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Preface

Stem cell therapy is a new therapy used in the treatment of various diseases. 
Since the first transplant of a primary product of stem cells in the 1950s, stem-
cell-based products have a long history. After more than 60 years of development, 
stem-cell-based products can be grouped into six different generations, including 
stem-cell-enriched fractions (first generation), pure stem cells (second 
generation), long-term expanded allogeneic stem cells (third generation), 
genetically modified or differentiated stem cells (fourth generation), exosomes, 
extracellular vesicles, and stem cell extracts (fifth generation), and stem cells 
derived from tissues or organs (sixth generation). Since the third generation, 
stem-cell-based products used as drugs in the treatment of various diseases have 
been referred to as stem cell drugs.

To date, stem cell drugs of the third, fourth, and fifth generations are being used 
in clinics and commercially in several countries. Stem cell drugs have opened a 
new  age of regenerative medicine. This book focuses on stem cell drugs of the 
third, fourth, and fifth generations of stem-cell-based products. In chapters 1–5, we 
introduce fifth-generation stem-cell-based products containing extracellular 
microvesicles obtained from stem cells. Chapters 1, 2, and 4 introduce some 
applications of microvesicles as cell-based, cell-free therapy in disease treatment 
and rejuvenation. Chapters 3 and 5 introduce some techniques to prepare and trigger 
microvesicle production from mesenchymal stem cells. In chapters 6–8, we focus 
on the third and fifth generations of stem-cell-based products. Chapter 6 introduces 
the evolution of stem cell products, while chapter 7 focuses on off-the-shelf 
mesenchymal stem cell technology. Chapter 8 presents some ethical and legal 
issues of cord blood stem cell banks.

In preparing this book, we aimed at making it accessible to not only those 
working in the field of stem cell biology, but also to nonexperts with a broad 
interest in stem cells and human health. We hope the book will be of value to 
all concerned with the new generation of stem-cell-based products, including 
stem cell drugs.
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Chapter 1
Using Stem Cell-Derived Microvesicles 
in Regenerative Medicine: A New Paradigm 
for Cell-Based-Cell-Free Therapy

Mohammad Amin Rezvanfar, Mohammad Abdollahi, and Fakher Rahim

M. A. Rezvanfar 
Department of Toxicology and Diseases, Pharmaceutical Sciences Research Center (PSRC), 
Tehran University of Medical Sciences (TUMS), Tehran, Iran 

M. Abdollahi 
Department of Toxicology and Diseases, Pharmaceutical Sciences Research Center (PSRC), 
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Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University  
of Medical Sciences (TUMS), Tehran, Iran 

F. Rahim (*) 
Health Research Institute, Research Center of Thalassemia and Hemoglobinopathies,  
Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Common treatments for various diseases are mainly a series of suppressing, 
modifying, or stimulating drugs that in addition to having unwanted side 
effects, in the long term with the advancement of the disease, lose their ther-
apeutic efficacy to a large extent. Hence, the treatment of many diseases 
remains a major challenge in medical research. Among the promising thera-
peutic strategies that have been introduced in recent years, using mesenchy-
mal stem cells has attracted significant attention. Stem cells are a kind of 
cells that have the ability to transform to all types of cells in the body. These 
cells have the ability to regenerate and differentiate into various types of 
cells, including blood, cardio, nervous, and cartilage cells; they can also be 
employed to repair various tissues of the body after injury and can be injected 
into some tissues, the most cells of which are destroyed such as intestine tissues. 
Transplanting and replacing damaged cells and repairing and fixing defects 
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�Stem Cells

Stem cells are generally undifferentiated cells that have self-proliferative ability and 
are able to differentiate into specific cell lines (Tweedell 2017). Under certain physi-
ological or laboratory conditions, these cells can be converted into cells with spe-
cific functions, such as muscle cells of the heart or insulin-producing cells in the 
pancreas (Ardeshiry Lajimi et al. 2013; Ebrahimi et al. 2014; Ebrahimi and Rahim 
2014; Rahim et al. 2013; Saki et al. 2013; Shahrabi et al. 2014). Stem cells have two 
important properties that distinguish them from other cell types (Tweedell 2017). 
The first one is their regeneration ability; these cells are undifferentiated cells with 
the unlimited ability to reproduce. The second one is that they are capable of dif-
ferentiating and producing any kind of cells in the body. Accordingly, these cells are 
classified in the three categories.

Neuronal precursor cells are multipotent progenitor stem cells with variable 
capacities; they have the ability to differentiate into neuronal cells, including neu-
rons and oligodendrocytes. Evidence suggests that in patients with MS who have 
an effective myelin plasmosis, neuronal progenitor cells migrate to injury sites and 
participate in the repair of damaged tissue; in fact, due to the inherent lack of 
recovery process over time using exogenous neuroleptic precursor cells can dra-
matically enhance the capacity of central nervous system restoration (Podbielska 
et al. 2013). These cells are mainly isolated from adult adipose tissues and cultured 
in nonspecific culture media, which severely restricts their therapeutic use 
(Wankhade et al. 2016).

The other one are embryonic stem cells (ESCs) existing in the body of the 
embryo during the first weeks of its formation, which means these cells make up 
the body of the human embryo (Kugler et al. 2017). It is clear that these cells can 
form different types of tissues and organs. They are taken from the internal cell 
mass of the 14–16-day-old fetus and are able to make all the cells and tissues of 
a person.

The umbilical cord stem cells are other potent cells, which, like adult stem cells, 
can produce a variety of cells in the laboratory. There are two types of stem cells in 
the umbilical cord that are able to make blood, bone, and fat cells, and make a 
replacement for bone marrow cells in bone marrow transplantation (Broxmeyer 
2011; Sideri et al. 2011). At birth, these cells can be removed by cutting the umbilical 
cord from the blood of umbilical veins. These cells are less capable of differentiating 

in a damaged tissue is other abilities of the stem cells. Microvesicles (MVs) 
are integral components of the cell-to-cell communication network, which 
releasing from different cells have the ability to progressively become a center 
of attention in stem cell-based therapy.

M. A. Rezvanfar et al.
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into tissues and organs than embryonic stem cells, but their differentiation is much 
easier. The cord matrix called Wharton’s jelly is the source of adult mesenchymal 
stem cells.

Adult stem cells are undifferentiated cells that are found in various cells of 
human tissues and organs, and have the ability to regenerate and differentiate into 
a variety of specific cells of the body or organ (Yang et al. 2017). The initial roles 
of these cells in a living organism include the protection and repair of the tissues 
that are derived from it. Scientists have found adult stem cells in more tissues 
than they thought. These findings advised scientists to use these cells in transplant 
science. It is more than 30 years now that bone marrow from the transplant passes 
is used to separate stem cells from adult hematopoietic cells. Adult stem cells 
have been detached from many organs and tissues of the body, but the important 
thing is that there are very few of these cells in each tissue that reside in a particu-
lar area of that tissue for years. These hidden cells are activated with the advent 
of disease or tissue damage. The tissues containing adult stem cells include bone 
marrow, peripheral blood, brain, blood vessels, dental pulp, skeletal muscle, skin, 
liver, pancreas, cornea, retina, and digestive system.

Scientists in many laboratories are working to transform adult stem cells to 
specific types of cells to use them for the treatment of diseases and tissue damages. 
The therapeutic potential of these cells contribute to the replacement of dopamine-
producing cells in the brain in Parkinson’s disease, the production of insulin-like 
cells in diabetes (i.e., insulin-dependent diabetes), and the repair of degenerated 
muscle cells (Ballios and van der Kooy 2010; Barkho and Zhao 2011).

�Therapeutic Use of Stem Cells

Among promising therapeutic strategies, stem cell transplantation strategy has 
been especially devoted to cure inflammatory responses and promote the regen-
eration of the central nervous system (CNS) (Aurora and Olson 2014). This thera-
peutic approach can be used as an effective tool to overcome existing disabilities 
to promote simultaneous myelin, neural cells, and suppression of harmful inflam-
matory responses. This means that exogenous stem cells can physically contribute 
to the regeneration of the CNS, or by triggering the trophic factors and mobilizing 
the topical precursor cells help promote the repair process of CNS injuries. On the 
other hand, due to their potential immune response properties, stem cells can play 
a role in suppressing progressive inflammatory responses in autoimmune dis-
eases, such as MS.  The candidate stem cells for the treatment of MS, include 
neural cells derived from neuroprotective cells (NPCs), embryonic stem cell (ES), 
and mesenchymal stem cell (MSCs) (Muraro et al. 2017; Sargent et al. 2017). In 
addition to the important role of stem cells in restoring and repairing tissue, they 
are used to treat various diseases, including defective ossification, brain damage, 
Parkinson’s disease, heart attacks, and tendon rupture (Lunn et al. 2011). A urine-
derived stem cell has been discovered with some applicable biological properties 

1  Using Stem Cell-Derived Microvesicles in Regenerative Medicine: A New Paradigm…
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(Kang et al. 2015). These stem cells can be found in humans and various animal 
species such as monkeys, pigs, and rabbits. The availability and low cost of these 
cells make them suitable for cell therapy. Clinical trials have shown that the trans-
planted uterine stem cells may be used to treat debilitating analgesic disorders, 
and possibly neurodegenerative diseases such as Parkinson, Huntington, and 
Alzheimer (Li et al. 2017).

�Limitations on the Use of Stem Cells

In recent years, a new bunch of studies on stem cells have begun, with many 
advances and successes. However, there are still many problems that limit the thera-
peutic use of these cells (Choumerianou et al. 2008). In the term of bioethics, for 
example embryonic stem cells are derived from live fetuses, which is prohibited in 
many countries, because eliminating the fetus that is capable of becoming a human 
being is considered as the death of a human soul (Outka 2009). However, compared 
to embryonic stem cells, adult stem cells are taken from the adult body with no 
damage to the body; thereafter, the use of adult stem cells does not have such limi-
tations. At the same time, other potentially and actual applications of the mentioned 
cells in the medical field are highly sought after in the rest of the world. Another 
issue is the rejection of stem cells by the body. Since adult stem cells can be used 
for their own treatment, after injection into the patient’s body, the immune system 
does not consider these cells as alien cells. It is worth mentioning that rejection of 
stem cells by the body is one of the major constraints facing researchers in the use 
of embryonic stem cells, since the antigenicity of these cells is not the same as that 
of the receptor, thus their probability of resuscitation rises. Of course, research is 
underway to suppress the supplying molecules of antigens to resolve this problem 
(Cabrera et al. 2006). Unwanted differentiation is also should be considered in stem 
cell therapy. Embryonic stem cells have such a high reproducibility and differentia-
tion potential that they sometimes spontaneously transform into other cells without 
any particular treatment. Therefore, they must be prevented from accidental and 
unwanted differentiation.

Mature stem cells also have a great tendency of reproducibility in culture. 
Therefore, they are subjected to special treatments in the direction of targeted dif-
ferentiation. Therefore, one of the major problems with the proliferation and dif-
ferentiation of stem cells is that the orientation and direction of the differentiation 
of these cells into other cells that is somewhat hard and unknown. Nevertheless, if 
the path of multiplication and differentiation is identified, the appearance of different 
mammalian cells during embryonic development can be recognized, and as a result, 
it will be possible to identify the genes involved in the development of various cells 
(such as the heart and nerves). Here, the advantage of embryonic stem cells over 
adult stem cells is that adult cells do not give us such information (Penna et al. 2015). 
Also, arrhythmia occurs when stem cells, especially embryonic stem cells are used 
to repair damaged heart tissue; in fact in some cases, there is an inconsistency 

M. A. Rezvanfar et al.
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between the original and the repaired tissue. This causes the discontinuity of these 
two parts and as a result the heart rate rhythm breaks down. An inconsistency has 
been seen in some of the experiments performed on mice (Tian et  al. 2015). 
However, this problem does not come about in autologous adult stem cells received 
from the patient. Due to the above limitations, in recent years, scientists have been 
focused on indirect and healthier use of mesenchymal stem cells based on the use of 
exosomes derived from these cells. Exosomes are cell-mediated microsomal cells, 
through which many of the paracrine effects of cells are revealed. The efficacy of 
mesenchymal stem cell-derived exosomes has been proven to be in the process of 
repairing and reconstructing a wide range of empirical patterns of tissue damage, 
which can reflect the anti-inflammatory and regenerative profiles of mesenchymal 
stem cells (Yu et al. 2014). Generally, the use of exosomes as a noncellular treat-
ment method is advantageous over cellular therapy. In summary, exosomes are more 
stable and structurally functional than cells, and have more unlimited storage capac-
ity (Lai et al. 2010). In addition, the stimulatory or inhibitory signaling induced by 
these exosomes is much stronger than that of the cells (Farsad 2002). Studies show 
that exosome therapy can be considered as a new strategy to overcome the current 
limitations of cell therapy.

�A Perspective on Stem Cells’ Microvesicles

Stem cell-derived EVs are circular fragments of membrane released from the 
endosomal compartment as exosomes, which play an important role in the biologi-
cal functions of their parental cells (Yin and Jiang 2015). It is believed that EVs 
may simulate the effects of supportive blood-forming of their parent cells. The 
proregenerative effects of EVS are due to enriched bioactive lipids, antiapoptotic 
and prostimulatory growth factors or cytokines, as well as they deliver mRNAs, 
regulatory miRNAs, and proteins that improve the overall cell function. Therefore, 
EVs may open novel perspectives in the field of tissue regeneration and repair. 
Besides, the use of EVs instead of stem cells could represent a safe and potentially 
more advantageous alternative to cell-therapy approaches. Researchers investigat-
ing the effect of leukemia EVs isolated from acute myeloid leukemia patients on 
hematopoietic stem cells, suggest that these EVs can induce some effects on hema-
topoietic stem cells such as promoting cell survival (Razmkhah et al. 2017). So far, 
many studies have tested the potential clinical and experimental use of stem 
cell-derived EVs (Table 1.1).

These studies mostly have used MSC-derived EVs, and, as far as the authors of 
the present study are concerned, little attempt is made in using other types of stem 
cell-derived EVs. It has been shown that MSC-derived EVs have the capacity to 
mitigate radiation injury to marrow stem cells, so it can reverse radiation damage to 
bone marrow stem cells (BMSCs) (Wen et al. 2016). Besides, MSC-derived EVs 
(especially hematopoiesis-supporting effects of their parent cells) play a crucial role 
in the biological functions, since these EVs containing microRNAs that are involved 

1  Using Stem Cell-Derived Microvesicles in Regenerative Medicine: A New Paradigm…
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Table 1.1  Available studies on stem cell-derived microvesicles used in the treatment of various 
diseases

Authors Country
Stem cell 
type Disorder Findings

Ji et al. (2017) China hESC-
MSCs

Leukemia cells Inhibited tumor growth and 
stimulated autophagy and 
excessive autophagy might 
induce apoptosis.

Nargesi et al. 
(2017)

USA MSC-EVs Renal injury and 
dysfunction

Testing the efficacy of 
MSC-derived EVs for 
treating renal disease.

Moore et al. 
(2017)

UK MSC-EVs Various cancers The use of immunotherapy in 
combination with the advent 
of EVs provides potent 
therapies to various cancers.

Jaimes et al. 
(2017)

Germany MSC-EVs Microglia cells MSC-EVs might represent a 
modulator of microglia 
activation with future 
therapeutic impact.

Drommelschmidt 
et al. (2017)

Germany MSC-EVs Brain injury MSC-EVs may serve as a 
novel therapeutic option by 
preventing neuronal cell 
death, restoration of white 
matter microstructure, 
reduction of gliosis and 
long-term functional 
improvement.

Riazifar et al. 
(2017)

USA MSC-EVs Injured tissues EVs are considered as 
potential therapeutic 
alternatives to cells for 
clinical applications.

Liu et al. (2016) USA MSC-EVs Rupture of 
intracranial 
aneurysm

Prevented the rupture of 
intracranial aneurysm, in part 
due to their anti-inflammatory 
effect on mast cells, which 
was mediated by PGE2 
production and EP4 
activation.

Xie et al. (2016a) China MSC-EVs Alginate-
polycaprolactone

This EVs-alginate-PCL 
construct may offer a novel, 
proangiogenic, and cost-
effective option for bone 
tissue engineering.

Baulch et al. 
(2016)

USA Human 
neural stem 
cells 
(hNSC-
EVs)

Irradiated brain Reduce inflammation and 
preserves the structural 
integrity of the irradiated 
microenvironment.

Xie et al. (2016b) China MSC-EVs Ex vivo expansion Offer a promising therapeutic 
approach in CB 
transplantation.

(continued)

M. A. Rezvanfar et al.
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Table 1.1  (continued)

Authors Country
Stem cell 
type Disorder Findings

Monsel et al. 
(2016)

France MSC-EVs Acute lung injury 
and other 
inflammatory lung 
diseases

Require large-scale 
production and 
standardization concerning 
identification, 
characterization, and 
quantification.

Lopez-Verrilli 
et al. (2016)

Chile Menstrual 
MSCs

Neuritic outgrowth Potential use of MenSCs as 
therapeutic conveyors in 
neurodegenerative 
pathologies.

Xie et al. (Xie 
et al. 2016c)

China MSC-EVs Tissue repair and 
antitumor 
experiments

Potential clinical translational 
opportunities of spheroid 
MSCs and MSC-EVs were 
discussed.

Farber and 
Katsman (2016)

USA mESC-EVs Retinal 
regeneration

Induce these processes and 
change Müller cells’ 
microenvironment toward a 
more permissive state for 
tissue regeneration.

Yin and Jiang 
(2015)

China MSC-EVs Regeneration of 
injured tissues

The use of EVs instead of 
stem cells could represent a 
safe and potentially more 
advantageous alternative to 
cell-therapy approaches.

Li et al. (2015) China MSC-
exosomes

TISSUE REPAIR Biofunction, paracellular 
transport, and treatment 
mechanism will help the 
transform to clinical 
application.

Wang et al. 
(2015)

China BM-MSC-
EVs

Renal fibrosis Suggesting that these may 
play a role in the fibrosis of 
aging renal tissues.

Monsel et al. 
(2015)

France MSCs Severe pneumonia Effective as the parent stem 
cells in severe bacterial 
pneumonia.

Bobis-Wozowicz 
et al. (2015)

Poland hiPSC-EVs Recipient mature 
heart

New concept of use of 
hiPSCs as a source of safe 
acellular bioactive derivatives 
for tissue regeneration.

Lin et al. (2014a) China BM-MSC-
Evs

Glutamate injured 
PC12

Preliminary experimental and 
theoretical evidence for the 
use of BMMSC-EVs in the 
treatment of neural excited 
damage.

Chen et al. (2014) China MSC-EVs Arterial 
hypertension

Produce similar beneficial 
effects for treating 
hypertension.

(continued)

1  Using Stem Cell-Derived Microvesicles in Regenerative Medicine: A New Paradigm…
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Table 1.1  (continued)

Authors Country
Stem cell 
type Disorder Findings

Favaro et al. 
(2014)

Italy MSC-EVs Type 1 diabetes Can inhibit in vitro a 
proinflammatory response to 
an islet antigenic stimulus in 
type 1 diabetes.

Lin et al. (2014b) China rBM-MSC-
EVs

Glutamate-induced 
injury

A promising strategy to treat 
cerebral injury or some other 
neuronal diseases involving 
excitotoxicity.

Raisi et al. (2014) Iran MSC-EVs Sciatic nerve 
regeneration

Alternative for the 
improvement of rat sciatic 
nerve regeneration.

Mokarizadeh 
et al. (2013)

Iran MSC-EVs Sperm quality Enhance quality parameters 
and adhesive properties of 
cryopreserved sperm 
following treatment with 
MSC-derived EVs.

Dorronsoro and 
Robbins (2013)

USA hucMSCs-
exosomes

Injured kidney Easy to isolate and safer to 
use than the parental stem 
cells, could have significant 
clinical utility.

Bruno and 
Camussi (2013)

Italy MSC-EVs Tissue repair EVs released from stem cells 
may deliver proteins, 
bioactive lipids, and nucleic 
acids to injured cells.

Camussi et al. 
(2013)

Italy Stem cell Paracrine action EVs released from stem cells 
retain several biological 
activities that are able to 
reproduce the beneficial 
effects of stem cells in a 
variety of experimental 
models.

Katsman et al. 
(2012)

USA ESC-EVs Müller cells of 
retina

May turn on an early 
retinogenic program of 
differentiation.

Biancone et al. 
(2012)

Italy MSC-EVs Tissue repair Offer novel therapeutic 
approaches in regenerative 
medicine to repair damaged 
tissues, as an alternative to 
stem cell-based therapy.

Fonsato et al. 
(2012)

Italy HLSC-EVs Hepatoma growth Stem cells may inhibit tumor 
growth and stimulate 
apoptosis.

Mokarizadeh 
et al. (2012)

Iran MSC-EVs Tolerogenic 
signaling

MSC-derived EVs are potent 
organelles for the induction 
of peripheral tolerance and 
modulation of immune 
responses.

(continued)
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in the regulation of hematopoiesis (Xie et  al. 2016b). Moreover, it has been 
indicated that MSC-derived EVs have protective effects on glutamate injured PC12 
cells; this may elucidate their mechanism of the neural damage repair, and introduce 
them as potential candidates for the treatment of neurological diseases (Lin et al. 
2014a). There are some conditions under which MSC releases EVs; one of them is 
hypoxia that can improve the release of EVs from MSC, and may provide an appro-
priate condition for EVs harvesting (Bi et al. 2014). BM-MSC-derived EVs play a 
protective role in acute pancreatitis by reducing the level of preinflammatory 
cytokines and NFκBp65 nuclear displacement regulation, and can be used as a strat-
egy for the treatment of severe acute pancreatitis induced by sodium thrombolytic 
as well (Yin et al. 2016).

MSCs have been shown to support the specific features of hematopoietic pro-
genitor stem cells (HPSCs) in the hematopoietic microenvironment of the bone 
marrow. MSCs have been used in coexisting systems as a feeding layer for cord 
blood ex vivo proliferation to increase the relatively low number of umbilical cord 
blood stem cells and precursors. A study showed that MSC-derived EVs contain 
micro-RNAs that are involved in the regulation of hematopoiesis. They also showed 
that MSC-derived EVs can enhance the proliferation of single-core cells and cord 
blood-derived CD34+ cells and produce more primary precursor cells in vitro. In 
addition, when MSC-derived EVs are added to the umbilical-derived stem cell, they 
are able to improve the hematopoietic-supporting effects of MSCs. These findings 
emphasize the role of MSC-derived EVs in ex vivo cord blood proliferation and 
may offer promising therapeutic approaches in umbilical cord blood transplantation 
(Xie et al. 2016b). Tumor cell-derived EVs are considered as a pivotal mechanism 

Table 1.1  (continued)

Authors Country
Stem cell 
type Disorder Findings

Herrera et al. 
(2010)

Italy HLSC-EVs Hepatectomized Activate a proliferative 
program in remnant 
hepatocytes after 
hepatectomy by a horizontal 
transfer of specific mRNA 
subsets.

Bruno et al. 
(2009)

Italy MSC-EVs Tubular injury Activate a proliferative 
program in surviving tubular 
cells after injury via a 
horizontal transfer of mRNA.

Ratajczak et al. 
(2006)

USA ESC-EVs Hematopoietic 
progenitors

Increase their pluripotency 
after horizontal transfer of 
ES-derived mRNA.

hESC-MSCs human embryonic stem cell derived-mesenchymal stem cells, MSCs mesenchymal 
stem cells, BM-MSC-EVs bone marrow mesenchymal stem cell-derived extracellular microvesi-
cles, rBM-MSC-EVs rat bone marrow mesenchymal stem cell-derived extracellular microvesicles, 
ESC-EVs embryonic stem cell-derived extracellular microvesicles, HLSC-EVs human liver stem 
cell-derived microvesicles
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of donor cells in various cancers. Numerous studies suggested that EVs released 
from tumor cells are involved in pathological regulation of bone cell formation in 
the metastatic site. This further strengthens the role of tumor cell-derived microves-
icles in cancer progression and disease aggressiveness (Karlsson et  al. 2016; 
Razmkhah et al. 2015; Zhu et al. 2014). Since the in vitro maintenance of pluripo-
tency and undifferentiated propagation of embryonic stem cells (ESCs) needs close-
fitting cell–cell interactions and effective intercellular signaling, researchers attempt 
to show that ESC-derived EVs may express stem cell-specific molecules, which 
may support self-renewal and expansion of adult stem cells (Ratajczak et al. 2006).

�Conclusion and Future Perspectives

Despite all of these considerations, a more specific expression of the efficacy of 
exosome therapy and its differences with cell therapy require more time and more 
accurate monitoring. Contrary to numerous studies that have shown the effective 
justification of the long-term stem cell therapy, the fact that the effects of exosomes 
are stable is not yet clear.

The results of this chapter confirm that stem cell-derived EVs as effective 
biological modulators can be used in the treatment of many diseases, including 
autoimmune disorders. The findings suggest that MSC-EVs play an important role 
in the biological functions of their parental cells.

The possibility of frequent withdrawal from long-term cell cultures and using 
existing commercial compounds, easy and short separation time without the need 
for advanced laboratory equipments, high biosecurity, unlimited storage capability 
and allogeneic application efficiency are among the broad therapeutic advantages of 
stem cell derived EVs and exosomes.

Stem cell-derived EVs have the capability to change the cell phenotype and fate 
of other different cell populations. This capacity has been confirmed with numerous 
diverse cell and tissue combinations. There is a great potential for stem cell-derived 
EVs modulation in the tissue renewal or cell growth era. Furthermore, stem cell-
derived EVs may be applied as appropriate diagnostic biomarkers in various dis-
eases, as they are one of the best biomimetic nanocarriers for a variety of molecules, 
including nucleic acids, proteins, and chemicals.

Although EVs therapy may offer a novel and extremely exciting therapeutic 
strategy, some important aspects are yet to be considered before their clinical appli-
cations. Firstly, the large-scale culture of stem cells and extraction, purification, and 
GMP-based production of EVs (nucleic acids, lipids, and proteins) should be 
defined in detail. Secondly, their long-term safety, efficacy, stability, and biodistri-
bution at different preparations/concentrations should be evaluated accurately. 
Hence, our knowledge of the MSC secretome is not enough and mainly based on 
in vitro studies, it is critically important to characterize the MSC-secreted factors 
in vivo, using more sensitive techniques to analyze their qualitative and quantitative 
changes in response to the cellular damage.

M. A. Rezvanfar et al.
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�Introduction

Over the last few decades, with the increase in life expectancy, noncommunicable 
and degenerative diseases such as acute myocardial infarction, stroke, diabetes, spi-
nal cord injuries, Alzheimer’s disease, and Parkinson’s disease are becoming more 
prevalent worldwide (Christensen et al. 2009; Howse 2006). These diseases are not 
only considered as the top ranked causes of death but also as the major causes of 
morbidity that are affecting the socioeconomic and personal life of the survivors 
(Christensen et al. 2009; Howse 2006).

In recent years, regenerative therapy has been given considerable attention in 
addressing the unmet needs of treating degenerative diseases through conventional 
medicine. Among the different tools of regenerative medicine, embryonic stem cells 
(ESCs) is considered to be the best source of stem cells because of their pluripo-
tency. However, ethical controversies over the use of ESCs, restrict their use in 
regenerative medicine (King and Perrin 2014; Lo and Parham 2009). Meanwhile, 
mesenchymal stem cells (MSCs) have shown tremendous regenerative potential and 
are considered as a promising tool of regenerative therapy because of their self-
renewal capability and multi-differentiation potential (Estrada et al. 2013; Haque 
et  al. 2015). Notably, several studies have shown the regenerative outcomes of 
MSCs based therapy despite low engraftment of the transplanted cells (Beegle et al. 
2015, 2016; Malliaras and Marban 2011). This led researchers to explore the molec-
ular mechanism behind the regenerative benefits of MSCs based therapy.

Stem cells are found to secrete a large number of paracrine factors that have 
mitogenic, angiogenic, antiapoptotic, antiscarring, and chemoattractant characteris-
tics (Bollini et al. 2013; Stoddart et al. 2015). These molecules are recognized to be 
the possible cause behind the successful outcomes of regenerative therapy (Bollini 
et al. 2013; Czekanska et al. 2014; Stoddart et al. 2015). The growing evidence on 
the role of paracrine factors in the regeneration of affected organs has led to the 
introduction of cell culture supernatants or secretomes as a novel therapeutic tool of 
regenerative medicine.

Proteins secreted by cell, tissue, or organism under certain condition or at a 
particular time is expressed as “secretome” (Hathout 2007). Paracrine factors 
present in the secretomes help to inhibit apoptosis of cells in the damaged organs, 
induce proliferation of progenitor or stem cells, and induce neovascularization to 
supply nutrient to the affected tissues (Hathout 2007; Ratajczak et al. 2012). The 
role of individual or groups of paracrine factors in regeneration and regulation of 
various signaling pathways were being studied in the last few decades. In recent 
years, the regenerative potential of secretomes from stem, progenitor, and terminally 
differentiated cells are being studied (Haque et al. 2017; Madrigal et al. 2014; Pires 
et  al. 2014). This is a very fast-growing field of research where the potential of 
secretome in all aspects of regenerative therapy are being explored in general. 
Hence in this chapter, the current scenario in the field of secretome research for the 
treatment of specific disease(s) or organ(s) will be first discussed followed by the 
introduction of the concept of using specific secretome composition for targeted 
regenerative therapy.
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�Sources of Secretomes

Secretome can be prepared from any cell types. To date, production of secretomes 
from ESCs, MSCs and other adult stem cells have been reported (Kang et al. 2009; 
Madrigal et al. 2014; Pires et al. 2014). Among the different types of cells used in 
the production of secretome, MSCs is studied most because of their immunomodu-
latory, multidifferentiation, and vasculogenesis potential, and trophic activity 
(Caplan 2013; Haque et  al. 2015). More specifically, MSCs from bone-marrow 
(BM-MSCs), adipose tissue (AD-MSC), dental pulp (DPSCs), apical papilla 
(AP-MSCs), human umbilical cord perivascular cells (HUCPVC-MSCs), olfactory 
mucosa (OM-MSCs), skeletal muscle (SM-MSCs), uterine tubes (UT-MSCs), 
amniotic membrane (AM-MSCs), and ESCs (ESC-MSCs) have been used to pro-
duced secretomes in order to study their regenerative potential (Ahmed et al. 2016; 
Assoni et al. 2017; Bakopoulou et al. 2015; Ge et al. 2016; Lee et al. 2016; Lotfinia 
et al. 2016; Marfia et al. 2016; Miranda et al. 2015; Oskowitz et al. 2011; Paquet 
et al. 2015; Pianta et al. 2015; Pires et al. 2014; Ribeiro et al. 2011; Rossi et al. 
2012; Sart et  al. 2014; Teixeira et  al. 2015, 2017). In addition, secretomes from 
amniotic fluid stem cells (hAFSCs) (Maraldi et  al. 2015; Mirabella et  al. 2012), 
peripheral blood mononuclear cells (PBMC) (Haque et  al. 2017; Hoetzenecker 
et al. 2013; Mildner et al. 2013), apoptotic PBMC (Apo-PBMC) (Altmann et al. 
2014; Hoetzenecker et al. 2012; Lichtenauer et al. 2011), monocytes (Bouchentouf 
et al. 2010), bone marrow cells (BMC), peripheral blood leukocytes (PBL) (Korf-
Klingebiel et al. 2008), visceral endoderm like cell lines HepG2 and END2 cell line 
(Kang et al. 2009) have also been studied.

�Regenerative Potential of Secretomes

�Neuroprotection and Neurodegeneration

The term ‘neurodegenerative diseases’ covers both acute and chronic 
neurodegeneration related diseases. Damage and death of the neurons by stroke and 
trauma resulted in acute neurodegeneration, while chronic neurodegeneration 
(Alzheimer’s disease, Huntington’s disease, and Parkinson disease) is age related 
and develop gradually (Lindvall and Kokaia 2010). Both acute and chronic neuronal 
disorders cause functional impairment of neurons that lead to physical inability and 
death. Moreover, these diseases added to the social and economic burden of the 
patients since they need long-term care and nursing.

Regeneration of neurons in the affected part of the nervous system using 
secretome could be considered as a tool to treat neurodegenerative diseases (Lindvall 
and Kokaia 2010). In an in  vitro study, activation of signaling cascades such as 
cAMP response element-binding protein (CREB), Akt, extracellular-signal 
regulated kinase (Erk1/2), and heat shock protein 27 (HSP27) that involved in the 
regulation of cytoprotective gene products have been detected in astrocytes and 
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Schwann cells treated with Apo-PBMC secretome (Altmann et al. 2014). Enhanced 
sprouting of human primary neurons in the presence of Apo-PBMC secretome has 
also been reported (Altmann et  al. 2014). In vivo regenerative potential of Apo-
PBMC secretome using middle cerebral artery occlusion model in rat showed 37% 
reduction of ischemic lesion (Altmann et al. 2014). Neurotropic factors composition 
analysis of Apo-PBMC secretome showed significantly higher expression of brain-
derived neurotrophic factor (BDNF) and this factor has been recognized to contribute 
toward neuronal development and function in several studies (Lu et  al. 2013; 
Monteggia et al. 2004; Salgado et al. 2015).

Several in vitro and in vivo studies have also shown that secretomes from human 
MSCs possessed the potential to be neuroprotective and neuroregenerative (Ahmed 
et al. 2016; Assoni et al. 2017; Ge et al. 2016; Marfia et al. 2016; Pires et al. 2014; 
Ribeiro et al. 2011). Ahamed et al. (2016) reported markedly higher expression of 
vascular endothelial growth factor (VEGF), Fractalkine, RANTES, monocyte che-
moattractant protein 1 (MCP-1), granulocyte-macrophage colony stimulating factor 
(GM-CSF), and neprilysin in the secretome from DPSCs compared to those from 
BM-MSCs and AD-MSCs. Decreased cytotoxicity of amyloid beta peptide to 
SH-SY5Y cells, and increased expression of endogenous survival factor Bcl-2 and 
decreased expression of apoptotic regulator Bax in SH-SY5Y cells were exhibited 
in the presence of secretome from DPSCs as well (Ahmed et al. 2016). Increased 
survival and differentiation of SH-SY5Y cells toward a neuronal phenotype 
have been reported in the presence of secretomes from BM-MSCs and HUCPVC-
MSCs (Pires et al. 2014). Furthermore, in the presence of HUCPVC-MSCs secre-
tome increased neuronal differentiation of human telencephalon neural precursor 
cells was observed (Teixeira et al. 2015). Secretome from BM-MSC was also found 
to support higher survival of astrocytes, microglial cells and oligodendrocytes 
(Ribeiro et al. 2011). However, secretomes collected at 24 and 48 h support higher 
survival of astrocytes and microglial cells, while secretomes collected at later time 
point support higher survival of oligodendrocytes (Ribeiro et al. 2011).

In an in vivo study, partial reversion of the motor phenotype and the neuronal 
structure in 6-hydroxidopamine induced Parkinson’s disease rat was observed when 
treated with BM-MSC secretome (Teixeira et al. 2017). From the proteomic analy-
sis, presence of neuroregulatory molecules, namely cystatin C, glia-derived nexin, 
galectin-1, pigment epithelium-derived factor (PEDF), VEGF, BDNF, interleukin-6 
(IL-6), and glial cell line-derived neurotrophic factor (GDNF) were detected, hence 
defining its neuroregenerative potential (Teixeira et al. 2017).

Secretome from ADSC was found to inhibit the lipopolysaccharides (LPS) 
induced effects on microglia activation which is involved in the pathogenesis of 
central nervous system (CNS) inflammation (Marfia et al. 2016). Ge et al. (2016) 
predicted that proteins in OM-MSC secretome have neurotrophy, angiogenesis, cell 
growth, differentiation, apoptosis, and inflammation regulatory potential which are 
highly correlated with the repair of central nervous system. In addition, higher 
regenerative potential has been reported when secretome were used in combination 
with preconditioned stem cells. Sart et al. (2014) have shown that preconditioning 
of ESC-derived neural progenitor cells aggregates in hypoxic environment in the 
presence of BM-MSC secretome enhances the engraftment potential and neurogen-
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esis of cells following transplantation (Sart et al. 2014). A cocktail of secretomes 
has also been studied in vitro, where pooled secretomes from AD-MSCs, SM-MSCs, 
and UT-MSCs from five different donors was shown to delay apoptosis and enhance 
migration of Duchenne muscular dystrophy myoblasts (Assoni et al. 2017).

�Angiogenesis

Angiogenesis is vital in repair and regeneration of affected tissues or organs, and 
tissue engineering. Identification of angiogenic factors and their presence in the 
secretomes from different cell sources has been reported (Bakopoulou and About 
2016; Burrows et al. 2013; Konala et al. 2016; Newman et al. 2013). An ex vivo 
study demonstrated longer neovascular sprouts generation from rat aortic rings cul-
tured in serum deprived BM-MSC secretome compared to the control group. In 
vitro angiogenesis assay also showed the superiority of serum deprived BM-MSC 
secretome. The authors attributed the results to the higher expression of VEGF-A, 
angiopoietins (ANGPTs), insulin-like growth factor 1 (IGF-1), and hepatocyte 
growth factor (HGF) in the BM-MSC secretome yielded from serum deprived cul-
ture condition (Oskowitz et al. 2011). Similarly, significantly higher expression of 
angiogenic mediators (VEGF-A, VEGF-C, IL-8, RANTES, and MCP-1) and lower 
expression of immunomodulatory mediators (IL-1b, IL-6, IL-1Ra, IL-15, and 
FGF-2 and HGF) was observed in the secretome from BM-MSCs cultured in anoxic 
(0.1% oxygen) compared to normoxic and hypoxic (5% oxygen) conditions (Paquet 
et al. 2015). Both in vitro and in vivo studies also showed significantly better che-
moattractant and angiogenic potential of the BM-MSC secretome derived from 
anoxic condition (Paquet et al. 2015). In another study, AP-MSCs were cultured in 
serum-deprived, glucose deprived, and hypoxic condition individually or in combi-
nation. Finally, it was found that higher numbers and amounts of proangiogenic 
(angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (ser-
pin-E1, TIMP-1, TSP-1) were secreted when cultured in all stressed conditions 
combined compared to partial combinations or in one stressed condition only 
(Bakopoulou et al. 2015). Furthermore, the secretome obtained was most effective 
in supporting migration and formation of capillary like structure by human umbili-
cal vein epithelial cells (HUVECs) (Bakopoulou et al. 2015). These results substan-
tiate the necessity of utilizing preconditioning strategies to enhance the angiogenic 
potential of secretomes produced from MSCs regardless of their sources.

�Cardiac Regeneration and Cardio-Protection

Both human and murine monocytes cultured in angiogenic conditions were found 
to express significantly higher amount of HGF, IGF-1, MCP-1, and soluble TNF 
receptor 1 (sTNFR-1) compared to their precursors (Bouchentouf et  al. 2010). 
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They also demonstrated the presence of HGF, IGF-1, and sTNFR-1 in the secretome 
yielded from monocytes cultured in angiogenic condition, and the secretome 
reduces tumor necrosis factor alpha (TNF-α), staurosporine, and oxidative stress 
induced death of murine HL-1 cardiomyocyte cell line. However, the presence of 
HGF, IGF-1, and MCP-1 in this secretome helped to promote endothelial cell pro-
liferation and capacity to form vessels those are needed for cardiac remodeling 
(Bouchentouf et al. 2010).

Secretome from Apo-PBMC was found to reduce microvascular obstruction 
during acute myocardial infarction (AMI) in pigs and the platelet activation markers 
was also lowered in the plasma sample collected (Hoetzenecker et al. 2012). They 
further confirmed their findings using an in vitro study, where Apo-PBMC secre-
tome caused impaired activation and aggregation of human and pig platelets. In 
addition, increased vasodilation capacity via activation of endothelial nitric oxide 
synthase (eNOS) and inducible nitric oxide synthase (iNOS) was also reported in 
the presence of secretome from Apo-PBMC (Hoetzenecker et al. 2012).

In another in  vitro study, induction of caspase-8-dependent apoptosis in 
autoreactive CD4+ T cell in the presence of PBMC secretome was observed. This 
result supports the notion that secretome from PBMC could potentially be used for 
treatment of inflammatory heart diseases (Hoetzenecker et al. 2013).

Secretome from Apo-PBMC have also been shown to exhibit cardioprotective 
effect through a combination of in  vivo and in  vitro studies. In experimental 
AMI rat and pig models, secretome from Apo-PBMC reduced scar tissue forma-
tion (Lichtenauer et  al. 2011). While in porcine closed chest reperfused AMI 
model, higher values of ejection fraction, a better cardiac output and a reduced 
extent of infarct size were reported. Induced activation of prosurvival signaling-
cascade (AKT, Erk1/2, CREB, c-jun), increased antiapoptotic gene products 
(Bcl-2, BAGI) and reduced starvation-induced cell death was seen in human 
cardiomyocytes in the presence of the Apo-PBMC secretome in vitro (Lichtenauer 
et al. 2011).

Secretomes from BMC and PBL both have shown stimulated human coronary 
artery endothelial cell proliferation, migration, and tube formation, and induced 
cell sprouting in mouse aortic ring assay (Korf-Klingebiel et  al. 2008). Both 
secretomes were also found to protect rat ventricular cardiomyocytes from cell 
death induced by simulated ischemia or ischemia followed by reperfusion. Notably, 
a combination of the BMC and PBL secretomes showed a synergistic effect 
(Korf-Klingebiel et al. 2008).

�Acute Liver Failure

Recently, Lotfinia et al. (2016) studied the potential of the secretomes from ESC-
MSC and BM-MSC for the treatment of inflammatory hepatic conditions (Lotfinia 
et  al. 2016). In their study, significantly upregulated expression of angiogenin, 
IGFBP2, transforming growth factor β1 (TGFβ1), and MCP1 was observed in the 
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ESC-MSC secretome compared to that in BM-MSC secretome. However, among 
the 174 proteins analyzed, most of the cytokines in BM-MSC secretome showed 
higher expression than ESC-MSC secretome. VEGF and bone morphogenetic pro-
tein 4 (BMP4) which are involved in the regulation of immune regulation, epithelial 
cell proliferation, and negative regulation of apoptosis were expressed in the both 
secretomes. Compared to the control group, both secretomes were found to increase 
in vitro viability of hepatocytes, and decrease aspartate aminotransferase (AST) and 
alanine aminotransferase (ALT) in the serum from the thioacetamide-induced acute 
liver failure mice. In addition, immunomodulatory potential of ESC-MSC secre-
tome was better than BM-MSC secretome as indicated by the increased IL-10 secre-
tion. However, none of the secretome showed any effect on the survival of acute 
liver failure induced mice after 1 week (Lotfinia et al. 2016).

AD-MSC secretome obtained from hypoxic culture conditions showed 
significantly higher expression of hypoxia-inducible factor 1-alpha (HIF-1α), HGF, 
and VEGF compared to those collected at normoxic condition (Lee et al. 2016). 
AD-MSC secretome collected at hypoxic condition increased proliferating cell 
nuclear antigen (PCNA) marker expression and proliferation of AML12 cells. 
While, decreased level of IL-6, TNF-α, AST, and ALT in the serum of partially 
hepatectomized mice, and increased PCNA expression and the number of KI-67 
positive cells in the hepatectomized liver was also reported (Lee et al. 2016).

�Osteogenic and Chondrogenic Differentiation

Secretomes from visceral endoderm like cell lines HepG2 and END2 cell line have 
shown osteogenic and chondrogenic differentiation potential. Presence of six com-
mon protein (β-actin, complement component 3, fibronectin1, immunoglobulin, 
vimentin, and vinculin) required for the migration and adhesion of cells was detected 
in the both secretomes (Kang et al. 2009). Though there are lack of studies on the 
osteogenic and chondrogenic regeneration using secretomes; role of different para-
crine factors, namely TGF-β, stromal cell-derived factor-1 (SDF-1), HGF, fibroblast 
growth factor (FGF) 18, and IGF-1 in osteogenesis and chondrogenesis have been 
acknowledged by several researchers (Correa et al. 2015; Jenniskens et al. 2006; 
Stoddart et al. 2015; Takebayashi et al. 1995).

�Immunoregulation

Immunosuppression or immunoregulation is highly needed to control autoimmune 
diseases or prevent rejection of allogenic implants. Secretome from AM-MSCs 
was found to modulate lymphocyte proliferation in a dose-dependent manner 
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(Rossi et  al. 2012). Further studies confirmed that secretome from AM-MSCs 
suppressed the proliferation of both CD4+ T-helper (Th) and CD8+ cytotoxic 
T-lymphocytes, and also showed inhibitory properties on both central and effector 
memory subsets (Pianta et al. 2015). More specifically, AM-MSC secretome signifi-
cantly reduced the expression of markers associated to the Th1 and Th17 popula-
tions, while no effect on the Th2 population was reported. Notably, AM-MSC 
secretome significantly induced Treg cells, and it was further confirmed by the 
increased secretion of TGF-β (Pianta et al. 2015). Immunomodulatory potential of 
secretome from AFSCs has also been reported (Maraldi et al. 2015).

�Wound Healing

Secretome has also been shown to have wound healing potential. Miranda et  al. 
(2015) reported that secretomes from both UC-MSCs and BM-MSCs have an effect 
on the migration of human dermal fibroblast (HDF) and keratinocyte (HaCaT). 
However, secretome from UC-MSCs showed significantly higher migration of 
HaCaTs compared to HDFs, while the opposite effect was observed in the secre-
tome from BM-MSCs (Miranda et al. 2015). The migration of keratinocytes in the 
presence of UC-MSC secretome were linked to the relatively higher presence of 
epidermal growth factor (EGF), FGF-2, and keratinocyte growth factor (KGF). This 
study showed the potential of UC-MSC secretome in maintaining the earlier homeo-
stasis and inflammation stages of wound healing, while the BM-MSC secretome 
could be useful in promoting later proliferative and final remodeling of tissues that 
is linked to the presence of granulocyte colony stimulating factor (G-CSF), IL-6, 
VEGF-A, TGF-β in it (Miranda et al. 2015).

Mirabella et al. (2012) also elucidated the wound healing potential of secretome 
from AFSCs through an in  vivo study. In their study, raised flaps treated with 
AFSCs secretome showed 50% higher perfusion on day 7 post-operation than the 
baseline, and subsequently necrosis development was delayed. Moreover, normal 
arrangement of epidermal and dermal structures and a high density of vessels in 
subcutaneous tissues were observed histologically (Mirabella et al. 2012). AFSCs 
secretome also induces the migration of wound and scar repairing CD31+/
VEGFR2+ and CD31+/CD34+ cells into the ischemic subcutaneous tissues 
(Mirabella et al. 2012).

Significantly rapid wound closure and reepithelialization was observed in the 
skin of full-thickness punch biopsy wound modeled rat when treated with PBMC 
secretome containing emulsion. Meanwhile, increased CD31 positive cell popula-
tion indicated enhanced neoangiogenesis at the site of PBMC secretome treated 
tissue (Mirabella et al. 2012). PBMC secretome also induced migration of primary 
human fibroblasts (FB) and keratinocytes (KC) in vitro. However, no effect on the 
proliferation of these cell populations was seen. Notably, induced proliferation and 
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angiogenic tube formation of endothelial cells in the presence of PBMC secretome 
was also reported. These result supports the potential use of PBMC secretome in 
treating non-healing skin ulcers (Mildner et al. 2013).

�Secretome as Cell-Free Pharmaceuticals for Tissue-Specific 
Regeneration

The discussion in the earlier sections indicates that the regenerative potential of 
secretomes from different cell sources is highly dependent on the paracrine factors 
present. Biological functions of some common regenerative paracrine factors are 
listed in Table 2.1.

Table 2.1  Major biological functions of some selected paracrine factors

Name of the paracrine 
factors Function (References)

Brain-derived 
neurotrophic factor 
(BDNF)

•	 Promotes survival of neurons, synaptogenesis, and synaptic 
plasticity (Lu et al. 2013).

Epidermal growth 
factor (EGF)

•	 Regulates cellular proliferation, differentiation, survival, and 
motility (Herbst 2004).

•	 Regulates proliferation of MSCs isolated from different origins 
while maintaining their regenerative potential (Hu et al. 2013; 
Tamama et al. 2006, 2010).

Fibroblast growth 
factor 2 (FGF-2)

•	 Promotes angiogenesis, survival of cells, and wound healing 
(Beenken and Mohammadi 2009).

•	 Stimulates migration and proliferation of endothelial cells (Beenken 
and Mohammadi 2009).

•	 Encourages mitogenesis of smooth muscle cells and fibroblasts 
(Beenken and Mohammadi 2009).

•	 Shows a broad spectrum of mitogenic effects (Salcedo et al. 1999; 
Werner and Grose 2003).

•	 Stimulates the in vitro expansion of human BM-MSCs by activation 
of JNK signaling (Ahn et al. 2009).

•	 Slows down the ageing process of MSCs by decreasing the gradual 
loss of telomere sequences (Bianchi et al. 2003; Yanada et al. 2006).

•	 Cytoprotective role of FGFs have also been acknowledged by 
researchers (Werner and Grose 2003).

•	 Increases expression of CXCR4 on human endothelial cells and help 
in angiogenesis (Salcedo et al. 1999).

Granulocyte colony 
stimulating factor 
(G-CSF)

•	 Regulates granulopoiesis (Zhang et al. 2009).
•	 Promotes survival, proliferation, activation, and maturation of 

hematopoietic progenitors of neutrophil lineage (Zhang et al. 2009).
•	 Promotes cellular proliferation and migration, and prevents 

apoptosis (Murakami et al. 2013).
•	 Mobilizes HSC and MSCs from bone marrow (Kawada et al. 2004).
•	 Improves chemotactic property of MSCs in vitro  

(Murakami et al. 2013).

(continued)
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Table 2.1  (continued)

Name of the paracrine 
factors Function (References)

Granulocyte-
macrophage colony 
stimulating factor 
(GM-CSF)

•	 Stimulates proliferation and differentiation of hematopoietic 
progenitors (Shi et al. 2006).

•	 Acts as chemoattractant and induces mobilization of progenitors in 
the circulation (Rojas et al. 2005).

Hepatocyte growth 
factor (HGF)

•	 Mitogenic for epithelial and endothelial cells (Sulpice et al. 2009).
•	 Promotes angiogenesis; induces kidney and liver regeneration 

(Galimi et al. 2001; Sulpice et al. 2009).
•	 Promotes proliferation and survival of various cell types  

(Forte et al. 2006).
•	 Induces migration and site-specific homing of various cell types 

including MSCs from different origins (Son et al. 2006; Sulpice 
et al. 2009).

•	 Helps in immunomodulation (Maraldi et al. 2015).
Leukemia inhibitory 
factor (LIF)

•	 Inhibits proliferation and induces differentiation of macrophages 
(Moon et al. 2002).

•	 Promotes neuronal survival and differentiation (Moon et al. 2002).
•	 Stimulates glial development (Moon et al. 2002).
•	 Helps to maintain self-renewal and multidifferentiation potential of 

various stem cells including MSCs (Kolf et al. 2007; Metcalf 2003).
Macrophage colony 
stimulating factor 
(M-CSF)

•	 Regulates production, survival, and function of monocytes, 
macrophages, and osteoclasts (Grasset et al. 2010).

Platelet-derived 
growth factor beta 
(PDGF-BB)

•	 Induces fibroblast proliferation, collagen production, and 
angiogenesis (Andrae et al. 2008).

•	 Promotes wound healing (Andrae et al. 2008).
•	 Influences periodontal regeneration (Andrae et al. 2008).
•	 Induces both expansion and migration of MSCs  

(Fierro et al. 2007; Tamama et al. 2006).
•	 Helps survival of MSCs as well (Krausgrill et al. 2009).

Stem cell factor 
(SCF), KIT ligand

•	 Promotes survival, proliferation, and differentiation of 
hematopoietic stem cells and progenitor cells (Broudy 1997).

•	 Promote survival of mature cells as well (Broudy 1997).
•	 Regulates the migration, differentiation, and proliferation of several 

cell types (Lennartsson and Rönnstrand 2012).
•	 Induces the migration and homing of MSCs (Pan et al. 2013).

Stromal cell-derived 
factor-1a (SDF-1A)

•	 Induces migration of neutrophils to site of infection  
(Murphy et al. 2007).

•	 Promotes mobilization and directed migration of stem cells (Murphy 
et al. 2007).

•	 Influences neurogenesis (Murphy et al. 2007).
•	 Helps site-specific migration and homing of MSCs and other cells 

through chemokine receptor CXCR4 (He et al. 2010; Yu et al. 2015).
Tumor necrosis factor 
alpha (TNF-α)

•	 Induces tumor cell apoptosis, inflammation, and immune response 
(Pfeffer 2003).

Vascular endothelial 
growth factor A 
(VEGF-A)

•	 Shows angiogenic, arteriogenic, antiapoptotic, and 
immunoregulatory properties (Sulpice et al. 2009; Wang et al. 2006).

•	 Increases proliferation and survival MSCs (Pons et al. 2008).

(continued)
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To date, in vitro and in vivo studies conducted on the regenerative application of 
secretome appeared to be rather subjective and the outcomes varied. The variation in 
outcomes could be attributed to the donors, cell types and incubation times (Assoni 
et al. 2017; Haque et al. 2017). Therefore, maintaining batch to batch consistency of 
paracrine factors’ composition in the secretome will be very challenging.

Based on the research outcomes described above, we attempted to identify and 
select the vital paracrine factors needed to yield the best regenerative outcome for a 
particular disease or organ type. Following the analysis of the paracrine factors’ 
composition in the different secretomes regardless of their sources, we were able to 
group them and proposed its use for targeted regenerative therapies (Fig.  2.1). 
Further studies and precise grouping of the paracrine factors would be more effec-
tive in sorting and selecting a secretome-type for a targeted tissue-based regenera-
tion and finally engineering secretome to be “cell-free pharmaceuticals” in the near 
future. Pretreatment of cells (Bakopoulou et al. 2015; Sart et al. 2014) and the usage 
of dynamic culture conditions (Teixeira et al. 2016) could even be used to regulate 
the production of targeted paracrine factors in the large-scale production of 
secretome.

Table 2.1  (continued)

Name of the paracrine 
factors Function (References)

Interferon-gamma 
(IFN-γ)

•	 Induces antigen processing and presentation (Schroder et al. 2004).
•	 Inhibit proliferation and induce apoptosis (Schroder et al. 2004).
•	 Induce immunomodulation and leukocyte trafficking  

(Schroder et al. 2004).
Interleukin 2 (IL-2) •	 Regulates proliferation, activation, and differentiation of 

lymphocytes (Liao et al. 2011).
Interleukin 3 (IL-3) •	 Promotes proliferation and differentiation of hematopoietic 

progenitors (Nitsche et al. 2003).
Interleukin 6 (IL-6) •	 Promotes angiogenesis, wound healing, and cell migration  

(Yew et al. 2011).
•	 Promotes axon regeneration (Leibinger et al. 2013).
•	 Stimulates the production of acute phase proteins  

(Fattori et al. 1994).
•	 Favors chronic inflammatory responses by stimulating T- and 

B-lymphocytes (Gabay 2006).
Interleukin 10 (IL-10) •	 Inhibits Th1 cells, natural killer cells, and macrophages (Couper 

et al. 2008).
•	 Enhances proliferation, survival, and antibody production of B cells 

(Rousset et al. 1992).
•	 Promotes immunosuppressive functions (Pierson and Liston 2010).

Interleukin 12 
(IL-12p70)

•	 Increases IFN-γ production (Del Vecchio et al. 2007).
•	 Induces Th1 differentiation (Del Vecchio et al. 2007).
•	 Promotes proliferation and cytolytic activity of natural killer and T 

cells (Del Vecchio et al. 2007).
Interleukin 23 (IL-23) •	 Induces autoimmunity (Gaffen et al. 2014).

•	 Induces tissue destruction (Gaffen et al. 2014).
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Fig. 2.1  Paracrine factors’ composition proposed for targeted tissue or organ-based regenerative 
therapy. ANGPTs angiopoietins, BDNF brain-derived neurotrophic factor, BMP4 bone morphoge-
netic protein 4, EGF epidermal growth factor, FGF fibroblast growth factor, G-CSF granulocyte 
colony stimulating factor, GDN glia-derived nexin, GDNF glial cell line-derived neurotrophic fac-
tor, GM-CSF granulocyte-macrophage colony stimulating factor, HGF hepatocyte growth factor, 
HIF-1a hypoxia-inducible factor 1-alpha, IGF-1 insulin-like growth factor 1, IGFBP2 insulin-like 
growth factor binding protein 2, IL interleukin, LIF leukemia inhibitory factor, MCP-1 monocyte 
chemoattractant protein 1, MSCs mesenchymal stem cells, PBMC peripheral blood mononuclear 
cells, PDGF-BB platelet-derived growth factor beta, PEDF pigment epithelium-derived factor, 
SDF-1 stromal cell-derived factor-1, sTNFR-1 soluble TNF receptor 1, TGFβ transforming growth 
factor β, VEGF-A vascular endothelial growth factor A (Regular and italic fonts denote expected 
higher and lower expression of the paracrine factors in the secretome respectively.)

�Conclusion

The presence of paracrine factors in the secretome plays a vital role in the process 
of regeneration. From the critical analysis of the outcomes based on in vitro and 
in vivo studies of secretome and the molecules involved in the regenerative pro-
cess, we attempted to categorize the paracrine factors. Finally, we proposed that 
regardless of the source of the secretome and on the basis of the presence of the 
group of paracrine factors, secretome could be selected for targeted regenerative 
therapy.
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Chapter 3
Preparation of Extracellular Vesicles 
from Mesenchymal Stem Cells

Fernanda Ferreira Cruz, Ligia Lins de Castro, 
and Patricia Rieken Macedo Rocco

�Introduction

One of the most important mechanisms of paracrine communication between 
mesenchymal cells (MSCs) occurs by the release of extracellular vesicles (EVs) 
(Tetta et al. 2013; Ragni et al. 2017). EVs carry proteins, lipids, lnRNAs, mRNAs, 
and microRNAs, which are capable of reprogramming the phenotypes of other cells 
(Yuan et al. 2009).

EVs from a variety of sources have shown therapeutic potential, with results 
often more promising than those obtained with mesenchymal cells themselves 
(Yuan et al. 2009; Cruz et al. 2015; de Castro et al. 2017). Interest in EVs has been 
increasing, and different protocols for their collection, processing, and extraction 
have been published, which has made it difficult to compare different studies on the 
subject. Therefore, in 2013, the ISEV (International Society of Extracellular 
Vesicles) published a position paper in an attempt to standardize these protocols 
(Witwer et al. 2013). These techniques will be discussed below.

�Collection and Processing of EVs from MSC Culture Medium

EVs can be collected from the culture medium of MSCs and isolated for character-
ization and for therapeutic use, but the amount of EVs found in MSCs under normal 
conditions is generally insufficient for any subsequent application (Rani et al. 2015). 
One way to optimize the release of EVs is by induction of cellular stress. Several 
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MSC stress protocols are available, but it must be emphasized that stress causes 
release of different types and numbers of EVs with different contents than in basal-
state cells, and that the different cellular stress protocols used also influence the 
quantity and type of EVs released (Witwer et al. 2013).

The method most commonly used to induce cell stress is FBS (fetal bovine 
serum) deprivation (Witwer et al. 2013; de Castro et al. 2017). FBS is an essential 
requirement for cell culture, as it provides growth factors and vitamins that are 
needed for cellular growth and expansion (Bieback et al. 2009). Deprived of this 
supplement, cells cease to proliferate and their viability begins to decrease. 
Prolonged FSB deprivation induces cytochrome C release, resulting in mitochon-
drial dysfunction and apoptotic cell death due to lack of nutrients (Zhu et al. 2006; 
Potier et al. 2007; Wang et al. 2015). However, in another study, MSCs were culti-
vated in serum-free conditions for a short time and exhibited normal morphology 
(Fu et al. 2011). These reported discrepancies may be due to differences in the types 
of cell cultured, the various methods used for FSB deprivation, serum depletion 
time, and, mainly, differences between the various techniques used to determine cell 
death or survival (Amiri et al. 2014). According to the ISEV, the maximum accept-
able cell death rate for EV extraction without risk of contamination by fragments of 
dead cells is 5% (Witwer et al. 2013). For EV collection, we maintain MSCs with-
out FBS for 12 h, during which time the cells remain viable and continue to release 
EVs (unpublished data). This duration of cellular stress due to serum deprivation 
has been used by several research groups (Monsel et al. 2015; de Castro et al. 2017). 
Jeppesen et al. (2014) used the Advanced DMEM medium, which does not need to 
be supplemented with FBS, although supplementation with 1–2% FBS is recom-
mended. In some cell types, viability is increased, while in others, it is decreased. 
This culture medium can keep human bone marrow-derived MSCs viable, but pro-
duced changes in the marker expression pattern in MSCs (Eitan et al. 2015). Serum 
deprivation may also induce changes in the secretory pattern of MSCs, expressing 
endothelial-specific proteins (Oskowitz et  al. 2011). Chase et  al. (2010) cultured 
mesenchymal cells without any type of serum and supplemented with late-derived 
growth factor-BB (PDGF-BB), basic fibroblast growth factor (bFGF), and trans-
forming growth factor (TGF)-β, which may be an alternative strategy for subse-
quent isolation of EVs. Partial FBS depletion is not indicated because this serum 
contains vesicles with density between 1.09 and 1.16, similar to that of EVs; fur-
thermore, these vesicles contain RNA (Shelke et al. 2014; Eitan et al. 2015). Shelke 
et al. (2014) centrifuged FBS (pure or with DMEM) for 0, 1.5, or 18 h, added the 
FBS to the culture medium (10%), and centrifuged the medium at 120,000 × g. With 
1.5  h of centrifugation, EV depletion was 60% (measured by concentration of 
RNAs); with 18 h, depletion of EVs was approximately 95%. Besides laborious, 
this method was not 100% effective.

Many EV isolation protocols involve the removal of FBS and the addition of 
0.5% bovine serum albumin (BSA) (Bruno et al. 2012) or 1% human serum albumin 
(HSA) (Barile et al. 2014) to induce cellular stress. The rationale behind this step is 
to prevent cell death and thereby reduce the amount of cellular debris and apoptotic 
bodies that can be released to the conditioned medium. However, it is known that 
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the bovine serum from which albumin is derived contains vesicles, which may have 
functional effects (Witwer et al. 2013; Shelke et al. 2014), and increased concentra-
tions of EVs have been measured under stressful conditions (Zhang et al. 2012). 
Other groups reported functional outcomes using EVs isolated from culture media 
containing 10% fetal calf serum (FCS), where serum was not sufficiently treated to 
ensure clearance of the EVs (Bian et al. 2014).

Other ways of stimulating the release of EVs include phorbol 12-myristate 
13-acetate (PMA) and calcium ionophores, such as ionomycin (Jeppesen et  al. 
2014). In this case, it is also important to evaluate the viability of the MSCs before 
initiating the protocol, as there are no reports of the use of these agents in MSC 
stimulation.

Recently, a group reported that adipose-derived MSCs cultured under exposure 
to a 0.5-T static magnetic field shed a higher number of extracellular vesicles to the 
conditioned medium. Additionally, these EVs were richer in growth factors, such as 
VEGF. Magnetic field exposure might thus be considered an alternative strategy to 
enhance EV production and effects (Marędziak et al. 2015).

Infected cells can release EVs in different amounts and with distinct composition 
compared to uninfected cells. In addition, the microorganisms can be unknowingly 
extracted together with the EVs (Bellingham et  al. 2012; Singh et  al. 2015). 
Mycoplasma, for example, is 300 nm in size (diameter) and closely resembles EVs 
when analyzed by scanning electron microscopy (Singh et al. 2015). In addition, the 
vesicles released by cells contaminated with mycoplasma have an immunosuppres-
sive effect, which may be confused with the effect of healthy MSCs (Quah and 
O’Neill 2007; Yang et  al. 2012). Thus, it is important to confirm that MSCs are 
mycoplasma-free before starting any experiments.

The amount of EVs collected will depend on the type of MSC chosen, whether 
EV release by the cell will be stimulated, which stimulus will be used, and the 
method of extraction, which will be discussed later (Fig. 3.1).

Fig. 3.1  Scanning electron microscopy of MSCs. EVs being released from MSCs after FBS depri-
vation for 12 h
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�Methods for EV Collection from MSC Culture Medium

�Differential Centrifugation

Differential centrifugation is the most widely used method and is the gold standard 
for EVs (Sáenz-Cuesta et al. 2015). It consists of the separation of particles by a 
centrifugation sequence, taking into account that these particles have different 
sedimentation coefficients (Rickwood et al. 1994). To determine the coefficient of 
sedimentation of a particle, the following formula is applied:

	
S

m

r
=
6πη

,
	

where S denotes the settling coefficient, m is the mass of the particle, η denotes the 
viscosity of the medium, and r is the shape of the particle. The sedimentation coef-
ficient tells us how fast a particle sediments; larger particles sediment first and thus 
have a higher coefficient of sedimentation than smaller particles (Rickwood et al. 
1994). High viscosity leads to lower sedimentation efficiency (Momen-Heravi et al. 
2012). Table 3.1 lists some viscosity values that can be used in the formula above 
(Momen-Heravi et al. 2012).

First, a rapid centrifugation at 2000 × g is done to remove cellular debris and pos-
sible apoptotic bodies, and the resulting pellet is discarded. The supernatant is cen-
trifuged more slowly so that the smaller vesicles can be isolated. For isolation of 
microvesicles, a rotation of 10,000–20,000 × g is required (Ismail et al. 2013; Witwer 
et al. 2013; Cvjetkovic et al. 2014). A study of EVs from umbilical cord-derived 
MSCs reported that centrifugation at 40,000 × g is already capable of contaminating 
the sample of microvesicles with exosomes (Rad et al. 2016). For isolation of exo-
somes, the supernatant from this first centrifugation should be centrifuged again at 
100,000 × g or higher, since they are smaller vesicles. If the goal is to obtain both 
populations of EVs, centrifugation can be performed at rates from 2000  ×  g to 
1,000,000 × g (Ismail et al. 2013; Witwer et al. 2013; Cvjetkovic et al. 2014).

Another important point is the duration of centrifugation. If the first centrifugation 
is done very quickly, larger particles such as cell debris and apoptotic bodies will 
remain in the supernatant and will be decanted in the next centrifugation along with 
the EVs. Overly slow centrifugation can sediment the EVs of interest, causing them to 
be discarded. The following ultracentrifugation runs should also be performed at the 
optimum time so that the amount of isolated EVs is sufficient (Cvjetkovic et al. 2014).

Centrifugation speed and centrifugation time are essential for the desired result. 
Two types of rotors are used in ultracentrifuges: the fixed-angle rotor and the swing-
ing bucket rotor (Cvjetkovic et al. 2014; Livshts et al. 2015).

Table 3.1  Viscosity values 
of the main fluids used to 
extract EVs

Fluid Viscosity

FBS 1.4
Culture medium 1.1
PBS 1
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With a fixed-angle rotor, the tubes are kept at a fixed angle in the rotor cavity, and 
at the end of centrifugation, the sediment containing the EVs remains on the side of 
the tube facing the outside of the centrifuge. With a swinging bucket rotor, the tubes 
are allocated to the rotor that is at rest, while the samples swing vertically; the EVs 
thus collect at the bottom of the tube at the end of the centrifugation process 
(Rickwood et al. 1994; Livshts et al. 2015).

The choice of rotor depends on several factors. First, one must consider the 
g-force required for the type of EV to be extracted and the volume to be placed into 
the tubes. Fixed rotors are used most often when differential centrifugation is 
required because the EVs form the pellet by a shorter path, and decantation is thus 
faster and more efficient. Swinging rotors allow better individual separation of EVs, 
favoring centrifugal gradient separation, since pellet formation is relatively ineffi-
cient (Livshts et al. 2015).

The larger the sample volume, the larger the rotor required, and the larger the 
rotor, the lower its rotation speed. To calculate the required velocity, one must know 
the clearing factor (k), which is the efficiency of pellet formation at maximum 
velocity. The closer the clearing factor is to zero, the greater the efficiency of pellet 
formation. It is also important to calculate the speed difference between one rotor 
and another when needing to switch to a different rotor while keeping the same pel-
let characteristics (Rickwood et al. 1994; Livshts et al. 2015). The clearing factor is 
expressed as (Rickwood et al. 1994; Livshts et al. 2015):
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the maximal radius (rmax) and minimal (rmin) radius are supplied by the rotor 
manufacturer, as is the maximum rpm. Some of the most commonly used rotors and 
their clearing factors are described in Table 3.2.

The time of pellet formation can also be calculated (Rickwood et  al. 1994; 
Cvjetkovic et al. 2014):

	
T

k

S
= ,

	

where T denotes the time in hours, k is the clearing factor, and S denotes the coef-
ficient of sedimentation, as mentioned above.

The difference in time from one rotor to another can be calculated as long as the 
content to be centrifuged is the same (Rickwood et al. 1994; Cvjetkovic et al. 2014):

Table 3.2  Rotors most 
commonly used for EV 
extraction and their clearing 
factors (Beckman Coulter)

70 Ti k = 44
45 Ti k = 133
SW 32 Ti k = 204
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where T denotes the time in hours, k is the clearing factor, and 1 and 2 denote the 
different rotors.

These calculations can be performed on manufacturers’ websites, as long as both 
rotors are from the same company. Beckman Coulter, for example, allows rotor 1 to 
be selected within a list of rotors. By setting the rpm and centrifugation time, the 
equivalent time for the second rotor can be calculated.

The above calculations only work for rotors of the same type. Cvjetkovic et al. 
(2014) calculated the equivalence between the fixed and swinging rotors most often 
used for EV extraction at 118,000 × g (Table 3.3).

Differential centrifugation is limited by protein contamination. Washing the pel-
let with PBS and performing a new ultracentrifuge run after this wash may reduce 
protein contamination, but can eliminate desired components (Franquesa et  al. 
2014; Conforti et al. 2014). These differential ultracentrifugation procedures are not 
efficient for size separation, because sedimentation also depends on the density or 
“charge” of a particle and the distance it travels. Some small EVs near the bottom 
of the tube will sediment along with large particles even at low speed, while some 
larger particles at the top of the tube can sediment only with high-speed rotation. 
Aggregation of EVs is a common occurrence, and also affects the separation of 
individual vesicles (Ismail et al. 2013; Witwer et al. 2013).

Different protocols for EV extraction by differential centrifugation lead to incon-
sistencies in the isolated material, which may explain the different biological effects 
of EV from MSCs reported by different research groups (Bian et al. 2014; Conforti 
et al. 2014).

�Immunoaffinity Isolation

Immunoaffinity isolation is based on the presence of specific surface markers in EV 
subpopulations (Clayton et  al. 2001; Wubbolts et  al. 2003; Théry et  al. 2006). 
Antibodies to surface proteins are used to positively select the desired EV popula-
tions (immunoselection) or to capture unwanted EV populations (negative selection 

Table 3.3  Time equivalences 
between the fixed and 
swinging rotors most used for 
EV extraction 118,000 × g

Rotor RPM
Equivalent 
time (min)

70 Ti 40,045 70
45 Ti 38,837 93
SW41 Ti 30,913 114
SW32 Ti 30,998 114
TLA-100.3 52,724 27
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or immunodepletion) (Yoo et al. 2008; Mathivanan et al. 2010; Kim et al. 2012). 
Antibodies are combined with beads or other matrices, and, by covalent or high-
affinity interactions, facilitate physical separation by low-speed centrifugation or 
magnetic techniques. Depending on the approach, this method can be used to purify 
and enrich EVs (Witwer et al. 2013).

Because this technique has high specificity (Rana et al. 2012; Tauro et al. 2012), 
it is used when only one subpopulation is desired. It is important to be aware that 
some markers used in the selection of EVs may not be present or recognized in all 
EVs, which leads to a yield much lower than with methods that extract EVs based 
on physical characteristics. Optimally, EVs should be evaluated not only for the 
presence of selected markers, but also for the absence of markers that are not of 
interest, including appropriate isotype controls (Witwer et al. 2013).

�Density Gradient

The density gradient method is based on size and density. It is usually combined 
with ultracentrifugation. Two types of devices are available, which differ in sam-
ple loading position: top-loading and bottom-loading (Choi et al. 2011; Willms 
et al. 2016).

In top-loading devices, the high-density particles are at the bottom and the low-
density particles at the top. Samples are placed at the top of the tubes, and visible 
particle separation occurs after centrifugation. In this method, separation depends 
more on the size and mass of the particles than on their density. If particles of dif-
ferent sizes and the same density are centrifuged for a long enough time, they may 
eventually be in the same position. Since prolonged centrifugation can sediment the 
smallest particles, it is important to determine the optimal centrifugation time (Choi 
et al. 2011; Willms et al. 2016).

The bottom-loading method is based on particle density. Higher-density particles 
remain at the bottom of the tubes after centrifugation, at which time the particles are 
in an equal density gradient medium. Size affects only the velocity of particle 
motion until the density of the particle is equal to that of the density gradient of the 
medium, also called the velocity of flotation (Choi et al. 2011; Willms et al. 2016).

The gradient media used are composed of sucrose and iodixanol (Choi et  al. 
2011; Willms et al. 2016). The density of the sucrose solution will depend on its 
osmolarity. The density of iodixanol-based medium, also known as OptiPrep gradi-
ent, varies according to the concentration of iodixanol in the purchased solution. 
The OptiPrep datasheet notes that the solution is isosmotic and has low viscosity, 
which does not affect EVs, unlike sucrose solution, which is hyperosmotic and 
high-viscosity and may thus affect EV functionality (Progen 2017).

Van Deun et al. (2014) compared several methods of extracting EVs and con-
cluded that the density gradient method yields the least EVs, but is optimal when the 
purity of the EVs is more important than their quantity.
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To use the density gradient method without separating EV subpopulations, one 
can perform the cushion-based isolation method, which consists of the use of two 
gradients: a high-density background gradient composed of 2.5  M sucrose and 
50% OptiPrep and a low-density gradient composed of 0.5 M sucrose and 10% 
OptiPrep. The sample is placed at the top of the tube. After centrifugation, the 
large particles will remain between the two gradients and the EVs will remain at 
the top of the tube. One limitation of this method is that contaminant proteins can 
remain together with the EVs at the end of centrifugation; however, samples may 
be previously concentrated so as to be free of these proteins (Lamparski et  al. 
2002; Choi et al. 2007)

Using the density gradient method, Haga et al. (2017) extracted EVs from human 
and murine bone marrow-derived MSCs with a size of 116 ± 46 nm and 112 ± 56 nm, 
respectively. Therapeutic use of these EVs was effective in a murine model of lethal 
hepatic injury. Collino et  al. (2017) also isolated EVs derived from human bone 
marrow MSCs by the density gradient method and obtained size peaks between 100 
and 180 nm. These EVs were successfully used in an ischemia-reperfusion renal 
injury model.

�Size Exclusion Filter

In the size exclusion filter method, particles larger than the desired size may be 
excluded, for example, with a pore size filter of 0.8 mm, or particles smaller than the 
desired size range can be removed while the target population is maintained in the 
filter. This method does not enrich EV subpopulations, unless low-molecular-weight 
filters are used to concentrate the desired populations. However, EVs may stick to 
the filter and be lost. An alternative is to combine this method with ultracentrifuga-
tion or other techniques. Researchers often use 0.8-mm filters to remove large cell 
fragments prior to EV isolation, while 0.2-mm filters can be used when smaller EVs 
are desired (Théry et al. 2006; György et al. 2011; Witwer et al. 2013; Franquesa 
et al. 2014)

Forcing the particles through the pores of the filter can cause deformation and 
dissolution of large vesicles, compromising their utility. An alternative would be 
size exclusion by gravity, which can be very time-consuming and may be impracti-
cable. It is therefore advisable to apply as little force as possible to the filter and 
check that the filters do not release contaminating particles that may interfere with 
the final results of experiments (Livshts et al. 2015).

Franquesa et al. (2014) isolated EVs from MSCs derived from human adipose 
tissue by this method. After low-speed centrifugation, 0.2-μm pore filters were run 
through the sample under pressure, and then combined with ultracentrifugation to 
isolate EVs with a peak size of 115 nm.
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�Size Exclusion Chromatography

This method separates the particles dissolved in the medium, based on their size, by 
pumping the fluid through columns containing gel micropores. Detectors assess 
light scattering, concentration, and viscosity in the medium. Large particles do not 
enter the gel and are excluded, while smaller particles enter and can be analyzed 
(Böing et al. 2014). This method is very effective in obtaining purified EVs, i.e., 
without contaminating proteins, which favors its use in proteomic analysis. Another 
advantage is that EVs do not form aggregates. It is a rapid method, but suboptimal 
if the goal is to obtain EVs in large quantities (Momen-Heravi et al. 2012; Böing 
et al. 2014; Nordin et al. 2015).

Kim et al. (2015) used this method on human MSCs and obtained EVs with size 
between 209 ± 1.8 nm and 231 ± 3.2 nm, which were successfully used in an animal 
model of traumatic brain injury, with a beneficial effect on cognitive recovery.

�Kit-Based Precipitation

Some kits for EV isolation are commercially available. The kits are based on 
volume-excluding polymers, specifically polyethylene glycol (PEG). The most 
widely used kits are Total Exosome Isolation (Life Technologies), Exoquick (System 
Biosciences), and Exoprep (Hansabiomed). Methods of isolating EVs using organic 
solvents such as acetate buffer and acetone (protein organic solvent precipitation, 
PROSPR) have also been used (Van Deun et al. 2014; Gallart-Palau et al. 2015).

PEG is nontoxic and soluble in water and is the most efficient polymer for EV 
precipitation. In brief, the culture medium is incubated overnight in the precipita-
tion solution and a low-spin centrifugation is performed to precipitate the EVs. The 
PEG takes the place of the culture medium, which concentrates until it exceeds its 
solubility and precipitates (Van Deun et al. 2014).

PEG-extracted EVs from MSCs have been used effectively in treatment-
refractory graft-versus-host disease (Kordelas et al. 2014)

Van Deun et al. (2014) compared two of the three kits mentioned above versus 
ultracentrifugation (differential centrifugation) and OptiPrep and reached the fol-
lowing conclusions, which are extremely useful for those who are seeking to start 
EV extraction but do not know how to choose (Table 3.4).

The acetate buffer neutralizes the EVs, which are negatively charged because of 
the presence of phosphatidylserine, promoting hydrophobic interactions and result-
ing in aggregation and precipitation of the EVs. This method has similar results to 
ultracentrifugation in terms of the quantity and morphology of the EVs; however, 
some researchers have observed that soluble proteins end up precipitating along 
with the EVs (Brownlee et al. 2014).
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The above methods may precipitate protein aggregates and are ideally evaluated 
by other methods, such as the density gradient technique. Also, as in all methods 
mentioned above, the isolated content should be characterized to make sure that the 
desired population is being used (Van Deun et al. 2014).

PROSPR used acetone, which removes the soluble proteins from the medium, 
thus facilitating future analyses (Gallart-Palau et al. 2015).

EV kits are inexpensive, easy to use, suitable for small and large volumes of EVs, 
and are an excellent alternative for those who do not have equipment such as an 
ultracentrifuge and chromatography system.

�Storage of EVs

A major challenge when working with EVs is the marked impact that preanalytical 
treatment has on the outcome of analysis. Many investigators have highlighted the 
importance of a consistent protocol for sample collection and EV preparation, as 
mentioned before (Lacroix et al. 2012). Factors related to storage, such as freezing 
temperature and time, freeze–thaw cycles, and transportation, have been examined 
as well (Bæk et al. 2016).

It may be advisable to proceed to vesicle isolation immediately after collecting 
the biofluid or cell-conditioned medium that is to be analyzed. In some cases, how-
ever, fluid storage before EV purification may be convenient, for instance to allow 
simultaneous processing of samples from different patients or sources, or when 
wishing to examine previously biobanked patient samples. At a minimum, cells and 
platelets should be removed from the fluid prior to storage (Witwer et al. 2013).

The impact of storage has not been methodically evaluated in MSC-conditioned 
media, but has been evaluated in plasma samples from healthy donors. First, the 
effect of a single cycle of freezing at −80 °C followed by thawing 1 week later was 
evaluated. Only a limited increase in EV counts and procoagulant activity was 
observed. Second, the impact of storage delay was evaluated between 1 week and 

Table 3.4  Comparisons among EV isolation methods (ultracentrifugation, OptiPrep density 
gradient, Exoquick kit, and Total Exosome Isolation kit), according to purity, exosome yield, 
protein yield, RNA yield, ease-of-use, turnaround time, hands-on time, and cost

Ultracentrifugation OptiPrep Exoquick kit Total exosome isolation kit

Purity Moderate Very high Low Low
Exosome yield High Very high Low Low
Protein yield Moderate Low High Very high
RNA yield High Low High Moderate
Ease-of-use Moderate Low High High
Turnaround time (h) 4 20 13 13
Hands-on time (h) <1 1 <0.5 <0.5
Cost (€) 5 15 15 5

Modified from Van Deun et al. 2014
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1 year. In these conditions, no major change in EV counts or size was observed after 
12  months at −80  °C.  Third, flash-freezing in liquid nitrogen before storage at 
−80 °C was compared with a direct −80 °C freezing procedure, and no significant 
change was observed. Finally, the impact of thawing conditions was evaluated, 
comparing thawing at 37  °C in a water bath, at room temperature, and on ice. 
Thawing strategies had no impact on EV size or number, but thawing at room 
temperature resulted in a significant increase in thrombin generation. Altogether, 
these results suggest that freeze-thawing and storage conditions can strongly influ-
ence EV analysis when performed adequately (Lacroix et al. 2012).

In parallel, storage of granulocyte-derived EVs has been studied. Storage at 
+20 °C or +4 °C resulted in a significant decrease in EV counts and antibacterial 
effect after 1 day. Storage at −20 °C did not influence EV counts up to 28 days, but 
did induce a shift in EV size and almost complete loss of antibacterial function by 
28 days. Storage at −80 °C had no significant effect on EV number or size, and 
allowed partial preservation of the antibacterial function up to 28 days. Flash freez-
ing did not improve these results, whereas the widely used cryoprotectants dimethyl 
sulfoxide (DMSO, 1%) and glycerin (5%) fully or partially lysed the EVs. Storage 
significantly altered both the physical and functional properties of EVs, even when 
the number of EVs remained constant. Thus, if storage is needed, EVs should be 
kept at −80 °C and preferably for no longer than 7 days. For functional tests, freshly 
prepared EVs are recommended (Lőrincz et al. 2014). On the other hand, biologic 
activity was seen in freshly isolated vesicles and in vesicles derived from MSCs 
stored for up to 6 months in 10% DMSO at −80 °C when used to reverse radiation 
damage to bone-marrow stem cells (Wen et al. 2016). Recently, new cryopreserva-
tion methods have been tested as well. For instance, trehalose, a natural, nontoxic 
sugar widely used as a protein stabilizer and cryoprotectant by the food and drug 
industry, was tested as a pancreatic beta-cell exosome-like vesicle storage buffer 
and found to narrow the particle size distribution; there were no signs of lysis or 
incomplete vesicles on cryo-electron tomography, and biological activity was 
preserved (Bosch et al. 2016).

There is still little consensus regarding storage of MSC-derived EVs. Further 
well-controlled experiments are needed to elucidate the impact of storage tempera-
ture and duration, use of cryopreservants, and thawing methods on EV phenotype 
and recovery (Witwer et al. 2013).
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Chapter 4
Exosomes for Regeneration, Rejuvenation, 
and Repair

Joydeep Basu and John W. Ludlow

�Introduction

The evolution in biological pharmaceuticals has been defined by a paradigm shift 
away from application leveraging of the cell as a simple manufacturing platform for 
therapeutically relevant proteins and toward an appreciation of the cell itself as the 
active biological ingredient for mediating regeneration and repair of diseased tissue. 
More recently, methodologies for application of stem and progenitor cell popula-
tions for tissue engineering and regenerative medicine are being significantly 
impacted by the growing recognition that the action of secreted cell-derived byprod-
ucts functioning at a distance, as opposed to site-specific integration and directed 
differentiation, is the salient mechanism of action by which these cell populations 
catalyze regenerative outcomes (Basu and Ludlow 2014; Guthrie et al. 2013). This 
secretome is composed of a regenerative milieu largely consisting of proteins, 
nucleic acids and membrane-bound vesicles of a range of sizes that are potentially 
able to independently triggering regeneration and repair as well as catalyzing the de 
novo organogenesis of tissue engineered organs ex vivo (Maguire 2013; Justewicz 
et al. 2012). These results highlight a transitional return toward leveraging the cell 
as a medicinal factory with the secretome rather than the cell itself now representing 
the active biological ingredient (Caplan and Correa 2011). In this chapter, we review 
the relevant recent literature and examine this paradigm shift away from the manu-
facture and application of cells toward cell-derived regenerative by-products such 
as exosomes. Specific examples documenting regeneration of heart, kidney, skin, 
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and tendon through application of exosome-based therapies will be evaluated. We will 
leverage lessons learned from cell-based systems to illustrate process development, 
scale-up, manufacturing, quality control, regulatory, and intellectual property issues 
associated with exosome-based therapies (Fig. 4.1).

Fig. 4.1  Exosomes for repair and regeneration. Regeneration leverages mechanisms of organo-
genesis. Exosome mediated morphogen gradients are one such mechanism of action active in the 
developing embryo. Although exosomes may be isolated from any cell type or bodily secretion, in 
this example, exosomes are being sourced from MSC-like cell populations derived from adipose 
or bone marrow (pelvis). Manufacture of a clinically relevant dose will involve cell expansion in 
bioreactors and may include tuning or modulation of specific exosome sub-populations carrying 
defined payloads. Importantly, exosomes may be sourced allogeneically as a storable, “off-the-
shelf” product that can be delivered to a broad patient population. Examples of organs potentially 
treatable with exosome-based therapeutics as suggested by preclinical data include the brain, heart, 
kidneys, tendon, and skin

J. Basu and J. W. Ludlow



55

�Exosome Nomenclature

Since the first meeting of the International Society for Extracellular Vesicles (ISEV) 
in 2013, there have been many terms and names for secreted vesicles based primar-
ily on their different physiological functions. This being said, “exosomes” and 
“microvesicles” have been widely applied and are more generic terms do designate 
secreted vesicles. To unify vesicle nomenclature, ISEV recommends using the term 
“extracellular vesicles” (EVs) as a generic term for all secreted vesicles. EVs 
include nanometer-scale vesicles (exosomes) as well as larger-scale nanometer ves-
icles (microvesicles). For the purpose of therapeutic product development, it has 
been determined that only exosomes and larger vesicles have potential applications 
owing to their relative stability (Wang et al. 2017). Although no rigorous and univer-
sally accepted definition has yet been established (Lötvall et al. 2014; Lener et al. 
2015; Gould and Raposo 2013), the term exosome is generally understood to refer-
ence a specific class of lipid-membrane bound extracellular vesicle (EV) character-
ized by a diameter of 40–150 nm and density of 1.09–1.18 g/ml (Fig. 4.2a). This 
variability is a reflection of the isolation and purification methods used (Lane et al. 
2015), and the density gradient material (e.g., sucrose or Opti-Prep) used for analy-
sis. Indeed, some reviews cite exosomes as being 30–100 nM in size (Rashed et al. 
2017). Microvesicles are larger than exosomes, and are often described as being 
100–300 nM in size. The degree of overlap in the sizes for these classes of EVs also 
varies depending upon the technology used to make the measurement. While both a 
position statement (Lötvall et al. 2014) and position paper (Lener et al. 2015) have 
been published by key opinion leaders within the International Society of 
Extracellular Vesicles (ISEV) in late 2014 and 2015, a uniform consensus on how 
best to isolate, size, and characterize exosomes is still upcoming. It is anticipated 
that as the field moves forward, particularly in the area of biological function, tech-
niques to best isolate, size, and characterize particles will be driven by which 
method gives the desired biological effect.

�Exosome Biology

First observed by Pan and Johnstone in the late 1980s while studying the maturation 
process of reticulocytes into erythrocytes, it was believed that these vesicles were 
simply removing unnecessary proteins and other molecules from the releasing cells 
(Pan et al. 1985; Johnstone et al. 1987; Johnstone 1992). Formed through internal 
budding of the plasma membrane as multivesicular bodies within the endosome 
compartment, exosomes and their contents are secreted into the extracellular milieu 
through fusion of the endosome with the plasma membrane. Although active in a 
range of cellular processes and isolatable from numerous body fluids, from a regen-
erative medicine perspective, the critical role of exosomes is in cell-cell communi-
cation via transport of protein, mRNAs, and micro-RNAs (Valadi et  al. 2007). 
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Fig. 4.2  (a) Scanning electron micrograph of exosomes isolated from human placental sourced 
MSC (2500×, left panel; 10,000×, right panel). Samples were also analyzed with a scanning elec-
tron microscope (SEM). The SEM image relies on surface and has a great depth of field, so it can 
produce images that are good representations of the three-dimensional shape of the sample. 
Another advantage of SEM is that it can produce images of sufficient quality and resolution with 
the samples being wet or contained in low vacuum or gas. This greatly facilitates imaging biologi-
cal samples (i.e. exosomes) that are unstable in the high vacuum of conventional electron micro-
scopes. The samples were lyophilized on the sample holder and stained using platinum (Pt) to give 
contrast, since many biological materials are nearly “transparent” to electrons. The Pt coating will 
contribute no more than 10 nm to the size of the images. Electron micrographs support the >200 nm 
size values obtained using the qNano. (b) Flow cytometry data showing exosome-mediated dye 
transfer to human endothelial cells. In this scatter plot diagram, the black peak represents fluores-
cence from the negative control population, while the red peak is fluorescence from the Dil-labeled 
population. The red peak is right-shifted due to incorporation of fluorescently labelled exosomes. 
Seventy-five percent of cells are labelled
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Although such signaling generally occurs within an organism, the nematode para-
site Heligmosmoides has been demonstrated to manipulate the innate immune 
response of its mouse host via secretion of exosomal elements, thereby establishing 
exosomes as a mechanism for interspecies transfer of RNA (Buck et al. 2014). Key 
protein markers that have been associated with exosomes include CD9, CD63, 
CD81, HSP70, HSP90, actin, and annexin (http://exocarta.org/exosome_markers; 
http://microvesicles.org/index.html).

�Selection and Delivery of Cargo

Exosomes also contain the protein TSG101, a component of the endosomal sort-
ing complexes required for transport (ESCRT)-I, which regulates vesicular traf-
ficking processes. The ESCRT machinery is made up of several cytosolic protein 
complexes, known as ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Together 
with a number of accessory proteins, these ESCRT complexes enable a unique 
mode of membrane remodeling that results in membrane bending and budding 
away from the cytoplasm. In this regard, TSG101 binds to ubiquitinated cargo 
proteins and is required for the sorting of endocytic, ubiquitinated cargos into 
multivesicular bodies (MVB). ECSRT complex mediated selection is not the only 
mechanism for getting protein cargo into exosomes: proteins may also be recruited 
into exosomes by virtue of their association with chaperones such as HSP70 and 
HSP90 (Buschow et al. 2010).

The precise mechanism by which RNA species are selected for recruitment into 
exosomes is less well defined. One possible mechanism involves specific sequence 
motifs that may function as cis-acting elements for targeting RNAs to EV (Batagov 
et al. 2011). The discovery that ESCRT-II is an RNA binding complex (Irion and St 
Johnston 2007) suggests that it may also function to select RNA for incorporation 
into EVs. Finally, the observations that MVB are sites of miRNA-loaded RISC 
(RNA-induced silencing complex) accumulation (Gibbings et  al. 2009) and that 
exosome-like vesicles are considerably enriched in GW182 and AGO2 implicate 
functional roles of these proteins in RNA sorting to exosomes.

In order for exosomes to transfer their cargo (nucleic acid, protein), they must 
somehow be delivered into the targeted cell. Fluorescently labeled lipophilic dye 
transferred from exosomes and incorporated into cultured cells has been used to 
demonstrate that exosomes act to transport cargo into cells (Deregibus et al. 2007). 
A fusion event between exosomes and the cell membrane will transfer fluorescence 
from the labeled exosomes to the targeted cells (see Fig. 4.2b). These experiments 
identify exosomes as vectors for information transfer between cells, and highlight a 
specific mechanism by which one cell population may manipulate another. To this 
end, stable modification of cell fate by exosomes has been observed in rodent mod-
els, where lung-derived exosomes and microvesicles were shown to reprogram bone 
marrow cells toward a pulmonary phenotype in  vitro and in  vivo (Aliotta et  al. 
2012). Similar effects have been noted with exosomes sourced from liver 
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(Quesenberry et  al. 2014). In addition, exosomes sourced from cancer cells can 
catalyze the development of tumorigenesis (Melo et al. 2014; Zhang and Grizzle 
2014). Finally, in the brain, exosome mediated transfer of toxic protein aggregates 
such as amyloid-β and prions may represent an important mechanism for the onset 
of dementias and other related pathologies (Gupta and Pulliam 2014).

�Exosomes: The New Paradigm in Stem Cell Biology

Multiple studies have provided evidence that the cell per se is ultimately superfluous 
in catalyzing observed regenerative bioactivity from cell-sourced therapeutic prod-
uct candidates. Exosomes may represent an ideal, generally noncytotoxic and well-
tolerated “off-the-shelf” regenerative therapy, delivering most of the potential of 
cell-based therapies while facilitating extensive simplification of process develop-
ment and manufacturing. In a systematic review of the literature presenting preclini-
cal animal data on the therapeutic potential of MSC-derived microvesicles including 
exosomes, all 13 reported studies demonstrated that treatment improved at least one 
clinically relevant parameter associated with organ functionality (Akyurekli et  al. 
2015). As an example, MSC-derived conditioned media was shown to significantly 
improve multiple biomarkers of renal pathophysiology in rodent models of chronic 
kidney disease (van Koppen et  al. 2012). Mechanistically, MSC generally do not 
repair organ defects by differentiating into the desired tissue type, but rather function 
more in a regulatory role. This paradigm shift followed the demonstration that MSC 
can inhibit apoptosis, stimulate angiogenesis, promote endogenous cell prolifera-
tion, and interfere with the onset and progression of inflammation during tissue 
regeneration (Ratajczak et al. 2012). Such bioactivity is mediated through growth 
factor and cytokine secretion (paracrine effects) in addition to cell-cell interactions. 
Functional characterization of exosomes from these stem cells is a novel area of 
study; many of the regenerative properties previously credited to stem cells are being 
shown to be mediated through secreted exosomes. If valid, innovative approaches to 
wound healing, tissue engineering, and regenerative medicine, whereby live cell 
therapies could be replaced with exosomes as an active biologic, may be facilitated. 
The regenerative potential of exosomes may be modulated or tuned by prior expo-
sure of the source cell population to external stimuli—for example, inflammatory 
conditioning of human umbilical cord blood derived MSC with IFN-γ results in 
MSC less able than unconditioned MSC to protect against acute ischemic renal 
injury in vivo (Kilpinen et al. 2013). Additional methodologies for exosome tuning 
may incorporate defined cell–biomaterial and 3D cell–cell interactions to regulate 
and further control cargo loading and exosome biogenesis (Lamichhane et al. 2015).

CD34+ cell populations have been established to induce neovascularization in 
preclinical studies and Phase I/II clinical trials. In in vitro and in vivo functional 
bioassays of angiogenesis, exosomes derived from CD34+ cells were demonstrated 
to mimic the effects of cells themselves, in some instances with improved potency 
compared to cells (Sahoo et al. 2011). Furthermore, treatment with MSC-sourced 
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exosomes was demonstrated to block the activation of hypoxic signaling that induces 
pulmonary inflammation and onset of pulmonary hypertension in rodent models 
(Lee et  al. 2012). In skin, iPSC-MSC sourced exosomes, upon injection in and 
around the wound bed of rodent skin wounds, were shown to significantly accelerate 
wound healing, collagen synthesis and revascularization of the wound site (Zhang 
et al. 2015a); see illustrative example Fig. 4.3. In proof of concept studies of myocar-
dial infarct in the rat, exosomes derived from cardiosphere-derived cells (CDC), 
were demonstrated to enhance cardiac functionality, decrease scar mass, increase 
viable tissue mass and infarct wall thickness relative to exosomes sourced from der-
mal fibroblasts or media controls. Importantly, injection of CDC-exosomes at 
21  days post-infarct, a time-point with a well-established scarification profile, 
resulted in significant growth of new myocardial tissue as well as functional improve-
ments consistent with a true regenerative outcome. miRNA profiling of CDC-sourced 
and fibroblast-sourced exosomes identified mir-146a as a potential active biological 
ingredient catalyzing the observed functional activity; aspects of CDC-exosome bio-
activity could be reproduced by treatment with mir-146a (Ibrahim et al. 2014).

Fig. 4.3  Skin wound healing model in rodent. Illustrative example. Top panel: 2  cm diameter 
complete removal of dermis from dorsal surface of rodent. One wound treated with MSC-sourced 
exosomes, other treated with saline as control. Bottom panel: 2 weeks post-injury, both wounds 
have healed substantially, but wound treated with MSC-sourced exosomes (red circle) has healed 
substantially faster
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Box 4.1 Regeneration Leverages Developmental Signaling Mechanisms: 
Exosome-Mediated Transfer of Morphogens
Organ regeneration technologies aim to restore the original structure and 
functionality of a diseased organ. In general, healing responses within mam-
mals are characterized by fibrosis and scar tissue formation, not regeneration. 
Nevertheless, developing mammalian fetuses during the first trimester will 
typically present wound healing without fibrosis and scar tissue formation 
(Adzick and Lorenz 1994). Additionally, compensatory hyperplasia of mam-
malian kidney or liver secondary to partial nephrectomy or hepatectomy, 
remodeling of epidermis or bone consequent to injury and regeneration of 
limb digit tips in humans and mice post-amputation are all examples of regen-
erative outcomes in adult mammals indicative of an innate regenerative poten-
tial within adult mammals (reviewed by Roy and Gatien 2008).

However, model organisms such as Hydra, planaria, zebrafish, Xenopus 
and urodeles (salamanders) present the clearest examples of regenerative out-
comes secondary to injury. In these systems, cell-based strategies harnessing 
pluripotent and tissue specific stem cells as well as dedifferentiation have 
been leveraged to mediate the regeneration of whole limbs and organs (Tanaka 
and Reddien 2011). Systematic experimentation with limb regeneration in 
urodeles has permitted the decipherment of key mechanistic pathways of 
regeneration at the molecular level. Activation of salient signaling cascades 
including p53, TGF-β, Delta, ppRB and Wnt/β-catenin have all been associ-
ated with limb regeneration (Roy and Gatien 2008). These signaling pathways 
catalyze a sequence of instructive interactions between mesodermal and ecto-
dermal cell populations that are ultimately responsible for lineage specifica-
tion (Wessels 1977). In addition, the methodical depletion of macrophages 
within the first 24 h subsequent to limb amputation in urodeles has been dem-
onstrated to lead to permanent failure of limb regeneration, extensive fibrosis, 
and disregulation of transcriptional patterns associated with synthesis of 
extracellular matrix (ECM) components (Godwin et al. 2013). This specific 
sequence of cellular events associated with regeneration of the urodele limb 
as defined below recapitulates aspects of embryonic organogenesis and may 
serve as a model system for establishing the existence of similar pathways in 
mammals (Buckley et al. 2012).

	1.	 The open wound is enclosed by wound epithelium to form a permissive 
epithelial structure referred to as the apical ectodermal cap (AEC).

	2.	 Upregulation of matrix metalloproteinase (MMP) expression catalyzes 
structural reorganization of the ECM.

	3.	 Dedifferentiation of cell populations takes place proximal to the plane of 
amputation.

	4.	 Proliferation and migration of dedifferentiated cells is observed under the 
AEC.
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	5.	 Induction of a blastema, a mass of mesenchymal cells that will eventually 
redifferentiate to create the new muscles, bones, nerves, and tendons 
required to regenerate a functional limb.

An understanding of these stages has already been applied to accelerate 
regenerative outcomes in mammals. For example, application of MMP1 to 
digit remnants of adult mice with amputation at the mid-second phalanx sig-
nificantly improved regeneration of soft tissue and observed rates of wound 
closure. More multipotent progenitor cells, capillary vasculature and neuro-
muscular related tissues were also noted (Mu et al. 2013). Furthermore, recent 
data on regenerative outcomes in mammals from tissue engineering of blad-
der, esophagus and intestine provides additional evidence of the existence of 
a regenerative pathway in adult mammals mimicking aspects of that observed 
in urodeles, including formation of a neoblastema (Basu 2014; Basu and 
Ludlow 2010, 2011, 2012b; Basu et al. 2011a, b, 2012a, b, 2013; Basu and 
Bertram 2014). This regenerative pathway is characterized by a dependence 
on adequate vascularization and innervation at the site of regeneration. 
Importantly, these observations provide insight into a potential mechanism of 
action for cell-sourced therapies characterized broadly as instructive signal-
ing between mesenchymal cells or cell-derived by products of the regenera-
tive implant and host epithelial cell populations. This insight may be harnessed 
to facilitate development of novel regenerative products.

The mechanistic link between developmental and regenerative biology 
predicts that potential regenerative therapies may leverage or manipulate the 
fundamental signaling pathways governing cellular self-organization during 
embryonic organogenesis. For example, the highly convoluted nature of 
developing epithelia mandates the existence of an efficient mechanism for 
morphogen transport across the plasma membrane to establish the short and 
long range morphogen gradients central to assembly of the developing 
embryo. To this end, the observation that morphogens including Wingless and 
Hedgehog are closely associated with the plasma membrane, as opposed to 
freely diffusing across the cytosol, strongly suggests the existence of a 
membrane-based transcytotic vesicular mechanism for establishment of the 
morphogen gradient. Evidence from the developing Drosophila embryo dem-
onstrates that the establishment of gradients of the morphogen Wingless dur-
ing pattern formation of the imaginal disc epithelium occurs at least in part 
through membrane bound exosome-like particles called “argosomes” (Greco 
et al. 2001). In C. elegans, an apical secretion pathway mediated by the mem-
brane bound V0 sector of the vacuolar H+-ATPase controls secretion of 
Hedgehog-like proteins within exosomes (Liegeouis et al. 2006). Finally, the 
specification of left/right asymmetry in the developing mouse requires the 

(continued)
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In rodent models of stroke, intravenous administration of MSC-sourced exo-
somes was demonstrated to enhance functional recovery while accelerating neurite 
remodeling, neurogenesis and angiogenesis (Xin et al. 2013; Zhang et al. 2015b). 
Healing and repair of the tendon is another objective for intervention with cell-
based therapeutics. The direct incorporation of MSC into specialized sutures used 
to repair defined tendon injury was demonstrated to significantly accelerate healing 
as assessed by histology or biomechanical loading (Adams et  al. 2014). Similar 
outcomes were observed in studies evaluating the impact of direct microinjection of 
human-sourced MSC into the injury site of a rodent presenting collagenase-induced 
Achilles tendon injury (Machova Urdzikova et  al. 2014). Although not causally 
attributable to exosomes, these results in the context of the broader paracrine-based 
model for MSC mechanism of action imply that tendon injuries may indeed be can-
didates for treatment with exosome-based therapies. As considerable effort has been 
applied toward the application of MSC for repair of tendon injuries in the horse, any 
development of an “off-the-shelf” exosome-based therapy represents a significant 
value proposition for the veterinary market (Tetta et al. 2012).

�Exosomes as a New Disruptive and Safer Therapeutic 
for Regenerative Medicine

The application of naturally occurring secreted vesicles such as exosomes might 
allow overcoming toxicity or immunogenicity associated with other developed car-
rying agents like liposomes or nanoparticles (Fleury et al. 2014). Relative to cells, 
exosomes are more stable and storable, have no risk of aneuploidy, a lower possibil-
ity of immune rejection following in  vivo allogeneic administration, and may 

exosome-mediated transport of the morphogens Sonic Hedgehog and retinoic 
acid in response to FGF-signaling (Tanaka et  al. 2005). Vertebrate Sonic 
Hedgehog has been reported to be secreted within two overlapping popula-
tions of exosomes, presenting distinctive accessory signaling proteins. 
Coexpression of integrins was required together with Sonic Hedgehog to acti-
vate certain Sonic Hedgehog target genes during differentiation of mouse ES 
cells, suggesting the existence of a mechanism for fine-tuning exosome-based 
morphogen gradients by presentation of distinctive subcategories of morpho-
gen presenting exosomes (Vyas et al. 2014). Finally, the Xenopus cleavage 
stage blastocoel is bridged by multiple arrays of parallel filopodia, that facili-
tate direct interaction between nonadjacent blastomeres; these filopodia in 
turn fragment into microvesicles (including exosomes) whose subsequent 
resorption identifies a specific mechanism for the potential transfer of mor-
phogens across the developing embryo (Danilchik et al. 2013).

Box 4.1 (continued)
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provide an alternative therapy for various diseases (Yu et al. 2014). In short, exo-
somes do not elicit an acute immune rejection response in the recipient like cells do. 
As such, their utility as a therapeutic is vastly expanded over the use of cells since 
exosomes may be applied allogeneically. Exosomes also present less of a health and 
safety risk for such adverse events as tumor or emboli formation, which are often 
major concerns for cellular therapies, since exosomes are both nonviable and much 
smaller in size compared to live cells. Interestingly, exosomes derived from adipose-
sourced MSC taken from cancer patients presented comparable miRNA expression 
profiles to exosomes sourced from noncancerous controls (Garcia-Contreras et al. 
2014), suggesting that, at least for these patients, exosomes may not mediate the de 
novo induction of cancer. For companies’ currently developing exosomes as a thera-
peutic, it is anticipated that manufacturing and storage of these nonviable yet bio-
logically active microvesicles is expected to be far less complicated and costly 
compared to cells (Box 4.1).

�Exosomes as Vectors for Repair: Skin

The skin is frequently injured by acute and chronic wounds, such as diabetic skin 
ulcerations or extensive burns. In a recent study, exosomes from hiPSC-MSC were 
found to exert beneficial effects on granulation tissue formation and angiogenesis, 
which are two critical phases of the wound-healing process (Zhang et al. 2015a). In 
addition, exosomes from these cells facilitated a significant therapeutic effect dur-
ing cutaneous wound healing, supporting the notion that exosomes may be used as 
therapeutic tools in wound healing. Mechanistically, Wnt4 delivered by exosomes 
appears to be the key mediator in this type of skin healing and repair (Zhang et al. 
2014), see illustrative example Fig. 4.3. Keloids represent the most extreme exam-
ple of cutaneous scarring as a pathological response to wound healing. Enhanced 
STAT3 expression and phosphorylation has been observed in keloid scar tissue and 
in cultured keloid fibroblasts (Lim et al. 2006). This type of scarring has an over-
abundance of collagen deposition, contributing to its lack of softening, flattening, 
and remodeling over time. In vitro inhibition of STAT3 phosphorylation has been 
shown to contribute to the loss of collagen production in these cells. This raises the 
interesting possibility that inhibitors of STAT3 phosphorylation may be useful in 
prospectively treating burn wounds in vivo to reduce keloid scar formation. Indeed, 
treatment with mouse exosomes or exosomes derived from MSCs isolated from 
human umbilical cord stroma completely abrogated STAT3 phosphorylation due to 
hypoxia (Lee et al. 2012).

In diabetic rat wound healing models, treatment with MSC conditioned media 
improved wound closure rates, collagen production, and angiogenesis (Li et  al. 
2015; Wang et al. 2012). In a recent study, EVs from hiPSC-MSC were found to 
exert beneficial effects on granulation tissue formation and angiogenesis (Sen et al. 
2009), which are two critical phases of the wound-healing process. In addition, EVs 
from these cells facilitated a significant therapeutic effect during cutaneous wound 
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healing, supporting the hypothesis that EVs may be used as therapeutic tools. 
Indeed, Hu et al. (2016) recently demonstrated wound healing properties of exo-
somes, a subset of EVs, isolated from human adipose mesenchymal stem cells fol-
lowing their localized and intravenous injection.

�Exosomes as Cosmeceuticals; Vectors of Rejuvenation

Cosmeceuticals are cosmetic products with biologically active ingredients purport-
ing to have medical or drug-like benefits. The “cosmeceutical” label applies only to 
products applied topically, such as creams, lotions and ointments. Liposomes are 
well-known vesicular cosmetic delivery systems (Madsen and Andersen 2010). For 
example, liposomes may potentially be used to deliver avobenzone (a sunscreen) 
and arbutin (a skin whitening agent) in a differential manner such that the sunscreen 
is retained at the skin surface while the whitening agent is delivered further into the 
dermal strata (Liu et al. 2013). Nebulized liposomes have also been evaluated for 
delivery of vitamin K1 into the skin (Campani et al. 2014). Their topical application 
offers several advantages including increased moisturization, restoring action, bio-
degradability, biocompatibility, and extended and slow dermal release. Their similar 
structure to biological membranes allows for penetration into the epidermal barrier 
(Rahimpour and Hamishehkar 2012).

There are already cosmetic products on the market which contain stem cell condi-
tioned medium (http://www.lifelineskincare.com/skin-care-science), and fibroblast 
cell conditioned medium (https://www.truthinaging.com/review/regenica-advanced-
rejuvenation-overnight-repair). This medium contains growth factors, EVs, and 
potentially cell waste products. Given the structural similarities between liposomes 
and exosomes, along with the inclusion of conditioned cell medium in selected skin 
care products, it seems reasonable to expect that exosomes will soon find their place 
in the cosmeceutical industry much like liposomes and other cell-derived products 
have (see Box 4.2). If exosome turn out to be the active ingredient in skin products 
that contain conditioned cell medium, isolation of this active for product inclusion 
may enhance the product’s effects. Indeed, a skin care product was launched in 
September of 2016 which incorporates 150 million exosomes, and is reported to 
reduce wrinkles, increase skin luminescence, and accelerate cell renewal (https://
exoskinsimple.com/products/bio-digital-perfection-moisturizer).

Box 4.2 Cell Secretome as Cosmeceutical: A Potential Role 
for Exosomes
Although data demonstrating the impact of stem cell or cell-sourced products 
in modulating the biologic and biophysical properties of aging skin does not 
in itself prove that exosomes may be useful or relevant in these applications, 
such a role may reasonably be extrapolated based on regenerative outcomes 
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�Scalable Production of Exosomes

Preclinically, the use of MSC-derived exosomes is strongly associated with 
improved organ function following injury and may be useful for inhibiting tumor 
growth (Akyurekli et al. 2015). Exosomes have already been tested as a cancer vac-
cine in the clinic (Escudier et al. 2005; Morse et al. 2005; Dai et al. 2008). These 
studies were limited to particles produced during short-term ex  vivo culture of 
autologous dendritic cells. While limited in scope, this work is significant because 

associated with exosomes in other systems. To this end, cell-derived secre-
tomic extracts have demonstrated value as cosmeceuticals for rejuvenation of 
aging skin as well as for the promotion of hair growth. Evidence for a direct 
impact of stem cell-derived secretomic factors in promoting skin rejuvenation 
is provided by randomized, investigator blinded “split-face” studies where 
cell derived secretomic extracts are delivered by microneedle to one half of a 
subject’s face. A control, mock procedure using just the microneedle is applied 
to the other half. In such studies, a statistically significant improvement in 
skin pigmentation, wrinkling and roughness was noted in the presence of the 
cell-derived secretome (Seo et al. 2013; Lee et al. 2014). Similarly, the intra-
dermal injection of GCSF-mobilized PBSCs from young pig could rejuvenate 
cheek skin of aged pigs as shown by increased levels of collagen, elastin, 
hyaluronic acid and CD44, involucrin, integrin as well as increases in prolif-
erative capacity in the basal layer (Harn et al. 2013). In mouse model of wrin-
kling created by UV-B irradiation of hairless mice, wrinkling, dermal 
thickness and collagen content were all improved by injection of adipose-
derived stem cells. In vitro studies implicated secretomic factors sourced from 
the adipose stem cells as potentially important in mediating their antiaging 
properties (Kim et al. 2009). Conditioned media derived from human dermal 
fibroblasts were shown to ameliorate the UV-A induced upregulation of 
MMP1 and associated downregulation of collagen and TIMP1 transcripts as 
well as promoting migration and inhibiting apoptosis in  vitro (Shim et  al. 
2013). Regenerative cycling of hair waves has been studied in mouse skin. In 
this model, such cycling slows down with increasing age; however, this 
behavior is non-cell autonomous, such that transplantation of aged mouse 
skin into a young host rescues regenerative cycling, thus implicating secre-
tomic factors as inductive for hair follicle regeneration (Chen et  al. 2014). 
Conditioned media from adipose stem cells, upon intradermal injection into 
alopecia patients using a “split-scalp” study design, has been reported to sig-
nificantly promote hair growth (Fukuoka and Suga 2015). Finally, the obser-
vation that miR-214, acting through the Wnt pathway, regulates both skin 
morphogenesis and hair follicle development opens the possibility of leverag-
ing discrete populations of defined microRNAs delivered through exosomes 
for triggering regeneration of hair (Ahmed et al. 2014).
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the exosomes were deemed safe in the small clinical trials conducted (Escudier 
et al. 2005). As with any biologic, scalable production of the active ingredient must 
be achieved to have relevance as a readily available and commercially feasible ther-
apeutic. Unfortunately, the process by which these exosomes were manufactured 
for these studies provides little guidance for large-scale cGMP manufacturing of 
exosomes needed for more comprehensive clinical trials. In addition, hundreds of 
micrograms to milligram quantities of exosomes may be needed to treat many 
patients in a clinical trial. Senescence of the cells from which exosomes are being 
manufactured represents an intrinsic limitation on final absolute amounts. Loss of 
actively growing cells will most certainly effect exosome production, which in turn 
would jeopardize trial outcomes. One approach to address the growth arrest/senes-
cence issue is cell immortalization. Indeed, MYC transformation may represent a 
practical strategy in ensuring an infinite supply of cells for production of exosomes 
in the milligram range as a therapeutic agent (Chen et al. 2011). In addition, the 
increased proliferative rate of cells should reduce time for cell production, thus 
reducing production costs.

Another hurdle to overcome is how to culture a sufficient number of cells to 
produce enough conditioned medium from which milligram quantities of exosomes 
may be isolated. From a cGMP standpoint, cell culturing in a closed system is pre-
ferred. One approach may be the use of hollow-fiber cell bioreactors, as a cGMP-
compliant closed culture system, for culturing large numbers of cells to produce 
large quantities of exosomes. A bioreactor approach should also abolish the need to 
continually passage cells during a production run, alleviating the need for huge 
numbers of plastic tissue culture vessels while reducing medium volume. In the 
long term, use of bioreactors has the potential to increase efficiency of exosome 
production while simultaneously reducing cost-of-goods. A white paper describing 
the culture of placental derived MSCs in a hollow fiber bioreactor is a useful guide 
for starting to address the scalable production of exosomes (Cadwell n.d.). 
Preliminary results have shown the bioreactor yield is in milligrams, approximately 
tenfold greater than cultures grown in T-flasks and cell factories, while simultane-
ously resulting in a higher concentration/ml conditioned medium (Basu et al. 2015). 
Alternatively, a device that uses centrifugal force and a filter with microsized pores 
has been used to generate large quantities of cell-derived nanovesicles (Jo et  al. 
2014). The nanovesicles produced are similar in size and membrane structure to 
exosomes, and they contain intracellular RNAs ranging from microRNA to mRNA, 
intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles 
produced using the device is 250 times the quantity of naturally secreted exosomes, 
the quantity of intracellular contents in nanovesicles is twice that in exosomes, and 
these particles can transfer RNAs to target cells. Side-by-side studies between these 
manufactured nanovesicles and naturally produced exosomes will determine the 
utility of this device in producing large quantities of a therapeutically relevant bio-
logic. Finally, an additional factor for consideration is that any therapeutically rel-
evant bioactivity may be a function of an exosome-mediated secretory milieu that is 
by definition heterogeneous and not necessarily associated with any single molecule 
or medicinal agent. As a precedent, a heterogeneous population of renal cells has 
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been developed as a cell-based therapeutic for chronic kidney disease—no single, 
definable cell population is understood to mediate observed regenerative outcomes 
(Basu and Ludlow 2012a). It is likely that exosome-based therapeutics and cosme-
ceutics catalyze their bioactivity as a function of their difficult-to-define heteroge-
neous nature as admixtures of medicinal agents.

�Manufacturing

Gimona et  al. (2017) have just published an excellent Opinion Paper on 
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical 
Use. Several of their key points to consider are excerpted below:

	1.	 Is the therapeutic being developed for a small patient population or for a large 
number of potential patients? This is an important decision, as it affects the 
amounts of EVs to be manufactured and for the general question of scalability. 
This decision also affects the design and amount of nonclinical (in vitro and 
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in  vivo animal) data and clinical testing of the future biological drug that is 
needed.

	2.	 Adequate therapeutic batch sizes must be planned and evaluated during process 
and product development.

	3.	 Will the product be designed primarily either to address a clear unmet medical 
need or to compete against multiple existing treatment options?

	4.	 Route of application, which is dependent upon the disease to be treated, needs to 
be defined early during product development.

	5.	 Assuming that the therapeutic is based on isolation for human cells, either an 
allogeneic or autologous use has to be evaluated in a risk-based approach 
(Fig. 4.4).

�Regulatory Requirements for Manufacturing  
and Quality Control

The regulatory requirements placed upon the biotechnology industry for production 
of medicinal products are quite demanding. Manufacturing of exosomes for thera-
peutic applications needs to take place in a tightly controlled and qualified setting. 
Quality systems must be in place to control the manufacturing environment, valida-
tion of equipment, material and operational controls. Process controls and valida-
tion are critical to meeting regulatory agency standards for product approval. For 
therapeutic development, it is anticipated that exosomes will fall under the purview 
of the Center for Biologics Evaluation and Research (CBER)—vaccines, blood, and 
biologics—of the FDA (www.fda.gov/BiologicsBloodVaccines/default.htm) This 
Center reviews a wide range of products such as vaccines, blood and blood compo-
nents, allergenics, somatic cells, gene therapy, tissues, and recombinant therapeutic 
proteins. Such agents can be composed of sugars, proteins, or nucleic acids or com-
plex combinations of these substances (exosomes fall into this category), or may be 
living entities such as cells and tissues. These agents are isolated from a variety of 
natural sources—human, animal, or microorganism—and may be produced by bio-
technology methods and other cutting-edge methodologies.

A crucial element in the development any therapeutic is product specifications 
related to purity, identity, quantity, potency, and sterility. If release criteria are not 
met due to deviations from defined expectations, the product has to be rejected, and 
its use is prohibited. The more precise the definitions for EV-based therapeutics 
become, more emphasis will be placed on purity and identity of the batch prepara-
tion. If the final product is defined as exosomes, a demonstration of purity, and the 
percentage of exosomes present in the final product may be in question. EVs include 
a broad variety of membrane-bounded vesicles, while exosomes are restricted, at 
least, by size and surface markers. It may be anticipated that large-scale clinical 
manufacturing of exosomes will be less stringent on segregating other EVs from the 
preparation. Such a scenario my result in an increasing number of batches being 
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rejected. To alleviate this, perhaps the heterogeneity of secretome-based prepara-
tions need to be acknowledged and accepted, and in so doing a terminology that 
embraces all biological components and therapeutic aspects without eliminating the 
central claim needs to be used. It may be more appropriate to consider the resulting 
product to be a vesicular secretome fraction (Wang et al. 2017). In the event that the 
identity and purity of a biologic therapeutic cannot be better defined, a common 
principle for such early development of biologicals anticipates that “the process is 
the product,” and EV therapeutics certainly fall into this category.

Below is a potential example, based on our experiences in developing several 
cell therapeutic and tissue engineered products, of a flow-diagram for development 
of exosomes as a therapeutic illustrating what FDA might look for in a manufactur-
ing scheme. At left—cells are isolated, cultured, expanded, and exosomes isolated 
from conditioned medium. This schematic assumes that cells will be extracted from 
a specific tissue type for use in exosome isolation; for cells already isolated, the 
steps will begin at the cell expansion stage. The quality tasks, which FDA is most 
interested in during the manufacturing process, are in boxes at right. Notice that 
they are heavily focused on testing for contamination by microorganisms, cell 
number, and cell viability during multiple steps of the process. Testing of the final 
product, the exosomes, also includes testing for microorganism contamination. In 
addition, the exosomes must be characterized, which will include the determination 
of physicochemical properties, biological activity, immunochemical properties, 
purity, and impurities. This is necessary to establish the safety and efficacy profile 
of the product.

�Synthetic Exosomes and Exosome Mimetics

Exosomes by their nature represent a heterogeneous, incompletely characterized 
biologic product. In addition, it remains to be established whether comparable lots 
of exosome preparations are routinely and consistently isolatable at large scale. 
Together with the somewhat tedious and time-consuming nature of the exosome 
isolation and manufacturing process (Marcus and Leonard 2013), see also above, 
these factors have triggered attempts to design and synthesize exosome-like parti-
cles or exosome mimetics that could potentially be made at much larger scale. Such 
particles have a potentially significant advantage in being fully definable at the lipi-
domic, proteomic, and transcriptomic levels (Kooijmans et al. 2012). For example, 
ES cell-derived nanovesicles that mimic exosomes have been created by extruding 
living ES cells through microfilters and shown to promote proliferation of primary 
murine skin fibroblasts (Jeong et al. 2014). Other methodologies currently under 
development include exosomes as vectors for microRNAs, siRNAs, or other defined 
protein cargo (Marcus and Leonard 2013).
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�Exosomes as Biomarkers for Disease and Regeneration

Finally, the presence of exosomes in multiple body secretions and fluids may be 
leveraged as a mechanism to monitor disease phenotypes or regenerative outcomes 
associated with a therapy. For example, the presence of certain microRNA biomark-
ers in urine sourced exosomes may be leveraged to evaluate development of renal 
fibrosis; conversely, the presence of exosomes expressing CD133 or other stem and 
progenitor cell proteins may be an indicator of regenerative activity within the kid-
ney. Although molecular assays have been proposed to facilitate the rapid assess-
ment of renal regeneration associated with application of cell-based therapies 
(Genheimer et al. 2012), the ability to monitor such outcomes merely by measure-
ment of certain defined urinary exosomes would represent a significant improve-
ment (Ranghino et al. 2015).

�Concluding Remarks and Future Perspectives

As evidence from multiple experimental systems accumulates implicating the sec-
retome in general and vesicular components such as exosomes in particular as prin-
cipal mechanistic agents catalyzing the observed regenerative bioactivity of 
cell-based products, the parallel emphasis on product development is transitioning 
to increasingly focus on exosome-based therapies over cell-based therapies. 
Exosomes present considerable advantages over cells for manufacturing, storage, 
handling, product shelf life and their potential as a ready to go biologic. Globally, at 
least one clinical trial of a MSC-sourced exosomes for improvement of β-cell mass 
in type 1 diabetes patients has been reported (https://clinicaltrials.gov/ct2/show/
NCT02138331?term=exosome&rank=4), we anticipate many more studies will be 
initiated in the next 1–5 years.

Box: Outstanding Questions?
Intellectual property claims surrounding exosomes and their applications for 
regenerative therapies remains to be clarified.

Mechanistically, which proteins or nucleic acids being transported by exo-
somes mediate observed regenerative outcomes? Or is regeneration a function 
of a heterogeneous composite of multiple bioactive exosome 
sub-populations?

Can the bioactivity of exosomes be recapitulated by synthetic, exosome-
like particles?

Can exosomes sourced from non-stem cell populations also catalyze clini-
cally relevant regenerative outcomes?
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Glossary

Allogeneic  Cells or cell-sourced materials derived from a donor source genetically 
dissimilar to the intended recipient are said to be allogeneic. Such biologics are 
typically immune-privileged.

Cosmeceutical  Topically applied cosmetic products with biologically active ingre-
dients purporting to have medical or drug-like benefits.

Exosome  40–100 nm membrane bound vesicles that mediate transfer of proteins 
and nucleic acids across cellular boundaries.

Keloid  Scar tissue formed at site of healed skin injury composed of either type III 
(early phase) or type I (late phase) collagen.

Potency  Defined by FDA as the specific ability or capacity of the product, as 
indicated by appropriate laboratory tests or by adequately controlled clinical 
data obtained through the administration of the product in the manner intended, 
to effect a given result. Potency is an important quality control criteria for all 
cell-based biologics, see Basu and Ludlow (2014) and Guthrie et al. (2013) for 
detailed discussion of potency assays and metrics for regenerative medicine and 
tissue engineered products.

References

Adams SB et al (2014) Stem cell-bearing suture improves Achilles tendon healing in a rat model. 
Foot Ankle Int 35:293–299

Adzick NS, Lorenz HP (1994) Cells, matrix, growth factors and the surgeon. The biology of scar-
less fetal wound repair. Ann Surg 200:10–18

Ahmed MI et al (2014) MicroRNA-214 controls skin and hair follicle development by modulating 
the activity of the Wnt pathway. J Cell Biol 207:549–567

Akyurekli C et al (2015) A systematic review of preclinical studies on the therapeutic potential of 
mesenchymal stromal cell-derived microvesicles. Stem Cell Rev 11:150–160

Aliotta JM et al (2012) Stable cell fate changes in marrow cells induced by lung-derived microves-
icles. J Extracell Vesicles. https://doi.org/10.3402/jev.v1i0.18163

Basu J  (2014) An organ regeneration platform for industrial produc-
tion of hollow neo-organs, cells and biomaterials in regenerative 
medicine. www.intechopen.com/books/cells-and-biomaterials-in-regenerative-medicine/an- 
organ-regeneration-platform-for-industrial-production-of-hollow-neo-organs

Basu J, Bertram T (2014) Regenerative medicine of the gastrointestinal tract. Toxicol Pathol 
42:82–90

Basu J, Ludlow JW (2010) Platform technologies for tubular organ regeneration. Trends Biotechnol 
28:526–533

Basu J, Ludlow JW (2011) Tissue engineering of tubular and solid organs: an industry perspective. 
In: Wislet-Gendebein S (ed) Advances in regenerative medicine. Intech Open, Croatia

Basu J, Ludlow JW (2012a) Developmental engineering the kidney: leveraging principles of mor-
phogenesis for renal regeneration. Birth Defects Res C Embryo Today 96:30–38

Basu J, Ludlow JW (2012b) Developments in tissue engineered and regenerative medicine prod-
ucts, a practical approach. Woodhead Publishing, Cambridge, UK

4  Exosomes for Regeneration, Rejuvenation, and Repair

https://doi.org/10.3402/jev.v1i0.18163
http://www.intechopen.com/books/cells-and-biomaterials-in-regenerative-medicine/an-organ-regeneration-platform-for-industrial-production-of-hollow-neo-organs
http://www.intechopen.com/books/cells-and-biomaterials-in-regenerative-medicine/an-organ-regeneration-platform-for-industrial-production-of-hollow-neo-organs


72

Basu J, Ludlow JW (2014) Cell-based therapeutic products: potency assay development and 
application. Regen Med 9:497–512

Basu J et al (2011a) Regeneration of rodent small intestine tissue following implantation of 
scaffolds seeded with a novel source of smooth muscle cells. Regen Med 6:721–731

Basu J et al (2011b) Functional evaluation of primary renal cell/biomaterial Neo-Kidney Augment 
prototypes for renal tissue engineering. Cell Transplant 20:1771–1790

Basu J et al (2012a) Regeneration of native like neo-urinary tissue from non-bladder cell sources. 
Tissue Eng Part A 18:1025–1034

Basu J et al (2012b) Extension of bladder based organ regeneration platform for tissue engineering 
of esophagus. Med Hypotheses 78:231–234

Basu J et al (2013) Tissue engineering of esophagus and small intestine in rodent injury models. 
Methods Mol Biol 1001:311–324

Basu J  et  al (2015) MSC sourced exosomes as therapeutic agents for wound healing and skin 
regeneration: from scaled production to functional regenerative outcomes in vitro and in vivo. 
International Society for Stem Cell Research Annual Meeting, Stockholm

Batagov AO et al (2011) Identification of nucleotide patterns enriched in secreted RNAs as puta-
tive cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics 12(Suppl 
3):S18

Buck SH et al (2014) Exosomes secreted by nematode parasites transfer small RNAs to mamma-
lian cells and modulate innate immunity. Nat Commun 5:5488

Buckley G et  al (2012) Denervation affects regenerative responses in MRL/MpJ and repair in 
C57BL/6 ear wounds. J Anat 220:3–12

Buschow SI et al (2010) MHC class II-associated proteins in B-cell exosomes and potential func-
tional implications for exosome biogenesis. Immunol Cell Biol 88:851–856

Cadwell JS. Culture of placental derived cells in a hollow fiber bioreactor cartridge. http://fiber-
cellsystems.com/documents/FibercellSystemsPlacental%20Stem%20Cell%20Culture.pdf

Campani V et al (2014) Development of a liposome based formulation for vitamin K1 nebulization 
on the skin. Int J Nanomedicine 9:1823–1832

Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15
Chen TS et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes 

through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47
Chen CC et  al (2014) Regenerative hair waves in aging mice and extra-follicular modulators 

Follistatin, Dkk1 and Sfrp4. J Invest Dermatol 134:2086–2096
Dai S et al (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with 

GM-CSF for colorectal cancer. Mol Ther 16:782–790
Danilchik M et al (2013) Blastocoel spanning filopodia in cleavage stage Xenopus laevis: potential 

roles in morphogen distribution and detection. Dev Biol 382:70–81
Deregibus MC et al (2007) Endothelial progenitor cell derived microvesicles activate an angio-

genic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448
Escudier B et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell 

(DC) derived-exosomes: results of the first Phase I clinical trial. J Transl Med 3:10
Fleury A et al (2014) Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front 

Immunol 5:370
Fukuoka H, Suga H (2015) Hair regeneration treatment using adipose-derived stem cell condi-

tioned medium: follow-up with trichograms. Eplasty 15:e10
Garcia-Contreras M et  al (2014) Therapeutic potential of human adipose-derived stem cells 

(ADSCs) from cancer patients: a pilot study. PLoS One:e113288
Genheimer G et  al (2012) Molecular characterization of the regenerative response induced by 

intrarenal transplantation of selected renal cells in a rodent model of chronic kidney disease. 
Cells Tissues Organs 196:374–384

Gibbings DJ et  al (2009) Multivesicular bodies associate with components of miRNA effector 
complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

Gimona M et al (2017) Manufacturing of human extracellular vesicle-based therapeutics for clini-
cal use. Int J Mol Sci 18(6). https://doi.org/10.3390/ijms18061190

J. Basu and J. W. Ludlow

http://fibercellsystems.com/documents/FibercellSystemsPlacental Stem Cell Culture.pdf
http://fibercellsystems.com/documents/FibercellSystemsPlacental Stem Cell Culture.pdf
https://doi.org/10.3390/ijms18061190


73

Godwin JW et al (2013) Macrophages are required for adult salamander limb regeneration. Proc 
Natl Acad Sci U S A 110:9415–9420

Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular 
vesicles. J Extracell Vesicles 2. https://doi.org/10.3402/jev.v2i0.20389

Greco V et al (2001) Argosomes: a potential vehicle for the spread of morphogens through epithe-
lia. Cell 5:633–645

Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflammation 
11:68

Guthrie K et al (2013) Potency evaluation of tissue engineered and regenerative medicine products. 
Trends Biotechnol 31:505–514

Harn HJ et al (2013) Rejuvenation of aged pig facial skin by transplanting allogeneic granulo-
cyte colony stimulating factor induced peripheral blood stem cells from a young pig. Cell 
Transplant 22:755–765

Hu L et al (2016) Exosomes derived from human adipose mensenchymal stem cells accelerates 
cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 6:32993

Ibrahim AG et  al (2014) Exosomes as critical agents of cardiac regeneration triggered by cell 
therapy. Stem Cell Rep 2:606–619

Irion U, St Johnston D (2007) bicoid RNA localization requires specific binding of an endosomal 
sorting complex. Nature 445:554–558

Jeong D et  al (2014) Nanovesicles engineered from ES cells for enhanced cell proliferation. 
Biomaterials 35:9302–9310

Jo W et al (2014) Large-scale generation of cell-derived nanovesicles. Nanoscale 6:12056–12064
Johnstone RM (1992) The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulo-

cytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell 
Biol 70:179–190

Johnstone RM et  al (1987) Vesicle formation during reticulocyte maturation. Association of 
plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

Justewicz DM et al (2012) Characterization of the human smooth muscle cell secretome for regen-
erative medicine. Tissue Eng Part C Methods 18:797–816

Kilpinen L et al (2013) Extracellular membrane vesicles from umbilical cord blood derived MSC 
protect against ischemic acute kidney injury, a feature that is lost after inflammatory condition-
ing. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.21927

Kim WS et al (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibro-
blast by secretory factors. J Dermatol Sci 53:96–102

Kooijmans SA et  al (2012) Exosome mimetics: a novel class of drug delivery systems. Int 
J Nanomedicine 7:1525–1541

Lamichhane TN et al (2015) Emerging roles for extracellular vesicles in tissue engineering and 
regenerative medicine. Tissue Eng B Rev 21:45–54

Lane RE et al (2015) Analysis of exosome purification methods using a model liposome system 
and tunable-resistive pulse sensing. Sci Rep 5:7639

Lee C et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on 
hypoxia induced pulmonary hypertension. Circulation 126:2601–2611

Lee HJ et al (2014) Efficacy of microneedling plus human stem cell conditioned medium for skin 
rejuvenation: a randomized, controlled, blinded split face study. Ann Dermatol 26:584–591

Lener T et al (2015 Dec 31) Applying extracellular vesicles based therapeutics in clinical trials - an 
ISEV position paper. J Extracell Vesicles 4:30087

Li M et  al (2015) Mesenchymal stem cell-conditioned medium improves the proliferation and 
migration of keratinocytes in a diabetes-like microenvironment. Int J  Low Extrem Wounds 
14:73

Liegeouis S et  al (2006) The V0-ATPase mediates apical secretion of exosomes containing 
Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961

Lim CP et al (2006) Stat3 contributes to keloid pathogenesis via promoting collagen production, 
cell proliferation, and migration. Oncogene 25:5416–5425

4  Exosomes for Regeneration, Rejuvenation, and Repair

https://doi.org/10.3402/jev.v2i0.20389
https://doi.org/10.3402/jev.v2i0.21927


74

Liu JJ et al (2013) Preparation and characterization of cosmeceutical liposomes loaded with avo-
benzone and arbutin. J Cosmet Sci 64:9–17

Lötvall J et al (2014 Dec 22) Minimal experimental requirements for definition of extracellular ves-
icles and their functions: a position statement from the International Society for Extracellular 
Vesicles. J Extracell Vesicles 3:26913

Machova Urdzikova L et al (2014) Human multipotent mesenchymal stem cells improve healing 
after collagenase tendon injury in the rat. Biomed Eng Online 13:42

Madsen JT, Andersen KE (2010) Microvesicle formulations used in topical drugs and cosmetics 
affect product efficiency, performance and allergenicity. Dermatitis 21:243–247

Maguire G (2013) Stem cell therapy without the cells. Commun Integr Biol 6:e26631
Marcus ME, Leonard JN (2013) FedExosomes: engineering therapeutic biological nanoparticles 

that truly deliver. Pharmaceuticals 6:659–680
Melo SA et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and pro-

mote tumorigenesis. Cancer Cell 26:707–721
Morse MA et al (2005) A Phase I study of dexosome immunotherapy in patients with advanced 

non-small cell lung cancer. Clin Cancer Res 11:3017–3024
Mu X et al (2013) Regeneration of soft tissues is promoted by MMP1 treatment after digit amputa-

tion in mice. PLoS One 8:e59105
Pan BT et al (1985) Electron microscopic evidence for externalization of the transferrin receptor 

in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948
Quesenberry PJ et al (2014) Cellular phenotype and extracellular vesicles: basic and clinical con-

siderations. Stem Cells Dev 23:1429–1436
Rahimpour Y, Hamishehkar H (2012) Liposomes in cosmeceutics. Expert Opin Drug Deliv 

9:443–455
Ranghino A et al (2015) Extracellular vesicles in the urine: markers and mediators of tissue dam-

age and regeneration. Clin Kidney J 8:23–30
Rashed H et al (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol 

Sci 18(3). pii: E538
Ratajczak MZ et al (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative 

medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better 
therapeutic strategies? Leukemia 26:1166–1173

Roy S, Gatien S (2008) Regeneration in axolotls: a model to aim for! Exp Gerontol 43:968–973
Sahoo S et al (2011) Exosomes from human CD34+ stem cells mediate their proangiogenic para-

crine activity. Circ Res 109:724–728
Sen CK et al (2009) Human skin wounds: a major and snowballing threat to public health and the 

economy. Wound Repair Regen 17:763
Seo KY et al (2013) Skin rejuvenation by microneedle fractional radiofrequency and a human stem 

cell conditioned medium in Asian skin: a randomized controlled investigator blinded split face 
study. J Cosmet Laser Ther 15:25–33

Shim JH et al (2013) Human dermal stem/progenitor cell-derived conditioned medium ameliorates 
ultraviolet a induced damage of normal human dermal fibroblasts. PLoS One 8:e67604

Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185
Tanaka Y et al (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in left-

ward nodal flow is critical for left-right determination. Nature 435:172–177
Tetta C et al (2012) The role of micro-vesicles derived from mesenchymal stem cells in tissue 

regeneration; a dream for tendon repair? Muscles Ligaments Tendons J 2:212–221
Valadi H et al (2007) Exosome mediated transfer of mRNAs and microRNAs is a novel mechanism 

of genetic exchange between cells. Nat Cell Biol 9:654–659
van Koppen A et al (2012) Human embryonic mesenchymal stem cell-derived conditioned medium 

rescues kidney function in rats with established chronic kidney disease. PLoS One 7:e38746
Vyas N et al (2014) Vertebrate Hedgehog is secreted on two types of extracellular vesicles with 

different signaling properties. Sci Rep 4:7357
Wang CY et al (2012) Mesenchymal stem cell-conditioned medium facilitates angiogenesis and 

fracture healing in diabetic rats. J Tissue Eng Regen Med 6:559

J. Basu and J. W. Ludlow



75

Wang J et al (2017) Exosomes: a novel strategy for treatment and prevention of diseases. Front 
Pharmacol 8:300

Wessels NK (1977) Tissue interactions and development. Benjamin Cummings, Menlo Park, CA
Xin H et al (2013) Systematic administration of exosomes released from mesenchymal stromal 

cells promote functional recovery and neurovascular plasticity after stroke in rats. J  Cereb 
Blood Flow Metab 33:1711–1715

Yu B et al (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15:4142–4157
Zhang HG, Grizzle WE (2014) Exosomes: a novel pathway of local and distant intercellular 

communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 
184:28–41

Zhang B et  al (2014) HucMSC-exosome mediated -Wnt4 signaling is required for cutaneous 
wound healing. Stem Cells. https://doi.org/10.1002/stem.1771

Zhang J  et  al (2015a) Exosomes released from human induced pluripotent stem cells derived 
MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. 
J Transl Med 13:49

Zhang Y et al (2015b) Effect of exosomes derived from multipluripotent mesenchymal stromal 
cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. 
J Neurosurg 122:856–867

4  Exosomes for Regeneration, Rejuvenation, and Repair

https://doi.org/10.1002/stem.1771


77© Springer Nature Switzerland AG 2018 
P. V. Pham (ed.), Stem Cell Drugs - A New Generation of Biopharmaceuticals, 
Stem Cells in Clinical Applications, https://doi.org/10.1007/978-3-319-99328-7_5

Chapter 5
Proinflammatory Cytokines Significantly 
Stimulate Extracellular Vesicle Production 
by Adipose-Derived and Umbilical Cord-
Derived Mesenchymal Stem Cells

Phuc Van Pham, Ngoc Bich Vu, Khanh Hong-Thien Bui, 
and Liem Hieu Pham

�Introduction

Extracellular vesicles (EVs) are nanosized particles produced from live cells during 
their life span. Depending on their size, they are generally divided into two main 
groups: exosomes (40–150  nm in diameter) and microvesicles (50–2000  nm in 
diameter). Some studies have suggested that there are four kinds of EVs: exosomes, 
microvesicles, apoptotic bodies, and oncosomes. These EVs play an important role 
in cell–cell communication. Indeed, EVs contain a broad range of biological mole-
cules, from DNA to RNA (Eirin et al. 2014; Kumar et al. 2015; Vallabhaneni et al. 
2015) to proteins (Baglio et al. 2012; Biancone et al. 2012; Rani et al. 2015).

Since EVs transport DNA, RNA, and proteins, they presumably have the 
capability to regulate target cells—from transcription and translation—and thus 
have been evaluated for the treatment of various diseases. Such diseases include 
kidney disease, heart disease, liver disease, and brain injury. In kidney disease, 
EVs have been mainly used to treat acute kidney injury (AKI). EVs derived from 
mesenchymal stem cells (i.e., MSC-EVs) have been shown to induce significant 
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improvement of kidney function (Bruno et  al. 2012; Hu et  al. 2016). Some 
mechanisms of action of MSC-EVs include inhibiting oxidative stress, apopto-
sis, and fibrosis (Lin et al. 2016; Zhou et al. 2013; Zou et al. 2014, 2016), stimu-
lating angiogenesis (Lin et al. 2016; Ranghino et al. 2017), and mediating an 
anti-inflammatory condition (Koch et al. 2015; Lin et al. 2016). In heart disease, 
MSC-EVs have also shown some promising benefits in acute myocardial infarc-
tion (AMI) models. MSC-EV infusion has helped to reduce infarction size and 
heart function in animal models of AMI (Ma et al. 2016; Shao et al. 2017; Teng 
et al. 2015). Similar to kidney disease treatment, EVs were shown to also reduce 
fibrosis and apoptosis, and stimulate angiogenesis (Feng et al. 2014; Yu et al. 
2016; Zhao et al. 2015). Moreover, EVs have been evaluated for the treatment of 
liver injuries/diseases, such as hepatic failure and hepatic ischemia, and were 
shown to induce improvement of liver function (Chen et al. 2017; Haga et al. 
2017; Nong et al. 2016; Tan et al. 2014).

Recently, some studies have evaluated MSC-EV therapy for brain injuries, 
such as ischemic stroke and traumatic brain injury (Doeppner et al. 2015; Kim 
et al. 2016; Zhang et al. 2016). MSC-EVs have also been used to treat hippocam-
pal synaptic impairment after transient global ischemia (Deng et al. 2017), fetal 
brain injury after hypoxia ischemia (Ophelders et al. 2016), post-stroke condi-
tions (Doeppner et al. 2015), and cerebral apoplexy (Hu et al. 2016). Deng et al. 
(2017) showed that MSC-EVs significantly inhibited ischemia-induced patho-
genic expression of COX-2 in the hippocampus and ameliorated effects on syn-
aptic functions. Ophelders et  al. (2016) used MSC-EVs from bone marrow to 
treat hypoxic ischemic injury of the preterm brain, and showed that both function 
and structural injury of the fetal brain improved (Ophelders et al. 2016). MSC-
EVs also induce neuroprotection and neural regeneration (Doeppner et al. 2015; 
Hu et al. 2016).

However, to date there have only been two clinical trials using MSC-EVs. The 
first trial using MSC-EVs was for graft-versus-host disease (GVHD). The initial 
results showed that MSC-EV therapy was helpful for controlling GVHD (and its 
symptons) as well as reducing the dose of steroids (Kordelas et al. 2014). The sec-
ond study examined the use of MSC-EVs to treat chronic kidney disease. The results 
also showed that MSC-EV transplantation significantly improved kidney function 
compared to controls (Nassar et al. 2016).

Nonetheless, the main limitation of MSC-EVs in clinical applications is the 
low quantity of EVs obtained from MSC cultures. A recent study by Lo Sicco 
et  al. (2017) showed that ADSCs can produce about 20  EVs/μL in the condi-
tioned medium under normoxia and 35 EVs/μL under hypoxia (Lo Sicco et al. 
2017). Therefore, boosting MSCs to produce more EVs has become an important 
focus in the clinic. This study aims to enhance EV production by ADSCs and 
UC-MSCs via the use of proinflammatory cytokines (TNF-alpha and IFN-
gamma). Results from this study will significantly contribute to clinical applica-
tions of MSC-EVs.
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�Materials and Methods

�Culture and Expansion of ADSCs

Adipose tissues were collected from the hospital from aesthetic surgery with consent 
from the donors. The tissues were kept in saline and transferred to the laboratory. The 
use and manipulation of adipose tissues were approved by the institutional ethics 
committee. In the laboratory, the adipose tissues were washed twice with PBS to 
remove blood cells and then extracted to obtain stromal vascular fractions (SVF) 
with a commercial kit (Cell Extraction Kit, Regenmed Ltd., Ho Chi Minh City, 
Vietnam). Briefly, clean adipose tissues were incubated with collagenase enzyme 
(SuperDigest Enzyme, Regenmed Ltd., Ho Chi Minh City, Vietnam) for 15 min with 
extractor. Finally, the digested tissues were centrifuged at 3500 rpm for 15 min to 
collect SVFs at the bottom of 50-mL Falcon tubes. SVFs were resuspended into 
MSCCult Medium (Regenmed Ltd., Ho Chi Minh City, Vietnam), which consisted of 
90% DMEM/F12, 10% FBS, and 1% antibiotic–antimycotic solution (all purchased 
from Thermo Fisher Scientific Inc., Waltham, MA). SVFs were cultured under stan-
dard conditions (37 °C and 5% CO2). After the ADSC culture reached about 70% 
confluence, the cells were subcultured to the third passage for use in experiments.

�Culture and Expansion of UC-MSCs

The culture and expansion of UC-MSCs were carried out according to previously 
published protocols (Van Pham et  al. 2016b). Briefly, umbilical cords were col-
lected from the hospital (Van Hanh Hospital, Ho Chi Minh City, VN) with signed 
consent forms from donors. The samples were transferred to the laboratory within 
2  h. There, they were washed twice with PBS and cut into small size pieces 
(1–2 mm2). The fragments were seeded onto the surface of flasks (T-75 flask; SPL, 
Korea) using a drop of MSCCult medium and left for 5 days. After 5 days, the MSC 
candidates migrated from the fragments. Fresh medium (up to 12 mL) was added to 
the flasks and cells were monitored. After the UC-MSC culture reached about 70% 
confluence, the cells were subcultured to the third passage for use in experiments.

�In Vitro Differentiation

MSC candidates were induced to differentiate into adipocytes and osteoblasts 
according to previously published protocols (Van Pham et al. 2014, 2016a). Briefly, 
they were cultured in the 6-well plates (SPL, Korea) until they reached 50% conflu-
ence. Differentiation medium (Thermo Fisher Inc., Waltham, MA) was added to the 
plates. The medium was replenished every 3 days for a duration of 21 days (from 
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the first day of induction). The cells were stained with Oil Red (to confirm for adi-
pocytes) and with Alizarin Red (to confirm for osteoblasts).

�Marker Analysis of MSCs

The markers of MSCs were evaluated based on flow cytometry. Firstly, the MSC 
candidates were detached from the flasks and resuspended in FACSFlow sheath 
fluid at 106 cells/100 μL solution. They were stained individually with anti-CD14-
FITC, anti-CD45-APC, anti-CD44-PE, anti-CD73-PerCP, and anti-CD90-FITC 
antibodies in FACS tubes for 20 min at room temperature (an isotype antibody was 
used for the control tube). The tubes were added up to 300 μL with FACSFlow 
sheath fluid before they were run on the FACSCalibur machine (BD Biosciences, 
San Jose, CA). Analysis of marker expression was performed using CellQuest Pro 
software using 104 cells/events per marker.

�Culture and Isolation of EVs from MSCs

After confirmation of MSC markers, ADSCs and UC-MSCs were cultured under 
standard conditions until they reached about 70% confluence (described above). At 
this point, ADSCs and UC-MSCs were collected from culture using standard trypsin/
EDTA-0.04% solution. Cells were washed twice with PBS, and 12 mL of fresh cul-
ture medium (DMEM/F12 supplemented with exosome-depleted FBS and 1% antibi-
otic–antimycotic solution) was added as described above. TNF-alpha and IFN-gamma 
(Santa Cruz Biotechnology, Mississauga, ON, Canada) were added to some cell cul-
tures in fresh medium (starting point, 0 h) at various concentrations: 5, 10, and 20 ng/
mL. After 24, 48, and 96 h of incubation, the conditioned media were collected to 
prepare EVs. The conditioned medium was centrifuged at 2500 × g for 20 min at 4 °C 
to remove cell debris and large vesicles; EVs were isolated from the supernatant using 
Total Exosome Isolation Reagent Kit (Thermo Fisher Scientific Inc.).

�EV Characterization and Quantification

EV characterization and quantification was performed using a published protocol 
(Di Trapani et al. 2016). Briefly, the flow cytometer was calibrated using different 
fluorescent beads (Thermo Fisher Scientific Inc.) of various sizes (0.1, 0.2, 0.5, and 
1.0 μm). The beads were mixed with EVs to generate an analytic gate for the subse-
quent experiments. EV quantification was obtained by Trucount tubes (BD 
Biosciences, San Jose, CA) to obtain the absolute numbers. The tubes were used 
according to the manufacturer’s recommendations and the absolute count was 
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calculated using the following formula: (number of events in the EV-containing 
gate/number of events in the bead-containing gate) ×  (number of beads per test/
volume).

For phenotypic analysis of EVs, the EVs were adsorbed to 3.9 μm latex beads 
(Thermo Fisher Scientific). EVs were mixed with latex beads for 15 min at room 
temperature. The bead-bound EVs were collected by centrifuging for 3  min at 
4000 rpm. After washing the pellets in PBS/0.5% BSA, they were resuspended in 
0.5 mL of PBS/0.5% BSA. Finally, 10 μL of bead-bound EVs was stained with 
specific antibodies (anti-CD44, -CD73, -CD90, -CD63, and -CD81) for 30 min at 
room temperature. Data were collected and analyzed in the FACSCalibur Machine 
using 100,000 events.

�Transmission Electron Microscopy

EVs were fixed in 4% paraformaldehyde solution. The images were captured using 
a transmission electron microscopy using a digital Morada G2 TEM camera 
(Olympus Imaging Systems, Japan).

�Statistical Analysis

Data are presented as the mean ± standard deviation (SD). Prism Version 6.00 for 
Mac (GraphPad Software, La Jolla, CA) was used for statistical analysis. Unpaired 
t-tests were performed; p-values <0.05 were considered statistically significant.

�Results

�Isolation and Characterization of ADSCs

After 24 h of incubation (as recommended by a published protocol for isolating 
ADSCs), some spindle-shaped cells appeared which were clearly visible under a 
microscope. These unique cells grow and reached 70% confluence on the surface of 
flasks in about 7 days. These cells were subcultured and they became even more 
homogenous by the third passage and were then collected for use in experiments.

To confirm their MSC phenotype, ADSCs were assessed for the following sur-
face markers: CD44, CD73, CD90, CD14, and CD45. The results showed that 
ADSCs were strongly positive for CD44 (99.21  ±  1.21%), CD73 (95  ±  5.4%), 
CD90 (100%), while negative for CD14 (2.1  ±  1.4%) and CD45 (4.1  ±  1.4%). 
During induction of adipogenesis, cells became differentiated into adipocytes. 
Indeed, these adipocytes stained positive with Oil Red staining assay. During induc-
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tion of osteoblast differentiation, cells could be differentiated into osteoblasts and, 
indeed, stained positive with Alizarin Red staining assay.

�Isolation and Characterization of UC-MSCs

UC-MSCs were isolated from tissues and expanded in tissue culture flasks. After 
4 days of incubation, spindle-shape cells migrated from the tissue. After 14 days of 
culture, the cell population reached 70% confluence. Cells became homogenous 
after the third passage. UC-MSCs were also confirmed to be MSCs from their 
expression of CD44 (98.11  ±  3.23%), CD73 (96.81  ±  3.11%), and CD90 
(99.91  ±  0.11%); they were negative for CD14 (2.01  ±  0.81%) and CD45 
(3.51 ± 2.19%). These cells were succesfully induced to differentiate into adipo-
cytes and osteoblasts. The results showed that the obtained UC-MSC candidates 
successfully differentiated into both adipocytes and osteoblasts.

�UC-MSCs and ADSCs Can Produce EVs Expressing Some 
Standard Markers of MSCs

EVs from both UC-MSCs and ADSCs were evaluated for expression of some MSC 
surface markers (CD44, CD73, and CD90) and some EV markers (CD81 and 
CD63). The EVs were also visualized and the images captured under TEM to deter-
mine their diameter. The results showed that almost all EVs expressed some com-
mon markers of MSC-EVs, such as CD44 (99.21 ± 1.21%), CD73 (99.21 ± 1.21%), 
and CD90 (99.21 ± 1.21%). From TEM capture, the vesicles were estimated to be 
30–200 nm in diameter.

�TNF-Alpha Stimulates UC-MSCs and ADSCs to Produce EVs 
Depending on Its Concentration and Time of Incubation

The results in Fig. 5.1 showed that increasing concentrations of TNF-alpha boosted 
both UC-MSC and ADSCs to produce more EVs. For ADSCs, when the concentra-
tion of TNF-alpha increased from 5 to 10 and 20 ng/mL, the EVs counts signifi-
cantly increased—from 200 ± 30 to 353.33 ± 32.15 and 450 ± 50, respectively (after 
24 h of incubation), from 350 ± 50 to 590 ± 36.06 and 740 ± 65.57, respectively 
(after 48 h of incubation), and from 210 ± 52.92 to 400 ± 100 and 466.67 ± 76.38, 
respectively (after 96 h of incubation) (n = 3; p < 0.05 for all sets). For UC-MSCs, 
similarly when concentrations of TNF-alpha increased from 5 to 10 and 20 ng/mL, 
the EVs counts significantly increased—from 45 ± 5 to 88.33 ± 7.64 and 100 ± 10, 
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respectively (after 24 h of incubation), from 80 ± 10 to 113.33 ± 11.55 and 140 ± 10, 
respectively (after 48 h of incubation), and from 46.67 ± 11.55 to 96.67 ± 5.77 and 
100 ± 10, respectively (after 96 h of incubation) (n = 3; p < 0.05 for all sets).

Moreover, the EV counts produced by the UC-MSCs and ADSCs were depen-
dent on the duration of incubation with TNF-alpha. The greatest EV count for 
ADSCs and UC-MSCs occurred after 48 h of incubation with TNF-alpha (as com-
pared to 24 or 96 h) (Fig. 5.1). Indeed, at 5 ng/mL of TNF-alpha, EVs counts for 
ADSCs were 200 ± 30, 350 ± 50, and 210 ± 52.92, respectively (for 24, 48, and 96 h 
of incubation). Similarly, at 10 ng/mL of TNF-alpha, EVs counts for ADSCs were 
353.33 ± 32.15, 590 ± 36.06, and 400 ± 100, respectively (for 24, 48, and 96 h of 
incubation). Thus, the EV count was highest after 48 h of incubation and gradually 
declined after 96  h of incubation. At 20  ng/mL of TNF-alpha, EVs counts for 
ADSCs were 450 ± 50, 740 ± 65.57, and 466.67 ± 76.38, respectively (for 24, 48, 
and 96 h of incubation); thus, EV count was optimal at 48 h. The time-dependent 
trend for UC-MSCs was also similar to that of ADSCs, with 48 h being the optimal 
incubation time for generating EVs (Fig. 5.1).

�IFN-Gamma Stimulates UC-MSCs and ADSCs to Produce EVs 
Depending on Its Concentration and Time of Incubation

Similarly to TNF-alpha, IFN-gamma also stimulated both ADSCs and UC-MSCs to 
produce more EVs in a dose-dependent and time dependent manner. In general, as 
the concentration of IFN-gamma increased, the EV counts for both ADSCs and 
UC-MSCs increased. For ADSCs, when the concentration of IFN-gamma increased 
from 5 to 10 and 20 ng/mL, the EVs counts significantly increased—from 300 ± 20 
to 486.67 ± 32.15 and 900 ± 100, respectively (after 24 h of incubation) (n = 3; 
p  <  0.05), from 396.67  ±  25.166 to 863.33  ±  56.86 and 1063.33  ±  118.46, 

Fig. 5.1  TNF-alpha stimulates UC-MSCs and ADSCs to produce EVs. EV production by ADSCs 
(a) and UC-MSCs (b) gradually increased as the concentration of TNF-alpha increased. However, 
the EV count for ADSCs (a) and UC-MSCs (b) was maximal at 48 h of incubation with TNF-alpha 
(compared to 24 or 96 h)
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respectively (after 48 h of incubation) (n = 3; p < 0.05), and from 283.33 ± 15.28 to 
483.33  ±  104.08 and 800  ±  100, respectively (n  =  3; p  <  0.05). Similarly, for 
UC-MSCs, the EV counts also increased depending on the concentration of IFN-
gamma—from 5 ng/mL (146.67 ± 15.28, 293.33 ± 30.55, and 210 ± 36.056, respec-
tively, after 24, 48, and 96  h) to 10  ng/mL (273.33  ±  25.17, 390  ±  36.06, and 
313.33 ± 32.15, respectively, after 24, 48, and 96 h) and to 20 ng/mL (300 ± 20, 
623.33 ± 25.17, and 363.33 ± 47.26, respectively, after 24, 48, and 96 h).

Like TNF-alpha, as IFN-gamma incubation time increased from 24 to 48 h there 
was an increase of EV count; however, when incubation time was increased to 96 h 
the EV counts were reduced. For ADSCs, EV counts at 24  h (300  ±  20, 
486.67  ±  32.15, and 900  ±  100, respectively, for 5, 10, and 20  ng/mL of IFN-
gamma) increased after 48 h (396.67±25.166, 863.33 ± 56.86, and 1063.33 ± 118.46, 
respectively, for 5, 10, and 20  ng/mL of IFN-gamma), but decreased after 96  h 
(283.33 ± 15.28, 483.33 ± 104.08 and 800 ± 100, respectively, for 5, 10, and 20 ng/
mL of IFN-gamma). For UC-MSCs, EV counts at 24  h (146.67  ±  15.28, 
273.33 ± 25.17, and 300 ± 20, respectively, for 5, 10, and 20 ng/mL of IFN-gamma) 
increased after 48 h (293.33 ± 30.55, 390 ± 36.06, and 623.33 ± 25.17, respectively, 
for 5, 10, and 20 ng/mL of IFN-gamma), but decreased after 96 h (210 ± 36.056, 
313.33 ± 32.15, and 363.33 ± 47.26, respectively, for 5, 10, and 20 ng/mL of IFN-
gamma) (Fig. 5.2).

�IFN-Gamma Stimulates a Stronger Induction of EV Production 
by UC-MSCs and ADSCs than TNF-Alpha

We compared the effects of TNF-alpha and IFN-gamma on EV production. The EV 
counts produced by ADSCs and UC-MSCs for the same time of incubation and 
same concentration (of TNF-alpha and IFN-gamma) were recorded (Fig. 5.3). 

Fig. 5.2  IFN-gamma stimulates UC-MSCs and ADSCs to produce EVs. EV production by 
ADSCs (a) and UC-MSCs (b) gradually increased as the concentration of IFN-gamma increased. 
However, the EV count for ADSCs (a) and UC-MSCs (b) was maximal at 48 h of incubation with 
IFN-gamma (compared to 24 or 96 h)
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As presented in Fig. 5.3, when comparing the same concentration of TNF-alpha and 
IFN-gamma, and same time of incubation, IFN-gamma was more robust at stimulat-
ing ADSCs and UC-MSCs to produce EVs. However, the effects of IFN-gamma 
were stronger (and more evident) on UC-MSCs than ADSCs.

For ADSCs, the comparison of EV counts induced by IFN-gamma versus TNF-
alpha were as follows: 300 ± 20 vs 200 ± 30, 486.67 ± 32.15 vs 353.33 ± 32.15, and 
900 ± 100 vs. 450 ± 50 (for 5, 10, and 20 ng/mL, respectively, IFN-gamma vs. TNF-
alpha, after 24 h); 396.67 ± 25.17 vs 350 ± 50, 863.33 ± 56.86 vs 590 ± 36.06, and 
1063.33 ± 118.46 vs 740 ± 65.57 (for 5, 10, and 20 ng/mL, respectively, IFN-gamma 
vs. TNF-alpha, after 48 h); and 283.33 ± 15.28 vs. 210 ± 52.92, 483.33 ± 104.08 vs. 
400 ± 100, and 800 ± 100 vs 466.67 ± 76.38 (for 5, 10, and 20 ng/mL, respectively, 
IFN-gamma vs. TNF-alpha, after 96 h) (Fig. 5.3).

For UC-MSCs, the comparison of EV counts induced by IFN-gamma versus 
TNF-alpha was as follows: 146.67 ± 15.28 vs. 45 ± 5, 273.33 ± 25.17 vs. 88.33 ± 7.64, 
and 300 ± 20 vs. 100 ± 10 (for 5, 10, and 20 ng/mL, respectively, IFN-gamma vs. 
TNF-alpha, after 24 h); 293.33 ± 30.55 vs. 80 ± 10, 390 ± 36.056 vs. 113.33 ± 11.55, 
and 623.33 ± 25.17 vs. 140 ± 10 (for 5, 10, and 20 ng/mL, respectively, IFN-gamma 
vs. TNF-alpha, after 48 h); and 210 ± 36.06 vs. 46.67 ± 11.55, 313.33 ± 32.15 vs. 
96.67 ± 5.77, and 363.33 ± 47.26 vs. 100 ± 10 (for 5, 10, and 20 ng/mL, respectively, 
IFN-gamma vs. TNF-alpha, after 96 h) (Fig. 5.3).

Fig. 5.3  IFN-gamma stimulates a stronger induction of EV production by UC-MSCs and ADSCs 
than TNF-alpha. At the same cytokine concentration, EV production induced by IFN-gamma treat-
ment was nearly twofold greater than that induced by TNF-alpha
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�Discussion

�MSC

EVs have become a new platform for cell-free therapy for some diseasesespecially 
degenerative diseases. These particles have been evaluated for the treatment of vari-
ous diseases including kidney, brain, heart and liver diseases. More importantly-
clinical applications of these particles in GVHD and chronic kidney disease 
treatment have indicated that MSC-EVs are promising candidates to replace MSC 
transplantation.

In this study we investigated the effects of TNF-alpha and IFN-gamma on in vitro 
EV production by ADSCs and UC-MSCs. In this initial study we show that both 
TNF-alpha and IFN-gamma can significant enhance EV production by ADSCs and 
UC-MSCs. Firstly, we successfully isolated MSCs from adipose tissue and umbili-
cal cord. These cells satisfied the criteria of MSCs posed by Dominici et al. (2006). 
Indeed, they could adhere onto plastic flasks and exhibited fibroblast-like shape; 
they also expressed some common markers of MSCs (e.g., CD44, CD73, and CD90) 
as well as being negative for blood cell markers (e.g., CD14 and CD45). They also 
could be induced to differentiate into various kinds of mesoderm-induced adipo-
cytes and osteoblasts. The phenotype of ADSCs and UC-MSCs were similar to 
previous studies (Van Pham et al. 2014, 2016a, b).

Secondly, these MSCs were capable of producing EVs in culture medium with 
exosome-depleted FBS supplement. EVs were regarded in this setting as placebo. 
EVs generated from MSCs (MSC-EVs) exhibited all the specific characteristics of 
MSCs, including expression of CD44, CD73, and CD90, as confirmed to be impor-
tant by previous studies (Ramos et al. 2016). The diameters of MSC-EVs were con-
firmed by TEM capture. Flow cytometry also confirmed these particles as MSC-EVs 
(Tru-count determined that under normal conditions ADSCs and UC-MSCs could 
produce 84 ± 14 and 30 ± 9 EVs/μL of conditioned medium, respectively. However, 
the quantity of EVs was further increased by treatment with proinflammatory cyto-
kines (TNF-alpha and IFN-gamma).

Thirdly, both TNF-alpha and IFN-gamma triggered ADSCs and UC-MSCs to 
produce a greater number of EVs. Indeed, this effect was dependent on cytokine 
concentration. Higher concentrations (e.g., 20  ng/mL versus 10 or 5  ng/mL) of 
TNF-alpha and IFN-gamma led to a greater stimulation of EV production by ADSCs 
and UC-MSCs. However, the maximal EV count was obtained at 20 ng/mL of TNF-
alpha or 20 ng/mL of IFN-gamma after 48 h of incubation; after 96 h of treatment, 
EV production decreased. Moreover, our results demonstrated that IFN-gamma 
stimulated EV production of ADSCs and UC-MSCs more effectively than 
TNF-alpha.

From the literature, EV production can be enhanced by hypoxia treatment of 
MSCs (Lo Sicco et al. 2017). From hypoxia treatment of ADSCs, Lo Sicco et al. 
(2017) showed that EV quantity doubled. However, there have been no reports in the 
literature comparing TNF-alpha- or IFN-gamma-mediated effects on EV production. 
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Some published studies have shown that these inflammatory factors stimulate secre-
tion by MSCs. By treating with TNF-alpha and IFN-gamma, MSCs can increase 
their production of VEGF, HGF, IDO, TGF-beta, PGE2, BMP2, Factor H, Gal-9, 
and TSG-6 (Madrigal et al. 2014). Xing et al. (2014) showed that proinflammatory 
factors, including IL-1β, IL-6, and TNF-α, could promote bone marrow MSCs to 
increase chemokine secretion (Xing et al. 2014). Besides the secretory processes, 
TNF-alpha have also been shown to be stimulator of MSC activities, and TNF-alpha 
pretreatment of MSCs can induce superior angiogenic activity in vitro compared to 
untreated MSCs (Kwon et al. 2013). Moreover, TNF-alpha pretreated MSCs have 
shown enhanced proliferation, mobilization, and osteogenic differentiation (Lu 
et al. 2013). Although the mechanisms by which TNF-alpha and IFN-gamma medi-
ate their effects on EV production by ADSCs and UC-MSCs were not demonstrated 
in this study, based on published studies we postulate that their beneficial effects are 
related (directly or indirectly) to processes involved in production.

�Conclusion

Extracellular vesicles (EVs) are particles, ranging from nanometers to micrometers 
in size, which are produced by live cells including MSCs. These particles contain 
various biological molecules, such as siRNA, RNA, DNA, and proteins, which can 
regulate target cells. As such, EVs have been used in treating various degenerative 
diseases and have shown promising results. The study herein demonstrates a new 
method to enhance EV production from ADSCs and UC-MSCs by treatment/cul-
ture with TNF-alpha or IFN-gamma.

The results showed that at 20 ng/mL of TNF-alpha (as well as IFN-gamma) and 
after 24  h of incubation, both ADSCs and UC-MSCs can produce the maximal 
quantity of EVs. This study also shows that IFN-gamma can boost MSCs to produce 
EVs more effectively than TNF-alpha. These results suggest that pretreatment of 
MSCs with IFF-gamma may be an effective strategy to optimize EV use in clinical 
applications.
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�Stem Cells and Stem Cell Therapy

Stem cells are unspecialized cells that can become specialized cells capable of 
performing particular functions (Bongso and Lee 2005). These cells determine 
human development as well as development of other mammals, from embryo to 
adult. The cells derived in blastocysts are known as embryonic stem cells; in adults, 
they are termed adult stem cells. Although there are some differences between 
embryonic stem cells and adult stem cells, they always display two main properties, 
which are self-renewal and differentiation potential. Self-renewal is the capacity of 
stem cells to undergo cell division for a long time while maintaining their stem cell 
properties; differentiation potential refers to the capacity of stem cells to become 
various functional cells.

Given these properties, stem cells can be used to replace failed or defective cells 
in the human body. The definition of “stem cell therapy” or “stem cell transplanta-
tion” refers to the use of stem cells in treatment or in medicine; additionally, the 
treatment of diseases by stem cells is referred to as “regenerative medicine”. The 
application of stem cells in clinical applications has had a long history. The first 
transplantation of hematopoietic stem cells (HSCs) was used to treat leukemia in the 
1950s by Dr. E. Donnall Thomas at the Fred Hutchinson Cancer Research Center in 
the USA (Thomas 2005). This treatment used stem cells from bone marrow from 
one identical twin to treat another. There were no problems with the transplantation 
because both twins shared the same genetics. In 1968, the second transplantation of 
HSCs in non-twins was performed (Antoine et al. 2003). This time, the key to a suc-
cessful transplantation was determined by genetic matching (known as HLA match-
ing) of the donor to the patient (Amos and Bach 1968).

Ten years later, HSCs were discovered in the human umbilical cord blood 
(Prindull et al. 1978). Following that, different kinds of stem cells, including embry-
onic stem cells (ESCs), mesenchymal stem cells (MSCs) (Friedenstein et al. 1976), 
and endothelial stem cells (EPCs) (Asahara et al. 1997), were discovered. To date, 
some thousands of clinical trials using stem cells have been performed in more than 
20 countries to treat a variety of diseases and physiological conditions, such as reti-
nal blindness, Parkinson’s disease, Huntington’s disease, spinal cord injury, myo-
cardial infarction, and type II diabetes mellitus (Van Pham 2016a).

�Generations of Stem Cell Products

The products of stem cells were first used in humans in the 1950s in the form of 
bone marrow (Thomas 2005). Since then, with more than 50 years of evolution, 
stem cell products have been used in the clinic and have shown significant change 
in both quality and formulation. The stem cell products are now greater in purity, 
or some have been enhanced in particular characteristics to increase their treat-
ment efficacy.
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Based on the purity level and characteristics of stem cells, nowadays stem cell 
products are often grouped into six generations:

–– First generation: Stem cell-enriched fractions
–– Second generation: Pure stem cells
–– Third generation: Long-term expanded allogenic stem cells
–– Fourth generation: Genetically modified or differentiated stem cells
–– Fifth generation: Exosomes, extracellular vesicles, and stem cell extracts
–– Sixth generation: Stem cells derived from tissues or organs.

Based on the differences in purity and characteristics of stem cells, the various 
generations have distinct advantages and disadvantages (Table 6.1).

�First Generation: Products or Fractions of Stem Cell 
Enrichment

The stem cell-enriched product is produced primarily from two main tissues: blood 
and fat. The blood used for the production can be from bone marrow, peripheral 
blood (with mobilized stem cells), or cord blood. Adipose tissue can be obtained 
from thighs, buttocks, or belly (Table 6.2). The general feature of this product group 
is that the proportion of stem cells present in the mixture for transplants is relatively 
low, typically <10%. However, the advantages of this product group is its rapid 
production, minimal in vitro manipulation of cells, lower likelihood of undesirable 
mutations in the stem cells, and higher safety profile. Patients may be treated by 
autologous or allogenic stem cell transplants depending on disease conditions and 
stem cell quality.

However, this group of product also has some disadvantages. The main one is 
that the treatment efficacy is so different between patients due to difficulty in stan-
dardizing cell quality before grafting.

This group of products is widely used in many countries in the world where 
HSC-rich fractions are used primarily for the treatment of blood or genetic diseases 
(Fig. 6.1).

�Second Generation: Pure Stem Cell Products

Pure stem cell products are a group of highly purified stem cell products that consist 
of >90% stem cells in the cell mixture; they are also used in transplant. Currently, 
the two main stem cell types in this group include HSCs and MSCs.

HSCs can be obtained from umbilical cord blood (Broxmeyer et al. 1989, 1991; 
Gluckman 2001), bone marrow (Alvarez et al. 2013; Kondo et al. 2003; Wilson and 
Trumpp 2006), and peripheral blood (Gluckman 2000; Sheridan et al. 1992; Carella 
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Table 6.1  Differences between various generations of therapeutic stem cells or stem cell products

Generation Advantages Disadvantages

Firstst generation: stem 
cell-enriched fraction

–  Easy production
–  Minimal manipulation of 

stem cells such that the 
safety of product is high

–  Time for manufacturing is 
short

–  Cost for manufacturing is 
low

–  Low stem cell purity and the 
number of stem cells is limited

–  Quality of product is difficult to 
control, and differs from batch to 
batch

–  Unstable treatment efficacy 
depending on the quality of the 
grafted sample

–  Difficult to scale up the 
manufacturing

–  Products are difficult to transport 
and store

Second generation: 
pure stem cells

–  High purity of the stem 
cells, minimizing adverse 
effects from other 
contaminated cells

–  Cell quality may be 
partially controlled

–  High production costs
–  Long production time
–  Difficult to scale up the 

manufacturing
–  Products are difficult to transport 

and store
Third generation: 
long-term expanded 
allogenic stem cells

–  High stem cell purity
–  Quality of the product is 

strictly controlled
–  Can be produced by 

industrial scale
–  Cost of production is 

decreased due to large-scale 
production

–  Requires a clean room BSL2 or 
higher

–  Investment in equipment for 
expansion and quality control

–  Spontaneous mutation or 
differentiation of stem cells can 
be carried out during the in vitro 
expansion

Fourth generation: 
genetically modified or 
differentiated stem cells

–  High stem cell purity
–  Quality of the product is 

strictly controlled
–  Can be produced by 

industrial scale
–  Cost of production is 

decreased due to large-scale 
production

–  Stem cells can display some 
particular phenotypes or 
properties that can improve 
the treatment efficacy

–  Requires a clean room BSL2 or 
higher

–  Investment in equipment for 
expansion and quality control

–  Spontaneous mutation or 
differentiation of stem cells can 
be carried out during the in vitro 
expansion

–  Stem cells “faked” or modulated 
by changes in genetics and 
epigenetics can increase the risk 
of tumorigenesis

Fifthth generation: 
exosomes, extracellular 
vesicles and stem cell 
extracts

–  Product does not contain 
whole cells therefore 
immune response is low

–  Easy production by 
industrial scale

–  Product quality is easy to 
control

–  Easy to store and transport

–  Multiple activities of stem cells 
are lost thus the regenerative 
effect of stem cells is changed or 
decreased compared to whole 
cells

–  Product quality control is 
relatively complex

–  High manufacturing costs

(continued)
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et al. 2000; Kang et al. 2004). The cells are purified through various purification 
techniques to obtain HSCs expressing the surface marker CD34 (CD34+), or CD34 
and CD45 (CD34+CD45+). Transplantation of purified products containing only 
CD34+ HSCs is thought to have many advantages (Negrin et al. 2000; Somlo et al. 
1997; Lacerda et al. 2005; Oyekunle et al. 2006; Haen et al. 2015).

MSCs can also be obtained from umbilical cord blood (Van Pham et al. 2014a; 
Lee et al. 2004; Gang et al. 2004), bone marrow (Hung et al. 2002; Prockop et al. 
2001; Mareschi et al. 2001), adipose tissue (Van Pham et al. 2014b; Li et al. 2018a, 
b), umbilical cord tissue (Van Pham et al. 2016a; Dehkordi et al. 2016), Wharton’s 
jelly (Cardoso et al. 2012; Corotchi et al. 2013; Al Madhoun et al. 2016), and dental 
pulp (Poltavtseva et al. 2014; Hilkens et al. 2013; Mochizuki and Nakahara 2018). 
They are purified primarily through selective cell culture technology based on 
adherence of cells to the surface of culture vessels (Van Pham et al. 2014a, b, 2016a, 
b) or by sorting based on markers of MSCs (Hagmann et al. 2014; Kouroupis et al. 
2014; Battula et al. 2009). Normally, these MSCs are highly purified after 3–5 pas-
sages of subculture and are ready to be used for transplantation (Van Pham et al. 
2014a, 2016a, b). This group of products is widely used in many treatment facilities 
in the world. As part of the procedure, bone marrow, adipose tissue were collected 
from patients, would then be selectively cultured, followed by purification and pro-
liferation of MSCs, and lastly by transplantation into the patient.

Table 6.1  (continued)

Generation Advantages Disadvantages

Sixth generation: stem 
cells derived from 
tissues or organs

–  Tissues or organs can 
directly replace defective 
tissues or organs so 
treatment efficacy can be 
rapidly improved

–  Effective treatment of tissue 
or organ defects/dysfunction

–  Production technique is 
extremely complex

–  Difficult to scale up the 
processing

–  High production costs
–  Product quality difficult to 

control

Table 6.2  Some examples of first generation stem cell products

First generation stem cell products Applications

Mononuclear cells (MNCs) from umbilical 
cord blood (enriched fraction of HSCs from 
umbilical cord blood)

Treatment of malignant diseases of blood, genetic 
disorders, heart diseases, etc.

MNCs from peripheral blood (enriched 
fraction of HSCs recruited from peripheral 
blood)

Treatment of malignant diseases of blood, genetic 
disorders, heart diseases, solid tumors, etc.

MNCs from bone marrow (enriched fraction 
of HSCs recruited from bone marrow)

Treatment of malignant diseases of blood, genetic 
disorders, heart diseases, solid tumors, 
osteoarthritis, brain disease, etc.

Stromal vascular fractions (SVFs) from 
adipose tissue

Osteoarthritis, cardiovascular disease, diabetes 
mellitus, chronic obstructive pulmonary disease, 
peptic ulcer disease, etc.
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Recently, Holoclar products have been licensed for circulation in Europe, and 
are an example of products of the second generation (Fig.  6.2). In the Holoclar 
products, stem cells from the limbal portion of the cornea (limbal stem cells) are 
cultured ex  vivo and used in autologous transplantation (Pellegrini et  al. 2018; 
Farkas et al. 2017).

Fig. 6.1  Two products of first generation stem cells were approved in the USA. (a) Hemacord 
and (b) Ducord are products of enriched hematopoietic stem cells derived from umbilical cord 
blood

Fig. 6.2  The procedure of limbal stem cell manufacturing for clinical application. The above 
product (Holoclar) has been approved in Europe
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�Third Generation: Products of Stem Cells After Long-Term 
Expansion

This is a growing group of products which have opened up the multinational stem 
cell industry. The first product in this group, Prochymal, was manufactured in 
large-scale and approved for use in Canada in 2012 for the treatment of graft 
versus host disease (GVHD) (Vaes et  al. 2012; Mannon 2011). So far, several 
similar products have been successfully produced and marketed in other coun-
tries; these products include Cartistem (Korea), HS TemCell (Japan), and 
Alofiscel (Europe) (Fig. 6.3).

�Fourth Generation: Products of Modified or Differentiated  
Stem Cells

This is a generation of products consisting of stem cells which have been modified 
to enhance certain properties, exhibit novel properties, or differentiate into func-
tional cells. This group is currently one of the most promising generations of stem 
cell products. Products from epigenetic reprogramming processes, which can repro-
gram certain cell phenotypes directly into functional cells, or from functional cells 
into stem cells, belong to this generation.

The most striking product of this generation is STRIMVELIS. This is a new 
product from GSK. This product is a fraction of CD34+ rich blood-forming HSCs 
encoded with adenosine deaminase (ADA) cDNA gene via a retroviral vector. It 
was licensed for circulation in Europe in 2016, and is used to treat severe immuno-
deficiency (SCID) due to ADA deficiency (Schimmer and Breazzano 2016; Monaco 
and Faccio 2017; Stirnadel-Farrant et al. 2018).

Recently, genetically modified transgenic T cells (chimeric antigen receptor T 
cells—Car-T) have also been considered as products of this generation. 

Fig. 6.3  Some third generation stem cell products that have been commercialized for use in sev-
eral countries. (a) Prochymal (Cananda), (b) Alofis (Europe), (c) Cartistem (Korea), and (d) HS 
TemCell (Japan)
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Transgenic products carrying mosaic receptors, such as Kymriah, Yescarta, and 
Luxturna, have been licensed for use in the treatment of certain cancers (Bach 
et al. 2017; Liu et al. 2017a; Silverman 2018) (Fig. 6.4). However, some scien-
tists have argued that they are genetically modified cell products, not transgenic 
stem cell products.

Another line of stem cell products that has not been licensed for circulation in 
any country yet, but was supposed to pave the way for the future of stem cell prod-
ucts, is the product of induced pluripotent stem cells (iPSCs). Notably, iPSCs can be 
produced by epigenetic reprogramming of any nucleated cells in the human body. 
The IPSCs can then be differentiated into specialized cells before transplantation in 
the body. The first-line treatment using these products in humans was conducted in 
Japan for the treatment of macular degeneration of the eye, in August 2013 (Mandai 
et  al. 2017; Garber 2015; Reardon and Cyranoski 2014). Recently (since 2018), 
Japan has become the first country to report the clinical application and potency of 
iPSCs derived from cardiac muscle cells for the treatment of ischemic heart disease 
(Kyodo 2018).

�Fifth Generation: Exosomes, Extracellular Vesicles  
or Stem Cell Extracts

The fifth generation of stem cell products includes stem cell secretome products, or 
stem cell-derived products produced during stem cell culture (e.g., extracellular 
vesicles, exosomes, cytokines, growth factors, enzymes, or even stem cell extracts). 
These components show many important biological activities (Fatima and Nawaz 

Fig. 6.4  Some genetically modified cell products applied in the treatment of various diseases
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2015; Kim et al. 2018; Zhang et al. 2018; Kobayashi et al. 2018; Liu et al. 2017b). 
Clinical trials using such products are being initiated (Dehghani 2018; Giebel et al. 
2017). Compared with products containing whole cells, stem cell secretome prod-
ucts have many advantages in production, including easy storage, packaging, and 
transport. However, the greatest difficulty in producing these products is the varia-
tion in stability and quality of the product across different batches. In fact, it has 
been found that the secretome of the same type of cell even varies at different times.

To date, some of the products of this generation have been manufactured and 
commercialized, such as Stemedica (Vitrilife), which contains stem-cell derived 
secretomes stored at room temperature. These products have been clinically tested 
on skin in 2016 (NCT01771679), and for heart failure in 2018.

Most applications of stem cell secretomes have been for cosmetic purposes. 
Products which have been commercialized as cosmetic products include Regencia 
cream (SkinMedica), Lifeline skin care (International Stem Cell Corporation), Blue 
Horizon, Celprogen, ReLuma Advanced Stem Cell Facial Moisturizer, ReLuma 
Skin Illuminating Stem Cell Anti-Aging Cleanser, and ReLuma Stem Cell Eye 
Cream, among others (Fig. 6.5).

Fig. 6.5  Various companies which have produced stem cells or stem cell progenitor cell products 
that have been approved and commercialized in the market
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�Sixth Generation: Engineered Issues or Organs from Stem Cells

Engineered tissues or organs are special products of the stem cell industry, which is 
the culmination of three important industries, consisting of stem cells, biomaterials, 
and recombinant proteins. Indeed, a tissue or organ that is made to replace or treat a 
disease or defect in the body is the product of a combination of important compo-
nents, namely stem cells, biological materials, and proteins.

Despite early promising results, stem cell-derived tissue or organ transplants are 
still low in terms of number and type. Most of these products are being produced 
individually by each patient for individual treatment. Indeed, after induction into 
specialized cells in tissues, these cells strongly express HLA surface antigens which 
increase immunogenicity and are readily excluded when transplanted into patients.

�Generations of Stem Cell Products and Technology 
Requirements

Generally, stem cell products from the different generations require different tech-
nologies. The evolution of stem cell products are synchronized with the evolution of 
electronic, automatic, and informatic innovations. Indeed, the first generation of stem 
cell products have required simple techniques to enrich the stem cells and partly 
remove the undesired cells, such as red blood cells. However, in the later generations, 
the manufacturing of stem cell products has required more complex, modern tech-
niques to purify, expand, modify, differentiate, and store the stem cells.

Stem cell technology now includes four core technologies: (1) isolation or 
enrichment technology; (2) proliferation or expansion; (3) modification or differen-
tiation; and (4) storage or cryopreservation (Table 6.3).

�Isolation and Enrichment

Depending on whether the tissues are solid or liquid, the techniques used to isolate 
or enrich the stem cells are different. Some liquid tissues include peripheral blood, 
bone marrow, menstrual blood, milk, umblical cord blood, and amniotic liquid. 
These tissues can be used directly to enrich stem cells using some simple techniques 
before they are purified.

Depending on the kind of stem cells, the cells can be enriched by centrifugation or 
via in vitro culture. Generally, HSCs can be enriched from bone marrow, peripheral 
blood, and umbilical cord blood by Ficoll gradient centrifugation. Meanwhile, MSCs 
can be enriched by in vitro culture and will adhere onto the surface of culture vessels. 
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Table 6.3  Some technologies for the generation of stem cell products

Generation of stem cell products
Core technologies used in the manufacturing 
process

First generation: stem cells enriched fraction –  Enzymatic isolation for solid tissues, for 
example collagenase, lecithin

–  Gradient centrifugation
–  Elutriation centrifugation
–  Filter

Second generation: pure stem cells –  Enzymatic isolation for solid tissues, for 
example collagenase, lecithin

–  Gradient centrifugation
–  Elutriation centrifugation
–  Filter
–  Magnetic-activated cell sorting
–  Fluorescence-activated cell sorting
–  Stem cell culture/tissue culture expansion

Third generation: long-term expanded 
allogenic stem cells

–  Enzymatic isolation for solid tissues, for 
example collagenase, lecithin

–  Gradient centrifugation
–  Elutriation centrifugation
–  Filter
–  Magnetic-activated cell sorting
–  Fluorescence-activated cell sorting
–  Stem cell culture/tissue culture expansion
–  Scale-up stem cell culture (in bioreactors)
–  Xeno free, serum free stem cell culture
–  Cryopreservation of stem cells

Fourth generation: genetically modified or 
differentiated stem cells

–  Enzymatic isolation for solid tissues, for 
example collagenase, lecithin

–  Gradient centrifugation
–  Elutriation centrifugation
–  Filter
–  Magnetic-activated cell sorting
–  Fluorescence-activated cell sorting
–  Stem cell culture/tissue culture expansion
–  Scale-up stem cell culture (in bioreactors)
–  Xeno free, serum free stem cell culture
–  Cryopreservation of stem cells
–  In vitro differentiation of stem cells
–  In vitro genetic modification of stem cells
–  Epigenetic reprogramming
–  Direct epigenetic reprogramming

(continued)
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Stem cell-enriched fractions can be purified by techniques, such as magnetic-activated 
cell sorting (MACS), electric fields in fluorescence-activated cell sorting (FACS), 
tube catchers, microfluid chips, immune panning, laser capture microdissection, and 
selection under microscopy.

For solid tissues, the stem cells can be isolated by in vitro culture, or enrichment 
and purification similar to fluid tissues, after they are dissocciated into single cells. 
Unlike adult cells in tissues, stem cells can undergo self-renewal for a long period 
and can proliferate long-term during in vitro cell culture. These characteristics have 

Table 6.3  (continued)

Generation of stem cell products
Core technologies used in the manufacturing 
process

Fifth generation: exosomes, extracellular 
vesicles and stem cell extracts

–  Enzymatic isolation for solid tissues, for 
example collagenase, lecithin

–  Gradient centrifugation
–  Elutriation centrifugation
–  Filter
–  Magnetic-activated cell sorting
–  Fluorescence-activated cell sorting
–  Stem cell culture/tissue culture expansion
–  Scale-up stem cell culture (in bioreactors)
–  Xeno free, serum-free stem cell culture
–  Cryopreservation of stem cells
–  In vitro differentiation of stem cells
–  In vitro genetic modification of stem cells
–  Epigenetic reprogramming
–  Direct epigenetic reprogramming
–  Freeze drying
–  Exosome, extracellular vesicle isolation, 

extraction
–  Ultracentrifugation
–  Stem cell extract process

Sixth generation: stem cells derived tissues 
or organs

–  Enzymatic isolation for solid tissues, for 
example collagenase, lecithin

–  Gradient centrifugation
–  Elutriation centrifugation
–  Filter
–  Magnetic-activated cell sorting
–  Fluorescence-activated cell sorting
–  Stem cell culture/tissue culture expansion
–  Scale-up stem cell culture (in bioreactors)
–  Xeno free, serum-free stem cell culture
–  Cryopreservation of stem cells
–  In vitro differentiation of stem cells
–  In vitro genetic modification of stem cells
–  Epigenetic reprogramming
–  Direct epigenetic reprogramming
–  Biomaterials/scaffolds
–  Growth factors
–  3D stem cell culture and differentiation
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allowed them to be isolated after in vitro cell culture. Using this technique, the tis-
sue can be fragmented into tiny fragments and then cultured for tissue expansion. 
After about 1–2 weeks, stem cells and some progenitor cells will migrate out from 
the tissue and adhere to the surface of the culture vessels. In another method, 
the tissue is dissociated into single cells and the suspension is then cultured in vitro. 
The progenitor stem cells in the suspension then adhere to the surface of the culture 
vessels and proliferate.

�Proliferation and Expansion

There are important technologies to expand stem cells. The stem cells usually exist 
at a minimal quantity in tissues to maintain tissue homeostasis, replacing aged or 
injured cells via the process of self-renewal and differentiation. For stem cell ther-
apy, the stem cells should be expanded to adequately high numbers. However, 
the most important consideration to keep in mind is the maintenance of stem cell 
phenotype and functional stem cell properties during the expansion process.

Stem cells can be expanded by either adherent or suspension culture conditions. 
In the adherent culture condition, stem cells will attach onto the suface of the culture 
vessels and proliferate; in the suspension culture, stem cells are free to proliferate in 
the culture medium. Depending on the kind of stem cells as well as the culture tech-
nologies, one of these platforms is utilized to expand stem cells in vitro.

In the adherent cell culture, stem cells can be proliferated in 2D culture (i.e., in 
monolayer form) or in 3D culture (in 3D form such as spheres or pellets). Some 
studies have suggested that 3D culture helps to maintain and enhance certain prop-
erties of stem cells, especially MSCs, compared to 2D culture. To carry out 3D 
culture, stem cells can be cultured in specialized media or conditions that allow the 
formation of pellets or spheres (Cesarz and Tamama 2016; Li et  al. 2015). For 
examples, culture of stem cells in hanging drop plates allows for this 3D growth 
(Schmal et al. 2016). Another method of 3D culture is bead culture. In this tech-
nique, stem cells are seeded on the surface of microbeads, which are then cultured 
in a bioreactor or spinner flask (Dias et al. 2017; Hervy et al. 2014). Recently, a new 
technology invented by Terumo permits the scale up of adherent culture in vitro via 
the use of hollow flow fibers (Quantum Cell expansion system) (Rojewski et  al. 
2013; Roberts et al. 2012). In this system, stem cells can adhere onto fibers with 
about 2.1 m2 cell culture surface area.

Conversely, in the cell suspension culture, stem cells are free in the culture 
media or can attach to beads that are free-floating in the culture media. These free 
cells or beads with cells are then placed in bioreactors controlled by a stirring appa-
ratus, or in wave bioreactors. Most stem cells need to attach to a surface to prolifer-
ate, except for HSCs. Therefore, the cell suspension culture for free cells in media 
is best suited for expansion of HSCs, but not for expansion of adherent cells, such 
as MSCs and iPSCs.
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�Modification and Differentiation

Modification and differentiation are two processes of engineering which modify or 
convert stem cells into specialized stem cells (or specialized cells). Stem cells can 
perform more functions beyond their stemness properties. For example, stem cells 
can be made to overexpress certain proteins which help trigger the wound healing 
process, or can be used as vectors to deliver therapeutic proteins to target tissues or 
organs. Indeed, HSCs have been modified to express certain enzymes to treat genetic 
disorders, and MSCs have been modified to express enzymes and factors to treat 
cancers (Schimmer and Breazzano 2016).

Differentiation is the process by which stem cells achieve particular functions 
after significant epigenetic changes. In some cases, stem cells are differentiated into 
functional cells before they can be used in therapy (Mandai et al. 2017). Some meth-
ods which have been used to differentiate stem cells include chemical methods, 
physical agents, and biological agents. Certain chemicals have been demonstrated to 
be differentiating agents that can cause the epigenetic changes toward functional cells. 
For example, 5-aza-cytidine can cause the differentiation of MSCs to cardiomyocyte-
like cells (Bae et al. 2017; Wan Safwani et al. 2012; Qian et al. 2012), and dexa-
methasone can cause the differentiation of MSCs to osteoblasts (Chen et al. 2016; 
Ghali et  al. 2015). Moreover, certain physical conditions, including hypoxia and 
light, can also trigger some physiological processes of stem cells (Boyette et  al. 
2014; Lan et al. 2015; Yuan et al. 2017; Li et al. 2010).

Biological agents are popular factors to differentiate stem cells. These agents can 
be growth factors, vesicles or exosomes from other cells, coculture conditions, tis-
sue or cell extraction factors, genes (DNA, mRNA, etc.), or small molecules 
(miRNA, siRNA, shRNA, etc.) (Akiyama et al. 2018; Xie et al. 2007; Mehta et al. 
2014). By using these factors, most stem cells can be differentiated into functional 
cells. Moreover, these factors can also induce epigenetic reprogramming of cells or 
stem cells; in other words, the factors help to achieve the desired cellular pheno-
types from differentiated cells. Indeed, epigenetic reprogramming is an important 
technology, and was firstly demonstrated as a method to produce iPSCs by Yamanaka 
et al. (Takahashi and Yamanaka 2006).

�Storage or Cryopreservation

Storage or conservation is the final step of stem cell manufaturing. This process 
helps to maintain the stem cell products for later use. There are two groups of 
technologies used to store stem cells, namely cyropreservation and dry freezing. 
While cryopreservation of stem cell products has been developed and applied for 
a long time, the dry freezing method is a relatively newer method which has been 
recently studied.
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In cryopreservation, stem cell products are mixed in the cryopreservation 
media with cold stress protectants. Based on the rate of cooling, the cryopreserva-
tion techniques can be grouped into three kinds: rapid freezing, programmed 
freezing, and vitrification. Most stem cells, including HSCs, can be cryopreserved 
by programmed freezing (Winter et al. 2014; Reich-Slotky et al. 2008; Devadas 
et al. 2017). However, vitrification has only been recently studied for the cryo-
preservation of MSCs (Zanata et al. 2018; Fu et al. 2017; Massood et al. 2013; 
Bhakta et al. 2009).

The cryopreservation media is also an important component which helps to 
increase the percent viability of cells after thawing. There are various formulations 
(generations) of culture media, including media containing bovine serum, human 
serum/platelet-rich plasma (Wang et al. 2017), and/or defined chemicals (Miyagi-
Shiohira et al. 2017; Lauterboeck et al. 2016; Roy et al. 2014). Some media differ 
in their cooling protectants and some contain DMSO, while others contain DMSO 
in combination with glycerol. The more recent media formulations are free of 
DMSO and glycerol (Wang et  al. 2011; Rodrigues et  al. 2008; Miyamoto et  al. 
2012; Rogulska et al. 2017; Dovgan et al. 2017; Shivakumar et al. 2016).

�Treatment Efficacy of Various Generations of Stem  
Cell Products

�First Generation Stem Cell Products Compared to Second 
Generation Stem Cell Products

The treatment efficacy of different generations of stem cell products was studied 
and reported for various diseases. Most reports compared the treatment efficacy of 
first generation stem cell products with second generation stem cell products.

Some studies performed comparisons of stromal vascular fractions (SVFs) from 
adipose tissue (i.e., first generation stem cell product) with adipose-derived stem 
cells (ADSCs) (i.e., second generation stem cell product) in both preclinical trials 
(in animals) and clinical trials (in humans). The study by Domergue et al. (Domergue 
et al. 2016) compared the efficacy of SVFs and ADSCs in hypertrophic scar (HTS) 
treatment in nude mice. Their results showed that although both SVFs and ADSCs 
could attenuate the HTS, ADSCs appeared more effective than SVFs. Transplantation 
of modified ADSCs could confer expression of transforming growth factor-beta 
(TGF-β3) and hepatic growth factor (HGF) (Domergue et al. 2016).

However, in a rat model of acute renal ischemia–reperfusion injury, L.  Zhou 
et al. showed equivalent treatment efficacy of ADSCs and SVFs in attenuating acute 
renal IR injury. Both SVFs and ADSCs were transplanted into injured kidney 
through intraparenchymal injection. Renal functions for both treated groups were 
significantly improved, and there was reduced tubular injury, improved cell prolif-
eration, and markedly reduced cellular apoptosis (Zhou et al. 2017).
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In a rat model of hind limb ischemia, Iwase et al. showed that MSC transplan-
tation significantly improved hind limb ischemia compared to MNC transplanta-
tion. Indeed, the MSC transplantation induced greater capillary density compared 
to MNC transplantation or placebo. In particular, the vascular smooth muscle 
cells formed from the transplanted cells were detected in the MSC-transplanted 
group (Iwase et al. 2005). MSC transplantation was also better than MNC trans-
plantation for myocardial infarction treatment in a rat model. In a study by Mazo 
et al., transplanted MSCs and MNCs obtained from bone marrow were compared 
for their ability to treat myocardial infarction. Similar to other studies, the results 
of their study showed that both MSCs and MNCs induced therapeutic effects in 
rats, but only MSCs could improve metabolism, which was accompanied with 
smaller infarct size, scar collagen content, and higher revascularization degree 
(Mazo et al. 2010).

MSC transplantation, too, has yielded better results than MNC transplantation 
in diabetic critical limb ischemia and foot ulcer treatment (Lu et al. 2011). In a 
pilot trial, Lu et al. (2011) evaluated 41 type 2 diabetes mellitus (T2DM) patients 
with bilateral critical limb ischemia and foot ulcer. The patients were randomly 
divided into three groups: MSC transplantation, MNC transplantation, and normal 
saline. After 6 weeks following transplantation, the ulcer healing rate was highest 
in the MSC transplantation group, compared with the MNC and normal saline 
groups (Lu et al. 2011). Moreover, a recent clinical trial compared MSCs versus 
MNCs from bone marrow in the treatment of T2DM (Bhansali et al. 2017). In that 
study, 30 patients with T2DM were randomized to receive bone marrow derived 
MSCs (BM-MSCs) or bone marrow derived MNCs (BM-MNCs), or a sham (n = 10 
per group). The results showed that both infusion of BM-MSCs and BM-MNCs 
resulted in sustained reduction of insulin doses in the T2DM patients. Notably, 
there was an improvement in insulin sensitivity in the MSC transplantation group, 
while there was an increase in C-peptide production in the MNC transplantation 
group (Bhansali et al. 2017).

The first generation stem cell product of HSCs (i.e., MNCs enriched with CD34+ 
cells) was also compared to the second generation stem cell product of HSCs (i.e., 
pure CD34+ cells) in several studies. In a study of cerebral palsy treatment, umbili-
cal cord blood derived MNCs and CD34+ cells were used; 30 mice were treated 
with MNCs and 30 were treated with CD34+ cells. Treatment with MNCs or CD34+ 
cells suppressed apoptotic gene expression and restored memory and motor func-
tion. However, the results indicated that CD34+ cell transplantation was signifi-
cantly better at treating mice with cerebral palsy (Li et al. 2014)

In another study, CD34+ cells also showed superior efficacy, over unselected 
circulating MNCs, in preserving myocardial integrity and function after myocardial 
infarction in nude rats (Kawamoto et al. 2006). In this study by Kawamoto et al., 
human CD34+ cells from peripheral blood and MNCs (also from peripheral blood) 
were evaluated. The CD34+ cells were isolated from MNCs by magnetic cell sort-
ing. Then, athymic nude rats were intramyocardially transplanted with 5  ×  105 
CD34+ cells/kg, 5 × 105 MNCs/kg, or a higher dose of MNCs (hiMNCs) containing 
5 × 105 CD34+ cells/kg. The results confirmed that echocardiographic regional wall 
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motion score was better preserved in the CD34+ cell group (21.8 ± 0.5) than in the 
PBS, loMNC, or hiMNC groups (Kawamoto et al. 2006). CD34+ cells were also 
confirmed to be more effective than MNCs in nonunion healing following bone 
fracture. The authors showed that there was similar augmentation of blood flow 
recovery at peri-nonunion sites in both CD34+ cell- and MNC-transplantation 
groups. However, a superior effect on nonunion repair, as demonstrated by radio-
logical, histological, and functional assessment, was observed in the CD34+ cell 
group as compared to the MNC group (Fukui et al. 2015).

�The Second Generation Stem Cell Products Compared to Fourth 
Generation Stem Cell Products

The fourth generation stem cell products are genetically modified stem cells or dif-
ferentiated cells that can exhibit particular properties. Choi et al. (2016) transduced 
cytotoxic T-lymphocyte-associated protein 4 immunoglobulin (CTLA4Ig) in 
ADSCs and produced a cell line from CTLA4Ig-expressing ADSCs (termed 
CTLA4Ig-ADSCs). Next, Choi et  al. used this cell line to treat sustained severe 
rheumatoid arthritis, and compared its efficacy to that of original ADSCs. In a 
sustained severe rheumatoid arthritis mouse model, CTLA4Ig-ADSC transplanta-
tion was more effective than ADSC transplantation. Type 2 collagen (CII) autoanti-
bodies and C-terminal telopeptide of CII were both significantly decreased in the 
CTLA4Ig-ADSC transplantation group (Choi et al. 2016).

The MSCs transduced to express neurotrophin MNTS1 (a multineurotrophin that 
binds TrkA, TrkB, and TrkC), and p75(NTR) receptors or MSC-MNTS1/p75(−) 
(which bind mainly to the Trk receptors), also showed reduced inflammation and 
cystic cavity size, compared to control rats. Interestingly, only the transduced MSCs 
enhanced axonal growth and significantly prevented cutaneous hypersensitivity 
after spinal cord injury (Kumagai et al. 2013).

In another study, Xue et al. (2015) modified MSCs with the Bcl-xL gene. Then, 
the MSCs expressing Bcl-xL were used to treat heart infarction, and their efficacy 
was compared to that of unmodified MSCs. The authors showed that the Bcl-xL-
transduced MSCs were more effective than wild-type MSCs, and that cell apoptosis 
was significantly decreased by Bcl-xL-transduced MSCs compared to wild-type 
MSCs (40% vs 26%, respectively) (Xue et al. 2015).

To enhance the immune modulation of ADSCs, Liu et al. (Liu et al. 2017c) trans-
fected ADSCs with OX40-Ig fusion protein (OX40Ig) to create OX40Ig-expressing 
ADSCs. These cells were then transplanted into a Lewis rat model of renal allograft, 
with the aim of evaluating and validating their immunosuppressive activity com-
pared to unmodified ADSCs. Although the results showed that both OX40Ig-ADSCs 
and ADSCs could significantly suppress T cell proliferation and increase the per-
centage of CD4+CD25+ regulatory T-cells, evidently the OX40Ig-ADSCs were 
more effective. The administration of OX40Ig-ADSCs markedly prolonged the 
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mean survival time of renal grafts, reduced allograft rejection, downregulated the 
expression of intragraft interferon-gamma (IFN-γ), and upregulated the expression 
of several genes, including interleukin (IL)-10, TGF-β, and forkhead box protein 3 
(Foxp3) (Liu et al. 2017c).

In a recent study, Kayoko Yanagihara et al. (2018) showed that MSCs expressing 
Runx2 (by transfection) and cultured in 3D platform (spheroids) could significantly 
induce bone regeneration, compared to non-transfected MSC spheroids.

�The Treatment Efficacy of Third Generation Stem Cell Products 
(Off-the-Shelf Stem Cells)

Unlike the first, second, and fourth generation stem cell products, and most stem 
cells used in transplantation (i.e., autologous cells), the third generation stem cell 
products are allogenic stem cells. These cells were expanded in vitro for a long 
period to generate high enough numbers of stem cells; then they are stored into 
doses ready for future use. As shown in Fig. 6.3, to date there are some approved 
stem cell products of this generation that have been successfully commercialized in 
some countries. Such products include Prochymal (Cananda), Alofis (Europe), 
Cartistem (Korea), and HS TemCell (Japan). Other products are currently being 
investigated as well (Van Pham et al. 2016b; Kastrup et al. 2017; Le et al. 2016; Van 
Pham 2016b).

The commercialized products have shown potential treatment efficacy for certain 
diseases. For example, Prochymal was used to treat GVHD with promising results 
(Locatelli et al. 2017; Chen et al. 2014; Kurtzberg et al. 2014; Prasad et al. 2011), 
and Alofis (Cx601) was used to treat Crohn’s disease with safe and effective results 
(Panes et al. 2018).

In a clinical trial study, the product CSCC_ASC (cryopreserved Cardiology 
Stem Cell Centre adipose-derived stromal cell)—i.e., allogenic stem cells from adi-
pose tissue—was used to treat ten patients with ischemic heart disease and ischemic 
heart failure. The results showed that treatment with CSCC_ASC could improve 
cardiac function at 6-month follow-up, that left ventricular end systolic volume 
decreased, and that left ventricular ejection fraction increased (Kastrup et al. 2017).

The off-the-shelf stem cell products of neural stem cells have also been developed 
and evaluated for nerve tissue repair in animals. An example of such products is 
CTX0E03, a conditionally immortalized human neural stem cell line. The cells were 
used to produce engineered neural tissue (EngNT-CTX) and used to repair a 12 mm 
sciatic nerve injury model in athymic nude rats. The use of EngNT-CTX supported 
growth of neurites and vasculature at the injury site (O'Rourke et al. 2018).
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�Perpectives and Conclusion

Stem cell products have evolved from first to sixth generation to adapt to the 
demands of patients. Although the early generation of stem cell products showed 
some therapeutic effacy in patients, there are still limitations associated with those 
products. The greatest limitation of first and second generation stem cell products 
is that it is difficult to control the quality of the products before they can be used 
for patient treatment. The quality as well as characteristics of stem cells vary 
greatly from patient to patient, and between young and old patients. Therefore, 
autologous stem cell transplantation was a way to improve therapeutic efficacy, 
although its efficiency also varies from patient to patient. The third generation 
stem cell products (i.e., off-the-shelf stem cells) are a new generation of stem cell 
products which can theoretically resolve the limitations of first and second genera-
tion stem cell products.

Indeed, by careful selection of donors whose tissues are used to extract the stem 
cells, the quality of the product has been partly improved. Moreover, the products 
are produced according to GMP-compliant guidelines and, thus, the quality of the 
final product should be improved during the manufacturing process.

The fourth generation stem cell products have shown initial promising results in 
animals. However, there have been many indications of genetic instability during 
their genetic modifications. Thus, development of fourth generation stem cell 
products will require more studies in order to fully evaluate their safety before they 
can be used in humans.

The fifth generation of stem cell products consists of acellular products of stem 
cells, such as extracellular vesicles, exosomes or stem cell extracts. Although these 
products have shown promising results in both animals and humans, their very com-
plex manufacturing process, as well as the disappearance of some cellular proper-
ties of stem cells, has suggested that they are more suitable as add-on therapy rather 
than main therapy for diseases.

The sixth generation is the future generation of stem cell products. With these 
products, a patient’s tissues or organs can be directly replaced. However, the in vitro 
organogenesis of stem cells is still not clearly understood. To date, stem cell scien-
tists have not controlled this process well, nor have they understood the production 
of completed tissues or organs with all their functions and properties.

Taken together, from all the analysis in this review, we believe that the third gen-
eration of stem cell products (i.e., off-the-shelf stem cells) is the most suitable gen-
eration of stem cell products, and should be a predominant focus of study and 
further development.
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�Mesenchymal Stem Cells

�History and Characteristics

Mesenchymal stem cells (MSCs) are the most popular stem cells of the human 
body in terms of their distinct advantages for use in therapy. They can be isolated 
from a variety of tissues and can differentiate into a variety of cell types. The term 
“mesenchymal stem cells” was coined by Caplan in 1991 (Caplan 1991), though 
some discoveries about MSCs had already been demonstrated as early as the nine-
teenth century by Goujon (1869) {E., 1869 #13}, Tavassoli and Crosby (1968) 
(Schofield 1978). Friedenstein et al. performed a series of seminal studies in the 
1960s and 1970 to demonstrate the osteogenic potential of a small population of 
cells in the bone marrow. They observed that these cells were so different from 
other hematopoietic cells due to their adherence to culture vessels and that they 
exhibited a morphology similar to fibroblasts (Friedenstein et al. 1970). In in vivo 
experiments, Friedenstein et al. showed that these cells could form skeletal tis-
sues, including bone, cartilage, and adipose tissue. Therefore, they termed them 
“bone marrow stromal stem cells” (Owen 1988). To date, MSCs can be isolated 
from a variety of tissues in the human body, such as adipose tissue (Bernacki et al. 
2008; van Vollenstee et al. 2016; Boquest et al. 2006), umbilical cord blood (Lee 
2004; Bieback 2004; Pranke and Canabarro 2008), umbilical cord tissue (Falcon-
Girard et al. 2013; Harris 2013; Van et al. 2016), Wharton’s jelly (Ranjbaran et al. 
2018; Ducret et al. 2016; Kargozar et al. 2018; Davies et al. 2017), and peripheral 
blood (Pieper et al. 2017).

Although MSCs from different tissues have different characteristics, they display 
common phenotypes and characteristics with only minor variations. As suggested 
by Dominici et al. (2006), and according to the International Society for Cellular 
Therapies (ISCT), the following are some minimal criteria of MSCs:

�Markers

MSCs express CD105, CD73, and CD90, and are negative for CD45, CD34, 
CD14 or CD11b, CD79a or CD19, and HLA-DR. Besides these markers, Kolf 
et  al. also suggested Stro-1 as a marker for MSCs (Kolf et  al. 2007). 
Unfortunately, Stro-1 is not stable during culture and, therefore, should not be 
used as an MSC marker. Some other suggested MSC markers are stage-specific 
embryonic antigen 1 (SSEA-1), SSEA-4 (expressed in primitive MSCs) (Anjos-
Afonso and Bonnet 2006; Gang et al. 2007), and CD106 or VCAM-1 (Carter 
and Wicks 2001). MSCs should be negative for the expression of CD11b and 
glycophorin-A (Pittenger 1999; Prockop et al. 2001).
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�Multilineage Differentiation Potential

MSCs are defined by their potential in vitro differentiation under suitable conditions 
into three kinds of cells of the mesoderm, including osteoblasts, chondrocytes, and 
adipocytes. Besides these three kinds of cells, MSCs can be transdifferentiated into 
some cell lines of endoderm or ectoderm, such as beta cells, neurons, and 
cardiomyocytes.

�Shape and Adherence

Unlike hematopoietic cells, MSCs can adhere easily to plastic vessel surfaces and 
exhibit fibroblast-like morphology (Fig. 7.1).

�Mesenchymal Stem Cells Are Suitable for Off-the-Shelf 
Products

Besides being a popular stem cell source, MSCs possess other characteristics that 
garner them as an ideal allogenic stem cell source. These characteristics include low 
immunogenicity and immune modulation capability. Indeed, MSCs express very 
low levels of MHC class I, and do not express MHC class II. More importantly, they 
cannot activate allogenic lymphocytes (Koç and Gerson 2003; Berglund et al. 2017). 

Fig. 7.1  The umbilical cord derived mesenchymal stem cells displayed the fibroblast like cells in 
the flast surface (×100)
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Moreover, MSCs can also inhibit the proliferation of syngeneic and allogeneic T 
lymphocytes in a manner independent of MHC expression (Nauta 2006).

The immune modulation capacity of MSCs has been observed in numerous stud-
ies (Li et al. 2010; Bifari et al. 2008; Knaän-Shanzer 2014; FIBBE et al. 2007; Hong 
et al. 2012; Ansboro et al. 2017; Semedo et al. 2009). There are two ways that MSCs 
can modulate the host immune system; the first is immunomodulation by soluble 
factors and the second is immunomodulation by cell-cell contact. MSCs can pro-
duce a variety of soluble factors that can suppress immune cell proliferation in the 
host. Such factors include transforming growth factor-β1 (TGF-β1), prostaglandin 
E2 (PGE2), hepatocyte growth factor (HGF), indoleamine-pyrrole 2,3-dioxygenase 
(IDO), nitric oxide (NO), and interleukin (IL)-10). TGF-β1 is growth factor that 
exerts strong suppressor activity on immune cell proliferation (Du et al. 2018; Yoo 
et al. 2013). PGE2 can be upregulated in MSCs when cocultured with mononuclear 
cells; moreover, PGE2 can inhibit T cell proliferation (Jarvinen et al. 2008). IDO, 
also produced by MSCs, inhibits the growth and function of immune cells (Jarvinen 
et al. 2008). Some studies have reported that in an inflammatory microenvironment, 
MSCs can produce certain enzymes, such as cyclooxygenase 2 (COX-2), PGE2, 
and IDO, which also act as immune suppressors (Krampera et al. 2006; Ryan et al. 
2007; DelaRosa et al. 2009).

In the other method (cell–cell contact between MSCs and immune cells), MSCs 
can inhibit immune cell proliferation. Some recent studies have shown that MSCs 
can inhibit immune cell proliferation by MSC–T cell contact (Han et  al. 2011; 
Krampera 2002; English et al. 2009). In a study by Han et al. (2011), the authors 
showed that both embryonic stem cells (ESCs) and MSCs exert immunosuppressive 
effects. However, the activity did not depend on the concentration of certain cyto-
kines (e.g., TGF-β or IDO).

It is worth noting that MSCs can be suppressed by T-cell production of IL-2, 
IL-12, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-4, IL-5, 
IL-1β, and IL-10. Han et al. showed that the population of Foxp3(+) regulatory T 
cells significantly increased when MSCs or ESCs contacted with T cells. From 
these observations, Han et al. suggested that MSCs can contact with T cells and 
cause an increase of Foxp3(+) regulatory T cells that can inhibit immune responses 
(Han et  al. 2011). Similarly, Krampera (2002) studied immune suppression of 
MSCs in directly and indirectly cocultured MSCs using a Transwell system with 
cocultured T cells. The results confirmed that the inhibitory effect of MSCs was 
reduced when MSCs were indirectly cocultured with T cells (Krampera 2002).

�Therapeutic Mechanisms of Off-the-Shelf Mesenchymal  
Stem Cells

There are three mechanisms by which MSCs are useful as therapy. Firstly, after 
transplantation MSCs can home to sites of injured tissues and once there, they can 
be differentiated into tissue specialized cells following stimulation by certain 
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endogenous factors. Secondly, MSCs can produce a range of growth factors that 
stimulate neoangiogenesis, promote self-renewal of endogenous stem cells, inhibit 
fibrosis, and inhibit apoptosis. Thirdly, MSCs can efficiently suppress the local 
inflammatory via their secretome as well as direct cell–cell contact.

Indeed, off-the-shelf MSC products exert their therapeutic effects through the 
action of their secretomes. In addition to facilitating angiogenesis and self-renewal, 
while inhibiting fibrosis and apoptosis, secretomes can suppress local inflammatory 
responses via suppression of lymphocytes. Although MSCs exhibit low immunoge-
nicity, they are still rejected from the host after about 6 months. During the 6 months 
in the body, MSCs exert their therapeutic effects by communication with local cells 
and other stem cells (via cytokines which they secrete or via direct contact with 
pertinent target cells).

However, perhaps the main reason why MSCs have been approved as off-the-
shelf mesenchymal stem cell products is their immune modulation capacity 
(Table 7.1). In 2012, the first off-the-shelf mesenchymal stem cells were approved 
in Canada to treat graft-versus-host disease. This product (called “Prochymal”) con-
tained MSCs derived from allogenic human bone marrow and showed long-term 
proliferation. This product relied on the immune modulation capacity of MSCs, 
such as their ability to suppress GVHD responses (Prasad et al. 2011; Martin et al. 
2010; Kurtzberg et al. 2010, 2014; Gennery 2016).

Similarly, the product “Temcell HS” (developed in Japan) contains MSCs from 
bone marrow and was approved in Japan for GVHD treatment in 2016 (Najima and 
Ohashi 2017). In 2014, another off-the-shelf mesenchymal stem cell product (under 
the trade name “Cartilatist”) was approved, in Korea this time, to treat knee osteo-
arthritis (Park et al. 2017). Recently, the first off-the-shelf mesenchymal stem cell 
product (Cx601, darvadstrocel) received a positive CHMP opinion to treat complex 
perianal fistulas in Crohn’s disease in Europe (Sheridan 2018). Thus, all these above 
products act as immune suppressors in the host, suggesting that the main mecha-
nism of off-the-shelf MSCs is likely immune modulation.

Table 7.1  Some off-the-shelf mesenchymal stem cell products approved in various countries

Names of 
products

Component of 
stem cells Indications Company Country

Cartistem MSCs from 
UCB

OA Medipost Korea

Prochymal MSCs from BM GVHD Osiris 
Therapeutics

Canada

AlloStem MSCs from BM OA AlloSource USA
Osteocel Plus MSCs from BM OA NuVasive USA
Trinity Evolution MSCs from BM OA Orthofix USA
Cx601 
(Darvadstrocel)

MSCs from AT Complex perianal 
fistulas in Crohn’s 
disease

Takeda and 
TiGenix

Europe (nearly 
approved)

AT adipose tissue, BM bone marrow, MSCs mesenchymal stem cells, UCB umbilical cord blood, 
Auto autologous, allo allogenic, OA osteoarthritis
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Although recently there have been some approved off-the-shelf MSCs for treat-
ment of injuries unrelated to the immune system, few products have been approved 
for immune system indications (or the products have been largely unproven). 
Prochymal was used to treat myocardial infarction (MI), in 2010, in a randomized, 
double-blind, placebo-controlled clinical trial (Gersh 2010). In this study, Prochymal 
was intravenously transfused into 53 MI patients at different doses: 0.5, 1.6, and five 
million cells/kg. The results showed that the global symptom score in all the patients 
and the ejection fraction in the important subset of anterior MI patients were both 
significantly better (p = 0.027) after hMSC-treatment (i.e., Prochymal treatment) as 
compared with placebo treatment (Gersh 2010).

In 2017, the first-in-human clinical trial using off-the-shelf MSCs from adipose 
tissue to treat intramyocardial injection in ten patients was conducted in Denmark 
(Kastrup et al. 2017). In fact, off-the-shelf MSC products for this clinical trial were 
produced from adipose tissue in bioreactors without the use of animal constituents. 
They were cryopreserved and stored in vials in nitrogen dry-storage containers until 
use. All participants were injected with the MSCs in the myocardium. The results 
showed that four out of ten patients developed donor-specific de novo HLA class I 
antibodies, and two out of ten had donor-specific HLA antibodies already at base-
line. However, there were no clinical symptoms in inflammatory parameters in the 
follow-up period. Moreover, after 6 months of treatment, left ventricular end sys-
tolic volume decreased and left ventricular ejection fraction increased. Moreover, 
these changes were independent of the presence or absence of HLA antibodies 
(Kastrup et al. 2017).

Besides some off-the-shelf MSCs derived from bone marrow and adipose tissue, 
there is a product with the trade name “Modulatist” that was produced from umbili-
cal cord tissue and developed in Vietnam (Van Pham et al. 2016). Modulatist showed 
strong immunomodulation capacity compared to adipose tissue-derived or bone 
marrow-derived MSCs (Van Pham et al. 2016). This product was clinically used in 
a case report for chronic obstructive pulmonary disease (COPD) (Le et al. 2016). In 
this study, two patients were intravenously infused with 106 cells/kg and then evalu-
ated by the COPD assessment test (CAT) score as well as the Modified Medical 
Research Council Dyspnea Scale (mMRC) score after transplantation (1, 3, and 
5  months post-transplantation). The results showed that Modulatist significantly 
improved severe COPD, especially after 3 months (Le et al. 2016).

�Off-the-Shelf Mesenchymal Stem Cell Technology

�Isolation of Mesenchymal Stem Cells

Isolation of MSCs is the first step in off-the-shelf MSC technology. Although MSCs 
can be derived from various tissues, off-the-shelf stem cells are usually isolated 
from four tissues, namely bone marrow, adipose tissue, umbilical cord blood and 
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umbilical cord tissue. The MSCs from these tissues are used to successfully produce 
the off-the-shelf MSCs. However, these sources have different advantages and 
disadvantages.

Bone marrow-derived MSCs were likely the first discovered source MSCs and, 
therefore, have an established timeline and milestones for their applications in the 
clinic. Notably, bone marrow-derived MSCs are the first kind of MSCs to be 
approved as off-the-shelf MSCs in Canada in 2012, under the trade name 
“Prochymal,” for GVHD treatment.

Umbilical cord blood-derived MSCs have also been successfully used to produce 
a stem cell drug, under the name “Cartistem”; it was approved in Korea for knee 
osteoarthritis in January 2012. Currently, adipose-derived stem cells (ADSCs) are 
used to develop “Alofisel,” a product produced by Tigenix and Takeda. Alofisel is 
the first product to be approved in Europe to treat complex perianal fistulas in 
Crohn’s disease. Umbilical cord-derived stem cells are novel sources of MSCs; the 
first application using this source as off-the-shelf technology was for the treatment 
of COPD in Vietnam; the product was named Modulatist (Le et al. 2016).

�Isolation of MSCs from BM

MSCs were first isolated in the 1970s by Fridenstein et al. (1974). To date, the pro-
cedure of BM-MSC isolation has continuously improved and now MSCs can be 
expanded to greater numbers and to clinical standards. There are two main steps of 
MSC isolation and expansion from BM.

In the first step, the mononuclear cells (MNCs) are enriched or isolated from 
whole bone marrow fluid by gradient centrifugation with Ficoll 1.077. With some 
procedures, bone marrow blood can be diluted with PBS before it is used to isolate 
MNCs. Enrichment of MNCs by red blood cell lysis was introduced as the most 
efficient method in the MSC isolation process (Horn et al. 2008, 2011). In another 
protocol, MNCs can automatically be enriched using equipment such as Biosafe 
Sepax (O’Connor et al. 2007).

In the second step, MNCs are cultured to select for adherent cells which will 
become enriched for MSCs. The popular medium used in this procedure is 
Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12) (1:1), 
although some procedures have also used DMEM or alpha Minimum Essential 
Medium (MEM) (Pytlík et al. 2009). Unlike traditional culture medium that is sup-
plemented with 10–20% fetal calf serum (FCS) or fetal bovine serum (FBS), in 
good manufacturing practices (GMP)-compliant procedures, the medium is supple-
mented with xeno-free components or some defined factors.

In the xeno-free media approach, autologous or allogeneic plasma (or serum) is 
used. Plasma or serum is usually collected from peripheral blood, but in some cases, 
they can be obtained from umbilical cord blood (Esmaeli et  al. 2016), which 
also efficiently stimulates in  vitro MSC proliferation (Blázquez-Prunera et  al. 
2017). For serum or plasma, the serum or plasma from AB blood donor is used 
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(Kocaoemer et  al. 2007). Recently, the platelet lysate (PL) (Lange et  al. 2007; 
Bernardo et al. 2007) or platelet-rich plasma (PRP) (Van Pham et al. 2014a, b, c; 
Kocaoemer et al. 2007) has replaced plasma or serum, in order to reduce the pro-
teins in plasma or serum that can affect the MSCs or further applications. Plasma, 
serum, PL, or PRP can be added to the completed medium at 2–10% concentration 
(Fekete et al. 2012).

Almost all studies have confirmed that BM-MSCs cultured in medium with 
plasma, serum, PL, or PRP exhibit the phenotypes similar to BM-MSCs cultured in 
traditional conditions with FBS or FCS. Indeed, they also maintained MSC charac-
teristics, such as adherence to plastic vessels with fibroblast-like shape, expression 
of particular makers of MSCs (CD44, CD73, CD90), and absence of expression of 
certain hematopoietic markers (CD14, CD34, CD45, HLA-DR). They can also be 
differentiated into trilineage of mesoderm cells, such as osteoblasts, chondrocytes 
and adipocytes (Lange et al. 2007; Pérez-Ilzarbe et al. 2009). In the xeno-free cul-
ture conditions, BM-MSCs also maintained their immune modulating capability, 
including inhibition of T cells and production of TNF-alpha and IFN-gamma 
(Bernardo et  al. 2007). Importantly, spontaneous cell transformation was not 
observed in xeno-free medium culture (Bieback et al. 2009).

Some commercially available defined serum-free media have also been devel-
oped in recent years. Gottipamula et al. (2014) used BD Mosaic™ Mesenchymal 
Stem Cell Serum-Free media (BD-SFM) (BD Biosciences, San Jose, CA, USA) and 
Mesencult-XF (MSX) (Stemcell Technologies, Köln, Germany) to isolate and grow 
BM-MSCs (Gottipamula et  al. 2014). The results showed that both these media 
could support BM-MSC growth (Gottipamula et  al. 2014). In another study, 
Gottipamula et  al. (2013) compared five different kinds of serum-free media for 
BM-MSCs, including StemPro MSC SFM Xeno-free TM (Gibco/Invitrogen, 
Karlsruhe, Germany), StemPro MSC SFM TM (Gibco/Invitrogen), Mesencult-
XFTM (Stemcell Technologies, Canada), BD Mosaic TM Mesenchymal Stem Cell 
Serum-Free media (BD-SFM), and TheraPEAKTM MSCGM-CD TM (Lonza) 
(Gottipamula et  al. 2013). The authors showed that BD Mosaic™ Mesenchymal 
Stem Cell Serum-free (BD-SFM) medium is suitable to use in large-scale cultures 
of BM-MSCs (Table 7.2).

�Isolation of MSCs from Umbilical Cord Blood

Umbilical cord blood is a source rich of various kinds of stem cells, including 
MSCs, hematopoietic stem cells, and endothelial progenitor cells. MSCs from 
umbilical cord blood (UCB-MSCs) was first reported by Lee et al. (2004). In this 
study, Lee et al. showed that UCB-MSCs display a phenotype similar to BM-MSCs. 
UCB-MSCs could also be differentiated into osteoblasts, chondrocytes, and adipo-
cytes (Lee 2004). Moreover, UCB-MSCs could be isolated from cryopreserved 
umbilical cord blood samples (Lee et al. 2004; Fujii et al. 2017).

Similar to BM-MSCs, UCB-MSCs are isolated by a 2-step protocol. In the first 
step, MNCs are isolated or enriched, and in the second step, UCB-MSCs are cultured. 
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In the first procedure, UCB is diluted with PBS and then centrifuged in the gradient 
Ficoll 1.077 to obtain the interphase that contains the MNCs. Alternatively, for the 
interphase collection, some automatic systems can be used, such as Sepax (Biosafe/
GE Healthcare, Eysins, Switzerland), AutoXpress® Platform (“AXP®”) and 
BioArchive System (Cesca Therapeutics, Rancho Cordova, California, USA), 
PrepaCyte®-CB (Cryo-Cell International, Oldsmar, Florida, USA), and Cord Blood 
2.0 TM (Americord, New York, NY, USA), to enrich for MNCs.

In the next procedure, MNCs are cultured on a vessel surface to select for adher-
ent cells. The popular basal medium used to culture these cells is Iscove’s Modified 
Dulbecco’s Medium (IMDM) (Lee 2004; Divya et al. 2012). Some other studies 
have also used alpha-MEM (Hildebrandt et al. 2009; Kim et al. 2015; Jung et al. 
2015) or DMEM/F12 (Shetty et al. 2007) to culture these cells. For use of these cells 
in the clinic, the media should be supplemented with some xeno-free components or 
defined factors, similar to culture of BM-MSCs.

Liu et  al. (2007) developed a serum-free medium for UCB-MSCs based on 
IMDM basal medium supplemented with fibroblast growth factor (FGF) (17.91 ng/
mL), human albumin (2.80  mg/mL), and hydrocortisone (27.65 μM) (Liu et  al. 
2007). Cells cultured in this condition retained their differentiation potential, that is, 
the ability to differentiate in vitro into mesenchymal lineages, including chondro-
cytes, adipocytes, and osteoblasts (Liu et al. 2007). Using another approach, Van 
Pham et al. (2014a, b, c) replaced FBS with PRP (obtained from the same umbilical 
cord blood samples) to culture UCB-MSCs (Van Pham et al. 2014a, b, c). The results 
confirmed that UCB-MSCs could be obtained by culturing MNCs in IMDM medium 
supplemented with PRP from the same blood samples (Van Pham et al. 2014a, b, c; 
Van Pham and Phan 2014).

Table 7.2  Some commercialized products for mesenchymal stem cell culture and expansion

No. Products/technologies Companies

1 BD Mosaic™ Mesenchymal Stem Cell Serum-Free 
media (BD-SFM)

BD Bioscience, USA

2 Mesencult-XF (MSX) Stemcell Technologies, Canada
3 StemPro MSC SFM XenoFree Invitrogen, USA
4 StemPro MSC SFM Invitrogen, USA
5 TheraPEAKTM MSCGM-CD TM Lonza, USA
6 MSCCult Regenmed Lab., VN
7 ADSCCult Regenmed Lab., VN
8 MSCCult Pro Regenmed Lab., VN
9 StemGold MSC XF Medium Atlantis Bioscience Pte Ltd., 

Singapore
10 Mesenchymal Stem Cell (MSC) Medium Kit Atlantis Bioscience Pte Ltd., 

Singapore
11 KBM ADSC-1 Atlantis Bioscience Pte Ltd., 

Singapore
12 MSC NutriStem® XF Medium Biological Industries USA
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�Isolation of MSCs from Umbilical Cord Tissues

UC-MSCs can be isolated from UC tissues by fragment expansion procedure or 
single cell culture procedure. In both procedures, UC tissues are cut into small frag-
ments about 1–2 mm2 in size. In the first procedure, tissue fragments are seeded 
onto vessel surfaces (Van Pham et  al. 2015). After 7–14 days of incubation, the 
UC-MSC candidates will migrate out from the pieces. The cells are then sub-
cultured to be expanded in the next step. For the second procedure, small tissue 
fragments are minced (Hassan et al. 2017) or digested by enzymes, such as collage-
nase, to obtain single cells (Han et al. 2013; Beeravolu et al. 2017). These single 
cells are then collected and expanded in culture vessels. Regarding culture medium, 
UC-MSCs can be isolated and cultured in low glucose (LG)-DMEM supplemented 
with 2%, 5% or 10% PL (Smith et al. 2016). Smith et al. (2016) showed that 10% 
PL in the medium was optimal for UC-MSCs. The cells in this medium were small-
est and most viable, expressed the typical markers of MSCs, showed high colony 
forming efficiency, and exhibited trilineage differentiation (Smith et al. 2016).

UC-MSCs can also be cultured in medium supplemented with PRP. In DMEM/
F12 supplemented with 2.5%, 5%, 7.5% or 10% PRP, UC-MSCs showed good pro-
liferation; however, with 7.5% or 10% PRP, growth of UC-MSCs was significantly 
greater compared to that with 2.5% or 5% PRP. At the higher concentrations of PRP, 
UC-MSCs maintained genomic stability with normal karyotype after 15 sub-
cultures, maintained their differentiation potential, and failed to cause tumors in 
NOD/SCID mice (Van Pham et al. 2015).

UC-MSC have also been successfully isolated and cultured in alpha-MEM with 
10% human serum (Hatlapatka et al. 2011). Under this condition, UC-MSCs dis-
played the in vitro immunoprivileged and immunomodulatory properties (Hatlapatka 
et al. 2011). Hartmann et al. (2010) evaluated the culture of UC-MSCs in serum-
free media conditions using defined serum-free media (Hartmann et al. 2010). They 
used the StemPro MSC SFM medium, supplemented with 2% GMP-compliant 
human serum (Centre for Clinical Transfusion Medicine Tübingen gGmbH, Tübin-
gen, Germany), and MesenCult ACF medium (Stemcell Technologies, Canada). 
UC-MSCs cultured in these conditions not only retained the MSCs characteristics 
but also exhibited the ability to suppress T cell proliferation; their suppression was 
stronger than that of UC-MSCs cultured in medium containing FBS (Hartmann 
et al. 2010).

In another strategy, Wu et al. (2016) were the first to expand UC-MSCs in a com-
plete serum-free, xeno-free, chemically defined, and non-coated plate based culture 
system. In their work, Wu et al. (2016) used IMDM medium as the basal medium, 
and supplemented it with some factors, including human albumin serum.

�Isolation of MSCs from Adipose Tissues

Adipose tissue is a rich resource of MSCs. As there are many advantages of using 
ADSCs, they have increasingly been studied for use in the clinic. Similar to 
UC-MSCs, ADSCs are isolated from solid tissues. Therefore, they can be isolated, 
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too, by a short two-step procedure. In the first step, adipose tissues are digested by 
various methods to collect the stromal vascular fractions (SVFs). The SVFs are then 
cultured to isolate and enrich for the ADSCs in the second step. There are different 
ways to collect SVFs; one is an enzymatic method. In the enzymatic method, adi-
pose tissues can be digested by collagenase (Zimmerlin et al. 2009; Francis et al. 
2010) or lecithin (Van Pham et  al. 2013; Tzouvelekis et  al. 2011) to release the 
SVFs. In the next step, SVF cells are cultured in the basal medium supplemented 
with plasma, serum, PRP or defined factors. SVF cells can be cultured in DMEM/
F12 supplemented with 10% PRP from peripheral blood (Van Pham et al. 2014a, b, c). 
Escobar and Chaparro (2016) was able to culture SVF cells in medium with 5% PL 
(Escobar and Chaparro 2016), or 10% human serum (Paula et al. 2015). It is worth 
noting that ADSCs in human serum overexpress the c-myc protein but bypass spon-
taneous cell transformation (Paula et al. 2015). Moreover, ADSCs can be success-
fully isolated and grown in a defined chemical medium (Lee et al. 2017; Rajala et al. 
2010; Lindroos et al. 2009).

�MSC Expansion and Proliferation

MSCs require adherence on plastic vessel surfaces in order to grow. Therefore, they 
need this surface for expansion. To date, there are three ways to scale up the MSC 
expansion phase to produce greater quantities of off-the-shelf MSC products 
(Table 7.3).

�Scale-Up in T-Flasks

The first strategy relates to the use of big T-flasks (T-175 or T-225 cm2) for culture 
and expansion. This is the easiest way to expand MSCs; however, the efficacy of 
scale-up is low. The number of MSCs increased, though nonsignificantly, in this 
method compared to other methods. To increase this efficacy, some multilayer flasks 
have been developed which increase the area for MSC adherence and 
proliferation.

�Scale-Up Culture in Closed Hollow Fiber-Based Bioreactor (Quantum Cell 
Expansion System)

BM-MSCs can be successfully scaled up in the Quantum cell expansion system 
(Terumo, Japan). Rojewski et al. (2013) used the Quantum cell expansion system to 
expand BM-MSCs in media with FCS or PL. The results showed that both FSC and 
PL-supplemented media could expand BM-MSCs in the Quantum system. The 
authors succeeded to obtain an average of more than 100 × 106 MSCs from as little 
as 18.8–28.6 ml of BM aspirate using PL-supplemented media (Rojewski et al. 2013). 
BM-MSCs from this procedure exhibited the characteristic MSC phenotype, 
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Table 7.3  Some scale-up systems for MSC expansion

Flatform Technology Volume Example technologies

Flask T-flasks (single 
layer/≤5 
multilayers)

30 mL/200 mL Vented flasks (Corning)/Millicell® HY 
multilayer culture flasks (EMD Millipore)

Multilayer 
stacks (10/40 
stack layers)

1.4 L/5.5 L CellSTACK® cell culture chambers 
(Corning), Nunc Cell Factory™ systems 
(Thermo Scientific)

Closed system, 
multilayer 
stacks 
(12/36/120 
layers)

1.3 L/3.9 L/13 L HYPERFlask® Cell Culture Vessels 
(Corning)

Pilot scale, 
static

19.8 L Integrity™ Xpansion™ Multiplate (Pall 
Corporation)

Microcarrier-
based culture 
system

Spinner flasks 125 mL to 3 L Corning® Disposable Spinner Flasks 
(Corning)

Mini-reactor 
systems

3–250 mL DASbox®Mini Bioreactor System 
(Eppendorf), BioLevitator™ 3D Cell 
Culture System (Hamilton), TAP ambr™ 
microbioreactor (Sartorius), Micro-24 
MicroReactor System (Pall Corporation)

Benchtop 
stirred reactors

1–5 L Mobius® CellReady (EMD Millipore), 
CelliGen® BLU (Eppendorf), UniVessel® 
SU (Sartorius)

Pilot scale, 
stirred reactors

50–300 L Mobius® CellReady (EMD Millipore), 
CelliGen® BLU (Eppendorf), BIOSTAT® 
STR (Sartorius), Xcellerex™ XDR (GE 
Healthcare), HyPerforma™ Single-use 
Bioreactor (Thermo Scientific), Nucleo™ 
Single-use Bioreactor (Pall Corporation), 
Allegro™ STR 200 (Pall Corporation)

Production 
scale, stirred 
reactors

500–2000 L BIOSTAT® STR (Sartorius), Xcellerex™ 
XDR (GE Healthcare), HyPerforma™ 
Single-use Bioreactor (Thermo Scientific), 
Nucleo™ Single-use Bioreactor (Pall 
Corporation)

Oscillating 
motion 
reactors, 
surface aeration 
only

300–500 L WAVE bioreactor™ system (GE 
Healthcare), BIOSTAT® RM (Sartorius), 
SmartBag™ containers (Finesse), 
Appliflex™ systems (Applicon), CELL-
tainer® (CELLution Biotech/Lonza), 
XRS-20 Bioreactor System (Pall Life 
Sciences)

Oscillating 
motion 
reactors, 
sparging

30–1000 L BaySHAKE® (Bayer)

Vertical wheel/
bubble column

50–500 L Vertical-Wheel™ reactor (PBS), 
CellMaker PLUS™ system (Cellexus)

(continued)
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fulfilled the minimal criteria of MSCs (Rojewski et al. 2013), maintained their T 
lymphocyte-inhibitory capacity (Nold et al. 2013), and retained their genetic stabil-
ity (Jones et al. 2013).

This system was also used to produce ADSCs under GMP compliant conditions. 
The authors compared the culture efficacy of ADSCs in media supplemented with 
5% PL versus 10% FBS. The results showed that after 30 × 106 ADSCs were loaded 
into the bioreactor, after 17  days the yield of ASCs was 546  ×  106 ASCs in 
PL-supplemented medium, as compared to 111 × 106 ASCs in FBS-supplemented 
medium. They also showed that ADSCs fulfilled the ISCT criteria for MSCs, and 
demonstrated genomic stability and sterility (Haack-Sørensen et  al. 2018). In an 
earlier study, Haack-Sørensen et al. (2018) also showed that expansion of ADSCs in 
the Quantum cell expansion system significantly yielded greater cell numbers than 
those grown in T-flasks; the ADSCs were found to be pure and safe for clinical 
applications (Haack-Sørensen et al. 2016).

�Scale-Up in Microcarrier-Based Culture System

The microcarrier-based culture system is a culture system whereby MSCs adhere to 
a carrier (microbeads). The microbeads are then suspended/floated in the medium. 
By this method, the area of MSC adherence is significantly increased. Beads cultured 
with MSCs can be incubated in medium in a spinner flask bioreactor (dos Santos 
et al. 2011), wave bioreactor, stirred-tank bioreactor (dos Santos et al. 2014), or mag-
netic bioreactor. By this method, dos Santos et al. (2011) could expand BM-MSCs 
by 18 ± 1-fold and ADSCs by 14 ± 7-fold compared the traditional culture. These 
cells also maintained the minimal criteria of MSCs (dos Santos et al. 2011).

Using the stirred-tank bioreactor, dos Santos et  al. (2014) also successfully 
expanded MSCs from BM and adipose tissue. In xeno-free conditions, the yield for 
BM-MSCs and ASCs, after 7 days, was (1.1 ± 0.1) × 108 and (4.5 ± 0.2) × 107 cells, 
respectively. More importantly, these MSCs retained the MSC phenotypes (such as 
positive expression of CD73, CD90, and CD105, and negative expression for CD31, 
CD80, and HLA-DR), and multilineage differentiation potential toward osteoblasts, 
chondrocytes, and adipocytes (dos Santos et  al. 2014). Similarly, Carmelo et  al. 
(2015) succeeded to expand BM-MSCs and ADSCs in a similar system (stirred-
tank bioreactor). They achieved maximal cell densities of 3.6 × 105 and 1.9 × 105 
cells/mL for BM-MSCs (0.60 ± 0.04 per day) and ASCs (0.9 ± 0.1 per day) cultures, 
respectively, following 7 and 8 days of culture, respectively (Carmelo et al. 2015).

The stirred-tank bioreactor in spinner flask culture system also can be used to 
expand UC-MSCs in xeno-free culture (Mizukami et al. 2016). This system permitted 

Table 7.3  (continued)

Flatform Technology Volume Example technologies

Hollow-fiber-
based 
bioreactor

Hollow fiber 4 L Quantum Cell Expansion System (Terumo 
BCT)
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production of 2.4 (±1.1) × 105 cells/mL (n = 4) after 5 days of culture, correspond-
ing to a 5.3 (±1.6)-fold increase in cell number. In the stirred tank bioreactor 
(800 mL), MSC-UCs could reach a yield of 115 million cells after 4 days. UC-MSCs 
still retained their phenotypes, differentiation potential, and immune modulation 
capacity (Mizukami et al. 2016). Recently, Lawson et al. (2017) scaled up BM-MSC 
expansion in a 50-L bioreactor for 11  days using medium alpha-MEM supple-
mented with 5% PL. Lawson et al. achieved a 43-fold expansion of MSCs with a 
final yield of 1.28 × 1010 cells. These cells displayed similar properties as those 
grown in flasks (Lawson et al. 2017).

�Control of MSC Quality and Safety

The control MSC quality during the expansion is the essential step to make sure the 
stable quality between batch to batch. Depending on the some different technolo-
gies, some standards also vary from technology to technology. However, some com-
mon minimal criteria of MSCs are listed below.

�MSC Quality Control

The first aspect, good quality, relates to MSC characteristics. After a long term of of 
expansion, MSCs should maintain their characteristic phenotype, without any spon-
taneous differentiation. The quality of MSCs is controlled by the properties listed 
below:

Self-renewal: Self-renewal is evaluated by a clonogenicity assay. In this assay, 
MSCs are cultured in a petri dish at low density to permit MSCs to form colonies. 
This is a simple, inexpensive, and highly reproducible assay.

Differentiation: Differentiation potential is an important assay to determine the 
stemness of MSCs. This also is a criterion of MSCs that was first suggested by 
Dominici et al. (2006). MSCs must be able to differentiate into three kinds of meso-
dermal cells, namely osteoblasts, adipocytes, and chondroblasts.

Maintenance of MSC phenotype: After long-term expansion, MSCs should maintain 
the characteristic MSC phenotype, as suggested by Dominici et al. (2006), which 
includes positive markers (CD13, CD44, CD73, CD90, and CD105) and negative 
markers (CD14, CD34, CD45, and HLA-DR).

Low or nonexpression of senescent phenotype: Senescence is the most important 
issue affecting MSCs in off-the-shelf MSC production. Indeed, MSCs can proceed 
to aging after 20–50 doublings, depending on the culture medium as well as cell 
source. The senescent phenotypes are characterized by various assays, such as aneu-
ploidy (which can be evaluated by karyotyping) and accumulation of β-galactosidase 
(which can be detected by β-galactosidase staining assay). Senescence of MSCs can 
also be detected by mutations in certain genes (e.g., p53), upregulation of certain 
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genes (hyaluronan, proteoglycan link protein 1, keratin 18, brain-derived neuro-
trophic factor, renal tumor antigen, etc.), downregulation of genes (e.g., pleiotro-
phin), and reduction of differentiation potential.

�MSC Safety

In vitro expansion of MSCs may encounter safety issues such as (1) contamination 
by viruses, including hepatitis B and C, HIV, human T-cell leukemia virus type 1, 
and syphilis; (2) contamiation by bacteria, fungi, and mycoplasma; (3) contamina-
tion by endotoxins; and (4) tumorigenicity of expanded MSCs.

To reduce these issues, the MSC expansion procedure should follow the GMP 
guidelines with some control points during the MSC production from tissue screen-
ing to MSC cryopreservation.

•	 Tissues used to isolate stem cells should be carefully checked for contamination of 
hepatitis B and C, HIV, human T-cell leukemia virus type 1, and syphilis, both in the 
case of tissue samples and donors. At present, all tissues and donors should be 
screened in compliance with the blood bank guidelines. Only samples of both tis-
sues and donors that test negative for all viruses are used for further processing.

•	 During the process, and at the final stage of stem cell collection, MSCs and the 
conditioned media should be collected and checked for bacteria and fungi con-
tamination. The bacterial and fungal contamination of classical pharmaceutical 
products is excluded by standardized tests, as set in Europe (Pharmacopoeia 
[EP] 2005) or in the USA (Pharmacopoeia [USP] 2011). Mycoplasma contami-
nation also should be checked according to European, US, and Japanese pharma-
copeia guidelines.

•	 Endotoxins are lipopolysaccharides from gram-negative bacteria that often 
cause some serious health problems, such as diarrhea, septic shock, and mar-
row necrosis. Endotoxin testing seems to be the essential test for cellular prod-
ucts before these products would be used in human beings. The endotoxin limit 
for cellular products is usually 5.0 EU/kg/dose. Endotoxin testing is generally 
carried out by the Limulus amebocyte lysate method; it is also carried out by 
some commercialized kits.

•	 Tumorigenicity is the most concerning safety issue when using expanded MSCs 
for clinical applications, although to date there have been no reports about this 
serious effect in expanded MSCs. Nowadays, the tumorigenicity of MSCs can be 
checked by transplantation of a number of MSCs to NOD/SCID mice for several 
months with close monitoring.

�Conclusion

MSCs are the most popular kind of stem cells used in the clinic today. Given their 
unique characteristics and functions, MSCs can be used in allogeneic stem cell 
transplantation that does not require any HLA matching, and they have been 
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produced as off-the-shelf stem cell products (or stem cell drugs) for various clinical 
applications. An increasing number of off-the-shelf MSC products have been 
approved in different countries. Indeed, nowadays, off-the-shelf MSC technology 
has garnered great interest. MSCs from bone marrow, adipose tissue, umbilical cord 
blood, and umbilical cord tissue have been used to develop off-the-shelf products. 
Although there are different protocols, off-the-shelf MSC technology requires 
GMP-compliant conditions during cell isolation, expansion, and cryopreservation. 
Scale-up cell expansion is one of the most important steps in off-the-shelf MSC 
technology. MSCs can be scaled up in T-flasks, hollow fiber-based culture systems, 
or microcarrier-based culture systems. The medium for MSC production should be 
a xeno-free medium or serum-free medium. Human platelet lysate, human serum, or 
platelet-rich plasma is a suitable replacement for fetal bovine serum in cell expan-
sion, and they help maintain MSC characteristics. Finally, the quality and safety of 
MSCs should be controlled to ensure that these expanded MSCs are safe and effi-
cient for therapeutic use in the clinic.
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Chapter 8
Ethical and Legal Issues of Cord Blood 
Stem Cell Banking

Luciana Riva, Giovanna Floridia, and Carlo Petrini

�Introduction

Umbilical cord blood (UBC), once regarded as discarded biological material, is 
today a precious resource in the clinical practice because it is rich in transplantable 
hematopoietic stem cells (HPCs). Its cellular composition is very similar to that of 
bone marrow and includes hematopoietic stem cells (HSCs), progenitor cells 
(HPCs, CD34+, and CD133+ cells), and mesenchymal stem cells (MSCs). UCB 
cell transplantation (UCBT) is today routinely used for the treatment of a range of 
malignant and nonmalignant hematologic disorders (e.g., leukemia, immune 
deficiencies, and congenital disorders). By 2013, more than 30,000 hematopoietic 
stem cell transplants (HSCT) worldwide have been performed in different 
malignancies and disorders using cord blood as the source of stem cells (Shearer 
et al. 2017).

�History

About 40 years ago it was first suggested that stem and progenitor cells were present 
in human cord blood. In the early 1980s, the possibility of using UCB as a source of 
transplantable HSCs and HPCs was raised by Hal Broxmeyer, who is now recognized 
as the founder of the field, during a meeting with Edward A. Boyse and Judith Bard 
(Ballen et al. 2013). The same researchers funded the company Broxmeyer, at the 
Indiana University School of Medicine, with a 2-year grant to study the biology and 
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cryopreservation of UCB cells, and began to explore the possibility of using UCB 
in transplantation. These studies led to the first umbilical cord blood transplant 
(UCBT), which was performed in 1988, in France, in a boy suffering from Fanconi 
anemia (FA). The UCB was collected at the birth of his healthy sister with an 
identical HLA and, then, cryopreserved at the IUSM (Gluckman et al. 1989). 2018 
marks the 30th anniversary of this milestone. This success paved the way for a new 
field of research and development. Indeed, since then, the comprehension of UCB 
cells biology and their potential for clinical use has increased exponentially and, 
therefore, unrelated CB transplantation is nowadays an established practice 
treatment option. It has been proved to have some significant advantages over the 
use of bone marrow stem cells for transplants, one of the most important being that 
it does not require a perfect match and therefore affords a greater flexibility for HLA 
matching purposes. Another important difference is that UCB units can be harvested 
and stored before they are needed for transplantation and the donation is not an inva-
sive procedure. UCB donation is a purely altruistic gesture and, from a safety per-
spective, has a small risk to transmit communicable diseases. Banks to store umbilical 
CB were first introduced in the 1990s; moreover, the absence of any particular ethical 
concern has facilitated studies on cord blood for stem cell therapy.

�UCB Banks

The first UCB bank was set up in 1991 at the New York Blood Center with the pur-
pose of storing units for public use (allogeneic donation). Public banks collect and 
store donated UCB in monitored cryopreservation tanks until it is searched, matched, 
and distributed for any patient in need of an HSC transplant. It is possible to donate 
infant’s UCB to a public bank if the unit meets the required criteria for banking: 
generally, the facility has a minimum volume (and cell number) that is considered 
adequate for a transplant patient and that will be accepted. Products that do not meet 
these requirements are discarded or used for research purposes, subject to a state-
ment in the informed consent document. Private UCB banks, which are profit-mak-
ing facilities that provide a service for families who want to store UCB stem cells 
privately (autologous donation) as a form of medical insurance, arose in the USA in 
approximately the same period. The latter market grew very rapidly. At present, the 
government regulations in the USA for family banks are less stringent than those for 
public banks in comparison with many other countries where national health author-
ities regulate in the same way family and public banks. In some European countries 
private banks are banned. In Italy and France the law does not allow to privately 
store one’s cord blood. In Italy, for instance, cord blood banking is only authorized 
as a public conservation structure but a family banking program, so-called “dedi-
cated storage,” is allowed for parents who already have a child with a disease con-
sidered treatable using cord blood transplantation (that is a scientifically validated 
treatment).
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It has been shown that in private cord blood banks, compared with public cord 
blood ones, there is not a full exploitation for treatment, the quality control is less 
regulated, and costs for the family are higher (Ballen et al. 2013). To date about 215 
family UCB banks are located in 54 countries and at least 200 marketing affiliates 
serve over 70 countries (Ballen et  al. 2015). Private cord blood banking can be 
expensive with a fee upon acceptance of the sample (usually between US$1500 and 
US$2000) plus an annual storage fee (Petrini 2014). The clinical efficacy of 
autologous stem cells for the purposes of prevention is statistically very low, and 
private storage for later autologous use does not appear in relevant documents issued 
by the most authoritative institutions (Petrini 2014; Petrini 2015). To the present, 
public cord blood banks are storing approximately 800,000 unrelated cord blood 
units, and private ones more than 5,000,000 (Kurtzberg 2017). Differently from 
private banks, public ones make samples for potential recipients available through 
registries at the international level. There is a global system of public cord blood 
banks and transplant centers connected by networks to facilitate the exchange of 
information. There is a link between national registries and international ones (e.g., 
the European Marrow Donor Information System and Bone Marrow Donor 
Worldwide) which allows to identify the most appropriate sample for each patient 
needing a transplant. At a national level, the size of each registry is of crucial 
importance: the larger the number of units registered, the greater the probability of 
finding a clinically useful match between donor and recipient. The international 
dimension is decisive, among other things, because it is necessary for access to 
immunotypes that are extensively dispersed (Petrini 2014). In many countries 
(including the USA) not every hospital is associated with a public bank, which 
means not every donor may be able to donate and the number of units for public use 
is considerably lower than that required. An issue to be considered is that ethnic 
and/or minority patients, needing a cord-blood transplant, could have more 
difficulties to find units with HLA match (Shearer et  al. 2017). Therefore, self-
sufficiency of a country depends not only on health care policies but also on the 
ethnic homogeneity of its population.

Recently, in Europe, a private-public mixed UCB banks model emerged. A 
hybrid UCB bank is a private institution in which cord blood units are stored for 
possible public or private use. Different feasible models for hybrid banks have been 
proposed. The British Virgin Health Bank is an example in which the units of cord 
blood preserved are destined in 80% for allogeneic use (in an inventory available for 
public use) and in 20% for autologous use (exclusively for the client). The “public” 
portion of the product may be donated to a potential HSCT center if the inventory 
was searched. Nowadays there are other hybrid models (Petrini 2014), for instance 
some private banks may create a partnership with universities and public institutions. 
As already argued this model, based on a public–private partnership, could support 
financially the public biobank network (Pontifical Academy for Life Banks of 
Umbilical Cord Blood 2013).
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�Regulation

While increasing banking and clinical applications, the development of a regulatory 
system has become necessary, particularly as a means of guaranteeing both the 
protection of the donor and the recipients and the quality of the products. Standards 
have been set worldwide to act as minimum guidelines for CB bank operations. The 
standards and accreditation system in CB banking ensures that processes and 
products are of high quality on an international level (Armitage 2016). It is 
mandatory that any criteria adopted for CB banking is international since CB 
products frequently cross international borders as the best CB unit available for a 
patient, selected according to HLA type and cell dose, is often likely to be located 
in another country. The quality of the products must be guaranteed in terms of 
safeness, pureness and potency, bearing in mind that they may easily have been 
banked over two decades before (units can be stored in the cryopreserved state for 
at least 20 years without harming the viability of the cells) (Ballen et al. 2013).

The most important international accreditation standards for umbilical cord 
blood bank operations have been designed by the American Association of Blood 
Banks (AABB) and by the Foundation for the Accreditation of Cellular Therapy 
together with NetCord (NetCord-FACT 2015). There are, however, other 
international organizations, such as the Joint Accreditation Committee ICST 
(International Society for Cellular Therapy) and EBMT (European Group for Blood 
and Marrow transplant), International Organization for Standardization (ISO) and 
International Society of Blood Transfusion (ISBT), that offer accreditation related 
to registry operations of HSC. Furthermore, the World Marrow Donor Association 
(WMDA) standards aim to improve the quality of unrelated hematopoietic stem cell 
donor registries. Through the process of accreditation, the bank proves to be in line 
with the most up-to-date standards. At the individual state level, competent 
authorities may also regulate products within their country. Each National registry 
must therefore follow any additional law, regulation, practice and procedure that 
apply in that particular nation. For example individual states may regulate biological 
products differently (e.g., as biological drugs, blood or tissue products). Up-to-date 
private banks store a higher number of UCB compared to public ones depending 
also on the adoption of less stringent criteria for acceptability (e.g., number of cells, 
viability) with the risk of a not optimal quality of the unit (Petrini 2014).

Ethical issues related to collection, storage and use of CB stem cells have been 
addressed in several and different documents issued by national and international 
institutions (Petrini 2013). The analysis made by Petrini showed a considerable 
production of documents by National Bioethics Committee especially in Europe. 
Eight of the 27 member countries belonging to the European Union have produced 
a total of 11 official statements. Most of these document where published after the 
release of the Opinion 19 “Ethical Aspects of Umbilical CB Banking” by the 
European Commission’s Group on Ethics in Science and New Technologies. 
The group highlighted some basic ethical principles to be considered: “the principles 
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of justice and solidarity, as regards to fair access to healthcare services; the principle 
of beneficence, or the obligation to do good, especially in the area of health care; the 
principle of nonmaleficence, or the obligation not to harm, including the obligation 
to protect vulnerable groups and individuals, to respect privacy and confidentiality; 
the principle of proportionality which implies a balance between means and 
objectives.”

Besides the above mentioned principles it is necessary to consider the principle 
of respect for human dignity and integrity, the right to self-determination on the 
basis of full and correct information and the prohibition of a financial gain from the 
human body and its parts (art. 21 Convention of Human Rights and Biomedicine). 
It is noteworthy that in the USA most commentaries have been  emanated from 
professional organizations (Petrini 2013).

�Private vs. Public Bank

The ethical issue of public vs. private banks has been widely debated. Private banks 
treat the biological resource as a product with an economic value, inserted within a 
market model of the supply and demand type. Anyone who is opposed to the concept 
of gaining an economic advantage from the body and its parts encourages social 
solidarity between citizens and an approach based on voluntary and free donations. 
From this perspective cord blood, as in the same way blood or organs, is considered 
a “common good” whose availability responds to a health need of any citizen. 
Besides attention to operating standards, a continuing ethical scrutiny, particularly 
in view of the rapid growth of the market, is basically needed to ensure that the 
development of the banking system serves the common good. In the last decade 
several bodies and public authorities worldwide expressed the opinion that private 
cord blood banking has not any real clinical application with the exception of some 
specific cases. In case of need, furthermore, thanks to the public international 
network, anyone in need has the opportunity to obtain, through the international 
circuit, the most suitable sample for transplant. Support for the private bank is 
generally based on the principle of respect for individual autonomy; patients are 
considered as “rational agents with the rights to be informed and to make choices 
which affect themselves and their offspring” and consequently anyone should have 
the right to save cells for future use at their own expense. The crucial issues here are: 
how futuristic this future use is and to what extent promises, made to families about 
the potential future use, may justify private storage with the associated costs Private 
UCB banks advertise the service they offer defining the autologous storage as a 
“biological insurance.” The individual autonomy and the freedom of choice fill up 
with value when there is no misunderstanding or a false expectation. The narrative 
of a possible utility of UCB-derived stem cells in a contest of regenerative medicine, 
especially, should not be designed to attract business.
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�Bioeconomic Aspects of Public UCB Banking

As some authors have highlighted (Brown and Williams 2015), the exchange of 
unites inside the international circuit of public banks is not free and the export price 
may be higher than the cost of storage. The biological material circulates within a 
complex network where different actors are involved and where ethical, legal, 
technical, and economic considerations are necessarily intersected. Even if a system 
is based on unpaid and voluntary donations, the transfer of biological material 
among different countries implies a flow of money and therefore a bioeconomy 
issue arises (Petrini 2014). In the public banking system UCB has a monetary value 
but this does not automatically imply that it is a source of “profit” if the financial 
gain is spent on covering the operating cost. The particular kind of biovalue that 
UCB as a biological product assumes in different models of storage and distribution 
is a current issue.

�The Informed Consent

Umbilical cord blood collection and storage raise several ethical and legal prob-
lems, some broadly debated in literature, as informed consent, ownership and pat-
entability of UCB-derived products. The issue of cord blood ownership falls within 
the general discussion of the body ownership, widely debated from an ethical and 
legal point of view. Some consider the cord blood sample as a child property, since 
it belongs biologically, genetically, and developmentally to the child while others 
suggest that cord blood, once the cord is cut, is the mother’s property. All national 
laws recognize as a legal person a child who is fully outside of the mother’s 
body even though such an individual is not able to understand and provide consent. 
As well stressed by contemporary bioethics, informed consent is close to the prin-
ciple of autonomy that is defined as “the quality or state of self-governing” (Petrini 
2010). Therefore, the principle of autonomy could not be applied in case of cord 
blood storage since a human body part is used without the individual knowledge. 
From a practical point of view the main issues relative to the informed consent for 
cord blood storage can be summarized as follows: (1) who has to give the consent; 
(2) what content should be included; (3) who is going to accept it; (4) when consent 
should be given. The international community agrees that informed consent to 
donate umbilical cord blood for clinical or research use must be given by the new-
born’s mother. On the other hand, it is not so obvious to define what to do when the 
baby donor reaches the legal age of maturity. Legally, indeed, the right to dispose 
what it could be done with his/her body and its parts could be recognized to him or 
her.

In general the involvement of the father, besides that of the mother, would be rec-
ommendable; the content of the informed consent should be clear and exhaustive, 
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including information about the potential uses of discarded units (i.e., the production 
of compounds or drugs for therapeutic or/and nontherapeutic purposes). A controver-
sial situation arises when products developed from human biological material, donated 
for altruistic purposes, have the potentiality to be exploited commercially. As dis-
cussed by Petrini, the above mentioned possibility should be clearly and exhaustively 
disclosed during the informed-consent process and the donor should have the option 
to refuse consent (Petrini 2012).

Informed consent should always be obtained in a proper way and, since it needs 
time for reflection, should not be given just before childbirth that is without the 
possibility of adequate reflection on the part of the mother. Furthermore, it is 
important to communicate all medical circumstances of the mother or neonate that 
may prevent umbilical cord blood collection (American College of Obstetricians 
and Gynecologists 2015).

The National Academy of Medicine (US) Committee on establishing a National 
Cord Blood Stem Cell Bank Program, in the document “Cord Blood: Establishing a 
National Hematopoietic Stem Cell Bank Program,” addresses issues and gives 
recommendations about the management of the informed consent (Meyer et  al. 
2005). The informed consent raises also the issue of data protection as underlined 
by the Belgian Bioethics Committee (2007).

�Clamping and Cutting Timing of the Umbilical Cord at Birth

An issue related to the collection of cord blood cells is the clamping and cutting tim-
ing. At birth, if cord blood is not clamped, blood flow between baby and placenta 
may continue for several minutes. It provides all the necessary nutrient and blood to 
the unborn and that is why it is important for parents be certain that, in the donation 
procedure, clamping time will not harm the baby. The optimal timing of umbilical 
cord clamping is still being discussed today and the timing may vary worldwide 
according to clinical policy and practice. The WHO Guideline “Delayed umbilical 
cord clamping for improved maternal and infant health and nutrition outcomes” 
states “Delayed umbilical cord clamping (not earlier than 1 min after birth) is recom-
mended for improved maternal and infant health and nutrition outcomes” and “Early 
umbilical cord clamping (less than 1 min after birth) is not recommended unless the 
neonate is asphyxiated and needs to be moved immediately for resuscitation.” 
Immediate and long-term benefits of delayed umbilical cord clamping based on the 
results of randomized controlled trials and other type of studies have been reported 
for term, preterm/low birth weight infants and mothers, as summarized by the WHO 
Guideline (World Health Organization 2014). It is relevant that parents of the new-
born donor receive complete information concerning the timing/procedure of cord 
blood clamping and, as suggested by the Study Group on Banks of Umbilical Cord 
Blood (Pontifical Academy for Life Banks of Umbilical Cord Blood 2013), the tim-
ing in seconds of the clamping should be registered on the clinical chart.
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�Prospective

Research, analyses and studies on the properties of cord blood hematopoietic 
progenitors and their clinical applications are attracting an increasing amount of atten-
tion, with the potential for even better results and new several indications for cord 
blood use. Methods are currently being investigated to improve the speed of engraft-
ment and reduce transplant related mortality (e.g., the use of double cord blood trans-
plants). Following the advancement of knowledge and the growing body of evidence 
that has emerged from research, UCB is being used as well for the treatment of nonhe-
matopoietic disorders and immune modulation (Ballen et al. 2013). Furthermore these 
achievements have generated high expectations in the general population, with a grow-
ing number of clinical trials being designed to investigate UCB in different and vari-
ous conditions, including Alzheimer’s disease, autism, and diabetes mellitus type 1 
and 2 (Mahla 2016; Roura et al. 2015). The popularity of cord blood has grown 
together with the specific market and the considerable appeal of the promises made 
in relation to cell therapy. Recently the possibility to use cord blood platelet and 
cord blood plasma for the preparation of Cord Blood Platelet Concentrate (CBPG) 
or Cord Blood Eye Drops (CBED) for clinical use has been also explored. Moreover 
studies have begun to investigate new reagents from cord blood units not suitable 
for transplant. All these new applications, in particular the development of non-
therapeutic products with a commercial value raises various ethical and legal con-
cerns. The most promising and innovative approach seems to be the one that uses 
nonhematopoietic stem cells from cord blood and placenta. Particularly, mesenchy-
mal stem cells (MSCs) have been isolated from cord blood and placenta and are 
considered promising for therapeutic purposes (Roura et al. 2015). These findings 
have shown that UCB is a powerful biological resource and an important area in human 
regenerative medicine, which does not raise the ethical problems associated with pro-
cedures involving embryonic stem cells. The potential of UCB for regenerative medi-
cine should be considered to be speculative until further evidence of possible benefits 
emerges and this aspect is also related to the sustainability of private banking: the best 
available research evidence will be indispensable to formulate future recommendations 
regarding autologous CB banking. As stated also by the American Academy of 
Pediatrics, clinical research advancements in the context of regenerative medicine 
might have an impact on cord blood banking in the future (Shearer et al. 2017). Equally, 
advertising potential future uses that are not supported by clinical evidence, for exam-
ple a cure for heart disease or autism, should be discouraged or banned. As argued by 
many, it will undoubtedly be necessary to evaluate the sustainability of cord banking in 
the future according to any new evidence that emerges, including the actual clinical 
use. The annual activity survey of the European Society of Blood and Marrow 
Transplantation (EBMT) reported for 2015 a decreasing use of unrelated cord blood as 
a donor source for total HSCT, in contrast to a rise seen in haploidentical donor 
HSCT. The survey states that the decrease was observed for myeloid and lymphoid 
malignancies but not for nonmalignant disorders, where the use of unrelated cord blood 
is stable over time (Passweg et al. 2017). Currently a large clinical trial is ongoing with 
the aim to compare UCBT with haploidentical HCT (Ballen 2017).
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�Conclusions

Cord blood transplantation has been shown to be effective to treat patients with dif-
ferent and serious disorders and its use should be supported. As recommended by 
the scientific community, parents of the donor must receive adequate information 
about cord blood banking. In particular: (1) personal or familiar storage of cord 
blood is not a standard of care mainly because the stored cord blood may contain the 
same malignant cells that caused the disease; (2) direct cord blood banking should 
be encouraged only when it is known that in the family there are clinical conditions 
that could benefit from CB transplantation; (3) CB storage for personal use, as 
“biological insurance” for the newborn/family, should be discouraged since there 
are not scientific evidences to support autologous cord blood banking. Institutions 
and organizations, on the other hand, should (1) inform in a clear, correct, and not 
misleading way and communicate in a way that protects the public by “therapeutic 
illusions”; (2) should promote CB voluntary donation supporting the ethical value 
of a donation that is anonymous, voluntary, and nonprofit; (3) adequate policies 
should be developed for result disclosure, data protection, research strategies, and 
informed consent.
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