þRT ln
M1

1000r1

For example, if the solvent is water, then M1¼ 18 and r1 ¼ 1.0, and we find
m0
c ¼ m0

x 	RT ln 55:5. Concluding this exposition, we see that the selection of a
standard state is arbitrary and that we select a standard state when we choose a
concentration scale. [Some authors write of “adopting the 1M standard state,” for
example, which merely means that the molar scale was used, with Eq. (5.4) showing
that when ci¼ 1, then mi ¼ m0

c .]
In the more general case where activity coefficients may deviate from unity,

Eqs. (5.4)–(5.6) become

mi ¼ m0
c þRT ln gcci ð5:7Þ

mi ¼ m0
m þRT ln gmmi ð5:8Þ

mi ¼ m0
x þRT ln gxxi ð5:9Þ

where the subscript i has been omitted from them0 and g terms to reduce typographical
clutter. In general gc, gm, and gx differ for the same system, although in dilute solutions
theyhavenearly the samevalue (Glasstone1947, p. 355).Certain conventions allowus
to carry out calculations to levels of accuracy appropriate to many practical situations
where extreme accuracy is not required. We will adopt these conventions, which are
repeated from Chapter 3 for convenience:

1. The fugacity of a gas is taken equal to its pressure (or partial pressure) in atm, at
low to moderate pressures.

2. The activity of a liquid solvent in a solution is equal to its mole fraction.
It follows that the activity of a pure liquid is 1.00 and that this is its standard
state. (This convention also applies to liquid solutes if desired.)

3. The activity of a pure solid is 1.00; this is the same as convention 2.

4. The activity of a solute in an infinitely dilute solution will be taken equal to its
molar concentration; that is, gc ¼ 1.00; the solute is in its reference state. The
standard state is rather peculiar; it approximates to the 1M solution, but at this
concentration the solution probably does not behave ideally, so although its
activity is unity by definition, some of its properties are those of the reference
state. (We further expand on this in Section 7.2.)

5. The activity of an uncharged solutewill be taken as 1.00 at any concentration.
This is an approximation justified by recognizing that uncharged molecules
experience much weaker forces of interaction than do ions. The approximation
improves as the solution is made more dilute.

6. The activity coefficient of an ion can be drawn from experimentally determined
results (Harned and Owen 1958) or calculated from theory, as will be described
in Section 8.3.
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It is instructive to write Eq. (5.7) in this expanded form

mi ¼ m0
i þRT ln ci þRT ln g i ð5:10Þ

This equation shows how the numerical value of the chemical potential mi receives a
contribution from the arbitrarily assigned standard state (m0

i ), a contribution from
RT ln ci, which describes the composition dependence of the ideally behaved
constituent, and a contribution from RT ln g i, which describes the nonideal behavior
of the constituent.Althoughnot explicitly indicated, g i is also composition-dependent,
and as ci ! 0, g i ! 1.

PROBLEMS

5.1. Calculate the mole fraction x2 of benzoic acid in an aqueous solution 1.5mM in
benzoic acid. Also calculate the mole fraction xi of water in this solution.

5.2. Concentrated hydrochloric acid is labeled to contain about 38.0% by weight of
HCl, and its density is about 1.19 gmL	1. Calculate the approximate molar
concentration of HCl in this solution.

5.3. What is the molar concentration of pure water?

5.4. Calculate the difference between standard chemical potentials in dilute aqueous
solution based on the molar and the mole fraction standard states, at 25 
C.

5.5. Obtain an equation with which molar and molal concentrations may be inter-
converted in dilute solution.

5.6. Consider a liquid solution of solvent 1 and solute 2. Let n1 and n2, respectively, be
the numbers of moles of solvent and solute in a given mass of solution, whose
density is p. Then derive an exact equation relating x2 and c2. [Hint: The correct
result must reduce to Eq. (5.1) in very dilute solution.]

5.7. A0.1Msolution of glucose (MW¼ 180 g/mol) has a density of 1.04 g/mL.What
is the molality of the solution?

5.8. Consider a 0.28m solution of glucose. Calculate themole fraction and the%w/w
of glucose in this solution.
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6

PHASE
TRANSFORMATIONS

6.1. PURE SUBSTANCES

Phase Diagrams. In this section we treat equilibria in heterogeneous systems, that
is, systemsconsistingofmore thanonephase.Aphaseofmatter is uniform in chemical
composition andphysical state. Itmay be subdivided, but it remains a single phase. For
example, a system consisting of ordinary crushed ice dispersed inwater possesses two
phases: ice and water. These types of systems were treated briefly in Chapter 4.
Figure 6.1, which appeared earlier as Fig. 4.1, is a pressure–temperature phase
diagram for the simplest case, a pure substance possessing only one form of each
of the three phases solid, liquid, and vapor (gas). (A pure substance can have only a
single vapor phase, and most pure substances have only a single liquid phase,1 but
many solid phases may exist, as will be described below.)

The line OC in Fig. 6.1 describes all systems in which the solid and liquid phases
coexist in equilibrium; that is, any pair of P, T coordinates on this line describe the
melting temperature of the solid at that pressure. Similarly, line OB gives the boiling
temperature as a function of pressure, and lineOA gives the sublimation temperature.
PointO is called the triple point, a unique pair of P, T values at which the solid, liquid,
and vapor are in mutual equilibrium. The slopes of these lines are given by Eq. (6.1),
the Clapeyron equation, from Chapter 4:

1 Some substances reveal the existence of a second liquid phase called the liquid crystalline phase. It is
recognized by its optical properties.
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dP

dT
¼ DH

TDV
ð6:1Þ

where DH is the enthalpy change for the process and DV is the volume change. For the
special case of the liquid–vapor transition (boiling), this equation is usually used in the
approximate version called the Clausius–Clapeyron equation:

d ln P

dT
¼ DHvap

RT2
ð6:2Þ

In its integrated forms the Clausius–Clapeyron equation becomes

log P ¼ DHvap

2:3RT
þC ð6:3Þ

or

log
P2

P1
¼ 	DHvap

2:3R

T2	T1
T1T2

� �
ð6:4Þ

whereC is a constant;DHvap,themolar heat of vaporization, is assumed tobe a constant
throughout the temperature range of interest; and the equations relate boiling
temperature to pressure.

Figure 6.1. Pressure–temperature phase diagram of a pure substance.
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The Gibbs phase rule is

F ¼ C	Pþ 2 ð6:5Þ

where P is now the number of phases in the system at equilibrium,C is the number of
components, and F is the number of degrees of freedom.2F is the number of variables
thatmust be fixed in order to completely define the system.For example, along lineOC
in Fig. 6.1 there are two phases (solid and liquid) and one component (since this is the
diagram for a pure substance), so F¼ 1	 2 þ 2¼ 1. According to this result, the
system along lineOC possesses one degree of freedom. This means that we can select
either the pressure or the temperature at will (provided the value lies within the OC
range); the other variable is then established by the equilibrium.

At the triple pointO,F¼ 1	 3 þ 2¼ 0; the systemhas no degrees of freedom.The
three phases solid, liquid, and vapor are all in equilibrium, and if this condition is to be
maintained, neither the temperature nor the pressure may be altered.

Figure 6.1 and the Clausius–Clapeyron equation show that the pressure may be a
fairly sensitive function of temperature along the vaporization lineOB.By definition,
the normal boiling point Tb is the boiling temperature when P¼ 1 atm; this is the
boiling temperature usually measured in the laboratory (or the kitchen). The melting
point (also called the freezing point) is not very sensitive to pressure.

Polymorphism. A pure substance may be capable of existing in more than one
crystalline solid form. Each such crystalline solid is a separate phase, and these forms
are called polymorphs. The phenomenon of polymorphism (also known as allotropy)
is widespread, and it has pharmaceutical ramifications. Polymorphs have different
arrangements of the molecules in their crystal structures, but chemically they
are identical. The two or more polymorphs of a substance possess different free
energies, and the polymorph that has the lowest free energy is the thermodynamically
most stable form. The other forms are thermodynamically unstable relative to the
stable form, but it may happen that the rate of transformation from the unstable to
the stable forms is so slow as to be negligible or practically unimportant, in which case
the unstable polymorph is said to bemetastable. For example, the element carbon can
exist in two polymorphic forms called graphite and diamond. Graphite is the
thermodynamically stable form, and diamond is metastable with respect to it, but
although diamond is thermodynamically unstable, the timescale on which it trans-
forms to themore stable form is of no human concern. Some polymorphic transforma-
tions may be quite fast, however.

A given substance may possess numerous polymorphs—phenobarbital has at least
8 andmay have 11 of them—but according to the phase rule, themaximum number of
phases, including solid phases, that can coexist in equilibrium is P¼C þ 2 (i.e., P is
maximized when F is set to 0); for a pure substance this is three phases. Figure 6.2

2 The number of componentsmay differ from the number of constituents. Here is a simpleway to determine
C, the number of components: C is equal to the minimum number of bottles of pure substances required to
prepare the system in the laboratory.
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is the phase diagram of water at extremely high pressures (Findlay et al. 1951).
This phase diagram (which is based on the experimental work of P. W. Bridgman)
shows six ice polymorphs; these are labeled ice I (this is ordinary ice), ice II, ice III, ice
V, ice VI, and ice VII (the reported discovery of ice IV was erroneous). Observe that a
maximum of three phases may exist at any fixed combination of temperature and
pressure.3

The pharmaceutical significance of polymorphism lies in two features: (1) The
different crystal forms have different physical properties and (2) polymorphs may
interconvert on a pharmaceutically pertinent timescale. These features have led
to much pharmaceutical research in this area (Carstensen 1973, pp. 113–124;
Haleblian and McCrone 1969; Haleblian 1975; Florence and Attwood 1981,
Chapter 2; Yu 2007; Chen et al. 2005). It has been found that the solubilities of
polymorphic forms of a drug are different. If the solubility of the less stable form is
greater than that of the more stable form, its solution will be unstable with respect to
the more stable solid form because it is supersaturated with respect to this form.
Precipitation may occur unexpectedly in such a situation unless some form of
stabilization can be devised. The bioavailability of a drug may depend on the drug’s

Figure 6.2. Pressure–temperature phase diagram of water at high pressures, showing the six ice

polymorphs. [Reproduced by permission from Findlay et al. (1951).]

3 For a fictional use of the concept of polymorphism see the note on ice-nine in Wikipedia (http://en.
wikipedia.org/wiki/Ice-9).
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polymorphic form. Chemical stability of drugs, as well as the physical stability of
pharmaceutical dosage forms,may be dependent on the polymorphic form of the drug
and its propensity for transformation to a more stable polymorph. The presence of
more stable inactive polymorphs of a drug can lead to very serious problems. The case
of the AIDS drug Ritonavir is exemplary. This very effective drug could not be used
after the sudden appearance of a new, more stable but less soluble polymorph. This
new inactive polymorph completely overcame the original drug. Any attempt at
making the original polymorph only resulted in the inactive form of the drug.
Eventually, the production of Ritonavir was abandoned (Bauer et al. 2001). It is
also possible that a single solid compound may form a number of different poly-
morphs. ROY, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, a syn-
thetic drug-substance intermediate, dramatically illustrates this latter concept.
ROY takes its name from the colors (red, orange, and yellow) of three of its
polymorphs. Further studies identified up to seven more polymorphs, making
ROY the most polymorphic organic compound in the Cambridge Structural
Database (Chen 2005). The recognition of the possible existence of inactive, more
stable polymorphs of a certain drug makes polymorph screening an important
component of modern drug development. One subtle aspect of polymorphism is
that polymorphs can form not only upon crystallization from solutions, but also from
cooling of pure melted compounds and as the result of crystal conversion directly in
the solid state.

Note that the formation of a crystalline hydrate (or other solvate), in which the
compound crystallizeswith one ormoremolecules of solvent in its crystal structure, is
not true polymorphism; a crystal hydrate is not chemically the same substance as the
unhydrated substance.

The Amorphous State. We have seen that a pure substance may assume any one of
several crystalline solid forms called polymorphs. There exists yet another possibility
called the amorphous or glassy state, in which the substance appears to be solid in its
consistency, yet X-ray diffraction data show the absence of the periodic array of
molecules characteristic of the crystalline state. The amorphous (i.e., formless) state is
really the supercooled liquid, which, although below its normal freezing point, has not
adopted the orderly arrangement ofmolecules characteristic of the crystal.Although it
appears to be a solid, it is really a highly viscous liquid. Presumably some kinetic
barrier to crystallization permits supercooling to take place. This pathway to the
amorphous state is not the only one, however, and it has been found possible to
generate amorphous samples by subjecting crystalline solids to high-energy processes
such as grinding, milling, and freeze drying. The amorphous state is best detected by
means of X-ray powder spectra.

The amorphous state is unstable with respect to (it is of higher energy than) the
crystalline solid, to which it may revert on a generally unpredictable timescale. Its
pharmaceutical advantages and disadvantages follow from these properties. Higher
solubility and bioavailability may be achieved with amorphous solids, but transfor-
mation to the crystalline state is a possibility. Experimental study of each substance is
required to establish its characteristic behavior.
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The amorphous state is often studied bymeans of differential scanning calorimetry
(DSC), in which the temperature of the sample is raised while the heat absorbed or
released by the sample ismonitored. Figure 6.3 showsDSC curves for two amorphous
samples of the drug indomethacin (Yoshioka et al. 1994). One sample (dashed lines)
had been prepared by rapidly cooling the melted drug; the other sample (solid lines)
had been more slowly cooled. Besides these amorphous samples, indomethacin also
forms twocrystalline polymorphs: thea formwithmeltingpoint 155 
Cand the g form
with melting point 161 
C.

As the temperature sweeps through the range 35–65 
C, in Fig. 6.3a, both
amorphous samples show endothermic peaks (they are absorbing heat) as they
undergo a transition. The onset of this transition, at about 50 
C, is called the glass
transition temperature, Tg. With increased temperatures, the samples undergo crys-
tallization inFig. 6.3b,with the releaseofheat (theheat of crystallization,which canbe
measured from the areas under the crystallization peaks). Finally, in Fig. 6.3c, both
samples melt. Observe that the two melting crystalline samples are actually mixtures
of thea and g polymorphs (each curve has two components), but they differ in terms of
which polymorph is present in major fraction.

The properties of the amorphous state are a consequence of its high energy content,
which is its dominant characteristic. It is a relatively unstudied state of matter, for
which increasing pharmaceutical applications may be expected.

6.2. MULTICOMPONENT SYSTEMS

This is an abbreviated treatment of this topic, limited in these two ways:
(1) We consider only binary (i.e., two-component) systems, and (2) we omit certain
topics as not particularly pertinent to our interests (fractional distillation is an
example). Fuller treatments are available (Rossini 1950, Chapter 32; Atkins 1994,
Chapter 8).

Figure 6.3. DSC traces of two amorphous samples of indomethacin. See text for explanation.

[Reproduced by permission from Yoshioka et al. (1994).]
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Liquid–Liquid Systems. Wewill omit consideration of the vapor phase, in principle
by postulating that it is excluded from the system, in practice by working (usually)
under the ambient fixed atmospheric pressure. We begin by considering a system of
two liquids. Of course, whether a substance is a liquid or a solid depends (at fixed
pressure) on the temperature, but common usage denotes as liquids those substances
that exist in this state at or near room temperature. Pairs of liquidsoften are classified as
essentially completely immiscible (such as mercury and water), as completely
miscible in all proportions (e.g., ethanol and water), or as partially miscible (e.g.,
diethyl ether andwater). The completely immiscible case need not concern us, since it
effectively consists of two separate pure substances. Completelymiscible systems are
dealtwith inChapter 7.We are left to consider those pairs of liquids that aremiscible in
some proportions but are immiscible in other proportions.

Inasmuch as we have fixed the pressure, the two experimental variables by means
of which the system may be manipulated are the temperature and the composition of
the system, and phase diagrams are commonly constructed with these variables as the
coordinates. Usually the composition is expressed as mole fraction or as percent by
weight. Figure 6.4 shows a schematic temperature–composition phase diagram for a
partially miscible pair of liquids, 1 and 2. Any combination of temperature and
composition giving a point outside the phase boundary line describes a homogeneous
system; in this region, 1 and 2 aremutuallymiscible. Note that small concentrations of
1 will dissolve in 2, and vice versa; moreover, as the temperature increases, the extent

Figure 6.4. Schematic temperature-composition phase diagram for two partially immiscible

liquids 1 and 2; x2 is the mole fraction of 2 and Tc is the upper critical temperature.
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of mutual solubility increases. At any temperature above Tc (which is called the upper
critical temperature), the two liquids are miscible in all proportions.

But if the temperature–composition combination places the system under (within)
thephaseboundary line, twophases form.Onephase is predominantly1 saturatedwith
2, the other is largely 2 saturated with 1. At any given temperature, say, T 0 in Fig. 6.4,
the horizontal tieline pr connects the arms of the phase diagram, and the compositions
of the twophases aregivenbyxpand xr.Moreover, if xq is theoverall compositionof the
system, the amounts of the twophases are in the ratio of the distances pq=qr.Figure 6.5
shows the experimental phase diagram for the phenol–water system [see Findlay et al.
(1951, p. 95); the melting point of phenol is 41
C, and phenol is being treated as a
liquid in this context]. This diagram is helpful in determining the ranges of composi-
tions that will yield homogeneous solutions of phenol in water at room temperature
(25
C). Liquefied Phenol U.S.P. contains 89% by weight of phenol, placing it in the
single-phase region of the diagram.

Example 6.1. 50.0 g of Liquefied Phenol U.S.P. is diluted with 50.0mL of water at
room temperature. Analyze the outcome of this procedure.

Figure 6.5. Phase diagram for the phenol–water system. See discussion in Example 6.1.
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Since Liquefied Phenol contains 89% w/w of phenol and the density of water is
1.0 gmL	1, the system as prepared contains 44.5%w/w phenol with a total weight of
100 g. Figure 6.5 shows the 25
C tieline with point q given by the 44.5% system
composition. This point lies within the two-phase boundary, so the system will
separate into two layers. Reading the compositions of the layers at points p and r
tells us that one phase will contain 8% phenol and the other phase will contain 71%
phenol. The ratio pq/qr¼ (44.5	 8)=(71	 44.5)¼ 1.38.

We can go further than this. Since 100 g of total system contains 44.5 g of phenol,
we can write

Weight of phenol in aqueous layer þ weight of phenol in phenolic layer¼ 44.5 g

Letting x be the weight of the aqueous layer in 100 g of sample gives

0:08xþ 0:71ð100	xÞ ¼ 44:5

resulting in x¼ 42.1 g as the weight of the aqueous layer and therefore 57.9 g as the
weight of the phenolic layer. The aqueous layer contains (0.08) (42.1)¼ 3.4 g of
phenol, and the phenolic layer contains (0.71)(57.9)¼ 41.1 g of phenol. Note,
incidentally, that pq/qr¼ 1.38¼ 57.9=42.1.

In these two-component systems each phase is a solution, which can be defined as a
phase of variable composition. Notice that we have not identified one of the
components as the solute and the other as the solvent; such a designation has no
thermodynamic significance and is done solely for our convenience.

Liquid–Solid Systems. Imagine a two-component system consisting of two solids
AandBbrought to a temperature above themeltingpoints of both.Then in the simplest
instance a one-phase system will form consisting of a liquid solution of A and B
(Findlay et al. 1951, p. 135). Referring to Fig. 6.6, the area labeled L (for liquid phase)
will include the systemasdescribed,with its precise location in the diagramdepending
on the temperature and the composition.

ThepointsA andB inFig. 6.6 represent themelting points of solidsAandB.Nowlet
the temperature be lowered (always allowing the system to remain at equilibrium).
Suppose the system initially is represented by point E.When the temperature reaches
pointG,pure solidAwill begin to form, and as the temperature continues to fall (as heat
is withdrawn from the system), more solid is formed. Throughout the area ADC the
system consists of pure solid A dispersed in a solution of A and B. Its composition is
given by tielines, such as HK in the figure.

When the system temperature reaches level C, the temperature ceases to fall, even
though heat continues to be withdrawn from the system; point C has no degrees of
freedom. (Recall that we have fixed the pressure.) At point C, solid A, solid B, and
solution phase are in mutual equilibrium. The solid phase at this point is a finely
divided two-phase dispersion of crystalline A and B called a eutectic, and C is the
eutectic point.Microscopic examination reveals that the eutectic is amixture and not a
single phase. The composition of the eutectic mixture is fixed for a given pair of
substances. Observe that the eutectic melts at a lower temperature than does either of
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its pure components. Eutectic formation is observed widely in geologic deposits and
metal alloys, and the phenomenon is of pharmaceutical importance. Numerous drugs
form eutectic mixtures, with the consequence that they may liquefy at ambient
temperature owing to the melting point decrease characteristic at the eutectic point.
Acetaminophen, aspirin, menthol, phenacetin, phenol, and thymol are some of these
substances that are prone to eutectic formation. Special care in formulating or
compounding these compounds is necessary (Thompson 1998, pp. 34–35).

We tend to thinkof curves suchasAC andBC inFig. 6.1 as freezingpoint (ormelting
point) curves, but from the thermodynamic point of view they can just as well be
viewed as solubility curves. Suppose, for example, that A is a liquid at room
temperature but that B is a solid. Then the curveBC can be interpreted as the solubility
of B in A.Wewill not pursue this line of interpretation because Chapter 10 is entirely
concerned with solubility.

A traditional laboratory technique for the confirmation of identity of a solid
substance is to mix some of the sample with an authentic specimen and to measure
themelting point. If thismixed melting point is the same as that of themelting point of
the authentic specimen, the sample is very likely the same compound. If, on the other
hand, the melting point of the mixture is decreased, the two substances are different.
This is a consequence of themutual depression ofmelting points seen in Fig. 6.6when
two components are mixed.4

Figure 6.6. The simplest solid–liquid phase diagram for a two-component system of A and B,

where L represents the liquid (solution) phase; C is the eutectic point. [Reproduced by permission

from Findlay et al. (1951).]

4 The melting of ice on winter roads by spreading salt is another manifestation of the phenomenon. NaCl
and H2O form a eutectic of composition 23.3% NaCl at a eutectic temperature of 	21.1
C.
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The region in Fig. 6.6 labeled A þ B and lying entirely below point Cmay consist
merely of the two crystalline phases of A and B (leaving aside the phenomenon of
polymorphism). But another possibility is that A and B may form a solid solution,
which is a homogeneous single-phase state of matter, no different in principle from a
liquid solution. Some drugs are known to form solid solutions (Carstensen 1977,
pp. 23–26).

PROBLEMS

6.1. Suppose that a solution is prepared at 70
C to contain 65%byweight of phenol in
water. The solution is slowly cooled. At what temperature will it separate into
two phases?

6.2. Calculate the degrees of freedom at the eutectic point C in Fig. 6.6.
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7

SOLUTIONS OF
NONELECTROLYTES

7.1. IDEAL SOLUTIONS

A nonelectrolyte is a substance that is uncharged and that does not sensibly give rise
to ions. Our analysis will be sufficiently general if we consider solutions of two
nonelectrolytes, labeled 1 and 2; the results can be extended to more components if
necessary. For the present we limit discussion to single-phase systems.

A convenient starting place is with the experimental observation known as
Raoult’s law, which describes a particularly simple type of solution behavior in
the form of

pi ¼ xiP
*
i ð7:1Þ

Raoult’s law states that the partial pressure pi of constituent i over its solution is
directly proportional to its mole fraction in the solution, where the proportionality
constantP*

i is the vapor pressure of the pure liquid (i.e., when xi¼ 1). An ideal liquid
solution is then one in which Raoult’s law is obeyed over the entire range of
composition, at all temperatures and pressures. As may be imagined, Raoult’s law
represents a limit of simple behavior toward which certain systems tend, rather than
an exact description; but if the solution components are chemically very similar and
are nonpolarmolecules, behavior very close to the idealmay be observed. A solution
of benzene and toluene illustrates such behavior.

It can be proved (Glasstone 1947, p. 320) that if Raoult’s law applies to one of the
constituentsofa solution, then itmust also apply to theother. Figure7.1 showsRaoult’s
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law behavior for an ideal solution. Since the total pressure is the sum of the partial
pressures, then

P ¼ x1P
*
1 þ x2P

*
2 ð7:2Þ

This is the equation of the topmost line in Fig. 7.1.
We know from Chapter 4 that at equilibrium the chemical potentials of constituent

i are equal in thevapor and liquid phases, ormiðgÞ ¼ miðlÞ. For amixture of ideal gases,
we also can write [see Eq. (3.35)], that

miðgÞ ¼ m*
i ðgÞþRT ln Pi

If we combine this relationship with the foregoing equality and with Raoult’s law, we
obtain

miðlÞ ¼ mT
i ðlÞþRT ln xi ð7:3Þ

where mT
i ðlÞ ¼ m*

i ðgÞþRT ln P*
i . Equation (7.3) may be taken as an alternative

description of an ideal-liquid solution (Smith 1977, p. 78). The standard chemical
potential mo

i ðlÞ is the chemical potential of pure component i (i.e., when xi¼ 1).
We can develop the thermodynamic properties of the ideal solution as follows.

The total free energy of the solution is given by

G ¼ m1x1 þm2x2 ð7:4Þ

Figure 7.1. Raoult’s law behavior of both components of an ideal solution; p1 and p2 are the partial

pressures; P is the total pressure.
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where x1and x2 are mole fractions. The free-energy change onmixing 1 and 2 is equal
to the free energy of the solution after mixing minus the free energy of the pure
components before mixing, or

DGmix ¼
X

mixi 	
X

mo
i xi ð7:5Þ

Substituting from Eq. (7.3) into Eq. (7.5) leads to

DGideal
mix ¼ RTx1 lnx1 þRTx2 lnx2 ð7:6Þ

as the ideal free energy of mixing. Since the mole fractions are less than one, the free
energy of mixing is negative and the process is spontaneous.

The entropy of mixing is easily obtained by applying the relationship [Eq. (3.7)]

@DG
@t

� �
P

¼ 	DS ð7:7Þ

to Eq. (7.6). The result is

DSidealmix ¼ 	Rx1 lnx1 	Rx2 lnx2 ð7:8Þ

Therefore the entropy of mixing is positive, as we would expect. From the identity
DG ¼ DH	 T DS we obtain, making use of Eqs. (7.6) and (7.8),

DHideal
mix ¼ 0 ð7:9Þ

Finally, from Eq. (3.6) we obtain

@DG
@P

� �
T

¼ DV ð7:10Þ

Applying this to Eq. (7.6), we get

DV ideal
mix ¼ 0 ð7:11Þ

Equations (7.6), (7.8), (7.9) and (7.11) give the essential thermodynamic properties of
the ideal solution. We can make somemolecular interpretations of these results. In an
ideal solution, the three pairwise interactions between 1–1molecules, 2–2molecules,
and 1–2 molecules are all energetically and spatially identical, so replacement of a 1
molecule by a 2 molecule anywhere in the solution leads to no energy or volume
changes; hence DHideal

mix ¼ 0 and DV ideal
mix ¼ 0. (It is these stringent constraints that

account for the rarity of experimental examples of ideal solutions, because if two real
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molecules have different identities, their energies and space-filling requirements will
differ to at least some degree.) The ideal entropy of mixing is positive because the
mixed system ismore disordered than is the initial system of separated species and the
number of configurational microstates is greater. Since DHideal

mix ¼ 0 and DSidealmix > 0,
the negative value of DGideal

mix is entirely entropy-driven.

7.2. NONIDEAL SOLUTIONS

Itwill be no surprise to learn that few real solutions behave ideally.Nevertheless, fairly
simple behavior is widely observed in solutions that are very dilute with respect to
one component. It will now be convenient to designate the component (to be labeled
component 1) that is present in great excess as the solvent and designate component 2,
present in low concentration, as the solute. The solvent is obviously a liquid, but the
solute may be either a liquid or a solid.

First consider Fig. 7.2, which shows vapor pressure–composition curves for both
solution components when derivations from ideality occur. In this figure the dashed
lines show ideal Raoult’s law behavior (compare with Fig. 7.1), whereas the solid
lines show positive deviations from Raoult’s law (Fig. 7.2a) and negative deviations
(Fig. 7.2b).1The twocomponentsmayexchange roles as solvent and solute, depending
on which is in excess.

Figure 7.2. Nonideal solution behavior showing positive deviations (a) and negative deviations (b)

fromRaoult’s law. Themole fraction scale runs from0 to1 for one of the components and from1 to 0

for the other.

1 A solution having the composition corresponding to either a maximum (Fig. 7.2a) or a minimum
(Fig. 7.2b) in the vapor pressure curve will distill as a constant boiling mixture of constant composition,
called an azeotrope. For instance, 95% alcohol is an azeotrope containing 95.57% by weight (94.9% by
volume) of C2H5OH.
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Now, in a dilute solution (i.e., dilute with respect to component 2, the solute), the
solvent, component 1, approaches a mole fraction of unity, and its vapor pressure
approaches that expected from Raoult’s law; this behavior can be seen in Fig. 7.2,
where thedashedand solid lines approach asymptotically as xapproachesunity.This is
reasonable behavior, since in this circumstance (the very dilute solution) the solvent
molecules are surrounded essentially only by other solvent molecules, and hence
are practically unperturbed by solute molecules. But it is otherwise for the solute
molecules in dilute solution, because then each solute molecule finds itself in an
environment of essentially only solvent molecules, which is clearly not typical of the
purely solute environment. Consequently the solute does not follow Raoult’s law in
dilute solution.

Despite this result, a certain simplicity of behavior by the solute can be discerned.
Experiment shows that in the very dilute solution the vapor pressure of the solute is,
in the limit of zero concentration, a linear function of its mole fraction, as in

p2 ¼ x2k
x
2 ð7:12Þ

which should be compared with Raoult’s law, Eq. (7.1). Equation (7.12) is called
Henry’s law, and the constant of proportionality kx2 is the Henry’s law constant. The
distinction betweenRaoult’s lawandHenry’s law is easily seen graphically in Fig. 7.3.

The thermodynamic description of solute behavior invery dilute solutions is based
on Henry’s law, and it leads, by the same kind of argument used for ideal solutions,

Figure 7.3. P*2 is the vapor pressure of the pure solute (x2¼1), and the actual vapor pressure

curve tends to this value. The Henry’s law constant kx2 is a hypothetical value obtained by linear

extrapolation to x2¼1 of the tangent to the actual curve at x2¼0.
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to Eq. (7.13), which is very similar to Eq. (7.3) for the ideal solution, except that the
standard chemical potential incorporates the Henry’s law constant:

m2 ¼ m0
2 þRT ln x2 ð7:13Þ

We saw inChapter 5 that wemay base our standard state definitions on either themole
fraction, the molal, or the molar concentration scales. Equations (7.12) and (7.13)
make use of the mole fraction convention, and this is shown in Fig. 7.3 and again in
Fig. 7.4a. Figure 7.4b shows the significance of the standard state convention on the
molar scale. Note how the superscript x or c is used with the Henry’s law constant to
clarify the definition. Of course, kx2 and kc2 are different; their relationship can be
worked out as we did in Chapter 5 [see also Grant and Higuchi (1990, p. 93)].

Finally we must consider nonideal solution behavior outside the very dilute
solution range.We have seen how to copewith this behavior (Section 5.3) by defining
activity coefficients, so that the actual behavior is quantitatively expressed by an
activity coefficient that measures the deviation between real and ideal behavior.
Now we can see that the adoption of a criterion of ideal behavior is critical to
expressing the extent of deviation from this ideal. We are here approaching from a
different direction an issue already faced in Section 5.3. At that point we had defined
the activity of the solvent to be equal to its mole fraction. We now see that this is
equivalent to assuming that Raoult’s law is obeyed by the solvent, which is a
reasonable assumption in the dilute solution range. The activity of the solute,
on the other hand, we took as equal to its molar concentration in the very dilute
range. This is a Henry’s law reference state; the standard state is as shown in Fig. 7.4b.
InChapter 8wewill learn how to estimate activity coefficients for ionic species,which
are notorious for their nonideal behavior; except in very concentrated solutions,

Figure 7.4. Henry’s law constant kx2 on (a) the mole fraction scale and (b) the molar scale. These

standard states are different. They are both hypothetical, because real behavior (solid curves)

deviates from these linear extrapolations based on very dilute behavior.
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however, the activity coefficients of nonelectrolytes can be taken as unity for most
practical work.

The thermodynamic properties of real solutions are sometimes expressed in terms
of excess functions, which are defined as the difference between the actual value of
the function and the ideal value. For example, the excess entropy of mixing is

SE ¼ DSrealmix 	DSidealmix

The excess functions can be positive or negative.2

7.3. PARTITIONING BETWEEN LIQUID PHASES

The Partition Coefficient. Suppose that we bring two immiscible liquids in contact
and then incorporate a nonelectrolyte solute such that its concentration is in the dilute
solution range. The solutewill distribute itself between the two phases, each of which
constitutes a solution.3 Since the phases will arrange themselves according to their
densities, let us identify themas the upper (U) and lower (L) phases.Thedistribution of
solute between the phases is called partitioning. The typical separatory funnel
operation exemplifies this system. We take the pressure and temperature as fixed.

At equilibrium the chemical potentials of the solute in the upper and lower phases
are equal:

mU
2 ¼ mL

2 ð7:14Þ

These chemical potentials will bewritten out for the Henry’s lawmolar standard state
definition, giving

m*
U þRT ln cU ¼ m*

L þRT ln cL ð7:15Þ

where for convenience the subscript 2 is omitted, assuming that the solute is meant.
Rearrangement of Eq. (7.15) gives

Dm0 ¼ 	RT ln
cU
cL

ð7:16Þ

where Dm0 ¼ m*
U 	m*

L. Comparison of Eq. (7.16) with the important equation
[Eq. (4.23)]

DG0 ¼ 	RT lnK ð7:17Þ

shows that the ratio cU/cL has the character of an equilibrium constant. In fact, it is the
equilibrium constant of this “reaction”:

2 A class of solutions called regular solutions is defined to have SE¼ 0 andHE„ 0, so that entropically such
solutions behave ideally, but they undergo nonideal energy changes. Regular solutions are commonly
formed from nonpolar components [see Hildebrand et al. (1970); see also Chapter 10 (below)].
3 Besides the phenomenon in which the solute distributes between the two phases, the upper phase will be
saturated with respect to the lower phase solvent, and vice versa. This mutual saturation alters the solvent
properties of the two phases, but it does not affect the thermodynamic argument.
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Solute in phase L > Solute in phase U

This quantity is labeled P and is called the partition coefficient

P ¼ cU
cL

ð7:18Þ

Partition coefficients are usually expressed in terms of their base 10 logarithms, log P.
This makes the numerical values directly proportional to the standard free-energy
change, according to Eq. (7.17), and it provides convenient magnitudes, since P itself
can be much smaller or larger than unity.

Log P values have great utility in drug discovery and drug delivery research
programs. For these purposes the solvent of the upper phase is usually selected to be
1-octanol, with water serving as the lower phase solvent. The partition coefficient is
then defined as

P ¼ coctanol
cwater

ð7:19Þ

Sincewater ismorepolar than is octanol, verypolar solutes tend tohavegreater affinity
for the aqueous phase and therefore to have P values smaller than unity, whereas
nonpolar solutes havePvaluesgreater thanunity.Consequently, logP is oftenusedas a
quantitative measure of a compound’s polarity.4

Log P values can be measured experimentally by the separatory funnel technique,
or modifications of it. Sometimes it is useful to be able to predict a log P value, as for
example if a compound of interest is not available or has not yet been synthesized.
Empirical methods, making use of a large body of experimental log P values, have
been developed that allow log P to be estimated solely on the basis of knowledge of
the solute’s molecular structure (Leo et al. 1971; Nys and Rekker 1974).

Table 7.1 lists a few logP values. Notice, for the series of normal alcohols, how the
trend of log P values appears to accord with our qualitative notions of the polarities
in this series. The log P of the aromatics is also consistent with expectations.

Table 7.1. Log P (octanol/water) for some solutes

Solute Log P Solute Log P

Methanol 	0.74 Benzene 2.13
Acetic acid 	0.24 Phenol 1.46
Ethanol 	0.32 Aniline 0.94
1-Propanol 0.34 Toluene 2.69
1-Butanol 0.88 Naphthalene 3.37
1-Pentanol 1.40 Aspirin 1.21

4 P (and therefore also logP) is a perfectly well-defined thermodynamic quantity. The concept that logP is
a measure of polarity is not a part of thermodynamics, however, and since this concept, and others like it, lie
outside of thermodynamics, it is said to be extrathermodynamic. Appendix C is a brief introduction to
extrathermodynamic arguments and relationships.
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Example 7.1. 170.0mg of benzylpenicillin (MW334.4) was shakenwith 10.0mL of
1-octanol and 25.0mL of water. After the phases separated, the aqueous phase was
analyzed and found to contain 7.20� 10	4Mbenzylpenicillin. Calculate the partition
coefficient of benzylpenicillin in this system.

The total number ofmoles of benzylpenicillin is ntotal¼w/M,wherew is theweight
in grams and M is the molecular weight. Obviously, ntotal is the sum of the amounts
in the octanol and aqueous phases, or

noct þ naq ¼ ntotal

We also have the partition coefficient definition,

P ¼ coct
caq

and the concentrations (in mol L	1) are given by

coct ¼ noct
Voct

; caq ¼ naq
Vaq

where the volumes are in liters. These equations suffice to solve the problem. We
find ntotal¼ 0.170/334.4¼ 5.08� 10	4mol. Then, from the definition of caq, we
obtain

naq ¼ caqVaq

¼ ð7:20� 10	 4 mol L	 1Þð0:025 LÞ
¼ 0:18� 10	 4 mol

It follows that noct¼ ntotal	 naq, or noct¼ 5.08� 10	4–0.18� 10	4¼ 4.90� 0	4

mol, and therefore that

coct¼ 4:90� 10	 4 mol

0:01 L

¼ 4:90� 10	 2 mol L	 1

Finally

P¼ coct
caq

¼ 4:90� 10	 2

7:20� 10	 4

¼ 68:1

or log P¼ 1.83.

Example 7.2. Log P (octanol/water) of caffeine is 	0.07 at 25
C. Calculate the
standard free-energy change for the partitioning process.
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From Eq. (7.17), we have

Dm0 ¼ 	 2:303RT log P

¼ ð	 2:303Þð1:987 cal mol	 1 K	 1Þð298:15 KÞð	 0:07Þ
¼ 96 cal mol	 1 ¼ 400 J mol	 1

The interpretation ofDm0 is that it is the free-energy changewhen onemole of caffeine
in its standard state inwater is transferred to its standard state in octanol. (This quantity
is sometimes called the transfer free energy.)

From the log P value we find P¼ 0.85. Caffeine partitions nearly equally between
the octanol and water phases, with a very slight preference for the water.

Solvent Extraction. Partitioning of a solute between immiscible phases is a valuable
analytical technique, and it forms the basis of some chromatographic separation
methods. In the simplest case we have the type of system described in the preceding
discussion.Letpbe the fractionof solutepresent in theupper phase andq the fraction in
the lower phase, so p þ q¼ 1. This quantity p is defined as

p ¼ amount of solute in upper phase

total amount of solute
ð7:20Þ

If cU and cL are the concentrations and VU and VL are the volumes of the upper and
lower phases, then

p ¼ cUVU

cUVU þ cLVL
ð7:21Þ

Let us define the ratio of phase volumes as

R ¼ VU

VL
ð7:22Þ

and of course P¼ cU/cL from Eq. (7.18). Combining these relationships gives

p ¼ PR

PRþ 1
ð7:23Þ

and so

q ¼ 1

PRþ 1
ð7:24Þ
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Note that the productPR is equal to the ratio (amount in upper phase)/(amount in lower
phase); this quantity is called the capacity factor.Equation (7.23) gives the fraction of
solute extracted into the upper phase, and 100p is the percent extracted.

Example 7.3. Log P (octanol/water)¼ 0.70 for ethyl acetate. If 10.0mL of an
aqueous solution of ethyl acetate is extracted with one 25.0mL portion of octanol,
what percentage of the ethyl acetate will be extracted into the octanol layer?

Since log P¼ 0.70, P¼ 5.0. We also have R¼ 2.50. Applying Eq. (7.23) gives
p¼ 0.926, so 92.6% will be found in the octanol.

Unless P is very large or very small, a significant fraction of solutewill be found in
both phases after a single extraction, as seen inExample 7.3. If the experimental goal is
to remove essentially all the solute from one phase into the other, common practice is
to reextract with fresh portions of the extracting solvent, pooling the extracts, until the
solute has been quantitatively removed. We can calculate the number of extractions
required to extract any specified fraction of solute.

As earlier, p is the fraction of solute extracted into the upper phase in a single
extraction, and q is the fraction in the lower phase. The first line in Table 7.2. shows the
state of the extraction after the first extraction.

If we accept the assumption that P is a true equilibrium constant, so that P has the
same value irrespective of the absolute concentrations,5 then the same fraction p of
solute remaining in the lower phase will be extracted into the upper phase each time.
(We assume that identical volumes of fresh upper phase are used in each extraction.)
Then the fraction of total solute removed in the nth extraction is equal to the product
of the fraction remaining and the fraction extracted in a single extraction:

Fraction of total extracted in nth extraction ¼ fraction of total left after

ðn	 1Þth extraction� p ð7:25Þ

Table 7.2. Calculation of the progress of extraction

n

Fraction of
Total Extracted
in nth Extraction

Total Fraction
Extracted Fraction Remaining

1 p p 1	 p¼ q
2 pq p þ pq 1	 (p þ pq)¼ q2

3 pq2 p þ pq þ pq2 1	 (p þ pq þ pq2)¼ q3


 
 
 


 
 
 


 
 
 

n pq(n-1)

Pn
n¼1pq

(n	1) qn

5 From Eq. (7.18), cU¼PcL, which states that a plot of cU versus cL should be linear if P is a constant
independent of concentration. This plot is called a partition or distribution isotherm. A linear partition
isotherm shows that P is independent of concentration.
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Applying this equation to the second extraction gives

Fraction of total extracted in 2nd extraction ¼ pq

This is entered on the second line ofTable 7.2. The total fraction extracted is nowequal
to the sum of the fractions extracted in the first and second extractions, which is
p þ pq, and the fraction remaining is 1 – (total fraction extracted),which is equal to q2

as seen in Table 7.2. In this way Table 7.2 is completed.
A final convenient expression is obtained by noting that

Total fraction extracted ¼ 1	 Fraction remaining

or, from the final entry in Table 7.2, after n extractions

Total fraction extracted ¼ 1	 qn ð7:26Þ
Example 7.4. For the system described in Example 7.3, calculate the total fraction
extracted after 1, 2, 3, 4, and 5 extractions, if R¼ 1.0.

Since P¼ 5.0 and R¼ 1.0, we find with Eq. (7.24) that q¼ 1
6¼ 0.167. Applying

Eq. (7.26) gives the results in Table 7.3.
Observe the asymptotic approach to complete extraction, which in principle can

never be achieved because, in the terms of classical thermodynamics, at equilibrium
(which is reached at each stage of the extraction process) the chemical potential
of the solute must be identical in both phases, so the solute cannot be absent from
one phase and present in the other. In practice, of course, we can often carry out the
extraction to an extent that is practically indistinguishable from completion.

Example 7.5. Using the same system of Examples 7.3 and 7.4, for which P¼ 5.0,
compare the efficiency of extraction of a 15-mL aqueous solution of ethyl acetatewith
(a) one 60-mL portion of octanol and (b) four 15-mL portions of octanol.

(a) With Eq. (7.23) and the quantities P¼ 5.0, R¼ 4.0, we find p¼ 0.952, or
95.2% extracted in this experiment.

(b) With Eq. (7.26) and the quantities p¼ 5.0, R¼ 1.0, n¼ 4 we find q¼ 0.0476
and total fraction extracted¼ 0.9992, or 99.92% extracted in this experimental
design.

Table 7.3. Multiple extractions of a solute with P¼5 and R¼1

Number of
Extractions, n

Total
Extracted (%)

1 83.33
2 97.21
3 99.53
4 99.92
5 99.99
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Example 7.4 demonstrates an important result of extraction theory. A more
efficient extraction is achieved with several extractions than with a single extrac-
tion, even when the same volume of extracting solvent is employed in the different
operations.

Countercurrent Distribution. Although a single solute can be exhaustively ex-
tracted fromsolutionbymeansofmultiple extractions, it is not possible to separate two
solutes (leaving one in each phase) by this technique unless the partition coefficient of
one of them is effectively zero or infinite. An alternative experimental design, called
countercurrent distribution (CCD), has been invented to allow solutes having similar
(yet quantitatively different) partition coefficients to be separated. The term
“countercurrent” means that the two phases move in opposite directions, although
actually one phase is heldmotionless and the othermoves, so the phases are in relative
motion. Although CCD as a separation technique has been superseded by chroma-
tography, a description is worthwhile for two reasons: (1) Since thermodynamic
equilibrium can be achieved at each stage of the process, an exact mathematical
analysis is possible, and the mathematics turn out to be of a much wider applicability;
and (2) CCD constitutes an excellent introduction to the technique of partition
chromatography, which in fact was initially developed as a modification of CCD [the
present treatment of CCD draws heavily on earlier work (Connors 1982, pp.
357–364)].

The countercurrent distribution experiment uses a train of tubes within which
the individual equilibrations occur. At the beginning of the experiment each tube is
charged with an identical volume of the lower phase (e.g., water or an aqueous
buffer). These tubes are numbered 0, 1, 2, . . ., r. Into tube 0 a suitable volume of the
upper-phase solvent (e.g., ether) is introduced. The solute is added to tube 0; it is
immaterial whether the solute is added in the upper or the lower phase. Figure 7.5 is a
schematic rendering of a countercurrent distribution of a single solute; it is assumed,
in this case, that p¼ q¼ 0.5. Figure 7.5a represents the train of tubes as it has
been described above, with 16 parts of solute added to the lower phase of tube 0.
Now the tube is shaken to allow distribution to occur; in Fig. 7.5b the resulting
partitioning of the solute is shown as 8 parts in each phase, since p¼ q for this
particular solute.

Next the upper phase of tube 0 is transferred to tube 1 (this is called the first transfer)
and fresh solvent is added to tube 0 (Fig. 7.5c). The tubes are equilibrated to give the
distribution shown in Fig. 7.5d. This sequence is repeated until three transfers have
been effected (n¼ 3), as shown in Fig. 7.5h.

The result of these operations has been to transfer the solute in the direction of
motion of the upper phase. This process may be repeated many times. Since only the
upper phase is transferred, clearly the solute can progress along the train of tubes only
bybeing extracted into the upper phase.Therefore thegreater thevalue ofp, the further
along the tube train the solutewill progress in a given number of transfers. Actually the
solute is distributed over many tubes, as can be seen by the sample shown in Fig. 7.5.
If the original sample contains two solutes with different partition coefficients,
they will progress along the tubes at different “rates,” the substance with the larger
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partition coefficient traveling faster. Inorder to separate the solutes, it is necessaryonly
to perform enough transfers.

It is possible to predict quantitatively the countercurrent distribution behavior of
a solute if its partition coefficient is known for the liquid–liquid system. SinceP andR
are known quantities, p and q may be calculated.

Suppose that one unit of a single solute is placed in the lower phase of tube 0;
the situation may be represented as in the first row of Table 7.4, where, as in the

Figure 7.5. Schematic representation of countercurrent distributionwith three transfers of a solute

with p¼0.5. [Reproduced by permission from Connors (1987).]
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earlier discussion, the tubes are numbered 0, 1, 2, . . ., r and transfers are numbered
0, 1, 2, . . ., n. Before equilibration all the solute is in the lower phase, and
after equilibration a fraction p of the solute is in the upper phase and q is in the
lower phase.

Next the upper phase of tube 0 is transferred to tube 1 (which contains fresh lower
phase) and fresh upper phase is placed in tube 0. The phases are equilibrated. The
fraction of total solute extracted into the upper phase of tube 0 will be p times the
fraction of solute in the tube, or pq. Similarly, the fraction of solute in the lower phase
is q times the fraction of solute in the tube, or q2. In this way the distribution has been
calculated through four transfers, as seen in Table 7.4.

In the last row of the table the total fraction of original solute in each tube is listed.
The distribution exhibits a marked symmetry in p and q. Obviously, the calculation
of such a distribution for many transfers would be extremely laborious, but it is
fortunately not necessary to proceed as in the previous example. It has been observed
that the total fraction of original solute in each tube is given by the corresponding term
in the binomial expansion, (q þ p)n. Two implications of this result are as follows:
(1) For n transfers there are n þ 1 terms and therefore n þ 1 tubes; and (2) the sum
of all the terms is 1, since p þ q¼ 1, and 1 to any power is 1.

The expansion of the function (q þ p)n is laborious for large n, and an easier
calculation is available. The binomial expansion may be written

ðqþ pÞn ¼ qn þ nqn	 1pþ nðn	 1Þ
2

qn	 2p2 þ 
 
 
 þ pn

Table 7.4. Calculation of the distribution through four transfersa

Tube Number, r
Transfer
Number, n 0 1 2 3 4

0 Ba 0/1
Ab p/q

1 B 0/q p/0

A pq/q2 p2/pq

2 B 0/q2 pq/pq p2/0

A pq2/q3 2p2q/2pq2 p3/p2q

3 B 0/q3 pq2/2pq2 2p2q/p2q p3/0

A pq3/q4 3p2q2/3pq3 3p3q/3p2q2 p4/p3q

4 B 0/q4 pq3/3pq3 3p2q2/3p2q2 3p3q/p3q p4/0

Totals after four
transfers

q4 4pq3 6p2q2 4p3q p4

aBefore equilibration.
bAfter equilibration.
iSource: Reproduced by permission from Connors (1987).
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which can be expressed

ðqþ pÞn ¼
Xn
r¼0

n!

r!ðn	 rÞ! p
rqðn	 rÞ

where r is the number of the corresponding term in the expansion (the quantity n! is
called “n factorial” and means n!¼ 1� 2� 3� 4� . . . n; the relationship 0!¼ 1 is a
definition). Interpreting this in the context of CCD,wewrite Eq. (7.27) for the rth term
in the binomial expansion

Tnr ¼ n!

r!ðn	 rÞ! p
rqðn	 rÞ ð7:27Þ

where the quantity Tnr is read “the fraction of total solute contained in both layers of
the rth tube after n transfers.” A calculated countercurrent distribution is usually
exhibited as a plot of Tnr versus r. Equation (7.27) is called the binomial distribution.

Calculation of the CCD curve may be further simplified. According to statistical
theory, the mean of the binomial distribution is equal to np. The mean corresponds to
themaximum; therefore the tubenumberof themaximum in the curve,rmax, is givenby

rmax ¼ np ð7:28Þ

This simple expression permits one to calculate themaximum in the CCD curve if p is
known. Although n must be an integral number, rmax need not be. Note that rmax

is directly proportional to p. If Eq. (7.27) is written for Tnr and for Tn(r-1), these
expressions can be combined to give

Tnr
Tnðr	 1Þ

¼ pðn	 rþ 1Þ
qr

ð7:29Þ

with which the fraction of solute in any tube can be calculated if the fraction in an
adjacent tube is known.

The easiest way to calculate an entire distribution curve with these equations
(assuming that p is known) is to first find rmax with Eq. (7.28). Next calculate Tnrwith
Eq. (7.27) for one tube in thevicinity of rmax. Finally, calculate the fractions of solute in
all surrounding tubes by means of Eq. (7.29). Figure 7.6 shows the results of such a
calculation for a typical separation of two solutes; it was assumed that P1¼ 0.5,
P2¼ 2.0, and R¼ 1.00 for this system. In Fig. 7.6a the distribution of each solute is
shownafter four transfers. In anactual experiment the tube contentswouldbeanalyzed
for total solutes present, and the experimental curve would therefore represent the
sum of the fractions of the individual solutes; this curve is shown as the solid line in
Fig. 7.6a. Separation is not yet apparent in this curve. The individual distribution
curves, however, show that a partial resolution has occurred, with tubes 0 and 1
enriched in solute 1, tubes 3 and 4 enriched in solute 2, and tube 2 containing equal
fractions of solutes 1 and 2.

PARTITIONING BETWEEN LIQUID PHASES 157



Figure 7.6b shows the same system after 24 transfers. Separation of the solutes is
now apparent. Tubes 0–9 contain essentially only solute 1, whereas tubes 15–24
contain only solute 2. Portions of both solutes will be found in tubes 10–14. If the
experimentwere extended to a larger number of transfers, a complete separation could
eventually be achieved. Note, however, that the width of the “zones,” or distribution
curves, increases as the number of transfers increases.

In a real experimental situation, the quantity plotted on the vertical axis would
usually be an analytical quantity, such as weight of solute per tube, rather than the
fraction Tnr . It may be noted that from such an experimental distribution curve the
quantity rmax may be read and, by utilizing Eqs. (7.28) and (7.23), the partition
coefficient may be estimated.

The countercurrent distribution curve is not symmetric (unless p¼ q), but as n
becomes larger, the curve approaches very closely a symmetric distribution.

The binomial distribution is a mathematical function that yields the probability of
“success” in what are known as Bernoulli trials. These are events, such as coin tosses,
in which there are only two possible outcomes (heads or tails). The analogy to CCD is
that a molecule of solute has only two possible choices: It must take up residence
in either the upper phase or the lower phase. As the number of transfers becomes very

Figure 7.6. Countercurrent distribution of two solutes in a system where P1¼0.5, P2¼2.0,

R¼1.0: (a) Distribution after 4 transfers; (b) distribution after 24 transfers. The calculated points

are connected by smooth curves, although in fact the distribution is discontinuous. [Reproduced by

permission from Connors (1987).]
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large, the discontinuous (i.e., stepwise) binomial distribution approaches closely a
continuous function, the normal distribution, which provides for a faster means of
calculating the CCD curve (Connors 1982, pp. 357–364).

PROBLEMS

7.1. Calculate the ideal entropy of mixing and free energy of mixing when 10.0 g
of benzene and 15.0 g of toluene are mixed at 25
C.

7.2. For alanine, log P (octanol/water)¼	2.94. For phenothiazine, log P¼ 4.15.
Calculate the standard free energy changes for these phase transfer processes
at 25
C.

7.3. These are experimental partial pressures of benzene (B) and toluene (T) over
their solutions at 20
C:

xB PB (mmHg) PT (mmHg)

0.00 0 22
0.27 18 17
0.44 34 12
0.55 41 11
0.67 49 8
1.00 75 0

7.3. Confirm the validity of Raoult’s law for this system by plotting the data. By
calculation, determine the solution composition at which the partial pressures
of benzene and toluene are equal, and check your result on the graph you
have plotted. What is the total vapor pressure over the solution at this
composition?

7.4. These are partial pressures of chloroform over chloroform–acetone solutions
at 35 
C:

x (CHC13) P (mmHg)

0.0 0
0.2 34
0.4 82
0.6 148
0.8 225
1.0 293

7.4. Plot the data, confirming the asymptotic approach to Raoult’s law in the nearly
pure chloroform, and the nonideal behavior in dilute solutions of chloroform.
Estimate the Henry’s law constant.
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7.5. Howmany extractions are necessary to remove 99.9% of a drug from 30mL of
an aqueous solution if it is extracted with 20mL portions of ether and log P
(ether/water)¼ 0.54?

7.6. (a) Consider the distribution of neutral weak acid HA between an organic
phase and an aqueous phase. Define the true partition coefficient as
P¼ [HA]org/[HA]aq. Presuming that the anion does not detectably parti-
tion into the organic phase, derive this relationship between the true
partition coefficient P and the apparent partition coefficient Papp:

Papp ¼ P½H þ �
½H þ �þKa

where Ka is the acid dissociation constant of HA, [Hþ ] is the aqueous
phase concentration of hydrogen ion, and Papp is the ratio of total
concentrations of solute in the organic and aqueous phases.

(b) Show how Papp is related to P at the limits of very low and very high
hydrogen ion concentration. How are P and Papp related when pH¼ pKa?

(c) Calculate Papp as a function of pH for an acid having pKa¼ 4.0 and for
which log P¼ 1.00. Plot Papp against pH.

7.7. Consider a system consisting of a single solute partitioned among three
mutually immiscible phases A, B, and C, the system being at equilibrium.

(a) Define the three partition coefficients.

(b) Derive an equation relating one of the partition coefficients to the other two.

(c) Derive an equation relating the fraction of solute in phase A to the partition
coefficients and the volumes of the two phases.

7.8. A mixture of three compounds was subjected to countercurrent distribution.
After 150 transfers, with each tube containing 5mL of water and 5mL of ether,
the maxima in the CCD curve appeared at tubes 30, 75, and 120. Calculate
the partition coefficients of the three compounds.

7.9. Ordinary water contains small amounts of dissolved oxygen. What is the unit
of the ratio between the oxygen Henry’s constant and the partial pressure of
the water vapor in equilibrium with the solution?

7.10. Calculate the ideal entropy and free energy of mixing when 36 g of water
(MW¼ 18 g/mol) are mixed with 230 g of ethanol (MW¼ 46 g/mol) at 25 
C.
Express the results in cal/mol K (DS) and cal/mol ((DG).
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8

SOLUTIONS OF
ELECTROLYTES

8.1. COULOMBIC INTERACTION AND IONIC DISSOCIATION

An electrolyte is a substance that produces ions. Since the ions are charged species, the
force of interaction between them is a convenient starting point for our discussion.
The force of interaction between two particles having charges Q1 and Q2, separated
by distance r, is given by Coulomb’s law:

F ¼ Q1Q2

4per2
ð8:1Þ

where e is a property of the medium, to be dealt with shortly. The potential energy of
interaction, V, is equal to the product of force and distance. The Coulombic potential
energy is therefore

V ¼ Q1Q2

4per
ð8:2Þ

Since the charge on an ion can be written as the product of its valence z (including its
sign) and the electronic charge e (e¼ 1.602� 10	19 C), Eq. (8.2), for our purposes, is
equivalent to

V ¼ z1z2e
2

4per
ð8:3Þ

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
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For two ions of likecharge,V andFare both positiveand the force is repulsive,whereas
if the ions are of unlike charge, V and F are negative and are attractive. The zero of
potential energy is taken to be when the ions are separated to infinity (r ¼ 1).

The quantity e is called the permittivity, and it is best introduced through the
expression

er ¼ e
e0

ð8:4Þ

where e0 is the permittivity of the vacuum and er is called the relative permittivity.
Chemists, however, have traditionally referred to er as the dielectric constant. The
relative permittivity or dielectric constant is measured as the electrical capacitance
of the medium (solvent) relative to the capacitance of the vacuum. It follows that er is
a dimensionless number greater than one. Equation (8.3) is often written in the form

V ¼ z1z2e
2

4pe0err
ð8:5Þ

The permittivity of the vacuum e0 has the value 8.854� 10	12 C2J	1m	1. Table 8.1
gives some dielectric constant values.

Example 8.1. Calculate the energy of the Coulombic interaction between a sodium
ion and a chloride ion, at contact distance, in vacuum and in water.

The ionic radii of Naþ and of Cl	 (available in reference handbooks) are 0.95
and 1.81A



, respectively, equivalent to an internuclear distance of r¼ 2.76� 10	10m.

In vacuum

VðvacuumÞ ¼ 	 ð1:602� 10	 19 CÞ2
4pð8:854� 10	 12 C2 J	 1 m	 1Þð1Þð2:76� 10	 10 mÞ

¼ 	 8:36� 10	 19 J

Table 8.1. Dielectric constants of some solvents

Solvent er Solvent er

n-Hexane 1.89 Methanol 32.6
Cyclohexane 2.02 Nitrobenzene 35
1,4-Dioxane 2.21 Acetonitrile 36.2
Benzene 2.28 N,N-Dimethylformamide 36.7
Diethyl ether 4.34 Ethylene glycol 37.7
Ethyl acetate 6.02 N,N-Dimethylacetamide 37.8
Acetic acid 6.19 Glycerol 42.5
n-Butyl alcohol 17.1 Dimethyl sulfoxide 49
i-Propyl alcohol 17.7 Formic acid 58
Acetone 20.7 Water 78.5
Ethanol 24.3

j
Formamide 110

162 SOLUTIONS OF ELECTROLYTES



This is the energy of interaction between one Naþ and one C1	. If we multiply by
Avogadro’s number to find the energy per mole of sodium chloride, we get

VðvacuumÞ ¼ 	 504 kJ mol	 1

¼ 	 120 kcal mol	 1

a very strong interaction. In water er¼ 78.5, and the calculation gives

	 0:106� 10	 19 J per ion pair ¼ 	 6:42 kJ mol	 1

VðwaterÞ ¼ 	 1:53 kcal mol	 1

Example 8.1 shows that the dielectric constant of themediummarkedly influences the
strength of the interionic interaction energy. The dielectric constant is a measure of
the ability of the medium to separate charges of unlike sign. (Not coincidentally, the
dielectric constant roughly parallels our chemical notion of solvent polarity and is
often taken as a quantitative measure of polarity.) The larger the dielectric constant,
the more easily two unlike charges can be separated. The high dielectric constant of
water is a manifestation of the very unusual nature of water as a solvent. In fact, the
classification of electrolytes into the categories of strong electrolytes (i.e., essentially
completely dissociated into ions in solution) and weak electrolytes (incompletely
dissociated) is based on the use of water as the solvent. Substances that are strong
electrolytes in water act as weak electrolytes in low dielectric constant solvents.1 Let
us pursue this issue by writing Eq. (8.6) for an electrolyte, schematically denoted AB,
when dissolved in a solvent:

ABÐionization AþB	Ðdissociation Aþ þB	 ð8:6Þ

Ionization is the production of ions,2 and dissociation is the separation of species
(whether ionic or uncharged). The extent of ionic dissociation is reasonably described
by Coulomb’s law. This is why we do not distinguish between ionization and
dissociation for aqueous solutions; because water’s dielectric constant is quite large,
the force between ions is relatively small, and as soon as ions form, theydissociate. Ion

1 The dielectric constant is a bulk property of matter, and its incorporation into Coulomb’s lawmeans that
we are treating the solvent as a continuum; that is, themolecular (particulate) nature of the solvent is ignored
in this treatment.
2 The molecular interpretation of the ionization process may be complex and will depend on the molecular
identity. One possibility is that two kinds of ion pairs may form. One of these, represented AþB	, is an
intimate ion pair; the other, shown as AþSB	, where S is a molecule of solvent, is a solvent-separated ion
pair.
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pairs (the species Aþ B	) are seldom detectable in water. But in solvents of low
dielectric constant (typicallywith er values less than�25), the extent of dissociation is
reduced, as may be demonstrated by repeating Example 8.1 with some different er
values. Glacial acetic acid (the term “glacial” simply means essentially pure in this
context) is an important analytical solvent that has been carefully studied. Because of
its low dielectric constant, ionpairs can be detected in acetic acid solutions. Letting
HOAc represent acetic acid (since acetic acid is CH3COOH, the symbolAc represents
the acetyl group CH3CO), a solute acid HX reacts according to

HXþHOAc>H2OAc
þX	 >H2OAc

þ þX	

In this scheme,HOAc is acting to solvate thehydrogen ion, andH2OAc
þ in acetic acid

is analogous to H3O
þ in water. For convenience we usually omit the solvent, writing

simply

HX>HþX	 >Hþ þX	 ð8:7Þ

Now, in the conventional manner we define an ionization constant Ki, and
a dissociation constant Kd as follows, using Eq. (8.7) as the defining reaction.

Ki ¼ ½HþX	 �
½HX� ð8:8Þ

Kd ¼ ½Hþ �½X	 �
½HþX	 � ð8:9Þ

Next we define an overall dissociation constant KHX; we place all dissociated species
in the numerator and all undissociated species in the denominator:

KHX ¼ ½Hþ �½X	 �
cHX

ð8:10Þ

where cHX¼ [HX] þ [HþX	]. In these equations brackets signify molar concentra-
tions. Combining Eqs. (8.8)–(8.10) gives

KHX ¼ KiKd

1þKi
ð8:11Þ

Similar equations can be written for bases and for salts. One of the consequences
is that the pH, which in water is the controlling factor in acid–base equilibria, does
not play a comparable role in glacial acetic acid. This is because very little of the
acidic species is present as dissociated Hþ ; most of the acid is in the undissociated-
form cHX.
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8.2. MEAN IONIC ACTIVITY AND ACTIVITY COEFFICIENT

Let us now consider a strong electrolyte, such as a salt in aqueous solution. The solute
is completely dissociated into its constituent ions according to

MpXq > pMqþ þ qXp	 ð8:12Þ

where p and q denote the number of positive and negative ions, respectively, generated
by one molecule of the salt. The following development is motivated by the
impossibility of separately varying and studying the cations and the anions; electro-
neutrality dictates that only their combination in the ratio p/q can be manipulated.

We will adopt the infinite dilution Henry’s law reference state in the molar
concentration scale for all species. Then we can write for the cation and the anion

mþ ¼ m0
þ þRT ln aþ ð8:13aÞ

m	 ¼ m0
	 þRT ln a	 ð8:13aÞ

and for the solute as a whole

m2 ¼ m0
2 þRT ln a2 ð8:14Þ

Now we postulate (assuming complete dissociation)

m2 ¼ pmþ þ qm	 ð8:15Þ

and analogously

m0
2 ¼ pm0

þ þ qm0
	 ð8:16Þ

Simple algebraic combination of Eqs. (8.13)–(8.16) yields

a2 ¼ apþ a
q
	 ð8:17Þ

We define v as the number of ions generated by one molecule of solute, so

v ¼ pþ q ð8:18Þ

It is now conventional to define the mean ionic activity a� by av� ¼ a2, giving the
following, from Eq. (8.17):

av� ¼ apþ a
q
	 ð8:19Þ
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A self-consistent set of relations is obtained by making these further definitions;
the mean ionic activity coefficient is

gv� ¼ gpþ gq	 ð8:20Þ

and the mean ionic molarity is

cv� ¼ cpþ c
q
	 ð8:21Þ

so that we can write

a� ¼ g�c� ð8:22Þ

The significanceof these relationships is easiest to comprehend for the simplest case of
a 1:1 electrolyte such as NaCl. For this case p¼ 1, q¼ 1, v¼ 2, and wewrite from the
foregoing

a2� ¼ aþ a	 ð8:23aÞ
g2� ¼ g þ g 	 ð8:23bÞ
c2� ¼ cþ c	 ð8:23cÞ

Although we separately know cþ and c	 from c2, the solute concentration, we cannot
separatelydetermineyþ, y	,aþ , and a	. The effect of the definitionsgivenabove is to
assign the extent of nonideality equally (when p¼ q) to the cation and the anion.

Example 8.2

(a) What is the mean ionic molarity of an aqueous solution 0.15M in sodium
chloride? Since sodium chloride is completely dissociated, cþ ¼ 0.15M and
c	¼ 0.15M, giving, from Eq. (8.23c), c�¼ 0.15M.

(b) What is the mean ionic molarity of an aqueous solution 0.25M in K2SO4?
For this system p¼ 2, q¼ 1, v¼ 3. The concentration of potassium ions, cþ ,
is 0.50M and c	, the concentration of sulfate ions, is 0.25M. From Eq. (8.21),
we have

c3� ¼ ð0:50Þ2ð0:25Þ
c� ¼ 0:397M

8.3. THE DEBYE–HÜCKEL THEORY

In an infinitely dilute solution each solute ion is resident in an environment that
consists effectively only of the solvent (which we continue to treat as a continuum).
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In such a situation the ion is free to exert whatever effects are characteristic of its
identity, unperturbedbyother solute species; it is in itsHenry’s lawreference state, and
it behaves ideally.

If the ionic concentration of the solution is raised, either by increasing the
concentration of the solute of interest or by adding ions of a different electrolyte
solute, the environment of our ion changes. As the ionic concentrations increase, the
distance between ions decreases, and the Coulombic interaction energies come into
play. Ions of like charge tend to repel each other, and ions of unlike charge attract each
other. The consequence of these interactions is that instead of a random distribution
of ions throughout the solution, an ionic atmosphere develops such that the volume
centered on a cation possesses a net negative charge, whereas the volume centered
on an anion possesses a net positive charge (of course, the solution as a whole is
electrically neutral). These charge distributions, constituting perturbations of the
infinite dilution environment, are manifested in solute behavior that we interpret as
nonideal and that we measure in terms of a mean ionic activity coefficient.

In 1923Debye andH€uckel developed a quantitative theory of this ionic atmosphere
effect. Although the Debye–H€uckel theory is not itself part of thermodynamics, its
final result has been absorbed into thermodynamics, and it is routinely used to interpret
and to predict nonideal behavior in electrolyte solutions. TheDebye–H€uckel equation
is written

Log g� ¼ 	 A zþ z	j j ffiffiIp

1þ aB
ffiffi
I

p ð8:24Þ

where A and B are constants whose values depend on the dielectric constant and the
temperature, and a is closely related to an ionic radius. The quantity I is the ionic
strength and is defined by Eq. (8.25), where ci is the molar concentration of ion i and z
is its charge.

I ¼ 1

2

X
ciz

2
i ð8:25Þ

In Eq. (8.24), zþ and z	 are the (absolute values of the) charges on the electrolyte of
interest; in Eq. (8.25), the ci and zi include all the ions in the solution.

For aqueous solutions at 25
C, Eq. (8.24) takes the specific form

log g� ¼ 	 0:509 zþ z	j j ffiffiIp

1þ ffiffi
I

p ð8:26Þ

and at very low ionic strengths Eq. (8.26) approaches Eq. (8.27), which is known as
the Debye–H€uckel limiting law:

log g� ¼ 	 0:509 zþ z	j j
ffiffi
I

p
ð8:27Þ
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Example 8.3. What is the ionic strength of (a) a solution 0.10M in NaCl and 0.05M
in HCl; (b) a solution 0.25M in K2SO4?

(a) cNaþ ¼ 0.10M, cHþ ¼ 0.05M, cCl	 ¼ 0.15M; z2i ¼ 1 for all ions. From
Eq. (8.25), we have

I ¼ 1

2
ð0:10þ 0:05þ 0:15Þ ¼ 0:15M

The ionic strength of a solution of 1:1 electrolytes is equal to the total solute
concentration.

(b) cK þ ¼ 0:50M; zK þ ¼ þ 1; cSO2	
4

¼ 0:25M; zSO2	
4

¼ 	 2

I ¼ 1

2
ð0:50� 1þ 0:25� 4Þ ¼ 0:75M

The ionic strength of a solution containing polyvalent ions reflects the
dominant effect of the square of the charge on the ionic atmosphere. Notice
that the concentrations of Hþ and OH	 arising from the dissociation of water
are not included in the calculation because theymake a negligible contribution
to the ionic strength.

Example 8.4. Calculate the mean ionic activity coefficient of a 1 : 1 electrolyte
at concentrations of 0.001, 0.010, and 0.10mol L	1, in water at 25
C. Use the
Debye–H€uckel equation in the form of Eq. (8.26), and also use the limiting law,
Eq. (8.27).

From the given data, zþ ¼ þ 1, z	¼	1, so zþ z	j j ¼ 1, and I¼ c, the molar
concentration. These results are found:

g�
c (M) Eq. (8.26) Eq. (8.27)

0.001 0.965 0.964
0.010 0.899 0.889
0.100 0.756 0.690

The results in Example 8.4 show that the limiting law and the full Debye–H€uckel
equation agree closely in extremely dilute solution, but they begin to differ signifi-
cantly in the concentration region of�0.01M (i.e., when

ffiffi
I

p ¼ 0:1). Above this ionic
strength Eq. (8.26) is necessary, but even this equation fails to agree closely with
experimental results at ionic strengths above about 0.05M, where effects specific to
each electrolyte are observed. Table 8.2 lists some experimentally determined mean
ionic activity coefficients.3 We expect, from the appearance of the product zþ z	j j in
the Debye–H€uckel equation, that different charge types of electrolytes will behave

3 See Glasstone (1947, p. 402). These activity coefficients can be measured in various ways. One approach
is to measure the deviation from ideality of the solvent and to relate this to the nonideality of the solute.
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differently, and this is seen. However, it is also observed that electrolytes of the same
charge type display behavior characteristic of the individual electrolyte; compare HCl
andNaCl in Table 8.2. Empirical extensions of theDebye–H€uckel equation have been
proposed of the form (at 25
C in water)

log g� ¼ 	 0:509 zþ z	j j ffiffiIp

1þ aB
ffiffi
I

p þCI ð8:28Þ

where the parameters aB and C are chosen to best fit the experimental data.
Figure 8.1 is a plot of the data from Table 8.2 in a format consistent with the

manner in which the Debye–H€uckel equation is written, that is, as a plot of log g�

Table 8.2. Mean ionic activity coefficients in water at 25
C

g�

m HCl NaCl CaCl2 ZnSO4

0.001 0.966 0.966 0.888 0.734
0.005 0.928 0.929 0.789 0.477
0.01 0.905 0.904 0.732 0.387
0.02 0.875 0.875 0.669 0.298
0.05 0.830 0.823 0.584 0.202
0.1 0.796 0.778 0.531 0.148
0.2 0.767 0.732 0.482 0.104
0.5 0.757 0.679 0.457 0.063
1.0 0.809 0.656 0.509 0.044
2.0 1.009 0.670 0.807 0.35
3.0 1.316 0.719 1.55 0.041

Source: Data from Glasstone (1947, p. 402).

Figure 8.1. Plot of data in Table 8.2. Limiting law slopes are drawn for 1:1, 1 : 2, and 2 : 2

electrolytes.
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against
ffiffi
I

p
. Figure 8.1 shows several interesting features. The individual character of

the nonideal behavior is clearly evident in the curves for HCl and NaCl. The minima
observed in these curves are not predicted by the Debye–H€uckel equation, and in
some instances the mean ionic activity coefficients rise to values greater than unity.
From the limiting law, Eq. (8.27), we can predict the slope of the plot for each charge
type of electrolyte at infinite dilution, and these slopes are drawn in Fig. 8.1. The
Debye–H€uckel limiting law gives a satisfactory account of nonideal electrolyte
behavior in very dilute solutions.

The Debye–H€uckel theory finds very practical application in obtaining thermody-
namic acid dissociation constants for weak acids and bases. An apparent constant is
measured experimentally at, necessarily, finite ionic strength, and the theory is used to
correct the value to zero ionic strength. This calculation is described in Chapter 13.
One powerful consequence of the Debye–H€uckel theory is that it provides a firm
theoretical basis for the extrapolation of electrolyte experimental data to infinite
dilution; the appropriate independent variable is the square root of the ionic strength.

PROBLEMS

8.1. Write the reactions for ionization and dissociation of a base B in glacial acetic
acid.

8.2. Calculate the ionic strengths of these three solutions (from Table 8.2): 3.0m
NaCl; 3.0m CaC12; 3.0m ZnSO4.

8.3. Calculate the mean ionic activity coefficient of 0.05m NaCl in water at 25
C,
and compare your result with the experimental value in Table 8.2.

8.4. Estimate the mean ionic activity of 0.001M HCl in an aqueous solution
containing 0.025M KCl at 25
C.

8.5. Calculate the ionic strength of a solution containing 0.10M Na3PO4 and
0.05M KBr.

8.6. Obtain an estimate of the parameter C in Eq. (8.28) for CaCl2 by use of the data in
Fig. 8.1. [Hint: find the derivative d log g�=d

ffiffi
I

p
of Eq. (8.28), set equal to zero

(at the minimum), and solve for C.]
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9

COLLIGATIVE PROPERTIES

Several properties of solutions depend (mainly) only on the number of solute particles
(molecules or ions) and not on their identity. These are called the colligative
properties. They are pharmaceutically relevant.

9.1. BOILING POINT ELEVATION

The boiling point of a solution of a nonvolatile solute is higher than the boiling point of
the pure solvent. This observation is readily explicable on the following basis. The
normal boiling point Tb of the solvent is the temperature at which its vapor pressure is
equal to 1 atm. When a solute is incorporated into the solvent, according to Raoult’s
law thevapor pressure over the solution isp1 ¼ x1P

*
1 [Eq. (7.1)]. (Wewill use subscript

1 to designate the solvent and 2 for the solute.) Since x1 þ x2¼ 1, an increase in x2
results in a decrease in x1 and therefore adecrease inp1, at a given temperature. In order
to cause the solvent to boil, it is now necessary to raise the temperature until p1
becomes1 atm.This phenomenon is knownas theboiling point elevation, and it is seen
to be a consequence of the vapor pressure lowering by the presence of solute particles.
As ordinarily discussed, the boiling point elevation is treated as a phenomenon of
nonelectrolyte solutions, but solutions of electrolytes show the same effect. It is
necessary to keep inmind that the number of solute particles (i.e., their concentration)
is the controlling factor, and if the solute is an electrolyte, the number of particles
depends on the charge type and the extent of dissociation. For example, in a 0.10M
aqueous solution of NaCl the effective concentration, as concerns the colligative
properties, is 0.20M.

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
Copyright � 2010 by John Wiley & Sons, Inc.
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A thermodynamic description of the boiling point elevation effect can be achieved
by the application of concepts that we have already developed. At equilibrium (i.e., at
the boiling point), the chemical potential of the solvent is equal in the vapor and
liquid phases:

m1ðgÞ ¼ m1ðlÞ ð9:1Þ

By restricting attention to dilute solutions, we can treat the solution as an ideal
solution, writing

m1ðlÞ ¼ m0
1ðlÞþRT ln x1 ð9:2Þ

m1ðgÞ ¼ m0
1ðgÞþRT ln p1 ð9:3Þ

Setting these equal, noting that p1¼ 1 atm at the boiling point, and writing
DG0

vap ¼ m0
1ðgÞ	m0

1ðlÞ gives

DG0
vap ¼ RT ln x1 ð9:4Þ

Putting Eq. (9.4) into the form DG0
vap=T ¼ R ln x1 and applying the Gibbs–Helmholtz

equation [Eq. (3.18)] leads to

d ln x1
dT

¼ 	 DH0
vap

RT2
ð9:5Þ

where constant pressure is understood.1

When x1¼ 1, we obtain T¼ Tb (the normal boiling point). Equation (9.5) is
integrated between the limits shown:

ðx1
1

d ln x1 ¼ 	 DH0
vap

R

ðT
Tb

dT

T2

The result is

ln x1 ¼ 	 DH0
vap

R

1

Tb
	 1

T

� �

1 DGvap ¼ m1ðgÞ	m1ðlÞ ¼ 0, since the system is at equilibrium, but DG0
vap ¼ m0

1ðgÞ	m0
1ðlÞ is not zero; it

is the standard free-energy change. It is therefore correct to label the enthalpy change DH0
vap. However,

DH0
vap is numerically identical to DHvap, which appears in the Clausius–Clapeyron equation [Eq. (4.11)].

The reason for this equality is that we have postulated ideal solution behavior, and for the ideal solution, the
enthalpy of mixing is zero (Section 7.1). Consequently there is no enthalpy change on bringing the solution
from x1¼ 1 to x1< 1.
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which can be written

ln x1 ¼ 	 DH0
vap

R

T 	 Tb
T Tb

� �
ð9:6Þ

Now define the boiling point elevation as DTb ¼ T 	 Tb, and, since Tand Tb are quite
close together, approximate TTb by T2

b. Making these substitutions in Eq. (9.6) gives

ln x1 ¼ 	 DH0
vapDTb
RT2

b

Since x2 is small (the solution is dilute), we write2 ln xi¼ ln (1	 x2)�	x2. We also
convert x2, the mole fraction of solute, to m2, the molality of solute, with x2¼m2M1/
1000, whereM1 is themolecular weight of solvent [Eq. (5.2)]. The final result of these
substitutions is

DTb ¼ RT2
bM1m2

1000DH0
vap

ð9:7Þ

which can be written DTb ¼ Kbm2, where

Kb ¼ RT2
bM1

1000H0
vap

ð9:8Þ

The proportionality constant Kb is called the boiling point elevation constant or the
ebullioscopic constant. Note that Kb can be calculated solely from properties of the
solvent and that DTb depends only on the identity of the solvent and the concentration
(not the identity) of the solute.

Example 9.1. The heat of vaporization of water is 9.717 kcalmol	1 at its boiling
point. Calculate the ebullioscopic constant of water:

Kb ¼ ð1:987 cal mol	 1 K	 1Þð373:15KÞ2ð18:02 g mol	 1Þ
ð1000Þð9717 cal mol	 1Þ

¼ 0:513 K gmol	 1

The result inExample 9.1may appear to say that the boiling point of a 1m solutionwill
be raised 0.513K, but of course a 1 m solution lies outside the dilute solution range
where this equation is valid.3

2 We are using the series expansion ln (1	 x)¼	x þ x2/2	 x3/3 þ . . . .
3 Some discrepancies in the form of Eq. (9.8) for Kb will be noted in the literature. Some authors
(Williamson 1967, p. 102; Atkins 1994, p. 229) omit the factor 1000 in the denominator. Others (Smith
1977, p. 90; Gupta 2000) include the 1000 and assignKb the unit K. The distinction lies in the units given to
the molalitym2, that is, whether molality has the units mol kg	1 or mol (1000) g	1 or is considered to be a
dimensionless number.
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9.2. FREEZING POINT DEPRESSION

We have seen in Chapter 6 that the freezing point (melting point) of a two-component
system is lowered (relative to apure substance).A simplequantitative treatment canbe
basedon the assumption that the solute does not dissolve in solid solvent; then the solid
that forms is pure solvent. The method is identical in form with that used for the
analysis of theboilingpoint elevation;we replace the chemical potential of thegaseous
solvent with that of the solid solvent. The result can be written

DTf ¼ Kfm2 ð9:9Þ

where DTf ¼ Tf 	 T and

Kf ¼
RT2

f M1

1000DH0
f

ð9:10Þ

where DH0
f is the heat of fusion and Kf is the cryoscopic constant or freezing point

depression constant.

Example 9.2. The heat of fusion of water is 6.01 kJmol	1. Calculate the freezing
point depression constant of water:

Kf ¼ ð8:314 J mol	 1 K	 1Þð273:15 KÞ2ð18:02 g mol	 1Þ
ð1000Þð6010 J mol	 1Þ

¼ 1:86 K gmol	 1

9.3. OSMOTIC PRESSURE

Consider the experimental arrangement in Fig. 9.1, which shows a solvent compart-
ment (left) and a compartment containing a dilute solution in the same solvent (right),
the two compartments separated by a semipermeable membrane, which permits the
passage of solvent molecules but prevents the passage of solute molecules. The
presence of solute in the right-hand compartment reduces the mole fraction of solvent
in that compartment and thereby reduces its activity andchemical potential below their
values in the pure solvent in the left-hand compartment.

In order to achieve equilibrium, the chemical potential of the solventmust be equal
on both sides of the membrane. There is thus a driving force for the passage of solvent
molecules from left to right. (Although it is actually the chemical potential difference
that is responsible for this effect, it can also be rationalized as a simple concentration
effect, because the solvent concentration ishigheron the left.) The flowof solvent from
left to right continuesuntil it is opposedby thebackpressuregeneratedby the increased
height of solution in the right-hand column. (Or alternatively, the experiment can be
arranged so as to apply an excess pressure to the right until the flowof solvent is exactly
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balanced.) This phenomenon of the passage of solvent through a semipermeable
membrane under the influence of a difference in chemical potentials is called osmosis,
and the excess pressure (p in Fig. 9.1) that equalizes the chemical potentials is the
osmotic pressure.

Our thermodynamic analysis of osmosis begins with the statement of osmotic
equilibrium

m0
1ðP; TÞ ¼ m1ðPþ p; T ; x1Þ ð9:11Þ

where the left side of the equation refers to pure solvent (the left-hand compartment in
Fig. 9.1) and the right side, to the solution. The parentheses contain the variables
controlling the particular quantities, in order tomake explicit how the two sides differ.
We assume that the solution is dilute and behaves ideally. Then, on expandingm1 in the
usual manner, Eq. (9.11) becomes

m0
1ðP; TÞ ¼ m0

1ðPþ p; TÞþRT ln x1 ð9:12Þ

where nowm0
1ðPþ p; TÞ designates the chemical potential of pure solvent at pressure

P þ p. We now develop this quantity as in

m0
1ðPþ p; TÞ ¼ m0

1ðP; TÞþ
ðPþ p

P

V1 dP ð9:13Þ

where V1 is the molar volume of solvent [Eq. (3.6)]. Putting Eq. (9.13) into Eq. (9.12)
results in

ðPþ p

P

V1 dP ¼ 	RT ln x1 ð9:14Þ

Figure 9.1. Principle of osmosis and the osmotic pressure p.
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Treating V1 as independent of pressure and integrating yields

pV1 ¼ 	RT ln x1 ð9:15Þ

Using once again (see note 2) the approximation (for dilute solution) that ln x1¼	x2,
Eq. (9.15) becomes pV1 ¼ x2RT . Now, x2¼ n2/(nl þ n2), which in dilute solution is
nearly equal to the mole ratio n2/n1. This gives

pn1V1 ¼ n2RT ð9:16Þ

The product n1V1 equals V, the total volume of the solution, or

pV ¼ n2RT ð9:17Þ

The formal resemblance of Eq. (9.17) to the ideal-gas law is obvious.We can take one
further step by noting that the ratio n2/V is the molar concentration c2 of the solute:

p ¼ c2RT ð9:18Þ

Example 9.3. Calculate the osmotic pressure of an 0.01M solution at 25
C.
Since we find it convenient to express pressure in atmospheres, we use R as
0.08206 L atmmol	1 K	1. From Eq. (9.18), we have

p ¼ ð0:01 mol L	 1Þð0:08206 L atm mol	 1 K	 1Þð298:15 KÞ
¼ 0:245 atm

Example 9.3 shows that osmosis is a very sensitive effect, much more so than are the
other colligative properties. This same solutionwould exhibit a boiling point elevation
of 0.0051K (Example 9.1) and a freezing point depression of 0.0186K (Example 9.2).
This sensitivity forms the basis of an experimental method, called osmometry, for
measuring molecular weights of solutes. Solutions are prepared with known con-
centrations in grams per liter (g L	1)and their osmotic pressures are measured. From
Eq. (9.18) the corresponding molar concentration c2 is calculated. Since c2 has the
units mol L	1 and mol¼ g/M2 (where M2 is the molecular weight of the solute), the
quantity M2 can be obtained. In practice, deviations from ideality must be taken into
account (Atkins 1994, p. 229).

Osmotic Pumps. The phenomenon of osmosis has found important applications in
the delivery of drugs by both oral tablets and implantable systems. The concept in all
cases is very simple: A membrane semipermeable to water but not to the drug to be
delivered is used to encapsulate the drug, which occupies one chamber in the tablet
(one layer in the implant).Additives such as osmotic agents (salts like magnesium
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sulfate) or water-swellable polymers occupy a second chamber (different layer in an
implant). Figure 9.2a shows the simplest osmotic pump. The tablet (or the implant) is
equipped with one or more micro-orifices drilled in the system with a laser. Upon
exposure to an aqueous environment, the semipermeable membrane will allow
water to enter the tablet. The chamber where the salt or the polymer is contained
will increase in volume, and this increase will generate enough pressure to push the
drug out of the orifice as an aqueous suspension. The rate of releasewill be determined
by the rate of water-diffusion and the orifice diameter. This conceptually remarkably
simple concept can be extended to tablets containing more than one drug as shown
in Fig. 9.2b.

The use of a number of different additives as well as complexing agents for
enhancing the water-solubility of hydrophobic drugs (cyclodextrins, an important
class of drug-complexing agents are described in Chapter 14) has led to a number of
modifications of the original osmotic pump design. Osmotic pumps present the
advantage of leading to zero-order kinetics in drug release, that is, constant drug
release over time. This consistent, stable drug release helps to achieve better
therapeutic control.

9.4. ISOTONICITY CALCULATIONS

Bodymembranes, including cell membranes, are semipermeablemembranes to some
degree. They are generally permeable to water and are impermeable, or nearly so, to
many (but obviously not all) solutes. Thus we anticipate the existence of osmotic
pressure differences across these membranes. It is known that irritation caused by
foreign solutions is in part related to their osmotic pressure; the closer the osmotic

Figure 9.2. (a) An osmotic pump can be used to release drug at a controlled rate from an oral

tablet. (b) The same concept applied to the delivery of two drugs through one tablet.
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pressure of an administered solution is to that of the physiological solution on the other
side of the membrane, the less the discomfort that is experienced.

Two solutions are said to be isoosmotic if they have the same osmotic pressure.
Isoosmoticity is therefore a physical property, based on the thermodynamic concept of
Section 9.3. A solution is said to be isotonic if it has the same osmotic pressure as a
reference body fluid, measured with respect to the appropriate body membrane.
Isotonicity is therefore a physiological concept. It is possible for a pair of solutions to
be both isoosmotic and isotonic, but they need not be, as when the biological
membrane is not perfectly impermeable to the solute. For example, 1.9% boric
acid solution (in water, the solvent for all solutions in this section) is both isoosmotic
and isotonic with respect to the eye, because the corneal membrane is impermeable to
boric acid. On the other hand, 1.9% boric acid is isoosmotic with the red blood cell
contents, but it is not isotonic toward this biological medium, because the red blood
cell membrane is permeable to boric acid. (Boric acid is often used to render
ophthalmic solutions isotonic.)

A solution having an osmotic pressure greater than that of physiological fluids is
hypertonic; if its osmotic pressure is less than that of physiological fluids, it is
hypotonic. Consider a red blood cell surrounded by a hypertonic solution. Since
the osmotic pressure of the surrounding solution is greater than that inside the cell
(i.e., the water activity is less outside than inside the cell), water will flow out of the
cell,which shrinks and shrivels. If the redbloodcell shouldbe immersed in ahypotonic
solution, water will flow into the cell, which swells and may burst. The goal of
rendering pharmaceutical solutions isotonic is directed toward preventing or mini-
mizing such physiological consequences.

Experimental work has shown that the freezing point of human blood is	0.52
C.
We consider that all other physiological fluids are effectively in equilibrium with
blood, and so they are isotonic with blood. Although we saw that osmotic pressure is
the most sensitive of the colligative properties, the freezing point depression is much
the easiest tomeasure, and so it forms the basis of all isotonicity calculations. Herewe
will describe the simplest of these, called straightforwardly the freezing point
depression method. For other methods the literature may be consulted (Thompson
1998, Chapter 10; Windholz 1983, pp. MISC-47–MISC-69; Reich et al. 2000). The
basis of the method is the assumption that contributions to the freezing point
depression from multiple solutes are additive, and so the goal of the calculation is
to achieve a freezing point depression of –0.52
C.

Example 9.4. Estimate the concentration of sodium chloride required to produce an
isotonic aqueous solution.

The calculation is based on Eq. (9.9), DTf ¼ Kfm2, with Kf¼ 1.86
C (see
Example 9.2). We seek DTf ¼ 0.52
C; hence we need m2¼ 0.52/1.86¼ 0.28. But
NaC1 is a1 : 1 strongelectrolyte, so eachmoleculeyields twoparticlesondissociation;
thereforeweactuallyneed toprepare a solution0.28/2¼ 0.14m.Commonly thismolal
concentration is expressed as a molar concentration, neglecting the difference; to
obtain 0.14M NaCl, whose molecular weight is 58.5, we take (0.14)
(58.5)¼ 8.19 g L	1, or 0.82 g/100mL, which is 0.82%.
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Experimentally it is observed that a solution 0.5% inNaCl exhibits a freezing point
depression of 0.289
C. Setting up the proportion

0:289
C
0:5%

¼ 0:52
C
x

we find x¼ 0.9% NaCl. The slight discrepancy with the result in Example 9.4
probably is a consequence of nonideal solution behavior. An aqueous solution
containing 0.9% (w/v) sodium chloride is isotonic. This solution is called normal
saline or physiological saline.

Because of nonideal solution behavior or incomplete electrolyte dissociation, it is
preferable to make use of published freezing point depression data. However, if such
data are not available, avery reasonable calculation canbebasedon theknownKfvalue
of 1.86 together with chemical knowledge of the nature of the solute.

Example 9.5. Give directions for the preparation of 100mL of isotonic 1% hexa-
methonium tartrate. The following data are available (Windholz 1983, pp. MISC-
47–MISC-69; Reich et al. 2000):

Concentration DTf

0.5 0.045
1 0.089
2 0.181
3 0.271
5 0.456

We set up the problem in tabular form:

Desired DTf value 0:52
C

DTf of 1% of drug 0:089
C
_

Difference to be made up 0:431
C

We will use NaCl to make the solution isotonic. From the proportion

0:9%

0:52
C
¼ x

0:431
C

we find x¼ 0.75%. Therefore we proceed by dissolving 1.0 g of hexamethonium
tartrate and 0.75 g of NaCl in enough water to make 100mL.

If data are not available for the concentration we require, interpolation or
extrapolation may give the information.
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Example 9.6. Prepare 2 oz of 2% isotonic imipramine hydrochloride.
Sources giveDTf¼ 0.058
Cat 0.5%and0.110
Cat 1%.Wecanplot these data as in

Fig. 9.3 andobtain theestimateDTf¼ 0.225
Cat2%. (Extrapolation is risky, but itmay
be our best recourse.) We proceed as before:

Desired DTf value 0:52
C

DTf of 2% of drug 0:225
C
_

Difference to be made up 0:295
C

Again using NaCl, we obtain

0:9%

0:52
C
¼ x

0:295
C
x ¼ 0:51%

If we needed to prepare 100mL of the solution wewould take 2.0 g of drug and 0.51 g
of NaCl. However, only 2 oz (60mL) of solution is required, so we take (60/100)
(2)¼ 1.2 g of drug and (60/100) (0.51)¼ 0.31 g of NaC1 in enough water to make
60mL.

If the prescription calls for more than one drug, the DTf contributions of the several
drugs are summed. In ophthalmic solutions, boric acid may be used to make the
solution isotonic; 1.9% boric acid solution is isotonic.

Although the several alternative methods of isotonicity calculation are all
derived from the freezing point depression method, one of these approaches merits
comment because of its simplicity and utility. The principle is as follows. If two
isotonic solutions are mixed, the resulting solution is isotonic. For example, if the

Figure 9.3. Freezing point depression of hexamethonium tartrate. See Example .
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prescribed amount of drug is dissolved in just enough water to make an isotonic
solution, this solution couldbediluted to the desiredvolumewithnormal saline and the
result will be isotonic. The United States Pharmacopeia gives formulas for isotonic
phosphate buffer solutions that can be used in this way, particularly for ophthalmic
solutions.

PROBLEMS

9.1. Starting with Raoult’s law, show that the extent of vapor pressure lowering is
directly proportional to solute concentration.

9.2. Calculate the boiling point elevation constant of ethanol, whose heat of
vaporization is 38.6 kJmol	1.

9.3. Calculate the freezing point depression constant of glacial acetic acid, whose
heat of fusion is 11.7 kJmo1	1.

9.4. Give directions for the preparation of 1 oz of this ophthalmic solution; DTf for
2% pilocarpine nitrate is 0.247:

Pilocarpine nitrate 2%

Make isotonic with boric acid

9.5. Estimate DTf of 5% dextrose solution. Dextrose (glucose) is available as the
monohydrate, MW 198.2. What concentration of dextrose will yield an isotonic
solution?

9.6. A and B are two pure liquids of similar freezing points and molecular weights.
LiquidA freezing-point depression constant is twice that of liquid B.What is the
relationship between the heats of melting of A and B?

9.7. A solution is made at 25
C by mixing 0.50 g of liquid C (molecular weight¼
250 g/mol) and 1.60 g of liquid D (molecular weight¼ 200 g/mol). The vapor
pressure of liquidC at 25
C is 268mmHg.Thevapor pressure of liquidDat 25
C
is 236mmHg. It is found experimentally that the partial vapor pressure of C and
D above this solution are 45mmHg and 177mmHg, respectively. What are the
activity coefficients of C and D in this solution?

9.8. What are the freezing point and the osmotic pressure of an aqueous 0.2m
solution of sucrose at 25
C? Consider the solution as dilute and assume
density¼ 1.02 g cm	3.
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10

SOLUBILITY

10.1. SOLUBILITY AS AN EQUILIBRIUM CONSTANT

The topic of solubility merits special attention because of its great importance in
pharmaceutical systems.We can generally anticipate that a drugmust be in solution if
it is to exert its effect. Typically, the type of system we encounter is a pure solid
substance (the solute) in contact with a pure liquid (the solvent).We allow equilibrium
to be achieved at fixed temperature and pressure, such that at equilibrium the system
consists of (excess) pure solid phase and liquid solution of solute dissolved in solvent.
According to Gibbs’ phase rule, P¼ 2 and C¼ 2, so F¼C	P þ 2¼ 2 degrees of
freedom. These are the temperature and pressure, which we have specified as fixed.
Thus there remain no degrees of freedom; the system is invariant. This means that at
fixed temperature and pressure, the concentration of dissolved solute is fixed.We call
this invariant dissolved concentration the equilibrium solubility of the solute at this
pressure and temperature. (We say that the solution is saturated.) Our present concern
iswith how the equilibrium solubility depends on the temperature and on the chemical
natures of the solute and the solvent.

Expressed as a reaction, the dissolution process is

Pure solventþ Pure solute> Solute in solution

At equilibrium the chemical potentials of the solute in the two phases are equal; or,
letting component 1 be the solvent and component 2 the solute, we obtain

m2ðsolidÞ ¼ m2ðsolutionÞ

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
Copyright � 2010 by John Wiley & Sons, Inc.
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Writing out the chemical potentials gives

m0
2ðsolidÞþRT ln a2ðsolidÞ ¼ m0

2ðsolutionÞþRT ln a2ðsolutionÞ ð10:1Þ

where the standard state of the solid is the pure solid, andwewill adopt as the standard
state of the solute in solution the Henry’s law definition on the molar concentration
scale. Rearranging Eq. (10.1) leads to

Dm0 ¼ 	RT ln
a2ðsolutionÞ
a2ðsolidÞ ð10:2Þ

where Dm0 ¼ m0
2ðsolutionÞ	m0

2ðsolidÞ. But the solid is in its standard state, so
a2ðsolidÞ¼ 1.0 by definition and we obtain

Dm0 ¼ 	RT ln a2ðsolutionÞ ð10:3Þ

We have seen that a2ðsolutionÞ is invaiant—it is the activity corresponding to the
equilibrium solubility—so comparison of Eq. (10.3) with the fundamental thermo-
dynamic result

DG0 ¼ 	RT ln K ð10:4Þ

leads to the conclusion that a2ðsolutionÞ, the activity of the solute in a saturated
solution,must have the character of an equilibriumconstant.As a consequence,wecan
evaluate standard free energy, enthalpy, and entropy changes for the soution process in
the usual manner (Chapter 4). These quantities are respectively called the free energy,
heat, and entropy of solution.

For nonelectrolyte solutes, particularly those of limited solubility, so that the
saturated solution is fairly dilute, it will be acceptable to approximate the activity a2
(soln) by the equilibrium solubility concentration. This is usually in molar concen-
tration units and is often symbolized s.

10.2. THE IDEAL SOLUBILITY

A thermodynamic argument can predict the equilibrium solubility of a nonelectrolyte,
provided that it dissolves to form an ideal solution. Ideal behavior does not mean that
intermolecular interactions are absent. On the contrary, solids and liquids would not
exist without the intermolecular forces of interaction. In the present context, ideal
behavior means that the energy of interaction between two solvent molecules is
identical to that between one solvent and one solute molecule, so that a solvent
molecule may be replaced with a solute molecule without altering the intermolecular
energies. (This requires that the solvent and solute molecules have the same size,
shape, and chemical nature, a demanding set of limitations.)
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Quantitatively, an ideal solution can be defined as one having the following
properties (Chapter 7):

DHmix ¼ 0 ð10:5Þ
DVmix ¼ 0 ð10:6Þ
DSmix ¼ 	Rðx1 ln x1 þ x2 ln x2Þ ð10:7Þ

According to Eqs. (10.5) and (10.6), there is no heat or volume change on mixing the
solute and solvent in an ideal solution, and the entropy change is given by Eq. (10.7).
Since x1 þ x2¼ 1, the logarithmic terms are necessarily negative, soDSmix is positive,
and this constitutes the “driving force” for dissolution, because of the relationship
DG ¼ DH	 T DS.

If the entropyofmixing is thedriving force for dissolution,what is the “resistance”?
It is the solute–solute interaction forces, which, for solids, lead to the “crystal lattice
energy.” These must be overcome for the solute to dissolve. Now, the free-energy
change for the dissolution process is the same no matter what reversible mechanism
(path) is taken to pass from the initial state (pure solute) to the final state (saturated
solution), so we can divide the process as follows (for a solid solute):

Crystalline solute > Supercooled liquid solute

Pure liquid solvent > Solvent containing cavity

Supercooled liquid soluteþ Solvent
containing cavity

> Saturated solution

Sum : Crystalline soluteþ Pure liquid solvent > Saturated solution

Since in an ideal solution the solvent–solvent interactions match the solvent–solute
interactions, the energy required to create molecule-sized cavities in the solvent is
offset by the energy recovered when the solute molecules are inserted into these
cavities. The energetic cost of the dissolution process then appears in the first step,
the melting of the solid. An equivalent viewpoint (Grant and Higuchi, 1990, p. 16)
is that the enthalpy of solution is given by

DHsoln ¼ DHfusion þDHmix

But DHmix ¼ 0 for an ideal solution, so DHsoln ¼ DHfusion.
The saturation solubility,we have seen, is an equilibriumconstant, so thevan’tHoff

equation [Eq. (4.29)] is applicable:

d ln x2
dT

¼ DHf

RT2
ð10:8Þ

where the solubility is expressed as the mole fraction simply to maintain consistency
with Eq. (10.7) and where DHf is the heat of fusion and T is the absolute temperature.
We have seen above why the heat of fusion appears in a solubility expression.
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(Incidentally, a dissolved solid should be viewed as possessing some of the properties
of the liquid state, consistent with the above view that fusion is the first step in the
dissolution process.) Now suppose that DHf is independent of temperature, which is
equivalent to writing for the solute, from Eq. (1.23),

DCp ¼ Cliq
p 	Csolid

p ¼ 0 ð10:9Þ

Then integrating Eq. (10.8) from Tm to T gives

ln x2 ¼ 	 DHf

R

Tm 	 T

TTm

� �
ð10:10Þ

where Tm is the melting temperature and T is the experimental temperature.
Equation (10.10) allows us to calculate the ideal solubility.

Example 10.1. The melting point of naphthalene is 80.2 
C, and its heat of fusion
at the melting point is 4.54 kcalmo1	1. What is the ideal solubility of naphthalene
at 20 
C?

Log x2 ¼ 	 4540 cal mol	 1

ð2:303Þð1:987 cal mol	 1K	 1Þ
60:2 K

353:35 K � 293:15 K

� �
¼ 	 0:577

x2 ¼ 0:265

Deviations from ideality will be manifested by discrepancies from the ideal
solubility as calculated with Eq. (10.10). Table 10.1 lists equilibrium solubilities
for naphthalene in many solvents. Observe that those solvents most chemically like

Table 10.1. Naphthalene solubility at 20 
C

Solvent x2

(Ideal) 0.265
Chlorobenzene 0.256
Benzene 0.241
Toluene 0.224
Carbon tetrachloride 0.205
Hexane 0.090
Aniline 0.130
Nitrobenzene 0.243
Acetone 0.183
n-Butanol 0.0495
Methanol 0.0180
Acetic acid 0.0456
Water (25 
C) 0.0000039
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naphthalene—that is, aromatic and nonpolar solvents—show behavior most closely
approximating ideal behavior.

At the melting temperature Tm the solid and liquid forms of the solute are in
equilibrium, so DGf ¼ 0 and we get DHf ¼ Tm DSf , giving Eq. (10.11) as an alterna-
tive form of Eq. (10.10):

ln x2 ¼ 	 DSf ðTm 	 TÞ
RT

ð10:11Þ

10.3. TEMPERATURE DEPENDENCE OF THE SOLUBILITY

Since DHf is always a positive quantity, Eq. (10.10) predicts that the solubility of a
solid will increase with temperature. Moreover, Eq. (10.10) shows that if two solid
substances have the sameheat of fusion, theonewith thehighermelting pointwill have
the lower solubility. Conversely, if they have the same melting point, the one with the
lower heat of fusion will have the higher solubility. All of these inferences from
Eq. (10.10) refer to systems forming ideal solutions, so deviations from the predictions
can occur for real systems. Nevertheless, the increase of solubility with temperature
is very widely observed for solids. Even the relationship of solubility to melting point
can be a useful guide, though confounding phenomena can introduce complications;
for example, hydrogen-bonding or other polar interactions may raise both the melting
point and the aqueous solubility. The comparison of the temperature dependence
of solubility of solids and gases is instructive; see Table 10.2.

Equation (10.10) can be rearranged to Eq. (10.12):

ln x2 ¼ 	 DHf

RT
þ DHf

RTm
ð10:12Þ

If DHf is essentially constant over the experimental temperature range, Eq. (10.12)
predicts that a plot of ln x2 against 1/Twill be linear with a slope equal to 	DHf =R.
The line should terminate at the melting point, where 1/T¼ 1/Tm. Often such lines are
straight, probably because the usual range of temperatures is small. The slope gives
DHf in principle, but in actuality the quantity evaluated from the slope is not precisely

Table 10.2. The contrary effects of temperature on the solubilities of solids and gases

Solid ÐDHf

Liquid ÐDHv

DHc

Gas

Solids Gases

Solution is the process of passing from
solid to liquid (fusion, DHf)

Solution is the process of passing from gas
to liquid (condensation, DHc), which is
the reverse of vaporization (DHv)

DHf is positive, so x2 increases as
T increases

DHv is positive, so DHc is negative;
thus x2 decreases as T increases
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DHf because the solution is seldom ideal, and instead the quantity found in this way is
termed the heat of solution.

Throughout this discussion we have been assuming that the solid phase consists
of the pure solid and not a solid solution. Another possible complication arises if the
solid substance can exist in two crystalline forms (polymorphs; Chapter 6), which
interconvert at transition temperatureTt. Thevan’tHoff plot can resembleFig. 10.1a or
Fig. 10.1b, depending primarily on the kinetics of the transformation. In Fig. 10.1a,
the two forms are sufficiently stable that their solubilities can be separately measured
at the same temperatures, which are below the transition temperature. Nevertheless,
the crystal form having the higher solubility (at a given temperature) is thermody-
namically unstable (it is said to be metastable, since its kinetics of transformation
permit it to exist for some period during which it acts as if it were stable) and will
ultimately be converted to the stable form. Extrapolation of the lines to the transition
temperature may be possible. Sulfathiazole in 95% ethanol shows the Fig. 10.1a
behavior (Milosovich 1964; Carstensen 1977, p. 7).

In Fig. 10.1b, one form exists in one temperature range, while the other form exists
in a temperature range on the other side ofTt. Themelting point observedwill be that of
the higher-melting polymorph. Carbon tetrabromide exemplifies this behavior
(Hildebrand et al., 1970, p. 23).

Let us return to the assumption that the change in heat capacities, DCp, is zero,
for all the subsequent discussion was based on this assumption. If DHf in fact is a
function of temperature, then DCp is not zero. Suppose we make the more reasonable
assumption that DCp is a nonzero constant, and write DHf as

DHf ¼ DHm
f 	DCpðTm 	 TÞ ð10:13Þ

Figure 10.1. Hypothetical solubility van’t Hoff plots for polymorphs.
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where DHm
f is the heat of fusion at Tm. Equation (10.13) is inserted into Eq. (10.8),

which can be rearranged and integrated to give Eq. (10.14):

ln x2 ¼ 	 DHm
f

R

Tm 	 T

TTm

� �
þ DCp

R

Tm 	 T

T

� �
	 DCp

R
ln
Tm
T

ð10:14Þ

This equation is useful for assessing the error that may be introduced by making the
simple assumptionDCp ¼ 0. Suppose, for example, that the experimental temperature
is 25 
Cand themelting point is 100 
C. Then the last two terms in Eq. (10.14) become
equal to 0.25DCp/R	 0.22DCp/R¼ 0.03DCp/R. Thus considerable compensation can
take place, making the approximation DCp¼ 0 more acceptable than it might have
seemed.

Example10.2. These are solubility data for nitrofurantoin inwater (Chen et al. 1976).
Analyze the data to obtain the heat of solution.

Tð
CÞ 106x2

24 6:01

30 8:57

37 13:16

45 18:99

The data are manipulated as required to make the van’t Hoff plot according to
Eq. (10.12):

103 K=T log x2

3:37 	 5:22

3:30 	 5:06

3:23 	 4:88

3:14 	 4:72

The plot is shown in Fig. 10.2. It is possible that the points describe a curve, but this
is uncertain with the data as given, because conceivably the scatter is a consequence
of experimental random error. A straight line has therefore been drawn. Its slope is
	2300K, so we calculate

DHsoln ¼ ð2300 KÞð1:987 cal mol	 1 K 	 1Þ
¼ 4570 cal mol	 1

¼ 4:57 kcal mol	 1

¼ 19:1 kJ mol	 1

Note that the enthalpy change is labeled DHsoln to indicate explicitly that this is a heat
of solution.
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10.4. SOLUBILITY OF SLIGHTLY SOLUBLE SALTS

Many salts exhibit very low solubilities in water. Silver chloride is an example;
If aqueous solutions of silver nitrate and sodium chloride are mixed, solid silver
chloride precipitates. It is conventional to describe this process as the reverse of the
precipitation reaction, namely, as the dissolution of the salt. Let us begin with the
simplest case of a 1 : 1 sparingly soluble salt MX. The solid crystalline form is ionic.
When it dissolves in water the ions dissociate, and no ion pairs are detectable.
We therefore write the equilibrium as

MXðsÞ>Mþ þX	 ð10:15Þ

Proceeding as we have done for several earlier processes, we equate the chemical
potentials of the solid and the dissolved solute at equilibrium:

mðsÞ ¼ mðsolnÞ

Expanding these gives

m0ðsÞþRT ln aðsÞ ¼ m0
þ þRT ln aþ þm0

	 þRT ln a	

and collecting terms (and noting that a(s)¼ 1 by our standard state definition),

Dm0 ¼ 	RT ln aþ a	 ð10:16Þ

where Dm0 ¼ m0
þ þm0

	 	m0ðsÞ. Evidently then [compare with Eq. (10.4)1, the
product aþa	 is an equilibrium constant. By Eq. (8.23a) we see that aþa	¼ a2�,

Figure 10.2. van’t Hoff plot for nitrofurantoin solubility.
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where a� is the mean ionic activity, and since a2� ¼ g2�c
2
�, Eq. (10.16) can be written

Dm0 ¼ 	RT ln g2�c
2
� ð10:17Þ

If no extraneous ions are present, so that the ionic strength is due solely to the ions from
the sparingly soluble salt (and hence is very low), the activity coefficient term is
essentially unity. Moreover, the molar concentrations of the cationMþ and the anion
X	 are equal, and each is numerically equal to the equilibriummolar solubility of the
salt, which is commonly denoted s. Thus Eq. (10.17) becomes

Dm0 ¼ 	RT ln s2 ð10:18Þ

Equation (10.17) is exact; Eq. (10.18) is usually a reasonable approximation, and both
implicitly define the equilibrium constant for Eq. (10.15). This constant is symbolized
Ksp and is called the solubility product. Since solubility products are very small
numbers, it is common to state them as pKsp, where pKsp¼	log Ksp. Table 10.3 lists
some pKsp values.

Example 10.3. What is the solubility of silver chloride in water? From Table 10.3,
pKsp¼ 9.75 for AgCl, so Ksp¼ 1.78� 10	10. From Eq. (10.18), Ksp¼ s2, so
s ¼ ffiffiffiffiffiffiffi

Ksp

p ¼ 1:33� 10	 5M.

In the general case of the salt whose formula is MpXq the solubility product is
defined, in accordance with the usual formulation of equilibrium constants:

Ksp ¼ cpMc
q
X ð10:19Þ

The quantity that we label s then depends on the stoichiometry.

Example 10.4. What is the molar solubility of ferrous hydroxide?

Table 10.3. Solubility products for slightly soluble salta

Salt pKsp Salt pKsp

BaSO4 9.96 PbCO3 13.13
CaCO3 8.54 PbS 27.9
Ca(OH)2 5.26 MgCO3 7.46
Ca3(PO4)2 28.7 Hg2S 47.0
CuI 11.96 HgS (red) 52.4
AuCl 12.7 HgS (black) 51.8
AuCl3 24.5 AgBr 12.30
Fe(OH)2 15.1 AgCl 9.75
Fe(OH)3 37.4 AgI 16.08

aIn the temperature range 18–25 
C; water is the solvent.
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From Table 10.3, pKsp¼ 15.1, or Ksp¼ 7.9� 10	16. The dissolution reaction is

FeðOHÞ2 > Fe2þ þ 2OH	

so Ksp¼ cFec
2
OH. (The charges on the subscripts are omitted for clarity.) Since each

molecule of Fe(OH)2 that dissolves yields oneFe
2þ ion,we define the solubility as the

concentration of ferrous ion, or cFe,¼ s. The stoichiometry yields cOH¼ 2cFe, so the
result is 1

Ksp ¼ s� ð2sÞ2 ¼ 4s3

Therefore s¼ 5.8� 10	6M.

Example 10.5. What is the solubility of silver chloride in 0.02M KCl? Assume that
activity coefficients are unity.

Againwe set cAg¼ s, the solubility. The solubility product is definedKsp ¼ cAgcCl;
however, the chloride concentration has been augmented by the addition of potassium
chloride, sowewrite cCl¼ 0.02 þ s; that is, the chloride concentration is the sum from
two sources, the KCl and the AgCl. We therefore have Ksp¼ s(0.02 þ s), which is a
quadratic equation that can be solved for s. Before doing that, however, it is worth
trying the approximation cCl¼ 0.02, which involves neglecting the relatively small
contribution from dissolution of the AgCl. Thus

Ksp ¼ 0:02s ¼ 1:78� 10	 10

s ¼ 8:9� 10	 9M

First note that the approximation seemswell justified.More interestingly, observe that
the solubility of silver chloride has been reduced from about 1� 10	5M in water
(Example ) to about 1� 10	8M in 0.02MKCl. This is an example of the common ion
effect.The solubility of any slightly soluble salt can be reduced by adding an excess of
one of its constituent ions.

The accuracy of such calculations can be improved by making use of the
Debye–H€uckel equation to estimate the values of mean ionic activity coefficients.

10.5. SOLUBILITIES OF NONELECTROLYTES: FURTHER ISSUES

Salt Effects. InExample 10.5we encounteredone type of salt effect. There is another
type of salt effect that is observed when the solubility of a nonelectrolyte is studied
as a function of ionic strength (or of the concentration of an added electrolyte).

1 Equations like this one in Example 10.4 are easily solved by a logarithmic technique. We have
7.9� 10	16¼ 4 s3, or 1.975� 10	16¼ s3. Take logarithms of both sides, obtaining 	15.70¼ 3 log s, or
	5.235¼ log s. The antilogarithm gives s.
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Compare the nonelectrolyte solubility in the absence and presence of added salt. Since
the solid solute is present in both cases, we obtain

mðsolidÞ ¼ mðcs ¼ 0Þ ¼ mðcsÞ

where cs, is the concentration of added salt. Therefore a(cs¼ 0)¼ a(cs), or

s0g0 ¼ sg ð10:20Þ

where s0 and s are the solubilities in the two cases. Thus g=g0 ¼ s0=s; and since g0 ¼ 1
is a reasonable assumption, g ¼ s0=s, and we have a method for measuring nonelec-
trolyte activity coefficients.Moreover, it is found experimentally that the quantity log
(s0=s) often varies linearly with cs, or

Log
s0
s
¼ kscs ð10:21Þ

If s0 /s> 1, then ks is positive, and the nonelectrolyte is said to be “salted out”; if
s0/s< 1, then ks is negative, and the solute is “salted in.” These are called the “salting-
out and salting-in effects,” and the constant ks, is known as the Setschenow constant.

Regular Solution Theory. We have seen that an ideal solution has thermodynamic
mixing quantitiesDHmix ¼ 0 andDSmix ¼ 	Rðx1 ln x1 þ x2 ln x2Þ.A regular solution
is defined to be one having an ideal entropy of mixing but a nonideal enthalpy of
mixing.Recall also that the ideal solubility ofa nonelectrolyte (i.e., the solubilitywhen
a nonelectrolyte forms an ideal solution) is given by

ln x2 ¼ 	DHf

R

Tm 	 T

TTm

� �
ð10:22Þ

where DCp is assumed to be zero or negligible. The molecular interpretation of an
ideal solution is that the energy of interaction of a solute molecule with a solvent
molecule is identical with the energy of interaction of two solvent molecules.

Themolecular interpretation of regular solution theory is quite different; in regular
solution theory the energy of 1–2 interactions (where 1 is the solvent, 2 is the solute)
is approximated as the geometric mean of 1–1 and 2–2 interaction energies, or 2

U12 ¼ U11U22ð Þ1=2 ð10:23Þ

This approximation results in regular solution theory being applicable mainly to
fairly nonpolar systems, that is, nonpolar nonelectrolytes dissolved in nonpolar
solvents. For our present interest, the essential result (Hildebrand and Scott, 1964,
p. 271) of regular solution theory is embodied in Eq. (10.24), whichmay be compared

2 The arithmetic mean of two numbers is (a þ b)/2; their geometric mean is (ab)1/2.
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with Eq. (10.22):

ln x2 ¼ 	DHf

R

Tm 	 T

TTm

� �
	 V2w

2
1

RT
d1 	 d2ð Þ2 ð10:24Þ

where V2 is the molar volume of solute and w1 is the volume fraction concentration of
solvent in the solution. The quantities d1 and d2 are the solubility parameters of the
solvent and solute. These are physical properties with the following significance.

The termDHvap, themolar heat of vaporization, is the enthalpy required to effect the
transformation of one mole of liquid to its vapor state. During this process all the
solvent–solvent interactions (which are responsible for the existence of the liquid
phase) are overcome. A quantity called the cohesive energy density (CED) is defined

CED ¼ DHvap 	RT

V
ð10:25Þ

whereV is themolar volume of the liquid.We anticipate, andwe find, that liquidswith
strong intermolecular interactions (especially polar “associated” liquids having the
potential for strong dipole–dipole and hydrogen-bonding interactions) have larger
CED values than do nonpolar liquids. Table 10.4 lists some CED values.

Because of the manner in which CED appears in regular solution theory equations,
Hildebrand (Hildebrand et al. 1970; Hildebrand and Scott 1964, p. 271) defined the
solubility parameter d by Eq. (10.26). Table 10.4 also gives d values.

d ¼ CEDð Þ1=2 ð10:26Þ

Table 10.4. Cohesive energy densities and solubility parameters

Solvent CED (cal cm	3) d (cal1/2 cm	3/2)

n-Pentane 50.2 7.0
Cyclohexane 67.2 8.2
1,4-Dioxane 96 10.0
Benzene 84.6 9.2
Diethyl ether 59.9 7.4
Ethyl acetate 83.0 9.1
Acetic acid 102 10.1
n-Butyl alcohol 130.0 11.4
n Propyl alcohol 141.6 11.9
Acetone 95 9.9
Ethanol 168 12.7
Methanol 212 14.5
Acetonitrile 141.6 11.9
Dimethylformamide 146.4 12.1
Ethylene glycol 212 14.6
Glycerol 272 16.5
Dimethylsulfoxide 144 12.0
Water 547.6 23.4
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Referring now to Eq. (10.24), note that if d1 ¼ d2, we recover Eq. (10.22) for the ideal
solution; in other words, the condition d1 ¼ d2 is equivalent to the condition
DHmix ¼ 0. The greater the difference d1 	 d2 (or d2 	 d1, because the difference
is squared), the greater the deviation from ideality, and, asEq. (10.24) shows, the lower
the solubility that is predicted. This provides a guide for experimental design; to
achieve maximal solubility according to regular solution theory, strive to equate the
solubility parameters of solvent and solute. Since the solute identity is usually
established by the nature of the problem, the experimental variable is the solvent
identity. Sometimes mixed solvent systems function better than pure solvents for this
reason. For example, a mixture of ether (d ¼ 7:4) and ethanol (d ¼ 12:7) dissolves
nitrocellulose (d ¼ 11:2), although neither pure liquid serves as a good solvent for this
solute.3

Although the cohesive energy density, and therefore the solubility parameter,
is a well-defined physical property for any solvent, regular solution theory is limited
(e.g.,by the geometric mean approximation) to solutions of nonpolar substances.
It should therefore not be expected to apply quantitatively to polar systems such as
aqueous solutions.

Example 10.6. Predict the solubility of naphthalene in n-hexane at 20 
C. The
solubility parameters are d1¼ 7.3 and d2¼ 9.9 (both in call/2 cm	3/2),and the molar
volumes are V1¼ 132 cm3mo1	1 and V2¼ 123 cm3mo1	1. See Example 10.1 for
additional data.

We use Eq. (10.24), which in Example 10.1was expressed in terms of log x2. In that
form the first term on the right had the value	0.577, which we need not recalculate.
Nowwe consider the second term.We lackonly the quantityw1, thevolume fraction of
solvent.This appears tobeadilemma,becausewecannot estimatew1 untilweknowx2,
which is what we want to calculate.

If we anticipate that the solute has a low solubility, it may be acceptable tomake the
approximation w1 ¼ 1. An alternative is to take the result for an ideal solution
(Example 10.1, which gave x2¼ 0.265) as a basis for estimating w1. We will do
the problem in both ways.

(a) Let w1 ¼ 1. Then from Eq. (10.24), we obtain

log x2 ¼ 	 0:577	 ð123 cm3Þð1Þ2ð7:3	 9:9 cal1=2cm	 3=2Þ2
ð2:303Þð1:987cal mol	 1K	 1Þð293:15 KÞ

¼ 	 0:577	 0:620 ¼ 	 1:197

x2 ¼ 0:064

3 As a strategy for optimizing solvent selection, evidently this approach requires an estimate of the
solubility parameter of the solute. There are several ways to obtain this. One method is suggested by the
example; presumably the solubility parameter of the solvent mixture that maximizes solubility is also the
solubility parameter of the solute.
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(b) The volume fraction is defined as follows:

w1 ¼
n1V1

n1V1 þ n2V2
ð10:27Þ

Suppose n1 þ n2¼ 1; from Example 10.1, x2¼ 0.265, or n2¼ 0.265 and n1¼ 0.735.
Using these numbers in Eq. (10.27) gives w1 ¼ 0.748. (Note how close w1 is to x1,
because V1 and V2 are similar.) Repeating the calculation gives

log x2 ¼ 	 0:577	 0:335 ¼ 	 0:912

x2 ¼ 0:122

We therefore predict that x2 is between 0.064 and 0.122, andwemight take the average
as our best estimate. The experimental result (Table 10.1) is x2¼ 0.090.

Prediction of Aqueous Solubilities. Water is the preferred solvent for liquid
dosage forms because of its biological compatibility, but unfortunately many drugs
are poorly soluble in water. To be able to predict the aqueous solubility of compounds,
even if only approximately, is a valuable capability because it can guide or reduce
experimental effort. Water is a highly polar and structured medium in which
nonideal behavior is commonly observed, so we must abandon hope that the ideal
solubility prediction of Eq. (10.10) will be useful, and even the regular solution
theory [Eq. (10.24)] is ineffectual in solving this problem. Effective approaches may
be guided by thermodynamic concepts, but they incorporate much empirical
(i.e., experimental) content.

Although the ideal solubility equation will not suffice to predict nonelectrolyte
solubility in water, the solute–solute interactions responsible for maintaining the
crystal lattice must nevertheless be overcome, so Eq. (10.10) will still be applicable as
ameans of estimating the solute-solute interaction.Whatmust be done in addition is to
take account of the solvent–solvent and solvent–solute interactions, because thesewill
in general not offset each other. In a paper that includes a valuable collection of
solubility data, Yalkowsky and Valvani (1980) have developed a very useful method
based on this approach. They start with Eq. (10.10), which they transform to
Eq. (10.11), repeated here:

ln x2 ¼ 	 DSf ðTm 	 TÞ
RT

ð10:28Þ

They then carry out an analysis of experimental entropies of fusion, reaching these
conclusions:

For spherical (or nearly so) molecules: DSf ¼ 3.5 cal mo1	1 K	1

For rigid molecules: DSf ¼ 13.5 cal mo1	1 K	1

For molecules having n> 5 flexible chain atoms: DSf ¼ 13.5 þ 2.5 (n	 5)
cal mo1	1 K	1

In the following we will use only the result for rigid molecules.
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Yalkowsky and Valvani then take the log P value of the solute (where P is the
1-octanol/water partition coefficient) as an empirical measure of the solution phase
nonidealities. They combine this with Eq. (10.28), convert to molar concentration,
and apply a small statistical adjustment, finally getting Eq. (10.29) for the calculation
of rigid nonelectrolyte molar solubility in water at 25 
C:

log c2 ¼ 	 0:0011ðtm 	 25Þ	 log Pþ 0:54 ð10:29Þ

where tm is the solute melting point in centigrade degrees. For liquid nonelectrolytes,
tm is set to 25, so the first term vanishes. LogP may be available from experimental
studies, but it may have to be estimated by methods cited in Chapter 7.

Yalkowsky and Valvani applied Eq. (10.29) to solubility data on 167 compounds
whose solubilities ranged over nine orders of magnitude, finding that the estimated
solubilities agreed with the observed solubilities towithin 0.5 log unit for all but eight
compounds, and in no casewas the error greater than a factor of 10. Equation (10.29) is
a very practical solution to the problem of predicting aqueous solubilities.

Amidon and Williams (1982) refined the approach of Yalkowsky and Valvani,
achieving better accuracybut at the cost of increased complexity in the equation.Grant
and Higuchi (1990) describe alternative methods of calculation that are based on
different pathways from the initial to the final state.

Equation (10.10) and equations derived from it, such as Eqs. (10.28) and (10.29),
contain the difference (Tm	 T), showing that a higher melting temperature is
reflecting stronger solute–solute interactions in the solid state. As a general but
not precise rule, we may anticipate that very polar molecules (or functional groups)
will conduce to strong intermolecular interactions by means of electrostatic forces,
which for certaingroupsmay include hydrogenbonding.Thushighmolecular polarity
tends to be associatedwith highmelting temperature, and highermelting temperatures
lead to lower solubilities, at least as they are described by Eq. (10.10).

Nowconsider the special case ofwater as a solvent.Water is averypolar solvent and
is capable of functioning as a hydrogen bond donor and acceptor. Very polar solute
molecules will tend to interact strongly with the solvent water; these are the
solvent–solute or solvation interactions that increase solubility. But we have seen
that highlypolar substances tend tohavehighmelting temperatures, soweare led to the
tentative conclusion that melting temperature may be an approximate indicator of the
extent of solvent–solute interaction. It follows (still arguing in this approximatemode)
that the opposing factors of solute–solute (crystal lattice) and solvent–solute (solva-
tion) interactions are both measured by, or at least indicated by, the same quantity,
namely, the melting temperature.4 Thus in some degree we may anticipate that
these two factors will compensate each other, with the consequence that the solubility
will become essentially independent of the melting temperature. But then the first
term in Eq. (10.29) will (approximately) vanish, leading to a dependence solely on
log P.

4 Polarity is just one factor controlling the melting temperature. Symmetry is another; the more symmetric
the molecule, the higher the melting temperature (when comparing “similar” molecules).
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Correlations of log c with log P are well known (Yalkowsky and Valvani 1980;
Grant and Higuchi, 1990, Chapter 8). Equations (10.30a) and (10.30b) are such
correlations, based on solubility data for compounds having a considerable range of
structural features. These equations are to be judged solely by their success in
reproducing or predicting solubilities; they are purely empirical.

log c2 ¼ 	 log P	 1:00 ðfor solidsÞ ð10:30aÞ
log c2 ¼ 	 log Pþ 0:27 ðfor liquidsÞ ð10:30bÞ

A comparison of the performance of Eq. (10.29) with Eqs. (10.30) indicates that
Eq. (10.29) is slightly superior, but there are some reversals. If the solutemelting point
is not available, Eq. (10.30a) offers an alternative method of estimation.

Example 10.7. Estimate the aqueous solubility at 25 
Cof isophthalic acid, forwhich
log P¼ 1.73 and whose melting temperature is 346 
C.

With Eq. (10.29), log c2¼	4.72; with Eq. (10.30a), log c2¼	2.73. The experi-
mental result is log c2¼	3.40. Evidently neither Eq. (10.29) nor Eq. (10.30a) yields
a fully satisfactory answer in this case. (Although interestingly their average is 3.73,
in error by only about a factor of 2 in the solubility c2.) Obviously there is scope for
improved methods of estimation.

Solubility in Mixed Solvents. If the equilibrium solubility of a solute in water is too
low to achieve the desired “target” concentration, a preferred approach in many
instances is to incorporate an organic solvent in the aqueous solution, in this way
increasing the solubility of the solute. This organic solvent (often called the cosolvent)
must bemisciblewith water, at least in the proportions used, and if the solution is to be
a dosage form, the cosolvent must be physiologically acceptable. These requirements
severely limit the cosolvent selection. But beyond this issue is the matter of the
optimal cosolvent concentration in the mixed solvent system of water and cosolvent.
As in our treatment of aqueous solubility, we seek methods that are rapid and easy to
apply, even though approximate in their accuracy, because the calculation will always
be followed by laboratory studies to confirm or refine the numerical estimate.

If the solute and solvent molecules in a solution differ greatly in size, plots
of various experimental quantities against solvent composition tend to be more
symmetrical when solvent composition is given in volume fraction than in mole
fraction (Williamson 1967, p. 44). This observation forms the basis of a model
proposed by Yalkowsky and Rubino (1985). For these three-component systems,
let water be component 1, the cosolvent component 2, and the solute component 3.
The molar solubility of solute in water is written (c3)1 and its molar solubility in pure
cosolvent as (c3)2. In solvent of any composition the solute solubility is written c3.
Then the Yalkowsky–Rubino model becomes

log c3 ¼ w1 logðc3Þ1 þw2 logðc3Þ2 ð10:31Þ
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where w1 and w2 are the volume fractions of water and cosolvent, respectively.
Since w1 þw2 ¼ 1, an equivalent form of Eq. (10.31) is

log c3 ¼ w2 logðc3Þ2 	 logðc3Þ1
� �þ logðc3Þ1 ð10:32Þ

This equation predicts that log c3 will be a linear function of w2.
Equation (10.31) is a postulate. It can be described as a linear combination model,

or as aweighted average; that is, log c3 is postulated to bean averageof log (c3)1 and log
(c3)2, each of these making a contribution according to (weighted by) its volume
fraction.

The procedure for testing and using thismodel is simple. On a graphical scale ofw2,
one plots log (c3)1 at w2 ¼ 0.0 and log (c3)2 at w2 ¼ 1.0. These points are connected
by a straight line, which is the graphical representation of Eq. (10.32). A test of the
model consists of plotting experimental solubilities at intermediate values of w2 to
learn how well they agree with the straight-line prediction. Alternatively, if (as is
usually the case) such data are not available, the model is assumed to be (approxi-
mately) valid, and that value of w2 is read off the line that will achieve a desired target
solubility. It is not necessary to carry this operation out graphically, because
by rearrangement of Eq. (10.32) we obtain

w2 ¼
log c3 	 logðc3Þ1
logðc3Þ2 	 logðc3Þ1

ð10:33Þ

With this equation the required volume fraction of cosolvent can be calculated,
according to this model.

Figure 10.3 shows solubility data for the systemwater (1)–ethanol (2)–naphthalene
(3) (LePree et al., 1994). The straight line connecting the extremepoints constitutes the
linear combination model, Eq. (10.32); the points are experimental. Obviously the
points do not describe a straight line, so in this sense, and for this system, the model
does not appear to be valid. On the other hand, as an approximate guide to the
dependence of solubility on solvent composition it may be helpful to the experimen-
talist, and it is in this sense that the model should be judged. It is not a precise
description of physicochemical behavior, but rather is a useful tool in formulation
development.

Example 10.8. Propose awater/ethanolmixed solvent composition that will dissolve
2.5mgmL	1 of naphthalene. The solubility of naphthalene inwater is 2.14� 10	4M,
and in ethanol it is 0.675M.

The target concentration of 2.5mgmL	1 is equivalent to 2.5 g L	1. The molecular
weight of naphthalene is 128.2, so the molar target concentration c3 is 0.0195M, or
log c3¼	1.71. From the given datawe have log (c3)1¼	3.67 and log (c3)2¼	0.17.
Applying Eq. (10.33), we obtain

w2 ¼
	 1:71	 3:67

	 0:17	ð	 3:67Þ
¼ 0:56
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Thus we predict that a volume fraction of 0.56 ethanol will dissolve the target
concentration. This result could also have been obtained by reading from the straight
line of Fig. 10.3. It is interesting to note, from the experimental points in Fig. 10.3,
that a volume fraction w2 ¼ 0.51 will actually dissolve the target concentration.

More accurate models of solvent effects are available, but these require much
experimental effort and are computationally more elaborate (see Khossravi and
Connors, 1992).

PROBLEMS

10.1. The melting point of benzoic acid is 122.4 
C, and its heat of fusion is
4.44 kcal mol	1. Calculate its ideal solubility at 25 
C.

10.2. From the data in Example 10.2, convert the mole fraction solubilities to molar
solubilities, construct the van’t Hoff plot, and evaluate the heat of solution.

Figure 10.3. The linear combination model for naphthalene solubility in aqueous ethanol

solutions.
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10.3. Derive an equation relating the molar solubility of calcium phosphate to its
solubility product, and calculate its molar solubility.

10.4. A solution containing NaBr, NaCl, and NaI is titrated with silver nitrate
solution. Predict the order in which the silver halides will precipitate.

10.5. Predict the solubility of iodine in carbon tetrachloride at 25 
C. The melting
point of iodine is 113.6 
C, its heat of fusion is 3.71 kcalmol	1, its molar
volume is 59 cm3, and its solubility parameter is 14.1. The solubility parameter
of carbon tetrachloride is 8.6.

10.6. Predict themolar solubility of progesterone inwater at 25 
C.Themelting point
of progesterone is 131 
C and its log P value is 3.87.

10.7. The solubility of naphthalene in water at 25 
C is 2.14� 10	4M, and its
solubility in dimethylsulfoxide (DMSO) is 1.920M. Estimate the mixed
solvent composition required to dissolve 4mgmL	1 of the solute.

10.8. The salt form of warfarin has a solubility in water of 2� 10	3 g/mL at 25 
C.
Calculate the standard free energy of solubilization of thewarfarin salt. Assume
activity¼ concentration. Warfarin salt molecular weight¼ 330 g/mol.
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11

SURFACES AND
INTERFACES

Up to this point in our study of thermodynamics we have dealt with bulk phases only;
that is, we have ignored possible influences of the surfaces of these phases. This
attitude is justified when the surface constitutes a very small fraction of the system.
In some circumstances, however, the surface:volume ratio of the system becomes
relatively large, and then the properties of the surfacemaydominate thebehavior of the
system. In the pharmaceutical field, the dosage forms called emulsions, suspensions,
and foams exemplify such circumstances; collectively these are known as disperse
systems; emulsions are dispersions of liquid droplets in an immiscible liquid,
suspensions are dispersions of solid particles in a liquid, and foams are dispersions
of gases in liquids.

Let us begin with a clarification of terminology. Strictly speaking, the boundary
between any two phases constitutes an interface, but it is conventional to call this
interface a “surface”when one of the phases is a vapor or gas (especially, and usually,
when it is air). We therefore have these identifications:

Surfaces Interfaces

Solid–gas Solid–solid
Liquid–gas Solid–liquid

Liquid–liquid

Despite these definitions, it is common to use theword “surface” in a generic sense to
embrace all such phase boundaries.

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
Copyright � 2010 by John Wiley & Sons, Inc.
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11.1. THERMODYNAMIC PROPERTIES

Surface Tension and Interfacial Tension. Let us carry out this thought experi-
ment. Figure 11.1a illustrates a column of a liquid, constituting a single phase and
having a cross-sectional area of 1 cm2. Now imagine this column to be pulled apart
cleanly into two parts, as shown in Fig. 11.1b. The result of this imagined experiment
has been to create two surfaces of the liquid, each of area 1 cm2.

Energy was required to create these surfaces, because molecules had to be pulled
apart and the forces of intermolecular interaction had to be overcome. The work of
carrying out this process is called the work of cohesion, wc, and it is set equal to the
energy of the surfaces that were created. (Because we can neither create nor destroy
energy, the work wc done on the system is now possessed by the system in the form
of surface energy.) We write

wc ¼ 2g ð11:1Þ

where g is the surface energy per square centimeter and is called the surface tension.
(The factor 2 appears because 2 cm2 of surface was created in Fig. 11.1.)

We can now connect this concept of surface energy to other kinds of energy by
recalling (Chapter 1) that work (or energy) can be expressed as the product of an

Figure 11.1. (a) A column of liquid 1 cm2 in cross section; (b) the column separated to create

two surfaces, each with area 1 cm2 and surface tension g:
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intensity factor and a capacity factor. For surface work or energy we have

Surface energy ¼ Surface tension� Change in surface area

DG ¼ gDA ð11:2Þ
If DA is positive (surface area is created), DG is positive and the process is

nonspontaneous;workmustbedone to create newsurfacearea. IfDA is negative,DG is
negative and the process is spontaneous. The surface energy is identified with the
change in Gibbs free energy if the temperature and pressure are constant.

Table 11.1 lists the surface tensions of some liquids. First consider the units of g,
namely energy per unit area. Thus in SI units, Jm	2 is a correct designation for the
units of g. Moreover, since work (energy) is the product of force and length
and 1 J¼ 1Nm, the units N m	1 are also acceptable. In the older cgs system, in
which most of the literature values of g are recorded, the corresponding units are erg
cm	2 anddyn cm	1.However, in order that the numerical values of gbe identical in the
cgs and SI systems, the SI units are multiplied by 103. Thus we can state the surface
tension of water in these equivalent units:

g ¼ 71:8
erg

cm2
¼ 71:8

dyn

cm
¼ 71:8

mJ

m2
¼ 71:8

mN

m

Inasmuch as the surface tension is a measure of the energy required to create unit area
of surface, we might expect g to be larger for solvents having stronger intermolecular
forces of interaction, and generallywe see that this expectation is borne out.Very polar
molecules and those capable of hydrogen bonding tend to have higher values of g than
do nonpolar substances.

As the temperature of a liquid is increased, the liquid acquires more thermal
energy, and so less additional energy needs to be supplied to create new surface.
As a consequence, the surface tension is smaller at higher temperatures.

Another point of view may be helpful in visualizing the physical nature of the
surface tension. The properties of a system consisting of a liquid in contact with its
vapor do not change discontinuously at the surface, but rather change in a smooth
continuous fashion. Another way to say this is to point out that the surface is not a
mathematical boundary, but is a region having a thickness of several molecular
diameters. Consider the density as a property that varies from a relatively high value in
the bulk liquid (expressed as gmL	1 or as number of molecules per unit volume) to a

Table 11.1. Surface tensions at 25 
C

Solvent g(dyn cm	1) Solvent g(dyn cm	1)

n-Hexane 17.9 Acetone 22.9
Cyclohexane 19.8 Ethanol 21.8
Benzene 28.2 Methanol 22.4
Diethyl ether 16.5 Acetonitrile 28.5
Chloroform 26.5 Glycerol 62.5
Ethyl acetate 23.2 Dimethylsulfoxide 42.8
n-Butyl alcohol 24.2 Water 71.8
n-Propyl alcohol 23.4 Mercury 485.5
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very lowvalue in thevapor.Evidently the densitywill havean intermediatevalue in the
surface region. Taking a slice coplanarwith the surface, then, the number ofmolecules
per unit area in the surface is smaller than in the bulk. In other words, the surface
is analogous to anextended spring; energy is required to create the surface (or to stretch
the spring), and this energy is manifested as a tension in the plane of the surface;
this is the surface tension (Fowkes 1964).

Nowwewill carry out another thought experiment in the style of Fig. 11.1, this one
as shown in Fig. 11.2. Here we have a column of 1-cm2 cross-sectional area,
but consisting of two immiscible liquid phases, 1 and 2, in contact. We now imagine
the phases separated at their boundary.

According to our earlier analysis, we can expect an amount of work to be required
equal to the sum g1 þ g2, because 1 cm

2 of surface of each 1 and 2 is created in this
process. But there is a further factor to consider, because in the initial state of the
system there existed an interface between 1 and 2, and this interface itself possesses
surface (or interface) energy, labeled g12. In the final state of the system this interface
no longer exists, so neither does its energy, which has, in effect, been applied to defray
the energetic cost of creating the two new surfaces. The work involved in passing
from the initial state in Fig. 11.2a to the final state in Fig. 11.2b is called the work
of adhesion, wa, and is given by

wa ¼ g1 þ g2 	 g12 ð11:3Þ

Figure 11.2. (a) A column of 1-cm2 cross-sectional area of phases 1 and 2 in contact; (b) the

phases are separated to create two surfaces; one of liquid 1, the other of liquid 2.
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The quantity g12 is the interfacial tension. It has the same units and the same physical
significance as the surface tension. Table 11.2 gives some interfacial tensions. It must
be realized that in such systems the two liquids are mutually saturated.

The interfacial tension can be measured, or it can be calculated with reasonable
accuracy by means of

g12 ¼ g1 þ g2 	 2ðgd1gd2Þ1=2 ð11:4Þ
where gd1 and gd2 are the London dispersion force contributions to g1 and g2 (Fowkes
1964). The dispersion force is an attractive force (sometimes called the van derWaals
force) between allmolecules. For nonpolarmolecules such as saturated hydrocarbons,
it is theonly attractive force, so gd ¼ g for such liquids. Formercury gd is 200 dyn cm	1

and for water gd ¼ 21.8 dyn cm	1. Equation (11.4) incorporates the geometric mean
approximation of regular solution theory (Section 10.5); see Eq. (10.23) in particular.

Example 11.1. Estimate the interfacial tension at the water/n-hexane interface.
We use Eq. (11.4):

g12 ¼ 71:8þ 17:9	 2ð21:8� 17:9Þ1=2 ¼ 50:2 dyn cm	 1

The experimental value (Table 11.2) is 51.1 dyn cm	1.

Because a surface is of relatively high energy compared to the bulk, there is a
thermodynamic driving force for minimization of surface area. A sphere is the
geometric form having the minimum surface:volume ratio; thus under the influence
of surface tension alone, units of matter will tend to assume a spherical shape, as with
droplets of liquids. This tendency may be opposed by other forces, such as the
gravitational force. The trend to surfaceminimization also accounts for the tendency of
a dispersion of liquid drops in a liquid (an emulsion) to coalesce into two bulk phases.

Spreading of Liquids on Liquids. Picture a small volume of liquid 2 placed on the
planar surface of liquid 1.Whatwill happen?Will it just sit there as a globule (flattened
by gravity into a “lens” shape), or will it spread out into a very thin film? This question
can be answered by considering the work of adhesion (which measures the attraction
between 1 and 2) and the work of cohesion (which measures the attraction within 2)
(Adamson 1960, p. 107; Bummer 2000). The spreading coefficient S2=1 for the
spreading of 2 on 1 is defined as

S2=1 ¼ wa 	wcð2Þ ð11:5Þ

Table 11.2. Interfacial tensions at 20 
C

Liquids g(dyn cm	1) Liquids g(dyn cm	1)

Water/mercury 375 Water/n-hexane 51.1
Water/n-octane 50.8 Water/CCl4 45
Water/benzene 35.0 Water/ether 10.7
Mercury/benzene 375
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wherewcð2Þ is theworkof cohesion of liquid 2. Similarly, the spreading coefficient S1/2
for the spreading of 1 on 2 is

S1=2 ¼ wa 	wcð1Þ ð11:6Þ

Incorporating Eqs. (11.1) and (11.3) into these definitions gives

S2=1 ¼ g1 	ðg2 þ g12Þ ð11:7Þ
S1=2 ¼ g2 	ðg1 þ g12Þ ð11:8Þ

Let us try to anticipate the possible outcomes of numerical calculations of spreading
coefficients. Ifwa � wcð2Þ, evidently the attraction between 1 and 2 is greater than the
self-attraction of liquid 2, so the spreading coefficient will be positive and we may
expect 2 to spread on 1. Compare the rather extreme cases in Example 11.2.

Example 11.2. Calculate the spreading coefficients of water on mercury and of
mercury on water and interpret the results. (Ignore the density difference!)

Let mercury be liquid 1 and water liquid 2. From Eqs. (11.7) and (11.8) and data
in Tables 11.1 and 11.2, we have

S2=1 ¼ 485:5	ð71:8þ 375Þ ¼ þ 38:7

S1=2 ¼ 71:8	ð485:5þ 375Þ ¼ 	 788:7

Thus water will spread on mercury, but mercury will not spread on water.

In general a liquid of lower surface tension will spread on a liquid of higher
surface tension. However, spreading does not continue indefinitely, because the
phenomenon in which liquid 2 spreads on liquid 1 creates a new surface tension,
leading to a situation in which the spreading coefficient is negative and addition of
further 2 leads to formation of a lens rather than continued spreading.

Wetting of Solids by Liquids. Consider the system of a drop of liquid L on a planar
surface of a solid S, where the system is at equilibrium with the vapor Vof the liquid.
The shape of the drop canbe specified in termsof the angleu that a tangentmakes to the
surfaceof the liquid at its point of contactwith the solid. This angle is called the contact
angle. It can be measured experimentally.

A simple relationship can be obtained connecting u with the system surface and
interfacial tensions. Figure 11.3 shows the construction, the lengths of the arrows
(vectors) being proportional to the indicated tensions. At equilibrium, the force
associated with tension gSV is exactly balanced by the sum of the forces due to
gSL, and the component of gLV lying in the same plane and direction as gSL. This
component has themagnitude ab in the figure, and is seen to be equal to gLVcos u. Thus
Eq. (11.9) can be written.

gSV ¼ gSL þ gLVcos u ð11:9Þ
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The tension gLV is, of course, simply the surface tension of the liquid. gSL is the liquid/
solid interfacial tension, and gSV is the surface tension of the solid.

If the liquid wets the solid, the liquid spreads out on the surface, reducing the angle
u; commonly a liquid that wets a solid is considered to have a contact angle of 0 
.
If u> 90
, the liquid does not wet the solid. Examination of Fig. 11.3 shows that uwill
be reduced under the influence of these factors: a larger value of gSV, or smaller
values of gLV and of gSL. For a given solid, wetting will be favored by liquids with
lower surface tensions. For a given liquid, wetting will be favored by solids with
higher surface tensions.1

Pressure Difference across Spherical Surfaces. A bubble is a region of vapor
(often including air) surrounded by a thin film of liquid. A cavity is a hole (containing
vapor) in a liquid. A droplet is a small volume of liquid. Bubbles, cavities, and
droplets are approximately spherical; they would be spheres if surface forces only
were active, but other forces distort their shape.Wewill assume that they are spheres.
Bubbles actually have doublewalls, an inner film and an outer film, so they have twice
the surface area of a sphere their size. Cavities and droplets have single surfaces.

An interesting property of these systems has been known for a long time. Consider
a spherical system (we may think of a bubble, while neglecting the double wall),
of radius r. There is a driving force for reducing r as a consequence of two factors.
One of these is the external pressure on the bubble, and the other is the surface
energy. At equilibrium this combined force is just balanced by that due to the internal
pressure. We seek the condition of equilibrium balance. First we write the external
and internal work terms, then differentiate these with respect to r (giving forces),
and then equate the forces.

The external work is a sum of a work of expansion contribution and a surface
work term:

dwext ¼ Pext dV þ g dA

Figure 11.3. Contact angle u of a solid on a solid.

1 Solids with higher surface tensions are said to be higher energy solids. Such solids tend to possess polar
functional groups. A solid such as paraffin, which is a saturated hydrocarbon, is a low-energy solid. Silica
(glass) is of higher energy.
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The force is dwext=dr, or

dwext

dr
¼ Pext

dV

dr
þ g

dA

dr

For a sphere V ¼ ð4=3Þpr3 and A ¼ 4pr2, so we get

dwext

dr
¼ 4pr2Pext þ 8prg ð11:10Þ

The internal work is dwint ¼ PintdV , giving in the same way

dwint

dr
¼ 4pr2Pint ð11:11Þ

Equating Eqs. (11.10) and (11.11) yields

Pint ¼ Pext þ 2g
r

ð11:12Þ

According to this surprising result, the pressure inside the bubble or cavity is greater
than that outside by the amount 2g=r.

Example 11.3. Calculate the pressure difference inside and outside a cavity in water
whose radius is 0.01mm.

We use eq. (11.12) with r¼ 10	5m and g¼ 71.8mNm	1, finding

Pint 	Pext ¼ 1:436� 107mNm	 2

This quantity can be converted to more familiar units by using the identities

1 Pa ¼ 1 Nm	 2

1 atm ¼ 101325 Pa

The result is 0.142 atm.

For a planar surface, r is infinite, so the pressure difference vanishes.
Two practical consequences of Eq. (11.12), which we will not develop here,

are as follows: (1) The vapor pressure of very small droplets is greater than that of
large droplets, so the small droplets evaporate; and (2) the solubility of very small
particles is greater than that of larger particles (Glasstone 1947, p. 247).

11.2. ADSORPTION

The Surface Phase. To the eye a surface or interface at equilibrium appears to be
a quiescent, two-dimensional element; but since matter is atomic or molecular in
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structure, we have to consider the nature of the surface in molecular terms. We know
that molecules possess thermal energy; in particular, they possess translational
energy and are incessantly in motion. Thus at the boundary between a liquid and
its vapor, molecules are passing from the liquid state to the vapor state, and vice versa.
If the system is at thermodynamic equilibrium, these two rates are equal, so the net
transport between the phases is zero, but the extent of molecular traffic is prodigious.
The molecules within the liquid phase are also in thermal motion. We noted earlier
that the surface region extends several molecular diameters in thickness into the
liquid phase. This surface region or phase cannot be sharply demarcated at either of its
boundaries (with the bulk liquid or with the vapor) because of the molecular motion.
Far from being a quiescent two-dimensional construction, the surface region is a
turbulent three-dimensional “interphase.”

Molecules in the surface region experience a force field different from that
experienced by those in the bulk. A molecule within a bulk liquid is enveloped in
a homogeneous force field (on average), because its molecular environment is the
same in every direction. Consequently, the forces on the molecule are everywhere
balanced out, so it experiences no net force. At the surface, on the other hand,
themolecule’s environment is disymmetric; it experiencesmore intermolecular forces
from the bulk liquid side than from the vapor side. (This disymmetric nature of the
forces is treated by some authors as the source of the surface tension.)

Notwithstandingour recognition that the surface region is ill-definedgeometrically
on themolecular scale,we find it convenient, andalso justifiable, aswewill see, to treat
the surface as a two-dimensional mathematical abstraction. First, treating the surface
region realistically as a phase, we may conclude from standard thermodynamics
that the chemical potentials of all constituents in a system at equilibrium are identical
in all phases, including the surface phase. Next, turning to the surface region
treated abstractly as a mathematical surface dividing two phases, refer to
Fig. 11.4a, which depicts two phases, a and b, divided by surface s, whose location
is arbitrarily chosen to separate chemically bulka from chemically bulkb; that is, s is
located somewhere within the surface region. Suppose the system consists of two
components, 1 and 2. The element shown in the figure has cross-sectional area A.
If n1and n2 are the total numbers of moles of 1 and 2 contained between the limits aa
and bb, respectively, we can write these mass balances:

na1 þ nb1 þ ns1 ¼ n1 ð11:13aÞ

na2 þ nb2 þ ns2 ¼ n2 ð11:13bÞ

Nowsince themolar concentration of 1 in phasea is ca1 ¼ na1=V
a,whereVa ¼ xA, and

so on, we expand Eq. (11.13) to

xAca1 þ yAcb1 þ ns1 ¼ n1 ð11:14aÞ

xAca2 þ yAcb2 þ ns2 ¼ n2 ð11:14bÞ
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We divide by A and define G ¼ ns=A, obtaining

xca1 þ ycb1 þG1 ¼ n1
A

ð11:15aÞ

xca2 þ ycb2 þG2 ¼ n2
A

ð11:15bÞ

This quantity G is called the surface excess of the specified constituent. Referring to
Eq. (11.13a), we can write

G1 ¼ n1
A

	 na1 þ nb1
A

which shows that G1 can be zero, positive, or negative. If G1, is positive, an excess of
constituent 1 (relative to the bulk) is located at the surface, whereas a negative value of
G1, indicates a deficiency at the surface (although it is still called the surface excess).

Returning to our mathematical treatment, let us suppose that phase b is a vapor
phase and that cb is negligible. We then have

xca1 þG1 ¼ n1
A

ð11:16aÞ

xca2 þG2 ¼ n2
A

ð11:16bÞ

Next we construct Fig. 11.4b for the same system, altering the construction
only by displacing boundary s to position s0 (but still within the surface region).

Figure 11.4. (a) Two-phase system, with aa and bb located within bulk phases a and b and s

the dividing boundary within the surface phase; (b) the same as (a) but with the dividing boundary

moved to s0.
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Repeating the treatment gives the following, by analogy with Eq. (11.16):

x0ca1 þG0
1 ¼ n1

A
ð11:17aÞ

x0ca2 þG0
2 ¼ n2

A
ð11:17bÞ

Since n1 and n2 are fixed and independent of the choice of s or s0, we write from
Eqs. (11.16) and (11.17)

xca1 þG1 ¼ x0ca1 þG0
1 ð11:18aÞ

xca2 þG2 ¼ x0ca2 þG0
2 ð11:18bÞ

These two equations combine to give

G0
1 	G1

ca1
¼ G0

2 	G2

ca2

which further rearranges to

G0
1c

a
2 	G0

2c
a
1 ¼ G1c

a
2 	G2c

a
1 ¼ constant ð11:19Þ

That is, the left-hand portion ofEq. (11.19) refers solely to dividing line s0, whereas the
right-hand portion refers solely to dividing line s, and these are equal. If we created yet
more dividing surfaces (within the surface region), say, s00, s000, and so on, the
corresponding terms would all be the same. The conclusion is that the choice of
dividing surface is arbitrary and irrelevant, provided that it lies within the surface
region. Of course, the numerical values of the surface excesses depend on the location
of the dividing line, so practical issues may lead to a preferred location, but there is no
fundamental issue involved (Adamson 1960, pp. 73–79).

This consideration leads to a very convenient simplification in our next develop-
ment, because, if we can place the dividing surface as wewish, why not place it so that
one of the surface excesses is equal to zero?

The Gibbs Adsorption Equation. We are going to develop a famous equation of
Gibbs by following a path used earlier in analyzing an open system without
consideration of a surface phase. Where we earlier wrote the free energy as the
general function [Eq. (3.19)]

G ¼ f ðT ; P; n1; n2 . . .Þ

we now expand the description, writing

G ¼ f ðT ; P; g n1; n2; . . .Þ ð11:20Þ
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In order to simplify the treatment, we will consider that the temperature and pressure
are constant and that only two components are present. Carrying through the earlier
developmentgives the surfacephase analog to theGibbs–Duhemequation [Eq. (3.28)]

Adgþ ns1dm1 þ ns2dm2 ¼ 0 ð11:21Þ

where m1 and m2 are the chemical potentials of the two components in the surface
phase (but we do not need to distinguish them as surface potentials because at
equilibrium the potential is the same everywhere).

Now dividing through by A and recalling the definition of surface excess gives

dgþG1dm1 þG2dm2 ¼ 0 ð11:22Þ

Next we make use of the demonstration of the preceding analysis, where we saw that
thedividing surface canbe arbitrarily placed, andwechoose to place it such thatG1, the
surface excess of component 1 (which we can take as the solvent), is zero. Thus

dg ¼ 	G2dm2 ð11:23Þ

At low solute concentrations, where the solute activity coefficient may be taken
as essentially unity, we have

m2 ¼ m0 þRT ln c2 ð11:24Þ

Combining Eqs. (11.23) and (11.24) gives the Gibbs adsorption equation2:

G2 ¼ 	 c2
RT

dg
dc2

� �
ð11:25Þ

The great value of the adsorption equation is that it connects the readily measurable
quantities on the right-hand side with the somewhat abstract concept of the surface
excess. Qualitatively, we can see that if the surface tension of a solution of solute 2 in
solvent 1 decreases as the concentration of 2 increases, then G2 is positive, meaning
that solute 2 is more concentrated at the surface than in the bulk of the solution.
Substances that exhibit positive surface excesses, and therefore produce surface
tension decreases, are called surface active agents, or surfactants. Soaps and deter-
gents are surfactants. Such agents tend to be fairly large molecules, having one end

2 See Gibbs (1876, 1878). Equations (11.23) and (11.25) are obtained on pp. 232 and 235, respectively, of
the Dover (1961) edition. Much of Gibbs’ massive work on thermodynamics is difficult for the modern
reader to follow, in part because his symbolism differs from our usage, but two of the symbols Gibbs
introduced,m for chemical potential andG for surface excess, are still used, so his surface equations aremore
accessible. Incidentally, Gibbs would write Eqs. (11.23) and (11.25) with the symbol G2ð1Þ, thus explicitly
noting that this is the value of G2 given that G1 is set to zero.
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of the molecule polar (and therefore attracted to a polar solvent like water) and the
other end nonpolar (and therefore preferring to reside in a nonpolar phase). Even quite
small molecules with these molecular attributes exhibit positive surface excesses.
Organic solvents such as alcohols, acetone, acetonitrile, and dimethylsulfoxide
decrease the surface tension of water.3 Inorganic salts, on the other hand, increase
the surface tension of water.

Equation (11.25) can be written in the equivalent form

G2 ¼ 	 1

RT

dg
d ln c2

� �
ð11:26Þ

or

dg ¼	RT G2d ln c2 ð11:27Þ

Of course, G2 is a function of concentration, so simple integration is unwarranted, but
Eqs. (11.26) and (11.27) suggest that plots of g against ln c2 may be fruitful forms
of data analysis. Such plots are curved, but their slopes (tangents to the curve) yield
estimates of G2 as a function of concentration (Bummer 2000).

Adsorption Isotherms. Adsorption is that process in which a substance develops a
positive surface excess at a surface or interface. In our present discussion we will
restrict attention to those systems in which a component of a gas or vapor phase is
adsorbed to a solid surface, or inwhich a component of a liquid solution is adsorbed to a
solid surface. The substance that is adsorbed is called the adsorbate, 4 and the solid is
called the adsorbent. It might seem that the Gibbs surface excess G is the quantity that
should be sought experimentally in a study of adsorption, but usually some more
accessible measure of the extent of adsorption is determined. A graph of this measure
of extent of adsorption against the partial pressure of the adsorbate in the vapor
(for vapor–solid systems) or against its solution concentration (for liquid–solid
systems) is called an adsorption isotherm. (The term isotherm simply means that
the temperature is held constant.)

Many shapes of adsorption isotherms have been found experimentally, but wewill
consider only one of these in detail. This function, called the Langmuir adsorption
isotherm, is widely observed, its physical basis is simple, and its mathematics turn
out also to be applicable to other types of systems involving noncovalent interactions,
such as enzyme–substrate complexing and molecular complex formation. To focus
attention, suppose that we have a two-component solution of solvent 1 and solute

3 Equations have been described with which the surface tensions of binary aqueous–organic solvent
mixtures can be modeled over the entire composition range; see Connors andWright (1989) and Khossravi
and Connors (1993).
4 In adsorption the adsorbate adheres to the surface of the solid. In absorption the solute is taken up
throughout the volume of the solid. When the nature of the process is unknown, the generic term sorption
may be used.
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(adsorbate) 2 in contact, and at equilibrium,with solid. Theprocess canbeportrayed as

Adsorbate in solutionÐ
adsorption

desorption
Adsorbate on surface

Our approach, oddly, is a kinetic one. At equilibrium the rate at which molecules of
adsorbate adsorb to the surface is just equal to the rate at which they desorb from the
surface. We write these expressions for these rates:

Rate of adsorption ¼ kac2Af ð11:28Þ
Rate of desorption ¼ kdAb ð11:29Þ

In these equations, c2 is the solution concentration of adsorbate; ka and kd are rate
constants for adsorption and desorption, respectively; Af is the solid surface area per
unit mass (usually per gram) that is “free,” namely, unoccupied by adsorbate
molecules; and Ab is the solid surface area per unit mass that is “bound,” or occupied
by adsorbate molecules. Equation (11.28) postulates that the rate of adsorption is
directly proportional to the concentration (actually activity) of adsorbate and to the
amount of space available for adsorption on the surface. Equation (11.29) says that the
rate of desorption is directly proportional to the extent of surface already covered by
adsorbate molecules. It is important to recognize that, for any given system,
Eqs. (11.28) and (11.29) a priori may or may not be valid; they constitute hypotheses,
to be justified by subsequent testing against experimental data.

At equilibrium these two rates are equal. Let us work out the ramifications of this
equality:

kac2Af ¼ kdAb ð11:30Þ

Define the total surface area per unit mass as At, so

At ¼ Af þAb ð11:31Þ
EliminatingAf, definingK¼ ka/kd (K is an equilibriumconstant), and rearranging give

Kc2 ¼ Ab

At 	Ab
ð11:32Þ

We now define u, the degree of saturation, by

u ¼ Ab

At
ð11:33Þ

Combining Eqs. (11.32) and (11.33) gives

Kc2 ¼ u

1	 u
ð11:34Þ
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which is one form of the Langmuir adsorption isotherm. More commonly, it is
encountered in this rearranged form:

u ¼ Kc2
1þKc2

ð11:35Þ
Equation (11.35) is equivalent to

Ab ¼ KAtc2
1þKc2

ð11:36Þ

Now let s be the area occupied per molecule on the surface, so Ab/s is the number of
molecules adsorbed per gram of solid, and nb¼Ab/sNA (where NA is Avogadro’s
number) is the number of moles of adsorbate bound per gram of solid. Similarly, At /
sNAnmax is the maximum number of moles that can be bound per gram of solid.
Making substitutions in Eq. (11.36) gives finally

nb ¼ Knmaxc2
1þKc2

ð11:37Þ

This is a very practical form of the Langmuir adsorption isotherm. Experimentally, we
know c2, the solution concentration of adsorbate, and we measure nb, the number
of moles of adsorbate per gram of solid.

Two practical problems remain. We wish to test the hypothesis against the data
(i.e., wewish to establish whether the system is described by the Langmuir isotherm),
and, if Eq. (11.37) is in fact descriptive of the system, we wish to evaluate the model
parameters K and nmax. Both problems have traditionally been solved by rearranging
Eq. (11.37) to this form:

c2
nb

¼ c2
nmax

þ 1

Knmax
ð11:38Þ

This is the equation of a straight line. If theLangmuir isotherm is obeyed, a plot of c2/nb
against c2 should be linear, with slope¼ 1/nmax, and intercept¼ 1/Knmax.
Thus nmax¼ 1/slope, and K¼ slope/intercept.

From Eq. (11.37) we can analyze Langmuirian behavior. If c2 is very low, so that
Kc2�1, then nb � Knmaxc2; the isotherm is nearly linear at very low adsorbate
concentrations. At relatively high c2 values, whereKc2�1, then nb � nmax; the extent
of adsorption reaches a maximum value and becomes independent of the solution
concentration. The physical interpretation of this result is that the surface is complete-
ly covered with adsorbate molecules and that no further adsorption can occur because
no more solid surface is accessible. This is interpreted to mean that the surface is
coveredwith a layer of adsorbate onemolecule thick (amonomolecular layer). This is
one of the physical implications of the Langmuir isotherm.Another implication is that
adsorption “sites” on the solid surface are independent in the sense that the energy of
adsorption of an adsorbate molecule to a surface site is independent of whether an
adjacent site is already occupied.
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These physical restrictions are rather severe, so it may seem unlikely that the
Langmuir isotherm will be followed by real systems, yet many adsorption systems fit
the equationwell or at least reasonably so as a good approximation. Figure 11.5 shows
some isotherms for the adsorption of dyes on cornstarch (Zografi andMattocks 1963).
The shapes of these curves are typical of Langmuirian adsorption, and the plots
according to Eq. (11.38), in Fig. 11.6, confirm the validity of Eq. (11.37) as a
description of the phenomenon.

Example 11.4. Figure 11.7 is the isotherm for the adsorption of indolinospiropyran
from cyclohexane solution onto alumina of specific area 155m2 g	1 (Connors and
Jozwiakowski 1987; Jozwiakowski 1987). The quantity y is the amount adsorbed in

Figure 11.6. Plots according toEq. (11.38) for the isotherms shown in Fig. 11.5. [Reproducedwith

permission from Zografi and Mattocks (1963).]

Figure 11.5. Plots of milligrams of dye absorbed per gram of cornstarch [x(M)], versus milligrams

of dye per 100mL of solution at equilibrium for FD&CRedNo. 3 (a), FD&CBlueNo. 2 (b), Ext. D&C

Red No. 15 (c), FD&C Yellow No. 5 (d), and FD&C Green No. 1 (e). [Reproduced with permission

from Zografi and Mattocks (1963).]
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mgg	1. From the plot according to Eq. (11.38), these parameters were found:
K¼ 810M	1 and ymax¼ 53.9mg g	1. The molecular weight of the adsorbate is
327. Calculate the area occupied per molecule of adsorbate on the surface of the solid.

The area we want is s, which appears in the relationship At/sNA¼ nmax.
We therefore first convert ymax to nmax; ymax¼ 53.9mg g	1¼ 0.0539 g g	1; dividing
by the molecular weight gives us nmax¼ 1.65� 10	4mol.

We solve for s in s¼At/NAnmax, where At¼ 155m2g	1, finding s¼
1.56� 10	18m2molecule	1, which is equivalent to 156A2 molecule	1.
Incidentally, the specific area At is itself determined by a gas adsorption method.

Solids as adsorbents have limited but important application as pharmaceutical
agents; they servemainly to adsorb toxic agents in the gastrointestinal tract. Activated
charcoal is used for this purpose, being administered as soon as possible after ingestion
of a toxic dose of a drug or poison, which on adsorption to the solid is effectively
inactivated and is excreted.Besides this emergency application, adsorbents arewidely
used in the purification of chemicals, because they are effective in adsorbing colored
impurities (colored molecules tend to have large surface areas and numerous polar
groups) and in separation processes such as chromatography.

PROBLEMS

11.1. Calculate the work of adhesion at the water–diethyl ether interface.

11.2. Calculate the spreading coefficients of water on ether and of ether onwater, and
interpret the results.

Figure 11.7. Adsorption isotherm at 25 
C for indolinospiropyran from cyclohexane onto alumina.

The smooth line was drawn with Eq. (11.37) and the parameters given in Example 11.4.

[Reproduced with permission from Connors and Jozwiakowski (1987).]
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11.3. Calculate the surfacework required to enlarge a cavity in water from a diameter
of 0.1mm to a diameter of 1mm.

11.4. Equation (11.38) is a linearized version of Eq. (11.37). There exist two
additional linearized forms of Eq. (11.37). Find these linear equations, and
show how themodel parameters can be obtained from the slope and intercept of
the plots.

11.5. These are data for the adsorption of 6-methoxybenzoindolinopyran from
cyclohexane solution onto silica gel of specific area 300m2 g	1. The quantity
y is the amount of adsorbate adsorbed in mg g	1. The molecular weight of the
adsorbate is 307. Analyze the data; that is, determine if the data fit the Langmuir
isotherm and, if so, evaluate the model parameters (Connors and Jozwiakowski
1987; Jozwiakowski 1987).

103c2ðMÞ yðmg g	 1Þ

1:18 58:2

2:08 60:6

4:26 94:7

5:75 103:5

8:65 105:8

10:62 107:4

12:27 119:7

14:13 123:8

16:06 124:8

16:98 127:6

19:81 134:3
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III

THERMODYNAMICS OF
CHEMICAL PROCESSES

Parts I and II of this book provide most of the concepts and quantitative relationships
that wewill need in our treatment of chemical processes. Occasional referencewill be
made to passages or equations in earlier chapters so as to minimize repetition of
material. For brevity we state here that, except when indicated otherwise, constant
temperature and pressuremay be assumed; thusminimization of theGibbs free energy
is the criterion for equilibrium. Commonly, the fixed pressure is the ambient
(atmospheric) pressure and the fixed temperature is 25
C or “room temperature.”
Usually, solute concentrations are given in moles per liter (molarity), symbolized
either cA or [A]; these represent concentrations at equilibrium unless noted otherwise.
The solute reference state is the infinitely dilute solution, and very often we will
suppose that the solute is in its reference state so that its activity coefficient is unity and
its activity is equal to its concentration; this condition will allow us to focus on the
essential chemistry of the process without being needlessly distracted by considering
corrections for nonideal behavior. Such corrections can always be brought into the
description as they are found to be required.





12

ACID–BASE EQUILIBRIA

Most drugmolecules and biomolecules include one ormore acidic or basic functional
groups, so acid–base chemistry is pervasive in pharmaceutical systems. Acid–base
equilibria therefore deserve detailed attention.

12.1. ACID–BASE THEORY

Definitions. Acid–base phenomena were observed very early in the development
of chemical science, but their systematic understanding is a twentieth-century accom-
plishment. The Arrhenius theory of acids and bases, dating from the close of the
nineteenth century, postulated that an acid is a substance that in water gives rise to
hydronium ions, and that a base is a substance that inwater gives rise to hydroxide ions.
ThusHCl is an acid andNaOH is a base. The admittedly basic properties of compounds
like amines, which do not contain the elements of the hydroxide ion, were proposed to
result from reaction with water (hydrolysis) to generate hydroxide ions, as in

RNH2 þH2O>RNHþ
3 þOH	

The Arrhenius theory provided a satisfactory conceptual basis for understanding
acid–base behavior in aqueous solution, but it was limited by its dependence on water
as a solvent.

Acid–base behavior is observable in many solvents other than water, and such
systemsbecamecomprehensiblewith the introduction, in1923, of anacid–base theory
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by Bronsted (and independently by Lowry) based on these definitions; an acid is a
species that can donate a proton, and a base is a species that can accept a proton.
In reaction form, this is

HA
acid

>Hþ þA	 ð12:1Þ

Hþ þ B
base

>BHþ ð12:2Þ

Observe that the Bronsted definitions are built on the proton, and not the hydronium
ion, so the new definition is independent of the solvent.We nowproceed to explore the
ramifications of this powerful definition.1

TheConjugate Pair Concept. Observe inEq. (12.1), on reading it from right to left,
that the species A	 is accepting a proton, and so it must, by definition, be a base.
Similarly, in Eq. (12.2) read from right to left, BHþ is donating a proton, so it must be
an acid. The Bronsted acid–base definitions can be generally represented by

Acid>Hþ þ base ð12:3Þ
An acid–base pair related by Eq. (12.3) is called a conjugate acid–base pair. Thus,
referring to Eq. (12.1), we speak of A	 as the conjugate base of acid HA; from
Eq. (12.2), BHþ is the conjugate acid of base B.

Equation (12.3) and the associated definitionsmake nomention of the charge types
of the acid or base; the only requirement is that an acid be one positive charge greater
than its conjugate base. Here are examples of equilibria that fit Eq. (12.3), showing
acids and bases of various charge types:

Acid Base

CH3CH2COOH>Hþ þCH3CH2COO
	

HCO	
3 >Hþ þCO3

2	

CH3CH2NH3
þ >Hþ þCH3CH2NH2

þH3N	C6H4 	NH3
þ >Hþ þH2N	C6H4 	NH3

þ

1 G. N. Lewis, also in 1923, proposed an evenmore general acid–base theory. Just as Bronsted improved on
the Arrhenius theory by eliminating the hydroxide ion as a defining feature, so Lewis generalized the
Bronsted theory by eliminating the proton. Lewis defined an acid as an electron pair acceptor and defined a
base as an electron pair donor. Thus every Bronsted base is also a Lewis base, but the Lewis acid concept
greatly expands our ideas of acid character. In the reaction

BF3 þNH3 > F3B : NH3

boron trifluoride is a Lewis acid.
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The proton of Eq. (12.3), which is a naked nucleus, is a species of extremely
high reactivity, a reactivity so high that in ordinary chemical systems the proton
will not be detectable (because it will certainly combinewith some other species in its
vicinity). Consequently, we never actually observe Eq. (12.3) by itself. But if we
combine two conjugate pairs, the proton donated by the acid of one pair can be
accepted by the base of the other pair, and we observe an overall proton transfer
reaction.Writing the conjugate pair reactions separately and adding them to give the
net reaction:

Pair 1 : HA
acid 1

>Hþ þ A	
base1

Pair 2 : B
base 2

þ Hþ > BHþ
acid 2

Overall : HAþ B>A	 þ BHþ

The net result is that a proton has been transferred from the first pair to the second pair
(reading from left to right), or vice versa when reading from right to left.

Next suppose that one of the pairs is the solvent. In particular, let it be water, our
most important solvent. Water reacts in the pattern of Eq. (12.3):

H2O
acid

>Hþ þ OH	
base

ð12:4Þ

Thus H2O is an acid, and OH	 is its conjugate base. But water is also capable of
functioning in this version of Eq. (12.3):

H3O
acid

þ >Hþ þ H2O
base

ð12:5Þ

ThusH2O is the conjugate base ofH3O
þ . A substance that (likewater) can be either an

acid or a base is said to be amphoteric. The amphoteric nature ofwater allows it to play
the role of the second conjugate pair for either acids or bases. If the solute is an acid
(say, HA), then H2O functions as a base:

HAþH2O>A	 þH3O
þ ð12:6Þ

whereas if the solute is a base (say, B), then H2O functions as an acid:

BþH2O>BHþ þOH	 ð12:7Þ

Throughout most of Chapter 12 we will be concerned with reactions like those in
Eqs. (12.6) and (12.7).
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DissociationConstants. Consider thesystemdescribedbyEq. (12.6) at equilibrium.2

We can apply the thermodynamic concept of the equilibrium constant (Section 4.3) to
define the quantity Ka:

Ka ¼ ½H3O
þ �½A	 �

½HA� ð12:8Þ

where we assume that activity coefficients are unity. (The activity of water is equal to
its mole fraction, essentially unity in dilute solution.) Very commonly, when water is
understood to be the solvent, Eq. (12.6) is abbreviated to

HA>Hþ þA	

and Eq. (12.8) becomes

Ka ¼ ½Hþ �½A	 �
½HA� ð12:9Þ

The equilibriumconstantKa is known as the acid dissociation constant (also called the
acid ionization constant or the acidity constant). In like manner, from Eq. (12.7) we
define the base dissociation constant Kb:

Kb ¼ ½BHþ �½OH	 �
½B� ð12:10Þ

We can apply the same formalism to water. From Eq. (12.4), we have

Kw ¼ ½Hþ �½OH	 � ð12:11Þ
where again the activity of water in the denominator is unity. Kw is called the ion
product or autoprotolysis constant of water.

We are now prepared to develop the most powerful quantitative result of the
Bronsted acid–base theory. Consider the equilibria of HA as an acid and of A	 as its
conjugate base:

HA>Hþ þA	 Ka ¼ ½Hþ �½A	 �
½HA� ð12:12Þ

A	 þH2O>HAþOH	 Kb ¼ ½HA�½OH	 �
½A	 � ð12:13Þ

Now multiply together the Ka of Eq. (12.12) and the Kb of Eq. (12.13). The result is
½Hþ �½OH	 �, or

Kw ¼ KaKb ð12:14Þ
2 Proton transfer reactions are extremely fast, so as soon as the solution has been made macroscopically
homogeneous by mixing, the system is at equilibrium.
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where the Ka and Kb of Eq. (12.14) refer to a conjugate acid–base pair. Since Kw is a
constant (at a given temperature), Eq. (12.14) says that Ka and Kb are reciprocally
related; that is, Kb ¼ Kw=Ka. Values of Kw are known over the entire practical
temperature range, so a result of Eq. (12.14) is that if we know either Ka or Kb, we
can calculate the other. It is not necessary to measure both quantities.

We will subsequently see that Ka is a measure of acid strength and that Kb is a
measure of base strength. Thus Eq. (12.14) shows that the strengths of an acid and its
conjugate base are not independent; on the contrary, the stronger the acid, the weaker
the base, and vice versa. Because of this relationship, we commonly specify acid
strength in terms ofKa, but we do not useKb to describe the strength of a base. Instead
we use the Ka of the conjugate acid of the base. This may seem illogical, but it is
traditional, and we will return to the issue in Section 12.7.

As it happens,Ka andKb values are usually very small numbers, so for convenience
(as one motive) we define

pK ¼ 	 log K ð12:15Þ

where K may be Ka, Kb, or Kw. The symbol p is a mathematical operator that turns a
quantity into its negative logarithm. Applying Eq. (12.15) to Eq. (12.14) gives

pKw ¼ pKa þ pKb ð12:16Þ

which is a very convenient form.
Conventionally, we divide acids and bases into the classes of strong acids and bases

and ofweak acids and bases. Strong acids and bases are strong electrolytes, essentially
completely dissociated in water; HCl, H2SO4, HNO3, NaOH, andKOH are examples.
Weakacids andbases are incompletelydissociated inwater; carboxylic acids, phenols,
and amines are examples. The concept of the equilibrium constant is usefully applied
only to the weak acids and bases.

pH. Let us apply the p operator to the hydrogen ion concentration. We write

pH ¼ 	 log ½Hþ � ð12:17Þ

Extending this formalism to Eq. (12.11) gives

pKw ¼ pHþ pOH ð12:18Þ

from which we see that the acidity of a solution (measured by pH) and its alkalinity
(measured by pOH) are coupled, so we do not need to measure both quantities. In the
laboratory it ismucheasier tomeasure pH, so this is the quantity thatweuse to describe
solution acidity or alkalinity. Table 12.1 lists pKw values at several temperatures
(Harned and Owen 1958, p. 638). Note that pKw¼ 14.00 at 25
C.

A solution in which pH¼ pOH is said to be neutral; hence a neutral solution has
pH¼ 7.00 (but only at 25
C). The practical pH range inwater is essentially defined by
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the value of pKw, or 14 pH units. The lower the pH, the more acidic the solution; the
higher the pH, the more alkaline the solution.3

Example 12.1 (a) Convert Ka¼ 2� 10	4 to pKa.

pKa ¼ 	 logKa

¼ 	ðlog 2þ log 10	 4Þ
¼ 	 ð0:30	 4Þ
¼ 	 ð	 3:70Þ
¼ 3:70

If pKa¼ 5.30, what is Ka?

	 log Ka ¼ 5:30

logKa ¼ 	 5:30

¼ 	 6:00þ 0:70

Ka ¼ 5:0� 10	 6

Example 12.2. pKa¼ 4.75 for acetic acid at 25
C. What is Kb of acetate ion?
From pKa¼ 4.75 we find Ka¼ 1.78� 10	5. Using either Eq. (12.14) or

Eq. (12.16), we find pKb¼ 9.25 or Kb¼ 5.62� 10	10.

Example 12.3. What is the hydroxide ion concentration of a solution having
pH¼ 6.50 at 25
C?

From Eq. (12.18), pOH¼ 14.00	 6.50¼ 7.50, so [OH	]¼ 3.16� 10	8M.

Table 12.1. Ion product of water as a function of

temperature

t(
C) pKw

0 14.94
10 14.54
20 14.17
25 14.00
30 13.83
40 13.54
50 13.26
60 13.02

3 It is important to appreciate a critical difference in themeanings of Eq. (12.16), pKw¼ pKa þ pKb; and of
Eq. (12.18), pKw¼ pH þ pOH. Equation (12.16) refers to a conjugate acid–base pair; pKa and pKb, are
constants, although mutually dependent. Equation (12.18) refers to a solution; pH and pOH are variables,
although mutually dependent.
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Example 12.4. The pKa of the conjugate acid of methylamine is 10.64 at 25
C.
Calculate the standard free energy change for the acid dissociation process.

From the basic thermodynamic result

DG0 ¼ 	RT lnK

and the definition pKa¼ –log Ka we derive

DG0 ¼ 2:303 RT pKa

¼ ð2:303Þð1:987 cal mol	 1 K	 1Þð298:15 KÞð10:64Þ
¼ 14517 cal mol	 1

¼ 14:5 kcal mol	 1

¼ 60:7 kJ mol	 1

DG0 is positive because Ka is smaller (much smaller) than one. pKa is seen to be
directly proportional to DG0.

12.2. pH DEPENDENCE OF ACID–BASE EQUILIBRIA

Fractional Distribution of Acid–Base Species. Some of the treatment described
here follows Connors (1982). Picture a very dilute solution of a given weak acid or
base in an aqueous medium whose pH can be controlled, independently of the solute
of interest, by the experimenter. Such pH control is easy to accomplish. We now
assert, and will shortly demonstrate, that the fractions of solute present in the
conjugate acid and base forms depend only on the pH of the solution and the pKa

of the acid. Thus the pH is a “master variable” that controls all acid–base equilibria in
the solution.

Consider acid HA (whose charge type is irrelevant in what follows), having acid
dissociation constantKa. Let cbe its totalmolar concentration, so that themassbalance
expression Eq. (12.19) can be written.

c ¼ ½HA� þ ½A	 � ð12:19Þ

We introduce the fractions of solute in the conjugate acid and base forms with these
definitions:

FHA ¼ ½HA�
c

ð12:20Þ

FA ¼ ½A	 �
c

ð12:21Þ
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Algebraic combination of Eqs. (12.9) and (12.19)–(12.21) gives

FHA ¼ ½Hþ �
½Hþ �þKa

ð12:22Þ

FA ¼ Ka

½Hþ �þKa
ð12:23Þ

which relate the fractions of solute in the conjugate acid and base forms to the acid
dissociation constant and the hydrogen ion concentration of the medium.
Equations (12.22) and (12.23) confirm the earlier assertion that the solution pH
(which we recall can be established independently of the solute acid) is the only
variable controlling the position of the acid–base equilibrium. Figure 12.1 is a plot of
FHAandFAagainst pH, calculatedwithEqs. (12.22) and (12.23) for ahypothetical acid
having pKa¼ 4.0. This curve is called a sigmoid curve because of its shape.

From Eqs. (12.22) and (12.23) we can deduce these general properties of such
distribution curves. At any given pH, FHA þ FA¼ 1 [a conclusion implicit in
Eq. (12.19)]. At the point where the two curves cross, FHA¼FA¼ 0.5, and at this
point [Hþ ]¼Ka, or pH¼ pKa. At pH values much less than pKa, FHA approaches
unity and FA approaches zero; at pH values much greater than pKa, FA approaches
unity and FHA approaches zero. The curves in Fig. 12.1 apply to any monoprotic

Figure 12.1. Variation with pH of the fraction FHA (conjugate acid) and FA (conjugate base) for an

acid with pKa¼ 4.0. [Reproduced by permission from Connors (1982).]
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acid–base pair (i.e., one having only a single acid–base group and therefore only a
single pKa value) merely by sliding the curves along the pH axis until their pH of
intersection matches the solute pKa. From Fig. 12.1 we also can see that most of the
interesting acid–base chemistry of this system takesplace in the approximate pH range
of pKa� 2 units; outside this range the solute exists largely either asHA (at low pH) or
as A	 (at high pH).

Rearrangement of Eqs. (12.20) and (12.21) gives [HA]¼ cFHA and [A
	]¼ cFA; if,

therefore, the total concentration c is known (c is sometimes called the analytical
concentration), and if the pH and pKa are known, the individual conjugate acid and
base species concentrations are easily calculated.

Example 12.5. The pKa of benzoic acid is 4.20. Calculate the concentrations of
benzoic acid and benzoate ion in a solution whose pH¼ 5.20 and which was prepared
to contain 0.005M benzoic acid.

The preceding wording may seem confusing, but it is a fair example of the
terminology that might be used in a laboratory. Its meaning is that c¼ 0.005M.

From the pKa we find Ka¼ 6.31� 10	5 and from the pH we find [Hþ ]¼
6.31� 10	6. Equations (12.22) and (12.23) then give FHA¼ 0.0909 and FA¼
0.909. Thus [HA]¼ 0.005� 0.0909¼ 4.55� 10	4M and [A	]¼ 0.005� 0.909 ¼
4.55� 10	3M. The slight discrepancy between the given value of c and the value
obtained by summing [HA] and [A	] results from rounding errors (and is probably
experimentally negligible). Notice that pH¼ pKa þ 1 and that at this condition
[A	]¼ 10 [HA].

A diprotic acid (sometimes called a dibasic acid) possesses two acidic groups and
two pKa values. We can symbolize such an acid as H2A and write the acid–base
equilibria as follows:

H2A ÐK1

Hþ þHA	

HA	 ÐK2

Hþ þA2	

The placement of K1 and K2 over the arrows effectively defines these constants.
We proceed to define fractions as before, except that now we have three solute
species:

FH2A ¼ ½H2A�
c

FHA ¼ ½HA	 �
c

FA ¼ ½A2	 �
c
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where c¼ [H2A] þ [HA	] þ [A2	]. Combining these relations with the two disso-
ciation constants gives

FH2A ¼ ½Hþ �2
½Hþ �2 þK1½Hþ �þK1K2

ð12:24Þ

FHA ¼ K1½Hþ �
½Hþ �2 þK1½Hþ �þK1K2

ð12:25Þ

FA ¼ K1K2

½Hþ �2 þK1½Hþ �þK1K2

ð12:26Þ

Obviously FH2A þ FHAþ FA¼ 1. Observe how the three terms that make up the
denominator constitute in turn the numerators of Eqs. (12.24)–(12.26). At high values
of the hydrogen ion concentration the term [Hþ ]2 dominates; as [Hþ ] decreases, the
middle term,Kl [H

þ ], takes over as the largest contributor, and finally at small values
of [Hþ ] the last term,K1K2, becomes the largest.Again somegeneral relationships can
be derived from Eqs. (12.24)–(12.26). Where the curves for FH2A and FHA cross,
equating Eqs. (12.24) and (12.25) gives pH¼ pK1. Similarly, where FHA and FA are
equal, pH¼ pK2. The pH at which the maximum in FHAappears is found by
differentiating Eq. (12.25) with respect to [Hþ ] and setting the derivative equal to
zero; the result is

pHmax ¼ pK1 þ pK2

2
ð12:27Þ

Figure 12.2 is a plot of Eqs. (12.24)–(12.26) for a hypothetical diprotic acid having
pK1¼ 5.0 and pK2¼ 10.0. Note that the fraction FHA rises essentially to unity at a pH
given by Eq. (12.27).

Figure 12.2. Species distribution diagram for a dibasic acid H2A with pK1¼5.0 and pK2¼10.0.

[Reproduced by permission from Connors (1982).]
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Now compare Fig. 12.3 with Fig. 12.2. Again the curves are calculated with
Eqs. (12.24)–(12.26), but now pK1¼ 7.0 and pK2¼ 8.0. Equation (12.27) is still
obeyed, but now the fractionFHA fails to rise to anywherenear unity.Thebehavior seen
here is closely connectedwith theobservation, inFig. 12.1, that the essential acid–base
chemistry occurs largely in the pH region pKa� 2 units. In Fig. 12.2 the pK1 and pK2

values differ by 5 units, so the two acid–base equilibria described by K1 and K2 act
essentially independently. In Fig. 12.3, however,DpKa¼ pK2	 pK1 is only 1 unit. As,
in imagination, the pH is raised, swept from left to right across Fig. 12.3, H2A is
converted toHA	; this transformation commences at about pK1	 2units, or pH5.But
before it can be carried to completion (whichwould not occur until pK1 þ 2, or pH 9),
the system has been brought to within the range pK2	 2, or pH 6, so the second
transformation, of HA	 to A2	, must take place. The consequence is that FHA cannot
rise as high as it did in Fig. 12.2, where DpKawas 5 units. Generally, one may expect
successive pKa values to control essentially independent equilibria if DpKa> 4. The
consequence in Fig. 12.2 is that the system contains essentially only two acid–base
species (H2A þ HA	orHA	 þ A2	) at anygivenpH. InFig. 12.3, however, the three
species coexist in a wide pH range.4

Figure 12.3. Species distribution diagram for a dibasic acid H2A with pK1¼ 7.0 and pK2¼8.0.

[Reproduced by permission from Connors (1982).]

4 Of course, these are equilibria, and all species are, strictly speaking, present in all solutions. From the
practical point of view, however, we are often justified in neglecting the presence of a species if it is
experimentally undetectable or exhibits no detectable influence.
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These principles can be extended to acids and bases with any number of acid–base
groups. The form of the expressions for the fractions is seen to take on a predictable
pattern, and it is possible to write these expressions down without derivation. For
the tribasic acid H3A, these expressions become

FH3A ¼ ½Hþ �3
½Hþ �3 þK1½Hþ �2 þK1K2½Hþ �þK1K2K3

FH2A ¼ K1½Hþ �2
½Hþ �3 þK1½Hþ �2 þK1K2½Hþ �þK1K2K3

and so on.

Example 12.6. Calculate the concentration of monoanion in an aqueous solution
0.01M in phthalic acid at pH 5.00. pK1¼ 2.95; pK2¼ 5.41.

Phthalic acid is

CO2H

CO2H

1

The two ionizable groups are obviously equivalent. We calculate K1¼ 1.12� 10	3

and K2¼ 3.89� 10	6. From Eq. (12.25), we obtain

FHA ¼ ð1:12� 10	3Þð1� 10	5Þ
ð1� 10	5Þ2þð1:12� 10	3Þð1� 10	5Þþð1:12� 10	3Þð3:89� 10	6Þ

¼ 0:713

Then from [HA	] ¼ cFHA, we have

½HA	 � ¼ 0:01� 0:713

¼ 7:13� 10	3 M

Buffer Solutions. Suppose that an aqueous solution is prepared to contain amol L	1

of a weak acid HA and b mol L	1 of its conjugate base A	. (Of course A	will be
accompanied by bmol L	1 of its counterion, a cation.) Aswe have done earlier, theKa

for this system is defined

Ka ¼ ½Hþ �½A	 �
½HA� ð12:28Þ
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and we now apply the p operator to Eq. (12.28) to obtain the convenient form

pKa ¼ pH	 log
½A	 �
½HA� ð12:29Þ

The quantities a and b are the formal concentrations of HA and A	; the actual
equilibrium concentrations are somewhat different from these values because both of
these equilibria must be mutually satisfied:

HA>Hþ þA	

H2O>Hþ þOH	

Wecan find exact expressions for these concentrations bymaking use ofmass balance
and electroneutrality relationships.Tobe specific, suppose that the cationic counterion
is labeled Mþ . Then these two mass balance expressions can be written as follows:

b ¼ ½Mþ � ð12:30Þ
aþ b ¼ ½HA� þ ½A	 � ð12:31Þ

The electroneutrality principle asserts that any macroscopic volume of solution is
electrically neutral. This means that the sum of positive charges equals the sum of
negative charges. For the aqueous solution under discussion we have

½Hþ �þ ½Mþ � ¼ ½OH	 �þ ½A	 � ð12:32Þ

Algebraic combination of Eqs. (12.30)–(12.32) gives the desired relationships:

½HA� ¼ a	 ½Hþ �þ ½OH	 � ð12:33Þ
½A	 � ¼ bþ ½Hþ �	 ½OH	 � ð12:34Þ

Combining Eqs. 12.29), (12.33) and (12.34), we obtain

pKa ¼ pH	 log
bþ ½Hþ �	 ½OH	 �
a	 ½Hþ �þ ½OH	 � ð12:35Þ

If the solution pH is in the approximate range 4–10, the contributions of [Hþ ] and
[OH	] in Eq. (12.35) are usually negligible, and Eq. (12.35) becomes

pKa ¼ pH	 log
b

a
ð12:36Þ

In this form, Eq. (12.36) is known as the Henderson–Hasselbalch equation. This is a
very convenient form for carrying out calculations.
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A solution that contains comparable and appreciable concentrations of a conjugate
weak acid–base pair is called a buffer solution because it resists a change in pH on the
addition of a small amount of acid or base. This phenomenoncanbedemonstratedwith
an example. Suppose a solution is prepared to be 0.1M in acetic acid (pKa 4.76) and
0.1M in sodium acetate. Then b/a¼ 1.00 and, according to Eq. (12.36), pH¼ pKa, or
pH¼ 4.76. Now let 1.0mL of 0.1MNaOH be added to 100mL of this solution; what
will be the new value of pH? It may be assumed that the sodium hydroxide converts an
equivalent amount of acetic acid to sodium acetate. The solution therefore contains,
after addition of the sodium hydroxide, (100)(0.1)	 (1)(0.1)¼ 9.9mmol of acetic
acid, and (100)(0.1) þ (1)(0.1)¼ 10.1mmol of acetate, all in 101mLof solution. The
ratio b/a is now 1.02, its logarithm is 0.01, and Eq. (12.36) shows that the new pH is
4.77. Addition of the alkali has resulted in a pH change of only 0.01 unit. If the same
volume of the sodium hydroxide solution had been added to 100mL of pH 4.76 strong
acid, the pH would have changed to about 11.

Equation (12.36) will sometimes be encountered in different guises, because
some authors consider that a weak acid, on treatment with a strong base, is converted
to its salt; thus the equation could be written pH¼ pKa þ log (salt/acid); when a
weak base is treated with a strong acid to form its salt, the equivalent form is
pH¼ pKa þ log (base/salt). Because of the possible confusion resulting from this
terminology, we will use the Bronsted terminology by speaking of conjugate acid
and base species. Thus Eq. (12.36) and equivalent versions always can be written in
the form

pKa ¼ pH	 log
½conjugate base�
½conjugate acid� ð12:37Þ

This equation relates the three quantities pH, pKa, and the ratio b/a. Often two of these
are known and the third may then be calculated.

Example 12.7. Calculate the pH of a buffer solution prepared by dissolving 242.2mg
of tris(hydroxymethyl)aminomethane in 10.0mL of 0.170M HC1 and diluting to
100mLwithwater.Themolecularweight of the solute is 121.1. It is aprimaryamine of
structure (HOCH2)3CNH2, with pKa¼ 8.08 for the conjugate acid.

A total of 2.00mmol of solute was weighed out, and 1.70mmol of HCl was added.
Since the HCl reacts with the amine to convert an equivalent amount to its conjugate
acid (protonated) form, this means that a¼ 1.7/100M and b¼ (2.0	 1.7)/100M.
Using these figures in the Henderson–Hasselbalch equation, we obtain

pH ¼ pKa þ log
0:003

0:017
¼ 8:08	 log

0:017

0:003

¼ 8:08	 log 5:67 ¼ 7:25

In this calculation the ratio was inverted merely to give a value greater than unity, for
ease in taking the logarithm.
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Example 12.8. Calculate the pH of a buffer prepared to contain 0.09MNaH2PO4 and
0.01M K2HPO4. pK1¼ 2.23, pK2¼ 7.21, pK3¼ 12.32 for phosphoric acid.

Ingeneral abuffer of apolyprotic acidmaybeaverycomplexmixture, and a species
distribution diagram is helpful in clarifying the problem. Figure 12.4 shows this
diagram for phosphoric acid. The pK values of this acid are widely spaced, and
phosphoric acid behaves essentially as if it were an equimolar mixture of three
monobasic acids of the given pK values. From the experimental values a¼ 0.09Mand
b¼ 0.01M, Fig. 12.4 clearly shows that the pHwill be approximately 6.3 and that the
solution contains practicallynoH3PO4orPO3

4	at this pH.Wehavenowsimplified the
problem to that of a monobasic acid (H2PO4

	) and its conjugate base (HPO4
2	), with

the dissociation constant pK2¼ 7.21. Applying the Henderson–Hasselbalch equation
gives pH¼ 7.21	 log 9¼ 6.26.

Table 12.2 was constructed by means of Eq. (12.36). Table 12.2 illustrates the
symmetry and simplicity providedby the logarithmic formof the dissociation constant
expression. The table also confirms the suggestion derived from Fig. 12.1 that most of
the acid–base “action” takes place in the approximate pH range pKa� 2.

Inasmuchas the functionofa buffer is tominimize changes in pH, it is useful to have
ameasureof the “buffering capacity”ofa buffer solution.This is providedby thebuffer
index b. Let b be the concentration of strong base added to a solution containing total
concentration c of a weak acid. Then b is defined by

b ¼ db

dpH
ð12:38Þ

Thusb is the concentrationof strongbase required to change thepHbyagivenamount;
the larger the value of b, the greater is the buffer capacity of the solution. Since the

Figure 12.4. Species distribution diagram for phosphoric acid: pK1¼ 2.23, pK2¼ 7.21,

pK3¼12.32. [Reproduced by permission from Connors (1982).]
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strong base converts the weak acid to its conjugate base, b has the meaning given to it
earlier, and from Eqs. (12.21) and (12.23), we write FA¼ b/c¼Ka/([H

þ ] þ Ka), or

b ¼ cKa

½Hþ �þKa

Therefore

db

d½Hþ � ¼
	 cKa

½Hþ �þKað Þ2

and

db

dpH
¼ 	 2:3 Hþ½ � db

d½Hþ �
b ¼ 2:3cFHAFA ð12:39Þ

Equation (12.39) shows thatb is directly proportional to total buffer concentration c, as
well as to the product FHAFA. It is easy to show (e.g., by inserting numbers for the
fractions) that this product is maximal when FHA ¼ FA ¼ 0:5, which, we have seen,
occurs when pH¼ pKa. This result, together with extensive laboratory experience,
leads to theguideline that buffer capacity ismaximalwhenpH¼ pKa and is acceptable
in the approximate range of pH¼ pKa� 1. This is the information needed to design
effective buffer solutions.5

12.3. CALCULATION OF SOLUTION pH

We have already seen some calculations of solution pH, but here the treatment will be
more systematic. There are two kinds of aqueous solutions to consider: (1) a solution

Table 12.2. Relationship of pH, pKa, and the conjugate

base/acid ratio

b/a pH

0.001(10	3) pKa	 3
0.01(10	2) pKa	 2
0.1(10	1) pKa	 1
1(100) pKa

10(101) pKa þ 1
100(102) pKa þ 2
1000(103) pKa þ 3

5 Buffers are commonly described in an abbreviated terminology that must be understood. For example, a
0.10M pH 5.00 acetate buffer means that the total buffer concentration c is 0.10M and the pH is 5.00;
obviously the solution contains both acetate and acetic acid, in concentrations that can be worked out from
the Henderson–Hasselbalch equation. Similarly, a 0.05M pH 7.0 phosphate buffer contains both dihydro-
gen phosphate (H2PO4

	) and monohydrogen phosphate (HPO4
2	), usually taken as their salts.
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prepared with a single solute, whether a strong acid, strong base, weak acid, or weak
base; and (2) a solution prepared to contain two conjugate species, namely a weak
acid and its conjugate base. Obviously, all acid–base systems contain both species; the
distinction being made is that in (1) one of these arises solely from the operation of
the solution equilibria, whereas in (2) the experimenter ensures by manipulation that
appreciable concentrations of both are present.

Any aqueous acid–base system can be completely described by carrying through
the following procedure:

1. Write the electroneutrality equation for the solution.

2. Write the mass balance expressions for each solute.

3. Define all pertinent Ka values.

4. Define Kw.

5. Algebraically combine the preceding expressions.

Seldom is it necessary to carry through the system in its full generality, andwewill see
that shortened versions, often employing chemically reasonable approximations, will
usually suffice. The level of accuracy sought is determined by the typical accuracy in
an experimental measurement, which is, at best, about 0.01 pH unit.

Strong Acid or Base. A strong acid or base is essentially completely dissociated in
dilute aqueous solution. The common strong acids are hydrochloric (HCl), sulfuric
(H2SO4), nitric (HNO3), and perchloric (HC1O4); the common strong bases are
sodium and potassium hydroxides (NaOH, KOH).

Let c be the total (analytical) molar concentration of strong acid HX. According to
the electroneutrality principle applied to this solution, we obtain

½Hþ � ¼ ½OH	 �þ ½X	 � ð12:40Þ

The source of the hydroxide ion is the dissociation of water. The mass balance
expression for this solution is

c ¼ ½X	 � ð12:41Þ

Equations (12.40) and (12.41) can be combined with the definition of Kw to give a
quadratic equation, which can be solved for [Hþ ]. However, if the concentration c is
greater than�10	6M, then [X	] will be much greater than [OH	], and we can write
the acceptable approximation [Hþ ]¼ [X	], or

½Hþ � ¼ c ð12:42Þ

which states that the hydrogen ion concentration is numerically equal to the total
concentration of strong acid. Similarly for a strong base MOH the electroneutrality
equation is
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½Hþ �þ ½Mþ � ¼ ½OH	 � ð12:43Þ

which simplifies to c¼ [OH	], where c is the analytical concentration of the strong
base.

These calculations have ignored nonideality effects, which, we have seen, set in at
fairly low ionic strengths for ionic species (Chapter 8). For example, the calculated pH
of 0.10M HCl is 1.00, whereas the measured pH is 1.10.

Example 12.9.

(a) What is the pH of 0.005M H2SO4? Sulfuric acid dissociates according to
H2SO4 ! 2Hþ þ SO4

2	. Thus in this solution [Hþ ]¼ 2c¼ 0.010M, and
pH¼ 2.00.

(b) What is the pH of 0.025MNaOH?We have [OH	]¼ 0.025M, so pOH¼ 1.60
and pH¼ 14.00	 1.60¼ 12.40.

Weak Acid. Let HA be a monoprotic weak acid at total concentration c. The
dissociation reaction is

HA ÐKa

Hþ þA	

From the electroneutrality principle we write

½Hþ � ¼ ½OH	 �þ ½A	 � ð12:44Þ

and the mass balance expression is

c ¼ ½HA� þ ½A	 � ð12:45Þ

Anexact solution combines Eqs. (12.44) and (12.45)with the definitions ofKa andKw.
Usually, however, it is reasonable to approximate Eq. (12.44) by [Hþ ]¼ [A	]. Using
this equality in the definition of Ka yields

Ka ¼ ½Hþ �2
c	 ½Hþ � ð12:46Þ

which can be rearranged to the quadratic form

½Hþ �2 þKa½Hþ �	Kac ¼ 0 ð12:47Þ

Application of the quadratic formula gives

Hþ½ � ¼ 	Ka �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
a þ 4Kac

p
2

ð12:48Þ

One uses the physically meaningful solution.
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Suppose that ½Hþ � � c; then the denominator in Eq. (12.46) can be approximated
by c	 [Hþ ]¼ c. If this is acceptable, we obtain Ka ¼ ½Hþ �2=c, or

½Hþ � ¼ ffiffiffiffiffiffiffiffi
Kac

p ð12:49Þ

This equation offers an extremely simple solution to the problem. Whether this
approximation is reasonable can be assessed by comparing the results calculated by
Eqs. (12.48) and (12.49).

The preceding derivations are applicable to aqueous solutions of monoprotic acids
regardless of charge type, so Eqs. (12.48) and (12.49) apply to neutral acids (such as
RCOOH), to positively charged acids (like RNH3

þ ), and to negatively charged acids
(like HPO4

2	).

Example 12.10.

(a) Calculate the pH of 0.02M trans-cinnamic acid (pKa¼ 4.30). We can use
Eq. (12.49) with c¼ 0.02 and Ka¼ 5.0� 10	5; the result is [Hþ ]¼
1.0� 10	3M, or pH¼ 3.00. Assessing the validity of the approximation
leading to Eq. (12.49), we see that c¼ 0.020M and [Hþ ]¼ 0.001M (as
calculated), so [Hþ ] is about 5% of c. Let us repeat the calculation with
Eq. (12.48):

½Hþ � ¼
	 5� 10	 5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5� 10	 5Þ2 þð4Þð0:02Þð5� 10	 5Þ

q
2

¼ 	 5� 10	 5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 10	 10 þ 0:4� 10	 5

p
2

¼ 	 5� 10	 5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 10	 6

p

2

¼ 0:002	 0:00005

2

¼ 0:975� 10	 3

so pH¼ 2.99. The approximate solution, Eq. (12.49), gave pH¼ 3.00, which
usually would be considered acceptable, because pH seldom can be measured to
better than 0.01 unit.

(b) Calculate the pH of 0.05M ammonium chloride (pKa¼ 9.25). Ammonium
chloride is a salt. It dissociates completely according to

NH4Cl!NH4
þ þCl	
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The ammonium ion NH4
þ is a weak acid:

NH4
þ >Hþ þNH3

Therefore we anticipate that the solution will be acidic.6 The given pKa is for the
acid NH4

þ . Using Eq. (12.49) with c¼ 0.05 and Ka¼ 5.62� 10	10 gives
[Hþ ]¼ 5.30� 10	6M, or pH¼ 5.28. Our experience with Example 12.10(a)
convinces us that this is an acceptably accurate solution.

Weak Base. The base dissociation reaction is

BþH2O ÐKb

BHþ þOH	

and by reasoning identical with that applied to the weak acid case, we derive

Kb ¼ ½OH	 �2
c	 ½OH	 � ð12:50Þ

When [OH	]� c, Eq. (12.50) becomes

½OH	 � ¼ ffiffiffiffiffiffiffiffi
Kbc

p ð12:51Þ

where c is the total base concentration. Equations (12.50) and (12.51) apply to neutral
bases (like RNH2), to positively charged bases (like H2NCH2CH2NH3

þ ), and to
negatively charged bases (like RCOO	).

Example 12.11. What is the pH of 0.10M potassium acetate? (pKa¼ 4.76).
We will use Eq. (12.51) with c¼ 0.10. The pKa that is given is for the conjugate

acid, namely, acetic acid. The chemistry of this system mimics what we saw in
Example 12.10(b). First the salt potassium acetate (symbolized KOAc) completely
dissociates:

KOAc!Kþ þOAc	

The potassium ion is neutral, butOAc	 is aweak base; it is the conjugate base of acetic
acid, and it makes the solution basic because of the equilibrium

OAc	 þH2O>HOAc þOH	

6 The chloride ion is neutral, as may be deduced by noting that HCl is a strong acid; that is, its “conjugate
base” Cl	 is so weak that it is completely ineffectual at capturing the proton.

240 ACID–BASE EQUILIBRIA



From pKa 4.76 we find pKb¼ 14.00	 4.76¼ 9.24, or Kb¼ 5.75� 10	10. Applying
Eq. (12.51), we obtain

½OH	 � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5:75� 10	 10Þð0:1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:75� 10	 11

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
57:5� 10	 12

p
¼ 7:6� 10	 6

so pOH¼ 5.12 and pH¼ 8.88. It is helpful to check that the calculated pH is on the
correct side of neutrality.

Mixture of Weak Acid and Its Conjugate Base. We have already treated this case
under Buffer Solutions. The appropriate relationship is

pKa ¼ pH	 log
½A	 �
½HA� ð12:52Þ

and we have seen how this equation can be applied to calculate the pH of buffers. Of
course, if wewish to prepare a buffer of given pH,we use the equation in an alternative
manner. First a buffer substance is selected according to the criterion that the desired
pH be in the range pKa� 1. Thenwe use Eq. (12.52) to find the ratio [A	]/[HA] that is
needed to deliver this pH. Finally we decide on a total buffer concentration c. Then,
since we have the sum c¼ [HA] þ [A	] and the ratio [A	]/[HA], we solve for the
individual concentrations [HA] and [A	] and prepare the solution to contain these
concentrations.

Some mixtures of acids and bases can be quite complex, consisting of polyprotic
acids or bases, or of a weak acid and a weak base (not its conjugate). A complete
analytical description can alwaysbe obtainedbymeans of thegeneral schemeoutlined
at the beginning of this section, but the solution of the final equation will usually
require approximations of the type we have made use of above.7

12.4. ACID–BASE TITRATIONS

Atitration is an experimental operation inwhich a solutionof one reactant (the titrant),
this solution having an accurately known concentration, is added to a solution of a
substance (the sample or analyte) with which it will stoichiometrically and quantita-
tively react, until chemically equivalent amounts of titrant and sample have been
mixed. From the stoichiometry of the known reaction between the titrant and sample
substances, alongwith the knownconcentration of titrant, the amount or concentration

7 The exact equation obtained by applying this general schemewill be a polynomial in [Hþ ], whose highest
power will be equal to the number of dissociation constants (including Kw) plus one.
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of the sample substance can be calculated. The theoretical point at which the amounts
of titrant and sample are equivalent is called the equivalence point, and its experi-
mental estimate is the endpoint of the titration. If the titrant is an acid and the sample a
base, or the reverse, the operation is called acid–base titration. The analytical
calculations, which are simple, lie outside our present concern. Herewe are interested
in how the pH of the sample solution varies, throughout the course of the titration, as
increasing volumes of titrant solution are added to it. A plot of this pH [on the vertical
axis (ordinate; y axis)] against the volume of titrant added [on the horizontal axis
(abscissa; x axis)] is called an acid–base titration curve. Wewill see how it is possible
to calculate such a titration curve, along with the information to be derived from it.

Strong Acid–Strong Base Titration. A strong acid is completely dissociated into
Hþ and its anion,which is neutral; a strongbase is completelydissociated intoOH	 and
its cation,which is neutral. Consequently, the reaction that occurs in the sample solution
is

Hþ þOH	 >H2O

This is the reverse of the autoprotolysis of water, so its equilibrium constant is 1/Kw, or
1� 1014. The reaction is obviouslyquantitative; in casual terms, “it goes completely to
the right.” At each stage in the titration the sample solution consists of a solution of a
strong acid or a strong base, so the calculation of the titration curve involves no new
concepts.

Example 12.12. Calculate the titration curve for the titration of 25.0mL of 0.05M
HCl with 0.10M NaOH.

In this titration HCl is the sample and NaOH is the titrant. Before any titrant has
been added, the solution consists of 0.05M HCl, so [Hþ ]¼ 0.05M and pH¼ 1.30.
Now suppose we add 1.0mL of titrant. We can arrange the work in tabular form:

Initially the sample had ð25Þð0:05Þ ¼ 1:25 mmol Hþ

We have added ð1Þð0:10Þ ¼ 0:10 mmol OH	

Remaining in the solution are 1:15 mmol Hþ

This 1.15mmol of Hþ is contained in 26mL of solution, so the new concentration is
[Hþ ]¼ 1.15mmol/26mL¼ 0.04423M, and thenewpHis1.35.Obviously thepHhas
risen because we have added a strong base to the solution.

This calculation is repeated with increasing volumes of titrant. Here are some
results: at 5mL of titrant, pH¼ 1.60; at 8mL, pH¼ 1.87; at 10mL, pH¼ 2.15; at
12mL, pH¼ 2.87; at 12.2mL, pH¼ 3.09; at 12.4mL, pH¼ 3.57.

The equivalence point occurs at 12.5mL of titrant, because at this volume the
number ofmillimoles (mmol) ofNaOHadded exactlymatches the number ofmmol of
HCl initially present; and at this point the foregoing method of calculation gives an
embarrassing result, because it leads to the conclusion that the number ofmmol ofHþ

remaining is zero. But of course there always will be hydrogen ions in water. At the
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equivalence point we simply have a solution of sodium and chloride ions, and
(neglecting impurities from the atmosphere) the solution is neutral, so pH¼ 7.00.

Let us continue to add titrant; suppose that 13mL has been added. All that is
happening is that the titrant is being diluted. Since the first 12.5mL of titrant was
consumed in the titration reaction, we have added 0.5mL in excess, or (0.5)
(0.1)¼ 0.05mmol of OH	. This is contained in 38mL of solution, so
[OH	]¼ 0.05/38¼ 0.001316 M, pOH¼ 2.88, and pH¼ 11.12.

It is left as an exercise to plot the titration curve and to locate the equivalence point.
The calculation of a few more points in the titration, especially after the equivalence
point, may be helpful in defining the shape of the curve.

Weak Acid–Strong Base Titration. We could apply the systematic treatment
outlined at the beginning of Section 12.3 to obtain a general equation applicable
throughout the course of the titration, but it is simpler to recognize that at any stage in
the titration the solution consists of an example of a type that we have already
considered. For the titration of a weak acid HAwith a strong base MOH, here are the
four such stages into which we divide the titration:

Stage 1: Before the Titration Begins. The sample solution is simply a solution of a
weak acid, and Eq. (12.48) or (12.49) is applicable.

Stage 2: During Titration. Since some strong base has been added and has
converted an equivalent amount of weak acid to its conjugate base according to

HAþOH	 >A	 þH2O

the solution contains appreciable quantities of both HA and A	. It is a buffer
solution throughout much of this stage, and Eq. (12.36) applies.

Stage 3: At the Equivalence Point. Now theweak acid HA has been quantitatively
converted to A	. The sample solution consists of this weak base in water, and
Eq. (12.50) or Eq. (12.51) may be used.

Stage 4: After the Equivalence Point. The solution contains excess strong base and
the weak base A	, whose dissociation is repressed by the common ion effect of
the hydroxide from the strong base.We therefore ignore the contribution of A	,
and we calculate the concentration of hydroxide exactly as in Example 12.12.

Example 12.13. Calculate the titration curve for the titration of 10.0mL of 0.2M
weak acid (pKa¼ 5.0) with 0.2M sodium hydroxide.

Stage 1. We have Ka¼ 1� 10	5 and c¼ 0.2, so, from Eq. (12.49),

½Hþ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10	 5Þð0:2Þ

q
¼ 1:41� 10	 3

or pH¼ 2.85.
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Stage 2. Let 2.0mL of titrant be added. This is the situation:

Initially in the sample : ð10:0Þð0:2Þ ¼ 2:00 mmol HA

Strong base added : ð2:0Þð0:2Þ ¼ 0:40 mmol OH	

Weak acid remaining 1:60 mmol HA

Using Eq. (12.36), we have

pH ¼ 5:00þ log
0:40

1:60
¼ 4:40

Of course, the logarithmic term is strictly a ratio of concentrations, so we should
have written

pH ¼ 5:00þ log
0:40=12

1:60=12

where 12mL is the total volume, but these volumes cancel, so we effectively
calculate a ratio of amounts.Using the same calculational method, we obtain these
further results: at 5.0mL, pH 5.00; at 7.0mL, pH¼ 5.37.

Stage 3. The equivalence point obviously corresponds to 10.0mL of titrant added.
Initially we had (10.0) (0.2)¼ 2.00mmol of HA, and this has now been
converted to 2.00mmol of A	, which is contained in 20.0mL of solution.
Using Eq. (12.51), with Kb¼ 1� 10	9 and c¼ 0.10M, we obtain

½OH	 � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10	 9Þð0:1Þ

q
¼ 1� 10	 5 M

so pOH¼ 5.00, and pH¼ 9.00. Obviously the solution is basic at the equivalence
point, since it contains only a weak base.

Stage 4. Let 12.0mL of titrant be added. This constitutes an excess of 2.0mL of
0.2M strong base in a total volume of 22.0mL, so [OH	]¼ (2.0)(0.2)/
22¼ 0.0182M, giving pOH¼ 1.74 and pH¼ 12.26.

Figure 12.5 is a plot of the full titration curve. Three important lessons are to be learned
from this graphical display:

Detection of the Endpoint. Observe the relatively sharp “break” in the curve
corresponding to the equivalence point at 10.0mL of titrant. The point at which
the slope has itsmaximumvalue gives us our experimental estimate of the endpoint. In
the laboratory we make use of this information in either of twoways: (1) If we know
the pH at the endpoint by either calculation or experience, we can titrate to that pH
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(usually as detected with a visual indicator); or (2) we can experimentally measure
the pH, plot the curve, and establish the endpoint graphically.

Buffer Properties. We have seen that the sample solution throughout much of the
titration is a buffer, and this property is manifested in the slope of the titration curve,
which is seen to be the reciprocal of b, the buffer index [Eq. (12.38)]. Thus the
shallower the slope, the greater the buffer capacity. Recall our earlier claim that buffer
capacity is acceptable in the range pH¼ pKa� 1, and observe how this range is
reflected on the titration curve.8

Determination of pKa. We will subsequently learn how to measure the pH experi-
mentally, so the titration curve can be determined. Writing Eq. (12.37) again

pH ¼ pKa þ log
½conjugate base�
½conjugate acid�

we see that if we know the ratio appearing in the logarithmic term and canmeasure the
pHof the solution,we can calculate pKa. In particular, consider thepoint in the titration
corresponding to one-half way to the endpoint, as measured in titrant volume. At this
point (call it the midpoint), one-half of the weak acid has been converted to its
conjugate base, so the ratio [conjugate base]/[conjugate acid]¼ 1.00, and pH¼ pKa.
This relationship is shown on Fig. 12.5. (Of course, the pKa thus determined is not a
“thermodynamic pKa” because we have not yet applied activity coefficient correc-
tions; these are discussed in Chapter 13.) An interesting capability of this technique is

Figure 12.5. Calculated curve for the titration of 10.0mL of 0.2N weak acid (pKa¼ 5.00) with

0.2N strong base. [Reproduced by permission from Connors (1982).]

8 Figure 12.5 also shows that fairly high concentrations of a strong base (seen well beyond the endpoint in
Fig. 12.5) constitute good buffers. The same is true of strong acids.
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that it allows us to determine the pKa of an acid whose identity is unknown; wemerely
need to determine the titration curve, read off the endpoint volume, and then, by
interpolation, establish the pH corresponding to one-half the endpoint volume.

This equality pH¼ pKa at the titration midpoint is yet another manifestation of a
conditionwe have encountered before, notably in discussing Eqs. (12.22) and (12.23),
Eqs. (12.24)–(12.26), Table 12.2, and Eq. (12.39).

Calculation of the titration curve for the titration of aweak basewith a strong acid is
analogous to the preceding treatment. For such a titration the pHwill initially be on the
alkaline side of neutrality and will decrease throughout the titration. At the endpoint
the solution contains the conjugate acid of the sample base, so the solution is acidic.

The titration curvesof polyfunctional acids andbases, if their successivepKavalues
differ by about 4 or more units, show a “break” at each endpoint for the successive
titration of the groups (in the order strongest to weakest). If, however, the successive
pKa values are not widely spaced, the successive breaks are less distinct because the
phenomenon seen in Fig. 12.3, in which more than two solute species coexist at some
pH values, intrudes. Such systems can be algebraically described, and in this manner
the experimental data can be fitted to the equation to extract the pKavalues.Wewill not
pursue this analysis.

Acid–Base Indicators. Anacid–base indicator is a compoundwhose conjugate acid
and base forms exhibit different colors. There is no limitation on the charge type of the
indicator. Indicators are used to detect the endpoint in a titration; the selection of an
indicator is based on the simple principles to be discussed here.

Consider the indicator acid HI. This acid will undergo dissociation in aqueous
solution:

HI>Hþ þ I	

The acid dissociation constant has the form of Ka, but it is often symbolized KI:

KI ¼ ½Hþ �½I	 �
½HI� ð12:53Þ

The acid form HI is responsible for the acid color of the indicator solution, and I	

shows thebase color.The color that our eyes see is related to the relativeconcentrations
of these two forms of the indicator. Rearranging Eq. (12.53) gives

½I	 �
½HI� ¼

KI

½Hþ � ð12:54Þ

Two important conclusions follow fromEq. (12.54). The color is controlled by the pH
of the solution; and the color change during a titration is not abrupt but occurs in a
continuous manner, since the pH changes continuously, as we saw earlier.

It is characteristic of the typical human eye that in order to detect the first deviation
from thepure acid color in a solution of the indicator, the ratio [I	]/[HI]must be at least
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1/10; that is, about 10%of the indicatormust be in the base form. Similarly, about 10%
of the indicator must be in the acid form to detect any acid color. (These statements
apply to two-color indicators.) In between these limits the eye recognizes that a
mixture of colors is present and that the indicator color change is taking place if a
titration is being carried out. These limits for [I	]/[HI] of 0.1 to 10 have no theoretical
chemical significance but are related to the sensitivity of the observer’s eyes and to the
particular indicator used; some colors are more readily detected than others.

The pH values at which these limits of observable color change occur are easily
calculated. From Eq. (12.54):

pH ¼ pKI þ log
½I	 �
½HI� ð12:55Þ

For the limit on the acid side, [I	]/[HI]¼ 0.1, or pH¼ pKI	 1. For the limit on the base
side, [I	]/[HI]¼ 10, or pH¼ pKI þ 1. The pH rangewithinwhich the indicator can be
observed to be changing color is thus given approximately by pH¼ pKI� 1. This is
called the transition interval of the indicator, and it clearly depends on the pKI of the
indicator. This is why indicators of different structure change color at different pH
values.

Table 12.3 gives the colors and transition intervals of some useful acid–base
indicators. Many of the intervals are less than 2 pH units, suggesting that the limits
pKI� 1 are rather conservative. One-color indicators, in which only one of the
conjugate forms possesses a visible color, will not behave visually in accordance
with the above-mentioned treatment, although of course their equilibria will be

Table 12.3. Acid–base indicators

Indicator Transition Interval Acid Color Base Color

Methyl violet 0.15–3.2 Yellow Violet
Thymol blue 1.2–2.8 Red Yellow
Quinaldine red 1.4–3.2 Colorless Red
2,4-Dinitrophenol 2.4–4.0 Colorless Yellow
Methyl yellow 2.9–4.0 Red Yellow
Bromcresol blue 3.0–4.6 Yellow Blue
Methyl orange 3.1–4.4 Red Yellow
Bromcresol green 3.8–5.4 Yellow Blue
Methyl red 4.4–6.2 Red Yellow
Bromcresol purple 5.2–6.8 Yellow Purple
4-Nitrophenol 5.6–7.6 Colorless Yellow
Bromothymol blue 6.0–7.6 Yellow Blue
Phenol red 6.4–8.2 Yellow Red
Cresol red 7.2–8.8 Yellow Red
Thymol blue 8.0–9.6 Yellow Blue
Phenolphthalein 8.2–10 Colorless Red
Thymolpthalein 9.3–10.5 Colorless Blue
a-Naphtholbenzein 9.8–11.0 Yellow Blue
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described by the same equations. The pKI of an indicator, and therefore its transition
interval, can be affected by the salt concentration of the solution and by organic
solvents incorporated into the aqueous medium.

In order to achieve an accurate visual detection of the endpoint in an acid–base
titration, evidently thepHof the solutionmust changebyabout 2units in the immediate
vicinity (say,�0.2%) of the endpoint. Whether this condition is satisfied in any given
circumstance can be determined by calculating the titration curve. Figure 12.5 shows
the results of such a calculation, indicating that this would be a feasible titration with
visual endpoint detection because of the sharp break in the region of the theoretical
equivalence point. Calculations show that the more concentrated the solution and the
stronger the acid (for titrations with base), the greater this break.

An indicator should now be chosen such that the pH at the titration equivalence
point falls within the transition interval of the indicator. In the titration of a weak acid
with a strong base, at the endpoint the solution contains the conjugate base of the
acid, so its pH is in the alkaline range, as shown in Fig. 12.5. Weak acids therefore
are usually titrated using thymol blue, phenolphthalein, or thymolphthalein as
indicators. In titrations of weak bases with strong acids the endpoint pH will be in
the acidic range, andmethyl red, methyl orange, and bromcresol green are commonly
used indicators.

Without some understanding of the relationship of molecular structure to optical
absorption spectra, a full accounting for the color changes of indicators is not possible,
but an approximate treatment is feasible. The essential fact about acid–base indicators
is that the acid and base forms have different colors. All acid–base indicators in
common use are organic compounds. Apparently the reason for the different colors
must be sought in the different structures of the acid and base forms of the indicator.
It is possible to account for the fact of color differences on this basis: if two formsof the
indicator differ markedly in their electronic distribution, and particularly in their
extents of resonance delocalization, two colors will be observed. Color is associated
with the capability of the compound to absorb visible light, and this capability can be
related to the electronic structure. In the resonance hybrid several factors may
contribute, but we can simplify and say that a change in the length of conjugation
pathor inextentofelectronicdelocalizationwill result inabsorptionofadifferent color
component of white light, with a resultant color change. For a simple examplewe take
4-nitrophenol, one of the indicators in Table 12.3. The acid–base dissociation is

O2N O2N O−OH H ++

32

The acid form is colorless, but the base form is yellow. This yellow color can be
correlated with electron delocalization in the base form as indicated in this conven-
tional depiction of a resonance hybrid:

O2N −O2NO− O

54
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Possibilities for such electron delocalization increase with the size of the molecule,
andmost indicators are quite largemolecules. Here is the kind of electron distribution
responsible for the color change in methyl orange:

(H3C)2N N N SO3
− H+

Base (yellow)

6

(H3C)2N N

Acid (red)

N SO3
−

H

+

(H3C)2N N N SO3
−H+

12.5. AQUEOUS SOLUBILITY OF WEAK ACIDS AND BASES

Many acidic and basic drugs possess a limited solubility in water, and we have a
practical interest inbeingable to increase their solubility.Wecanoften accomplish this
by means of pH control. The pH of an aqueous solution can usually be adjusted
independently of the acid–base equilibrium of the solute drug by means of a buffer
solution.

This is the general principle that we apply—the total solubility is limited by the
intrinsic solubility of the uncharged (nonionic) form of the drug. We can assume that
the ionic form has unlimited solubility; this is not strictly true, but the assumption
carries no practical drawbacks. Notice that for the first time in our consideration of
acid–base chemistry we are directing our attention to the charge types of the species.

The experimental approach is to place enough of the solute in its ionic (charged)
form to achieve the desired total concentration. This is accomplished either by raising
the pH if the drug is an acid (thus deprotonating it) or lowering the pH if the drug is a
base (thus protonating it).We thereforemust recognizewhether the drug is an acid or a
base, and we require the pKa in order to calculate the needed pH of the solution.

As noted in the preceding paragraph, we have two cases to consider: (1) a neutral
weak acid, such as a carboxylic acid, to be symbolized HA; and (2) a neutral weak
base, such as an amine, symbolized B. For the present, concentrations will be inmolar
units. We make these definitions:

Let s0 be the equilibrium solubility of the neutral (uncharged) form of the drug.

Let St be the total (apparent) solubility of the drug at any given pH of the solution.

We take it that the pH of the solution is under our control, for example by adding a
buffer. Also note that we are restricting attention to compounds having a single
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ionizable group. Then we can write in general

Total concentration ¼ Solubility of uncharged formþ
Concentration of charged form

We will develop the two cases in parallel:

Neutral Acid; HA Neutral Base; B

St ¼ ½HA� þ ½A	 � ¼ s0 þ ½A	 � St ¼ ½B� þ ½BHþ � ¼ s0 þ ½BHþ �

Ka ¼ ½Hþ �½A	 �
½HA� ¼ ½Hþ �ðSt 	 s0Þ

s0
Ka ¼ ½Hþ �½B�

½BHþ � ¼ ½Hþ �s0
St 	 s0

pKa ¼ pH	 log
St 	 s0
s0

ð12:56aÞ pKa ¼ pH	 log
s0

St 	 s0
ð12:56bÞ

Observe that Eqs. (12.56a) and (12.56b) are simply forms of the familiar
Henderson–Hasselbalch equation. The physical interpretation of these equations is
that St is the maximum concentration of drug that can be achieved at the given pH.An
alternative view is that the pH given by the equation is the limit beyond which
precipitationof theunchargeddrugwill occurat thegivenSt; thepHdirectional change
that will produce such precipitation depends on the solute; acids will precipitate as the
pH is lowered, and bases will precipitate as the pH is raised.

Equations (12.56) contain two parameters (pKa and s0) and two variables (pH and
St). In the most desirable situation, pKa and s0 will be available as experimentally
measured quantities; otherwise they must be estimated. Methods for estimating the
solubilities of nonelectrolytes are available (Chapter 10).

Let us examine Eqs. (12.56) more closely. As noted above, these equations contain
the four quantities pKa, pH, St, and s0. In most applications we will know pKa and s0,
and will either set a “target” St value and calculate pH, or set a target pH and calculate
St. The concentrations appear as the ratio (St	 s0)/s0 or its reciprocal, so it makes no
differencewhethermolar units or physical units (such asmgmL	1) are used, so long as
St and s0 are expressed in the same units.

The nonlogarithmic form of Eq. (12.56a) can be arranged to Eq. (12.57):

St ¼ s0 þ Ka

½Hþ � s0 ð12:57Þ
When [Hþ ] >>�> Ka (i.e., when pH �< pKa), for this neutral acid, Eq. (12.57)
becomes St¼ s0. Essentially all of the solute is in the conjugate acid form.When
[Hþ ]�<Ka (pH>>�> pKa), Eq. (12.57) approaches

St ¼ Ka

½Hþ � s0

which can be written

log St ¼ log s0 þ pH	 pKa ð12:58Þ
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Under these conditions the slope of a plot of log St versus pH is unity; that is, for each
unit increase in pH the concentration increases tenfold. At the point where pH¼ pKa,
log St¼ log s0 [but this is an extrapolated condition, because Eq. (12.58) does not hold
when pH¼ pKa]. The reverse pH dependence (slope of the plot of log St vs. pH is
	1.00) will be seen for a neutral base. Figure 12.6 shows this behavior for a
hypothetical weak acid having pKa¼ 5.00 and s0¼ 2� 10	3M.

In applying either Eq. (12.56a) or Eq. (12.56b), we must first establish whether the
drug is a neutral acid or a neutral base. Consider sodium benzoate, useful as a
preservative.We recognize this as the sodiumsalt of benzoic acid, preparedby reacting
benzoic acidwith sodiumhydroxide.The solute in this case is aneutralweakacid, even
thoughweweigh it out and dissolve it as the salt (the charged conjugate base). Benzoic
acid has a limited water solubility, whereas sodium benzoate is quite soluble. But we
realize that sodium benzoate, in solution, is in equilibrium with benzoic acid, as the
position of equilibrium is determined solely by the pKa of benzoic acid and the pH of
the solution. Despite the high solubility of sodium benzoate, if at the experimental pH
the concentration placed in solution exceeds the St value given by Eq. (12.56a), free
benzoic acid will precipitate until the equation is satisfied. We reiterate: The original
form of the solute is irrelevant; this is an equilibrium situation entirely controlled by
pKa, pH, and s0.

Figure 12.6. Plot of Eq. (12.56a); pKa¼5.0, s0¼ 2�10	3M.
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Wementioned earlier that the pH is under our control, but thismaynot always be so,
and in some cases the pHmay be established by a complex mixture of buffers or other
formulation components. Calculation of the pH may not be feasible in such circum-
stances; instead the pH should bemeasured. Even pH indicator papermay be adequate
to this purpose.

Example 12.14.

(a) Suppose a drug is available as the sodium salt of a carboxylic acid whose
molecular weight is 150, pKa¼ 5.00, and solubility of the unionized acid form
is 2� 10	3M. What is the maximum concentration of drug that can be
dissolved at pH 5.00? Applying Eq. (12.56a) with s0¼ 2� 10	3M gives
St¼ 4� 10	3M. Compare this with Fig. 12.6, whichwas calculatedwith these
same parameters. Note that in this problem pH¼ pKa, so equal concentrations
of the ionized and unionized forms are present.

(b) Can 0.5% of the sodium salt described in Example 12.14(a) be dissolved at pH
4.00? Using Eq. (12.56a) gives St¼ 2.2� 10	3M. The desired concentration
is 0.5 g/100mL¼ 5 g/L¼ 3.3� 10	2M, which far exceeds the calculated St.
All drug exceeding 2.2� 10	3M will precipitate as the free acid, at pH 4.00.

(c) For the drug of Examples 12.14(a) and 12.14(b), what pH range will per-
mit 0.5% to be dissolved? Now we let St¼ 3.3� 10	2M, s0¼ 2� 10	3M,
and pKa¼ 5.00, applying Eq. (12.56a) to get pH¼ 6.19. Thus any pH
equal to 6.19 or higher will allow 0.5% to be dissolved. (See Fig. 12.6; log
0.033¼	1.48.)

Example 12.15. In what pH range is it possible to prepare an aqueous solution of
chlordiazepoxide (9) at a concentration of 10mg/5mL?

N

N

C6H5
O−

NHCH3

Cl

Chlordiazepoxide, pKa4.6, MW 299.8

9

solubility 1 g/10,000 mL H2O+

Chlordiazepoxide is obviously a neutral weak base. It is not obvious towhich nitrogen
atom the pKa should be assigned, but its value is reasonable for an aromatic amine. The
reported aqueous solubility corresponds to 0.01%. (The drug is also available as the
hydrochloride salt, which is quite soluble, but as noted in the earlier discussion, this is
entirely irrelevant to the problem.)

The desired concentration of 10mg/5mL is equivalent to 200mg/100mL or
0.2%. We can use Eq. (12.56b) with s0¼ 0.01 and St¼ 0.2. The result is pH¼ 3.3;
that is, at any pH of 3.3 or below (more acidic), this concentration of drug can be
dissolved.

We have emphasized that the form (neutral molecule or its salt) used experimen-
tally is irrelevant, with the total achievable concentration depending solely on the
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parameters pKa and s0 and on the assigned pH. This is truewhen the pH is fixed by the
experimentalist, by means of a buffer. But if control of pH is not important, then the
simplest procedure ismerely to dissolve the salt form,which is usually very soluble, to
the desired concentration. The pH will shift to a value determined by pKa and
concentration. [And we know how to calculate this pH by using either Eq. (12.49)
or Eq. (12.51).] But this procedure may be unacceptable if the resulting pH is outside
the desired range. Such a solution, moreover, is unbuffered and is susceptible to
perturbation of its pH by other ingredients.

12.6. NONAQUEOUS ACID–BASE BEHAVIOR

Althoughwater is ourmost important solvent, in some applicationswe oftenmake use
of nonaqueous solvents. Acid–base behavior (reaction of acids with bases, attainment
of acid–base equilibrium, acid–base indicator color changes) is widely observable in
nonaqueous media, and here we survey this very large class of substances. It would be
possible to develop quantitative acid–base theories for these solvents, but the results
wouldbemuchmorecomplicated than theacid–base theoryofaqueous solutionsowing
to the lower dielectric constants of organic solvents. This circumstance leads to the
formation of ion pairs (and even of ion triplets and higher aggregates), whose existence
complicates the description, so we will be satisfied with a qualitative treatment.

Dissociating Solvents. Let us take water as our model of a dissociating solvent.
Omitting the molecule of water that hydrates the hydrogen ion:

H2O>Hþ þOH	

A large number of dissociating solvents fit this pattern. Methanol and other alcohols
give alkoxide ions, analogous to hydroxide in water:

MeOH>Hþ þMeO	

It is important to realize that the symbol Hþ represents a different species in these two
equations; in water it means H3O

þ and in methanol it means MeOH2
þ .

Liquid carboxylic acids, of which glacial acetic acid is the most important, also are
dissociating solvents. Letting Ac represent CH3CO, the acetyl group, we obtain

AcOH>Hþ þAcO	

(glacial acetic acid simply denotes pure acetic acid). In this equation, Hþ represents
AcOH2

þ . The proton is not a necessary product of solvent dissociation. Here is how
acetic anhydride dissociates:

Ac2O>Acþ þAcO	

The symbol Acþ represents the acetylium ion, CH3CO
þ .
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There are also many nondissociating solvents, such as hydrocarbons, ethers, and
carbon tetrachloride. Actually the distinction between dissociating and nondissociat-
ing solvents is a matter of degree, because with sufficiently sensitive techniques we
might detect some level of dissociation by nearly any solvent. We adopt a practical
viewpoint based on ordinary laboratory experience.

Let us generally represent a dissociating solvent by the symbol CA, where C is
the cationic component and A is the anionic component. Then the solvent dissocia-
tion is

CA>Cþ þA	

and, just as we did for water, we define an ion product, Ks:

Ks ¼ ½Cþ �½A	 � ð12:59Þ

Table 12.4 lists some ion products as pKs¼	log Ks.
Here is an interesting consequence of the pKs value. We will compare water and

ethanol. In water, in order to pass from an acidic solution in which pC (i.e., pH)¼ 1 to
an alkaline solution in which pA (i.e., pOH)¼ 1, a range of acidity corresponding to
12 pH units must be traversed, since pC þ pA¼ 14 for water. For ethanol, however,
pC þ pA¼ 19.1, so to go from pC¼ 1 to pA¼ 1 requires that 17.1 orders of
magnitude be covered. Very roughly, we may expect that the smaller the value of
Ks for a solvent, the greater the range of the acidity scale available for studying or
titrating sample solutes.

Acid–Base Properties. Solvents may be discussed as acids or bases just as are any
other substances. The Bronsted theory forms the basis of the discussion, and the terms
used are given in Table 12.5. Very generally we recognize that protogenic and
amphiprotic solvents are dissociating solvents, whereas protophilic and aprotic
solvents are nondissociating solvents.

A useful analogy may now be made between water, whose acid–base properties
we understand, and several nonaqueous solvents. The dissociating solvent CAyields

Table 12.4. Properties of some solvents

Solvent pKs Dielectric Constant

Water 14.00 78.5
Methanol 16.70 32.6
Ethanol 19.10 24.3
Acetic acid 14.45 6.19
Formic acid 6.20 58
Acetic anhydride 14.5 21
Acetonitrile 26.5 36.2
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the cation Cþ , which is called the lyonium ion, and the anion A	, called the
lyate ion:

Solvent > Lyonium ionþLyate

2H2O > H3O
þ þOH	

2MeOH > MeOH2
þ þMeO	

2AcOH > AcOH2
þ þAcO	

Ac2O > Acþ þAcO	

2NH3ðliqÞ > NH4
þ þNH2

	

With water as the solvent, we are accustomed to regarding its lyonium ion, H3O
þ , as

the strongest possible acid, and OH	, the lyate ion, as the strongest possible base. Let
us extend this concept to the other solvents. In glacial acetic acid as a solvent,wewould
conclude that the acetate ion AcO	 is the strongest possible base. In other words,
sodium acetate (which we recall is a weak base in water) should be a strong base in
glacial acetic acid, just as sodiumhydroxide is a strong base inwater. This expectation
is borne out by experiment. Similarly, we predict that ammonium chloride should be a
strong acid in liquid ammonia. This analogy is a powerful concept for the design of
experiments.

The Leveling and Differentiating Effects. Since solvents can be acids or bases, an
acidic or basic solute reactswith such a solvent to a degree determined by their relative
strengths.We can distinguish two possibilities. Let S represent a basic solvent andHX
a strongly acidic solute. Then one possibility is that the reaction

HXþ S> SHþ þX	

goes essentially completely to the right. Thus, the solute is quantitatively transformed
into the lyonium ion of the solvent, which is the strongest acid that can exist in this

Table 12.5. Solvent classifications

Class Characteristics Examples

Protogenic Acidic; donate a proton Glacial HOAc; H2SO4

Protophilic Basic; accept a proton Amines; ethers; esters
Amphiprotic Both acidic and basic; can

donate or accept a proton
Water; alcohols

Aprotic Neither acidic nor basic. Hydrocarbons, CCl4,CH3CN,
dioxane
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solvent. (Any acid stronger than SHþ , such as HX, will be transformed to SHþ ; this
lowersthe freeenergyof thesystem.)Wesay that thesolventS isa levelingsolvent forHX,
orthatHXisleveledbyS.IfwealsohadasecondverystrongacidHYthatwasleveledbyS,
theacidsHXandHYwouldappear tobeof thesamestrength,becausetheybothhavebeen
converted to SHþ . This is what happens when the familiar strong acids (HCl, HNO3,
H2SO4,HClO4)aredissolvedinwater; theyare leveledtoH3O

þ andallappear tobeofthe
same acid strength. Glacial acetic acid as a solvent, which is fairly acidic, levels many
bases, such as amines, by quantitatively transforming them to its lyate ion:

RNH2 þAcOH>RNH3
þ þAcO	

The other possibility, of course, is that the reaction between solvent and solute does
not go to completion. Imagine the acid HA reacting with solvent S:

HAþ S> SHþ þA	

If the reaction does not go completely to the right, we can measure an equilibrium
constant for it, and this constant is a quantitativemeasureof the extent of reaction.Now
if we take a second comparable acid HB andmeasure its equilibrium constant, we can
compare the acid strengths of HA andHBwith respect to the reference base S.We call
S a differentiating solvent for HA and HB. This is just what we do in water when we
measure Ka values for weak acids and bases.

Figure 12.7 is a schematic representationof these ideas.Herewehave supposed that
there exists for every solute an innate absolute acidity or basicity (which is not true, but
is a reasonable practical approximation), and as solutes we have taken, in order of
decreasing acidity and increasing basicity, HClO4, AcOH, ArOH (a phenol), H2O,
ArNH2 (an aromatic amine), RNH2 (an aliphatic amine), NaOH. These are spread out
on scales, which may be taken as proportional to pH or pKa.

The key idea is that the pure solvent is taken as the neutral point of the scale. Thus in
the upper scale, showingH2O as the solvent, H2O is the neutral point. Any solute, acid
or base, lying very far from this point, will be leveled by water, because the difference
in their acid–base properties is great. Those solutes not falling very distant from the
neutral point are differentiated by water, as we know that AcOH, ArOH, ArNH2, and
RNH2 are differentiated, because we can measure their Ka values.

Now turn to the scale forglacial acetic acid as solvent.Acetic acid nowbecomes our
neutral point, and wemay question whether even such a strong acid as perchloric acid
(HClO4) is leveled by acetic acid. On the other hand, we readily accept that aliphatic
amines are leveled, because they lie distant from the neutral point.

Figure 12.7. Illustrating acidity/basicity relative to the solvent, and the leveling and differentiating

effects.
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These considerations of acid–base strength are somewhat complicated by the
concomitant phenomenon of limited dissociation as a result of the low dielectric
constant of some nonaqueous solvents, but as a qualitative guide they are useful. The
role of dielectric constant and the distinction between ionization and dissociation was
treated earlier, in Chapter 8.

12.7. ACID–BASE STRUCTURE AND STRENGTH

Principles. We should be able to look at a molecular structure and to make
reasonable, even though approximate, estimates of the acid or base strengths of
functional groups. The ability to do this from fundamental theoretical principles is
almost nonexistent at present and need not be considered. Quite sophisticated yet
practical empirical techniques are available, but they are beyond our present require-
ments (Perrin et al., 1981). Our treatment will be very brief.

We begin by repeating Eq. (12.16),

pKw ¼ pKa þ pKb

alongwith the insight provided by the Bronsted theory that acid and base strength, for
a conjugate pair, are reciprocally related, that is,Ka¼Kw/KborKb¼Kw/Ka. Now, it is
the essence of the acid–base definitions that we can make these statements:

1. As Ka increases, pKa decreases, and acid strength increases.

2. As Kb increases, pKb decreases, and base strength increases.

Fora conjugatepair, a smaller pKa (stronger acid)must beaccompaniedbya larger pKb

(weaker base); this is the reciprocal effect. Observe in Table 12.6, these pairs of pKa

and pKb values for (hypothetical) conjugate acid–base pairs.
It is obvious that pKa is a reasonable quantitativemeasure of acid strength.What is

not so obvious is that it has become conventional to use the pKa of the conjugate acid to
specify base strength! And Table 12.6 shows that a stronger base is associated with a
larger pKa (of its conjugate acid—but this parenthetical addition is seldom stated). So

Table 12.6. Measures of acid and base strength for

hypothetical conjugate pairs

Conjugate Acid, pKa Conjugate Base, pKb

3 11
4 10
5 9
6 8
7 7
8 6
9 5
10 4
11 3
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Table 12.7. pKa and pKb of some acids and bases

Conjugate Acid pKa Conjugate Base pKb

CH3COOH 4.76 CH3COO
	 9.24

H2PO
	
4 7.21 HPO4

2	 6.79
NHþ

4 9.25 NH3 4.75

our chemical problem is twofold: (1) Wemust be able to recognize, by examination of
themolecular structure, whether a functional group is acidic or basic and (2) wemust
estimate its pKa value. Alternatively, if the pKa is known, we must examine the
structure to determine whether the pKa describes an acid or a base.

Table 12.7 gives data for some important acid–base pairs. Thus we see that acetic
acid is a stronger acid than is dihydrogenphosphate,which is stronger than ammonium
ion. It follows inevitably that ammonia is a stronger base than monohydrogen
phosphate, which is stronger than acetate ion. To find this set of data in the literature,
one looks for the pKa of acetic acid; the second pKa(pK2) of phosphoric acid, H3PO4;
and the pKa of ammonia.

Avery simplified view of pKa prediction is often adequate. First we note that these
commonly seen functional groups can be considered to have essentially no acidic or
basic character in aqueous solution:

Alcohols and sugars, ROH

Amides, RCONH2

Ethers, ROR0

Esters, RCOOR0

Carbonyls, RCOR0; RCHO

Table 12.8 gives pKa ranges that will include many of the commonly encountered
acidic and basic functional groups. Recall that an aromatic amine has the nitrogen-
either as part of the ring system (as in pyridine) or directly attached to an aromatic ring
(aniline).

It is valuable to memorize (or otherwise keep readily available) a few typical pKa

values to serve as reference points. Here are some examples:

Acetic acid, CH3COOH

Benzoic acid, C6H5COOH

Phenol, C6H5OH

4-Nitrophenol, O2N-C6H4OH

Triethylamine, Et3N

Aniline, C6H5NH2

pKa 4.76

pKa 4.20

pKa 10.00

pKa 7.14

pKa 10.78

pKa 4.69
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Bearing inmind the definitions of acid (proton donor) and base (proton acceptor), it is
clear that a structural change that increases the electron density at a functional group
will weaken an acid (raise its pKa) by making it more difficult for the proton to leave;
and it will strengthen a base (raise its pKa) by more avidly attracting the proton, and
vice versa for electron withdrawal from the functional group. This is why 4-
nitrophenol is a much stronger acid than is phenol. With the few pKa values given
here and the ranges of Table 12.8, quite useful estimates can be made by analogy.

Structural Effects. We have seen that electron-withdrawing structural features are
acid-strengthening and base-weakening, whereas electron-donating structural fea-
tures are acid-weakening and base-strengthening. Discrete charges display these
effects very clearly. Compare these data:

þ H3N--CH2COOH> þH3N--CH2COO
	 þHþ pKa ¼ 2:31

H3C--CH2COOH>H3C--CH2COO
	 þHþ pKa ¼ 4:88

	O2C--CH2COOH> 	O2C--CH2COO
	 þHþ pKa ¼ 5:69

Taking propionic acid as our reference, the pKaof the positively substituted acid lies as
expected, because a simple electrostatic argument states that like charge repulsionwill
facilitate the departure of the proton, thus enhancing acid strength. Just the opposite
effect is seen with the negative substituent, which through unlike charge attraction
inhibits thedissociationof theproton,weakening the acid.This iswhypK2 of adiprotic
acid is always larger than pK1.

More subtle effects are seen with substituents capable of exerting electron release
or electron withdrawal by inductive or resonance mechanisms. The aromatic ring
provides good examples of such effects, and in fact much of our information on the
electronic effects of substituents has come from pKa measurements. Table 12.9 lists
pKa values for monosubstituted benzoic acids.

Some of the effects are easy to rationalize. For example, the nitro group is electron-
withdrawing from any position. (The ortho substituent often is atypical because steric

Table 12.8. pKa ranges of acids and bases

Type pKa

Acids
Carboxylic acids, RCOOH 2–6 (3–5 typical)
Sulfonic acids, RSO3H 	1 to 1
Phenols, ArOH 7–11
Thiols, RSH 7–10
Imides–CONHCO– 8–11

Bases
Aliphatic amines 8–11
Aromatic amines 4–7
Guanidines, (RNH)2C¼NH 11–14

ACID–BASE STRUCTURE AND STRENGTH 259



as well as electronic effects operate.) Similarly, the amino group is electron-releasing
from every position. But some of the results may seem anomalous. Thus methoxy is
acid-weakening in the para position but acid-strengthening in the meta position. How
can this be explained?

Recall that both the inductive and resonance effects are present. The inductive
effect (a through-bond displacement of electron density) is governed mainly by the
electronegativity difference of the bonded atoms. The resonance effect is an electron
delocalization resulting frommolecular orbital overlap.These twoeffectsmayoperate
in the same directions, thus largely adding their effects; or theymayoppose each other.
In the methoxy case such opposition occurs; the methoxy group is electron-releasing
by the resonance effect but electron-withdrawing by the inductive effect. In the para
position the resonance effect dominates, but in the meta position resonance is largely
ineffective, and the inductive effect dominates.

Table 12.10 gives pKa values for phenols. The substituent effects on phenolic pKa

values are more marked than those on the benzoic acid series because the phenolic
group can enter into direct conjugationwith the substituent (aswe saw in describing 4-
nitrophenol as an acid–base indicator).

Table 12.9. pKa values of benzoic acids at 25
C

Position

Substituent Ortho Meta Para

--H 4.20 4.20 4.20
--NO2 2.17 3.45 3.44
--Cl 2.94 3.83 3.99
--OCH3 4.09 4.09 4.47
--CH3 3.91 4.24 4.34
--C(CH3)3 3.46 4.28 4.40
--COOH 2.95 3.54 3.51
--COO	 5.41 4.60 4.82
--OH 2.98 4.08 4.58
--NH2 4.98 4.79 4.92

Table 12.10. pKa values for monosubstituted phenols in water

Position

Substituent Ortho Meta Para

--H 10.00 10.00 10.00
--NO2 7.23 8.35 7.14
--Cl 8.48 9.02 9.35
--OCH3 9.93 9.65 10.20
--CH3 10.28 10.08 10.19
--NH2 9.71 9.87 10.30
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Table 12.11. Amine pKa values

Amine pKa

Ammonia, NH3 9.25
Methylamine 10.64
Ethylamine 10.67
Dimethylamine 10.73
Ethanolamine, HOCH2CH2NH2 9.50
Hydroxylamine, HONH2 5.96
Hydrazine, H2NNH2 8.12
Aniline 4.58

o
DpKa¼ 6.06

Cyclohexylamine 10.64

Pyridine 5.17
o
DpKa¼ 5.96

Piperidine 11.13

Table 12.11 lists a few pKa values of amines. These display the range of pKa values
typically seen with this class of compound, although even more dramatic substituent
effects may be encountered; for example, pKa¼ 1.11 for 4-nitroaniline. Comparison
of the aromatic amine aniline 10with its saturated analog cyclohexylamine 11 shows
that the aromatic ring decreases base strength by a millionfold (DpKa¼ 6.06):

NH2 NH2

10 11

The same effect is seen with the pair pyridine and piperidine:

N
H
N

12 13

Although it may seem counterintuitive, the only conclusion that can be drawn is that
the aromatic ring is responsible for reducing the electron density on the nitrogen and
therefore must be functioning as an electron-withdrawing substituent (Brown et al.,
1955). This is a resonance delocalization effect.

The appearance of the imide structure as an acid in Table 12.8may be surprising, so
let us view an imide as a product of successive acylations of ammonia:

H3C
NH2

O

H3C N
H

O

CH3

O

Basic Neutral Acidic

14 15 16

NH3
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It follows that the acyl group is electron-withdrawing, reducing the electron density on
nitrogen to such an extent that the basic ammonia molecule is converted to the neutral
acetamide, with a second acetyl group producing an imide, which has an ionizable
hydrogen. Many drug molecules, including the barbituric acid derivatives and the
hydantoins, include the imide group. The sulfonamide drugs contain the functional
group

S

O

O
Ar NHR

17

which bears some relationship to the imide group, and is likewise acidic.

Assignment of pKa Values.. To this point we have been considering the problem of
predicting, to a semiquantitative level, the pKa of a molecule from knowledge of its
molecular structure, the method being based on analogy with pKa values of model
compounds. Now we face a related but distinctly different problem. Suppose a
compound of known structure is studied experimentally and its pKa value or values
aremeasured. The problem is to associate these pKa values with the functional groups
responsible for them. This is called assigning the pKa values.

If only a single pKa is measurable, the problem is usually trivial, because therewill
be only a single reasonable choice of functional group to associate with the experi-
mental value.9We therefore turn to the more interesting case of a diprotic acid, which
we symbolize HABH. In general the two ionizable hydrogens are associated with
chemically different functional groups, so we must expand our description of the
acid–base equilibria to accommodate two possible pathways:

HAB-

AB2-

-ABH

HABH

k1 k3

k4k2

Here HAB	 and 	ABH represent the two possible monoprotic species. The
constants are called microscopic dissociation constants and are obviously defined
as follows:

k1 ¼ ½Hþ �½HAB	 �
½HABH�

9 The choice is not always obvious, however, as is illustrated by the data in Example 12.15 for
chlordiazepoxide.

ð12:60Þ
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k2 ¼ ½Hþ �½	ABH�
½HABH�

k3 ¼ ½Hþ �½AB2	 �
½HAB	 � ð12:61Þ

k4 ¼ ½Hþ �½AB2	 �
½	ABH�

The observed stepwise dissociation constants are given by

K1 ¼ ½Hþ �ð½HAB	 �þ ½	ABH�Þ
½HABH� ð12:62Þ

K2 ¼ ½Hþ �½AB2	 �
½HAB	 �þ ½	ABH� ð12:63Þ

Algebraic combination of Eqs. (12.61)–(12.63) gives

K1 ¼ k1 þ k2 ð12:64Þ
1

K2
¼ 1

k3
þ 1

k4
ð12:65Þ

From Eqs. (12.61) we find

k1k3 ¼ k2k4 ð12:66Þ

showing that only three of the four microscopic constants are independent. We might
even define a fifth microscopic constant according to

HAB	 ÐKiso 	ABH

and further manipulation results in

kiso ¼ k2
k1

¼ k3
k4

ð12:67Þ

Before continuing with this general case, let us pause to analyze the special case in
which the two ionizable groups are chemically identical and are independent of each
other. The fact that they are identical means that k1¼ k2 and that k3¼ k4. The fact that
they are independentmeans that k1¼ k3 and k2¼ k4. Inserting these special conditions
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into Eqs. (12.64) and (12.65) givesK1¼ 2k and 1/K2¼ 2/k, or by combining these we
obtain

K1

K2
¼ 4 ð12:68Þ

This result is usually described as a statistical effect. Equation (12.68) is not closely
obeyed by long-chain dicarboxylic acids because of the superimposed electrostatic
effects of the anionic charges (Brown et al., 1955); in other words, the two groups,
although identical, are not independent.

We now return to the general case in which the two functional groups are different.
From Eqs. (12.64),(12.65) and (12.67) we get

K1 ¼ k1ð1þ kisoÞ ð12:69Þ

K2 ¼ k3
1þ kiso

ð12:70Þ

Nowsuppose that kiso is verymuch smaller than one. FromEq. (12.67), thismeans that
k2�< k1and k3�< k4, or from Eqs. (12.69)–(12.70)

K1 ¼ k1 ð12:71Þ

K2 ¼ k3 ð12:72Þ

In this case the observed Ka values can be equated to microscopic constants.
Chemically, this means that essentially only the uppermost pathway in Eq. (12.60)
is followed, and the onlymonoprotic species isHAB	. The condition kiso �< 1 (or the
reverse, kiso�> 1), which leads to a single ionization pathway, is satisfied if the
observed pKa values are widely spaced.

Wenow turn to specific chemical compounds. InmakingpKaassignments, beginby
writing the compound in its fully protonated form, whether this is uncharged or
cationic. First consider 4-hydroxybenzoic acid. We place this in the center, with its
measured pK1 and pK2 values, and flank it with very obvious model compounds and
their pKa values:

COOH COOH OH

OH

4.2 4.6; 9.3 10.0

18 19 20
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It is reasonable and even obvious to assign pK1 to the carboxylic acid and pK2 to the
phenolic group.Moreover, sinceK1 >>K2, we can expect that only a single pathway is
followed and that the only monoprotic species present in significant concentration is
the carboxylate. Thus for this compound the ionization pathway is

COOH COO- COO-

OHOH O-

K1 K2

Incidentally, the differences between 4.6 and 4.2 and between 9.3 and 10.0 are to be
ascribed to electronic substituent effects.

Next consider 3-aminophenol:

NH3
+ OH OH

NH3
+

4.9 4.4; 9.8 10.0

21 22 23

By analogy we assign the pK1 to the amine and pK2 to the phenol. Again the two
dissociation constants are widely spaced, and this is the sequence:

OH OH O-

NH2 NH2NH3
+

K1 K2

Finally consider glycine, 25:

CH3NH
þ
3

þH3NCH2COOH CH3COOH
10.7 2.4; 9.8 4.8
24 25 26

Once again by using model compounds as guides we make our assignment, this
time of pK1 to ionization of the carboxylic acid and pK2 to the amine function. The
ionization sequence is therefore

þH3NCH2COOH ÐK1 þH3NCH2COO
	 ÐK2

H2NCH2COO
	 ð12:75Þ

The intermediate species, carrying both a positive charge and a negative charge, is
called a zwitterion.

ð12:73Þ

ð12:74Þ
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What is the difference between 3-aminophenol (which does not yield a zwitterion)
and glycine? Representing both molecules in the scheme

H2N OH

k1 k3

k4k2

+H3N OH

+H3N O-

H2N O-

we see that 3-aminophenol follows the k1 ! k3 pathway, because the protonated
amine, which is the conjugate acid of an aromatic amine, is a stronger acid than is the
phenol. For glycine, on the other hand, the carboxylic acid is stronger than is the
protonated amine (which in this compound is the conjugate acid of an aliphatic amine),
so the k2 ! k4 route predominates.

IfK1 andK2 are not widely separated, then both ionization routes are followed, and
both monoprotic species may be present in the solution in significant concentration.
Unique assignment of the pK1 and pK2 values then is not possible, and the interesting
problem, which wewill not pursue here, is to determine the values of the microscopic
constants.

During our discussion of the relationship of acid–base strength to chemical
structure, we have strayed from the path of classical equilibrium thermodynamics,
because we have invoked nonthermodynamic concepts or “models” (such as the
inductive and resonance effects of electron displacement) in aid of molecular-level
interpretations. The equilibrium constants that we have called upon are thermo-
dynamic, and the treatment embodied in Eqs. (12.60)–(12.71) is thermodynamic,
but the assignment of pKa values to functional groups lies outside of thermody-
namics. Such interpretations are therefore referred to as extrathermodynamic. The
distinction is worth keeping in mind because, valuable as the extrathermodynamic
insights may be, they are provisional, subject to modification as new data or ideas
become available, unlike the thermodynamic results, which do not rely on
molecular models. Appendix C provides an introduction to the extrathermody-
namic approach.

PROBLEMS

12.1. Calculate the pH of each of these aqueous solutions at 25
C.
(a) 2.50� 10	4M HCl

(b) 2.50� 10	4M H2SO4

266 ACID–BASE EQUILIBRIA



(c) 0.04M ammonia

(d) 0.04M ammonium chloride

(e) 3.0� 10	3M KOH

12.2. Abufferwas prepared bymixing 25.0mLof 0.10Macetic acid and 15.0mLof
0.075M KOH and then diluting to 50.0mL with water. Calculate its pH
(pKa¼ 4.76).

12.3. Give directions for the preparation of 500mL of 0.10M pH 8.35 tris buffer,
starting with pure tris and 0.10M HCl. (See Example 12.7 for needed
information.)

12.4. Sorensen buffer solutions are prepared by mixing appropriate volumes of
these stock solutions:

Stock solutionA. 9.91 g ofNaH2PO4
.H2O (MW138.0) is dissolved inwater to

make 1 L.

Stock solution B. 9.47 g of Na2HPO4 (MW 142.0) is dissolved in water to
make 1L.
(a) Calculate the molar concentrations of stock solutions A and B.
(b) Calculate the pH of a Sorensen’s buffer prepared bymixing 40mLofA and

60mL of B. Use pK2¼ 6.80 as the effective pK2 of phosphoric acid.

12.5. Calculate the titration curve for the titration of 24.0mL of 0.20M n-butyla-
mine (pKa¼ 10.60) with 0.30M HCl when the following volumes of titrant
have been added: 0mL, 2mL, 5mL, 8mL, 12mL, 16mL, 18mL. Suggest a
suitable indicator for the titration.

12.6. Calculate and plot the species distribution curves for these solutes.

(a) Phenol, pKa¼ 10.00.

(b) Hydroxylamine, pKa¼ 5.96.

(c) Phthalic acid, pK1¼ 2.95, pK2¼ 5.41.

(d) Citric acid, pKi¼ 3.06, pK2¼ 4.74, pK3¼ 5.40.

(e) Is there any pH range within which significant concentrations of the
uncharged forms of phenol and hydroxylamine can coexist in solution?

12.7. Give numerical values for the equilibrium constants of these reactions.

(a) C6H5COOHþCH3NH2 >C6H5COO
	 þCH3NH

þ
3

(b) C6H5OHþOH	 >C6H5O
	 þH2O

12.8. Assign the pKa values of these compounds. (Look up the structures as
necessary.)

(a) Salicylic acid; pK1¼ 2.98, pK2¼ 13.00.

(b) Arginine; pK1¼ 2.17, pK2¼ 9.04, pK3¼ 12.48.
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(c) Quinine; pK1¼ 6.66, pK2¼ 9.48.

(d) Theophylline; pKa¼ 8.77.

12.9. For the titration of weak acid HAwith strong base MOH, let b¼ [Mþ ] and
c¼ [HA] þ [A	]. Derive an exact equation relating [Hþ ], Ka, Kw, b, and c
throughout the entire titration. (Hint:Apply the systematic procedure outlined
at the beginning of Section 12.3.)

12.10. Write the electroneutrality equation for aqueous solutions of each of these
solutes.
(a) Ammonium chloride.

(b) The triprotic neutral acid H3A.

(c) A pH 7 phosphate buffer (assume sodium ion is the counterion).

12.11. What is the pH of a 2.00% solution of ephedrine hydrochloride (MW 211.7,
pKa 9.60)?

12.12. Given: 5.444 g of KH2PO4 (MW136.1) was dissolved in 100.0mL of 0.300M
KOH and the solution was diluted to 1000mL. Calculate the pH (pK1¼ 2.23,
pK2¼ 7.21, pK3¼ 12.32).

12.13. Given: 50.0mL of an aqueous solution of ammonia (pKa 9.25) titrated with
0.100M HCl, 9.50mL of titrant being required.

(a) What was the pH of the solution when 4.75mL of titrant had been added?

(b) What was the pH of the solution at the endpoint?

12.14. Calculate the standard free-energy change at 25
C for the dissociation of
phenol in water (pKa¼ 10.00).

12.15. What weight of anhydrous sodium acetate (MW82.0)must be added to 1.00 L
of pH 3.75 acetate buffer containing a total buffer concentration of 0.055M in
order to change the pH to 3.90 (pKa¼ 4.75)?

12.16. Show how a fraction and a ratio are related; in particular, how are the
fraction F¼ [HA]/c and the ratio R¼ [HA]/[A	] related (c is the total
concentration)?

12.17. What is the concentration of benzoate ion in a solution prepared to be 0.10M
in acetic acid, 0.10M in potassium acetate, and 5� 10	4M in (total) benzoic
acid (pKa¼ 4.75 for acetic acid; pKa¼ 4.20 for benzoic acid)?

12.18. Suppose that the pH of a solution of a diprotic weak acid H2A is adjusted to be
equal to (pK1 þ pK2)/2.
(a) Will the concentration of the monoanion HA	 increase or decrease when

some HCl is added?

(b) Will the concentration of the monoanion HA	 increase or decrease when
some KOH is added?

12.19. What is the pH at the midpoint of the titration of 15.0mL of 0.050MHClwith
0.10M NaOH?
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12.20. You wish to prepare 1.00 L of pH 7.00 phosphate buffer containing a total
phosphate concentration of 0.100M. You have available crystalline
NaH2PO4
H2O (MW 138.0) and Na2HPO4 (MW 142.0). For phosphoric
acid, pK1¼ 2.23, pK2¼ 7.21, pK3¼ 12.32. Neglecting activity coefficient
effects, what weights of the two solutes must be taken?

12.21. What is the standard free energy change of this reaction at 25
C?

Hþ þOH	 >H2O
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13

ELECTRICAL WORK

13.1. INTRODUCTION

In Chapter 1we saw that work can be expressed as the product of an intensive property
and an extensive property

WorkðenergyÞ ¼ Intensity factor� Capacity factor

and these four examples were given:

Mechanical work ¼ Mechanical force� Distance

Work of expansion ¼ Pressure � Volume change

Surface work ¼ Surface tension� Area change

Electrical work ¼ Electric potential� Charge

Mechanical work is dealt with in classical mechanics. In earlier chapters we treated
expansion work and surface work. The present section develops the idea of electrical
work. Recall fromChapter 3 that the Gibbs free-energy change in a reversible process
when carried out reversibly is equal to themaximumwork obtainable from the system
(exclusive of work of expansion). One kind of useful work measured by the free-
energy change is electrical work. We routinely exploit this application of thermody-
namics when we use batteries.

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
Copyright � 2010 by John Wiley & Sons, Inc.
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The essential phenomenon that we will study consists of a transfer of charge
between an electrolyte solution and another phase (usually a solid). There are two
ways in which this charge can be transferred: by electron transfer (the subject of
Sections 13.2–13.4) and by ion transfer (Section 13.5), commonly called ion
exchange.

13.2. OXIDATION–REDUCTION REACTIONS

Inorganic Redox Reactions. We saw in Chapter 12 that acid–base reactions are
manifested as proton transfers from one conjugate acid–base pair to another. Nowwe
encounter a formal analogy in the phenomenon of electron transfer. First we define
an oxidation–reduction (redox) half-reaction:

RedÐoxidation
reduction

Oxþ ne ð13:1Þ

where “Red” is the reduced form of the reacting species (also known as the reductant
or reducing agent), “Ox” is the oxidized form (the oxidant oroxidizing agent), e is the
electron, and n is the number of electrons in the balanced half-reaction. Of course,
in ordinary chemical systems we do not observe the half-reaction; instead two half-
reactions are coupled, and the net process consists of one or more electrons being
transferred from one redox pair to another:

Redð1ÞÐOxð1Þþ ne

neþOxð2Þ > Redð2Þ
Net: Redð1ÞþOxð2Þ > Oxð1ÞþRedð2Þ

Equation (13.1) shows that oxidation is the process in which a substance loses
electrons and reduction is the process in which a substance gains electrons. Here
are some simple examples of redox half-reactions.

H2 > 2Hþ þ 2e

Na > Naþ þ e

Fe2þ > Fe3þ þ e

2Cl	 > Cl2 þ 2e

As in other types of chemical processes, redox reactions must be written in balanced
form in order to express the experimental stoichiometry and to define equilibrium
constants. For the simple examples shown above, it is easy to combine half-reactions
into balanced net reactions, such as
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H2 þ 2Naþ > 2Hþ þ 2Na

2Fe2þ þCl2 > 2Fe3þ þ 2Cl	

Observe that a balanced redox reaction (whether a half-reaction or a net reaction) is
balanced both chemically and electrically.

Some inorganic redox species take part in more complicated processes, and the
balancingof their reactions is not intuitivelyobvious.For example,Cr2O7

2	 is reduced
to Cr3þ . There is a systematic balancing procedure that serves to generate balanced
redox reactions in all instances.

Step I. Balance each half-reaction both chemically and electrically, using water
and hydrogen ions where necessary. (We assume that the solvent is water.)

Step 2. Equate the electron yield in the oxidation to the electron consumption in
the reduction.

Step 3. Add the balanced half-reactions, thus canceling electrons.

Step 4. If necessary, reduce stoichiometric coefficients to whole numbers, and, if
desired, express the balanced equation in molecular rather than ionic form.

Example 13.1. Balance the reaction in which potassium dichromate oxidizes ferrous
ion. The unbalanced dichromate half-reaction is Cr2O7

2	 >Cr3þ .

6eþCr2O7
2	 þ 14Hþ > 2Cr3þ þ 7H2O

Fe2þ > Fe3þ þ e
ðStep 1Þ

In balancing the dichromate half-reaction, two Cr3þ are placed on the right side.
Then 7H2O are added to make up the oxygens in dichromate, and 14Hþ are added
to the left side to balance the water. Finally the 6 electrons balance the half-reaction
electronically.

6eþCr2O7
2	 þ 14Hþ > 2Cr3þ þ 7H2O

6Fe2þ > 6Fe3þ þ 6e
ðStep 2Þ

Cr2O7
2	 þ 6Fe2þ þ 14Hþ > 2Cr3þ þ 6Fe3þ þ 7H2O ðStep 3Þ

K2Cr2O7 þ 6FeCl2 þ 14HCl> 2CrCl3 þ 6FeCl3 þ 7H2Oþ 2KCl ðStep 4Þ

Very effective analytical methods have been based on redox reactions. In redox
titrations a reductant is titrated with an oxidant (or vice versa). The endpoint can be
detected with a redox indicator, which is a substance whose oxidized and reduced
forms exhibit different colors. Alternatively, an instrumental method of detection, to
be described in Section 13.3, may be applied.

Organic Redox Reactions. The oxidation of organic compounds can be extremely
complicated, andmany of these reactions are not effectively reversible. Nevertheless,

272 ELECTRICAL WORK



this kind of reaction is important pharmaceutically because many drug molecules
undergo degradative oxidation (Connors et al. 1986), and a brief discussion is
appropriate. The essential concept is that the oxidation state of a carbon atom is a
result of the number of bonds from carbon to oxygen; the greater the number of
carbon–oxygen bonds, the more highly oxidized the carbon atom is.1 The simplest
example of this concept is provided by these one-carbon compounds:

C HH

H

H

C OHH

H

H
C O

H

H
H

O

OH
O C O

reduction

oxidation

Now, if oxidation is the addition of oxygen, then the reverse reaction must be
reduction. This leads to the identification of reduction with the addition of hydrogen.
Let us broaden this idea to consider the addition of hydrogen to an olefin:

H2 þRCH ¼ CHRÐreduction
oxidation

RCH2CH2R

Since the hydrogenation reaction is a reduction, the reverse of this, a dehydrogenation,
must be an oxidation. And now we see that we have an organic oxidation process that
doesnot involveoxygen.Wecanapply the same idea toother reactions, as in the formal
conversion of a sulfhydryl (mercaptan) group to a disulfide:

2RSHÐoxidation
reduction

RSSRþH2

In the presence of oxygen (as the oxidizing agent) this reaction proceeds according to

2RSHþ 1

2
O2Ð

oxidation

reduction
RSSRþH2O

The mechanisms of organic redox reactions are seldom simple. Mechanisms (the
detailed pathways from the initial to the final states) are investigated by themethods of
kinetics and do not form part of the field of classical thermodynamics. (Despite this
rather flat statement, a connectionbetween the fields of thermodynamics and chemical
kinetics can be made, and this connection is discussed in Appendix C.)

1 This concept is really the genesis of the termoxidation as it is also applied to inorganic reactions.Compare
FeO (ferrous oxide) and Fe2O3 (ferric oxide). The conceptual transformation from oxygen gain to electron
loss is very broadening, but it obscures the historical basis. The term reduction originally arose in the
processing of ores, when it can be said that an ore is reduced to the pure metal, the term referring to both a
typical process (also historically called revivification) and a diminution in volume.
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Wehavenow seen oxidation described as an electron loss, as an addition of oxygen,
or as a loss of hydrogen, with reduction as the reverse process. Here is a yet broader
context. We noted that a reducing agent is a substance that yields electrons and, from
Chapter 12, that a base is a substance that donates an electron pair. More generally we
label as a nucleophile (“nucleus lover”) a substance that furnishes electrons; thus
reducing agents and bases are special cases of nucleophiles. Similarly, the class of
electrophiles (“electron lovers”) includes oxidizing agents and Lewis acids.

13.3. ELECTROCHEMICAL CELLS

Electrodes. In thepresent context, anelectrode is a conductorof electricity immersed
in an electrolyte solution. A transfer of charge may take place at the interface between
the electrode surface and the solution. This charge transfermay result from the transfer
either of electrons or of ions across the interface. Our present concern is with electron
transfer, which arises from the occurrence of oxidation–-reduction reactions.

Suppose that we assemble a system consisting of two electrodes, one each of two
different redox half-reactions. One of these might be a piece of zinc metal partly
immersed in a solution of zinc sulfate, with the other a piece of copper metal partly
immersed in a solution of cupric sulfate. Assume that the solutions are in electrical
contact but prevented from mixing and the metal electrodes are connected externally
by a conductor, such as a length of copper wire. This assembly is an example of
an electrochemical cell, this particular example being known as the Daniell cell.
Figure 13.1 shows the Daniell cell.

Figure 13.1. The Daniell cell. The salt bridge is a gel containing an electrolyte; it permits the

passage of current, but preventsmixing of the solutions. [Reproduced by permission fromConnors

(1982).]
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If we prepare the solutions each to be about 1M, the redox half-reactions that take
place in this cell will be

Zn > Zn2þ þ 2e

2eþCu2þ > Cu

Thus, oxidation occurs at the zinc electrode (removing metal from the solid zinc) and
reduction occurs at the copper electrode (plating copper metal onto the solid copper).
We will shortly learn how the direction of reaction can be predicted. On atomic and
subatomic scales, electrons are being released at the zinc electrode, they flow through
the external conductor, constituting an electric current, and they are consumed at the
copper electrode by reductionof cupric ions. If avoltmeter is introduced to the external
circuit, it will indicate a voltage difference between the electrodes. The electric
potential between the electrodes is the source of this measured voltage. [Electric
potential is also called electromotive force (emf).] Electric potential is a consequence
of a difference in charge between two points; it is the electrical analog of the chemical
potential.

There are two ways to operate an electrochemical cell:

1. If we simply connect the external leads, thus creating a closed circuit, the redox
reactions at the electrodes occur as we have described, and the cell generates an
emf, which we can use to do work. In fact, the cell is a battery. In this mode of
operation the cell half-reactions are occurring spontaneously. The cell is called
a galvanic or voltaic cell when it is operating spontaneously. The essential
thermodynamic phenomenon taking place is that chemical energy is being
transformed to electrical energy.

2. The second mode of operation of a cell opposes the cell potential with a greater
external potential, thus reversing the cell reactions. Now we are converting
electrical energy to chemical energy. This is how we recharge a battery. In this
type of operation the cell is called an electrolytic cell. The cell reactions are
occurring nonspontaneously, provided with energy from an external source to
drive them in reverse.

Whether an electrochemical cell is operating as a galvanic cell (spontaneously) or as
an electrolytic cell (nonspontaneously), the electrode at which oxidation occurs is
called the anode and the electrode at which reduction occurs is called the cathode.
In the Daniell cell of Fig. 13.1, for example, when operating spontaneously the zinc
electrode is the anode and the copper electrode is the cathode, whereas in the
nonspontaneous mode the copper electrode is the anode and the zinc electrode is the
cathode.

All electrochemistry takes place at interfaces between phases. This is explicitly
indicated in a shorthand notation for describing electrochemical cells. The physical
state (gas, liquid, solid) may be shown if not obvious, and solution activities or
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concentrations or gas pressure may be indicated. Here is the designation of the cell
in Fig. 13.1:

ZnjZnSO4ð1MÞjjCuSO4ð1MÞjCu

A single vertical line represents an interface across which a potential difference
exists. This potential difference is called an electrode potential. The potential of the
cell as a whole, which is what we measure, is the sum of the two electrode potentials
(we cannot measure a single electrode potential because a single electrode does not
constitute a closed electric circuit). The double vertical line signifies a salt bridge,
which is an electrolyte solution (usually in a viscous medium like agar or gelatin)
that establishes electrical contact between the electrode solutions while keeping
them physically separated. The existence of the salt bridge introduces a complica-
tion, because at each end of the salt bridge there is another interface, and across these
interfaces there are compositional differences. This means that charge differences
must exist across each solution/salt bridge interface, and therefore electric potentials
must exist. This liquid junction potential is small but is measurable, and it is difficult
to account for theoretically in a rigorous and accurate way, so an experimental
approach is taken to render it negligible. Since the source of the liquid junction
potential is known to be the different mobilities of cations and anions, salt bridges are
constructed with high concentrations of KCl as the electrolyte, because Kþ and Cl	

have nearly the same mobility; thus the bulk of the current is carried by these ions,
and the liquid junction potential is minimized. In extremely accurate work cells
without liquid junctions may be used, but in usual laboratory situations our cells
possess liquid junctions. We will not need to take the liquid junction potential into
account.

The Nernst Equation. Consider the generalized chemical reaction

aAþ bB>mMþ nN

In Chapter 4, Section 4.3 we derived Eq. (13.2) for this system:

DG ¼ DG0 þRT ln
amMa

n
N

aaAa
b
B

ð13:2Þ

whereai represents the activity of substance i,DG is the free-energy change (permole),
andDG0 is the standard free-energy change. It is important to realize that the activities
in Eq. (13.2) do not necessarily represent the values at equilibrium. If, however, we
now impose the equilibrium condition,meaning thatDG ¼ 0, we obtain the important
relationship (which we have used frequently in earlier developments)

DG0 ¼ 	RT In K ð13:3Þ
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where K is the equilibrium constant:

K ¼ ðamMÞeqðanNÞeq
ðaaAÞeqðabBÞeq

ð13:4Þ

All the foregoing is familiar. We now make a connection to the electrochemical cell,
in which the reaction is an oxidation–reduction reaction, and the chemical process
results in electron transfer across the electrode–solution interfaces. The key idea is that
if the cell operates reversibly (in the thermodynamic meaning of this term), the
electrical work produced will be the free energy change for the process, which is
the maximum work (not counting work of expansion) that the system can perform.
The cell will operate reversibly if an infinitesimal amount of reaction occurs, and this
condition requires that zero or an infinitesimal amount of current flow through the
external circuit. This is accomplished by opposing the cell potential with an external
potential such that zero current flows. Themeasured potential is then the cell potential
at zero current.

From Section 13.1, electrical work is the product of potential and charge. Let E
represent the cell potential [measured in volts (V)] and letF be the charge of onemole
of electrons [measured in coulombs (C)], so that F¼eNA¼ 96,485Cmol	1. The
quantity F is called the Faraday. Then for a redox reaction in which n electrons per
molecule are transferred, we have

DG ¼ 	 nFE ð13:5Þ

where the negative sign is inserted so as to achieve agreement between the sign
conventions applying to free-energy changes and cell potentials, as we will later see.
By analogy with Eq. (13.5), we also write

DG0 ¼ 	 nFE0 ð13:6Þ

where E0, called the standard cell potential, is the value of the cell potential when
reactants and products are in their standard states. For convenience let us define

L ¼ amMa
n
N

aaAa
b
B

ð13:7Þ

where the activities need not be equilibrium activities. Now combining Eqs. (13.2)
and (13.5)–(13.7) we get

E ¼ E0 	 RT

nF
ln L ð13:8Þ

This is the Nernst equation, which relates the cell potential at zero current, E, to the
activities (or concentrations, when activity coefficients are essentially unity) of the
reactant and product species of the electrochemical cell reaction.
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Equations (13.3) and (13.6) combined give

E0 ¼ RT

nF
ln K ð13:9Þ

where K is the equilibrium constant of the cell reaction.
At 25
C the Nernst equation takes the form

E ¼ E0 	 0:059

n
log L ð13:10Þ

where the final term is nowexpressed inbase10 logarithms.2According toEq. (13.10),
a change in L by a factor of 10 results in a change in the cell potential of 59/nmV. This
result is said to be a “Nernstian response” and is evidence that the electrochemical
system is well-defined and is operating reversibly.

The foregoing equations allow us to make these associations:

1. IfDG is negative,E is positive. The cell reaction is spontaneous; that is, with the
reactant and product concentrations as specified, the reaction spontaneously
proceeds from left to right.

2. If DG is positive, E is negative, and the reaction is nonspontaneous; it proceeds
from right to left.

3. If the system is at equilibrium, then L¼K, DG¼ 0, E¼ 0. The cell can do no
work.

4. If K> 1, E0 is positive; if K< 1, E0 is negative.

It is important to keep inmind that we have the experimental ability to (a) arrange the
reactant and product concentrations at levels far from equilibrium and (b) maintain
them in such a state by means of the salt bridge separation shown in Fig. 13.1, or an
equivalent device; moreover, by holding the system in the zero-current condition, we
achieve thermodynamic reversibility. However, if we allow current to flow, the
available electrical work is less than the maximum work as measured or as calculated
under conditions of reversibility.

Standard Potentials and Sign Conventions. We have seen that a functioning
electrochemical cell requires a complete circuit, which means that it must possess
twoelectrodes.Wemeasure the cell potential. Althoughwe cannotmeasure individual
electrode potentials (because we would then have an open circuit), the concept of
an electrode potential is so attractive that we adopt the view that a cell potential can be
expressed as the sum of its electrode potentials. Consider again the Daniell cell:

ZnjZnSO4jjCuSO4jCu
2 One joule¼ 1 volt coulomb, so R¼ 8.314 JK	1mol	1¼ 8.314VCK	1mol	1. This provides Ewith the
unit V.
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According to this concept we write

Ecell ¼ EZn;Zn2þ þECu2þ;Cu ð13:11Þ

Observe how the order of the subscripts tells which half-reaction is an oxidation and
which is a reduction.3 An analogous equation relates the standard cell potential to the
standard electrode potentials:

E0
cell ¼ E0

Zn;Zn2þ þE0
Cu2þ;Cu ð13:12Þ

Strictly speaking, the term standard electrode potential should be used only for the
quantity describing the half-reaction as a reduction (IUPAC, 1993, p. 61), but we will
relax this nomenclature, using the direction of the subscripts to make fully explicit
whether the half-reaction is an oxidation or a reduction.

We must now consider the sign conventions relating to potentials. Two different
concepts are involved, and some confusion is possible because historically we have
used thewordspositive and negative to denote both amathematical sign and a physical
characteristic (Anson 1959).

Concept 1: The Potential of the Physical Electrode. We have seen that it would be
convenient to have available values of individual electrode potentials, but we have also
seen that we can only measure cell potentials. This difficulty is overcome by means
of the universal agreement that the standard hydrogen electrode, diagrammed as

Pt;H2ð1 atmÞjHþ ða ¼ 1Þ

is to be assigned an electrode potential of zero volts at all temperatures. The electrode
reaction is

H2> 2Hþ þ 2e ðE0
H2;H

þ ¼ 0:00 VÞ

Now, ifwe form a cell of the standard hydrogen electrodewith any other electrode, the
measured cell potential is to be assigned to the second electrode. But besides its
magnitude, this potential has a sign, which is determined by whether the second
electrode has an excess or a deficiency of electrons relative to the hydrogen electrode.
Suppose that we construct the following cell:

Pt;H2ð1 atmÞjHþ ða ¼ 1ÞjjZn2þ ða ¼ 1ÞZn

3 Some authors represent all electrode potentials as reductions, and then Eq. (13.11) will appear as

Ecell ¼ ECu2þ ;Cu 	EZn2þ ;Zn

This sign change is discussed later in the text.
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Wewrite the cell reaction with the left-hand electrode expressed as an oxidation and
the right-hand electrode as a reduction:

H2 þZn2þ > 2Hþ þZn

Of course, it is irrelevant to the physical system how we choose to write the reaction,
and in the laboratory it is observed that, in this cell, the zinc electrode is negative
relative to the hydrogen electrode; that is, oxidation occurs at the zinc electrode,
releasing electrons. This is the physical characteristic alluded to earlier; it is a
convention that we assign a negative charge to the electron, but it is a physical fact
that oxidation in this cell occurs at the zinc electrode. Themeasuredpotential (at 25
C)
is 	0.76V, and since we can write

E0
cell ¼ E0

H2;H
þ þ E0

Zn2þ;Zn ¼ 	 0:76 V

we can state that E0
Zn2þ;Zn ¼ 	 0:76 V. This is how standard electrode potentials are

measured. Table 13.1 lists some standard electrode potentials. From the Nernst
equation, Eq. (13.10), which can be written for either an electrode or a cell, the
standard potential is equal to the potential when L¼ 1, and this condition is met when

Table 13.1. Standard electrode potentials at 25
C

Reduction Half-Reaction E0ðVÞ
Naþ þ e ¼ Na 	2.71
Zn2þ þ 2e ¼ Zn 	0.76
Fe2þ þ 2e ¼ Fe 	0.44
Ni2þ þ 2e ¼ Ni 	0.25
AgIðsÞþ e ¼ Agþ I	 	0.15
Sn2þ þ 2e ¼ Sn 	0.14
Pb2þ þ 2e ¼ Pb 	0.13
2Hþ þ 2e ¼ H2 (0.00)
AgBrðsÞþ e ¼ AgþBr	 0.07
S4O

2	
6 þ 2e ¼ 2S2O

2	
3 0.08

Sn4þ þ 2e ¼ Sn2þ 0.15
AgClðsÞþ e ¼ AgþCl	 0.22
Hg2Cl2ðsÞþ 2e ¼ 2Hgþ 2Cl	 0.27
Cu2þ þ 2e ¼ Cu 0.34
Cuþ þ e ¼ Cu 0.52
I	3 þ 2e ¼ 3I	 0.55
Fe3þ þ e ¼ Fe2þ 0.77
Agþ þ e ¼ Ag 0.80
Cu2þ þ I	 þ e ¼ CuI 0.86
Cl2 þ 2e ¼ 2Cl	 1.36
MnO	

4 þ 8Hþ þ 5e ¼ Mn2þ þ 4H2O 1.51
H2O2 þ 2Hþ þ 2e ¼ 2H2O 1.77
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all reactant and product species are in their standard states. When determining
standard potentials, the hydrogen electrode is always written on the left (as an
oxidation) (IUPAC, 1993, p. 61).

If a cell, or indeed a reactionmixture, is constituted of any two half-reactions listed
in Table 13.1, all species being in their standard states of unit activity, then the more
negativeE0 valuewill represent the oxidation. Another way to say this is that themore
positive the electrode potential, the greater its oxidizing power. Thus we can predict
that permanganate ðMnO	

4 Þwill oxidizeFe2þ toFe3þ and that iodine (as the triiodide
ion I	3 ) will oxidize (i.e., will be reduced by) thiosulfate, S2O

2	
3 . This argument is

made more systematic in Example 13.5 to follow.

Concept 2: The Potential of a Half-Reaction. FromEq. (13.5),DG ¼ 	 nFE, and
from the thermodynamic result that a spontaneous reaction has a negative free energy
change,we conclude that a spontaneous reaction has a positive potential. Butwe know
that the reverse reaction is nonspontaneous, so its free-energychange is positive;hence
its potential is negative. Therefore, in complete harmony with our practice in altering
the sign of a thermodynamic quantity when we reverse the direction of the reaction,
we also alter the sign of a potential when we reverse the direction of the reaction.
Thus since Eo

Zn2þ ;Zn
¼ 	 0:76 V for the half-reaction Zn2þ þ 2e¼Zn, we can write

E0
Zn;Zn2þ ¼ þ 0:76 V for the half-reaction Zn¼Zn2þ þ 2e.
From Eq. (13.9), this sign change convention is equivalent to converting an

equilibriumconstant to its reciprocalwhena reaction iswritten in the reversedirection.

Applications of Electrode Potentials. Electrochemical calculations are not rou-
tinely necessary in the solution of pharmaceutical problems, so our treatment will be
brief; but there are two reasons to include some level of discussion. The first is that
these calculations offer a perfect example of the power of thermodynamics to
predict the direction of chemical change. The second reason is to provide a sound
basis for the discussions in Sections 13.4 and 13.5.

We begin with the Nernst equation

E ¼ E0 	 0:059

n
log L ð13:13Þ

where

L ¼
Q

anpQ
anr

ð13:14Þ

In Equation (13.14),P signifies “the product of,” ap represents activity of product(s),
ar is the activity of reactant(s), and n specifies the power to which each activity is
raised; n is the appropriate stoichiometric coefficient in the balanced cell reaction. The
Nernst equation bears a formal resemblance to the Henderson–Hasselbalch equation,
Eq. (12.36), and it is used in much the same way. The equation relates the three
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quantities E, E0, and L, and if we know two of these, we can calculate the third. The
methods will be illustrated with numerical examples.

Example 13.2. Calculate the potential of this cell at 25
C and predict the direction of
the reaction. That is, will ferrous ion be oxidized or will ferric ion be reduced under
these conditions?

PtjFe2þ ð1� 10	 6 MÞ; Fe3þ ð0:05MÞjjKIð0:001MÞjAgl;Ag

The Pt is inert and serves only to make electrical contact between the solution and the
external conductor (as in the hydrogen electrode).

Always begin bywriting the balanced cell reaction, treating the left-hand electrode
as the anode (where oxidation takes place). For this cell

Aglþ Fe2þ > Fe3þ þAgþ I	

We now set up the Nernst equation:

Ecell ¼ E0
cell 	 0:059 log

aFe3þ aI	 aAg
aAglaFe2þ

The standard electrode potentials are found in Table 13.1:

E0
cell ¼ E0

Fe2þ ;Fe3þ þE0
Agl;Ag

¼ 	 0:77	 0:15 ¼ 	 0:92 V

Since Ag and AgI are solids, they are in their standard states of unit activity, and
activities of solutes will be approximated by concentrations:

Ecell ¼ 	 0:92	 0:059 log
ð0:05Þð1� 10	 3Þ

ð1� 10	 6Þ
¼ 	 0:92	 0:059 log 50 ¼ 	 0:82 V

Since the calculated cell potential is negative, the reaction as it has been written
is nonspontaneous. Therefore, at these concentrations, ferric ion will be reduced to
ferrous ion and silver will be oxidized to Agþ (which precipitates as AgI).

Example 13.3. What is the solubility product of silver bromide?
This may seem a peculiar question in the present context, because the solubility

product (Chapter 10) does not describe a redox reaction.

AgBrðsÞ>Agþ þBr	

Ksp ¼ aAgþ aBr	
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However, we can “compose” this reaction from two redox half-reactions as follows:

AgBrðsÞþ e > AgþBr	

Ag > Agþ þ e

AgBrðsÞ > Agþ þBr	

From Table 13.1 we find

E0
cell ¼ E0

AgBr;Ag þE0
Ag;Agþ

¼ 0:07	 0:80

¼ 	 0:73 V

We now apply Eq. (13.9) at 25
C, with n¼ 1, or

logKsp ¼ E0
cell

0:059
¼ 	 12:37

orKsp¼ 4.3� 10	13. It is oftenmore accurate to determine such equilibriumconstants
from potential measurements than by direct chemical analysis.

Example 13.4. Calculate the potential of this Daniell cell:

ZnjZn2þ ð0:35MÞjjCu2þ ð0:001MÞjCu

The cell reaction is

ZnþCu2þ >Zn2þ þCu

The Nernst equation for this cell is

Ecell ¼ E0
cell 	 0:059 log

aZn2þ aCu
aCu2þ aZn

where n¼ 2. We find the standard electrode potentials in Table 13.1:

E0
cell ¼ E0

Zn;Zn2þ þE0
Cuþ 2;Cu

¼ 0:76þ 0:34

¼ þ 1:10 V

Potentials are intensive quantities, so they are independent of the amount of reaction.
From the equation DG ¼ 	 nFE we see that E ¼ 	DG=nF; a larger n value gives a
correspondingly larger DG, but E is unaffected. This holds because the amount of
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oxidation is exactly balanced by the amount of reduction. Continuing with the
calculation, we have

Ecell ¼ þ 1:10	 0:059

2
log

0:35

0:001
¼ þ 1:02 V

The cell reaction is spontaneous as written.

Example 13.5. Predict what will happen in this cell:

Ag;AgCljCl	 ð1MÞjjCl2ðp ¼ 1 atmÞjPt

The cell reaction is balanced as follows:

2Agþ 2Cl	 > 2AgClþ 2e

Cl2 þ 2e > 2Cl	

2AgþCl2 > 2AgCl

We recognize that all species are in their standard states, so L¼ 1 and Ecell ¼ E0
cell.

From Table 13.1

E0
cell ¼ E0

Ag;AgCl þE0
Cl2Cl

	

¼ 	 0:22þ 1:36

¼ þ 1:14 V

The reaction is spontaneous as written; that is, Cl2 oxidizes Ag. Note that in the
silver–silver chloride electrode the chloride ion does not undergo a redox process,
whereas in the chlorine electrode Cl	 is a product of a reduction.

Example13.5places ona formal basis thepredictionsmade earlierwhendiscussing
standard potentials; these are seen to constitute a special case (the case L¼ 1) of the
Nernst equation.

Example 13.6. What is the potential of this cell at 25
C?

CujCu2þ ð0:25MÞjjCu2þ ð0:01MÞjCu

Obviously the two electrodes are identical except for the ion concentrations.
We proceed in the usual manner:

Left electrode :

Right electrode :

Overall reaction :

Cu > Cu2þ ð0:25MÞþ 2e

2eþCu2þ ð0:01MÞ > Cu

Cu2þ ð0:01MÞ > Cu2þ ð0:25MÞ
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This is called a concentration cell. The Nernst equation applied to this cell is

Ecell ¼ E0
cell 	

0:059

2
log

0:25

0:01

where E0
cell ¼ E0

Cu;Cu2þ þE0
Cu2þ ;Cu

¼ 0. Thus we find Ecell ¼ 	 0:041 V. The cell
reaction is nonspontaneous, which accords with expectation; the spontaneous
direction of diffusion is from higher to lower concentration (actually chemical
potential).

The experimental measurement of electric potential is called potentiometry.
When a redox titration is carried out with measurement of the potential as a function
of titrant volume, the plot of potential E against titrant volume has the appearance of
the acid–base titration curves that we studied in Chapter 12, and the endpoint is
determined from the break in this potentiometric titration curve. By applying the
Nernst equation at successive stages in the titration, it is possible to calculate such
a curve.

13.4. pH MEASUREMENT

pH and the Hydrogen Electrode. The potential of certain electrochemical cells
depends on the pH of the cell solution, and this dependence offers a means for the
potentiometricmeasurement of pH. The hydrogen electrode is the classic type of a pH
responsive electrode. Let us consider the following electrochemical cell

Pt;H2ðp ¼ 1 atmÞjHþ ðaHþÞjreference electrode

where the reference electrode need not be specified at present except to require that
its potential not be affected by the pH of the cell solution. The hydrogen electrode
consists of hydrogen gas bubbled through the aqueous solution; electrical contact is
made through platinum metal, which is unreactive. Proceeding to describe this cell
quantitatively, we write

Ecell ¼ HH2;H
þ þEref

The potential of the hydrogen electrode is expanded bymeans of the Nernst equation;
the electrode reaction is

H2> 2Hþ þ 2e

The result is (at 25
C)

Ecell ¼ E0
H2;H

þ 	 0:059

2
log

a2Hþ

pH2

þEref
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We combine this equation with the convention E0
H2;H

þ ¼ 0 and the definition
pH ¼ 	 log aHþ , obtaining

Ecell ¼ 0:059 pHþEref ð13:15Þ

This last equation says that the cell potential is linearly related to the pH of the cell
solution. The slope of the line is dEcell=dpH ¼ 0:059 V or 59mV per pH unit. This is
the theoretical response of a pH responsive electrode at 25
C. (In general, the response
is 2.303RT/FVper pH unit.) Thismeans that in order tomeasure pH towithin 0.01 pH
unit, we must be able to measure the cell emf to within 0.00059V.

Practical Electrodes for pH Measurement. First we consider the reference
electrode whose potential appears in Eq. (13.15). The most widely used reference
electrode for practical pH measurements is the saturated calomel electrode (SCE).
The SCE is composed of a saturated solution of potassium chloride that is also
saturated with mercurous chloride (calomel). The solution is in contact with mercury
metal, through which electrical contact is made with the external circuit. The SCE
half-reaction is

Hg2Cl2 þ 2e> 2Hgþ 2Cl	

and its potential, which is unaffected by pH, is þ 0.244V.A salt bridgemust be placed
between the SCE and the “test solution” whose pH is to be measured so that the
SCE saturated solution is not diluted. Then a complete cell consisting of a hydrogen
electrode and the SCE looks like this:

Pt;H2ðp ¼ 1 atmÞjHþ ðaHþ ÞjjKClðsatÞ;Hg2Cl2ðsatÞjHg

Its cell potential is given as follows, by an argument identical to the preceding one:

Ecell ¼ 0:059 pH	ðESCE þEljÞ ð13:16Þ

where Elj is the liquid junction potential.
Since Elj is unknown, we are unable to apply Eq. (13.16) directly to calculate pH

from a measured value of Ecell. We therefore proceed by, in effect, measuring
differences in pH between two solutions. Let E represent the cell potential when
the cell solution has a certain pH, and similarly letES be the cell potentialwhen the cell
solution has thevalue pHS. Thenwriting Eq. (13.16) for both solutions and subtracting
one equation from the other gives

pH ¼ pHs þ
E	Es

0:059
ð13:17Þ
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at 25
C or in general

pH ¼ pHs þ
E	Es

2:303 RT=F
ð13:18Þ

The success of this procedure depends on the liquid junction potential remaining
essentially constant as the pH is changed from pH to pHS. This assumption is
reasonable if pH and pHs are not greatly different. Although Eq. (13.18) is not
thermodynamically exact because of this assumption of the constancy of Elj, it
constitutes the operational definition of pH for practical laboratory work. If we
know the value pHS of a standard solution and measure its corresponding ES, then
replacement of the standard solution by the unknown test solution andmeasurement of
E permits us to calculate the unknown pH by Eq. (13.18). Actually the calculation is
automatically carried out by the electronic potentiometer (called a pH meter) used to
measure the cell potential. The cell is “calibrated” by setting thepHmeter to the known
pHS valuewith the standard solution in the cell. Then the standard solution is replaced
with the test solution and themeter gives the unknown pH value. An adjustment on the
meter calculates the value of 2.303RT/F for the experimental temperature.

Obviously the accuracy of this pH measurement procedure depends on the
accuracy with which pHS values are known. For all pH measurement in aqueous
solutions the pHS values given in Table 13.2 will suffice. These pHS values were
determined on cells without liquid junctions by Bates and co-workers (Bates 1962;
Staples and Bates 1969). (Ordinary laboratory work yields pH measurements

Table 13.2. Standard pHs values

tð
CÞ Tartrate Citrate Phthalate
Phosphate
(1 : 1)

Phosphate
(1 : 3.5) Borax Carbonate

0 — 3.864 4.003 6.984 7.534 9.464 10.321
5 — 3.839 3.999 6.951 7.500 9.395 10.243
10 — 3.819 3.998 6.923 7.472 9.332 10.178
15 — 3.802 3.999 6.900 7.448 9.276 10.116
20 — 3.788 4.002 6.881 7.429 9.225 10.060
25 3.557 3.776 4.008 6.865 7.413 9.180 10.012
30 3.552 3.767 4.015 6.853 7.400 9.139 9.968
35 3.549 3.759 4.024 6.844 7.389 9.102 9.928
38 3.548 — 4.030 6.840 7.384 9.081 —
40 3.547 3.754 4.035 6.838 7.380 9.068 9.892
45 3.547 3.750 4.047 6.834 7.363 9.038 9.856
50 3.549 3.749 4.060 6.833 7.367 9.011 9.825
55 3.554 — 4.075 6.834 — 8.985 —
60 3.560 — 4.091 6.836 — 8.962 —
70 3.580 — 4.126 6.845 — 8.921 —
80 3.609 — 4.164 6.859 — 8.885 —
90 3.650 — 4.205 6.877 — 8.850 —
95 3.674 — 4.227 6.886 — 8.833 —
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accurate at best to �0.01 pH unit.) Table 13.3 gives the compositions of these
standard pH buffer solutions.

We have seen that the cell should be standardizedwith a standard buffer whose pHS

is close to the anticipated pH of the test solution in order to minimize variation in the
liquid junction potential. It is also good experimental practice to measure the pH of
a second standard buffer after standardization against the first one; this step checks
the correct operation of the electrode system, the pHmeter, and the standardization of
the cell.

To this point we have treated the hydrogen electrode as the pH-responsive
electrode. The hydrogen electrode, though thermodynamically well-defined, is not
very practical for routine use, so alternatives have been sought, and in all practical
laboratory and field measurements the pH-responsive electrode is a device known as
the glass electrode. This electrode possesses a very thin glass membrane separating
the test solution from a solution of fixed pH. A potential is developed across this glass
membrane that is related to the pH difference on the two sides of the glass. (This is an
ion-transfer effect, not a redox phenomenon; it is treated in Section 13.5.) A practical
cell for pH measurement then has this form:

AgjAgClðsatÞ; HCljglassjtest solutionjjSCE
The silver–silver chloride electrode serves to make electrical connection between the
glass membrane and the external circuit. The pH response of this electrode is
Nernstian, so the measurement of pH with a glass–SCE cell follows Eq. (13.16).

pKaDetermination. Accurate values of pKa can be measured with a glass–SCE cell
if appropriate attention is paid to temperature control and standardization of the
electrodes. For weak acid HA the thermodynamic constant Ka is defined as

Ka ¼ aHþ aA	

aHA
ð13:19Þ

Table 13.3. Compositions of standard buffer solutionsa

Solution m Substance Weight ðgÞb pHs at 25

C

Tartrate �0.034 KHC4H4O6 Saturated at 25
C 3.557
Citrate 0.05 KH2C6H5O7 11.41 3.776
Phthalate 0.05 KHC8H4O4 10.12 4.008

Phosphate (1 : 1)
0.025 KH2PO4 3.39

6.865
0.025 Na2HPO4 3.53

Phosphate (1 : 3.5)
0.008695 KH2PO4 1.179

7.413
0.03043 Na2HPO4 4.30

Borax 0.01 Na2B4O7 
 10H2O 3.80 9.180

Carbonate
0.025 NaHCO3 2.092

10.012
0.025 NaCO3 2.640

aBates 1962; Staples and Bates 1969.
bWeight of substance (in air near sea level) per liter of solution, preparedwith carbonate-free distilledwater.

f
f
f g

g
g
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The quantity we actually measure in the laboratory, however, is called the apparent
constant, K 0

a, defined by

K 0
a ¼ aHþ ½A	 �

½HA� ð13:20Þ

This is because the glass–SCE cell gives a pH value defined by

pH ¼ 	 log aHþ ð13:21Þ

and because we prepare solutions to have known concentrations of A	 and HA.4

Our first problem is to measure pK 0
a; next we must correct pK 0

a to pKa.
From Eq. (13.20) we obtain

pK 0
a ¼ pH	 log

½A	 �
½HA� ð13:22Þ

and from Eqs. (12.33) and (12.34) we have

pK 0
a ¼ pH	 log

bþ ½Hþ �	 ½OH	 �
a	 ½Hþ �þ ½OH	 � ð13:23Þ

where b is the concentration of the counterion to A	 and a þ b is the total solute
concentration: a þ b¼ [HA] þ [A	]. Since we know a and b from the manner in
which the solutionwas prepared, andwemeasure pH,we can calculate pK 0

a.
5 A series

of solutions can efficiently be prepared, each solution having varied values of b such
that the pH of all solutions will be within about 1 unit of pKa (so as to ensure good
buffer capacity). The pHvalues of the solutions aremeasured, andpKa is calculated for
each solution. If pH is in the approximate range of 4–10, the [Hþ ] and [OH	]
quantities in Eq. (13.23) will usually be negligible.

It will be seen that this procedure is essentially a titration of theweak acid HAwith
the strong baseMOH, where b¼ [Mþ ]. If the pKa of aweak base B is to bemeasured,
the usual procedure is to titrate B with strong acid HX in an analogous manner. Now
a þ b¼ [BHþ ] þ [B] and a¼ [X	]. Equation (13.23) is again applicable.

The same value for pK 0
a should be obtained whether we start with the conjugate

acid (e.g., acetic acid) and titratewith strong base, or start with its conjugate base (e.g.,
sodium acetate) and titrate with strong acid, provided that the ionic strength is
substantially identical in the two titrations.

4 For any practical purpose Eq. (13.21) is an adequate interpretation, but we must recall that this cell
possesses a liquid junction.Moreover, Eq. (13.21) implies that we can measure the activity of a single ionic
species, whereas we have seen in Chapter 8 that we can measure only a mean ionic activity.
5 There is a subtlety here. From the pH measurement we know the activity of Hþ but Eq. (13.23) calls for
the concentrations of Hþ and OH	. Activity coefficient corrections can be applied, but this will seldom be
necessary.
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With the apparent constant pK 0
a at hand, we turn to the problem of finding the

thermodynamic constant pKa. For reasons discussed inChapter 8, pK
0
a varies with the

ionic strength of the solution, so it is not a true constant. On the other hand, pKa is
defined to be a constant (at fixed temperature and pressure); in other words, pKa is
that unique value of pK 0

a in the reference state of the solutewhere activity coefficients
are unity. We can correct a pK 0

a value for nonideal behavior by applying the
Debye–H€uckel theory (Section 8.3).

Consider the uncharged acid HA, whose apparent constant pK 0
a is defined in

Eq. (13.20).Wemay take it that at low tomoderate values of ionic strength the activity
of the uncharged form HA is equal to its concentration. The activity of the ion A	,
however, is given by

aA ¼ gA	 ½A	 �

where gA	 is the mean ionic activity coefficient. With these identities, Eqs. (13.19)
and (13.20) become

Ka ¼ aHþ gA½A	 �
aHA

and

K 0
a ¼ aHþ ½A	 �

aHA

or by combining these equations we obtain

Ka ¼ gA	K 0
a

which in logarithmic form becomes

pKa ¼ pK 0
a 	 log gA	 ð13:24Þ

Now we use the Debye–H€uckel equation, Eq. (8.26), in Eq. (13.24):

pKa ¼ pK 0
a þ 0:509

ffiffi
I

p

1þ ffiffi
I

p ð13:25Þ

The ionic strength I is calculated with

I ¼ 1

2

X
ciz

2
i ð13:26Þ

where c represents the concentration of species i and zi is its charge; the summation
includes all the ions in the solution. Equation (13.25) corrects pK 0

a to pKa for
uncharged acids.
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For a positively charged acid such as BHþ , the ionic activity coefficient appears in
the denominator of Ka, with the result that Eq. (13.24) takes the form

pKa ¼ pK 0
a þ log gBHþ ð13:27Þ

leading to

pKa ¼ pK 0
a 	 0:509

ffiffi
I

p

1þ ffiffi
I

p ð13:28Þ

Equations (13.25) and (13.28) apply at 25
C.

Example 13.7. Suppose that 10.0mL of a solution 0.10Mwith respect to both acetic
acid and sodium chloride was mixed with 10.0mL of 0.05M sodium hydroxide at
25
C. The pH of this solution was 4.64. What is the thermodynamic pKa of acetic
acid?

The total solute concentration (i.e., acetic acid plus acetate ion) is 0.05M; this is
equal toa þ b in the symbolismofEq. (13.23).Thequantityb is givenby (10.0)(0.05)/
20.0¼ 0.025M. From Eq. (13.23), we obtain pK 0

a ¼ 4.64, because the quantity [Hþ ]
is negligible.

The ionic strength receives contributions from both the sodium chloride (0.05M)
and the sodium acetate (0.025M); from Eq. (13.26), I¼ 0.075M. Finally, Eq. (13.25)
gives

pKa ¼ 4:64þ ð0:509Þð0:274Þ
1:274

¼ 4:75

Example 13.8. Given: 0.0541 g of 4-cresol (MW 108.1) dissolved in 47.5mL of
water at 20
C. After 1.0mL of 0.10M KOH was added, the pH was 9.55; after the
addition of 3.0mL of 0.10MKOH, the pHwas 10.29. Calculate the apparent constant
and the thermodynamic constant.

We calculate that 0.0541/108.1¼ 5.00� 10	4mol of solute, or 0.5mmol, was
taken. When 1.0mL of strong base titrant had been added, the volume was 48.5mL,
so the total solute concentration was 0.5/48.5¼ 0.01031M; this is the quantity a þ b.
The value of b is (1.0) (0.10)/48.5¼ 0.002062. Since the pH is quite high, let us apply
the correction for [OH	]. At 20
C, pKw¼ 14.17 (Table 12.1), so pOH¼ 4.62 and
[OH	]¼ 2.4� 10	5. Equation (13.23) gives

pK 0
a ¼ 9:55	 log

0:002062	 0:000024

0:00825þ 0:000024
¼ 10:16

The ionic strength of this solution is (neglecting the hydroxide) equal to b, or
0.00206M. Applying Eq. (13.25) gives pKa¼ 10.16 þ 0.02¼ 10.18.
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After the addition of 3.0mL of titrant, we calculate these quantities:
a þ b¼ 0.00990M; b¼ 0.00594M; [OH	]¼ 1.3� 10	4, and Eq. (13.23) gives

pK 0
a ¼ 10:29	 log

0:00594	 0:00013

0:00396þ 0:00013
¼ 10:14

The ionic strength is now 0.00607M, and Eq. (13.25) gives pKa¼ 10.14 þ
0.04¼ 10.18.

The data in Example 13.8 are from Albert and Serjeant (1984), who give much
useful information on pKa determination. These numerical examples are helpful in
showing typical magnitudes of the activity coefficient corrections, which in
Example 13.8 appear to be only slightly greater than the usual experimental uncer-
tainty in the pH measurement.

An alternative approach to estimating pKa from measurements of pK 0
a is to note

that Eq. (13.25) can be written in the form

pK 0
a ¼ pKa 	 0:509

ffiffi
I

p

1þ ffiffi
I

p ð13:29Þ

which suggests that if pK 0
a is measured as a function of ionic strength, a plot of pK 0

a

against
ffiffi
I

p
=ð1þ ffiffi

I
p Þ will be a straight line, which can be extrapolated to yield pKa

as the intercept. Figure 13.2 is a plot of Eq. (13.29) forb-naphthol (Albert and Serjeant
1984). The line extrapolates to pKa¼ 9.63; its slope is 	0.505.

Figure 13.2. Plot according to Eq. (13.29) for b-naphthol at 20
C (Albert and Serjeant 1984).
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13.5. ION-SELECTIVE MEMBRANE ELECTRODES

Except for our brief discussion of the pH-sensitive glass electrode, all the preceding
treatment of electrical phenomena has been based on electron transfer across the
electrode–solution interface.Wenow turn to the ion transfermechanismas the basis of
an electrochemical cell.

Theory of the Electrode Response. Before we examine the physical nature of the
elctrode substance, we will simply designate it as a “membrane”; it is the site of ion
exchange with the electrolyte solution. A schematic representation of an electro-
chemical cell incorporating such a membrane electrode is

Internal reference electrodejaintjMembranejaextjjExternal reference electrode

Theactivities refer to the ion forwhich themembrane serves as an ion exchanger;aint is
the internal (fixed) ion activity and aext is the sample solution ion activity. The
reference electrodes are connected to the external circuit. The potential of this cell is
given by

Ecell ¼ Eint ref þEext ref þElj þEmembrane ð13:30Þ

Although we anticipate that the membrane response is a consequence of ion
exchange between the membrane and the solution, we can model this formally as
the result of two redox half-reactions. Suppose the ion in question is the cation Mnþ .
Then

LeftðoxidationÞ : Mint > Mnþ
int	 þ nðeÞ

RightðreductionÞ : nðeÞþMnþ
ext	 > Mext

Overall reaction : Mnþ
ext > Mnþ

int

Note that, in the usual manner, wewrite the oxidation at the left electrode. (We do not
include Mint and Mext in the overall reaction because, as pure metal, they are in the
standard state of unit activity.) Comparison of the development to this point with
Example 13.6 reveals that the membrane electrode is formally part of a concentration
cell. The Nernst equation gives

Emembrane ¼ 	 RT

nF
ln

aint
aext

which can be combined with Eq. (13.30) to yield

Ecell ¼ constantþ RT

nF
ln aext
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or at 25
C we obtain

Ecell ¼ constantþ 0:059

n
ln aext ð13:31Þ

Thus we predict Nernstian behavior of this cell.
Suppose that the exchangeable ion is an anion. Then the development is based on

these redox reactions:

Left ðoxidationÞ : 2X	
int > ðX2Þint þ 2e

Right ðreductionÞ : 2eþðX2Þext > 2X	
ext

Overall reaction : X	
int >X	

ext

The membrane potential is given by

Emembrane ¼ 	 RT

nF
ln

aint
aext

and the analog to Eq. (13.31) becomes

Ecell ¼ constant	 0:059

n
ln aext ð13:32Þ

Summing this up, we anticipate an electrode response following the form

Ecell ¼ constant � 0:059

n
ln aext ð13:33Þ

with the þ sign applying to cations and the 	 sign to anions.
We next turn to the mechanisms for ion-exchange between the membrane and the

solution.

Glass Electrodes. A typical glass is composed of Na2O and SiO2, and its surface
layers possess exchangeable cations. An ion exchange equilibrium is set up between
the glass surface and an electrolyte solution according to

--SiO	Naþ
ðglassÞ

þ Hþ
ðsolutionÞ

> --SiO	Hþ
ðglassÞ

þ Naþ
ðsolutionÞ

When a pH-responsive glass electrode is first placed in water this process occurs,
andwhenequilibriumhas been reached the electrode is said to be hydrated and is ready
for use. The full thickness of a glass membrane is typically 0.03–0.1mm, and the
thickness of the hydrated layers (internal and external) is only about 10	4mm (Evans
1987).
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Now, when this hydrated glass electrode is placed in a sample solution, in general
the hydrogen ion activities in the external hydrated glass layer and in the sample
solution will be different. This difference gives rise to the potential described by
Eq. (13.31). In practice there can be some complicating factors. The hydrogen ion
activities of the internal and external hydrated layers are seldomexactly equal, and this
difference gives rise to an asymmetry potential, which is compensated for in the
calibration process. Another complication occurs when the pH is being measured in
solutions containinghigh sodium ion concentrations. In this case apotential difference
may develop based on the different activities of sodium ion in the glass and in the
solution; in effect, the electrode (or the experimentalist) is fooled into thinking that
the sample solution hydrogen ion activity is higher than it really is. Since the usual
source of high sodium ion concentrations is NaOH, this experimental artifact is called
the glass electrode alkaline error. Newer glasses replace some of the sodium content
with lithium and so are less susceptible to the alkaline error.

The foregoing description of the sodium ion error of the glass electrode is
suggestive of an opportunity to modify the glass composition and in this way to
developglass electrodeswith enhanced selectivity for ionsother thanH.This approach
has been successful. Glasses are described in a shorthand manner by the symbol
NAS X-Y, meaning that this glass contains X% of Na2O, Y% of Al2O3, and
100	 (X þ Y)% of SiO2. The conventional pH glass electrode has little Al2O3,
and its sensitivity pattern is

Hþ �> Naþ >;Rbþ ;Csþ ;� Ca2þ

NAS 11-18 glass has this sensitivity sequence:

Agþ > Hþ > Naþ � Kþ ;Liþ ; > Ca2þ

This glass has been used as a sodium ion-selective electrode. Obviously Agþ must be
absent andHþ must be fixed, but its advantage is its high sensitivity toNaþ relative to
Kþ or Liþ . Many of the newer glasses, especially the lithium glasses, possess
analytically useful selectivity profiles. Glass membrane electrodes are particularly
valuable because, although they are physically delicate, they are chemically quite
robust.

Solid Membrane Electrodes. A sparingly soluble crystalline solid can serve as an
ion-exchange electrode. Usually, crystals of the substance are dispersed in a polymer
matrix. Supposewewish to design a halide ion (X	)-sensitive electrode.We can form
such an electrode with the slightly soluble AgX salt. The membrane sets up this
solubility equilibrium with the solution:

AgXmembraneÐ
Ksp

Agþ
soln þX	

soln

where Ksp is the solubility product (Chapter 10).

ION-SELECTIVE MEMBRANE ELECTRODES 295



Presuming that the sample solution (intowhich the electrode is introduced) initially
contains no Agþ but a relatively high concentration of X	, the common ion effect
of X	will depress the solubility of AgX, and the concentration (activity) of the silver
ion will be determined by that of X	:

aAgþ ¼ Ksp

aX 	
ð13:34Þ

From Eq. (13.31), therefore

Ecell ¼ constantþ 0:059 ln aAgþ ð13:35Þ

or by making use of Eq. (13.34) we obtain

Ecell ¼ ðconstantÞ0 	 0:059 ln aX	 ð13:36Þ

where aX 	 refers to the total activity of X	 in the solution. This has an interesting
consequence. Reverting to concentrations for convenience, we can write

½X	 �total ¼ ½X	 �initial þ ½X	 �dissolved
where ½X	 �initial is the quantity sought from the measurement and ½X	 �dissolved is the
concentration contributed by dissolution of the electrode substance. Because of the
stoichiometry of the dissolution process, ½X	 �dissolved ¼ ½Agþ �, so we find

½Agþ � ¼ ½X	 �total 	 ½X	 �initial
Restating Eq. (13.34), we also have

aAgþ ¼ Ksp

½X	 �total
Combining these gives a quadratic in ½X	 �total whose solution is

½X	 �total ¼
½X	 �initial � ð½X	 �2initial þ 4KspÞ1=2

2
ð13:37Þ

There are two extreme cases to consider. If ½X	 �2initial �> 4Ksp, then we find that
½X	 �total ¼ ½X	 �initial. This means that the dissolved anion makes a negligible
contribution to the total, and that in this region of behavior a tenfold increase in
½X	 �initial results in a 59-mV change in cell potential [Eq. (13.36)]. At the other
extreme of behavior, where ½X	 �2initial �< 4Ksp, Eq. (13.37) yields
½X	 �total ¼

ffiffiffiffiffiffiffi
Ksp

p ¼ ½X	 �dissolved; here the initial concentration of anion is so low
that itmakes no sensible contribution, and fromEq. (13.36)we find that the potential is
independent of ½X	 �initial. At intermediate conditions the dependence is more
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complicated, as shown in Fig. 13.3. The sensitivity of the systemmay be defined as the
slope of the response curve in Fig. 13.3; thus the electrode is considered to lose useful
sensitivity below the lower limit of detection.

Solid-state electrodes are quite rugged. Their sensitivity limits are, aswehave seen,
controlled by theKsp valueof the solid.Mixed solids alsohavebeenused. For example,
an electrode composed of CuS and Ag2S can respond to Agþ , S2	,or Cu2þ ; the
solubility products of both salts must be simultaneously satisfied. Some lower limits
of detection of solid-state electrodes are, for Cl	, 10	5M, for I	, 10	8M, for Cu2þ ,
10	9M, and for Bi3þ , 10	11M. These are very high sensitivities.

Liquid Membrane Electrodes. We are not accustomed to picturing liquid mem-
branes, but the term simply implies a thin liquid phase. As the sample solution is
aqueous, the liquid membrane phase will be an organic liquid that is immiscible with
water. Hence the liquid membrane is very hydrophobic. By making the membrane
phase quite thin, a faster response is achieved. Figure 13.4 shows some simple designs
of liquidmembrane electrodes. The electrode design of Fig. 13.4awill produce a slow
response because of the considerable distance between the inner and outer interfaces,
whereas Fig. 13.4b shows a faster responding electrode.

The basic idea is that an equilibrium is established within the membrane phase
between the sample ion of interest and some hydrophobicmoleculewithwhich the ion
forms a noncovalently bound complex. The sample ion thus is capable of exchanging
between the membrane phase and the external aqueous sample solution. This ion
exchangeprocess is responsible for developing the potential at the interface aswehave
described earlier.

In one general type of electrode, a hydrophobic anion is dissolved in a hydrophobic
solvent. The anion is selected so that it will form a strong complex with the

Figure 13.3. Electrode response curve of a solid membrane electrode.
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exchangeable cation of interest. Since the anion is hydrophobic, it is constrained to
remain in the membrane phase, but the cation can exchange between the membrane
and the aqueous sample solution. A calcium-selective electrode is based on this
principle. The complexing agent is bis(di-n-decyl)phosphate, and this is the equilib-
rium within the membrane phase

Ca2+  + 2R2P
O

OH

(R2PO2)2Ca  +  2H+

where R is CH3(CH2)9. Clearly this electrode will suffer interference from hydrogen
ions, and it is found to be usable in the pH range 5.5–11. (Above pH 11 calcium
hydroxide precipitates.)

The alternative version of this electrode designmakes use of a hydrophobic cation,
chosen to form a complex with an exchangeable anion. Thus a nitrate ion-selective
electrode is based on the ion pair formation of NO3

	 with the tridodecylhexadecyl-
ammonium ion; we can represent this equilibrium as

NO3
	 þR4N

þ >R4N
þNO3

	

The second general type of liquid membrane electrode is based on an uncharged
complexing agent. A potassium ion electrode uses the antibiotic valinomycin as a
selective complexing agent. Much synthetic organic research is leading to the

Figure 13.4. Schematic diagrams of liquid ion-selective membrane electrodes. [Reproduced by

permission from Connors (1982).]
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availability of macrocyclic compounds capable of complex formation with a wide
variety of smaller species, andmanyof these compoundsmaybe suitable as complexes
in liquid membrane electrodes. An especially attractive possibility is to develop
electrodes specific for drug molecules. Since most drugs are acids or bases, they are
easily transformed into ions by pH control, and then their electrochemical detection
becomes possible if a complexing agent can be identified that will selectively bind
the ionic drug. Many such electrodes have been developed.

PROBLEMS

13.1. Balance these equations:

(a) ClO3
	 þ Sn2þ ¼Cl	 þ Sn4þ

(b) PbO2 þ I	¼ I2 þ Pb2þ

(c) OCl	þNH3¼Cl	 þ N2

(d) MnO4
	 þ H2O2¼Mn2þ þ O2

(e) MnO4
	 þ CuI¼MnO2 þ Cu2þ

(f) S2O8
2	 þ 2Fe2þ ¼ 2SO4

2	 þ 2Fe3þ

(g) NH2OH þ Ce4þ ¼N2O þ Ce3þ

(h) RSH þ I2¼RSSR þ I	

13.2. Calculate the ionic strength of a phosphate buffer prepared to be 0.025M in
NaH2PO4, 0.025M in K2HPO4, and 0.050M in NaCl.

13.3. Calculate the change in cell potential when a glass electrode–SCE pair is
moved from 0.010M HCI to 0.010M KOH. (Assume that activities are equal
to concentrations.)

13.4. Given this electrochemical cell, where “tris” is tris(hydroxymethyl)amino-
methane and trisHþ is protonated tris:

Pt;H2ðp ¼ 1 atmÞ jtrisð0:05MÞ; trisHþ ð0:05MÞjjSCE

13.4. The potential of the SCE is þ 0.244V and the measured cell potential was
þ 0.717V at 25
C. What is the pK 0

a of trisH
þ?

13.5. A cell consisting of a calcium ion-sensitive membrane electrode and a
reference electrode gave the following cell potentials at 25
C with solutions
having the listed Ca2þ activities:

Ca2þ Activity EcellðVÞ
0:000135 þ 0:136

0:00541 þ 0:183

0:0382 þ 0:208
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(a) Determine whether the cell response is Nernstian.

(b) Predict the cell potential if the Ca2þ activity is 1.00� 10	3.

13.6. (a) What is the ionic strength of a solution 0.01M in KCl and 0.01M in
Na2SO4?

(b) Calculate the mean ionic activity coefficient of sulfate ion in this
solution.

13.7. (a) Calculate the cell potential at 25
C of this electrochemical cell:

PtjFe2þ ð0:001MÞ; Fe3þ ð0:01MÞjjCu2þ ð0:01MÞjCu

(b) Will copper metal be plated out or will it be dissolved in this cell?

13.8. (a) Calculate the potential of this cell at 25
C:

ZnjZnðNO3Þ2ð0:01MÞ;AgNO3ð0:001MÞjAg

(b) Will this cell produce zinc-plated silver or silver-plated zinc?

13.9. What is the equilibrium constant of this reaction at 25
C?

AgClþBr	 >AgBrþCl	

13.10. Standard potentials are given in parentheses for the following reactions:

MgðOHÞ2 þ 2e > Mgþ 2OH	 ðE0
MgðOHÞ2Mg ¼ 	 2:69 VÞ

Mg2þ þ 2e > Mg ðE0
Mg2þ ;Mg ¼ 	 2:37 VÞ

13.10. Calculate the solubility product of magnesium hydroxide.
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14

NONCOVALENT BINDING
EQUILIBRIA

14.1. INTRODUCTION

The principles of thermodynamics apply to all physical and chemical equilibria, and
the purpose of the present section is to concentrate attention on yet another class of
chemical equilibria, namely, those processes in which the noncovalent forces of
interaction are operative. The distinction between covalent (“chemical”) bonds and
noncovalent (“physical”) interactions is not clearcut, and it is based in part on theory
and in part on an empirical criterion. Theoretically, using the language of molecular
orbital theory, a covalent bond is a consequence of the formation of molecular
orbitals from atomic orbitals; the bond usually consists of one or more electron pairs
shared between the bound atoms, and is highly directional in character. Noncovalent
interactions, on the other hand, are electrostatic in nature and are not highly
directional. The empirical criterion is energetic; covalent bonds tend to be strong
whereas noncovalent interactions areweak.Obviously this is not an absolute criterion.
The single, double, and triple bonds familiar from organic chemistry are perfect
examples of covalent bonds. The interactions that are responsible for the existence of
condensed phases (solids and liquids) are noncovalent. Notice that we refrain from
speaking of noncovalent “bonds”; this restraint is a reflection of theweakness of these
interactions as well as their nondirectional nature. Most noncovalent interactions
exhibit energies of �10 kcal mol	1 or less (DH0 values), whereas covalent bond
energies largely lie in the range 20–200 kcalmol	1.1

Thermodynamics of Pharmaceutical Systems, Second Edition, byKenneth A. Connors and SandroMecozzi
Copyright � 2010 by John Wiley & Sons, Inc.

1 The classic treatment of covalent bonding is Linus Pauling’s The Nature of the Chemical Bond (1960).
Of course, more recent sources must be consulted for later theoretical and experimental findings.

301



The noncovalent interactions occur between two or more molecules or ions.
The manner in which we designate these interactants is arbitrary and may be
determined for our convenience.We choose to call one of the interactants the substrate
S and the other interactant the ligand L. Usually some chemical or physical property
of the substrate, a property that is altered on interaction with the ligand, is observed
by the experimenter. The product of the interaction between the substrate and the
ligand is generally called a complex. Complexes may form between two (or more)
small molecules or ions; or small molecules may bind to a macromolecule, as when
a drug–protein complex is formed. Noncovalent complex formation is an essential
step in many biological processes, such as antigen–antibody interaction, transport of
ions across membranes, control of metabolic pathways, signal transduction, oxygen
transport, and the regulation of gene expression.

14.2. THE NONCOVALENT INTERACTIONS

Potential Energy Functions. The detailed nature of the noncovalent interaction
forces is not the concern of thermodynamics, but some understanding of these phenom-
ena will be helpful in picturing the molecular processes being studied. Although we
commonly speak of the forces of interaction, it is actually the energies of interaction
that are of primary interest. The force F is related to the potential energy V by

F ¼ 	 dV

dr

where r is the distancebetween two interactingparticles.Physical theoryhaselucidated
the potential energy functions of the noncovalent interactions (Hirschfelder et al. 1954;
Israelachvili, 1985). The interacting species may be ions or molecules, and the
molecules may be nonpolar or may possess permanent dipole moments.

Table 14.1 gives the noncovalent potential energy functions, which are seen to fall
into three classes. The Table 14.1 functions are written for interactions between
species S and L invacuo, that is, in the absence of a solvent. These are the three classes
of noncovalent interactions:

1. Electrostatic Interactions. These take place between ions (C) or dipoles (m).
Themagnitude of a charge is to be accompanied by its sign, and a negative value
of energy is attractive, a positive value repulsive. (The charge–charge interac-
tion term is Coulomb’s law, which we encountered in Chapter 8.) Observe that
charges and dipole moments appear as squared quantities.

2. Induction (Polarization) Interactions. These are a result of an ion or a dipole
inducing a temporary dipole in an adjacent molecule. The interaction then
consists of the electrostatic interaction between the temporary dipole and
the permanent dipole or the ion. The quantity a in the expressions is the
polarizability of the molecule, a measure of the ease with which the molecule’s
electron cloud can be deformed in the presence of an electric field.
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3. Dispersion (London) Interaction. This is a quantum-mechanical phenomenon,
although we can give a reasonable classical interpretation. Any molecule,
including a nonpolar molecule, may develop a momentary dipole as a result of
transitory electron density displacements. This momentary dipole can induce
a dipole in a neighboring molecule, and these two temporary dipoles then
interact. The dispersion interaction takes place between all species; its effec-
tiveness is dependent on their polarizabilities.

Note that, for uncharged molecules, each class of interaction includes an r	6

dependence on the internuclear separation distance r. For such interacting species
the combined effect of these r	6 terms constitutes the noncovalent interactions.2

Under the attractive influence of these terms, two molecules approach until they
experience an opposing repulsive force, which initially is a result of electron–electron
repulsion and, at even closer distances, of nucleus-nucleus repulsion. The net effect
of these forces of attraction and repulsion is reasonably expressed in Eq. (14.1),
an empirical function called the Lennard-Jones 6–12 potential.

V ¼ 4Vmin
r0
r

� �12
	 r0

r

� �6	 

ð14:1Þ

Table 14.1. Potential energy functions for noncovalent interactionsa

Type of Interaction Potential Energy Function

Electrostatic

Charge–charge þ CSCL

r

Charge–dipole 	 1

3kT

 C

2
S 
m2

L

r4

Dipole–dipole 	 2

3kT

 m

2
S 
m2

L

r6

Induction

Charge-induced dipole 	C2
S 
aL

2r4

Dipole-induced dipole 	m2
S 
aL

r6

Dispersion

Induced dipole–induced dipole 	 3

4

2S 
 2L

2S þ2L

	 

aS 
aL

r6

aC is the charge on an ion, m is permanent dipole moment, a is polarizability, r is intermolecular distance,
2 is a specific energy term, T is absolute temperature, and k is Boltzmann’s constant, where k¼R/NA.

2 Some authors refer collectively to these r	6 terms (r	7 in the forces) as van der Waals interactions, but
there is some ambiguity in this term, because certain authors seem to mean only the London force by the
designation van der Waals.
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In Eq. (14.1), which is shown graphically as Fig. 14.1, V is the potential energy of
interaction between two uncharged particles separated by distance r. Vmin is the value
of V at the equilibrium separation req, which is the value of r when the attractive
and repulsive forces exactly balance each other; r0 is the value of r when V¼ 0.
The r	12 term empirically expresses the repulsive energy.Observe the r	6 term,which
is attractive and embodies the r	6 terms in Table 14.1.

The potential energy functions in Table 14.1 are written for interactions in vacuo,
that is, without a solvent present. But we are interested in condensed phase systems,
most commonly consisting of substrate S and ligand L dissolved in a solvent. In such
real systems the noncovalent interactions will be moderated to a degree expressed
by the dielectric constant of the solvent, in the manner made explicit in our treatment
of the Coulomb interaction (Chapter 8).

Chemical Interpretations. The noncovalent interactions of Table 14.1 constitute all
of the forces that we need to consider,3 yet we are accustomed to invoke phenomena
that may appear to be additional forces. But these phenomena are really just the

Figure 14.1. Potential energy dependence on intermolecular distance according to the Lennard-

Jones potential function.

3 This statement is not strictly correct, because certain molecules possessing quadrupolar moments can
undergo additional forces, but these can usually be neglected.
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noncovalent forces (perhaps with some covalent bonding mixed in) masquerading
in chemically useful forms.Oneof these forms ishydrogen-bonding.Ahydrogenbond
(H bond) is represented by the dots in the reaction

A--HþB>A--H 
 
 
 B

TheA--Hbond in the H-bond donor AH is largely covalent; the H 
 
 
B bond to the H-
bond acceptor B is largely a dipole-dipole interaction. Though exceptions to the
following are known, H bonding is most effective when the A--H 
 
 
B angle is 180 


and when the atoms A and B are nitrogen or oxygen. The protein a-helix and the
folded conformations of proteins are largely maintained by H-bonding, as is the DNA
double helix. Carboxylic acids in the vapor state and in nonpolar solvents form
H-bonded dimers as in

R
O

O

H O
R

OH

27

The rather surprising pKa values of salicylic acid (pK1¼ 2.98, pK2 13.00; for
4-hydroxybenzoic acid pK1¼ 4.58, pK2¼ 9.39) are ascribed to stabilization of the
monoanion by H bonding:

O

H
O–O

28

It is interesting that intramolecular H bonding can be effective in aqueous solution,
whereas intermolecular H bonding is relatively ineffective because of the overwhelm-
ing competition from the solvent, itself a good H bond donor and acceptor. The
structure of water as a medium is a result of its H-bonding properties.

Another chemical phenomenon is charge transfer (CT) complexing, also known as
electron donor–acceptor (EDA) complexing. This seems to be a combination of
covalent and noncovalent effects. Apparently an electron is partly or wholly trans-
ferred from an orbital on the donor molecule to one on the acceptor molecule, so
the interaction has some covalent character and it results in definite and detectable
changes in electron configuration; however, the noncovalent forces also are involved.
Although some covalent electron-sharing takes place, CT complexes often are very
weak.

Finally wemust take notice of the solvent.We can do this by treating the solvent as
a structureless continuum, as when we introduce the dielectric constant as a measure
of the ability of the solvent to separate charges; or more realistically we can recognize
that the solvent is itself composed of molecules, which undergo the same kinds of
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intermolecular interactions as do the solute species. We are then led to the view that
the formation of a complex SL through the reaction of S with L in the presence of
solvent (medium) M is a competition among three pairwise types of interactions:
solute–solute (SL), solute–solvent (SM, LM, and SL-M), and solvent–solvent (MM).
Thus we can write

DG0
net ¼ DG0

solute--solute þDG0
solvation þDG0

solvent--solvent

Each term on the right is the result of noncovalent interactions. The solute–solute
interaction term is complex-stabilizing. The solvation term could be complex-
stabilizing if the SL-M interaction (solvation of the complex) is stronger than the
sum of the substrate–solvent plus the ligand–solvent terms, but this is unlikely, so
solvation usually destabilizes the complex. The role of the solvent–solvent interaction
term depends greatly on the nature of the solvent and the solute species.

Suppose, for example, that we wish to study H bonding between phenol (H-bond
donor) and pyridine (H-bond acceptor). If we attempt this in water as the solvent, we
areunlikely tobe successful because the solvation term (arising from thephenol–water
and pyridine–water solvation interaction) will be complex-destabilizing. On the
other hand, if carbon tetrachloride, with no H-bonding capability of its own, is the
solvent, we will be able to detect the phenol–pyridine interaction.

There is a particularly important kind of solvent effect observed with nonpolar
solutes in aqueous solution. Since water is both an H-bond donor and an H-bond
acceptor, the solvent–solvent interaction term DG0 is appreciable and may even be
overwhelming.Watermolecules form anH-bonded network having definite structural
features. Now, when a nonpolar solute molecule (such as a saturated hydrocarbon)
dissolves inwater, noH bonds from the solute to the surroundingwatermoleculeswill
form, because the solute is neither a donor nor an acceptor. The water structure in the
immediate vicinity of the solute re-forms to compensate for the broken water–water
H bonds. The result is that the number of possible orientations of water molecules is
reduced by the presence of the nonpolar solute; this means that the configurational
entropy of the system is reduced. From this point of view, the very low aqueous
solubility of nonpolar substances is caused by this unfavorable entropy change in the
dissolution process. This is called the hydrophobic effect.

Now if two such dissolved nonpolar solute molecules come into contact, some
of the “structured water” in their vicinity is released, thereby increasing the system
entropy and resulting in a negative free-energy change. This is the driving force for
association of nonpolar species in aqueous solution. This phenomenon is termed
hydrophobic interaction. Observe that complex formation driven by this hydrophobic
phenomenon owes little or nothing to solute–solute interaction (which is simply a
result of the ever-present dispersion forces); rather, it is essentially completely driven
by solvent–solvent interaction. In a sense the solute is “squeezed out” of the water.
This water-structure interpretation of the hydrophobic interaction applies strictly only
to nonpolar solutes. Many solutes, however, including most drug molecules, possess
both nonpolar and polar groups (we can call such molecules “semipolar”), and
although the hydrophobic interaction may play a role in their complex formation, the

306 NONCOVALENT BINDING EQUILIBRIA



driving force may appear as either a favorable entropy change or a favorable enthalpy
change.

An alternative description of the hydrophobic effect and hydrophobic interaction
adopts a thermodynamic viewpoint. The solvent is pictured as a structureless
continuum. In order to dissolve a molecule in this medium, a molecule-sized cavity
must be created; then the solute molecule is inserted into the cavity, and finally
solute–solvent interaction takes place. Creation of a cavity having surface area A
requires an expenditure of free energy equal to Ag , where g is the solvent surface
tension.We have seen (Chapter 11) that the surface tension of water is unusually high
(this itself is a result of the strong water–water interaction).

On this basis alone, all solutes might be expected to show low aqueous solubilities.
However, recall the step in the dissolutionprocess inwhich solute–solvent interactions
may occur. In this step the energy expended in creating the cavity may be recovered,
provided that the solute structure is such as to permit strong solute–solvent interac-
tions. Semipolar solutes do lead to such interactions, but nonpolar solutes do not.
Hence this thermodynamic approach accounts for the hydrophobic effect.

When two dissolved solute molecules come into contact, the total cavity surface
area is reduced as the two separate cavities coalesce into a single cavity. The free
energy change for this process is therefore gDA, where DA, a negative quantity, is the
change in cavity surface area. This is the driving force for the hydrophobic interaction.
Quantitative theories of this phenomenon have been developed. (See Connors and
Khossravi, 1993; Mulski and Connors, 1995).

If the hydrophobic interaction is substantially responsible for the strength of a given
complex in aqueous solution, we can predict that incorporation of an organic solvent
into the aqueous medium will result in a weakening of the complex (observed as a
decrease in the equilibrium constant for its formation). We often turn the argument
around and use the complex-weakening effect of organic solvents as a diagnostic
criterion for the operation of the hydrophobic interaction.

14.3. BINDING MODELS

General. We can write any complex formation equilibrium as

mSþ nL> SmLn

and define the overall binding constant

bmn ¼
SmLn½ �
S½ �m L½ �n ð14:2Þ

where we assume that activities are equal to concentrations. The simultaneous
collision of m molecules of S and n molecules of L to produce the complex SmLn

is so improbable (unless m¼ 1 and n¼ 1) that it can be neglected, and so a more
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realistic view of what happens is that complex SmLn is built up by successive
bimolecular collisions. For example, the complex SL2 forms in these successive steps:

SþL> SL

SLþL> SL2

For each such step we define a stepwise binding constant:

K11 ¼ ½SL�
½S�½L� ð14:3Þ

K12 ¼ ½SL2�
½SL�½L� ð14:4Þ

Algebraic substitution shows that b12 ¼ K11K12. Observe how the subscripts denote
the stoichiometry of the complex.

Usually, reactant concentrations are expressed in mol L	1 (molarity, M); conse-
quently, all stepwise binding constants have the unit M	1. Binding constants are also
known as stability constants, association constants, or formation constants. In some
fields of study it is traditional to write the reaction in the opposite direction, and then
the corresponding equilibrium constant is the reciprocal of the binding constant and
is called a dissociation constant.

The experimental recognition of the existence of a complex requires that some
property of the complex be quantitatively different from that property as possessed
by the two interactants giving rise to the complex; in the following section wewill see
examples of such properties. Our first experimental goal is to establish the stoichi-
ometry of the complex or complexes; our second goal is to evaluate the stepwise
binding constants. The most general way to accomplish both goals is to postulate
a reasonable stoichiometry, to derive a quantitative description of the expected
experimental outcomes based on this stoichiometry, and then to test this model
(hypothesis) with experimental data. The usual criterion is that the binding constant
evaluated in such a test should be constant over awide range of system concentrations.
This somewhat abstract account will be made more explicit by considering several
important stoichiometric models. More extensive treatments are available (Connors
1987; Wyman and Gill 1990).

The 1:1 Stoichiometric Model. This, the simplest of stoichiometric models, also
happens to be applicable to many real systems, and its description is fundamental for
understanding chemical equilibria. The complex formation reaction is

SþLÐK11

SL
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with K11 defined by Eq. (14.3). Let us define f11 as the fraction of substrate present in
the complexed (bound) form, or

f11 ¼ ½SL�
St

ð14:5Þ

where St is the total substrate concentration:

St ¼ ½S� þ ½SL� ð14:6Þ

Algebraic substitution of Eqs. (14.3) and (14.5) into Eq. (14.6) gives the quantitative
1:1 stoichiometric model:

f11 ¼ K11½L�
1þK11½L� ð14:7Þ

This equation is the 1:1 binding isotherm. Its functional form is known as a
rectangular hyperbola. We can easily gain a sense of how f11 depends on [L] by
making a calculation for a hypothetical system; this has been done in Table 14.2 by
assuming thatK11¼ 50M	1 and using Eq. (14.7) to calculate f11 for assigned values
of [L]. The results are plotted in Fig. 14.2. The shape of this curve is very
characteristic; at low values of [L], where K11 [L]� 1, f11 is nearly a linear function
of [L], as can be seen from Eq. (14.7), whereas at high values of [L], where K11

[L]� 1, f11 becomes nearly independent of [L]. This region in which f11 shows little
dependence on [L] is called the saturation effect; the physical interpretation is that
nearly all the S molecules are already bound to L, so the addition of more L has little

Table 14.2. Hypothetical 1 : 1 binding isotherm

calculated with Eq. (14.7) and the value K11¼50M	1

[L] (M) f11

0 0
0.005 0.200
0.01 0.333
0.02 0.500
0.04 0.667
0.06 0.750
0.08 0.800
0.10 0.833
0.15 0.882
0.20 0.909
0.30 0.938
0.40 0.952
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effect on increasing f11, which increases asymptotically to a value of unity. Notice
that K11¼ 1/[L] when f11 ¼ 0.5.4

The chemical interpretation of 1:1 binding is that the substrate S possesses a single
“binding site,” as does the ligand L; and when the complex SL forms, no further sites
are available for the binding of additional species.

A quantitative test of the 1:1 model may be made by rearranging Eq. (14.7) into a
linear plotting form. Several linear plots have been used. Since f11 is the fraction
complexed (also known as the fraction bound), then 1	 f11 is the fraction uncom-
plexed (fraction free), or 1	 f11 ¼ 1/(1 þ K11 [L]). Thus f11/(1	 f11)¼K11[L], or

log
f11

1	f11

� �
¼ log L½ �	log K11 ð14:8Þ

A log-log plot should be linear with a slope of unity if the stoichiometry is 1:1. This is
called a Hill plot. More simply, Eq. (14.7) can be rearranged to three nonlogarithmic
linear plotting forms. Equation (14.9) is used by plotting 1/f11 against 1/[L], so it is
called the double-reciprocal plot:

1

f11
¼ 1

K11½L� þ 1 ð14:9Þ

When spectrophotometry is the experimental method of study, the double-reciprocal
plot is called the Benesi–Hildebrand plot.

Figure 14.2. Plot of Eq. (14.7), the 1 : 1 binding isotherm, for K11¼50M	1 (see Table 14.2).

4 We have seen earlier manifestations of Eq. (14.7). The Langmuir adsorption isotherm (Chapter 11) and
Eq. (12.22) have this form. The identityK¼ 1/[L]when f11 ¼ 0.500 is the same as the condition pKa¼ pH at
the midpoint of an acid–base titration.
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Equation (14.10) is another plotting form of Eq. (14.7); a plot of [L]/f11 against [L]
is expected to be linear:

½L�
f11

¼ L½ � þ 1

K11
ð14:10Þ

Finally, Eq. (14.11) is a third plotting form:

f11
½L� ¼ 	K11 f11 þK11 ð14:11Þ

This plot of f11/[L] against f11 is sometimes called a Scatchard plot.
Linearity in these plots is a necessary condition if the 1:1 model is valid; and from

the parameters of the equation,K11 can be evaluated. Actually we seldommeasure f11
directly, but rather some experimental quantity that is related to f11, so the interpreta-
tion of the plots depends on the particular experimental method, as will be shown in
Section 14.4.

A very interesting version of the 1:1 model arises in the study of many small
molecule–protein binding systems. In these systems we may consider that n small
molecules, which will play the role of ligand L, may bind to a single proteinmolecule,
whichwewill call the substrate S. As ameasure of the extent of binding, we define the
quantity

�i ¼ Lt	½L�
St

ð14:12Þ

where Lt. and St refer respectively to the total ligand and substrate concentrations;
�i can be interpreted as the average number of ligandmolecules bound per molecule of
substrate.

Now, if we impose the rather stringent conditions that all n binding sites on the
protein are identical and independent, it is possible to derive the following isotherm:

�i ¼ nk½L�
1þ k½L� ð14:13Þ

where k is the constant for binding to a single site. According to this equation, this
rather complicated system follows the hyperbolic function characteristic of simple 1:1
binding. Usually n and k are evaluated from a Scatchard plot.

The 1:1 þ 1:2 Model. This stoichiometric model will serve as an example of the
treatment of multiple complexes. The complex stoichiometries are SL and SL2, and
the stepwise binding constants are defined in Eqs. (14.3) and (14.4). Obviously, both
of these equations must be simultaneously satisfied.
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Theexistenceof theSL2 complexmeans that theremust be twobinding sites onS. If
these two sites are chemically different, there may exist two different 1:1 complexes.
All of these possibilities can be related by the scheme

X'Y

XY'

XY X'Y'

K*
X'Y'

K**

KX'Y

KXY' X'Y'

where XY represents the uncomplexed substrate, and X and Y are the two different
binding sites.A superscript prime indicates that the site is complexed to anLmolecule,
so X0Y and XY0 are the two possible isomeric 1:1 complexes and X0Y0 is the 1:2
complex. The equilibrium constants shown are microscopic binding constants.

We experimentally measure K11 and K12. These are related (Connors 1987) to the
microscopic constants by

K11 ¼ KX0Y þKXY 0 ð14:14Þ
K11K12 ¼ aXYKX0YKXY 0 ð14:15Þ

where aXY ¼ K*
X0Y 0=KXY 0 ¼ K**

X0Y 0=KX0Y 0 . Since these two equations constitute two
independent equations with three unknowns, we are in general unable to evaluate the
microscopic constants. Two special cases are of interest, however. First, suppose
that the two binding sites are identical. This means that KX0Y ¼ KXY, so K11 ¼ 2KX0Y
and Eq. (14.15) becomes K11 ¼ 4K12=aXY. The second special case occurs if the two
sites are identical and are also independent. This last condition means that aXY ¼ 1,
and we then find that K11 ¼ 4K12.

Perhaps this treatment of the 1 :1 þ 1:2 model has seemed somewhat familiar.
In fact, it ismerely a rephrasing of the arguments used in Section 12.7when discussing
the assignment of pKavalues of diprotic acids. The only difference in the treatments is
that for acids we defined Ka values as dissociation constants whereas for complex
formationour equilibriumconstants are association constants. In the acid–base system
the proton plays the role of the ligand.

14.4. MEASUREMENT OF BINDING CONSTANTS

In this section we describe a few experimental techniques for the determination of
complex binding constants; manymore techniques are available (Connors 1987). It is
obviously essential that the temperature be controlled and that the system be at
equilibrium; this latter condition is easy to achieve because most noncovalent
interactions take place very rapidly.
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Spectrophotometry. A basic knowledge of absorption spectroscopy is assumed.
We will treat the 1:1 stoichiometric model, assuming that Beer’s law is obeyed by all
species. The method requires that the free substrate S and the complex SL possess
significantly different absorption spectra. Awavelength is chosen at which eS and e11
are different. (Subscripts refer to the species; 11 indicates the complex SL.) St and Lt
represent total substrate and ligand concentrations.

In the absence of ligand we can write

A0 ¼ eSbSt ð14:16Þ

In the presence of ligand at fixed St value, the solution absorbance is given by

AL ¼ eSb½S� þ eLb½L� þ e11b½SL�

which is combined with the mass balances Lt¼ [L] þ [SL] and St¼ [S] þ [SL] to
give

AL ¼ eSbSt þ eLbLt þDe11b½SL�

where De11 ¼ e11	eS	eL. If the solution absorbance is measured against a reference
containing Lt mol L	1 of ligand, the absorbance actually measured is

A ¼ eSbSt þDe11b½SL� ð14:17Þ

Now subtract Eq. (14.16) from Eq. (14.17) and incorporate the definition of K11

[Eq. (14.3)], obtaining

DA ¼ K11De11b½S�½L� ð14:18Þ

where DA ¼ A	A0. From the mass balance St¼ [S] þ [SL] and the expression for
K11 we find St¼ [S](1 þ K11[L]), which is used in Eq. (14.18):

DA
b

¼ StK11De11½L�
1þK11½L� ð14:19Þ

This equation is the 1:1 binding isotherm expressed for spectrophotometric observa-
tion. Note that the functional dependence of the dependent variable DA=b on [L] is
identical with that in Eq. (14.7).

There is a subtlety in the application of Eq. (14.19), because in this equation [L]
is the free (uncomplexed) concentration of ligand, which we do not (yet) know.What
we know is Lt, the total ligand concentration, because we prepare the solutions with
a known constant value of St and varying but known values of Lt; then we measure
DA=b in these solutions. The answer to this problem is to start with the mass balance
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Lt¼ [L] þ [SL], incorporating the expression for K11 to yield

Lt ¼ L½ � þ StK11½L�
1þK11½L� ð14:20Þ

Equations (14.19) and (14.20) together provide a complete description of the system.
Often it is possible to design the experiment such that Lt� St; then Eq. (14.20) shows
thatLt � ½L�, andEq. (14.19) canbe analyzedwith this approximation.Moregenerally
an iterative method is required; with a preliminary estimate of K11, Eq. (14.20) is
solved to give the [L] value corresponding to each Lt. These [L] values are used in
Eq. (14.19) to obtain an improved estimate ofK11, and this process is repeated until the
K11 estimates reach a constant value. The solution of Eq. (14.19) can be carried out
graphically as described earlier; for example, the double-reciprocal form (the
Benesi–Hildebrand plot) is

b

DA
¼ 1

StK11De11½L� þ
1

StDe11
ð14:21Þ

According to this equation, a plot of b=DA against 1/[L] will be linear if the
stoichiometry is 1:1. The value of K11 is found from

K11 ¼ intercept on vertical axis

slope
ð14:22Þ

The parameter De11 may be evaluated from the intercept value.
Table 14.3 lists experimental data from a study of the complex between cinnamic

acid anion (the substrate S) and theophylline (the ligand L) (Kramer and Connors
1969). Figure 14.3 is the plot of these data according to Eq. (14.21). From this plot the
value K11¼ 10.5M	1 was evaluated.

This absorption spectrophotometric method can be applied throughout the ultra-
violet, visible, and infrared regions of the spectrum. Moreover, the same approach is
applicable to fluorescence data and to nuclear magnetic resonance chemical shifts.

Table 14.3. Complexing of sodium cinnamate and

theophylline at pH 6.5 and 25 
C

102 Lt (M) Aa

0.00 0.530
1.11 0.791
1.25 0.826
1.43 0.858
1.67 0.906
2.00 0.965
2.50 1.053

aPathlength b¼ 1 cm; wavelength¼ 315 nm; St¼ 0.001M.
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Solubility. When a complex is formed, the total (apparent) solubility of an interactant
is increased, and this change in apparent solubility can be analyzed to derive the
binding constant. The experiment consists of the addition of an identical weight (in
considerable excess of its intrinsic solubility) of substrate S to each of numerous vials.
Increasing amounts of soluble ligand L are added to successive vials, and solvent is
added tomakean identical volumeof solution in eachvial.Now thevials are agitated at
constant temperature until solubility equilibrium is achieved (typically about 24 h).
Then the solution phase of each vial is analyzed for its total dissolved concentration of
substrate, St. A solubility phase diagram is constructed by plotting St (vertical axis)
against Lt.

We will carry out the interpretation of the phase diagram for the case of 1:1
stoichiometry. The mass balance expressions are

St ¼ ½S� þ ½SL�
Lt ¼ ½L� þ ½SL�

as we have often written. The manner in which the experiment was carried out
ensured that pure solid S remained in each vial at equilibrium, which means that the
chemical potential, and therefore the activity, of uncomplexed substrate S was the
same in each vial; we can therefore reasonably conclude that the concentration of
free S, namely [S], was the same in each vial, including the vial containing no ligand

Figure 14.3. Plot of spectral data for the sodium cinnamate (S)–theophylline (L) system; pH 6.5;

at 25 
C; K11¼ 10.5M	1. Values of ordinates are an arithmetic average of five determinations.

[Reproduced by permission from Kramer and Connors (1969).]
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at all. This quantity is therefore the intrinsic solubility s0 of substrate. The mass
balance on substrate can therefore be written

St ¼ s0 þ ½SL� ð14:23Þ

Combining Eq. (14.23) with the mass balance on ligand and the definition of K11

gives

St ¼ s0 þ K11s0Lt
1þK11s0

ð14:24Þ

as the solubility binding isotherm. Equation (14.24) predicts that St will be a linear
function of Lt; the intercept will be s0, and the binding constant can be calculated
from

K11 ¼ slope

S0ð1	slopeÞ ð14:25Þ

Table 14.4 gives solubility data for a study of the complexing between theophylline
(the substrate) and sodium salicylate (the ligand) (Cohen and Connors 1967).
Figure 14.4 is the plot according to Eq. (14.25). From this phase diagram the value
K11¼ 21.5M	1 was evaluated.5

The solubility method can be extended to the study of multiple complexes.

Table 14.4. Solubility data for the theophylline

(S)–sodium salicylate (L) systema

102Lt (M) 102St (M)

0 3.87
2.52 5.17
5.04 6.22
10.09 8.60
12.61 9.46
15.14 10.94
20.18 12.88

aAt 25 
C in pH 6.5 phosphate buffer.

5 Earlier 1:1 binding isotherms [Eqs. (14.7) and (14.19)] have been hyperbolic functions of [L], whereas
Eq. (14.25) is a linear function of Lt. This distinction arises because of the unusual feature of the solubility
experiment in which [S] is maintained constant while St varies; in the other methods, St is held constant and
[S] varies.
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Potentiometry. We saw in Chapter 13 that it may be possible to design an
electrochemical cell such that an ion activity is related to cell potential by the
Nernst equation:

E ¼ constant� RT

nF
ln a

If the activity of this ion changes in the process of complex formation, then
potentiometry offers a means for studying the complex. This is what we do when
we measure pKa values of weak acids. The principle can be extended to study the
formationof complexes betweenmetal ions andbases. These complexes,which canbe
exceedingly strong, are the result of covalent bonding and lie somewhat outside our
present concern, but they can be studied in the same way (Connors 2000).

Wewill develop thepotentiometricmethod for the formationof complexesbetween
aweak acid–base conjugate pair (the substrate) and a neutral ligand. The hydrogen ion
activity changes as the ligand concentration is altered, so that the ion we monitor,
Hþ , is a measure of the extent of complex formation but is not itself the substrate or
ligand. In general, both the acid form of the substrate, HA, and its conjugate base A	,
can complex with the ligand L, so we write

HAþLÐK11a

HAL

A	 þLÐK11b

AL	

We also have the usual acid–base equilibrium

HAÐKa

Hþ þA	

Figure 14.4. Phase solubility diagram for the theophylline (S)–sodium salicylate (L) system at

25 
C. [Reproduced by permission from Cohen and Connors (1967).]
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and there also exists this acid–base equilibrium:

HALÐKa11

Hþ þAL	

Defining and manipulating these four equilibrium constants gives

Ka

K11
¼ K11a

K11b
ð14:26Þ

Thus only three of these four quantities are independent; that is, we need measure and
discuss only three of them to give a full description of this 1:1 stoichiometric system.
We will choose Ka, K11a, and K11b.

The experiment consists of measuring the apparent pK0
a of HA as a function of

added ligand. We start the analysis by defining the apparent acid dissociation
constant by

K 0
a ¼ ½HA�ð½A	�þ ½AL	�Þ

½HA� þ ½HAL� ð14:27Þ

Then the expressions for Ka, K11a, and K11b are combined with Eq. (14.27), yielding

K 0
a ¼ Ka

ð1þK11b½L�Þ
ð1þK11a½L�Þ ð14:28Þ

Defining DpK 0
a ¼ pK 0

a	pKa allows us to write Eq. (14.28) as

DpK 0
a ¼ log

ð1þK11a½L�Þ
ð1þK11b½L�Þ ð14:29Þ

Further defining the quantity C by

C ¼ 1þK11a½L�
1þK11b½L� ð14:30Þ

we have DpK 0
a ¼ log C. Equation (14.30) is the 1:1 binding isotherm. We measure

DpK 0
a as a function ofLt, where pKa is thevalue ofDpK 0

awhenLt¼ 0. ThenC is found
fromDpK 0

a.A separatemass balance relates [L] toLt. Equation (14.30) is a rectangular
hyperbola, and the usual three linear plotting forms can be used to extract values
of K11a and K11b. Equation (14.31) shows the form corresponding to Eq. (14.11), the
Scatchard plot:

C	1

½L� ¼ K11a	K11bC ð14:31Þ
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Table 14.5 gives DpK 0
a values for two complexing systems; in both of these

a-cyclodextrin, a macrocyclic natural product formed of six residues of glucose is the
ligand. The substrates are benzoic acid and 4-cyanophenol (Connors et al. 1982; Lin
and Connors 1983). The first interesting feature of these data is the very substantial
values of DpK 0

a that may occur. The second point is that DpK 0
a may be either positive

or negative. [IfDpK 0
a is negative, it can be redefined asDpK 0

a ¼ pKa	pK 0
a in order to

generate a positive number; alternatively, define C0 ¼ 1/C and use C0 instead of C in
Eqs. (14.30) and (14.31).] Referring to Eq. (14.30) shows that a positiveDpK 0

a, which
signifies that C> 1, means that K11a > K11b; the conjugate acid binds to the ligand
more strongly than does the conjugate base. Similarly, a negative DpK 0

a means that
K11b > K11a. If K11a ¼ K11b, then DpK 0

a ¼ pKa so DpK 0
a ¼ 0, and the method is

inapplicable; this circumstance is rare, however, because the conjugate acid and base
differ electronically very profoundly, so their noncovalent interaction possibilities
differ as a consequence.

From plots of Eq. (14.31), the values K11a ¼ 722M	1 and K11b ¼ 11.2M	1 were
found for the benzoic acid–a-cyclodextrin complexes. The 4-cyanophenol complexes
gave K11a ¼ 158M	1 and K11b ¼ 662M	1.

Dialysis. This interesting method is applicable to the study of the binding of small
molecules tomacromolecules, and it has beenwidely applied to drug–protein binding.
The experimental method requires that two solution compartments be separated by
a semipermeable membrane, that is, a membrane through which the small molecule
can freely pass but the macromolecule cannot. Let us call the macromolecule

Table 14.5. DpK 0
a values at 25 
C for the complexing of

benzoic acid and of 4-cyanophenol with a-cyclodextrin

DpK 0
a

Lt (M) Benzoic Acid 4-Cyanophenol

0.0017 0.24 —
0.0020 — 	0.16
0.0030 — 	0.21
0.0045 — 0.28
0.0057 0.61 —
0.0075 — 	0.38
0.01 0.84 	0.42
0.02 1.10 	0.52
0.03 1.25 	0.56
0.04 1.34 	0.58
0.05 — 	0.58
0.06 1.45 	0.59
0.07 1.48 	0.58
0.08 1.51 	0.59
0.09 1.54 	0.59
0.10 1.55 	0.58
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the substrate S and call the small molecule the ligand L. We label the compartments
1 and 2.

Thesubstrate, at known total concentrationSt, is placed incompartment1,where it is
constrained to remain because of its size. The small ligand is placed in compartment 2.
The system is allowed to come to equilibrium at constant temperature.

At equilibrium the chemical potentials of free L, the diffusible ligand, in the two
compartments are equal. We may therefore (usually) infer that the concentrations of
L are equal. Using subscripts to identify the compartments, we write this equality as

½L�1 ¼ ½L�2 ð14:32Þ

The solutions in the two compartments are analyzed to determine their total ligand
concentrations, (Lt)1 and (Lt)2. For compartment 1 we can now state

ðLtÞ1 ¼ ½L�1 þ ½bound L�1 ð14:33Þ

and for compartment 2 we have

ðLtÞ2 ¼ ½L�2 ð14:34Þ

We therefore have all the information required to calculate the quantity �i [Eq. (14.12)],
rewritten here explicitly for compartment 1:

�i ¼ ðLtÞ1	½L�1
ðStÞ1

ð14:35Þ

This experiment is repeated over a range of ligand concentrations, and then binding
isotherm (14.13) is applied to the data to determine the parameters n and k.

Strengths of Complexes. We might express the strength of a complex in terms of
either its binding constant or (what is equivalent) its standard free energy changeDG0,
or as its standard enthalpy change DH0. These may parallel each other for comparable
systems, but they may diverge markedly because of the thermodynamic relationship
DG0 ¼ DH0	T DS0. Let us make some simple calculations to develop a sense of the
magnitudes to be expected.

We recall from an earlier discussion that the net free-energy changemay be divided
into contributions from solute–solute (i.e., substrate–ligand) interactions, from
solute–solvent (solvation) interactions, and from solvent–solvent interactions, or

DG0 ¼ DG0
SL þDG0

solvation þDG0
MM ð14:36Þ

Let us first consider an H-bond complex formation reaction in vacuo or in a very
nonpolar solvent, so that essentially only the solute–solute interaction makes a
contribution; thus DG0 ¼ DG0

SL. Suppose that DH0 for the reaction is	3 kcalmol	1,
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a typical value for a noncovalent interaction.We also need an estimate for DS0, which
wewill obtain with the following (oversimplified) argument. In the process of the two
species S and L interacting to form the complex C, some modes of molecular motion
are lost. Even supposing that all internal modes (vibrational and rotational) of S and L
are preserved in C, three translational modes will be lost. Applying the statistical
mechanical definition of entropy [Chapter 2, Eqs. (2.1) and (2.2)] to the reaction
SþL>C, we obtain DS0 ¼	R ln 3¼	9.1 JK	1mol	1 or 	2.2 cal K	1mo1	1.
For our hypothetical system we therefore calculate DG0 ¼	3000 þ (298) (2.2)¼
	2350 calmol	1. With the basic equation DG0 ¼	RT lnK11 we calculate
K11¼ 53M	1 at 25 
C.

Now let us consider the quite different system of two nonpolar molecules in
aqueous solution. The solute–solvent and solute–solute interactions will be negligible
orwill largely offset each other, so in this casewe canwriteDG0 ¼ DG0

MM.To estimate
DG0, we draw on the cavity theory of the hydrophobic interaction, according towhich
the change in free energy is equal to the product gDA, where g is the solvent surface
tension and DA is the change in nonpolar surface area in contact with the solvent.
Suppose DA¼	50A2; this is about the cross-sectional area of an aromatic ring. For
water g ¼	71.8 erg cm	2. Thus

DG0 ¼ 71:8
erg

cm2

� � 1J

107erg

� �
	 50 A


 2
� � 10	8cm

1 A



� �
¼ 	3:6 � 10	20J

This is the free-energy change per complex; we multiply by NA to put it on a molar
basis, finding DG0 ¼	21.7 kJmol	1 or 	5.2 kcal mol	1. Converting to K11, gives
K11¼ 6.5� 103M	1.

These calculations illustrate the magnitudes of binding constants that may be
expected, although the range is even larger than indicated by these numbers. Values of
K11 smaller than1M	1 havebeen reported, although such results shouldbe interpreted
with caution. Very large values are not unusual. Consider the pKa of phenol, which
is 10.00 at 25 
C. Ka is a dissociation constant. Its reciprocal, 1/Ka¼K11, is a binding
constant; this is obviously 1� 1010M	1.

As was pointed out for acids and bases in Table 12.8, values of equilibrium
constants for closely related reactants tend to fall into characteristic ranges. This
behavior provides a coarse level of predictability. There is some evidence that for each
identifiable “population” or class of complex equilibria the log K11 values are
normally distributed (Connors 1995; Burnette and Connors 2000). Figure 14.5 is a
plot of logK11 for the complexation of 663 substrates with the ligand a-cyclodextrin.
The mean value of log K11 is 2.11, and its standard deviation is 0.90. With these
parameters the normal distribution was plotted as the smooth curve in Figure 14.5.
[The equation of this curve is given by Eq. (0.102) and the properties of the normal
distribution are discussed in Section 0.6].

This kind of systematic behavior is seen also with other classes of noncovalent
interactions, and Table 14.6 collects some examples. Observe that the mean value
covers a range of more than seven orders of magnitude in K11 while the standard
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deviations differ by nomore than a factor of two.On this basis, the following postulate
has been suggested (Connors, 1997):

Any chemically well-defined class of noncovalent association equilibria will be nor-
mally distributed in the variable log K11, the standard deviation of all such populations
being about one log K11 unit.

Figure 14.5. Frequency distribution (points) and normal distribution (curve) calculated with the

parameters n¼663, m ¼ 2:11, and s ¼ 0:90 for a-cyclodextrin complex stabilities with both

uncharged and ionic substrates.

Table 14.6. Statistical parameters for noncovalent binding equilibria in aqueous

solution at 25 
C

Equilibrium (Reactants Shown) n �x a sa

a-CyD þ substrateb 663 2.11 0.90
b-CyD þ substrateb 721 2.69 0.89
g-CyD þ substrateb 166 2.55 0.93
R-COO	 þ Hþ 458 4.07 0.67
cX-COO	 þ Hþ 161 2.32 0.62
	OOC-COO	 þ Hþ 174 5.55 1.27
ArO	 þ Hþ 116 9.42 1.21

a�x and s in units of log K11.
bCyD¼ cyclodextrin.
cX represents strongly electron-withdrawing group(s).
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14.5. APPLICATIONS

General. The interaction between two or more molecules through noncovalent
interactions is referred to as molecular recognition. Molecular recognition is at the
basis of the inner working of biological molecules, including proteins and nucleic
acids. Antigene–antibody, DNA transcription, RNA translation, and receptor–ligand
binding are all examples of biological molecular recognition. Many drugs exert their
actionby simply interferingwith noncovalent interactions between specificmolecules
in the cell, so the field of molecular recognition is of special importance to pharma-
ceutical systems. The formation of complexes between molecules of various size has
been extensively exploited for the purpose of drug delivery. A particularly significant
example is given by the use of cyclodextrins.

Cyclodextrins. Cyclodextrins (Connors 1997, Challa 2005). are cyclic oligomers of
a-D-glucose having a truncated-cone shape (Fig. 14.6). Three kinds of cyclodextrins
are readily available: a–, b–, and g-cyclodextrins, composed of six, seven, and eight
units of a-D-glucose, respectively. The utility of cyclodextrins stems from their
lipophilic inner cavities, which can complex hydrophobic molecules, and their
hydrophilic external surface, which imparts considerable water-solubility to these
molecules and to their complexes. (The strength of cyclodextrin complexes were
discussed in Section 14.4.) Thus, if a hydrophobic drug can be complexed inside a
cyclodextrin, it can be readily made water-soluble, while at the same being protected
from the aqueous environment. Release of the drug is achieved by equilibrium
dissociation. It should be noted that the inner cavity of a cyclodextrin is quite small
and can accommodate only small molecules such as phenyl derivatives. Nevertheless,
much larger molecules can be solubilized in water by using cyclodextrins. It is often
sufficient for only one part of a hydrophobic molecule to be complexed inside a
cyclodextrin to dramatically increase thewater solubility of thatmolecule. Figure 14.7
shows the binding mode of a cytoprotective agent with various b-cyclodextrins at
different pHs (Nagase 2001). Note how most of the drug molecule is outside of the
cyclodextrin hydrophobic cavity.

Complexation of a drug with a cyclodextrin may bring the following advan-
tages: (a) improved water-solubility and dissolution, (b) enhanced bioavailability,
(c) reduced drug toxicity, and (d) improved drug stability. Cyclodextrins have been
used in oral, parenteral, ocular, nasal, mucosal, dermal and transdermal, and brain
targetting drug delivery. Hundreds of drugs have been studied as complexes with
cyclodextrins. These include sulfomethiazole, naproxen, ketoprofen, fluasterone,
doxorubibin, teststerone, danazol, tolbutamide, cyclosporine, and dexamethasone.

A useful property of cyclodextrins is their relative resistance to hydrolysis. This
ability makes cyclodextrins especially useful for targeting the delivery of drugs to the
colon. In addition, cyclodextrins have been used for the delivery of peptides, proteins,
genes, and oligonucleotides.

RNA Binding and Recognition. The use of cyclodextrins in drug delivery shows
very clearly the importance of noncovalent complexes in pharmaceutical research.
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A second large field of investigation inmolecular recognition involves the study of the
features that allow certain molecules to recognize only specific compounds. The
careful appreciation of how a network of intermolecular interactions leads to highly
selective binding and recognition is the key for designing novel noncovalent com-
plexes and for tuning their binding affinity. Among all molecules that have been
studied in the molecular recognition field, biopolymers hold a special place. Proteins
and nucleic acids are among themolecules that allow life as we know it.While a large
body of research exists on proteins, the binding ability of nucleic acids for small
molecules—and, more specifically, the ability of oligoribonucleotides to be able to
recognize and bind small molecules with high affinity—has recently emerged as a
crucially important field. The discovery of small-molecule binding RNAs such as
those found in riboswitches and various forms of MicroRNAs has led to work on
understanding the binding ability of these biopolymers. RNAs can fold in complex
three-dimensional structures resembling those of proteins and enzymes. Some RNAs
have been found to be able to bind small molecules with high affinity, and others
can catalyze certain reactions. The former are calledRNAaptamers,whereas the latter
are referred to as ribozymes. The ability of RNAs to selectively bind small molecules
and to catalyze reactions hints at the possibility that RNAs possess many different
functions inside a cell, besides being involved in transcription and translation
processes.An important aspect ofRNArecognition studies is theminimumnucleotide
sequence able to recognize and bind selectively a small molecule. A combination
of computational and experimental studies has allowed the identification of the
miminum sequence requirements for the binding of a number of small molecules
(Anderson and Mecozzi 2005a, 2005b, 2006, 2007). For instance, starting from the

Figure 14.7. Proposed modes for the inclusion complexes of DY-9760e with HP-b-Cyclodextrin

(A) and SBE-b-Cyclodextrin (B) at pH 4.0 (upper) and7.4 (lower). [Reproduced with permission

from Nagase et al. (2001).]

APPLICATIONS 325



crystal structure of the anti-asthma drug theophylline 29 and its RNA aptamer, it has
been possible to reduce RNA size from 33 to just 13 nucleotides while retaining
binding ability (Fig. 14.8) (Anderson 2005a).
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N N
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N N
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29 30

Moreover,while the identified 13-merRNAis the smallestRNAever shown tohave
a function (in this case the binding of theophylline), it should also be noted that this
RNA was even able to selectively bind theophylline in presence of caffeine 30, a
closely related structural analog of theophylline. The selectivity achievedby this small
RNA indicates how recognition and binding affinity of biopolymers are related not
only to their complexity but also to their preorganized structure and to the possibility
of forming a rather large number of noncovalent interactions. Similar studies have
allowed the identification of the RNA minimum sequence requirements for the
binding of the antibiotic paromomycin to the ribosome decoding site A (Anderson
2007) and of flavin mononucleotide (Anderson 2005b).

PROBLEMS

14.1. Define overall and stepwise binding constants for the formation of complex
S2L3, and show how these constants are related.

Figure 14.8. Using computational methodologies based onmolecular mechanics andmolecular

dynamics simulations, an RNA sequence binding the drug theophylline with high selectivity and

affinity has been reduced from 33 nucleotides (A) to only 13 nucleotides (B).
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14.2. Construct plots according to Eqs. (14.9)–(14.11) of the simulated data in
Table 14.2.

14.3. Equation (14.19) describes the binding curve for the spectrophotometric study
of 1:1 complex formation. What is the value of the initial slope (i.e., the slope
when [L]¼ 0) of the plot of DA=b versus [L]?

14.4. (a) From Eq. (14.19) derive the Scatchard linear plotting form (corresponding
to Eq. (14.11)).

(b) Plot the data in Table 14.3 to evaluate K11 and De11. Assume Lt¼ [L].

14.5. What is the value of the initial slope of a plot of C against [L] according to
Eq. (14.30)?

14.6. The anti-asthma drug theophylline is often sold as a complex with salicylic
acid. In solution the compounds form a 1:1 complex. Calculate the concentra-
tion of free theophylline assuming that the binding constant is 21.5M	1 and
the fraction of complexed salicylic acid (substrate) is 0.99.

14.7. Tests on a newly isolated protein show that warfarin is a major binder to the
protein. A Scatchard analysis of the binding between the protein and warfarin
shows that the binding constantK11 is equal to 10

5 Lmol	1 and that the number
n ofmolecules of warfarin bound on average to onemolecule of protein is equal
to 6. Knowing that the equation used for the Scatchard plot is

f11
½L� ¼ nK11	f11K11

Calculate:

(a) The equation defining the binding isotherm.

(b) The fraction of uncomplexed protein when the concentration of the free
ligand [L] is 5� 10	7M.

(c) The concentration of free ligand that corresponds to a fraction of com-
plexed protein equal to 0.5.

14.8. In Table 14.6, means and standard deviations are given in units of log K11 for
populations (classes) of cyclodextrin complex formation and weak acid
equilibria in aqueous solution. How is the pKa of aweak acid related to logK11?
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APPENDIXA
PHYSICAL CONSTANTS

Quantity Symbol Value

Avogadro’s number NA 6.022� 1023mo1	1

Gas constant R 8.314 JK	1mo1	1

1.987 cal K	1mol	1

0.08206L atmK	1

Boltzmann’s constant k 1.381� 10	23 J K	1

Faraday F 9.6485� 104 Cmol	1

Elementary charge e 1.602� 10	19 C
Planck’s constant h 6.626� 10	34 J s
Speed of light in vacuum c 2.9979� 108m s	1
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APPENDIXB
KINETICTHEORYOFGASES

The kinetic theory of gases is a classical approach to explaining the macroscopic
properties of gases such as temperature, pressure, and volume and the relationship
among these properties. This is done by considering the incessant motion of the
particles composing the gas and their collisionswith thewalls of the container holding
them. The theory is based on these assumptions:

1. A gas consists of separate particles, either molecules or atoms, characterized by
a certain mass per particle.

2. The gas particles can be considered as points; that is, their volume is negligible
compared with the volume of the container holding them.

3. Collisions between gas particles and thewalls of the container in which they are
held are perfectly elastic.

4. The gas particles do not exert any attractive or repulsive interactions on each
other.

5. The average kinetic energy of the particles depends only on the gas temperature.

Let�s considerNgasparticles, each ofmassm,held inside a cubic boxof sideb. Let c
be the average molecular velocity. This velocity can be resolved along the three x, y,
and z axes to give the cx, cy, and cz components of the velocity c. Consider a particle
moving along the x axis. Upon collision with the box wall perpendicular to the x axis,
the particle will reverse its motion while the velocity component cx will remain the
same. Thus, the change in momentum of the particle can be written as

DðmcxÞ ¼ final momentum	 initial momentum¼ 	mcx	mcx ¼ 	2mcx ðB:1Þ

The pressure exerted by the gaswill be givenby the average force the particles exert
on thewall per unit area.This average forcewill begivenby the change inmomentump
per unit time.Theparticlewill, on average, hit thewall perpendicular to itsmotion c/2b
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times per second. Then, the force acting on the wall will be, per particle,

Fx ¼ Dp
Dt

¼ 2mcx
2b
cx

¼ mc2x
b

ðB:2Þ

The total force acting on thewall in thexdirectionwill begivenbyconsidering all theN
molecules:

F ¼
m
PN
i¼1

c2ix

b
ðB:3Þ

The total force acting on all six walls of the cubic container will be simply

Ftot ¼ 2

m
PN
i¼1

c2i

b
ðB:4Þ

where the factor 2 considers both walls in a certain direction. The total force acting on
just one of the six walls can be obtained by dividing Eq. (B.4) by 6:

F ¼
m
PN
i¼1

c2i

3b
ðB:5Þ

The quantity
PN
i¼1

c2i can be written as Nc2 . The average
ffiffiffiffiffi
c2

p
is called the root-

mean-square velocity of the particles, and it is often symbolized m. The pressure
P can be obtained by noting that the areaA of thewall onwhich the forceF is exerted is
given by b2. Then

P ¼ F

A
¼ Nmc2

3b3
¼ Nmc2

3V
ðB:6Þ

which can be rewritten as

P ¼ 1

3

M

V
c2 ¼ 1

3
dc2 ðB:7Þ

whereM¼Nm is the total mass of the gas and d is its density. We can then calculate
the root-mean-square velocity m from the density of the gas:

m ¼
ffiffiffiffiffi
c2

p
¼

ffiffiffiffiffiffiffiffiffi
3PV

Nm

r
¼

ffiffiffiffiffiffiffiffiffi
3PV

M

r
¼

ffiffiffiffiffiffi
3P

d

r
ðB:8Þ

The ideal gas law can easily be derived from Eq. B.6. The kinetic energy associated
with just one gas molecule will be given by 1

2mc
2. This kinetic energy is linearly
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proportional to the temperature through a constant a: 1
2mc

2¼aT. In addition,
the number N of molecules will be given by the product of the Avogadro number
NA and the number of moles of gas n. This leads us to

PV ¼ Nmc2

3
¼ 2

3
aNA nT ¼ nRT ðB:9Þ

where we have indicated the constant 23aNAwith R.
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APPENDIXC
EXTRATHERMODYNAMIC

RELATIONSHIPS

Several passages in this book have mentioned interpretations of relationships that do
not constitute part of classical equilibrium thermodynamics but share some of its
concepts and methods. These extrathermodynamic ideas make use of atomic and
molecular models such as modes of intramolecular transmission of electronic effects
or steric effects; and these ideas, while having great value in guiding interpretations of
chemical and physical phenomena, are in some degree conjectural and subject to
modification.Herewedescribe some features of this extrathermodynamic approach in
order to demonstrate the attitude that is adopted. The great simplifying generalization
of (mainly) early twentieth-century chemical research was that like structural
changes produce like chemical effects. Extrathermodynamic methods lend quantita-
tive precision to this observation.

Linear Free Energy Relationships. We define as a reaction series X a set of
compounds having the same reaction site X but containing varying substituents
elsewhere in the molecule; thus let R1X, R2X, R3X, . . . constitute reactions series
X. Similarly, consider reaction series Y consisting of compounds R1Y, R2Y, R3Y, . . ..
Supposewe subject both series to reactions appropriate to the functional groupsX and
Y and measure the equilibrium constants of all these reactions.

According to thermodynamics, each equilibrium constant is related to a standard
free energy change by Eq. (C.1) (see Chapter 4, Section 4.3):

DG0 ¼ 	RT ln K ðC:1Þ

In attempting to interpret our set of experimental data, therefore, we might be led by
this equation to make a plot of the logarithms of the equilibrium constants of series X
against those of series Y; that is, log KX

1 (for compound R1X) is plotted against log K
Y
1

(for compoundR1Y), and so on. If the two reaction series are not greatly different (and
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there is much chemical meaning embodied in those fewwords), we often observe that
this plot yields a straight line. Let us work out the consequences of such a result.

The empirically observed linear plot of log KX against log KY means that

log KX ¼ m log KY þ b ðC:2Þ
wherem is the slope of the plot and b is the intercept. Combining Eqs. (C.1) and (C.2)
gives

DG0
X ¼ mDG0

Y þ b0 ðC:3Þ

where b0 ¼	2.3RTb. Because of the form of Eq. (C.3), a linear plot according to
Eq. (C.2) is called a linear free energy relationship (LFER). Such a relationship clearly
has practical uses in succinctly expressing a large mass of experimental data, and it
offers a means for predicting equilibrium constants for members of a reaction series
that have not been experimentally studied. Beyond this, the LFER suggests the
existence of an underlying simplicity of chemical behavior, and thus it may stimulate
further experimentation or theoretical investigation.

LFER sometimes appear in a slightly different format. Suppose that, in each
reaction series, a particular substituent is designated as a “reference” substituent; very
often the unsubstituted member of the series plays this role. Let KX

0 and KY
0 be the

equilibrium constants for the reference compounds. Equation (C.4) can be written

log KX
0 ¼ m log KY

0 þ b ðC:4Þ

because the point (log KX
0 ; logK

Y
0 ) satisfies Eq. (C.2). Subtracting Eq. (C.4) from

Eq. (C.2) gives

log
KX

KX
0

¼ m log
KY

KY
0

ðC:5Þ

as an alternative plotting form.
This treatment can be carried somewhat further. Let us suppose that reaction series

Y is exceptionally “well-behaved” in the sense that the equilibrium is simple, the
equilibrium constant can be accurately measured, and for good chemical reasons we
think thatKYis an uncomplicatedmeasure of somemolecular-level phenomenon such
as electron distribution.

Then there is an advantage in defining series Yas a reference series, and using it to
attempt to discover LFER with many other processes. This has been done. The
reference reaction that is widely useful is the aqueous acid dissociation at 25
C
of meta- and para-substituted benzoic acids; Table 12.9 lists pKa values for many of
these acids. A quantity s is then defined

s ¼ log
Ka

K0
a

ðC:6Þ
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whereK0
a is the acid dissociation constant for unsubstituted benzoic acid, andKa is the

corresponding constant for a substituted benzoic acid. s is called the Hammett
substituent constant, and with its use we can rewrite Eq. (C.5) as

log
KX

KX
0

¼ rs ðC:7Þ

where r (called the reaction constant) is the slope of a plot of the left-hand side,
obtained from data on a reaction series X, against s. The values of s (the meta and
para series have different s values) are interpreted as measures of the substituent’s
ability to attract electrons from or to release electrons to the reaction site. (The student
may easily calculate sm and sp values from the data in Table 12.9.)

Note that s, defined by Eq. (C.6), is a perfectly valid thermodynamic quantity,
because the equilibrium constants that enter its calculation are thermodynamically
defined. However, the interpretation of s is a measure of electron-release or electron-
withdrawal is extrathermodynamic in nature, as is the inference that the LFER in
Eq. (C.7) has fundamental chemical significance.

The Connection Between Rates and Equilibria. In Chapter 1 a distinction was
made between path-independent functions, called state functions, and path-dependent
functions. Many of the important quantities in thermodynamics, such as changes in
free energy, enthalpy, and entropy, are state functions: their values depend only upon
the values of the quantity in the initial and final states. In consequence, we can learn
nothing from such quantities about the path between the initial and final states. In
reacting chemical systems, the path taken by the system in passing from the initial to
the final sate is called the reactionmechanism.Thus thermodynamicsdoes not indetail
informus about reactionmechanisms. In order to acquiremechanistic information,we
must study the rate of a chemical reaction, because the rate does depend upon the path.
The study of reaction rates is called chemical kinetics.

Not surprisingly, the field of chemical kinetics has its own theories, and for our
purpose the most useful of these is called the transition state theory. Let us begin by
writing this generalized chemical reaction:

I> F

where I represents the initial state [i.e., reactant(s)] and F denotes the final state
[product(s)]. We suppose that we can measure the equilibrium constant K and thus,
from Eq. (C.1), calculate DG0 for the reaction.

Now let us ask, Why does not all of I instantaneously transform itself into F?
After all, if some of I reacts to give F in a given time interval, what is holding back the
rest of it?

The answer is that there is an energy barrier on the reaction path between I and F,
and at any given temperature only a certain fraction of I possesses sufficient thermal
energy to surmount this barrier. The essence of the transition state theory is that at or
near the topof this energybarrier the reacting systemexists as a transition state, and the
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initial and transition states are in virtual equilibrium. (That “virtual” is necessary
because the transition state is a very special kind ofmolecule, possessing a vibrational
mode of motion different from an initial state molecule.) If we assume equilibrium
between the initial state and the transition state, then all of the equilibrium concepts of
thermodynamics can be applied to this process. So let us expand our hypothetical
reaction to include its transition state:

I> ½Mz�> F

(The “double dagger” symbol always refers to the transition state or a quantity
associated with it.) The transition state theory then gives Eq. (C.8) as the key result
(Connors, 1990, Chapter 5).

k ¼
~kT

h
Kz ðC:8Þ

In Eq. (C.8), k is the rate constant of the reaction (an introduction to rate constants is
given inChapter 0), ~k¼R/NA is theBoltzmann constant,T is the absolute temperature,
h is Planck’s constant (see Appendix A), and Kz is the equilibrium constant for the
initial state-to-transition state process.

Figure C.1. Free energy reaction coordinate diagram for the reaction I> ½Mz�> F [Reproduced

by permission from Connors (1990).]
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Since, through this transition state concept, we have imported the results of
thermodynamics into chemical kinetics, we go further and define DGz, DHz, and
DSz, which are respectively called the free energy, enthalpy, and entropy of activation.
These can be evaluated from measurements of the rate constant k by means of these
familiar equations:

DGz ¼ 	RT ln Kz ðC:9Þ
DGz ¼ DHz 	 TDSz ðC:10Þ
d lnKz

dð1=TÞ ¼ 	 DHz

R
ðC:11Þ

We can make these ideas more concrete with Fig. C.1, which is a reaction
coordinate diagram. The vertical axis is measured in units of free energy per
mole. The horizontal axis, labeled reaction coordinate, is not a well-defined quantity,
but can be interpreted as a measure of the progress (reading left to right) of the
transformation of initial state to final state. In the figure, the thermodynamic quantity
DG0 is seen to be determined solely by the free energy difference between the initial
and final states.

Figure C.2. Linear free energy relationship for the kinetics of alkaline hydrolysis of substituted

ethyl 4-biphenylcarboxylates at 40
C; s is the Hammett substituent constant. [Reproduced by

permission from Connors (1990).]
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Now consider the quantity labeled DGz
1. This is the free energy of activation for the

forward reaction, and it is given by the difference in free energies of the transition and
initial states. (The quantity DGz

	 1 is the corresponding change for the reverse
reaction.)

The pointwe have reached allows us to consider the question, Is there a relationship
between DG0 (i.e., the equilibrium) and DGz

1 (the rate) of the reaction? From Fig. C.1
we evidently must answer that there is no necessary relationship. On the other hand,
Fig. C.1 does bring these two quantities together in a theoretical context that perhaps
leadsus to suppose that theremaybe sucha relationship.And indeed such relationships
have been observed. Even more interesting, perhaps, are examples of LFER between
rates and equilibria of different reactions. Suppose the rate constants of reaction series
B are linearly correlated with the equilibrium constants of reaction series A:

log kB ¼ m log KA þ b ðC:12Þ

From Eqs. (C.1) and (C.9), combined with Eq. (C.12), we find

DGz
B ¼ mDG0

A þ b0 ðC:13Þ

FigureC.2 is such anLFER inwhich theHammett substituent constant provides the
equilibrium quantity and the rate constants are for an alkaline ester hydrolysis.
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ANSWERS TO PROBLEMS

Chapter 0

0.1. (a) [Hþ ]¼ 1.78� 10	5M

(b) [Hþ ]¼ 7.41� 10	12M

(c) [Hþ ]¼ 6.46� 10	8M

(d) [Hþ ]¼ 1.00� 10	2M

0.2. (a) pH¼ 2.41

(b) pH¼ 8.94

(c) pH¼ 7.19

(d) pH¼	0.06

0.3. log x¼ (ln x)=2.303¼ 0.434 ln x

0.4. One million times more acidic (i.e., 106).

0.5. q¼ 4.20

0.7. 0.1526 g benzoic acid

0.8. 6.82 g acetic acid

0.9. RA	 ¼ FA	 =ð1	FA	 Þ or FA	 ¼ RA	 =ð1þRA	 Þ
0.10. RHA ¼ RA	 ¼ 1:0; FHA ¼ FA	 ¼ 0:5
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0.11. [HA]¼ 6.52� 10	4M; [A	]¼ 0.98� 10	4M

0.12. pH¼ 2.41

0.13. pH¼ 2.41

0.14. 	b=m

0.16. e ¼ 2.08� 104M	1 cm	1

0.17. K¼ 10.8M	1

0.18. DH ¼ 7.73 kcal mol	1

0.19. K11¼ 41M	1; K12¼ 345M	1

0.20. k¼ 4.90� 10	3 s	1

0.21. (y	 1)=x¼ a	 bx (there are other possible linear forms also).

0.22. The plot of Dc=Dt against �c is reasonably linear, so it has the equation
	Dc=Dt ¼ k�c , with k¼ 6.1� 10	4 s	1.You have obtained an experimental
rate equation, where Dc=Dt is the rate of reaction and k the rate constant.
Compare your value of k with the value calculated in Example 0.11.

0.23. dy=dx¼ au ln a(du/dx)

0.24. (a) dy=dx¼ abxb	1

(b) At x¼ 0.5, y¼ a=4, dy=dx¼ a; at x¼ 1, y¼ a, dy=dx¼ 2a; at x¼ 2, y¼ 4a,
dy=dx¼ 4a

0.25. dy=dx¼ b þ 2cx; d2y=dx2¼ 2c

0.26. Vendpoint¼ 1.83mL; equivalent weight¼ 266.6

0.27. pHmin ¼ 1
2 pKw þ 1

2 logðk1=k3Þ; where pKw ¼ 	 log Kw

and Kw ¼ ½Hþ �½OH	 �
0.28. y¼ 504

0.29. t1/2¼ ln 2=k¼ 0.693=k

0.30. Because the constant of integration will disappear anyway in the subtraction
process.

0.31. dw ¼ @w

@x

� �
y;z

dxþ @w

@y

� �
x;z

dyþ @w

@z

� �
x;y

dz

0.32. �x ¼ 2392M	1; s¼ 484M	1; sm¼ 140M	1; RSD¼ 20.2%

0.33. The plot of log (cB=cA) against t has r¼ 0.981, intercept¼ 0.262, slope¼ 0.107
min	1, from which is obtained k¼ 0.585M	1min	1¼ 9.75� 10	3M	1s	1.

0.34. �x ¼ 1.59, s¼ 0.139, sm¼ 0.046; confidence limits (P¼ 0.05)¼ 1.59� 0.11
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0.35. �x ¼ 2.4� 103M	1; sm¼ 1.4� 102M	1 (note that each of these quantities
possesses two significant figures; the numbers 2.4� 103 and 2400 are subtly
different in this regard)

0.36. 69.9 kJmo1	1

0.37. 1.39� 10	9 s	1

0.38.
1:86 g

mL

� �
103mL

1 L

� �
1 L

10	 3m3

� �
1 kg

103g

� �
¼ 1:86� 103kgm	 3

0.39. 0:77Å
� � 10	 10m

1 Å

� �
109nm

1m

� �
¼ 0:077 nm

0.40.
8:314 J

K mol

� �
1 cal

4:184 J

� �
¼ 1:987 calK	 1mol	 1

0.41. Use quantity algebra to generate a pure number, and then take the logarithm of
this pure number. For example, the expression log Ka really should be
interpreted as log (Ka=M). We use the former symbolism in equations for
convenience.

0.42. Since A is dimensionless and e ¼ A=bc , e has the units Lmol	1 cm	1, or
M	1cm	1.

0.43. Equation (a) is incorrect.

Chapter 1

1.1. DV¼ 35.343 in.3¼ 0.579 L

w¼ PDV¼ 0.579 L atm¼ 58.7 J

1.2. w¼	1718 J

1.3. DU¼ 0 and w¼PDV , so q¼w¼PDV , leading to Eq. (1.15) for q.

1.4. CP¼ 18.02 cal mo1	1 K	1

1.5. Specific heat¼ 1.74 Jg	1 K	1

1.6. T (final)¼ 25
C þ DT¼ 105 
C

1.7. Write Eq. (1.26) as DH¼CP(T2	 T1), applying it both to water and to iron.
Since DH (water)¼	DH (iron), and T2 is the same for both, we find
T2¼ 343.36K or 70.2 
C.

1.8. P¼ 26.3 atm; T¼	78 
C (not all the dry ice has sublimated).

1.9. MW¼ 56.3 g/mol; m¼ 3.6� 104 cm/s.

1.10. dInitial¼ 4.28� 10	3 g cm	3; dFinal¼ 6.8� 10	7 g cm	3.
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1.11. PCHCl3(ideal)¼ 0.255 atm.

1.12. MWnitrous oxide¼ 44.15 g/mol; m¼ 3.93� 104 cm s	1;
d¼ 1.97� 10	3 g cm	3.

1.13. DHf þDHv 	DHs ¼ 0

Chapter 2

2.1. (a) (–) System becomes more ordered as it crystallizes.

(b) (þ ) System becomes more random as it vaporizes.

(c) (–) Two particles combine to yield one particle, with decrease in number of
microstates.

2.2. Using Trouton’s rule, DHv ¼ (21)(353.25) 7.42 kcal mo1	1. (The experimental
value is 7.35 kcal mol	1.)

2.3. DSf¼ 5040/419.15¼ 12.02 cal K	1mo1	1

2.4. DSs¼ 17,600/298.15¼ 59.0 cal K	1mo1	1

2.5. DS ¼ 9.57 JK	1 (i.e.,19.14 J K	1mo1	1)

2.6. DS ¼ 2.61 cal K 1mo1	1

2.7. DS ¼ R ln ðP1=P2Þ
2.8. DS¼ 2.75 cal K	1.

2.9. DS¼ 0.11 cal K	1.

2.10. T¼ 100 
C; DS¼ 68 cal K	1.

2.11. DS¼ 12 cal K	1.

Chapter 3

3.1. a¼ 0.0175m (from data in Table 3.1)

3.2. Dm ¼ mð0:05mÞ 	mð0:005mÞ ¼ 5:41 kJ mol	 1

3.3. Dm ¼ 	 3:44 kJ mol	 1

3.4. Making a solution more concentrated yields a positive free-energy change; the
process is nonspontaneous. (See Problem 3.2.) In Problem 3.3 the process takes
the solution from1M(the standard state) to 0.25M, and this is spontaneous. It is
possible for nonideal behavior (activity coefficient effects) to reverse this
conclusion, however.

3.5. DG¼ 0.
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Chapter 4

4.1. From the integrated Clausius–Clapeyron equation,
DHvap ¼ 9:45 kcal mol	 1 ¼ 39:5 kJ mol	 1

4.2. DG0 ¼ 	1.82 kcal mol	1¼	7.61 kJmo1	1

4.3. DHvap ¼þ 8.79 kcalmo1	1

4.4. DG0 ¼ 2.303RT pKa

4.5. C6H5OH>Hþ þC6H5O
	

Ka ¼ aHþ aPhO	 =aPhoHðPh � C6H5Þ
DG0 ¼ þ 1:36 kcal mol	 1

4.6. DS0 ¼	16.9 calmol	1 K	1

4.7. We might expect DS0 to be positive, because one particle is being transformed
into two particles, with (presumably) an increase in number of accessible
microstates. SinceDS0 is negative, however, wemay infer that something else,
something not apparent in the reaction as written, must be occurring. The most
likely possibility is that the ions on the right-hand side of the equation are
limiting the motions of solvent (water) molecules via strong ion–dipole
interactions. The implication is that, taking into account the solvent, there
are more particles, and therefore more accessible microstates, on the left-hand
side of the equation.

4.8. DG0 ¼	5.25 kcal mo1	1.

4.9. DS¼	10.84 cal mo1	1.

4.10. DH0 ¼	1.358 kcal mo1	1; The van’t Hoff equation shows that if the heat of
dissociation is negative, then the equilibrium constant at a certain temperature
will be smaller than the equilibrium constant at a lower temperature.

4.11. DSv ¼ 23.0 cal K	1mo1	1.

4.12. (a) 2; (b) 2.

4.13. DG0 ¼ 6.47 kcal mol	1.

Chapter 5

5.1. x2¼ 0.0000270, so x1¼ 1	 x2¼ 0.999973

5.2. About 12.4M

5.3. 55.5M

5.4. m0
c 	m0

x ¼ 	RT ln 55:5 ¼	2.38 kcal mol	1¼	9.96 kJmol	1
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5.5. ci ¼ Mir1

5.6. x2 ¼ c2ðn1M1 þ n2M2Þ
1000ðn1 þ n2Þ

whereMl andM2 are molecular weights. [Suggestion: Start by writing the mass
of solution as n1M1 þ n2M2; then use r to write the volume of solution as
(n1M1 þ n2M2)=1000 r in liters.]

5.7. 0.098m.

5.8. X¼ 0.005;%w=w¼ 4.8%

Chapter 6

6.1. 45 
C
6.2. C¼ 2 and P¼ 3, so F¼ 1; however, the pressure is fixed by experimental

design, so there remain no degrees of freedom.

Chapter 7

7.1. DSidealmix ¼ þ 1.36 cal mol	1 K	1¼þ 5.70 Jmo1	1 K	1

DGideal
mix ¼	0.41 kcalmo1	1¼	1.72mo1	1

7.2. Alanine: Dm0 ¼ þ 4.01 kcal mo1	1¼ 16.8 kJmol	1

Phenothiazine: Dm0 ¼	5.66 kcalmol	1¼	23.7 kJmol	1

7.3. XB¼ 0.23; total pressure¼ 34mmHg

7.4. kx (CHC13)� 157mmHg

7.5. Six extractions

7.7. (a) PAB¼ cA/cB; PBC¼ cB/cC; PAC¼ cA/cC
(b) PAB¼PAC/PBC

(c) pA¼PABVA/(PABVA þ VB þ VC/PBC)

7.8. P¼ 0.25; 1.00; 4.00

7.9. kH has the dimensions of a pressure, therefore kH/P is a dimensionless quantity.

7.10. DSmix ¼ 1.19 cal mol	1 K	1; DGmix ¼ 354.6 cal mol	1.

Chapter 8

8.1. BþAcOH>AcO	BHþ þAcO	

8.2. NaCl, I¼ 3.0m; CaC12, I¼ 9.0m; ZnSO4, I¼ 12.0m
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8.3. g� ¼ 0:807

8.4. g� ¼ 0:850; a� ¼ 0:0085M

8.5. I¼ 0.65M

8.6. C ¼ 0:21jzþ z	 j

Chapter 9

9.1. From p1 ¼ x1P
*
1 , derive P

*
1 	 p1 ¼ x2P

*
1 .

9.2. Kb¼ 1.23 
C

9.3. Kf¼ 3.58 
C

9.4. Take 0.6 g pilocarpine nitrate, 0.3 g boric acid, and dilute to 30mL (“q.s. ad” is a
prescription abbreviationmeaning “a quantity sufficient to make”; sterilewater
is intended in this case).

9.5. DTf ¼ 0.469 
C (the experimental value is 0.470 
C); 5.54% dextrose will be
isotonic.

9.6. 2DHfA ¼ DHfB

9.7. gC ¼ 0.84; gD ¼ 0.94.

9.8. DTf ¼Kf m¼ 0.372K; p¼ cRT¼ 4.99 atm

Chapter 10

10.1. x2¼ 0.158

10.2. At 24 
C (e.g.), c2¼ 3.34� 10	4M. The heat of solution is identical with
that obtained in Example 10.2. (Enthalpy changes do not change value
when the concentration scale is altered, unlike free-energy and entropy
changes.)

10.3. Ksp¼ 108s5; s¼ 7.14� 10	7M

10.4. AgI, then AgBr, then AgCl

10.5. x2¼ 0.0117 (calculated taking �1 ¼ 1) (the experimental value is
x2¼ 0.0142)

10.6. log c2¼	4.50 [Eq. (10.29)] or log c2¼	4.87 [Eq. (10.30a)] (the experimental
value is log c2¼	4.42)

10.7. w2 ¼ 0:55.

10.8. DG0¼ 3.03 kcalmol	1.
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Chapter 11

11.1. 67.6 dyn cm	1

11.2. Water on ether: S¼	66

Ether on water: S¼ þ 44.6
Ether will spread on water readily; water will not spread on ether.

11.3. DG ¼ gDA ¼ 4pgðr2final 	 r2initialÞ
DG ¼ 2.23� 10	4mJ

11.4. (a) l/nb¼ 1/Knmaxc2 þ l/nmax

(b) nb/c2¼ –Knb þ Knmax

11.5. K¼ 386M	1; ymax¼ 146mg g	1 (we also calculate s ¼ 105A

 2 molecule	1)

Chapter 12

12.1. (a) pH¼ 3.60

(b) pH¼ 3.30

(c) pH¼ 10.93

(d) pH¼ 5.32

(e) pH¼ 11.48

12.2. pH¼ 4.67

12.3. Dissolve 6.055 g tris in 325.3mL 0.10M HCl and dilute to 500mL.

12.4. (a) Both are 1
15M ¼ 0.0667M

(b) pH¼ 6.98

12.5. At 0mL, pH¼ 11.95; at 2mL, pH¼ 11.45; at 5mL, pH¼ 10.94; at 8mL,
pH¼ 10.60; at 12mL, pH¼ 10.12; at 16mL, 5.76; at 18mL, pH¼ 1.84;
methyl red or bromcresol purple

12.7. (a) Keq¼Ka(benzoic acid)=Ka (methylamine)¼ 2.76� 106

(b) Keq¼Ka(phenol)=Kw¼ 1.00� 104

12.8. pK1 (COOH); pK2 (OH)

pK1 (COOH); pK2 (NH2); pK3 (guanidine)
pK1 (aromatic amine); pK2 (aliphatic amine)
This is an acidic group, the 7-NH is structurally similar to an imide.

12.9. ½Hþ �3 þðKa þ bÞ½Hþ �2 	ðKac	KabþKwÞ½Hþ �	KaKw ¼ 0

12.10. (a) ½NHþ
4 � þ ½Hþ � ¼ ½OH	 �þ ½Cl	 �

(b) ½Hþ � ¼ ½OH	 �þ ½H2A
	 �þ 2½HA2	 �þ 3½A3	 �

(c) ½Naþ � ¼ ½Hþ �þ ½OH	 �þ ½H2PO
	
4 � þ 2½HPO2	

4 �
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12.11. pH¼ 5.31

12.12. pH¼ 7.69

12.13. (a) pH¼ pKa¼ 9.25

(b) pH¼ 5.52

12.14. DG0 ¼ þ 13.64 kcalmol	1

12.15. 0.1689 g of sodium acetate

12.16. F¼R/R þ 1)

12.17. 3.91� 10	4M

12.18. (a) Decrease

(b) Decrease

12.19. pH¼ 1.70

12.20. 8.528 g of NaH2PO4
.H2O and 5.424 g of Na2HPO4

12.21. DG0 ¼	19.1 kcalmol	1¼	79.8 kJmol	1

Chapter 13

13.1. (a) ClO3
	þ 3Sn2þþ 6Hþ¼Cl	þ 3Sn4þ þ 3H2O

(b) PbO2 þ 2I	 þ 4Hþ ¼ I2 þ Pb2þ þ 2H2O

(c) 3OCl	 þ 2NH3¼ 3Cl	 þ N2 þ 3H2O

(d) 2MnO4
	 þ 5H2O2 þ 6Hþ ¼ 2Mn2þ þ 5O2 þ 8H2O

(e) MnO4
	 þ 3CuI þ 4Hþ ¼MnO2 þ 3Cu2þ þ 3I	 þ 2H2O

(f) S2O8
2	 þ 2Fe2þ ¼ 2SO4

2	 þ 2Fe3þ

(g) 2NH2OH þ 4Ce4þ ¼N2O þ 4Ce3þ þ H2O þ 4Hþ

(h) 2RSH þ I2¼RSSR þ 2HI

13.2. I¼ 0.150M

13.3. DE ¼	0.59V

13.4. pK 0
a ¼ 8.02

13.5. (a) Slope of plot of Ecell versus log (Ca2þ activity)¼ 0.029, consistent with
0.059/2

(b) Ecell¼ þ 0.162V

13.6. (a) I¼ 0.04M

(b) g�¼ 0.458

13.7. (a) Ecell¼	0.548V

(b) Ecell is negative, so reaction is nonspontaneous (proceeds from right to
left); copper dissolves. 2Fe2þ þ Cu2þ> Cu þ 2Fe3þ

ANSWERS TO PROBLEMS 349



13.8. (a) Ecell¼ þ 1.44V

(b) Silver-plated zinc

13.9. E0¼ þ 0.15V; K¼ 349

13.10. pKsp¼	10.85

Chapter 14

14.1. b23 ¼ K11K21K22K23

14.3. Initial slope¼ StK11De11

14.4. (a)
DA=b
½L� ¼ 	K11ðDA=bÞþ StK11De11

(b) K11 ¼ 10.2M	1; De11 ¼ 257M	1 cm	1

14.5. Initial slope¼K11a 	K11b

14.6. [theophylline]free¼ 5� 10	5M.

14.7. (a) f11 ¼ ½L�nK11

½L�K11 þ 1
; (b) 1	 f11¼ 0.71; (c) [L]¼ 9� 10	7M.
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INDEX

Abscissa, 19
Absolute temperature, 64
Absolute zero, 64
Absorbance, 55, 313
Absorption, 213
Absorptivity, 55, 313
Accuracy, 42
Acetylium ion, 253
Acid

definition of, 224
strong, 225
weak, 225

Acid-base
dissociation, 224
distribution with pH, 227
indicators, 246
solubility, 249
strength, 257
theories, 221
titration, 241

Acid dissociation constant, 115, 224, 257
Acid strength, 257
Activity

mean ionic, 165
of a solid, 129
of a solute, 129
of a solvent, 129

Activity coefficient, 101
definition of, 128
mean ionic, 166
of an ion, 129, 167

Adiabatic process, 68
Adhesion, work of, 204

Adsorbate, 213
Adsorbent, 213
Adsorption, 213
Adsorption equation, Gibbs, 211
Adsorption isotherm, Langmuir, 213
Alkaline error, 295
Allotropy, 133
Amines
aliphatic, 261
aromatic, 261

Amorphous state, 135
Amphoteric behavior, 223
Analyte, 241
Analytical concentration, 229
Anode, 275
Apparent constant, 289
Approximation, 17
Aprotic solvents, 255
Area, surface, 203
Arrhenius theory, 221
Association constant, 115, 307
Asymmetry, potential, 295
Atmosphere, 4
Autoprotolysis constant, 224
Average
arithmetic, 192
geometric, 192
weighted, 198

Average deviation, 43
Azeotrope, 145

Balancing equations, 272
Barbituric acid derivatives, 262
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Base
definition of, 222
strong, 237
weak, 240

Base dissociation constant, 224
Base strength, 257
Beer’s law, 55, 313
Benesi-Hildebrand plot, 24, 310
Bernoulli trials, 158
Binding constant(s)
by dialysis, 319
by potentiometry, 317
by solubility, 315
by spectrophotometry, 313
measurement of, 312
microscopic, 312
overall, 307
stepwise, 308

Binding isotherms, 309
Binding models, 307
Binding site, 310, 312
Boiling point, 108, 131
normal, 133

Boiling point elevation, 171
Boiling point elevation

constant, 173
Boltzmann constant, 84
Br€onsted theory, 222
Bubble, 207
Buffer capacity, 235
Buffer index, 235
Buffer solutions, 232, 241
Sørensen, 267
Standard, 287

Calorie, 4
Capacity factor, 152
Cathode, 275
Cavity, 207
CCD, see Countercurrent distribution
CED, see cohesive energy density
Cell potential, 276
Celsius scale, 63
Centigrade scale, 63
Chain rule, 29
Characteristic functions, 94
Charge
electronic, 162
ionic, 162

Charge-charge interaction, 302
Charge-dipole interaction, 302
Charge-induced dipole

interactions, 302
Charge transfer (CT), 305
Chemical potential, 97
definition of, 98
dependence on pressure, 99
standard, 101

Clapeyron equation, 108, 132
Clausius-Clapeyron equation,

109, 132
Closed system, 67
Coefficient of variation, 43
Cohesive energy density (CED), 193
Cohesion, work of, 202
Colligative properties, 171
Common ion effect, 191
Comparison of means, 46
Complex formation, 302
cyclodextrin, 322
RNA, 325

Complex populations, 322
Complex strength, 320
Component, 106, 111, 133
Concentration cell, 285
Concentrations scales, 126
Confidence intervals, 46
Confidence limits, 45
Conjugate pair, 222, 257
Conservation of energy, 69
Constant
association, 115, 307
binding, 115, 307
dissociation, 115
ionization, 115
stability, 115
stepwise, 307

Contact angle, 206
Correlation coefficient, 48
Cosolvent, 197
Coulomb’s law, 161, 302
Countercurrent distribution

(CCD), 154
Covalent bonds, 125, 301
Covariance, 48
Cryoscopic constant, 174
Crystal lattice energy, 184
CT, see Charge transfer
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Cycle, thermodynamic, 69
Cyclodextrin complexes, 322

Daniell cell, 274
Debye-H€uckel equation, 167, 290
Debye-H€uckel limiting law, 167
Degree

Celsius, 63
centigrade, 63
Kelvin, 64

Degree of saturation, 214
Degrees of freedom, 43, 112
Dehydrogenation, 273
Derivative, 29

first, 29
partial, 39
second, 30

Desorption, 214
Detection, lower limit of, 297
Dialysis, 319
Dibasic acid, 229
Dielectric constant, 162
Differential, 29

exact, 40, 70
total, 39

Differential change, 27
Differential equation, first-order, 37
Differential scanning calorimetry

(DSC), 136
Differentiating effect, 255
Differentiation, 29

partial, 39
Dimensions, 2
Dipole, 302
Dipole-dipole interaction, 302
Dipole-induced dipole interaction, 302
Dipole moment, 302
Diprotic acid, 229
Disorder, 86
Disperse system, 201
Dispersion forces, 205-303
Dispersion interaction, 205–303
Dissociating solvents, 253
Dissociations, 163
Dissociation constant, 115, 164, 224

microscopic, 262
overall, 164

Distribution
binomial, 157

frequency, 41
normal, 41
Student’s t, 45

Double-reciprocal plot, 24
Droplet, 207
Drug delivery, 177, 323
DSC, see Differential scanning calorimetry
Dimensional consistency, 7

Ebullioscopic constant, 173
EDA, see Electron donor-acceptor

(EDA) interaction
Electrical work, 270
Electric potential, 275
Electrochemical cell, 274
Electrode(s), 274
glass, 288, 294
hydrogen, 285
ion-selective, 293
membrane, 293
saturated calomel, 286
solid, 295

Electrode potential, 276
standard, 279

Electrolyte, 161
Electrolytic cell, 275
Electromotive force (emf), 275
Electroneutrality, 233
Electron donor-acceptor (EDA)

interaction, 305
Electron pair acceptor, 222
Electron pair donor, 222
Electron transfer, 271
Electrophile, 274
Electrostatic interactions, 302
Emf, see Electromotive force
Emulsion, 201
Endothermic process, 79
Endpoint, 242
detection of, 32, 244

Energy, 65, 69
electronic, 66
ideal gas, 73
internal, 66
kinetic, 66
potential, 66
rotational, 66
surface, 202
thermodynamic, 66
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Energy (Continued )
translational, 66
units of, 65
vibrational, 66

Enthalpy
changes, 73, 117
definition of, 73
of activation, 339
of mixing, ideal, 144
of solutions, 183

Entropy, 78
and disorder, 86
and randomness, 86
changes, 89, 117, 321
configurational, 82
definition of, 82, 84
interpretation of, 85
of activation, 339
of fusion, 89, 195
of mixing, ideal, 144
of solutions, 183
of vaporization, 89
unit, 89

Equation of state, 67
Equilibrium, 105
chemical, 113
condition for, 96, 105
mechanical, 67
thermal, 67
thermodynamic, 67

Equilibrium constant, 114, 277
Temperature dependence of, 116
units of, 116

Equivalence point, 242
Erg, 4
Error propagation, 51
Errors
random, 41
systematic, 41

Eutectic, 139
Eutectic point, 139
Exact differential, 40, 70
Excess functions, 148
Exothermic process, 79
Exponential function, 23
Exponential rate law, 38
Exponents, 11
Extensive properties, 7
Extraction

multiple, 152
solvent, 151

Extrathermodynamic
relationships, 335

Factorial, 157
Faraday, 277
First law, 69, 87
First-order rate constant, 37
Foam, 201
Force, 3
Formal concentration, 233
Fractions, 13
Fraction bund, 310
Fraction free, 310
Free energy
dependence on pressure, 94, 96
dependence on temperature, 94, 97
Gibbs, 93
Helmholtz, 93
partial molar, 98
transfer, 151

Free energy changes, 117
Free energy of activation, 339
Free energy of mixing, ideal, 144
Free energy of solution, 183
Freezing point, 131, 133
of water, 63

Freezing point depression, 174
Freezing point depression

constant, 174
Freezing point depression method, 178
Frequency distribution, 41
Fugacity, 100
First-order decay, 38

Galvanic cell, 275
Gas
ideal, 71
perfect, 71

Gas constant, 71, 334
Gaussian error curve, 41
Gibbs adsorption equation, 211
Gibbs-Duhem equation, 99, 212
Gibbs free energy, 93
Gibbs-Helmholtz equation, 97
Glass electrode, 288, 294
Glass transition temperature, 136
Glassy state, 135
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Heat, units of, 65
Heat capacity, 74

at constant pressure, 75
at constant volume, 75
molar, 75

Heat of fusion, 73, 77, 184, 186
Heat of reaction, 74
Heat of solution, 74, 187
Heat of vaporization, 77, 186
Helmholtz free energy, 93
Henderson-Hasselbalch equation, 233, 250
Henry’s law, 146
Henry’s law constant, 146
Heterogeneous system, 67
Hill plot, 310
Homogeneous system, 67
Hydantoins, 262
Hydrogenation, 273
Hydrogen-bonding, 305
Hydrophobic effect, 306
Hydrophobic interaction, 306
Hyperbola, rectangular, 24
Hypertonic solution, 178
Hypotonic solution, 178

Ideal gas, 71
Ideal gas law, 71, 334,
Ideal solutions, 142, 184
Imides, 259, 261
Incremental change, 27, 40, 69
Indicators, acid-base, 246
Induction interaction, 302
Inflection point, 31
Instability constant, 115
Integrals, 36

definite, 35
indefinite, 35

Integration, 33
constant of, 35

Intensity factor, 65
Intensive properties, 7
Intercept, 20
Interfaces, 201
Interfacial tension, 202
Intrinsic solubility, 249, 315
Ion exchange, 271
Ionic atmosphere, 167
Ionic strength, 167, 290
Ionization, 163

Ionization constant, 164
Ion pair, 163
Ion product, 224
Ion transfer, 293
Isolated system, 67
Isoosmotic solutions, 178
Isotherm(s)
adsorption, 213
binding, 309
distribution, 152
Langmuir, 213
partition, 152
reaction, 114
solubility, 316

Isothermal expansion, 72, 83
Isothermal process, 67
Isotonicity, 177
Isotonic solutions, 178

Joule, 65, 278

Kinetic theory of gases, 332

Langmuir isotherm, 213
Least squares method, 50
Lennard-Jones potential, 303
Leveling effect, 255
Lewis acid, 222
LFER, see Linear free energy relationships
Ligand, 302
Linear combination model, 198
Linear correlation, 19, 48
Linear equations, 19
Linear free energy relationships (LFER),

335
Linearization, 23
Linear regression analysis, 50
Lineweaver-Burk plot, 24
Liquid crystalline phase, 131
Liquid junction potential, 276, 286
Liquid-liquid partitioning, 148
Logarithms
Briggsian, 8
natural, 8

Log-log plot, 310
London interaction, 205, 303
Lower limit of detection, 297
Lyate ion, 255
Lyonium ion, 255
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Mass balance, 233
Mathematical symbols, 2, 157
Maxima, 31
Mean
arithmetic, 42, 192
experimental, 42
geometric, 192
population, 41

Mean ionic activity, 165
Mean ionic activity coefficient, 165
Mean ionic molarity, 166
Median, 43
Melting point, 108
mixed, 140

Melting temperature, 131, 196
Membrane
liquid, 297
semipermeable, 174
solid, 295

Metastable state, 133
Microscopic constants, 262, 312
Microstate, 81
Minima, 31
Mixing, ideal, 184
Molality, 127
Molarity, 127
mean ionic, 166

Molar volume, 7
Molecular recognition, 323
Mole fraction, 127
Monomolecular layer, 215

Nernst equation, 276
Nernstian electrode behavior, 294
Neutrality, 225, 256
Nonaqueous acid-base behavior, 253
Noncovalent interactions, 301
Noncovalent populations, 322
Nonelectrolyte, 142
Nonideality, 101, 129
Nonideal solutions, 101, 129, 290
Nonspontaneous process, 68, 80, 96
Normal distribution, 42, 322
Normal error curve, 41
Normal saline, 178
Nucleophile, 274
Null hypothesis, 46

Open system, 67
Ordinate, 19

Osmometry, 176
Osmosis, 175
Osmotic pressure, 174
Osmotic pump, 176
Oxidant, 271
Oxidation, 271, 273
Oxidizing agent, 271

Parameters
graphical, 20
statistical, 42, 322

Partial derivative, 39
Partial molar free energy, 98
Partial molar volume, 99
Partial pressure, 142
Partition coefficient, 149, 197
Partitioning, 148
Percent
by volume, 126
by weight, 126
weight/volume, 126

Percent purity, 12
Perfect gas, 71
Permittivity, 162
of the vacuum, 162
relative, 162

pH
calculations of, 237
definition of, 225
measurement of, 285

Phase diagrams, 107, 131
pressure-temperature, 107
solubility, 316
temperature-composition, 137

Phase rule, 111, 133
Phase transitions, 107
pH meter, 285
pH standards, 287
Phosphoric acid species, distribution of, 235
Physical constants, 331
pK, definition of, 225
pKa assignment, 262
pKa determination, 245, 288
pKa values, 257
Polarity, 149, 163
Polarizability, 303
Polarization interactions, 302
Polymorph, 133
Polymorphism, 133
Polynomial function, 23
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Population mean, 41
Population standard deviation, 41
Potential

asymmetry, 295
cell, 276
chemical, 98
electric, 275
electrode, 279
half-reaction, 279
Lennard-Jones, 303
liquid-junction, 276
standard, 279
standard chemical, 101

Potential energy, 161
Potential energy functions, 302
Power functions, 23
Precision, 42
Pressure, partial, 142
Process(es)

adiabatic, 68
chemical, 125
cyclic, 69
endothermic, 79
exothermic, 79
isothermal, 67
nonspontaneous, 68
physical, 125
reversible, 68
spontaneous, 68

Propagation of errors, 51
Proportions, 12
Protogenic solvents, 255
Proton-acceptor, 222
Proton-donor, 222
Proton transfer, 223
Protophilic solvents, 255

Quadratic equations, 15
Quantity algebra, 5
Quantum state, 81

Random errors, 41
Randomness, 86
Range, 43
Rate, 36
Rate constant, 25, 36
Ratios, 13
Raoult’s law, 142

deviations from, 145
Reaction coordinate diagram, 338

Reaction isotherm, 114
Reaction series, 335
Rectangular hyperbola, 24
Redox reactions, 271
Reducing agent, 271
Reductant, 271
Reduction, 271, 273
Reference state, 102, 128
Regression analysis, 50
Regular solution theory, 192
Relative standard deviation (RSD), 43
Reversible process, 68
Reversibility, 68
Root-mean-square velocity, 333
RSD, see Relative standard deviation

Saline, normal, 179
Salt bridge, 276
Salt effects, 191
Salting-in effect, 192
Salting-out effect, 192
Saturated calomel electrode (SCE), 286
Saturation, degree of, 214
Saturation effect, 309
Scatchard plot, 24, 311
SCE, see Saturated calomel electrode
Second law, 85, 87
Semilog plot, 26
Semipermeable membrane, 174
Setschenow constant, 192
SI units, 2
Sigmoid curve, 228
Sign conventions, 278
Significance, statistical, 47
Significant figures, 53
Simultaneous equations, 14
Slope, calculations of, 20
Solid solution, 141
Solubility, 182
aqueous, 195
equilibrium, 113, 182
ideal, 183
in mixed solvents, 197
intrinsic, 249, 315
of acids and bases, 249
of slightly soluble salts, 189
prediction of, 195
temperature dependence of, 186

Solubility parameter, 193
Solubility product, 190, 282, 295
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Solute, 182
Solutions
ideal, 142
nonideal, 145
regular, 148, 192
solid, 141

Solvent
amphiprotic, 255
aprotic, 255
differentiating, 255
dissociating, 253
leveling, 255
non-dissociating, 254
protogenic, 255
protophilic, 255

Solvent extraction, 151
Sorption, 213
Specific heat, 7
Specific volume, 7
Spontaneous process, 68, 80, 96
Spreading coefficient, 205
Spreading of liquids, 205
Stability constants, 115
Standard chemical potential, 101
Standard deviation
complex population, 322
experimental, 43
population, 41
relative, 43

Standard deviation of the mean, 44
Standard error, 44
Standard free energy change, 115
Standard potential, 278
Standard state, 102, 128
molar, 147
mole fraction, 147

Standard state definitions,
102, 128, 147

State, 67
amorphous, 135
equation of, 67
glassy, 135
metastable, 133
reference, 102, 128
standard, 102, 128
transition, 337

State functions, 40, 70
Statistical mechanics, 79
Statistics, 40

Stoichiometric models, 307
Strong acid, 237, 256
Strong base, 237
Student’s t distribution, 45
Sublimation, 108
Sublimation temperature, 131
Substituent constant, 336
Hammett, 337

Substrate, 302
Sulfonamides, 262
Surface active agents, 212
Surface
area, 203
boundary, 209
energy, 203
excess, 210
phase, 209

Surfaces, 201
Surface tension, 202
Surfactants, 212
Surroundings, 67
Suspension, 201
System, 66
closed, 67
heterogeneous, 67
homogeneous, 67
isolated, 67
liquid-liquid, 137
liquid-solid, 139
open, 67

Syst�eme International, 2

Temperature, 63
boiling, 108
glass transition, 136
melting, 108
sublimation, 108
upper critical, 138

Temperature scale
absolute, 64
Celsius, 63
centigrade, 63
ideal gas, 64
Kelvin, 64
thermodynamic, 64

Tension
interfacial, 202
surface, 202

Thermometer, 63
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Third law, 88
Tieline, 138
Titrant, 241
Titrations, 241
Total differential, 39
Transfer free energy, 151
Transition interval, 247
Transition state theory, 337
Triple point, 108, 131
Trouton’s rule, 90

Units
base, 2
conversion of, 5
derived, 3
SI, 2

van der Waals interactions, 303
van’t Hoff equation, 117
van’t Hoff plot, 119, 187
Variables, 19
Variance, 43, 52
Voltaic cell, 275
Volume

molar, 7
partial molar, 99
specific, 7

Volume fraction, 126
Volume of mixing, ideal, 144, 184

Water, dissociation of, 223
Weak acid, 238, 256
Weak base, 240
Weighted average, 198
Wetting of solids, 205
Work, 64, 69
electrical, 65, 270
of adhesion, 204
of cohesion, 202
of expansion, 65, 72
maximum, 95
mechanical, 65
surface, 65
units of, 65

Zero-order kinetics, 177
Zeroth law, 87
Zwitterion, 265
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