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Preface

The motivation for this book came from a discussion on how to help a young
individual interested in quantitative disciplines in school to choose a major for
further education and a career. In the old days, if someone were good in quantitative
disciplines in school, he or she would go to college to receive a degree in Mathe-
matics or Physics. Nowadays, universities offer a range of different concentration
areas that rely on quantitative methods, such as Mathematics, Statistics, Biostatistics,
Pharmacometrics, Genetics, Computer Science, Data Science, to name a few. It is
not easy to make an educated choice for a future career. We decided to focus on the
pharmaceutical industry specifically. There are many books available that describe
one specific area, e.g., statistics, or a couple of areas, but we are not aware of books
that provide a good overview of different analytics and statistical applications used
in the pharmaceutical industry. Additionally, we were trying to understand what
quantitative methods different departments at a company use to answer questions in
the pharmaceutical industry and how people working at these departments collabo-
rate and build on each other’s knowledge.

The book Quantitative Methods in Pharmaceutical Research and Development
presents an overview of concepts, methods, and applications in different quantitative
areas of drug research, development, and marketing. Biostatistics, pharmacometrics,
genomics, bioinformatics, pharmacoepidemiology, commercial analytics, and oper-
ational analytics—all of these disciplines use quantitative methods and analysis
techniques to answer different questions related to drug research, development,
and marketing. By bringing theory and applications of these disciplines together in
one book, we hope to allow the reader to learn more about different quantitative
fields and recognize similarities and differences in theory and applications employed
by different disciplines. This book is aimed at people interested in quantitative
methods and applications used in the pharmaceutical industry, experts working in
these areas, and students looking for applications and career options in quantitative
sciences.

Each chapter of this book is self-contained and written by different authors.
Chapter 1 provides a brief overview of basic biostatistical principles, selected
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study designs, and analysis methods used in clinical trials. It also discusses the
importance of biostatistics in drug development and highlights some additional
considerations for clinical trials, such as defining appropriate estimands, handling
outcomes with missing data, applying multiplicity adjustments, analyzing sub-
groups, planning multiregional clinical trials, and evaluating drug safety.
Chapter 2 provides a brief introduction to pharmacometric analysis approaches
including pharmacokinetic (PK) models, PK/pharmacodynamics (PD) models,
physiologically based pharmacokinetic models, quantitative systems pharmacology
models, and model-based meta-analysis. It includes discussions on software, model-
ing workflow, and major model components, with a focus on population modeling
analysis. Chapter 3 gives an overview of bioinformatics and common methods used
to address genomics-related questions. In Chapter 4, readers are introduced to
common biostatistical methods used in the analysis and interpretation of
pharmacoepidemiological data. This chapter also briefly describes how to take into
account common issues in observational epidemiology, such as bias, confounding,
and interactions, in order to establish a clear causal link between exposure and drug
effect.

Chapter 5 provides an overview of the causal inference paradigm, reviewing
current methodology and discussing the applications of these concepts to strengthen
and improve pharmacoepidemiology. More specifically, this chapter focuses on
marginal structural models fitted using inverse probability weights and discusses
advanced topics, such as time-varying exposure, instrumental variables, and survival
analyses. It also includes a discussion of challenges specific to analyses that employ
medical claims and electronic health records. Chapter 6 provides an introduction to
the diverse field of data science as viewed from the perspective of a clinical
statistician. This chapter discusses data mining and its relationship with machine
learning and classical statistics. More specifically, the authors map some common
problems occurring in the analysis of clinical data onto general machine learning
tasks, such as supervised, unsupervised, and semi-supervised learning, and review
key concepts of data mining and machine learning with an emphasis on methods that
are most relevant for the analyses of clinical data. Chapter 7 is an introduction to
quantitative pharmaceutical market research techniques. It focuses on two types of
primary market research: market segmentation and choice modeling. This chapter
describes clustering methods that are used to create segments, that is, groups of
individuals with unique attitudes and behaviors that allow for more targeted mar-
keting efforts. It also reviews multiple approaches to choice modeling: a family of
approaches that aim to deconstruct decisions and identify what attributes drive
decision-making. Chapter 8 describes new predictive analytic techniques for effi-
cient modeling and forecasting trial operations, more specifically modeling patient
enrollment at different levels and analyzing interim trial performance and risk-based
data monitoring using P-values and 2D classification. Chapter 9 provides case
studies illustrating the impact of collaboration between biostatisticians,
pharmacometricians, clinicians, formulation, and laboratory scientists. It also
explains how working as a team and using quantitative modeling and simulation
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methodologies can result in significant efficiencies and improvements in the drug
development process.

This book is a collaborative effort from several authors and based on knowledge
and experience gained from working in academia, the pharmaceutical industry, and
regulatory agencies. We present material that hopefully will be interesting to a broad
and diverse audience. The views expressed in this book are those of the authors and
do not necessarily represent the views of organizations with which the authors have
been or are presently affiliated.

We would like to acknowledge and thank all authors who contributed to this book
and reviewers who helped us review and improve the different chapters. We
appreciate the constructive comments provided by José Pinheiro, Michael Hale,
Ken Chase, Tony Zagar, Seth Berry, Ilya Lipkovich, and Russell Reeve. From our
employers, we thank Torsten Westermeier, Bayer Statistics and Data Insights, and
Lisa DiPippo, the University of Rhode Island Department of Computer Science and
Statistics, for the encouragement. Additionally, we thank the Springer Publishing
Agency for giving us an opportunity to publish this book and the Editor of Math-
ematics and Statistics, Springer US Christopher Tominich for his patience and
helpful tips. Finally, we thank our special friends, Mikhail Benediktovich and
Maria Francevna, and our families for encouragement and support.

Whippany, NJ, USA Olga V. Marchenko
Kingston, RI, USA Natallia V. Katenka
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Chapter 1
Biostatistics in Clinical Trials

Olga V. Marchenko, Lisa M. LaVange, and Natallia V. Katenka

1.1 Introduction

1.1.1 What Is Biostatistics

Biostatistics is a part of statistics applied in a wide range of areas in the biological
sciences. It covers the design of biological experiments, e.g., experiments in med-
icine, pharmacy, and agriculture; the collection, summarization, and analysis of data
from the experiments; and the interpretation of results. A major branch of biostatis-
tics is medical biostatistics that is applied in medicine and health.

As part of drug development, tests are conducted to determine how drugs affect
the human body. We can only fully understand these effects—both positive and
negative—if they are tested on living organisms. Animal studies are primarily used
for testing pharmaceutical compounds in the preclinical development phase,
followed by clinical studies with human subjects. In recent years, many new
methods have been developed as alternatives to research on animals: in the in vitro
method, active ingredients are tested on human cell cultures; in the in silico method,
chemical reactions are tested using mathematical and computer-based models. Still,
these methods cannot entirely replace tests on animals or humans yet. Clinical
studies (clinical trials) are experiments intended to discover or verify the effects of
one or more investigational treatments in human subjects, e.g., patients or healthy
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volunteers. Biostatistics plays a vital role in the design, conduct, and reporting of
clinical trials.

1.1.2 Basic Biostatistics Principals for Clinical Trials

This section briefly describes some important biostatistics principals for designing a
clinical trial. There are many statistical books that cover statistical principals and
designs of clinical trials in more details (e.g., Snedecor and Cochran 1980; Friedman
et al. 2015; Piantadosi 2017). Additional valuable resources include the ICH Guide-
lines on efficacy and safety. Specifically, ICH Guideline E9 provides succinct
information on Statistical Principals for Clinical Trials.

1.1.2.1 Population and Sample

A population is an entire group of people we want to understand and make
inferences on. The size of the population can vary greatly. For example, the
population of patients with diabetes around the world is enormous; the population
of people with Pompe disease is quite small. A sample is a subgroup of the whole
population that can be considered a representative set with respect to the question of
interest.

The study population (a sample of patients with the disease selected for the study)
in a clinical trial is the subset of the population with the condition or characteristics
of interest defined by the eligibility criteria, e.g., inclusion and exclusion criteria
outlined in a clinical protocol. When reporting a study, it is important to say what
patients were studied and how they were selected. Knowledge of the study popula-
tion helps assess the study’s merit and relevance.

If the study population is selected by using very restrictive eligibility criteria,
generalizing results from participants in the trial to the study population and then to a
population with the condition might be difficult or even impossible. However, if the
study includes diverse groups of patients and the treatment is only beneficial to a
specific subgroup of patients, the effect of the intervention on a heterogeneous group
may be diluted, and the ability to detect a benefit may be reduced. As scientific
knowledge advances, the ability to classify improves. Modern trial designs such as
platform and basket trial designs allow to include a more diverse group of patients
into one trial and treat them with “personalized” treatments, e.g., treatments based on
the genotype.

1.1.2.2 Sampling Error and Bias

When a sample is randomly chosen from a population, some variability exists and,
therefore, the sample average will not precisely reflect the population average. An
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error has two components, a random one and a systematic one called bias. Sampling
error does not necessarily mean that a mistake has been made during the sampling
process; it is a fluctuation that remains beyond our ability to attribute it to a specific
cause. Because of biologic variations, subject-to-subject differences, measurement
error, or other sources of noise, it is impossible to eliminate random error
completely. Averaging an increased number of observations and repeating the
experiment reduce the magnitude of a random error. As we gain more knowledge,
it is possible that some errors that are thought to be random become explainable.

As defined in ICH E9 Guidance (ICH E9 1998), bias is “the systematic tendency
of any factors associated with the design, conduct, analysis, and interpretation of the
results of a clinical trial to estimate a treatment effect deviate from its true value.”
The presence of bias may compromise the ability to draw valid conclusions. It is
important to identify sources of bias in order to eliminate or reduce such bias. In a
statistical context (statistical bias), the bias can be quantified. More discussion on the
statistical bias is provided in Sect. 1.3 of this chapter. In a clinical context (opera-
tional bias), bias can arise from different sources and can rarely be quantified
precisely. One type of operational bias is a selection bias. For example, if an
investigator believes that a particular treatment in a clinical trial works better, he
might want to enroll his better patients to this treatment, and therefore, he may affect
the validity of the study. By excluding patients from analysis based upon knowledge
of their outcomes, one can introduce an assessment bias that can enhance or diminish
the strength of the actual treatment effect. Such operational biases can be removed or
reduced by using an appropriate design, a pre-planned analysis, and a thorough
execution of the clinical trial. For example, randomization reduces the selection bias
and blinding reduces the assessment bias. Both randomization and blinding are
discussed in more details later in this section. Most of the statistical principals and
techniques outlined in this chapter deal with the problem of minimizing bias and
maximizing the precision of estimation and, therefore, maximizing the validity of
conclusions.

1.1.2.3 Choice of Control

Control group is a group of patients that helps understand what would have
happened to the patients if they did not receive the experimental treatment or if
they received a different treatment known to be effective. Choice of the control
group is one of the major elements of the design of a clinical trial. The foundation for
the design of controlled experiments was established in agriculture and made its way
to the pharmaceutical industry a long time ago.

If the course of disease was uniform or predictable from patient characteristics
such that the outcome could be reliably predicted for any given patient or a group of
patients, we would not need to have a control group because the results of the
treatment could be compared with the known outcome without a treatment. For
example, one could assume that without a treatment, the pain would have persisted
for a defined time, blood pressure would not change, or tumors would grow
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following a pre-specified model. If the course of a disease is predictable in a defined
population, it may be possible to use previously studied patients as a historical
control. In rare diseases, the use of historical control might be the only option. It is
also possible to have a very high treatment effect that no comparison group is
needed, but successful results of this magnitude are very rare. In most cases, a
concurrent control group is needed because it is impossible to predict an outcome
with an adequate accuracy or certainty.

The types of control that are mostly used in clinical trials are (1) placebo,
(2) active control, or (3) different doses or regimens of the experimental treatment.
The experimental treatment and concurrent control groups are sampled from the
same population and treated in the same trial over the same period of time. Both
groups, including those assigned to the study treatment and the control, should have
similar baseline characteristics. Failure to achieve this similarity can introduce a bias
into the study.

Study designs that use placebo as the control group are called placebo-controlled
designs. A placebo is a “dummy” treatment that appears as identical as possible to
the experimental treatment with regard to color, shape, weight, taste, and smell but
does not contain any active treatment. Such designs almost always use randomiza-
tion to assign patients to either an experimental treatment or to a placebo for ethical
reasons and to eliminate a selection bias. Active-controlled (or positive controlled)
trials are the trials in which patients are assigned to the experimental treatment and
the active control treatment, e.g., the treatment already approved and available on a
market. At times even though trials use a placebo arm to make formal comparisons
with an experimental treatment arm, an active control arm can be included to validate
the study and to help make predictions about a treatment effect of the experimental
treatment against the active control. Such designs might be preferable to patients
because of the smaller chance of being randomized to the placebo arm. An add-on
study design is a placebo-controlled design of a new treatment and a placebo, both
added to a standard treatment. Such studies are common in oncology, specifically,
when the experimental treatment alone does not provide the necessary treatment
effect but can improve the clinical outcome of the standard treatment if it is given as
a combination treatment. Designs that use several fixed doses of the experimental
treatment in addition to placebo allow selection of the most efficacious and safe dose
or doses for further development and might help to characterize the dose-response
shape.

Sound scientific clinical investigations almost always demand that a control
group be a part of a trial to measure and compare a new treatment against a placebo
or an active control. ICH E10 Guideline on Choice of Control Group and Related
Issues in Clinical Trials (ICH E10, 2001) provides more details on types of a control
and how to choose a control group. Randomization is the preferred approach to
assign patients to a control group and an experimental group or groups.
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1.1.2.4 Randomization and Allocation

Randomization is a process by which each participant has a specific probability
(sometimes equal, sometimes not) to be assigned to either a treatment arm(s) or a
control arm. Fisher formally suggested the concept of randomization in the 1920s.
Amberson et al. in 1931 reported the first clinical trial that used a form of random
assignment of participants to study groups. The principal of blinding was also
introduced in this trial (Friedman et al. 2015).

Until the new treatment has been proven beneficial, randomization is the most
ethical approach. Randomization removes a potential bias (selection bias) in the
assignment of patients to study groups. Randomization tends to produce study
groups comparable with respect to known and unknown risk factors, measured
and unmeasured covariates. Another advantage of randomization is that it helps
ensure the validity of statistical tests (Armitage and Berry 1994; Lachin 1988).

Randomization procedures can be fixed or adaptive. Fixed allocation randomi-
zation assigns participants to different treatment arms with a pre-specified probabil-
ity, and this allocation probability does not change as the study progresses. The most
common types of fixed allocation randomization are complete (simple) randomiza-
tion, blocked randomization, and stratified randomization. One of the simplest
methods of complete randomization is to toss an unbiased coin each time a partic-
ipant is eligible to be randomized. If the coin turns up heads, the participant is
assigned to group A; otherwise, the participant is assigned to group B. In practice, a
random number generator is used to assign participants to treatment groups. Simple
randomization does not take past history into account, as it makes each new
treatment assignment regardless of the assignments already made and might create
imbalances in the number of patients assigned to treatments. These imbalances
become more noticeable when one needs to account for prognostic factors. Even if
the number of treatment assignments is balanced, the distribution of patients with
different prognostic factors might not be. Blocked (permuted block) randomization is
used to avoid serious imbalances in the number of participants assigned to each
group that might occur if the simple randomization procedure is used. If participants
are randomly assigned with equal probability to groups A or B, then for each block
of even size (e.g., 4, 6, 8), one-half of the participants is assigned to group A, and the
other half is assigned to group B. The number in each group does not differ by more
than b/2, where b is a length of the block. Blocks do not need to be the same size.
Varying the length of each block randomly can prevent from guessing the treatment
assignments in small blocks. One of the objectives of stratified randomization in
allocating patients to treatments is to achieve between-group balance of certain
characteristics known as prognostic or risk factors (e.g., smokers vs. non-smokers).
These factors should be available at baseline or at the time of randomization. Within
each stratum, the randomization process itself can be a simple randomization, but in
practice, most clinical trials use a blocked randomization strategy.

When adaptive randomization is used, alterations in the randomization schedule
are allowed depending upon the varied or unequal probabilities of treatment
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assignments. In contrast to the fixed randomization, the adaptive randomization
allows changing the allocation probability as enrollment of participants to a
study progresses. Adaptive randomization can be restricted, covariate-adaptive,
response-adaptive (outcome-adaptive), or covariate-adjusted response-adaptive.
Restricted randomization procedures are preferred for many clinical trials because
it is often desirable to allocate an equal number of patients to each treatment. This
equality is usually achieved by changing the probability of randomization to treat-
ment according to the number of patients that have already been assigned. Covar-
iate-adaptive randomization methods are used to ensure the balance between
treatments with respect to certain known covariates. These methods are very effec-
tive in producing a marginal balance of the treatment groups when many covariates
are considered. Response-adaptive randomization is used when ethical consider-
ations make it undesirable to have an equal number of patients assigned to each
treatment. Adaptive assessment is made sequentially, updating randomization for a
next single patient or a cohort of patients using treatment estimates calculated from
all available patient data received so far. In this situation, it should be feasible to
identify the “better” treatment, and this “better” treatment should not be associated
with any potential severe toxicity. A delay in response should be moderate allowing
the adaptation to take place. Covariate-adjusted response-adaptive randomization
combines covariate-adaptive and response-adaptive randomization. These types of
adaptive randomization are discussed in details in Rosenberger and Lachin (2002)
and Hu and Rosenberger (2006).

Until the new treatment has been proven beneficial, equal allocation to treatments
is preferred. This strategy is often the best approach to maximize the efficiency
(power) of the primary comparison. At times, an unequal allocation is used to meet
important secondary objectives, when the responses have unequal variances or when
the costs of treatments differ substantially. Response-adaptive randomization mod-
ifies the allocation ratio of patients to treatments during the trial, but as previously
mentioned, it should be feasible to identify the “better” treatment before the
adaptation.

Large multicenter clinical studies should use blocked randomization stratified by
center. A few important risk factors can be used as strata to ensure the balance for
these factors. For a large number of prognostic factors, adaptive randomization
should be considered and appropriate analyses performed. Stratified analysis can
still be performed even if stratified randomization was not done.

The process of implementing the chosen randomization method is fundamental.
For fixed randomization, the sequence of assignments can be prepared at the start of
the study. However, this is not possible for adaptive randomization because the
treatment assignment depends upon the values of the variables for patients already
entered the study. To accomplish valid randomization, it is recommended to use an
experienced independent center to be responsible for developing and testing the
randomization process and monitoring the assignment of patients to the appropriate
groups.
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1.1.2.5 Blinding

In an unblinded (open-label) trial, both the patient and the investigator know to
which study group the patient has been assigned. Some trials can be conducted only
in this manner. Such studies include those involving surgical procedures, compar-
isons of devices, or changes in lifestyle (e.g., eating habits, exercise, smoking). The
appeal of such designs is in the simplicity of the trial execution. Additionally,
investigators might be more comfortable deciding whether the patient should con-
tinue participating in the trial or not if they know the identity of the drug. The main
disadvantage of such trials is the possibility of bias. Randomization and blinding are
the two techniques usually used to minimize bias and to ensure that the experimental
and control groups are similar at the start of the study and are treated similarly in the
course of the study (ICH E9 1998).

Blinded studies can be single-blinded, double-blinded, or triple-blinded. In a
single-blinded study, only patients are unaware of what treatment they receive, but
investigators are aware of what treatment each patient is receiving. The advantages
of this design are similar to the ones of an unblinded study: it is usually simpler to
carry out than a double-blind design, and the knowledge of the intervention may help
the investigator exercise their best judgment when caring for patients. It is recog-
nized that bias is partially reduced by keeping patients blinded (especially, if the
patient knowledge of the treatment can influence the response variable), but this
design is vulnerable to another source of potential bias introduced by investigators.
For example, the investigator can influence non-study therapy (concomitant treat-
ment) or the time of their patient’s enrollment to the study. In a double-blinded
study, neither the patients nor the investigators know the treatment assignment of
patients whom they treat. A clinical trial should ideally have a double-blinded design
to avoid potential problems of bias during data collection and assessment. In studies
where such a design is impossible, a single-blinded approach favored and other
measures to reduce potential bias are implemented. The triple-blinded study design
is an extension of the double-blinded design in which the committee monitoring
response variables are not aware of the identity of the treatment groups. The Data
Monitoring Committee (DMC) receives the study data and analyses with treatment
groups as A and B. The actual treatments are revealed only if there is a major safety
concern raised by the DMC. In a blinded study (double-, or triple-), blinding to
patients and investigator should be preserved during the clinical trial; otherwise, the
benefits of randomization can be lost.

1.1.2.6 Sample Size

Questions regarding the quantitative properties of clinical trial designs, specifically,
sample size, power, the precision of an estimator, and an optimal study duration, are
among the most frequently asked questions by a clinical team to statisticians.
Table 1.1 summarizes the quantitative design parameters commonly used in clinical
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trials. The sample size is the number of patients in a clinical trial. The sample size is a
function of different parameters including a significance level (α), a power (1 � β),
and a size of the difference in responses that need to be detected. For trials with a
time-to-event endpoint, (e.g., overall survival or disease progression), one must
distinguish the sample size from the number of events required by the study design.
The actual sample size needed to meet the required number of events depends
additionally on the censoring, enrollment, duration of the trial, and its follow-up
time.

The underlying theme of sample size considerations in all clinical trials is
precision. High precision implies little variation. The precision of estimation is the
characteristic of a study that is most directly related to the sample size: the higher the
sample size, the better the precision. In contrast, other essential features of the
estimates, such as validity, unbiasedness, and reliability, do not necessarily relate
to the study sample size. Precision is a consequence of a measurement error, within-
person and person-to-person variability, a number of replicates (sample size), exper-
imental design, and methods of analysis. By specifying quantitatively the precision
of measurement required, we implicitly outline the sample size and other features of
the study. Scientific validity is a consequence of good study design and well-
executed study.

There are two widely used frequentist approaches for determining the appropriate
sample size for a clinical trial: the first is based on confidence intervals around the
effect that we expect to observe, and the second approach is based on the ability of
the study to reject the null hypothesis when a specified treatment effect is hypothet-
ically present (based on power). There is a third perspective based on likelihood
ratios, a basic biostatistical idea that is appealing theoretically but has not been used

Table 1.1 Quantitative design parameters commonly used in clinical trials

Parameter Description

Sample size Number of patients (subjects) required for the study

Type I error (α) Concluding that a treatment effect exists when, in reality, it does not

Type II error
(β)

Concluding that a treatment effect does not exist when, in reality, it does

Power (1 � β) Chance of detecting a difference of a specified size as being statistically
significant

Δ Smallest treatment effect of interest based on clinical consideration (clinically
relevant or important difference)

Allocation ratio Ratio of sample sizes in treatment groups

Accrual rate Number of patients (subjects) entering a trial per unit of time

Number of
events

Number of patients (subjects) achieved an event of interest

Percent
censoring

Percent of patients (subjects) left without an event of interest by the end of
follow-up

Study duration Interval from the beginning to the end of the study

Follow-up
period

Interval from the end of accrual to the end of follow-up

8 O. V. Marchenko et al.



widely (Piantadosi 2017). For a more detailed review of fixed sample size calcula-
tions, see Donner (1984), Lachin (1981), Chow et al. (2003), Machin et al. (2008),
Friedman et al. (2015), and Piantadosi (2017). A good review of group sequential
designs and adaptive designs including sample size estimation is given in Jennison
and Turnbull (2000), Proschan et al. (2006), Chow and Chang (2007), and Wassmer
and Brannath (2016).

It should be noted that the sample size calculations provide only a rough estimate
of the needed number of patients for a trial because parameters used to estimate the
sample size are estimates and have an element of uncertainty. For example, a study
population might be different from a population used to design a trial (sampling
error), a control group might have a higher effect than originally assumed, or effect
of an experimental drug might be overestimated. Statisticians should use simulations
to assess uncertainty, evaluate different scenarios, and understand the quantitative
properties and operating characteristics of proposed study designs.

1.1.2.7 Statistical Significance and Clinical Significance

Clinically relevant (important) difference is one of the parameters that are usually
used to estimate the sample size for a clinical trial. There are several methods
proposed to define the minimal clinically important difference (MCID) including
distribution-based methods (use statistical techniques and statistical characteristics
of the obtained sample), anchor-based methods (based on comparisons with an
external measure which serves as the anchor), and Delphi method (based on the
opinion of experts). These methods are described in more details in McGlothlin and
Lewis 2014. MCID can be defined from a patient, healthcare professional, or
researcher’s perspective. Recently, more efforts are made by regulators, researchers,
and clinical trial sponsors to include patients’ perspective in the design and evalu-
ation of clinical trials.

Once the trial is completed and analyzed, the priority is to see whether the results
produced by the data from the trial are statistically significant. The findings can be
statistically significant at a pre-specified level (usually, 5%) but unimportant clini-
cally. For example, in a study of overweight people, a weight loss at 12 months on an
experimental drug can be only 1 pound more than on a placebo and can produce a
statistically significant result if the sample size is very large. However, most likely
this degree of weight loss would not be relevant or of interest. Such results would not
be clinically significant or even meaningful. Statistical significance does not neces-
sarily mean that the improvements from a trial will be clinically significant (mean-
ingful or relevant to patients). To understand whether the results are clinically
significant requires clinical judgment. Even if the MCID was used to design the
trial, there is still a possibility that the treatment estimate can be smaller than MCID,
for example, if the variability is much smaller than expected. In practice, to minimize
the cost of a trial, more substantial treatment effect than MCID is assumed at the trial
design, which results in a smaller sample size. If the sample size is underestimated,
such a trial might fall short in demonstrating statistical significance even though
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clinical significance is met. In general, if there is an evidence that the experimental
treatment can demonstrate a substantial effect (much larger than MCID), a group
sequential design is recommended (Jennison and Turnbull 2000).

1.1.2.8 Role of Biostatistics and Biostatisticians in Clinical Development

Biostatistics is a highly developed information science; it plays a significant role in
every stage of drug development. Historically, development of clinical trials has
depended mostly on biological and medical advances, as opposed to applied math-
ematical or statistical developments. Some consider biostatistics to be a useful set of
tools that biostatisticians apply when help is needed with the calculation of the study
sample size or at the time of the data analysis. Making reasonable, accurate, and
reliable inferences from data in the presence of uncertainty is an important intellec-
tual skill that biostatisticians bring to cross-functional teams. In recent years, the
recognition and appreciation of biostatistics have considerably improved. Biostatis-
ticians are not only responsible for the quantitative properties of clinical trial designs
and for analyzing data from clinical trials, but they are also respected partners of the
clinical teams contributing to strategic discussions and helping solve day-to-day
issues on studies and clinical programs.

A biostatistician plays an essential role in every stage of clinical research and
development, starting from the design and planning stage up to the analysis and
interpretation of the results. For example, in pharmaceutical industry, a clinical
biostatistician provides statistical expertise to cross-functional teams, leads teams
of statisticians and programmers, and ensures the use of appropriate and efficient
statistical designs and analysis methods during development, submissions, and life
cycle management of drugs, biologics, and devices according to applicable global
and regional standards, procedures, and regulatory guidance documents and
guidelines.

Biostatisticians drive the development and implementation of the innovative
statistical methodology—recent advances in information science and technology
enhanced application of innovative statistical designs and methods. High-
performing computers and the use of cloud computing facilitated advances in the
development of more complex computational algorithms for statistical modeling and
simulations. Open-source software and development of handy statistical packages
increased the use of advanced methods.

Biostatisticians bring an ability to solve problems efficiently at a level of rigor to
data analysis that is a hallmark of our discipline. To have a more significant impact
on a clinical program or study design strategy, biostatisticians have to be effective
communicators and willing to assume a leadership role in a variety of situations.
This is an exciting time in both clinical and statistical research and development,
with the promise of personalized medicine and the explosion of computer-intensive
statistical tools in development. The job of a biostatistician is exciting, challenging,
and rewarding.
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1.2 Phases of Clinical Development and Design Types

This section gives a brief overview of clinical development phases and most
common design types used in clinical trials: parallel group designs, factorial designs,
crossover designs, enrichment designs, group sequential, and adaptive designs. ICH
E8 (ICH E8 1997) and ICH E9 (ICH E9 1998) are additional resources that provide
information on this topic. ICH E8 guideline on General Considerations for Clinical
Trials provides an overview of clinical development phases and gives the classifi-
cation of clinical trials according to their objectives. This guideline is currently under
revision because clinical trial design and conduct have become more complex during
the last decade and influenced strategies required to develop drugs. ICH E9 guideline
describes statistical principals for clinical trials including a brief description of
common design types. The detailed description of clinical trial designs can be
found in Chow and Liu (2003), Friedman et al. (2015), Piantadosi (2017), Jennison
and Turnbull (2000), and Wassmer and Brannath (2016).

1.2.1 Phases of Clinical Development

Traditionally, a clinical development program consists of four phases: Phase I, Phase
II, Phase III, and Phase IV.

Phase I starts with the initial administration of an experimental drug to humans.
Phase I clinical trials are designed to evaluate the safety and tolerability of a new
drug in a dose range predicted by preclinical research. Such studies are conducted in
healthy volunteers or patients with the target disease. Cancer studies are almost
always conducted in patients.

Preliminary characterization of a drug’s absorption, distribution, metabolism, and
excretion is an essential goal of Phase I. Pharmacokinetics (PK) may be assessed in a
separate study or as a part of safety and tolerance studies. Pharmacodynamic
(PD) studies and studies relating drug blood levels to response (PK/PD studies)
may be conducted to provide early estimates of activity and potential efficacy and to
guide the dosage and dose regimen in later studies. Preliminary assessment of
activity or potential therapeutic benefit is evaluated in Phase I as a secondary
objective. For many orally administered drugs, the study of food effects on bioavail-
ability is an important part of Phase I.

The objective of the Phase I trial is to estimate the safe range of doses that can be
used in Phase II. Often, the first step is to find how large the dose in a given dose
range can be before unacceptable toxicity is experienced by patients. To estimate the
maximum tolerated dose (MTD), the process typically begins with the administra-
tion of the lowest dose in the dose range and escalates to the next dose until the
pre-specified level of toxicity is reached. Dose-escalation designs are typically used
in this phase.
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Phase II clinical trials are designed to evaluate the level of biological activity of a
new agent and continue safety monitoring. Studies in Phase II are typically
conducted in a small group of patients selected by relatively narrow criteria. Phase
II usually starts with the initiation of studies in which the primary objective is to
explore therapeutic efficacy in patients. These studies are often referred to as the
proof-of-concept (POC) studies and considered to be Phase IIa studies. An important
goal of Phase II is also to determine the dose(s) and regimen for Phase III trial(s).
This goal is addressed in Phase IIb studies that are usually dose-ranging trials aimed
to estimate the dose-response relationship and choose a dose or doses for Phase III.

Additional objectives of clinical trials conducted in Phase II may include evalu-
ation of multiple study endpoints, therapeutic regimens (including concomitant
medications), and different patient subgroups and target populations for further
study in Phase II or Phase III. Exploratory analyses can address these objectives,
examining subsets of data and by including multiple endpoints in trials. Initial
therapeutic exploratory studies may use a variety of study designs. A comparison
may consist of a concurrent control group, historical control, or pre-treatment versus
post-treatment evaluations. Typically, dose-ranging studies include three to five
doses of an experimental agent and a placebo; occasionally, they may include an
active control.

Phase III begins with the initiation of studies in which the primary objective is to
confirm the therapeutic benefit and the preliminary evidence accumulated in Phase II
that a drug is safe and effective for use in the intended indication and population.
These studies provide the basis for marketing approval. Studies in Phase III may also
further explore the dose-response relationship or evaluate the drug’s use in a broader
population, in various stages of the disease, or in predefined patients’ subgroups. For
drugs intended to administer for a long period of time, extension trials or extension
phases involving extended exposure to the drug are usually conducted in Phase III.
During the last several years, it became more popular to include in Phase III studies
conducted not just for marketing approval but also to satisfy payers’ requirements.
These studies usually use randomized, double-blind, parallel group designs. Group
sequential designs and adaptive designs that allow for early stopping, population
enrichment, or sample size re-estimation have become more popular in recent years.

Phase IV begins after the initial drug approval. The studies in Phase IV are
performed after the drug approval and, usually, are related to the approved indica-
tion. They are studies that were not considered necessary for approval but are
important for the further evaluation of the drug’s use. They may be of any type
but should have valid scientific objectives. Commonly conducted studies include
additional drug-drug interaction, safety studies, and studies designed to support the
use under the approved indication, e.g., mortality/morbidity studies and epidemio-
logical studies. Although some studies in this phase may use randomization, most
trials use observational, non-randomized designs. Typical types of observational
study designs include cohort and case-control designs. Chapter 4 of this book
discusses observational studies and provides more details on the design types used
for these studies.
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A research goal can overlap with more than one study phase, and some types of
studies can be conducted in several phases. Additionally, emerging data can prompt
modification of the development strategy. For example, the results of a confirmatory
study may suggest a need for an additional human pharmacology study. Recently,
seamless trials that combine objectives from two development phases have become
more popular in drug development. Seamless designs are used in Phase I/IIa trials,
Phase IIa/IIb trials, and Phase IIb/III trials. Such designs aim to reduce the overall
sample size, for example, by allowing the patients’ data from Phase II to be used in
Phase III analysis (inferentially seamless) or by eliminating the time between phases
(operationally seamless), which results in a shorter overall drug development time.
After the initial approval, drug development may continue with studies of new
indications, new dosage regimens, new routes of administration, or additional patient
populations. In this case, additional human pharmacology studies may indicate a
necessity for a new development plan. Depending on the relevance of the data from
the original development plan and therapeutic use, the requirement for some studies
may be reduced.

1.2.2 Clinical Trial Designs

1.2.2.1 Parallel Group Designs

A parallel group design is a randomized controlled design in which each patient is
randomized to one of two or more treatment arms to receive study treatment. The
treatments in this design usually include the investigational product at one or more
doses, and one or more control treatments, such as a placebo and/or an active
comparator. The assumptions underlying this design are less complicated than for
most designs discussed in this section. However, as with other designs, there may be
additional features of the trial that complicate the analysis and interpretation (e.g.,
covariates, repeated measurements over time, protocol violations, intercurrent
events, missing data). This design is the most common clinical trial design used
for confirmatory trials in Phase III.

1.2.2.2 Factorial Designs

In a factorial design, two or more treatments are evaluated simultaneously to assess
the interactions among the treatments. The most straightforward factorial design is
2 � 2 design in which patients are randomly assigned to four possible combinations
of treatments A and B: A alone, B alone, A and B together, and neither A nor B (e.g.,
a placebo). Factorial designs offer some advantages over conventional parallel group
designs. The factorial structure of the design allows for certain comparisons that
cannot be achieved by any other designs. When two or more treatments do not
interact, factorial designs can test the main effects using smaller sample sizes with
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greater precision than separate parallel group designs. The precision with which
interaction effects are estimated is lower than for main effects, but these designs
allow studying the interactions. When there are many treatments or factors, these
designs require a large number of treatment groups. In complex designs, if some
interactions are not of interest or unimportant, it is possible to omit some treatment
groups and reduce the sample size and complexity and, still, estimate the effects of
interest. Factorial designs are used mainly in disease prevention studies and to
establish the dose response of the combination treatments when the efficacy of
each monotherapy has been established.

1.2.2.3 Crossover Designs

The crossover design is a special case of a randomized controlled trial design which
allows each participant to serve as his or her control. The simplest crossover design
is the two-treatment two-period crossover design (Fig. 1.1). In this type of design,
there are two treatment periods, and patients are randomized to the sequence of
treatments: either to receive drug A followed by drug B or to receive drug B followed
by drug A. Extensions of this design include designs using more than one period for
each drug, more than two drugs, or incomplete block design where not all patients
receive every studied treatment.

There are some advantages of crossover designs over a parallel group design. For
example, because each patient serves as his/her control and because within-subject
variability is usually smaller than between-subject variability, the sample size for a
crossover design is smaller than for a parallel group design. Another advantage is
operational: patient recruitment to the trial might be easier because each patient
would have an opportunity to try multiple treatments tested in the trial. A potential
problem with crossover designs is the possibility that the treatment effect from one
period might continue to the next period. Usually, crossover trials implement a
sufficiently long washout interval between the treatment periods to address this
problem. Another problem related to the carryover effect is the treatment by period
interaction (means that treatment effect is not the same in different treatment periods;
it varies over time). This problem is not unique to crossover designs, but carryover

Fig. 1.1 Two-treatment
two-period crossover design
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effects can cause treatment by period interactions, and for the two-treatment
two-period crossover trials, the carryover effect and treatment by period interactions
are indistinguishable. Missing data has substantial effects on crossover trials. Usu-
ally, the trial duration is longer in crossover trials than in parallel group designs, and
the side effects from multiple drugs can increase the chance of patients dropping
earlier. ICH E9 guidance suggests restricting crossover designs to trials where loss of
subjects and data is expected to be small, and to chronic and stable diseases under
study. Crossover designs are commonly used in bioavailability trials.

1.2.2.4 Enrichment Designs

Enrichment designs are the clinical trial designs that aim to enrich the study
population by selecting a subset of patients in which the potential effect of a drug
can more readily be demonstrated (US Food and Drug Administration 2019a). The
FDA guidance on Enrichment Strategies for Clinical Trials identified three broad
categories of enrichment strategies: (1) strategies to decrease variability, (2) prog-
nostic enrichment strategies, and (3) predictive enrichment strategies. Many differ-
ent designs can support each of these strategies. Below, we provide examples of
some of them.

Study designs that decrease heterogeneity (nondrug-related variability) and,
therefore, increase the study power are widely used in clinical trials. The simplest
enrichment design is the placebo lead-in design (Fig. 1.2). In this design, all patients
have a run-in period during which they receive a placebo. Patients who respond to
placebo are taken off study. Patients who do not respond to placebo are randomized
to receive an experimental drug or a placebo. Only randomized patients are included
in the final analysis. Placebo lead-in period helps to eliminate patients who improve
spontaneously or have large placebo responses. The main advantage of this design is
the decreased variability and the increased power to detect the effect in the enriched
population.

A slightly more complex and more efficient design is sequential parallel compar-
ison design (SPCD) (Fig. 1.3). This design has a smaller sample size than a
traditional two-arm parallel group design because it uses two data points from

Fig. 1.2 Placebo lead-in
design
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some patients. Compared to the crossover design, the sample size is larger, but there
are no concerns about the carryover effect, and we do not need to assume that
treatment effects are the same in two periods as they are analyzed separately. More
information on these designs can be found in Ivanova et al. (2011) and Baer and
Ivanova (2013). Additionally, it is possible to enrich two ways: after Stage 1, one can
evaluate both drug and placebo responders and non-responders and then
re-randomize placebo non-responders and drug responders to drug and placebo
treatment groups (Huang and Tamura 2010). There are other modifications of
these designs (Ivanova and Tamura 2015).

Prognostic enrichment strategies mentioned in the FDA guidance on Enrichment
Strategies for Clinical Trials (US Food and Drug Administration 2019a) are aimed to
identify high-risk patients for the clinical trial before its initiation. For example, type
2 diabetes mellitus therapies have to characterize the cardiovascular (CV) safety
profile of the new antidiabetic treatment with a certain level of risk ruled out in the
pre-approval stage and a reduced level of risk to be ruled out in the post-approval
stage. To meet these requirements, meta-analyses and large cardiovascular outcome
trials (CVOTs) are conducted. CVOTs require large sample sizes and, therefore, are
very costly studies. Choosing patients at relatively high risk of CV events is critical
for these studies to be able to rule out a given level of CV risk with a reasonably
feasible study size. Inclusion criteria that are used to identify the high-risk patients
for CVOTs include a history of recent myocardial infarction or stroke, the presence
of concomitant illness, and certain blood markers. Statistical designs that usually
used for these trials are the standard parallel group design, group sequential and
adaptive designs that are briefly described in the next subsection. More information
on strategies and statistical designs of CVOTs can be found in Marchenko et al.
(2015) and Marchenko et al. (2017).

Another type of enrichment designs includes designs focused on a subset of
patients with specific genomic patterns that appear to be associated with the response
to the therapy. For example, a biomarker-stratified design can be used to prospec-
tively validate the biomarker and compare responses in biomarker-positive and
biomarker-negative populations (Fig. 1.4). Exclusion of the marker-negative
patients from the trial would be justified when there are evidence based on

Fig. 1.3 Sequential parallel
comparison design

16 O. V. Marchenko et al.



mechanistic, nonclinical, or early clinical data that the marker-negative patients
would not benefit from the experimental drug or would be exposed to the unreason-
able risk. In this case, the biomarker enrichment design that selects only biomarker-
positive patients to randomize and study in the trial further will be more appropriate
(Fig. 1.5).

If there is uncertainty at the planning stage about the strength of the marker-
outcome relationship, a fixed sample enrichment design might not be the best choice.
A study design that incorporates planned adaptations with the enrichment strategy,
taking advantage of information gained during a clinical trial, could be a better
choice.

1.2.2.5 Group Sequential and Adaptive Designs

Designs that allow for prospectively planned adaptations to one or more aspects of
the design based on accumulative data from subjects in the trial are called adaptive
designs (US Food and Drug Administration 2019b). Some authors consider group
sequential designs to be a separate class of designs. Recently released FDA draft
guidance on adaptive designs includes group sequential designs as one of the
adaptive design types. There are many types of adaptive designs; here we provide
some commonly used designs.

Group sequential designs allow stopping a study prematurely due to overwhelming
efficacy or futility at a pre-planned interim analysis. The total number of stages (the
number of interim analyses plus a final analysis) and the timing and stopping
criterion from rejecting or accepting the null hypothesis at each interim analysis
are usually pre-planned in advance. The Lan-DeMets alpha-spending approach
allows for flexibility in determining the number and timing of interim analyses
(Lan and DeMets 1983) if such flexibility is necessary, for example, when the
enrollment rate is much slower than anticipated. The timing and number of interim
analyses should be evaluated and simulated to navigate the decision process.
Although by increasing the number of analyses, the chance of stopping before the
end of the trial increases, multiple analyses during the trial might not be practical or

Fig. 1.4 Biomarker-
stratified design

Fig. 1.5 Biomarker
enrichment design
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even possible due to the fast enrollment or financial constraints. The opportunity to
stop a trial early and claim efficacy increases the probability of an erroneous
conclusion regarding the new treatment (type I error). For this reason, it is important
to choose the method and the significance levels for interim and final analyses
carefully so that the overall type I error rate is controlled at a pre-specified level.
Usually, stopping rules are based on rejection boundaries, on a conditional power, or
on a predictive power. The boundaries determine how conclusions would be drawn
following the interim and final analyses, and it is important to pre-specify which type
of boundary and spending function (if applicable) would be employed. The condi-
tional power approach is based on an appealing idea of predicting the likelihood of a
statistically significant outcome at the end of the trial, given the data observed at the
interim and some assumption on the treatment effect. If the conditional power is
extremely low, it is wise to stop the trial early for both ethical and financial reasons.
Although it is possible to stop the trial and claim the efficacy if the conditional power
is exceptionally high, the conditional power is mostly used to stop for futility. The
choice of the statistical approach and the type of boundaries should depend on the
objective of the trial and the role of the trial in a clinical program. When considering
stopping for the overwhelming efficacy, one should keep in mind the implication of
stopping early on the secondary endpoints and the safety profile of the drug. Group
sequential designs have a reduced minimum and expected sample size but an
increased maximum sample size relative to a comparable non-adaptive (fixed sam-
ple) parallel group design. In most cases, the increase is not large, and the design is
worth considering given the savings from early stopping. The group sequential
designs are considered to be more ethical and desirable for patients. More details
on sequential designs can be found in Jennison and Turnbull (2000), Proschan et al.
(2006), and Wassmer and Brannath (2016).

Adaptive dose-ranging designs allow fuller and more efficient characterization of
the dose-response by facilitating iterative learning and decision-making during the
trial. Insufficient exploration of a dose-response relationship often leads to a poor
choice of the dose selected for the confirmatory trial and may subsequently lead to
the failure of the trial and even a clinical program. Understanding of a dose-response
relationship with regard to efficacy and safety before entering the confirmatory stage
is a necessary step in a drug development. During an early development phase,
limited knowledge about a drug opens more opportunities for the adaptive design
consideration. Adaptive dose-ranging designs can have several objectives. They can
be used to establish an overall dose-response relationship for an efficacy parameter
or efficacy and safety parameters, estimate a therapeutic window or regimen, or
select a single target dose. The allocation of subjects to the dose currently believed to
give best results, or to doses close to the best one, has become very popular in
clinical dose-finding studies, specifically, when the intention is to identify the
maximum tolerated dose (MTD), the minimum efficacious dose (MED), or the
optimal dose. Examples are included in Lai and Robbins (1978); O’Quigley et al.
(1990); and Thall and Cook (2004) among others. More rigorous approaches are
based on the introduction of utility functions, which quantify the “effectiveness” of a
particular dose, and penalty functions, which quantify potential harm due to

18 O. V. Marchenko et al.



exposure to toxic or non-efficacious doses. Examples are provided by Li et al. (1995)
and Fedorov and Leonov (2013). The FDA draft guidance on adaptive designs
(US Food and Drug Administration 2019b) mentions adaptive parallel group designs
with multiple dose arms that can be dropped or added at an interim analysis based on
the pre-specified algorithm (Bretz et al. 2009; Wassmer and Brannath 2016). A
special case of adaptive treatment arm selection occurs in the context of an adaptive
platform trial designed to compare more than one experimental treatment against an
appropriate control for a disease (Woodcock and LaVange 2017).

Sample size re-estimation designs allow for sample size adjustment or
re-estimation based on observed data at an interim time point(s) for which statistical
analysis may be conducted in a blinded or unblinded manner. Sample size
re-estimation can improve the outcome of a trial if the information used to calculate
the original sample size was unreliable, if the change is necessary due to new or
additional information from an ongoing or finished trial, or if recent research in the
therapeutic area led to new requirements or standards. Although the flexibility to
adjust a sample size for a trial during an interim analysis is appealing when
information is limited at the design stage, it does not come without a price. When
the adjustment is made, it is important to take steps to preserve type I error rate.
Sample size re-estimation is an adaptive design feature that mostly used in confir-
matory trials to increase the sample size if variability is larger than originally
planned. Refer to Chow and Chang (2007) and Bretz et al. (2009) for methods that
are commonly used to re-estimate sample size in clinical trials. Similar to adaptive
group sequential designs, the timing of a sample size re-estimation requires addi-
tional considerations. While it is possible to perform a sample size re-estimation
multiple times, it is not recommended to perform it more than once during the trial.
Careful consideration must be given to the total sample size utilized for decision-
making at the planning stage and the processes that minimize potential bias that may
result from knowing an interim-observed treatment effect. In the case of unblinded
sample size re-estimation, special considerations should be given to the management
of the Data Monitoring Committees (DMC) and the control of the results
dissemination.

Adaptive enrichment design allows to decide whether to continue with the overall
population or just with the marker-defined subpopulation and re-estimate the study
sample size accordantly. Such changes should be prospectively planned and would
often need appropriate type I error rate control to account for interim analyses of the
accumulating data and subgroup analyses. If the only change were increased sample
size based on blinded, pooled results because the prevalence of the marker-defined
subgroup was lower than expected, there would be no need for a type I error rate
adjustment. Designs that can be used to perform the subgroup search and identifi-
cations based on biomarkers are discussed in Lipkovich et al. (2011) and Chap. 6 of
this book. Stallard (2010) describes a seamless Phase II/III design based on a
selection using a short-term endpoint; Jenkins et al. (2011) present an adaptive
seamless Phase II/III design with subpopulation selection using correlated end-
points; and Friede et al. (2012) introduce a conditional error function approach for
subgroup selection.
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Adaptive seamless designs have become more popular in drug development in
recent years. Such designs aim to reduce an overall sample size by allowing the data
from one phase to be used in another phase analysis (inferentially seamless) or to
reduce the development period by eliminating the time between phases (operation-
ally seamless). For example, an adaptive seamless Phase II/III design is a two-stage
design consisting of a so-called learning stage (Phase II) and a confirmatory stage
(Phase III). Just as there are a number of Phase II and Phase III designs, there are a
number of the corresponding Phase II/III designs. Seamless designs pose many
challenges as the time for planning a confirmatory trial is eliminated or rather
combined with the planning time of Phase II when the information is limited and
the uncertainties of the treatment are more significant. A sufficient benefit should be
expected from the combined Phase II/III trial as compared to the strategy with a
Phase II trial followed by a separate Phase III trial. To retain the validity, a type I
error control is important for the inferentially seamless designs. Approaches based
on the combination test principle that combine the stage-wise p-values using a
pre-specified combination function or on the conditional error principle which
computes the type I error under the null hypothesis conditional on the observed
data at interim are usually used to control type I error rate. Bretz et al. (2009) provide
a comprehensive review of the methods and offer practical considerations.

The planning stages for an adaptive clinical trial must be completed before
finalizing the decision to proceed. Trial simulations that compare different design
options, evaluate a range of assumptions, and compare operating characteristics of
designs are an essential step in a trial design and planning stage. Simulation tools can
also be used to monitor clinical trial outcomes and enrollment during the study to
ensure that the study is meeting expectations. Chapter 8 of this book provides
more information on the predictive modeling of the clinical trial operations, specif-
ically, predicting patient enrollment at different stages of the study. More informa-
tion on adaptive design considerations and implementation can be found in He
et al. (2014).

1.3 Statistical Methods

Statistical methods in drug development are used for the design and analyses of
clinical trials that, in turn, are aimed to determine the effects of particular healthcare
treatments, practices, and interventions. While many pharmaceutical studies have
utilized mainly randomized trial designs and employed basic inference procedures to
assess the efficacy and safety of new interventions and treatments, more recent
studies rely on modeling techniques that extend beyond traditional regression-
based approaches. Although data in drug development are often collected longitu-
dinally (i.e., data collected repeatedly over time on the same set of subjects),
frequently primary and critical secondary analyses rely on a single post-
randomization time point (e.g., change from baseline in response at a specific
time). While a focus on a single time point may be driven by regulatory requirements
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in a “confirmatory” setting, longitudinal modeling utilizing the totality of the
observed data offers the opportunity to achieve substantial efficiencies in data
analysis compared to current prevailing practices at the “learn” stage of drug
development. Those efficiencies may translate into faster and more accurate
decision-making, increased statistical power and/or estimation precision, and com-
binations of these, ultimately leading to increased probability of program success,
while reducing development costs. For the listed reasons, we decided to dedicate a
substantial part of this section to parametric longitudinal modeling methods, the
primary goal of which is to characterize the change in response over time and the
factors that influence change (Fitzmaurice et al. 2009). In many pharmaceutical
studies, the focus is primarily on mortality or survival with a specific interest given to
identification of the causes of early death and effectiveness of treatments for
delaying death and morbidity. In these types of studies, the survival analysis of
time-to-event is utilized (Kleinbaum and Klein 2012a, b).

The rest of this section is organized as follows. We start with a brief overview of
the most commonly used probability models and basic principles of parametric
estimation and inference in Sect. 1.3.1. Focusing on both categorical and continuous
types of response, we continue with the main properties of sampling distributions of
estimators commonly used for data analysis. We follow with the concept of regres-
sion and generalized linear modeling, thereby unifying the process of model con-
struction for a quantitative and categorical response in Sect. 1.3.2. With this, we lay
the ground for longitudinal data analysis described in Sect. 1.3.3 and finish with a
brief discussion about inference and modeling techniques for a time-to-event,
survival analysis in Sect. 1.3.4. Where appropriate, we include references to avail-
able software procedures in R and SAS.

1.3.1 Basic Principals of Probability and Inference

All statistical studies distinguish between response (or dependent, outcome) vari-
ables and explanatory (or independent, predictor) variables. Both response and
explanatory variables can be qualitative or quantitative.

When a variable takes numerical values in the list or an interval or a set of
multiple intervals, this variable is called quantitative or numerical. Quantitative
variables are classified as discrete and continuous. While discrete quantitative vari-
ables usually take a few or many values from the list, continuous variables can take a
large number of values, in practice, and an infinite number of values, in theory.
Examples of continuous response variables in clinical studies include blood pres-
sure, the concentration of white cells, and body temperature.

A qualitative (or categorical) variable has a measurement scale consisting of a set
of categories. Qualitative variables can be of two types of scales: nominal and
ordinal. While nominal categorical variables have no inherent natural order in
categories (e.g., skin color, sex, personality type, type of side effect), ordinal
categorical variables do have ordered categories (e.g., disease stage, patient
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condition). The choice of statistical analysis depends on the type of distribution of a
categorical variable. Agresti presents a comprehensive review of the analysis of
categorical data (Agresti 2002).

The first and foremost important step of any statistical analysis is a clear definition
of the type and nature of the response and explanatory variables. This step helps to
determine an appropriate set of descriptive and inferential methods for analysis and,
if needed, leads to a proper choice of class of models. While descriptive analysis
relies only on the assumption of the randomness of the data, inferential data analyses
also rely on assumptions of the specific distribution of the variables under consid-
eration. For instance, for linear regression models with continuous responses, the
assumption of normality is essential; for logistic regression, the distribution of
responses is assumed to be binomial.

1.3.1.1 Probability Distributions

Many statistical inference procedures rely on the assumption of a particular distri-
bution. For example, the assumption of normal distribution is required for statistical
procedures such as t-tests, linear regression analysis, discriminant analysis, and
analysis of variance, and when violated, interpretation and inferences may not be
reliable or valid. Here, we provide an overview of the probability distributions most
commonly used in pharmaceutical data analyses. Specifically, we focus on normal,
multivariate normal, binomial, hypergeometric, multinomial, Poisson, and negative
binomial distributions.

Normal Distribution

Normal random variable, Y, is the most frequently used and most studied univariate
continuous random variable in theory of statistics and probability that is completely
characterized by its expected value (mean) μ and the standard deviation σ. Most of
the inferential and modeling procedures for continuous response (e.g., regression,
one- and two-sample inference for population mean) rely on an assumption of
normality of some sort, as well as large sample procedure for categorical response
(e.g., one- and two-sample inference for population proportion). Similarly, studies
with a multivariate continuous response (e.g., repeated measurement over time
and/or conditions, clustered data) rely on assumption of multivariate normality.
Multivariate normal distribution of random vector Y ¼ (Y1,Y2, . . ., Yk) is fully
defined by a mean vector μ and a covariance matrix Σ. Table 1.2 contains a summary
for univariate and multivariate normal distribution.
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Binomial Distribution

Many pharmaceutical applications use a binary response to report, for example,
presence or absence of a certain disease, side effect, effectiveness of a drug, etc. Let
y1, y2, . . ., yn denote binary responses for n independent individuals related to n
independent random variables Y1, Y2, . . ., Yn. For a binomial model, we assume that
each person’s response is an independent and identical Bernoulli experiments with P
(Yi¼ 1)¼ p and P(Yi¼ 0)¼ 1� p, where outcomes 1 and 0 are labeled as “success”
and “failure” and p is the same across all responders. The total number of successes,
Y ¼Pn

i¼1Yi, is a binomial random variable with a fixed number of experiments, n,
and a probability of success, p. Table 1.2 provides the binomial probability mass
function with a corresponding mean and variance. As a number of experiments
grows and p remains fixed, the distribution of Y converges to normal. In some cases
when there is no guarantee that successive response experiments are independent or
identical, one can use the hypergeometric distribution that samples n binary out-
comes without replacement from a finite population of size N with A successes
(Agresti 2002).

Multinomial Distribution

In some sense, it represents an extension of binomial distribution when each person’s
response is exactly one of k possible categories. Consider, for example, a blood type
where each person can be either of O, A, B, or AB type. In this case, response of
person i is a k-dimensional vector yi ¼ (yi1, yi2, . . ., yik) with only a single non-zero
value 1 (e.g., a person with AB blood type has a multinomial outcome vector
(0,0,0,1)). The total sum of responses is a random vector Y ¼ (Y1,Y2, . . ., Yk),
where each entry Yj is the sum of all responses for category j. The sum of all
responses across all categories,

Pk
j¼1Yi, always equals to the number of responses,

n. The probability of success in category k on each experiment is fixed, pi, andPk
i¼1pi ¼ 1: The probability mass function of Y ¼ (Y1, Y2, . . .,Yk)~Multinomial(n,

p1, p2, . . ., pk) along with the means and variances for each category as well as
covariances between categories is summarized in Table 1.2.

Poisson and Negative Binomial Distribution

Poisson random variable is a discrete random variable that is used for counts of
events that occur randomly over a continuum (time or space), when outcomes in
disjoint segments (periods or regions) are independent. In theory, a Poisson random
variable can take discrete values from an infinite list of possible values, though in
practice only some values can happen with non-trivial probability. The distribution
of a Poisson random variable, Y, depends on a single parameter λ, which defines both
its mean and variance. Moreover, the variance equals to the mean of Poisson
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distribution (see Table 1.2). In practice, this means that sample counts vary more
when their mean is higher. Often, however, sample count observations exhibit
variability exceeding expected by the Poisson distribution, phenomena is known
as overdispersion. In these cases, assumption of a Poisson distribution for count data
is too simplistic and the negative binomial distribution can serve as an alternative
model for count data that permits the variance to exceed the mean. Negative
binomial distribution is a discrete probability distribution that counts the number
of successes, y, in a sequence of independent and identically distributed Bernoulli
experiments until a pre-specified (fixed in advance) number of failures, r, occurs.
Analogously to binomial, each Bernoulli experiments results in one of the outcomes,
success or failure, with probabilities p and (1 � p), respectively.

1.3.1.2 Statistical Estimation

In general, the choice of the distribution for a response variable is one of the essential
steps. Each distribution is defined by one parameter or a set of parameters that in
practice are unknown and need to be estimated using sample data. In this chapter, we
follow the approach described by Agresti (2002), and we first focus on maximum
likelihood (ML) estimators that under weak regularity conditions possess important
properties for large samples: such as for approximate normality of sampling distri-
butions, asymptotical consistency (converging to the parameter as sample size
increases), and efficiency (producing standard errors no higher than those using
other methods).

Suppose response variables Y1, Y2, Y3, . . ., Yn have the following joint density
function (for continuous variables) or the probability mass distribution function (for
discrete random variables) f(y1, y2, . . ., yn| θ), where θ can be a single parameter (e.g.,
θ ¼ p) or a vector of parameters (e.g., θ ¼ (μ, σ), θ ¼ (β0, β1, β2, . . ., βq)). Given
observed values Y1¼ y1, Y2¼ y2, . . ., Yn¼ yn, the likelihood of θ is the probability
of observing the given data as a function of θ, L(θ)¼ f(y1, y2, . . ., yn| θ). The value ofbθ that maximizes L(θ), bθ ¼ arg max θ L θð Þ , is called the maximum likelihood
estimate (MLE) of parameter θ. The MLE is also a value of the parameter that
maximizes l θð Þ ¼ log L θð Þ ¼P

i
log f yijθð Þ ¼P

i
li θð Þ and guarantees that observed

data have the highest probability of occurrence.
The standard error of bθ , in general, can be obtained from the asymptotic

covariance matrix of bθ , which under certain regularity conditions equals to the
inverse of information matrix I(θ)�1 (Rao 1973), where the information matrix is

defined as I bθ� � ¼ �E
∂2l bθ� �
∂θ∂θ0

� �
. The standard errors of each parameter of interest are

the square roots of diagonal elements of the inverse of information matrix evaluated
at the maximum likelihood estimator, bθ . A number of other variance/covariance

estimators include negative Hessian variance estimator �P
i

∂2li bθ� �
∂θ∂θ0

 !�1

, outer
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product of gradient �P
i

∂li bθ� �
∂θ

∂li bθ� �0
∂θ

 !�1

, and the result of M-estimation

P
i

∂2li bθ� �
∂θ∂θ0

 !�1 P
i

∂li bθ� �
∂θ

∂li bθ� �0
∂θ

 !
�P

i

∂2li bθ� �
∂θ∂θ0

 !�1

, also known as the empirical or

“sandwich” estimator. M-estimators and their asymptotic properties were initially
introduced by Huber (Huber 1964, 1967). In the biostatistics literature, M-estimators
were brought under the name of generalizes estimation equations (GEE) by Liang
and Zeger (Liang and Zeger 1986, 1995). Serving as an alternative to maximum
likelihood estimation, the GEE approach provides a more general methodology for
analyzing correlated responses that can be discrete or continuous (Fitzmaurice et al.
1993). The well-known generalized least squares (GLS) approach used in regression
model can be considered a special case of the GEE approach. The key idea behind
the GEE is to extend the usual likelihood equations by incorporating the covariance
matrix of the vector responses.

In practice, it is more informative to construct confidence intervals than to report
estimates and their corresponding standard errors. Based on the asymptotical con-
sistency and normality of the MLE of bθ and using both the values of the estimates
and standard errors, one can construct 100(1 � α)% Wald confidence interval. The
Wald confidence interval (Wald 1943) for univariate parameter is a set of θ values

between bθ � zα
2
SE bθ� � and bθ þ zα

2
SE bθ� �, where zα

2
denotes the 100(1� α) percentile

of the standard normal distribution. For categorical data and data with a small sample
size, the likelihood-ratio-based confidence interval is more preferable. The
likelihood-ratio-based confidence interval is based on the 100(1 � α) percentile of
the chi-square distribution, Χ2

df αð Þ, with q degrees of freedom (with one degree of
freedom for a single parameter). In general, this interval represents a q-dimensional

confidence region space for multivariate parameter θ: �2 L θð Þ � L bθ� �h i
< Χ2

df αð Þ.
The likelihood-ratio-based approach to construction of a confidence region (interval)
remains reliable when the assumption of normality of bθ is violated (Pierce and Peters
1992). See Kauermann and Carroll (2001) for a more recent discussion of the
properties of the “sandwich” estimator and corresponding coverage probability of
confidence intervals (Kauermann and Carroll 2001).

1.3.1.3 Statistical Inference

Here we focus on two standard approaches to perform large sample inference of a
parameter of interest: one using the reported maximum likelihood estimates and
corresponding standard errors and another based on the likelihood-ratio test. Con-
sider a significance test of a null hypothesis H0 : θ ¼ θ0. Using the first approach, the

Wald test statistic z ¼ bθ � θ0
� �

=SE bθ� � has an approximate standard normal

distribution when θ ¼ θ0. Depending on the alternative hypothesis H1 (one- or
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two-sided), one can follow with the computation of p-value or reference the standard
normal table for appropriate critical values.

A second method uses maximization of the likelihood function under two con-
ditions: (1) when H0 is true and θ ¼ θ0 and (2) permitting H0 or H1 to be true. The
likelihood maximized under the second condition L1 will always be as large as or
larger than the likelihood maximized under the first condition L0 due to maximiza-
tion of an unrestricted set of parameters. The likelihood-ratio test statistics
�2 log [L0/L1] under H0 converges to chi-square distribution with the degrees of
freedom equal to the difference between the dimension of the full parameter space
and the dimension of the parameter space restricted by H0 (Willks 1938). For large
samples, both approaches provide the estimates asymptotically equivalent; for small
to moderate samples sizes, the likelihood-ratio test is usually more reliable (Cox
1970). Overall, the traditional approach to statistical inference focuses on hypothesis
testing of a single test or a number of multiple test with some chosen multiplicity
adjustment strategy (see Alosh et al. 2014; Dmitrienko and D’Agostino 2013; and
Tamhane and Gou 2017).

Evidently, knowledge of a sampling distribution or at least the expected value and
the standard error of a sample statistics significantly simplify the process of statistical
inference that is based on the probability distribution of a statistic, rather than on the
likelihood function built on all sample values. A sampling distribution is the
probability distribution of a given sample statistic, or more specifically, if a large
number of random samples of size nwas drawn from the same population of interest,
and each sample was used to produce one value of a sample statistic (e.g., the sample
mean), then the probability distribution of the values that the statistic takes on is
called the sampling distribution. Many sampling distributions are not observed in
practice but instead derived in theory via various versions of the Central Limit
Theorem. For example, when a random sample is drawn from a normal population
or the sample size n that is relatively large (roughly 30 or more), the sample mean
follows normal or approximately normal distribution with the same mean as the
population mean μ and the standard error as a ratio of the population standard
deviation and a square root on the sample size, σffiffi

n
p . In cases, when the population

standard deviation is unknown and is estimated using a sample standard deviation,
the same statement applies except the sampling distribution is the Student’s
t-distribution, rather than normal. The exact sampling distribution of a sample
proportion of successes in n Bernoulli trials bp is nbp ~Binomial n, pð Þ that can be also

approximated by a normal distribution, bp � N p,
ffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q	 

: There are other sam-

pling distributions derived for many sample statistics that are out of the scope of this
Section.
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1.3.2 Linear Regression and Generalized Linear Models

The objective of statistical modeling is usually twofold: (1) the interpretability and
the prediction power of the model and (2) the inference about the effect of individual
predictors on the response. For example, in many pharmaceutical studies, one of the
objectives is (1) to test a statistically significant effect of some treatment (e.g., new
analgesic vs. placebo) on a response variable (e.g., pain relief score) and (2) to
estimate the magnitude of the treatment effect. Consistently with these two objec-
tives, statistical modeling approaches often rely on certain assumptions regarding the
relationship between the response and predictors and the distribution of the response.
By fitting a simple regression model with the treatment represented as one of the
independent variables (categorical), one can perform a test of statistical significance
essentially equivalent to t-test for the difference in population means. Using the
regression approach, it is also possible to adjust the model for other independent
(pre-treatment) variables, such as baseline patient characteristics.

1.3.2.1 Linear Regression Model

Classical regression model focuses on a continuous dependent variable, or response,
and has the general form of:

Y ¼ E Y jXð Þ þ ε,

where X denotes a set of independent predictor variables (with the first column
assumed to be one) and ε represents a random error induced by some source of
uncertainty (e.g., random sampling). While the expected value of the response Y is
considered to be a linear combination of predictors E(Y|X) ¼ X'β, error term ε is
assumed to follow a normal distribution with the expected value of zero and the
variance of σ2 and to be independent of X.

More specifically, let’s consider N independent observations of a single response
variable, Y, that can be either continuous, binary, or count. Let Yi (i ¼ 1, 2, . . .,N )
denote the response variable for the ith subject and assume a p-dimensional vector of
covariates, Xi¼ (Xi1, . . .,Xip) associated with each outcome Yi, where Xik denotes the
kth covariate for the ith subject. The classical linear regression model for Yi can be
written as:

Yi ¼ β1Xi1 þ β2Xi2 þ . . .þ βpXip þ ei,

where Xi1 ¼ 1 for all individuals and β1 is the regression intercept. According to this
model, the expected value of Yi is the average for all individuals with the
pre-specified covariate values that vary linearly with the values of the covariates,
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E YijXi1, . . . ,Xip

� � ¼ μ YijXi1,...,Xipð Þ ¼ β1Xi1 þ β2Xi2 þ . . .þ βpXip:

Vector of coefficients β ¼ (β1, β2, . . ., βp) is estimated using the least squares
(LS) approach of the maximum likelihood (ML) method and has the following
interpretation. The population intercept (for X1 ¼ 1), β1, is the mean value of the
response when all of the covariates equal zero. In turn, the population slope, say βk,
has interpretation in terms of the expected change in the mean response for a single-
unit change in Xk given that all of the other covariates remain constant.

The basic idea behind the least squares (LS) estimation is to choose the estimates
of β1, . . ., βp (bβ1, . . . ,bβp) such that the fitted regression model “deviates” the least
from the observed data or minimizes the residual sums of squares defined as:

XN
i¼1

Yi � bYi

� �2
¼
XN
i¼1

be2i ,
where bei is an estimated residual, Yi is an observed value of the response, and bYi a
fitted value of the response of the ith subject:

bYi ¼ bβ1Xi1 þ bβ2Xi2 þ . . .þ bβpXip:

Recall that according to ML approach, the estimates of β1, . . ., βp (bβ1, . . . ,bβp),
and σ2(bσ2 ) are the values that are most “likely” for the observed data that can be
found as the values that maximize the log-likelihood:

l β1, . . . , βp, σ
2

� � ¼ ln L β1, . . . , βp, σ
2jYi,Xi, i ¼ 1, . . . ,N

� �
¼ �N

2
ln 2πσ2
� �

� 1= 2σ2
� � XN

i¼1

Yi � β1Xi1 þ β2Xi2 þ . . .þ βpXip

� �2
:

It turns out that the estimates found by ML and LS approaches are equivalent and
in the vector/matrix notation form can be written as:

bβ ¼ bβ1, . . . ,bβp� �
¼

XN
i¼1

XiX
0
i

� �" #�1XN
i¼1

XiYið Þ:

This value of the estimate is the one usually produced by any statistical software
for linear regression. In SAS, one can use PROG GLM or PROC REG and the “lm”

function (as a part of standard ‘stats’ package) in R.
Provided that the main linear regression model assumptions are satisfied, the ML

(LS) estimator of regression coefficients possesses the following important
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properties. The estimator of β is unbiased that is E bβ� � ¼ β ; and the sampling

distribution of bβ is asymptotically normal,

bβ � N β, σ2
XN
i¼1

XiX
0
i

� �" #�1
0@ 1A:

Note that in this chapter, we do not provide a detailed description of classical
methodology of the analysis of variance (ANOVA) and the analysis of covariances
(ANCOVA). Both of these concepts can be formulated and interpreted in term of the
general linear models. See Rutherford (2011) for a comprehensive review and
detailed explanation of how ANOVA and ANCOVA are incorporated in GLMs.
In his book, Rutherford (2011) also discusses corresponding different multiple
comparisons procedures and the power analysis in relation to the sample size
computation.

1.3.2.2 Generalized Linear Models

In many pharmaceutical and biomedical applications, the response is not continuous,
for example, presence or absence of some particular side effect or counts of the
number of epileptic seizures over some period of time or the number of acne pimples
over a certain body area or the type of response to cancer treatment (e.g., complete
response, partial response, stable disease, progression). When the response variable
is discrete (e.g., binary, ordinal, or a count), the linear regression models are no
longer appropriate. Instead, generalized linear models can serve as an alternative for
relating changes in the expected response to covariates. Generalized linear models
extend the class of linear regression models to settings where the outcome variable
can be categorical, continuous, or count using the distribution models appropriate for
each type of response.

First, we consider methods for analyzing cross-sectional data and then we extend
them to longitudinal and clustered data settings. Assume N independent observations
of a single response variable, Y, that can be either continuous, binary, or count. As
before, we let Yi (i ¼ 1, 2, . . .,N ) denote the response variable for the ith subject and
assume a p-dimensional vector of covariates, Xi¼ (Xi1, . . .,Xip) associated with each
outcome Yi, where Xik denotes the k

th covariate for the ith subject with Xi1 ¼ 1 for all
subjects. The primary goal of a generalized linear model is to relate the mean of Yi,
μi ¼ E(Yi|Xi1, . . .,Xip), to the covariates Xi in some linear form through the specifi-
cation of (1) a distribution for Yi, (2) a systematics component, and (3) a link
function.

The distribution of the response is assumed to belong to the exponential family of
distributions, the density function of which can be expressed in a form:
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f yi; θi,ϕð Þ ¼ exp
yiθi � a θið Þf g

ϕ
þ b yi,ϕð Þ

� �
,

where a(�) and b(�) are specifically defined for each particular distribution. All
exponential family distributions share some common statistical properties. Focusing
on the mean and the variance of exponential family distributions, it can be shown
that the mean of Yi can be computed as a derivative of the function a(θi), that is
E Yið Þ ¼ μi ¼ ∂a θið Þ

∂θ , and the variance of the response can be computed using a
second derivative of a(θi) and expressed in terms of the product of a positive
dispersion parameter, ϕ > 0, and a variance function of mean, v(μi), that is

Var Yið Þ ¼ ϕ ∂2a θið Þ
∂θ2

¼ ϕv μið Þ. In fact, the normal, Bernoulli, binomial, and Poisson
distributions all belong to the exponential family distributions. For instance, by
re-arranging terms in the normal density function, f(yi; μi, σ

2), one can represent it
in a general form of exponential density with canonical location parameter θi ¼ μi,
scale parameter ϕ ¼ 1, a θið Þ ¼ μ2i =2, and b yi,ϕð Þ ¼ �1=2 fy2i =σ2 þ log 2πσ2ð Þ .
Scale factors and variance functions for normal, Bernoulli, and Poisson distributions
are summarized in Table 1.3.

The systematic component of a generalized linear model specifies the effect of the
covariates, Xi, on the mean of Yi that can be expressed in a linear combination of the
unknown regression coefficient and covariates (or even transformed coefficients),
denoted by ηi,

ηi ¼ β1Xi1 þ β2Xi2 þ . . .þ βpXip:

By taking a suitable transformation of the mean response, μi, and relating the
transformed response to the covariates through an appropriate link function, g(μi),
the specification of a generalized linear model becomes

g μið Þ ¼ ηi ¼ β1Xi1 þ β2Xi2 þ . . .þ βpXip:

The link function, g(μi), is some known function. For example, for the normal
distribution of the responses, the link function is an identity function, g(μi) ¼ μi; for
count data following the Poisson distribution, the link function is a natural logarithm
g(μi) ¼ log (μi). Table 1.3 contains canonical link functions for three most used
distributions that are normal, Bernoulli, and Poisson.

Table 1.3 Scale factor, variance functions, and canonical link for normal, Bernoulli, and Poisson
distributions

Distribution Scale factor Variance function Location parameter/canonical link function

Normal ϕ ¼ σ2 v(μ) ¼ 1 Identity: θ ¼ g(μ) ¼ μ

Bernoulli ϕ ¼ 1 v(μ) ¼ μ(1 � μ) Logit: θ ¼ g μð Þ ¼ log μ
1�μ

� �
Poisson ϕ ¼ 1 v(μ) ¼ μ Identity: θ ¼ g(μ) ¼ log (μ)
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In general, the estimation of the regression coefficients in a generalized linear
model is based on the maximum likelihood approach that requires an iterative
procedure that has been implemented in many statistical packages. In SAS, one
can use PROC GENMOD and the “glm” function in R.

Logistic Regression for Binary Responses

In situations when the response for each subject is binary (i.e., can be mapped to
1 ¼ “success” and 0 ¼ “failure”), Yi 2 {0, 1}, the mean of the binary response
variable, denoted as p, is the proportion of successes or the probability that the
response takes on the value one, pi¼ E(Yi|Xi)¼ Pr (Yi¼ 1|Xi). Estimation of pi and
relating this to a set of covariates X is usually done using logistic regression:

ln
pi

1� pi

	 

¼ X0

iβ= β1Xi1 þ β2Xi2 þ . . .þ βpXip,

where ln pi
1�pi

� �
defines the logarithm of the odds of success and replaces the mean

of the continuous response used in linear regression model, hence imposing a
nonlinear relationship between p and the covariates. Under the assumption that the
binary responses (Y1,Y2, . . .,Yn) are binomial (Bernoulli) random variables, one can
use ML estimation to obtain estimates of the logistic regression parameters and adopt
the interpretation similar to linear regression coefficients but in terms of log odds of
success. Specifically, the population intercept, β1, is the log odds of success when all
of the covariates equal zero; and the population slope, βk, is the change in log odds of
success for a single-unit change in Xik given that all of the other covariates remain
constant.

Log-Linear Regression for Counts

In Poisson regression, the response variable Yi is a count (e.g., number of specific
symptoms of a disease in a given period of time) assumed to follow the Poisson
distribution with the expected count or number of events E(Yi|Xi)¼ λi. This provides
the basis for model likelihood-based inference. As a basis for direct comparison,
counts are often expressed as rates; the corresponding expected rate is given by λi/t,
where t is a relevant baseline measure. Poisson regression relates the expected counts
or rates to a set of covariates:

ln λið Þ ¼ X0
iβ ¼ β1Xi1 þ β2Xi2 þ . . .þ βpXip,

or the expected rates to a set of covariates:
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ln λið Þ ¼ ln tð Þ þ X0
iβ= ln tð Þ þ β1Xi1 þ β2Xi2 þ . . .þ βpXip,

where ln(t) is an adjustment term known as an “offset.”
Thus, modeling λi (or λi/t) with a logarithm function can be considered equivalent

to a linear regression model but replacing the mean of Yi by the logarithm of the
expected count (or rate). The coefficients of the model are interpreted in terms of the
logarithm of the expected count (or rate), respectively.

Both logistic and Poisson regression models as well as linear regression models
fall within generalized linear models. Note that when a Poisson regression model is
applied to data consisting of very small rates (e.g., applicable to studies with rare
events), then the rate is approximately equal to the corresponding probability, pi, and
ln λi

t � ln pi
1�pi

, hence making the estimates of the regression coefficients for Poisson

regression and logistic regression models approximately equal and the results of the
inference not discernibly different. See Agresti (2002) for comprehensive descrip-
tion of regression models for ordinal model and Hilbe (2007) for negative binomial
regression.

Overdispersion

One of the important properties of Poisson random variable is an equality of the
expected value and variance. However, in practice count data variable often has
variability far exceeding the expected value. This phenomenon is referred to in
statistics as overdispersion. Although overdispersion has negligible effect on the
estimated model coefficients, failure to account for overdispersion results in
underestimated standard errors that lead to potentially misleading inferences such
as too narrow confidence intervals and too small p-values. There are several options
to address the issue of overdispersion. First option is to make the adjustment to
nominal standard errors by including a scale factor ϕ in specification of the Poisson
variance, Var(Y ) ¼ ϕE(Y ). This option makes an assumption of variance increasing
linearly as a function of mean; seemingly simplified, in practice, it tends to work
well. Second option to handle overdispersion is to include in the log-linear model an
additional source of random variability, say some additional random error e that
arises due to unmeasured individual factors:

ln E YijXi; eið Þð Þ ¼ ln tið Þ þ β1Xi1 þ β2Xi2 þ . . .þ βpXip þ ei:

The inclusion of random errors with normal distribution with zero mean and
variance σ2e implies a more complicated dependence of the variance of Y from the
mean: Var Yð Þ ¼ E Yð Þ þ exp σ2e

� �� 1
� �

E2 Yð Þ. However, the model with additional
normal errors does not have a closed form of the likelihood and requires computa-
tionally demanding integration techniques. At the same time, assuming a gamma
distribution for the exponentiated errors, exp(e), with mean of 1 and variance γ
results in the model that has a closed-form likelihood corresponding to a negative
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binomial distribution, leading to a more straightforward estimation of the model
parameters. This approach of adjusting for overdispersion also allows for the
quadratic dependence of the variance of the counts: Var(Y ) ¼ E(Y ) + γE2(Y ).

We finish our discussion on overdispersion with a final note about situations
when overdispersion arises with a discernably large number of zero counts in the
data. This prevalence of zeros often leads to the inflation of the count variability
compared to the mean value of Poisson distribution. Using, for example, a scale
factor or inclusion of the additional variation in these situations can solve only
partially the problem of overdispersion and explain the excess of zeros. One way to
account for zeros is to explicitly incorporate them in the regression-like models.
So-called “zero-inflated Poisson” (ZIP) models have been developed specifically to
account for excess of zeros (Lambert 1992). These models assume two unobserved
groups “always-zero group” and “sometimes-zero group.” For example, it may be of
interest to model the average number of times patients refill their prescriptions for
opioids. In this example, patients can be thought as belonging to one of two groups:
those who never refill a prescription for opioids (the “always-zero group”) and those
who refill a prescription whenever they feel pain that is severe (the “sometimes-zero
group”). Observed zero counts are realized from the first group (those who never
refill their opioid prescriptions) and a proportion of patients from the second group
(those who would refill but not during the period of the study). Zero-inflated models
are available for binomial and negative binomial types of distributions (Hall 2001).
See Yang et al. (2016) for a more detailed review and comparison of different
methods for zero-inflated data with application to health surveys. Similar extensions
have been made to incorporate inflations other than zero for multinomial or ordinal
outcomes (see Sweeney and Parnell 2018). Package “pscl” with function “zeroinfl”
has been developed in R for zero-inflated count data (see also R help manual for
more details).

Model Selection

Performance assessment is an essential step that guides the selection process of the
best model. In order to select a model, one can distinguish between two situations
when (a) competing models are nested and (b) competing models are not nested.
Nested models can be compared using the likelihood-ratio test. Two models are
nested if a set of the parameters in a simpler (or reduced) model is a subset of the
parameters of a more complex (or full) model or, alternatively, if the full model can
be transformed into the reduced model by putting constraints on a subset of the

parameters. The likelihood-ratio test statistics �2 log Lreduced=Lfull

h i
¼ 2 clfull � clred� �

under H0 (no significant difference between full and reduced models) converges to
chi-square distribution with the degrees of freedom equal to the difference between
the dimension of the full model and the reduced model. This approach can be used in
backward or forward variable subset selection approaches. In R, one can use
ANOVA (model1, model2) function to implement a comparison.
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When one compares non-nested models, other statistics may be used to assess the
quality of each model. These statistics include Mallow’s Cp, Akaike information
criterion (AIC), Bayesian information criterion (BIC), and adjusted R2.

1.3.3 Applied Longitudinal Analysis

Longitudinal studies allow direct evaluation of change in response over time and the
factors that influence this change. While many of the longitudinal studies are
observational, more and more recent longitudinal studies are designed as random-
ized experiments. In this Section, we summarize the main concepts described in
Fitzmaurice et al. (2011).

In a longitudinal study, participants (subjects or patients) are measured repeatedly
at different occasions or times. When the number and the timing of occasions are the
same for each participant in the study, then the design of the study is called balanced.
Generally, both the number of occasions and the timing can vary from one partic-
ipant to another, which can happen due to the nature of the study design or due to the
incompleteness of the data collection. In order to obtain valid inferences, longitudi-
nal data analysis methods must account for correlation (dependence), which is
usually present between repeated measures on the same individual, and variability,
which is often heterogeneous across measurement occasions. Both correlation
between observations and heterogeneity violate the fundamental assumptions of
independence and homoscedasticity in the linear regression modeling. Failure to
account for correlation and heterogeneity often results in large standard errors,
increasing the risk of type II error.

Let Yij denote the response variable for the i
th individual (i ¼ 1, . . ., N ) at the jth

occasion ( j ¼ 1, . . ., ni). The expected average and the variance for each occasion
among N individuals are denoted as μj ¼ E(Yij) and σ2j ¼ E Yij � E Yij

� �� �2 ¼
E Yij � μ j

� �
, 2 respectively. The covariance is a measure of the linear dependence

between two variables Yij and Yik, denoted by σjk ¼ E[(Yij � μj)(Yik � μk)]. The

correlation between Yij and Yij is denoted by ρik ¼
E Yij�μ jð Þ Yik�μkð Þ½ �

σ jσk
, where σj and σk

are the standard deviations of Yij and Yik. For the vector of repeated measures,
Yi ¼ (Yi1,Yi2, . . .,Yin)

', we define the symmetric variance-covariance matrix, Σi.
The independence assumption between observations measured on the same

individual and homoscedasticity of observations at different occasions would lead
to (incorrect) estimates of the variance of change in the mean over time. As a result
the estimated standard errors and the corresponding p-values would be under- or
overestimated, leading to misleading statistical inference. Thus, longitudinal data
modeling would require proper modeling of both mean responses over time and
modeling of covariance among repeated measures. When proposing the final longi-
tudinal model, one must jointly specify models for the mean and covariance.

Analogously to classical regression models, longitudinal models adopt the gen-
eral form of the relationship between a dependent variable and a set of covariates:
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Yi ¼ X0
iβþ εi,E YijjXij1, . . . ,Xijp

� � ¼ μij ¼ β1Xij1 þ β2Xij2 þ . . .þ βpXijp , but
unlike classical models with a univariate response, longitudinal models focus on a
multivariate response and assume multivariate normal distribution for random errors.
In this case, the values of response Yi follow a multivariate normal distribution, and
in order to find maximum likelihood estimates of a vector of coefficients β, we must
maximize the log-likelihood based on the product of multivariate normal densities.
Assuming known and constant (across all individuals) covariance matrix Σ, the
log-likelihood of interest has a form:

l βð Þ ¼ ln 2πð Þ�Nn
2 Σj j�N

2 exp �
PN

i¼1 Yi � Xiβð Þ0Σ�1 Yi � Xiβð Þ
2

" #( )
:

The solution to this optimization problem has a closed form expression for the
vector of regression coefficients β, the corresponding ML estimate, also known in
the literature as the generalized least squares (GLS) estimate:

bβ ¼
XN
i¼1

X0
iΣ

�1Xi

� �" #�1XN
i¼1

X0
iΣ

�1Yi

� �
:

The GLS estimate of β is an unbiased and consistent estimate that follows

asymptotically multivariate normal distribution, bβ � N β,
PN
i¼1

X0
iΣ

�1Xi

� �� ��1
 !

. In

the beginning of this section, we assumed a known covariance matrix, Σ; in practice,
however, Σ must be estimated from the data. Unfortunately, no closed form ML
expression is available from the multivariate normal log-likelihood. One can obtain
the ML estimate of Σ via numerical approximation and then substitute the
corresponding bΣ in the ML expression for a vector of coefficient bβ, which, in turn,
for sufficiently large samples holds the same properties as the estimator bβ when Σ is
known. When Σ is unknown and the sample size is small, the ML can potentially
underestimate diagonal elements of Σ (i.e., variances). As an alternative to MLE, one
can utilize the method of residual or restricted maximum likelihood estimation
(REML). The key idea behind REML is to utilize the likelihood for the residuals
after estimating β:

l βð Þ¼ ln 2πð Þ�Nn
2 Σj j�N

2 exp �
PN

i¼1 Yi�Xiβð Þ0Σ�1 Yi�Xiβð Þ
2

" # XN

i¼1
X0
iΣ

�1Xi

� � �1
2

( )
:

Maximizing the residual log-likelihood, we obtain less biased estimate of Σ and
the same GLS estimator of β but with modified covariance:
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Cov bβ� � ¼
XN
i¼1

X0
i
bΣ�1

Xi

� �" #�1XN
i¼1

X0
i
bΣ�1

Cov Yið ÞbΣ�1
Xi

� � XN
i¼1

X0
i
bΣ�1

Xi

� �" #�1

,

where Cov(Yi) can estimated as bVi ¼ Yi � Xi
bβ� �

Yi � Xi
bβ� �0

.

In practice it is important to note that the REML can be used to compare different
models for the covariance structure, but the standard ML should be used to compare
different regression models for the mean. Also, if the covariance Cov (Yi) has been
misspecified, an empirical, so-called sandwich, or robust variance estimate of

Cov bβ� ) is obtained by using M-estimator approach (see Fitzmaurice et al. (2011)

for details).

1.3.3.1 Mean Response Profiles for Continuous Longitudinal Data

When the purpose of the study is to characterize change patterns in the mean
response over time in groups and to determine whether and how the shapes of
profiles differ among groups, one can compare groups of subjects in terms of
mean response profiles over time. Given any level of some group effect, we refer
to the mean response profile as the sequence of means over time computed for a
given group. Although this approach is particularly useful in situations when the
study design is balanced and there is only one of a few categorical covariates are at
the consideration, the analysis of response profiles can be extended to handle more
than a single group factor and missing data.

Consider the following example of a randomized trial with two treatment groups
(new treatment vs. placebo or control treatment) and three time measurements that
are the same for each study participant. This study design is a simple example of a
balanced longitudinal randomized experiment, for which the mean response profiles
analysis is the most straightforward. The main focus of the analysis is on the testing
of the null hypothesis that the difference in the mean response profiles in two groups
is not significant (i.e., the mean response profiles are parallel). To test such hypoth-
eses, it is usually assumed that both treatment group and time are categorical vari-
ables. In this regard, the analysis of the mean response profiles is similar to two-way
analysis of variances, but unlike classical ANOVA, the mean response profile
approach must account for dependencies and variability in repeated measurements
on the same individuals.

Referring back to the two-treatment example, we use a constant and a set of three
indicator variables as covariates to formulate a simple response profile model:

Yij ¼ β1Xij1 þ β2Xij2 þ β3Xij3 þ β4Xij4 þ β5Xij2Xij3 þ β6Xij2Xij4 þ eij

where Xij1 ¼ 1, Xij2 ¼ I(patient i randomized to new drug), Xij3 ¼ I( j ¼ 2), Xij4 ¼ I
( j ¼ 3).
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For many longitudinal studies, especially longitudinal clinical trials, the main
interest is on the time � treatment (or similarly, time � group) interaction effect.
Thus, the null hypothesis of interest in the hypothetical trial above can be
reformulated in terms of the group and time interaction effect or using the regression
coefficients: H0 : β5 ¼ β6 ¼ 0. To test this null hypothesis of no time � treatment
interaction effect, one can use a multivariate Wald statistics that under certain
regularity conditions follows chi-square distribution with (n � 1) degrees of free-
dom. When the number of treatments (groups) exceeds two, the same type of test can
be applied with (n� k + 1) degrees of freedom, where k is a number of treatments. In
general, the Wald test requires the estimation of regression coefficients and the
corresponding standard errors. At the same time, the analysis that is based on the
repeated measure on the same patients must account for the correlation structure
among these measurements. In our example, the analysis of response profiles
requires the estimates of three (generally n) variances for each occasion and three
(generally n(n� 1)/2) pairwise correlations. When no additional assumption is made
on the covariance/correlation structure among repeated measurements and all values
are estimated separately, the structure of the covariance matrix is called unrestricted.

Note that a significant test based on a multivariate Wald statistics only indicates
that groups differ but does not tell us how they differ. The two single contrasts (each
based on a univariate test in a general linear model) for time � treatment interaction
have direct interpretations in terms of treatment comparisons of changes from
baseline. In longitudinal clinical trials, a natural baseline for a group variable is a
control, often a placebo, or an existing standard treatment. A natural baseline level
for a categorical time variable is “time zero” that can be referred to a pre-treatment
visit. The baseline response measurement, or the response at “time zero,” is often
analyzed within a vector of post-treatment outcomes, but alternatively it can be used
to transform post-treatment outcomes to a vector of differences from the baseline;
and sometimes when there are no missing values at “time zero,” the baseline
response can be effectively incorporated in a set of covariates.

It is also worth to mention that if the Wald test is not significant, the secondary
hypotheses concerning the mean response profiles could be formulated as follows.
Assuming the mean response profiles are parallel (β5¼ β6¼ 0), one can test (1) if the
means are also constant over time, H0 : β3 ¼ β4 ¼ 0, or (2) if the mean response
profiles for the groups coincide, H0 : β2 ¼ 0

There are some obvious advantages of using the analysis of mean response
profiles when a longitudinal study design is balanced with time measurements
common for all individuals and no mistimed measurements. The analysis is fairly
straightforward and allows for arbitrary patterns in the change of mean response over
time as well as in the covariance/correlation structure. In addition, the response
profiles can be adjusted for missing response data, and essentially there is no
potential risk of bias that often arises due to misspecification of the model.

Despite outlined advantages, the analysis of response profiles does have a number
of disadvantages and restrictions that make it infeasible for many longitudinal
studies. The method cannot be applied when repeated measurements are obtained
from participants with different measurement schedules. Disregarding the time
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ordering, the response profiles approach tends to fail to recognize time trends of the
repeated measures in a longitudinal study. And finally, it becomes computationally
inefficient rapidly when the number of time occasions and groups grows. To analyze
the longitudinal data using the mean response profiles approach, one can adopt
PROC MIXED in SAS and “gls” function with “nlme” package in R, respectively.

1.3.3.2 Parametric Curve Models for Continuous Response

As mentioned earlier, the analysis of response profiles may be infeasible for many
longitudinal studies due to its numerous restrictions. Unlike response profile models,
fitting parametric or semi-parametric curves to longitudinal data allows to describe
the patterns of change in the mean response over time in terms of simple polynomial
trends, model means as an explicit function of time, handle highly unbalanced
designs in a relatively seamless way, and incorporate mistimed measurements. For
example, to compare treatment and control in a two-group clinical trial, where
changes in mean response are approximately linear and measurements are not
necessarily taken on the same schedule, one can use the following simple linear
model:

E Yij

� � ¼ μij ¼ β1 þ β2timeij þ β3groupi þ β4timeijgroupi,

where timeij refers to the actual value of j
th time measurement on ith individual and as

groupi is a time invariant group indicator which equals one for treatment and zero for
control. Then intercept β1 refers to average baseline response for the control group,
(β1 + β3) refers to the average baseline response for the treatment group, and the
slopes β2 and (β2 + β4) have a direct interpretation in terms of a constant rate of
change in mean response for a single unit change in time for control and treatment
groups, respectively. The null hypothesis of interest would be hereH0 : β4¼ 0, and if
it is not rejected, then the two groups do not defer in terms of change in the mean
response over time.

When changes in the mean response over time are not linear, one can consider
fitting a model with a quadratic or higher-order polynomial trend. In a quadratic
trend model, for example, the rate of change depends on time and must be
represented in terms of two parameters for each treatment group. When fitting
polynomial trends, one must include a sufficient number of terms to account for
model complexity and test higher-order terms before lower-order terms. Also, it is
advisable to replace time observations by their deviations from the mean (i.e., center
variable by a time step) to avoid problems of collinearity.

If change over time represents a sequence of joined linear or higher-order
segments that produce a piecewise polynomial pattern, one can extend a simpler
polynomial model to a spline model to accommodate trends that cannot be approx-
imated by just fitting a polynomial in time. The basic idea behind the spline models is
to divide time axis into a sequence of segments and consider piecewise polynomial
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trends on each segment with different sets of parameters but joined at fixed times
(known as “knots”). The simplest possible spline model has only one knot. For
two-group example, linear spline model with knot at t�:

E Yij

� � ¼ μij

¼ β1 þ β2timeij þ β3 timeij � t�
� �

þ þ β4groupi þ β5timeij groupi

þ β6 timeij � t�
� �

þ groupi,

where (x)+ is a truncated line function that takes the value of x, if x > 0, and zero,
otherwise.

To analyze the longitudinal data using the polynomial curves or spline modeling,
one can adopt PROC MIXED in SAS and “gls” function with “nlme” package in R,
respectively. These are the same functions that are used for the mean response
profiles approach with one important difference. For the polynomial curves or spline
modeling, time is considered to be continuous, not categorical like in the mean
response profiles. In SAS, however, one needs to create an additional copy of the
time variable, say t, and include it in the CLASS statement and repeated statement of
the PROC MIXED; time is included in the MODEL statement as a continuous
predictor and in REPEATED statement. For a spline model, one must create one
additional variable for each knot t� corresponding to time� ¼ (time � t�)+ function
and include all of them in the MODEL statement in SAS or as a set of continues
variables in the “glm” formula in R.

1.3.3.3 Modeling the Covariance

Choice of models for mean response for longitudinal observations often interrelated
with the choice of covariance model. In turn, a model for the covariance must be
selected based on the chosen model for the mean response, because the covariance
between residuals depends on the model for the mean and therefore depends on β.

When the longitudinal design is balanced (i.e., with the same schedule and the
number of occasions for each patient) and the number of occasions is relatively
small, unstructured covariance, which does not require any explicit structure
assumption except homogeneity of covariance across different individuals, may be
appropriate. With n measurement occasions, unstructured covariance matrix has
n variance and n � (n � 1)/2 pairwise covariance parameters. The total number of
parameters grows rapidly with an increasing number of occasions/assessment times.
This design of covariance structure can be used in the combination with the mean
response profiles model; other covariance (pattern) models that impose some struc-
ture on covariance have often been used in combination with the parametric curve
models. In what follows, we briefly discuss several covariance models to choose
from when fitting parametric models for mean response.
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Compound symmetry covariance model assumes constant variance across all
occasions, and the constant pairwise correlations, Corr(Yij,Yik) ¼ ρ for all j and k.
Despite its simplicity and a minimal number of parameters (i.e., two) that does not
depend on the number of occasions, this covariance model may not be valid for most
of longitudinal datasets. Toeplitz covariance model assumes constant variance across
occasions and Corr(Yij,Yi, j + k)¼ ρk for all j and k, i.e., a constant correlation among
responses at adjacent measurement occasions. This model has a total of n parameters
and is more flexibility in terms of the correlation structure than compound symmetry
but still restrictive and applicable when measurements are taken at equal intervals in
time. A special case of the Toeplitz covariance models is the (first-order)
autoregressive covariance, where ρk ¼ ρk for all j and k. Relaxing assumption of
constant variance across time, one can fit heterogeneous versions of the Toeplitz
(and also autoregressive) covariance models that would require additional (n � 1)
parameters. When time measurements are not equally spaced over time, then, for
example, the parsimonious (heterogeneous or homogeneous) autoregressive model
can be extended by fitting correlation between any pair of repeated measures by a
function which decreases exponentially with the time separations between them,

Corr Yij,Yik

� � ¼ ρ tij�tikj j for all i and k.
Choice of models for covariance and mean are interdependent, and choice of

model for covariance should be based on a “maximal” model for the mean response
(e.g., based on AIC, BIC). For nested covariance pattern models, a log-likelihood
ratio test statistic built on REML can be constructed (e.g., compound symmetry
model is nested within the Toeplitz model). For comparing non-nested covariance
models, AIC or BIC can be used.

We conclude that the covariance models attempt to characterize and model the
covariance between longitudinal time measurements with a relatively small number
of parameters. While parametric models permit patients to be measured on different
number of occasions and at different times, not many covariance models (except
unrestricted) can handle data from inherently unbalanced longitudinal designs.
Moreover, because the models for the mean and covariance are interdependent, the
best choice of each can be difficult.

To analyze the longitudinal data using the polynomial curves or splines with a
chosen covariance model, one can use PROC MIXED in SAS and “gls” function
with “nlme” package in R, respectively. In PROC MIXED, a covariance mode is
identified under REPEATED . . ./TYPE ¼ [covariance type] statement. In “gls”
function, a type of covariance is included in a set of parameters under “corr¼
[corSymm, corAR, corExp]” statement specified for a compound symmetry,
autoregressive, or exponential models, respectively.

1.3.3.4 Linear Mixed Effects Models

As an alternative to the described models, one can use linear mixed effects models to
account for sources of natural heterogeneity in the population over time. These
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models are the regression-based models. The term mixed effects comes from the fact
that the mean response is modeled as a combination of population parameters, shared
by all individuals and referred as fixed effects, and subject-specific parameters,
referred as random effects, which vary randomly from one individual to another,
and assumed to be unique to a particular individual. In these settings, individuals in
the population are allowed to have their own subject-specific mean response trajec-
tories over time. Also, the introduction of random effects self-induces subject-
specific covariance (among individual’s responses) that has a distinctive random
effects structure and that can be expressed as a function of time with relatively few
parameters, regardless of the number and the timing of measurements.

Linear mixed effects models allow (a) estimation of parameters describing the
mean response changes in the population of interest and (b) prediction of individual
response trajectories over time. In the context of clinical trials, for instance, these
predictions can help to identify those participants who do not respond well or
somewhat very different from expected.

One of the main advantages of linear mixed effects models, in comparison to the
models described in the previous subsections, is their flexibility in accommodating
unbalanced data that is when subjects have a different number of observations and
measurements taken at different times.

A simple example of linear mixed effects models is a model with an intercept and
a slope that vary randomly among individuals. In this model, each subject has its
own baseline level of response and the level of change in the response over time.
This model can be generalized to incorporate additional randomly varying regression
parameters related to time changing covariates. The effects of covariates (e.g., due to
treatments, exposures) are included by allowing mean of intercepts and slopes to
depend on covariates. In general settings, the linear effects model can be expressed
as

Yij ¼ X0
ij β þ Z 0

ij bi þ Eij,

where β is p-dimensional vector of fixed effects, bi is q-dimensional vector of

random effects, Xi ¼ X0
ij, j ¼ 1, . . . , ni

n o
is a matrix of covariates with ni rows

(matching the number of measurement occasions for subject i) and p columns,
Z 0
ij ¼ Zij, j ¼ 1, . . . , ni

� �
is a matrix of time-varying covariates with ni rows and

q columns, with q	 p, and Ei¼ {eij, j¼ 1, . . ., ni} is a ni-dimensional vector of errors
assumed to be independent of bi with a multivariate normal distribution with mean
zero and covariance diagonal matrix Ri ¼ σ2Ini. Often, the columns of the matrix of
time-varying covariates Zi are a subset of the matrix Xi, and the random effects, bi,
are assumed to be independent of Xi and to have a multivariate normal distribution
with mean zero (E(bi) ¼ 0) and covariance matrix G. The latter assumption is
essential for the prediction of the random effects as well as the interpretation of
conditional or subject-specific mean. Combining fixed effects and random effects,
conditional mean describes the mean response profile for the ith individual:
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E YijjXij, bi
� � ¼ X0

ijβ þ Z 0
ijbi:

In this model, the response for the ith subject at jth occasion is assumed to differ

from the population mean E YijjX0
ij

� �
, by a subject effect, Z 0

ijbi. That is the marginal

population-averaged mean of Yi,E YijjXij

� � ¼ X0
ijβ.

The introduction of a random subject effect induces correlation among the
repeated measures. The conditional and marginal covariances can be distinguished
in a similar way as conditional and marginal means. Using a vector-matrix notation,
the conditional covariance of Yi, given bi, is

Cov YijXi, bið Þ ¼ Cov Eið Þ ¼ Ri ¼ σ2Ini ,

and the marginal (population-averaged) covariance of Yi, averaged over the distri-
bution of random effects bi, is Cov Yið Þ ¼ ZiGZ 0

i þ Ri.
If the mixed effect model includes only a random intercept, then the covariance

matrix of the repeated measurements has the form of the compound symmetry. To
allow variance heterogeneity among variances of time measurements, a model with a
random intercept and a slope serves as a yet simple alternative. In this random
intercept and slope model and more complex mixed effect models for longitudinal
data, the variances and covariances are individual and do not require any additional
specification (self-induced) with the terms expressed as explicit functions of time
thereby accounting for inherently unbalanced designs with a different number of
time occasions per subject.

In many pharmaceutical- and health outcome-related studies, the primary focus is
on estimation and inference of fixed effects, β1, β2, . . ., βp. When the researchers also
desire to estimate subject-specific random effects, bi, they can do it using maximum
likelihood or restricted maximum likelihood approach and construct so-called best

linear unbiased predictor (BLUP) for each individual subject in a form of bbi ¼
E bijYi;bβ, bG,bσ2� �

. To predict subject-specific response trajectories over time, one

can simply plug in the estimated values of fixed effects and predicted values of
random effects in a definition of conditional mean, bYij ¼ X0

ij
bβ þ Z 0

ij
bbi.

To analyze the longitudinal data using the mixed effect models, one can adopt
PROC MIXED in SAS and “lme” function with “nlme” package in R, respectively.
In PROCMIXED, for example, a mixed effects model with a random intercept and a
slope for time is identified under REPEATED INTERCEPT time/statement. In
“lme” function, the same model is included in a set of parameters under “random
¼ ~ time| id” statement. One can also obtain BLUPs in SAS and R, using outlined
functions.

When the response variable in a longitudinal study is categorical (e.g., binary and
count data), previously discussed generalized linear models can be extended to
handle the correlated outcomes. There are two different analytic approaches: gener-
alized marginal models and mixed effects models (see Chapters 12–15, Fitzmaurice
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et al. 2011). Note also that both linear and generalized mixed effects models can be
used to analyze multilevel data (see Chapter 22, Fitzmaurice et al. 2011). Multilevel
models are especially effective in studies where the primary goal is on the assess-
ment of health services and/or outcomes with information obtained from patients
who are nested within different sites and clinics. Such data can be regarded as
hierarchical or multilevel data.

1.3.4 Analysis of Time-to-Event Outcome

The theoretical background represented in this subsection is mainly based on the
book of Kleinbaum and Klein (2012a, b). Analysis of time-to-event outcome, or
survival analysis, is a collection of statistical procedures for data analysis for which
the outcome variable of interest is time until an event occurs. An event, in survival
analysis also referred as a failure, is usually related to (but not limited to) some
negative experience, for example, death in patients with heart transplant or relapse in
remission in cancer patients. It could also be a positive experience such as recovery
from obstructive pulmonary disease or any experience or event of interest that can
happen to an individual. Time, in the survival analysis referred as survival time, can
be counted in years, months, weeks, or any other suitable units characterizing period
from the beginning of follow-up of an individual until an occurrence of an event. In
this section, we focus on traditional survival analysis settings when only one event of
interest is analyzed. In case, when more than one event of interest needs to be
analyzed, we refer our reader to the read about recurrent event survival analysis and
competing risks survival analysis described in Kleinbaum and Klein (2012a, b);
Austin et al. (2016); De Glas et al. (2016); and references therein.

Censoring is a common problem related to survival analysis. Censoring occurs
when we have some information about individual survival time, but the exact
survival time is unavailable. This can happen due to the following reasons. A patient
does not experience the event of interest before the trial ends, or a patient withdraws
from the trial earlier due to a specific reason or fails to follow-up during the trial
period. In these examples, the survival time of a patient becomes incomplete or cut
off at the right side of the observed survival time interval. These observations are
further marked as right-censored. Less frequently than right-censored, survival times
can also be left-censored or interval-censored. A patient’s survival time is marked as
left-censored if a patient’s true survival time is less than or equal to the pre-specified
observed survival time. For example, in an observational study, some women had
babies before the pre-specified 250-day mark. If a procedure is administered multiple
times during the study period and a patient’s true survival time falls within a known
time interval but the actual time is unknown, such event will be considered as
interval-censored. In what follows we focus on the analysis of right-censored
observations that are more common in clinical trials.

Formally, let T be a random variable for a person’s survival time. By construction,
T can take only non-negative values less than or equal to the length of the study
period. A specific realization of T is denoted by t. Together with the random variable
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for survival time, we define a binary (dichotomous) random variable d indicating
event occurrence or censorship. That is d ¼ 1, if the event of interest occurs during
the study, and d ¼ 0, if and only if one of the following happens: a patient does not
experience an event of interest until the end of the study and a patient is lost to
follow-up or withdraws from the study.

Given the above notation, we now can define two critical functions of survival
time, namely, the survival function S(t) and the hazard function h(t). The survival
function S(t) provides the probability that a patient survives longer than some
specified time t, S(t) ¼ P(T > t). In theory, S(t) is a non-increasing function of t
with S(0) ¼ 1, indicating no event occurrences for any patients at the beginning of
the study, and S(1)¼ 0, indicating all patients are experiencing an event occurrence
at the end of the study. In practice, however, when using actual observations and the
fixed study period (not infinite), the survival function S(t) may not approach zero at
the end of the study. The hazard function, h(t), provides the instantaneous potential
per unit time for event occurrence, given that the individual has survived (has not
experienced an event) up to time t. Formally, h(t) equals the limit of conditional
probability P(t 	 T < t + Δt | T 
 t) as Δt approaches zero, and in this formulation is
also called a conditional failure rate. While h(t) is not limited to start at one and go
down to zero like S(t), for any fixed value of t, the hazard function is always
non-negative and has no upper bound.

Both the survival function and the hazard function are equally important in
practice. The survival function directly describes the survival from the observations;
the hazard function is used for modeling by taking a specific form with a known
distribution. Knowing the form of h(t), one can derive the corresponding S(t), and
vice versa. The relationship between the two can be expressed as follows:

S tð Þ ¼ exp �
Z t

0

h uð Þdu
24 35, h tð Þ ¼ � dS tð Þ=dt

S tð Þ
� �

:

Given the time-to-event outcome, one can pursue the following steps in the
survival analysis. The analysis starts with the first step that includes estimation and
the interpretation of the survival and/or hazards functions from observed survival
data. In clinical studies with the time-to-event outcome, this step could be used to
compare survival trends and/or hazard rates over time for patients in a treatment
group and a placebo group. The two survival curves are estimated, for example,
using the Kaplan-Meier method, and then graphed on the same axis to aid the further
visual comparison. A formal comparison of two or more survival curves estimating a
common curve can be performed via the log-rank test. Before the comparison over
time, one can compute simple descriptive measures including the average survival

time, T ¼Pn
i¼1

ti=n, and the average hazard rate, h ¼ #events=
Pn
i¼1

ti, to provide overall

preliminary comparison. Since the average survival time includes censored data
(if present) in the computation, it may significantly underestimate the true average
survival time. As an alternative, median survival time can provide a better measure
to compare. If the study also collects additional variables, one can also look at the
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survival curves considering the possible confounding effect of any available vari-
ables or proceed with the second step of survival analysis that may include the
statistical modeling with the purpose to assess the relationship between the survival
time and the explanatory variables. The most commonly used model for this step is
the Cox proportional hazards model, which is described later in this chapter.

1.3.4.1 Kaplan-Meier Survival Curves and the Log-Rank Test

Descriptive statistics of survival times provide overall comparisons but do not
compare two or more groups at different times of follow-up. In this subsection, we
discuss how to estimate a survival curve S(t) using the Kaplan-Meier (KM) method
and how to decide whether or not two or more survival curves are equivalent using
the log-rank test or similar tests of hypotheses. We also provide equations for
computing 95% confidence intervals for KM curves and for the median
survival time.

The general theoretical formula for an estimate of a survival curve bS t fð Þ
� �

at time-
to-event t( f ) using KM method can be expressed as the probability of surviving past
the previous time-to-event t( f � 1), multiplied by the conditional probability of
surviving past time t( f ), given survival to at least time t( f ):

bS t fð Þ
� � ¼ bS t f�1ð Þ

� �� bPr T > t fð ÞjT 
 t fð Þ
� �

:

Equivalently, KM curve bS t fð Þ
� �

can be written as a product of all fractions that
estimate the conditional probabilities for time-to-event and earlier:

bS t fð Þ
� � ¼Yf

i¼1

bPr T > t fð ÞjT 
 t fð Þ
� �

:

In practice, KM curves can be constructed as follows. For convenience, the
collected survival data should be organized in a form of the tables with at least
three columns for each group or treatment: ordered survival times from smallest to
largest; frequency counts of failures (events) at each distinct failure time; and
frequency counts of those subjects censored in time interval [t( f ), t( f + 1)). To
estimate the survival probability at a given time, one can use the information in
these columns. If there are no censored cases in a group, one can compute the
survival probabilities bS t fð Þ

� �
as the number of subjects surviving past the specified

time being considered and divided by the number of subjects at the start of the
follow-up, bS t fð Þ

� � ¼ #surviving at or past time t fð Þ
#group sample size . If a group contains any censored sub-

jects, the Kaplan-Meier approach that utilizes a product-limit formula can be used.
The first survival estimate bS 0ð Þ in both cases, with and without censored subjects, is
always one as the probability of surviving past time zero. The following survival
estimates are calculated by multiplying the preceding survival estimate bS t f�1ð Þ

� �
by

46 O. V. Marchenko et al.



a fraction of subjects surviving past time t( f ) out of subjects at risk at time t( f ) orbPr T > t fð ÞjT 
 t fð Þ
� �

.
To better understand the behavior of the estimated KM survival curves, the

appropriate confidence bounds for bSKM tð Þ can be also estimated:

bSKM tð Þ � Zα
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar bSKM tð Þ
h ir

,

using the Greenwood’s formula for computation of the standard error:

dVar bSKM tð Þ
h i

¼ bSKM tð Þ
� �2

�
X

f :t fð Þ	t

m f

n f n f � m f

� �" #
,

where mf is the total observed number of failures and nf is the total number of
subjects at risk in all groups at time t( f ) for a given group. At this point, we resume
the estimation of survival curves and continue with the overview of the hypothesis
testing using the log-rank approach and later with the modeling using the Cox
proportional hazard model.

To evaluate whether or not KM curves for two or more groups (G 
 2) are
significantly different, and test H0 : S1(t) ¼ S2(t) ¼ . . . ¼ SG(t), one can use the
log-rank test. The log-rank test is a large-sample chi-squared test that is based on the
idea of comparing observed and expected counts in different categories over failure
times. Thus, for each ordered failure time, t( f ) ( f¼ 1, 2, . . ., k), in the entire data and
for each group i, (i ¼ 1, 2, . . ., G), one needs to obtain the number of subjects at risk
in group i, nif, the observed number of failures in group i, mif, and the expected
number of failures in group i, eif. While values of nif and mif for each failure time can
be derived directly from the data, the expected counts eif are computed as

eif ¼ nif
m f

n f
,

where m f ¼
PG
i¼1

mif is the total observed number of failures and n f ¼
PG
i¼1

nif is the

total number of subjects at risk in all groups at time t( f ). Given the observed and
expected counts, the next step is to compute a set of the differences aggregated over
time and their corresponding variances and covariances:

Oi � Ei ¼
Xk
f¼1

mif � eif
� �

,Var Oi � Eið Þ ¼
Xk
f¼1

nif n f � nif
� �

m f n f � m f

� �
n2f n f � 1
� � !

,

Cov Oi � Ei,Ol � Elð Þ ¼
Xk
f¼1

�nif nlf m f n f � m f

� �
n2f n f � 1
� � !

:

1 Biostatistics in Clinical Trials 47



By letting D ¼ (O1 � E1, O2 � E2, . . .,OG � 1 � EG � 1) be the vector of
difference between observed and expected failure counts, and V be the matrix
containing variances and covariances of D, one can compute the log-rank test
statistics, which in the matrix notation has a form, D0C�1D, and for a large sample
size under the null hypothesis follows a chi-squared distribution with (G � 1)
degrees of freedom. In practice, for large samples, an approximation of the
log-rank statistic that does not require computation of variances and covariances
can be used to compare two or more survival curves. The approximate formula
includes the sum over all groups of the square of the observed minus expected values

divided by the expected value,
PG
i¼1

Oi�Eið Þ2
Ei

� χ2df¼G�1 . When survival curves are

being compared for two groups, the log-rank test is formed using the difference and
its variance for one of the two groups without using any covariance information.

There are several variations of the log-rank test approach that are designed to test
the equivalence of two or more survival curves. The most commonly used variations
include the methods that incorporate the weights for different failure times such as
the Wilcoxon, the Tarone-Ware, the Peto, and the Flemington-Harrington tests.
Although all of these tests should provide similar results and lead to the same
clinical conclusions, one needs to make a priori decision which test to use and
why. The decision should be based on both considerations of the power of the test
and the possible violations of assumptions behind the null hypothesis. Another
extension of the log-rank test is a stratified log-rank test that allows controlling the
comparison for the stratified explanatory variable. For more details, see Kleinbaum
and Klein (2012a, b).

1.3.4.2 The Cox Proportional Hazards Model and Its Characteristics

The Cox proportional hazards model is the most common model used for the
analysis of time-to-event or survival data. This model provides an expression for
the hazard at time t for an individual with a given specification of a set of
p explanatory variables X ¼ (X1,X2, . . .,Xp) and can be represented in a form of a
product of the baseline function, h0(t), and the exponential expression depending on
a linear combination of explanatory variables and parameters, X0β:

h t,Xð Þ ¼ h0 tð ÞeX0β:

In general, it is possible to consider explanatory variables that are time-dependent
(i.e., depending on t). In this case, one can use the extended Cox model. The focus of
this section is on the time-invariant X variables that do not change their values over
time (e.g., sex, race, family history). When all covariates X are equal to zero, the Cox
model reduces to the baseline hazard h0(t), which does not have to be specified. This
property among others makes the Cox model a widely used semiparametric model. It
does not require specification of the baseline hazard but allows obtaining estimates
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of the regression coefficients, hazard ratios, and adjusted survival curves. At the
same, if the correct form of a parametric hazard function is known (typically not), a
corresponding parametric model may be preferred (e.g., Weibull, Exponential,
Log-Normal). When in doubt, one can choose the Cox model as a reasonable choice
of a robust model.

To obtain the estimates for the parameter coefficients β of the Cox model, the Cox
model uses so-called “partial” maximum likelihood approach, which consists of
probabilities for subjects that fail (or experience event), but does not include
probabilities for censored subjects. However, the process of construction of the
partial likelihood as a product of likelihoods at all failure times incorporates the
censored data implicitly.

Once the estimates coefficients are obtained, one can fit the model and compare
two individuals with different values of the predictors, say Xa ¼ (X1a,X2a, . . .,Xpa)
and Xb ¼ (X1b,X2b, . . .,Xpb). For example, the goal could be to compare hazard rates
of two patients with similar baseline characteristics assigned to placebo and treat-
ment. Using general notation above, the estimated hazard ratio is:

cHR ¼ exp
Xp
i¼1

bβi Xia � Xibð Þ
" #

:

As one can notice, the formula for cHR does not depend on time, or equivalently, it
implies that the hazard for one individual is proportional to the hazard for any other
individual and the proportionality is constant. This statement briefly explains the
concept of the proportional hazard assumption, which usually requires being for-
mally tested using, for instance, so-called Schoenfeld residuals (see Chapter 4 of
Kleinbaum and Klein 2012a, b for more details).

Maximum likelihood approach can be also used to compute the corresponding
standard error and the confidence interval of the HR. If the confidence interval
contains one (i.e., H0 : HR ¼ 1), this would indicate no significant difference
(statistically speaking) in terms of the hazard ratio for two subjects. Similarly, one
can use the confidence intervals (and standard errors) of the estimated parameters to
make inference about the effect of the predictors on individual hazard rates or HR
(i.e., in terms of H0 : β ¼ 0).

Additionally, the estimated coefficients bβ from the Cox model can be used to
produce the adjusted survival curves, the survival curves that are adjusted for the
explanatory variables:

bS t,Xð Þ ¼ bS0 tð Þ
h i expX0bβ

,

where the estimate of bS0 tð Þ is also produced by fitting the Cox model; the values of
X should be specified by the investigator. The obtained adjusted survival curves can
be produced for two or more groups analogously to the KM curves that are fitted
without any model assumption.
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To analyze the time-to-event outcome data in SAS, one can use PROC
LEFETEST, PROC PHREG, and PROC LIFEREG. PROC LEFETEST is used to
construct Kaplan-Meier survival estimates and plots. In addition, it produces output
for life table estimates, the log rank, and Wilcoxon test statistics. PROC PHREG can
be used to fit the traditional Cox proportional hazard model, a stratified Cox model,
and a Cox model with time-varying covariates. For a comprehensive graphical
output PROC PHREG can be used in a combination with PROC GPLOT. PROC
LIFEREG is used to obtain the output for parametric accelerated failure time (ATF)
models, survival models that are less restrictive than proportional hazard models (see
Chapter 7 of Kleinbaum and Klein 2012a, b for more details).

In R, the following functions are available for analysis of the time-to-event
outcome data within “survival” package. Function “surv” serves as an essential
first step to create a survival object. This object is used as input variable for other
survival functions including “survfit,” a function that produces Kaplan-Meier sur-
vival estimates; “survdiff,” a function that tests the equality of survival functions;
“coxph,” a function that fits the Cox proportional hazard model, a stratified Cox
model, and an extended Cox model; and “survereg,” a function that fits ATF and
other parametric survival models.

1.4 Important Considerations in Clinical Trials

There are many points to consider when designing and analyzing clinical trials.
Estimation of the clinical trial sample size depends on the choice of statistical
methods and pre-defined set of parameters that depend on our knowledge about
disease under the study, study population, study drugs and actions, tolerability of the
drug and other safety issues, acceptability of endpoints, enrollment rate, participating
countries, drop-out mechanism, etc. To account for different scenarios and uncer-
tainties in our knowledge, in addition to pre-defined primary analysis of the clinical
trial endpoints, sensitivity analyses are usually planned and conducted. This section
focuses on some common statistical considerations that affect the design, execution,
and analysis of clinical trials including missing data issues and prevention, defining
an appropriate estimand, handling multiple objectives, analyzing subgroups, plan-
ning multiregional clinical trials, and evaluating drug safety.

1.4.1 Missing Data and Patient Retention

Missing data is a common problem in clinical trials. There are many reasons why
data can be missing, including patient dropout due to adverse events, lack of
efficacy, or any other reasons either related or unrelated to the study treatment or
the primary objective. Loss to follow-up is generally considered to be one of the
most important and preventable reasons for missing data. Even if a patient completes
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the study, one may still have elements of incomplete data due to different aspects of
study conduct. For example, patients can complete a trial but discontinue the study
treatment early, requiring careful consideration about the appropriate use of the data
collected, or have missed measurements at one or more visits. Missing data can lead
to loss of power and biased results that affect the quality and validity of clinical trials.
There are three common types of missing data defined by the reason the data are
missing: missing completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR). There are many statistical methods available to
handle incomplete data, but different methods require different assumptions and can
lead to different conclusions in extreme cases of missing data. The detailed descrip-
tion of the various methods with applications can be found in the literature including
Little and Rubin (2002), O’Kelly and Ratitch (2014), and Mallinckrodt and
Lipkovich (2017).

In 2010, the National Research Council (NRC) published the report The Preven-
tion and Treatment of Missing Data in Clinical Trials (National Research Council
2010). The NRC report advocated preventing missing data through increased
follow-up efforts for patients who discontinue treatment or otherwise violate the
study protocol. The report provided a review of available methods for handling
missing data during the data analysis stage, but rather than recommending any one
method as best, it stressed the importance of clearly defining the estimand at the
design stage of a trial. The term “estimand” as used here refers to the treatment
effect—the quantity to be estimated with study data. The report argued against the
use of single-value imputation methods, such as last observation carried forward or
baseline carried forward, due to potential underestimation of the variability of the
resulting treatment effect estimates.

At the time of the NRC report publication, drug development clinical trials with
continuous outcomes (e.g., blood pressure, lung function, blood glucose levels, or
patient reported symptom scores) often relied on mixed models for repeated mea-
surements (MMRM) as the primary analysis strategy for estimating and testing
hypotheses about treatment effects. Implicit in the use of these methods is the
assumption that dropouts would behave similarly to other patients in the same
treatment group, and possibly with similar covariate values, had they not dropped
out. Such an assumption, however, may not be reasonable if a patient discontinues
therapy for intolerability. Focusing on the appropriate estimand at the design stage
can help bring considerations such as these to the forefront, ultimately resulting in
the most appropriate treatment effect definition and analysis strategy for a particular
setting.

The International Council for Harmonisation (ICH) published a first revision of
the E9 Statistical Principles in Clinical Trials guideline in 2017 (ICH E9 R1 2017).
This draft guideline ICH E9 (R1) sets forth basic principles for defining estimands or
treatment effects, taking into consideration the target population, the outcome
variable or trial endpoint, the method to account for intercurrent events (e.g.,
dropouts or use of rescue medications), and the population summary measure that
provides the basis for comparing treatments (e.g., differences in means or risk
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ratios). The guidance suggests some potential strategies for constructing estimands,
including the following:

• Treatment policy estimand—the actual value of the outcome variable is obtained
and used in the analysis, regardless of any post-randomization events that
occurred (e.g., taking rescue medication). There are no statistical issues with
this estimand, as it preserves the advantages of randomization and may come
closest to mimicking medical practice, but prescribers and patients often find it
less desirable, being too far removed from a pharmacologic effect. An additional
benefit is that retrieved data on dropouts can be used to impute outcomes for
dropouts whose data were unable to be retrieved.

• Composite estimand—the post-randomization event becomes the outcome of
interest for patients experiencing the event, and treatment effects are defined
using composite endpoints combining measured values for some patients and
events for others. This approach is particularly useful when a measurement
following an event is not meaningful but the fact that the event occurred
is. Other approaches, such as trimmed means (Permutt and Li 2016), may also
be useful in these settings.

• Principal stratification—the treatment effect is defined in patients able to tolerate
the test drug, even if the patient was assigned to control. Note this is not a
completer’s analysis but is what clinicians are often most interested in—what is
the effect of the drug among those able to take it? It is, however, difficult to
implement, requiring identification of patients in the control group who would
have tolerated the drug, had they been assigned to it.

• Hypothetical effect—the treatment effect is defined under alternative conditions
(e.g., if adherence had been perfect or if rescue medications were withheld).
Analyses that involve estimating the effect that would have been observed had all
patients tolerated treatment and completed the trial are not generally acceptable
from a regulatory standpoint. The effect if rescue medications are withheld may
be of interest, but a trial that allows direct estimation of this effect is usually
unethical to conduct.

• Effect while on treatment—the treatment effect is defined based on measurements
obtained while each patient remained on treatment. Because every patient has a
measured value to contribute to the analysis, there are no statistical issues with
this strategy. Note, however, that although measurements were taken when
treatment stops, regardless of when that occurs, and are available for all patients,
the treatment effect based on those measurements will not usually provide a valid
estimate of the effect at the planned end of the trial and could, therefore, raise
problems when labeling the drug. The relevance of this estimand will usually be a
clinical decision.

Sensitivity analyses are often performed to assess the impact of assumptions,
required for a particular analysis strategy but unable to be verified, on a study’s
findings. ICH E9 (R1) addresses the need to plan for sensitivity analyses to assess the
impact of missing data on a trial’s results. In this application, conducting additional
analyses that make the same missing data assumptions as the primary analysis will
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rarely be useful. For example, if a primary analysis involves fitting an MMRM that
assumes data are missing at random, then sensitivity analyses based on multiple
imputations that make the same missing-at-random assumption will be less infor-
mative than sensitivity analyses that vary the reasons the data are missing and
include missing not-at-random scenarios. When planning sensitivity analyses to
assess the impact of missing data on study results, the number of different analyses
to be conducted is usually less important than how the missing data assumptions are
varied.

Tipping point analyses are mentioned in Permutt et al. (2016b) as being partic-
ularly useful for regulatory purposes. With these analyses, unverifiable assumptions
about missing data are varied in such a way as to identify the scenarios under which
the analysis results are tipped away from success, followed by an assessment of how
likely those scenarios would be. As discussed in LaVange (2019), a useful example
of a pharmaceutical sponsor’s use of tipping point analysis can be found in the
briefing materials for the June 20, 2017 meeting of the Endocrinologic and Meta-
bolic Drugs Advisory Committee (US Food and Drug Administration 2017a).
During this meeting, a tipping point analysis used to address missing data in a
large cardiovascular outcome trial of liraglutide to treat type 2 diabetes was
discussed. The sponsor presented sensitivity analyses that identified (1) the number
of liraglutide patients with missing outcomes who would need to experience an event
and (2) the number of placebo patients with missing outcomes who would need to
not experience any events before superiority of the hazard ratio would be reversed.
The argument was made that the resulting tipping point scenario was unlikely to
occur, thereby supporting the trial’s finding of superiority.

The US FDA and some sponsor organizations are becoming increasingly
concerned with the misuse of sensitivity analyses during regulatory reviews and
the impact of those analyses on approval decisions. An example illustrating this
problem is included in LaVange (2013) based on a 2012 meeting of the Gastroin-
testinal Drugs Advisory Committee. Additional manuscripts describing the agency’s
thinking on missing data, estimands, and sensitivity analysis appeared in recent years
(LaVange and Permutt 2016; Permutt et al. 2016a, b). FDA advises sponsors on the
adequacy of their proposed approach to missing data and sensitivity analyses
through protocol reviews of new trial designs and statistical reviews of submitted
trial data for nearly every application submitted, and although the ICH E9
(R1) guidance provides a framework for addressing missing data problems, appli-
cation of some of the approaches described therein can pose challenges (LaVange
2019).

As mentioned previously, prevention of missing data through the development of
strategies to increase patient retention is an essential component of study planning,
especially in long-term studies where challenges with patient retention are the most
notable. Statisticians can help with missing data prevention at the study design stage
by quantifying the amount of missing data in similar studies and illustrating its
effect, translating finding into information to inform future subject care, educating
the clinical study team, and participating in the creation of missing data prevention
plans (Hughes 2014).
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1.4.2 Multiple Objectives and Multiplicity Adjustments

Efficacy endpoints in a clinical trial are measures intended to reflect the effect of a
drug or drugs (treatment effect) on patients or healthy volunteers. Clinical trials are
often designed to examine the treatment effect on more than one endpoint. Endpoints
in clinical trials are usually classified into three families: primary, secondary, and
exploratory. Endpoints are frequently ordered by clinical importance, with the most
important being a primary endpoint or co-primary endpoints. Alternatively, end-
points can be ordered by the likelihood of demonstrating an effect. For example,
time-to-disease progression is often selected as the primary endpoint in oncology
trials even though survival is the most important endpoint. The reasons are that an
effect on disease progression can be detected earlier and is often larger than the
observed effect on survival, because the latter can be diluted by subsequent post-
progression treatment. Determination of which endpoints are primary, secondary, or
exploratory should always be made prospectively.

The statistical approach commonly used to evaluate a treatment effect on a chosen
clinical endpoint is based on the test of hypothesis. The rejection of the null
hypothesis supports the study conclusion that there is a difference between treatment
groups but does not constitute absolute proof that the null hypothesis is false. There
is always some possibility of mistakenly rejecting the null hypothesis when it is true,
making a type I error. An essential element of type I error rate control is the
prospective specification of all endpoints to be tested and all data analyses to be
performed to test hypotheses for the pre-specified endpoints. The statistical analysis
plan should describe how the endpoints are tested, including the order of testing and
the alpha level applied to each specific test (US Food and Drug Administration
2017b).

Multiplicity issues are encountered in clinical trials with multiple testing due to
multiple objectives multiple endpoints (primary or secondary), multiple treatment
groups, multiple dose levels, evaluation of multiple subgroups, analyses at multiple
time points, or some combination thereof. Testing multiple hypotheses without any
adjustments for multiplicity can increase the probability of erroneously rejecting at
least one true null hypothesis, the error known as the familywise error rate (FWER).
In confirmatory clinical trials, strong control of the FWER across the primary trial
objectives (endpoints) is mandated by some regulatory authorities (e.g., EMA 2017;
US Food and Drug Administration 2017b). As mentioned previously, a multiplicity
adjustment procedure must be pre-defined to preserve the FWER across the null
hypotheses associated with the individual tests.

The most basic multiplicity adjustment, e.g., a Bonferroni adjustment, examines
each null hypothesis independently of the other null hypotheses and then adjusts
alpha accordingly. This procedure is known as a single-step test. More efficient tests
that result in a higher overall probability of success for the trial while also controlling
for multiplicity are stepwise tests; these tests are applied in a pre-defined sequential
order thought to maximize the chance of detecting a treatment effect under the
alternative hypothesis. The fixed-sequence and fallback procedures are examples
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of stepwise tests. Alternatively, the null hypotheses can be tested in the order
determined by the significance of the hypothesis test statistics. Such testing is
more flexible than fixed-sequence testing. The Holm and Hochberg procedures are
examples of the stepwise tests.

When selecting the method for handling multiplicity, it is recommended to utilize
the available information on the joint distribution of the hypothesis test statistics
associated with the hypotheses of interest. Nonparametric procedures (or p-value
based procedures) such as Bonferroni, Holm, and fixed-sequence procedures do not
make any assumptions on the joint distribution of the test statistics, and they are
uniformly less powerful than semiparametric procedures such as a Hochberg test or
parametric procedures such as Dunnett’s test. Nonparametric procedures tend to
perform poorly when the testing problem involves a large number of hypotheses or
the test statistics are strongly correlated. Semiparametric procedures control the
overall type I error rate under the assumption that the test statistics follow a
multivariate normal distribution with non-negative pairwise correlations. Parametric
procedures require full specification of the joint test statistics distribution. Another
class of multiple testing procedures includes resampling-based procedures. The
critical feature of these procedures is that they estimate the joint distribution directly
rather than making assumptions about that distribution. The estimates are obtained
by applying bootstrap or permutation methods.

Many multiplicity adjustment methods have been developed and are discussed in
the literature. For example, books by Hochberg and Tamhane (1987), Hsu (1996),
Dmitrienko et al. (2010), and Bretz et al. (2011) provide a detailed description of
multiple testing methods and analysis techniques; some include SAS and R code for
illustration. The paper by Dmitrienko and D’Agostino (2013) provides a compre-
hensive tutorial summarizing traditional multiplicity adjustment methods used in
clinical trials, including comparisons of methods and recommendations on the
choice of the procedures to use. The tutorial by Alosh et al. (2014) describes more
advanced multiplicity adjustment procedures that allow recycling of significance
levels of hypotheses to address complex multiplicity problems. Both tutorials are
aimed to help statisticians working in clinical trials to select an appropriate method
for their applications and calculate critical values, adjusted p-values, and, in more
simple scenarios, adjusted confidence intervals.

In January 2017, the US FDA released draft guidance on Multiple Endpoints in
Clinical Trials (US Food and Drug Administration 2017b). The focus of the draft
guidance is on methods to manage multiplicity due to multiple endpoints in dem-
onstrating the effectiveness of a drug to support its approval. Although the guidance
addresses only one source of multiplicity, the principles described therein may apply
to others (e.g., multiple doses, multiple analyses, multiple analysis populations, and
multiple subgroups). The guidance explains the agency’s use of co-primary and
composite endpoints in some disease areas and also touches on situations where
multiplicity adjustments may not be needed, such as the use of additional analyses to
better characterize the effects of a drug, following a positive finding that the drug is
effective based on the primary hypothesis test with appropriate multiplicity control.
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In LaVange (2019), an interesting example is provided to illustrate the need for
additional guidance on multiple endpoints. During the May 12, 2015 meeting of the
Pulmonary-Allergy Drugs Advisory Committee (US Food and Drug Administration
2015a), an application for a combination product to treat cystic fibrosis was
discussed. Results from two Phase III trials were presented (Wainwright et al.
2015) during the meeting. Both trials relied on a testing hierarchy to manage
multiplicity due to multiple secondary endpoints following success on the primary
endpoint in each trial. A non-significant result occurred in both trials for an endpoint
early in the hierarchy, precluding the availability of any evidence to support findings
for endpoints further down the list. A pre-specified analysis of a key secondary
clinical endpoint, pulmonary exacerbation, was carried out using data combined
from the two trials to increase the power available for testing, but this analysis was
outside of the testing hierarchy of either trial. It was clear from the discussion at the
meeting that Advisory Committee members were impressed with the significant
results of the combined analysis on exacerbations, but it was not clear how the
carefully followed approach for managing multiplicity in these trials applied in
interpreting this analysis. As the agency and industry gain more experience with
complex cases such as this, these and other questions regarding multiplicity in
clinical trials will be addressed and hopefully clarified in the final FDA guidance
on Multiple Endpoints in Clinical Trials.

1.4.3 Subgroup Analysis

Subgroups of the study population are defined for most clinical trials, and while they
serve different purposes, their consideration in the planning of statistical analyses is
essential. LaVange (2019) categorized subgroups of interest for drug development
clinical trials into three broad types:

• Demographic subgroups (e.g., age, sex, race/ethnicity) defined for reporting
purposes. Although the subgroup-specific effects are of interest, differences
among groups are usually not expected.

• Regional subgroups defined for global trials (e.g., the USA vs. Europe). Differ-
ences are often expected due to intrinsic factors (e.g., patient characteristics) or
extrinsic factors (e.g., medical practice).

• Biomarker subgroups defined based on a valid assay, typically reflecting an
expectation that one or more of the groups will experience more benefit or less
harm than others.

The primary results of a clinical trial relating to treatment effects are usually based
on the estimation and testing of average effects across all patients, even though we
know that not all treatments will affect all patients the same. Some variability in the
way a particular treatment affects different patients and different subgroups of
patients is almost always expected. To investigate this variability, subgroup-specific
treatment effects may also be estimated, and tests of hypotheses about differences
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between subgroups assessed. The challenge is to be able to differentiate true
subgroup differences from those due to random variability. Further, it is often the
case that the sample sizes of some subgroups are small and the confidence intervals
about them are wide, making inference about subgroup effects difficult. Estimating
the treatment effect for the overall study population requires an assumption that the
effect is the same for all patients, and although this approach increases the precision
of the estimate, it may be systematically wrong for some particular subgroups. In
planning for subgroup analyses, therefore, the analyst has three options: (1) compute
subgroup-specific estimates to report for subgroups of interest, (2) assume that
overall estimates of effects based on the entire study population apply to each
subgroup, or (3) use shrinkage estimators to produce subgroup-specific estimates
that rely on some borrowing of information across subgroups to reduce variability
and increase the precision of the subgroup estimates. The advantages and disadvan-
tages of each approach will depend in part on the type of subgroup and purpose of
subgroup reporting and should be carefully considered during the trial planning
stage.

Representing an internal FDA working group on subgroup analysis, Alosh et al.
(2015) described several subgroup analysis problems commonly faced by FDA
reviewers and offered solutions for different trial scenarios and subgrouping schema.
An example is the problem of how to interpret significant findings in the overall
study population, when a trial is designed to show an effect primarily in a biomarker-
positive subgroup. If the drug is not expected to work in the biomarker-negative
subgroup, but a reasonable number of biomarker-negative patients are enrolled in the
trial, how should positive overall study results be interpreted for those patients? This
is not an easy question to address but one that impacts product labeling, if the drug is
approved for marketing. The working group manuscript emphasizes the importance
of planning for subgroup analyses and the difficulty of trying to explain surprising
subgroup results after a trial is completed. The use of data visualization methods is
advocated, and a variety of statistical methods are described, including Bayesian
subgroup estimators that can be used in some settings to reduce the number of
random highs expected with the use of more traditional subgroup estimators and to
provide greater precision of subgroup-specific estimates. The working group man-
uscript offers some suggestions to sponsors when planning for subgroup analyses,
but to date, formal FDA guidance on this topic has not yet been issued.

The European Medicines Agency (EMA) guideline on the investigation of sub-
groups in confirmatory clinical trials (EMA 2014) recommends proceeding with
caution when performing exploratory subgroup analyses, taking into consideration
all available evidence, not only the point estimates for individual subgroups. Data
visualization methods, when appropriately applied, can greatly facilitate the inter-
pretation of results from any data analysis, and subgroup analyses are no exception.
Many clinicians and statisticians favor forest plots as a convenient and concise way
to describe subgroup estimates in a clinical trial. Clinical trial subgroups defined by
baseline characteristics (e.g., age, sex, baseline disease status, geographic region),
however, are not independent (the same patients appear in more than one subgroup)
and, consistency among subgroups, therefore, should not be over-interpreted as
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providing independent verification of results. Caution is also advised in over-
interpreting what appears to be extreme effects in a forest plot depicting subgroup
effects, as some random variation among subgroups is expected.

In some cases, a subgroup effect is observed that requires further exploration of
underlying factors to explain the differential effects. In LaVange (2019), the Platelet
Inhibition and Patient Outcomes (PLATO) trial (Wellentin et al. 2009) is described
as an example where a regional difference apparent in the subgroup forest plot for the
trial prompted an examination of confounding factors and low-dose aspirin use was
identified as a likely candidate (US Food and Drug Administration 2011; Carroll and
Fleming 2013). Another example of regional subgroup differences is provided by the
Advisory Committee discussion of the cardiovascular safety trial mentioned above
to illustrate tipping point analyses (US Food and Drug Administration 2017a). Based
on a forest plot presented by the sponsor , increased benefit in the Asian region and
decreased benefit in the USA were apparent. The sample size for the Asian subgroup
was small compared to other regions, and the variability in the USA estimate was
such that it was difficult to determine whether the true effect was likely to be
different from that observed for the overall population. The decision was ultimately
made to approve this drug for the USA.

Progress in precision medicine produces yet another interesting subgroup analy-
sis problem, as increasingly specific drug targets translate to smaller and smaller
subgroups of patients that can benefit from treatment. In LaVange (2019), the
ivacaftor story was used to illustrate the problem. Ivacaftor received FDA approval
in 2012 as the first genetic medicine for cystic fibrosis, but it targeted a small subset
(4%) of the approximately 30,000 cystic fibrosis patients in the USA. The sponsor
identified additional genetic mutations that might benefit from treatment, based on
the mechanism of action of the drug, for subsequent clinical trials. A 2014 Advisory
Committee was convened to discuss expansion of the indication to another mutation,
and the FDA statistical reviewer raised the issue during that meeting of how to
determine the set of patients a drug benefits once it has been shown to work in some
(US Food and Drug Administration 2014b). The statistical reviewer pointed out that
simple pre-specification of a primary analysis cannot control the different errors
possible in this scenario, and alternative statistical approaches were needed. As
smaller and smaller genetic subgroups are studied, the issue of error control is
compounded with the issue of insufficient subgroup sample sizes to support infer-
ence. Even when a clinical trial of rare mutations in a rare disease shows overall
benefit, sample sizes will usually be insufficient to make attribution of benefit to
specific mutations possible. The most recent ivacaftor approval expanded the num-
ber of genetic mutations from 10 to 33 (US Food and Drug Administration 2017c),
but approval was made under the accelerated approval pathway and based mainly on
laboratory data. Draft guidance on rare subsets of diseases was issued to clarify the
agency’s expectations in this scenario (US Food and Drug Administration 2017d),
and a companion publication provides additional details on the agency’s thinking in
developing the guidance (Schuck et al. 2018).

Subgroup analyses are frequently performed for both efficacy and safety end-
points. Subgroup analyses are beneficial because they can inform clinicians on the
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potential for differential treatment response within important demographic, genetic,
disease, environmental, behavioral, or regional subgroups, which furthers our under-
standing of the benefit-risk of the drug or even a class of drugs. Subgroup analyses,
however, have numerous statistical challenges; some of them have been mentioned
already. The analysis and interpretation of subgroups should be approached cau-
tiously to reduce the potential for over-interpretation and erroneous conclusions.
One can find a detailed explanation of the issues, case studies, and recommendations
in a tutorial on statistical considerations on subgroup analysis in confirmatory
clinical trials published by Alosh et al. (2017) and a tutorial on data-driven subgroup
identification and analysis in clinical trials by Lipkovich et al. (2017). Some addi-
tional information on exploratory subgroup analyses can be found in Chap. 6 of
this book.

1.4.4 Multiregional Trials

Drug development has been globalized, and many multiregional clinical trials
(MRCTs) have been conducted by pharmaceutical companies to expedite global
clinical development and facilitate simultaneous registration in multiple regions
around the world. MRCTs provide pharmaceutical sponsors with a larger and
more diverse pool of patients and give an opportunity to local scientific and medical
communities to use advanced technologies and try new medical treatments.
Although MRCTs can provide many benefits, they also bring challenges. Differ-
ences among various geographic regions and countries may lead to difficulties with
planning and execution of the study and later with interpreting the study results. The
differences might include patient demographics and disease characteristics; local
practices and standards of care; availability of a control arm medication or concom-
itant medications (e.g., drugs can be approved in certain countries but not in others,
and medical practices may also differ); availability of therapeutic procedures, imag-
ing modalities, and specialized laboratory tests; differences in clinical trial opera-
tions and costs among regions; regional targets or objectives of treatment with choice
of efficacy variables; methods of assessment of safety; duration of the trial; and
similarity of dose and dosing regimens. The ICH E5 guideline was adopted in 1998
with the purpose of facilitating the registration of medicinal products among differ-
ent ICH regions by recommending a framework for evaluating the impact of ethnic
factors upon the efficacy or safety of a product (ICH E5 1998). ICH E5 states that if
the data developed in one region satisfy the requirements for evidence in a new
region, but there is a concern about possible differences in ethnic factors, both
intrinsic and extrinsic, between the two regions, then it might be possible to
extrapolate the data to the new region with a single bridging study. The bridging
study could be a pharmacodynamic study or a full clinical trial, possibly a dose-
response study.

Defining the treatment effect in a multi-regional trial is discussed in the recently
finalized ICH E17 guideline on Principles for Designing and Planning a Multi-
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Regional Clinical Trial (ICH E17 2017). The guidance does not make explicit
recommendations about statistical methods most suitable for an MRCT, but it pro-
vides general recommendations on subject selection, choice of endpoints, selection
of doses, sample size planning, pooling strategies, examination of consistency across
regions, subgroup analysis, and other aspects of MRCT planning and analysis. At
the planning stage, regional variability should be carefully considered in determining
the role MRCTs can play in a drug development program. MRCTs are typically
designed to address treatment effects in the entire study population; they are usually
not powered to assess the country- or region-specific treatment effects. The key
consideration for sample size calculation is ensuring a sufficient number of patients
to be able to evaluate the overall treatment effect under the assumption that the
treatment effect applies to the entire target population, specifically to the population
in regions included in the trial. The MRCT should be planned to also include an
evaluation of the consistency of treatment effects among regions. When results
appear inconsistent across regions, regulatory authorities may question the validity
of the results in their countries. In this case a structured exploration of these
differences should be planned. Additional references on this topic include Quan
et al. (2010), Chen et al. (2010), Binkowitz and Ibia (2011), and Chen and
Quan (2016).

1.4.5 Safety Evaluation

Safety evaluation is fundamental to medical product development. It takes a long
time and a large amount of data to fully understand the safety profile of a medical
product. Randomized clinical trials are the gold standard for evaluating the efficacy
of new treatments. Clinical trials are sized and powered to identify differences
among treatment groups for a small number of efficacy endpoints, usually for a
primary endpoint or co-primary endpoints. At times, key secondary endpoints are
taken into consideration when the trial sample size is calculated. The available
sample size results in treatment comparisons for safety that is often underpowered.

In practice, there are numerous safety endpoints to consider in a trial and even
more as a medical product proceeds through clinical development. Adverse events
(AEs), death, laboratory values, vital signs, physical examinations, hospitalizations,
and electrocardiograms (ECGs) are examples of safety parameters collected in a
clinical trial. In addition, efficacy outcomes that fail to improve or worsen over time
can contribute to the safety of the new treatment. Safety outcomes have important
characteristics to consider including duration, severity, and investigator’s assess-
ment of causal relationship to drug, resulting in numerous sensitivity analyses. Not
all safety endpoints and analyses can be pre-specified. Safety issues may occur
spontaneously at any time during the trial and often occur between study visits.
Clinical trials are often not big or long enough to capture all the risks. For indications
requiring chronic treatment, such as diabetes, clinical trials may be of short duration
even though real-world use may for many years, and a safety concern may only be
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evident with long-term exposure to a product. Often the inclusion/exclusion criteria
fail to reflect the population that uses the product once approved or licensed. Many
safety signals are not identified until after a product is on the market and a large
number of patients with more varied conditions are exposed. Zink et al. (2018)
discussed the limitations of evaluating safety solely using clinical trial data. Despite
these challenges, it is essential to proactively plan for a comprehensive safety
evaluation and signal detection at the start of any development program, considering
the underlying challenges of the disease and the unique features of treatment and
patient management.

The goal of a development program is to identify safety signals as early as
possible, to prevent further safety issues where feasible, and to highlight areas
requiring greater focus during post-approval safety monitoring if the new treatment
has a benefit-risk profile allowing for the market authorization. Initial information on
a medical product’s toxicity is investigated in basic research, discovery, and
nonclinical animal models. With data accumulating from different phases of clinical
trials, the safety profile is gradually established. At the time of filing a product to a
regulatory authority, safety data collected from clinical trials are analyzed and
summarized to provide sufficient evidence for a benefit-risk assessment.

Given the volume and complexity of the data available for safety outcomes,
efficient and informative reporting is crucial. Traditionally, safety analyses have
been descriptive in nature; AEs are usually summarized by number and percent of
patients with events coded by Preferred Term and grouped by System Organ Class in
order of decreasing frequency of occurrence. Binary outcomes, such as whether a
patient experienced a particular AE or not, are often reported using a risk difference,
risk ratio, or odds ratio (Chuang-Stein et al. 2014; Zhou et al. 2015). Pros and cons
for the various measures are discussed in Zhou et al. (2015). Given a large number of
potential treatment group comparisons for adverse events, Crowe and co-authors
suggested a three-tier approach for the analysis of adverse events (Crowe et al.
2009). The approach provides a reasonable balance between committing to type I
error rate control without overly sacrificing the power to detect potential safety
signals. In the analysis of AEs, type II errors are equally if not more important,
because failing to flag a real drug-AE interaction is probably a higher public health
risk than falsely identifying such an interaction. Another approach is based on the
false discovery rate (FDR) method. It provides a good balance between type I error
and power (Benjamini and Hochberg 1995; Benjamini and Yekutieli 2005). Bayes-
ian methods such as hierarchical modeling can help correct for multiplicity arising in
the analysis of safety data and capture the biological relationship among various AEs
(Berry and Berry 2004; Berry et al. 2011). Given the amount of data and their
complexity, visualization of safety is important. Visual tools play a significant role in
understanding the data and in interpreting results from data analyses. Forest plots
and dot plots are often used to visualize results from the analysis of AEs (Amit et al.
2018). A volcano plot can be used to effectively summarize the incidence of adverse
events (Zink et al. 2013). A shift plot and a waterfall plot are used to show the change
from baseline in laboratory parameters (Chuang-Stein et al. 2001; Ivanova et al.
2019). Additional references on graphical presentations of safety data include
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Krause and O’Connell (2012), Duke et al. (2005), Matange (2016), and Zink
et al. (2018).

There has been increased interest in the systematic monitoring of safety for a
compound throughout the drug development life cycle. While some methods are
available to monitor the safety of novel therapies, many challenges remain. For
example, it is often challenging to assess the causality of AEs in relation to the
investigational drug due to the severity of symptoms of the underlying disease, the
toxicity from other concurrent therapies, and the frequent use of non-randomized
study designs. Further, in randomized Phase II and Phase III studies, safety is
considered to be one of the components of the benefit-risk trade-off, a complex
and comprehensive process that often requires an independent group of experts such
as a Data Monitoring Committee (DMC) to evaluate the well-being of patients in
ongoing trials. Data and safety monitoring in clinical trials is defined as a planned,
ongoing process of reviewing the data collected in a clinical trial with the primary
purpose of protecting the safety of trial participants, the credibility of the trial, and
the validity of trial results (Ellenberg et al. 2002). In the FDA guidance on Estab-
lishment and Operation of Clinical Trial Data Monitoring Committees, a DMC is
defined as a group of individuals with pertinent expertise that reviews regularly
accumulating data from one or more ongoing clinical trials (US Food and Drug
Administration 2006). An independent DMC is usually responsible for the data and
safety monitoring of randomized Phase II and Phase III studies. Though it is possible
to have an independent DMC for Phase I trials, it is not a common practice. In the
FDA draft guidance on Safety Assessment for IND Safety Reporting, the FDA
recommends that sponsors consider the use of a Safety Assessment Committee
(SAC) (US Food and Drug Administration 2015b). The SAC would oversee the
evolving safety profile of the investigational drug by evaluating the cumulative
serious adverse events from all of the trials in the development program, as well as
other available important safety information. The SAC is distinct from a DMC, in
that a DMC is typically responsible for a single study, while an SAC oversees safety
for an entire development program. If both are used, then consideration is required to
ensure their respective roles and responsibilities are clearly defined.

The European Medicines Agency and the US FDA allow sponsors to file for
accelerated and conditional approvals of severe conditions (US Food and Drug
Administration 2014a; EMA 2016). There are some concerns that accelerated
development might result in a simplified and shortened process of the development
of a new drug. In this case, interim analyses pose an ethical dilemma of safeguarding
the interests of patients enrolled in clinical trials, while simultaneously protecting
society from premature claims of treatment benefit. Trials stopped early because of
safety or futility tend to result in prompt discontinuation of useless or potentially
harmful interventions. In contrast, trials stopped early for benefit may result in the
fast approval and dissemination of promising new treatments. Given the severe and
life-threatening nature of cancer and patients’ expectations for promising treatments,
quicker clinical drug development is required. This may, however, lead to a poorly
defined benefit-risk profile of a new therapy. Of particular concern is the potential for
early stopping of trials based on surrogate efficacy endpoints such as disease-free
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survival or time to recurrence, when delayed toxicity of the therapy might be
observed with longer follow-up. Further, not observing a full benefit of a new
treatment might result in rejection or just the partial reimbursement of the treatment
by payers that could also lead to a new drug being not at all or hardly adopted by the
medical community. Due to limitations of pre-marketing clinical trials and clinical
development programs stopped early for success, ongoing safety monitoring and
assessment are critical in post-marketing to fully establish the medical product’s
safety profile and understand the impact on patient populations. Discussions on
sources of safety data outside of traditional randomized clinical trials and statistical
strategies can be found in Izem et al. (2018) and Marchenko et al. (2018). Additional
references on safety monitoring and analysis include books by Jiang and Xia (2014)
and Gould (2015).

1.5 Concluding Remarks

Biostatistics is a highly developed information science, and it plays a significant role
in every stage of drug development. Biostatisticians provide statistical expertise to
cross-functional teams and ensure the use of appropriate and efficient statistical
designs and analysis methods during development, submissions, and life cycle
management of drugs. Making reasonable, accurate, and reliable inference from
data in the presence of uncertainty is an important responsibilities of biostatisticians.
This is an exciting time in both clinical and statistical research and development,
with the promise of personalized medicine and the explosion of computer-intensive
statistical tools in development. Many new advanced and efficient designs and
analysis methods have become available and increased in use in pharmaceutical
industry because of biostatisticians. Today the job of a biostatistician is exciting,
challenging, and rewarding.

In this chapter, we briefly covered some basic biostatistical principles, some
designs, and some selected analysis methods used in clinical trials. Where appropri-
ate, references to available software procedures in R and SAS were provided.
Additionally, we briefly highlighted some important considerations for clinical trials,
such as defining appropriate estimands, handling outcomes with missing data,
applying multiplicity adjustments, analyzing subgroups, planning multiregional
clinical trials, and evaluating drug safety. There are many other topics not covered
in this chapter, including the use of Bayesian statistical methods to design trials and
analyze data. Bayesian methods in clinical trial design have become more popular in
recent years, particularly for monitoring efficacy and toxicity simultaneously, and in
data analysis due to their flexibility of use and the corresponding ease of interpre-
tation of results. High-performance computers have facilitated widespread advances
in the development of computational algorithms that have enhanced the use of
Bayesian and hybrid designs in clinical trials, specifically in early phase trial
development. We refer readers interested in Bayesian methods to Spiegelhalter
et al. (2004), Berry et al. (2011), and Yuan et al. (2016).
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Chapter 2
Pharmacometrics: A Quantitative
Decision-Making Tool in Drug Development

Yan Xu and Holly Kimko

2.1 Background

2.1.1 What Is Pharmacometrics

Pharmacometrics is a bridging science that applies quantitative models representing
physiology, pharmacology, and disease to describe and quantify interactions
between drugs and patients (and pathogens) (Ette and Williams 2007). This involves
the modeling of pharmacokinetics (PK) and pharmacodynamics (PD) with a focus
on population and variability in order to characterize, explain, and predict PK and
PD behaviors of therapeutic drugs. Variability may be predictable (e.g., due to
differences in body weight) or apparently unpredictable (reflection of a knowledge
gap).

2.1.2 Evolution of Pharmacometrics

To better understand the role of pharmacometrics in drug development, the major
milestones in the growth of pharmacometrics are presented in Fig. 2.1, which reflects
its evolution in utility. The journey of pharmacometrics started in the 1920s. The use
of a one-compartment model to describe pharmacokinetics was introduced as early
as 1924 (Widmark and Tandberg 1924); the use of a multi-compartment model
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incorporating biological and physiological components for the simulation of PK data
was introduced by Teorell in 1937. The latter is regarded as the first physiologically
based PK model (PBPK).

The great growth of PK and PD, two core concepts of pharmacometrics, hap-
pened during the 1960s and 1970s (Forschungsinstitut et al. 1962; Levy 1966). For
PK, the first symposium with the term pharmacokinetics (entitled as
“Pharmakokinetik und Arzneimitteldosierung (Pharmacokinetics and Drug Dos-
age)”) was held in Borstel, Germany, in 1962 (Forschungsinstitut et al. 1962), and
clinical pharmacokinetics began to be recognized in the mid-1970s (Gibaldi and
Levy 1976; Wagner 1981). For PD, the concept of biophase compartment was first
introduced by Segre in 1968, which was reintroduced to drug development as
hypothetical effect compartment modeling by Sheiner et al. in 1979. In 1964, Ariens
provided the earliest description of drugs acting through indirect mechanism, and a
model describing this was provided by Nagashima et al. (1969) 5 years later. Further
systematic development and applications of the models for characterizing indirect
pharmacodynamic responses came from Jusko’s group later (Dayneka et al. 1993;
Jusko and Ko 1994; Sharma and Jusko 1998).

An important focus in drug therapy is to understand the variability of a response
among individuals in a population, which may be caused by both PK and PD. To
address this, a population modeling approach was introduced by Sheiner et al. in
1972 (Sheiner et al. 1972). They proposed the use of non-linear mixed effects
(NLME) regression models to analyze patient data pooled over all sampled individ-
uals, allowing for the quantification of between-subject and within-subject variabil-
ity. This analytical approach led to the development of a computer program,
NONMEM. NONMEM was first released by Beal and Sheiner in 1980 (for the

Fig. 2.1 Evolution of pharmacometrics (Modified from Gobburu 2013). PK Pharmacokinetics,
PK/PD pharmacokinetics/pharmacodynamics
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IBM mainframe) and became exportable for all computers in 1984 (NONMEM 77).
Since then, there has been a great deal of work in population PK/PD modeling using
the NLME approach, both in method and in application.

In the early 1980s, the term pharmacometrics first appeared in the Journal of
Pharmacokinetics and Biopharmaceutics (Rowland and Benet 1982).
Pharmacometrics was then recognized as a unique branch of quantitative science;
distinct sections for pharmacometrics were created in peer-reviewed journals, and
advanced PK/PD modeling trainings were offered in academia. A few professional
conference series have been established in the field of pharmacometrics, such as the
Population Approach Group Europe Meeting (PAGE; since 1997), American Con-
ference of Pharmacometrics (ACoP; since 2008), World Conference of
Pharmacometrics (WCoP; since 2012), and so forth.

The importance of pharmacometrics in drug development has been increasingly
recognized since the conference “The Integration of Pharmacokinetic, Pharmacody-
namic, and Toxicokinetic Principles in Rational Drug Development” held in 1991
(Peck et al. 1992). As such, pharmaceutical companies and regulatory agencies
began to pay attention to such integration-based modeling approaches in regulatory
submissions for drug approvals. From the late 1990s to early 2000s, several excellent
review papers from pharmaceutical companies highlighted the value of
pharmacometrics in enabling scientific and strategic decision-making in drug devel-
opment (Reigner et al. 1997; Olson et al. 2000; Chien et al. 2005). Model-based
findings were recognized to be able to influence high-level decisions such as trial
design, drug approval, and drug labeling. Such concepts were also well accepted by
academia and regulatory agencies. For example, in a white paper published in 2004,
the US Food and Drug Administration (FDA) underscored the importance of a
model-based drug development, where pharmacometrics is believed to play a critical
role (FDA 2004). Indeed, there has been a huge increase in the application of
pharmacometrics in drug development over the last two decades. A survey from
2000 to 2008 shows that the drug approval and labeling decisions of more than 60%
of the submissions for new drug applications (NDA) to US FDA were influenced by
pharmacometric analysis (Lee et al. 2011). Systematic compilation of
pharmacometrics has also been made in a few books (Kimko and Duffull 2003;
Ette and Williams 2007; Kimko and Peck 2010; Bonate 2011).

Pharmacometrics is an evolving science with continuous advancement in novel
modeling approaches and applications. Recently, physiologically based PK (and
PK/PD) modeling has gained much widespread applications (Jones and Rowland-
Yeo 2013), predominantly driven by major technological advances and increasing
confidence in this approach. Quantitative systems pharmacology (QSP) is another
fast-growing area (Sorger et al. 2011; Mager and Kimko 2016). It allows for
predictions of the efficacy and safety of drugs based on known or possible mecha-
nisms of action in pharmacology, pathology, or physiology. In addition, model-
based meta-analysis (MBMA) (Mandema et al. 2011) has been advocated to lever-
age existing big data in making rational comparative risk/benefit assessment.

With the increasing application and acceptance of pharmacometrics in drug
development, several regulatory guidelines and documents concerning industry
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best practices have been issued. This started in the late 1990s (FDA 1999; Holford
et al. 1999) and continues thereafter (FDA 2003; EMA 2008, 2016) with the most
recent position paper published in March 2016 (EFPIA MID3 Workgroup 2016).

2.1.3 Role of Pharmacometrics in Drug Development

In the past two decades, pharmacometrics—PK/PD modeling and simulation
(M&S)—has developed into one of the most essential tools for the integration and
interpretation of large and diverse pools of preclinical and clinical data, translating
them into informative knowledge. It is beneficial not only for industry professionals
in informing internal decision-making at critical drug development stages (e.g., first-
in-human, proof-of-concept, pivotal trial, etc.) but also for regulatory authorities in
compiling and analyzing data for approval and labeling.

There is no doubt pharmacometrics is playing an increasingly important role in
improving R&D investment by facilitating applications of the learn-and-confirm
paradigm proposed by Sheiner (1997). As a molecule moves through the drug
development process, rational models are developed and refined using accumulated
data and knowledge available at each stage to predict what is likely to happen in the
next stage, thereby guiding research investment. Of note the impact of
pharmacometrics on decision-making and risk management is dependent on the
availability and quality of data accessible at a certain stage of drug development.
Framing the right questions and capturing the key assumptions are critical compo-
nents of the learn-and-confirm paradigm and are essential for the delivery of high-
value pharmacometric results. This is particularly important at the early stage of drug
development when data are limited.

This chapter aims to provide an overview on pharmacometrics with a focus on
drug model (i.e., PK and PK/PD models). Disease progression model (i.e., quanti-
fication of the relevant biological [physiological] system in the absence of drug) and
trial model (e.g., characteristics of enrolled study subjects, dropout and/or compli-
ance) will not be discussed in detail; the reader can refer to the excellent review by
Gobburu and Lesko (2009) and references therein for more information.

In the following sections, commonly employed PK and PK/PD analytical
approaches will be introduced, followed by the software used for analyses, analysis
work flow, and major model components with a focus on the population modeling.
Four case studies will be illustrated to highlight the broader applications of
pharmacometrics in drug development, from the translational stage to the early
and late stage in clinical development.
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2.2 Pharmacometric Analysis Approaches

2.2.1 PK Models

PK, in popular terms, is often described as what the body does to the drug. PK
models characterize how a drug passes through the body by using concentrations in
various areas of the body as a function of time. In order to build mathematical
models to describe how the concentration changes with time, the body is conve-
niently divided into parts, called compartments, and in each compartment, the drug
is assumed to behave in the same manner. Thus, each compartment is homogeneous
and is described with a single representative concentration at any point in time, i.e.,
well-stirred model (Pang and Rowland 1977). Each compartment can be a real
physiological space in the body. For example, the compartment where the concen-
tration is usually measured is the bloodstream, which is called central compartment.
However, compartments are typically abstract concepts that do not necessarily
represent particular regions of the body. Additionally, a certain PK compartment
might represent different tissue types depending on the characteristics of a given
molecule. For example, lipophilic compounds are more likely to distribute into
adipose tissue, while hydrophilic compounds are more likely to stay in the blood-
stream. Therefore, peripheral compartment (into which the compounds may distrib-
ute) may represent different tissues for these two types of compounds.

Compartments have proven to be fundamental building blocks of PK models (and
PK/PD models) with the difference between models being defined by the number of
compartments and the way the compartments are connected. The drug amount in a
compartment can be described with parameters of rate constant parameters that are
estimated preferentially as ratios of clearance (CL) and volume (V) in data fitting.
The parameterization using CL and V has the advantage of interpreting an estimated
parameter with physiological meaning, and it is used throughout this chapter unless
otherwise indicated. Figure 2.2 presents exemplary compartment PK systems and
their associated, typical concentration-time curves.

The one-compartment system is the most basic PK model, which only includes a
central compartment and an absorption compartment that are necessary for oral
administration. This model is appropriate if the drug is distributed to accessible
areas of the body instantly as in the case of direct intravenous bolus injection or
infusion into the bloodstream (Fig. 2.2a), whereas extravascular administration
requires an absorption compartment in addition to the central compartment
(Fig. 2.2b).

Mathematically, for a drug administrated as a bolus dose, the rate of drug
elimination that governs the drug concentration in the one compartment model can
be written as

dA2=dt ¼ �CL=V2 � A2, ð2:1Þ
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C2 ¼ A2=V2, ð2:2Þ

where A2 and C2 are the amount and concentration, respectively, of the drug in the
central compartment, CL is the clearance, and V2 is the volume of distribution in the
central compartment.

In the case of extravascular dosing, the rate of change in the absorption compart-
ment can usually be described with first-order kinetics, resulting in the following
differential equations:

dA1=dt ¼ �ka � A1, ð2:3Þ
dA2=dt ¼ ka � A1 � F � CL=V2 � A2, ð2:4Þ

where A1 is the amount of the drug in the absorption compartment, ka is the first-
order absorption rate constant, and F denotes the bioavailability that is the fraction of
the dose reaching the central compartment. Definitions of A2, CL, and V2 are the
same as described above. The drug concentration in the central compartment, C2,
can be estimated using the same equation as described in Eq. 2.2.

For multi-compartment models, the system typically consists of (1) a central
compartment, representing the bloodstream and the rapidly equilibrated organs;
(2) one or more peripheral compartments, representing more slowly equilibrating
tissues; and (3) in the case of extravascular administration, an absorption

Fig. 2.2 Compartment pharmacokinetic model examples. (a) One-compartment model with IV
bolus. (b) One-compartment model with first-order absorption. (c) Two-compartment model with
IV bolus. (d) Two-compartment model with first-order absorption. A1 Amount of drug at the
extravascular absorption site, A2 amount of drug in central compartment, A3 amount of drug in
peripheral compartment, C2 concentration of drug in central compartment, CL clearance from
central compartment, F bioavailability, IV intravenous, Ka first-order absorption rate, Q inter-
compartment clearance
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compartment. The processes can also be described mathematically using differential
equations. For example, the system shown in Fig. 2.2c can be described as

dA2=dt ¼ � CL=V2 � A2þ Q=V3 � A3, ð2:5Þ
dA3=dt ¼ CL=V2 � A2� Q=V3 � A3: ð2:6Þ

And the system shown in Fig. 2.2d can be described as

dA1=dt ¼ �ka � A1, ð2:7Þ
dA2=dt ¼ ka � A1 � F � CL=V2 � A2þ Q=V3 � A3, ð2:8Þ

dA3=dt ¼ CL=V2 � A2� Q=V3 � A3, ð2:9Þ

where A2 and A3 represent the amounts in the central compartment and the
peripheral compartment, respectively, Q is the inter-compartment clearance, and
V3 is the volume of distribution in the peripheral compartment. Definitions of A1,
ka, and F are the same as described above. And the drug concentrations in central
compartment (C2) and peripherical compartment (C3), respectively, can be
described as

C2 ¼ A2=V2, ð2:10Þ
C3 ¼ A3=V3: ð2:11Þ

The following three aspects should be carefully evaluated during the development
of a PK compartment model:

• Number of compartments: During the decision-making on the number of com-
partments, it should be noted that too few compartments would not fit the data
well, whereas too many compartments may show trivial improvement in curve
fitting with poor precision parameter estimates. Typically, a multi-compartment
system looks like a piecewise linear function in a plot of the concentration on a
logarithmic scale versus time (Fig. 2.2c, d), while a one-compartment shows one
linearly decreasing line (Fig. 2.2a, b).

• Absorption kinetics: A first-order process is a valid starting assumption in most
extravascular administration cases. However, zero-order process has also been
used to describe the absorption profile (e.g., controlled release), and inclusion of a
delayed absorption time and non-linearity in absorption kinetics is not uncom-
mon. If supported by the observed data, more sophisticated model should be
considered to better capture the absorption profile (e.g., parallel or sequential
zero-order plus first-order absorption processes) (Zhou 2003).

• Elimination kinetics: Many drugs are eliminated following a first-order elimina-
tion process. However, it is not unusual that some drug elimination pathways may
be saturated at a high dose, which may be revealed from data collected across a
wide dose range. This non-linear elimination is often described by Michaelis-
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Menten kinetics type of equations as described in Fig. 2.3 (Gabrielsson and
Weiner 2007). For the linear elimination kinetics, there is proportionality in the
drug concentration kinetic following low-dose and high-dose administrations
(black and red curves in Fig. 2.3a). In the case of the non-linear capacity-limited
elimination kinetics, such proportionality disappears (Fig. 2.3b).

2.2.2 PK/PD Models

Contrary to PK, PD is described as what the drug does to the body. PK/PD models
aim at linking dose and PK information to certain measures of biomarkers or
response endpoints. The wide variety of possible efficacy and safety outcomes of a
clinical trial or a preclinical experiment makes it difficult to generalize all cases of
PK/PD modeling approaches with a few models. This section will focus on the most
commonly used PK/PD models for continuous response variables. For discrete
response variables, models often use logistic equation to convert the response to a
probability that changes with a PK exposure metric.

Fig. 2.3 Linear versus non-linear elimination kinetics. Elimination kinetic of drug from central
compartment can be captured using a first-order elimination rate constant of Kel in the case of linear
kinetic (Panel a) or a Michaelis-Menten kinetics type equation, Vmax� C2/(Km + C2), in the case of
non-linear kinetics (Panel b). (a) One-compartment model with IV bolus and linear elimination
kinetics. (b) One-compartment model with IV bolus and Michaelis-Menten-type non-linear elim-
ination kinetics. A2 Amount of drug in central compartment, C2 concentration of drug in central
compartment, Km rate to achieve 50% maximum elimination rate, Kel linear elimination rate
constant, IV intravenous, Vmax maximum elimination rate
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2.2.2.1 Basic Concentration-Effect Relationships

The center of a PK/PD modeling exercise is to figure out the appropriate
concentration-effect relationship. The model should describe the observed data
well while reasonably reflect the mechanism of action to exert the pharmacological
effect at a given concentration. Table 2.1 summarizes the four commonly employed
concentration-effect models, including linear, log-linear, maximum effect (Emax),
and sigmoidal Emax models (Gabrielsson and Weiner 2007). A comparison of these
fundamental concentration-effect relationships is shown in Fig. 2.4. A
concentration-effect model is chosen depending on the type of the pharmacological
response, and the most physiologically relevant model should be used to characterize
such a response, data permitting. It should be noted that “concentration” could be
any metric describing drug exposure, such as area under the curve (AUC), peak
concentration, trough concentration, etc. When the drug acts by the inhibition of an
effect, Emax and the concentration at which E is 50% of Emax (EC50) may be referred

Table 2.1 Basic concentration-effect relationship models

Model Description Equations Comments

Linear Linear and direct propor-
tionality between drug con-
centration and effect

E ¼ Slope � C The simplest model
Sometimes useful when the
range of concentration is
relatively narrow and the
drug effect is well below
Emax

Log-linear Linear and direct propor-
tionality between
log-transformed drug con-
centration and effect

E ¼ Slope � log (C) Extension of linear model
Typically applies for con-
centrations over a wide
range
Cannot represent the case
where concentration is zero

Emax Define drug concentration
and effect relationship using
potency (EC50) and maxi-
mum response (Emax)

E ¼ Emax�C
EC50þC

Most commonly used
concentration-effect model
Derived from the receptor
theory (binding of a single
drug to a single receptor)

Sigmoidal
Emax

An extension of the Emax

model, where the parameter
N (Hill’s coefficient) con-
trols the steepness of the
curve

E ¼ Emax �CN

EC50
NþCN

A more general form of the
Emax model
Derived from the receptor
theory where there is allo-
steric inhibition or stimula-
tion of binding
The larger the value of N,
the steeper the line around
EC50 (middle part of the
curve)

C Concentration, E effect, Emax maximum achievable effect, EC50 concentration at which E is 50%
of Emax, N Hill’s coefficient
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to as Imax and IC50, where the effect (“E”—often by stimulation of a mechanism)
terminology is transposed to inhibitory (“I”—the inhibition of a mechanism). The
discussion below is applicable to both stimulatory and inhibitory cases.

The concentration-effect models shown in Table 2.1 and Fig. 2.4 assume the drug
effect is zero when the drug concentration is zero. However, a more common
scenario is that the effect has a baseline (e.g., pre-dose endogenous biomarker
value). In this case, the observed effect during drug treatment would be a combina-
tion of drug effect (Edrug) and the baseline (Ebase). To mathematically describe this,
two relationships are commonly employed—additive or proportional:

E ¼ Ebase þ Edrug, ð2:12Þ
E ¼ Ebase � ð1þ EdrugÞ: ð2:13Þ

Both relationships should be considered during model building unless there is an
established mechanistic understanding or certain prior information is known. The
additive relationship (Eq. 2.12) yields the same magnitude of effect change given the
same concentration regardless of the baseline measurement, whereas the propor-
tional relationship (Eq. 2.13) indicates that a subject with a higher baseline results in
a higher effect change.

2.2.2.2 Direct Effect

The concentration in the central blood compartment may be directly linked with the
pharmacological effect in PK/PD modeling when the apparent biophase equilibrium

Fig. 2.4 Representative basic concentration-effect relationships. Panel (a), concentration in linear
scale; Panel (b), concentration in log scale. Equations associated with the representative curves are
as follows: (1) linear, E ¼ C � 1 [slope ¼ 1]; (2) log-linear, E ¼ log10(C) � 5 [slope ¼ 5];
(3) simple Emax, E ¼ 100 x C/(C + 20); (4) sigmoidal Emax, N ¼ 2, E ¼ 100 � C2/(C2 + 202); and
(5) sigmoidal Emax, N ¼ 0.5, E ¼ 100 � C0.5/(C0.5 + 200.5) [Emax ¼ 100 and EC50 ¼ 20 for
scenarios 3–5]. E Effect, C concentration, N Hill’s coefficient
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is sufficiently rapid relative to the drug distribution (Fig. 2.5a) and can be described
using the representative modeling scheme in Fig. 2.6a.

2.2.2.3 Link/Effect Compartment Model

In many situations there is a time delay between the drug concentration in blood and
the drug effect. As such, the observed response is not apparently related to the blood
concentration, and a hysteresis loop would present in the plot of response versus
drug concentration in the blood (Fig. 2.5b).

This temporal displacement may be due to time to reach target site (i.e., drug
tissue distribution), time for pharmacology to become available (e.g., active metab-
olite formation), or time to develop pharmacology (e.g., a slow ligand-receptor
on/off time course or a cascade). In the case of distributional delay, it can be
numerically handled by introducing a hypothetical effect compartment with a target
site concentration representing the concentration at the site of action (Ce), which is

Fig. 2.5 Direct versus indirect concentration-effect schemes. (a) Direct—instantaneous. (b) Indi-
rect—delayed. Upper panel, blood concentration (C) and effect versus time of a direct effect system
(upper left) and a system with delayed effect (upper right); lower panel, effect versus concentration
(C) for the direct effect system (lower left) and delayed effect system (lower right). Time labels t1–
t6 and the arrows in the lower right plot indicate the time sequence of the response
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assumed to drive the drug effect (Fig. 2.6b) (Sheiner 1997). The effect compartment
(biophase) model was the first model structure that had been used to account for time
delays in drug effects. Historically, it has often been applied inappropriately without
recognizing that various other processes may contribute to such delays.

A first-order rate constant (ke0) is typically used to describe the time delay from
the systemic concentration (Cp) to the target site concentration (Ce). In order to avoid
an identifiability problem due to unknown hypothetical effect compartment volume,
the same ke0 value is used as an elimination rate constant for the effect compartment.
A smaller ke0 value means the effect compartment equilibrates slower and that there
is more of a time lag in drug distribution to effect compartment (hence “delayed
effect”). The effect compartment model can be described as

dCe

dt
¼ ke0 � Cp � ke0 � Ce: ð2:14Þ

2.2.2.4 Indirect Response/Turnover Model

When the time delay between drug concentration and effect is due to the time
required to trigger pharmacological response(s) rather than distributional delay, the
indirect response model is frequently used (Fig. 2.6c). The term, turnover model, is
sometimes used interchangeably, but it is often used to describe the homeostasis-
maintaining, biochemical responses in body without drug intervention. Indirect

Fig. 2.6 Representative pharmacokinetic/pharmacodynamic model scheme. Drug effect is
described using a simple Emax model. Other basic concentration-effect models may be used when
appropriate. (a) Direct response model. (b) Link/effect compartment model. (c) Indirect effect/
turnover model. C Systemic concentration, Ce concentration in effect compartment, CL drug
clearance, Emax maximum achievable response, EC50 concentration at which response is 50% of
Emax, Ke0 first-order effect compartment rate constant, Kin zero-order rate constant for the produc-
tion of the response, Kout first-order rate constant for the loss of the response
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responses occur by perturbing the homeostasis (i.e., the inhibition or stimulation of
the production or removal of endogenous mediators controlling the measured
responses). In these cases, mechanistic delay happens even after the drug reaches
the site of action.

The basic premise of the indirect models is that the observed PD effect is
governed by a net balance between the rate of production and the rate of removal
of an endogenous mediator that is perturbed by the drug:

dR
dt

¼ kin � kout � R, ð2:15Þ

where kin represents the apparent zero-order rate constant for the production of the
response, kout defines the first-order rate constant for the loss of the response, and R
is the response variable, which is assumed to be stationary with an initial value of R0

(kin/kout). In data fitting with the indirect response model, R is often assumed to be
directly proportional to the unmeasured endogenous mediator quantity. A smaller
kout value results in a longer turnover time (1/kout), i.e., longer time for a new steady
state to be established following a change of the turnover system.

A drug can affect the net turnover system by the four mechanisms shown in
Table 2.2 (Dayneka et al. 1993; Sharma and Jusko 1998). If production rate (kin)
increases or removal rate (kout) decreases, then the value of the response variable
increases, and vice versa.

Both the effect compartment model and the indirect response model may fit a
given dataset well, but it is highly recommended that the model selection should rely

Table 2.2 Overview of indirect response/turnover models

Model Scheme Equationa

I: Inhibition of
production

dR
dt ¼ Kin � 1� Imax �C

IC50þC

� �
� Kout � R

II: Inhibition of
removal

dR
dt ¼ Kin � Kout � 1� Imax �C

IC50þC

� �
� R

III: Stimulation of
production

dR
dt ¼ Kin � 1þ Emax�C

EC50þC

� �
� Kout � R

IV: Stimulation of
removal

dR
dt ¼ Kin � Kout � 1þ Emax �C

EC50þC

� �
� R

Drug inhibition or stimulation effect is described using a simple Emax model. Other basic
concentration-effect models may be used when appropriate, e.g., sigmoidal Emax model.
C Concentration, R response, Emax/Imax maximum achievable drug effect (0 < Imax � 1 and
Emax > 0), EC50/IC50 concentration at which drug effect is 50% of Emax/Imax, I inhibition,
S stimulation, Kin production rate, Kout dissipation rate
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on mechanistic understanding of whether the time delay is more due to a biophase
equilibration (effect compartment model) or the need to develop a response (indirect
response model). These processes might be concurrent, but rarely is there enough
information in the observed data to support a combination of the two. Several other
PK/PD models for continuous responses have been developed to better describe the
data observed in certain scenarios such as the transit model, the tolerance and
rebound model, and so forth. Readers can refer to the review by Csajka and Verotta
(2006) for more information.

2.2.3 Emerging Approaches

Over the last several years, great progress has been made in pharmacometric
analysis. New methodologies have been applied in drug development such as the
physiologically based pharmacokinetic (PBPK) model, quantitative systems phar-
macology (QSP), and model-based meta-analysis (MBMA).

2.2.3.1 Physiologically Based PK Modeling

The concept of physiologically based pharmacokinetic (PBPK) modeling is not new,
as reviewed in Sect. 2.1.2. However, until recently, the application of PBPK models
in drug development had been limited, mainly due to the computational complexity
of the models and the necessity to collect various physiological or pharmacological
data as inputs for the models. Currently, PBPK modeling is being used throughout
drug discovery and development as a tool in assessing drug-drug interaction,
designing appropriate formulations, and predicting PK in special populations such
as pediatrics. The increased application in PBPK has been mainly facilitated by
(1) the increased understanding of systems biology, pharmacology, genetics, and
genomics, (2) the advancement of computation technology, and (3) the availability
of commercial platforms for PBPK modeling, such as Simcyp simulator (Certara,
Sheffield, UK), GastroPlus (Simulations Plus, California, USA) and PK-Sim (Bayer
Technology Services, Leverkusen, Germany), and so forth.

Compared to data-driven empirical top-down modeling, PBPK model strives to
be mechanistic by mathematically transcribing anatomical, physiological, physical,
and chemical descriptions of the complex processes governing the fate of the drug in
the body (i.e., bottom-up). It consists of multi-compartments corresponding to
different tissues in the body and connected by the circulating blood system, where
each compartment is defined by a volume (or weight) and blood flow specific to a
given tissue. The parameters that describe the body system are refereed as system-
related input parameters. Typically, compartments in PBPK models comprise of
major tissues of the body such as adipose, muscle, skin, brain, gut, heart, liver,
kidney, lung, spleen, etc. However, sometimes a reduced model is developed, by
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grouping organs or tissues with similar blood perfusion rate and lipid content, in
order to reduce the overall complexity of the model.

To simulate the fate of a drug substance in the body, additional drug-specific
input parameters are required, e.g., physicochemical characteristics determining
drug permeability through membranes, partitioning to tissues, binding to plasma
proteins and affinities to certain metabolizing enzymes or transporters, etc. Com-
bined with study design input parameters (e.g., dose and dosage regimen, food
intake, etc.), a PBPK model is expected to provide a more mechanistic insight of the
various factors influencing PK (e.g., non-linearity) and thus a better understanding of
the behaviors of a drug molecule in situations or populations that have not yet been
investigated clinically. Its utility becomes more significant in the cases where it is
difficult or not ethical to conduct clinical trials, such as trials with neonates or
subjects with renal failure.

2.2.3.2 Quantitative Systems Pharmacology

Quantitative systems pharmacology, covering both efficacy and safety of a drug, has
been introduced recently as a novel approach to link drug responses to physiological
processes operating at molecular, cellular, tissue and organ levels. Compared to
traditional PK/PD models, which focus on confidence in pharmacologic agent, QSP
emphasizes confidence in target (Vicini and van der Graaf 2013). QSP models
represent hybrid, multi-scale structures reflecting an understanding of fundamental
mechanistic relationships of endogenous biomarkers affected by a pharmacologic
agent and focusing on the dynamic interplay among the constituents of a system that
manifests as emergent responses. As a result, QSP models allow for the exploration
of questions in the absence of direct information because models (1) are based on
best known understanding of physiology/pharmacology, (2) incorporate assump-
tions about drug and disease mechanisms, and (3) address drug action in the context
of disease. For example, QSP models can be used to predict exposure-response or
dose-response relationships for hypothesis generation. It can also be used to predict
clinical outcomes with a new regimen and/or in a new population/indication.
Moreover, it can test hypotheses when unexpected biological/pharmacological
results are observed (Crawford 2016).

Although conceptually appealing due to its realistic representation of the body,
the actual development and implementation of QSP models is often viewed as a
practically difficult task. In particular, due to its complexity, QSP model develop-
ment may not easily match timelines to address questions for fast-paced drug
development. QSP models used to be developed in academia over decades, typically
with a single lab focusing on a specific pathway of interest. To be of value in drug
development, models must be developed rapidly and efficiently, because the time
scale is being measured in weeks/months not years. It is, therefore, suggested to start
with a fit-for-purpose, smaller model and then to build on it over time. This would
avoid a long developmental period requiring a lot of effort with limited immediate
impact, and long-term investment of QSP models is being increasingly appreciated
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in pharmaceutical industry. It is considered that QSP models, once developed, can be
rapidly extended within their physiological and pharmacological fields in order to
provide inferences on questions that empirical models have limited capability to
answer, such as population selection, biomarker response explanation, off-target
effect prediction, combinational therapy optimization, and so forth.

2.2.3.3 Model-Based Meta-analysis

Model-based meta-analysis (MBMA) has been recognized as an innovative data
enrichment strategy to make efficient use of internal and external data sources,
resulting in increased knowledge and more precise decision-making in drug devel-
opment (Mandema et al. 2011). This strategy involves a systematic search and
tabulation of summarized results from public and confidential clinical studies,
followed by a regression analysis that may attribute variability in the study results
to the differences in the study population or trial conduct. It provides a quantitative
framework that leverages valuable existing data into the decision-making process for
a drug candidate—e.g., a quantitative understanding of how a new compound will
perform relative to existing standard of care and/or compounds in development.

To better understand the utility of MBMA, it is worth mentioning the key
assumptions of MBMA. First, it assumes all drugs with a similar mechanism of
action share the similar onset of action and a common maximum effect. Secondly,
true (relative) treatment effects are considered to be “exchangeable” across studies,
i.e., given the same treatments, each study would estimate the same, exchangeable
treatment effects. Thirdly, heterogeneity, due to, for example, random unexplained
study-to-study difference, can be accounted for by study-specific random effect
models. An inadequate fulfillment of these assumptions would lead to bias during
result interpretation.

Like any meta-analysis, MBMA requires a careful review of literature and an
assessment of potential publication bias. Readers can refer to the standard pro-
cedures described in the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement (http://www.prismastatement.org).

2.3 Pharmacometric Analysis Methodology

This section describes modeling aspects related to non-linear mixed effect popula-
tion modeling, one of the most widely applied analysis tools in drug development.
The book by Bonate (2011) details the methodology.
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2.3.1 Software

From a historical perspective, it is noticeable that the development of personal
computers together with software combining differential equation solvers with
non-linear minimization routines accelerated the progress made in pharmacometrics.
NONMEM (Beal and Sheiner 1984) was the first software available for population
modeling. After its first release in the early 1980s, continuous improvements were
implemented with the advancement of statistical and estimation techniques. There
has been a series of updates (http://www.iconplc.com/innovation/nonmem/). At the
same time, several other pharmacostatistical programs have been developed to
handle NLME PK/PD modeling such as WinBUGS (http://winbugs-development.
mrc-bsu.cam.ac.uk/), Monolix (http://lixoft.com/products/monolix/), Phoenix
NLME (https://www.certara.com/software/pkpd-modeling-and-simulation/phoe
nix-nlme/), nlme and nlmixr packages in R (https://www.r-project.org/), proc
nlmixed in SAS (https://www.sas.com/), and many more. It is important that the
software used for population analysis should be adequately validated and
maintained. User-written model codes, subroutines, and scripts are usually provided
for review as part of the regulatory submission.

2.3.2 Pharmacometric Analysis Work Flow

A schematic work flow for the development of a population PK or PK/PD model is
provided in Fig. 2.7. The key associated activities are briefly described below.

Fig. 2.7 Schematic work flow for population model development
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• Data handling: Before any modeling analysis can take place, some form of data
handling will be required to assemble the data into the appropriate format. It is
advised to obtain access to data as early as possible so that data quality can be
assured before analysis. This is extremely helpful for time-sensitive analyses.

• Exploratory analyses: Analysis is initiated with various exploratory analyses to
better understand the data and potential difficulties associated with the modeling.
Also, some aspects of data handling (e.g., imputation of missing data) may
depend on the results of exploratory analyses. Both graphical and numerical
methods (such as tabulation) may be applied.

• Structural model: The first modeling step pertains to structural model develop-
ment (see Sect. 2.3.3.1), which looks for the optimal structure form for the fixed
effects. The choice of a structure model will be largely driven by prior knowledge
and results from exploratory analyses. Random effects need to be included in
order to allow the refinement of the structure model.

• Stochastic random effect model: The next step is random effect model develop-
ment (see Sect. 2.3.3.2). Both between-subject and within-subject random effect
models are optimized in this step. In order to precisely estimate the fixed effects in
a model, the random effects have to be properly accounted for.

• Covariate model: The base model developed from the above procedures is then
used for covariate model development, if applicable. After selection of the final
covariate model, the appropriateness of the random effect model should be
reassessed. For example, a parameter describing between-subject variability
should be reduced upon inclusion of a covariate effect. The resulting model is
then considered as the final model.

• Model evaluation and qualification: The final model should be subjected to
purpose-driven, model qualification. Model qualification should provide a suffi-
ciently complete characterization of the model’s behavior to better understand its
potential limitations in future use.

• Simulation: In many instances the last component of a pharmacometric analysis is
simulation, for example, to predict the responses to treatment regimens that have
not yet been tested. Variability and parameter uncertainty should be carefully
considered depending on the purpose of the simulation (see Sect. 2.3.5).

• Reporting and communication: Appropriate reporting and communication of the
modeling results is essential for any pharmacometric analysis in support of drug
development. This is of particular importance for analyses intended for regulatory
review.

2.3.3 Model Development

Population models are comprised of several components: the structural model,
statistical model, and covariate model (Mould and Upton 2012; Mould and
Upton 2013; Upton and Mould 2014). Development of each component will be
discussed below.
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2.3.3.1 Structural Model

The structural model describes the relationships between the PK and PD variables
for a typical individual. It can be represented as algebraic functions or differential
equations.

For example, the simple one-compartment PK model for a drug being
administrated as a IV bolus dose can be described using the algebraic function
below:

CðtÞ ¼ Dose
V

� e�CL
V �t ð2:16Þ

where C(t) is the systemic concentration at time t. Dose, CL (clearance), and V
(volume of distribution in the central compartment) are parameters to define the
relationship between C(t) and time. Alternatively, this one-compartment PK model
can be written as a differential equation, as already discussed in Sect. 2.2.1 (Eqs. 2.1
and 2.2).

Compared to an algebraic function, which states the relationship between a
dependent variable (i.e., systemic concentration) and an independent variable (i.e.,
time) explicitly, a differential equation describes the rate of change of a variable,
e.g., the rate of change in concentration with respect to time. Many complex
pharmacometric systems cannot be stated as algebraic functions, and instead they
are comprised of differential equations using a set of typical parameter estimates
(i.e., fixed effects) to quantify the mass transfer between compartments.

Identification of an appropriate structural model is the first step in population
model development. It is usually guided by the exploratory analyses to determine the
key characteristics of the structure model, for example:

Pharmacokinetics

• Is there an absorption lag time?
• Does the absorption follow a first-order or zero-order process, or some combina-

tion thereof?
• How many apparent distribution/elimination phases are there?
• Are there linear or non-linear PK processes (in the absorption or elimination

phases) with respect to dose and/or over time?

Pharmacodynamics

• Is there a time delay between drug exposure and response?
• Are the data following a linear or non-linear PK/PD relationship?
• Is there an endogenous baseline component?
• Is there a placebo response over time?
• Is there a diurnal variation (circadian rhythm)?
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Only plausible models should be tested. For instance, if the concentration versus
time plot shows two distinct distribution/elimination phases, then a
one-compartment model that describes a monophasic decreasing profile is not
appropriate. For the mechanistic or semi-mechanistic PK/PD models, all tested
models should be in agreement with the mechanisms of action of the drug.

Once a structural model provides an adequate goodness-of-fit, it is recommended
to evaluate additional models with reduced complexity to avoid over-
parameterization. If the omission of complexity does not result in a significant
deterioration of model performance, then the reduced model should be chosen as
the final model according to the principle of parsimony.

2.3.3.2 Statistical Model

The statistical models describe random effects, i.e., variability around the structural
model parameters. There are two primary sources of variability in population
modeling: between-subject variability (BSV), which is the variance of a parameter
across individuals, and the residual unexplained variability (RUV), which is the
unexplained variability, after controlling for other sources of variability, including
within-subject variability (WSV), measurement error, etc. In some situations,
between-occasion variability (BOV) is also employed to describe variability
among multiple different measurement periods within a single subject. Population
models usually have fixed effects as well as random effect parameters and are
therefore called mixed effect models.

Figure 2.8 depicts the concepts associated with different levels of variability.
Considering a drug being administrated as a single bolus dose, its typical or
population mean concentration-time profile can be described using Eq. 2.16 (blue
solid line in Fig. 2.8). However, the PK parameters for this model such as CL and V
are not constant across all individuals, i.e., each individual subject has his/her unique
CL and V values, as described by Eq. 2.17:

Pi ¼ θpop � eηi , ð2:17Þ

Fig. 2.8 Source of random
effects. BSV Between-
subject variability, RUV
residual unexplained
variability, ηi deviation from
the population mean for the
ith subject, εij residual errors
in the jth observed
concentration for the ith

subject
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where P is the parameters of interests such as CL and V, i is the ith subject, θpop is the
estimate of the population mean parameter value, and ηi is the deviation from the
population mean for the ith subject under the assumption of η ~ N (0, ωi

2). A
log-normal function is used in Eq. 2.17 to describe the distribution of η values
because CL and V, like most PK parameters, must be positive and are often right-
skewed. An individual concentration-time profile (red dashed line in Fig. 2.8) is
described with subject-specific values of CLi and Vi using the same
one-compartment structural model (Eq. 2.16).

Concentration measurements are affected by errors such as assay error, dosing
history error, sampling time error, etc. As such, population models include RUV,
which reflects the difference between the observed data and the model predictions, to
capture these errors as well as WSV, model misspecification-related errors, and other
unexplained variability. Such residual variability for drug concentrations can be
assumed to follow a normal distribution and described by

Yij ¼ Cij � ð1þ εijÞ, ð2:18Þ

where Yij is the j
th observed concentration for the ith subject, Cij is the corresponding

model predicted concentration, and εij are the residual errors under the assumption of
ε~N (0, σ2).

In addition to the proportional residual variability model shown in Eq. 2.18,
additive or combinational proportional and additive residual variability models are
also often used to describe RUV.

Parameterization of the statistical model is usually based on data range being
evaluated and the properties of the variables being analyzed. For example, an
exponential BSV model is often used for estimation of the concentration to achieve
the half maximum effect (EC50) in order to avoid a negative value, which is not
plausible for concentration measures. In contrast, BSV of some baseline clinical
outcomes may be captured using an additive BSV model to ensure a normal
distribution. Developing an appropriate statistical model is important for covariate
evaluations (see Sect. 2.3.3.3) because covariates identification may be confounded
by the BSV and RUV parameterizations used in the model to evaluate covariates.
Moreover, results from simulation (see Sect. 2.3.5) depend highly on the choice of
the statistical model. It is recommended that statistical models should be evaluated
early during structural model development and monitored for adequacy throughout
model development via multiple diagnostic tools as presented in Sect. 2.3.4.

2.3.3.3 Covariate Model

Covariates are defined as individual subject-specific factors including demographics
(such as weight, age, and gender), baseline disease characteristics, laboratory mea-
sures (such as hepatic functional enzyme), co-medications, comorbidities, and life
styles (such as smoking) that might affect the PK and/or PD characteristics of a drug.
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The identification of covariates which explain variability is an important objective in
population modeling analysis. During drug development, questions such as “How
much does drug exposure vary with covariates such as body weight?” can be
answered through a dedicated clinical trial via enrolling subjects who have low
and high body weights. However, such information can also be opportunistically
assessed though the population modeling analysis of studies that are not specifically
planned to answer such a question. Population modeling allows for the investigation
of relationships between covariates (e.g., weight) and parameters of interests (e.g.,
clearance) as fixed effects. BSV estimates in models involving covariates would
reduce when compared to estimates from the base model.

Figure 2.9 outlines the common approach used for covariate model development.
In general, good structural and statistical error models are prerequisites for covariate
analysis; when a covariate is known to have a large influence on the model
parameters, as seen with body weight for pediatric subjects, this covariate can be
included in the structural model (a structure covariate). Scientific and clinical
relevance should guide the selection of potential covariates to be tested. Because
run times can sometimes be extensive with multiple covariates and multiple base
model parameters of interests, it is often necessary to limit the number of covariates
evaluated in the model. Screening of covariate correlations is typically conducted to
reduce the number of covariates to be tested so that covariate effects can be reliably
estimated from the analysis dataset.

Several well-recognized covariate search methods (automated or manual) are
available (Hutmacher and Kowalski 2015). All covariates can be tested stepwise
(one at a time; forward selection and/or backward elimination) on all model

Fig. 2.9 Covariate model development
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parameters. Alternatively, covariates can be tested on select parameters, based on
physiological plausibility, e.g., creatinine clearance on clearance (one of the most
important parameters for exposure determination) for renally excreted drug, body
weight on clearance and volume for pediatric subjects based on principles of
allomeric scaling. The inclusion or exclusion of a covariate is usually determined
via the likelihood ratio test with a pre-specified significance level (e.g., forward
addition at the 5% significance level and backward elimination at the 1% level).
Moreover, the addition or deletion of a covariate should be based on clinical and
pharmacological experience and overall model goodness-of-fit. The models built via
stepwise procedures can suffer from selection bias due to the order of covariates
evaluated, and thus other covariate search approaches may be considered, e.g., a full
model with all potential covariates incorporated followed by backward elimination.

A covariate can be included in the model in several ways, e.g., multiplicatively as
a power model (continuous covariates; Eq. 2.19) or as a conditional effect relative to
groups (categorical covariates; Eq. 2.20). Other covariate parameterizations can also
be applied such as exponential and linear functions when appropriate.

Continuous: P j ¼ θ0 � Xij

MðX jÞ
� �θ j

, ð2:19Þ

Categorical: P j ¼ θ0 � θiXij : ð2:20Þ

where Pj is the j
th population estimate of parameters, Xij is the covariate of subject i

for the parameter Pj, M(Xj) is the median (or standard reference) of covariate X for
the population, θ0 is the typical value of the parameter Pj, and θi is a constant that
reflects the covariate’s effect on the parameter.

2.3.4 Model Evaluation and Qualification

The objective of model evaluation and qualification is to examine whether the model
is a good description of the dataset in terms of its behavior and the application
proposed ( fit-for-purpose). Model selection in general should be based on a combi-
nation of model performance, mechanistic plausibility, and clinical relevance (FDA
1999). And for model performance, three basic sets of criteria are used, model
stability (e.g., bootstrap, condition number, etc.), predictive performance (e.g.,
visual prediction check [VPC]), and model sensitivity (e.g., influence of outlier,
key assumption, etc.).

There are many diagnostics tools developed for model selection, and further
details can be found in a review by Karlsson and Savic (2007). Some commonly
used tools include statistical significance criteria (e.g., change in objective function
value, Akaike information criterion, etc.), precisions in parameter estimates, diag-
nostic plots, and so forth. A VPC, stratified by significant covariates included in the
final model, is usually recommended to be conducted to ensure that the models
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perform adequately well across various subgroups including different dose groups,
disease populations, age and weight groups, etc. Alternatively, prediction corrected
VPC (pcVPC) can be generated to check model performance. Ideally, the final
model should satisfy the following criteria:

• Provides a good description of the observed data
• Has no apparent trend in the relevant goodness-of-fit diagnostics
• Is consistent with existing clinical/pharmacological/physiological knowledge
• Has a successful termination of the covariance step and/or is adequately stable

The parsimony principle should be applied to guide model selection whenever
applicable. There may be reasons to select a more complex model instead of a
parsimonious one despite lack of statistical significance. For instance, although
mechanistic models require a high level of complexity, they take into account
physiological processes and/or a mechanism of action to yield more plausible
simulation results from the models.

2.3.5 Simulation

The quality of the simulation depends on the quality of the model in addition to prior
information on drug attributes and the system. Simulations are most often used to
explore the implications of a population model under differing assumptions and/or
circumstances compared to those used for model building—i.e., beyond the scope of
existing data. In these instances, it is important to define and disclose all assumptions
for model building and simulation and to perform a sensitivity check to investigate
the impact of the assumptions. Simulation results should be interpreted with a clear
understanding of the limitations and assumptions inherent in the model.

2.3.5.1 Stochastic Simulation

Stochastic simulations using a mixed effect (fixed effects and random effects)
population model are more complex than non-stochastic simulations using a
model with fixed effects only. Random effect parameters describe variability in the
population of interest and must be accounted for in simulations when understanding
population variability is important for decision-making, e.g., designing future stud-
ies. This is implemented using a random number generator (available in most
modeling software) to sample parameter values from a distribution. Simulations
are repeatedly executed so that the distributions of the simulated output can be
summarized (e.g., median and 5th and 95th percentiles). A common “rule of thumb”
is that at least 200 simulation replicates are needed when summarizing data as mean
values and at least 1000 to include their associated confidence intervals (Mould and
Upton 2012).
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2.3.5.2 Parameter Uncertainty

The precision of parameter estimates is limited by current knowledge and the input
dataset. Parameter uncertainty is crucial to consider when running simulations.
Large uncertainty in general indicates low model robustness and thus low confidence
in model projection. By excluding parameter uncertainty, while including only
between-subject-variability estimates, the simulation results underestimate the over-
all range in model prediction.

2.3.5.3 Simulation Approach Selection

Questions to consider in the determination of a simulation approach include:

• For model evaluation or inference?
• For interpolation (within the boundary of the original dataset) or extrapolation

(outside of the boundary of the original dataset)?
• Interested in population mean or individual responses with associated variability?
• Time constraint for simulation analysis?

Depending on the objective of a simulation study, variability and uncertainty of
parameter estimates may or may not be included, and Table 2.3 summarizes com-
mon simulation scenarios with their respective application conditions.

Table 2.3 Simulation scenarios

Scenario

Between-
subject
variability

Parameter
uncertainty Examples of applications

I No No Simple, quick simulation for a typical subject
Can be used for early-phase exploration or sensitivity
analysis

II No Yes To understand population mean response in early
phase exploration
Between-subject variability usually could not be well
characterized in early phase studies

III Yes No Model quantification (e.g., visual prediction check)
Simulation for the same population with no extrapo-
lation
May be used for extrapolation when there is a time
constraint for the scenario IV simulation below

IV Yes Yes Design of future trials or support of label claim of the
condition that has not been studied
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2.4 Case Studies

Modeling and simulation tools have been widely applied to address critical questions
in drug development in an efficient way. This section highlights such applications
via four case studies where modeling and simulations have been used:

1. To identify a translational PK target to guide early clinical development (via
MBMA)

2. To optimize dosing regimens for an efficacious and safe dose-finding trial design
(via population PK/PD modeling)

3. To support regulatory approval and to alleviate the need for additional clinical
trial (via population PK/PD modeling)

4. To guide early pediatric formulation development by determination of doses to be
investigated in pediatrics (via PBPK)

In each example, the critical question to be answered will be introduced, followed
by a pharmacometric analysis work flow, key outcomes, and the impacts on deci-
sion-making.

2.4.1 Translational Development

To guide the development of a novel anti-HIV-1 (human immunodeficiency virus
type 1) agent, particularly the early clinical development, it is critical to have a good
understanding of the target drug exposure that must be achieved clinically to ensure a
robust long-term viral suppression (i.e., PK target). Using an MBMA approach,
class-specific exposure-response models were developed for anti-HIV drugs of
non-nucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand trans-
fer inhibitors (INSTIs). These models linked viral load kinetics to potency-
normalized steady-state trough plasma concentrations by retrospectively analyzing
pooled internal/external data from the early-phase short-term monotherapy trials
(phase 1b) and the in vitro potency measurements (Xu et al. 2016). Given the
apparent existence of a class-specific common exposure-response relationship
within a given drug class, this modeling approach was considered reasonable.
Simulations were then conducted using these models to simulate viral load inhibition
following doses that have a long-term efficacy based on literature reports. This led to
the determination of steady-state trough concentrations of 6.2 and 2.2-fold above the
in vitro potency for NNRTIs and INSTIs, respectively, as the PK targets (Fig. 2.10).

The models developed and the PK targets selected were used to guide compound
selection during preclinical development, and to informe proof-of-concept trial
design in subjects with HIV-1 for new antiretroviral agents. The models provided
a reasonable prediction of the dose-response relationship for an investigational anti-
HIV agent and enabled the comparisons against existing and emerging treatment
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options. This MBMA modeling approach serves as an effective path forward to
increase the probability of success in achieving conclusive trial outcomes.

2.4.2 Early Clinical Development

Guselkumab is a human IgG1 monoclonal antibody (mAb) in clinical development,
which specifically blocks human interleukin (IL)-23. Understanding the exposure-
response relationship of guselkumab is important to guide dose selection for phase
2 study in patients with moderate-to-severe psoriasis. However, at the time of
designing a phase 2 study, limited information was available from patients; popula-
tion PK/PD modeling and simulation were used to bridge the data gap in order to
select the optimal phase 2 doses (Hu et al. 2014).

A population semi-mechanistic exposure-response modeling of guselkumab was
conducted to evaluate the association of guselkumab exposure with Psoriasis Area
and Severity Index (PASI) scores using a Type I indirect response model with an
empirically modeled placebo effect (Fig. 2.11). A model was initially developed
based on a small dataset from a phase 1 study of 47 healthy subjects and a phase
2 study of 24 patients with psoriasis who received various doses of guselkumab. A
natural consequence of limited patient efficacy data was substantially high uncer-
tainty in the resulting model. The simulated PASI75 (a 75% improvement in PASI
score from the baseline) response rates were considered higher than expected, based

Fig. 2.10 Identification of pharmacokinetic targets for HIV-1 antiretrovirals by characterizing
class-specific exposure-response via model-based meta-analysis (Modified from Xu et al. 2016).
ER exposure-response, PK pharmacokinetics, MBMA model-based meta-analysis, NNRTI
non-nucleoside reverse transcriptase inhibitor, Ctrough trough concentration, QD once daily, BID
twice daily
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on prior experience with ustekinumab, another human mAb with a similar mecha-
nism of action (IL-12 and IL-23 blockage).

Upon feedback from the clinical team, the model was subsequently updated, first
by incorporating data from psoriasis patients who received a placebo (n ¼ 765) and
from patients actively treated with ustekinumab (n ¼ 1230) in two ustekinumab
phase 3 trials. The similarity in mechanisms of actions between guselkumab and
ustekinumab suggests that they may share similar exposure-response model param-
eters, except for IC50 (concentration to reach 50% maximum inhibition), where an
additional parameter RC50, defined as the ratio of IC50 of ustekinumab over that of
guselkumab, was included. Inclusion of additional ustekinumab data and the con-
sequent adjustment to the specific model parameter substantially reduced uncer-
tainties in all model parameters. Simulations of various scenarios were then
conducted using the final model to select optimal doses and regimens. Sensitivity
analyses were also performed with a few tentative RC50 values to evaluate the impact
on the regimen decision.

Upon discussion with the clinical team, the final dose regimens were
recommended for the phase 2b study. After the completion of the phase 2b study,
the data observed were consistent with the model prediction, and an optimal phase
3 dose was then selected for further development.

Fig. 2.11 Phase 2 dose selection of guselkumab in patients with psoriasis by utilizing multiple data
sources via population PK/PD modeling and simulation (Modified from Hu et al. 2014). Gul
Guselkumab, HV healthy volunteers, P1 phase 1, P2b phase 2b, P3 phase 3, PASI75 75%
improvement in PASI score from the baseline, PSO psoriasis, q8w every 8 weeks, Ust ustekinumab
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2.4.3 Late Clinical Development

Canagliflozin is a sodium-glucose transporter-2 (SGLT2) inhibitor approved for the
treatment of type 2 diabetes with the recommended dose being 100 or 300 mg once
daily (QD). For patients requiring a combined treatment with metformin and
canagliflozin, the use of a fixed-dose combination (FDC) tablet may improve patient
convenience and compliance. Because metformin immediate release is typically
administered twice daily (BID) for patients with type 2 diabetes, the FDC was
developed to be BID where the canagliflozin was divided into 50 and 150 mg to
provide the same currently approved total daily dose (100 and 300 mg).

Glycated hemoglobin (HbA1c) lowering (the efficacy measures for diabetes
therapy) with 100 and 300 mg QD doses (not FDC) in two clinical studies was
seen to be somewhat greater than those with 50 and 150 mg BID doses in a third
study; however, there were differences in some factors between the studies that
would limit the utility of such cross-study comparisons (most notably, baseline
HbA1c was lower in the BID than in the QD studies). To address this, a population
PK/PD analysis (de Winter et al. 2016) was conducted to provide a robust model-
based solution that could account for differences in study populations. In the absence
of directly comparable long-term study results, the analysis was used to assess
whether there were clinically significant differences in the efficacy between QD
and BID regimens of canagliflozin at the same total daily dose.

An established population PK model was used to predict full, 24 h PK profiles
from measured trough concentrations. The PK/PD model was then developed using
pooled data from all three aforementioned studies, incorporating an Emax-type model
relationship between 24 h canagliflozin exposure and HbA1c-lowering efficacy
(Fig. 2.12). Internal and external model validation demonstrated that the model
adequately predicted HbA1c lowering for canagliflozin QD and BID regimens.
Simulations using the final PK/PD model demonstrated the absence of clinically
meaningful between-regimen differences in efficacy. This result supported the
regulatory approval of a canagliflozin-metformin FDC tablet and eliminated the
need for an additional clinical study.

2.4.4 Pediatric Development

CPD-1, a non-nucleoside reverse transcriptase inhibitor for the treatment of HIV-1
infection, was in phase 2 development. To support pediatric formulation develop-
ment, it is important to understand the dose levels likely to be investigated in
children. A PBPK modeling approach was undertaken (Xu et al. 2014) to provide
a computational framework for predicting PK exposure in children to guide dose
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selection. Such PBPK model incorporated the physicochemical properties of the
drug, the system, and the known enzyme maturation trajectories.

An adult PBPK model was initially constructed in Simcyp® and translated to
pediatrics by applying complex built-in maturation functions including drug-related
(e.g., enzyme ontogeny etc.) and system-related physiological parameters (e.g.,
organ size, blood flow, etc.). CPD-1 is primarily eliminated by hepatic metabolism
mediated by CYP3A4 and a 100% CYP3A4 metabolism was assumed to facilitate
PK scaling from adults to children. The pediatric PBPK model was used to simulate
exposures in virtual pediatric populations to guide dose selection in children: the
proposed dose levels must provide steady-state exposures that are sufficient for
efficacy (i.e., steady-state trough concentration � 0.88 μM) but within the safety
exposure limit (i.e., steady-state AUC [area under the curve] during 24 h dosing
interval < 66.5 μM�h). Based on model based dose projections in children, a
suspension formulation was selected for younger children <6 years old, while
scored tablets that allow flexibility in dosing (i.e., split dose) based on the adult
formulation were selected for children �6 years old (Fig. 2.13).

It is anticipated these formulation/dose combinations should provide dosing
flexibility in children while streamlining the supply chain of CPD-1, shortening its
development timeline, and reducing the costs associated with potential dosing waste.

Fig. 2.12 Support of regulatory approval of canagliflozin-metformin fixed-dose combination via
population PK/PD modeling and simulation (Modified from de Winter et al. 2016). QD Once daily,
BID twice daily, TDD total daily dose
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2.5 Concluding Remark

Pharmacometrics is an evolving, multifaceted science pertaining to pharmacokinetic
and pharmacodynamic modeling and simulation. Its value in quantitative integration
of available information in drug development has been increasingly appreciated.
This is beneficial to inform decision-making at critical drug development stages such
as first-in-human, proof-of-concept, and pivotal trials, along with drug approval and
labeling. Indeed, pharmacometrics is considered a valuable tool for the improvement
of R&D return on investment.

The use of pharmacometrics in drug development requires adequate resources
and experts with sufficient training. Continuous education is critical with the emer-
gence of new modeling approaches. A good pharmacometrician must see his/her role
extending beyond developing models: a model, complex or simple, should translate
data into knowledge about a drug candidate and support quantitative decision-
making. A pharmacometrician’s job is to influence drug development decisions,
not to simply develop models.
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Chapter 3
Genomics and Bioinformatics in Biological
Discovery and Pharmaceutical
Development

Wendell Jones

3.1 Introduction: Bioinformatics—A Confluence
of Molecular Biology, Genetics, Statistics,
and Computing

3.1.1 What Is Bioinformatics

Bioinformatics is a cross-disciplinary area that requires skills and knowledge in
molecular biology, computer science, and statistics. Specialists in this area generally
have academic training in one or two of these areas and professionally develop the
remaining area(s) related to their particular needs. Bioinformatics is heavily used in
translational medicine, the study of nucleic acids (DNA/RNA/smRNA), pharmaco-
genomics, proteomics, and other areas of cellular biology. Common features of
bioinformatics application areas include highly parallelized data processing, quanti-
tative and comparative analysis, data management, dimension reduction and classi-
fication, merging and coordinating initially disparate datasets, assembly
(of genomes), and distilling information in useful visualizations, graphs, and tables.
Bioinformatics data contexts are often large and span whole genomes or
transcriptomes for potentially hundreds to tens of thousands of subjects. Biostatistics
has many areas of overlap with bioinformatics, especially conducting statistical tests,
developing biomarkers, or creating predictive/classification models for outcomes.
Biostatistics is also a more mature discipline covering many areas of macro-, micro-,
and molecular biology. Bioinformaticians may be more familiar with particular
esoteric statistical methods in their application domain (e.g., multiple testing correc-
tion, empirical Bayes methods for high dimensional problems, specific specialized
graphs), while biostatisticians may be more familiar with a breadth of analysis
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methods, statistical power estimation, adaptive trials, and foundational methods.
Computational biology is a closely related field that overlaps certain areas of
bioinformatics and which may be more focused on computer and mathematical
models of biological systems as well as simulations of these systems.

3.1.2 Two Sides of the Same Coin: Genomics and Proteomics

Genomics (the study of nucleic acids such as DNA/RNA/smRNA) and proteomics
(the study of proteins and enzymes important for cellular function) are two sides of
the same coin. There is a strong “symbiotic” relationship between nucleic acids and
proteins as:

• Cellular proteins require the DNA code and the RNA template to produce new
copies and versions of proteins.

• DNA is propagated (copied) and managed/regulated primarily through proteins.
RNA combined with proteins are sometimes a vehicle for inserting new material
into DNA.

• RNA is created (with the help of proteins) from DNA and then spliced/modified
by other proteins into its final form before being translated into a protein.

3.1.3 Important Concepts

Genomics differentiates from genetics in a few ways. Genetics is mostly concerned
with individual genes and heredity. In genomics, we wish to examine all of the genes
at once within an organism to understand how the genes and other DNA structures
relate to each other, what are its products, how did it evolve, what are its functions,
how it can malfunction, and possibly how it can be repaired. The transcriptome is a
closely related concept to the genome, as all transcribed products are based on DNA
templates but which manifest as a related nucleic acid (RNA). In this chapter, we will
consider transcriptomics as an important component of genomics due to the similar
characteristics of RNA and DNA (they are both nucleic acids; thus, biotechnologies
that measure one generally can measure the other) and due to RNA being an
immediate product of DNA. Therefore, we will use the term “genomics” to cover
both areas, but “proteomics” will refer to cellular proteins and enzymes.

The basic complexities of DNA are generally known gene content, junk DNA,
double helix, and chromatin structures. However, RNA also has a rich complexity in
that many RNA code for proteins (messenger RNA, or mRNA) but others serve
other functions, primarily regulatory. There are many classes of non-coding RNA
(ncRNA) including small RNA (smRNA) [which can be divided further into micro
RNA (miRNA), piwi RNA (piRNA), small nuclear RNA (snRNA), and transfer

106 W. Jones



RNA (tRNA)], long non-coding RNA (lncRNA), and certain ribosomal RNA
(rRNA).

The association of genetics with certain inherited diseases has long been recog-
nized. The association of genomics with other non-Mendelian diseases has been
more recent. We now recognize that autoimmune disorders often have very obvious
genomic characteristics that can be readily identified via RNA (Li et al. 2010).
Cancer is now recognized as a genomic disease. There may be multiple paths that
lead to cancer: viruses, radiation, toxins, inherited variants, random events during
cell division, and others. However, it is generally understood that all of these paths
had a beginning with one or more key genomic alterations in one or more cells.

Traditionally, cancers have been analyzed and treated based on their tissue of
origin, their cell morphology, and the transitions from early-stage malignant neo-
plasia to later-stage large-scale growth and metastasis. The traditional tumor staging
and classification manual (UICC-TMN) has been a widespread historical reference
for decades related to the recognition, classification, and treatment of cancer, but that
perspective is changing (Mason 2006). Today it is understood that there is wide-
spread variation in event-free and overall survival as well as response to therapies for
cancers with the same stage classification; in particular, stage rarely predicts
response to therapy. In addition, clearly there are other factors, such as the presence
of TIL (tumor-infiltrating leukocytes) that also play a significant role in cancer
outcomes (Galon et al. 2012). Finally, with the onslaught of genomic and molecular
information that has arisen since the beginning of the human genome project, a valid
question arises as to whether we need to think about cancer in a radically different
way. In particular, bioinformatics has enabled medical science and pharmacology to
classify distinct cancers in terms of genomic variants and gene expression profiles in
addition to previous established categorizations. These new methods are demon-
strating more appropriate and personalized approaches to treatment and more accu-
rate assessments of response to therapy.

For this chapter, an analyte is defined as a particular instance of a genomic-related
substance being measured. An analyte in gene expression would usually be an exon,
transcript, gene, or gene fusion. An analyte in DNA measurement could be a genome
position, genomic locus or region, a gene, or even larger regions of importance
which reflect germline variants, somatic mutations, insertions or deletions (indels) of
various sizes, structural variants (including translocations, or other rearrangements),
and copy number status. In methylation, an analyte may be a specific locus (i.e., a
genomic base position) or methylation site. In proteomics, an analyte may be a
protein, protein product, or phosphorylation status of a protein. In current practice,
genomic datasets may yield thousands to millions or even billions of analytes per
specimen.

This chapter is focused on bioinformatic practices primarily in genomic studies.
On occasion, closely related methods in proteomics and other areas may be identi-
fied. However, this chapter should not necessarily be viewed as a comprehensive
review of current or previous bioinformatic and computational biology methods and
techniques in proteomics due to its genomics focus.
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3.2 Pharmaceutical Analytics

3.2.1 Bioinformatics in Clinical Practice

Clinical practice often requires examining both proteomics and genomics. The
reasons for this are straightforward. In particular, the etiology of diseases and
treatments show that many begin with single or multiple variants or mutations in
DNA or its organization which may result in the following (that are not mutually
exclusive):

1. Malformed and aberrant functional proteins within cells
2. Dysregulation of gene networks
3. Loss of important cellular functions due to, e.g., loss of DNA material or

silencing
4. Out-of-control cell proliferation, especially in cancer
5. Cell dysregulation, especially autoimmune disorders
6. Combinations of issues due to cumulative errors including the inability of the cell

to repair DNA damage or initiate apoptosis when damaged

Bioinformatics plays various roles in clinical research. For pre-clinical testing, the
same techniques used for genomic measurement in humans can be applied to model
organisms either usually involving rats (for toxicity) or mice for functional genomic
and pharmacodynamic testing. Therefore bioinformatics is often an important part of
pre-clinical testing. As the genomes of many of these model organisms are often
highly controlled (e.g., most experiments utilize nearly genomically identical
rodents), often the RNA is of primary interest. Gene expression profiles are mea-
sured to examine pathways affected by treatment. Are the drug targets having their
intended effect? Are there off-target consequences? Usually, these measurements are
from tissue most relevant to the therapy, for example, heart or arterial tissue related
to cardiovascular disease (CVD) or liver tissue related to toxicity. These measure-
ments and results then feed into the greater analysis within pre-clinical assessment of
therapies.

In phases I–III of clinical trials, genomics may play key roles in different phases
for different reasons. For example, in oncology and some inherited diseases, it may
be beneficial to pre-screen patients for enrollment regarding one or more genomic
features. In addition, in some complex trials such as basket trials, genomic testing
may be indispensable in assigning patients to different treatment arms. The testing
may ideally utilize whole blood tissue or serum (for inherited, hematopoietic, and
autoimmune diseases—possibly oncology from using circulating tumor DNA) or
other tissue including tumor mass (biopsy or surgery). In phase I, there may be more
focused (i.e., several analytes) genomic testing to verify that, for example, as dose
escalates, the therapy is having the intended biologic effects. In phase II and
especially phase III, there is often retrospective genome-wide analysis (tens of
thousands of analytes) to determine genomic biomarkers for treatment response,
drug resistance, serious adverse events, etc. These tests may involve whole genome,
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exome, or transcriptome analysis of each subject. As the genomic tests and the data
that result from these tests grow larger or are more complex, bioinformatics is
required to assimilate, evaluate, and analyze the data. Genomic biomarkers derived
from previous trials may sometimes be used to enroll patients especially for new
phase II/III trials or to assign patients to cohorts. We will discuss particular examples
of studies, genomic tests, and analysis methods in later sections.

3.2.2 General Motivation and Need for Bioinformatics

Downstream cell functions occur from DNA, primarily through protein-protein,
protein-DNA, and sometimes protein-RNA interactions. Thus, the amount, content,
and ultimate structure (which can sometimes be determined from its content) of the
transcribed RNA intermediaries and the translated protein products that result
provide clues as to the nature, prognosis, and potential treatment (as well as potential
drug resistance) for the disease even if the DNA were somehow inaccessible. Often
the DNA is amenable to isolation and measurement but does not provide enough
insight for certain diseases as the root causes may be diffuse within the DNA, yet
result in similar gene expression dysregulation (sometimes termed an expression
profile). For most molecular studies associated with pharmaceuticals, it is frequently
a matter of determining which individual or collections of molecules (nucleic acids
or proteins) provide the quickest, safest, most economic, most accessible, and most
accurate means for determining biological states or transitions, evaluating the phar-
macodynamics of the therapy, understanding the biologic pathways impacted, iden-
tifying therapy targets, or evaluating treatment response.

The challenge even today is that although the first draft normal human genome
reference was completed in 2001 (IHGSC 2001, 2004; Venter et al. 2001), more than
a decade later, we are still learning many fundamental aspects of our genome and
cellular and nuclear processes including the complex networks of DNA, RNA, and
protein interactions. Bioinformatics plays an important role in helping understand
the interplay of these complex processes. As such, it is an important interdisciplinary
complement to biostatistics, computational biology, computer science, molecular
biology, biochemistry, genetics, and clinical research. One additional aspect that
makes bioinformatics complex is the scale at which observational data and
processing needs to occur. Due to the size of the potential information in our
genome, transcriptome, proteome, etc. and the fact that this information can change
from cell to cell, bioinformatic methods are best leveraged with large collections of
molecular and endpoint data. We have transitioned from megabyte and gigabyte
levels of data in the 1990s to terabyte and petabyte levels by 2010. Some organiza-
tions currently or soon will generate data at near exabyte levels (1018 bytes). As a
result, certain aspects of computer science such as programming and management of
large datasets and large computing systems (high-performance computing) are a
natural skill required in bioinformatic organizations. Similarly, characterizing and
inferring knowledge from this complex collection of data is best performed with
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sufficient knowledge of statistics. As a result, some feel that for pharmaceutical
practice, bioinformatics must be multidisciplinary involving the fields mentioned
earlier (molecular biology, genetics, computer science, and statistics).

Most functional genomics studies must still be initiated or at least validated
through laboratory bench work, even if relatively accurate complex computational
biology models are available. Our models for gene and protein interactions cannot
yet simulate complete processes occurring within even one cell, much less multiple
distinct cells, including intercellular signaling, cell products (including exosomes),
and cellular heterogeneity. Bioinformatics has emerged as an important discipline to
complement the “wet bench” both by providing potential insight for a functional
genomic experiment or by confirming that the experiment had the intended effect.
For example, an observational study may lead to a hypothesis that one of a handful
of genes is directing a biological process. The analysis of this initial discovery-
oriented study may have been genome-wide and may have used bioinformatic
methods to narrow the list of important gene candidates. However, to determine
which of the genes are truly critical to the biological process of interest, investigators
often return to (e.g.) an animal model where they will attempt to control these genes,
often one at a time, through a variety of breeding, transfection, and gene knockout
techniques and then examine the effects controlling each factor one by one. Since the
effects are also potentially genome-wide, bioinformatics methods are then used to
confirm or describe the effect. So, whether in genomic discovery or confirmatory
modes after functional testing, bioinformatics plays an important role.

3.3 Bioinformatic Methods

3.3.1 Introduction

Bioinformatics is notorious for its many algorithms, methods, and pipelines which
manifest themselves in computer programs. To understand what drives their forma-
tion and use, it is important to consider the full cycle of genomic studies as shown in
Fig. 3.1.

Bioinformaticists play a role in helping answer genomic questions at all levels as
they must utilize their knowledge of genomic characteristics to direct the question to
the most appropriate assay and technology. This step is often conducted with both
clinical and molecular biologists to ensure the proper cells and nucleic acids are
collected and preserved in the proper amount and handled with the appropriate
protocol to address the question (an experimental design aspect that can be easily
underappreciated). After the assay is completed, it is the primary responsibility of the
bioinformaticist to carry out appropriate computationally driven analysis of that data
in support of the greater statistical analysis that also must be conducted as part of the
clinical study.
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The genomic questions in a study are often many and varied. Does the patient
have relevant polymorphisms that would lead to fast metabolism of the drug? Is this
autoimmune disorder driven by T cells or exogenous antigens? Is this cancer driven
by a particular mutation in a particular gene (e.g., BRAF V600E)? Does the gene
expression profile of this breast tumor suggest it is aggressive? Is there a reason why
multiple myeloma patients have highly variable response to a new therapy? Do the
responses of human cell lines to certain drugs mimic the behavior of actual tissues
in vivo? All of these questions may have discernible answers once we design
appropriate assays and conduct appropriate tests.

3.3.2 Important Genomic Characteristics and Concepts
Related to Bioinformatics

The following items are important general genomically related characteristics having
relevance to cellular biology, disease, assay design, specimen processing in the lab,
and bioinformatics:

1. Cell Structure—Mammalian cells have important structures.

Fig. 3.1 Bioinformatics cycle—genomic questions and studies have to be combined with current
knowledge of general genomic characteristics so that the appropriate genomic assay can be
designed and the appropriate technology can be utilized for specimen testing and data collection.
Once the genomic assay is processed, then appropriate computational and statistical methods
must be executed to address the question and complete the study, which often yields a new question
and study
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– Nucleus vs. the cytoplasm. The RNA contents of each can be very different
(Barthelson et al. 2007). DNA is primarily in the nucleus (mitochondrial DNA
being the exception).

– There is a fixed amount of DNA per cell in normal cells; however, the amount
of RNA varies greatly. Messenger RNA (mRNA) is a small amount of the total
RNA (2–5%).

2. Genomic Structure—The genome itself has important structures. Here are two:

– Centromeres and telomeres (middles and ends of chromosomes, respectively).
– Genes are a small portion of the sequence of mammalian genomes.

3. Genomic Repetition—Many regions of the genome are repetitive in different
ways at different scales for different reasons.

4. Genomic Content Similarity—Many regions of mammalian genomes have con-
tent similarity of different types and scales for different reasons that go beyond
simple repetition.

– Human genes have various levels of similarity with genes from primates, other
mammals including rodents, and even yeast, due to common ancestry.

– Individual human chromosomes have high similarity between chromosomal
pairs due to meiosis and reproduction.

– A subset of genes within our genome have high similarity with each other
(paralogous genes) due to duplication events within species.

– Large regions of the genome have similarity to each other due various reasons
including a putatively common infectious event long ago. Structures having
similarity across the genome include long terminal repeat retrotransposons
(LTRs), long interspersed nuclear elements [LINEs], and short interspersed
nuclear elements [SINEs]). Together, LTRs, SINEs, and LINEs may comprise
nearly ½ of the human genome (Burns 2017).

5. Hybridization (Complementary Base Pairing)—Within the basic genomic alpha-
bet (A, C, G, T, U), individual A and T bases (or A and U in the case of RNA) will
favorably bind or hybridize to each other, and likewise G and C bases will
favorably bind to each other (thus each base pair is termed complementary
bases). Many genomic methods and measurement technologies are based on
hybridization and base pairing.

6. Genomic Plasticity—Although we tend to think of the genome as quite rigid, the
functional genome is flexible in multiple ways. Here are a few:

– Genes, when expressed into RNA, may be alternatively spliced, may have
alternative start and stop regions, and sometimes undergo post-transcriptional
editing when creating mRNA.

– DNA sections can break, reshuffle, and reintegrate with other DNA sections
for a variety of reasons both normally (transposons and adaptive immunity
genes) and related to damage and disease (chromothripsis and translocations).
Some of these translocations are drivers of cancer.
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– Secondary and tertiary structures of DNA change and guide regulation and
expression.

7. Genomic Nucleotide Content—The human genome is a mosaic of GC-rich to
GC-poor regions which has an impact on the ability to efficiently and effectively
measure them. In particular, higher eukaryotes have protein-coding regions
(or exons) that are enriched for GC content.

8. Regulation and Networks—The cell and the cellular system regulates itself using
nucleic acids and proteins (which are chains of amino acids). These systems are in
essence cellular networks that are chemically connected and are often correlated
(statistically) in their amount and activity.

9. Polymerases—Polymerases are a class of general enzymatic tools used both
within our cells and by our molecular labs to synthesize DNA/RNA strands
from a DNA/RNA template based on base pairing. It a core tool for both our
cells and most laboratory genomic assays.

3.3.3 Genomic Assays and Technologies

Genomic assays generally fall into a few categories. The primary category is whether
the assay is targeting DNA vs. RNA as this determines much of the required
molecular chemistry. However, there is complexity beyond the target molecule. Of
primary importance is the number of different analytes to be measured as testing a
few analytes often implies different methods than interrogating analytes genome-
wide. Other requirements dictate the next steps. Is the required output qualitative in
nature (such as a genotype, SNV, or detection of an RNA molecule) or quantitative
(DNA copy number or RNA expression level)? Still other issues relate to detecting
rare or isolated genomic events, such as structural rearrangements in DNA and
fusions or certain splice variants in RNA. Finally, the preservation of the tissue
from which the nucleic acids are isolated also has an impact on the assay. For
example, many RNA measurement platforms have protocols that require intact
(non-degraded) RNA. Therefore, isolated RNA from tissue that is preserved and
fixated using formalin (aka FFPE, which degrades nucleic acids considerably), a
common preservation method for tumors in clinical practice, are incompatible with
these methods. Another important component is the amount of required input
material for the assay. For some biological specimens, it is relatively easy to isolate
hundreds of nanograms of nucleic acids; for others it may not be. It is important in
clinical practice to consult with a genomic laboratory before determining the suitable
assays given the genomic study, especially given the rapid evolution of the
technology.

Also of primary importance is the fact that most molecular measurement is not
in vivo but in vitro (i.e., in a laboratory). The long and sometimes chemically
tortuous paths that flow from the in vivo collection of tissue, cells, and/or biofluids
to their in vitro measurement are often filled with peril unless performed by trained
clinicians and laboratories. A poor understanding of these protocols and chemical
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interactions inevitably leads to poor control over the steps within protocols, yielding
biased, non-reproducible, or erroneous results. There have been several publications
that highlight this difficulty (e.g., Prinz et al. 2011; Casadevall and Fang 2010).
Moreover, there is plenty of blame to go around; lack of suitable laboratory control
material and improperly manufactured reagents, poor analysis methods, confirma-
tion bias, publication bias, administrative data handling errors, and fraud all con-
tribute to this issue (Ioannidis 2005; Cyranoski 2017; RetractionWatch.com 2015).

The following are a condensed version of current genomic technologies. Some,
such as PCR and next-generation sequencing, can be extremely flexible and can be
modified to accommodate a large number of disparate assays. Others such as
pre-fabricated microarrays are less flexible but can be relatively inexpensive (due
to economies of scale in manufacturing) and are often designed to measure analytes
genome-wide.

3.3.3.1 PCR (Polymerase Chain Reaction)

PCR is a flexible assay with the following variations: allele-specific (DNA), reverse
transcriptase (RT), quantitative or real-time, digital, and digital droplet. Different
PCR methods are used for DNA/RNA and for scale (assays and samples). Generally,
PCR assays are very sensitive and specific and are most cost-efficient when rela-
tively few analytes are being interrogated. PCR platforms are many and varied.
Common platforms and reagents are provided by Thermo Fisher (formerly Life
Technologies/Applied Biosystems), Fluidigm, Qiagen, and others.

PCR assays are straightforward to validate. In fact, PCR is an accepted in vitro
diagnostic (IVD) platform approved in various forms by the FDA. As mentioned
previously, polymerases are a core laboratory tool and thus have a wide variety of
applications to DNA and RNA measurement. They are sometimes a trusted assay
unto themselves, or they may create intermediates for a more complex assay such as
genomic sequencing. Bioinformatic methods with PCR-based tests are utilized for
multi-analyte RNA measurement and DNA genotyping. For example, for RNA, the
bioinformaticist may assist with both the design of primers for PCR and determining
appropriate reference genes. Historically, reference genes are called “housekeeping”
genes as some of the first genes utilized for this purpose performed core cellular
functions. However, their actual purpose is to provide an invariant quantitative
reference control for the general level of RNA in the cell as the molecular reactions
associated with the specific test can vary in efficiency from specimen to specimen.
Reactions for all target genes are compared to this reference. Having suitable
numbers of reference genes in addition to the target genes provides a superior
level of quality in the resulting quantitative gene expression level output. Although
PCR-based tests for both DNA and RNA can be easily designed to be of high
quality, custom assays may be difficult to efficiently scale to a large number of
analytes and may be costly to initiate even with small studies (e.g., a phase 1 study)
as one often must purchase PCR reagents for each analyte in large quantities.

114 W. Jones

http://retractionwatch.com


3.3.3.2 Microarrays and Other Hybridization-Based Platforms

Microarrays and other hyb-based methods can generally measure both DNA and
RNA genome-wide or in a more focused manner. DNA platforms interrogate
common single nucleotide polymorphisms (SNPs) with Illumina and Affymetrix
(now part of Thermo Fisher) as two of the main platform providers. Illumina’s
BeadChips have various designs interrogating ~240,000 exome SNPs to ~5,000,000
genomic SNPs. Affymetrix’s SNP arrays also have semi-customized designs that
vary from >100,000 to >1,000,000 loci. Agilent provides array platforms based on
comparative genomic hybridization (CGH) that interrogate both SNPs and copy
number (CN) variants.

Microarrays are organized grids or arrays of oligonucleotides (typically DNA,
thus the name DNA microarrays, although many actually measure RNA as the RNA
target is frequently converted into DNA and termed cDNA) that have known
content. Each microarray cell or position within the grid contains probes of a specific
oligonucleotide. If lab processes are followed consistently, then microarrays can
provide reasonable relative quantification of individual RNA species in a collection
of biological cells when properly processed, normalized, and analyzed. Absolute
quantification is extremely difficult as microarray probe or probe set design and
protocols have numerous opportunities for bias in the reverse transcription, ampli-
fication, selection, attachment of reporter molecules, and hybridization steps. These
biases are generally consistent for experienced and qualified laboratories and various
microarray platforms so long as protocols and equipment/array types remain con-
sistent (MAQC Consortium 2006, 2010). However, over time, even highly qualified
laboratories have processing “drift” (differential biases due to gradual changes in
reagents, equipment, ambient temperature, protocols, and personnel practices), and
“batch” biases continue to plague microarray analysis even after 20 years of
advancements in probe design, protocol design, and array miniaturization (probe
density). RNA-Seq (discussed later) is also subject to batch biases but not nearly to
the same degree, which is one reason why RNA-Seq methods are preferred for
clinical studies. These batch biases, when not accounted for, can lead to false
positive results: apparent differential changes in biology that are actually due to
technical factors alone. This propensity for batch biases with RNA measurement
implies that microarrays for clinical trials are best suited for retrospective studies
where all specimens can be assayed together simultaneously.

NanoString is an FDA 510(k)-approved device for IVD applications. It utilizes
capture probes (via hybridization) to measure strands of RNA. This device can
measure up to several hundred distinct RNA analytes with one assay. It is also
robust to sample preservation method (FFPE samples are assayable) and requires
100 ng input of total RNA. As it is hybridization-based, it is subject to batch biases
as any other hyb-based system. However, the system does not require amplified
target material, which eliminates one source of potential assay bias.
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FISH (fluorescent in situ hybridization) is another genomic measurement method
based on hybridization. Its primarily applications are threefold: detecting specific
genes within chromosomes (both location and count), determining whether individ-
ual cells are missing or have extra chromosomes, and creating a color map of a cell’s
chromosomes (karyotyping). While FISH tests have been somewhat replaced by
other tests, they are still used for specific applications. Again, as with most
hyb-based methods, it is important to strictly follow protocols and have experienced
or well-trained technicians for accurate results.

3.3.3.3 Sequencing

Sanger Sequencing—This method provides accurate DNA sequencing with
intermediate-sized reads (500–800b) which were used to construct the first high-
quality human genome. Sanger sequencing is inexpensive for a gene or exon but
expensive at scale, and next-gen methods offer more flexibility (e.g., RNA-Seq) and
much cheaper options. Nevertheless, Sanger is often viewed as the gold standard in
sequencing although that view is evolving (Beck et al. 2016). Sanger sequencing is
primarily available through Thermo Fisher (formerly Applied Biosystems/Life
Technologies) and Promega platforms.

Next-Generation Sequencing—In the mid to late 2000s, several sequencing
platforms became generally available that extended the applications of sequencing
in several ways. First, throughput greatly increased, enabling the affordable sequenc-
ing of much larger collections of genomic targets or to sequence some targets more
deeply (e.g., to detect lower-frequency alleles including somatic variants). The
increase in the level of throughput cannot be understated: five orders of magnitude
(100,000�) per machine since 2004. Genomic assays that once were unthinkable for
a clinical trial are now common. Second, protocols were developed to assay a wide
variety of genomic-related content including WGS (whole genome sequencing),
Exome-Seq (sequencing of the coding regions, i.e., the exome, only), RNA-Seq
(mRNA-, total RNA-, miRNA-specific protocols), ChIP-Seq (protein-binding DNA
sites), Rep-Seq (human immune repertoire sequencing), focused DNA panels where
a relative few genes or exons are sequenced, Methyl-Seq (methylation sites), and still
others. Other next-gen or third-generation technologies have enabled long reads
(>10,000 bases in length) which sequence through repetitive regions allowing
relatively easy assembly of complete genomes, especially bacteria and other small
genomes.

Illumina, Thermo Fisher (formerly Life Technologies), and PacBio are the current
major next-gen platform providers with still others, such as Oxford Nanopore,
continuing to emerge. Sequencing kits that create the genomic target material for
sequencing, which are known as libraries, are made by a larger assortment of
manufacturers (e.g., Agilent, Roche, Illumina, Thermo Fisher, NuGEN, Qiagen,
NEB, Rubicon Genomics). By 2015, most new development efforts in bioinformat-
ics were in support of genomic assays performed on next-gen sequencing platforms
and methods.
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Many of the wet-lab protocols for molecular testing have common components.
Typically DNA and RNA are isolated using common methods across testing plat-
forms. Often RNA needs to be converted into cDNA (complementary DNA) before
processing. However, there are differences, advantages, and disadvantages offered
by various platforms. In general, when using targeted PCR and microarray assays,
one has already pre-identified genomic targets to measure. With this
pre-identification follows certain assumptions, often very exact, regarding what
could be seen. Sequencing is more hypothesis-free, or better stated, sequencing
has fewer assumptions regarding what will be seen. Thus, sequencing is the primary
technology available to perform genomic or transcriptome assembly. If there are
unexpected or unknown insertions, deletions, or fusions in DNA, one must generally
sequence them to detect them. These unexpected genomic constructs are also
challenging bioinformatically as much effort is invested in detecting and separating
actual genomic events from technical artifacts. Nevertheless, the capability of
detecting novel genomic constructs combined with laboratory technology and bio-
informatic advances (and due to frequent deficiencies that microarrays have had
historically with respect to batch effect sensitivity) has caused a dramatic shift in
DNA and RNA molecular technologies toward sequencing for intermediate to
larger-scale genome/transcriptome measurement over the last 10 years.

3.3.3.4 Platform Combinations

Sequencing, especially whole genome sequencing, can be hypothesis-free (i.e., no
predefined manufactured probes or baits) and use unamplified material. However,
the constraints and limitations that exist with most clinical tests with respect to the
amount of cells or nucleic acids available require that the starting DNA or RNA
material be amplified through PCR methods. Also, to provide more economical and
focused assays, frequently hybridization methods are combined with amplification
to enrich the target material for specific important genomic regions such as exons.
Therefore, hybridization methods for sample target enrichment of important regions
and sequencing to determine its content are a frequent platform combination assay.
This combination has enabled high-throughput whole exome sequencing (WES),
focused cancer gene panels, focused inherited disease panels, and focused RNA and
fusion testing. Similarly, amplicon-based sequencing (artificially created constructs
created through PCR techniques) can also be used to enrich targets for important
genomic regions. However, for somatic mutation detection, amplicon-based
methods present challenges due to the inability to identify whether the resulting
sequences come from the same or independent molecular fragments. To reduce bias
in measurement, it is strongly preferred to measure independent fragments of DNA
from the original sample to overcome PCR biases that may obscure the true variant
profile of the sample.

3 Genomics and Bioinformatics in Biological Discovery and Pharmaceutical. . . 117



3.3.4 Bioinformatic Algorithms, Pipelines, and Methods

3.3.4.1 Algorithms

Bioinformatics is replete with algorithms, often due to the magnitude of genomic
data and the need to make the processing of that data efficient. However, much is
also driven by the biological mechanisms at work and the technical aspects of their
measurement. For example, in next-generation sequencing, large stacks of sequence
reads (tens to hundreds of millions) frequently need to be aligned to a large
(gigabase) reference per sample. Bioinformaticists and computer scientists have
put much effort into developing efficient algorithms for performing this alignment
where a well-defined activity (find where a sequence exists in a reference genome) is
repeated over and over again, independent of previous and future alignments. This is
termed an “embarrassingly parallel” problem because, as problems go, these prob-
lems are relatively easy to solve by parallelization of tasks. Nevertheless, a single
specimen with >10 gigabases of data may still take a few hours of total time to align
even with multiple processors available. However, other problems, such as deter-
mining copy number status of DNA, are very positionally dependent. Data at one
DNA locus provides important information regarding the copy number state of an
adjacent locus. Therefore, algorithms that determine copy number from array or
sequencing data should take this into account.

Algorithms are often used to help reduce overall noise, compensate for measure-
ment bias, leverage prior or reference information, or leverage homology in various
ways. Algorithms can also be specific to the biotechnology platform due to unique
characteristics of their design. For example, Affymetrix microarrays have an inher-
ent design attribute of using a large number of probes to measure one analyte such as
a particular RNA molecule. Various researchers developed what eventually became
a large selection of algorithms summarizing those probes for a given gene somewhat
surprisingly without consensus as to which methods were optimal, as each method
made different trade-offs.

Bioinformatic algorithms are often placed into larger programs that perform a
specific function with well-defined inputs and outputs. These programs are written in
a variety of languages: Perl, Python, C/C++, Java, R, SQL, and Linux shell script,
depending on various factors. For larger efforts, individual programs are kept intact
or converted to an executable for efficiency and then linked together (e.g., in a
wrapper program using Perl or Python) to create a pipeline. Pipelines offer end-to-
end or near end-to-end solutions for many genomic assays.

A list of only the primary bioinformatic algorithms and their contexts that are
used in molecular biology and genomics would fill several pages, much less than
what would be required to list and describe all published algorithms. Even reference
books on bioinformatics algorithms soon become out-of-date due to the rapid change
in technology and the fact that many algorithms are tied to specific technologies.
Common journals where new algorithms/methods are published include
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Bioinformatics, BMC Bioinformatics, Nature Biotechnology, Nature Genetics,
Genome Research, and Nature Methods.

3.3.4.2 Bioinformatic Pipelines

As mentioned previously, bioinformatic pipelines are frequently constructed by
stringing programs together mostly in series. The inputs and outputs of each program
need to be well-defined so that the output of an earlier program can be fed into the
input of the next program, similar in concept to the pipe function in UNIX/Linux (“|”
as in “ls *.txt | grep –v hg19”). In fact, the need to facilitate creation of new pipelines
is one reason why the Linux environment has been adopted by the majority of
bioinformaticists and institutions that create and utilize massive data processing
programs, often from next-generation sequencing. As pipelines have grown in
both size, complexity, and utilization, frameworks for pipeline creation are emerging
(Leipzig 2016). Pipelines often use common functional objects as programs even if
the algorithms within these programs are specialized to the genomic assay or study.
For example, alignment is a common functional concept in genomics. However,
DNA alignment is often handled differently than RNA alignment due to the plas-
ticity of RNA. An RNA aligner must be aware of gaps that can occur in RNA
sequence relative to the template DNA sequence due to splicing activity.

The following are illustrations of simple pipelines which are color coded by
common functional objects. The implemented algorithms within each object may be
specialized or tuned to the specific context. The colors of each object are intentional.
Objects with the same color have the same or similar function across methods or
assays. Only the algorithms inside may be different.

1. Pipeline for single-nucleotide variant (SNV) and small indel calling from focused
or exome-based sequencing

2. Pipeline for RNA quantitation from RNA-Seq
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3. Pipeline for fusion/translocation detection from RNA or DNA sequencing

Common themes are obvious within just these three pipeline examples. Some will
be discussed in later sections. Frequently appearing objects within pipelines include
methods for QC filtering and trimming of reads, sequence alignment, sequence or
candidate filtering, annotation integration, and QC metrics of basic data. Other
complex pipelines include pipelines for genomic assembly either using a reference
genome or without reference, transcriptome assembly, meta-genomics classification,
and determining the state of DNA methylation sites from sequencing.

Biomarker development is another bioinformatics and statistics area that may
utilize pipelines. However, the complete path of development is usually composed
of several phases each of which has one or more pipelines. Within or at the end of
each phase, intermediate results are reviewed before transitioning to the next phase.
Based on the results, one may choose to possibly reiterate the current phase by
transforming the data or adding new data items. Biomarker development may occur
from genomics data alone. Other biomarkers may benefit from utilizing concomitant
information, such as subject age or medical state. Even when using genomic-related
information, a question remains as to whether a biomarker should use different types
of genomic data (such as DNA variants and expression) as this may require complex
and comprehensive testing. There is no single right answer to this question for every
study. Simplicity and predictive accuracy should be the guiding principles to any
biomarker. If an equivalent biomarker can be made using fewer genes or one
molecular type, then that is generally preferred. Some clinical/general characteristics
of subjects, such as age and gender, should also be considered if they are useful. For
example, age is often strongly associated with many types of survival (event-free
survival (EFS), overall survival (OS)) and with methylation status of many loci.

3.3.4.3 Bioinformatic Methods

The following are methods that are common in bioinformatics. Some have a
statistical testing component. We will also describe statistical methods common
with genomic and bioinformatic data in Sect. 3.4.
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Filtering

Filters are a primary class of methods heavily used in bioinformatics. Bioinformatic
filters are commonly used to remove irrelevant information (e.g., unimportant or
false variants), simplify data (e.g., identify analytes invariant in a study), reduce
noise (e.g., remove analytes with high measurement error), or adjust context (e.g.,
identifying samples associated with a particular disease within a compendium).

For example, each person may have roughly three million or more variants
compared to the reference human genome (Drmanac et al. 2010; Fujimoto et al.
2010). The vast majority of these variants are less important and contribute to benign
variety. Only a few may lead directly or indirectly to disease. Cancer cells generally
introduce new variants (mutations) both benign and otherwise, and common pres-
ervation methods for cancer cells (fixation via formalin) introduce additional damage
to the DNA that was not present before preservation that can be mistaken for a
variant. Sequencing of the DNA often creates technical errors. Putting all of these
factors together, that is, the large number of inherited variants and somatic variants,
biased and error-contributing assays, and small numbers of actual and useful geno-
mic targets, the adage of finding the needle in the haystack becomes an appropriate
analogy for many genomic sequencing assays. In particular, in clinical reporting,
when creating a summary report of relevant genomic variants from a focused cancer
panel identifying putative mutations within 10–300 genes, care must be taken to
adjust filters based on the needs of the report or clinical study. Current standards
employ summarizing potential variant information in vcf (variant call format) files.
These files, when combined with proper annotation, can be filtered based on whether
the putative variant:

– Is intergenic or intragenic:

If intergenic, if it is near important genes or possibly in a regulatory region of
genes such as the promoter region

if intragenic, if it is in a untranslated region (UTR), exon, or intron, and whether
the variant leads to:

A potential amino acid change (nonsynonymous variant)
A change in gene splicing (alternatively spliced transcript isoform)

– Has an association with important genes or other variants
– Is pathogenic, benign, or of unknown significance (ACGM standards; Richards

et al. 2015)
– Has an existing or potential drug target associated with it (ClinVar: Landrum et al.

2015)
– Is a common variant (based on current knowledge) in one or more population

groups implying it may be germline
– Is a SNV or indel (and its size)
– Indicates the person is from a particular family or population group
– Has high measurement quality. That is, the putative variant:
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Has sufficient depth (multiple measurements) of the non-reference allele
Is not biased relative to the measured strand
Is mapped to the genome appropriately
Is derived from analytes of sufficient quality

This filtering may either be an important step in creating a clinical report (e.g.,
filtered for pathogenic or drug targets) or creating a list of exploratory variants (e.g.,
variants with unknown significance) that may be associated with clinical response to
new therapies in a larger study.

Statistical filters are another common tool in bioinformatics. These filters fre-
quently remove irrelevant or invariant information or prioritize information that
potentially has the most importance. For example, to alleviate multiple testing
penalties (a common hurdle in genomics which is expressed in more detail in another
section), analytes are often filtered before statistical testing begins. This is proper so
long as the filtering is done without knowledge of any outcomes or experimental
groups. Pertinent examples include filtering undetected or invariant genes in gene
expression studies (which can often be 1/3 to 2/3 of all genes), filtering genomic loci
with low or very high alternative allele frequency in SNP studies (10–50% of all
SNPs depending on the study and platform), and poorly called SNP genotypes (e.g.,
loci from control samples that fail to meet Hardy-Weinberg Equilibrium assump-
tions (Anderson et al. 2010)).

Quality-based filtering, often related to probe characteristics, is common with
some assays. For example, genome-wide assessments of copy number variants and
alterations can have poor reproducibility of copy number calls and have been a
historical challenge (Hester et al. 2009), especially in the case of small alterations or
in the presence of low tumor purity. Quality filtering is also common with next-
generation sequence reads as ends of reads with poor base quality are often trimmed
to reduce false positive variant calls (Del Fabbro et al. 2013). Consolidating dupli-
cate sequence reads in DNA sequencing is also a common practice as most are
thought to come from one fragment source. Bioinformaticists also commonly filter
gene expression results based on either significance, effect sizes, or both to then
utilize the filtered gene list for various types of enrichment testing relative to
biological pathways to discern relevant biological activity.

Clustering and Correlated Genes

Clustering is a general mathematical and statistical method that is based on two
ideas: a measure of similarity or equivalently of dissimilarity between two objects
and a mechanism or rule for two or more objects to join together to be one cluster.
Although there are more advanced methods that allow clustered objects to be split
apart and join with other clusters, we will only examine the more straightforward
methods that are in common practice. Consult Cluster Analysis (Everitt et al. 2011)
for a more comprehensive examination of clustering techniques and applications.
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In genomics, the analysis of gene expression is a natural fit with clustering
methods. Due to the large number of genes (>10,000 in mammal) and that these
genes are typically co-regulated in some manner, clustering of gene expression is
useful both in understanding and simplifying the relevant biological mechanisms
manifesting within the study. Within these studies, a small to large number of genes
and specimens (tens to thousands) are typically hierarchically clustered to discern
primary, secondary, and tertiary effects, potential common regulation or function,
“guilt-by-association” (if several genes in a cluster are involved in a cellular pathway
or network, it is likely the other genes have some role in the pathway as well), and
variability within the expression (are some genes and samples near opposites of
other genes/samples?). Gene expression clustering in practice is typically hierarchi-
cal and agglomerative due to an early publication and free software provided by
Eisen et al. (1998). However, other methods, such as k-means and self-organizing
maps are also used. When combined with corresponding graphics, such as
dendrogram-enhanced heat maps, clustering can be very effective in demonstrating
the level of co-expression of collections of genes and how they relate to the patients
or subjects studied. For example, Fig. 3.2 shows a clustered heat map of genes and
ovarian cancer patients illustrating the coordinated expression (or lack thereof) of
various genes that commonly express in immune cells.

Clustering of sequences is also used to compare organisms. Phylogenetic trees
indicate the potential evolutionary history of related organisms based on clustering
sequences. In addition, sequence clusters can also simply show relatedness and
similarity of genes, regions, or chromosomes. Figure 3.3 is an example of a phylo-
genetic tree. From this illustration, one can see why rats (Rattus norvegicus), mice
(Mus musculus), and primates are candidates for human pre-clinical studies based on
their relatedness genetically.

Linking Multiple Sources of Information

A pervasive approach in bioinformatics is linking, integrating, and then leveraging
multiple sources of data and information to solve problems. The “magic” is often in
finding the appropriate linking mechanism coupled with the computing knowledge
needed to execute the link and the contextual knowledge to understand the appro-
priateness of the link and the resulting resolution.

For example, a common practice is to use sequence similarity of genes across
species (i.e., identifying orthologs) to find functional links between organisms based
on detailed functional knowledge of one or more organisms and emerging knowl-
edge of another organism’s genome to determine the function of specific genes in the
poorly characterized genome. In addition, common sequence motifs within and
between organisms are often discovered to have common regulatory purposes
between genomes. Still other challenges are addressed by integrating multiple
sources of genomic and clinical information. For a different example, in understand-
ing the onset, progression, treatment, and survival of ovarian cancer patients, one
should be aware of deleterious inherited genomic variants (such as in BRCA1 and
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BRCA2); somatic mutations in these genes and also in NF1, RB1, and CDK12;
certain copy number alterations; miRNA subtypes, expression profiles; and DNA
methylation patterns (Cancer Genome Atlas Research Network 2011). This requires
linking multiple distinct sources of genomic information. In short, complex disease
and their treatments may involve multiple systems and therefore represent multiple
opportunities for drug targets. Comprehensive analysis and understanding of com-
plex diseases generally cannot be achieved by a single simple genomics or proteo-
mics result.

In a more straightforward example of data and knowledge integration common in
bioinformatics, suppose one would like to design an inexpensive genomic assay to
track a patient’s genomic testing results so that one could ensure that important
clinical genomic tests detecting deleterious variants using a whole genome micro-
array, exome, whole genome sequencing, or RNA-Seq match the intended patient. It
so happens only 24–48 higher allele frequency SNPs can assure uniqueness (aside
from identical twins) in identifying an individual and thus enable complete

Fig. 3.2 A clustered heat map of ovarian tumor gene expression with annotations for event-free
survival, BRCA1 pathogenic mutations, and different classes of genes associated with different
immune cell types. Red indicates a very high level of expression, whereas green indicates relatively
low expression. Black would indicate typical levels of expression. Just over 1/3 of these patients
show relatively high levels of T-cell expression of the tumor sample indicating likely immune
infiltration of the tumor

124 W. Jones



traceability of the patient’s test result. However, which several dozen SNPs should
be assayed from the greater than ten million population-based SNP candidates? Or
can it be done at all? This is a classic bioinformatics question and is resolved by
cross-referencing and linking detailed probe information regarding leading SNP
microarray platforms (each platform has a manifest), detailed descriptions of the
genomic regions of exon enrichment in a whole exome sequencing (WES) kit,
determining a medium-sized collection of genes that are commonly expressed in
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Fig. 3.3 A phylogenetic tree of life constructed entirely from genomic sequence data. The color
gray represents bacteria, green represents archaea, and pink represents eukaryota which holdsHomo
sapiens and other mammals as well as plants. From a sequence similarity perspective, Homo
sapiens are much closer to plants and insects than they are to bacteria. The graph is by Letunic
and Bork (2007)

3 Genomics and Bioinformatics in Biological Discovery and Pharmaceutical. . . 125



most human tissues including blood, and then merging and cross-referencing that
information to determine if there are 50 or so genomic loci that have sufficient
variation in the human population that are detectable in each possible assay. If they
exist, then once this SNP panel is designed, then no matter whether the primary
laboratory clinical assay is based on WGS, WES, whole genome and exome SNP
microarrays, or RNA-Seq, the relatively inexpensive PCR-based SNP assay can
ensure that chain of custody was preserved during the processing of the clinical
genomic assay.

Bioinformatics also leverages lists and unstructured data. For example, several
genes have been identified in scientific publications as being associated with
dysregulated pathways with their expression altered by disease or stimulus. Many
of these have been consolidated into a database (Subramanian et al. 2005) which can
be cross-referenced with pre-clinical or early-phase genomic test results to help
determine both the biological pathways involved as well as to gain insight into
whether the observed expression profiles have commonality with other experimental
results from different tissues or different indications/conditions. Bioinformaticists
also use text-mining techniques to peruse medical and research publications to find
novel relationships between genotypes, phenotypes, and therapies. PharmGKB is an
excellent resource for much of this information describing drug-oriented pathways,
summaries of genes important in pharmacology, pharmacogenomics relationships
with genotypes, and annotation of variants (Thorn et al. 2010).

Importance of Annotation

Bioinformatic methods make extensive use of annotations that are associated with
genomic objects of many types. Annotations are used for linking, clustering, filter-
ing, and interpreting information and results from genomic assays. The sources of
annotation are extensive and growing, and the content within each source also
continues to grow. For example, in 2001, dbSNP, a database containing annotations
of known single nucleotide polymorphism in the human genome, contained less than
two million non-redundant SNPs. In mid-2017, it contained more than 135,000,000
validated SNPs. The complete sources of annotation are too extensive to list here, but
Table 3.1 provides a list of primary sources. For example, the human GeneCards

Table 3.1 Primary sources of genomic and proteomic annotation

Genomic reference sequence, gene
names, gene sequence NCBI, Ensembl, UCSC

Genomic variation HGMD, dbSNP, dbVAR, 1000 Genomes, COSMIC,
Broad GDAC Firehose

Proteomics InterPro, PhosphoSitePlus, UnitProKB/Swiss-Pro

RNA sequence UniGene, RefSeq, UCSC, Ensembl

Gene annotation GeneCards, HGNC, EntrezGene, GO

Genes and phenotypes PharmGKB, OMIM, ClinVar
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database (http://www.genecards.org/), a compendium of other genomic and proteo-
mic databases, lists over 100 sources of genomic and proteomic information that are
compiled to present information on a gene-by-gene basis.

3.3.5 Statistics in Bioinformatics

3.3.5.1 Mathematical and Statistical Methods

Some methods are not described in detail here, especially complex methods. Rather,
this section associates statistical methods within the greater context of bioinformatics
in clinical and genomic applications.

Bioinformatics has direct ties to many statistical and mathematical methods and
techniques due to the intrinsic nature of the domain. Some are simple but not always
used. For example, a particular gene’s expression can vary by many orders of
magnitude in a collection of cells. Whenever gene expression measurements are
graphed in scatterplots or used as input into certain methods (such as principal
component analysis, a method discussed later), it is always advisable to perform
log transformations especially for platforms that measure expression either by
hybridization and scanning (such as microarrays and NanoString) or by counting
molecules (sequencing or flow cytometry). One platform, qPCR, naturally provides
measurements that are already on log2 scale due to its intrinsic properties, and thus
its output data does not require log transformation. The statistical tie-ins are evident
as PCR errors are not additive but multiplicative, justifying the log transformation
from an error stabilization and modeling viewpoint. Analysis and graphs of gene
expression will be much more meaningful using the log scale. Even biologists
typically discuss expression differences as being n-fold rather than n absolute
units. Log transformations of ratios of measured quantities are also used to discern
differences in target and reference material (DNA copy number and competitive
hybridization methods).

Regarding statistical methods, population-based hypothesis testing is widespread
due to the many different biological states that can exist in model organisms and
humans. In clinical development, these hypotheses are often related to measurable
cellular impacts of drug therapy or the pathways of various biological functions and
disease. As hypothesis testing is often genome-wide or for a large number of
analytes, methods are available that adjust p-values for proper inferences in the
presence of multiple testing of analytes (Noble 2009). These challenges are most
seen in tests associating genotypes, SNVs, gene expression, methylation, and protein
levels with treatments or clinical outcomes. Additional complexity with these
challenges includes proper handling of highly correlated systems of analytes (e.g.,
gene expression, protein levels, and to a lesser extent methylation levels). False
discovery rate (FDR) estimation methods, often using straightforward methods such
as Benjamini-Hochberg correction in RNA-Seq, or permutation-based reference
methods with expression microarrays (Tusher et al. 2001) are common practice.
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Bonferroni adjustments are most frequently employed with initial genome-wide
association studies (GWAS), a method to associate common population variants
with disease or health, as most SNP analytes by design have less correlation due to
optimized coverage of genomic variation. In gene expression, there is a trade-off
between sensitivity, specificity, and reproducibility of differential expression (Shi
et al. 2008). The large variations in effect size across the transcriptome have typically
led researchers to prioritize analytes exhibiting a potentially larger effect size over
small effects with high statistical significance.

As studies or designs become more complex, the statistical methods associated
with them can likewise become more complex, leading to the use of linear or mixed
models to account for the various factors. Genome-wide studies can be expensive
even when a relatively small number of samples are tested. For pre-clinical testing
(often examining gene expression) where many factors may be examined at once, the
expression variance structure may also be complex and difficult to properly estimate.
Therefore, the use of variance stabilization techniques such as empirical Bayes
methods (Smyth 2004) has been adapted to address the level of parameterization
with these studies. Other methods such as LIMMA (Ritchie et al. 2015) have been
adapted for both microarray and RNA-Seq expression data and can be flexible to
account for model complexity. However, whether microarray or RNA-Seq, a myriad
of statistical methods have emerged to assess differential expression utilizing differ-
ent assumptions and information under a variety of experimental designs.

Statistics also provides many techniques for describing multi-dimensional data
common in genomic studies. The most used genomic dimension reduction method is
principal components analysis (PCA). It performs several useful functions:

– It provides an overview of the genomic study and facilitates cluster and outlier
identification. The relative distance of the samples, sample groups, or objects
provides rough views of similar and highly contrasting samples or genomic
structures.

– It illustrates the main effects in studies, especially pre-clinical animal studies or
studies involving human cell lines. Sometimes the effects are obvious. It also
quantifies the amount of variance associated with each common effect. Some-
times the primary dimensions reflect a technical factor, such as the laboratory or
the reagent lot associated with sample clusters.

– It can also illustrate commonality (or lack thereof) of change if there are paired
samples.

– Analysis of the associated gene loadings can also indicate the genes that are
driving the common variation associated with the component.

– Sample groupings in different top components often directly relate to clustered
groups of more highly varying genes in heat maps.

PCA is a universal tool applicable to gene expression, genotyping and GWAS,
somatic variation, andmethylation.An illustration of several of these characteristics is
provided in Fig. 3.4,where miRNA-Seq data from flow cytometry-separated immune
cells demonstrates that the miRNA profile for these cells is distinct and identifiable
using principal components. This implies that there is sufficient co-expression of
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several miRNAs within specific immune cells that would allow relatively easy
identification of the cells. If one examines the graph closely, one can spot outliers
within each cluster. In fact, these were later found to be misclassified or mislabeled
specimens. In this case, PCA detected outliers that were group outliers without
necessarily being experimental outliers, a far more powerful and difficult task.

Expectation-maximization (EM) methods are another class of statistical methods
that exist in more than one domain of genomic bioinformatics. It is a highly suitable
method for maximum likelihood estimation in the presence of several different
parameters that need to be estimated simultaneously. Perhaps it is best known for
its use with gene quantification from RNA-Seq data. There have been several
publications (Li et al. 2010; Li and Dewey 2011; Trapnell et al. 2010) regarding
the use of EM in estimating isoform abundance from RNA-Seq short reads produced
by Illumina and Life Technologies (now Thermo Fisher) next-generation
sequencers. These methods resulted in two popular software implementations of
EM for expression quantification, RSEM (RNA-Seq using expectation maximiza-
tion) and Cufflinks. EM methods are also used in estimating haplotypes, which are
genomic regions that are typically inherited together in a population. Identifying
genomic motifs (disparately located regions having similar sequence characteristics)
is another common application of EM methods which are typically combined with
Markov models (Parida 2007). Methods for finding common motifs, putative genes,
and haplotypes were heavily used before and during the Human Genome Project and
the related sequencing and assembly of model human organisms.

Fig. 3.4 Top four principal components of miRNA expression of four types of sorted immune
cells. CD14+ cells clearly separate in the second component, while CD19+ B cells separate in the
third component. CD4+ and CD8+ have less separation as they are both T cells
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Empirical Bayes (EB) methods are also commonly used in genomics information.
An excellent example of this is its use in testing the large number of genes that may
be differentially expressed in two or more biological conditions. In this case, EB
methods may be used to borrow information from other genes to stabilize population
variance estimates of individual genes especially when these genes have few counts.
This method when combined with other statistical frameworks has been successfully
used for differential expression testing for both expression microarray data (Smyth
2004) and RNA-Seq data (Leng et al. 2013).

In clinical trials and especially in terminal disease such as cancer, survival
analysis is a common statistical method that evaluates the efficacy and response to
therapy of different drugs or drug combinations. In one sense, survival analysis is not
conducted any differently using genomic information than when a clinical trial or
clinical study only utilizes traditional clinical parameters. However, genomic char-
acteristics have been shown to be effective at explaining variation seen in patient
responses. The genomic information may relate to inherited or somatic variants
detected in tumors or to gene expression or methylation profiles of particular disease
cells. A more recent development in understanding differential cancer survival rates
in the presence of uniform adjuvant post-operative therapy is the utilization of
knowledge of immune system activity in the tumor microenvironment. Various
cancers have shown improved overall survival or event-free survival when tumor-
infiltrating leukocytes (TILs) are present as shown in Fig. 3.5.

Survival analysis is greatly enhanced by biomarkers conjoined with clinical
information. The biomarkers are sometimes simple proteomic markers, but increas-
ingly more genomic markers are being used as the technology to measure them

Fig. 3.5 Kaplan-Meier curves—an example of a statistically significant differences in response to
therapy based on the immune infiltration status of the tumor. In this case, higher levels of immune
infiltration within the tumor microenvironment (determined by bioinformatic methods) were asso-
ciated with a higher likelihood of event-free survival (EFS)
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becomes less costly and more widely available. Common genomic biomarkers are
DNA variants and expression profiles. The variants can be of different types:
germline and somatic SNVs, indels, copy number variants (CNVs) or alterations
(CNAs), fusions, or other structural variants. Biomarkers for CNVs/CNAs are
becoming more important as several indications show strong associations of copy
number with treatment response (Bokemeyer et al. 2013; Wilson et al. 2016; An
et al. 2014), especially in cancer where CNAs are common. However, there are
challenges working with each variant type. For example, breakpoints for copy
number variants and other structural variants are difficult to estimate precisely.
Generally, once a particular variant’s utility has been confirmed, then it may be
used in clinical development as a supporting companion diagnostic (CDx). Design-
ing tests for specific variants is relatively straightforward with many resources
available to design PCR primers or various probes for enrichment or capture for
other assays. Many platform providers have special tools available to design small
custom panels to measure variants or may already have designed and tested methods
to measure the variant of interest.

3.3.6 Informative Graphics

A number of informative graphics have been developed for displaying useful data
from genomic studies. Some, such as heat maps, have been displayed earlier in this
chapter. Other statistical graphics and methods such as principal components anal-
ysis have been adapted for use in bioinformatics analysis and were also illustrated
earlier.

The following are some additional examples of interesting or novel graphics that
are of general interest in bioinformatics. For example, Fig. 3.6 illustrates the overlay
of variant allele frequency (VAF) information with the log ratio of sequence read
depth, both of which are important measures at a genomic locus to determine copy
number status of a sample at that locus. Historically captured somatic variants from
cancer are illustrated in Fig. 3.7 for the gene PIK3CA. In this graph, certain positions
in the gene are shown to be “hotspots” for variation. Major genomic structural
changes, rearrangements, and translocations are often difficult to illustrate for
various reasons. Figure 3.8 provides one way of illustrating and summarizing
these changes via a circos plot as well as other positional information.
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Fig. 3.7 Genomic variant plot showing loci within the PIK3CA gene that are hotspots for
nonsynonymous variants in cancer cells. Note that some variants are more frequent in certain
tissues while other variants go across many tissues. This graph uses data from the COSMIC (http://
cancer.sanger.ac.uk/cosmic) database but is inspired by similar plots at http://www.tumorportal.org/
from the Broad Institute

Fig. 3.6 Copy number diagnostic graph for a cancerous DNA sample for one of its chromosomes
using exome sequencing. Black points are loci indicating the log ratio of the sequencing depth of the
target specimen’s cells relative a normal reference collection. Consistent deviations away from
0 indicate copy number changes. The points in red are measures of heterozygous VAF. Normal
diploid values center around 0.5. Values deviating from 0.5 (or 1.5 for VAF + 1) indicate a copy
number alteration for that region. In this case, there are at least two regions with obvious copy
number loss (indicated by green lines)
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3.4 Case Studies in Genomic Bioinformatics
with Associated Impacts to Treatment and Therapy

3.4.1 BRAF and NF1 Somatic Mutations Across Traditional
Indications

As mentioned in the introduction, there are many research physicians, molecular
biologists, and bioinformaticists who are thinking about cancer not as to where the
disease arises or its stage, but what are the molecular mechanisms that are driving the
cancer. Perhaps just as important, could these new classifications of cancer, such as
BRAF V600E (a cancer having a nonsynonymous variant in the BRAF gene that
causes an amino acid change from a valine (V) to a glutamic acid (E) in the 600th
position), be more important than the tissue or stage from which the cells containing
the variant arise?

For example, there have been a series of studies (Krauthammer et al. 2012; Hodis
et al. 2012; Cancer Genome Atlas Network 2015) that demonstrate the role of
particular somatic variants and other genomic features of BRAF, NRAS, NF1, and
RAC1 (RAC1 variants being more recently found through exome sequencing) in
melanoma oncogenesis. Different SNVs and genomic variations may interact with
different pathways leading to melanoma. Bioinformatics methods combined with
clinicians, molecular biologists, and other scientists have successfully identified the

Fig. 3.8 Circos plot of the genome indicating the nature and extent of structural chromosome
abnormalities and translocations of an ovarian tumor as well information regarding mutations,
expression, and methylation at a regional chromosomal level (from Boyle et al. 2012)

3 Genomics and Bioinformatics in Biological Discovery and Pharmaceutical. . . 133



genes and mutations that drive most forms of melanoma. Many of these mutations
lead to MEK or RAS pathway activation. Binimetinib, cobimetinib, and
vemurafenib are all examples of targeted therapy MEK inhibitors that align with
inhibiting specific activity due to mutations in these genes. However, the utility of
bioinformatics does not end with one disease. Some of the same important BRAF
mutations in melanoma have been observed in colorectal cancer and multiple
myeloma by cross-linking of the sequencing data. In addition, the gene name,
NF1, comes from neurofibromatosis type 1, a disease where certain inherited
nonsynonymous variants result in 100% penetrance of a type of neurofibromatosis
resulting in benign tumors of the nerves and skin. A bioinformatics-based discovery
uncovered that some of the same germline mutations that play a role in inherited
neurofibromatosis can, if a somatic variant, lead to NF1 functional loss, activate the
RAS gene, and thus have implications for both prognosis and therapy in melanoma
(Nissan et al. 2014). In this case, although the tissue plays a role in the expressivity
of the variant, the variant is the driver of the disease. We now see connections
between diseases that heretofore were unrelated. This connection has implications
both in the diagnosis and the treatment of both constitutional and somatic variant-
driven diseases.

3.4.2 Breast Cancer Subtypes

By the 1990s, it was known that certain inherited variants in the genes BRCA1/2
greatly increased a woman’s risk for early-onset breast (and ovarian) cancer in
adulthood although the great majority of these cancers are sporadic in nature.
Hormone therapy using tamoxifen was demonstrated to be useful (sometimes
alone) as a treatment for patients who had larger amounts of estrogen in cancer
cells (so-called ER+ patients). Finally a subset of breast cancer patients
overexpressed the HER2 gene, and Genentech in the 1990s developed one of the
first targeted therapy drugs, Herceptin, explicitly for this condition. However, only a
small percentage of women have these BRCA1/2 germline variants, and HER2+
breast cancer patients were a minority (<20%). While the morphology of breast
cancer was known and that certain breast tumors responded to Herceptin and
hormone-based therapy, there was not a detailed understanding of the molecular
aspects of breast cancer. One of the first well-known biological insights enabled by
expression microarray technology was the discovery of breast cancer subtypes at the
molecular level (Perou et al. 2000; Sørlie et al. 2001). However, microarray tech-
nologies then did not have the quality that microarrays have now. Bioinformatic
methods were still emerging regarding the proper way to analyze the expression
patterns of thousands of genes simultaneously across a considerable number of
subjects. As research progressed, biotechnology and bioinformatic methods
improved, and the characteristics of these subtypes were reproduced at other geno-
mic centers using different microarray technology. The intrinsic breast cancer
molecular subtypes were then shown to have clinical relevance both related to
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their ability to predict aggressiveness and recurrence and to their ability to suggest
appropriate therapies. One subtype, termed luminal A, was shown to be
non-aggressive, and patients did not benefit from chemotherapy. Irrespective of
treatment response, the risk of recurrence of breast cancer in patients was viewed
as a useful clinical prognostic factor that could guide treatment decisions and therapy
choice. Parker et al. (2009) developed a biomarker using statistical and bioinformatic
tools that utilized the genes driving the intrinsic breast cancer subtypes, luminal A,
luminal B, HER2, basal, and normal-like, to create a panel of 50 expression markers
(called PAM50) that could classify the tumor’s intrinsic subtype and provide a risk
of recurrence score given the presence or absence of standard therapies such as
neoadjuvant chemotherapy.

PAM50 had its roots in the early days of expression microarrays. However,
microarrays have characteristics that do not provide robustness to variations in lab
procedures, equipment, and personnel. They are also not as suited to measure RNA
extracted from FFPE preserved tissue, a common preservation matrix for solid
tumors. Finally, expression arrays are not FDA 510(k)-approved devices. To
develop a clinical biomarker that would transition this research result into clinical
practice, the biomarker development team decided to start with a subset of the
relevant genes that had a demonstrated ability of providing concordant information
when used with an orthogonal technology (such as qPCR or NanoString, which has
devices that have achieved 510(k) clearance) and could reproduce the classifications
when using degraded RNA from FFPE tissue. Out of the several hundred genes that
were initially shown to have relevance with the various intrinsic subtypes, Parker
used knowledge of co-expression of many of these genes combined with proper
statistical methods for biomarker development: sufficiently powered study using
hundreds of pertinent samples, independent training and test/validation datasets and
phases, genes or features that passed performance testing for qPCR using FFPE
material, n-fold cross-validation during training to optimize parameters and model
selection, and selection of robust methods such as shrunken centroids for classifica-
tion (Tibshirani et al. 2002). As development continued, the PAM50 classifier for
breast cancer was ported to the NanoString device and marketed as the Prosigna®

test. Since the initial publication, the PAM50 predictor has been found to provide
superior prognostic value compared to standard immunohistochemistry (IHC) and
other clinical endpoints (Nielsen et al. 2010; Wallden et al. 2015).

In summary, the successful development of both the breast cancer subtypes and
the prognostic predictors of tumor aggressiveness and response to therapy all
depended heavily upon biological insight, biotechnology platforms, and bioinfor-
matics and statistical methods.
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3.4.3 Characterizing Multiple Biological Systems Using Gene
Expression Data

Important facets of characterizing tumor cells (breast cancer and other cancer sub-
types) are related to (e.g.) cell motility; epithelial-mesenchymal transitions; migra-
tion, proliferation, and angiogenesis; and immune and therapy resistance. However,
when tumors cells are collected by resection biopsy, nearby and internal stromal
cells and possibly immune cells are also in the mix due to their proximity. These
immune cells typically have genes that express nearly exclusively for the different
types: T cells, B cells, dendritic cells, NK cells, and macrophages. Recent research
has identified genes that are characteristic of these cells (Bindea et al. 2013; Newman
et al. 2015). When the gene expression assay is transcriptome-wide, it is relatively
easy to isolate the signals from these genes and produce a heat map. For example, the
heat map in Fig. 3.2 is one such representation where ovarian cancer patients who
had tumors removed prior to platinum-based chemotherapy show variations in the
type and level of immune cell activity within and around the tumor cells. This figure
is created through combining and filtering gene lists from different related experi-
ments that may be from one platform (e.g., microarrays) and then utilizing them to
filter data from these ovarian patients generated from a different platform
(RNA-Seq). After selection, the gene signals are centered by gene and then clustered
using correlation and hierarchical clustering methods. From this, a basic heat map is
generated using standard bioinformatic tools and then overlaid with other important
annotations. In this case, both clinical measurements (such as BRCA1 pathogenic
mutational status and EFS data) and immune gene classes are added. Within this
figure, one can see that roughly 1/3 of the patients seem to have consistent and larger
immune cell activity. There is a small subset of patients in the lower right part of the
graph that appear to have only B-cell activity, without accompanying activity of T or
NK cells.

This pattern of a subset of patients having immune activity with tumor-infiltrating
leukocytes (TILs) while other patients do not is common in ovarian cancer (Cancer
Genome Atlas Research Network 2011; Konecny et al. 2014). This infiltration
pattern also exists in other solid tumors (summarized by Iglesia et al. 2016). Samples
with evidence of TIL activity are often inflamed and more amenable to certain
classes of therapy. Tumors with TILs are also the best candidates for certain classes
of immunotherapy drugs. In particular drugs that interfere with the PD1-PDL1
checkpoint or the B7/CTLA4 pathway theoretically will have the best opportunity
to provide durable responses (Pardoll 2012). The importance of this information
must be put in the context of the greater set of information available. The TIL
expression is but one facet of the overall activity of the tumor microenvironment. As
the previous case study has shown, expression patterns of the tumors cells them-
selves have relevance to diagnosis, prognosis, and therapy decisions. Now we
discover that information regarding non-tumor cells in the same environment also
has relevance to treatment decisions regarding the tumor. Regarding genomic assays,
it is notable that we did not have to run a separate assay to uncover this important
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additional information of the immune component, which is somewhat independent
measurement-wise from the tumor cells.

3.5 Current Challenges and Developments
in Bioinformatics

3.5.1 RNA Versus DNA Biomarkers: Advantages
and Disadvantages in the Clinical Space

An advantage of certain DNA biomarkers is that some can be relatively simple. In
fact, many FDA-approved tests exist for specific mutations (germline or somatic). If
a new therapy targets a particular gene with a particular mutation, development of a
DNA biomarker may be relatively straightforward and economically implemented,
but the speed at which the new test can be implemented may not be optimal,
especially if one is implementing multiple individual tests at once. This has led
some to create panels of genes so that a particular class of therapies could use a single
panel. The panel would be designed, implemented, and validated once and thus
could be used for several distinct therapies over time. In the long term, this may save
both time and money as a panel that is used multiple times will gain efficiencies and
reliability with continued use.

A disadvantage of DNA biomarkers is similar to the disadvantage of a software
tester when restricted to only reviewing the computer source code (and not the actual
running of the software) or to an airport controller when restricted to only the
architect’s drawings of the terminals and runway (and not a view of the airplanes
in real time). In each case, the person may find a “fault” that may impact the system
but will be unable to determine if it will lead to a “failure.” The DNA test is
examining a very static structure (i.e., the DNA itself) and not the dynamic aspect
of the cell, much of which is embodied in the gene and protein expression.

RNA-based biomarkers have an advantage of capturing the dynamic nature of a
possibly heterogeneous collection of cells. For example, in immuno-oncology appli-
cations, RNA biomarkers may be able to characterize the aggressiveness of the
tumor and indicate the pathways responsible and whether there is immune activity in
the tumor microenvironment, simply by examining the relative expression levels of
different classes of genes. RNA can indicate certain structural variations (e.g., gene
fusion events) better than targeted DNA tests and can discriminate important alter-
native splicing events, which DNA tests generally cannot do. RNA also indirectly
reflects other characteristics such as methylation events, as well as general epigenetic
changes to promoter regions or spatial proximity of enhancers. RNA is less effective
than DNA at detecting specific variants, especially somatic mutations, due to less
uniform coverage of the exome regions of genes when performing RNA-Seq and the
inherent limitations of measuring individual bases using gene expression
microarrays.
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3.5.2 Emerging Methods in Immuno-oncology

New bioinformatics and laboratory developments are occurring in immuno-
oncology. Bioinformatics has a role in developing new or reinterpreting existing
genomic or proteomic tumor assays that characterize whether the tumor is inflamed,
has evoked an immune response, or is nonimmunogenic. In immuno-oncology,
having a well-characterized status of the tumor is important, as certain classes of
drugs—such as immune checkpoint inhibitors and chimeric antigen receptor T-cells
(CAR-T) therapies—are much more appropriate depending on this status. For
example, immune checkpoint inhibitors work best if the immune system has already
engaged the tumor microenvironment. Currently a common immunohistochemistry
technique is used to assess tumor status by staining tumor slides for CD4+ and CD8+
cell activity. However, these techniques can have challenges with either sensitivity
or specificity based on the specific mono- or polyclonal antibodies used. Separately,
RNA-Seq has demonstrated proficiency at enumerating and deconvoluting cell
populations for the potentially heterogeneous tumor microenvironment (Newman
et al. 2015). This implies that bioinformatic methods combined with RNA-Seq data
can be used to provide multiple information sets for a particular tumor specimen:
general tumor expression profile; cell composition including immune-specific cells
such as T cells, B cells, and dendritic cells; gene fusions; important mutations; and
important splice variants. Utilizing current and emerging bioinformatic methods
effectively will yield more information in these areas from a single assay.

If there is a noticeable immune response present and checkpoint inhibitors are a
possibility, bioinformatic methods can be further leveraged to identify patients that
are susceptible to autoimmunity-related adverse events (AEs) from particular ther-
apies. The cause for the AE may be due to a combination of the nature of the therapy
and genotypic characteristics of the patient, especially HLA type and variants
associated with drug metabolism. For example, HIV-positive patients with the
HLA-B*57:01 type have a hypersensitivity to certain antiretroviral medications
(Hughes et al. 2004). Patients taking ipilimumab, a cytotoxic T-lymphocyte-associ-
ated protein 4 (CTLA-4) inhibitor immunotherapy, have encountered a high rate of
adverse events (AEs) including colitis-related ailments. Whether the ipilimumab-
related autoimmunity is due to HLA-DR-related alleles is currently unknown
(Bertrand et al. 2016). Recent developments in bioinformatics have allowed inves-
tigators to determine HLA status with high precision from assays such as RNA-Seq
that were not originally designed for that particular purpose (Buchkovich et al.
2016). Thus, if one is performing RNA-Seq for other reasons such as establishing
expression profiles or detecting structural variants, the same raw results from this
assay can now be used for safety and risk assessment of AEs by determining HLA
types and performing correlative analysis.
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3.6 Concluding Remarks

Bioinformatics is a relatively new field that requires a multidisciplined approach
with computing and molecular biology as its foundations but which often requires
statistical skills to be effective. It is evolving at a rapid pace due to ongoing rapid
changes in biotechnology and molecular biological knowledge over the last
15 years. It has wide-ranging applications in pharmaceutical development, geno-
mics, proteomics, molecular and cellular biology, and toxicology. As “-omic”
analysis becomes more complex, we will be dependent on bioinformatic skills and
methods to manage this complexity.

Bioinformatics has been effective during discovery phases for uncovering mech-
anisms, exposing subtypes and complexity, and linking seemingly disparate infor-
mation sources to provide a more comprehensive view of biological systems and
potential drug targets.

Genomics has the potential to revolutionize how we assess, diagnose, and treat
patients for a wide variety of disease types by identifying and understanding disease
in a more fundamental and individualized manner, leading to precision medicine.
Biotechnology, genomics, and bioinformatic methods have revolutionized our
understanding of many diseases but especially cancer and immune-related therapies.
Bioinformatic methods are at the forefront in leveraging our emerging -omics
knowledge to understand many diseases, choose appropriate therapies, monitor
residual disease, and improve outcomes.

References

Li, Q-Z., et al. "Interferon signature gene expression is correlated with autoantibody profiles in
patients with incomplete lupus syndromes." Clinical & Experimental Immunology 159.3
(2010): 281-291.

Mason, Emma. "Has TNM been overtaken by science?." CANCER (2006): 33.
Galon, Jérôme, et al. "Cancer classification using the Immunoscore: a worldwide task force"

Journal of translational medicine 10.1 (2012): 205.
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the

human genome. Nature 409, 860–921 (2001)
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the

human genome. Nature 431, 931–945 (2004)
Venter, J. C., et al. The sequence of the human genome. Science 291, 1304–1351 (2001)
Burns, Kathleen H. “Transposable elements in cancer.” Nature Reviews Cancer. 17.7 (2017):

415-424.
Barthelson, Roger A., et al. "Comparison of the contributions of the nuclear and cytoplasmic

compartments to global gene expression in human cells." BMC genomics 8.1 (2007): 340.
Prinz, Florian, Thomas Schlange, and Khusru Asadullah. "Believe it or not: how much can we rely

on published data on potential drug targets?." Nature reviews Drug discovery 10.9 (2011):
712-712.

Casadevall, Arturo, and Ferric C. Fang. "Reproducible science." Infection and immunity, (2010):
4972-4975.

Ioannidis, John PA. "Why most published research findings are false." PLos med 2.8 (2005): e124.

3 Genomics and Bioinformatics in Biological Discovery and Pharmaceutical. . . 139



Cyranoski, David. "The secret war against counterfeit science." Nature 545.7653 (2017): 148-150.
http://retractionwatch.com/2015/11/07/its-official-anil-potti-faked-data-say-feds/
MAQC Consortium. "The MicroArray Quality Control (MAQC) project shows inter-and

intraplatform reproducibility of gene expression measurements." Nature biotechnology 24.9
(2006): 1151-1161.

MAQC Consortium. "The MicroArray Quality Control (MAQC)-II study of common practices for
the development and validation of microarray-based predictive models." Nature biotechnology
28.8 (2010): 827-838.

Beck, Tyler F., et al. "Systematic evaluation of Sanger validation of next-generation sequencing
variants." Clinical chemistry 62.4 (2016): 647-654.

Leipzig, Jeremy. "A review of bioinformatic pipeline frameworks." Briefings in bioinformatics
(2016): bbw020.

Drmanac, Radoje, et al. "Human genome sequencing using unchained base reads on self-
assembling DNA nanoarrays." Science 327.5961 (2010): 78-81.

Fujimoto, Akihiro, et al. "Whole-genome sequencing and comprehensive variant analysis of a
Japanese individual using massively parallel sequencing." Nature genetics 42.11 (2010):
931-936.

Richards, Sue, et al. "Standards and guidelines for the interpretation of sequence variants: a joint
consensus recommendation of the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology." Genetics in Medicine 17.5 (2015): 405-423.

Landrum, Melissa J., et al. "ClinVar: public archive of interpretations of clinically relevant
variants." Nucleic acids research 44.D1 (2015): D862-D868.

Anderson, Carl A., et al. "Data quality control in genetic case-control association studies." Nature
protocols 5.9 (2010): 1564-1573.

Hester, Susan D., et al. "Comparison of comparative genomic hybridization technologies across
microarray platforms." J Biomol Tech 20.2 (2009): 135-151.

Del Fabbro, Cristian, et al. "An extensive evaluation of read trimming effects on Illumina NGS data
analysis" PloS one 8.12 (2013): e85024.

Everitt, Brian S., et al. Cluster Analysis, 5th Edition (2011): 1-13.
Eisen, Michael B., et al. "Cluster analysis and display of genome-wide expression patterns."

Proceedings of the National Academy of Sciences 95.25 (1998): 14863-14868.
Letunic I., Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and

annotation, Bioinformatics, 2007, vol. 23 (pg. 127-128)
Cancer Genome Atlas Research Network. "Integrated genomic analyses of ovarian carcinoma."

Nature 474.7353 (2011): 609-615.
Subramanian, Aravind, et al. "Gene set enrichment analysis: a knowledge-based approach for

interpreting genome-wide expression profiles." Proceedings of the National Academy of Sci-
ences 102.43 (2005): 15545-15550.

Thorn, Caroline F., Teri E. Klein, and Russ B. Altman. "Pharmacogenomics and bioinformatics:
PharmGKB." Pharmacogenomics 11.4 (2010): 501-505.

Noble, William S. "How does multiple testing correction work?" Nature biotechnology 27.12
(2009): 1135-1137.

Shi, Leming, et al. "The balance of reproducibility, sensitivity, and specificity of lists of differen-
tially expressed genes in microarray studies." BMC bioinformatics 9.9 (2008): S10.

Tusher, Virginia Goss, Robert Tibshirani, and Gilbert Chu. "Significance analysis of microarrays
applied to the ionizing radiation response." Proceedings of the National Academy of Sciences
98.9 (2001): 5116-5121.

Smyth, Gordon K. "Linear models and empirical bayes methods for assessing differential expres-
sion in microarray experiments." Stat Appl Genet Mol Biol 3.1 (2004): 3.

Ritchie, Matthew E., et al. "Limma powers differential expression analyses for RNA-sequencing
and microarray studies." Nucleic acids research (2015): gkv007.

Li, Bo, et al. "RNA-Seq gene expression estimation with read mapping uncertainty.” Bioinformatics
26.4 (2010): 493-500.

140 W. Jones

http://retractionwatch.com/2015/11/07/its-official-anil-potti-faked-data-say-feds/


Li, Bo, and Dewey, Colin N. "RSEM: accurate transcript quantification from RNA-Seq data with or
without a reference genome." BMC bioinformatics 12.1 (2011): 323.

Trapnell, Cole, et al. "Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation." Nature biotechnology 28.5
(2010): 511-515.

Parida, Laxmi. Pattern discovery in bioinformatics: theory & algorithms. CRC Press, 2007.
Leng, Ning, et al. "EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq

experiments." Bioinformatics 29.8 (2013): 1035-1043.
Bokemeyer, Almut, et al. Copy number genome alterations are associated with treatment response

and outcome in relapsed childhood ETV6/RUNX1-positive acute lymphoblastic leukemia.
haematologica (2013): haematol-2012.

Wilson, Melissa A., et al. "Copy number changes are associated with response to treatment with
carboplatin, paclitaxel, and sorafenib in melanoma." Clinical Cancer Research 22.2 (2016):
374-382.

An, Gang, et al. "Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated
with bortezomib but copy number variation and percentage of plasma cells involved have no
additional prognostic value." Haematologica 99.2 (2014): 353-359.2

Boyle, John, et al. "Methods for visual mining of genomic and proteomic data atlases." BMC
bioinformatics 13.1 (2012): 58.

Krauthammer, Michael, et al. "Exome sequencing identifies recurrent somatic RAC1 mutations in
melanoma." Nature genetics 44.9 (2012): 1006-1014.

Hodis, Eran, et al. "A landscape of driver mutations in melanoma." Cell 150.2 (2012): 251-263.
Nissan, Moriah H., et al. "Loss of NF1 in cutaneous melanoma is associated with RAS activation

and MEK dependence." Cancer research 74.8 (2014): 2340-2350.
Cancer Genome Atlas Network. "Genomic classification of cutaneous melanoma." Cell 161.7

(2015): 1681-1696.
Perou, Charles M., et al. "Molecular portraits of human breast tumours." Nature 406.6797 (2000):

747-752.
Sørlie, Therese, et al. "Gene expression patterns of breast carcinomas distinguish tumor subclasses

with clinical implications." Proceedings of the National Academy of Sciences 98.19 (2001):
10869-10874.

Parker, Joel S., et al. "Supervised risk predictor of breast cancer based on intrinsic subtypes”, .
Journal of clinical oncology 27.8 (2009): 1160-1167.

Tibshirani, Robert, et al. "Diagnosis of multiple cancer types by shrunken centroids of gene
expression." Proceedings of the National Academy of Sciences 99.10 (2002): 6567-6572.

Nielsen, Torsten O., et al. "A comparison of PAM50 intrinsic subtyping with immuno-
histochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor–positive
breast cancer." Clinical Cancer Research 16.21 (2010): 5222-5232.

Wallden, Brett, et al. "Development and verification of the PAM50-based Prosigna breast cancer
gene signature assay." BMC medical genomics 8.1 (2015): 54.

Bindea, Gabriela, et al. "Spatiotemporal dynamics of intratumoral immune cells reveal the immune
landscape in human cancer." Immunity 39.4 (2013): 782-795.

Newman, Aaron M., et al. "Robust enumeration of cell subsets from tissue expression profiles."
Nature methods 12.5 (2015): 453-457.

Konecny, Gottfried E., et al. "Prognostic and therapeutic relevance of molecular subtypes in high-
grade serous ovarian cancer." Journal of the National Cancer Institute 106.10 (2014): dju249.

Iglesia, Michael D., et al. "Genomic analysis of immune cell infiltrates across 11 tumor types."
Journal of the National Cancer Institute 108.11 (2016): djw144.

Pardoll, Drew M. "The blockade of immune checkpoints in cancer immunotherapy." Nature
Reviews Cancer 12.4 (2012): 252-264.

3 Genomics and Bioinformatics in Biological Discovery and Pharmaceutical. . . 141



Hughes, Arlene R., et al. “Association of genetic variations in HLA-B region with hypersensitivity
to abacavir in some, but not all, populations.” Pharmacogenomics 5.2 (2004): 203-211.

Bertrand, A. et al. Immune Related Adverse Events Associated with Anti-CTLA-4 Antibodies:
Systematic Review and Meta-Analysis. BMC Medicine 13 (2015): 211. 6 Oct. 2016.

Buchkovich, M., Brown, C., and Robasky, K, HLAProfiler: a novel, allele sequence signature
approach enabling HLA-typing for biomarker identification in gene expression data. Poster at
ASHG 2016.

142 W. Jones



Chapter 4
Biostatistical Methods
in Pharmacoepidemiology

Ana Filipa Macedo, Ana Maria Rodriguez, William Hawkes,
and Alban Fabre

4.1 Introduction

4.1.1 Experiment vs. Observation

Pharmacoepidemiology is mostly categorized in two main types of studies. In
general the objective is to test or observe a causal interpretation of the relationship
between the exposure of a drug and an outcome of interest such as efficacy or safety.

These studies are differentiated between experimental (also called intervention
studies) and observational. Intervention or experimentation involves attempting to
change a variable in one or more groups of people. In experimental research, the
investigator controls the management of the patient, and the allocation of the drug in
most of the cases is randomized. Observation allows nature to take its course, so the
investigator measures but does not intervene. In observational research, exposure to
the drug is not dictated by the study protocol, and its use within the study has the
advantage of mimicking the situation of real-life conditions.

Compared to observational research, the limitations of experimental research lay
in the size of the study, for instance, it could be too small or too short in time to
identify occurrences of rare outcome (e.g. long-term rare adverse reaction). The
design of these studies does not address real-life condition effects due to their
controlled nature, since under the experimental design the allocation of the exposure
is defined by randomization.

On the other hand, the major challenge of observational research is to draw
inferences about drug effects free from other factors observed in an uncontrolled
environment. Observational research of drug effects is very challenging in
Pharmacoepidemiology given the uncontrolled nature of its designs, which require
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particular analytic methods to address methodological challenges in this area. For
this reason, this is the main focus of this chapter.

4.1.2 Observational Studies

In observational research, we usually make a distinction between descriptive studies
and etiologic studies.

4.1.2.1 Descriptive and Etiologic Studies

The objective of descriptive studies is to provide statistics to understand the health
status of the population, without establishing a relationship with any risk factors.
Most commonly, we use descriptive statistics to describe the frequency of disease
occurrence in relation to variables such as person, place, and time (described in Sect.
4.2.1). Descriptive studies can suggest hypotheses about associations, which can be
tested in etiologic studies.

The objective of etiologic studies is to compare groups of patients in order to
identify an association between an exposure and an outcome and test a causal
hypothesis. The demonstration of these associations should account for the real-
life nature of the design, introducing different sources of variability (described in
Sect. 4.2.2) involving particular statistical approaches (described in Sect. 4.4).

4.1.2.2 Designs in Etiologic Studies

In Pharmacoepidemiology, we observe three main study designs: cohort studies,
cross-sectional studies, and case-control studies. Cohort and cross-sectional studies
can be designed for both descriptive and etiologic objectives, whereas case-control
studies will only address an etiologic objective.

In order to understand the concept of these designs, we need to introduce the
notion of time, inclusion of patient, data collection, and start of the study.

In cohort studies, a group of people exposed to a risk factor and a group who are
unexposed to the risk factor (or exposed to another risk factor) are followed over
time to determine the occurrence of disease. In cohort studies, the start of the study
will occur between the inclusion of patients and the data collection. When the start
occurs at the time of patient inclusion, we talk about a prospective cohort (Fig. 4.1),
whereas when the start of the study occurs at the time of data collection, we talk
about retrospective cohort (Fig. 4.2).

In cross-sectional studies, the patients are included at the start of the study, the
time at which the data is collected. Cross-sectional studies are also viewed as a
snapshot of the situation at a certain defined time.
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The objective of case-control studies is to compare frequency of exposure among
patients suffering from a disease (cases) versus healthy patients (controls). The
exposure will occur prior to the disease being diagnosed (time of inclusion) for
cases and before the time the control is included. By definition, a case-control study
is always retrospective because it starts with an outcome and then traces back to
investigate exposures (Fig. 4.2). Table 4.1 summarizes the main advantages and
disadvantages of the major types of observational studies.

Cohort studies, also called incidence studies, provide the most direct measure-
ment of the risk of developing a disease, although they may require long periods of
follow-up, which makes them more prone to selection bias due to follow-up losses
(when these are correlated with the exposure or outcome of interest). Cohort studies

Fig. 4.1 Schematic design
of a prospective study

Fig. 4.2 Schematic design
of a retrospective study

Table 4.1 Advantages and disadvantages of observational etiologic studies

Advantages Disadvantages

Cohort studies Direct measurement of incidence
Measurement of temporal rela-
tionships
Multiple outcomes
Rare exposures

High cost
Can be time-consuming
Open to bias due to losses to follow-
up

Cross-sectional
studies

Low cost
Relatively quick to conduct
No losses to follow-up
Multiple outcomes
Multiple exposures

No measurement of temporal rela-
tionships
Prone to recall bias

Case-control
studies

Multiple exposures
Rare diseases
Diseases with long latency
Low cost
Relatively quick to conduct

Can’t estimate incidence
Prone to selection bias and recall bias
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are particularly suited for assessing the effects of rare exposures or assessing
multiple effects of a single exposure (Table 4.1).

As mentioned previously, cohort studies can be “prospective” or “retrospective”
(also called historical cohorts) with regard to the timing of data collection. In a
retrospective cohort study, both the exposure and outcome have already occurred at
the study initiation. This type of cohort study is less time-consuming and costly than
a prospective cohort study, but it depends on the availability of the relevant data, so it
is more susceptible to reporting bias due to differential accuracy and completeness of
data between the study groups.

An additional modification in the cohort design involves the selection of the cases
and controls from a defined cohort (nested case-control study). This type of design
can be particularly useful because it can lead to reduced exposure measurement costs
and reduced selection bias (since cases and controls are sampled from the same
population). For example, the UK Clinical Practice Research Datalink, a population-
based cohort of primary care patients from the UK, can be used to perform a nested
case-control analysis to determine whether high-intensity statin treatment is associ-
ated with reduced risk of rheumatoid arthritis (Tascilar et al. 2016).

Case-control studies are particularly efficient in terms of time and cost in relation
to cohort studies. Cohort studies are particularly well suited for the evaluation of rare
diseases or long latency diseases. The major potential problem of case-control
studies is their susceptibility to selection bias (from the differential selection of the
study cases or controls on the basis of their probability of exposure) and to recall bias
(due to differential recall of exposure information between study groups, based on
their disease status) (Table 4.1).

In cross-sectional studies, also known as prevalence studies, the measurements of
exposure and effect are made at the same time. These studies may be purely
descriptive and used to assess the prevalence of a particular disease in a defined
population or may be used for generating hypotheses, by examining the relationship
between a disease (or health outcome) and other variables of interest as they exist in
a defined population at a single time point, for example, a cross-sectional study
examining the prevalence, correlates, and sequencing of electronic cigarette and
tobacco use among 11–16-year-olds in schools in Wales (de Lacy et al. 2017).
Cross-sectional studies are relatively easy and inexpensive to conduct. The main
disadvantage of cross-sectional studies is their inability to assess whether the
exposure preceded or followed the outcome (temporal relationships cannot be
demonstrated), because both exposure and outcome are assessed at the same time
(Table 4.1).

4.2 Measures in Pharmacoepidemiology

4.2.1 Frequency Measures

The frequency is the number of times a particular value of a variable has been
observed to occur. The frequency of a value can be expressed in different ways
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depending on the purpose. Common frequency measures are absolute frequencies,
ratios, proportions, and rates:

Absolute Frequency describes the number of times ni a particular value for a
variable has been observed to occur. The simplest way to express a frequency is in
absolute terms.

Ratio compares the frequency of one value ni for a variable with the frequency of
another value nk for the variable. These frequencies may be related or totally
independent. For example, in a study that included 20 men and 80 women, the
ratio of men to women is 20:80 or 1:4, which indicates that for every man there are
4 women in the study.

Proportion describes the number of times ni a particular value for a variable has
been observed to occur (absolute frequency) in relation to the total number of values
that might occur for that variable (N) in the same period (Eq. 4.1). It is a ratio in
which the numerator (ni) is included in the denominator (N). A proportion can be
expressed as a fraction of one hundred (percentage). In the example above, the
proportion of men in the study is 20:100 or 20%.

f i ¼ ni
N
: ð4:1Þ

Rate describes the number of times ni a particular value for a variable has been
observed to occur (absolute frequency) in a defined population, over a specified
period of time (Eq. 4.2). The rate measures how quickly an event of interest occurs
and is always reported per some unit of time. For example, if 10 deaths are observed
per 100 people included in a study and followed during 1 year, we can estimate an
annual death rate of 10%.

f i ¼ ni
N
� time: ð4:2Þ

4.2.1.1 Measures of Disease Frequency in Epidemiology (Incidence
and Prevalence)

An important feature in the measurement of disease frequency in epidemiology is the
concept of population at risk, which includes all the individuals who are susceptible
to the disease being studied. In other words, the population at risk is the group of
people, healthy or sick, who would be counted as cases if they had the disease being
studied. For example, when estimating the frequency of prostate cancer, women are
not included in the population at risk.
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Prevalence measures the proportion of subjects with the disease/event in the
population at risk, at a particular point in time or over a period of time (Eq. 4.3).

Prevalence ¼ Number existing cases at a specified time
Number people at risk at the specified time

� 10nð Þ: ð4:3Þ

10n is usually 100 (or n ¼ 2) and prevalence is often expressed as a percentage.
The prevalence measures the probability of presenting the disease in a particular

period of time being studied. It is often expressed as a percentage (number of cases
per 100 people). The prevalence is a measure of disease burden in a population in a
given location and at a particular time; it’s also useful to compare disease burden
across populations, locations, or time periods. For example, the prevalence of
obesity was 36.5% among US adults during 2011–2014, higher in women (38.3%)
than in men (34.3%) (Ogden et al. 2016).

Incidence There are two types of incidence measures, cumulative incidence and
incidence rate.

Cumulative Incidence (Risk) measures the proportion of subjects who get the
disease/event in the population at risk, over a period of time (Eq. 4.4). In this case the
population at risk (susceptible of developing the disease) only includes people free
of the disease at the beginning of the study period (prevalent/existing cases must be
excluded).

Cumulative Incidence
Number new cases in specified period

Number at risk disease� freeð Þ at start of period

� 10nð Þ: ð4:4Þ

10n is usually 100 (or n ¼ 2) and cumulative incidence is often expressed as a
percentage.

The cumulative incidence measures the probability of developing the disease over
the period of time being studied. It is a measure of the risk of getting the disease.

In an outbreak, the term attack rate is often used as a synonym for risk. It is the
risk of getting the disease during a specified period, such as the duration of an
outbreak.

Incidence rate (IR) or Incidence Density measures how rapidly new events occur
in a population. The numerator is the number of people who get the disease/event in
the population at risk over a period of time. The denominator is the sum of time
periods during which each person is disease-free and thus “at risk” of developing the
disease (person-time) (Eq. 4.5).

Incidence Rate ¼ Number new cases in specified periodP
person� time at risk

� 10nð Þ: ð4:5Þ
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10n is usually 100 (or n ¼ 2) and incidence rate is often expressed as new cases
per 100 person-time at risk.

Each person contributes one unit to the person-time denominator for each unit of
time (month, year, etc.) of observation prior to developing the disease, becoming lost
to follow-up or death (see Exercise 1). For example, one hundred people at risk for
6 months contribute the same amount of person-time as 50 people at risk for 1 year.

Exercise 1 Suppose an investigator is conducting one observational study of
the rate of stroke. He follows five people from baseline up to 4 years. The
results are graphically displayed below, showing how many years each person
remained in the study disease-free:

From this graph we can calculate:

– Total person-years in the study ¼ 4 + 1 + 2 + 1 + 2 ¼ 10 person-years
– Incidence Rate of stroke ¼ 2 cases per 10 person-years ¼ 0.2 cases per

person-year
– 4-year cumulative incidence of stroke ¼ 2/5 ¼ 0.4 ¼ 40%

Relationship Between Prevalence and Incidence The prevalence of an event is
dependent on both its incidence rate and its average duration (Eq. 4.6).

Prevalence ¼ Incidence Rate� Average Duration: ð4:6Þ

For example, if the incidence of a disease is low but the duration of disease (i.e.,
until recovery or death) is long, the prevalence will be high relative to the incidence.
This is the case of chronic diseases such as diabetes. On the other hand, if the
incidence of a disease is high but the duration of disease is very short, the prevalence
will be similar to the incidence. This is the case of acute conditions such as a
common cold.
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4.2.1.2 Other Commonly Used Measures of Disease Frequency
in Epidemiology

Mortality or Crude Death Rate measures the risk or the probability of dying from
any cause (or a specified cause) over the period of time being studied, usually 1 year.
It includes the number of deaths in the numerator and in the denominator the number
of persons at risk of dying during the study period (usually the size of the population
at the middle of the study period) (Eq. 4.7).

Death Rate ¼ Number deaths in a given period
Number overall population in same period

� 10n: ð4:7Þ

The death rates can be calculated for specific age groups of interest (age-specific
death rate), and they can be adjusted for differences in the age distribution of two
populations being compared (age-standardized death rate).

Case Fatality Rate (CFR) or Lethality measures the proportion of cases with a
specified disease or condition who die over a period of time being studied (Eq. 4.8).
It is a measure of the severity of the disease.

Fatality rate ¼ Number deaths in a given period
Number diagnosed cases in same period

� 10n: ð4:8Þ

4.2.2 Association Measures

In epidemiological studies we can measure the strength of an association between a
particular exposure and the subsequent occurrence of an event/disease. This requires
the comparison of the disease frequency in two or more groups whose exposures
have differed. These measures are often referred to as measures of effect and include
the risk ratio (or relative risk, RR), incidence rate ratios (IRR), and odds ratios (OR),
usually displayed in a contingency Table 4.2:

Risk Ratio (RR) compares the risk (cumulative incidence) of occurrence of a
disease among individuals exposed (Ie) to that among those unexposed (Io)
(Eq. 4.9). It is the association measure used in cohort studies, from which incidences
can be calculated.

RR ¼ Ie
Io

¼ a= aþ bð Þ
c= cþ dð Þ : ð4:9Þ

The RR can be used to quantify the strength of an association between a particular
exposure and the subsequent occurrence of an event/disease. A RR > 1.0 indicates
that the risk of disease is greater among those exposed compared with those
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unexposed (the exposure is a risk factor). For example, a RR of 1.2 means a 20% rise
in the risk of the disease for those exposed compared to those who were unexposed.
A RR < 1.0 (note that the RR cannot assume negative values) indicates a decreased
risk of disease for the exposed (protective effect of the exposure) compared with
those unexposed. Finally, a RR ¼ 1 indicates that there is no association observed
between the disease and the exposure, so the exposure has no effect on the risk of
developing the disease.

The incidence rate ratio (IRR) is a similar measure, which compares incidence
rates instead of cumulative incidences. Incidence rate ratios and risk ratios tend to
be numerically similar for rare diseases.

Odds Ratio Odds are a transformation of the probability of an event. Let us
imagine a situation where treatment A shows 20% of patients dead after 12 months.
To transform this probability (20%) to odds let us first use proportions (rather than
percentages) and the following equation:

Odds ¼ p
1� p

: ð4:10Þ

That is, the odds are defined as the probability of the event of interest happening
( p) divided by the probability that the event does not happen (1 � p) (Eq. 4.10). In
the example where 20% of patients are dead 12 months after exposure, the
odds ¼ 0.20/0.80 which is equal to 0.25. That is to say, the odds of the event of
interest occurring are 0.25 to 1, or about 1:4 against.

When p ¼ 0.50 (a 50/50 probability), the odds are equal to 1. This means the
event is equally likely to occur or not to occur, that is, the odds are 1:1. When
p ¼ 0.80 (an 80% probability), the odds are 0.80/0.20, or 4.00. That means the odds
are 4:1 in favor of the event happening, which makes sense because 0.80 is four
times 0.20.

Odds ratios are usually used when comparing two groups on a dichotomous
outcome. Here, the odds are calculated for both groups and then compared to each
other as a ratio. Therefore,

Odds Ratio ¼ Odds for Group 1
Odds for Group 2

: ð4:11Þ

So if the odds are 0.50 in group 1 (e.g., 33% of patients are dead after 12 months
in group 1) and 0.25 in group 2 (e.g., 20% of patients are dead), then the odds ratio is

Table 4.2 Contingency table commonly used in epidemiology

Present disease/event Do not present disease/event Total

Exposed a b a + b

Unexposed c d c + d

Total a + c b + d a + b + c + d
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0.50/0.25 or 2.00. The odds ratio (OR) of 2.00 means that the odds of the outcome in
one group are twice the odds of the outcome in the other group.

Note that odds are not probabilities, and the OR is not a ratio of the probabilities
involved (which is termed a risk ratio). A very useful feature is that the OR can be
calculated from a case-control study, so it does not require knowledge of incidence
rates. The formula (Eq. 4.12) can be derived from the contingency table presented
above (Table 4.2).

OR ¼ Oddse
Oddso

¼ a=b
c=d

¼ a � d
b � c : ð4:12Þ

When the disease is a rare event and the exposure is frequent in the population, we
can assume that the OR is similar to the RR, if the cases and controls are represen-
tative of the general population with respect to exposure.

4.2.3 Measures of Potential Impact

The measures of disease impact estimate the health impact of a specific exposure on
the occurrence of a disease in a particular population. These measures are useful to
compare the potential impact of different public health strategies.

Attributable Risk (AR) or Risk Difference or Excess Risk is the incidence of the
disease attributable to the exposure among the exposed group. It estimates the excess
risk caused by the exposure in the exposed group, assuming causality. The AR is
calculated as the difference between the incidence (risk) of the outcome among the
exposed (Ie) and the incidence among the unexposed (Io) (Eq. 4.13). Analogous to
the risk difference, the rate difference is calculated by subtracting the incidence rate
in the unexposed group from the incidence rate in the exposed group.

AR ¼ Ie � Io: ð4:13Þ

The AR is not often generalizable because it depends on the baseline risk in the
unexposed, which often varies between populations. The AR can be expressed as a
percentage of the incidence among the exposed, called attributable fraction (% AR)
or etiological fraction (Eq. 4.14). The %AR is useful to estimate individual risks,
e.g., to advise one exposed person of the expected reduction in the risk of the
outcome if the exposure is eliminated (or reduced to the level of the comparison
group) (see Exercise 2).

%AR ¼ Ie � Ioð Þ
Ie

� 100 ¼ RR� 1ð Þ
RR

� 100: ð4:14Þ
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Exercise 2 Suppose an investigator is conducting one observational study of
the association between the exposure to X and the development of the disease
Y. He follows 200 people during 1 year and observes that of the 100 exposed
to X, 40 develop the disease Y; and of the other 100 unexposed to X, 20 develop
the disease Y. These proportions are represented in the graph below:

From the results of this study we can calculate RR ¼ (40/100)/
(20/100) ¼ 2.0

Being exposed to X increases the risk of developing the disease Y by
2 times:

AR ¼ (40/100) � (20/100) ¼ 20/100
For each 100 people exposed to X, 20 developed the disease Y due to the

exposure X: %AR ¼ AR/(40/100) ¼ 50%
In the exposed group, 50% of the cases of disease can be attributed to the

exposure X, i.e., would be prevented if the exposure was eliminated.

Population Attributable Risk (PAR) is the incidence of the disease attributable to
the exposure among the entire population (not just among the exposed). It estimates
the excess risk caused by the exposure in the entire population, assuming causality.
The PAR is calculated as the difference between the incidence of the outcome among
the entire population (It) and the incidence among the unexposed (Io) (Eq. 4.15).

PAR ¼ It � Io: ð4:15Þ

The PAR can be expressed as a percentage of the incidence among the population,
called percentage of population attributable risk (%PAR) (Eq. 4.16). The %PAR is
relevant for public health decisions, since it measures the impact of exposure control
measures in a population, i.e., the amount of the disease that could be reduced in the
population if all the exposure is eliminated.
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%PAR ¼ It � Ioð Þ
It

� 100: ð4:16Þ

Absolute Risk Reduction (ARR) It is a similar concept as the AR, but it measures
the impact on the outcome when the exposure is protective (the incidence among the
exposed (Ie) is lower than among the unexposed (I0) (Eq. 4.17). It estimates the
reduction in the rates of an undesirable outcome if the unexposed become exposed.
It’s a measure commonly used by pharmaceutical companies to express the benefits
of using a particular medicine. For example, let’s imagine that in an observational
study comparing two treatments A and B to prevent stroke, the observed incidence of
stroke was 0.3% in people taking drug A, compared with 0.6% in people taking drug
B (the reference group). The ARR is 0.6–0.3% ¼ 0.3%. That is, for each 1000
people taking drug A instead of B, there were 3 fewer stroke episodes.

ARR ¼ Io � Ie: ð4:17Þ

The ARR can be expressed as a percentage of the baseline incidence (among the
unexposed or reference group), called Ppreventable fraction (PF) or relative risk
reduction (RRR) (Eq. 4.18). In the example above, the RRR is 0.3/0.6% ¼ 50%,
indicating that the risk of stroke was 50% lower in those taking drug A. Note that,
although a 50% risk reduction sounds impressive when promoting treatment with
drug A, the absolute risk difference is only 0.3%. Therefore, these two measures
should be interpreted in conjuction. To be meaningful, the RRR needs to be set in the
context of the baseline incidence of the event.

RRR ¼ Io � Ieð Þ
Io

� 100 ¼ 1� RRð Þ � 100: ð4:18Þ

Note These measures of impact cannot be calculated in case-control studies,
as we are not measuring the incidence of the disease.

4.3 Sources of Variability and Errors
in Pharmacoepidemiology

Much of Pharmacoepidemiology is concerned with establishing associations
between exposures and the risk of disease, which usually involves comparing
representative groups of a population of interest that differ in exposure to a specific
risk factor. In observational studies, however, often the groups being compared also
share other characteristics that influence their risk of disease. In addition, observa-
tional studies are more prone to errors in the way the study sample is selected or
during data collection and outcome measurement. Therefore, the association
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between an exposure and a disease may generally be due to (1) random errors,
(2) systematic errors (bias), (3) confounding, or (4) causation. One wants to exclude/
control the first three to be able to make causal inferences.

4.3.1 Errors (Random or Systematic)

In observational studies, a random error results in an estimate of effect being equally
likely to be above or below the true value, as a result of chance. Random errors affect
the precision of the study results, so they are usually quantified statistically and
reduced to an acceptable level.

Systematic errors (called bias) result in an estimate of effect being more likely to
be above or below the true value, resulting in a systematic deviation of inferences
from the truth. Bias is often a consequence of errors during the design or conduct of
an observational study. Bias should be avoided by careful study planning, since they
cannot be controlled in the analysis; and if an association between an exposure and a
disease results from bias, this simply means the finding is wrong.

The two major types of bias are known as selection bias and information bias.

Selection bias—results from the recruitment of patients (or retention in the study) in
such a way that the sample being studied is systematically different from the target
population to which the causal inference is to be made. For example, selection bias
would result if heavy smokers are more likely to volunteer to participate in a study of
the effect of smoking on the development of cardiovascular disease.

Information bias—results from systematic differences in the individual measure-
ments or classification of the exposure or the disease being studied. For example,
information bias would result if cases are more likely than controls to deny past
exposure to a risk factor or if observers who know the exposure status systematically
underestimate blood pressure measurements in the group of patients exposed to the
treatment being studied.

4.3.2 Confounding

Confounding is a major issue in observational studies. Confounding occurs when the
true estimate of the association between an exposure X and the outcome of interest
Y is hidden or distorted by the effect of a third variable Z on the same outcome
(Fig. 4.3). Failure to account for confounding can lead to the incorrect conclusion
that the outcome Y is due to the exposure X.

For a variable to be a confounder, it must:

• Be associated with the exposure and be an independent risk factor of the outcome
• Be distributed unequally among the groups being compared
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• Not be on the causal pathway between the exposure and the outcome of interest,
that is, not be part of the chain of cause and effect that leads from the exposure to
the outcome

4.3.2.1 How to Identify Confounding

Suppose the following results were obtained from an observational study of the
association between drinking coffee and the risk of stroke:

Stroke

Yes No

Coffee drinkers 200 925

Coffee non-drinkers 90 960

Estimated RR ¼ 2.07

The results of the study seem to indicate there is an association between drinking
coffee and having a stroke (RR¼ 2.07). However, since it is known that people who
drink coffee are more likely to smoke than people who don’t drink coffee, the
estimated association may actually reflect the association with tobacco use. In this
study, smoking habits may be a confounder. To identify confounding we should
stratify the results by the levels of the potential confounder:

Group of smokers Group of non-smokers

Stroke Stroke

Yes No Yes No

Coffee drinkers 100 650 38 337

Coffee non-drinkers 40 260 75 675

Estimated RR ¼ 1.00 Estimated RR ¼ 1.00

There is no statistical test to identify confounding. However, when we examine
the measures of effect within each level (or strata) of the confounding variable, if
they differ from the “crude” overall measure of effect (RR¼ 2.07), but are similar to
each other (RR ¼ 1.00), this is evidence of confounding. In this example, there is no
association between drinking coffee and the risk of stroke (RR ¼ 1), and smoking is
a confounder variable in this study.

Exposure X Outcome Y

Confounders Z

Fig. 4.3 Schematic
illustration of a confounding
in pharmacoepidemiology
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4.3.2.2 How to Deal with Confounding

Confounding is not an error but is concerned with alternative explanations for the
effect being studied, so we should try to remove it to get nearer to the “true” effect of
interest. Confounding can be handled in the statistical analysis using regression
approaches, propensity score methods (see Sect. 4.4.2.1) or instrumental variables
(see Sect. 4.4.2.2). When we use multivariate regression to deal with confounding,
an “adjusted” estimate of effect is obtained as a weighted summary estimate of the
results from the different strata of the confounding variable. We usually refer to this
as “controlling” for a confounder. It is possible to control for several confounders
simultaneously using multivariate statistical modeling.

If potential confounding remains even after the effect of many variables has been
controlled for, we usually say we have residual confounding. This can happen for
example when there are potential unmeasured confounders or when the confounders
change over time.

4.3.3 Interaction (Effect Modification)

In observation studies, sometimes we are confronted with a situation where the effect
of some exposure X on the outcome of interest Y is not merely confounded by
another factor, but instead it’s modified by another factor W. When an interaction is
present, the effect of the exposure X differs according to each category of the effect
modifier W.

4.3.3.1 How to Identify an Interaction

Suppose the following results were obtained from an observational study of the
association between the use of combined oral contraception (COC) and the risk of
venous thromboembolism (VTE):

VTE

Yes No

COC 353 54

Non-COC 253,000 73,000

Estimated RR ¼ 1.89

It is known that smoking aggravates the risk of VTE in women using COC. To
identify an interaction in this study, we stratified the results by the levels of the
potential effect modifier:

Group of smokers Group of non-smokers

VTE VTE

(continued)
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Group of smokers Group of non-smokers

VTE VTE

Yes No Yes No

Yes No Yes No

COC 329 133,671 86 119,000

Non-COC 32 39,000 22 34,000

Estimated RR ¼ 3.00 Estimated RR ¼ 1.07

When we examine the measures of effect within each level (or strata) of the effect
modifier variable, if they differ from the “crude” overall measure of effect
(RR ¼ 1.89) and differ from each other (RR ¼ 3.00 in the group of women who
smoke vs. RR ¼ 1.07 in the group of non-smokers), this is evidence of an interac-
tion. Smoking is modifying the effect of COC on the development of VTE.

4.3.3.2 How to Deal with an Interaction

Interaction describes important relationships between two risk factors for the dis-
ease. So, while one tries to eliminate confounding, it is important to identify and
describe an interaction by presenting the effect estimate stratified for each level of
the effect modifier.

Interaction can be identified in the statistical analysis using regression
approaches. When we use this approach, we create a special type of regression
term called an interaction term by multiplying the two factors that we wish to test and
then including the product in a multiple regression equation. A statistical test is then
performed on the regression coefficient of the interaction term. If this test is
statistically significant (usually at the 0.05 level), then effect modification is said
to exist.

4.3.3.3 Stratification

Although the above procedure imagines testing an interaction term and controlling
your error rate by using a statistical test to determine whether or not to stratify, there
are times when one has planned to perform stratified analyses without a statistical
test of an interaction term. This is perfectly legitimate when the desire is to examine
the effect of the exposure separately in the two (or more) strata defined. As a method
of statistical inquiry, it is best if this stratification is planned before any analysis
begins. However, statisticians disagree on this point and some are much more
permissive.

In addition to using stratification to examine heterogeneity of effects across strata,
it is also possible to compute an overall estimate averaged across the strata to reduce
bias or variability. The resulting averaged effect eliminates bias due to confounding
by the stratification factor.
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4.3.3.4 Three-Way, Four-Way, and More-Way Interactions

It is tempting to test three-way, four-way, and sometimes more than four-way
interaction terms. One simple piece of advice is “don’t,” unless your data demand
it. For example, an “exposure by effect modifier by time” interaction might be called
for in a longitudinal study, where one is interested in whether the effect modification
of the exposure varies over time. This might be a useful analysis to consider in
longitudinal studies. However, as a general rule, the more terms added to an
interaction, the more difficult the interpretation becomes.

The strength of the association between a predictor and an outcome variable may
also be affected by a special case of confounding in the presence of mediator and
moderator variables. These are introduced in Sect. 4.4.2.3 of the current chapter.

Key Concepts to Deal with Sources of Variability and Errors
in Observational Studies

Random errors ➨ Quantify statistically

Systematic errors (bias) ➨ Avoid

Confounding ➨ Control

Interaction ➨ Report

4.4 Addressing Confounding/Interaction Analytically

4.4.1 Multivariate Analysis (OLS, Logistic, Cox, Others)

4.4.1.1 What It Is, When and Why to Use It

Often when dealing with scientific questions, we want to know if two things are
associated. Is a new medication associated with better results for patients than an
older medication? Is an increasing dose of diabetes medication associated with a
larger decrease in HbA1c levels? How strongly are safety events associated with
exposure to a medication?

When we try to answer these questions with data, one of the most powerful tools
we have is regression. Simply put, regression is a method for quantifying the
association of two (or more) variables. There are several types of regression, and
the one to use has to do with the outcome and its distribution and the research
question one is aiming at answering.

The different types of regressions are summarized below.
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Ordinary Least Squares (OLS) Regression for Single and Multiple Predictors

For the analysis of continuous measures (blood pressure, HbA1c, quality of life
measures), the preferred technique is called ordinary least squares (OLS) regression.
The term ordinary is a misnomer, as although “ordinary,” the OLS approach is a
flexible and powerful way to answer many types of research questions. “Ordinary”
refers to linear regression, as opposed to other types such as nonlinear regression and
weighted regression.

OLS regression is usually introduced by describing its use as a prediction tool. If
we want to assess the strength of association between two factors, one an exposure
variable (e.g., to a new medication) and the other some outcome of interest (such as
heart rate 60 min after exposure), we use a regression technique, and because the
outcome in this case is a continuous measure, we use OLS regression.

To make our predictions, we gather data from a group of subjects on the dose of
medication administered and their heart rate 60 min after administration. Using these
data, we can derive an equation called a regression equation from the data. The
mathematical values of this equation can be used to describe and assess the direction
(positive or negative) and the magnitude (strength) of the association. Using this
equation we can create predicted levels of the outcome for use with future patients.
The equation we create based on our data can be simple or complex. The model
equation for OLS regression is available in Table 4.3 at the end of Sect. 4.4.

If we use more than one predictor variable with an outcome, we have a multiple
regression. An example of equations used for multiple regressions is provided in
Table 4.3 and in the example below:

Example

Multiple regression equation Interpretation

Returning to our medication and heart r
example, suppose that we also know that
age and sex have a role in predicting the
heart rate of the patients:
Heart rate ¼ α + β1 * Medication
Dose + β2 * Age + β3 * Sex
Heart rate ¼ 40.15 + 4.20 * Medication
Dose + 0.14 * Age + 3.22 * Sex

This implies that we can get a predicted
heart rate (beats per minute) by starting at
40.15 (the intercept), adding 4.20 for each
gram of medication used, then adding 0.14
times age in years, and finally adding 3.22
times sex

Logistic Regression

When we have dichotomous (binary, or two category) outcome measures (dead or
alive; recovered versus not recovered; treatment success versus treatment failure;
etc.), we may want to model the probability of result A (e.g., dead) versus result B
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(e.g., alive), using logistic regression. Like OLS, logistic regression can be used to
establish the relationship between an exposure variable and the probability of an
outcome. The exposure variable might be Treatment A versus Treatment B, and the
outcome might be the probability of being dead or alive 12 months after exposure
(a dichotomy).

The model equation for logistic regression looks very similar to that for OLS
regression, but the dichotomous outcome is expressed in terms of log odds units
(also known as “logits”).

Other Types of Regression

Poisson Regression

In the examples above, regression was presented with a continuous (many levels) or
a binary (two levels) outcome. Sometimes, the outcome may be completely differ-
ent: the outcome could be counts of independent events.

Poisson regression may also be appropriate for rate data, where the rate is the
count of events divided by the unit of observation. For example, a death rate is the
count of deaths divided by person-years of observation. Poisson regression is a
special case of the generalized linear model (GLM) for data that are not normally
distributed; for Poisson regression, the generalized linear model assumes that the
outcome variable has a Poisson distribution. If we consider, for instance, trying to
predict the number of deaths resulting from flu virus infections in Norway, the
Poisson distribution would assume that if d number of deaths (with a binomial
distribution, dead or alive) from the flu are observed among n patients who
contracted the flu virus, π is the probability that a person infected with the flu
virus dies. The Poisson distribution is a simple way to make assumptions in the
instance of count data, which simplifies the relation between the probability of an
event in relation to the frequency of the observed event and the total sample size of
the population.

The Poisson regression model is presented in Table 4.3. As observed in the
Poisson regression model, the log (rate) parameter is modeled as the linear predictor
of the outcome. Observed counts are assumed to be sampled from a Poisson
distribution. Simple Poisson regression generalizes to multiple Poisson regression
in the same way that simple logistic regression generalizes to multiple logistic
regression.

Negative Binomial Regression

The negative binomial distribution can be used as an alternative to the Poisson
distribution if there is an “overdispersed” count outcome variable. The main feature
of the Poisson model is the assumption that the mean and variance of the count data
are equal. However, this equal mean-variance relationship does not often occur in
observational studies. In most cases, the observed variance is larger than the
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assumed variance, which is called “overdispersion.” An example of overdispersion
is that the number of observed deaths in an area is influenced by seasonal changes,
such as the weather, air pollution, or a holiday. The underlying expected mean
mortality count will change over time depending on these variables. For instance, in
the flu example provided above, we can anticipate that deaths due to flu infections
might be higher in winter than in the summer. Overdispersion results in
underestimating the variance of the estimated parameter and thus produces a mis-
leading conclusion if a Poisson distribution is assumed. Negative binomial regres-
sion can be considered a generalization of Poisson regression since it has the same
mean structure as Poisson regression but has an extra parameter to handle
overdispersion.

Hierarchical Linear Modeling

Hierarchical linear modeling (HLM), also called multilevel modeling, is a general-
ization of OLS regression with random effects that capture multilevel data. It is used
to analyze variance in the outcome when the predictor variables are at varying
hierarchical levels, for example, when patients in a given hospital share variance
according to their common medical treatment team and common medical system.
HLM accounts for situations where groups are clustered together, such as patients
within the same hospital or geographical region. HLM simultaneously investigates
relationships within and between hierarchical levels of grouped data, making it more
efficient at accounting for variance among variables at different levels than other
analyses.

In observational studies, there are an array of situations where HLM models can
be used, for instance, for longitudinal data where observations are nested within
individuals. Longitudinal HLM models, sometimes described as growth curve
models, treat time in a flexible manner that allows the modeling of nonlinear change
across time and accommodates uneven intervals between time points and unequal
numbers of observations across individuals.

In addition to HLM’s ability to assess cross-level data relationships and accu-
rately disentangle the effects of between- and within-group variance, it is also a
preferred method for nested data because it requires fewer assumptions than other
statistical methods. HLM can accommodate non-independence of observations,
missing data, small and/or discrepant group sample sizes, and heterogeneity of
variance across repeated measures. A disadvantage of HLM is that it requires large
sample sizes for adequate power. HLM equations used for a two-level model, the
simplest form of HLM regression, are presented in Table 4.3.

Stepwise Regression

In an observational data set with many covariates, one possible goal of multiple
variable regression is to identify a fitted model that provides reasonably precise
estimates of the mean response using a parsimonious set of explanatory variables
(covariates). If all models using a pool of covariates can be estimated, methods to
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choose the best models are available. Under some circumstances there may be
considerable substantive knowledge about the phenomenon being observed that
can offer guidance in selecting a limited number of covariates.

A large number of automated procedures exist to select a statistical model. Each
has distinct criteria for optimal model selection. One popular class of model selection
procedures, called stepwise selection, uses an automatic variable selection process
that either adds (forward selection) or removes (backward elimination) individual
covariates from a group of potential explanatory variables from the model at each
step, thus the term “stepwise regression,” Chapter 6 describes alternative and more
powerful procedures for variable selection than those presented in this chapter.

The forward stepwise model starts with no covariates in the model. At each step, a
predictor variable is added to the model in a sequential manner. Different model
“goodness of fit” statistics coefficients help decide which variables are kept in the
final model. The backward stepwise model starts with all covariates in the model; a
covariate is removed from the model at each step. The algorithm includes a stopping
rule based on a goodness of fit statistic that determines when no further covariates are
removed from the model.

Properly used, the stepwise regression allows consideration of a large number of
potential covariates and can be used to fine-tune model. A common example occurs
when one tries to determine a set of potential genes from a sequenced genome that is
related to a disease of interest. If there are no hypotheses as to which gene might be
more likely to be associated with the disease a priori, stepwise regression could be a
useful tool to identify a set of potentially responsible genes. It is also useful when the
best possible prediction for individual patients is the goal and the association of
variables in the overall model is of limited interest. However, there is no guarantee
that the best model will be constructed from the available variables or even that a
good model will be found by this procedure.

Residuals

When we make a regression line using a regression equation, we note that rarely do
all the points of observed data fall exactly on our line. The regression line is the
expected values, and residuals are the observable distance (error) between the
expected values and the observed values. They can be viewed as a vertical distance
from the line to each individual observed data point on a two-dimensional graph. The
line that best fits the data is the line that is closest to the actual measured values. For
mathematical reasons, residuals are squared to ensure that they don’t cancel each
other as some errors are positive and some negative. Hence the goal is choosing a
line with the smallest total squared residuals or the “least squares.” Residuals are
therefore a sign that the model equation does not do a perfect job in explaining
observed data. When residuals are too large however, several options exist to
improve model prediction, including the addition of more explanatory variables as
in multiple regression.
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P-Values, Confidence Intervals, and Error

In practice the interpretation of the results of a regression analysis is more complex
than simply looking at the regression coefficients themselves. Traditionally, statis-
ticians used p-values—the proportion of replications of the study where a regression
coefficient as large or larger than the one observed would arise by chance alone in a
hypothetical population constructed under the null hypothesis that no actual rela-
tionship exists—as a basis for interpretation, and this trend continues.

When the p-value was less than 0.05, the result was deemed to be “statistically
significant at the 0.05 level,” meaning that less than 5 times out of 100 would we
expect to get a result by chance alone that is as large or larger than the regression
coefficient we estimated using our data and our statistical software.

More common now is to look at the 95% Confidence Interval, that is, the range of
values that are compatible with the data we have. The 95% Confidence Interval is
constructed mathematically using the variability of the data adjusted for the infor-
mation the predictor variables share when predicting the outcome of interest. The
details are complex and best left to computers and professional statisticians. It is
enough to know that the 95% Confidence Interval gives us a range of values for the
regression coefficient that are likely given the data collected and helps us to
understand the degree of statistical uncertainty in the results our data give us.

Survival Analysis

Survival analysis concerns data collected in the form of time until an event of interest
occurs and is also called time-to-event analysis. Historically the event of interest was
death, but now survival analysis encompasses other events, such as time until
diagnosis of a specific disease, time to experience an effect after initiating a
treatment, etc.

In survival analysis, we analyze not only the number of people who experience
the event of interest (a dichotomous variable of event status during the study
observation period, e.g., 1 ¼ event occurred or 0 ¼ event did not occur) but also
the time at which the event occurs for each individual.

The time-to-event is measured from time zero (the start of the study or the point
from which the individual is considered to be at risk of experiencing the event of
interest) until the first of the following:

1. The event occurs.
2. The participant is lost to follow-up.
3. Death [if not the event of interest].
4. The study ends.

These times to (2) and (3) are called censored times.
An important assumption in survival analysis is that the censoring is non-infor-

mative, i.e., people who are censored are representative of all people who remain at
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risk. Thus, censoring does not give us any information about the event being studied,
and the information coming from patients lost to follow-up can be ignored.

In observational studies, patients often are lost to follow-up for reasons that can
be associated with the study event. For example, patients whose disease is well
controlled don’t recognize the need to consult a doctor; or the most severe cases of a
disease are lost to follow-up because patients change practice to seek additional
medical advice. Several methods have been described to deal with the problem of
informative censoring. These include imputation techniques for missing data, sen-
sitivity analyses to mimic best and worst-case scenarios, and use of the dropout event
as a study end-point.

Survival and Hazard

Survival data are generally described and modeled in terms of two related probabil-
ities, namely, survival and hazard.

• The survival probability (also called the survivor function) S(t) is the probability
that an individual survives from the time zero to a specified future time t. Survival
probabilities are then estimated for different values of t.

• The hazard is usually denoted by h(t) or λ(t) and is the probability that an
individual who is at risk at time t has an event at that time. It represents the
instantaneous rate of the event per unit of time, given that the individual has
survived to that time.

In summary, the hazard relates to the incident event rate, while survival reflects
cumulative non-occurrence of an event.

Kaplan-Meier (Product Limit): Survival Estimate

Survival curves usually plot time on the X-axis and survival (proportion of people at
risk, i.e., free of the outcome of interest) on the Y-axis.

A number of methods can be used to model survival data, which differ in terms of
the assumptions that are made about the distribution of survival times in the
population. Some estimate the survival distribution by making parametric assump-
tions, including the exponential, Weibull, Gompertz, generalized gamma,
log-logistic, and log-normal distributions (Rodríguez 2010). However, it is often
hard to rely on any given parametric distribution to model times to event; hence we
resort to more flexible non-parametric or semi-parametric modeling (Kaplan and
Meier 1958).

Cox Regression: Hazard Estimates

The hazard function is the probability that if an individual survives to t, he will
experience the event in the next instant. The hazard estimates the expected number of
events per individual per unit of time. Suppose that the hazard at a particular time t is
k(t) ¼ 0.5 and that the unit of time is 1 year. This means that on average 0.5 events
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will occur per individual at risk 1 year. In a group of 20 individuals at risk during
2 years, we would expect to observe 20 events.

The aim of fitting a Cox model to time-to-event data is to estimate the effect of
covariates on the baseline hazard function. The baseline hazard function is estimated
non-parametrically. As a result, Cox regression models enable us to estimate a
hazard ratio (HR) (see below for details on comparison of hazards). The Cox
proportional hazards model is called a semi-parametric model, because there are
no assumptions about the shape of the baseline hazard function.

Comparing Survival Curves and Hazards

In observational studies, we are often interested in assessing whether there are
differences in survival (or cumulative incidence of event) among different groups
of participants.

Comparison of two survival curves can be done using a statistical hypothesis test
called the log rank test. It is used to test the null hypothesis that there is no difference
between the population survival curves (i.e., the probability of an event occurring at
any time point is the same for each population). The log rank test for two groups
computes the chi-square (X2) test statistics that is based on summing up differences
between the observed and expected number of events across all event times, where
the expected number of events is computed under an assumption that the hazards for
the two groups are equal at every event time.

Comparison of groups of participants with respect to their hazards can be done
using the Cox proportional hazard model, which enables the difference between
hazards of particular groups of patients to be tested while allowing for other factors.
The Cox model estimates an HR, which gives a relative event rate between groups.
An HR of 2.0 does not mean that the survival time in group A is twice the survival in
group B. An HR of 2.0 means that a patient in group A who has not died at a certain
time point has twice the probability of death by the next time point compared to a
patient in group B.

In a Cox model it is assumed that the HR is constant over time, i.e., if the risk for
dying at a particular point in time in group A is, for example, twice that in the risk in
group B, then at any other time, it will still be twice that in the group B—this is
known as the proportional hazard assumption.

The proportional hazard assumption is very important for the appropriate use of
the log rank test and the Cox proportional hazards regression model. If this
assumption does not hold, one approach is to stratify the data into subgroups within
which the hazards are proportional and estimate different baseline hazards in each
stratum.

Adjustment

Regression techniques can be used to create predicted values of outcome variables,
which is a useful function; however, because more than one exposure (or predictor)
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variable can be used at a time, we can assess the relationship of variables in a much
more complex situation. This approach is multiple regression as explained above,
and it is the recommended way to handle adjustment, confounding, and effect
modification.

The simplest way to use multiple regression approaches (whether OLS, logistic,
Poisson, or proportional hazards models) is for the purpose of adjustment. For
example, we may want to know what the average value of a sample of patients is
for some variable (such as systolic blood pressure) “adjusted” for the effects of age.

Adjustment works by averaging out the effect of a separate factor (e.g., age) and
often requires a regression approach. To do this sort of adjustment, simply add the
adjustment factor to your regression equation.

4.4.2 Advanced Methods of Adjustment

4.4.2.1 Propensity Score

A major challenge in observational studies in Pharmacoepidemiology is that the
treatment assignment is a deliberate choice made by physicians, patients, and/or the
payer and is far from being random. So there may be multiple risk factors that are not
balanced between comparison groups. As we described, model-based adjustments
and stratification techniques are widely used in observational studies to deal with
these confounders. However, these methods may not perform well when we have
many confounders. In 1983, alternative methods for the control of confounding in
observational studies based on propensity score were proposed (Rosenbaum and
Rubin 1983).

The propensity score (PS) is the individual’s probability of receiving a treatment
conditional on observed baseline covariates. So, any two patients with the same PS
have the same predicted probability of being exposed to treatment A rather than
treatment B; and although they can have different values for specific covariates,
overall the covariates included will be balanced. In other words, the multivariate
distribution of the covariates used to estimate the PS differs only randomly between
the two treatment groups. For this reason, PS are often said to mimic random
treatment allocation in clinical trials, although they do so only with respect to
confounders that have been measured.

Propensity Score Estimation

PS is most often estimated using a logistic regression model, in which treatment
status is regressed on observed baseline characteristics. In observational studies,
there are usually two possible treatments A and B. Each patient usually receives only
one of the treatments and has one of the two potential outcomes, Y(0) and Y(1), the
outcomes under the treatment A and the treatment B, respectively. The treatment
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effect is defined as Y(1) � Y(0), and the average treatment effect is defined as
ATE ¼ E (Y(1) � Y(0)). Rosenbaum and Rubin (Rosenbaum and Rubin 1983;
Rubin 1974, 1997) showed that unbiased estimates of ATE can be obtained by
conditioning on the PS, where at each value of the PS the distribution of the
covariates is the same in both treated groups. For this, Rosenbaum and Rubin defined
two conditions that must be met:

• Treatment assignment is independent of the potential outcomes conditional on the
observed baseline covariates. This condition is known as the “no unmeasured
confounders” assumption: all variables that affect treatment assignment and
outcome have been measured.

• Every patient has a nonzero probability to receive either treatment. This condi-
tion assumes that a patient with any covariate profile has a nonzero probability of
treatment assignment. This means that if patients with certain covariate profiles
have a zero probability of receiving either treatment, it is not possible to account
for that in the PS modeling.

Variables Selection

A crucial issue when using PS methods is how to select the variables to include in the
PS model. All the variables related to both the exposure and the outcome (the
confounders) should be included in the PS model. Simulation studies suggest that
variables that are unrelated to the exposure but related to the outcome should also be
included in PS model. The inclusion of these variables will decrease the variance of
an estimated exposure effect without increasing bias. In contrast, the inclusion of
variables that are related to the exposure but not (or weakly related) to the outcome
can increase the variance of the estimated effect without decreasing bias (Brookhart
et al. 2006a). Recent research has shown that omitting covariate interactions that
may be important for both predicting treatment assignment and/or outcome may
result in a miss-specified PS model; therefore simplistic modeling strategies may be
inadequate in these cases (Zagar et al. 2017).

During the process of fitting the PS model, it is important to check that covariates
are balanced across exposure groups. We use a quantity similar to the effect size,
known as the standardized bias, to quantify this balance. The standardized bias for
continuous covariates is calculated by dividing the difference in means of the
covariate between the treated group and the comparison group by the standard
deviation. This process can be repeated until the balance no longer improves when
adding terms to the PS model, or a decision criterion can be used, that, for example,
considers a covariate balanced if the standardized bias is less than 0.25.

After estimating the PS, the next step is to evaluate the overlap of the PS
distributions among the two exposure groups. This can be examined graphically
(Fig. 4.4). It is common to observe non-overlap at the extremes of the PS distribu-
tions. If the non-overlap is small, the PS analysis can be restricted to the range of
common PS, that is, excluding patients with a PS lower that the lowest PS observed
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in the comparison group and patients with the PS higher than the highest PS in the
comparison group.

Once estimated, the PS is then a single “summarized” confounding covariate that
can be used in various ways to control for confounding: matching, stratification, and
weighting strategies. Adding the PS as a covariate to a regression model is also an
option, although there is mixed evidence regarding its performance (Rubin 2004;
Schafer and Kang 2008), and this is not recommended.

Matching

One strategy is to match each patient exposed to treatment A to one or more patients
exposed to treatment B who share a similar value of the PS. A variety of matching
methods are available that can include individual matching of patients with the
closest propensity score (nearest neighbor matching) or selecting an equal number
of patients in each exposed group within categories of PS (frequency matching). The
matching can be done with or without replacement (each patient is uniquely matched
to another patient).

Stratification

As an alternative to matching, we can include all the patients in the analysis and
stratify them into subclasses based on their PS value, so that within the subclasses the
propensity score is similar. We then estimate the average treatment effect (ATE)

Fig. 4.4 Hypothetical distribution of propensity scores
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within each subclass as if assignment was completely random. To estimate the
overall average treatment effect, we average the within-stratum estimated average
treatment effects, weighted by the subclass sizes. Often we combine subclassifica-
tion with further covariance adjustments.

Weighting Strategies

An alternative weighting technique may be used when the desired estimate is the
ATE, the inverse probability of treatment weighting (IPTW) using the PS. With
IPTW, each patient is weighted by the inverse probability of receiving the treatment.

A concern with IPTW may arise when some weights are very large and thus can
bias the estimates of the treatment effect. To reduce the variability of the IPTW
weights and give patients with extreme weights less influence, a technique referred
to as stabilization is commonly used. Stabilization consists of multiplying the
treatment and comparison weights (separately) by a constant, equal to the expected
value of being in the treatment or comparison groups (Robins et al. 2000).

4.4.2.2 Instrumental Variables

In observational studies, the impact of confounders on the estimation of a causal
treatment effect can be adjusted by methods such as propensity scores, regression,
and matching. However, these methods only control for measured confounders. The
instrumental variable (IV) method has been proposed to control for both measured
and unmeasured confounders, although it should be emphasized that the causal
analysis of observational data involves an untestable assumption about the IV (see
details in “Assessing IV Validity and Strength” section). An instrumental variable
(IV) is a variable that (see Fig. 4.5):

• Is associated with the exposure X
• Is independent of C (the association between the IV and X is not confounded by

other variables)
• Is independent of outcome Y given X and C (there is no correlation between the

IV and other variables explaining the outcome, except by the direct effect on X)

An appropriate IV can help address both measured and unmeasured confounding
in observational studies, since it can realistically mimic the treatment allocation
process of a randomized study.

Examples
An IV analysis can be most helpful in reducing unmeasured confounding by
indication (i.e., when the indication for treatment is associated with the risk of

(continued)
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the studied outcome). The “physician’s prescribing preference” (PPP) for a
given drug A over B can be used as a valid IV if the physician’s preference is
not associated with the outcome (physicians who frequently prescribe drug A
are not more likely to co-prescribe drug C with an effect on the outcome of
interest) nor to the patient-level confounders (physicians who prefer drug A
are not systematically treating patients differently from physicians who prefer
drug B) (Brookhart et al. 2006b; Uddin et al. 2016; Ionescu-Ittu et al. 2012;
Smith and Ebrahim 2003). The use of this preference-based IV is illustrated in
a study comparing the effect of exposure to COX-2 inhibitors with
non-selective, nonsteroidal anti-inflammatory medications on gastrointestinal
complications (Brookhart et al. 2006b).

Another example of the use of IV analysis that has become increasingly
common is “Mendelian randomization”; in which genetic variants are IVs due
to the random assortment of genes from parents to offspring, meaning that
observational studies of genetic variants have similar properties to intention
to treat analyses in randomized controlled trials (Bennett 2010; Smith 2006).
A classic example is a Mendelian dominant condition called “familial hyper-
cholesterolemia,” in which mutations of the low density lipoprotein (LDL)
receptor gene lead to high circulating cholesterol concentrations (the expo-
sure) and premature coronary heart disease (the outcome) (Smith and
Ebrahim 2005). The inference to be made from this evidence (not susceptible
to reverse causation or confounding) is that high blood cholesterol concen-
tration is an important cause of coronary heart disease in the general popu-
lation (Smith and Ebrahim 2005).

Assessing IV Validity and Strength

Finding an appropriate IV can be challenging. It is important to evaluate whether the
variable satisfies the assumptions needed to be a valid IV and if the association
between the IV and the exposure is strong.

Not all of the assumptions of an IV can be tested. An F-test from a simple linear
regression model can be used to assess whether an IV is associated with the exposure

Exposure X Outcome Y

Confounders C 

Instrumental 
Variable (IV)

Fig. 4.5 Schematic illustration of the assumptions of an instrumental variable
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X. However, there is no test to whether the IV is independent of unmeasured
confounders and for the same reason the exclusion restriction (i.e., the IV only
influences the outcome through its influence on the exposure under study) cannot be
tested. Therefore, these assumptions need to be checked empirically based on the
knowledge of the particular study subject. One way to assess whether these assump-
tions hold is to examine the association between the IV and the measured con-
founders (e.g., patient characteristics). If an IV is related to the measured
confounders, then it’s reasonable to expect that it is also related to the unmeasured
confounders. Exploring the association between an IV and concomitant treatments
can also help determine whether the exclusion restriction is violated. If the IV is
associated with a concomitant treatment that affects the outcome, then the exclusion
restriction is violated.

A second critical issue is the strength of the relationship between the IV and the
exposure, with weaker instruments yielding less precise and more biased estimates,
even if the IV is valid.

Estimation of Treatment Effect Using an IV

Klungel et al. (2015) published a good overview of the methods for the estimation of
a treatment effect using an IV, indicating their possible advantages and limitations
for epidemiological research (Klungel et al. 2015). In summary, if the exposure and
outcome are both continuous variables and show a linear relation, the IV analysis
generally uses the two-stage least squares method. In case of a nonlinear relation, a
two-stage residual inclusion may be a suitable alternative. In time-to-event analysis
using IVs, the two-stage method has been applied with a Cox proportional hazards
model used as the second-stage model (Klungel et al. 2015).

In settings with binary outcomes as well as nonlinear relations between exposure
and outcome, generalized method of moments (GMM), structural mean models
(SMM), and bivariate probit models perform well, but GMM and SMM are gener-
ally more robust. The standard errors of the IV estimate can be calculated using a
robust or bootstrap method (Klungel et al. 2015).

The interpretation of the IV effect estimates always needs to take into account the
underlying assumptions of the estimation methods, the assumptions of the IV, and
another assumption called the homogeneity/monotonicity assumption (Fang et al.
2012). Homogeneity assumes that the direction of the effect of IV on X is the same
for everyone in the study sample (i.e., there is no effect modification). Under this
assumption, the IV analysis estimates an average effect of the exposure. When the
exposure effects are not homogeneous across IV levels, the IV estimates, usually
called local average treatment effect (LATE), are only informative for a subset of the
exposed population.
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4.4.2.3 Mediator and Moderator Variables

Section 4.3 of this chapter introduced us to the concepts of confounding and effect
modifiers. Mediator and moderator variables are other variables that could affect the
strength of the association between predictors and outcomes in a model. An assump-
tion of regression is that independent variables should not be correlated one with
another. In health outcomes however, this is rarely the case, as a variable
representing a biological factor such as an inflammatory marker, for instance, will
likely affect the reporting of another variables such as fatigue, or pain, by a given
patient.

Baron and Kenny (1986) introduced the concept of moderator and mediator
variables to distinguish variables that could affect the strength of the association
between an exposure/independent variable and an outcome/dependent variable
(Baron and Kenny 1986).

A moderator variable is a variable that affects the direction and/or strength of the
relation between an exposure and the outcome of interest. In other words, a moder-
ator is a third variable that affects the correlation between two other variables
(Fig. 4.6). In the more familiar analysis of variance (ANOVA) terms, a basic
moderator effect can be represented as an interaction between an independent
variable and a factor that specifies the appropriate conditions for its operation.

A variable may function as a mediator variable rather than a moderator to the
extent that it accounts for the relation between the exposure and the outcome. A
variable is a mediator when (1) there is a relationship between the independent and
dependent variable, (2) there is a relationship between the independent and mediator
variable, (3) there is a relationship between the mediator and the dependent variable,
and (4) with the mediator added to the model, the relationship between the indepen-
dent and dependent variables decreases and could become null if it is a complete
mediation (Fig. 4.7). For example, when studying the association between socio-
economic status and the development of cardiovascular disease, the type of diet can
be a mediator variable, since economic deprivation may influence diet, with conse-
quences on the risk of cardiovascular disease.

OutcomeExposure Mediator 
Variable

Fig. 4.7 Schematic illustration of a mediator variable

OutcomeExposure

Moderator Variable
Fig. 4.6 Schematic
illustration of a moderator
variable
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Whereas moderator variables specify when certain effects will hold, mediators
speak to how or why such effects occur. Another way to think about this issue is that
a moderator variable is one that influences the strength of a relationship between two
other variables and a mediator variable is one that explains the relationship between
the two other variables because it is on the causal pathway that connects the exposure
to the outcome.

The general test for mediation is to examine the relation between the predictor and
the outcome variable, the relation between the predictor and the mediator variables,
and the relation between the mediator and outcome variables. All of these correla-
tions should be high. The relation between predictor and outcomes should be
reduced (to zero in the case of total mediation) after controlling the relation between
the mediator and outcome variables. A regression model would model three inde-
pendent variables: the predictor, the moderator, and an interaction term between the
predictor and the moderator variable.

A confounding variable may appear similar to a mediator variable, except for the
direction of the effect between them and the exposure variable. Mediators are
additionally characterized as lying on the causal pathway between exposure and
outcome. When adjusting for confounding in observational studies, care must be
taken to not include mediator variables, to the extent that the effect of an exposure on
an outcome goes through mediator variables, adjusting for those variables would
wash away the effect of interest. Our main interest is to quantify whether and how
much of the effect of the exposure on the outcome of interest is mediated by these
variables and elucidate the relationship between the exposure and the outcome.

Structural Equation Modeling, Path Analysis, and the Assessment of Direct
and Indirect Effects

Extending from the moderator model is path analysis and the analysis of simulta-
neous moderation analyses. When dealing with multidimensional relationships
between and among constructs such as is the case in most Pharmacoepidemiological
research, statistical approaches that go beyond univariate and multivariate linear
regression where there is a single outcome variable and potentially multiple
non-correlated exposure variables are often valuable. The optimal statistical envi-
ronment for estimating these relationships is structural equation modeling (SEM)
which is a sophisticated methodological approach that integrates concerns about
measurement, statistics, and theory in one conceptual and analytic framework. Path
analysis is the simplest form of SEM, as it can be thought of as a multiple regression
focusing on causality.

Path analysis assesses the direct and indirect (through a mediator variable) effects
between predictor and outcome variables. In path analysis models, mediator vari-
ables are both outcome variables for a direct path with a predictor variable situated at
the beginning of the path (called an exogenous variable) and a predictor variable for
an outcome variable situated further down the path (endogenous variable). The
statistical significance of both direct and indirect paths can be obtained.
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The structural model estimates the relationships between all variables assessed
simultaneously and whether the effects among the different variables are direct or
indirect (Kline 2005). These variables can influence one another unidirectionally
(a recursive model) or reciprocally (a nonrecursive model) (Kline 2005). The data
are tested to see how well they fit a specified model using a series of separate, but
interdependent, multiple regression equations for each outcome variable simulta-
neously by specifying the structural model (Kline 2005). The strength of the
influence of one factor on another is indicated by the path coefficient which is a
standardized regression coefficient that also gives information about the direction-
ality of the path. A variety of goodness of fit indexes exist to measure the discrep-
ancy between the observed and the model implied covariance matrices, adjusted for
the degrees of freedom of the model (Kline 2005).
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Chapter 5
Causal Inference in Pharmacoepidemiology

Ashley Buchanan, Tianyu Sun, and Natallia V. Katenka

5.1 Introduction

The causal inference framework can be employed to quantify causal effects in both
randomized and non-randomized settings. Often in pharmacoepidemiologic
research, studies lack randomized interventions that allow for causal inference.
There are important and meaningful causal questions to address for
non-randomized interventions. Although causal inference in this setting can be
more challenging, the exercise of identifying the assumptions, considerations in
study design, and adjusting for sources of bias in analyses can result in studies that
have meaningful designs and produce estimates of causal effects using methods with
known limitations. Causal inference approaches can be employed in these settings to
quantify the casual effects of medications on health outcomes.

Definition A causal effect means that an intervention, treatment, or exposure
causes a subsequent health outcome.

A causal effect means that an intervention, treatment, or exposure, such as a
prescription medication, causes a subsequent health outcome to occur. In contrast, an
association means that the exposure meaningfully predicts the outcome. In order to
ascertain causal effects, one can address sources of bias in study design, analysis, or
both. The three sources of structural bias are confounding, selection bias, and
measurement error. Approached in this way, we have a framework to distinguish
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association from causation. Determining when association is causation can provide
stronger evidence and the information needed to strengthen interventions and inform
policy.

Counterfactuals, or potential outcomes, are a useful framework to improve the
rigor of causal inference. For example, when a patient takes an aspirin, the patient
attributes the resolution of their headache to the aspirin. The assumption is that
without the aspirin, the headache would not have been relieved. Similarly, when a
patient with high cholesterol takes statin, we assume the statin is what caused their
cholesterol to lower to normal levels, such that without the statin, the levels would
have remained harmfully elevated.

Many research questions in health outcomes research are ultimately concerned
about causation to provide evidence for improvements in prescribing practices,
inform black box warnings, and, ultimately, improve patient health. The field of
causal inference methodology is broad, including a range of disciplines from com-
puter scientists to epidemiologists, and its applications include such disciplines
econometrics and implementation science. In this chapter, we provide an overview
of the causal inference paradigm, review current methodology, and discuss applica-
tions of these concepts to strengthen and improve pharmacoepidemiologic research.

5.1.1 Challenges in Big Health Data

As compared to clinical trials and prospective cohort study, the greatest advantage of
using administrative claims data and electronic health records (EHR) is convenience
and large sample sizes, which can improve precision of the estimates. EHR data are
typically generated from daily clinical practice of healthcare providers and aggre-
gated to provide databases describing the health information of patients. These data
sources often contain several of the following parts: demographic information;
diagnostic information usually coded by the international classification of disease
(ICD); current procedure terminology (CPT) codes; medication list; laboratory tests;
and clinical documentation (Denny 2012). However, the scale and the structure of
the EHR data bring unique challenges. EHR data can contain up to millions of
patients who generate billions of inpatient/outpatient diagnosis and claims every
year. Applying statistical models or simply creating descriptive tables often requires
greater computational resources, time, and reliable software. In addition, some EHR
data include clinical documentation, which might contain information about the
severity of the disease and original hand-written diagnoses; however, the disease
severity can be missing, which is often an important confounder when studying the
effects of prescriptions on subsequent health outcomes (see Sect. 5.2.1 for a more
complete discussion of confounding). Unlike structured information such as ICD
codes, clinical documentation is an unstructured natural narrative variable, which
can be challenging to extract specific information, such as diagnoses. Natural
language processing offers some approaches to obtain accurate information from
these records (Hripcsak et al. 1995).
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Besides the unstructured information, the standardized measurement from the
ICD or CPT code may not be accurately capturing the underlying exposure or health
outcome of interest. This is an example of exposure or outcome misclassification.
For example, one study reported that using expanded ICD-9 code to define the out-
of-hospital sudden cardiac death had relatively high sensitivity (87%) and specificity
(66%) (Iribarren et al. 1998). However, the agreement rate (as measured by the
positive predictive value) between this method and physician diagnosis was low
(27%). Furthermore, changes across versions of ICD could also raise concerns about
comparability over time. The ICD-10 was implemented in 1999 for the death
information in the USA. For example, the comparability ratio of ICD-10 over
ICD-9 for the Alzheimer’s disease (AD) was 1.55 indicating that ICD-10 would
attribute 55% more death to AD than ICD-9 (Anderson et al. 2001).

Another major threat to conducting causal inference using EHR data is
unmeasured confounding. For example, EHR data may not have information about
the individual’s lifestyle, such as smoking status, diet, and daily exercise. Without
this information, the investigator may not be able to measure all necessary
confounding variables in the analysis. This is a disadvantage of using EHR data to
conduct pharmacoepidemiologic studies. To address this issue, if available, valid
instrumental variables (IVs) could be employed, as described in Sect. 5.4.3. How-
ever, this approach requires additional assumptions, and, if they do not hold, the bias
could be more extreme and unpredictable (Bound et al. 1995). For example, inves-
tigators defined an IV as combined physician preference and facility preference to
evaluate the association between use of antipsychotic medications and death among
elderly people in the Australia Veterans’ Affairs database (Pratt et al. 2010).
Although a candidate IV, there could be unknown or unmeasured common causes
between the IV and the outcome. In this case, frequency of visits with a particular
provider could be associated with the physician’s preference and could also be
associated with reducing the likelihood of the outcome death. Furthermore, patients
may be more familiar with their frequently seen provider, which could improve
treatment compliance and ultimately reduce the likelihood of death. This would
violate the exclusion restriction assumption required for valid IVs. Approaches to
evaluate the sensitivity of the IV to assumptions should be used, and new methods
may be needed for some applications (Brookhart et al. 2006; Rassen et al. 2009).

The missing data in EHR data can lead to selection bias, which distorts the
measure of association quantified in the study. For example, a study was conducted
to assess the association between antidepressant medication and weight change
among adults by using EHR data. However, only 24.8% of individuals (2408 out
of 9704) had complete weight change information after 2 years of follow-up in the
study (Haneuse and Daniels 2016). The missingness of the outcome could be
associated with patient risk factors; patient behavior and disease conditions and
approaches are needed to address the missing data in this setting. This presents yet
another challenge for causal inference in EHR data. Fortunately, each of these
challenges for conducting causal inference in EHR data can be conceptualized
using a potential outcomes framework. We can then use this framework to determine
appropriate estimands, assumptions, and methodology, improving inference in rou-
tinely-collected health data.
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5.1.2 Causal Inference and Potential Outcomes

Causal inference can be framed using potential outcomes or counterfactuals. For the
purposes of developing these concepts, we assume that the study population is near
infinite, so we can ignore sampling error and focus on systematic biases due to
confounding, selection, and measurement. We defer discussion of random variabil-
ity to Sect. 5.3.

Let A be a dichotomous (i.e., binary) treatment that takes the value 0 when a
patient is untreated and 1 when a patient is treated. Let Y be a dichotomous health
outcome that takes the value 1 when the patient experiences the outcome of interest
and 0, otherwise.

Definition A potential outcome Ya is the outcome that would have been
observed if, possibly contrary to fact, treatment a was received.

A potential outcome Ya¼1 is the outcome that would have been observed if,
possibly contrary to fact, treatment a¼ 1 was received. Ya¼0 is defined analogously.
For example, A is an indicator that denotes if a patient received a prescription for a
high-dose opioid medication (versus low-dose opioid medication (�¼ 50 morphine
milligram equivalents (MME))) following a surgery, and Y is an indicator for
development of opioid dependence in the following year. Opioid dependence,
known as opioid use disorder, is a documented history of opioid misuse or addiction.
Table 5.1 displays the potential outcomes for 20 patients in the database. For
example, patient 2 would have developed an opioid dependence if she/he received
the opioid prescription after surgery, and she/he would have not developed opioid
dependence if she/he did not receive the opioid prescription. Comparing the poten-
tial outcomes for any one patient is known as the individual causal effect. In practice,
we only observe one of the two potential outcomes in practice. Requiring informa-
tion on both potential outcomes while only observing one of the potential outcomes
is known as the fundamental problem of causal inference (Holland 1986). Essen-
tially, this could be viewed as a missing data problem, and thus many approaches
from the missing data literature can be leveraged here. The potential outcomes
framework was introduced by Neyman (1990), popularized by Rubin (1980), and
is referred to as the “Neyman-Rubin” causal model. Subsequent work by Robins
(2000) and Hernán et al. (2000) provided methodology for a time-varying exposure
setting. In this chapter, we focus on estimation, as opposed to statistical testing, the
more traditional focus of statistical literature.
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5.1.3 Definition of a Causal Effect

For each patient i in our database, with i ¼ 1,. . ., n, we can denote the potential
outcomes by Ya¼1

i and Ya¼0
i . Then, A has an effect on Y if (and only if) Ya¼1

i 6¼ Ya¼0
i .

Similarly, A has no effect on Y for patient i if (and only if) Ya¼1
i ¼ Ya¼0

i . In our data
example (Table 5.1) for patient 2, A has a causal effect on Y because the patient
developed opioid dependence if and only if she/he receives high-dose opioid
prescription after surgery; whereas, for patient 7, A does not have a causal effect
on Y because the patient does not develop opioid dependence during the study period
regardless of receiving a high-dose opioid prescription or not. No effect for all
individuals in the study is called the sharp null hypothesis.1 Typically, the individual
causal effect is defined as a contrast of the potential outcomes: Ya¼1

i � Ya¼0
i .

We now turn our attention to estimating average causal effects. The average
causal effect in the population exists if Pr Ya¼1 ¼ 1

� � 6¼ Pr Ya¼1 ¼ 1
� �

, or more
generally, E Ya¼1� � 6¼ E Ya¼1� �

for any Y. There is no average causal effect in the
population if

Pr Ya¼1 ¼ 1
� � ¼ Pr Ya¼0 ¼ 1

� �
:

Table 5.1 Developed opioid dependence potential outcomes Ya with pain management interven-
tion A among 20 patients who underwent surgery

Patient Ya ¼ 0 Ya ¼ 1 A Y

1 1 1 0 1
2 0 1 0 0
3 1 0 0 1
4 1 1 1 1
5 1 0 1 0
6 0 1 1 1
7 0 0 0 0
8 0 0 0 0
9 1 1 0 1
10 1 1 0 1
11 0 0 1 0
12 1 0 1 0
13 0 0 1 0
14 1 0 1 0
15 0 0 1 0
16 1 1 1 1
17 1 1 1 1
18 0 1 1 1
19 1 1 1 1
20 0 1 1 1

1This serves as the basis for many exact statistical tests and is beyond the scope of this chapter. We
refer the reader to Imbens and Rubin (2015) for additional background on exact statistical tests for
causal inference.
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The sharp null hypothesis implies that there is no average causal effect in the
population; however, no average causal effect in the population does not imply the
sharp null. For example, high-dose opioid prescriptions may increase the risk of
opioid dependence for some patients, but not on average across all patients.

Assumptions are required to estimate average causal effects in observational studies
because only one of the two potential outcomes is actually observed. In addition, we use
only these two potential outcomes to sufficiently represent all potential outcomes. These
assumptions required for identifying causal effects are causal consistency, exchangeabil-
ity, and positivity. Causal consistency2 relates the observed outcome Y to the potential
outcomes (Pearl 2010): Y ¼ Ya ¼ 1A + Ya ¼ 0(1 � A). Exchangeability implies that the
potential outcomes are independent of the treatment assignment mechanism. Positivity
means that the conditional probability of receiving every value of treatment is greater
than zero.

Consistency is conceptually related to the no multiple versions of treatment
assumption. This assumption means there is only one version of treatment and one
version of control, or if there are multiple versions, they are irrelevant for the causal
effect of interest, which is known as the treatment variation irrelevance assumption
(Cole and Frangakis 2009; VanderWeele 2009; Pearl 2010). The nomultiple versions
of treatment assumption is part of a larger assumption, known as the Stable Unit
Treatment Value Assumption, or SUTVA. SUTVA also includes the no interference
assumption. That is, the treatment of one individual does not affect the potential
outcomes of other individuals. Consistency and no interference comprise SUTVA
because both assumptions play an important role in the two potential outcomes
sufficiently representing all potential outcomes. In practice, the no interference
assumption may not hold, such as in vaccine studies (Perez-Heydrich et al. 2014),
educational intervention studies (Hong and Raudenbush 2006), or HIV prevention
studies (Buchanan et al. 2018). In this setting, the potential outcomes can be indexed
by each patient’s exposure and the exposures of all other patients that could influence
their outcome. When the no interference assumption is relaxed, estimation of causal
effects is possible, and there is a rapidly developing literature to quantify effects in the
presence of interference (Hudgens and Halloran 2008; Tchetgen and VanderWeele
2012; Benjamin-Chung et al. 2018; Buchanan et al. 2018.

Assumptions for Identifying Causal Effects
1. Exchangeability (unconditional or conditional)
2. Treatment variation irrelevance
3. Positivity

In the causal inference literature, we consider measures that are important in
epidemiologic studies: risk difference (RD), risk ratio (RR), and odds ratio (OR).

2This is not the same concept as statistical consistency of statistical estimators (i.e., convergence in
probability).
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These measures describe the causal effect of treatment and are referred to as effects
or effect measures. The causal risk difference (RD) is defined as

RD ¼ Pr Ya¼1 ¼ 1
� �� Pr Ya¼0 ¼ 1

� � ¼ E Ya¼1� �� E Ya¼0� �
:

The causal risk ratio (RR) is defined as

RR ¼ Pr Ya¼1 ¼ 1
� �

Pr Ya¼0 ¼ 1
� � :

The causal odds ratio (OR) is defined as

OR ¼ Pr Ya¼1 ¼ 1
� �

=Pr Ya¼1 ¼ 0
� �

Pr Ya¼0 ¼ 1
� �

=Pr Ya¼0 ¼ 0
� � :

Note that under the null hypothesis of no causal effect of A on Y, the causal RD ¼ 0,
the causal RR ¼ 1, and the causal OR ¼ 1, respectively. We compare these to
expressions for the measures of association. The associational risk difference (RD) is

RD ¼ Pr Y ¼ 1jA ¼ 1½ � � Pr Y ¼ 1jA ¼ 0½ �
¼ E Y A ¼ 1 �E� ½Yj jA ¼ 0½ �:

In turn, the associational risk ratio (RR) and the associational odds ratio (OR) are
defined as

RR ¼ Pr Y ¼ 1jA ¼ 1½ �
Pr Y ¼ 1jA ¼ 0½ � ,

and

OR ¼
Pr Y ¼ 1jA ¼ 1½ �
Pr Y ¼ 0jA ¼ 1½ �
Pr Y ¼ 1jA ¼ 0½ �
Pr Y ¼ 0jA ¼ 0½ �

:

These associational measures are unadjusted and may be non-null even if no
effect exists due to confounding. Confounding arises when treatment A and outcome
Y share a common cause. See Sect. 5.2.1 for a complete discussion of confounding.
If A⊥ Y (i.e., A is independent of Y ), then the associational RD is 0, and associational
RR and OR are both 1. To identify average causal effects in the absence of
confounding (e.g., a randomized controlled trial), determining when the
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associational measure equals the causal measure can inform the assumptions needed
to identify causal effects. In the absence of selection bias and measurement error, the
associational measure will equal the causal measure in a randomized study. For
analysis of observational data without randomization, the exercise is determining if
and when the conditional associational measure equals the causal measure. Based on
Fig. 5.1, we need to identify the assumptions required for the partial circles on the
left to inform the full circles on the right. That is, we need to determine when the
outcomes observed among those treated and untreated can provide information
about potential outcomes as if the entire study population was treated and untreated,
respectively.

5.1.4 A Short Introduction to Causal Directed Acyclic Graphs

Performing a causal inference analysis requires determining the assumptions and
requires input from substantive area experts. In more complex settings, determining
these assumptions can be challenging. Directed acyclic graphs (DAGs) can be used
to better understand causal mechanisms and clarify assumptions. Communication
between analysts and investigators can be facilitated with DAGs, and, most impor-
tantly, assumptions can be made explicit prior to analyses and conclusions.

DAGs contain nodes representing random variables, such as Y for an outcome,
L for a covariate, and A for a treatment or exposure. As often structured, time flows
from left to right between the random variables; thus, a temporal sequence is
established between the random variables on the graph. Consider Fig. 5.2 displays

Fig. 5.1 Diagram of the components for a causal contrast (right) versus an associational contrast
(left)
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a DAG, where, for example, A is an indicator for receipt of an opioid prescription
after surgery, L is an indicator for previous history of uncontrolled pain, and Y is an
indicator for subsequent opioid dependence in the year following surgery. Let A! Y
indicate there is a direct causal effect (i.e., not mediated through any other variables
on the graph) for at least one patient in the study. A lack of an arrow in the DAG
indicates that A has no direct causal effect on Y for any patient.

DAGs are directed, which means that L! A means that L causes A, but not vice
versa. Acyclic means there are no cycles in the graph; that is, a variable cannot cause
itself either directly or through other variables. A causal DAG is a DAG where
common causes of any pair of variables on the graph are also on the graph.

We now familiarize the reader with graph theory notation for a DAG. Define a
DAGG as a graph whose nodes (i.e., vertices) are random variables V¼ (V1, . . .,Vm)
with directed edges (i.e., arrows) and no non-directed edges. Two vertices joined by
an edge are called adjacent. A path between two nodes consists of a sequence of
vertices that are adjacent. A directed cycle is a directed path of the form Vj! Vk! Vj

for k 6¼ j. Parents of a node are the set of nodes from which there is a directed arrow
into that node, and this is denoted by PA. In Fig. 5.2, PAY ¼ {L,A}. Thus, Vm is a
descent of Vj (and Vj is an ancestor of Vm) if there is a directed path Vj! Vm. We now
have the concepts to define a causal DAG. A graph G is a causal DAG if:

1. The lack of an arrow between nodes can be interpreted as the absence of a direct
causal effect.

2. All common causes, even if unmeasured, of any pair of variables on the graph are
themselves on the graph.

3. Any variable is a cause of its descendants.

To link a DAG to observable random variables, we can invoke the causal Markov
assumption: Conditional on its direct causes, a variable Vj is independent of any
variable for which it is not a cause. When developing and evaluating DAGs, we can
make assumptions and condition on variables to block all paths that are not the
causal path of interest (i.e., backdoor paths). A backdoor path is a non-causal
pathway from A to Y. In a DAG, when a variable is conditioned on, a box is placed
around the random variable. For example, in Fig. 5.2, let A denote a pain manage-
ment intervention, Y denote subsequent opioid use disorder, and L denote history of
any substance use disorder. By conditioning on any history of substance use
disorder, we block the backdoor path from A  L ! Y. Blocking all backdoor
paths is achieved by conditioning on any variables that are not colliders or not
conditioning on colliders (or descendants of colliders). L is a collider on the path in
Fig. 5.3 because two arrowheads point to this node. L is a common effect of Y and A,

and note that the concept of a collider is path specific. In general, colliders block the

Fig. 5.2 Example of a simple directed acyclic graph with three nodes L, A, Y and arrows denote a
causal effect
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flow of association along the path in which they lie. For example, if we condition our
analysis to only include patients with subsequent overdose, we are possibly condi-
tioning on a collider of high-dose opioid exposure and the outcome opioid depen-
dence and could be inducing an association between A and Y that may not be the
causal effect of A on Y.

We now explain how DAGs can be used to determine the exchangeability
assumption required to identify causal effects. A path is open or closed according
to the following rules:

1. If there are no variables being conditioned on, a path is blocked (closed) if and
only if it contains a collider.

2. A path which contains non-colliders that are conditioned on is blocked.
3. A collider that has been conditioned on does not block a path.
4. A collider that has a descent that has been conditioned on does not block a path.

A path is blocked if and only if it contains a non-collider that has been condi-
tioned on or it contains a collider, which has not been conditioned on and has no
descents that have been conditioned on. Two variables are d-separated if all paths
between them are blocked. Otherwise, two variables are d-connected. If two vari-
ables are d-separated given some other variable L, then the two variables are
conditionally independent given the third variable. That is, A is independent of Y
conditional on L. This is important because conditional exchangeability is required
to identify causal effects.

To summarize, two variables are unconditionally or marginally associated if
(1) one causes the other or (2) they share common causes; otherwise, they will be
marginally independent. We refer the interested reader to Greenland et al. (1999a),
Pearl (1995), and Pearl (2003) for a complete discussion of causal DAGs. Below, we
employ DAGs to examine structural biases. There are also single-world intervention
graphs (SWIGs) available to identify causal effects, but they are beyond the scope of
this chapter (for more details see Richardson and Robins 2013).

5.1.5 Randomized Experiments

Although pharmacoepidemiology often involves retrospective observational studies,
we dedicate some discussion in this chapter to randomized experiments. Observa-
tional studies conceptualized as an ideal randomized trial is a powerful tool (see
Hernán and Robins 2016). Frequently, randomized trials are unethical or not feasi-
ble, and thus observational studies are an available study design to study certain
medications and medical devices. Simply analyzing all available data can leave our

Fig. 5.3 Example of a simple directed acyclic graph (DAG) with collider node L
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analyses fraught with biases, including selection bias due to conditioning on vari-
ables after the baseline period of the study. Without consideration of the causal
mechanism, models may lack important confounding variables. Identifying the
target trial and emulating that in observational data provides an opportunity to design
and analyze studies to minimize the impact of these biases on our study results.

Consider a randomized experiment in which patients are assigned treatment a¼ 1
and a ¼ 0 randomly in the entire study with 65% of the patients randomized to
treatment. That is, the treatment assignment mechanism is independent of their
potential outcomes. This design is a marginally randomized experiment. In this
setting, we have marginal exchangeability Ya ⊥ A for a ¼ 0, 1. The potential
outcomes are independent of the treatment. It is important to note that this does
not mean that the observed outcome Y is independent of the treatment. We can relax
this assumption and assume mean exchangeability E[Ya |A ¼ 1]¼E[Ya|A ¼ 0] for
a ¼ 0, 1.

Exchangeability The potential outcomes are independent of the treatment
assignment mechanism.

If this assumption of exchangeability holds, then E[Ya ¼ 1]¼E[Ya ¼ 1| A ¼ 1]¼
E[Y | A ¼ 1]. The first equality holds by mean exchangeability, and the second
equality holds by causal consistency. The right side of the equation is identifiable
from the observed data. A causal parameter is identifiable if it can be estimated using
the observed data. Similarly, E[Ya ¼ 0]¼E[Y | A ¼ 0]. When mean exchangeability
and causal consistency hold, the causal effects are identifiable in the observed data.

In randomized experiments assuming no measurement bias and no selection bias,
association is causation (see Sect. 5.2). However, if the data did not arise from a
marginally randomized experiment, marginal exchangeability does not necessarily
hold. In Table 5.2, the data arises from a conditionally randomized trial in which
71% of the participants are randomly assigned if L ¼ 0 and 50% are randomly
assigned if L ¼ 1. Thus, E[Y | A ¼ 1] ¼ 7/13 and E[Y | A ¼ 0] ¼ 4/7, so the
associational RD ¼ �0.03 (i.e., protective). However, E[Ya ¼ 1] ¼ 11/20 and E
[Ya ¼ 0] ¼ 11/20, so the causal RD ¼ 0. There is a protective association and a null
causal effect, so we note an example where association is not causation because
marginal exchangeability does not hold. If marginal exchangeability does not hold,
we may be willing to assume exchangeability conditional on measured covariate(s).

Consider a randomized experiment in which 50% of the participants are randomly
assigned if L ¼ 0 and 71% are randomly assigned if L¼1 (Table 5.2), where L
denotes a history of opioid use disorder. That is, patients with a history of opioid use
disorder have a lower chance of being prescribed high-dose opioids. The design is a
conditionally randomized experiment. In this design, marginal exchangeability may
not hold. For example, individuals with a history of opioid use disorder are less
likely to receive opioids than those without a documented opioid use disorder. If
these individuals with opioid use disorder are more likely to develop opioid
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dependence if prescribed opioids, then Pr Ya¼1 ¼ 1jL ¼ 0
� � ¼ 7

14 <
4
6 ¼

Pr Ya¼1 ¼ 1jL ¼ 1
� �

, so Ya ¼ 1 is not independent of A. We can consider condition-
ally randomized experiments as two separate marginal experiments. Therefore,
conditional exchangeability holds, which implies the potential outcomes are inde-
pendent of the treatment conditional on themeasured covariateL, that is,Ya⊥A jL¼ l
for a, l ¼ 0, 1. For those familiar with the missing data literature, the potential
outcomes are missing completely at random (MCAR) in a marginally randomized
experiment and missing at random (MAR) in a conditionally randomized
experiment.

In a conditionally randomized experiment,

E Ya½ � ¼
X
l

E Yaj L ¼ l Pr� ½L ¼ l½ � ¼
X
l

E Ya j A ¼ a,L ¼ l Pr� ½L ¼ l½ �,

where the second equality holds by conditional exchangeability. Then, by causal
consistency,

E Ya½ � ¼
X
l

E Yj A ¼ a,L ¼ l Pr� ½L ¼ l½ �:

We now have an expression written entirely in terms of the observed random
variables (L,A,Y ), and the causal effect is identifiable; that is, we can estimate the

Table 5.2 Opioid depen-
dence potential outcomes Ya

with pain management inter-
vention A and history of opi-
oid use disorder L among
20 patients who underwent
surgery

Patient Ya ¼ 0 Ya ¼ 1 A L Y

1 1 1 0 1 1
2 0 1 0 1 0
3 1 0 0 1 1
4 1 1 1 1 1
5 1 0 1 1 0
6 0 1 1 1 1
7 0 0 0 0 0
8 0 0 0 0 0
9 1 1 0 0 1
10 1 1 0 0 1
11 0 0 1 0 0
12 1 0 1 0 0
13 0 0 1 0 0
14 1 0 1 0 0
15 0 0 1 0 0
16 1 1 1 0 1
17 1 1 1 0 1
18 0 1 1 0 1
19 1 1 1 0 1
20 0 1 1 0 1
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causal effect using the observed data. Under conditional exchangeability, the stan-
dardized mean equals the counterfactual mean had all individuals in population
received treatment a. For example, the causal RR is

Pr Ya¼1 ¼ 1
� �

Pr Ya¼0 ¼ 1
� � ¼P

lE Y ¼ 1 j A ¼ 1, L ¼ l Pr� ½L ¼ l½ �P
lE Y ¼ 1 j A ¼ 0, L ¼ l Pr� ½L ¼ l½ � :

Considering sampling variability, an unbiased (in large samples) estimator of the
causal RR is

cRR ¼P
l
bPr Y ¼ 1 j A ¼ 1, L ¼ l½ � bPr L ¼ l½ �P

l
bPr Y ¼ 1 j A ¼ 0, L ¼ l½ � bPr L ¼ l½ � ,

where each of the probabilities is estimated by plugging in observed proportions.
Analogous expressions can be defined for the causal RD and OR.

Alternatively, inverse probability weighting (IPW) can be employed to estimate
causal effects. IPW estimators inverse weight each observation by the probability of
the exposure actually received conditional on variables L, creating a pseudo-
population in which there is no association between L and A (Lunceford and
Davidian 2004). Consider the following Horvitz-Thompson-type IPW estimator of
E[Ya]:

1
n

Xn
i¼1

I Ai ¼ að ÞYi

Pr Ai ¼ ajLi½ � ,

where the indicator function I(Ai ¼ a) ¼ 1 if Ai ¼ a and I(Ai ¼ a) ¼ 0, otherwise. The
estimator is unbiased when the denominator is known for all a, l in a conditionally
randomized study and conditional exchangeability holds. The quantity Pr[A¼ 1|L¼ l]
is known as the propensity score (Imai and Van Dyk 2004; Rosenbaum and Rubin
1983). A key result about propensity scores is if Ya ⊥ A j L, then Ya ⊥ A j Pr (A ¼ 1|
L¼ l). This implies that we can identify causal effects within stratum of the propensity
score; however, this may perform poorly in finite samples (Lunceford and Davidian
2004).

For the data example in Table 5.2, Pr [Ya ¼ 1 ¼ 1] � Pr [Ya ¼ 0 ¼ 1] ¼ 0, so the
causal parameter RD ¼ 0. The estimates based on the standardized estimator are

bPr Ya¼1 ¼ 1
� � ¼ 5

10
� 14
20
þ 2
3
� 6
20
¼ 0:55,
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bPr Ya¼0 ¼ 1
� � ¼ 2

4
� 14
20
þ 2
3
� 6
20
¼ 0:55:

Similarly, the estimates based on the IPW estimator are

bPr Ya¼1 ¼ 1
� � ¼ 1

20
2
3
6

� �þ 5
10
14

� �" #
¼ 0:55,

bPr Ya¼0 ¼ 1
� � ¼ 1

20
2
3
6

� �þ 2
4
14

� �" #
¼ 0:55:

Therefore, bPr Ya¼1 ¼ 1
� �� bPr Ya¼0 ¼ 1

� � ¼ 0 when either nonparametric esti-
mator (standardized or IPW) is employed.

5.1.6 Observational Studies

An observational study can be conceptualized as a conditionally randomized exper-
iment under three conditions:

1. The values of treatment under comparison correspond to well-defined
interventions.

2. The conditional probability of receiving every value of treatment, though not
decided by investigators, depends only on the measured variables.

3. The conditional probability of receiving every value of treatment is greater than
zero, i.e., positive.

In an observational study, when the treatment or exposure is not randomized,
marginal exchangeability Ya ⊥ A is questionable. However, investigators may be
willing to assume that exchangeability holds conditional on variables L, that is,
Ya ⊥ A j L. For example, suppose that patients with unmanaged pain are more likely
to receive opioids and also at an increased risk for opioid dependence. We may not
be willing to assume Y0 ⊥ A; however, we may be willing to assume Y0 ⊥ A j L, that
is, conditional on the variable unmanaged pain.

Unfortunately, it is not possible to verify Ya ⊥ A j L because Ya is never observed
for those with A 6¼ a. Thus, causal inference in observational studies relies on expert
knowledge to select L to ensure the conditional exchangeability assumption is
plausible. In Sect. 5.1.3, we introduced causal graphs, which can be employed
with expert knowledge to determine the set of variables L. The conditional
exchangeability assumption will not hold if there are unmeasured confounders U;
thus, this assumption is often referred to as the no unmeasured confounders assump-
tion. We may collect more variables to include in L; however, the existence of
unmeasured confounders may remain. Furthermore, it is possible that the inclusion
of additional measured variables can introduce bias (Cole and Hernán 2008). The
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addition of a variable that is not a confounder may introduce selection bias due to
collider stratification (i.e., conditioning on a collider). For the example of pain
management intervention after surgery, opioid overdose after surgery is a possible
collider, and if measured, conditioning on this variable may introduce bias. In light
of this, we can rely on expert knowledge to assess the plausibility of conditional
exchangeability. Machine learning techniques with substantive expert knowledge
could be employed (see Westreich et al. 2010). We can assess the existence of U and
conduct sensitivity analysis (Robins et al. 2000a). We could also derive bounds for
the parameters of interest (Cheng and Small 2006).

The positivity assumption is required for causal inference in observational data.
Specifically, Pr[A ¼ a j L ¼ l] > 0 for all L such that Pr[L ¼ l] > 0. In Table 5.2,
positivity holds because there are individuals at both levels of treatment for each
level of the covariate L. Positivity would not hold, for example, if all patients with
unmanaged pain could never be prescribed opioids. Positivity can sometimes be
empirically verified.

Positivity There is a probability greater than zero of being assigned to each of
the treatment levels for all values of the covariate L.

The well-defined interventions assumption is also required to identify causal
effects. Until now, we have assumed that there are only two versions of the
treatment, a ¼ 0 and a ¼ 1, and, thus, two potential outcomes. However, there
may be different versions of treatment a¼ 1. For example, opioid prescriptions have
different doses, quantity supplied, and formulations. These different aspects of
treatment could result in different potential outcomes (Pearl 2010). The no multiple
versions of treatment assumption can be relaxed by defining more treatment levels
and corresponding additional potential outcomes (VanderWeele 2009; Cole and
Frangakis 2009).

Causal inference requires well-defined interventions. Conceptualizing an ideal
randomized experiment to emulate with observational data can greatly improve the
results obtained from observational studies. In addition, describing the policy to
implement can further sharpen the scope of an observational study. When treatments
are not well-defined, issues of multiple versions of treatment and positivity viola-
tions can occur. There is also the well-known adage “no causation without manip-
ulation.” That is, we will only consider treatments A that are manipulable. In
pharmacoepidemiology research, most interventions are manipulable, as they are
part of healthcare delivery. However, in the social epidemiology literature, much
debate remains about estimation of causal effects of social constructs, such as race
and gender (Glymour and Spiegelman 2017; Howe et al. 2017; Hernán 2016). If we
are not willing or able to assume positivity, conditional exchangeability, and/or well-
defined interventions, prediction (or association) can be evaluated. From a public
health perspective, we will often want to make claims beyond associations and
prediction to understand why associations exist and inform the development of
future interventions and policy.
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5.1.7 Using Big Data to Emulate a Target Trial

We discuss how to employ administrative claims and electronic health records
(EHR) to emulate a target trial when data from a randomized trial is not available
(Hernán and Robins 2016). Suppose we have a large database of healthcare claims to
emulate a trial of high-dose versus low-dose opioid therapy among patients who
recently had surgery on the risk of opioid dependence. Because the investigators did
not design this study, the available data may not contain all the necessary informa-
tion, so consultation with those providing the data and validation studies are
required. For this discussion, we assume that adequate validation studies were
performed for the measures of interest in the database. With this framework that
makes the target trial explicit, causal inference methods can be employed to address
structural biases in this setting.

Using Big Data to Emulate a Target Trial
1. Eligibility criteria
2. Treatment strategies
3. Assignment procedures
4. Study period
5. Outcome
6. Causal contrast
7. Statistical analysis plan

There are six elements that should be considered in study design and analysis in
this setting of administrative claims and EHR data: (1) eligibility criteria; who to
include in our analysis; (2) treatment strategies, the medical intervention we want to
investigate and how to measure it; (3) assignment procedures, how the participants
will be assigned and blinded; (4) study period, the start and end of baseline and
follow-up period; (5) outcome, the endpoint of the study and variables in the EHR
data to ascertain this; and (6) causal contrasts, intention-to-treat (ITT) effect or
per-protocol effect. (7) Statistical analysis plan: model to be implemented and
covariates that should be included in the model, which are specified prior to analysis
work (Hernán and Robins 2016).

Eligibility Criteria. The observational analyst should employ the same eligibility
criteria that would have been applied in the target trial. Furthermore, the chosen
population must be “eligible” for each level of treatment considered; that is, equi-
poise must hold for the research question. In our example at baseline, we would only
include recent surgery patients who had no evidence of existing opioid use disorder
for 1 year, which means they had to be included in the database for at least 1 year and
experience surgery early enough (in the calendar time of the observed data) to also
possibly contribute 1 year of follow-up. Importantly, we cannot exclude patients
based on post-baseline events, as this could introduce selection bias.

196 A. Buchanan et al.



Treatment Strategies.We first need to determine the parameter(s) of interest (e.g.,
causal risk difference comparing the average potential outcomes as if everyone was
exposed to if no one was exposed in our study population). Then, we will need to
identify those who have baseline data consistent with the strategies of interest. In our
example, we will need to identify those who were opioid-free for 1 year prior to
surgery and then classify patients according to their pain management regimen
(high-dose opioids vs. low-dose opioid) during the baseline period. This comparison
of exposures can help to avoid problems of comparing prevalent and incident
exposure cases. Furthermore, we should also make our comparison group well-
defined. For example, we could consider those who received opioids at high versus
low doses based on a morphine milliequivalent (MME) threshold of 50 MME/day
during the baseline period.

Assignment Procedures. To emulate comparisons of treatment strategies with
randomized treatment strategies, we must ensure conditional exchangeability holds,
where the groups are defined by the treatment strategies, perhaps by employing a
DAG. Then, the choice of our methodology depends on whether treatment strategies
are defined at baseline or changing over time (see Sect. 5.4.2 for a discussion of time-
varying exposures) and the choice of the target parameter. Adjustment for baseline
confounders can be performed using matching, stratification or regression, standard-
ization or inverse probability weighting, g-estimation, or doubly robust estimators.
To note, standardization or inverse probability weighting quantifies a parameter in
the entire study population, while matching quantifies a parameter in the matched
study sample. If the observational database does not have sufficient information on
baseline or time-dependent confounders, emulating the randomized trial will not be
possible. However, approaches such as outcome controls (Lipsitch et al. 2010) and
new methods to extract additional information from administrative data sets may
offer a solution when information on confounders is limited (Hripcsak et al. 1995).

Study Period. To determine the study period, we define when the follow-up of
patients begins (typically at “randomization”) and then follow patients until the
event of interest, death, loss to follow-up, or the administrative end of the study.
The duration of follow-up can be informed by the disease or condition and practical
constraints such as the length of follow-up among patients in the database.

Outcome. We could use the database to identify those who had an opioid
dependence within 1 year after surgery. Validation studies of the health outcomes
are often needed to ensure that medical codes are capturing the outcome of interest.
Often, doctors will be aware of the treatment, so outcome ascertainment will not be
blinded, except if the outcome is obtained from an external data source, such as
death, which is typically ascertained from a death registry.

Causal Contrast. Two common causal effects of interest are the intention-to-treat
effect and the per-protocol effect. The intention-to-treat effect compares the effect of
being assigned to the treatment strategies at baseline, regardless of compliance after
baseline. The per-protocol effect compares the effect of following the treatments as
specified in the study protocol. Both of these could be estimated in the observational
data. In observational data, to quantify the intention-to-treat effect, we compare the
initiators of different treatment strategies, assuming exchangeability conditional on
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baseline covariates. To quantify the per protocol effect, we need to adjust for both
baseline and time-varying confounding, as patients continue the strategies after
baseline, and, therefore, adjustment for time-varying confounding is needed. Fur-
thermore, there may be selection bias due to loss to follow-up. In that case,
adjustment for time-varying variables is required to identify both the intention-to-
treat and per-protocol effects. As discussed earlier in this chapter, when time-varying
variables are affected by treatment strategies, g-methods are typically required.

Statistical Analysis Plan. A baseline period must be defined. Eligibility must be
met by the end of the baseline period, and study outcomes must be counted after the
end of the baseline period. In our target trial, the start of follow-up is when the
treatment strategy is assigned. With an observational exposure, we can emulate
baseline as the time when an eligible individual initiates a treatment strategy.
Patients can meet eligibility at a single time point, which may vary across individ-
uals, or at multiple times. For the latter case, there are two unbiased choices: use a
single eligible time (e.g., the first eligible) and all eligible times or a subset of all
eligible times. Grace periods can be specified for initiation of therapy, which more
closely emulates what is typically done in medical practice. However, these grace
periods allow for an individual’s observational exposure to follow more than one
strategy, which becomes particularly unclear for those who have events during the
grace period. The target trial provides an approach aligned with the potential out-
comes framework for causal inference. This approach can allow for identification of
assumptions and limitations, leading to stronger inference based on administrative
claims and EHR data.

5.1.8 Effect Modification and Interaction

In this section, we clarify the distinction between effect modification and interaction
because these concepts are often conflated. This distinction defines the goal of the
analysis and better informs the approach. The terms effect modification and inter-
action are sometimes used interchangeably. In this section, we describe interaction
as a causal concept related to, but different from, effect modification.

Effect Modification. We may be interested in causal effects in the whole popula-
tion or only a subset of the population. For example, we may be implementing a
hepatitis A vaccination program that will reach all individuals in the population.
Alternatively, we may be interested in a hepatitis C testing and, if needed, treatment
targeted only to people who inject drugs who are at high risk for disease progression.

Define M to be a baseline covariate (and not affected by treatment A) taking
values 0 and 1. Effect modification is scale dependent and sometimes called effect
measure modification. Additive effect modification exists if
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E Ya¼1 � Ya¼0jM ¼ 1
� � 6¼ E Ya¼1 � Ya¼0jM ¼ 0

� �
:

There is multiplicative effect modification if

E Ya¼1jM ¼ 1
� �

E Ya¼0jM ¼ 1
� � 6¼ E Ya¼1jM ¼ 0

� �
E Ya¼0jM ¼ 0
� � :

There is qualitative effect modification if the effects are in opposite directions.
There is qualitative, additive effect modification if and only if there is qualitative,
multiplicative effect modification. Otherwise, there may exist effect modification on
the additive scale, but not on the multiplicative scale, and vice versa.

For example, suppose Pr[Ya ¼ 1 ¼ 1|M ¼ 1] ¼ 0.9, Pr[Ya ¼ 1 ¼ 1|M ¼ 0] ¼ 0.2,
Pr[Ya ¼ 0 ¼ 1|M ¼ 1] ¼ 0.8, and Pr[Ya ¼ 0 ¼ 1|M ¼ 0] ¼ 0.1. There is no additive
effect modification because

E Ya¼1 � Ya¼0 M ¼ 1 ¼ 0:1 ¼ E� ½Ya¼1 � Ya¼0�� ��M ¼ 0
� �

:

However, there is multiplicative effect modification because

E Ya¼1jM ¼ 1
� �

E Ya¼0jM ¼ 1
� � ¼ 0:9

0:8
6¼ 0:2

0:1
¼ E Ya¼1jM ¼ 0

� �
E Ya¼0jM ¼ 0
� � :

For a dichotomous (or binary) M, the stratified causal RDs are

E Ya¼1 M ¼ m �E� ½Ya¼0�� ��M ¼ m
� �

:

For this to be identifiable with randomization of A, exchangeability (conditional
or unconditional) must hold within levels of M, that is, Ya ⊥ A jM. This would hold
in a randomized experiment regardless of stratification by M. In the absence of
randomization, we may be willing to assume conditional exchangeability
Ya ⊥ A j {L,M}. Importantly, effect modification by M does not imply that M has
a causal effect on Y. For example, suppose M is surgery type and there is effect
modification by M. There are more high-dose opioid prescriptions for those with
more invasive surgeries. The surgery itself does not impact the outcome opioid use
disorder, but rather the pain management modality has a different causal effect
depending on surgery type. We could describe effect modification as heterogeneity
of causal effects across strata of M.

Effect modification can be of interest for three reasons. First, if M modifies the
effect of treatment A on the outcome Y, then the average causal effect will differ
between populations with different prevalences ofM. Thus, the average causal effect
is not transportable or generalizable to other populations and lacks external validity
(Cole and Stuart 2010). Second, evaluating the presence of effect modification is
helpful to identify the groups of patients that would benefit most from the
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intervention. Third, identification of effect modification may improve understanding
of the mechanisms that lead to the outcome.

To identify effect modification by variables M, we stratify by M, assume condi-
tional exchangeability Ya ⊥ A j {L,M}, and then adjust for L within strata defined by
levels of M. For the prescription opioid example, we stratify by surgery type before
adjusting for unmanaged pain L to determine if the average causal effect of the pain
management strategy after surgery differed by use of high-dose opioids (vs. low-
dose opioids). Standardization or IP weighting that conditions on M can be used to
adjust for L, and stratification is used to identify effect modification by M.

Interaction. Interaction requires a joint intervention. For example, A is high-dose
opioid prescription, and E is a physical therapy regimen. Each individual now has
four potential outcomes Y a,e for a, e ¼ 0, 1. There is interaction between two
treatments A and E if the causal effect of A on Y after a joint intervention that sets
E to 1 differs from the causal effect of A on Y after a joint intervention that sets E to
0. There is an interaction between A and E on the additive scale if

E Ya¼1,e¼1 � Ya¼0,e¼1� � 6¼ E Ya¼1,e¼0 � Ya¼0,e¼0� �
:

In other words, the effect of high-dose opioid prescriptions is different if everyone
also had physical therapy, compared to if no one had physical therapy. Equivalently,
there is interaction on the additive scale if

E Ya¼1,e¼1 � Ya¼1,e¼0� � 6¼ E Ya¼0,e¼1 � Ya¼0,e¼0� �
:

Note that the potential outcomes for interaction are indexed Ya,e, while the
potential outcomes for effect modification are indexed Ya. For interaction, one
must be able to manipulate both E and A to consider causal contrasts. To identify
interaction effects, exchangeability, positivity, and well-defined interventions are
required for both treatments, either marginally Ya,e⊥ A, E or conditionally
Ya,e ⊥ A, E j L. Consider the following marginal structural model (MSM):

E Ya,e½ � ¼ β0 þ β1 aþ β2 eþ β3a e:

We discuss MSMs in more detail in Sect. 5.3.3. In this model, there is additive
interaction if and only if β3 6¼ 0. If there is confounding, a generalized propensity
score can be constructed, where the exposure weights conditional on covariates are
estimated for each intervention and then multiplied together to obtain a single
weight.
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5.2 Important Sources of Bias in Pharmacoepidemiology

One of the most important objectives of pharmacoepidemiology is to evaluate the
effectiveness and safety of medication in real-world settings. However, there are
many factors that could affect patient health outcomes that are challenging to address
by observational study designs alone. For example, besides the use of prescription
medication, patients’ smoking status could affect their health outcomes, such as lung
disease. Without randomization, we cannot simply assume the experimental group
and control group are comparable with respect to smoking status. In other words,
unconditional exchangeability might not hold in this situation. To accurately esti-
mate the causal relationship between the exposure and the outcome, we need to
better understand these factors that differ by exposure group and also impact the
outcomes, which can lead to biases if left unaddressed. In general, biases can be
grouped into three categories: confounding, selection bias, and measurement error.
In pharmacoepidemiology, a confounder is usually related to the pathological or
physiological phenomenon, which contributes to the progress of outcome and may
also be associated with the treatment; selection bias is the distortion due to how
patients are included in our analysis, e.g., missing data and loss to follow-up;
measurement error arises with inaccuracy of ascertainment and measurement of
outcomes, exposures, or confounders (Strom 2006).

5.2.1 Confounding

Confounding occurs when treatment A and outcome Y share common cause L. The
cause or factor L is also called a confounder. In most cases, L is a vector of multiple
variables.

Confounding When treatment A and outcome Y share common cause L.

The following causal diagram (Fig. 5.4) shows the simplest structure of
confounding. Besides the direct causal pathway A ! Y, there is another open
backdoor path from treatment to outcome: A L! Y. For instance, investigators
want to evaluate the effect of treatment A (e.g., anti-hypertension drug) on the
outcome Y (e.g., myocardial fraction). In this setting, other comorbidities such as
severity of hypertension could affect the probability that subject received antihyper-
tensive medication from physicians and also affect the risk of myocardial fraction.
To be more specific, adjustment for L, in this case would be addressing confounding

Fig. 5.4 Causal diagram for the simplest confounding structure
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by indication for a prescription (Strom 2006). This is a straightforward structure of
confounding. There are more complicated cases when L has an indirect effect on Y or
it has an indirect effect on A. For example, in Fig. 5.5 left panel, L1, L2 and L3 are
all cofounders for treatment A and outcome Y.

With the definition and the basic structure of confounding, we could use a
two-step approach to identify confounding from a causal diagram: (1) Delete all
arrows from treatment A to another variable to create a new graph. In other words,
remove the direct causal effects of A; (2) In the revised graph, see whether there are
still unblocked paths. If there is no open path after all treatment effects were
removed, then there is no confounding, and exchangeability holds (Greenland
et al. 1999a). Otherwise, there is confounding and exchangeability does not hold.
To accurately assess the causal relationship between treatment A and outcome Y in
the presence of a confounder L, we would need to block all the backdoor paths (24).
To achieve this goal, there are two more questions that needed to be consid-
ered: (1) Can we block all the backdoor paths? (2) What is the minimum subset
of L to block all the backdoor paths? Now, we apply these approaches to the causal
diagram above (Fig. 5.5).

On the left panel of Fig. 5.5, the original graph is displayed. After removing the
direct effect of treatment, the modified graph is displayed on the right side. There are
three open backdoor paths: A L2! L1! Y; A L1 L3! Y; and A L1! Y.
If we only condition on L1, then three paths are blocked. However, we simulta-
neously open another path: A L2 ! L1  L3 ! Y. To block all paths, we need
to condition on the set {L1, L2} or {L1, L3}.

The causal structural definition of confounding and the traditional definition
differ. The traditional definition requires confounders to be variables that meet the
following criteria: (1) not on the direct causal pathway between treatment and
outcome; (2) associated with treatment; and (3) associated with the outcome (Green-
land et al. 1999a). In some cases, this traditional definition would suggest to
condition on certain variables that would open a previously blocked backdoor
path. In the following causal diagram (Fig. 5.6), L would be categorized as a
confounder based on traditional criterions. However, once we conditioned on L
(denoted by a box on the corresponding variable in the causal DAG), a backdoor
path A U1 ! L  U2 ! Y now be an open path because L is a collider (on that
path). In the next section, we provided a more complete discussion of colliders.

Fig. 5.5 Example causal diagram for confounding with original graph (left) and graph with direct
effect of treatment removed (right)
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5.2.2 Selection Bias

Selection bias arises when the distribution of certain variable(s) in the sample is
different from the distribution in the study population. For example, patients with
prior history of significant opioid use may be more willing to seek surgery. Thus, it is
challenging to determine if high-dose opioids actually increase the risk of opioid
dependence, or rather individuals already using high-dose opioids are more likely to
seek surgery, resulting in more identified cases of opioid dependence. In general,
under the null (i.e., no causal effect between the exposure and the outcome),
selection bias can be defined as the bias resulting from conditioning on the common
effect of two variables, one of which is either the treatment or associated with the
treatment and the other is either the outcome or associated with the outcome. For
example, selection bias can occur by opening a backdoor path between treatment
A and outcome Y by conditioning on a collider C (i.e., a node where two arrowheads
meet), and this is known as collider stratification. However, collider stratification is
not required for selection bias to occur when there is a causal effect of the exposure
on the outcome (Hernán 2017).

Selection bias Bias that arises when the parameter of interest in a population
differs from the parameter in the subset of individuals from the population that
is available for analysis.

The following causal diagram shows the simplest structure of selection bias
(Fig. 5.7). Besides the direct causal effect of treatment A on outcome Y, there is
another open path A ! C  Y because we conditioned on the collider C. For
example, we are interested in the causal relationship between nonsteroidal anti-
inflammatory drugs (NSAIDs) (A ¼ 1) and peptic ulcer (Y ¼ 1) in the adult
population (Strom 2006). However, we only included patients who come to the
hospital for an upper endoscopy check (C ¼ 1). Patients who have peptic ulcer and
experience abdominal pain would more likely receive this test. Meanwhile, a peptic
ulcer is a known side effect of NSAIDs. Thus, people who are on this medication
with adnominal pain would be more likely to take this test. As a consequence, the
measured result is distorted, and it becomes difficult to determine whether the
NSAIDs actually increase the risk of a peptic ulcer, or rather individuals using

Fig. 5.6 Example causal
diagram that meets the
traditional definition of
confounding
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NSAIDs have a higher chance to receive the diagnostic test resulting in more
identified cases of peptic ulcer.

This is an example of self-selection bias or volunteer bias. There are several other
types of selection bias. For example, differential loss to follow-up occurs when
participants drop out from the study is associated with the outcome Y (Hernán and
Robins 2020). Furthermore, a study could be prone to both confounding and
selection bias, as shown in the following causal diagram (Fig. 5.8). In this hypothet-
ical study, we are interested in the causal relationship between the use of statin
medications A and 5-year all-cause mortality Y among patients with diabetes. C is
dropout prior to the end of the study (e.g., last visit attended was more than 1 year
prior to end of the study). L is the measured socioeconomic status, and U includes
unmeasured variables, such as reliable transportation to medical visits. Lack of
transportation could result in the patient to no longer attend study visits and
eventually drop out of the study. Furthermore, lack of transportation could also be
associated with an increased risk of mortality. To identify the causal effect of A on
Y in this example, we could condition on L to block the backdoor path.

In general, there are situations where simply conditioning on L would not account
for selection bias (Fig. 5.9). In this example, C still indicates the dropout, and L is an
adverse effect of treatment A which could lead to dropout. U is the unmeasured
concomitant over-the-counter (OTC) medication, which might have similar effects
as our study medication of interest (e.g., OTC medications are typically not captured
in administrative claims data). If we condition on L, the backdoor path is open
because conditioning on collider or its descendant could not block the path. In this
example, we would need to use inverse probability censoring weighting because,
once we condition on both L and A, Y is independent from C. Therefore, we can
estimate unconditional measures in the weighted population, rather than within
levels of L. We will discuss this estimator further in Sect. 5.3.3.

Fig. 5.8 A causal diagram
in which both confounder
and selection bias exist

Fig. 5.9 A causal diagram
in which both confounder
and selection bias exist

Fig. 5.7 Causal diagram for the simplest selection bias structure conditioning on C
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5.2.3 Measurement Error

Until now, we have assumed an ideal study where all variables (A,Y,L,C) are
measured accurately. However, this is usually not the case, especially in
pharmacoepidemiology. For example, in an observational study, the treatment
A can be measured using prescription claims records in an administrative claims
database. We are able to determine if the patient received the prescription from the
pharmacy; however, we have no information about the actual adherence to treat-
ment A. Furthermore, we do not know if the patient even initiated the treatment. In
this situation, we could not assume that the observed data accurately represents
an individual’s exposure and this treatment misclassification could potentially
impact our estimation of the true relationship between treatment A and outcome Y.
In summary, measurement bias/error arises when the observed association
between A and Y is changed as a result of the process by which the study data are
measured.

Measurement Error When the observed association between A and Y is
changed due as a result of the process by which the study data are measured.

In the following causal diagram (Fig. 5.10), we display the basic structure of
measurement error where measurement error exists for both treatment A and out-
come Y. In this figure, A and Y are the true treatment and outcome; A� and Y� are the
measured treatment and outcome; UA and UY are the measurement errors for
treatment and outcome.

Consider a hypothetical cohort study (Fig. 5.11) where we plan to assess the
effect of over-the-counter nonsteroidal anti-inflammatory drugs (OTC NSAIDs)
among patients with coronary heart disease (CHD). The outcome is measured by

Fig. 5.10 The structure of
measurement error (UA and
UY)

Fig. 5.11 The structure of
misclassification and recall
bias existing at the
same time
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patient recall of their medical history. Here, UY is the misclassification of the
outcome (Y� + UY ¼ Y ). Because the outcome has already happened, subjects with
CHD tend to have a better memory of their medication history than those who do not
have the condition. This is UA, the recall bias, of the exposure history.

Measurement error has four different casual structures and could be classified
according to two separate properties: dependence and differential. The measurement
bias is independent when UA and UY are independent; it is nondifferential when both
UA and Y and UA and UY are independent. In our first example (Fig. 5.10), there is
no open path between UA and Y, UA and UY, and UY and A. We could say that the
measurement error is independent and nondifferential (Hernán and Robins 2020). In
the second example (Fig. 5.11), the recall bias is independent but differential because
the outcome Y could affect UA. The particular structure of the measurement error can
help to determine which methods are appropriate. However, these methods are
beyond the scope of this chapter. There are many methods existing in the literature
particularly for measurement error that is independent and nondifferential. These
methods often rely on modeling assumptions and validation samples (i.e., samples in
which there is no measurement error). Readers could find the suitable method based
on the causal structure for their study (VanderWeele and Hernán 2012; Ogburn and
VanderWeele 2012; Dosemeci et al. 1990).

Confounding, selection bias, and measurement error are almost inevitable in
pharmacoepidemiologic studies. Investigators should consider biases in their own
study design and analyses, employ causal DAGs as a powerful and reliable tool to
identify them, and minimize biases by improving study design and applying proper
statistical methods. For instance, investigators could employ certain study designs to
avoid selection bias, collect adequate data to adjust for confounding, and choose a
valid and consistent instrument to obtain measurements. During the data analysis,
investigators should use appropriate statistical methods to reduce bias, such as
inverse probability weighting (IPW), which was introduced in Sect. 5.1.4, and
have a complete understanding of the assumptions and limitations of the methodol-
ogy for their study design.

5.3 Causal Modeling in Pharmacoepidemiology

Until this section, we considered estimating causal effects in study populations of
near infinite size, so we could ignore random fluctuations and focus on the structural
biases of confounding, selection, and measurement error. We now introduce causal
modeling for pharmacoepidemiology. As part of the modeling, we also consider
random variability introduced by selecting the sample from an infinite target popu-
lation. Herein, we discuss marginal structural models as an approach to quantify
causal effects. For baseline exposures, outcome model-based approaches can be
used, which yield conditional causal effects. In some cases, such as a linear model,
the conditional causal effect equals the marginal causal effect, but this is not always
the case (Greenland et al. 1999b). If marginal effects are of interest, we can
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standardize over the distribution of covariates L. The g-formula and g-estimation of
structural nested models approaches are related but beyond the scope of this chapter
(Hernán and Robins 2020). Marginal structural models can be fit using inverse
probability weights, whereas a g-formula approach uses standardization. Both
approaches can be used to estimate causal effects in observational data and require
the same identifiability assumptions but are based on different modeling assump-
tions (i.e., correct specification of the exposure model or outcome model, respec-
tively). Doubly robust or augmented estimators are also available, which provide a
consistent estimator if either the exposure or outcome model is correctly specified
(Bang and Robins 2005). On the other hand, structural nested models require
the inclusion of effect modifiers, if they exist, for valid inference (Robins et al.
1992).

An alternative approach employed in causal inference is matching. There are
many forms of propensity score matching. The basic idea is to form a matched
population in which the treated and untreated are exchangeable because they have
the same distribution of the propensity score Pr[A ¼ a| L ¼ l]. For example, one can
match the treated to the untreated patients. The subset of the original study popula-
tion comprised of treated and untreated pairs is the matched population. Under
exchangeability and positivity given by the propensity score, the unconditional,
associational estimators in general will be consistent for causal effects in the
matched population. If there are individuals that cannot be matched on their pro-
pensity score, the target population may differ from the matched population. Full
coverage of matching is beyond the scope of this chapter, and we refer interested
readers to Sekhon (2011) and (Stuart 2010).

5.3.1 Random Variability

We employ a frequentist framework; that is, we assume the sample (i.e., study
population) is a random sample from an infinite super-population (Casella and
Berger 2002). In other words, we observe n independent and identically distributed
copies of (Ai,Yi). We make a distinction between identification versus estimation.
Identification involves determining the assumptions necessary to identify parame-
ters. Estimation is the process of using the observed data to quantify causal param-
eters. The characteristics of the super-population are referred to as parameters or
estimands. For example, Pr[Y ¼ 1|A ¼ 1] and P[Ya ¼ 1] are two examples of
parameters. We construct estimators from the observed study data. For example,

bPr Y ¼ 1jA ¼ 1½ � ¼
Xn
i¼1

YiI Ai ¼ 1½ �=
Xn
i¼1

I Ai ¼ 1½ �

is an estimator. The numerical value of an estimator for a particular data set is an
estimate, e.g., bPr Y ¼ 1jA ¼ 1½ � ¼ 5=10: The parameters are denoted by Greek

5 Causal Inference in Pharmacoepidemiology 207



letters, e.g., θ, with the corresponding estimator denoted by bθn: The estimator
depends on the sample size denoted subscript n. An estimator is unbiased if

E bθnh i
¼ θ, where E is notation for the expectation. That is, the expected value of

the estimator equals the true parameter. An estimator is consistent if bθn !p θ. That is,
an estimator converges to the true value as the number of samples increases.
Assuming exchangeability, such as in a randomized trial, the unconditional risk
differences, risk ratios, and odds ratios are consistent estimators of the causal risk
differences, risk ratios, and odds ratios, respectively.

5.3.2 Motivation for Modeling

If we have a small study with a limited number of categorical variables, modeling
approaches may not be needed. For example, we could employ estimators of the
mean that are simply averages. Extending to multiple exposure groups, estimators of
the mean in each group could be used. However, once we have a continuous
exposure A, we can no longer use a nonparametric (i.e., distribution free) estimator
of the mean. In fact, we require a model in this setting. If exposure A is continuous,
we could consider a linear mean model E(Y | A) ¼ θ0 + θ1 A. Using either maximum
likelihood estimation (MLE) or ordinary least squares (OLS) regression, we can
obtain consistent estimators of the parameters and calculate the predicted means (Ali
et al. 2005).

A model is defined as an a priori restriction on the distribution of the data. For
example, a linear model assumes the curve is a straight line. A parametric model is
akin to adding information that is not in the data to compensate for a lack of
sufficient information in the data. Parametric models allow for consistent estimation
that may not be possible otherwise. However, parametric models allow for correct
inference only if the restrictions captured by the model are correct. Causal inference
based on models is only valid if there is no model misspecification. However,
nonparametric estimators typically make no a priori restrictions on the distribution
of the data. Methods described in this chapter prior to this section are based on
nonparametric estimators.

In a setting with two treatment options, model-based estimates are identical to
parametric estimators when the model is saturated; that is, when the number of
parameters in the model matches the number of population quantities that can be
estimated in the model. For example, a model for two population means includes two
parameters, θ0 and θ1. This is considered saturated because the model cannot
estimate any additional terms. If exposure A is non-binary, more flexible regression
models can be specified by including nonlinear terms, up to model saturation. As the
number of parameters decreases, stronger assumptions are made about how
“smooth” the data distribution is. Increasing the number of parameters in the models
often comes at a cost. For example, the model with three parameters will be
consistent if the model with fewer parameters is consistent; however, the model
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with more parameters will be less precise (i.e., have larger standard errors). This is
known as the bias-variance tradeoff (Cole and Hernán 2008). Analysts using models
need to decide if more protection against bias is worth the cost in the variance. In the
following sections, we assume the models are correctly specified. In any data
analysis, causal or not, the validity of models and fit should be evaluated using
diagnostics, and sensitivity analyses regarding the model specification should be
performed.

5.3.3 Marginal Structural Models

One way to quantify causal effects is through a marginal structural model (MSM),
which is a model for mean counterfactual outcomes. “Structural” refers to the
modeling of the expectation of the counterfactual outcome. In addition, this is a
“marginal” model because we are modeling the marginal distribution of the coun-
terfactual rather than the joint or conditional distribution (Hernán et al. 2000; Robins
et al. 2000b) or because it may not include any covariates (Hernan and Robins 2020;
Hernán et al. 2002). One method for fitting marginal structural models is inverse
probability (IP) weighting.

As in the earlier part of this chapter, the goal of the analysis is to estimate the
causal effect of a high-dose opioid prescription A after surgery (a binary exposure)
on subsequent risk of developing opioid dependence during the following year Y.
Our causal estimand of interest is Pr[Ya¼1¼ 1]� Pr[Ya¼1¼ 1]. This is the difference
in the proportion with opioid dependence that would have been observed if all
patients were prescribed high-dose opioids after surgery, compared to the proportion
with opioid dependence if all individuals in the population were prescribed low-dose
opioids. Because the exposure A is not randomly assigned, there may be
confounding, so we are only willing to assume conditional exchangeability. In our
example, we could assume conditional exchangeability on L, where L includes sex,
age, race, education, prior history of unmanaged pain, a comorbidity index, prior
history of heavy alcohol use, and surgery type. Assuming conditional exchangeabil-
ity Ya⊥ A j L, i.e., that covariates L are sufficient to block all backdoor paths, we can
use IP weighting to estimate the causal contrast of interest. In a conditionally
randomized trial, the exposure weights are a known function of the covariates L.
However, in an observational setting, the treatment assignment mechanism Pr
[A ¼ a| L ¼ l] is unknown and needs to be estimated.

If L is low dimensional, Pr[A ¼ a| L ¼ l] could be estimated nonparametrically
based on sample means. However, in our example, L is an eight-dimensional
covariate and includes continuous and categorical covariates, so a model is required.
A logistic regression of Pr[A¼ 1| L¼ l] on all eight covariates could be used and can
be more flexible with the inclusion of nonlinear terms for continuous variables and
interaction terms (Howe et al. 2011). Based on the fitted model, we compute the
probabilities for each level of the exposure and then weight each observation by the
conditional probability of the exposure actually received. The inverse weighting
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creates a pseudo-population in which we fit the linear model (using either MLE or
OLS), specifically E[Y|A] ¼ θ0 + θ1 A. If A is binary, this method estimates the
parameters of the saturated marginal structural model E[Ya] ¼ β0 + β1 a. The
outcome variable in the model is a potential outcome.

Stabilized weights defined as Pr[A ¼ a]/Pr [A ¼ a| L] can be employed. When the
IPW model is not saturated (i.e., has more population parameters than parameters in
the model), the stabilized weights will tend to yield narrower 95% confidence
intervals. The estimator with unstabilized weights is akin to a Horvitz-Thompson
estimator in the survey sampling literature, while the estimator with stabilized
weights is akin to a Hajék-type estimator (Horvitz and Thompson 1952; Binder
1983). If the models are correctly specified, the stabilized weights are expected to
have a mean of one. Otherwise, there may be model misspecification or violations of
positivity.

Marginal structural models can be extended to allow for continuous exposure A.
There is a distribution of A, rather than a probability. For example, we might assume
the usual linear model A¼ α L + E, where E~N(0, σ2) in order to estimate f(A| L ) and
f(A) to compute the stabilized weights f(A)/f(A| L ), where f(x) is the continuous
distribution of the random variable X (i.e., probability density function). Based on
the estimated stabilized weights, each observation is weighted to create a pseudo-
population, and the outcome model is fit in the pseudo-population, for example,
E[Y |A ¼ a] ¼ θ0 + θ1 a + θ2 a

2. If the outcome is dichotomous/binary, the outcome
model can be fit as a logistic regression model for a marginal structural logistic
model.

In MSMs, covariates can be included to assess effect modification. For example,
let prior unmanaged pain be V (yes vs. no), and consider the MSM

E YajV½ � ¼ β0 þ β1 aþ β2 Vaþ β3 V :

There is additive effect modification if β2 6¼ 0. The parameters of the MSM can be
consistently estimated by fitting E[Y|A,V] ¼ β0 + β1 A + β2 VA + β3 V via weighted
least squares. The weights based on the covariates L must also include V in addition
to all other variables sufficient to ensure exchangeability within levels of V. The
numerator of the stabilized weight can also include V.

In addition to inverse probability of exposure weights, one could consider
censoring weights. In the case that there is a large number of participants missing
the outcome, selecting only those with non-missing outcome values may introduce
selection bias (Sect. 5.2.2). Let C¼ 1 if the opioid dependence outcome was missing
(e.g., no medical visit during the year following surgery) and C ¼ 0 otherwise. The
unstabilized weights are now defined as

A 1� Cð Þ
Pr C ¼ 0 A,L Pr� ½A ¼ 1j jL½ � þ

1� Að Þ 1� Cð Þ
Pr C ¼ 0 A,L Pr� ½A ¼ 0j jL½ � :
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5.4 Advanced Topics

In this section, we discuss time-to-event or survival data, which is common in the
evaluation of health outcomes. Often a binary/dichotomous event does not provide
sufficient information about a patient’s health outcome, and estimators based on this
type of outcome may be biased due to censoring or loss to follow-up. Time-to-event
analyses can offer a more accurate representation of patient outcomes over time (e.g.,
mortality), as a delay in the time to certain health outcomes can be clinically
meaningful. Often in pharmacoepidemiology, exposures, such as prescription med-
ications, are varying over time and are also subject to time-varying confounding. By
including these time-varying variables that are confounders in the outcome model,
one is also conditioning on a possible intermediary variable (i.e., collider). There-
fore, standard methods are not appropriate in this setting, and a g-formula approach
(e.g., MSM) or g-estimation is required to ensure valid inference (Hernán and
Robins 2020). In addition to challenges in evaluation of biomedical data, the
employment of administrative data or electronic health data offers unique chal-
lenges, including unmeasured confounding and misclassification. We present
instrumental variables as one approach that may be possible in some settings to
address unmeasured confounding in large healthcare databases; however, there are
other approaches in the literature (Lipsitch et al. 2010; VanderWeele and Ding
2017).

5.4.1 Causal Survival Analysis

Survival analysis can be used in pharmacoepidemiologic research to compare the
time to occurrence of clinical events between treatment or exposure groups (Cole
and Hudgens 2010). The outcome of interest is time to an event, such as death. T is
the time to an event of interest (e.g., death, cancer, flu infection) after the start of
study follow-up. Administrative censoring occurs at some fixed or known time point
after the start of follow-up (e.g., 1 year after surgery). Left censoring is when the
outcome occurs before the study period (e.g., opioid dependence prior to the start of
the study).

The survival time T is known only for individuals whose events were observed.
For those who were censored, we only know that T is greater than the censoring time.
The survival probability Pr(T > k) is defined as the probability that the survival time
is greater than or equal to t. The survival curve starts at Pr(T > 0) ¼ 1 for k ¼ 0 and
decreases monotonically as time k increases. The risk (or cumulative distribution
function) is Pr(T � k) ¼ 1 – Pr (T > k). The hazard is defined as the instantaneous
probability of the event occurring at time k among those who had not developed it
before time k and is denoted by Pr(T ¼ k j T ¼ k � 1). Note that the hazard and risk
are different measures.
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In our example, rather than considering the overdose event as a binary variable
(yes vs. no) by the end of 1 year of follow-up, we can analyze time to the first
overdose after surgery and denote this by T and denote the counterfactual survival
times by T0 and T1 (i.e., survival time, if contrary to fact, a patient was not exposed
and survival time, if contrary to fact, a patient was exposed). Randomized trials are
the gold standard to estimate exposure effects on survival time, but are not always
ethical or feasible. Although observational studies may provide estimates of effects
when trial data are unavailable, the validity of these estimators is often threatened by
confounding (Greenland and Morgenstern 2001). As in the single binary outcome
case, confounding occurs when the exposure and outcome share a common cause.
Furthermore, studies with follow-up can be prone to selection bias due to informa-
tive dropout. This type of selection bias occurs when the mechanism of dropout is
associated with exposure and covariates. The Cox proportional hazards regression
model (Cox 1972), the standard approach in survival analysis, can account for
multiple measured confounders. Unfortunately, the Cox model provides only a
single summary measure (i.e., hazard ratio), which can be difficult to interpret
(Hernán 2010). In addition, this model requires the proportional hazards assumption
in the exposure groups.

As an alternative to the standard Cox model, we discuss a method that uses
inverse probability (IP) weights to estimate the effect of an exposure that is fixed at
study entry. Under certain assumptions, this method can be used to mimic a
randomized trial when only observational data are available. In particular, unlike
the standard Cox model, this approach allows for estimation of marginal effects
which compare the distribution of outcomes when the entire population is exposed
versus when the entire population is unexposed (Kaufman 2010). This IP-weighted
approach naturally leads to Kaplan-Meier (Kaplan and Meier 1958) type survival
curve estimates that account for confounding by multiple covariates (Cole and
Hernán 2004, 2008; Xie and Liu 2005; Sato and Matsuyama 2003).

Researchers are often interested in estimating effects of an exposure fixed at study
entry. IP-weighted Cox models are a method to compare the timing of clinical events
under two different exposures, mimicking results in randomized trials. The Cox
proportional hazard model can be written as hi tja tð Þð Þ ¼ exp β a tð Þð Þh0 tð Þ , where
h(t) denotes the hazard function at time t and a tð Þ denotes the treatment history up to
time t. An IP-weighted Cox model is fit by maximizing a weighted partial likelihood,
where participant i who died or was diagnosed with AIDS at time t from baseline

contributes the term exp βAið ÞP
R j tð Þw j tð Þ exp βA jð Þ

( )wi tð Þ
, where R(t) is the risk set at time t and

exp(β) is the hazard ratio for a unit difference in exposure Ai accounting for
confounding measured by covariates through the estimated IP weight wi (discussed
below) (Robins et al. 2000, b). Slight modification of the likelihood is needed in the
presence of tied survival times. The robust variance estimator (Lin and Wei 1989)
can be employed to account for the fact that the IP weights are estimated (Westreich
et al. 2010). For readers interested in a review of the standard Cox model, see
Collett (2015).
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As defined below, the estimated IP weight bwi tð Þ is the product of an estimated
time-fixed IP exposure weight bw1i and an estimated time-varying IP censoring
weight bw2i tð Þ for each participant i at each survival time t (defined below). The
time-fixed IP exposure weights are constructed to account for confounding by
covariates measured at baseline. Different versions of these weights have been
proposed. We recommend the stabilized IP exposure weight w1i defined as the
ratio of the marginal probability of having the exposure that participant i had,
formally Pr(Ai ¼ ai), to the covariate-conditional probability of having the exposure
that participant i had, formally P(Ai ¼ ai | Li), where Li are the measured covariates
for participant i assumed sufficient to adjust for confounding. If we do not appro-
priately adjust for confounding, the estimated association between the exposure and
study outcome may be far from the truth (i.e., biased). Because these IP weights are
unknown, the probabilities of exposure are estimated using the observed data.

The time-varying IP censoring weights are constructed to account for possible
selection bias due to dropout (Robins et al. 2000, b). In our example, patients last
observed alive and without diagnosed opioid dependence more than 3 months prior
to the administrative end of the study (i.e., 1 year after surgery) were considered
censored (i.e., lost to follow-up). Participants received a time-varying weight that
corresponds to their probability of remaining uncensored. This stabilized IP weight
w2i(t) is defined as the ratio of the marginal probability of remaining in the study (i.e.,
uncensored), formally Pr(Di > t jAi), where Di is the time from the start of the study
(i.e., baseline) to dropout for participant i, to the covariate-conditional probability of
remaining in the study, formally Pr(Di > t | Zi,Zi(t),Ai), where Zi and Zi(t) are the
measured common causes of dropout and the study outcome for participant i up to
time t. (Note the covariates in the dropout weight model can be different than the
covariates in the exposure weight model.) If we do not appropriately adjust for the
common (time-varying) causes of dropout and study outcome, the estimated asso-
ciation between the exposure and outcome may be biased due to dropout. Again,
because these IP dropout weights are unknown, the probabilities of remaining free of
dropout are estimated using the observed data.

Standardized survival curve estimates bPr T1 > k
� �

and bPr T1 > k
� �

can be
obtained by fitting an IP-weighted Cox model stratified by exposure with no
covariates and then using a Kaplan-Meier-type estimator, nonparametrically esti-
mating the baseline survival functions for the two strata (Cole and Hernán 2004). In
the absence of weighting, these survival curve estimates will be (asymptotically)
equivalent to Kaplan-Meier estimates obtained separately for each of the exposure
strata (Collett 2015).

We only discussed exposure groups defined at baseline thus far in this chapter.
When interest focuses on exposures that change over time, methods must be adapted
accordingly. When a time-varying variable is a risk factor for the outcome, predicts
later exposure, and is affected by prior exposure, standard statistical methods (e.g.,
Cox models with time-varying covariates) are biased and fail to provide consistent
estimators of effects (Hernán et al. 2000, 2013; Robins et al. 2000, b; Cole et al.
2003). IP weighting can be generalized to account for time-varying confounders
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(Robins et al. 2000, b). For example, among patients who had surgery, starting a new
medication for anxiety (e.g., benzodiazepines) during the follow-up period is a risk
factor for opioid dependence, predicts subsequent treatment with opioids, and is
affected by prior treatment; thus, the IP-weighted Cox model is appropriate for
studying the effect of time-varying opioid therapy on opioid dependence while
adjusting for time-varying current use of medication for anxiety.

The hazard ratio can be problematic for two reasons (58). First, because the
hazards vary over time, the hazard ratio also varies over time. The hazard ratio at
time k may be different from time k + 1. In many published papers that report
survival analyses, a single hazard ratio is reported, which is the weighted average of
the time-specific hazard ratios, and is often hard to interpret. In contrast, survival and
risks are always presented at a specific time during follow-up. Second, even if we
present the time-specific hazard ratios, their causal interpretation is not straightfor-
ward. The hazard ratio at time k + 1 conditions on having survived to time k. This can
be conceptualized as an example of selection bias induced by conditioning on a post-
treatment variable that is affected by treatment.

Due to these limitations, we briefly describe an approach to estimate survival/
risks. Our interest is in estimating the survival function, and one approach for this is
estimating the hazard at each time m and then cumulatively multiplying up to the
survival time of interest at time k. We can estimate the hazard for treatment A at each
discrete time either nonparametrically or with a parametric logistic regression model
(Hernán and Robins 2020).

5.4.2 Time-Varying Exposures

Consider a binary time-varying treatment or exposure, and denote this by Ak, which
can take the values 0 for unexposed and 1 for exposed at each time k, k ¼ 0, . . ., K.
The health outcome of interest Y is measured at time K + 1 from study entry. If the
outcome only depends on the exposure at the prior time, we denote the potential
outcome at time K + 1 by Yak : We denote the exposure history as Ak ¼
A0,A1, . . . ,Akf g and the covariate history up to time k as Lk ¼ L0,L1, . . . ,Lkf g

denote. Assume Lk is measured prior to Ak at time k. If we are interested in the
parameter at a particular time k defined as E Yak �E� ½Yak½ � , we can simply apply
techniques discussed earlier in this chapter. There are many possible treatment
regimens or plans, and let a ¼ a 0ð Þ, a 1ð Þ, . . . , a Kð Þf g denote a possible treatment
regimen. For example, this could be always exposed a ¼ 1, 1, . . . , 1f g or never
exposed a ¼ 0, 0, . . . , 0f g. We define Ya as the potential outcome at time K + 1 for
regime a: Thus, each individual has 2{K+1} potential outcomes. The time-varying
treatment Ak has a causal effect on the average value of Y if E Ya

� �� E Ya0� � 6¼ 0 for
at least two regimens a and a0.
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Definition The time-varying treatment Ak has a causal effect on the average
value of Y if E Ya

� �� E Ya0� � 6¼ 0 for at least two regimens a and a0.

Dynamic treatment strategies are when the treatment strategy ak at time k depends
on an individual’s time-varying covariate(s) Lk . For example, patients living with
HIV historically initiated HIV treatment only after their CD4 cell counts declined
below a certain threshold. In this case, the time-varying HIV treatment depends on
the patient’s history of CD4 cell counts. Static treatment strategies are strategies a
for which treatment does not depend on covariates.

The g-formula, IPTW, and g-estimation can provide consistent estimators of
counterfactual quantities such as E Ya

� �
under more general versions of causal

consistency, conditional exchangeability, and positivity. By consistency, if A ¼ a,
then Ya ¼ Y . The extension to conditional exchangeability is Ya⊥Akj Ak�1,Lk

� �
.

Similarly, the positivity assumption is Pr Ak ¼ akjAk�1 ¼ ak�1, Lk ¼ lk
� �

> 0 if
Pr Ak�1 ¼ ak�1,Lk ¼ lk
� �

> 0. If Lk has a continuous component, then this proba-
bility is always zero, and, in that case, we can replace the probability expression with
the probability distribution function denoted by f AkjA k�1ð Þ, Lk

� �
.

As in the simpler setting of an exposure at a single time point, we can consider an
idealized randomized experiment for this setting. These three conditions will in
general hold in a sequentially randomized experiment with full compliance. A
sequentially randomized experiment is a randomized experiment in which the
exposure value at each successive visit k is randomly assigned with known random-
ization probabilities that, by design, may depend on a patient’s past exposure Ak�1
and covariate history Lk . The assumption of conditional exchangeability is some-
times referred to as the assumption of sequential randomization or the assumption of
no unmeasured confounders.

In this time-varying exposure setting, a causal parameter E Ya
� �

may not be
identifiable under all treatment strategies. For example, for static strategies at each
time k, all backdoor paths into Ak that do not go through any future treatment must be
blocked. This is known as the generalized backdoor criterion.

We define time-varying confounders as time-varying covariates Lk that are
sufficient together in this setting with the treatment history Ak�1 to block all
backdoor paths between subsequent treatment Ak and outcome Y. As mentioned
earlier in this chapter, most standard methods of confounder adjustment in this
setting will be biased even if all confounders are measured.

To illustrate this, consider a hypothetical study that assesses the effect of
buprenorphine/naloxone as part of medication-assisted therapy for opioid use disor-
der on subsequent overdose, measured at the end of follow-up among 25,000
patients with opioid use disorder. The outcome at time K + 1 is a function
of measured comorbidities, history of incarceration, and education level, as well
as unmeasured employment status. We are interested in the parameter

E Ya¼1
h i

� E Ya¼0
h i

, that is, ever exposed versus never exposed. Let A0 and A1

5 Causal Inference in Pharmacoepidemiology 215



equal 1 if the subject received buprenorphine at times t ¼ 0 and t ¼ 1, respectively,
and 0 otherwise. The binary covariate L1 is temporally prior to A1 and takes the value
1 if the patient has employment at time t¼ 1 and 0 otherwise. Assuming no sampling
variability, the data from our study are displayed in Table 5.3. We assume the data
arose from a sequentially randomized experiment where treatment A1 was randomly
assigned based on covariate L1 and A0 was marginally randomized.

The causal DAG for our hypothetical study can be represented by Fig. 5.12,
where U is the subject’s baseline education status, an unmeasured variable. The
dotted arrows indicate that we do not know, based on prior subject-matter knowl-
edge, whether these causal arrows are present. The goal is to assess whether the
arrows are present or not using the observed study data. Our target parameter is

E Ya¼1
h i

� E Ya¼0
h i

.

First, consider the edge from A0 to L1. In Fig. 5.12, one or both of the A0 to Y and
L1 to Y arrows may be present, but we cannot conclude anything beyond this. L1 is
both a confounder and a collider on the causal path between A and Y. Thus, we need
to adjust for the possible confounding of L1 to draw inference about the effect of A1

on Y. However, if we adjust for L1 using standard methods, we cannot consistently
estimate the effect of A0 on Y due to possible selection bias induced by conditioning
on L1. Because this standard approach is not valid, we might consider standardiza-
tion; however, this also conditions on L1, which is a collider on the non-causal path
A0 ! L1  U ! Y . Alternatively, inverse probability of treatment weighted esti-
mators can be constructed as in the point exposure setting, where now the weights

Table 5.3 Opioid overdose potential outcomes Ya with buprenorphine/naloxone therapy exposure
A and employment status L among patients with opioid use disorder

A(0) L(1) A(1) N Y(1) E{Y|A(0), L(1),A(1)}

0 0 0 1700 900 0.53
0 0 1 4200 1600 0.38
0 1 0 5100 3050 0.60
0 1 1 1000 420 0.42
1 0 0 3700 1250 0.34
1 0 1 2900 700 0.24
1 1 0 4000 1550 0.39
1 1 1 14,000 5000 0.36

Variables are indexed by time t

Fig. 5.12 Causal diagram for our hypothetical study of opioid overdose caused by buprenorphine
therapy exposure A, employment status L among patients with opioid use disorder, and U is
unmeasured baseline education status
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are defined as Pr Ak ¼ ak j Ak�1 ¼ ak�1,Lk ¼ lk
� �

at each time k. A nonparametric
estimator can be constructed as

1
n

X
i

WiYiI Ai ¼ a
� �

or

P
iWiYiI Ai ¼ a

� �P
iWi I Ai ¼ a

� � ,

where Wi denotes unstabilized treatment weights:

Wi ¼
YK
k¼0

1
f AikjAi k�1ð Þ, Lik
� � :

We use f to denote the exposure weight that allow for both continuous and binary
exposures.

A consistent estimator of the weights is known in a sequentially randomized
experiment; therefore, the IPTW estimator is consistent in a sequentially randomized
experiment. In an observational study, the IPTW is consistent if the estimated
weights are based on correctly specified parametric models. In practice, if there are
a large number of time periods, the product in the denominator of the weights can
become small for some subjects who receive inordinately large weights. Employing
a stabilized weight may be more efficient (i.e., have a smaller variance) in this
setting, and this can be written as

SWi ¼
YK
k¼0

f Aikj Ai k�1ð Þ
� �

f AikjAi k�1ð Þ, Lik
� � :

Due to the large number of potential outcomes 2K + 1 relative to the sample size n,
the approach may require modeling even in a sequentially randomized trial. We
could consider a continuous response Y and that it is hypothesized that the mean
outcome increases linearly as a function of the cumulative exposure a. That is,

E Ya½ � ¼ η0 þ η1 cum að Þ,

where cum að Þ ¼ PK
k¼0

a kð Þ . This model is not saturated because there are 2{K+1}

unknown counterfactual means versus two model parameters. Because any
unsaturated model may be misspecified, the evaluation of model fit is important.
This MSM with a time-varying exposure can be fit via inverse probability treatment
weights. A weighted ordinary least squares regression model, E Y jA� � ¼
γ0 þ γ1 cum A

� �
, can be fit in the weighted data using stabilized or unstabilized

weights. In an observational study, the weights must be estimated, typically using
a logistic model. We can obtain a conservative estimator of the variance using a
robust (i.e., empirical sandwich) estimator of the variance. Typically, inference is
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more precise using a stabilized weight. One way to test if an MSM is misspecified is
to fit a more flexible parametric model by, for example, including a quadratic term or
cumulative exposure up to a certain visit, and compare the fit of this model to the
more parsimonious one using an appropriate statistical test. In addition, the mean of
the stabilized weights should be one, and deviations from this indicate possible
model misspecification or positivity violations. As in the point exposure setting,
these models can be extended to evaluate effect modification by adding the effect
modifier and interaction with the effect modifier to the outcome model. For the
stabilized weights, the effect modifier can also be included as a covariate in the
numerator (Talbot et al. 2015). MSMs are easy to implement using standard soft-
ware, and we strongly encourage readers to employ these methods, particularly in
the setting of a time-varying exposure with time-varying confounding.

5.4.3 Instrumental Variables

Accurate assessment of the causal relationship between treatment and outcome
requires adjustment for confounding, elimination of selection bias, and minimization
of measurement error. However, there still could be bias remaining in our analysis
due to unknown or unmeasured variables. In Sect. 5.2, we discussed how random-
ization ensures balance of all measured and unmeasured covariates. Due to ethical or
financial limits, investigators often employ retrospective observational study designs
in pharmacoepidemiologic research. In this setting, instrumental variables (IVs) can
be used to distinguish the causal effect of treatment on outcome from residual
confounding bias. Often, there are policy and program changes that impact a
patient’s eligibility for treatment, which can be used to emulate a conditional
randomization procedure with the observed data. However, IVs require alternative
assumptions, which, if violated, can produce biases that are unpredictable, and
determining an IV in the absence of randomization can be challenging.

The following causal DAG (Fig. 5.13) shows the basic structure of IVs.
Z represents the instrument, and U represents confounding caused by unmeasured
covariates. The definition of IV contains three conditions:

1. Z and A are associated.
2. Z could only affect Y through A.
3. Z does not share same causes with Y.

Fig. 5.13 The basic
structure of a instrumental
variable
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The second condition is also known as exclusion restriction. For example, in a
pharmacoepidemiologic study, treatment A is the use of medical marijuana for pain
management, outcome Y is opioid use disorder, and Z is policy/availability of
medical marijuana in different states. Here, Z could not directly cause Y, but
Z could affect Y through A. A few more common examples of IVs in
pharmacoepidemiology include genetic factors, physician preference, and access
to a certain clinical center or hospital (Hernan and Robins 2010).

Before addressing IVs in an observational setting, we will develop the concepts in
the setting of a randomized trial in which there was sub-optimal patient adherence
with the treatment regimen despite efforts to maximize treatment compliance. Let
Z be the randomized intervention, A be a measure of adherence, and Y be the primary
outcome. Because Z is randomized, we could assess the intent-to-treat (ITT) effect
(i.e., the effect of being assigned the treatment strategy Z on Y ). The ITT does not
require for confounder adjustment because the intervention Z was randomized. For
example, the causal relative risk is defined as

RR ¼ Pr Yz¼1 ¼ 1
� �

Pr Yz¼0 ¼ 1
� � :

A valid estimator of the ITT causal relative risk can be obtained using the
approach described in Sect. 5.1.4. If treatment adherence is perfect in the study,
the ITT effect equals the true treatment effect of A on Y. If treatment adherence was
sub-optimal, investigators may be interested in the causal effect among those who
would have adhered under both assigned interventions at baseline (or “always
compliers”). This is known as the complier average causal effect (CACE). If
treatment adherence is perfect in the study, the CACE equals the ITT effect. In
this example of a randomized trial, Z is a valid IV. If we make addition assumption of
monotonicity or no defiers (i.e., those who always take the treatment other than
assigned one (Az ¼ 1 >¼ Az ¼ 0) do not exist), we could identify CACE.

CACE ¼ E Y jZ ¼ 1ð Þ � E Y jZ ¼ 0ð Þ
Pr A ¼ 1jZ ¼ 1ð Þ � Pr A ¼ 1jZ ¼ 0ð Þ :

We now return to our example of medical marijuana policy as the instrumental
variable. Although observational studies lack randomization, it may be possible to
employ changes in policies or programs that give rise to “natural experiments.”Here,
treatment A is medical marijuana for pain management, outcome Y is opioid use
disorder, and Z is policy/availability of medical marijuana in different states. The
target parameter is the complier average causal effect. Before computing the esti-
mator of this effect, we first must evaluate the plausibility of the assumptions. The
policy for medical marijuana certainly affects the access to medical marijuana for
pain management. Furthermore, this policy likely only affects opioid use disorder
through the use of medical marijuana for pain, specifically by substituting this for
opioid medications. The assumption that medical marijuana policy in a state and an

5 Causal Inference in Pharmacoepidemiology 219



individual’s risk for opioid use disorder do not share common causes is plausible.
The fourth assumption (i.e., no defiers) means that those patients residing in states
without a medicinal marijuana program would not use medical marijuana. After
careful consideration of these assumptions, the complier average causal effect can be
estimated using appropriate models extending the approach described above.

5.5 Concluding Remarks

As we enter the era of big data in health research, it is advantageous for the medical
research field to leverage large administrative claims databases and electronic health
records. Although pharmacoepidemiology as a field has been using these databases
to evaluate associations and predictions, we now have the tools to move toward
causal inference in pharmacoepidemiology. This framework can allow for identifi-
cation of sources of biases resulting improved inference, methods development, and
future studies to improve information obtained from these large databases. By
making the target trial explicit in analyses, we are more rigorous in the design and
analysis of observational data. For implementation of causal inference methodolo-
gies in SAS (SAS Institute Inc., Cary, NC, USA), we recommend using standard
procedures in combination to estimate causal effects. Sample code can be found in
Buchanan et al. (2014), Buchanan et al. (2018), and Hernán et al. (2000). Alterna-
tively in SAS, we recommend employing PROC CAUSALTRT (SAS Institute Inc.
2016). For matching analyses, we recommend PROC PSMATCH (SAS Institute
Inc. 2016). Through both methods development and high-impact applications,
causal inference in pharmacoepidemiology provides the tools to go beyond
predicting future health outcomes to change health outcomes and inform health
policy and, ultimately, improve patient health.
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Chapter 6
Statistical Data Mining of Clinical Data

Ilya Lipkovich, Bohdana Ratitch, and Cristina Ivanescu

6.1 Introduction

6.1.1 What Is Data Mining?

Data mining is understood broadly as a set of anal3.ytical tools and methods for
extracting nontrivial information from the data so that it can be transformed into
useful knowledge and practical tools. Data mining has been evolving and applied in
multidisciplinary contexts, and its definitions vary depending on the viewpoint. The
following definition reflects the view of the Knowledge Discovery in Databases
(KDD):

• Data mining is the nontrivial extraction of implicit, previously unknown, and
potentially useful information from large data sets or databases.

A typical statistician’s view of data mining expressed succinctly in a textbook by
Hand et al. (2001) places more emphasis on the interpretability of discovered
“relationships” for decision-makers:

• “Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner.”
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In Pharma there is no established definition of what data mining is; however,
summarizing our experience and observations of the current practices across the
industry, we can formulate it broadly as any post hoc analyses:

• “Data mining is any post-hoc analysis of existing clinical data to provide answers
to relevant scientific, clinical, and business questions to internal and external
stakeholders.”

In this review chapter, we take a broad view on data mining in clinical settings as
a valuable and principled element in a large cycle of knowledge discovery and
confirmation from healthcare data that facilitates a full and efficient use of vast
amounts of available data. It is a type of data analytics for problems that have the
following common features:

• A large amount of available data in terms of the number of records (patients)
and/or the number of features (variables) that has at least some of the following
properties:

– Typically arising from observational studies, or representing “observational
elements” embedded within randomized trials

– Collected for a different purpose than the intended “data mining” analyses
– Dispersed over different databases

• The relationships that need to be learned from the data may be obscured by

– Both random and systematic errors
– Various inconsistencies in data collection and variable construction
– Missing data (likely “not completely at random”)
– The presence of irrelevant data (noise features) that need to be filtered out
– Redundancy in relevant data (“overlapping” variables)
– Time-dependent causal mechanisms with unknown lags
– The presence of both short-lived and long-term time effects
– Dynamic dependencies between variables that may change over time
– Unknown causal relationships among variables
– Unmeasured confounders and spurious associations between variables

This chapter is organized as follows. In the rest of the introduction section, we
present the framework for data mining and machine learning (DMML) and try to
connect it with important tasks in drug development. Section 6.2 lays out the key
concepts of DMML. Section 6.3 contains a brief overview of selected methods with
more emphasis on those that will be featured in our case studies. Section 6.4
summarizes the principles of data mining with clinical data and suggests some
elements of the statistical plans for DM. Section 6.5 contains three case studies.
Finally, in Sect. 6.6, we provide a brief discussion of the key points of the chapter.
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6.1.2 Machine Learning and Data Mining Framework

The fields of data mining and machine learning emerged as a combination of
computer science and statistics methods with some additional unique objectives
and emphases. As in computer science, one goal of machine learning is to build
algorithmic solutions and machines to solve problems; as in statistics, another goal is
to do reliable inference from data. The unique objectives of machine learning include
the emphasis on how computers can “program themselves” (learning) and how to
most effectively capture, store, and retrieve patterns and regularities in data. Data
mining is a closely related field, which employs many machine learning and statistics
methods. Data mining activities are typically focused on discovering new insights
from databases that are often big, heterogeneous, and/or unstructured and which are
presumed to contain interesting patterns not known or not sufficiently understood a
priori. To name just a few sources, excellent introductions and textbooks in machine
learning and data mining are provided by Mitchell (1997), Hand et al. (2001), Hastie
et al. (2009), Clarke et al. (2009), Witten et al. (2011), Domingos (2012), and
Goodfellow et al. (2016).

Although statistical modeling and machine learning have been developing as
separate disciplines, the similarities between the two abound, and they can be used in
synergetic ways (Friedman 1997; Hand 1998; Vapnik 2006). Statistical modeling
approaches often formulate some assumptions regarding the data distribution and the
relationship between the dependent and independent variables and place emphasis
on the interpretability of the model and the ability to do inference about the
underlying data generation mechanism including the effect of individual predictors
on the response.

Somewhat simplifying matters, we can describe classical statistical modeling as
largely focusing on estimating a model from which the data arose: Y ¼ f(X) + ε,
where ε represents a random error induced either by an experimental procedure,
random sampling, or other sources of uncertainty. The error term is modeled with
some parametric family of distributions, often with a common assumption that the
random errors have the expected value of zero, E(ε) ¼ 0, and is independent of X. In
statistics, it is common to refer to X as a set of independent or predictor variables and
to Y as a response, outcome, or dependent variable. For a continuous outcome
variable Y, f(X) is the conditional mean f(x) ¼ E(Y|X ¼ x) and is referred to as a
regression function. For a categorical outcome Y ¼ {j : j ¼ 1, .., k}, the same
representation gives rise to a classification function, where E(Y ¼ j|X ¼ x) models
the probability of group membership.

For example, in clinical studies, one of the central objectives is to assess whether
treatment has a statistically significant effect on a response variable and to estimate
the magnitude of the treatment effect. This is often done by estimating a fairly simple
statistical model with treatment represented by one of the independent variables and
then performing statistical tests about the treatment effect and estimating mean
treatment effect based on that model. For example, in the context of continuous
outcome variable, it is the mean difference in response under the experimental
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treatment versus control, possibly adjusted for other independent (pretreatment)
variables included in the model, such as baseline patient characteristics. In this
case, the goal is to do inference from the data collected so far, without a further
objective of predicting responses for future individual patients. As can be further
illustrated with this and other applications in healthcare, the classical view focuses
on hypothesis testing applied to a single test or a small number of pre-specified tests
with clearly defined multiplicity adjustment strategy.

This framework can be contrasted with that of data mining and machine learning
(DMML) where the “learning” aspect refers to the ability of a computational system
to acquire new knowledge from its environment and data or to organize existing
knowledge in a way that facilitates its use. The “machine” aspect emphasizes the
automated and algorithmic fashion of the learning, not involving “human interven-
tion.” In machine learning, often there is also an objective of creating a “machine”
(computational system or tool), which, once trained, can be deployed for future use
with new data. This is reflected in a ubiquitous use of the term “training data set” or
“training sample” in DMML to designate the data that are available at the learning
stage and implying that there will be more data to come.

The differences between classical statistics and machine learning have been a
subject of lively debates (see, e.g., Breiman 2001a, b on two modeling cultures
within statistics). Unlike classical statistics, DMML methods tend to rely less on
formal distributional assumptions and often work with “black box” representations
of the target unknown function f(x), where the interpretability of the effect of the
individual input variables on the output may be limited and not of primary interest
and the emphasis is rather on the quality of prediction for future cases.

Classical examples of machine learning for prediction is speech and character
(e.g., handwriting) recognition and (more recently) email spam detection where
arguably the interpretability of the prediction rules does not play a key role (see,
e.g., email spam Example 1 in Hastie et al. 2009). However, the situation is quite
different in applications of machine learning in the healthcare such as automated
diagnosis of patients where both healthcare providers and patients are not only
interested in accurate prediction but would also like to know which features are
primarily responsible for discriminating the “events” from “non-events.” Here
relying on pure “black box” solutions may be less desirable: although a black box
model may be entertained as the prediction tool, it then should be followed by
various visualizations facilitating the interpretability, such as a decision tree, a
variable importance graph, a partial dependence plot, or a low-dimensional projec-
tion. This shift from a “black box” to a more transparent and interpretable data
mining, reminding us of the exploratory data analysis (EDA, Tukey 1977) with its
emphasis on “looking at the data,” differentiates the outlook of modern “data
miners” from that of “machine learners.”

Another distinction can be made between the role of modeling assumptions and
model selection in the classical statistics and DMML. In the former, analysis often
relies on “standard assumptions” and pre-specified models, while in practical situ-
ations the analyst is discouraged from “looking at the data” (even for validating the
analysis assumptions) in fear of data dredging, as multiple “looks” may arguably
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inflate the false positive rates. This outlook is at odds with the discovery nature of the
statistical science. Sometimes analysts may act under implicit assumptions that “pre-
specified” means “valid,” resulting in suboptimal models entertained at “confirma-
tory stage.” While these are not examples of the best application of classical
statistics, they often occur in practice, especially in the healthcare settings where
pre-specification of analyses required by regulatory agencies played a key role and
became a part of the culture. Data visualizations historically did not play an
important role in this “traditional” view of data analysis, perhaps because of the
fear of “looking at the data” when implementing pre-specified confirmatory ana-
lyses. Nevertheless, things are gradually changing, and most large pharmaceutical
companies have been creating data mining and visualization groups to facilitate data
analysis and presentation in all phases of drug development.

DMML by its nature relies on model selection using data-driven methods with an
emphasis on discovery rather than confirmatory analysis. Unlike classical statistics,
the emphasis in DMML is not on hypotheses testing but on generating plausible
hypotheses that are data-driven (“random”), rather than pre-specified. On the other
hand, data-driven model selection inherent in data mining methods may often occur
“behind the scenes,” and the statistical uncertainty associated with model selection is
left unaccounted for in the final analyses and decision-making based on these
analyses. Again, perhaps reflecting not the best practices of data mining, the final
inference is sometimes based on the findings of a last stage of a complex multistage
data mining procedure ignoring the uncertainty associated with all the previous
stages. Model validation and incorporation of the uncertainty associated with the
entire DMML strategy in the prediction and inference is extremely important for
generating useful insights and tools but may be very challenging to implement. Like
EDA, data mining (somewhat in contrast with machine learning, having an emphasis
on fully automated analysis strategies) encourages various graphical displays and
low-dimensional data representations facilitating model selection and
interpretability.

Table 6.1 summarizes the above discussion points on the differences and com-
monalties between data mining/machine learning and traditional statistics.

We conclude this discussion by observing that the distinctions made may over-
simplify and overdramatize the situation, and a trend has been emerging for conver-
gence between the “classical” statistics and DMML under a unifying framework
where both elements are considered from a common modeling perspective of
“statistical learning” emphasizing some general principles such as achieving a
trade-off between bias and variance (see Hastie et al. 2009). Many ideas and
approaches developed in the two disciplines independently and use different termi-
nologies but share similar concepts and properties. One indication of convergence
between the two domains is an increasing interest in developing “classical” inferen-
tial procedures for machine learning techniques, such as for inference “after model
selection.” For example, see Wager et al. (2014) on bagging and random forest,
and (Meinshausen et al. 2009, Lockhart et al. 2014, Tian et al. 2016) on post-
selection inference in the context of L1 (lasso) penalized regression and related
methods. Another example of such blending is procedures that combine classical
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multiplicity control in hypothesis testing with model averaging for design and
analysis of dose-finding studies introduced in (Bretz et al. 2005) and implemented
in R package MCPMod (Bornkamp et al. 2009).

6.1.3 Machine Learning Tasks for Solving Clinical Problems

For decades, healthcare data have traditionally been analyzed using statistical
methods, but the applications of machine learning and data mining have been
constantly growing in all areas of health informatics, from molecular biology and
genetics, to clinical research, to epidemiology. There are a few major areas in health

Table 6.1 Data mining/machine learning versus “classical” statistics

Classical statistics Data mining/machine learning

Typically uses relatively small data sets col-
lected from designed experiments or by sam-
pling from well-defined populations

Large and often dispersed and heterogeneous
data sets, often collected for (business) pur-
poses other than the data mining

Assumes a data generation mechanism:
y ¼ f(X) + ε, where f(X) has relatively simple
structure (e.g., a linear model) and the error
term(s) are represented by parametric
distributions

Often poses its task as recovering unknown
function f(X) which may be a “black box” (i.e.,
fairly complex nonlinear relationship) while
the presence of statistical uncertainty (noise) is
often ignored

The objective is to estimate parameters for the
entire population from available sample(s)

The objective is to obtain predictions for new
(future) cases or extract useful features that
reveal underlying (unknown) structure. The
analysis data often represent the entire
population

Focus on hypothesis testing applied to a single
test or a small number of pre-specified tests with
clearly defined multiplicity adjustment strategy

Hypothesis generation (knowledge discovery)
rather than formal hypothesis testing, less
emphasis on statistical significance (often
rather focusing on controlling the false dis-
covery rate)

Interpretability is an important element of
modeling culture where the structure of f(X) is
driven by few pre-selected variables, mainly
based on existing domain knowledge or factors
of a designed experiment

The “black box” modeling makes interpret-
ability neither important nor easily attainable;
however, in data mining applications, the
decision-makers often desire to have the deci-
sion rules expressed in interpretable form

Modeling relies on “standard assumptions,”
often discouraging “looking at the data” in fear
of data dredging. Underutilizes the discovery
element of statistical science

Relies on model selection using data-driven
methods with emphasis on discovery rather
than confirmatory analysis; incorporation of
uncertainty associated with model selection
however may be challenging to implement for
multistage data mining strategies

Visualization does not play important role,
perhaps because of the fear of data dredging
when implementing pre-specified confirmatory
analyses

Data mining (like EDA and in contrast with
machine learning) encourages graphical dis-
plays facilitating model selection and
interpretability

230 I. Lipkovich et al.



informatics (Herland et al. 2014): bioinformatics typically focuses on the molecular-
level data; neuro-informatics concentrates on analysis of brain imaging data; clinical
informatics involves analysis of patient data; public health informatics applies data
mining and analytics to population-level data; and translational bioinformatics is an
interdisciplinary field that develops techniques for integrating biological and clinical
data. In this chapter, we focus on clinical informatics.

Traditional view of the scope of data mining and machine learning in drug
development is that its place is primarily in preclinical and early-phase drug discov-
ery (e.g., using machine learning for gene expression analysis). Using data mining in
later stages of drug development (Phases 3, 4) is often considered with suspicion as a
euphemism of data dredging that sponsors may use to promote favorable views of
their products and make unsubstantiated claims (e.g., of enhanced efficacy in sub-
populations identified through data mining). Many consider complete
pre-specification of analyses in late stages of drug development as the necessary
condition of their validity. However, learning from data is a continuous process that
does not stop at the beginning of Phase 3. Clearly, not everything is known at the
time of new study design, and so not all meaningful analyses can be preplanned;
therefore, extracting as much evidence from data as possible, even post hoc,
maximizes good use of patient data and resources allocated to a clinical trial.
There is indeed a striking contrast between the vast amount of patient-level data
(on efficacy and safety) collected in the course of a clinical trial and reporting trial
results with a few summaries (ultimately, a single P-value for the primary analysis),
which suggests large amounts of data collected may be underutilized in the drug
development process.

Contrary to this view, we believe that data mining is an integral part on all stages
of the drug development process. However, we promote principled data mining
(as opposed to “data dredging”) and to this end outline some principles and good
practices of clinical data mining.

In our review of data mining methodologies, we focus on methods most useful for
clinical trial data analysis; however, most of the methodologies equally apply to
observational studies where treatment assignments are driven by prescribers’ deci-
sions and not by chance. In fact, as we argue, observational studies and randomized
clinical trials (RCTs) have much in common, and this is exactly why data mining
(and model selection as its integral element) is needed in both. Often, we can
consider clinical trial data as observational study embedded in an RCT. Even in
the perfectly designed and conducted RCT, post-randomization events, such as
dropouts, effectively break the randomization and make comparison of simple
summaries by treatment arm biased and therefore require model-based analysis,
even for the assessment of treatment effect under the intention-to-treat (ITT)
principle.

Here, we list some general analytic tasks that arise with clinical data (whether
originated from a randomized trial or not) that lend themselves to applications of
data mining methods, and we group these tasks under more traditional headings of
supervised, semi-supervised, or unsupervised learning. Specific examples for some
of these tasks will be provided in Sect. 6.5 using case studies.
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6.1.3.1 Supervised Learning

Supervised learning occurs when the DMML system is provided both the input and
the correct output for a set of training cases and is tasked with learning a function that
maps input to output, with the goal of being able to predict the output for future,
unlabeled input instances. The initial, labeled set (xi, yi), i ¼ 1, . . ., N, of inputs xi
(a p-dimentional vector) and outputs yi is referred to as a training set, and the learning
algorithm adapts its internal representation of the input-output relationship bf xið Þ to
minimize some measure of differences between the observed and predicted outputs:

yi and bf xið Þ , e.g., residual sum of squares RSS ¼PN
i¼1

yi �bf xið Þ
� �2

. Supervised

learning problems are further grouped into classification when the output variable
is a category (e.g., mild, moderate, severe) and regression when the output variable is
a real value (e.g., blood pressure or weight).

Some common tasks in the healthcare setting include:

Patient diagnostics. Applications of building diagnostic models informed by various
patient-level covariates (symptoms) started to appear decades ago, for example, a
simple diagnostic tool was constructed using tree-based decision rules that allowed
clinicians of an emergency unit to make a quick assessment whether a patient with
non-traumatic chest pain can be diagnosed with a myocardial infraction using ECG
and other available markers (Mair et al. 1995). An example of increasing use of
diagnostic tools incorporating AI algorithms is a recent approval by FDA of
OsteoDetect, an image processing device that “analyzes wrist radiographs using
machine learning techniques to identify and highlight distal radius fractures during
the review of posterior-anterior (PA) and lateral (LAT) radiographs of adult wrists”
(FDA 2018).

Building predictive models for patients’ future outcomes. Models may be built to
predict safety or efficacy outcomes, informed by assigned treatment, biomarkers
available prior to treatment initiation, and evolving (early) patient outcomes. Exam-
ples of such clinical applications of supervised learning are predicting mortality and
readmission after a discharge from an intensive care unit in order to avoid premature
discharges from the unit for future patients (Ouanes et al. 2012) and predicting
cancer susceptibility, cancer recurrence, and cancer survival (Konstantina et al.
2015).

Modeling intermediate outcomes as part of a treatment evaluation strategy. Super-
vised learning often arises in clinical applications not as a goal in itself but rather as
an intermediate step for obtaining more accurate estimates of treatment effects. This
is especially true for evaluating treatment effect in observational trials but also
applies to RCTs. For example, to account for missing data, methods of inverse
probability weighting can be employed that require modeling the probability of a
patient remaining in the trial through specific time. Here the goal is not to predict
patient’s dropout as such but rather to correct for selection bias in the primary
analyses caused by the fact the dropouts may have occurred not completely at

232 I. Lipkovich et al.



random but were associated with patients’ covariates and early outcomes. As another
example, imputation methods are often used for the same purpose of accounting for
selection bias due to dropouts. Constructing an imputation model or a model for
inverse probability weighting can often be successfully done using “black box”
methods of supervised learning that have an advantage over simple regression
methods in that they utilize all available data and do not require preselection of
key predictor variables nor assume any specific form of their relationship with the
probability of dropout which are typically unknown to the investigators. See Tang
and Ishwaran (2017) for comparison of various strategies for imputing missing data
via random forest algorithms. In our case study in Sect. 6.5, we will provide an
example of using machine learning method to estimate treatment effect under
informative treatment switching via inverse probability weighting.

6.1.3.2 Unsupervised Learning

In unsupervised learning, the DMML system is not provided with any “correct
answer” such as a training sample where all cases are correctly labeled into target
categories or values but rather is designed to discover and model the underlying
structure and patterns in the data with the goal of acquiring a better understanding of
the data. Unsupervised learning problems are broadly grouped into clustering, where
the objective is to discover inherent groupings of similar units described by data
(e.g., groups of patients with similar treatment outcomes), and association, where the
goal is to discover interesting relations between variables (e.g., co-occurrence of
certain diseases or events) which can be also thought of as clustering, although in the
variable/feature space.

Some common tasks and examples include:

Clustering to identify patients with similar efficacy outcomes in the absence of a
definite single outcome measure determining patient’s response to treatment. This is
especially relevant for diseases where the patients’well-being is described by a set of
variables representing complementary and sometimes conflicting clinical criteria and
scales, which is often the case in neuroscience and some other areas. Example of this
is clustering patients in treatment of fibromyalgia, as such patients often show great
variability in symptoms domains for which a given treatment may be beneficial
(Lipkovich et al. 2014; Abtroun et al. 2016). Clustering of patients in the multivar-
iate space of disease symptoms may lead to construction of better criteria for clinical
response as well as understating what patient characteristics are driving response in
different domains of symptoms.

Identifying patients with distinct response profiles (or trajectories) over time.
Response profiles may represent different types of patients, e.g., “early responders
who later fail,” “relapsers,” “gradual responders,” “sustained responders,” etc.
Clustering can be done using traditional statistical methods of analysis of growth
curves via finite mixture random effects with categorical latent variables
representing class membership (Muthén et al. 2002), as well as by application of
multivariate clustering methods, e.g., Lipkovich et al. (2008).
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Use of methods for association learning. This objective has been explored in
pharmacovigilance to uncover drug-adverse event relationships and drug-drug inter-
actions in spontaneous reporting systems and large healthcare databases such as
electronic health records and administrative claims (Harpaz et al. 2012).

Detecting outliers and unusual patterns, often in the context of fraudulent assess-
ment of outcomes. See, e.g., O’Kelly (2004) for a case study illustrating the use of
statistical multivariate techniques to identify fraudulent clinical data.

6.1.3.3 Semi-supervised Learning

Note that in many situations learning may need to proceed in an unsupervised
manner even in a prediction setting for regression or classification problem where
the target variable is entirely missing in the observed (training) data. An interesting
case that falls somewhere in between the supervised and unsupervised learning is
predicting differences in outcomes for a patient under different treatment regimes
(treatment effects) given his/her characteristics. This is not a supervised learning
problem because in a typical parallel arm clinical trial, a patient is assigned only to
one treatment (experimental or control), and therefore the patient-level treatment
differences are unobserved, similar to class labels in the clustering problem. How-
ever, because one of the treatment outcomes is observed for every patient, these
hypothetical differences can be predicted using methods of traditional supervised
learning as building blocks. Here we provide examples of such tasks under the
heading of semi-supervised learning:

Subgroup identification. Heterogeneity of treatment effect has been recognized in
many therapeutic areas leading to a growing interest in precision medicine (also
referred to as personalized medicine) so that therapies can be tailored to character-
istics of the patients as well as their environment and lifestyle (Ashley 2015). Much
research has been dedicated to identifying genetic traits that are responsible for
variations in disease susceptibility and response to treatments, but subgroup identi-
fication also extends to other demographic and clinical characteristics that may be
predictive of the treatment effect (often referred to as biomarkers). In this setting, the
researchers may be presented with a large set of potential biomarkers, and the
objective is to determine a small subset that can be used to reliably describe patient
profiles with the most beneficial treatment effect or a favorable benefit-risk balance
(see Lipkovich et al. 2017). We provide a review of various methods for subgroup
identification in Sect. 6.3.3 and illustrate with a case study in Sect. 6.5.1.

Estimating optimal treatment regimes. Another clinical problem closely related to
precision medicine which also falls under the semi-supervised learning framework is
construction of optimal dynamic treatment regimes (DTRs) utilizing information on
patient’s characteristics and accumulated patient’s outcomes at each decision point.
In many health disorders, especially chronic conditions, sequential decision-making
is necessary to adapt treatment over time in response to the evolving health status of
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the patient. This is especially important if there is a high degree of heterogeneity in
individual long-term responses to treatment and when treatment may need to be
adjusted as a result of emerging side effects. DTRs thus extend the concept of
precision medicine to time-varying treatment regimes where therapy (type, dose,
and/or timing) may be adjusted over time based on the up-to-date patient information
and may be influenced by earlier treatment choices (Murphy 2003, 2005;
Chakraborty and Murphy 2014). Development of evidence-based dynamic treatment
regimes, just like evidence-based recommendations for the initial choice of treat-
ment, is part of building clinical decision support systems for the entire treatment
cycle. Several methods for estimation of optimal DTRs, e.g., Q-learning and
A-learning, originate in a subfield of machine learning known as reinforcement
learning (Sutton and Barto 1998) where the focus is on decision-making in stochastic
dynamic environments. We review the problem and methods of estimation of
optimal DTRs in Sect. 6.3.3 and present a case study in Sect. 6.5.2. Although the
problem of identifying optimal regimes is a semi-supervised learning problem
(in absence of explicit information of what is the optimal regime in training data),
it often uses supervised learning approaches as integral components. For example,
methods of outcome-weighted learning construct DTRs by casting it in as a series of
classification problems (Zhao et al. 2015).

6.1.3.4 Feature Selection and Dimensionality Reduction

A cornerstone of machine learning and data mining methods (whether supervised or
unsupervised) is feature selection and dimensionality reduction. Databases often
contain a multitude of variables which are potentially related to the problem at hand,
but it may not be known in advance which attributes are in fact useful and which are
irrelevant or redundant given other attributes. The challenge is compounded by the
fact that machine learning often starts with “feature expansion” resulting in
transforming the initial set of covariates into a broader set of “features” (e.g., adding
variables capturing information on two- and three-way covariate interactions or
using feature expansion via radial basis functions). Given this enriched set of
features, the DMML system needs to extract useful information to reduce model
complexity, improve accuracy, and facilitate interpretation. Feature selection refers
to an automatic selection of data attributes that are most useful and relevant for
predictive modeling (supervised learning) or identifying patterns in data
(unsupervised learning). Examples of such methods for supervised learning range
from traditional stepwise model selection techniques to more sophisticated methods
of penalized estimation (e.g., lasso method a.k.a. L1 penalty) and ensemble learning
(see Sects. 6.2 and 6.3 for more details). Often feature expansion and selection can
be done within a single analytic strategy (e.g., as in support vector machines (SVMs)
with a kernel-based feature expansion and an L1 penalty).

Dimensionality reduction also aims at reducing the number of attributes in a data
set, but unlike feature selection, it does so by creating new, fewer combinations of
attributes that nevertheless capture the key information in the data (e.g., using
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methods based on principal components and singular value decomposition). These
methods can be used in the context of both supervised and unsupervised learning.

In this chapter we will provide case studies covering some of the above tasks.
Clearly, it would be impossible to cover all applications of data mining in clinical
research in a single chapter. While we provide some reference to a broader set of
applications, we would like to explicitly mention some areas that will not be covered
here: applications of data mining/machine learning in molecular biology, genomics,
proteomics, microarray data, and medical imaging. While some of case studies will
use methods that are applicable to analysis of epidemiological studies and real-world
databases (such as claims/electronic medical records), we will not have specific
examples here.

6.2 Overview of Key Concepts

The power of machine learning algorithms is in their ability to provide solutions to
difficult problems by generalizing from a limited set of examples observed in real life
(a training set). This is not unlike statistical inference where, in order for the results
to be of practical utility, the inference performed from a finite set of data samples
must be generalizable to a population of interest (e.g., finite population as in survey
sampling or hypothetical population as in making inference for “future” patients).
Therefore, good accuracy/performance on the training data set is typically not the
ultimate goal, and performance on new data not included in the training set is of
greater importance. In supervised learning, it is a common practice to divide the
available data into a training set and a test set so that the solution can be developed
on the training set and its performance evaluated on the test set, representing new
data not used for learning. In this context, the performance metric applied to the
training set while the learning is taking place (e.g., the R-square) often serves as a
surrogate for the ultimate performance measure—generalization ability. However,
focusing on this surrogate measure, especially when fitting complex models (i.e.,
with a large number of parameters), may lead to overfitting, so that the model
“describes” the random error (noise) in the training data rather than the underlying
relationship. Avoiding overfitting and improving generalization performance
requires careful consideration, which we review in this section.

6.2.1 Bias-Variance Trade-Off

One important aspect of a machine learning algorithm’s performance is the bias-
variance trade-off. The generalization error can be decomposed into two main
components: bias and variance. For example, as discussed in the previous section,
in supervised learning (for continuous outcome), the objective is to find a mapping
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for the input-output relationship bf xð Þwhich minimizes the expected prediction error

E y�bf xð Þ
� �2

which can be decomposed as

E y�bf xð Þ
� �2

¼ Bias bf xð Þ
h i� �2

þ Variance bf xð Þ
h i

þ σ2,

where σ2 is an irreducible error (e.g., due to noise in inputs and outputs).

Bias bf xð Þ
h i

¼ E bf xð Þ � f xð Þ
h i

is the method’s tendency to consistently produce

solutions bf xð Þ that deviate from the truth f(x). Systematic bias can be introduced,
for example, by using an inappropriate model, e.g., using a linear model when the
true function is nonlinear, or using optimization algorithms that tend to converge at a

local optimum (e.g., greedy search). Variance bf xð Þ
h i

¼ E bf xð Þ2
h i

� E bf xð Þ
h i2

is the

method’s tendency to produce different solutions (move around its mean) as a result
of changes in the training set (even though different training sets are generated by the
same underlying process) or randomness that is part of the learning algorithm (e.g.,
Monte Carlo methods).

There is a trade-off between bias and variance: typically bias decreases as the
model complexity increases, while variance increases with model complexity. An
increasingly complex model will reach a point where its prediction error on the
training set is very small but it overfits the training data and leads to an increase in the
error on the test data. This is illustrated in Fig. 6.1 where the training set error,
depicted by the light gray line, decreases steadily as the size of the model (a tree-
based model in this example) increases, whereas increase in complexity leads to no
further gains in the test set error after a certain point (tree size of 5) as depicted by the
black solid line. This is why, perhaps counterintuitively at a first thought, a more
complex learner (model) is not necessarily better than a more parsimonious one, and
there is typically some intermediate model complexity that provides the best perfor-
mance on the test (and future) data. In Fig. 6.1, the dotted line represents one
standard deviation above the best test error, which may be a good target to select
model complexity. This leads us to the next topic—model selection.

6.2.2 Model Selection

For reasons discussed above, model selection is thus an integral part of the machine
learning process with the ultimate goal of choosing the model that provides the best
generalization performance on new data. One aspect in terms of choosing the right
model is related to the choice of model class, for example, using a
linear vs. nonlinear model. Another aspect relates to choosing which predictor
variables to include in the model as this also directly determines model complexity.
The squared bias component of the prediction error discussed above can itself be
decomposed into two parts: average model (specification) bias and average
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estimation bias. Model bias represents the error between the best-fitting approxima-
tion within the chosen class (e.g., a linear model based on a set of chosen predictors)
and the true function. The estimation bias is the error between the average estimate
of the model parameters and the best-fitting approximation in the class.

For example, for linear models bf Xð Þ ¼ XTβ using a vector of predictor variables
X and parameter vector β, the best-fitting approximation corresponds to the param-
eter settings β� ¼ argminβ E[( f(X)� XTβ)2]. The average squared bias of a specific
approximation bf d xð Þ is then decomposed as follows:

Ex E bf d xð Þ
h i

� f xð Þ
h i� �2

¼ Ex xTβ� � f xð Þ� �� �2 þ Ex xTβ� � E xTbβdh ih i� �2
,

where the first term on the right-hand side is the model bias and the second term is
the estimation bias.

The expectation over the estimated linear predictor E xTbβdh i
is equal to that from

the ideal best-fitting linear predictor xTβ� for linear models estimated using the
ordinary least squares method, and in this case the estimation bias is zero. For
other estimation methods, for example, penalized or ridge regression, the average
estimation bias is positive, but then the models obtained with this approach typically
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Fig. 6.1 Illustration of bias-variance trade-off using a classification tree example. The x-axis shows
the tree size (model complexity); the y-axis shows the relative classification error. The black line is
the generalization error (here estimated via tenfold cross-validation), and the gray line is the error
estimated from the training set. The error bars are estimates of standard error associated with the
cross-validation estimates. The graph suggests that the tree model starts picking up noise when the
number of leaves (terminal nodes) exceeds 5
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reduce the variance component and thus can be used to achieve a desired bias-
variance trade-off.

Model selection in terms of choosing the most relevant subset of predictors can be
done in many ways. One traditional approach often described in statistics textbooks
is based on stepwise variable selection (e.g., forward, backward, or hybrid stepwise
selection), where statistical significance of effects associated with each variable are
tested in some sequential way and variables are dropped or added to the model one at
a time depending on their significance. This approach uses a locally greedy strategy
and suffers from several other important drawbacks (e.g., multiple statistical hypoth-
esis testing performed without proper Type I error control, unstable performance,
and low prediction accuracy).

In general, data analysis involving a model selection step can be broken down
into the following tasks:

1. Choosing a general form of the model (e.g., logistic or linear regression).
2. Specifying the model space (e.g., as defined by original variables X, expanding

them into main effects and interactions, expanding them using spline basis
functions, etc.).

3. Specifying a model search strategy, i.e., a strategy for obtaining a path or multiple
paths through the model space that are likely to capture “promising”models (e.g.,
stepwise model selection produces a sequence of the best models for the number
of predictors k ¼ 1, 2, 3, . . .; coefficient paths obtained by varying the amount of
penalty in lasso/elastic net; stochastic model search).

4. Specifying model selection criteria in order to identify the final best model(s).
5. Estimating parameters of the final model(s) while taking into account the uncer-

tainty associated with the model selection step (estimation aftermodel selection).
6. Predicting outcomes for new data using the selected model(s).

Typically, the general form of the model (task 1) is chosen by the researcher given
domain knowledge. Some common approaches to model selection that take into
account model selection uncertainly are highlighted below:

• Strategies that build a sequence of possibly overfitted models (e.g., using step-
wise selection algorithms or other heuristic methods) and select from that
sequence the best model using goodness-of-fit measures (based on penalized
likelihood such as AIC (Akaike information criterion), BIC (Bayesian informa-
tion criterion), cross-validation, or multiple testing procedures).

• An important special case is strategies based on penalized estimation procedures
(e.g., lasso, elastic net) produce sparse coefficient paths corresponding to increas-
ing model dimensionality by varying values of the tuning parameter(s) that
control the amount of penalty placed on model complexity; the final model is
selected by choosing the optimal tuning settings, e.g., by cross-validation
(described further below in this section).

• Bayesian and frequentist model averaging where the “final model” is a weighted
average over many models that fit data reasonably well (see review papers,
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Hoeting et al. 1999; Wang et al. 2009); and other methods of ensemble learning
such as random forest and boosting (see further in this section).

Although many analytical tools are packaged as “all-in-one”with specific choices
for tasks 2 to 6 outlined above, it is useful to evaluate them on individual compo-
nents. Sometimes a procedure may be reasonable for one aspect but very unsatis-
factory for others, and an improved one can be constructed by borrowing approaches
from different procedures and recombining their elements.

6.2.3 Variable Importance

A concept closely related to the problem of model selection is that of variable
importance (VI)—an integral measure of the relative importance or contribution of
a variable in predicting the response. Variable importance is used in many machine
learning approaches where a single variable may contribute multiple times in
different parts of the model, hence the need to obtain a single score presenting its
overall importance. It can be defined in different ways that suit or reflect the
construction of specific types of learners. For example, in classification and regres-
sion trees (CART, Breiman et al. 1984), variable importance can reflect improve-
ments in the classification error achieved by using this variable to define splitting
criteria across all the tree nodes where it is used as a splitter. Another way of
determining variable importance (as was first introduced in random forests by
Breiman 2001a, b) is to evaluate the reduction in predictive accuracy after a random
permutation of the values of a given variable across all training samples. If the
variable is strongly associated with response, then after randomly permuting its
values, substantial decreases in prediction accuracy can be expected. Other versions
of the permutation-based variable importance have been suggested in the literature,
e.g., Sandri and Zuccolotto (2008); Strobl (2008); Altmann et al. (2010); and
Lipkovich et al. (2017). A recently developed alternative approach to variable
importance is based on SHAP values inspired by the Shapley interaction index
from game theory (Lundberg and Lee 2017; 2018). The importance of each feature
is defined at the level of individual observations by posing an additive feature
attribution model that decomposes the fitted value into a sum of contributions
from each feature (when present in the model). The importance score for a feature
reflects its contribution into conditional expectation of the outcome averaged over all
possible subsets of other features conditioned upon. Therefore, this approach is
different from others in that it summarizes the contributions of a feature into a fitted
model (a “black box”) irrespective of how good or poor the fit may be. We will
discuss several approaches to variable importance in more detail in the context of
subgroup identification in Sect. 6.3.3 and in an application of random forest for
computing inverse probability of censoring weights in Sect. 6.5.3.
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6.2.4 Multiple Testing

The problem of multiple hypothesis testing is well recognized in statistics and relates
to the probability of rejecting a null hypothesis when it is in fact true (referred to as
Type I error). In machine learning and data mining applications where analysis tends
to be more exploratory, it is not uncommon that tens or hundreds of hypothesis tests
are performed by the learning algorithm, and thus care must be taken in this context
as well. Some methods, both from classical statistics and machine learning, may
have some sort of multiple hypothesis testing performed as part of the internal
workings of their algorithm. This is true, for example, of model selection methods
that rely on significance findings to select predictor variables. But multiple testing
can occur in many other contexts as well, e.g., in medical applications in analyses of
genomics data to discover genes, among thousands considered, exhibiting signifi-
cant expression patterns of interest, or in evaluation of clinical safety data based on a
multitude of safety tests and types of adverse events. Today there are many
approaches for multiplicity control, some being more conservative or powerful
than others while being well disciplined, and so some methods may be more
appropriate than others in the context of machine learning.

It has been argued that especially in machine learning, where the number of tests
can be very large, it is useful to distinguish between the false positive rate and false
discovery rate (Glickman et al. 2014). The false positive rate is the probability of
rejecting a null hypothesis given that it is true. The false discovery rate (FDR,
introduced by Benjamini and Hochberg 1995) is the probability that a null hypoth-
esis is true given that the null hypothesis has been rejected by a test.

A classical Bonferroni procedure that safeguards against any false positive
findings is very conservative and has a consequence that the power to reject truly
false null hypotheses is greatly reduced as the number of hypotheses tested increases.
In the context of exploratory analysis where a large number of hypotheses are tested
with an intent to generate promising hypotheses for further investigation and con-
firmation, it may be more relevant to accept a possibility that some discoveries will
be false as long as their proportion among all significant findings is acceptably low.
This point of view is taken by approaches that control the FDR. Multiplicity control
involves establishing an appropriate adjusted significance level against which the P-
values should be compared or conversely adjusting the raw P-values directly. This
can also be achieved by resampling/permutation approaches (e.g., Westfall and
Young 1993; Westfall and Troendle 2008; Vsevolozhskaya et al. 2015) which can
provide empirical distribution of P-values. Resampling/permutation-based methods
are particularly useful for multiple testing with high-dimensional data as they do not
require specific distributional assumptions and utilize the data-based correlation
structure among variables which can provide important power advantages. Efron
(2010) provided an extensive discussion of issues in large-scale inference, including
a novel interpretation of Benjamini and Hochberg’s procedure from the empirical
Bayes perspective, and introduced the local FDR which is defined as posterior
probability of false discovery for a single hypothesis given test statistics for tested
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hypotheses. Another recent advance is developing a very general class of variable
selection procedures that control FDR via so-called knockoff variables—a special
type of irrelevant or “dummy” variables that mimic the correlation structure in the
original variables (Barber and Candès 2015).

6.2.5 Cross-Validation

Cross-validation (Allen 1974; Stone 1974; Geisser 1975) is a method widely used in
machine learning for estimation of the true error rate a.k.a. generalization error
(model assessment) as well as for variable selection and for estimating tuning
parameters that control the complexity of the model and machine learning algo-
rithms. In a nutshell, the motivation and general idea behind the cross-validation is as
follows. If we had a sufficiently large data set, we could partition it into a training
data set, to which a model can be fit, and a validation set, on which performance of
the model could be assessed. However, if the size of the available data set is not
large, a more efficient use of data, which also would lead to more stable estimates of
the model performance, can be achieved using K-fold cross-validation. In this case,
the original data set is split into K nonoverlapping data sets (folds) of equal size,
typically in a random fashion. For each fold k ¼ 1, . . ., K, a model is fit to a training
data set comprised of all data except the kth fold. We will denote such models asbf�k

xð Þ, k ¼ 1, . . . ,K. For each observation i ¼ 1, . . ., N in the original full data set,
let’s denote by k(i) the fold index to which the ith observation was assigned. The
cross-validation estimate of the prediction error can be obtained as follows, based on

some measure of error or loss L y,bf xð Þ
� �

defined for any given pair of predictors x

and response y:

dErrorCV ¼ 1
N

XN
i¼1

L yi,bf�k ið Þ
xið Þ

� �
:

The choice of the number of folds K influences a potential bias of the error
estimate (smaller K can result in a larger bias due to smaller sizes of the training data
sets) and its variance (larger K leading to higher variance as the training data sets will
tend to be more similar, i.e., having more observations in common). A special case
when K ¼ N is referred to as leave-one-out (LOO) cross-validation, in which case
N different models are fit, each to all data excluding only the ith observation. This
estimator is approximately unbiased but can have a high variance. In general, the
bias will depend on the size of the original data set and a slope of the error curve
versus the size of the training data set. Frequently used choices of the number of
folds K are 5 or 10 which attain a good balance between bias and variance in practice
(Breiman and Spector 1992; Kohavi 1995).
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Cross-validation can be used not only to obtain an estimate of the generalization
error of a chosen type of model but also to tune parameters of the fitting method, e.g.,
the size of the model or the amount of penalty placed on the magnitude of the
regression coefficients.

If modeling is carried out using several model selection steps, e.g., variable
selection and parameter tuning, cross-validation must be applied across the entire
sequence of steps: dividing data into k folds at the very beginning, carrying out all
modeling steps on all k-1 training sets (leaving the kth fold out), and estimating
model performance on the kth test fold. Otherwise, steps performed outside of the
cross-validation procedure (e.g., variable selection) may have an unfair “advantage”
in terms of basing their criteria on all available data, including those that would later
be used as new, test examples (see, e.g., Ambroise and McLachlan 2002). While
model selection and model assessment tasks both require cross-validation, it may be
done using different cross-validation approaches applied in a nested manner (Varma
and Simon 2006). One exception to the rule of subjecting the whole learning
procedure to cross-validation is that the steps based on unsupervised learning (not
involving outcomes) may be performed based on all available data, before creating
the folds.

Recent research (Krstajic et al. 2014) also investigated some variants on the basic
idea of K-fold cross-validation, e.g., with repeated random splits of the data and/or
stratification on the outcome variable.

6.2.6 Bootstrap

The bootstrap method was introduced by Efron (1979) and has been used exten-
sively ever since both in statistics and machine learning. In the course of any
analysis, some kinds of summaries (statistics) are typically generated to describe
the data set, the patterns, characteristics, and relationships underlying its variables. It
is useful to characterize the variability and distribution of the estimated statistic
induced by the sampling variability, but to do it through gathering many data sets
from the population is rarely feasible, and we have to content with having only one
data set for analysis. The basic idea of bootstrap is to use the data set at hand as a
“surrogate population” and to generate multiple data sets, called bootstrap samples,
by resampling with replacement from the original data for the purpose of approxi-
mating the distribution of the estimated statistic, which is referred to as the empirical
distribution. In the most generic application of bootstrap, one needs to estimate the
statistic of interest from each of these bootstrap samples, and these multiple esti-
mates serve as samples from the statistic’s distribution. Using these values, one can
estimate different characteristics of the underlying sampling distribution, for exam-
ple, bias, standard error and associated confidence interval, and P-values for testing
statistical hypotheses, which were the primary goals of bootstrap when it was
invented. However, later bootstrap found other “unintended” uses within the realm
of machine learning, most notably a bootstrap-based point estimate also known as
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bagging estimator that plays a key role in algorithms of bagging and random forest.
The motivation for bootstrap averaging was that it reduces variability at the expense
of small amount of bias for unstable estimation processes where small perturbations
in the data may incur substantial differences in estimated models. We will further
discuss the application of bootstrap by “bagging” methods in Sect. 6.3.1. Many
machine learning procedures belong to this class owing to their inherent instability.

One type of instability is caused by model (variable) selection where bootstrap
can be very useful to evaluate model selection uncertainty, as we can fit a model of
the same type, such as stepwise selection or lasso, to multiple bootstrap training data
sets and obtain different characteristics such as the proportion of times a given
variable was selected across all samples which can be plotted against some tuning
parameters that control the selection process.

Another use of bootstrap is that it can also help to address the challenge with
estimation of the generalization error. Recall the earlier discussion that when
constructing a regression or classification model, we are mostly interested in model’s
predictive accuracy on test data not included in the training data set. Remarkably,
bootstrap can be used as a source for generating “test samples,” as when we create
bootstrap training data sets by resampling with replacement from the original data
set, naturally every bootstrap sample will include some observations multiple times,
whereas some will not be selected. In fact, it is easy to verify that the probability of
an observation to be included in any given bootstrap data set is 1� 1� 1

N

� �N
,

approximately 0.632. In order to estimate the generalization error on samples that

were not included in the training data, we can use the leave-one-out bootstrap
approach, similar to the LOO cross-validation approach discussed above. To esti-
mate the LOO generalization error on test data using some error or loss function

L y,bf xð Þ
� �

, for each of the N observations (xi, yi) in the original full data set, we only

look at the predictions from the models that were built with bootstrap training
samples where the ith observation was not included, indicated as a subset of indices
J(�i) ⊂ {1, ..,B}, and thus can be designated as a new, test example for this model:

dErrorLOOB ¼ 1
N

XN
i¼1

1

j J �ið Þ j
X
b2J �ið Þ

L yi,bf b xið Þ
� �

:

Observations that appear in all B bootstrap samples can be omitted from the error
calculation.

One drawback of the LOO bootstrap estimator of the generalization error is that
the average number of distinct observations in each bootstrap sample is about 0.632
of the original full data set size N and the quality of the model can decline with the
reduction of the training set size. In this case, the LOO bootstrap estimate will tend to
overestimate the true generalization error. The so-called .632 estimator addresses
this issue by estimating the generalization error as a weighted average:
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dError:632 ¼ 0:632� dErrorLOOB þ 0:368� dErrortrain,
where the dErrortrain is the training error calculated as the average prediction error
over all original training examples when the model is fitted to the full original
data set.

The “.632 estimator” corrects bias due to the reduction of the bootstrap training
set size, but the second bias-correcting term may be inappropriate if the amount of
overfitting is very large and the training error is close to zero, in which case the bias
of LOO estimator may be considerable. The “.632+ estimator” (Efron and Tibshirani
1997) improves on this estimator by adjusting the 0.632 and 0.368 weights to reflect
the amount of overfitting through the “no-information error rate” estimated as the
error rate of the model fit to a data set with no true association between the predictors
and outcome. This estimator was shown to outperform the LOO bootstrap and five-
and tenfold cross-validation in Efron and Tibshirani (1997), providing low variance
and moderate bias.

6.2.7 Ensemble Learning

Several approaches for supervised learning that emerged over the years share a
similar basic idea and can be considered as ensemble learning. The general principle
of ensemble learning is to build multiple, relatively simple prediction models
(referred to as base models or learners, often weak learners, i.e., capable of predic-
tion accuracy at least slightly above random guessing) and combine them into one
overall model, which can combine their strengths. As such, ensemble learning
consists of two tasks: estimation of a population of base learners from the training
data and combining them to produce overall predictions, e.g., by (weighted) voting
or averaging. One of the influential works in this area which propelled further
research and applications of these methods was done by Hansen and Salamon
(1990), who showed that predictions made by a combination of classifiers can be
more accurate than predictions from a single classifier as long as each base learner is
accurate and the classifiers are diverse. In this context, a classifier is considered
accurate if it is better than random guessing. Diversity means that different classifiers
make different errors on new data, so that if their errors are uncorrelated, the majority
vote or averaging will likely lead to a correct overall classification. We further
discuss these ideas in the context of bagging, random forests, and boosting
approaches in Sect. 6.3.1.

It should be mentioned that Bayesian model averaging approaches can also be
regarded in the framework of ensemble learning, for example, as a large number of
models are averaged according to their “credibility”—the posterior distribution of
their parameters (see, e.g., Madigan and Raftery 1994; Neal and Zhang 2006). At the
same time as pointed out, for example, by Domingos (2000) and Minka (2002),
ensemble methods and Bayesian model averaging differ fundamentally in that
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ensembles change the hypothesis space (e.g., from single decision trees to linear
combinations of them), while Bayesian methods weight hypotheses in the original
space according to a fixed formula. Bayesian model averaging is implicitly geared
towards model selection rather than model combination, so that weights attributed to
individual models can get extremely skewed due to overfitting, as too much weight
is placed on the maximum likelihood model, to the point where the single highest-
weight model usually dominates. In this case, performance of the Bayesian strategies
can be worse than that of bagging or boosting. However, if Bayesian method is
modified to integrate over combinations of models rather than over individual
learners, it can achieve much better results (Monteith et al. 2011; Kim and
Ghahramani 2012). These findings also lend support to the view that the power of
ensembles lies primarily in the changes in representational and preferential bias
inherent in the process of combining several different models.

6.3 Overview of Selected Methods

6.3.1 Supervised Learning

In Sect. 6.1, we discussed supervised machine learning as a counterpart of statistical
modeling for regression and classification, where the goal is to approximate a relation-
ship between the dependent variable (outcome) and one or more independent variables
(predictors). Regression analysis typically aims at estimating a regression function—
the conditional expectation of the outcome Y given the predictors X, E(Y|X). For
classification problems, where the outcome variable represents class labels k ¼ 1, . . .,
K, the objective may be to estimate a model of the posterior probabilities P(Y¼ k|X) or
define a rule that would assign to each case a class label. Linear regression and logistic
regression as well as modeling of other types of outcomes and underlying distributions
via generalized linear models and models of time to event are examples of classical
approaches widely used in statistics.

6.3.1.1 Penalized Regression

Penalized regression methods have been developed to provide a better prediction
accuracy while being computationally efficient and feasible to use even with a large
number of predictors. They had been independently proposed by different researches
for solving somewhat different tasks: (1) incorporating in the same model a large
number of potentially relevant but jointly redundant (“overlapping”) predictors
(sometimes exceeding the number of observations) without incurring instability in
estimated coefficients (multicollinearity) and (2) dealing with a large number of
irrelevant (noise) covariates among candidate predictors whose impact on estimation
should be minimized (sparsity). These methods estimate model parameters by
minimizing the residual sum of squares (more generally, some appropriate loss
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function, e.g., likelihood-based), but add a constraint (penalty) on the magnitude of
the parameters. While this penalty causes the parameter estimates to be biased, it also
decreases their variance that may achieve better performance via variance-bias trade-
off. Penalized methods work by shrinking estimated model coefficients to zero.
Some methods can shrink a coefficient exactly to zero (effectively eliminating the
variable from the model), whereas others shrink all coefficients to some non-zero
values. These methods are also referred to as shrinkage or regularization methods. In
penalized regression, chosen parameters satisfy the following constrained minimi-
zation condition, based on a set of N training samples:

eβ ¼ argmin β

XN
i¼1

yi � xTi β
� �2 !

,

subject to Penalty(β) < k.
Various penalized regression methods differ in terms of the penalty Penalty(β)

that they impose. The most popular methods are the ridge regression (Hoerl and
Kennard 1970), lasso (Tibshirani 1996), adaptive lasso (Zou 2006), and elastic net
(Zou and Hastie 2005).

These methods rely on one or more tuning parameters that determine the amount
of shrinkage. Thus, a penalized regression method can produce a set of models, each
associated with a specific setting of its tuning parameter(s). For the final model
selection, the analyst must employ a tuning method to choose the optimal setting of
these parameters. Among widely used approaches are model fit criteria, such as the
Mallow’s Cp statistic (Gilmour 1996) or Akaike information criterion (AIC) (Akaike
1974), Bayesian information criterion (BIC) (Schwarz 1978), average squared error
on the validation data, and cross-validation.

Penalized regression is implemented in commercial statistical packages, includ-
ing SAS®, as well as in R packages such as lasso2 (L1 constrained regression), lars
(Least Angle Regression [LARS], lasso, and forward stepwise selection), grplasso
(Group lasso), glmpath (L1 Regularization Path for Generalized Linear Models and
Cox Proportional Hazards Model), stepPlr (L2 penalized logistic regression with a
stepwise variable selection), elasticnet (elastic net regularization), glmnet (lasso and
elastic net regularized generalized linear models), and penalized (lasso and ridge
penalized estimation in generalized linear models and Cox regression model).

6.3.1.2 Classification and Regression Trees

Tree-based models became very popular in data mining solutions since the
mid-1980s of the last century and later made their way as building blocks in many
modern procedures (e.g., ensemble learning). Therefore, we describe them with
more details than others in this review.

Tree-based models can be used both for regression and classification. These
models are easily visualized as decision graphs resembling upside-down trees (see
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example in Fig. 6.2): with a single node at the top, called a root node, and where each
node can branch out into several (typically, two) child nodes. The nodes at the end of
each branch, i.e., nodes that do not have any children, are referred to as terminal or
leaf nodes. Each internal (non-leaf) node represents a split of the input space along
the axis of one predictor, e.g., Age � 18 vs. Age < 18. Each branch culminating at a
leaf node—a sequence of internal nodes—specifies a set of conditions with respect
to input variables involved in the splits along the branch which define a region in the
p-dimentional input space. Therefore, at the end of each branch, a leaf node
represents a corresponding region and is assigned a predicted outcome associated
with that region—either a numeric constant in the case of regression or a class label
in the case of classification. Hence tree-based models are often called piecewise
constant.

More specifically, a prediction model represented by a tree with M leaf nodes
where each region is denoted as Rm, m ¼ 1, . . ., M can be described as follows:

bf xð Þ ¼
XM
m¼1

bcmI x 2 Rmf g,

where I{x 2 Rm} is an indicator function for whether the values of input vector x
belong to the region Rm or not and cm are numerical constants or class labels
associated with the regions. For regression, one choice of cm is the average of
outcome values corresponding to training input samples that fall into the
corresponding region:

bcm ¼ average yijxi 2 Rmf g:

For classification, a class representing majority of yi values can be chosen as the
one determining the prediction in the leaf node:

 Nb_Previous_Premature_Labors = 1

 Nb_Physician_Visits = 0  Weight_Mother_lb < 106

 Age >= 18  Hypertension_History = Yes

Low Normal wLo Normal Low Normal

yes no

yes no yes no

yes no yes no

Fig. 6.2 Example of a classification tree for prediction of low/normal birth weight based on
mother’s characteristics (produced using R package rpart.plot)
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bcm ¼ argmax k
1
Nm

X
xi2Rm

I yi ¼ kf g,

where Nm is the number of training samples that fall into region Rm.
Fitting a tree-based model typically involves a recursive procedure which,

starting with the root note, looks for a beneficial split to associate with that node,
where a split creates two child nodes (here we focus on binary trees, although
procedures with multi-way splits have also been developed, see, e.g., Kim and
Loh 2001 and references therein), and so forth until some stopping criterion is
satisfied. This construction process includes a number of steps or tasks, and a
multitude of procedures have been developed that differ in how they go about them:

• How to choose splits at each node.
• How to decide whether splitting should stop.
• How to choose the optimal size of the tree (model complexity).
• How to assign a prediction value at each leaf (e.g., by averaging/voting as

described above).

Each split corresponding to a node in the tree is typically defined based on a
single predictor variable (although procedures that form splits based on
low-dimensional functions of data have also been proposed). If the variable is
quantitative (ordinal), the split condition is of the form “Xj � s” where s can be
any number and is typically chosen among the values of Xj that actually occur in the
training data. If the variable is categorical, the split condition is of the form “Xj 2 A”
where A is any subset of classes that can be assumed by Xj. If the condition is
satisfied, the branch from that node leads to the left child, otherwise to the right child.
The same variable can be used for a split in multiple nodes of the tree.

During the recursive tree-fitting procedure, at each node, the algorithm has to
choose the best split across all input variables and their values. This decision is made
based on some measure of goodness of split, which is a measure of reduction in node
“impurity” due to the split. The most common measures (for classification trees) are
the Gini index and entropy (or information gain), while the misclassification error is
less frequently used although available in software implementations. Gini impurity
index measures how often a randomly chosen element from the set would be
incorrectly labeled if it were randomly labeled according to the distribution of labels
in the tree node, being the sum of pk (1� pk) across all categorical outcomes (labels)
k ¼ 1, . . , K, where pk is the probability of kth outcome, estimated by the proportion
of values {yi ¼ k} in a given node. Statistically, each component is the variance of a
Bernoulli random variate associated with the kth outcome category.

Information gain is defined as the reduction in entropy (an information theory
measure of uncertainty) due to the split. The entropy associated with each node is a
measure of “expected surprise” of the node’s outcome and is defined as the sum of
�pk log2( pk) across k ¼ 1, . . , K, which from the statistical perspective is simply
related to the negative multinomial log-likelihood. Gini and entropy measures,
unlike the classification error measure, are sensitive to class proportions in a node
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and can lead to more “pure” splits where one class is largely predominant. Thus, for
the node splitting decisions during the tree construction, the former two measures are
preferred. Nevertheless, all three measures can be useful for another aspect of the
tree optimization—pruning—which we briefly discuss further below.

For regression trees, a popular measure of impurity is variance, and the best split
is selected as the one that maximizes the reduction of the total corrected sum of
squares due to the split. It is equivalent to choosing the split that maximized the
between-group sum of squares in analysis of variance with the candidate split as an
independent variable.

Other splitting criteria based on statistical tests have also been developed. For
example, the CHAID algorithm (Kass 1980) for classification trees is based on a
chi-square statistic that tests for a chance difference of the observed distribution of
the categorical outcome across child regions. Similarly, the CHAID method for
regression trees uses the F-test from ANOVA models to test the null hypothesis of
equality of means between the child regions.

It should be noted that the splitting procedure outlined above tends to suffer from
a variable selection bias in that the input variables with more distinct values are
favored: the more choices are available for a given variable, the more likely it is to
find a good split using that variable for a training set at hand. This may amplify a
problem with noise variables if they have more unique values than strong predictors.
Several approaches have been developed to alleviate this problem, e.g., FACT (Loh
and Vanichsetakul 1988), QUEST (Loh and Shih 1997), CRUISE (Kim and Loh
2001), GUIDE (Loh 2002), and linear discriminant-based approach (Kim and Loh
2003). Another tree-based approach that selects variables in an unbiased way is
designed in a conditional inference framework—conditional trees (CTree) by
Hothorn et al. (2006). The latter approaches are also based on recursive procedures,
but when a split is being selected at a tree node, a splitting variable is selected first,
independently of the splitting value (and without an exhaustive search over all splits
for all candidate variables).

When values of some predictor variables are missing for some training observa-
tions, a question arises how to handle this in the splitting process. In the case of
categorical predictors, one can treat missing values as a separate category, which
may be beneficial if missingness itself is predictive of outcome. Another approach is
based on the use of surrogate variables. This strategy provides trees with a built-in
mechanism to deal with missing predictor values in a way that exploits correlations
between predictors.

When the best split is identified at the current node, two child nodes are created,
and the splitting process is repeated from each of these children, as well as all other
leaf nodes. There are several ways to decide when the splitting should stop. One can
impose a limit on the minimum number of training samples that fall into a region
associated with a leaf node, and when that limit is reached, splitting that node should
be stopped. Another possibility is to continue splitting until the reduction of node
impurity becomes smaller than some threshold. Yet another option is to stop when
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the best split is not statistically significant at a pre-specified level. This approach is
referred to as “forward selection” and is implemented in the CHAID algorithm.
These approaches will likely result in large trees, susceptible to overfitting, so the
initial large tree construction can be followed by pruning—reducing the size of the
tree—with the goal of optimizing some cost-complexity criterion involving a penalty
parameter interpreted as costs associated with each additional split that determines a
trade-off between the goodness of fit to the data and the size of the tree. Tree pruning
is considered a “backward elimination” strategy, and one popular approach is known
as the weakest link pruning. An appropriate value of the penalty parameter can be
found, for example, by cross-validation.

Table 6.2 provides a summary of different approaches available for classification,
regression, and survival trees across the three main steps of the tree building
procedure.

The key reference for the modern approach to tree-based machine learning is that
of Breiman et al. (1984). Books on statistical learning, e.g., by Ripley (1996) and
Hastie et al. (2009), and a recent comprehensive review by Loh (2014) can provide
further reading.

An early example of applications of tree-based models for clinical data predictive
modeling was construction of a diagnostic tool to identify patients with acute
myocardial infarction in non-traumatic chest pain patients on admission to the
emergency department (Mair et al. 1995). Other notable examples include classifi-
cation (diagnosis and prognosis) of pulmonary hypertension in mixed connective

Table 6.2 Summary of approaches for tree-based modeling

Step
Classification trees
(categorical response)

Regression trees
(quantitative response)

Survival trees
(time-to-event
response)

Variable
selection

Exhaustive search based on
splitting criteria (CART)

Exhaustive search based on
splitting criteria (CART)

Exhaustive search
based on splitting
criteria (LeBlanc and
Crowley 1992)

Pre-selection by F-test or χ2-
test (FACT, CHAID,
QUEST, GUIDE), associa-
tion measures (CTree)

Pre-selection by F-test
(CHAID) or χ2 test for sign
of residuals vs. predictors
(GUIDE), association mea-
sures (CTree)

Pre-selection by
association measures
(CTree)

Splitting
criteria

Reduction in Gini index
(CART), information gain
(CART, C.4.5), change in
log-likelihood due to split
(test statistic or adjusted P-
value, JMP), χ2 test of inde-
pendence (CHAID)

Reduction in total sum of
squares (CART, JMP),
adjusted P-value from F-test
(CHAID, JMP)

Reduction in devi-
ance residual
(LeBlanc and
Crowley 1993)

Stopping
criteria/
pruning

Pruning based on cost-complexity (CART, QUEST, GUIDE), pessimistic pruning
(C4.5), reduction in test error; stopping rules based on (adjusted) P-values (CHAID,
CTree), direct stopping rules (FACT), limits on minimum size of the leaf, number of
levels, etc.
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tissue disease (Kotajima et al. 1997); study of the effects of risk factors on time to hip
fracture using tree structures survival analysis (Lu et al. 2003); use of CART as
alternatives to logistic regression for the estimation of propensity scores in the
context of observational data analysis (Lee et al. 2010); determination of baseline
predictors of remission with placebo for patients with major depressive disorder
(Nelson et al. 2012); and tools for cancer prognosis and prediction (Konstantina et al.
2015).

The discussion above focused mainly on methods pertaining to the CART
(classification and regression tree) methodology. Other tree-based methods devel-
oped over the years include ID3, C4.5, and C5.0 (Quinlan 1986, 1993, 2004). The
latter, in particular, includes a scheme for deriving rule sets—simplifications of
conditions along a tree branch without altering the subset of observations that fall
in the branch leaf, which makes them easier to interpret. The multivariate adaptive
regression splines (MARS) method (Friedman 1991) can be viewed as a modifica-
tion of CART designed to improve smoothness of resulting models, the lack of
which is inherent in piecewise constant models realized by the trees, as well as to
allow fitting additive models, which are difficult to fit with trees. Hierarchical
mixture of experts (HME) (Jordan and Jacobs 1994) can also be viewed as a variant
of tree-based strategies, where splits are probabilistic functions of a linear combina-
tion of multiple inputs. Tree-based models can also be built for survival outcomes
(Gordon and Olshen 1985). For example, Therneau et al. (1990) suggested using
regression trees with null martingale residuals from a Cox proportional hazards
model as the outcome variable. Various splitting criteria for survival trees have
been proposed, e.g., a measure of within-node homogeneity based on the negative
log-likelihood of the exponential model within a node (Davis and Anderson 1989),
deviance residual (LeBlanc and Crowley 1992), weighted impurity based on the
observed times and proportions of censored and uncensored subjects in a node
(Zhang 1995), and two-sample log-rank statistics for the separation in survival
times between child nodes (Segal 1988). Approaches have also been developed to
extend the tree-based models to piecewise linear Poisson and logistic regression
(e.g., Chaudhuri et al. 1995; Loh 2006) and longitudinal and multi-response vari-
ables (e.g., Loh and Zheng 2013) including in a context of identification of subgroup
with differential treatment effect (Loh et al. 2016).

One issue with trees is their notorious instability, which is difficult to reduce even
with tree pruning strategies. Small changes in the training data set may lead to trees
with very different splits. Due to a hierarchical process of tree fitting, any errors in
the top layers of the tree propagate all the way down. One way of dealing with this
problem is bagging and random forests discussed below. These methods are based
on averaging over a collection of trees fitted to different random samples of the data,
which substantially reduces variability inherent in individual trees and typically
results in improved prediction accuracy.

There are several R packages that implement decision tree methods, for example,
the rpart (essentially implementing the CART algorithm), party (based on condi-
tional tree platform), and RWeka packages. Other R packages such as rattle, rpart.
plot, and RColorBrewer (a general-purpose color palette package) provide
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additional functions for visualizing the trees. Other examples of CART commercial
implementations include SAS® Enterprise Miner, IBM® SPSS® Decision Trees, and
a package by the Salford Systems. The non-R-based package GUIDE implements a
number of methods developed by W-Y Loh and colleagues over the last 20 years
with a common thread of unbiased variable selection (signified by the “U” letter in
the acronym).

6.3.1.3 Bagging

We have mentioned earlier the general idea of ensemble learning as a way to reduce
inherent variability in predictive models. Tree-based models, for example, can
benefit greatly from this approach as they are flexible enough to represent complex
functions (low bias), yet suffer from the high variance. One type of ensemble
learning is bagging (Breiman 1996)—a term that is a contraction of bootstrap
aggregation. As the component terms suggest, the idea is to form B bootstrap data

sets from the original data and fit a separate prediction model bf b xð Þ, b ¼ 1, . . . ,B to
each of them. Then an aggregated (bagged) prediction is obtained as

bf bag xð Þ ¼ 1
B

XB
b¼1

bf b xð Þ:

Bagging reduces the variance component of the generalization error, especially
when used with highly unstable models, such as regression trees. Because averaging
leaves the bias component unchanged, it improves the predictive accuracy in
general. Typically, to ensure the low bias, averaging is applied to full-sized
(unpruned) trees.

Analyses using bagging can be carried out using R packages ipred and adabag.

6.3.1.4 Random Forests

Random forest (Breiman 2001a, b) is another ensemble learning approach that adds
to bagging yet another stochastic element: for each candidate split in the learning
process, only a random subset of variables is considered (r � p of input variables).
This is done to reduce the correlation in the base trees leading to enhancing variance-
lowering advantages of bagging. When a collection of B trees is obtained on
bootstrap samples as in bagging, the trees can exhibit high correlation if there are
variables that are strong predictors of outcome, as these same predictors are very
likely to be selected as primary splitters in many trees. For bagging to be effective,
the base learners should be less dependent (ensuring larger diversity). This is
because the average of B identically distributed random variables has the variance of
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ρσ2 þ 1� ρ
B

σ2,

where ρ is a pairwise correlation and σ2 is a variance of each variable. The trees
estimated from bootstrap samples are identically distributed, and so the second term
diminishes with increasing number of bootstrap samples B, but the first term
becomes a bottleneck for variance decrease if the correlation ρ is high.

Selecting the best split from a random subset of variables increases the diversity
of the ensemble and prevents few “winners” to dominate all the trees. A discussion
of how bagging and random subspace projection together improve accuracy can be
found in Ho (2002). The smaller the number of variables used to select each split is,
the more reduction in correlation could be achieved (thus reduction in variance). At
the same time, as the total number of variables grows, and the fraction of relevant
variables decreases, the performance of random forests will degrade with a small
number of variables sampled for each split because the bias of each tree will increase.
A general recommendation is to use

ffiffiffi
p

p
variables to choose each split in classifica-

tion problems and p/3 (with a minimum of 5) variables in regression problems. This
number can also be treated as one of the tuning parameters of the algorithm. The
number of trees in the random forest, B, is another tuning parameter, and both can be
optimized, for example, using cross-validation. In principle, the depth of the indi-
vidual trees could also be a tuning parameter, but Segal (2004) demonstrated that
only small gains in performance could be achieved by optimizing this aspect, and so
full-grown trees are typically used.

After B full-sized (unpruned) trees are constructed using the random forest
algorithm, the overall predictor is determined in the same way as in bagging, e.g.,
as the average of all trees’ predictions for regression, and a majority vote across
predictions from all trees for classification.

The performance of random forests is often very similar to boosting—another
powerful approach that we summarize below—and it often requires relatively little
tuning (offer a more “automated” approach compared to boosting).

One of the bonus features of the random forest algorithm is that it provides an
estimate of the generalization accuracy based on the out-of-bag (OOB) samples. As
previously discussed (Sect. 6.2), test samples not included in the training data play a
key role in estimating the generalization error. In the context of random forests, it can
be achieved by constructing the overall prediction for each observation xi in the
original full training set by using predictions only from those trees that were
estimated from the bootstrap samples where the observation (xi, yi) was not included.
Although the OOB error estimates are very similar to those produced by cross-
validation, with random forests, generalization error estimation can utilize the same
bootstrap replicates that were used for model fitting and thus does not create a
computational overhead. Wager et al. (2014) extended an earlier work on estimation
of the variance for bagged predictors and proposed an efficient approach to variance
estimation based on jackknife and infinitesimal jackknife estimators. In this work,
Wager et al. addressed potential upward bias in bagged variance estimates due to the
Monte Carlo noise resulting from a finite number of bootstrap replicates. They
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developed bias-corrected versions of the jackknife and infinitesimal jackknife
estimators.

The random forest method also provides variable importance scores to rank
predictive strengths of all input variables. Variable importance is naturally defined
in the context of tree-based models. Any input variable Xj, j ¼ 1, . . ., p can be
involved in multiple splits across the tree and thus contribute to the reduction of node
impurity. One way of defining the relative importance of variable Xj in a tree T is as
follows:

I j,Tð Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
τ2T

a s j, τ
� �

ΔQ τð Þ
s

,

where the sum is over nodes τ in the tree T, function a(sj, τ) reflects whether variable
Xj is involved in a main or surrogate splitting rule sj in node τ, and ΔQ(τ) is a
reduction in node impurity due to a split of this node. Variable importance scores
estimated within each individual tree are then accumulated over all trees for each
variable. Additionally, permutation-based variable importance is also computed by
random forests utilizing the OOB samples. This is done by first estimating prediction
accuracy on the OOB samples for each tree separately. Then, to estimate the variable
importance of variable Xj, values of this variable are randomly permuted across OOB
samples, and prediction accuracy is again estimated in those permuted observations
for each tree (i.e., without refitting the trees). The decrease in prediction accuracy as
a result of permutation is then calculated and averaged across all trees. Although the
ranking of variables according to their variable importance scores tends to agree for
these two methods, there are some differences in the distribution of the scores.

Other useful features of random forests include computation of proximities
between observations that can be used for clustering and locating outliers. Marginal
effects of the individual variables on the outcome can also be estimated, which we
will illustrate in a case study in Sect. 6.5.3.

The elements of the random forest method as discussed here were introduced by
Breiman (2001a, b) following his development of bagging (1996); of note, the term
“random forest” was introduced earlier by Ho (1995) in the context of a method
based on a consensus of trees estimated in random subspaces of input features.
Research and improvement of the random forest methodology continue, e.g., by Xu
(2013). Random forests have had many uses in large applications in genomics and
proteomics as well as in the analysis of clinical data. The following are just some
examples of the latter applications: predicting disease risk from medical diagnosis
history using Healthcare Cost and Utilization Project data set (Khalilia et al. 2011),
detection and prediction of Alzheimer’s disease (Lebedev et al. 2014),
multidimensional clinical phenotyping of an adult cystic fibrosis patient population
(Conrad and Bailey 2015), and clustering of patients based on tissue marker data
(Shi et al. 2005).

Several variants, extensions, and methods related to the random forest method-
ology have been introduced over the years. A relationship between random forests
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and the adaptive nearest neighbor algorithm was pointed out by Lin and Jeon
(2006)—both approaches can be viewed as so-called weighted neighborhoods
schemes. Friedman and Hall (2007) suggested that subsampling without replace-
ment can be used as an alternative to bagging and demonstrated that fitting trees on
samples of size N/2 achieves approximately the same performance as bagging, and
using smaller fractions of N can reduce the variance even further. The “extremely
randomized forest” is an extension of the random forest method where both a subset
of input variables and their possible split values are selected randomly when
considering candidates for each split (Geurts et al. 2006).

Instead of fitting decision trees as base learners in the random forest, other
alternatives have been proposed, e.g., multinomial logistic regression and naive
Bayes classifiers (Prinzie and Van den Poel 2008) and naïve Bayes models (Aridas
et al. 2016). Other variants of random forests include multivariate random forests
(Segal and Xiao 2011), enriched random forests (Amaratunga et al. 2008), quantile
regression forests (Meinshausen 2006), and random survival forests (Ishwaran et al.
2008).

Random forest software maintained by a collaborator of Leo Breiman, Adele
Cutler, is publicly available online (http://www.math.usu.edu/~adele/forests/). There
are also several R packages, such as randomForest, randomSurvivalForest,
extraTrees (extreme random forest), and varSelRF (variable selection using ran-
dom forest) implementing this methodology.

6.3.1.5 Boosting

Boosting represents another family of ensemble learning algorithms. It was origi-
nally introduced for classification as a way to combine many weak learners to
produce a powerful “committee.” One of the most popular boosting algorithms
introduced by Freund and Schapire (1997), called AdaBoost, relies on a set of
weak classifiers whose error rate is only slightly better than random guessing. The
weak classification algorithm is applied M times to modified—weighted—training
data sets. At the first iteration, weights of all data samples are equal wi ¼ 1/N, and a
classifier bf 1 xð Þ is estimated based on a data set with such weights. At subsequent
iterations, m ¼ 2, 3, . . ., M, weights are increased for those observations that were
misclassified by the classifier from the previous iteration, bf m�1 xð Þ, and decreased for
observations that were classified correctly. As the algorithm progresses, successive
classifiers are compelled to focus on “difficult” cases missed by previous classifiers.
The overall classification at the end is obtained as

bf AdaBoost xð Þ ¼ sign
XM
m¼1

αm bf m xð Þ
" #

,

where αm are the weights determining the contribution of each learner based on its
weighted training error. Boosting can dramatically increase the accuracy of very
weak single classifiers (those that are just slightly better than random guessing) and
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outperform large single classification trees. Breiman called AdaBoost as the “best
off-the-shelf classifier in the world,” and the ideas have since been extended to
regression as well.

As it was shown later (Friedman et al. 2000), the AdaBoost is a special case of a
general class of forward stagewise additive modeling, where the overall predictor
consists of an additive model in some basis functions (base learners) h(x, β), with
each function fitted and added sequentially without changing parameters of the
previously fitted functions so that the overall prediction can be improved. After
fitting an initial model, at each subsequent stage, m ¼ 2, 3, . . ., M, the overall

additive model from the previous stage is expanded asbf m xð Þ ¼ bf m�1 xð Þ þ hm x,bβ� �
,

so that the additional component hm x,bβ� �
improves the performance of the previous

model. Least Angle Regression is a computationally efficient version of the
stagewise approach. Its details and connections to the lasso regression can be
found in Efron et al. (2004).

The base learner h(x, β) can be selected from a variety of choices: a linear model
(e.g., ordinary linear regression with few best selected predictors), a smooth model
(e.g., spline), or a shallow tree (perhaps the most common choice). The complexity
of the base learner (e.g., the number of terminal nodes of the tree) is controlled by
the user.

Gradient boosting (Friedman 2001; Mason et al. 2000) is a generalization of the
stagewise modeling approach that allows the optimization of any differentiable loss
function and applies to both regression and classification. Stochastic gradient
boosting proposed by Friedman (1999) also incorporated some “elements” of bag-
ging, where each successive base learner is fitted on a subset of the training data set
drawn at random without replacement. Friedman reported significant improvements
with the stochastic gradient boosting when the size of the subsample is between 50%
and 80% of the original data set size. The subsampling strategy also allows for
estimation of the generalization error using “out-of-sample” observations, similar to
as it was described for bootstrap.

Another element that may help prevent overfitting and improve the accuracy of
boosting is introduction of regularization (shrinkage) parameter 0 < ν � 1, so that
instead of adding the “full fit” for each successive learner, only a portion of the fit

νhm x,bβ� �
is added. The meta-parameter ν is also called “learning rate” parameter

because it controls how much is learned from the training data at each step. To
summarize, gradient boosting implements several elements of “slow learning” that
prevents adapting to the random features of the training data and ensures its ability to
generalize well to the “new” data (prediction performance):

• Forward stagewise strategy (not updating previously fitted components of the
ensemble when adding new fit)

• Subsampling (fitting a subsequent learner to a random fraction of the training
data)

• Shrinkage (adding only a portion of the new fit)
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The two most important complexity parameters that control gradient boosting are
the number of iterations (fitted models, M ) and learning rate (ν), and they are
selected by cross-validation. Typically, the smaller the learning rate, the larger is
the number of iterations required to achieve a good fit (i.e., until the model starts
overfitting training data).

Both random forest and gradient boosting are ensemble methods and have shown
comparable performance on a variety of benchmark data sets. However, as boosting
is connected with forward stagewise modeling, its theoretical properties are more
amenable to analyses compared to random forest that appears more as a “black box”
and a highly heuristic method. In particular, the fact that model complexity of the
base learner is controlled by the analyst and kept at relatively low level makes
boosting a useful tool for understanding the underlying structure of the data. By
fitting different boosting models with a tree as the base learner and having varying
depths (the number of terminal nodes, K), one can assess the presence of k-order
interaction effects in the data. For example, if K ¼ 2, only main effects can be
captured by a boosting model, as each fitted tree is a “stump” (split on a single
variable) capturing only the main effect of that variable; if K ¼ 3, two-way
interactions can be captured, etc. Friedman and Popescu (1999) developed a proce-
dure based on parametric bootstrap for conducting formal significance testing for the
presence of interaction effects.

An excellent discussion of boosting from a statistical perspective for estimating
complex parametric and nonparametric models, including generalized linear, addi-
tive, and survival analysis models, as well as its application to variable selection, can
be found in Bühlmann and Horthorn (2007).

Analyses using boosting approaches can be carried out using various R packages:
adabag (AdaBoost and bagging), ada (AdaBoost with some Friedman’s modifica-
tions), gbm (tree-based gradient boosting), GAMBoost (boosting with penalized
B-splines), mboost (boosting with high-dimensional (generalized) linear or smooth
additive models and a possibility to supply own implementation of any negative
gradient for general surrogate loss functions), and xgboost (Extreme Gradient
Boosting, which can automatically do parallel computation on a single machine
and includes many common objective functions with the flexibility of allowing for
customized objective functions). Two recent additions worth noting are bujar
(implementing boosting for survival data) and bst (implementing a method called
twin boosting; Bühlmann and Hothorn 2010).

6.3.1.6 Support Vector Machines

A support vector machine (SVM) is a supervised learning method which was
originally developed for classification and later extended to regression. In the context
of classification, it is based on a concept of decision boundary or a hyperplane that
separates a set of objects in the space of their attributes belonging to different classes.
The algorithm tries to learn a parameterized hyperplane that maximizes the margin
between the hyperplane and the closest training examples in each class. For example,
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in a p-dimensional input space and a binary classification problem, a linear SVM
classifier is the one that can separate two response classes using a ( p � 1)-dimen-
sional hyperplane. If data cannot be perfectly separated and classes overlap in the
input space, one can define a hinge loss function that allows some samples to fall on
the wrong side of the margin (giving zero penalty to samples inside the margin and
linearly increasing penalty for those on the wrong side), thus introducing a cost of
each misclassification. This leads to a constrained optimization problem, and a
classifier of this type can be estimated using a quadratic programming solution
with Lagrange multipliers. An extension of this idea is that if a satisfactory linear
classifier cannot be obtained, then the input space can be mapped/transformed to a
higher-dimensional feature space and then a linear classifier can be built in that
feature space. This is reminiscent of other linear methods that expand the model
complexity by using, for example, basis expansions such as polynomials or splines.
In the case of SVMs, the feature space is allowed to have a very high dimensionality,
but the learning algorithm deals with this efficiently by using a hinge loss function
and a form of regularization. Indeed, it can be shown (Hastie et al. 2009) that the
solution to the constrained optimization posed by SVM is equivalent to estimating a
classification model with the hinge loss function and quadratic (ridge) penalty on the
coefficients.

The elements that form the foundation of SVMs have been introduced by Vapnik
(1996). Other references for introductory reading include a tutorial by Burges (1998)
and Evgeniou et al. (2000). Examples of SVM use for clinical data analysis include
applications in diabetes research (Kavakiotis et al. 2017), classification of major
depressive disorder (Sacchet et al. 2015), breast cancer diagnosis (Zheng et al.
2014), predicting Alzheimer’s disease using linguistic deficits and biomarkers
(Orimaye et al. 2017), etc.

SVMs are a member of a more general class of kernel methods (Shawe-Taylor
and Cristianini 2004) based on the use of kernel functions that operate in a high-
dimensional feature space by computing inner products between mappings of data
pairs in the feature space. This approach is sometimes referred to as a “kernel trick”
because the operations involving inner products in the feature space are computa-
tionally cheaper than the ones in the original space. Kernel-based algorithms include
Gaussian processes, principal components analysis (PCA), canonical correlation
analysis, ridge regression, spectral clustering, and others.

SVM implementations are available in R in the SVM and svmpath packages,
SAS® Enterprise Miner®, a C-based SVMlight package from Cornell University
(available at http://svmlight.joachims.org/), and many other packages publicly avail-
able online.

6.3.1.7 Artificial Neural Networks

The roots of neural networks can be traced back both to statistics and machine
learning. The basic principle is to create features as linear combinations of inputs and
then to fit a predictive function as a nonlinear function of these derived features. In
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statistics, this idea was used, for example, in the projection pursuit regression, which
is based on an additive model of a collection of nonlinear nonparametric functions of
the linear combination of the original predictors. The richness of such models in
terms of their capacity to represent arbitrary complex functions increases as the
number of these feature functions grows, but this also comes at the cost of low
interpretability—resulting in a so-called “black box” method.

The term artificial neural network emerged in the fields of artificial intelligence
and machine learning, where parallels between the underlying computational model
and brain functioning were drawn. A basic artificial neural network model is often
represented in the form of a directed graph consisting of several layers of units, the
first layer representing the original predictor variables and the last layer the outcome
for regression or classification. Values (signals) from one layer are fed into units of
the subsequent layer, where units are thought of as representing neurons. Signals
pass through the connections representing synapses, which can “weight” the input
signals upon entry to the neuron. Each unit then represents a weighted linear
combination of its inputs and produces an output signal when the weighted combi-
nation exceeds some threshold (i.e., the neuron fires). The outputs from the units in
one layer can then be fed as inputs to the units of the subsequent layer. The function
regulating “firing” of each neuron can be a step function or a smoother alternative
such as the sigmoid function. Fitting such models can be done using a gradient
descent approach, referred to in the neural network literature as back-propagation, as
it relies on the chain rule for differentiation. Neural networks can be prone to
overfitting, and approaches similar to regularization have been developed to deal
with the issue. Performance can be sensitive to the initial values of the synaptic
weights and to the scale of the input values. The number of units and inner layers
typically also needs to be tuned, for example, using cross-validation. The gradient
descent-based learning is prone to converge to local optima and benefits from
introducing randomness into the starting values of synaptic weights as well as
from the use of bagging. Some researches consider artificial neural networks to be
a foundation for advances in large-scale machine learning due to their ability to
produce highly accurate predictive models in a wide range of applications, including
image and sound recognition, text processing, time series analysis, etc. Recently
neural networks experienced a revival under the name of “deep learning,” to a large
extent due to the availability of increased computational power allowing building
networks with a larger number of layers than before and some additional improve-
ments in the network architecture (Efron and Hastie 2016). The black box nature of
neural networks and the fact that they can be difficult to tune represent some of their
disadvantages, which may be particularly important in the context of clinical data
mining where the focus is often on generating new, interpretable insights about the
data patterns.

Projection pursuit method is due to Friedman and Tukey (1974) and Friedman
and Stuetzle (1981). Modern approaches to neural networks are developed by
Werbos (1975) and Rumelhart et al. (1986). The book by Ripley (1996) provides
an excellent further reading. Applications of neural networks in the clinical data
analysis are numerous. Recent examples include a cardiac health prognostic system
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(Sunkaria et al. 2014), cancer prognosis and prediction (Konstantina et al. 2015),
applications in prostate cancer (Cosma et al. 2017), prediction of pregnancy out-
comes in women with systemic lupus erythematous (Paydar et al. 2017), etc.

The original neural networks algorithm has been extended in many ways over the
years, giving rise to feed-forward, recurrent, probabilistic, modular, and neuro-fuzzy
neural networks and many other variations.

Several R packages offer neural networks learning, such as nnet, neuralnet,
H2O, DARCH, deepnet, and mxnet; SAS® Enterprise Miner® provides neural
networks functionality, and there are many publicly and commercially available
software packages online.

6.3.2 Unsupervised Learning

6.3.2.1 Clustering

Clustering is one of the major applications of unsupervised machine learning. The
goal of clustering is to find a grouping (a set of clusters) of a collection of objects,
described by their input attributes so that the objects assigned to the same cluster are
more similar to each other than to objects in other clusters. Sometimes clusters may
need to be arranged in a hierarchy to reflect some natural structures in the data. Once
clusters are learned from the data, some descriptive summary attributes may be of
interest to describe specific properties of objects within each cluster.

A key concept in clustering is a definition of similarity measure, or conversely
dissimilarity measure, based on which the relationship between objects can be
evaluated. There are several frequently used measures, but an appropriate choice is
often dictated by domain knowledge. In general, the choice of the dissimilarity
measure is very important and can have a crucial effect on the resulting clustering
(some say that even more so than the choice of the clustering algorithm).

The classical K-means algorithm can be used, for example, when all input vari-
ables are quantitative, and the dissimilarity measure is based on the average squared
distance—the Euclidean distance. When the Euclidian distance is used as a measure
of dissimilarity, the algorithm may be sensitive to outliers, as the observations with
the largest distance will have a significant influence on the loss function. For this
reason as well as to allow non-quantitative input attributes, the algorithm can be
generalized to use other appropriate dissimilarity measures. This more general
approach is often referred to as K-medoids method.

The term K-means clustering was first used in MacQueen (1967) although the
underlying ideas were introduced by Lloyd (1957) and basically the same algorithm
was published by Forgy (1965). The more general K-medoid procedure was
described in Kaufman and Rousseeuw (1990). Description of this algorithm can be
found in many machine learning textbooks, e.g., Hastie et al. (2009). Some recent
examples of applications of K-means clustering in the analysis of clinical data
include identifying subgroups of fibromyalgia patients with different forms of
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disease and outcomes (Docampo et al. 2013; Lipkovich et al. 2014), identifying
clinical phenotypes in chronic obstructive pulmonary disease patients with multiple
comorbidities (Burgel et al. 2014), phenotyping of severe asthma patients (Wu et al.
2014) and bipolar disorder patients (Wu et al. 2017).

K-means clustering is closely related to the Expectation-Maximization
(EM) algorithm. Parallels between the two can be drawn in that the K-means
clustering approach, for example, in the case of continuous variables, models each
cluster by a spherical Gaussian distribution, but assigns each data sample to a single
cluster and uses equal weights to mix cluster distributions. Both algorithms are
special cases of modeling with Gaussian mixtures. Another approach that can be
viewed as a generalization of the K-means clustering is the K-SVD algorithm
(Aharon et al. 2006). It uses a set of K so-called dictionary functions (e.g., wavelets,
curvelets, etc.) to create sparse representations of high-dimensional data as linear
combinations of dictionary functions. The algorithm then iterates by alternating
between sparse coding of the data samples based on the current dictionary and
updating the dictionary to fit the data better. Self-organizing maps (Kohonen
1989) is a related method that can be viewed as a constrained variant of K-means
clustering where cluster centers are placed on one- or two-dimensional manifolds in
a feature space constructed from original variables.

K-means clustering is readily available in R stats package through the kmeans
function. The R package cluster implements the algorithm for partitioning around
medoids. This package also implements a CLARA algorithm specifically designed
to work with large data sets. The R package clustMixType implements an extension
of K-means to mixed data types and package kml to longitudinal data. SAS® offers
multiple procedures for clustering, including FASTCLUS implementing the K-
means algorithm.

Hierarchical clustering is another approach which produces a hierarchical repre-
sentation of data groupings, often graphically depicted by a tree-like structure known
as dendrogram: individual observations are associated with the lowest level of the
hierarchy (leaves), and the entire data set is represented by the highest level—single
cluster (root). There are two approaches for hierarchical clustering: agglomerative
and divisive based on either recursive merging or partitioning of the data from the
previous level of the hierarchy. Hierarchical algorithms work with a measure of
dissimilarity between disjoint groups of observations represented by nodes in the
hierarchy, which in turn is based on a measure of dissimilarity between individual
observations. In agglomerative strategies, the dissimilarity between clusters that are
merged from one level to the next is monotone increasing, and the dendrogram is
typically drawn such that the height of each node is proportional to the dissimilarity
between its two child nodes. Dendrograms provide a graphical summary of the data,
but not an obvious description of the clusters, and represent the structure imposed by
the algorithm as applied to a particular training sample, which may not necessarily
reflect any natural hierarchy in the domain.

Early approaches to agglomerative hierarchical clustering are due to Ward
(1963), Macnaughton Smith et al. (1965), Sibson (1973), and Defays (1977). The
books by Kaufman and Rousseeuw (1990) and Hastie et al. (2009) provide a good
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discussion of various clustering algorithms, including hierarchical approaches. Some
recent applications of hierarchical clustering in clinical data analysis include finding
groups of fibromyalgia patients with similar efficacy outcomes across multiple
symptom scales (Abtroun et al. 2016), identification of biomarkers for tuberculosis
susceptibility (Luo et al. 2014), identifying distinct hemostatic responses to trauma
and key components of the hemostatic system that vary between responses (White
et al. 2015), etc.

In the R stats package, hierarchical clustering can be carried out using the hclust
function. Other R packages implementing hierarchical approaches include cluster,
fastcluster, fastClust, genie, and pvclust. SAS® procedure CLUSTER provides an
implementation of hierarchical clustering. Open-source Cluster 3.0 software is
available for most operating systems. Most commercial statistical software packages
provide hierarchical clustering functionality.

6.3.2.2 Principal Components and Related Methods

Principal component analysis is a dimensionality reduction method where the goal is
to find a low-dimensional representation of the data that captures most of the
information (variability) of interest in the data. The classical approach relies on the
orthogonal linear transformation of the data to a new coordinate system where the
principal components are linear manifolds approximating a set of N p-dimensional
data points. Some nonlinear generalizations of PCA have also been developed where
the principal components are curved manifold approximations. In the linear case,
each component is a linear combination of the p original variables. Principal
components are constructed as a sequence of components that are mutually
uncorrelated and ordered by variance, so that the first principal component accounts
for the largest amount of variability in the data, and each subsequent component has
the highest variance subject to a constraint that it is orthogonal to the preceding
components.

Principal components are typically constructed by eigenvalue decomposition of a
data covariance or correlation matrix or a singular value decomposition of a data
matrix usually after applying appropriate standardization of variables (e.g., to have
0 mean and standard deviation of 1, corresponding to PCA on the correlation
matrix). The decision of whether PCA should be applied to raw or transformed
data and the selection of appropriate transformation depends on various subject-
matter considerations. For example, PCA on data covariance allows one to capture
nontrivial differences in variances among variables, whereas applying PCA to
correlations effectively standardizes the data to have the same (unit) variances.
The former makes sense when variables are commensurate: for example, reflecting
similar rating scales or the same outcomes measured at different time points.
However, if the variables are incommensurate, the differences in variance are not
meaningful and may reflect trivial differences in measurement scales. As an
“extreme case,” consider difference in the variance of two variables representing
the same variable “body weight” measured first in pounds and then in kilograms. In
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such cases, of course, data should be standardized before applying PCA. However,
one may consider standardizing to unit variances too radical, as it completely washes
away any differences in variability among variables, and prefer other standardization
procedures, such as transforming data to vary within a unit range. It is also a
common practice to remove outliers from the data before applying the PCA if they
can be identified, as the results may be quite sensitive to them. Some variants, such
as weighted PCA, have been proposed to improve robustness in this respect.

It is a common practice to visualize multivariate data sets by low-dimensional
scatter plots using the first 2–3 principal components. This is a special case of a
broad class of multidimensional scaling procedures (MDS, Kruskal and Wish 1978).
A related visualization technique is the biplot display, based on singular value
decomposition of (appropriately transformed) data matrix (Gower and Hand 1996;
Lipkovich and Smith 2002). In biplots, both data columns and rows are represented
graphically: as rays and dots, respectively. The cosines of angles between rays
roughly reflect the correlations between variables, and the projections of data points
onto the rays reflect the data coordinates (values) in the underlying multidimensional
space.

The founding ideas behind the PCA date back to 1901 due to Pearson and 1933
due to Hotelling. PCA is covered in many textbooks, e.g., Jolliffe (2002) is devoted
entirely to this method, its applications, and many of its variants. PCA was used to
identify distinct patterns of coagulopathy after trauma in Kutcher et al. (2013), to
uncover important differences in how patients and informants perceive and report
Alzheimer’s disease symptoms using the Clinical Meaningfulness in Alzheimer
Disease Treatment scale (Jacova et al. 2013), and to explore the association between
anemia (hepcidin and hemoglobin levels) and clinical disease activity and acute
phase response in patients with rheumatoid arthritis (Padjen et al. 2016).

A counterpart of PCA for analysis of nominal categorical data is a multiple
correspondence analysis (MCA) (Greenacre 1984). PCA forms principal compo-
nents as linear combinations of all input variables which may be problematic in
sparse domains where p > N. Sparse PCA (Zou et al. 2006) addresses this challenge
by looking for linear combinations that involve a subset of just a few input variables.
PCA is related to the factor analysis (FA, Cattell 1952) and the independent
component analysis (Hyvärinen and Oja 2000) that aim to explain joint variations
in input variables by unobserved latent variables. Probabilistic PCA (Tipping and
Bishop 1999) is a closely related method where principal axes are determined
through maximum likelihood estimations of parameters in a latent variable model.
Kernel PCA (Schölkopf et al. 1997) uses a “kernel trick” that forms the basis of
support vector machines, where data is first nonlinearly mapped into a high-
dimensional feature space, and then the PCA is performed in that space, thus
generalizing the PCA to a nonlinear setting.

PCA is implemented in many publicly and commercially available packages. In
the R’s stats package, the functions princomp and prcomp provide the PCA
functionality, as well as such packages as FactoMineR and ade4. In SAS®, pro-
cedures PRINCOMP and FACTOR implement the PCA.
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6.3.3 Semi-supervised Learning

6.3.3.1 Methods for Biomarker and Subgroup Identification from
Clinical Trial Data

Various methods for subgroup and biomarker identification have been proposed
during the last decade in statistical literature as a response to the need for precision/
personalized medicine: to provide the best treatment for a patient with specific
characteristics at a particular time. A comprehensive review can be found in
Lipkovich et al. (2017). See also recent review papers focusing on special types of
modeling by Lamont et al. (2016), Henderson et al. (2016), Ondra et al. (2016), and
Janes et al. (2013).

Broadly, these methods fall within the class of semi-supervised learning, as the
goal is predicting treatment contrast for a patient given his or her biomarker profile.
Here a biomarker is understood as any patient-specific measure (covariate) taken
prior to assigning a treatment. Unlike patient’s outcomes, treatment contrasts are not
fully observed in the training sample when patients are exposed to only one of the set
of possible treatment options (which is typically the case unless a crossover design is
entertained). In the literature on the analysis of medical data, biomarkers that are
predictive of treatment contrast are called predictive, and biomarkers that are
predictive of patient’s outcomes if left untreated are called prognostic. This is
somewhat confusing and inconsistent with the general statistical and machine
learning terminology where prediction and predictive covariates/variables (predic-
tors) are understood in a broader sense. Nevertheless, we will adopt the above
distinction between predictive and prognostic biomarkers that has been accepted
by researchers in the area of subgroup analysis. A biomarker can be predictive and
prognostic, only prognostic, and only predictive. The latter case corresponds to rare
occasions when a biomarker is not predictive of outcomes for the untreated (more
broadly, “control”) population but is predictive of outcomes in patients who
underwent experimental treatment. The distinction depends on the definition of the
estimand for measuring treatment contrast: for example, a biomarker may be pre-
dictive when measuring the treatment effect in a binary outcome as the difference in
proportions but not predictive when using odds ratios and vice versa. Figure 6.3
depicts several situations: when a biomarker is (a) prognostic but not predictive,
(b) both prognostic and predictive, (c) predictive but not prognostic, and (d) neither
predictive nor prognostic.

A plethora of methods for identifying predictive biomarkers and subgroups
(defined in terms of underlying predictive biomarkers) emerged in the recent liter-
ature from diverse research areas: machine learning, causal inference, multiple
testing, and design and analysis of clinical trials (see Lipkovich et al. 2017). To
facilitate our review, we will introduce some minimal notation that will help us in
describing common features and differences across subgroup identification methods.

Define a vector of p measurements for candidate biomarkers X1, . . ., Xp on the i
th

subject as xi ¼ (xi1, . . ., xip) and (for the sake of simplicity) two treatment arms
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(control and experimental treatment) indexed by variable T ¼ {0, 1} and the
outcome variable Y (for simplicity, assume Y is continuous or binary).

Assume the true response function has the following simple representation:
f(x, t) ¼ h(x) + (t � p) � z(x), where f(x, t) � E(Y|X ¼ x,T ¼ t); therefore,
z(x) ¼ f(x, 1) � f(x, 0) is the “personalized” treatment contrast, and h(x) is an
unspecified “baseline” function. The constant p is often conveniently used to
represent the probability of treatment, p¼ Pr (T ¼ 1).

Adopting potential outcomes framework (see a review paper by Little and
Rubin (2000) and references therein), for each subject we define two potential
(hypothetical) outcomes Y(1) and Y(0) with only one being observed. These out-
comes are connected with the observed data via the consistency assumption as
Y ¼ Y(1)T + Y(0)(1 � T ) and with the above quantities as f(x, t) ¼ E(Y(t)|X ¼ x),
t ¼ 0, 1 and z(x) ¼ E(Y(1) � Y(0)|X ¼ x).

Treatment regime is a function, g(x), that maps x to treatment 1 or 0. Optimal
treatment regime is defined as gopt(x)¼ I( f(x, 1)> f(x, 0)), where I(a) is an indicator
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Fig. 6.3 Schematics of predictive and prognostic markers: (a) prognostic but not predictive, (b)
both prognostic and predictive, (c) predictive but not prognostic, and (d) neither predictive nor
prognostic
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function that assumes values 1 or 0 when its argument a is true or false, respectively.
In terms of potential outcomes, it is the regime that maximizes the expected potential
outcomes assuming everyone follows the regime.

Subgroup S(X) is defined by a rule that assigns a subject to the subgroup based on
a biomarker vector x. For example, S(X) ¼ {x : X1 � a, X2 > b}. The subgroup
definition is also referred to as subgroup signature. Then treatment effect in the
subgroup S(X) is defined as E(z(X)|X 2 S(X)), where the expectation is computed
with respect to the distribution of X. A measure of how interesting a subgroup may
be is the excess of treatment effect in the subgroup over that in the overall popula-
tion: E(z(X)|X 2 S(X)) � E(z(X)).

The distinction between predictive and prognostic biomarkers can be formalized
as follows: prognostic biomarkers are those that contribute only to h(x) (the “main
effects”), whereas predictive biomarkers are those that also contribute to z(x) (and
perhaps to h(x) as well).

Based on the above definitions, we can classify different methods that have been
proposed recently for selection of predictive biomarkers (and choosing biomarker
cutoffs to define subgroups of patients) in terms of what estimands (functions or
components of these functions) they aim to estimate.

• Global outcome modeling: estimating the underlying outcome function f(x, t)
• Global treatment effect modeling: directly estimating the underlying treatment

effect z(x)
• Global modeling of treatment regimes: identifying an optimal treatment assign-

ment rule that produces positive treatment contrast given patients’ covariates
gopt(x) ¼ I(z(x) > 0)

• Local modeling: direct search for subgroups with a beneficial treatment effect,
i.e., identifying subgroups S(X) in the covariate space with large values of
treatment effect, such that z(x) > δ, for all x 2 S(X)

As a by-product or an intermediate step of many of these approaches, predictive
biomarkers can be identified and ranked; also, optimal cut points associated with
biomarkers are often evaluated.

This typology is meant to facilitate the discussion of different methods for
subgroup modeling and search and show connections between them. Clearly, these
classes are not mutually exclusive as the quantities that different methods estimate
are interconnected.

In what follows, we provide a brief description of existing approaches within each
class.

Global outcome modeling. Many approaches within this class estimate a single
response model that incorporates both main effects (prognostic effects) and treat-
ment by covariate interactions (predictive effects). Alternatively, separate regression
models for estimating outcomes within each treatment arm can be entertained.
Constructing subgroups typically requires multistage procedures: for example, at
the first stage of the Virtual Twins method of Foster et al. (2011), f(x, t), t ¼ 0, 1 is
estimated using a black box model (random forests) fitted to the observed data,
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which is used to compute hypothetical individual treatment differences bz xð Þ ¼bf x, 1ð Þ �bf x, 0ð Þ for each subject with an observed covariate vector x. These
differences are modeled at the second stage as outcomes via CART procedure.
Some researchers advocate for more traditional parametric regression approaches.
Since fitting parametric models with a large number of interaction terms poses a lot
of problems, methods of penalized regression and their extensions have been
proposed to mitigate some of these issues. One challenge in modeling outcomes
via penalized regression is that it may fail to detect important treatment-by-bio-
marker interactions that may be obscured by much stronger main effects (i.e., the
effects of prognostic biomarkers), which may require using different penalties for the
main and interaction terms (as in FindIt, approach by Imai and Ratkovic 2013).
Some methods use a combination of parametric and nonparametric modeling. For
instance, Cai et al. (2011) use a combination of a proportional hazards Cox regres-
sion at the first stage and nonparametric smoothing at the second; and Dusseldorp
et al. (2010) fit simultaneously an additive model (STIMA) for prognostic effects
and a tree-based regression model for predictive effects. Bayesian hierarchical
modeling of the response function with prognostic and predictive effects includes
an early proposal by Dixon and Simon (1991), Smoothing ANOVA by Hodges et al.
(2007), and methods based on Bayesian lasso (Gu et al. 2013). Recently, Henderson
et al. (2017) have proposed a fully nonparametric Bayesian approach to subgroup
evaluation in the context of accelerated failure time models (AFTM) for survival
outcomes where the regression function is modeled using Bayesian additive regres-
sion trees (BART) and the error function—via a flexible location mixture of normal
densities.

Global treatment effect modeling. Approaches in this class obviate the need to
model prognostic or “main effects”which “cancel out” in the course of modeling. As
a result, procedures in this class may be more robust compared to the global outcome
modeling, as they would not be so prone to model misspecification inevitable in
global outcome models. For example, in trees, pricewise constant estimates of z(x)
are obtained simply as treatment effect statistics computed within each terminal node
of a tree. The key contributions are Interaction Trees (IT) of Su et al. (2008, 2009)
and several new tree-based procedures proposed in Loh et al. (2015, 2016) within the
GUIDE recursive partitioning platform. Similarly, Seibold et al. (2015) illustrated
how the model-based recursive partitioning (MOB) platform could be adopted for
the purpose of subgroup identification by incorporating treatment effect in the
models considered within each leaf of the tree. Dusseldorp and Van Mechelen
(2014) introduced a tree-based algorithm (QUINT) for subgroup identification that
specifically aims at recovering qualitative interactions.

Individualized treatment regimes modeling. Note that the optimal regime can be
determined based on the estimated treatment contrast (as in the previous
approaches): gopt(x) ¼ I(z(x) > 0)). This approach, however, obviates the need of
estimating z(x) and directly targets the sign of z(x) as a binary outcome; it aims at
identifying qualitative interaction effects. If z(x) > 0 for all x (i.e., the drug has
beneficial effect for all patients), the potential outcome Y(1) can often be redefined
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by taking into account a fixed “treatment burden” or “cost.” δ > 0. For example,
defining eY 1ð Þ ¼ Y 1ð Þ � δ results in shifting the treatment contrast downward:ez xð Þ ¼ z xð Þ � δ, so that values become negative for some x and nontrivial optimal
regimes can be identified.

Broadly, this class includes any approach that matches patients to one set of
candidate treatments, based on available patient-level data. For example, Qian and
Murphy (2011) formulated the problem of finding an optimal individual treatment
regime (ITR) using traditional outcome modeling (“global outcome modeling,”
using our terms). They proposed a two-step procedure that first estimates the
conditional mean response using penalized regression (with lasso penalty) allowing
the inclusion of a large number of candidate biomarkers and associated treatment
interactions and at the second stage derives the optimal treatment assignment rule by
inverting the model for the conditional mean.

It became apparent, however, that determining optimal treatment regimes does
not require estimating the entire mean response function (which is driven by both
prognostic and predictive biomarker effects) but critically depends on identifying
only predictive biomarkers associated with qualitative (as opposed to quantitative)
treatment-by-covariate interactions. Gunter et al. (2011) proposed some methods for
identifying only biomarkers contributing to qualitative interactions with treatment
(and therefore to personalized rules) using resampling procedures that ensure family-
wise error rate control. Zhang et al. (2012) and Zhao et al. (2012) showed that
estimating optimal individualized treatment policies could be cast as a classification
problem. For example, in the weighted outcome learning (OWL) methodology of
Zhao et al. (2012), the optimal treatment regime gopt(x) is found as the one that
minimizes the weighted misclassification loss: E{I(T 6¼ g(X))w(Y,X)}, where the
expectation is taken with respect to the triple of random variables {Y,X,T}, and the
subject weights w(Y,X) are proportional to the outcome Y (here assuming larger
values are desirable) and inversely proportional to the probability of patients fol-
lowing the regime prescribed by the rule g(X). Then the optimal rule can be found by
standard methods of predictive learning aiming at minimizing misclassification loss
via appropriate smooth “surrogate” loss functions (e.g., hinge loss resulting in the
SVM classifier, well-known in the machine learning community, or negative bino-
mial log-likelihood, familiar to statisticians, resulting in the penalized logistic
regression). Intuitively, minimizing the above weighted loss would tend to recover
the optimal rule gopt(x) that would recommend the actually received treatment for
those patients who achieved good outcomes while suggesting switching the treat-
ment for those who failed the treatment they were assigned to in the trial. This
method applies to observational trials as well as randomized clinical trials. In the
latter case, the inverse weighting by the probability of treatment assignment is trivial
and determined by the randomization ratios; in the former case, estimating propen-
sity of the treatment as a function of baseline covariates X needs to be done as a
separate modeling step. Other key references include tree-based approaches by
Zhang et al. (2015) and Fu et al. (2016) and penalized regression methods by
Huang and Fong (2014) and Xu et al. (2015).
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We note that from the perspective of optimal treatment regimes, identified sub-
groups are the two subpopulations based on the sign of the estimated individual
treatment difference, sign(z(x)). Some researchers would argue that it may be not
sufficient to adequately describe the optimal treatment strategy by considering only
two subpopulations of patients (“treat” vs. “non-treat”). For example, Dusseldorp
and Van Mechelen (2014) consider three groups: patients who benefit from treat-
ment A vs. B, patients who benefit from B vs. A, and the rest allocated to “indiffer-
ence” zone comprised of patients for whom either treatment may work equally well
or not work. On the other hand, the perspective of subgroups defined by the optimal
treatment regime may be different from the idea of identifying “natural subgroups,”
say, as rectangular regions or “bumps,” which brings us to the last category in our
classification of subgroup methods.

Local modeling. The last class of subgroup search methods focuses on the direct
search for treatment-by-covariate interactions and selecting subgroups with desirable
characteristics, for example, subgroups with enhanced treatment effect. This
approach obviates the need to estimate the response function over the entire covar-
iate space and focuses on identifying specific regions with large differential treat-
ment effect. Some of the approaches under this heading (Kehl and Ulm 2006; Chen
et al. 2015) were inspired by bump hunting (also known as PRIM, Patient Rule
Induction Methods) by Friedman and Fisher (1999) which is a method of predictive
modeling that aims at estimating only regions where a target function (here, the
treatment contrast, z(x)) is large. They argued that it may be better to search directly
for such “interesting” regions in the covariate space rather than estimating z(x) first
in the entire space and then discarding the regions that are “uninteresting.” The main
goal of bump hunting methods such as PRIM is to define sets of multivariate
rectangular regions based on the candidate covariates X1, X2, . . ., Xp. The limits of
the region are determined in a data-driven manner using a peeling technique.
Specifically, extreme values of continuous/ordinal covariates or individual levels
of nominal covariates are removed. The peeling algorithm is sequentially applied to
single covariates, one at a time, and the order of the covariates is determined by the
value of an appropriate objective function.

Another strategy for direct subgroup search was first implemented via a recursive
partitioning process in the SIDES method (Subgroup Identification based on Differ-
ential Effect Search, Lipkovich et al. 2011) and later extended to the SIDEScreen
method (Lipkovich and Dmitrienko 2014). In Sect. 6.5.1 of this chapter, we will
apply these methods to a case study and provide additional technical details.

Another member of this group of algorithms is Activity Region Finder (ARF), by
Amaratunga and Cabrera (2004), that combines algorithms of CART and the bump
hunting to search for high or low response (activity) subgroups. Bayesian methods
for local modeling were inspired by the idea to treat each subgroup as a model and
apply model averaging to a collection of generated subgroups (Berger et al. 2014;
Bornkamp et al. 2016). Schnell et al. (2016) implemented a procedure for identifying
subgroups as credible sets which comprise points in the covariate space with the
sufficiently high posterior probability of associated treatment effect z(x) exceeding a
pre-specified threshold.
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Any method within the four groups can be further characterized with respect to
the following features, forming a checklist that a user of any subgroup identification
method should bear in mind when evaluating whether the method may be appropri-
ate for the problem at hand (Lipkovich et al. 2017).

• Modeling type: frequentist/Bayesian and within either subtype, parametric, semi-
parametric, or nonparametric

• Dimensionality of the covariate space that the method can handle: low (1–5),
medium (6–15), or high (>15)

• Results produced by the method: selected biomarkers or biomarker ranking that
can be used for tailoring, predictive scores for individual treatment effects,
optimal treatment assignment, or identified subgroup(s) as biomarker signatures

• Application of complexity control to prevent data overfitting and selection bias
when evaluating candidate subgroups

• Evaluation of the Type I error rates/false discovery rates for the entire subgroup
search strategy

• Availability of “honest” (bias-corrected) estimates of treatment effects in the
identified subgroups

The dimensionality of covariate space that can be handled by a proposed method
may vary dramatically. Some methods were originally developed for evaluating
treatment by covariate interaction in the context of a single continuous covariate and
later extended to a small number of pre-selected biomarkers (e.g., the method of
fractional polynomials by Royston and Sauerbrei (2004, 2013); the STEPP method
by Bonetti and Gelber (2000, 2004); Jones et al. (2011)). These can be contrasted
with methods developed with the idea of handling high-dimensional covariate
vectors and incorporated variable selection as part of the model building strategy
(e.g., Virtual Twins by Foster et al. (2011) and many others referenced below). The
middle grounds are occupied by methods assuming that a medium-sized set of
candidate biomarkers has been specified, e.g., in the statistical analysis plan
(SIDES by Lipkovich et al. 2011; Gi method by Loh et al. 2015). Mayer et al.
(2015) describe some findings from a survey with respect to the dimensionality of
covariate space and other features of subgroup analysis tasks routinely dealt with by
Pharma statisticians.

Depending on the method, different results may be produced. For example, some
methods are searching for “biomarker signatures.” These are often defined as
rectangles in covariate space (requiring predictive biomarkers and associated cutoff
points), which is motivated by the desire to base clinical decisions on simple and
easily interpretable rules, e.g., Foster et al. (2015). Other approaches look for
arbitrary biomarker signatures (e.g., additive scoring functions) that would allow
ranking all patients by a score reflecting predicted individual treatment effect; and
some methods provide selection or scoring for predictive biomarkers (such as
variable importance scores) that can be used for tailoring in subsequent clinical
development programs.

All subgroup selection methods considered here have data-driven elements.
However, the scope of search may vary dramatically from selecting a subgroup
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based on estimated patient’s predictive score as a linear combination of, say,
3 pre-specified continuous biomarkers to identifying a subgroup as a “region”
formed by selecting 2 out of 1000 candidate biomarkers with an optimal cut point
determined within each of these in a data-driven fashion. Depending on the scope of
search in the “covariate space” induced by a specific method, different types of
complexity control may be needed. The idea is to ensure that the finally selected
biomarker signatures defining subgroups are not unnecessarily “complex” (e.g., by
including irrelevant or noise covariates), resulting in spurious findings with little
chance to be replicated in the future trials. Such situations occur when the set of
candidate subgroups/biomarker signatures includes the elements of different “com-
plexity.” For example, of two candidate subgroups, one defined by a single bio-
marker as {Age � 20} and the other defined by two biomarkers, {Age < 20} and
{Gender ¼ “Female”}, the latter is more “complex.” When using a greedy search
over possible signatures, it may appear to fit the observed data better and therefore
will look more promising than the former simpler subgroup. As in other applications
of machine learning, the chance of spurious findings (“overfitting”) increases with
model complexity, and to offset that, some forms of complexity penalty are required.

Different approaches of complexity control to prevent data overfitting have been
proposed in the context of subgroup/biomarker search including:

• Frequentist penalized regression (e.g., Imai and Ratkovic 2013) and Bayesian
shrinkage (e.g., Jones et al. 2011)

• Frequentist ensemble learning methods (e.g., Foster et al. 2011) and Bayesian
model averaging (Berger et al. 2014; Bornkamp et al. 2016) that aggregate results
over a large number of “learners” (here, subgroups or signatures) to shrink the
contribution of noise covariates to zero

• Using “indirect” or less direct criteria for variable/subgroup selection that avoid
the exhaustive search for subgroups with desired features (Loh et al. 2015, 2016)

Another example of data overfitting (often called biomarker selection bias) arises
when making a choice between subgroups based on biomarkers with widely differ-
ent sets of candidate cutoff points. For example, a subgroup based on patient’s age as
a continuous variable with a data-driven cutoff, e.g., {Age � 20}, has a higher
potential for overfitting than a subgroup of seemingly equal complexity based on
gender, e.g., {Gender ¼ “Female”}. This is because variable Age has a much larger
number of candidate splitting points (basically, all values of Age realized in the
database except the extreme ones leading to subgroups not passing the minimal
sample size requirement), whereas only two subgroups can be selected based on
patient’s gender. Therefore, if both biomarkers Age and Gender are irrelevant (noise
variables), we would have a higher chance of selecting Age as a promising marker if
our selection is based on exhaustive evaluation of all possible subgroups based on
Age and Gender. Several approaches were proposed in the literature to deal with
variable selection bias (Loh et al. 2015; Seibold et al. 2015).

One may think that “complexity control” would be unnecessary if at the end of
the subgroup search, we can correctly evaluate the Type I error or false positive rate
associated with the selected subgroups. This would be the case if all candidate
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subgroups in the covariate space were of the same complexity; then it is straightfor-
ward to select the one having the largest apparent treatment effect while controlling
for multiplicity (selection bias, winner’s curse, etc.) by computing an adjusted P-
value and a bias-corrected treatment effect. However, as was discussed, the fact that
different subgroups may have very different “complexity” requires imposing a
penalty for complexity during the process of selection, thus preventing us from
“chasing noise.” Adjusting the finally selected subgroups which may be purely
driven by noise after selection would be too late, as it would merely suggest that
our selected subgroup (after appropriate adjustment) has a very large associated P-
value and therefore would have little reproducibility in future trials. Indeed, the goal
is to avoid making such an unfortunate selection by putting a “constraint jacket” on
the selection process.

Of course, even with complexity control, we need to account for multiplicity
inherent in subgroup identification by computing adjusted P-values associated with
treatment effects in the selected subgroups. However, procedures that are less
“greedy” would require less adjustment of P-values than the “greedier” procedures.
This is because a less greedy procedure induces a smaller search space by restricting
search to models satisfying complexity constraint, hence less multiplicity burden.
For example, the multiplicity adjustment for P-values in subgroups selected using a
very greedy stepwise selection method (in the context of a linear regression with the
main effects and treatment by covariate interactions) would be much harsher than the
adjustment of P-values when the selection is made using much less greedy methods
of penalized regression (e.g., lasso). The analytical expressions for multiplicity-
adjusted P-values in subgroup search methods are typically not available, and
researchers have to resort to approximate P-values based on various resampling
methods (permutations or bootstrap under null scenarios).

Finally, once the subgroup(s) have been identified, the sponsor would need to
make a decision based on anticipated treatment effects in these subgroups (e.g., by
computing probabilities of success for different designs involving enriched
populations versus the overall population). It is important to understand that even
if the identified subgroup may be very close to the true one, the apparent treatment
effect computed using the same data that was used for subgroup search (a naive
method of data “resubstitution”) is likely to overestimate the true treatment effect
contained in that subgroup. Like with multiplicity-adjusted P-values, the size of the
treatment effect can be estimated using resampling methods such as bootstrap or
cross-validation (see Foster et al. 2011; Faye et al. 2011; Simon et al. 2011; Loh et al.
2016; Rosenkranz 2016); Bayesian methods implementing shrinkage such as an
empirical Bayes correction (Ferguson et al. 2013) or model averaging (Bornkamp
et al. 2016) can also be used (see Thomas and Bornkamp 2017 for comparison of
several methods for estimating treatment effect in data-driven subgroups). The
amount of over-optimism in the naïve estimates of treatment effect computed by
resubstitution depends on the richness of the search space and the “greediness” of the
search algorithm.

Many applications of subgroup identification to real data sets can be found in the
original papers introducing the discussed methods. Here, we provide additional
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references for applications of existing methods to clinical or observational data.
Hardin et al. (2013) applied SIDES to conduct an exploratory analysis of a large
multinational, randomized, open-label trial in patients with type 2 diabetes to
identify subgroups where the effect of an insulin lispro mix versus insulin glargine
was substantially different from that in the overall population. Dmitrienko et al.
(2015) applied SIDES methods to the ATTAIN program based on two Phase III
multinational trials to evaluate the safety and efficacy of telavancin (test antibiotic)
compared to vancomycin (active control antibiotic) for treatment of adults with
nosocomial pneumonia. Hou et al. (2015) compared the results of several tree-
based subgroup identification methods including Interaction Trees and Virtual
Twins to the data from an alcohol dependence pharmacogenetic trial of ondansetron.
Patel et al. (2016) analyzed patients with low back pain using data pooled from
19 randomized clinical trials applying Interaction Trees, SIDES, and Indirect Net-
work Meta-analysis to identify subgroups defined by multiple parameters. Double-
day (2016) adopted recursive partitioning methods to evaluate individualized
treatment assignment rules from both randomized and observational data and applied
it to diabetes data from electronic medical records (see also Fu et al. 2016). Seibold
et al. (2016) adopted methods of model-based recursive partitioning to construct
individual treatment effect predictions for patients with amyotrophic lateral sclerosis
pooled from several randomized clinical trials.

Links to several packages that implemented popular subgroup identification
methods could be found at the site maintained by the QSPI (Quantitative Sciences
in the Pharmaceutical Industry) Subgroup Analysis Working Group: http://
biopharmnet.com/subgroup-analysis-software/. These methods include both R pack-
ages available in CRAN (aVirtualTwins, SIDES, quint, FindIt, partykit,
model4you, personalized) and implementations with R and other software provided
by the developers for public dissemination: an R package RSIDES implementing
SIDES and SIDEScreen methods (Lipkovich and Dmitrienko 2014), R code for
ROWSi (Regularized Outcome Weighted Subgroup identification) by Xu et al.
(2015), the GUIDE package implementing methods by Loh et al. (2015), and
BLASSO by Gu et al. (2013).

The above packages focus on the problem of biomarker/subgroup identification.
For situations when one or two markers are pre-selected, Janes et al. (2014) propose
a statistical framework for evaluating a candidate treatment selection marker and
comparing two continuous markers; an R package developed by the authors
implementing these methods is available at http://labs.fhcrc.org/janes/index.html.

6.3.3.2 Q-Learning for Dynamic Treatment Regimes

Q-learning is an approximate dynamic programming algorithm for estimation of
optimal dynamic treatment regimes (DTRs). DTRs are the sequences of decision
rules, one per decision/intervention stage, that map up-to-date patient information to
a recommended treatment. The key is that a patient’s treatment at each stage is not
known at the start of the treatment sequence, as it depends on time-varying variables
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that may be influenced by earlier treatment choices. In many health disorders,
especially chronic conditions, the sequential decision-making is necessary to adapt
treatment over time in response to the evolving health status of the patient. This is
especially important if there is a high degree of heterogeneity in an individual
response to treatment and when treatment may need to be adjusted as a result of
emerging side effects. In such cases, the treatment that appears optimal in the short
term may not be best in the long term. Thus, the goal is to optimize a long-term
outcome of interest which may be measured at the end of the last treatment stage or
may encompass intermediate outcomes, e.g., represent a (weighted) average of
clinical outcomes across all intervention stages.

Q-learning can be viewed as an extension of regression to multistage decision
problems based on backward induction. It starts with an estimation of the optimal
treatment rule at the last stage of treatment based on patient-level data up to the last
treatment decision, which may include baseline characteristics, treatment decisions,
and intermediate outcomes up to that point. This information is used as “independent
variables” for a regression model of the long-term outcome measured after the last
treatment decision. Based on this regression model, the last stage optimal treatment
is estimated for each patient so that it optimizes the expected long-term outcome.
Subsequently, Q-learning performs a similar regression and optimization step for a
preceding decision stage to find a treatment that would result in optimal long-term
outcome assuming that subsequent, last stage treatment will be determined by the
optimal rule constructed in step 1 of the procedure. This backward re-estimation and
optimization are performed iteratively until the first decision point, allowing the
method to account for future decisions when making treatment choices at earlier
stages.

Ideally, DTRs should be estimated from trials with a Sequential Multiple Assign-
ment Randomized Trial (SMART) design (Collins et al. 2007; Almirall et al. 2014),
where subjects are randomized multiple times during the course of the trial. At each
randomization stage, the set of available treatments may depend on subject-specific
characteristics and evolving health status. SMART would be a “gold standard” for
determining optimal DTRs as they remove any confounding of treatment assignment
with subject characteristics, just like randomized controlled trials are a gold standard
for confirmatory clinical trials. For ethical and logistical reasons, SMART are rare in
the pharmaceutical industry practice. DTRs can also be constructed using observa-
tional data from trials with flexible dosing or evolving treatment assignment, e.g.,
long-term open-label trials in chronic pain or dynamic second, third, etc. line of
treatment selection in cancer. Such studies are more common in practice; however,
care must be taken to account for potential confounding.

Maintaining a balance between treatment efficacy and limiting undesirable side
effects is an important aspect of successful dynamic treatment regimes, but is a
relatively open area of research. Composite scores that integrate measures of treat-
ment efficacy and safety could be used. For example, in Wang et al. (2012), a
composite score was constructed by eliciting from the Principal Investigator of the
trial subjective numerical values to quantify the clinical desirability of efficacy,
toxicity, and progressive disease response to a prostate cancer treatment. In many
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circumstances, it may be difficult to obtain a single composite measure that encom-
passes patient and physician preferences across several competing and potentially
time-varying outcomes. Laber et al. (2014a) proposed an approach to deal with such
challenges by using set-valued functions and recommending a set of possible
treatments which are non-inferior across outcomes at each decision point and
which can then be considered by individual patients and physicians. Another
approach, which avoids using subjective composite measures and works directly
with the original efficacy and safety outcomes, is to optimize treatment efficacy
using Q-learning under constraints of the risk of adverse events so that DTRs can be
designed to achieve specific levels of efficacy tailored to patient’s adverse event
tolerance limit.

Original ideas behind Q-learning can be found in Watkin (1989) and Watkin and
Dayan (1992). These ideas have been further developed and adapted to the context
of estimation of dynamic multistage treatment strategies, e.g., by Murphy (2005),
Schulte et al. (2014), and Laber et al. (2014b). They have also been extended to
survival outcomes by Goldberg and Kosorok (2012) and to discrete utilities (long-
term outcomes) and to nonlinear relationships between covariates and outcomes by
Moodie et al. (2014). A general overview of SMART design considerations can be
found, for example, in Almirall et al. (2014).

Examples of clinical applications of Q-learning for estimation of optimal treat-
ment regimes can be found in a number of recent publications. For example, Wu
et al. (2015) applied DTR for treatment of acute bipolar depression; Chakraborty
et al. (2013) and Chakraborty and Moodie (2013) for chronic illnesses including
major depressive disorder; Laber et al. (2014b) and Nahum-Shani et al. (2012) for
attention deficit hyperactivity disorder; Laber et al. (2014a) and Shortreed et al.
(2011) for schizophrenia; Moodie et al. (2007) and Sterne et al. (2009) for
HIV/AIDS; Strecher et al. (2006) for cigarette addiction; and Lei et al. (2012) for
prevention of alcoholism relapse.

The term Q-learning refers to the estimation of a Q-function, which stands for the
“quality” associated with a specific treatment choice at each stage given the patient’s
history up to that point and following the optimal regime thereafter. Having an
estimate of the “quality” of each possible treatment decision, we can select the best
one at each stage. The challenge, in this case, is to obtain a good unbiased estimate of
the Q-function over the entire space of histories and possible treatment choices,
which may be difficult to achieve, especially over high-dimensional spaces and with
relatively sparse data. A-learning (Blatt et al. 2004) is an alternative method, which
estimates an “advantage” for each treatment, i.e., the difference between the quality
of a given treatment choice and the optimal treatment at each stage. This approach
may be less sensitive to bias introduced by the mismodeling of the Q-function.
However, A-learning may have a disadvantage of high variability and require
variance reduction techniques, such as bagging or random forests, for successful
implementations, and its complexity increases with the number of possible treatment
choices.

Both Q-learning and A-learning use regression to estimate some function
representing the value of the treatment choice and then obtain the optimal decisions
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by inverting that function. On the other hand, outcome-weighted learning (OWL)
uses a different paradigm by attempting to estimate the optimal DTR directly,
casting it as a weighted classification problem. Treatments actually received by
patients with good observed outcomes are considered to be “correctly classified,”
i.e., corresponding to the optimal treatment assignment, whereas treatments actually
received by patients with poor outcomes are considered to be “misclassified.” The
method tries to minimize a weighted misclassification error where the weights are
proportional to the observed outcome and inversely proportional to the probability of
receiving a given treatment given patient history. Powerful classification methods
from machine learning, e.g., support vector machines, can be applied in this context.
Two variants of this approach, backward outcome weighted learning (BOWL) and
simultaneous outcome weighted learning (SOWL), applicable to multistage treat-
ment regimes were proposed by Zhao et al. (2015).

Publicly available tools for Q-learning applicable to DTRs are limited. The
iqLearn package in R (Linn et al. 2015) can be used for estimating optimal DTRs
from data obtained from a two-stage trial with two treatments at each stage. The
DTRlearn package in R implements both single- and multiple-stage Q-learning
OWL approaches. Proc QLEARN developed for SAS v9.1 or higher for Windows
by Ertefaie et al. (2012) at the University of Michigan and the Pennsylvania State
University (https://methodology.psu.edu/downloads/procqlearn) can be used with
data from a sequential, multiple assignments, randomized trial (SMART) but is
limited to situations where the outcome is continuous; there are two decision stages
and up to two treatment options at each decision.

6.4 Principles of Data Mining with Clinical Data

Here, we focus on data mining in randomized clinical trials (RCTs). As RCTs are
conducted in a highly regulated environment, the interpretation of data mining
activities with such data may be considered particularly controversial and therefore
calls for clearly defined principles to ensure their validity. It is often argued that data
mining with clinical data has limited validity since by its nature it cannot be
pre-specified and therefore occupies the lowest rank in the Statistical Analysis Plan.

The relative ranking of the importance of analyses undertaken in a Phase 3 trial
can be loosely described as follows: the primary analysis of primary outcome, the
primary analysis of secondary outcomes, the secondary analyses of primary out-
come, the secondary analyses of secondary outcomes, supportive analyses and
sensitivity analyses, and exploratory analyses. We note the striking contrast between
the wealth of (often underutilized) data collected in the course of clinical trials and
the “minimalistic” focus on the primary analysis as the basis for major study
conclusions.

On the other hand, in exploratory Phase 2 studies, it is often felt by the sponsor
that any data exploration is allowed as long as it is used only for “internal decision-
making.” However, when the drug development program is driven by unprincipled
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and unconstrained data exploration in Phase 2, it often results in a failed Phase
3 study, further contributing to a lack of respect for data mining.

As a result of the described mind-set, the exploratory analysis is felt as belonging
to the lowest category of analysis on the above scale and is typically described in the
section “Exploratory analysis” which is often a polite word for a “garbage collector”
to store various poorly conceived data analysis strategies. This practice blurs the
subtler distinction of and the relationship between exploratory and confirmatory data
analyses (as originally proposed by J. Tukey in his famous “exploratory data
analysis”) where the former paves the road to the latter. The exploratory analysis
in this framework is a well-thought activity that forms a continuous process of
learning from the data that requires flexible methods of model selection and model
fitting (robust to model misspecification) combined with various ways of looking at
the data and graphical display. Findings from exploratory analyses may be con-
firmed in the future trials.

The key idea is that data mining should be understood as a flexible data analytic
strategy with various data-driven elements. While “data-driven” means that some
elements are not specified in advance, the strategy itself can be pre-specified. This is
similar to adaptive clinical trial designs, where the exact trial parameters (e.g., the
final sample size or doses that remain under investigation) are not fixed at the design
stage, but the adaptation strategy is nevertheless fully pre-specified. Here we list
some principles for conducting data mining activities in the context of clinical data
mining.

6.4.1 Documenting Business Need and Scientific Rationale
for Data Mining

This document may include the following components:

• Statement of hypothesis(es) of interest based on the current understanding of the
phenomena (based on relevant literature).

• Scientific assumptions and current relevant scientific theories.
• Relationships of interest and type of research: association/causation/prediction/

search for patterns.
• Anticipated findings based on current knowledge (e.g., of biological mecha-

nisms) and a priori considerations of how “unanticipated” findings, if happen,
could be further explored. It is not uncommon that when findings are not in line
with the current understanding of biologically plausible mechanisms, the
researchers come up all too quickly with ad hoc “explanations” of the results. If
variables with no a priori-known relationships to the outcome are included in
analysis, there should be some plan as to how any potential findings on these
predictors can be further explored/investigated/confirmed.

• Definition of “success” and “failure” for the data mining application. Here
“success” does not necessarily mean obtaining findings “favorable” to
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experimental treatment but rather a success in modeling the data that leads to new
insights (e.g., identifying biomarkers predictive of treatment effect). It is impor-
tant, however, that “failed” analyses are also reported. For example, data mining
of an integrated database in depression indicating a lack of reliable predictors of
placebo response in itself constitutes an important (negative) finding.

• “Stopping rules” for data mining activity should be specified here (or in the
analytics plan section), which helps avoid endless search for “a significant effect.”

6.4.2 Developing a Data Mining Analytic Plan

As model selection is an integral component of DM, it is impossible within a DM
process to “pre-specify” exactly what statistical models will be used. However, it is
important that the analytic strategy is outlined in sufficient detail prior to the
beginning of the data analysis.

The scope of data used should be clearly identified; specifically, the following
should be defined:

• The target population of interest
• Studies/data sources to be included
• Clinically defined outcomes: e.g., response/relapse/remission criteria
• Outcome variable(s)
• Covariates that potentially may affect the outcome of interest

It is a good practice to list all “data-driven” components and “tuning parameters”
of the analytic strategy upfront and explain how they will be identified in the course
of the study.

The possibility of replicating findings with additional data sets that were not used
in model fitting and selection (test data) should be addressed. If this is not possible
due to limited data, other approaches should be used, e.g., bootstrap and cross-
validation.

If hypothesis testing is the primary objective, all adjustments for multiplicity and
control of Type I error rates should be explained.

If the model selection is a part of the DM strategy (which is almost always the
case), the DM Analytic Plan should explain how potential data overfitting would be
handled (e.g., via cross-validation, using separate validation data sets).

If inference about causal parameters is the primary objective, all non-randomized
covariates that may potentially cause selection bias should be listed and methodol-
ogy that will be used to overcome it outlined.

If the analytic strategy involves a multistage data analysis (i.e., when selection of
an analytic procedure at a later stage may depend on the results at previous stages),
the DM plan should contain a discussion on how uncertainty in the multistage
process could be accounted for (e.g., via bootstrapping the entiremultistage analysis
sequence, or model averaging). It is often the case that only uncertainty associated
with the final stages of such complex analytic strategies is taken into account, while
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the steps leading to final analyses are left undocumented and obliterated from the
“collective memory” of the research team. Also in many exploratory analyses, some
stages of analysis involve “human intervention” where decisions are made subjec-
tively which makes it challenging to automate the entire analytic strategy by
implementing it in a programming code and prevents the use of resampling methods
for evaluating such strategies. When implementing multistage procedures and
applying them to resampled data, it is important to account for the fact that on
some samples the result may be negative or null, for example, when an empty set is
returned for a subgroup search or when no predictive bookmakers are found. In such
situation it is important that the analysis strategy should be well-defined in the sense
that it is applicable for any data, not only for the specifically observed data set on
which it was used.

The DM analysis plan should include “sensitivity analyses” to validate the
robustness of the findings to various departures from (often untestable) assumptions.
This may relate to assumptions about missing data mechanisms, unmeasured con-
founders, or possible “structural” changes (e.g., in the relationship between out-
comes and predictors) in the future populations that may affect the generalizability of
findings. As part of sensitivity analyses, sensitivity to methodology (e.g.,
frequentist vs. Bayesian) could be explored as well. Visualization tools should be
used at all stages of analyses, primarily to investigate potential issues such as
outliers, influential observations, etc.

Many data mining techniques are simulation based (e.g., cross-validation, boot-
strap); therefore, retaining seed values is recommended to ensure the reproducibility
of findings.

Finally, we emphasize the importance of proper quality control and validation of
analyses, just like in the standard stat analysis of clinical trial data.

6.4.3 Ensuring Data Integrity

Integrating and aggregating information from multiple studies may pose challenges
such as:

• Using different clinical outcomes (e.g., rating scales) and different definitions for
the same outcomes across multiple data sources.

• The extent of and approach to data cleaning may not be the same across multiple
studies. DM often utilizes various patient characteristics and time-dependent
covariates that may not be fully cleaned and validated even in locked databases,
as they might not have been a focus for analyses intended for clinical study report
(e.g., the time of occurrence of certain events or concomitant treatments).

• Many challenges of data aggregation (e.g., using combined regional, ethnic, etc.
groups; grouping adverse events, concomitant medications; alignment across
common time points) require careful consideration and close collaboration
between the statistician and medical team and may require a substantial amount
of time in the absence of integrated databases.
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When integrated databases are available, it is tempting and often seems reason-
able to form initial analysis plan around variables available in the integrated data-
base; however, the absence of important potential predictors in the integrated
database cannot serve as a justification for not considering them as potential pre-
dictors in the DM analysis plan.

Further, study populations may be somewhat different and/or recruited at signif-
icantly different times, and this heterogeneity may need to be accounted for in the
model/analysis. This should be done keeping in mind the target population the
findings need to be generalized for, possibly leading to re-weighing current data so
as to better match the target population.

6.5 Case Studies

In this section, we present three case studies that illustrate several data mining/
machine learning methods as applied to clinical trial data. While some of them are
taken to a greater level of detail, others are presented in a briefer manner.

6.5.1 Evaluation of Subpopulations Using SIDES
Methodology

In this subsection, we illustrate some of the methods introduced in Sect. 6.3.3,
specifically variants of the SIDES methodology by applying them to a data set
simulated to mimic a realistic data from a Phase 3 study.

6.5.1.1 SIDES Methodology

Here, we provide a brief outline of SIDES method. An interested reader may refer to
Lipkovich et al. (2011) and Lipkovich and Dmitrienko (2014) for further details. In
our example, SIDES is applied to a binary outcome, and the description is tailored to
this type of outcome, although the approach is not limited to it. Also for simplicity,
we assume that all covariates are continuous as is the case for our data set, but this is
not a requirement.

First, we apply to the data set the SIDES subgroup generation procedure that
starts with evaluating a differential splitting criterion at every allowable split of every
candidate covariate, which is defined as follows:

D ¼ 2 1�Φ
Zleft � Zright

		 		ffiffiffi
2

p

 �
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:
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Here Φ(�) is the normal CDF; the statistics Zleft and Zright are scaled by the pooled
standard error of treatment differences between proportions evaluated for the exper-
imental treatment and control in two child groups resulting from splitting a contin-
uous variable X into the left {X� x0} and the right child groups {X> x0}, based on a
provisional cutoff x0. Note that the criterion is on the probability scale with smaller
values indicating larger differentials.

For each candidate covariate, the best cutoff associated with the smallest value of
D is determined. Based on this value, the covariates are ordered from best to worst,
and the first M covariates (the width parameter) are selected. For any covariate, we
have two child groups resulting from splitting at the optimal cutoff, and the child
with the largest treatment effect is retained as “promising.” Therefore, from M top
covariates, M promising subgroups are retained. These are called promising sub-
groups of level 1. Depending on the maximal number of levels L (the depth
parameter), the process continues recursively by applying the same splitting process
to each of the promising groups. The resulting terminal groups are considered as
final promising subgroups. For example, if L ¼ 1, the process stops with theM level
1 groups which will be the terminal groups, whereas if L ¼ 3, the process is
recursively applied two more times resulting in up to M3 terminal subgroups. The
size of the candidate subgroups is controlled by the user-specified minimal required
subgroup size, nmin. Only subgroups of size at least nmin are considered as allowable
splits, and the recursion might stop even before achieving the specified depth once
no subgroups of required size can be formed.

The above process, which we refer to as base SIDES, results in generating a
potentially large pool of subgroups. A greedy approach to subgroup selection would
be to simply choose the subgroup from the pool with the largest observed treatment
effect (or few subgroups with largest effects). Of course, the observed effect(s) and
the associated P-value(s) would be highly overoptimistic. These can be adjusted by
using resampling methods. For example, the multiplicity adjusted P-value can be
obtained by randomly permuting treatment labels, reapplying the same subgroup
search procedure to each null (permuted) set, and computing the smallest P-value
over all promising subgroups for each null data set. Based on a large number of null
sets, the adjusted P-value can be computed as the proportion of such sets where the
minimum P-value is as small as or smaller than the one found in the best subgroup of
the actual data set.

However, this greedy process is likely to generate the top subgroups that will be
subsequently penalized very severely in terms of having very large adjusted P-values
(suggesting that the findings are driven by chance and are not likely to generalize to
the future data).

To develop more sensible subgroup search procedures, several methods of
restraining the greediness of the search have been proposed. One approach is to
introduce a complexity parameter that constrains the search by placing a requirement
on how much better the treatment effect in a child group should be compared to that
in the parent group at each split. The split is made only if the candidate child group
exceeds that threshold.
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The second approach, called “SIDEScreen” (pursued in this example), uses a
variant of model averaging. From the harvesting process, a variable importance
index is evaluated for each covariate that reflects its overall predictive worth. This is
defined as the average contribution of a covariate across all generated promising
subgroups (counting only terminal subgroups of the harvesting process). Specifically

VI Xð Þ ¼ K�1
XK
i¼1

νi,

where νi ¼ �log di(X), if the ith subgroup contains biomarker X, and νi ¼ 0
otherwise; K is the number of promising subgroups; and di(X) is the splitting
criterion evaluated for biomarker X for the selected split.

Thus, computed variable importance scores are screened by applying a screening
rule

VI Xð Þ > bE0 þ k
ffiffiffiffiffiffibV0

q
,

where bE0 and bV0 are the mean and variance of the maximal (over all biomarkers), VI
score under the null distribution obtained by permuting the treatment labels. These
mean and variance are estimated from a large number of such samples. The multi-
plier k is a free parameter that can be calibrated as k ¼ Φ�1(1 � κ), where κ is
interpreted as the probability of selecting at least one noise biomarker in the absence
of predictive biomarkers in the data set.

At the second stage, the basic SIDES is applied only to biomarkers selected at the
first stage. The final adjusted p-values are computed by replicating the entire
two-stage procedure on a large number of additional null sets. Note that the same
multiplier k is applied to each null set; therefore, regardless of the value of multiplier
at the first stage, the overall Type I error rate of the final subgroup(s) can be
controlled at any desired level.

6.5.1.2 Analysis Data

Our example data set sepsis_ex.csv is available at QSPI working group site along
with the RSIDES package: http://biopharmnet.com/subgroup-analysis-software/.
The data set is based on a Phase 3 trial conducted to examine the efficacy and safety
profiles of a novel treatment for severe sepsis. There are 470 patients (317 patients in
the experimental treatment arm and 153 patients in the control arm) with a binary
outcome variable mortality (the primary endpoint) that represents the survival status
of patients after 28 days of treatment: the value of 1 for subjects who died within
28 days and 0 for those who survived. There are eight candidate covariates,
including demographic and clinical characteristics listed in Table 6.3, all of which
are numerical variables. Note that the results for baseline serum concentration (il6)
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exhibit some extreme values which are not uncommon for this lab measure. We
comment that with parametric regression methods, this would be a problem requir-
ing special treatment (e.g., variable transformation), but the tree-based methods are
immune to that as they essentially treat a numerical covariate as ordinal and are
invariant to any monotone transformation of a covariate.

6.5.1.3 Results

Table 6.4 shows the results of applying base SIDES with parameters

• Width ¼ 3
• Depth ¼ 2
• nmin ¼ 30

To illustrate the subgroup generation process, the three intermediate subgroups of
the first level (based on variables time, age, and il6 with optimal cutoffs 30.67,
59.871, and 519.4) are highlighted in bold. The associated splitting criterion (on the
�log scale, with larger values being better) is shown in the third column. The
terminal subgroups are obtained after splitting the above three level 1 groups by
the best three variables selected from the candidate list excluding the one selected at
the first level. There are eight rather than nine groups because one group based on
time and age occurred twice with the same cutoffs for both variables and was
removed as a duplicate. The penultimate column contains the P-value for the overall
treatment effect (one-tailed) and unadjusted P-values for promising subgroups. Note
that the overall treatment effect is negative while some subgroups show apparently
large treatment effect with subgroup time � 30.67 and age > 59.871 appearing best
with an unadjusted P-value of 0.00196. However, the adjusted P-values based on
10,000 sets of randomly permuted treatment labels are hopelessly large. In particu-
lar, the adjusted P-value for the above subgroup is 0.5.

Table 6.3 Candidate covariates in the severe sepsis data example

Candidate
covariates Description

Median
(range)

Time Time from first sepsis-organ failure to start of treatment (hours) 30.67
(10, 3775.9)

Age Patient age (years) 59.871 (33.2,
93.3)

Platelets Baseline local platelets (1000/mm3) 153 (45, 650)

Sofa Sum of baseline SOFA scores (cardiovascular, hematologic,
hepatic, renal, neurological, and respiratory scores)

8 (3, 17)

Creatinine Baseline creatinine (mg/dL) 1.5 (1, 20)

Apache Pre-infusion APACHE-II score 23 (19, 48)

IL6 Baseline serum IL-6 concentration (pg/mL) 406.6 (37.1,
296,550)

Bilirubin Baseline bilirubin (mg/dL) 1 (0.4, 20.4)
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Next, we evaluate subgroups using a less greedy and more powerful Adaptive
SIDEScreen approach. First, we apply base SIDES with even less restrictive param-
eters on generated subgroups than for the first run, specifically setting width ¼ 5 and
depth¼ 3 resulting in up to 53¼ 125 subgroups based on three covariates. While the
resulting subgroups may be picking up a lot of noise and would likely not generalize
to the future data, we are not using these subgroups as candidates for the final
selection but rather use them as an intermediate step for computing variable impor-
tance scores used for covariate screening. Averaging over a broader set of subgroups
(models) in general helps to obtain more reliable variable importance scores.

Figure 6.4 contains variable importance and an associated benchmark from 1000

null sets. The threshold rule is VI Xð Þ > bE0 þ
ffiffiffiffiffiffibV0

q
with the multiplier k ¼ 1. As we

can see, two variables, time and age, stand out having larger scores. Also, they both
exceed the threshold based on 1 standard deviation from the null mean.

Table 6.5 shows the results of the second-stage analysis where base SIDES is
applied only to variables that passed the screening stage. Predictably, the subgroup is
the same as the best one that was found by a greedy base SIDES. However, the
adjusted P-value is very different from the one computed for the base SIDES.

To understand this seemingly contradictory result, first recall that the adjusted P-
values are computed for the SIDEScreen procedure by applying to each null set the
two-stage procedure, including computing anew the variable importance scores
based on subgroups generated from each null set and comparing them with the
same null threshold as was applied to the observed data. Of the null sets where some
covariates pass the threshold, we identify those having subgroups with P-values such
as or smaller than the one found in the observed data. Naturally, many null sets
would not have any covariates that pass the screening threshold (about 84%,
assuming the normal distribution for VI scores under the null and the threshold
with k ¼ 1). Even if each of the remaining 	16% of the null sets produced a

Table 6.4 Subgroups generated using base SIDES for sepsis data (width ¼ 3, depth ¼ 2,
nmin ¼ 30)

Subgroup Size
Splitting criterion
(�log scale)

P-value
(unadjusted)

P-value
(adjusted)

Overall population 470 0.8301

Time � 30.67 253 5.29 0.0588 0.99

Time � 30.67 and age > 59.871 123 3.37 0.00196 0.50

Time � 30.67 and IL6 > 162.65 171 1.09 0.0136 0.88

Time � 30.67 and bilirubin � 2.5 199 0.74 0.0496 0.99

Age > 59.871 217 4.25 0.0718 0.99

Age > 59.871 and IL6 > 92.8 169 2.29 0.0362 0.97

Age > 59.871 and sofa > 5 183 1.98 0.0172 0.91

IL6 > 519.4 180 2.55 0.1800 1.00

IL6 > 519.4 and age > 56.098 99 4.68 0.0076 0.78

IL6 > 519.4 and creatinine > 1.4 104 1.85 0.0168 0.91

IL6 > 519.4 and time � 30.67 117 1.60 0.0328 0.97

6 Statistical Data Mining of Clinical Data 285



subgroup better than the one found on the observed data, the adjusted P-value would
be no larger than about 0.16. One might consider the application of this “shrinkage
factor” to compute adjusted P-values as a kind of cheating. However, note that the
selection rules are the same whether we apply them to the observed or null data. Only
in the case when at least one covariate will pass the threshold on the observed data
would we have the opportunity to adjust an associated P-value, which under the true
null will amount to the same 0.16. As a result, data with no real predictive marker
would likely not proceed to the second stage, thus reducing the probability of
spurious findings.

Variable importance

0 1 2

time

age

il6

creatinine

platelets

bilirubin

sofa

apache

Fig. 6.4 Variable importance scores (shown as filled circles) and the threshold based on null
distribution (shown as the dashed line)

Table 6.5 Subgroups generated using Adaptive SIDEScreen for sepsis data

Subgroup Size
Splitting criterion
(–log scale)

P-value
(unadjusted)

P-value
(adjusted)

Overall population 470 0.8301

Time � 30.67 253 5.29 0.0588 0.112

Time � 30.67 and age > 59.871 123 3.37 0.00196 0.036

Age > 59.871 217 4.25 0.0718 0.116
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6.5.2 Evaluating Optimal Dynamic Treatment Regimes via
Q-Learning

This case study is a brief summary of recently reported analyses of a STEP-BD trial
by Wu et al. (2015).

6.5.2.1 The STEP-BD Trial, Analysis Objectives, and Available Data

STEP-BD (Systematic Treatment Enhancement Program for Bipolar Disorder) is a
long-term study of bipolar disorder funded by the National Institute of Mental Health
(NIMH), the results of which were reported in Sachs et al. (2003). The study enrolled
more than 4000 patients from the United States and lasted about 7 years including
options for several treatment pathways: an observational trial (standard care path-
way, SCP) and several randomized trials (randomized care pathway, RCP). First, all
patients entered SCP and then some were eligible to follow one of the RCPs. Within
the latter, there were several options (pathways) depending on the depression
features. The Wu et al. (2015) analysis is focusing on one of them: acute depression
randomized pathway (RAD).

The purpose of RAD was to explore the effectiveness of two antidepressant
treatments (bupropion or paroxetine) versus placebo, in addition to a number of
mood stabilizers (lithium, valproate, and others) that were used in combination with
the two drugs or placebo. Initially, patients were randomly assigned to one antide-
pressant (150 mg of a sustained release formulation of bupropion or 10 mg of
paroxetine) or placebo. After 6 weeks, patients with non-response on the placebo
were randomized to either paroxetine or bupropion; patients with non-response on
the antidepressant would have the dose of their current antidepressant increased. The
schematic of the RAD sub-trial is presented in Fig. 6.5. The reader should bear in
mind that patients under active treatments or placebo received mood stabilizers at
physician’s discretion, which is not reflected in the labels of the figures.

The objective of the analyses in Wu et al. (2015) was estimating optimal DTRs
for both stages 1 and 2 to minimize the expected depression score at week
12 (SUMD), based on all available data at the decision time. Note that our ability
to search for optimal treatment options is naturally limited by the available
(or feasible) treatment options restricted by design. Specifically, as we see from
Fig. 6.5, the second-stage randomization was only applied to patients who failed on
placebo during stage 1. Therefore, the Q-learning algorithm would not be able to
“learn” from the data a regime that recommends, for example, to treat with
bupropion (at stage 2) those patients who had previously failed on paroxetine
(at stage 1).

Patient covariates and intermediate outcomes available for analysis are listed in
Table 6.6.
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6.5.2.2 Q-Learning Methodology for the RAD Trial

Here we briefly outline the Q-learning method adapted for estimating optimal
regimes in the RAD trial of the STEP-BD design. Although the Q-learning applies
for a more general m-sage learning, our exposition is tailored to the two-stage
decision setting and a terminal continuous outcome (here, depression score at
week 12).

As described in Sect. 6.3.3, Q-learning is an approximate dynamic programing
algorithm that can be viewed as an extension of regression to multistage decision
problems. In our case, this amounts to sequentially fitting regressions for the
outcome, with pretreatment covariates, earlier treatments, and outcomes fitted as
predictors. Starting from the last (i.e., the second stage) decision, Q-learning first
finds an optimal decision rule at the second stage as the one maximizing expected
outcome after stage 2, given earlier patient outcomes and covariates available prior
to treatment decision for stage 2 as well as the treatment choice that has been made at
decision stage 1. Then going backward, it regresses the (expected) outcome (that
would have resulted if optimal treatment rules at stage 2 were applied) on treatment

Stage
1

(365)

Bupropion
(85)

placebo
(187)

Paroxetine
(93)

Opt out
(28)

Response
(39)

Opt out
(49)

Response
(86)

Opt out
(30)

Response
(30)

Yes
(22)

No
(17)

Stage
2

Bupropion
increase
dose

Yes
(43)

No
(43)

Stage
2

Bupropion
(22)

Paroxetine
(18)

Yes
(12)

No
(18)

Stage
2

Paroxetine
increase
dose

Fig. 6.5 Schematics of the RAD trial
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assigned at stage 1 and covariates available at the decision stage 1. The optimal
regime for stage 1 is found as the one maximizing the response of this second
regression. The key element is that covariate-by-treatment interactions have to be
included in the regressions; otherwise, the estimated optimal regime will be
assigning the same treatment to all patients regardless of their covariate values.

The backward induction allows Q-learning to factor in future decisions when
making treatment decisions at earlier stages. This can be contrasted with a “myopic”
strategy that only looks at intermediate (proximal) outcomes of a current treatment
assignment. For example, treatments at stage 1 may lead to temporary alleviation of
symptoms and therefore appear beneficial; however, the long-term benefits may
become questionable after a later (e.g., second)-stage decisions are factored in.

Several challenges are encountered when applying the Q-learning algorithm to
this data, including the need to make model selection given a large number of
candidate covariates (Table 6.6) and handling a substantial number of missing data
on the outcomes and covariates. These problems, typical of data mining/machine
learning applications to clinical data, need to be integrated within estimating the
optimal DTR.

Another challenge that appears unique for DTRs (although, more broadly, is
present in any “estimation after model selection”) is obtaining confidence intervals
for outcomes under an estimated DTR. Because the DTR estimator is irregular
(non-smooth), the standard bootstrap theory may not apply and other methods
(such as m-out-of-n bootstrap (Chakraborty et al. 2013)) need to be used.

Finally, even relatively simple rules based on linear regressions with a few
selected covariates may appear rather unwieldy for decision-makers (such as pre-
scribing physicians); therefore, more visual and easy-to-use presentation of the rules
is desired. This can be accomplished by approximating the estimated DTR with
classification trees, in an additional step.

Following Wu et al. (2015), we first describe how the Q-learning would proceed
for this case, assuming the correct (e.g., linear) models for Q-functions have been
pre-specified, and no data are missing; then we explain how missing data imputation
and model selection were integrated within the Q-learning strategy.

First, we define stage 1 and stage 2 Q-functions in terms of available treatment
choices, patent-level covariates, and outcomes. Specifically, the ith patient in a
hypothetical complete data set can be characterized with a trajectory(X1i,T1i,X2i,
T2i,Yi), i ¼ 1, . . ., n, where X1 denotes a vector of baseline covariates available at
decision stage 1, X2 comprises post-baseline outcomes collected during stage 1 and
potentially informing treatment choice at stage 2, and T1 and T2 indicate randomized
treatment choices at stages 1 and 2, respectively. That is T1 ¼ {Bupropion,
Paraxetime, placebo} and T2 ¼ {Bupropion,Paraxetime}; Y is the SUMD score at
the end of stage 2, with lower values indicating clinically desirable outcome (low
depression score).

The Q-functions are essentially the response functions that map patients with
particular treatment choices and covariate profiles to expected outcomes, similar to
our response functions f(x, t) introduced in Sect. 6.3.3 (in the context of subgroup
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identification). The stage-specific Q-functions are defined recursively, starting with
the last stage function. In our case

• Q2(x1, t1, x2, t2) ¼ E(Y|X1 ¼ x1, T1 ¼ t1,X2 ¼ x2, T2 ¼ t2),
• Q1 x1, t1ð Þ ¼ E min t2 Q2 X1,T1,X2, t2ð ÞjX1 ¼ x1,T1 ¼ t1ð Þ:

The Q2 is a usual regression, here estimating the “quality” of treatment assign-
ment t2 for a patient presented with his or her “history” up to that point. Similarly, the
function Q1 measures the quality of assigning treatment t1 for a patient presented
with his/her pretreatment covariates and assuming optimal decision at subsequent
stage 2, defined by minimizing Q2 (SUMD score) over t2.

We assume that Q1(�, θ1) and Q2(�, θ2) are parametrized as linear functions of
patient covariate history and prior treatments with vector θ1 containing regression
coefficients associated with X1, T1, and X1 by T1 interactions and θ2 containing
coefficients for X1, X2, T1, T2, and (X1, X2) by T2 interactions. The parameters of Q-
functions are estimated in three steps:

1. Estimate parameters in θ2 using only data on placebo non-responders who were
randomized at the second stage to bupropion or paroxetine, by regressing Y on X1,
X2, T1, T2.

2. Compute new “response” vector eY to be used for estimating the first stage
Q-function, defined as

eY ¼
bQ2 topt2

� �
, for placebo nonresponders

Y , for the rest of patients

(
,

where bQ2 topt2

� �
is the predicted response from the regression model at the

previous step with treatment T2 set for each patient at the optimal value topt2

corresponding to the minimum of estimated bQ2.

3. Estimate parameters in θ1 using all patients by regressing eY on X1, T1, and

compute the optimal first-stage treatment topt1 by minimizing the estimated bQ1.

The variables for modeling Q1 and Q2 are selected from 24 potential predictors
listed in Table 6.6 using stepwise forward variable selection with the entry and
stopping conditions determined by the Bayes information criterion (BIC). This was
combined with multiple imputation procedures for missing values. The imputation
was done using Fully Conditional Specification (chained equations) procedure
available in the R package mice (van Buuren 2018). This method imputes missing
values using sampling from posterior distributions and does not require explicit
specification of joint likelihood. Instead, conditional models are defined for each
variable given all the rest. This is especially convenient for data sets of mixed type,
combining numerical and categorical variables, where joint distributions are hard to
specify. In our case, for continuous variables, Predictive Mean Matching was used,
and logistic regression models were used for binary variables.
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The stepwise forward selection was conducted in such a way that each candidate
variable to be added was evaluated using the BIC averaged across m generated
complete data sets. The final model was then selected based on the best average BIC
across all models in the list formed by the stepwise selection. First, the optimal
model for estimating θ2 in step 1 of the outlined three-step Q-learning procedure was
selected in this fashion. Then the optimal model for Q1 was selected by applying the
same stepwise selection (based on average BIC) to estimating θ1 (step 3) given bθ2
estimated with the model selected for Q2. For details of the procedure, see Wu
et al. (2015).

Once models for Q1 and Q2 have been selected, they were applied to each of the
m completed data sets, the resulting m estimates of Q-functions averaged, and
optimal treatment regimes found as the minimizers of the averaged Q-functions.

Finally, the optimal treatment assignments topt1 and topt2 for each patient were
approximated with classification trees using R package rpart to provide more easily
interpretable rules. To achieve that, classification tree algorithm was applied sepa-
rately to new variables capturing estimated topt1 and topt2 as categorical response
variables with covariates, selected for modeling Q1 and Q2, as candidate splitting
variables. The resulting trees are presented in the left and right panel of Fig. 6.2.

6.5.2.3 Results of Q-Learning

Details of estimated Q-functions and associated regression coefficients can be found
in Wu et al. (2015). Here we will briefly discuss the tree representation of the optimal
DTR shown in Fig. 6.6. The tree on the left shows assignment rules at the first stage.
Interestingly, patients who experienced a (hypo) manic episode immediately pre-
ceding the current major depressive episode are not recommended any of the two
available antidepressant treatments but rather using only mood stabilizers (note that
“placebo” actually refers to treating with mood stabilizers only). For the rest of the
patients, bupropion is recommended to younger patients, and paroxetine is

PRONSET

AGE ≤ 60

Remission

AGE ≤ 57

Mixed

Placebo

(Hypo)manic

Paroxetine

No

Bupropion

Yes

Paroxetine

No

Bupropion

Yes

SIDE3 = 1

SUMM1 ≤ 1.53

No

Paroxetine

Yes

Paroxetine

No

Bupropion

Yes

Fig. 6.6 Estimated optimal regimes at stages 1 (left) and 2 (right). Note that the optimal regime at
the second stage is evaluated only for those patients who are assigned to placebo at the first stage
and fail to show response
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recommended to older patients. The tree on the right illustrates the assignment of the
second-stage treatment for patients who had failed on placebo during the first stage:
variables SUMM1 (mood severity after stage 1) and SIDE3 (presence of sedation
side effect) dictate treatment selection; subjects with no sedation side effects and low
mood severity are recommended to bupropion, and all others are recommended to
paroxetine.

It is also instructive to compare the expected outcomes assuming patients undergo
the optimal treatment to outcomes expected under some pre-specified fixed (static)
regimes. To estimate expected outcomes under static regimes, an inverse probability
weighted estimator was used (Zhang et al. 2013; see also our last case study in Sect.
6.5.3), and confidence intervals were computed using nonparametric bootstrap. The
confidence intervals for the optimal DTR estimator were computed using the
m-out-of-n bootstrap. Table 6.7 summarizes the results, suggesting some advantages
of the estimated dynamic regime.

6.5.3 Estimating Treatment Effect in an Oncology Trial
Using Inverse Probability of Censoring Weights

6.5.3.1 Introduction

Demonstrating statistically significant and clinically meaningful gains in overall
survival (OS) remains the gold standard to provide evidence of the benefits of new
anticancer drugs (Johnson et al. 2015). In clinical trials, in patients with advanced or
metastatic cancer, however, it is very common for participants to switch from the
treatment to which they were initially randomized to other therapies (Latimer and
Abrams 2014), typically after disease progresses on the initially randomized treat-
ment. For both ethical and practical reasons, this option may be built into oncology
trial protocols. Switching may also be allowed from the study control treatment to
experimental treatment, which is not part of the standard treatment pathway, if no
other non-palliative treatments are available.

When patients switch to and benefit from active post-progression therapies, a
standard ITT analysis may inaccurately estimate the “true” OS benefit associated

Table 6.7 Point estimates and confidence intervals for the expected depression score SUMD at
week 12 under estimated DTR and some static regimes (labeled by a pre-specified combination of a
first-stage and a second-stage treatment)

Regime Estimated SUMD Estimated 90% confidence interval

Estimated optimal DTR 2.13 (1.34, 2.86)

(Bupropion, high-dose bupropion) 6.91 (6.27, 7.71)

(Paroxetine, high-dose paroxetine) 8.25 (7.39, 9.07)

(Placebo, bupropion) 3.71 (3.38, 4.04)

(Placebo, paroxetine) 4.51 (4.10, 4.90)

The lower scores indicate clinically preferred outcome (based on Table 4 from Wu et al. 2015)
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with the investigational product the patients were initially randomized to and will
affect the cost-effectiveness analyses in the context of economic evaluations that
make use of the OS evidence. In general, switching to active post-progression
therapies that do not form part of the standard treatment pathway should be adjusted
for (Latimer and Abrams 2014).

Several switching adjustment methods that seek to estimate the true treatment
effect are available, ranging from simple to complex techniques. Simple or naïve
methods such as simple censoring (when data from patients who switched are
censored at the point of switching) or exclusion techniques (patients who switched
are excluded entirely from the analysis) are highly prone to selection bias and should
be avoided (Latimer and Abrams 2014). More complex statistical techniques are
classified as randomization based (e.g., the rank-preserving structural failure time
model or iterative parameter estimation algorithm) or observational based (e.g., the
two-stage accelerated failure time model [two-stage method] or inverse probability
of censoring weights [IPCW]) (Latimer and Abrams 2014). Different switching
adjustment methods may be appropriate under certain scenarios, and none is optimal
in all circumstances. All of them involve untestable assumptions, as is always the
case with causal inference from observational data. Here, for illustration, we will
focus on IPCW.

In the IPCW approach, patients are artificially censored at the time of switching,
and the weight/influence of uncensored patients with similar prognostic character-
istics is increased based on covariate values and a model of the probability of being
censored. The key assumption made by the IPCW method is the “no unmeasured
confounders” assumption; that is, data must be available for all baseline and time-
dependent prognostic factors for mortality that independently predict informative
censoring (switching) (Latimer et al. 2014; Robins and Finkelstein 2000). This
assumption cannot be tested using the observed data (Robins and Finkelstein
2000). In practice, this is unlikely to be perfectly true, but the method is likely to
work adequately if the “no unmeasured confounders” assumption is approximately
true; that is, there are no important independent predictors missing (Latimer et al.
2014). Additionally, the method assumes that the model for computing weights is
correctly specified and that the probabilities of treatment switching conditional on
given covariates are bounded away from zero. The latter would not be the case if
physicians were switching patients based on deterministic rules (e.g., all female
patients are switched to treatment A and male patients switched to treatment B). As
correct model specification plays an important role in implementing the IPCW
analysis strategy, modern methods of statistical learning that are free of parametric
model assumptions can be very useful because they allow automating the strategy,
making it less prone to misspecification error.

6.5.3.2 Example Data Set in Prostate Cancer

The data set used to illustrate the IPCW in this section represents a randomized,
double-blind trial with 800 subjects with prostate cancer in each of the two arms—
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experimental and placebo. The endpoint of interest for this analysis is overall
survival. All subjects were followed up for OS after discontinuing study treatment.

Treatment switching is defined as the switch from the control treatment to the
experimental treatment for those subjects randomized to the control arm or from
either treatment group to other post-study treatments that are not part of the standard
treatment pathway. Treatment switching often occurs upon disease progression or
when conclusive evidence accrues about the benefit of the experimental treatment
and therefore the study is stopped and unblinded. We assume this typical scenario for
our case study.

In our example data set, all subjects in the control group and 27.5% (220/800) of
subjects in the experimental arm discontinued the treatment they were randomized to
by the data cutoff. In this case study, we are concerned with one type of switch
only—when the subject switches from the randomized treatment to another therapy
that was not part of the standard treatment pathway, e.g., as per the NICE clinical
guideline for prostate cancer (NICE 2014), and we are not concerned with possible
multiple switches thereafter. The data set contains a total of 376 switchers, with a
larger proportion of switchers in the placebo arm: 18.0% (144/800) and 29.0%
(232/800) of subjects in the experimental and placebo groups, respectively.

6.5.3.3 IPCW Methodology

We illustrate herein the IPCW approach for adjusting estimates of a treatment effect
in the presence of informative censoring. Censoring is informative when a subject
with specific characteristics is more likely to be censored than another (e.g., a subject
who has poor prognosis discontinues treatment and is censored because of this). In
this case study, we consider treatment switching as the only informative censoring
mechanism. All other censoring reasons are modeled as non-informative (as part of
the proportional hazard partial likelihood of the Cox regression).

The IPCWmethod represents a type of Marginal Structural Model (MSM), which
was originally developed for use with observational data (Hernán et al. 2001). The
IPCW method involves censoring subjects at the time of treatment switch and then
controlling for this potentially informative censoring by weighting. Specifically, the
follow-up information for subjects who remain at risk for the event is weighted, so
that they account not only for themselves but also for subjects with similar charac-
teristics (both baseline and time-dependent) whose follow-up was censored by
informative censoring (Robins and Finkelstein 2000).

The IPCW method entails the following general steps. First, for all subjects,
follow-up time from randomization until failure (e.g., death) or censoring (informa-
tive or otherwise) is partitioned into intervals. At the beginning of each interval,
time-dependent variables that may be predictive of informative censoring
(switching) or failure are calculated and updated. For each subject and interval,
so-called stabilized weights (SW) are then calculated as described by Hernán et al.
(2001). The numerator of each weight is the cumulative probability of remaining
uncensored by informative censoring from the beginning of follow-up to the end of
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the interval given only baseline covariates. The denominator of the weight is the
cumulative probability of remaining uncensored by informative censoring to the end
of the interval given both baseline and time-dependent covariates. In the original
formulation of Hernán et al. (2001), an individual’s treatment history up until the end
of the previous interval is included in both the numerator and denominator. Given
that in our case study the cause of informative censoring is the first switch from the
randomized treatment to another antineoplastic therapy, “past treatment history” is
reduced to the initial randomized treatment that is conditioned upon simply by
performing computations of weights separately by treatment arms.

Specifically, patient-specific estimates of the stabilized weights at the jth interval,
SWi( j), are obtained as follows (here we drop the patient index from all terms to
simplify notation):

SW jð Þ �
Q j

k¼0P C kð Þ ¼ 0jC k � 1ð Þ ¼ 0,X 0ð Þ½ 
Q j
k¼0P C kð Þ ¼ 0jC k � 1ð Þ ¼ 0,X 0ð Þ,Y kð Þ½ 
 ,

where

• C(k) is an indicator function representing censoring/treatment switch status at the
end of interval k (1, censored due to switching, 0, uncensored).

• X(0) is a vector of subject characteristics measured at baseline (see Table 6.8).
• Y(k) is a vector of time-dependent subject characteristics measured at or prior to

the beginning of interval k (see Table 6.8).
• P[C(k) ¼ 0|C(k � 1) ¼ 0,X(0)] is the probability of remaining uncensored (not

switched) at the end of interval k given uncensored at the end of interval k� 1 and
conditioned on baseline characteristics X(0).

• P[C(k) ¼ 0|C(k � 1) ¼ 0,X(0), Y(k)] is the probability of remaining uncensored
(not switched) at the end of interval k given uncensored at the end of interval
k� 1 and conditioned on baseline characteristics X(0) and time-dependent patient
characteristics Y(k).

Probabilities of remaining uncensored by informative censoring are unknown and
therefore need to be estimated. Here, we use two approaches to illustrate the
difference between traditional parametric modeling and methods of machine learn-
ing: logistic regression and random forest models (see Sect. 6.3.1). In each case, we
fit one model for the denominator and one model for the numerator, with informative
censoring (switching) as the dependent variable. Details on how these methods were
applied in this case study are provided further below. Both the logistic regression and
the random forest models are estimated within each treatment arm separately, to
account for potential differences in the reasons that led to switching treatment in each
arm. Covariates included in these models represent measurements typically collected
in the studies of prostate cancer and are presented in Table 6.8.

A hazard ratio (HR) for the outcome of interest is then estimated using a weighted
Cox proportional hazards regression model that includes only baseline variables and
the treatment arm indicator (i.e., the indicator of the initial randomized treatment) as
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covariates. The weights are the subject- and interval-specific stabilized weights as
described above.

Because the standard errors for the HRs obtained from the Cox regression
analysis do not account for the variability associated with the estimation of the
stabilized weights, 95% confidence intervals for HR estimates are obtained by
bootstrapping (Hernán et al. 2001; see also Sect. 6.2). This method involves
resampling with replacement from the experimental and placebo arms to obtain
B (here B ¼ 100 for illustration, but we would recommend 2000) bootstrap samples
of the original data and repeating all the steps above for each of these samples to
calculate B bootstrap estimates of the HR. A 95% CI for the HR is estimated based
on the 2.5 and 97.5 percentiles of B bootstrap replicates.

6.5.3.4 Estimating Stabilized Weights with Logistic Regression

To estimate the numerator of the stabilized weights, a logistic regression (model 1)
was fitted to the “stacked data” (i.e., with multiple records per patient) from all

Table 6.8 Covariates for modeling weights in IPCW estimators

Covariates

Baseline covariates:

Age (years, continuous)

Time since diagnosis (categorical; <5 years vs. �5 years)

Number of bone metastases at screening (categorical; �5 vs. >5)

Presence of visceral disease at baseline (categorical; yes vs. no)

Type of disease progression at study entry (categorical; PSA progression only vs. radiographic
progression with or without PSA vs. no disease progression at study entry)

Baseline EQ-5D utility index (continuous)

Baseline FACT-P total score (continuous)

Time-dependent covariates:

ECOG Performance Status (categorical; 0 vs. >0)

History of grade 3/4/5 adverse events (categorical; yes vs. no)

Occurrence of grade 3/4/5 adverse events since last visit (categorical; yes vs. no)

Corticosteroid use (categorical; yes vs. no)

PSA level (continuous)

Laboratory tests: LDH level (categorical; �240 IU/mL vs. >240 IU/mL)

EQ-5D utility index (continuous)

FACT-P total score (continuous)

Time since treatment discontinuation (continuous)

Time to treatment discontinuation (continuous)a

Disease progression (categorical; yes vs. no)a

ECOG Eastern Cooperative Oncology Group, FACT-P Functional Assessment of Cancer Therapy-
Prostate, LDH lactate dehydrogenase, PSA prostate-specific antigen
aAlthough disease progression and time to treatment discontinuation do not vary with time, they
could be important covariates to be accounted for in the estimation of the weights
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patient intervals from randomization until treatment switch or failure or censoring,
defined as death, withdrawal of consent, or end of study, whichever occurred first.
The probability of remaining uncensored was modeled conditional on patient base-
line factors listed in Table 6.8 and a time-dependent intercept. The time-dependent
intercept was estimated by including a variable indicating the number of days
elapsed since randomization at the start of the interval and its quadratic term. The
dependent variable in the logistic model was a binary variable (1/0) indicating
whether the patient had switched treatment or not during the interval.

To estimate the denominator of the stabilized weights, a similar logistic regres-
sion (model 2) was fitted in which the probability of remaining uncensored was
modeled conditional on the same baseline factors as above plus patient time-
dependent covariates measured at the start of each interval, as listed in Table 6.8.
Upon randomized study drug discontinuation, patients are typically followed mainly
in terms of their survival status and initiation of new therapies, while other regular
study assessments, e.g., ECOG, LDH, SPA, etc., are no longer performed. There-
fore, only data as observed at the time of study treatment discontinuation (fixed) and
time since treatment discontinuation (time-varying) are used as predictors of treat-
ment switching in our models for the denominator of the weights. In a typical study,
the probability of treatment switching prior to study treatment discontinuation is zero
by trial design (alternatively, the probability of remaining uncensored is 1). There-
fore, the probability of being uncensored was set to 1 for patient intervals prior to
study treatment discontinuation, and these observations were not used in the esti-
mation of this logistic model.

For all patient intervals prior to the date at which patients were assumed to be at
risk of informative censoring (treatment switching, i.e., the date of study treatment
discontinuation), stabilized weights were calculated. The numerator of SW( j) was
obtained using the estimates of the first model as described above, and the denom-
inator of SW( j) was set to 1.0 (i.e., the time-dependent probability of switch set equal
to zero). Thus, these weights are always less than 1.0. For subsequent intervals, the
numerator of SW( j) was calculated using model 1, and the denominator was
calculated using model 2. These weights may be greater than 1.0.

6.5.3.5 Estimating Stabilized Weights Using Random Forests

Stabilized weights were also estimated using random forests, in a manner similar as
described above for the logistic regression, i.e., fitting separate models within each
treatment arm as well as for the numerator and denominator of the weights, using the
same baseline and time-dependent covariates, and data from the same patient
intervals. This analysis was carried out using the R package randomForest. The
model can be fit using the following function:

model ¼ randomForest predictors, as:factor outcomeð Þ, ntree ¼ 1000ð Þ,

where
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• “predictors” contains a matrix with the values of patient covariates included in the
model with rows corresponding to patient intervals used to fit the model.

• “outcome” is a vector of binary values representing the switching indicator for
each patient interval as previously described.

• “ntree” is a parameter of the random forest algorithm specifying the number of
classification trees that are fit as part of the random forest.

A default setting is used for the number of covariates that are randomly chosen as
candidates for the splits (the “mtry” parameter) when building the classification trees
so that the square root of the number of all available predictors is used. Once the
model is estimated, predicted probabilities of not switching (remaining uncensored
due to the non-ignorable reason) can be obtained using the function “predict” from
the randomForest package:

pred ¼ as:data:frame predict model, newdata ¼ predictors, type ¼ “prob”
� �� �

where

• “model” is a “randomForest” object estimated above.
• “newdata¼ predictors” specifies that predictions should be provided for the same

data set of patient intervals and covariate values.
• type ¼ “prob” argument requests predictions in the form of probabilities as

opposed to binary outcomes. These predicted probabilities are used for the
calculation of the numerator or denominator of the stabilized weights.

6.5.3.6 Results

When applying the IPCW method, it is important to explore the distributions of the
weights estimated in the first part of the method. A necessary condition for the
correct model specification is that the stabilized weights have a mean of 1 (Hernán
and Robins 2006).

Summary statistics on the stabilized weights for the IPCW analysis are presented
in Table 6.9. Irrespective of the method used to estimate the probability of not being
informatively censored (logistic regression or random forest), for both treatment

Table 6.9 Descriptive statistics for stabilized weights in IPCW models

Treatment arm N Mean STD Min Max Q1 Median Q3

Logistic regression

Placebo 10,692 1.01 0.25 0.87 12.10 0.98 0.99 1.00

Experimental 11,039 1.00 0.07 0.92 2.78 0.98 1.00 1.00

Random forest

Placebo 10,692 1.02 0.24 0.27 9.60 1.00 1.00 1.00

Experimental 11,039 1.01 0.11 0.28 3.67 1.00 1.00 1.00
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arms, the mean of the stabilized weights is very close to 1, as expected. The median
of the weights is also close to 1.

The results of the unadjusted analysis and the IPCW method using stabilized
weights obtained from both logistic regression and random forest method are
provided in Fig. 6.7. The unadjusted results were obtained with the analysis where
all ITT subjects were included in the analysis set and no censoring was applied at the
point of treatment switching.

Adjusting for the treatment switching, as well as for other baseline characteristics,
indicates that the experimental treatment was associated with reduction in the risk of
mortality of approximately 41% irrespective of the method used to obtain the
stabilized weights (HR ¼ 0.59; 95% CI [0.48; 0.68] using logistic regression and
HR¼ 0.60; 95% CI [0.48; 0.69] using random forest). The unadjusted HR was 0.76,
95% CI [0.66; 0.88]. A smaller HR from the adjusted analysis is expected because
there are more switchers in the placebo arm than in the experimental arm which is
appropriately accounted for in the adjusted analysis.

As discussed in Sect. 6.3.1, random forests can also provide an insight into which
covariates are most predictive of the outcome using the estimated variable impor-
tance scores. They can be obtained using the function “importance”:

VI ¼ importance model, type ¼ 1ð Þ

where the argument “type¼1” requests the VI scores estimated based on the mean
decrease in accuracy from permuting out-of-bag data (see Sect. 6.3.1). For example,
from the treatment-specific models used for the denominators of the weights includ-
ing baseline and time-dependent covariates, the VI scores are as illustrated in
Fig. 6.8. We can see that in both treatment arms, the top four predictors are the
time to treatment discontinuation, PSA level, time from randomization, and age.

0.762 [ 0.657; 0.884]

0.585 [ 0.482; 0.680]

0.595 [ 0.477; 0.692]

0.2 0.4 0.6 0.8 1.0

ITT

Logistic regression

Random forest

HR [95% CI]

Fig. 6.7 Results of the unadjusted analysis and the IPCW method. The 95% CI are obtained from
bootstrapping
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To gain further insight into the relationship between the top predictors and the
probability of treatment switching, we can obtain partial dependence plots (using the
function “partialPlot”) that provide a graphical display of the marginal effects of the
variables of interest on class probability. Figure 6.9 illustrates such partial depen-
dence plots for the three top predictors in the treatment-specific models of weight
denominators.

6.5.3.7 Discussion

The objective of these analyses was to estimate the effect of experimental
treatment vs. placebo, adjusting for the potentially confounding effects of receipt
of nonstandard anticancer therapy in both treatment groups. This is of particular
interest for economic evaluations considering a lifetime horizon where standard ITT
analyses are likely to be inappropriate in the presence of treatment switching failing
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Fig. 6.8 Variable importance scores from random forest models of treatment switching based on
baseline and time-dependent covariates (models for denominators of stabilized weights)
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to inform the decision problem (selecting the most effective therapy for a given
patient population) from the causal inference perspective.

The IPCW method to adjust for the treatment switching was chosen in this
example because a large number of potentially prognostic covariates (that can
influence the investigator’s decision to switch treatment for a prostate cancer patient)
were available for the analysis. Also, as suggested by the theory and existing
evidence, IPCW is best suited for studies where the switching proportions are not
very high (Latimer and Abrams 2014), which is the case in our example data set. The
IPCW method is reliant on the assumption of “no unmeasured confounders” which
is not testable from observed data. One strategy is to include in the analysis a
comprehensive set of potentially important confounders identified using expert
knowledge (which may include redundant covariates) and rely on powerful machine
learning methods to extract useful information in the process of model building.
Whether the results could substantially change after including covariates entirely
missing in the observed data can be evaluated using sensitivity analyses framework
(see Brumback et al. 2004; Klungsøyr et al. 2009).

We have applied the IPCW method where weights were estimated using two
approaches: a traditional logistic regression and a modern method of statistical
learning, the random forest. In our example, the results using the logistic regression
and random forest models of treatment switching provided similar results. The
random forest model is of particular interest as it is free of parametric model
assumptions, can effectively deal with a large number of predictors without
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Fig. 6.9 Partial dependence plots for three top predictors from random forest models of treatment
switching based on baseline and time-dependent covariates (models for denominators of stabilized
weights)
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overfitting, is known for its good predictive accuracy, and provides useful insights
into the predictive strength of considered covariates and their relationship to the
outcome.

6.6 Discussion and Conclusions

DMML methods are becoming now an integral part of data analysis at all stages of
clinical drug development, which can be contrasted with its primary use in preclin-
ical stage of “drug discovery” in the past. The need in DMML arises whenever a
model selection is entertained, which may occur in different tasks including tradi-
tional estimation of the overall treatment effect in the presence of potential
confounding due to post-randomization events and novel tasks of treatment optimi-
zation in the realm of personalized/precision medicine.

A wealth of patient data collected during the clinical development program may
be better utilized with the principled use of DMML that should inform a decision-
making process across the entire drug development cycle. We hope that the refer-
ences to examples of various clinical applications and case studies provided in this
chapter will give the reader an appreciation of the breadth of areas where the power
of DMML can be leveraged.

Application of DMML to clinical data has some unique features. Unlike more
traditional applications of DMML (such as speech and character recognition), with
potentially unlimited amount of data that can be used for model training, DMML in
clinical settings is dealing with relatively small number of records due to substantial
costs and other constraints associated with each patient that can be enrolled in a
clinical study. Therefore, a typical application of DMML in the clinical world is
within the medium or small “n” and medium/large “p.” Cross-validation and other
resampling-based methods, therefore, play a key role.

Modeling of clinical data, whether randomized or based on observational studies,
involves methods accounting for different sources of confounding and missing data.
This explains the trend of integrating DMML and casual inference methods in some
applications.

Another feature of applications of DMML in drug development is the need to
control the Type I error or false discovery rate which is a new trend in the area of
machine learning that historically considered the concept of statistical significance
irrelevant. Typically, the analytical form of the null distribution for many DMML
techniques is not available, and one needs to resort to methods of resampling.

It is important to understand that the multiplicity control is interrelated with
model complexity control: the latter effectively restricts the model search space
and results in a lesser multiplicity burden.

It is a common trend for DMML applications in clinical data that the decision-
makers desire interpretable solutions rather than a “black box” which can often be
achieved by post-processing the “black box” to produce interpretable graphical
displays, such as trees, marginal plots, low dimensional projections, etc.
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“Data mining” in the clinical world sometimes was ascribed a negative connota-
tion as “data dredging.” However, we argue that using principled DMML strategies
and pre-specification of analytic strategies in the data mining plans may help remove
the stigma from data mining, making it a valuable set of tools for improved decision-
making in the drug development process.

Acknowledgments The authors would like to thank Matthew Rotelli, Qianyi Zhang, and Chakib
Battioui for many stimulating discussions on data mining and its role in drug development process,
Alex Dmitrienko for long-standing collaboration on developing the SIDES method, Fan Wu, Eric
Laber and Emanuel Severus for their generous help with the case study on Q-learning, and Natallia
Katenka and Anthony Zagar for reviewing the draft of the chapter and providing many valuable
suggestions that led to substantially improved presentation of the material.

References

Abtroun L, Bunouf P, Gendreau RM, Vitton O (2016) Is the efficacy of milnacipran in fibromyalgia
predictable? A data-mining analysis of baseline and outcome variables. Clin J Pain 32:435–440

Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311-4322

Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19
(6):716–723

Allen D (1974) The relationship between variable selection and data augmentation and a method of
prediction. Technometrics 16:125–127

Almirall D, Nahum-Shan I, Sherwood NE, Murphy SA (2014) Introduction to SMART designs for
the development of adaptive Interventions: with application to weight loss research. Transl
Behav Med 4(3):260-274

Altmann A, Toloşi L, Sander O, Lengauer T (2010) Permutation importance: a corrected feature
importance measure. Bioinformatics 26(10):1340-1347

Amaratunga D, Cabrera J. (2004) Mining data to find subsets of high activity. J Stat Plan Inference
122:23-41

Amaratunga D, Cabrera J, Lee Y-S (2008) Enriched random forests. Bio-informatics 24(18):2010-
2014

Ambroise C, McLachlan G (2002) Selection bias in gene extraction on the basis of microarray gene-
expression data. Proc Natl Acad Sci USA 99:6562–6566

Aridas CK, Kotsiantis SB, Vrahatis MN (2016) Increasing diversity in random forests using Naive
Bayes. In Iliadis L, Maglogiannis I (eds) Artificial Intelligence Applications and Innovations,
12th IFIP WG 12.5 International Conference and Workshops, pp. 75–86

Ashley EA (2015) The precision medicine initiative. A national effort. J Am Med Assoc 313
(21):2119-2120

Barber RF, Candès EJ (2015). Controlling the false discovery rate via knockoffs. Ann Stat 43
(5):2055-2085

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful
approach to multiple testing. J R Statist Soc Series B 57(1):289-300

Bühlmann P, Hothorn T (2010) Twin Boosting: improved feature selection and prediction, Stat
Comput 20:119-138

Berger J, Wang X, Shen L (2014) A Bayesian approach to subgroup identification. J Biopharm Stat
24:110–129

304 I. Lipkovich et al.



Blatt D, Murphy SA, Zhu J (2004) A-learning for approximate planning. Technical Report 04-63,
The Methodology Center, Pennsylvania State Univ., State College, PA

Bonetti M, Gelber RD (2000) A graphical method to assess treatment–covariate interactions using
the Cox model on subsets of the data. Stat Med 19:2595–2609

Bonetti M, Gelber RD (2004) Patterns of treatment effects in subsets of patients in clinical trials.
Biostatistics 5(3):465–481

Bornkamp B, Pinheiro J, Bretz F. (2009) MCPMod: An R package for the design and analysis of
dose-finding studies. J Stat Softw 29(7)1:23

Bornkamp B, Ohlssen D, Magnusson B, Schmidli H (2016) Model averaging for treatment effect
estimation in subgroups. Pharm Stat. DOI: https://doi.org/10.1002/pst.179

Breiman L (1996) Bagging predictors. Mach Learn 26:123–140
Breiman L (2001a) Random forests. Mach Learn 45(1):5-32
Breiman L (2001b) Statistical modeling: The two cultures. Stat Sc 16:199–231
Breiman L, Spector P (1992) Submodel selection and evaluation in regression: the X-random case.

Int Stat Rev 60:291–319
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees.

Chapman & Hall, London
Bretz F, Pinheiro JC, Branson M (2005) Combining multiple comparisons and modeling techniques

in dose-response studies. Biometrics 61:738-748
Brumback BA, Hernán MA, Haneuse SJ, Robins JM (2004) Sensitivity analyses for unmeasured

confounding assuming a marginal structural model for repeated measures. Stat Med 23(5):749-
767

Bühlmann P, Horthorn T (2007) Boosting algorithms: regularization, prediction and model fitting.
Stat Sci 22(4):477-505

Burgel PR, Paillasseur JL, Roche N (2014) Identification of clinical phenotypes using cluster
analyses in COPD patients with multiple comorbidities. BioMed Res Int Article ID 420134

Burges C (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data
Min 2(2):121–167

Cai T, Tian L, Wong P, Wei LJ (2011) Analysis of randomized comparative clinical trial data for
personalized treatment selections. Biostatistics 12:270–282

Cattell RB (1952) Factor analysis. New York: Harper
Chakraborty B, Moodie EE (2013) Statistical reinforcement learning. Gail M, Krickeberg K,

Samet J, Tsiatis A, Wong W (eds) Statistical Methods for Dynamic Treatment Regimes.
Springer, New York

Chakraborty B, Murphy SA (2014) Dynamic treatment regimes. Annu Rev Stat Appl 1:447–464
Chakraborty B, Laber EB, Zhao Y (2013) Inference for optimal dynamic treatment regimes using an

adaptive m-out-of-n bootstrap scheme. Biometrics 69(3):614-723
Chaudhuri P, Lo W-D, Loh W-Y, Yang C-C (1995) Generalized regression trees. Stat. Sinica

5:641–666
Chen G, Zhong H, Belousov A, Viswanath D (2015) PRIM approach to predictive-signature

development for patient stratification. Stat Med 34:317–342
Clarke B, Fokoué E, Zhang HH (2009) Principles and Theory for Data Mining and Machine

Learning. Springer, New York
Collins LM, Murphy SA, Strecher V (2007) The multiphase optimization strategy (MOST) and the

sequential multiple assignment randomized trial (SMART): New methods for more potent
e-health interventions. Am J Prev Med 32(5 Suppl):S112-S118

Conrad DJ, Bailey BA (2015) Multidimensional clinical phenotyping of an adult cystic fibrosis
patient population. PLoS One 10(3):e0122705

Cosma G, Brown D, Archer M, Khan M, Pockley AG (2017) A survey on computational
intelligence approaches for predictive modeling in prostate cancer, Expert Syst Appl 70:1-19

Davis RB, Anderson JR (1989) Exponential survival trees. Stat Med 8:947-961

6 Statistical Data Mining of Clinical Data 305

https://doi.org/10.1002/pst.179


Defays D (1977) An efficient algorithm for a complete-link method. Comput J British Comput Soc
20 (4):364–366

Dixon DO, Simon R (1991) Bayesian subset analysis. Biometrics 47:871–882
Dmitrienko A, Lipkovich I, Hopkins A, Li YP, Wang W (2015) Biomarker evaluation and

subgroup identification in a pneumonia development program using SIDES. Applied Statistics
in Biomedicine and Clinical Trials Design. Chen Z, Liu A, Qu Y, Tang L, Ting N, Tsong
Y. (editors). Springer

Docampo E, Collado A, Escaramís G, Carbonell J, Rivera J, Vidal J, Alegre J, Rabionet R, Estivill
X (2013) Cluster analysis of clinical data identifies fibromyalgia subgroups. Baradaran HR
(ed) PLoS One 8(9):e74873

Domingos P (2000) Bayesian averaging of classifiers and the overfitting problem. In: Proceedings
of the 17th International Conference on Machine Learning, pp. 223–230

Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55
(10):78-87

Doubleday K (2016) Generation of Individualized Treatment Decision Tree Algorithm With
Application to Randomized Control Trials and Electronic Medical Record Data. Master Theses,
The University of Arizona, available at http://arizona.openrepository.com/arizona/bitstream/
10150/613559/1/azu_etd_14716_sip1_m.pdf

Dusseldorp E, Van Mechelen I (2014) Qualitative interaction trees: A tool to identify qualitative
treatment-subgroup interactions. Stat Med 33:219–237

Dusseldorp E, Conversano C, Van Os BJ (2010) Combining an additive and tree-based regression
model simultaneously: STIMA. J Comp Graph Stat 19:514–530

Efron B (1979) Bootstrap methods: another look at the jackknife, Ann Stat 7:1–26
Efron B (2010) Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and

Prediction. Cambridge University Press
Efron B, Hastie T (2016) Computer Age Statistical Inference: Algorithms, Evidence, and Data

Science. Cambridge University Press: New York
Efron B, Tibshirani R (1997) Improvements on crossvalidation: The 0.632+ bootstrap method. J

Am Stat Assoc 92:548–560
Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407-499
Ertefaie A, Almiral D, Huang L, Dziak JJ, Wagner AT, Murphy SA (2012) SAS PROC QLEARN

users0 guide (Version 1.0.0). University Park: The Methodology Center, Penn State. Available
from http://methodology.psu.edu

Evgeniou T, Pontil M, Poggio T (2000) Regularization networks and support vector machines, Adv
Comput Math 13(1):1–50

Faye LL, Sun L, Dimitromanolakis A, Bulla SB (2011) A flexible genome-wide bootstrap method
that accounts for ranking and threshold-selection bias in GWAS interpretation and replication
study design. Stat Med 30(15):1898-912

FDA (U.S. Food and Drug Administration) (2018) “FDA permits marketing of artificial intelligence
algorithm for aiding providers in detecting wrist fractures” FDA News Release, May 24, 2018;
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm608833.htm

Ferguson JP, Cho JH, Yang C, Zhao H (2013) Empirical Bayes correction for the Winner’s Curse in
genetic association studies. Genet Epidemiol 37(1):60–68

Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of classifications.
Biometrics 21:768–769

Foster JC, Taylor JMC, Ruberg SJ (2011) Subgroup identification from randomized clinical trial
data. Stat Med 30:2867–2880

Foster JC, Taylor JMG, Kaciroti N, Nan B (2015) Simple subgroup approximation to optimal
treatment regimes from randomized clinical trial data. Biostatistics 16(2):368-82

Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an
application to boosting. J Comp Syst Sci 55(1):119-139

Friedman J (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19(1):1–141

306 I. Lipkovich et al.

http://arizona.openrepository.com/arizona/bitstream/10150/613559/1/azu_etd_14716_sip1_m.pdf
http://arizona.openrepository.com/arizona/bitstream/10150/613559/1/azu_etd_14716_sip1_m.pdf
http://methodology.psu.edu
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm608833.htm


Friedman JH (1997) Data mining and statistics: what’s the connection? In: Proceedings of Sym-
posium on the Interface Between Computer Science and Statistics

Friedman J (1999) Stochastic gradient boosting, Technical report, Stanford University
Friedman J (2001) Greedy function approximation: A gradient boosting machine. Ann of Stati 29

(5):1189–1232
Friedman JH, Fisher NI (1999) Bump hunting in high-dimensional data. Stat Comput 9:123–143
Friedman J, Hall P (2007) On bagging and nonlinear estimation. J Stat Plan Inference 137:669–683
Friedman JH, Popescu BE (1999) Predictive Learning via Rule Ensembles. Ann of Appl Stat

2:916–954
Friedman J, Stuetzle W (1981) Projection pursuit regression. J Am Statist Assoc 76:817–823
Friedman JH, Tukey JW (1974) A projection pursuit algorithm for exploratory data analysis. IEEE

Transactions on Computers, C–23 (9):881–890
Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting

(with discussion). Annals of Statistics 28:337–407
Fu H, Zhou J, Faries DE (2016) Estimating optimal treatment regimes via subgroup identification in

randomized control trials and observational studies. Stat Med 35(19):3285-3302
Geisser S (1975) The predictive sample reuse method with applications. J Am Stat Assoc 70

(350):320–328
Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63: 3–42
Gilmour SG (1996) The interpretation of Mallows’s Cp-statistic. J R Stat Soc Ser D 45(1):49–56
Glickman ME, Rao SR, Schultz MR (2014) False discovery rate control is a recommended

alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67(8):850-857
Goldberg Y, Kosorok, MR (2012) Q-learning with Censored Data. Ann Stat 40(1):529-560
Goodfellow I, Bengio J, Courville A, Bach F (2016) Deep Learning. MIT Press: Cambridge, MA
Gordon L, Olshen RA (1985) Tree-structured survival analysis. Cancer Treat. Rep 69:1065–1069
Gower JC, Hand DJ (1996) Biplots. Chapman and Hall: London
Greenacre MJ (1984) Theory and Applications of Correspondence Analysis. Academic Press:

London
Gu X, Yin G, Lee JJ (2013) Bayesian two-step Lasso strategy for biomarker selection in person-

alized medicine development for time-to-event endpoints. Contemp Clin Trials 36:642–650
Gunter L, Zhu J, Murphy S (2011) Variable selection for qualitative interactions in personalized

medicine while controlling the familywise error rate. J Biopharm Stat 21:1063–1078
Hand DJ (1998) Data mining: statistics and more? Am Stat 52(2):112-118
Hand DJ, Mannila H, Smyth P (2001) Principles of Data Mining. The MIT Press: Cambridge.
Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Ana. Mach Intell 12

(10):993–1001
Hardin DS, Rohwer RD, Curtis BH, Zagar A, Chen L, Boye KS, Jiang HH, Lipkovich IA (2013)

Understanding heterogeneity in response to antidiabetes treatment: A post hoc analysis using
SIDES, a subgroup identification algorithm. J Diab Sci Technol 7:420–429

Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C (2012) Novel data mining
methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther 91(6):1010-
1021

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning. Data Mining,
Inference, and Prediction, 2nd Edition. Springer-Verlag: New York

Henderson NC, Louis TA, Wang C, Varadhan R (2016) Bayesian analysis of heterogeneous
treatment effects for patient-centered outcomes research. Health Serv Outcomes Res Methodol
16(4):213–233

Henderson NC, Louis TA, Rosner G, Varadhan R (2017) Individualized treatment effects with
censored data via fully nonparametric Bayesian accelerated failure time models. Available arXiv
preprint arXiv: 1706.06611v1

Herland M, Khoshgoftaar TM, Wald R (2014) A review of data mining using big data in health
informatics. J Big Data 1:2

6 Statistical Data Mining of Clinical Data 307



Hernán MA, Robins JM (2006) Estimating causal effects from epidemiological data. J Epidemiol
Community Health 60:578–586

Hernán MA, Brumback B, Robins JM (2001) Marginal structural models to estimate the joint causal
effect of nonrandomized treatments. J Am Stat Assoc 96(454):440-448

Ho, TK (1995) Random decision forests. In: Proceedings of the 3rd International Conference on
Document Analysis and Recognition, Montreal, QC, pp. 278–282

Ho TK (2002) A data complexity analysis of comparative advantages of decision forest construc-
tors. Pattern Anal Appl 5(2):102–112

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: A tutorial.
Stat Sci 14(4): 382–417

Hodges JS, Cui Y, Sargent DJ, Carlin BP (2007) Smoothing balanced single-error-term analysis of
variance. Technometrics 49:12–25

Hoerl AE, Kennard R (1970) Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics 12:55–67

Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ
Psychol, 24:417–441

Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: A conditional inference
framework. J Comp Graph Stat 15(3):651-674

Hou J, Seneviratne C, Su X, Taylor J, Johnson B, Wang XQ, Zhang H, Kranzler HR, Kang J, Liu L
(2015) Subgroup identification in personalized treatment of alcohol dependence. Alcohol Clin
Exp Res 39(7):1253-1259

Huang Y, Fong Y (2014) Identifying optimal biomarker combinations for treatment selection via a
robust kernel method. Biometrics 70:891–901

Hyvärinen A, Oja E (2000) Independent component analysis: Algorithms and applications. Neural
Networks 13:411–430

Imai K, Ratkovic M (2013) Estimating treatment effect heterogeneity in randomized program
evaluation. Ann Appl Stat 7:443–470

Ishwaran H, Kogalur U, Blackstone E, Lauer M (2008) Random survival forests. Ann Appl Stat 2
(3):841–860

Jacova C, Slack PJ, Hsiung G-YR, Beattie BL, Lee P (2013) Patients’ self-reports on function and
cognition in Alzheimer’s disease are strongly influenced by their affective states: Principal
component analysis of the CLIMAT scale. Alzheimers Dement 9(4):650

Janes H, Brown MD, Pepe M, Huang Y (2013) Statistical methods for evaluating and comparing
biomarkers for patient treatment selection. UW Biostatistics Working Paper Series. Working
Paper 389. http://biostats.bepress.com/uwbiostat/paper389

Janes H, Brown M, Pepe M, Huang Y (2014) An approach to evaluating and comparing biomarkers
for patient treatment selection. Int J Biostat 10(1):99-121

Johnson P, Greiner W, Al-Dakkak I, Wagner S (2015)Which metrics are appropriate to describe the
value of new cancer therapies? Biomed Res Int 2015:865101

Jolliffe IT (2002) Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed.,
Springer: New York

Jones HE, Ohlssen DI, Neuenschwander B, Racine A, Branson M (2011) Bayesian models for
subgroup analysis in clinical trials. Clin Trials 8:129–143

Jordan M, Jacobs R (1994) Hierachical mixtures of experts and the EM algorithm. Neural Comput
6:181–214

Kass GV (1980) An exploratory technique for investigating large quantities of categorical data. App
Stat 29:119-127

Kaufman L, Rousseeuw P (1990) Finding Groups in Data: An Introduction to Cluster Analysis,
Wiley, New York

Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I (2017) Machine
learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104-116

308 I. Lipkovich et al.

http://biostats.bepress.com/uwbiostat/paper389


Kehl V, Ulm K (2006) Responder identification in clinical trials with censored data. Comput Stat
Data Anal 50:1338–1355

Khalilia M, Chakraborty S, Popescu M (2011) Predicting disease risks from highly imbalanced data
using random forest. BMC Medical Informatics and Decision Making 11:51

Kim H, Loh WY (2001) Classification trees with unbiased multiway splits. J Am Stat Assoc
96:589-604

Kim H, Loh WY (2003) Classification trees with bivariate linear discriminant node models. J
Comput and Graph Statsit 12:512-530

Kim H-C, Ghahramani Z (2012) Bayesian classifier combination. In: Proceedings of the 15th
International Conference on Artificial Intelligence and Statistics 22:619–627

Klungsøyr O, Sexton J, Sandanger I, Nygård JF (2009) Sensitivity analysis for unmeasured
confounding in a marginal structural Cox proportional hazards model. Lifetime Data Anal 15
(2):278-294

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceeding IJCAI’95 Proceedings of the 14th international joint conference on
Artificial intelligence - Volume 2, pp. 1137–1143

Kohonen T (1989) Self-Organization and Associative Memory (3rd edition), Springer: Berlin
Konstantina K, Themis PE, Konstantinos PE, Michalis VK, Dimitrios IF (2015) Machine learning

applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17
Kotajima L, Aotsuka S, Nishimaki T, Kashiwagi H, Kunieda T, Tojo T, Yokohari R (1997)

Classification tree criteria of pulmonary hypertension in mixed connective tissue disease. Jpn
J Rheumatol 7(4):293-303

Kruskal J B, Wish M. (1978) Multidimensional Scaling. Beverly Hills, California: Sage.
Krstajic D, Buturovic LJ, Leahy DE, Thomas S (2014) Cross-validation pitfalls when selecting and

assessing regression and classification models. J Cheminformatics 6:10
Kutcher ME, Ferguson AR, Cohen MJ (2013) A principal component analysis of coagulation after

trauma. J Trauma Acute Care Surg 74(5):1223-1230
Laber EB, Lizotte DJ, Ferguson B (2014a) Set-valued dynamic treatment regimes for competing

outcomes. Biometrics 70:53–61
Laber EB, Lizotte DJ, Qian M, Pelham WE, Murphy SA (2014b) Dynamic treatment regimes:

technical challenges and applications. Electron J Stat 8(1):1225–1272
Lamont A, Lyons MD, Jaki T, Stuart E, Feaster DJ, Tharmaratnam K, Oberski D, Ishwaran H,

Wilson DK, Horn MLW (2016). Identification of predicted individual treatment effects in
randomized clinical trials. Stat Methods Med Res Mar 17. pii: 0962280215623981

Latimer NR, Abrams KR (2014) NICE DSU Technical Support Document 16: Adjusting survival
time estimates in the presence of treatment switching. Available from http://www.nicedsu.
org.uk

Latimer NR, Abrams KR, Lambert PC, Crowther MJ, Wailoo AJ, Morden JP, Akehurst RL,
Campbell MJ (2014) Adjusting survival time estimates to account for treatment switching in
randomized controlled trials-an economic evaluation context: methods, limitations, and recom-
mendations. Med Decis Making 34(3):387-402

Lebedev AV, Westman E, Van Westen GJP, et al. for the Alzheimer’s Disease Neuroimaging
Initiative and the AddNeuroMed consortium (2014) Random Forest ensembles for detection and
prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage: Clinical
6:115-125

LeBlancM, Crowley J (1992) Relative Risk Trees for Censored Survival Data. Biometrics 48:411-425
LeBlanc M, Crowley J (1993) Survival trees by goodness of split. J Am Stat Assoc 88:457–467
Lee BK, Lessler J, Stuart EA (2010) Improving propensity score weighting using machine learning.

Stat Med 29:337-346
Lei H, Nahum-Shani I, Lynch K, Oslin D, Murphy S (2012) A “Smart” design for building

individualized treatment sequences. Annu Rev Clin Psychol 8:21–48

6 Statistical Data Mining of Clinical Data 309

http://www.nicedsu.org.uk
http://www.nicedsu.org.uk


Lin Y, Jeon Y (2006) Random forests and adaptive nearest neighbors. J Am Stat Assoc 101
(474):578-590

Linn KA, Laber EB, Stefanski LA (2015) iqLearn: Interactive Q-learning in R J Stat Softw 64(1):
i01

Lipkovich I, Dmitrienko A (2014) Strategies for identifying predictive biomarkers and subgroups
with enhanced treatment effect in clinical trials using SIDES. J Biopharm Stat 24:130–153

Lipkovich I, Dmitrienko A, D’Agostino BR Sr (2017) Tutorial in biostatistics: Data-driven sub-
group identification and analysis in clinical trials. Stat Med 36(1):136-196

Lipkovich IA, Houston JP, Ahl J (2008) Identifying patterns in treatment response profiles in acute
bipolar mania: a cluster analysis approach. BMC Psychiatry 8:65

Lipkovich I, Dmitrienko A, Denne J, Enas G (2011) Subgroup identification based on differential
effect search (SIDES): A recursive partitioning method for establishing response to treatment in
subject subpopulations. Stat Med 30:2601–2621

Lipkovich IA, Choy EH, VanWambeke P, Deberdt W, Sagman D (2014) Typology of patients with
fibromyalgia: cluster analysis of duloxetine study patients. BMC Musculoskeletal Disorders
15:450-460

Lipkovich IA, and Smith EP (2002) Biplot and singular value decomposition macros for Excel©. J
Stat Softw 7(5)

Little RJ, Rubin DB (2000) Causal effects in clinical and epidemiological studies via potential
outcomes. Annu Rev Public Health 21:121–45

Lloyd S (1957) Least squares quantization in PCM. Technical report, Bell Laboratories. Published
in 1982 in IEEE Transactions on Information Theory 28:128–137

Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R (2014) A significance test for the lasso. Ann Stat
42:413–463

Loh W-Y (2002) Regression trees with unbiased variable selection and interaction detection.
Statistica Sinca 12:361-386

Loh W-Y (2006) Logistic regression tree analysis. Pham H (ed) Handbook of Engineering
Statistics, Springer, New York, pp. 537–549

Loh W-Y (2014) Fifty years of classification and regression trees. Int Statist Rev 82(3):329-348
Loh W-Y, Shih YS (1997) Split selection methods for classification trees. Statistica Sinca 7:815-

840
Loh W-Y, Vanichsetakul N (1988) Tree-structured classification via generalized discriminant

analysis. J Am Stat Assoc 83:715-725
Loh W-Y, Zheng W (2013) Regression trees for longitudinal and multiresponse data. Ann Applied

Statist 7:495-522
Loh W-Y, He X, Man M (2015) A regression tree approach to identifying subgroups with

differential treatment effects. Stat Med 34:1818-1833
Loh W-Y, Fu H, Man M, Champion V, Yu M (2016) Identification of subgroups with differential

treatment effects for longitudinal and multiresponse variables. Stat Med 35(26):4837-4855
Lu Y, Black D, Genant HK, Mathur AK (2003) Study of hip fracture risk using tree structured

survival analysis. Journal für Mineralstoffwechsel 10(1):11-16
Luo Q, Mehra S, Golden NA, Kaushal D, Lacey MR (2014) Identification of biomarkers for

tuberculosis susceptibility via integrated analysis of gene expression and longitudinal clinical
data. Front Genet 5:240

Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. Adv in Neural
Inf Process Syst 30:4765–4774

Lundberg SM, Lee S-I (2018) Consistent individualized feature attribution for tree ensembles.
Available arXiv preprint arXiv:1802.03888v3

Macnaughton Smith P, Williams W, Dale M, Mockett L (1965) Dissimilarity analysis: a new
technique of hierarchical subdivision. Nature 202:1034–1035

MacQueen J (1967) Some methods for classification and analysis of multivariate observations.
LeCam LM, Neyman J (eds) Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, University of California Press, 281–297

310 I. Lipkovich et al.



Madigan D, Raftery A (1994) Model selection and accounting for model uncertainty using Occam’s
window. J Am Stat Assoc 89:1535–46

Mair J, Smidt J, Lechleiutner P, Dienstl F, Puschendorf B (1995) A decision tree for the early
diagnosis of acute myocardial infarction in nontraumatic chest pain patients at hospital admis-
sion. Chest 108:1502-1509

Mason L, Baxter J, Bartlett P, Frean M (2000) Boosting algorithms as gradient descent. Adv Neural
Inf Process Syst 12:512–518

Mayer C, Lipkovich I, Dmitrienko A (2015) Survey results on industry practices and challenges in
subgroup analysis in clinical trials. Stat Biopharm Res 7:272–282

Meinshausen N (2006) Quantile regression forests. J Mach Learn Res 7:983–999
Meinshausen N, Meier L, Bühlmann P (2009) P-values for high-dimensional regression. J Am Stat

Assoc 104:1671–1681
Minka T (2002) Bayesian model averaging is not model combination. MIT Media Lab Note https://

tminka.github.io/papers/minka-bma-isnt-mc.pdf
Mitchell T (1997) Machine Learning. The McGraw-Hill Companies
Monteith K, Carroll JL, Seppi K, Martinez T (2011) Turning Bayesian model averaging into

Bayesian model combination. In: Proceedings of International Joint Conference on Neural
Networks, pp. 2657–2663

Moodie EE, Dean N, Sun YR (2014) Q-learning: Flexible learning about useful utilities. Stat Biosci
6(2):223–243

Moodie EE, Richardson TS, Stephens DA (2007) Demystifying optimal dynamic treatment
regimes. Biometrics 63(2):447–455

Murphy SA (2003) Optimal dynamic treatment regimes. J R Stat Soc Ser B 65(part 2):331–366
Murphy SA (2005) An experimental design for the development of adaptive treatment strategies.

Stat Med 24(10):1455–1481
Muthén B, Brown CH, Masyn K, Jo B, Khoo ST, Yang CC, Wang CP, Kellam SG, Carlin JB, Liao

J (2002) General growth mixture modeling for randomized preventive interventions. Biostatis-
tics 3(4):459-75

Nahum-Shani I, Qian M, Almirall D, Pelham WE, Gnagy B, Fabiano GA, Waxmonsky JG, Yu J,
Murphy SA (2012) Q-learning: a data analysis method for constructing adaptive interventions.
Psychol Methods 17(4):478–494

Neal R, Zhang J (2006) High Dimensional classification with Bayesian neural networks and
Dirichlet diffusion trees. Guyon I, Gunn S, Nikravesh M, Zadeh L (eds) Feature Extraction
Foundations and Applications. Springer, New York, pp. 265–296

Nelson JC, Zhang Q, Debert W, Marangell LB, Karamustafalioglu O, Lipkovich IA (2012) Pre-
dictors of remission with placebo using an integrated study database from patients with major
depressive disorder. Curr Med Res Opin 28(3):325-334

NICE (2014) Clinical guideline 175. Prostate cancer: diagnosis and treatment. January 2014. http://
www.nice.org.uk/guidance/cg175

O’Kelly M. (2004) Using statistical techniques to detect fraud: A test case. Pharm Stat 3:237–246
Ondra T, Dmitrienko A, Friede T, Gradf A, Miller F, Stallard N, Posh M (2016) Methods for

identification and confirmation of targeted subgroups in clinical trials: a systematic review. J
Biopharm Stat 26(1):99-119

Orimaye SO,Wong JS-M, Golden KJ, Wong CP, Soyiri IN (2017) Predicting probable Alzheimer’s
disease using linguistic deficits and biomarkers. BMC Bioinformatics 18:34

Ouanes I, Schwebel C, Franais A, Bruel C, Philippart F, Vesin A, Soufir L, Adrie C, Garrouste-
Orgeas M, Timsit JF, Misset B (2012) A model to predict short-term death or readmission after
intensive care unit discharge. J Crit Care 27(4):422.e1–422.e9

Padjen I, Radner H, Öhler L, Smolen J, Aletaha D (2016) Understanding anemia in rheumatoid
arthritis: The association of hemoglobin and hepcidin levels with clinical disease activity and
acute phase response. Ann Rheum Dis 75:476

6 Statistical Data Mining of Clinical Data 311

https://tminka.github.io/papers/minka-bma-isnt-mc.pdf
https://tminka.github.io/papers/minka-bma-isnt-mc.pdf
http://www.nice.org.uk/guidance/cg175
http://www.nice.org.uk/guidance/cg175


Patel S, Hee SW, Mistry D, Jordan J, Brown S, Dritsaki M, Ellard DR, Friede T, Lamb SE, Lord J,
Madan J, Morris T, Stallard N, Tysall C, Willis A, Underwood M; the Repository Group. (2016)
Identifying back pain subgroups: developing and applying approaches using individual patient
data collected within clinical trials. Programme Grants for Applied Research, No. 4.10. Patel S,
Hee SW, Mistry D, et al.; the Repository Group. Southampton (UK): NIHR Journals Library

Paydar K, Kalhori SRN, Akbarian M, Sheikhtaheri A (2017) A clinical decision support system for
prediction of pregnancy outcome in pregnant women with systemic lupus erythematosus. Int J
Med Informatics 97:239-246

Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2
(11):559–572

Prinzie A, Van den Poel D (2008) Random Forests for multiclass classification: Random MultiNo-
mial Logit. Expert Syst Appl 34 (3):1721–1732

Qian M, Murphy SA (2011) Performance guarantees for individualized treatment rules. Ann Stat
39:1180–1210

Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo
Quinlan JR (2004) C5.0, www.rulequest.com
Ripley BD (1996) Pattern Recognition and Neural Networks. Cambridge University Press
Robins JM, Finkelstein DM (2000) Correcting for noncompliance and dependent censoring in an

AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests.
Biometrics 56(3):779-788

Rosenkranz GK (2016). Exploratory subgroup analysis in clinical trials by model selection. Biom J
58(5):1217-1228

Royston P, Sauerbrei W (2004) A new approach to modelling interaction between treatment and
continuous covariates in clinical trials by using fractional polynomials. Stat Med 23:2509–2525

Royston P, Sauerbrei W (2013) Interaction of treatment with a continuous variable: simulation
study of power for several methods of analysis. Stat Med 32:3788-3803

Rumelhart D, Hinton G, Williams R (1986) Learning internal representations by error propagation.
Rumelhart D, McClelland J (eds) Parallel Distributed Processing: Explorations in the Micro-
structure of Cognition, The MIT Press, Cambridge, MA. pp. 318–362

Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH (2015) Support vector machine
classification of major depressive disorder using diffusion-weighted neuroimaging and graph
theory. Front Psychiatry 6:21

Sachs GS, Thase ME, Otto MW, Bauer M, Miklowitz D, Wisniewski SR, et al. (2003) Rationale,
design, and methods of the systematic treatment enhancement program for bipolar disorder
(step-bd). Biol Psychiatry 53(11):1028–1042

Sandri M, Zuccolotto P (2008) A bias correction algorithm for the Gini variable importance
measure in classification trees. J Comput Graph Stat 17(3):1-18

Schnell PM, Tang Q, Offen WW, Carlin BP (2016) A Bayesian credible subgroups approach to
identifying patient subgroups with positive treatment effects. Biometrics 72(4):1026-1036

Schölkopf, B, Smola A, Müller K-R (1997) Kernel principal component analysis. P of International
Conference on Artificial Neural Networks: 583–588

Schulte PJ, Tsiatis AA, Laber EB, Davidian M (2014) Q-and A-learning methods for estimating
optimal dynamic treatment regimes. Stat Sci 29(4):640-661

Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464
Segal MR (1988) Regression trees for censored data. Biometrics 44(1):35-47
Segal MR (2004) Machine learning benchmarks and random forest regression. Technical report,

eScholarship Repository, University of California. https://escholarship.org/uc/item/35x3v9t4
Segal M, Xiao Y (2011) Multivariate random forests. WIREs Data Mining and Knowledge

Discovery 1:80–87
Seibold H, Zeileis A, Hothorn T (2015) Model-based recursive partitioning for subgroup analyses.

Int J Biostat 12(1)

312 I. Lipkovich et al.

http://www.rulequest.com
https://escholarship.org/uc/item/35x3v9t4


Seibold H, Zeileis A, Hothorn T (2016) Individual treatment effect prediction for ALS patients.
Available arXiv preprint arXiv: 1604.08720

Shawe-Taylor J, Cristianini N (2004) Kernel Methods for Pattern Analysis. Cambridge University
Press

Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S (2005) Tumor classification by tissue
microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol
18 (4):547–557

Shortreed SM, Laber E, Lizotte DJ, Stroup TS, Pineau J, Murphy SA (2011) Informing sequential
clinical decision-making through reinforcement learning: an empirical study. Mach Learn 84
(1–2):109–36

Sibson R (1973) SLINK: an optimally efficient algorithm for the single-link cluster method.
Comput J British Comput Soc 16 (1):30–34

Simon RM, Subramanian J, Li MC, Menezes S (2011) Using cross validation to evaluate the
predictive accuracy of survival risk classifiers based on high dimensional data. Briefings in
Bioinformatics 1–12

Sterne JA, May M, Costagliola D, De Wolf F, Phillips AN, Harris R, et al. (2009) Timing of
initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis
of 18 HIV cohort studies. The Lancet 373(9672):1352–63

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc
Series B 36:111–147

Strecher VJ, Shiffman S, West R (2006) Moderators and mediators of a web-based computer-
tailored smoking cessation program among nicotine patch users. Nicotine Tob Res 8(S.1):S95-
S101

Strobl C (2008) Statistical Issues in Machine Learning – Towards Reliable Split Selection and
Variable Importance Measures. Dissertation, Ludwig-maximilians-universität München

Su X, Tsai CL, Wang H, Nickerson DM, Li B (2009) Subgroup analysis via recursive partitioning. J
Mach Learn Res 10:141–158

Su X, Zhou T, Yan X, Fan J, Yang S (2008) Interaction trees with censored survival data. Int J
Biostat 4(1), 2

Sunkaria RK, Kumar V, Saxena SC, Singhal AM (2014) An ANN-based HRV classifier for cardiac
health prognosis. Electron Health 7:315–330

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. MIT Press: Cambridge,
MA

Tang F, Ishwaran H (2017) Random forest missing data algorithms. Stat Anal Data Min 00:1–14;
DOI: 10.1002/sam.11348; arXiv preprint arXiv: 1701.05305

Therneau TM, Granbsch PM, Fleming TR (1990) Martingale-based residuals for survival models.
Biometrika 77:147-160

Thomas M, Bornkamp B (2017) Comparing approaches to treatment effect estimation for sub-
groups in clinical trials. Stat Biopharm Res 9(2): 160-171

Tian X, Bi N, Taylor J (2016) MAGIC: a general, powerful and tractable method for selective
inference. arXiv preprint arXiv: 1607.02630v

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Statist Soc Series B 58
(1):267-288

Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat Soc Series B
61(Part 3):611-622

Tukey JW (1977) Exploratory Data Analysis. Pearson
van Buuren S (2018) Flexible Imputation of Missing Data. 2nd ed. Boca Raton, FL: Chapman &

Hall/CRC
Vapnik V (1996) The Nature of Statistical Learning Theory. Springer, New York.
Vapnik V (2006) Estimation of Dependences Based on Empirical Data. Empirical Inference

Science Afterword of 2006. Springer: New York

6 Statistical Data Mining of Clinical Data 313



Varma S, Simon R (2006) Bias in error estimation when using crossvalidation for model selection.
BMC Bioinformatics 7:91

Vsevolozhskaya OA, Greenwood MC, Powell SL, Zaykin DV (2015) Resampling-based multiple
comparison procedure with application to point-wise testing with functional data. Environ Ecol
Stat 22(1):45–59

Wager S, Hastie T, Efron B (2014) Intervals for Random Forests: The jackknife and the infinites-
imal jackknife. J Mach Learn Res 15:1625-1651

Wang L, Rotnitzky A, Lin X, Millikan R, Thal, P (2012) Evaluation of viable dynamic treatment
regimes in a sequentially randomized trial of advanced prostate cancer. J Am Stat Assoc
107:493–508

Wang H, Zhang X, Zou G (2009) Frequentist model averaging estimation: A review. Jrl Syst Sci &
Complexity 22:732-748

Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc
58 (301):236–244

Watkin CJCH (1989) Learning from Delayed Rewards. Ph.D. Thesis, Cambridge University
Watkin CJCH, Dayan P (1992) Q-Learning. Mach Learn 8:279-292
Werbos PJ (1975) Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences, PhD Thesis Harvard University
Westfall PH, Troendle JF (2008) Multiple testing with minimal assumptions. Biometrics J 50

(5):745-55
Westfall PH, Young SS (1993) Resampling-based multiple testing: Examples and methods for

p-value adjustment. Wiley: New York
White NJ, Contaifer Jr D, Martin EJ, Newton JC, Mohammed BM, Bostic JL, Brophy GM, Spiess

BD, Pusateri AE, Ward KR, Brophy DF (2015) Early hemostatic responses to trauma identified
with hierarchical clustering analysis. J Thromb Haemost 13:978–88

Witten IH, Frank E, Hall MA (2011) Data Mining. Practical Machine Learning Tools and Tech-
niques. 3rd Edition. Morgan Kaufmann: Burlington, USA

Wu F, Laber EB, Lipkovich IA, Severus E (2015) Who will Benefit from Antidepressants in the
Acute Treatment of Bipolar Depression? A Reanalysis of the STEP-BD Study by Sachs et al.
2007, Using Q-learning. Int J Bipolar Disord 3:7

Wu MJ, Mwangi B, Bauer IE, Passos IC, Sanches M, Zunta-Soares GB, Meyer TD, Hasan KM,
Soares JC (2017) Identification and individualized prediction of clinical phenotypes in bipolar
disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage
Part B, 145:254-264

Wu W, Bleecker E, Moore W, Busse WW, Castro M, Chung KF, Calhoun WJ, Erzurum S,
Gaston B, Israel E, Curran-Everett D, Wenzel SE (2014) Unsupervised phenotyping of Severe
Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133
(5):1280-1288

Xu R (2013) Improvements to random forest methodology. PhD thesis, Iowa State University,
Iowa, USA

Xu Y, Yu M, Zhao YQ, Li Q, Wang S, Shao J (2015) Regularized outcome weighted subgroup
identification for differential treatment effects. Biometrics 71(3):645-53

Zhang B, Tsiatis AA, Laber EB, Davidian M (2013) Robust estimation of optimal dynamic
treatment regimes for sequential treatment decisions. Biometrika 100(3):681–94

Zhang B, Tsiatis AA, Davidian M, Zhang M, Laber EB (2012) Estimating optimal treatment
regimes from a classification perspective. Statistics 1:103–114

Zhang H (1995) Splitting criteria in survival trees. Seeber GUH, Francis BJ, Hatzinger R, Steckel-
Berger G (eds) Statistical Modeling, Proceedings of the 10th International Workshop on
Statistical Modeling, Springer, New York.305-314

Zhang Y, Laber EB, Tsiatis A, Davidian M (2015) Using decision lists to construct interpretable
and parsimonious treatment regimes. Biometrics 71:895–904

314 I. Lipkovich et al.



Zhao Y, Zheng D, Rush AJ, Kosorok MR (2012) Estimating individualized treatment rules using
outcome weighted learning. J Am Stat Assoc 107:1106–1118

Zhao YQ, Zeng D, Laber EB, Kosorok MR (2015) New statistical learning methods for estimating
optimal dynamic treatment regimes. J Am Stat Assoc 110(510):583-598

Zheng B, Yoon SW, Lam SS (2014) Breast cancer diagnosis based on feature extraction using a
hybrid of K-means and support vector machine algorithms. Expert Syst Appl 41(4):1476-1482

Zou H (2006) The adaptive lasso and Its oracle properties. J Am Statist Assoc 101(476):1418-1429
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Statist Soc

Series B 67(Part 2):301-320
Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comp Graph Stat 15

(2):262–286

6 Statistical Data Mining of Clinical Data 315



Chapter 7
Segmentation and Choice Models

Steven Blahut and Jeff Niemira

7.1 Online Data Collection: The Current Standard

Currently, primary data for quantitative market research are typically collected via
online Internet survey. There are a variety of survey vendors who host the survey,
invite participants, and collect and warehouse the resulting data. The instrument
itself is developed as a text document with specific instructions to the vendor
programming team to follow. These instructions may include, but are not limited
to, termination and screening criteria, question skip logic, item counterbalancing and
rotation, and prohibiting obviously contradictory responses.

Typically, these vendors own proprietary panels of potential respondents such as
health-care providers (HCPs) or consumer/patients. HCP panels typically consist of
a list of practicing physicians, physician assistants, nurse practitioners, and the like
that have “opted in” (i.e., have agreed to participate in online market research). In
exchange for participating, they are provided with an honoraria based on factors such
as survey length and complexity, as well as specialty and the prevalence of the
disease state being studied. Similarly, consumer panels are databases of disease
sufferers or caregivers who have also agreed to participate in research. Members of
such panels are offered compensation for their participation. Compensation varies
but most often comes in the form of cash, gift cards, or points that can be redeemed
for goods and services.
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7.1.1 The Role of “Pre-launch” Qualitative Research

For most types of pharmaceutical market research, it is advisable to conduct a set of
qualitative interviews with key stakeholders prior to launching the online survey. It
is critical to ensure that the language and the content of the survey are readily
understood by potential participants and that the survey is objective and measures
the desired domains. This is typically done by interviewing a small but reasonably
representative subset of the potential target audience either in person or via tele-
phone. In this qualitative phase, the entire survey is inspected by the market
researcher and the stakeholders, paying careful attention to wording, technical or
clinical concepts, and any specific jargon. The intent is to minimize any potential
confusion for online participants that could lead to erroneous responses that could
negatively impact the findings.

7.1.2 Survey Complexity and Length Considerations

Complexity of the survey instrument is a key consideration of any market research.
The focus of this chapter is on two of the more difficult survey types to develop—
segmentation and conjoint. While either type of survey can be long and/or complex,
market segmentation surveys tend to be long and conjoint surveys tend to be
complex.

Survey length has a direct impact on cost—longer surveys cost more. The market
research team spends more time developing them, vendors charge more to program
them, and respondents are given higher honoraria (or other forms of compensation)
to complete them. Therefore it is incumbent upon the research team to strike a
balance of content and length. The quantity of data collected in a 30 min survey may
not be as great as a 60 min survey, but the quality of the data may indeed be superior.
Respondent fatigue is a very legitimate concern in longer surveys. Thoughtfulness of
response tends to decline toward the end of a large instrument. This can be somewhat
mitigated by rotating and randomizing the presentation of the various survey sec-
tions across the sample such that various sections are completed in different order.

Survey complexity also has cost implications. Complex conjoint and discrete
choice designs are time-consuming and costly for vendors to program. Similarly,
questionnaires containing complicated skip logic require careful and time-
consuming review by the research team and vendors to avoid errors (which can
have considerable opportunity costs).
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7.1.3 “Soft-Launch” and In-Field Data Monitoring

Once the survey instrument has been programmed and vetted by the research team, it
is advisable to do a “soft-launch” prior to fielding the survey. A soft launch is done
by inviting a small number of potential respondents to take the survey before it is
sent out to the larger group to complete. This is useful for several reasons. First, it
allows the team to determine the actual length of completion based on surveys
collected from a representative group of subjects. If the survey is running longer
than expected, items can be altered or removed to bring it in line with the intended
length. Second, it allows the team to ensure that the data being collected in the
survey is being stored in a data file consistent with the vision of the analysts
involved. Complex surveys involving skip logic and counterbalancing can be
programmed in a manner inconsistent with programming instructions. This check
of the data by the team ensures that variables, response codes, and programming
logic are being properly followed when the survey goes out to the larger pool of
respondents. It would be unfortunate to gather data from the entire sample only then
to realize some metrics are being captured and/or stored incorrectly. Finally, it is an
opportunity for the analyst to check that experimental designs created for conjoint or
other exercises are being followed properly.

Once the team is satisfied that the survey and programming are being executed
properly, the survey can then be fully launched. While the survey is being fielded, it
is critical that the team checks daily progress to monitor length and incidence of key
sample subgroups and to monitor the data for outliers and suspect responses.

7.1.3.1 Excluding Cases and Why

Online surveys are completed in a more anonymous, unmonitored setting than other
types of research (such as in-person qualitative interviews). The assumption is that
the vast majority of respondents of surveys of this type take it seriously and provide
thoughtful honest responses. In pharmaceutical research, this is due to the fact that
most often surveys are being completed by an individual who either suffers from,
cares for, or treats those who suffer from a given disease or illness. However, it is still
necessary to closely inspect the data for subjects who may not be providing accurate
responses and flag those entries for potential exclusion. There are three effective
approaches to identifying questionable cases.

Rapid Response

The easiest offenders to identify are those who finish the survey in an incredibly
short amount of time. It is just not reasonable to assume that someone can finish a
survey designed to be 45 min in 10 or 15 min. The datasets provided by fielding
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vendors should include the length of interview (LOI) for each respondent. The data
of those finishing in less than half the expected time should be carefully reviewed.

“Flat Liners”

“Flat liners” refers to subjects who consistently provide the same answer over
multiple questions and question batteries—even though they are meant to measure
different domains. Take the example of a survey containing 50 seven-point Likert
scale items covering different content (e.g., severity of disease, satisfaction with
current treatment, general attitudes, etc.). It is completely reasonable to question the
responses of a subject who provides the same answer across all items. These folks
are obviously trying to finish the survey as fast as possible in order to obtain the
honoraria without putting any real thought or effort into their responses. Often those
guilty of being “rapid responders” are also “flat liners.”

“Contradictors”

A well-constructed survey will include multiple items meant to measure the same
construct. A good research team will reverse word some of these items. The intent is
to ensure respondents are carefully reading the survey and providing thoughtful
answers. Respondents who supply obviously contradictory responses to several
items meant to measure the same construct are suspect, and their data should be
carefully examined.

7.2 Market Segmentation

7.2.1 What Is Segmentation and What Are the Goals of Such
Research?

Market segmentation has been an important part of business decision-making for
decades. The first formal treatment on the subject comes from Wendell Smith
(1956). The basic assumption underpinning such work is that any existing market
is actually a heterogeneous collection of smaller, more homogeneous sub-markets.
Each of these sub-markets, or segments, has specific beliefs, needs, attitudes, and
behaviors. It is the unique composition of each segment that allows for targeted
advertising, messaging, and product positioning. Essentially, segmentation creates
the schematic for more efficient resource allocation in order to increase market share
and thus revenue.

In the pharmaceutical and biotech sectors, many millions of dollars are spent on
research and development, clinical trials, and the approval process. Segmentation is
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the cornerstone of nonclinical market research guiding such activities as salesforce
sizing and deployment, market targeting, message optimization, and message deliv-
ery channels. A good segmentation should provide guidance not only those seg-
ments to target (through segment-specific marketing, messaging, etc.) but also those
to deprioritize, thus maximizing the impact of marketing spend.

7.2.2 Pre-launch vs. Post-Launch Segmentation

Another key consideration around segment development is when the research is
being conducted. Segmentation can be done at any point along the product life cycle.
Often, it is done well before launch while the product is in later phase clinical trials.
In this case, the goal of the research is to identify the current landscape of the market
and to identify opportunity targets for non-product-specific pre-launch marketing.
Segmentation is also a valuable exercise as the product approaches launch to
understand segments that have higher potential for early adoption. Segmenting at
this time can also reveal groups of stakeholders who are overly loyal to existing
therapies and thus may be harder to move toward a new offering. Post-launch
segmentation is useful in understanding changes in stakeholder dynamics due to
meaningful market events (e.g., product recalls, novel therapy entrants, changes in
pricing, etc.).

7.2.3 Art vs. Science

A common misconception is that segments are discovered and not created. This
belief is often held by less experienced analysts and audiences and should be
dispelled as early in the process as possible. A good segmentation is the
by-product of careful consideration of how it will ultimately be leveraged. For
example, the goals of a segmentation that will ultimately influence salesforce
allocation may look quite different than one designed to influence messaging and
advertising spend. In other instances, the segmentation is a tool to help develop
personas for each group in an attempt to understand each set’s unique needs in terms
of product or service offerings. Regional differences in the ability to conduct direct-
to-consumer advertising are often an important consideration in determining how the
segmentation solution will ultimately be leveraged. Some physician segmentations
are totally behavioral in nature. That is, the data used to create segments is purely
secondary and includes information such as prescription data (total Rx, new Rx, new
to brand Rx, etc.). The resulting segmentation solution will be completely dictated
by prescribing behavior and will identify high-, mid-, and low-level volume pre-
scribers across the various products that have been used to create the segments.
Other segmentations are purely “attitudinal” in nature. These can be developed for
stakeholders such as physicians, patients, caregivers, or payers. Solutions of this type
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are developed using completely self-explicated data from an online survey. Attitu-
dinal segmentations are based solely on respondents’ perceptions of their needs,
attitudes, and behaviors. A common approach to segmenting physicians is to
integrate the behavioral and attitudinal data to develop a more holistic segmentation
solution. Holistic segmentation requires careful consideration of the data input into
the models that develop solutions to ensure that candidate solutions do not over- or
underemphasize either type of input.

7.2.4 Top-Down vs. Bottom-Up

Segmentation solutions can be developed in an a priori or top-down approach as well
as a more “data-driven” bottom-up approach. An example of a top-down segmen-
tation would be to create groups based on a preexisting characteristic. In physician
research, this often means specialty or prescribing volume. In patients, it is often
previous treatment or disease severity. For international research, regardless of
audience, either region or country is often considered. The schematic for such an
approach can be found in Fig. 7.1.

Often in a top-down approach, one or more of the a priori groups will be
subsegmented to identify interesting subgroups within them.

The major benefit of the top-down approach is that segments are more easily
understood and identified. Using an observable characteristic as a driving force in
segment creation is often desirable to audiences that want a more clear-cut rule for
segment membership. Segment membership can be easily identified by some easily
observable characteristic. For a purely behavioral segmentation approach, this is an
attractive feature: the five-segment solution implied in Fig. 7.2 organizes the market
in an easy to understand way. For example, segments 1 and 3 might be higher-
volume prescribers of FPs and IMs, respectively, while segments 2 and 4 are lower-
volume prescribers. Segment 5 by default is made up entirely of specialists. In many
instances, having specialists in one segment is attractive as there tend to be fewer of
them and they are often higher-volume prescribers in a given market due to their
concentration on the disease in question. Of course, any a priori group can be
segmented into subgroups regardless of whether the segmentation is behavioral,
attitudinal, or holistic in nature. However, imposing known a priori groups can lead
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Fig. 7.1 Top-down
segmentation conceptual
approach
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to diminished inter-segment differences on other metrics not used to define the
groups but meant to profile them. Attitudinal and self-stated belief metrics collected
in primary research will often have fewer meaningful differences between segments
when this approach is employed.

Alternatively, a “bottom-up” segmentation takes a more “data-driven” approach
to segment creation. In this type of segmentation, the analyst creates segments
without pre-specifying groups of segment identifiers of any kind. All available and
suitable data are considered as potential segmentation inputs. This approach allows
the a priori groups from a top-down segmentation to appear in any and all segments.
Segments are created more organically by the various clustering algorithms that will
be discussed subsequently. Segmentation solutions of this type tend to maximize
difference between segments more than the top-down approach, and the resulting
segments tend to be more homogeneous.

It is the scrupulous and thorough analyst that will develop and consider multiple
options based on both approaches to determine an exhaustive set of candidate
solutions.

7.2.5 Instrument (Survey) Development

7.2.5.1 Considerations for Online Data Collection

A typical segmentation questionnaire takes 30–45 min for respondents to complete
online. This usually translates to a hardcopy of the survey in the range of 40–60
pages. The document must be explicit regarding the acceptable range of response for
each item, skip patterns, and any notes for programmers to successfully transform
the text document to a dynamic online survey. The actual length of the survey is a
function of multiple factors:

• The number of items to be completed
• The complexity of each item
• Length and density of any text respondents are asked to review
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Fig. 7.2 Top-down segmentation with subsegments
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A key consideration is respondent fatigue. While most surveys don’t require that
they be completed in one sitting, a long, dense instrument can compromise the
quality of responses—especially toward the end. Counterbalancing of the different
survey sections is often done to mitigate order bias. It is also a good idea to vary the
types of questions respondents are answering. Varying the question and data col-
lection methods within the survey can help to keep respondents engaged and lessen
the likelihood of “flat liners” and “contradictors” previously mentioned.

7.2.5.2 Item Development

The goal of segmentation is to develop discrete subgroups within the data. To that
end, the content of questions being asked must be carefully considered. Ideally,
many or most of the questions being asked should be designed to capture divergence
of opinion across the sample. A classic example from consumer goods segmentation
is “Do you prefer Coke or Pepsi?” Usually people have a preexisting opinion which
helps place them into like subgroups. In pharmaceutical market research with
physicians, questions of this type might be “What is more important efficacy or
safety?” For patients, it may be “When considering a new medication, what is more
important—cost or convenience?” While these are simplified examples, the point is
clear—the goal should be to include items that elicit responses across all possible
options for items across the sample. The goal is to gather a wide variety of responses
on as many items as possible.

There will of course be items included that may not elicit such diverse responses.
For example, when it comes to price, less is almost always perceived as better. In
patient populations, considering route of drug administration, oral is almost always
preferred over injections or infusion. In the case where a new product offering is
shared with respondents that is clearly better than the current standard of care, it
would be expected that responses would be overwhelmingly positive and therefore
similar. Items that produce more uniformity of response are still valuable. They can
be used to profile segments and uncover “universal truths” across segments and
therefore the entire market. But they will not differentiate and serve as the basis of
the segmentation solution.

7.2.5.3 Data Collection Approaches

There are a variety of ways to ask questions and collect data in research of this type.
As previously stated, it is advisable to incorporate several data collection techniques
in the survey instrument to keep respondents engaged. Here we discuss a few of the
more popular options.
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Likert: Type Items

One of the most popular survey question types for capturing attitudes is the Likert
item (Burnes 2008). Items of this type ask for response to a statement in the form of a
quantitative answer along a numeric continuum. The most popular response scale is
agreement; however, others are often used as well. Likert items can have a different
number of response options, typically 5, 7, 9, or 11 (Dawes 2008). An example of a
seven-point Likert item is in Fig. 7.3.

A well-crafted Likert item will typically have a neutral midpoint and an equal
number of positive and negative response options on either side. It is crucial that the
appropriate verbal anchors are placed on the scale to ensure proper context is given
to the respondent. This is a very efficient means of data collection. Items of this type
are often put into multi-item batteries to collect responses to multiple items that are
representative of a similar topic or theme. However, one potential drawback of these
items is that respondents have the opportunity to give the same rating to many items.

Ranking Items

Ranking items differ in that they force respondents to order a set of options from
most to least on a continuum. This continuum may be desirability, importance, or
anything relevant to the product or market being investigated. Items of this type are
often used to determine what product features or offerings are more or less appealing
to different potential segments. An example of a ranking item is in Fig. 7.4.

Strongly 
Disagree

[1] [2] [3]

Neither Agree 
nor Disagree

[4] [5] [6]

Strongly 
Agree

[7]

I often try new medica-
tions before my col-
leagues do

O O O O O O O

Fig. 7.3 Seven-point Likert item

Please rank the following product features in order of importance where 1 is most important and-
4 is least important

Minimal Side Effects

Twice a Day Dosing (BID)

Increased Efficacy

Cost

Fig. 7.4 Ranking items
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Items of this type can be useful to help define different unmet needs by segment.
That is, the priority implied by the ranked list differs by segment. These items do not
uncover the relative distance between each of the options being ranked; they provide
the order in terms of priority and appeal only.

A common variant of the ranking item is the point allocation item. In this case,
respondents are asked to allocate 100 points across the options giving the highest
number of points to the most important and the smallest amount to the least
important. Instructions are often provided that prohibit the allocation of the same
amount of points to any two options so that ties are eliminated.

Forced-Choice Approaches

Forced-choice items can be similar to ranking items, but instead of ordering the
options in terms of appeal or importance, the respondent is asked to choose the one
most important or appealing item from the list. While items of this type provide less
information than the ranking alternative, they can be used to break down the survey
into different sections so as to keep respondents more engaged.

Other Approaches

Although there are many ways to collect survey data for a segmentation question-
naire, one of the most common is the free response item. In items of this type,
respondents are typically asked to enter a numeric response. “What percent of your
patients receive Product X?” and “How many medications do you currently take?”
are common examples. Another common option is the “select all that apply”
technique. Here, respondents are presented with a list and asked to select each option
that is pertinent to them. These are often done to quantify concomitant conditions,
previous therapies, or anything that can be represented in a closed list. Open-ended/
free text questions are not ideal for segmentation as it requires recoding of text
responses to make them suitable for analysis.

Some approaches are just by-products of modern programming. For example, a
ranking or force-choice item can be programmed as a drag and drop exercise. Instead
of respondents just entering in number rankings or clicking the most important, the
exercise becomes more interactive and makes survey completion less tedious for
respondents.

7.2.6 Defining the Sample

Sample frame development for segmentation is an important step that requires
careful consideration. Most often in pharmaceutical market research, samples are
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stratified by physician specialty or patient type. Practitioners and patients require
different considerations so we consider them here separately.

7.2.6.1 HCP Research

There are multiple considerations to keep in mind when developing the sample
frame for physician research. Most important is to consider which specialties define
the market of interest, and that therefore must be represented in the final sample. For
less common diseases such as multiple sclerosis, it may be only one—neurologists.
For more widespread diseases such as diabetes, there may be multiple specialties
involved in treatment—family practice, internal medicine, endocrinologists, nurse
practitioners, physician assistants, etc. The target market must be defined and the
largest sample that budget allows must be allocated to the appropriate strata.

In the case of a single specialty, sample size may be determined by the number of
physicians willing to participate in such research that can be identified. In that case,
the sample may be stratified by prescribing decile, patient volume, or some other
metric meant to represent productivity in the marketplace. Deciling breaks down the
prescriber universe into ten groups of physicians that each prescribe 10% of the
product. Higher deciles contain fewer physicians that write more prescriptions.
Lower deciles contain more doctors who write relatively fewer prescriptions.
Often there is a source list that identifies active physicians in the market. If there is
no list available, then decile is typically unavailable and cases can be weighted based
on self-reported metrics such a monthly patient volume. This list serves as the
“universe” of prescribers that the segmentation is meant to represent. In most
markets, the top deciles include the fewest doctors that write the most prescriptions.
Conversely, the lower deciles contain many more physicians who write fewer pre-
scriptions, on average. Table 7.1 contains a typical distribution of physician by
decile in a specialty market made up of 8537 doctors.

In specialty segmentations with a universe such as the one outlined in Table 7.1, it
is unlikely that a sample much more than 300 can be achieved—due to budget, time,

Table 7.1 Physicians by decile

Decile N Percent (%)

10 171 2.0

9 299 3.5

8 393 4.6

7 487 5.7

6 589 6.9

5 717 8.4

4 871 10.2

3 1076 12.6

2 1409 16.5

1 2527 29.6

Total 8537 100
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or response limitations. Therefore the number strata is reduced by collapsing them
into a more manageable number of groups. Table 7.2 contains information about a
sample and case weights that are calculated from these distributions.

The decile column shows the manner in which those groups were collapsed.
Column N shows the actual number of physicians in the universe that exist in each of
these new collapsed strata. If a proportional allocation of a sample of 300 was
applied to these collapsed strata, the sample would be distributed as displayed in
the column “self-weighting sample.” The actual sample and actual percent columns
contain the sample of 300 that was successfully fielded. The weight column contains
the case weights for analysis. The weight is calculated as N/n. Application of this
weight during analysis will allow for accurate estimates of segment sizes in the
market.

In the case of a multi-specialty segmentation, a similar approach is usually
followed. However, the weights are typically calculated by a multi-strata design of
specialty x decile. Table 7.3 displays a hypothetical sample and weighting approach
for a two-specialty sample of 500 physicians.

This approach is quite useful particularly if the resulting segmentation solution
scheme is ultimately to be projected back to the source universe, as will be discussed
in a subsequent section.

Table 7.2 Hypothetical sample and case weights from a single specialty sample

Decile N
Percent
(%)

Self-weighting
sample

Actual sample
(n)

Actual percent
(%) Weight

7–10 1349 15.8 48 41 13.7 1.156

3–6 3253 38.1 114 105 35.0 1.089

1–2 3936 46.1 138 154 51.3 0.898

Total 8537 100 300 300 100

Table 7.3 Hypothetical sample and case weights from a two-specialty sample

Specialty Decile N
Percent
(%)

Self-weighting
sample

Actual
sample (n)

Actual
percent (%) Weight

OB/
GYN

7–10 3644 6.3 31 35 7.0 0.895

OB/
GYN

3–6 6069 10.4 52 47 9.4 1.110

OB/
GYN

1–2 10,654 18.3 92 100 20.0 0.916

PCP 7–10 5509 9.5 47 53 10.6 0.894

PCP 3–6 16,070 27.6 138 117 23.4 1.181

PCP 1–2 16,214 27.9 140 148 29.6 0.942

Total 58,160 100 500 500 100
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7.2.6.2 Patient/Caregiver Research

When segmenting patients, there are a variety of factors that may dictate sample
frame development. Severity of disease and prior therapies are commonly used to
create sample strata. The composition of the market in terms of these potential strata
can be gleaned from epidemiological data. The sample is then developed in a way to
ensure representation of the market. As with physician samples, deviations from the
market reflected in the final sample are corrected through the calculation of case
weights. Table 7.4 illustrates a hypothetical sample stratified by previous treatment
and the calculation of the case weight to adjust for sample discrepancies.

As with physician research, the sample frame may be more complex with
multiple strata. A similar approach to weight calculation would be taken for patients
as well.

7.2.7 Data Preparation

Once the data are collected, there are several steps that should be taken to ensure the
proper subset is chosen for segmenting. From a 45 min online survey, hundreds of
variables will be collected and stored in the database. Not all of these will make for
strong potential foundation variables—the set of metrics that will actually be used to
create the segments. All of the collected variables will be used to profile segments
from the candidate solutions. However, identifying the foundational subset is criti-
cal. For most segmentation efforts, a good set of foundation variables will number
somewhere between 40 and 70 unique metrics.

In pharmaceutical market segmentation, there is often a treatment and/or diag-
nostic (new or otherwise) that is/are the focus of the work. There are several steps to
ensure that the correct foundation variables are selected for analysis so that the
resulting segments can be prioritized relative to the product(s) of interest.

Table 7.4 Hypothetical sample and case weights from a patient sample stratified by previous
treatment

Prior
treatments

Percent (epi
data) (%)

Self-weighting
sample

Actual
sample (n)

Actual percent
(%) Weight

None 26.5 106 95 23.8 1.116

1 41.4 166 187 46.8 0.886

2+ 32.1 128 118 29.5 1.088

Total 100 400 400 100
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7.2.7.1 Identification of Foundation Variables: Selecting the Right
Subset

Key Driver/Regression Analyses

A good segmentation instrument will provide a product profile(s) of the product
(s) being studied. This will be followed by a series of questions similar to “How
likely would you be to prescribe this product to your patients?” or “How likely
would you be to request this product from your doctor?” for physicians and patients,
respectively. These direct call-to-action questions are well suited to serve as depen-
dent measures in regression-type models to uncover what other survey items corre-
late highly with the desired product-specific behaviors.

Regression methods have been exhaustively explained elsewhere (e.g., Draper
and Smith 1998; Hosmer et al. 2013; Pedhauzer 1997). In the key driver analysis, the
goal is to uncover a set of survey items that are predictive of intent relative to the
product(s) of interest. The usual pitfalls of multi-collinearity and spurious relations
among independent measures must be considered and accounted for. Identification
of this subset of key drivers isolates an important subset of potential foundational
variables. These items will be further vetted for consideration in subsequent steps.

Factor Analytic Models

A next step in identifying the foundation variables is to organize the survey items
into similar themes or domains. A good segmentation includes in its set of founda-
tion variables those that represent numerous different domains. Factor and principal
component analyses are both appropriate tools to organize the survey data into a
smaller set of latent constructs (Child 2006; McDonald 1985). The two approaches
are not identical (Bartholomew et al. 2008), but both are appropriate for understand-
ing the latent structure underlying the survey data.

The factor analysis is not the segmenting algorithm, nor should it be (Stewart
1981). Rather it is a tool to help the analyst understand and organize the large set of
potential foundation variables. Therefore, when the foundation variables are
selected, no one theme or themes is overly represented in the set.

Distributional Analyses

Once the key drivers have been identified and the survey items have been organized
into factors, the next step is to look at this distribution of response for all candidate
foundation variables. The most efficient way to do this is to look at the histograms of
all of the potential foundation variables. When inspecting these distributions, it is
critical to identify those that imply a range of opinion. Multimode and uniform
distributions are most appealing as they indicate that responses were not limited to
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one point or end of the scale. Figure 7.5 illustrates two appealing candidates for
inclusion as foundation variables.

Conversely, unimodal and highly skewed distributions are not good candidates
for foundation variables as most responses are similar and thus don’t imply sub-
groups or segments from those measures. While variables with these distributions
are not good candidates for segment creation, they are useful in uncovering “uni-
versal truths,” that is, attitudes or beliefs that are similar and consistent regardless of
segment membership. Figure 7.6 illustrates two such distributions.

7.2.8 Segment Estimation

Once the foundation variable set has been identified, there are a multitude of
clustering approaches that are available to derive segments from the data. Here, a
few of the more common approaches are described in more detail.

7.2.8.1 K-Means

K-means is an algorithm that relies upon iterative refinement to arrive at the final
result. It has been described in detail elsewhere (Hamerly and Elkan 2002; Hartigan
and Clustering 1975; MacQueen 1967). In this approach, a pre-specified number of

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Fig. 7.5 Desirable distributions of potential foundation variables

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Fig. 7.6 Poor distributions of potential foundation variables
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segments K is provided to the algorithm, and each segment is defined by one of the K
centroids. The initial values of each centroid can be provided by the analyst or
randomly generated. The algorithm then proceeds by iterating between two steps. In
step one, cases are assigned to the segment defined by the nearest centroid, typically
by minimizing the squared Euclidean distance between the two. In step two, the
centroids are recalculated by deriving the mean of all data assigned to each cluster
centroid. The algorithm continues to repeat these steps until the termination criterion
is achieved. The criteria for stopping can be the total number of iterations allowed or
that no respondents change segments in the previous step. The K-means approach
does not require a dependent measure to converge. Rather, it requires only a set of
variables in multidimensional space segmented by their proximity to cluster centers.
The approach is depicted conceptually in Fig. 7.7.

If enough iterations are specified, the algorithm will converge. However, the
results may be a local rather than a global optimum. Therefore, it is advisable to run
the algorithm on the foundation variable set multiple times with differing initial start
values. Also, as K is specified by the analyst, multiple attempts to find adequate
solutions should be run on each selected value of K.

The K-means approach is also very sensitive to the scale of the foundation
variables used in the analysis. Therefore, it is advisable to either restrict the analysis
to variables on like scales or to standardize the foundation variable set prior to
analysis.

7.2.8.2 CHAID

The CHI-squared Automatic Interaction Detection (CHAID) has previously been
described in detail (Kass 1980; Magidson 1994). CHAID differs from K-means in
several ways. Where K-means is a descriptive approach that does not delineate
between independent and dependent measures, CHAID incorporates a dependent

Fig. 7.7 K-means algorithm
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measure on which segment creation is predicated. Additionally, the dependent and
independent measures are all typically categorical in nature. That is not to imply that
measures collected in a survey on an interval or ratio scale cannot be considered as
foundation variables. The first step of a CHAID analysis is to categorize these
variables rendering them suitable for inclusion.

CHAID is a “tree-building” approach that discovers and capitalizes on interaction
effects between variables. In the initial phase of estimation, the algorithm searches
for homogeneous categories within the independent measures that can be collapsed
together. These categories are identified as those having high p-values in the χ2 (for a
categorical dependent measure) or F test (for a continuous dependent measure)
analysis between independent and dependent measures. After the independent
measure categories have been collapsed, the method then moves on to create all
possible cross-tabulations for each independent measure category with the depen-
dent measure. Given that there are a large number of statistical tests being conducted,
Bonferroni adjusted p-values are calculated. The independent measure that has the
lowest adjusted p-value is selected, and the groups suggested by the merging process
are then used to divide the data into subgroups. The process is repeated until no
independent measure has a significant p-value.

CHAID requires careful consideration when used as the sole segmentation
methodology. It is important to balance the complexity of the tree. A small tree
may be easy to interpret but not yield useful results. A large, complicated tree can
result in many segments that are difficult to interpret and not useful for marketing
applications. CHAID can, however, be a useful tool to identify foundation variables
that may be useful when used in other segmentation approaches.

A related approach to segmentation called Classification And Regression Trees
(CART) was developed by Breiman et al. (1984). CART is also a tree developing
approach. An important distinction between CART and CHAID is that CART can
incorporate both categorical and continuous independent measures. Excellent dis-
cussion of CART and related approaches can be found in Loh (2014).

7.2.8.3 Latent Class Models

Latent Class Analysis (LCA) methods have been exceedingly popular in market
research and are considered the “main statistical approach to clustering and segmen-
tation” (Wedel and Kamakura 2000). In this approach (also known as mixture
models), the data in a sample are presumed to be comprised of members of two or
more homogeneous segments that are mixed together in an unknown proportion.
The proportion is denoted as π, with π > 0, and ∑π ¼ 1. LCA uncovers this
proportionality, thus providing the relative size of the segments in the sample.

The LCA model for continuous variables is:
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f yi jϕð Þ ¼
XS
s¼1

πs f s yijθsð Þ:

In this representation from Vermunt and Magidson (2002), yi are the respondents’
scores on the set of observed foundation variables. S is the number of segments, and
πs is the prior probability of being in segment s.Also the distribution of yi is assumed
to be a mixture of segments specific fs(yi|ϴs) given the model parameter vector ϴs.
The density function fs(yi|ϴs) can be any one of the family of exponential distribu-
tions whether they be discrete (e.g., binomial, Poisson) or continuous (e.g., normal,
Dirichlet). Given that ϕ ¼ (π, ϴ), the likelihood function is:

L yi,ϕð Þ ¼
YI
i¼1

f
yi
ϕ

� �
:

The likelihood can be maximized using the Newton-Raphson method (McHugh
1958) or the expectation-maximization (EM) algorithm (Dempster et al. 1977).
Following Wedel and Kamakura (2000), given that an estimate of ϕ is obtained,
the posterior probability pis that respondent i comes from segment s can be calculated
by:

pis ¼
πs f s yijθsð ÞPs
s¼1πs f s yijθsð Þ :

The probabilities pis are used to classify respondents into segments
probabilistically.

The survey instruments developed for market research purposes almost always
collect data on multiple measurement scales. LCA can accommodate these mixed
measured data, that is, when the foundation variables yi are collected as nominal,
ordinal, and/or continuous. The LCA model for mixed y’s from Vermunt and
Magidson (2002) is:

f yijθð Þ ¼
XS
s¼1

πs
YV
v¼1

f s yivjθvsð Þ:

In this case, the appropriate univariate distribution function of each input yiv of the
foundation variables yi can vary. For example, if yiv is continuous, univariate normal
or log-normal are suitable options. For other measurement scales, binomial, Poisson,
or multinomial distributions are good choices.

The methods described above are like K-means segmentation in that there is no
distinction made between dependent and independent measures. Should a dependent
measure be required, Latent Class Regression (LCR) techniques are an attractive
alternative. LCR methods also assume the sum of proportions π is equal to 1. The
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segments are the components weighted by π defined by unique regression equations.
For example, a two-segment LCR would take the form:

π β01 þ
X

β j1Xij1

� �
þ 1� πð Þ β02 þ

X
β j2Xij2

� �
:

Assuming independent foundation variables (“predictors”) Xj, constants β0 and
regression coefficients βj. An excellent overview of LCR methods is presented in
Wedel and DeSarbo (2002).

LCA methods have several key advantages over segmentation methods such as
K-means or CHAID:

• The ability to easily incorporate mixed-mode foundation variables with no need
to standardize or categorize the measures prior to analysis

• The ability, but not necessity, to have dependent measures
• The availability of multiple statistical criteria to determine the optimal number of

segments (to be discussed)

7.2.9 Solution Selection Criteria

Segmenting a set of dozens of foundation measures typically produces multiple
potential solutions, i.e., two, three, four, five, or more segments. Selecting the
appropriate segmentation solution involves consideration of multiple factors.

7.2.9.1 Statistical Indices (Where Applicable)

LCA segmentation produces several statistical indices that offer excellent guidance
as to which of the competing solutions best represent or fit the sample data. Two of
the most commonly utilized are Akaike’s Information Criteria (AIC) (Bozodogan
1987) and the Bayesian Information Criteria (BIC) (Schwarz 1978). When using
either of these metrics, smaller values indicate a better solution. LCA models rely on
maximum likelihood estimation, and the likelihood can be increased by adding
additional parameters (segments) to a model. Adding segments to increase the
likelihood can easily result in over-fitting the data. Both AIC and BIC penalize the
assessment of model fit in terms of the number of estimated parameters. The more
parameters estimated in a given model, the greater the penalty term. The Approxi-
mate Weight of Evidence (AWE) is another method of evaluating a set of competing
LCAmodels (Celeux et al. 1997). The AWE integrates information on data-model fit
as well as information on segment (mis-)classification to determine the optimal
number of segments.
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7.2.9.2 Managerial Implications

A good segmentation will take into account more than just the statistical indices
mentioned above. That is, the choice of which segmentation solution is preferred is
based on several subjective judgment factors in addition to the more objective
statistics. Which subjective “metrics” is defined by the research team in response
to the business needs of the client team and management? Some of the more
common subjective factors include:

• Number of segments
• Segment sizes
• Segment composition
• Segment profiles
• Solution reproducibility
• Alignment with current market intelligence and established hypotheses

The number of segments is often the first subjective criteria to be evaluated. A
solution that posits only two segments may not provide the desired granularity to
understand the market. Conversely, a solution with eight segments may prove to be
too complicated for marketers to develop segment-specific marketing materials. A
good segment solution should at a minimum identify at least one target segment and
also at least one that can be deprioritized. In pharmaceutical market research, an
attractive solution typically has 3–6 segments.

Closely related to the number of segments, the relative size of segments is also an
important criterion. Segments that are very small (<10–15% of the market being
studied) may offer too little potential return on investment for the development of
segment-specific marketing and reach materials. Conversely, very large segments
(>35–40% of the market) can be suspect in two ways. First, a large segment may not
differ meaningfully from the market as a whole, therefore defeating the purpose of
segmentation. Also, a large segment is often viewed as one that contains subseg-
ments implying that the solution itself is not desirable. That is, the large segment
should have been broken down into two or more actionable subgroups. There are
instances where a small or large segment may not be deleterious to a successful
solution. For example, in a physician segmentation, there may be a small group of
specialists that do offer a viable opportunity when considered as their own segment.

Segment composition is related to the sample frame and market that has been
defined for study. In physician research, where the sample contains multiple spe-
cialties, it may be attractive to have segments that are defined by specialty (top-down
segmentation). Similarly, when segmenting patients, it may be desirable to have
segments defined by disease severity or previous treatment. There are also instances
where a successful segmentation places respondents into groups based purely on
their reported attitudes and/or behaviors. In this situation, segments are more het-
erogeneous in terms of observable characteristics but homogeneous in terms of
wants, unmet needs, and attitudes. The decision about what segment composition
constitutes a success is determined by how management intends to create materials
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and marketing strategy. Often it is advisable to generate candidate solutions that
offer a variety of offerings in terms of segment composition. Multiple options often
stimulate fertile discussion with management that ultimately lead to the selection of
the most valuable segmentation solution given the intended actions/decisions being
driven by the research.

Close inspection of the segment profiles across all foundation metrics is a pivotal
step in selecting a segmentation solution. A profile is a summary of the means,
medians, and proportions of all responses in the foundation set for each segment and
overall for each solution. Often, management and marketers have opinions of what
the segments “should” look like. Reviewing the profiles of a set of solutions allows
the analyst and team to determine the persona of each segment and to decide which
candidate solution best meets the research objectives.

The ability to accurately reproduce or predict segment membership outside of the
research sample is the final criterion to consider when selecting a solution. In
pharmaceutical market research, there are two widely used approaches, attitudinal
and behavioral algorithms. Often both are developed, but which approach is ulti-
mately chosen typically hinges on what data are available to develop segments.

7.2.9.3 Attitudinal Algorithms

All segmentations developed on the basis of primary survey data can and should
yield an attitudinal algorithm. Attitudinal algorithms can be used to assign segment
membership to individuals based on their responses to a set of items that appeared in
the original survey instrument. Some attitudinal tools are used for recruitment by
segment for subsequent research. Participants in qualitative research can be asked to
provide their answers to the set of items prior to a focus group or interview.
Attitudinal algorithms are often programmed into subsequent quantitative online
research. This allows for analysis of the data and reporting of results by segment.
Often the attitudinal algorithm is programmed into a company or product website.
When individuals visit the website, they answer the items, are segmented, and then
are presented with tailored messaging and content developed for their segment.
Occasionally an algorithm is developed for use by pharmaceutical sales representa-
tives. The sales team will ask physicians a series of questions during a visit to
determine which segment that customer is in. Development of such a tool is typically
done as follows. First, the analyst in concert with the research team identifies a
candidate set of survey items that are suitable in terms of item content. Next, the
number of desired items in the algorithm is determined. Most often these algorithms
are designed to be three, five, or ten items. Commonly, either a stepwise discriminant
function analysis or multinomial logit model is used to identify the best subset of
predictive items. Once a candidate model is identified, it is cross-validated to ensure
its functionality outside the sample.
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7.2.9.4 Behavioral Algorithms

When secondary data are available such as prescription or claims data (i.e., behav-
ioral or holistic segmentation), they can be used to create behavioral algorithms.
These algorithms are built on purely secondary data and do not incorporate primary
data collected in the survey instrument. Behavioral tools are most often done in
physician research where prescribing data that can be linked to survey respondents
are available. These models allow for segment membership to be assigned to
individuals without capturing their response to survey items. This is especially
appealing if a database of prescribers is available and the desire is to segment the
list. Algorithms can be constructed through a variety of machine learning, regres-
sion, or other techniques.

7.3 Choice-Based Conjoint Model/DCM

Choice-based conjoint and discrete choice models provide a mathematical frame-
work for predicting and analyzing decisions. The common theoretical justification
for these models comes from utility theory and random utility maximization. These
models assume that economic decisions maximize personal gain and that a latent
real-valued measure, called utility, captures the ordering of personal gain. Utility is
given a random component. At each decision, the subject selects the alternative
which had the greatest draw from the random utility distribution. Selection of the
random distribution and explanatory factors contributing to utility governs the
design and form of the choice model and the experimental design on which it’s
estimated (Train 2002).

In pharmaceutical market research, choice modeling applies to treatment deci-
sions made by physicians, access decisions made by regulators, coverage decisions
made by payers, and request and adherence decisions made by patients. The
resulting models provide a predictive framework for forecasting sales and informing
product development decisions. Analysis of the underlying utility functions provides
insight into stakeholders’ decision-making process: What product attributes and
market factors are most critical to a products success?

7.4 Choice Models

7.4.1 Goals of Such Research

Pharmaceutical market research leverages choice modeling at a few key junctures in
the product development and marketing process. During product development,
understanding and predicting stakeholder decisions are critical to defining the
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goals of a development program. These goals manifest as a target product profile
(TPP), a document describing the attributes of the product the developer intends to
demonstrate and strives to include on labeling and in marketing materials (FDA
2007). As the project approaches market, drug developers must understand how the
product will be used, in which patient populations, and what attributes drive these
market decisions. This information directs the marketing strategy to individuals most
in need and content most influential to optimal patient care. Choice models inform
TPP development by identifying areas of clinical need and marketing strategy by
identifying the educational and access needs of the marketplace and can also be
leveraged for market forecasting.

7.4.1.1 TPP Development

TPP development requires an understanding of the regulatory environment and the
areas of greatest clinical need. Discussion with regulators and existing regulatory
requirements and precedent will decide the majority of the TPP. The nature of
regulatory decision-making, lack of access to regulators, and relative infrequency
of regulatory decisions make it a poor fit for conjoint and discrete choice analysis.
The critical components of the TPP, the primary endpoints, will most likely be
defined prior to decision research. Choice models are best leveraged at identifying
need when a product has multiple addressable patient populations and identifying
attributes important in clinical practice but not necessary to clear regulatory
thresholds.

Choice models can identify patients with the greatest need for a medical treatment
or specific attributes of a medical treatment. This information informs whether to
restrict target labeling to subset of a larger addressable population or prioritization of
indications when the treatment may have clinical benefit across conditions. By
estimating contribution to utility of patient attributes, choice models quantify in
what patients a product has greatest perceived benefit. Interaction terms between
patient attributes and the attributes of the treatment alternatives quantify what
specific attributes of the medical treatment have differential perceived benefit across
patients.

Choice models guiding attribute inclusion in a TPP have two common objectives,
defining what elements to include in the TPP and informing achievement thresholds
for the product to drive prescribing. Conjoint and discrete choice models provide
information on these decisions through attribute importance in the utility functions
and the predicted use decisions. Attribute important measures describe which attri-
butes have the greatest impact on product utility. The predicted shares and shape of
the utility functions can inform selection of achievement thresholds.
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7.4.1.2 Patient Profiles/Drivers

After a TPP for a product has been created, drug developers must understand the
market for such a product. They must know who is in that market, which patients and
which physicians, and what those people need. Such choice models will focus less
on the effects of product attributes on treatment decisions and more on the effect of
attributes of the patient and physician and interaction between stakeholder attributes
and product attributes. This leads to larger sample size requirements as these
attributes are typically not controlled via an experimental design.

To identify the market, utility functions need to include patient and provider
attributes. This can be accomplished by surveying physicians and soliciting patient
cases. Physicians will fill out patient case forms, describing recent cases. Physicians
can be expected to bring up to four or five cases in a typical 45–60 min survey. There
are cases where simulated patient cases can be leveraged in a choice task, though
condensing the nuances of patient cases to a simplistic profile is often impossible or
ill-advised as there are many factors that physicians consider that cannot be
represented this way. Physicians make separate choice decisions for each patient
case across variations in the product attributes or market scenarios. Attributes of the
providers and patients enter the utility functions explicitly or by estimating a mixed
or mixture model and analyzing the distribution of utility functions and predicted
choices by patient or provider attribute. This allows the researcher to describe the
population that professed interest in using the product and which characteristics
identify populations of greatest opportunity for the client brand/portfolio.

To identify the drivers and needs of the market, the same attribute important and
part-worth measures used for TPP development measure the overall drivers. To
assess drivers specific to a subset of the market or patient/provider characteristics
associated with particular needs, the utility functions need to include interactions
between patient/provider attributes and product attributes. This allows computation
of importance measures for particular subsets of the market and analysis of differ-
ences in importance between subsets of the market. Mixed and mixture models can
assess differences in utility functions between subsets of the market, though one
must be aware of the assumptions of the latent variable or random effects distribu-
tions. For example in a mixed model, differences in utility parameters between
subsets of the market suggest that the utility parameters may not be normally
distributed.

7.4.1.3 Other Applications

Results from discrete choice modeling also inform business objectives outside of
marketing and market research. Revenue forecasts can use the predictions of stated
intended use to predict peak usage of the product. This requires conversion between
the usages in the choice task, the preference share, to actual usage, the market share.
This conversion should account for real-world product access restrictions not
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realized in the study and common over-exuberance of survey respondents for novel
products. Generally market share should be between 33 and 80% of preference
share. “Me too” products, more similar to other products, and products with bur-
densome access requirements will have a lower market share.

Discrete choice models also play a role in retrospective medical research. In
retrospective medical studies, analyses correct for non-randomized treatment selec-
tion. This requires an understanding of how treatments were selected. Choice models
provide such an understanding. A discrete choice model predicts the probabilities of
a given patient receiving a particular treatment. In this context these predictions are
called propensity scores. Analysts may weight data by the inverse of the propensity
scores in a method similar to sample weighting to recreate results comparable to
randomized treatment. Propensity scores can also be used to match treatment and
control cases in case-control studies or used to adjust a regression analysis by
including propensity as an independent variable.

Health economic research leverages discrete choice models to assess the utility of
different health states. These utilities are dubbed quality-adjusted life years
(QALYs) and reflect the relative utility of a year of life in a particular health
condition to a year of life in good health. Making such an assessment is difficult,
partially due to the abstract nature of the notion. Discrete choice models allow
elicitation of the relative utility from more concrete decisions. Respondents choose
between living so many years in a negative health state or a procedure that
completely eliminates the negative health state but has a certain probability of
death. This task is called the standard gamble. Or respondents choose between living
so many years in a negative health state or a lesser number of years in good health.
This task is called the time trade-off. In both cases, simple discrete choice models
derive the utility functions that determine the quality adjustment associated with the
negative health state (Weinstein et al. 2009).

7.4.2 Choice Model Form

To design a discrete choice or conjoint experiment, the form of the choice model
must be selected. Different forms of choice models have different properties which
impact sampling, experimental design, and analysis. The form of choice model
should be chosen to reflect the properties of the decision-making process. Different
choice models make different assumptions about substitution patterns among
response options and variations in preferences between decision-makers.

7.4.2.1 Mathematical Foundation

Choice models predict a discrete outcome, y, from a set of predictors, x, and a
random component ɛ, drawn from probability distribution f(ɛ) over Σ. x may include
attributes of the choice alternatives, attributes of the decision-maker, or attributes of
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the context in which the decision is made. y takes a value from a set of alternatives, S.
S must be finite, collectively exhaustive, and mutually exclusive. ɛ captures all
random variations in the decision-making process and contributions from
unobserved sources.

8s 2 S, define functions, Us(x, ε), such that:

y ¼ s $ 8t 2 S, s 6¼ t; Us x, εð Þ > Ut x, εð Þ:

The selection probabilities are then:

P y ¼ sjxð Þ ¼
Z
Σ0

f εð Þdε,

Σ0 ⊂ Σ 8t 2 S, t 6¼ s; Us x, εð Þ >j Ut x, εð Þ:

The function Ui is called the utility of choice alternative i. Assuming decision-
makers select the option that provides themselves the greatest benefit, Ui represents
the net benefit the decision-makers obtain by selecting option i. The contribution to
the utility function of each attribute in x is called the part-worth of the attribute. As
the model only cares about the relative magnitude of the utilities, the measure is
unitless and the absolute magnitude of the utilities has no meaning. In all models
discussed here, U will be linear, of the form Ui ¼ Bixi + ɛi. What follows is an
overview of models based on various selections for f(ɛ) (Train 2002).

7.4.2.2 Logit and Multinomial Logit Models

The most common choice model is the logit (|S|¼ 2) and multinomial logit (|S|> 2).
These arise when f(e) is |S| iid extreme value distributions:

f ɛð Þ ¼
Y
s2S

e�ɛs e�e�ɛs
:

Because the utility functions can be arbitrarily scaled and ɛs ⊥ ɛt 8 s 6¼ t, the
distribution is taken to have mean 1 and variance π2

6 without loss of generality. This
choice of distribution gives the selection probabilities a straightforward, closed form:

P y ¼ sjxð Þ ¼ eBsxsP
t2S

eBtxt
:

The logistic and multinomial logistic model impose a tight constraint on the
substitution pattern, the independence of irrelevant alternatives (IIA). This property
is demonstrated by considering the log odds ratio of the selection probabilities:
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log
P y ¼ sjxð Þ
P y ¼ tjxð Þ
� �

¼ Bixi � B jx j:

Note that the ratio is independent of all alternatives u 2 S, u 6¼ s, u 6¼ t. This
implies that the relative preference for s compared to t is not affected by the presence
or attributes of other alternatives. The problem with this restriction is demonstrated
by the red bus/blue bus problem. Assume a commuter has a choice between
commuting by car and by a red bus. Assume that the commuter has equal preference
for the two options. Then a third option is added, a blue bus. The commuter does not
care about the color of the bus. Intuitively, we’d expect the commuter to select car
with p(y¼ car)¼ 50% and p(y¼ red bus or y¼ blue bus)¼ 50%. IIA implies that p
(y ¼ car) ¼ 33% and p(y ¼ red bus or y ¼ blue bus) ¼ 67%. A similar statement of
IIA can be seen in the cross elasticities of the contributions to the utility function:

∂P y ¼ sjxð Þ
∂xt

xt
P y ¼ sjxð Þ ¼ �BtxtP y ¼ tjxð Þ:

Note this is independent of i, implying that a change to alternative j has the same
proportional impact on all other alternatives. These properties are a consequence of
assuming that the error terms on the utility functions of each alternative are inde-
pendent. This property also implies that the model is biased if there is unaccounted
for heterogeneity in preference. This is because any random component in the utility
function for a particular attribute would imply that the errors are no longer indepen-
dently and indistinguishably distributed across alternatives, as would heterogeneity
in preference for particular options between respondents.

Despite these strong assumptions, logit and multinomial logits are the most
common form of choice model, mostly due to their simplicity and ease of imple-
mentation. Luckily, while violations of the assumptions above will produce biased
estimates, practice has shown these models to hold up well even in cases where IIA
violations would be expected (Train 2002).

7.4.2.3 Probit Models

A natural selection for f(ɛ) is the multivariate normal distribution. This leads to probit
models. Given σ2, the covariance matrix of f(ɛ), the selection probabilities are:

P y ¼ sjxð Þ ¼
Z
Σ0

e�
ɛT ɛ
2σ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þ Sj j σ2j j
q dɛ,

Σ0 ⊂ ℝ Sj j j 8t ɛs > Btxt þ ɛt � Bsxs:
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The selection probabilities have no closed form and must be evaluated by
simulation or numerical methods such as Gaussian quadrature. The principal advan-
tage of the probit model is that it permits correlations in the error terms. The general
model with a full covariance matrix for f(ɛ) permits any possible substitution pattern
among the alternatives and is unbiased in the presence of unaccounted for hetero-
geneity in preference (Train 2002).

7.4.2.4 Nested Logit Models

The nested logit model loosens IIA for MNL models by allowing the random
components of the utility functions to correlate for selected groups of alternatives.
Take P ⊂ ℘ (S). Errors between utility functions for choices {i, j 2 S |∃p 2 P s. t. i,
j 2 p} are correlated. Errors between utility functions for choices {i, j 2 S |∄p 2 P s.
t. i, j 2 p} are independent. In most uses, P is a partition of S. f(ɛ) takes the form of a
generalized extreme value distribution with cumulative distribution:

F ɛð Þ ¼ e
�
P
p2P

P
s2p

�e
�ɛs=λp

� �λp� �
:

The selection probabilities for s are:

P y ¼ sjxð Þ ¼
X

p2Pjs2p

eBsxs=λp
P
t2p

e
Btxt=λp

� �λp�1

P
q2P

P
t2q

e
Btxt=λq

� �λq
:

This is typically decomposed into the product of two logits:

P y ¼ sjxð Þ ¼
X

p2Pjs2p

eBpxpþλpIVpP
q2P

eBqxqþλqIVq
� eB

p
s xs=λpP

t2p
e
Bp
t xt=λp

,

IVp ¼ ln
X
s2p

e
B0
sxs=λp

 !
,

Bp ¼
\
s2p

Bs,B
p
s ¼ Bs∖Bp,

(Train 2002).
Ironically, the most common motivation for the nested logit model, the red/blue

bus paradox, is a case of perfect correlation of errors between choice options
(λp ¼ 0); thus, the nested logit cannot capture the behavior.
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There is an alternative formulation of the nested logit model, called the
non-normalized nested logit model:

P y ¼ sjxð Þ ¼
X

p2Pjs2p

eBpxpþλpIVpP
q2P

eBqxqþλqIVq
� eB

p
s xsP

t2p
eB

p
t xt

,

IVp ¼ ln
X
t2p

eB
0
t xt

 !
:

The name comes from the fact that contributions to the utility functions are not
normalized between nests. They are scaled by λk, the correlation of items within the
nest. This form of the model can resolve the red bus/blue bus problem. Perfect
correlation isn’t possible in the other form of the model because in the case of perfect
correlation, it is impossible to normalize the utility functions. The non-normalized
nested logit is not consistent with the random utility maximization. The typical
interpretation of utility functions and part-worths is inappropriate for this model.
In general, the first formulation of the nested logit is preferred, though inconsistency
with random utility maximization does not preclude the model from accurately
reflecting a decision process. The appropriate model formulation can be determined
empirically with the model selection methods discussed in Sect. 7.4.7. It is important
to be aware that both of these models are referred to as nested logit in software
documentation. Analysts should be aware which method is implemented by their
choice of statistical software package (Heiss 2002; Silberhorn et al. 2008).

7.4.2.5 Random Effects MNL Models

Mixed models add a random component to the part-worths in the MNL model, α,
drawn from probability distribution, g(α) over Ω:

Bjk ¼ B j þ αjk,

Pk y ¼ ijx, αð Þ ¼ eBjkxiP
j2S

eBjkx j
,

P y ¼ ijxð Þ ¼
Z
Ω

Pk y ¼ ijx, αð Þg αð Þdα:

Generally, k represents the survey respondent or patient case. The conceptual
basis for the model is that part-worths may vary between individuals. The random
component of the part-worths captures this variation. In the random effects MNL
model, IIA still holds within the choices of each respondent or patient case. The
model can capture any substitution pattern in the overall population (Train 2002).
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7.4.2.6 Mixture MNL Models

Mixture models predict choice probabilities as a weighted sum of a set of MNL
models with different part-worths. The model is formulated as a latent class model.
There is a latent variable, c 2 C. A multinomial logit model predicts the choices
given c:

Pc y ¼ ijx, cð Þ ¼ eBjcxiP
j2S

eBjcx j
,

P y ¼ ijxð Þ ¼
X
c2C

Pc y ¼ ijxð ÞP cð Þ:

Conceptually, each stakeholder in the market is a member of some class c. Each
class uses a different utility function. It is equivalent to a random effects MNL model
where g(α) has finite support (Hess et al. 2006).

7.4.2.7 Ordered Logit and Probit Models

The ordered logit and probit models are variations on the standard logit and probit
models. They apply when responses are ordinal in nature, such as Likert-like scales
or levels of formulary coverage. In such cases, assume that each response represents
a range of the utility of the object being evaluated. For the formulary coverage
example, assume a payer uses a four-tiered formulary. The payer will reimburse the
product proportional to the utility of product to the payer. If the utility is below a
threshold, v1, then the product will not be covered; if the utility is between v1 and v2,
it will be in tier 4; if the utility is between v2 and v3, it will be in tier 3; etc. The
probability of each coverage tier is:

P Tier ¼ Not Coveredð Þ ¼ F v1 � Uð Þ
P Tier ¼ 4ð Þ ¼ F v2 � Uð Þ � F v1 � Uð Þ
P Tier ¼ 3ð Þ ¼ F v3 � Uð Þ � F v2 � Uð Þ
P Tier ¼ 2ð Þ ¼ F v4 � Uð Þ � F v3 � Uð Þ

P Tier ¼ 1ð Þ ¼ 1� F v4 � Uð Þ

If the errors on the utility are normal, then F is the cumulative normal function and
the model is called an ordered probit. If the errors on the utility are logistic, then F is
the logistic function and the model is called an ordered logit.
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7.4.3 Sample Considerations

Determining the sampling strategy involves determining the population of interest.
This definition requires an initial understanding of the decision-making process in
the particular market and the goals of the research.

7.4.3.1 Stakeholders

Most often the population of interest is the physicians who treat the condition or
conditions addressed by the product. Assuming reasonable market access, for most
pharmaceutical products, the physician asserts the greatest influence on product use.
For patient profile and driver research, the physician is best informed about the
medical properties of available treatments and how those match to the clinical needs
of the patients. For TPP development, physician decisions influence what secondary
endpoints most affect treatment choice and what administrative and dosing options
facilitate product use and physicians know which patients seem most appropriate for
a potential product.

The other common study populations are patients and payers. Patients should be
included in research when product attributes related to the patient experience (e.g.,
dosing, administration, and convenience) are expected to play a large role in
treatment decisions or if diagnosis or treatment requires initiative from the patients
(as with erectile dysfunction or restless leg syndrome). Payers should be included in
research if prediction and understanding of the impact of coverage and out-of-pocket
costs to patients are a research goal.

7.4.3.2 Sample Size

Discrete choice research requires sufficient sample sizes to acquire reasonable
estimates of the choice model parameters. Sample size calculation for these models
is difficult. The errors on the parameter estimates and predictions depend on the
parameter values. The amount of information in each elicited decision depends on
the nature of the choice task, the number of options presented, and the number and
overlap of the attributes of those options. The homogeneity of the study population
also impacts the accuracy of model estimates.

A number of rules have been proposed for determining the minimal sample size
for discrete choice studies. A good ad hoc rule of thumb is to have 20 respondents
view each choice task. This corresponds to at least 20 respondents per model degree
of freedom. Another rule of thumb states:
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N >
500c
ta

,

where c is the largest number of levels of a single attribute; t is the number of choice
tasks; and a is the number of alternatives. This equation assumes general attributes,
present on all alternatives. The nature of the pharmaceutical market means such a
property rarely presents in actual market decisions. Products are too clinically
nuanced and claims about products too strictly regulated to reduce all products in
a space to the same concise set of attributes and levels. But, the equation is applicable
to driver studies where the choice task presented need not reflect the decisions
presented in the marketplace.

Errors on the parameters of the utility function can be calculated directly for MNL
models or for more complex models via data simulation. This requires knowledge of
the experimental design and a prior estimate of the model parameters. Given a
probability distribution over the model parameters and experimental design, datasets
of survey results for various sample sizes and strategies can be simulated. Inspecting
plots of errors for various sampling strategies informs selection of the appropriate
sample design (de Bekker-Grob et al. 2015; Lancsar and Louviere 2008).

7.4.3.3 Subpopulations

Beyond sample size, having sufficient sample of certain subpopulations may be
important to producing accurate choice models and addressing research goals.
Standard logit and multinomial logit models assume homogeneity of preference
across the study population. Large deviations from this assumption result in omitted
variable bias in the resulting model estimates. To include an attribute of the respon-
dent in the choice model, a sufficient number of respondents must possess that
attribute and the experimental design should be balanced across the attribute. While
probit, mixed, and mixture models can address bias from omitted or unobserved
properties of the decision-maker, analysis of the differences between subpopulations
requires sufficient sample from the subpopulation.

The required sample size within a subpopulation depends on the nature of the
hypothesized differences between the subpopulation and the rest of the sample. A
simple hypothesis is a difference in brand preference. Such a hypothesis can be
modeled by the addition of a two-level parameter to each alternative’s utility
function. Assuming every brand appears in each choice task, the rule of thumb
mentioned above suggests a minimum sample size of 20. This assumes that sampling
and design constraints allow the researcher to incorporate the attribute of the
decision-maker into the design without impacting the design’s efficiency. Violations
of this assumption will require a larger subsample. Rarely can a respondent attribute
enter the experimental design efficiently, and sample sizes of at least 30 or 40 are
advisable in most studies. A complex hypothesis that a subpopulation could differ on
any component of the utility function results in a fully interacted model. This would
require a sample from the subpopulation sufficient to estimate the entire model.
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7.4.3.4 Design Complexity

Different choice models and experimental designs require different sample sizes.
More complex decision models and more complex experiments require larger
sample sizes. Design complexity takes many forms. The simplest metric for com-
plexity is the number of parameters in the choice model. This typically corresponds
to the number of attributes tested and the number of levels, i.e., the variations in
description or performance each attribute may take. Additional parameters also enter
the choice model if different products have different attributes that contribute to their
utility. Having the same attributes on multiple products in the choice set simplifies
the choice model by allowing each choice task to contribute multiple measurements
of the same parameter.

A related type of complexity enters the model by the number of response options.
Additional response options may reduce sample size by effectively increasing the
number of measurements provided by each choice task. In a two-option task, each
choice task provides a measurement of the relative utility of option A to option
B. Adding a third option yields two additional measurements, A to C and B to
C. Despite this, in the context of prescribing decisions, additional choices commonly
increase the design complexity. Rarely are medical treatments describable by the
same set of attributes, so adding options typically adds attributes and attribute levels.

A difficult to parametrize design space introduces a different type of complexity.
This manifests as combinations of attribute levels that cannot be presented together.
An example would be testing cancer treatments with both progression-free survival
(PFS) and overall survival (OS) contributing to product utility. PFS cannot exceed
OS. This restriction introduces correlation in the independent variables of the
experimental data, reducing the efficiency of the design.

7.4.4 Data Collection/Survey Design Considerations

Survey instruments may elicit preferences in a number of ways. Conjoint analysis
uses preferences elicited directly, as opposed to inferred through analysis of choice
behavior. Discrete choice modeling uses decision behaviors to derive utility func-
tions. Hybrid approaches combine the two, constructing an aggregate utility measure
from preferences elicited directly and using this aggregate measure in the utility
functions in the discrete choice model.

7.4.4.1 Conjoint

Conjoint is a broad term, used to describe any technique that derives a preference
ranking from a set of configurations of attributes and levels. In common conjoint
analysis, respondents evaluate products or product attributes independently. These
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evaluations are combined to derive a ranking of products and product configurations.
Preference elicitation tasks take the form of a rating scale or ranking. When
evaluations of full or partial configurations are collected, linear or ordinal models
are used to derive the contributions of individual attributes to the utility. When
derived from a model, utility contributions are dubbed derived or revealed prefer-
ences; when given directly, they are referred to as stated preferences. Studies often
collect both stated and derived preference.

In a typical conjoint survey, respondents first complete an exercise assigning an
importance to each attribute, typically via constant sum allocation. Then, for each
attribute, respondents rate each level, typically on a Likert-like scale. These are the
stated importances and performances. Respondents then evaluate a set of partial or
complete product configurations, either through rating scale, ranking, or choice task.
Regressing attribute level preferences against the choice of the configurations yields
the derived importance of the attributes.

Conjoint analysis requires fewer respondents and shorter surveys than discrete
choice modeling. Because preference is collected directly, it can be done more
concisely. Deriving utility functions from observations of behavior requires com-
pletion of a greater number of tasks and imposes restrictions on the nature of those
tasks. Conjoint analysis is more speculative than more rigorous discrete choice
modeling. It does not yield parameters that represent an interpretable value of
some behavioral theory. Authors have advocated using different terminology for
methods using the RUM theory, though use of the term in literature is mixed
(Louviere et al. 2010).

Max-Diff

A popular and useful conjoint task is the max-diff exercise. A max-diff exercise
produces a ranking of a set of items from a set of simpler ranking tasks on a subset of
the items. Respondents are shown a series of subsets of the full item set. For each
subset, respondents select the most and least appealing item. Responses are com-
bined to derive a ranking of the full set by fitting a choice model to the responses,
usually a multinomial logit or random effects multinomial logit. Max-diff exercises
allow rankings to be obtained when the full item set is too large to expect respon-
dents to accurately complete a full ranking exercise.

7.4.4.2 Discrete Choice

Discrete choice uses selections from a finite set of options to derive preferences and
the utility functions that define preferences. Respondents are presented with descrip-
tions of a set of options and asked to select one. Design of the decision presented in
the survey should reflect decisions made in the actual market. In pharmaceutical
market research, this typically means patient case collection and eliciting treatment
decisions for each collected patient case. Discrete choice models may also be fit to
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actual market decisions when such data is available. Discrete choice analysis
requires larger sample sizes and longer surveys but provides more robust and
interpretable results to conjoint analysis.

Allocations

Instead of selecting a single option in a choice task, allocations can serve as the
dependent measure in a discrete choice model. In such situations respondents state
their intended choice selection for the next 10 or 20 market decisions, or the
distribution of selection over some period of time as a percentage. Estimation of
the model in this situation requires inference about the number of decisions actually
represented by the allocation. In practice this value determines the variance of the
selection, how much variation in responses would be observed if the same respon-
dent were repeatedly asked the same allocation question. Determination of this value
is at the discretion of the analyst. Giving each task a weight greater than 20 often
leads to over-fitting. An intuitive selection is to use the number of response options
as the number of decisions represented in each allocation.

Allocations are not an ideal method of elicitation but are often necessary. Market
stakeholders rarely make decisions in such a manner. More often the market presents
decisions discretely. Physicians decide the treatment of each patient independently;
they do not look at their patient pool and allocate them to treatments en masse.
Allocations may lead to different results from repeated discrete choices through
behavioral phenomena like diversification bias (Read and Loewenstein 1995). That
said, presenting physicians with sufficient information to make decisions reflective
of how they would do so in the market is often infeasible. Physicians cannot select a
product without sufficient details about the patient. Collecting patient cases and
decisions about those patient cases greatly increases the length and expense of a
survey. By using an allocation exercise, physicians consider their entire patient pool
and the proportion of those patients suitable for each treatment option, alleviating the
need to present or collect patient details in the survey instrument.

7.4.4.3 Hybrid Methods

Researchers may combine conjoint and discrete choice methods to compromise
between the logistical simplicity of conjoint methods and theoretical rigor of discrete
choice. The typical method constructs utility measures using conjoint analysis.
These measures incorporate the effects of multiple product, patient, or physician
attributes and represent their contribution to utility as a single value. This aggregate
measure becomes the independent variable in the discrete choice model. This
simplifies the discrete choice model by reducing the number of parameters, thus
requiring fewer respondents and fewer choice tasks. The aggregate utility measure is
typically the sum of the Likert-like scale ratings multiplied by the stated importance
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of the attribute. Other derivations of the aggregate utility are possible, such as the
predicted preference from a full- or partial-profile max-diff exercise.

7.4.4.4 Number of Choice Tasks

The number of choice task that can be completed by each respondent depends on the
complexity of choice task. Generally, a single respondent can be expected to
complete up to 8 complex tasks, or as many as 20 for simple choice tasks, though
it’s rare to get more than 20 due to budgetary restrictions on survey length (Johnson
2000).

7.4.5 Efficient Designs

Anyone who has performed many regression analyses has encountered poor or
inestimable models due to correlation in the independent measures. In discrete
choice analysis, the analyst controls the distribution of some of the independent
measures through the design of the survey instrument. A survey, designed to
minimize the error of estimates of choice model parameters, achieves greater
precision and can incorporate greater complexity, with less data. Less ambitiously,
good experimental design ensures identification of the choice model.

7.4.5.1 Attribute and Levels

The first step of creating the experimental design is to determine the parameters of
the choice model. The list of parameters is dubbed the attributes. The tested values of
these attributes are the levels. Some attributes are clinical properties of the pharma-
ceutical product, for example, the efficacy, safety, or dosing. The levels are the
values of these attributes, for example, the efficacy attribute in an oncological
therapy may have values of 7, 8, or 9 months of PFS. Descriptors of the respondent,
physician, patient case, or market situation may also be attributes. The full set of
attributes and range of levels that the choice model will be able to assess defines the
domain of the discrete choice experiment. Knowing the domain, form of choice
model, and type of choice exercise establishes the data requirements for estimating
the choice model over the domain. Experimental design creates a data collection
process that ensures the collected data matrix, X, meets those requirements.

The data matrix can be manipulated in different ways. Parameters fall into three
categories, those determined by the survey design, those determined by the sample
design, and those that cannot be controlled.

The researcher may choose parameters determined by survey design directly.
These are the attributes of the description of the situation and options that the survey
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presents to respondents to set up a choice task. Because of how much control the
researcher has over these parameters, experimental design focuses heavily on them.

Parameters determined by sample design are attributes of the respondent or
patient cases collected from the respondent. Researchers have some control over
these. The sample can be stratified to ensure a certain number of observations at each
value. If survey design varies between respondents, survey versions can be balanced
within values of these parameters. Feasibility and cost of sample collection severely
limit the extent of manipulation of the data matrix on these parameters.

The final group consists of respondent-level effects that cannot be controlled for
but whose effect should be considered in the experimental design.

It is also important to consider what is not in the data matrix. Omitted variables
will affect the quality of results. The effect of variables that were not included in the
model but which may contribute to choices should be considered. The experimental
design can be constructed to mitigate the effect of omitted variable bias.

7.4.5.2 Measures of Design Efficiency

The most common measure for evaluating the design is D-efficiency. The
D-efficiency is proportional to the determinant of Fisher information matrix. This
is a natural target for optimization as covariance of the probability distribution on the
parameter estimates is proportional to the inverse Fisher information matrix.

The Fisher information matrix is calculated from the data matrix, X, and depends
on the form of choice model. X is a m x n matrix, where m is the number of model
parameters and n is the number of choices. Let χibe the ith parameter. Let xsbe the
subspace of parameters included in Us. For linear models the Fisher information
matrix is:

XTX
σ2

:

The determinant of this matrix is maximized when the component vectors are
orthogonal.

Optimizing designs for the linear model or starting from a design optimized for
the linear model and modifying simplifies the experimental design process. A design
that identifies the model in the linear case will always identify the MNL model
(Kuhfeld 2005).

7.4.5.3 Design Optimization

The general problem of finding the design that maximizes D-efficiency is equivalent
to finding the maximum volume submatrix of the data matrix associated with
showing every possible combination of attributes and levels. This problem is
NP-hard, meaning absolute optimization is not computationally feasible for most
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designs. Instead sufficiently optimized experimental designs are found by using a
combination of look-up tables of known optimal designs and heuristic search
algorithms such as simulated annealing or the Fedorov exchange algorithm. For
modestly sized experimental domains, heuristic search can be performed over the
full design space. For larger domains, computation time can be reduced by starting
with a known optimal design for a design space that is a superset of the desired
design space, removing the elements that are outside the desired design space, and
using the result as the search space for the heuristic optimization algorithm. For very
large domains, partitioning the design space, finding sufficiently optimal designs for
the subspaces, and combining them can reduce computation time. For certain
configurations of the Fisher information matrix, combining optimized solutions
over subspaces produces optimal or near-optimal results. This method can also
give the errors on the model parameters a more desirable structure (Zwerina et al.
1996; Nguyen and Miller 1992).

7.4.5.4 Blocking

Blocking is the practice of defining a set of or subsets of the experimental design
such that within subset D-efficiency is maximized. It is equivalent to adding a
categorical predictor to the design that minimally reduces D-efficiency. The most
common use of blocking is to mitigate missing variable bias from respondent
attributes or respondent-specific effects by ensuring the estimates of the other
parameters are as independent as possible from the missing variables.

7.4.6 Estimation

7.4.6.1 Maximum Likelihood and Gradient Descent

MNL, nested logit, and ordered logit models are typically estimated by employing a
gradient descent algorithm to maximize the log-likelihood. A similar approach is
taken for probit and ordered probit models, with the additional complication that the
likelihood function has no closed form. Thus the integral and its gradient must be
approximated, either through simulation or numerical methods. This puts a practical
limit on the complexity of probit models, specifically on the number of response
options and the number of non-zero terms in the covariance matrix of the errors on
the utility functions.

7.4.6.2 Expectation-Maximization (EM) Algorithm

For mixture models, the most common method of estimation is the EM algorithm.
Each respondent is initially assigned to a class. A choice model is fit to the data of
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each class, the expectation step. The probability of class membership given these
models is computed for each respondent, the maximization step. Choice models are
fit for each class, using the responses weighted by the probability of class member-
ship. The process is repeated until convergence.

The EM algorithm has poor convergence properties, often taking many iterations
to converge. The algorithm converges to local, not global, optima. The process
should be repeated using different initial class assignments and the best final result
used as the estimate.

7.4.6.3 Hierarchical Bayesian Approaches

Random effects MNL models are typically estimated by hierarchical Bayesian
estimation. The posterior distribution of the model parameters is sampled via
Markov chain Monte Carlo. The method requires the selection of a prior for the
distribution, g(α). In the case where g(α) is multivariate normal, the priors are iid
normal for the mean of g(α) and inverse-Wishart for the covariance of g(α). A
common choice is to have the priors on the means be normal distributions with a
mean of 0 and variance of 1 and for the prior on the covariance to be inverse-Wishart
with scale I and degrees of freedom equal to the number of model parameters plus
2. Models can be improved and estimated with less data if priors are set more
intelligently, leveraging existing information about the decision process. This esti-
mation method produces a sample from the posterior distribution of the parameter
estimates, not point estimates for those parameters. The theoretically correct method
for computing predictions is to take the mean of the predictions of all sampled
models. This is computationally difficult. A more common method is to take the
mean (or median) posterior estimates for each parameter and use those values as the
point estimates. Likewise, the model may be estimated by g(α) as defined by the
posterior parameter estimates that define g(α) or by using the empirical estimate of g
(α), the posterior estimates of the draws from g(α) observed in the sample. The latter
is preferred because it is robust to misspecification of g(α), though in cases where the
distribution of model parameters across the population is accurately distributed by
the choice of g(α), the former is more accurate.

7.4.7 Model Selection

7.4.7.1 Statistical Criteria

A number of statistical measures have been developed to evaluate the fit of discrete
choice models. The simplest is the log-likelihood. This is the log of the probability of
the observed data given the fitted model. Greater log-likelihood indicates better
model fit. The values are not comparable between models nor datasets. To
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standardize the value somewhat, McFadden proposed a pseudo-R2 statistic based on
the likelihood:

Pseudo� R2 ¼ 1� LLM
LL0

,

where LLM is the log-likelihood of the fitted model and LL0 is the log-likelihood of
an intercept-only model. The value has a minimum of 0. It tends to be smaller than
OLS R2; a benchmark range is that a pseudo-R2 of >0.2 is an excellent model fit.

A related procedure for comparing two models is the likelihood ratio test. The test
statistic is the ratio of the log-likelihoods of the two models being compared:

LLM
LL0

,

where LLM is the log-likelihood of the proposed model and LL0 is the log-likelihood
of the null model. The statistic is distributed chi-square with degrees of freedom
equal to the degrees of freedom of the proposed model minus the degrees of freedom
of the null model.

Two statistics that are essentially log-likelihoods penalized for model complexity
are Akaike’s information criterion (AIC) and Bayesian information criterion (BIC):

BIC ¼ ln nð Þk � 2LL,

AIC ¼ 2k � 2LL,

where K is the number of parameters in the model; n is the sample size; and LL is the
log-likelihood. For both statistics, the model with the lower value is preferred. BIC
applies a greater penalty to complex models than does AIC. Both are widely used,
and the smaller the statistic, the better the fit.

7.4.7.2 Iteration and Estimation Constraints

Often choice models may be improved by iterative model selection methods such as
forward or backward inclusion. In cases where certain part-worths are known to
contribute either positively or negatively to utility, it is beneficial to complete this
process by hand. Removing attributes from the utility functions which have no or
little influence or whose estimated contribution is nonsensical improves the esti-
mates of the other part-worths.

Models estimated by maximum likelihood do not easily permit constraints on the
estimates of the part-worths. As such this process is completed post hoc, by
iteratively removing part-worths from the model or by treating separate attribute
levels as a single level.
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Bayesian approaches allow greater flexibility in this area. One approach is to
restrict the estimates of the part-worths by modifying the priors. For a parameter
where the contribution of utility must be positive, a log-normal prior enforces this
constraint or, in the case of a random effects MNL, assuming that the individual level
part-worths are distributed log-normal. Another approach is to constrain the param-
eter estimates within the MCMC algorithm, either by resampling restricted draws or
tying mis-ordered values. This approach should be used with caution, as it often
leads to flat estimates due to the incongruity between the sampled values and the
proposed distribution for g(α). To circumvent this, one can use the unrestricted
estimates when evaluating g(α) but the restricted estimates when calculating the
log-likelihood. This can be thought of as using a peculiar, nonlinear utility function.
Finally, the naïve method of simply tying mis-ordered values after estimation
performs surprisingly well in practice though it is difficult to justify statistically
(Johnson 2000).

7.4.8 Sensitivity Analysis and Attribute Importance

Beyond providing predictions of decisions, discrete choice models can be analyzed
to describe the drivers for decisions. The properties of the drivers are described by
the models’ sensitivity to the attributes and the attribute importance.

The model sensitivity is the magnitude of the change in the predicted decision as
each attribute is changed. For MNL and probit models, this is well captured by the
part-worths. A more generalizable measure that works when the model does not have
a single parameter defining the contribution of each attribute to the utilities is the
change in the probability of a decision between two values of an attribute. The
nonlinear nature of the models implies that this measure will vary across the model
domain. Typically, a base case, the most likely combination of attribute levels, is
chosen. The change in probability as each attribute changes is assessed at this point.
Alternatively, one could report an average of the change across the model domain.

The importance of an attribute is the impact an attribute has on the decision
relative to the other modeled attributes. It is commonly expressed as the range of the
sensitivities for each attribute, normalized to sum to 1. It is difference in choice
probability between the most and least preferred level of each attribute divided by
the sum of said differences across all the attributes. Similar to the sensitivities, this
measure may vary across the domain of the model. Typically, the importance is
reported for a base case.
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7.5 Summary and Conclusion

The concepts and approach outlined in this chapter represent some of the more
widely used approaches to segmentation and choice models in the biopharma
industry. Both segmentation and choice models are critical to the successful devel-
opment and marketing of new products. They are also widely used to investigate the
impact of market events on previously launched in-line products as well. As more
and larger dataset become available for analysis, these approaches will no doubt
continue to evolve to accommodate them.
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Chapter 8
Modern Analytic Techniques for Predictive
Modeling of Clinical Trial Operations

Vladimir V. Anisimov

8.1 Introduction

Statistical design and operation of multicenter clinical trials over time are affected by
the uncertainties in input information, a natural stochasticity in patient enrollment
and screening processes and various events’ appearances.

There are different interconnected stages of trial design and operation including
patient enrollment planning/prediction, choosing randomization scheme and statis-
tical models for analyzing patient responses, monitoring/predicting various opera-
tional characteristics including enrollment performance on different levels, the
number of events of various types, detecting unusual data patterns, etc.

The complexity of contemporary clinical trials and multistate hierarchic structure
of operational processes require developing novel analytic techniques for efficient
modeling and forecasting different characteristics. Some controversies in the anal-
ysis of multicenter clinical trials are considered by Senn (1997, 1998).

Typically, a sample size is defined by the number of patients that have to be
randomized to the trial to have enough information for statistically relevant conclu-
sions about the properties of the drug. Thus, one of the tasks is to design the trial in
such a way (choose countries and centers in countries) that the required number of
patients will be reached within a planned time.

Forecasting patient enrollment is one of the bottleneck problems as uncertainties
in enrollment substantially affect randomization process, trial time completion,
supply chain, and associated costs. Using Poisson processes with fixed rates to
describe the enrollment process is an accepted approach (Carter et al. 2005; Senn
1997, 1998). However, in real trials the enrollment rates in different centers vary and
to mimic this variation Anisimov and Fedorov (2005, 2007a, b) introduced a model
(so-called Poisson-gamma model referred to as a PG model), where the variation in
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rates is modeled using a gamma distribution. This model can be described in the
framework of the empirical Bayesian approach where the prior distribution of the
rates is a gamma distribution with parameters that are evaluated either using histor-
ical data or data provided by study managers (Anisimov 2011a). Anisimov and
Fedorov (2007b) also described the Bayesian technique for calculating the posterior
gamma distribution of the rates at any interim time using real enrollment informa-
tion. Later on, Gajewski et al. (2008, 2012) independently considered a similar
Bayesian model for modeling enrollment but using one clinical center.

Note that the use of Poisson-gamma mixed models and an associated negative
binomial distribution has a long history, for example, Bates and Neyman (1952), for
describing the variation of positive variables in modeling flows of various events.

To account for wider realistic scenarios, the technique developed in Anisimov
and Fedorov (2005, 2007a, b) (see also Anisimov 2008) was extended further to
capture the situations where clinical centers can be initiated with random delays and
also can be closed earlier (Anisimov 2011a). A PG model was also used in Mijoule
et al. (2012) to consider some extensions related to other distributions of the
enrollment rates and sensitivity analysis, and in Bakhshi et al. (2013) for the
evaluation of parameters of a PG model using meta-analysis of historical trials.

There are also other models considered in the literature for modeling patient
enrollment (see survey Barnard et al. 2010). Most of the papers by other authors are
mainly dealing with predicting the global enrollment and there are two basic
directions. One is using mixed Poisson processes where the global rate is modeled
using different approaches, see Deng et al. (2014); Gajewski et al. (2008); Tang et al.
(2012); and Williford et al. (1987). Another one uses Brownian or fractional
Brownian motions, Lai et al. (2001) and Zhang and Lai (2011).

However, as these papers are dealing with the modeling enrollment on global
level, there are some limitations. Specifically, these approaches typically require
rather large number of centers and patients (to use some approximations) and cannot
be applied on the individual level, e.g., to distinguish enrollment performance in
different centers/countries; create forecasts on country/region levels, etc. Moreover,
at study start-up and early stages, these techniques also may not be appropriate, as in
general at these stages there are small numbers of active centers and patients
recruited.

From another side, a PG model is designed on the individual center level and also
can be used on the next levels (using different approximations); thus, it is not limited
to restrictions above. Therefore, this model is rather flexible and can be applied to the
vast majority of trials at different stages.

A brief review of the papers related to these directions is provided in Heitjan et al.
(2015), and some additional discussion mainly related to the use of analytic models
with random parameters is given in Anisimov (2016b).

It is worth to mention a very important direction in randomized clinical trials
dealing with the properties of different randomization schemes. Randomization is an
essential part of a trial design, and the choice of randomization affects the power of
statistical tests and the amount of drug supply required to satisfy patient demand.
The properties of various types of randomization schemes are studied by many
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authors. As this direction requires a special attention which is not in the scope of a
current chapter, we refer readers to the book by Rosenberger and Lachin (2013) and
also the earlier paper (Lachin 1988) with references therein. The properties of
imbalance caused by permuted-block randomization using a Poisson-gamma enroll-
ment model are studied in (Anisimov 2011c; Anisimov et al. 2017). Another way of
randomizing patients to different treatments and maintaining balance between treat-
ment arms is minimization, e.g., Senn et al. 2010.

There is also a large part of clinical trials (event-driven) where a sample size is
defined by the number of some clinical events that is required to have enough
information for reliable statistical conclusions about the parameters of patient
responses, e.g., oncology and cardiovascular trials. For these trials, one of the
main tasks is predicting not only the number of enrolled patients but mainly the
number of events that will happen for these patients and time to reach this number.

A useful review of different approaches for event-driven trials is provided in
Heitjan et al. (2015). However, for predicting the number of events over time and
time to stop trial, the authors of papers cited there mainly use Monte Carlo simula-
tion technique. Therefore, as the natural step in modeling trial operation, Anisimov
(2011b) developed an analytic technique (based on closed-form expressions) for
predictive modeling of the event’s counting process together with patient enrollment
in ongoing event-driven multicenter trials. In the chapter, this methodology is
developed further to forecasting the multiple events at start-up and interim stages.
Some approaches to optimal trial design accounting for enrollment and follow-up
stages and to risk-based monitoring and detection unusual event patterns are also
proposed.

As the next step in modeling trial operation, to model more complicated hierar-
chic processes on the top of enrollment including follow-up patients, various events
(clinical and nonclinical, AE), patient’s visits, and related costs, a new methodology
based on using so-called evolving stochastic processes is developed (Anisimov
2016a). This methodology can serve as some general framework to model various
types of operational processes related to patient enrollment and event processes. In
the chapter, this methodology is extended to modeling different events during a
follow-up period and calculating predictive distributions of the number of counts. A
few examples are considered.

8.2 Predictive Patient Enrollment Modeling

A large clinical trial usually involves a large number of patients who have to be
recruited by many clinical centers typically in different countries.

Consider a clinical trial where the patients are recruited by different clinical
centers and then, after a screening period, they are randomized to different treat-
ments according to some randomization scheme. At trial design and interim stages, it
is crucial to predict how many patients will be recruited in total and also predict the
time when a certain number of patients (sample size) will be reached.
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For operational purposes and to verify specific trial goals and planned schedule, it
is also important to predict and monitor enrollment in particular regions, in partic-
ular, to detect centers/countries with unusually low or high enrollment which is one
of the purposes of data management and risk-based monitoring (RBM).

Most of clinical trials use so-called competitive enrollment (no restrictions on the
number of patients to be recruited in particular centers/regions). Nevertheless,
sometimes due to some geographical or population reasons, the teams may use
restrictive enrollment, e.g., in some countries/regions it might be set the upper
(or low) thresholds (say, to enroll not more (or less) patients than a given number).
However, adding some restrictions may substantially increase the enrollment stop-
ping time and put trial deadline goals at risk (Anisimov et al. 2003). Therefore, in
this chapter the focus is on competitive enrollment. Note that some results can be
extended to the trials with restrictive enrollment as well.

8.2.1 Poisson-Gamma Enrollment Model

Let us formalize the basic model, which will be used for predictive enrollment
modeling and also as a baseline model for forecasting event process and other
operational characteristics.

There are three major uncertainties in patient enrollment. This first one is dealing
with the stochasticity of enrollment process in each clinical center, the second one is
associated with the variation in enrollment rates between different centers, and the
last one is related to center’s initiation delays.

In the framework of a Poisson-gamma (PG) model introduced in Anisimov and
Fedorov (2005, 2007b) and further extended in Anisimov (2011a), it is proposed to
model the process of patient’s enrollment in different centers using Poisson pro-
cesses with some rates, model variation in enrollment rates using a gamma distri-
bution, and model delays in centers initiation also using some probability
distributions, e.g., uniform, gamma.

The formal construction is defined as follows. Denote by Πλ(t) an ordinary
homogeneous Poisson process with a given rate λ. This means, for any t > 0,

Pr Πλ tð Þ ¼ kð Þ ¼ e�λt

k!
λtð Þk, k ¼ 0, 1, 2, ::

Denote also by Π(a) a Poisson random variable with parameter a. Assume that
the enrollment rate λi in center i has a gamma distribution with some parameters
(α,β)—shape and rate parameters—and probability density function:

f x, α, βð Þ ¼ e�βxβαxα�1

Γ αð Þ , x > 0,
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where Γ(α) is a gamma function. Suppose that center i is initiated at time ui, which
can be also some random variable.

Denote by ni(t) the number of patients enrolled in center i in time interval [0, t]
(enrollment process in center i). Then this process can be represented as

ni tð Þ ¼ Πλi t � ui½ �þ
� �

,

where by definition [a]+ ¼ max (0, a).
Thus, ni(t) is a nonhomogeneous in time doubly stochastic Poisson process (Cox

process), Cox and Isham (1980), with cumulative rate at time t, λi[t � ui]+.
Consider some useful relations. The process Πλ(t) where rate λ has a gamma

distribution with parameters (α,β) is a Poisson-gamma (PG) process (Bernardo and
Smith 2004) with parameters (t, α, β). Denote by PG(t, α, β) a PG random variable
with parameters (t, α, β) (it has the same distribution as the process Πλ(t)) and by
Pg(k, t, α, β) its probability mass function. Then

Pg k, t, α, βð Þ ¼ Pr Πλ tð Þ ¼ kð Þ ¼ Γ αþ kð Þ
k!Γ αð Þ

tkβα

βþ tð Þαþk , k ¼ 0, 1, 2, :: ð8:1Þ

For t¼ 1, Πλ(1) corresponds to a doubly stochastic Poisson variable with gamma
distributed rate λ, thus, we omit t and use notation PG(α, β). According to Johnson
et al. (1993: 199), Πλ(t) has a negative binomial distribution, and the following
relation is true:

Pg k, t, α, βð Þ ¼ Pr Nb α, β
βþ t

� �
¼ k

� �
, ð8:2Þ

where Nb(α, p) denotes a random variable which has a negative binomial distribution
with size α and probability p:

Pr Nb α, pð Þ ¼ kð Þ ¼ Γ αþ kð Þ
k!Γ αð Þ pα 1� pð Þk, k ¼ 0, 1, ::

Then in the case where ui is given, for t> ui the process ni(t) is a PG process with
parameters (t � ui, α, β) and Pr(ni(t) ¼ k) ¼ Pg(k, t � ui, α, β), k ¼ 0, 1, 2, ..

If ui is a random variable, the distribution of ni(t) can be written in the integral
form and in general cannot be derived in terms of simple formulae. Therefore, for
general cases we can use some approximations that will be discussed further.

Consider some region I that indicates a subset of sites with indexes i 2 I. Denote
by n(I, t) the number of patients enrolled in this region in time interval [0,t]. Define
the global cumulative enrollment rate in the region in time interval [0,t] as:

Λ I, tð Þ ¼
X

i2Iλi t � ui½ �þ: ð8:3Þ
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According to properties of a Poisson process, the process n(I, t) is a
nonhomogeneous doubly stochastic Poisson process with cumulative rate Λ(I, t).
Therefore, the enrollment process in any region (also globally) can be represented as
a doubly stochastic Poisson process where the cumulative rate has an explicit
representation in the terms of weighted sum of gamma distributed random variables.
Thus, the distribution of the enrollment process on different levels can be modeled
and predicted using properties of a PG model and different types of approximations.
For example, in regions with large number of centers, the process n(I, t) can be
approximated by a normal distribution, and it is possible to calculate in the closed
form the predictive mean and bounds for the enrollment process over time and
correspondingly to evaluate the predictive mean and bounds for the enrollment time.
This approach is realized in (Anisimov 2011a). For an individual center, the relation
(8.1) gives the explicit formula for distribution of the enrollment process in this
center. In general, we need to account for delay ui and use [t� ui]+ instead of t. Note
also that the cumulative rate Λ(I, t) in (8.3) as a sum of gamma distributed variables
in general does not have a gamma distribution. However, for fixed times of initiation
ui the rate Λ(I, t) can be approximated by a gamma distributed variable with
aggregated parameters (Anisimov 2011a).

Thus, a PG model allows to model enrollment behavior at different levels of trial
hierarchy. Note that Carter et al. (2005) also considered rates of Poisson processes as
random variables but using a uniform distribution. However, this approach has some
limitations as it assumes that rates are bounded in some interval. Moreover, the
analysis of real trials shows that the empirical distributions of the rates are rather far
from uniform distribution and heavy tailed.

This statement is supported by Fig. 8.1, which shows a histogram of the empirical
rates for a real case study with 100 centers. For this study, the duration of enrollment
in centers varies from 1 till 398 (in days), and the number of enrolled patients varies
from 0 till 22. Figure 8.1 shows rather typical behavior of empirical rates for rather
large studies.

Consider now in more detail the implementation of a PG model for modeling and
forecasting patient enrollment. There are two basic stages in predicting patient
enrollment and various events:

1. Start-up (baseline) prediction before trials starts and therefore there is no real trial
data available yet.

2. Interim prediction where it is possible to use real trial data and perform
reforecasting of trial operational behavior for the remaining period with the
purpose to update trial deadlines.

At both stages, the advanced predictive techniques can use a PG model; however,
input data may have different formats, and the model parameters will be evaluated
differently.
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8.2.2 Trial Start-Up Stage

This stage may also include an early stage of the trial with not so many centers
initiated and not so many patients recruited yet. Typically, during this stage, the
basic input information that is provided by clinical teams for enrollment prediction
includes the following key elements:

1. A total planned number of randomized patients to be enrolled (sample size)
2. An expected number of screened patients and screening duration
3. A list of initially planned regions and countries to be involved into the study
4. A planned number of centers to be initiated in each country and some information

about the schedule of initiation
5. The expected enrollment rates in centers or countries (this may include screening/

enrollment rates and dropout probabilities)

This information has many uncertainties. In particular, at the start-up stage
usually the exact schedule of center’s initiation is not known, and the screening/
enrollment rates and dropout probabilities are also not known. Therefore, one of the
main problems at this stage is how to account for these uncertainties, evaluate trial
enrollment feasibility, and forecast the enrollment time (time to stop enrollment).
There is no universal approach since a solution may depend on input data format and
data availability.

One approach can be to use data from similar historic studies (similar therapeutic
indication, inclusion/exclusion criteria, etc.) conducted in the same regions. Then
potentially this information can be used to create the initial trial enrollment design.
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Fig. 8.1 Histogram of the enrollment rate for real case study. Continuous line is the empirical
density
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Specifically, the enrollment rates for a new trial can be treated as random variables
with a prior distribution where parameters can be evaluated using historical data in
these regions and some prior information. As the rates are positive, it is natural to use
a gamma distribution. For a new trial, we can also assume that the centers in the
regions are initiated in time according to some distributions where parameters are
estimated using historical data.

As usually teams for each country/region may provide some time intervals where
a given number of centers are planned to be initiated, then at the first instance we can
assume that the times of center’s initiation are distributed uniformly in these
intervals (Anisimov et al. 2007; Anisimov 2009). If some historical information
about center’s initiation dates is available, other types of distributions can be also
used, e.g., gamma, beta, or empirical.

However, the historical information should be used with some caution. The
analysis of real trials shows that the point estimators of the rates that are typically
used in the form ki/τi, where ki is the number of patients enrolled in center i and τi is
the enrollment window, may substantially differ in the same centers for different
trials even for very similar therapeutic area and indication. One reason for this is a
random fluctuation of the enrollment. However, the estimators of parameters of a PG
model behave rather stable, e.g., Bakhshi et al. (2013) and Minois et al. (2017).
Therefore, it can be proposed to use a PG model for both historical and new trials
and, instead of estimating the enrollment rates in given sites using point estimators,
to estimate the variability in enrollment rates using a PG model and then aggregate
recruitment in the region or for the whole trial. In this case, the estimators of the
parameters of a PG model for historical trials can be used as prior estimators of the
enrolment model for the new trial, Minois et al. (2017).

Note that during the start-up stage there can be rather long transient period until
most of the centers will be initiated. Thus, the total number of patients and centers
may not be too large. Therefore, during this period it is important to account for the
process of centers initiation and the methods based on modeling enrollment in the
individual centers are much more preferable compared to models based on the global
prediction. Thus, it is natural to use at this stage a PG enrollment model. This model
is very flexible as it provides the opportunity to model the enrollment on different
levels (center, country, region, trial) and has many additional features, e.g.,
predicting with credibility bounds, predicting probability to complete in time,
evaluate effects of changing the number of centers, etc. One of the additional
advantages of a PG model is that most of these characteristics can be calculated
using closed-form expressions; thus, there is no need to use Monte Carlo simulation.

If there is no information from similar trials, then we can use the planned/
expected rates provided by clinical teams weighted with some expert estimators.
These data can be used as sample statistics for evaluating the prior parameters of a
PG model (on country or regional level). Some discussion on using baseline
estimates of rates at the trial start-up was provided in Anisimov et al. (2007) and
Anisimov (2011a). Bakhshi et al. (2013) investigated a PG model further and
suggested the empirical way to set the prior parameters by using a meta-analysis.
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Note that at start-up and early stages other approaches based on models for global
enrollment, e.g., using Poisson models with mixed global gamma distributed rate,
Gajewski et al. (2008, 2012), and Brownian (Lai et al. 2001) or fractional Brownian
(Zhang and Lai 2011) motions, may not be appropriate as in general at these stages
there is a small number of active centers and patients recruited.

Let us provide a formalization of a PG model at the start-up stage and how it can
be used for modeling and predicting enrollment at different levels.

8.2.2.1 Enrollment Prediction at Trial Start-Up Stage

Typically, at the trial start-up stage clinical teams have some historic information
about the enrollment performance of similar clinical trials in these sites or regions
and may use also the expert estimates. Therefore, by analyzing the historical rates,
the teams may provide the expected means and standard deviations of the enrollment
rates for the planned trial (on center or country level) that can be used to estimate the
prior parameters of the rates used in prediction. The same is related to the times of
site’s initiation.

Assume that this information is available and consider a slight generalization of a
PG model compared to the initial setup in Anisimov and Fedorov (2005, 2007b).
Suppose that at the trial start-up the following data are available in each center:

mi—Mean enrollment rate
s2i—Variance of enrollment rate
ui—Center initiation time which can be a random variable with some given

distribution

In the framework of a PG model, we assume that the enrollment rate λi in center
i has a gamma distribution with some parameters (αi, βi). According to the properties
of a gamma distribution, these parameters can be expressed via mean and variance as
αi ¼ m2

i =s
2
i , βi ¼ mi=s2i . Thus, the enrollment process ni(t) in center i is a PG

process with cumulative rate at time t, λi[t � ui]+.
For a doubly stochastic Poisson process Π(Λ(t)) with cumulative rate at time

t, Λ(t),

E Π Λ tð Þð Þ½ � ¼ E Λ tð Þ½ �, Var Π Λ tð Þð Þ½ � ¼ E Λ tð Þ½ � þ Var Λ tð Þ½ �: ð8:4Þ

These relations can be used for evaluation the mean and the variance of the
enrollment processes in different centers/regions. Then these values can be used for
enrollment forecasting using some approximations.

Let us first calculate the mean and the variance of the enrollment process n(t) in
one center. Assume that the enrollment rate is λ and the time of center initiation is τ,
which is a random variable with cumulative distribution function G(x)¼ Pr (τ � x).
Then the process n(t) is a doubly stochastic Poisson variable with cumulative rate
Λ(t) ¼ λi[t � τ]+. Define the following functions:
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m tð Þ ¼ R t0xdG xð Þ
b2 tð Þ ¼ R t0x2dG xð Þ ð8:5Þ

It is easy to calculate that

E Λ tð Þ½ � ¼ E λ� tG tð Þ � m tð Þð Þ,E Λ2 tð Þ� � ¼ E λ2
� �

t2G tð Þ � 2tm tð Þ þ b2 tð Þ� �� ð8:6Þ

As Var[Λ(t)] ¼ E[Λ2(t)] � (E[Λ(t)])2, then

E n tð Þ½ � ¼ E Λ tð Þ½ �, ð8:7Þ
Var n tð Þ½ � ¼ E Λ tð Þ½ � þ Var Λ tð Þ½ � ¼ E Λ tð Þ½ � þ E Λ2 tð Þ� �� E Λ tð Þ½ �ð Þ2: ð8:8Þ

According to relation (8.3), the cumulative rate in any region is a sum of
independent individual rates. Thus, the mean and the variance of Λ(I, t) can be
computed as sums of individual means and variances using relations (8.5)–(8.8).
Therefore, in the cases where it is possible to calculate the functions (8.5) in a closed
form, the mean and the variance of Λ(I, t) can be also computed in the closed form.

Consider now several important cases. Assume first that the time of center
initiation is deterministic (τ ¼ u), and the enrollment rate λ has mean m and variance
s2. Then

E Λ tð Þ½ � ¼ m t � uð Þ, t > u, and zero if t � u,

Var Λ tð Þ½ � ¼ s2 t � uð Þ2, t > u, and zero if t � u,

and the mean and the variance of n(t) are calculated according to (8.7), (8.8).
Consider now some region I with N(I ) centers and assume that for center i the

values: mi, the mean enrollment rate; s2i , the variance of enrollment rate; and ui, site
initiation time, are given. Denote by Λ(I, t) a cumulative rate in region I, and put:

E I, tð Þ ¼ E Λ I, tð Þ½ �, S2 I, tð Þ ¼ Var Λ I, tð Þ½ �:

Then

E I, tð Þ ¼
X

i2Imi t � ui½ �þ, S2 I, tð Þ ¼
X

i2I s
2
i t � ui½ �2þ: ð8:9Þ

These expressions can be used to calculate the mean and the variance of the
enrollment process n(I, t) in region I according to (8.7), (8.8). Consider now the case
when time of initiation τ is a random variable. Typically, at the start-up stage clinical
teams may provide a planned schedule of center initiation knowing for some
countries/regions only the time intervals where a given number of centers are
planned to be initiated. In this case, in the absence of other information, it is natural
to use a uniform distribution for times of center’s initiation in these intervals.
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Another way can be to use a gamma distribution for initiation times where the
parameters can be evaluated using historical data or some prior information.

Assume that the time of center initiation in interval [a, b] has a uniform distribu-
tion. Denote by M(t, a, b,m) and S2(t, a, b,m, s2), the mean and the variance of the
cumulative enrollment rate Λ(t) in this center. In Anisimov et al. (2007) and
Anisimov (2009), the following result was proved:

M t, a, b,mð Þ ¼

0, if t � a

m t � að Þ2
2 b� að Þ , if a < t � b

mt � m aþ bð Þ
2

, if t > b

,

8>>>><>>>>: ð8:10Þ

S2 t,a,b,m,s2
� �¼

0, if t�a

m2 t�að Þ3 4b�a�3tð Þ
12 b�að Þ2 þs2 t�að Þ3

3 b�að Þ , if a< t�b:

m2þs2ð Þ b�að Þ2
12

þs2 t�aþb
2

� �2

, if t>b

8>>>>>><>>>>>>:
ð8:11Þ

Thus, in the case where for each center i in region I the mean ratemi, SD si and the
interval of center initiation [ai, bi] are given, the mean and the variance of the
cumulative rate Λ(I, t) are calculated as follows:

E Λ I, tð Þ½ � ¼ E I, tð Þ ¼
X

i2IM t, ai, bi,mið Þ, ð8:12Þ

Var Λ I, tð Þ½ � ¼ S2 I, tð Þ ¼
X

i2IS
2 t, ai, bi, s

2
i

� �
: ð8:13Þ

Consider now the case where a center initiation time has a gamma distribution.
Assume that a center is initiated in interval [a,1) and the time τ of initiation has the
form τ ¼ a + η, where η has a gamma distribution with parameters (ψ , θ), and the
enrollment rate λ has a mean m and variance s2. Denote by F(t,ψ , θ) a cumulative
distribution function of a gamma distribution with parameters (ψ , θ). Then it is
possible to prove the following result:

Lemma 8.1 In the expression (8.5),

m tð Þ ¼ aF t � a,ψ , θð Þ þ ψ
θ
F t � a,ψ þ 1, θð Þ, t > a, and zero for t � a:

b2 tð Þ ¼ a2F t � a,ψ , θð Þ þ 2a
ψ
θ
F t � a,ψ þ 1, θð Þ

þ ψ ψ þ 1ð Þ
θ2

F t � a,ψ þ 2, θð Þ, t > a, and zero for t � a:
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Using these expressions we can calculate in each center E[Λ(t)] and Var[Λ(t)]
using relations (8.6), and then calculate in any region I, E[Λ(I, t)], and Var[Λ(I, t)] by
summing by all centers in the region the individual means and variances.

Similar expressions for m(t) and b2(t) can be derived for the case when a center
initiation time has a beta distribution. Note that a beta distribution is similar to the
uniform one; however, it shifts the probability weight to the beginning or end of the
interval. To use a beta distribution, we should know some specific prior information.

Denote by β( p, q) a random variable that has a beta distribution in interval [0, 1]
with parameters ( p, q). Assume that the time τ of center initiation has a beta
distribution in interval [a, b], so we can represent τ as τ ¼ a + (b � a)β( p, q).
Denote by B(t, p, q) a cumulative distribution function of β( p, q) (for t 2 (0, 1) this is
an incomplete beta function). Then

P τ � tð Þ ¼ B
t � a
b� a

, p, q
� 	

:

For the ease of notation denote z¼ (t� a)/(b� a). Let us introduce the following
functions:

Q1 z, p, qð Þ ¼ E β p, qð Þ z� β p, qð Þ½ �þ
� �

,

Q2 z, p, qð Þ ¼ E β2 p, qð Þ z� β p, qð Þ½ �þ
� �

,

for z > 0 and set Q1(z, p, q) ¼ 0, Q2(z, p, q) ¼ 0 for z � 0. Using integral trans-
formations, we can derive the following relations:

Q1 z, p, qð Þ ¼ p
pþ q

B z, pþ 1, qð Þ,

Q2 z, p, qð Þ ¼ p pþ 1ð Þ
pþ qð Þ pþ qþ 1ð ÞB z, pþ 2, qð Þ:

Now using similar considerations as above, we can prove the following
statement:

Statement. If the time of center initiation has a beta distribution, in the expres-
sion (8.5), m(t) ¼ aB(z, p, q) + (b � a)Q1(z, p, q), b

2(t) ¼ a2B(z, p, q) + 2a(b � a)
Q1(z, p, q) + (b � a)2Q2(z, p, q), where z ¼ (t � a)/(b � a).

Using these formulae and relations (8.6)–(8.8), the mean and the variance of the
enrollment process can be computed analytically in any region. In the next section,
the technique for calculating the approximations of the predictive mean and bounds
of the enrollment process and of the enrollment time using the expressions for mean
and the variance of the cumulative rate is provided.
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8.2.2.2 Enrollment Prediction at Trial Start-Up Stage in Any Region

Consider some region I with cumulative rate at time t, Λ(I, t) and denote E(I, t) ¼
E[Λ(I, t)], V2(I, t) ¼ E[Λ(I, t)] + Var[Λ(I, t)]. According to (8.4), these functions
represent the mean and the variance of the enrollment process n(I, t) in this region
and can be computed for rather general cases of centers initiation as shown above.

Denote by N(I ) the number of centers in region I. If N(I ) is rather large (in general
it may be enough to have N(I ) > 10, but for a good approximation and estimation
parameters, it is advisable to haveN(I )� 20), then the process n(I, t) for any t> 0 can
be approximated by a normal random variable with mean E(I, t) and variance V2(I, t).
Thus, the predictive (1 � δ)–confidence interval for n(I, t) can be approximated as

E I, tð Þ � z1�δ
2
V I, tð Þ,E I, tð Þ þ z1�δ

2
V I, tð Þ

� 	
,

where za is an a-quantile of a standard normal distribution.
Let us define an approximate upper Q-bound for the process n(I, t) as

Z Q, tð Þ ¼ E I, tð Þ þ zQ V I, tð Þ: ð8:14Þ

This means that with probability Q the value n(I, t) is below Z(Q, t), so Z(Q, t) can
serve as an upper bound. Correspondingly, an approximate low P-bound for the
process n(I, t) is

Z 1� P, tð Þ ¼ E I, tð Þ þ z1�P V I, tð Þ:

This means, with probability P the value n(I, t) is above Z(1 � P, t). These
formulae allow us to evaluate the predictive intervals for time to reach a region
target as times of crossing by the line bounds the horizontal line Y¼ L(I ), where L(I )
is the enrollment target in the region.

Consider now a global enrollment process with mean and variance functions
(E(t),V2(t)) calculated as in (8.12), (8.13) where summation is taken across all
centers. In Anisimov (2011b) it was proved that the interval of crossing the hori-
zontal line y ¼ n by the curves E tð Þ þ z1�δ

2
V tð Þ and E tð Þ � z1�δ

2
V tð Þ can serve as an

approximate (1 � δ)-predictive interval for a global enrollment time.
Consider now prediction in not so large regions. If N(I ) < 10, a normal approx-

imation may not perform well. In this case it is possible to use another type of
approximation. Consider the case where the times of centers initiation ui are deter-
ministic. Then the cumulative rate Λ(I, t) is a sum of gamma distributed variables that
have in general different distributions. Therefore, Λ(I, t) in general does not follow a
gamma distribution. Nevertheless, in Anisimov (2011a) it was proposed to approx-
imate Λ(I, t) by a gamma distributed variable with the same mean and variance as of
Λ(I, t). This approximation in some sense is similar to the Welch-Satterthwaite
approximation that was originally used to approximate the linear combinations of
independent chi-square random variables. An exhaustive Monte Carlo simulation
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shows that this approximation works perfectly well even for rather small values of
N(I ) about 3–5. This means the following result:

Lemma 8.2 Consider some region I with N(I ) centers and assume that for center
i the values: mi, – the mean enrollment rate; s2i , – the variance of enrollment rate; ui,
– center initiation time, are given.

Then for any time t > 0, the cumulative rate Λ(I, t) defined in (8.3) can be
approximated by a gamma distributed random variable with parameters (A(I, t),
B(I, t)), where

A I, tð Þ ¼ E2 I, tð Þ
S2 I, tð Þ ,B I, tð Þ ¼ E I, tð Þ

S2 I, tð Þ , ð8:15Þ

and functions E(I, t) and S2(I, t) are defined in (8.9). Correspondingly, the process
n(I, t) can be approximated by a PG process with parameters (1,A(I, t),B(I, t)).

Relation (8.2) allows using in calculations in R standard formulae for a negative
binomial distribution, e.g., for a PG variable PG(t, α, β), the standard functions for
distributions look as

Pr PG t, α, βð Þ ¼ kð Þ ¼ dnbinom k, size ¼ α, prob ¼ β
βþ t

� �
,

Pr PG t, α, βð Þ � kð Þ ¼ pnbinom k, size ¼ α, prob ¼ β
βþ t

� �
,

Q P, t, α, βð Þ ¼ qnbinom P, size ¼ α, prob ¼ β
βþ t

� �
,

where Q(P, t, α, β) is a P-quantile of PG(t, α, β) variable which is defined as the first
integer L such that Pr(PG(t, α, β) � L) � P.

These formulae can be used in R-tools to evaluate numerically the predictive
distributions and bounds of the process n(I, t) using relations (8.15) and also for the
global process.

The advantage of this methodology is that it is based on the derived closed-form
expressions, and computation time is negligible.

8.2.3 Enrollment Reforecasting at Interim Stage

At the interim stage, it is natural to use real data and re-estimate parameters of the
model with the purpose to adjust them to real data and improve accuracy of
prediction of the remaining enrollment. It is typically assumed that there is already
some number of active centers that have enrolled a reasonable number of patients
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(enough to use statistical estimation). Note that the methods and results may depend
on trial goals and data availability.

There can be also other tasks at the interim stage including evaluating enrollment
performance, risk-based monitoring other operational characteristics, detecting
center/country outliers, etc. These results will be discussed further after analysis of
the interim stage.

Consider a general framework that is using here. Assume that there are N active
centers, and the enrollment processes in different centers are modeled using PG
processes. Without loss of generality, we can assume that all centers belong to the
same pool of centers (have the same parameters of a PG enrollment model).
Otherwise, the centers can be divided on clusters where within each cluster we can
assume the homogeneity of centers.

Therefore, assume that all rates λi have a prior gamma distribution with the same
parameters (α, β). Suppose that at interim time t1 the following data are available:

ki—The number of patients recruited in center i, and
vi—The duration of active enrollment in center i up to time t1.

Using data (ki, vi), i ¼ 1, .., N, the parameters (α, β) can be estimated using
maximum likelihood technique (Anisimov and Fedorov 2007b; Anisimov 2011a).
Following these papers, the log-likelihood function up to a constant has the form:

L α, βð Þ ¼
XN
i¼1

lnΓ αþ kið Þ � N lnΓ αð Þ þ Nα ln β�
XN
i¼1

αþ kið Þ ln βþ við Þ þ C,

and ML estimators can be found using numerical optimization. Note that according
to a general theory of ML, the estimators are asymptotically normal:

bα,bβ� 	
� α, βð Þ þ BN 0, 1ð Þffiffiffiffi

N
p ,

where N 0, 1ð Þ stands for a standard normal random variable.
Thus, at large N the error of estimation is practically negligible. However, to have

a good accuracy of estimation, it is recommended to have at least 20 centers with
30–40 recruited patients in total. The estimation technique also works for smaller
values; however, in these cases the error in estimation and its impact on the accuracy
of prediction can be evaluated separately. Discussion of this technique may have a
special interest but is outside of the scope of this chapter.

As different centers have initially different enrollment rates, the next step is to
adjust the estimated prior rates to real interim data. In Anisimov and Fedorov
(2007b), an empirical Bayesian approach was proposed (see also Anisimov
2011a). As Poisson and gamma are conjugate distributions, it is a known fact that
given data (ki, vi) in center i the posterior rate eλi also has a gamma distribution with
parameters (α + ki, β + vi).
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Therefore, it is proposed to model the future enrollment process in center i by a
doubly stochastic Poisson process with posterior rate eλi, which is also a PG process.

Denote by ~n I, tð Þ ¼ n I, t1 þ tð Þ � n I, t1ð Þ, t > 0, the remaining incremental pre-
dictive enrollment process in region I. If all centers in region Iwill continue to recruit
until stopping recruitment globally, then ~n I, tð Þ is a doubly stochastic Poisson
process with posterior cumulative rate:

~Λ I, tð Þ ¼ t
X
i2I
eλi,

which in general does not have a gamma distribution.
In what follows, we use for simplicity the notation (α, β) for ML estimators

instead of bα,bβ� 	
. There are simple formulae for calculating the posterior mean

and variance of the individual rates:

E eλih i ¼ αþ ki
βþ vi

, Var eλih i ¼ αþ ki
βþ við Þ2 , ð8:16Þ

Denote

~E Ið Þ ¼
X

i2I
αþ ki
βþ vi

, ~S
2
Ið Þ ¼

X
i2I

αþ ki
βþ við Þ2 : ð8:17Þ

Then, the mean and the variance of the posterior cumulative rate are

E ~Λ I, tð Þ� � ¼ ~E Ið Þt, Var ~Λ I, tð Þ� � ¼ ~S
2
Ið Þt2: ð8:18Þ

Therefore, basing on results of Sect. 8.2.2.2, the posterior remaining predictive
enrollment process ~n I, tð Þ in any region I can be modeled using either a normal
approximation (for rather large N(I )), or using a PG process with parameters
t, ~A Ið Þ, ~B Ið Þ� �

where the parameters are calculated as follows:

~A Ið Þ ¼ ~E
2
Ið Þ

~S
2
Ið Þ

, ~B Ið Þ ¼ ~E Ið Þ
~S
2
Ið Þ

: ð8:19Þ

For both approaches, the predictive mean and bounds of the number of patients
recruited over time can be computed using closed-form expressions as shown in
Sect. 8.2.2.2. Correspondingly, the predictive bounds for the time to reach region
target or total sample size can be evaluated using either Q-bounds for the process
n(I, t) and normal approximation (8.14), or quantiles of a PG distribution and
relations (8.18), (8.19).

The derivations above assume that there are N active centers that will continue to
recruit until stopping the global enrollment. However, in real trials this is a typical

376 V. V. Anisimov



situation where at interim time not all centers are initiated yet and some new ones
may be initiated in the future.

For these cases, when the center’s initiation times are deterministic, the technique
for predicting future enrollment process is developed in (Anisimov 2011a). Consider
now a typical situation when a clinical team has some planned schedule of center’s
initiation on, say, monthly basis. In general, this means that there are N2 new centers
that are scheduled to be initiated in given time intervals (ai, bi) with mean and SD of
the rates (mi, si), i¼ 1, .., N2. Thus, if no other information is provided, it is natural to
assume that the times of initiation have a uniform distribution in corresponding
intervals. Denote by ~Λ N2, tð Þ a global cumulative enrollment rate for these N2

centers. The mean and the variance of this rate can be computed using formulae
(8.12), (8.13). The global rate for all centers including active centers and those to be
initiated is

~Λ N,N2, tð Þ ¼ ~Λ N, tð Þ þ ~Λ N2, tð Þ, ð8:20Þ

where ~Λ N, tð Þ is the posterior global cumulative enrollment rate in N active centers.
Thus, the mean and the variance of the global rate can be directly calculated.

Therefore, for predicting the remaining enrollment process accounting for new
centers to be initiated, it is possible to use the same technique as explained above
using either a normal approximation or approximation via a PG process. Note that
the latter approximation can also be applied to the case of many centers. Calculations
show that in this case both approximations practically coincide; therefore, using a
PG approximation is more universal.

The technique developed above allows us to evaluate the predictive bounds of the
remaining enrollment time using low and upper predictive bounds for the enrollment
process.

However, it is interesting to note that it is also possible to evaluate directly the
distribution of the remaining enrollment time for the case when the number of active
centers will remain the same until the end of enrollment. This idea was first noted for
the case when the centers are initiated at the same time in (Anisimov and Fedorov
2007b), for a general case using a PG approximation for remaining enrollment
process in Lemma 2.2 (Anisimov 2011a), and then later on in (Gajewski et al.
2012) for a special case of one center.

Let us define a Pearson type VI distribution (Johnson et al. 1994: 381) with
parameters (n, c, d ) and probability density function:

p x, n, c, dð Þ ¼ 1
B n, cð Þ

xn�1dc

xþ dð Þnþc , x � 0,

where B(n, c) is a beta function.
It is shown above that if the number of active centers remains the same, then

under rather general conditions the global posterior cumulative rate ~Λ N, tð Þ of the
remaining enrollment process can be approximated by a gamma random variable
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with mean ~Et and variance ~S
2
t2, where ~E, ~S

2
� 	

are calculated using relation (8.17)

by summing across all centers. Thus, the global remaining enrollment process is
approximated by a PG process with parameters t, ~A, ~B

� �
, where the values ~A, ~B

� �
are

calculated for all centers using relations (8.19) with values ~E, ~S
2

� 	
. Then, according

to considerations in Anisimov and Fedorov (2007b), the remaining enrollment time
is approximated by a Pearson type VI distribution with parameters nR, ~A, ~B

� �
where

nR is the remaining number of patients left to recruit.
There are no standard formulae in R for calculating characteristics of Pearson type

VI distribution. Note that there is a special package PearsonDS available from
CRAN, which computes various characteristics. However, for practical reasons it
might be simpler to use the approach based on computing predictive bounds for the
predictive enrollment process as shown in Sect. 2.2.2.

Consider now a very important notion of the probability of success (PoS)
(probability to complete enrollment before planned time). Denote by n(t) the global
enrollment process, by n the enrollment target (sample size), by Ω the enrollment
time—time to reach the enrollment target—and by Tpl the planned enrollment time.

Note that for any t > 0,

Pr Ω � tð Þ ¼ Pr n tð Þ � nð Þ: ð8:21Þ

Thus, PoS is the probability Pr(n(Tpl) � n). The right part in (8.21) can be
evaluated using different approaches. Assume first that the number of centers and
the predictive number of patients are large enough to use a normal approximation for
n(t). Then for any t > 0,

Pr Ω � tð Þ � Φ
E tð Þ � n
V tð Þ

� �
,

where E(t), V2(t) are the mean and the variance functions of the global enrollment
process n(t), and Φ(x) is the cumulative distribution function of a standard normal
distribution with parameters (0,1). Thus,

PoS ¼ Φ
E Tpl

� �� n

V Tpl

� � !
ð8:22Þ

This relation implied the following criterion of successful enrollment completion:
Criterion: the trial will complete enrollment in time with probability P if the

following relation is true:

E Tpl

� � � nþ zPV Tpl

� �
, ð8:23Þ

where zP is a P-quantile of a standard normal distribution.
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In the following sections, it will be shown how this relation can be used for
adaptive enrollment adjustment and creating optimal enrollment design.

Consider now the case when the number of centers N is not very large, say, less
than 20. Denote the mean and the variance of the global cumulative predictive rate at
time t by E(t) and S2(t). Consider the approximation of this rate at time Tpl by a
gamma random variable with mean E(Tpl) and variance S2(Tpl). This approximation
is valid under rather general assumptions as discussed in Sect. 8.2.2.2. Then the
value n(Tpl) can be approximated by a PG random variable with parameters (A,B),
where

A ¼ E2 Tpl

� �
S2 Tpl

� � ,B ¼ E Tpl

� �
S2 Tpl

� � :

Thus, in R language, for calculation PoS in (8.21), we can use the function:

PoS ¼ 1� pnbinom n� 1, size ¼ E2 Tpl

� �
S2 Tpl

� �, prob ¼ E Tpl

� �
E Tpl

� �þ S2 Tpl

� � !
,

where pnbinom(k, size ¼ a, prob ¼ p) is the function in R that computes the
cumulative probability distribution function of a negative binomial distribution
Nb(a, p) with size a and probability p defined in Sect. 8.2.1.

At interim time t1 in calculations, we need to consider the remaining incremental
process and the remaining number of patients nR instead of n.

These results form a general methodology for modeling, predicting and
reforecasting enrollment processes at different stages and in different regions.

8.2.4 Interim Assessment of Enrollment Performance
and Risk-Based Monitoring

Different centers and countries have initially different enrollment rates and therefore
may perform differently. The question of a paramount interest is to analyze the
enrollment performance of different centers/countries at the interim time and detect
the unusual data patterns and outliers (units that either low or high enrolling) with the
purpose to make some decisions, e.g., investigate more closely the causes of the
unusual behavior, send monitors, etc.

Note that a typical approach used in practice for detecting outliers in some cohort
of variables {Xi} is to evaluate the sample mean E ¼ E[{Xi}] and the vari-
ance S2 ¼ Var[{Xi}] in the cohort and then use the following rule:

• If for some j, Xj> E + ZS (or correspondingly Xj< E + ZS), then Xj is considered
as an outlier, where Z is typically chosen as some quantile of a normal distribution
or just as values 1, 2, and 3.
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However, this rule is actually based on the assumption that the values Xi have a
normal distribution. Nevertheless, many of characteristics related to enrollment and
event’s appearance are very far from normal distribution. The examples are the
enrollment rates and the times till particular events, say, till the arrival of the first
patient. In these examples, the empirical estimator of the rate as the ratio of the
number of patients enrolled and the enrollment time has a Poisson-gamma distribu-
tion. The time till first arrival has a Pareto distribution. Both distributions are heavy
tailed, and the latter distribution even may not have the theoretical mean or variance.
Thus, using the rules based on normal assumptions may lead to biased results and
statistically not valid conclusions.

Therefore, the methods of the analysis and data monitoring should be model-
based and oriented on the type of data.

8.2.4.1 Interim Assessment of Center’s Enrollment Performance

Consider two different approaches for detecting the unusual center’s enrollment
performance and selecting low and high enrolling centers. The first approach uses
P-values, another one uses quantiles of a PG model. Assume that at interim time t1
the following data are available:

ki—The number of patients recruited in center i

vi — The duration of active enrollment in center i up to time t1

P-values Consider the hypothesis H0: all centers belong to the population with the
same parameters of a PG enrollment model. Denote by (α, β) the parameters of a PG
model estimated using these data and maximum likelihood technique. Then, given vi
the number of patients recruited in center i has a PG distribution with parameters
(vi, α, β) (see (8.1)). Thus, for testing this hypothesis we can define the upper and low
P-values as follows:

PUpp ki, vi, α, βð Þ ¼ Pr PG vi, α, βð Þ � kið Þ, ð8:24Þ
PLow ki, vi, α, βð Þ ¼ Pr PG vi, α, βð Þ � kið Þ: ð8:25Þ

By selecting different thresholds that may depend on sample size and data, we can
select the sets of centers with P-values less than a given value. Centers with small
upper P-values reflect high enrolling centers. Correspondingly, centers with small
low P-values reflect low enrolling centers.

Numerical example Consider a study with N ¼ 50 centers, all centers are initiated
in a 2-month period deterministically using a pseudo-uniform distribution. Time of
interim assessment of enrollment performance is 6 months. Assume that the first
42 centers have the mean enrollment rate m1 ¼ 0.05 patients per day, the next
4 centers are low enrolling with mean rate m2 ¼ m1/6, and the remaining 4 centers
are high enrolling with mean rate m3 ¼ 4m1. Suppose that the enrollment process in
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each of the first 42 centers is a PG process with the same parameters: shape α¼ 2 and
rate β ¼ α/m1 ¼ 40. In the unusual eight centers, the enrollment process follows a
Poisson process with rate which is a mean enrollment rate. To get the interim data,
the number of patients in each center is simulated according to either a PG process
(in the first 42 centers) or a Poisson process.

Then for one simulated sample we get a set of data (ki, vi), where vi are given and
ki are simulated. ML estimators of a PG model for all 50 centers are (1.704, 24.228).
P-values for these data in log scale (�log(P-value)) are shown in Fig. 8.2, where for
each center, the crosses (red) show upper P-values, and the rectangles (blue)—low
P-values. Horizontal separation lines correspond to�log of probabilities (0.02, 0.05,
0.1). Thus, it is visible that low enrolling centers 43,..,46 have rather small low
P-values (three of them have low P-values less than 0.05). Correspondingly, high
enrolling centers are also clearly detected with upper P-values less or about 0.05.
Other centers are within typical variation where for two centers (3 and 18) the low
P-value for the 3rd one and the upper P-value for the 18th one are less than 0.1 which
can be explained by a random fluctuation.

The most critical centers are center 50 that has the best performance with
enrollment window 160 days and 38 patients enrolled and center 43 that has the
worst performance with enrollment window 177 days and 0 patients enrolled. This
approach is realized in R using relations (8.2), (8.24), (8.25) and standard formulae
for a negative binomial distribution.

2D classification using PG quantiles Another approach uses quantiles of a PG
distribution and can create a visual 2D classification of the centers.
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Fig. 8.2 Assessment of the interim center’s enrollment performance, P-values
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Denote by Q(P, t, α, β) a P-quantile of PG(t, α, β) distribution. Let us select rather
small critical levels εH and εL for high and low enrolling centers, respectively. Then
criterion to detect high and low enrolling centers has the following form:

1. If ki > Q(1 � εH, α, β, vi) then center i is high enrolling
2. If ki < Q(εL, α, β, vi) then center i is low enrolling

To create 2D classification on the plane (z, n), the upper curve Q(1 � εH, α, β, z)
and the low curve Q(εL, α, β, z) for z ¼ 1, 2, 3, .. are created together with the points
(vi, ki) for each center. Then the points over the upper curve correspond to high
enrolling centers and the points below the low curve correspond to low enrolling
centers. This is shown in Fig. 8.3. The upper quantiles are calculated for εH ¼ 0.02,
0.05. The low quantiles are calculated for εL ¼ 0.05, 0.1. Note that using the same
probability thresholds we select the same centers using either P-values or 2D
classification. So this is a matter of preference which method to choose for risk-
based monitoring of center’s enrollment performance.

8.2.4.2 Interim Assessment of Country’s Enrollment Performance

Consider now an approach for detecting the countries with unusual center’s enroll-
ment performance. This approach is based on the approximation of the enrollment
processes in countries by PG processes and computing P-values for these approxi-
mations. As typically country may include not so many centers, we use PG approx-
imation instead of a normal one.

Assume that the interim data (ki, vi) are given and denote by (α, β) the parameters
of a PG model estimated using these data and maximum likelihood technique. Put
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for simplicity m ¼ α/β, s2 ¼ α/β2 (the mean and the variance of the prior gamma
distributed rate).

Consider some country J and define the aggregated country mean and variance of
the rate:

E Jð Þ ¼ m
X

i2Jvi, S
2 Jð Þ ¼ s2

X
i2Jvi

2:

Let k Jð Þ ¼Pi2Jki be the number of patients recruited in country J.

Lemma 8.3 The distribution of k(J ) can be approximated by a PG distribution with
parameters (A(J ),B(J )), where

A Jð Þ ¼ E2 Jð Þ
S2 Jð Þ ,B Jð Þ ¼ E Jð Þ

S2 Jð Þ ð8:26Þ

Indeed, the global enrollment rate Λ(J ) in country J up to the interim time has the
form:

Λ Jð Þ ¼
X
i2J

λivi:

It is easy to see that the mean and the variance of Λ(J ) are E(J ) and S2(J ). In
Lemma 8.2, it was proved that Λ(J ) can be well approximated by a gamma random
variable with parameters (8.26). This proves the lemma.

Basing on this result, we can apply a similar technique as in Sect. 8.2.4.1 and
calculate the upper and lower P-values for country J similar to relations (8.24) and
(8.25) as follows:

PUpp Jð Þ ¼ Pr PG A Jð Þ,B Jð Þð Þ � k Jð Þð Þ,
PLow Jð Þ ¼ Pr PG A Jð Þ,B Jð Þð Þ � k Jð Þð Þ:

8.3 Optimal Trial Design

8.3.1 Optimal Enrollment Design at Start-Up Stage

This section deals with the optimal enrollment design accounting for different
performance of centers in different countries, cost and time constraints, and the
probability of success.

In general, it can be different criteria of optimality depending on team goals and
various constraints. Typically, the costs of centers initiation and monitoring in
different countries/regions vary, and the enrollment rates also can vary. Therefore,
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the one of the questions of a paramount interest is which countries to choose and how
many centers in these countries to select to satisfy trial goal.

Consider the following input data:

– A set of all possible countries that can be chosen for this study: {1, 2, .., J}
– The expected mean enrollment rates per center in different countries {mj, j¼ 1, .., J}

– The variances of enrollment rates in countries s2j, j ¼ 1, ::, J
n o

(for simplicity it

is assumed that the mean rate and the variance for all centers in each country are
the same, but this assumption can be easily relaxed)

– Some planned set of restrictions on the number of centers in countriesW, e.g., the
minimal or maximal numbers of centers in countries

– Cost per selecting one center in country j, {Cj, j ¼ 1, .., J}
– Cost of running one center per unit of time in country j, {cj, j ¼ 1, .., J} (for

simplicity it is assumed that the costs per different centers in one country are the
same)

– Cost per one enrolled patient in different countries {qj, j ¼ 1, . . , J}

Assume for simplicity that all centers in country j are initiated in time interval
(aj, bj) according to a uniform distribution, j ¼ 1, .., J. Let n be the total number of
patients to be recruited and T be the expected (planned) duration of enrollment.

Consider the following problem: find an optimal allocation of counties/centers
that maximizes the probability of success given certain restrictions on the number of
centers and that the total trial cost does not exceed a given threshold Ctotal.

Suppose for simplicity that for all j, bj < T and the total number of centers N is
large enough to use a normal approximation for the global enrollment process.

Let us evaluate the costs of trial operation in time interval [0, T].
Assume that we have chosen some subset of centers {Nj, j ¼ 1, .., J} from

countries {1, .., J}. Then the mean and the variance of the global cumulative rate
in country j in interval [0, T] using relations (8.10), (8.11) are calculated as

E Λ j,Tð Þ½ � ¼ E j,Tð Þ ¼ N jm j T � a j þ b j

2

� �
,

Var Λ j,Tð Þ½ � ¼ S2 j,Tð Þ ¼ N j

m2
j þ s2j

� 	
b j � a j

� �2
12

þ s2j T � a j þ b j

2

� �2
0@ 1A:

The mean and the variance of the global cumulative rate for all countries are
calculated as

E T ,N j, j ¼ 1, ::, J
� � ¼XJ

j¼1

E j,Tð Þ; S2 T ,N j, j ¼ 1, ::, J
� � ¼XJ

j¼1

S2 j,Tð Þ:
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The average operational cost including the initiation and running Nj centers in
country j in time interval [0, T] is

C j,Tð Þ ¼ N j C j þ c j T � a j þ b j

2

� �� �
:

Correspondingly, the average cost per enrolled patients in country j in time
interval [0, T] is qjE( j,T ). Thus, the global average operational cost is

R T ,N j, j ¼ 1, ::, J
� � ¼XJ

j¼1

C j, Tð Þ þ q jE j,Tð Þ� �
:

Denote

V2 T ,N j, j ¼ 1, ::, J
� � ¼ E T ,N j, j ¼ 1, ::, J

� �þ S2 T ,N j, j ¼ 1, ::, J
� �

:

Note that maximizing the probability function Φ( f(x)) is equivalent to maximiz-
ing the function f(x). Therefore, we come to the following result:

Lemma 8.4 The optimal allocation of centers {Nj, j ¼ 1, .., J} 2W in countries that
maximizes PoS given that the global cost does not exceed a certain level and
allocation restrictions is a solution of the following optimization problem:

• Find

max
N j, j¼1, ::, Jf g2W

E T ,N j, j ¼ 1, ::, J
� �� n

V T ,N j, j ¼ 1, ::, J
� � ,

• Given

R T ,N j, j ¼ 1, ::, J
� � � Ctotal,

N j, j ¼ 1, ::, J
� � 2 W :

It can be also other formulations of the trial optimal design. For example, we can
consider a dual problem:

• Minimize total cost R(T, ..) given some restrictions on {Nj}, and that PoS is no
less than a given probability P0.

Another opportunity can be to impose some stochastic restrictions. As for any
center’s allocation {Nj, j ¼ 1, .., J} the trial cost depends on the recruitment time
τ(n,Nj, j ¼ 1, .., J ), we can also consider a problem to maximize PoS given that the
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total cost does not exceed some threshold with a given probability. This leads to the
following optimization problem:

• Find

max
N j, j¼1, ::, Jf g

E T ,N j, j ¼ 1, ::, J
� �� n

V T ,N j, j ¼ 1, ::, J
� � ,

• Given

Pr R τ n,N j, j ¼ 1, ::, J
� �

,N j, j ¼ 1, ::, J
� � � Ctotal

� � � P0:

N j, j ¼ 1, ::, J
� � 2 W

The choice of the optimization problem depends on team and trial goals. These
optimization problems can be solved numerically using the methods of constrained
nonlinear optimization or discrete search. Similar optimization problems can be
formulated for interim enrollment design.

8.3.2 Optimal Adaptive Enrollment Adjustment at Interim
Stage

This section deals with the optimal enrollment adjustment accounting for predictive
study performance and provides a technique for solving the following problem: if
study is going not as planned how to adjust the number of centers to reach a trial goal
with a given probability and minimal costs.

Let us keep notation of Sect. 8.2.3. Assume that the recruitment in trial is slower
than expected and consider the following problem: what is the minimal number of
new centers that have to be initiated to make PoS no less than a given level PS.

Let Nmax be the maximum number of new centers that potentially can be initiated
in the future. Assume that these centers can be initiated in given time intervals
(ai, bi) after the interim time t1 with mean and variance of the rates
mi, s2i
� �

, i ¼ N þ 1, ::,N þ Nmax . Consider another time scale to account for the
remaining time after the interim time t1. This means, t ! t + t1.

Denote by W ¼ i1, i2, . . . , iN2f g some subset of N2 new centers out of potential
Nmax centers. Let us define for this subset the mean and the variance of the
enrollment rate as
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E i1, i2, . . . , iN2 , tð Þ ¼
X
i2W

M t, ai, bi,mið Þ,

S2 i1, i2, . . . , iN2 , tð Þ ¼
X
i2W

S2 t, ai, bi,mi, s
2
i

� �
:

Consider the mean and the variance of posterior enrollment rate for N centers
active at interim time t1:

~E N, tð Þ ¼
XN

i¼1
M t, ai, bi,mið Þ,

eS2 N, tð Þ ¼
XN

i¼1
S2 t, ai, bi,mi, s

2
i

� �
:

Note that in these formulae the mean and the variance mi, s2i
� �

of the rates for
centers active at interim time are considered as posterior characteristics calculated
using interim data and estimated parameters as in (8.16). For new N2 centers the
values mi, s2i

� �
can be evaluated using historical data and experience of study teams.

However, if there is no other information, it is advisable to assume that these centers
have the same prior parameters as the active centers. This means, for new centers we
can use relations mi ¼ α

β , s
2
i ¼ α

β2
:

For the global rate ~Λ N,W , tð Þ using a given subset W of new centers and (8.20)
we get

E ~Λ N,W , tð Þ� � ¼ ~E N, tð Þ þ E i1, i2, . . . , iN2 , tð Þ,

Var ~Λ N,W , tð Þ� � ¼ eS2 N, tð Þ þ S2 i1, i2, . . . , iN2 , tð Þ:

Consider the variance of the global enrollment process:

V2 N,W , tð Þ ¼ E ~Λ N,W , tð Þ� �þ Var ~Λ N,W , tð Þ� �
:

Denote by nR the number of patients left to recruit at the interim time and by TR
the planned remaining recruitment time. Then according to (8.22), PoS has the form:

PoS ¼ F Wð Þ ¼ Φ
~E N, TRð Þ þ E W ,TRð Þ � nRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieS2 N,TRð Þ þ S2 W ,TRð Þ þ ~E N,TRð Þ þ E W ,TRð Þ

q
0B@

1CA: ð8:27Þ

The right part in (8.27) is the function of subset W. Assume that there is some
target function (cost) associated with this subset, C(W ). Using relation (8.23) we can
formulate the following result:

Lemma 8.5 The optimal set of new centers that have to be added to minimize
function C(W ) and keep PoS no less than PS is a solution of the following optimi-
zation problem:

8 Modern Analytic Techniques for Predictive Modeling of Clinical Trial Operations 387



• Find

minC Wð Þ
W

,

• Given

~E N,TRð Þ þ E W ,TRð Þ � nR

þzPS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieS2 N, TRð Þ þ S2 W ,TRð Þ þ ~E N, TRð Þ þ E W ,TRð Þ
q

: ð8:28Þ

In particular, if we are only interested to minimize the number of new centers
that can be initiated in the natural order {1, 2, ..,Nmax}, then we can set
C(W ) ¼ length(W ). Then the solution will provide the minimal number of new
centers that have to be added to make PoS no less than PS. A solution can be easily
found numerically using a recurrent procedure: start from N2 ¼ 1. If (8.28) is true,
stop. Otherwise, set N2 ¼ N2 + 1 and repeat step.

In the sections above the advanced analytic methodology for predictive patient
enrollment modeling, risk-based monitoring trial performance and optimal design
and adjustment enrollment associated processes are developed. The next section is
devoted to modeling the event’s counts on the top of enrollment process.

8.4 Modeling Event’s Counts in Event-Driven Trials

This section includes the analysis of the advanced models and techniques for
modeling counts of non-repeated clinical events, specifically events in oncology
trials. The models include predicting event’s counts at the trial start-up stage,
reprojection at the interim stage and also risk-based data monitoring, and analysis
of centers performance including detection of units with high/low number of events.

Consider an ongoing clinical trial where the patients are recruited by different
clinical centers. Upon registration, a patient takes a prescribed treatment and then is
followed-up until the occurrence of particular events or treatment reactions. Typical
example is an oncology trial.

The problem is to predict the number of particular events that may happen over
time accounting for ongoing enrollment, and also predict the time when the total
number of events will hit some prescribed level (sample size). A general methodol-
ogy for interim predicting event’s counts together with ongoing enrollment with
applications to oncology studies is developed in (Anisimov 2011b). Here this
methodology is extended to cover the initial trial design and also to risk-based
monitoring and detecting centers with unusual number of events.

Consider first the case of one clinical center. Assume that the patients arrive
according to a nonhomogeneous doubly stochastic Poisson process with
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instantaneous possibly random rate at time t, λ(t). Suppose first that there is only one
type of events A. Denote by τA the time it takes until the event A happens (starting
from zero point) and let pA(x) ¼ Pr (τA � x) be its cumulative distribution function.
In Anisimov (2011b) the following result is proved.

Lemma 8.6 The predictive number of events A in interval [0, t] for the newly
recruited patients in this center has a mixed Poisson distribution with parameter
(possibly random): Z t

0
λ uð ÞpA t � uð Þdu: ð8:29Þ

Consider a special important case when enrollment follows a homogeneous
doubly stochastic Poisson process in some interval and time until event has an
exponential distribution. Denote the following function:

d t, a, bð Þ ¼
0, t � a

t � a, a < t � b

b� a, t � b

8><>: :

Lemma 8.7 Assume that a center is active only in a fixed time interval [a, b],
λ(t) ¼ λ for t 2 [a, b] and zero otherwise (λ can be random), and time till event A has
an exponential distribution with parameter μA. Then the predictive number of events
A in interval [0, t] in this center has a mixed Poisson distribution with parameter
λq(t, a, b), where

q t, a, bð Þ ¼ d t, a, bð Þ � 1
μA

e�μA t�að Þ eμAd t,a,bð Þ � 1
� 	

: ð8:30Þ

In relations above, we can also consider a random effect model for event rates by
assuming that μA has a gamma distribution with some parameters. However, for
simplicity we restrict our attention to the case when μA is deterministic as using
random rates will involve more complicated calculations. Another point is that
typically in oncology trials the events happen rather rare, thus, adding extra param-
eters will lead to additional errors in estimation. Moreover, the variation in enroll-
ment rates is mainly caused by differences in enrollment in different centers, but for
event rates the variation can be caused by the differences between patients.

Consider now more general situation when there are two types of events, where
another event L means that patient is lost to follow-up. In what follows, assume that
the rates of these events are μA and μL correspondingly, which are deterministic
values.

Denote by pA(t, L ) the probability that in time interval [0, t] the event A will
happen before the event L and by pL(t,A) the probability that the patient in time
interval [0, t] will be lost to follow-up. Using properties of exponential distribution it
is easy to calculate that
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pA t,Lð Þ ¼ μA
μ

1� e�μtð Þ; pL t,Að Þ ¼ μL
μ

1� e�μtð Þ, ð8:31Þ

where μ ¼ μA + μL. Using Lemma 8.7 and the properties of exponential random
variables, we can prove the following result. Denote by k(t,A) and k(t,L ) the
predictive number of events A and L in the interval [0, t], respectively.

Lemma 8.8 Assume that a center is active only in a fixed time interval [a, b],
λ(t) ¼ λ for t 2 [a, b] and zero otherwise where λ has a gamma distribution with
parameters (α,β), and there are two types of events, A and L with rates μA and μL,
respectively.

Then for any t > 0, the vector (k(t,A), k(t,L )) has a two-dimensional PG distri-
bution of the form:

Pr k t,Að Þ ¼ k, k t,Lð Þ ¼ jð Þ ¼ Γ αþ k þ jð Þ
Γ αð Þk!j!

βαqkA t, a, bð Þq j
L t, a, bð Þ

β þ qA t, a, bð Þ þ qL t, a, bð Þð Þαþkþj

ð8:32Þ

where

qB t, a, bð Þ ¼ μB
μ

d t, a, bð Þ � e�μ t�að Þ eμd t,a,bð Þ � 1
� 	

=μ
� 	

, ð8:33Þ

with μ ¼ μA + μL, and B ¼ A or B ¼ L, respectively.
In particular, each of the variables k(t,A) and k(t,L ) has a PG distribution of the

form (8.1) where we should put t ¼ qA(t, a, b) or t ¼ qL(t, a, b), respectively. If λ is
deterministic, then the variables k(t,A) and k(t,L ) are independent and have Poisson
distributions with parameters λqA(t, a, b) and λqL(t, a, b), respectively. Proof is given
in Appendix 8.1.

The results of Lemma 8.8 form the basis for creating predictions of the event’s
counts at start-up stage. Note that even for a deterministic λ, in spite of the fact that
the marginal distributions have Poisson distributions, the processes k(t,A) and k(t,L )
over time are not Poisson processes. For the analysis of the incremental behavior and
constructing interim predictions, we need to consider a joint distribution of the
number of events together with ongoing enrollment.

Denote by n(t) the predictive number of patients recruited in interval
[0, t]. Consider a joint distribution of the process Z(t) ¼ (n(t), k(t,A), k(t, L )).

Lemma 8.9 Assume that the assumptions of Lemma 8.8 are valid. Then, condi-
tionally on λ, the process Z(t) is a continuous time Markov process.

A full description of three-dimensional distributions of Z(t) is rather complicated.
Therefore, consider marginal distributions that are of the most interest and can be
used in predictive formulae.
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Consider a transition interval [t1, t2]. Suppose for simplicity that the center is
active in this interval, that means, a � t1, t2 � b. Other situations can be easily
considered as well.

Denote Δ ¼ t2 � t1. Assume that at time t1, (n(t1), k(t1,A), k(t1, L )) ¼ (n1, i1, j1),
where i1 + j1 � n1.

As the enrollment process is a PG process with rate λ, then the number of new
patients that arrive in the interval [t1, t2] is a PG variable Pg(Δ, α, β) (see (8.1)). If λ is
deterministic, this is a Poisson variable Π(λΔ).

The number of new events A and L that will happen in this interval is a sum of two
parts. The first part includes the events that may happen for n1 � i1 � j1 patients in
trial without events that are at risk at time t1. For each of these patients the events
A and L may happen with probabilities pA(Δ,L ) and pL(Δ,A), respectively (8.31).
Therefore, a two-dimensional vector of the number of new events, A and L, is
represented as a multinomial random variable Mn(n1 � i1 � j1, pA(Δ, L ), pL(Δ,
A)), where we use two components, and by definition:

Pr Mn n, p, qð Þ ¼ i, jð Þð Þ ¼ n!
i!j! n� i� jð Þ! p

iq j 1� p� qð Þn�i�j: ð8:34Þ

Another part of new events is related to the events that may happen for the new
patients that arrive in this interval [t1, t2]. As stated in Lemma 8.8, for the number of
new events A and L, we can use representations:

k Δ,Að Þ ¼ Π λqA Δð Þð Þ; k Δ, Lð Þ ¼ Π λqL Δð Þð Þ;

where the functions qA(Δ) and qL(Δ) according to (8.33) have the form:

qB Δð Þ ¼ μA
μ

Δ� 1� e�μΔ
� �

=μ
� �

,B ¼ A, L: ð8:35Þ

and the vector (k(Δ,A), k(Δ, L )) has a two-dimensional PG distribution.
Thus, the two-dimensional increment in the number of new events A and L in

interval [t1, t2] can be represented as

Mn n1 � i1 � j1, pA Δ, Lð Þ, pL Δ,Að Þð Þ þ k Δ,Að Þ, k Δ,Lð Þð Þ: ð8:36Þ

If λ is deterministic, then the values k(Δ,A) and k(Δ, L ) are independent.
This expression can be used for interim predicting the number of future events. If

the number of centers is rather large for using a normal approximation, then the
marginal mean and variance of this incremental value can be computed and used in
predictive formulae. For not very large numbers, the marginal distributions in (8.36)
can be computed numerically.
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8.4.1 Design of the Event-Driven Trial at Start-Up Stage

Consider the initial trial design. Assume that there are N centers planned to be
initiated. Suppose that the main goal is to reach a given number ν(A) of clinical
events A. For this purpose typically it can proposed the following setup: perform a
patient enrollment during some period of time T, then stop enrollment, follow-up the
enrolled patients, and wait until the total number of events will reach ν(A).

Let us provide the technique for predicting the number of events accounting for
ongoing enrollment on global and region levels.

Consider some region I and assume that in center i 2 I the enrollment rate λi is
possibly some random variable with mean mi and variance s2i , and center initiation
time ui is given. Assume also that all centers will continue to recruit until stopping
time T. Suppose that the rates of events A and L, μA and μL, are some given constants
that do not depend on the center.

Denote by n(I, t) the number of patients enrolled in region I in time interval [0, t]
and by k(I,B, t) the number of events B, where B ¼ A or B ¼ L, respectively.

According to (8.33), for a generic event B define the following (in general
random) function:

Σ I,B, t,Tð Þ ¼
X

i2IλiqB t, ui,Tð Þ:

Put

E I,B, t,Tð Þ ¼
X

i2ImiqB t, ui, Tð Þ, ð8:37Þ

S2 I,B, t,Tð Þ ¼
X

i2I s
2
i qB

2 t, ui,Tð Þ: ð8:38Þ

The results above imply the following lemma.

Lemma 8.10 For the trial design above, the predictive number k(I,B, t) of events
B in region I in time interval [0, t] has a doubly stochastic Poisson distribution with
parameter Σ(I,B, t,T ). Correspondingly,

E k I,B, tð Þ½ � ¼ E I,B, t, Tð Þ,Var k I,B, tð Þ½ � ¼ S2 I,B, t,Tð Þ þ E I,B, t,Tð Þ:

The same result is valid for the global number of events k(B, t), where in the
relations above a summation should be taken by all centers.

This result allows us to predict the number of events A or L over time with
predictive bounds. The bounds can be calculated using similar technique developed
in Sect. 8.2.2.2. That means, for not very large N we can use the approximation of
Σ(I,B, t,T ) by a gamma random variable using relation (8.15) and quantiles of a
Poisson or PG distributions. For rather large N � 20, we can use a normal approx-
imation for k(I,B, t) and relations (8.37), (8.38).
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Consider now various opportunities of constructing an optimal design. A crucial
point here is to determine the optimal duration of the enrollment T. If T is not very
large, the number of patients enrolled in the trial will be also not very large, so it will
take longer to reach the number of events needed. From another side, if T is rather
large, presumably too many patients can be enrolled and the number of events may
happen even before the end of enrollment period. This may lead to extra costs and
possible regulatory problems.

To illustrate wide opportunities, consider rather simple enrollment setting: all
centers are initiated simultaneously at trial start-up and have the same parameters
(m, s2) of the enrollment rates. Assume that there is only one type of events A and
denote μA ¼ μ. Consider also for simplicity the design for averaged characteristics:
evaluate the average trial duration TA (time to reach on average the number of events
ν(A)) given that the enrollment duration is T.

For this scenario the total mean number of events at time t is E(A, t,
T ) ¼ NmqA(t, 0, T ), where according to (8.33),

qA t, 0, Tð Þ ¼ min t,Tð Þ � e�μt eμmin t,Tð Þ � 1
� 	

=μ:

Thus, the average trial duration TA is a solution in t of the equation:

NmqA t, 0,Tð Þ ¼ ν Að Þ:

If NmqA(T, 0, T ) < ν(A), then TA > T and a solution can be easily found as

TA ¼ log eμT � 1
� �� log μð Þ � log T� ν Að Þ

Nm

� � �
=μ:

If NmqA(T, 0, T ) > ν(A), then there is no solution in the region {t > T}. Thus,
TA < T and can be found as a solution of nonlinear equation Nm(t � (1 � e�μt)/μ)
¼ ν(A). As the derivative of the left hand side part is positive, a solution is unique.

Example Consider a numerical example. Assume that there are N ¼ 40 centers,
m ¼ 0.01 patients per center per day, μ ¼ m/6 event’s rate per patient, and the
planned number of events to reach ν(A) ¼ 50. Consider several scenarios for
different values of the duration of enrollment T. Calculations show that for values
T ¼ 7, 8, 10, 12, 14 (in months) the predictive average total numbers of patients
enrolled are 84, 96, 120, 144, and 168, and the average trial durations are 651, 565,
480, 445, and 434 (in days), respectively. Thus, the duration of enrollment substan-
tially affects the total trial duration.

Consider now an optimization problem. Let us introduce the potential costs.
Assume that C1 is the cost (per day) of running enrollment stage, C2 is the cost at
the follow-up stage (after stopping enrollment), C3 is the cost (per day) of excess the
planned trial time TE. Then the average cost function has the following form:
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W Tð Þ ¼ C1T þ C2 TA � T½ �þ þ C3 TA � TE½ �þ,

where [a]+ ¼ max (0, a).
Let us take a desired threshold for study duration TE¼ 450 days. Then for several

scenarios, the values of optimal T minimizing W(T ) and TA are

1. For C1 ¼ 7, C2 ¼ 1, C3 ¼ 10, the optimal T ¼ 335, and TA ¼ 455
2. For C1 ¼ 5, C2 ¼ 1, C3 ¼ 10, the optimal T ¼ 353, and TA ¼ 447
3. For C1 ¼ 2, C2 ¼ 1, C3 ¼ 10, the optimal T ¼ 404, and TA ¼ 435
4. For C1 ¼ 1.5, C2 ¼ 1, C3 ¼ 10, the optimal T ¼ 415, and TA ¼ 434

Thus, if the cost of enrollment stage is not very high, it might be more efficient to
consider a longer enrollment stage in order to reach the number of events sooner.

Note that this is the design on average. There are many other opportunities to
consider stochastic setting, e.g., using predictive distributions for trial duration
consider similar criteria as in Sect. 8.3, e.g., find an optimal T given some restrictions
on the number of centers and costs, maximize probability to complete trial in time,
minimize costs, etc. Particular setting of the optimal problem may essentially depend
on trial goals and different restrictions.

It can be also another design in event-driven trial: define initially a given number
of patients n, perform the enrollment stage until n patients will be enrolled, and then,
if still the number of events ν(A) is not reached, follow-up the enrolled patients and
wait until the total number of events will reach ν(A).

Note that for the purpose of the analysis of the averaged design, this design is
nearly equivalent to the previous design. However, for creating predictions during
the enrollment stage, this setup is more complicated for analytic investigation as the
enrollment stage has a random duration. However, this design can be reduced to the
previous one by considering a deterministic duration of enrollment stage T(n), where
T(n) is the average time to reach n patients to be enrolled. In large trials the relative
error in the approximation of enrollment time by the averaged time is rather small.
Thus, this approach provides rather good approximation and keeps very nice analytic
properties of the design and various opportunities for optimization.

8.4.2 Risk-Based Monitoring in Event-Driven Trials
at Interim Stage

In this section we develop the technique for analyzing the performance of different
centers and detecting unusual data patterns (centers with too high or too low number
of events).

Consider the trial at interim time t1. Assume that there can be two types of events,
A or L, and the following data are available:

ki—The number of patients recruited in center i
vi—The duration of active enrollment in center i up to time t1
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For each patient it is known the exposure time for this patient and the type of
event if it happens (or no events).

Assume that the enrollment follows a PG model with the same parameters for all
centers. Assume also that the rates of events μA and μL are the same for all patients
and centers.

Consider first the procedure of estimating parameters. Denote by (α, β) the
parameters of a PG model estimated using enrollment data and ML technique as
described in Sect. 8.2.3. For estimating rates μA and μL let us rearrange the event data
in the following way.

Consider three groups of patients:

• Group O: no events, nO patients, durations of follow-up periods zk
• Group A: the event A happened, nA patients, durations of follow-up periods xi
• Group L: patients are lost to follow-up, nL patients, durations of follow-up periods

yj

Denote

Σ1 ¼
XnO

k¼1
zk þ

XnA

i¼1
xi þ

XnL

j¼1
y j:

Then the log-likelihood function has the form:

L μA, μLð Þ ¼ � μA þ μLð ÞΣ1 þ nA log μAð Þ þ nL log μLð Þ,

and ML estimators are

μA ¼ nA
Σ1

; μL ¼ nL
Σ1

: ð8:39Þ

Consider now a hypothesis H0: the parameters of enrollment and event models in
all centers are (α, β) and (μA, μL), respectively.

Lemma 8.11 Given hypothesis H0 and data (ki, vi) in center i, the vector of the
number of events (k(i,A, vi), k(i,L, vi)) that happened up to interim time t1 has a
multinomial distribution (see (8.34)) Mn(ki, p(vi,A), p(vi,L )), where for B ¼ A or
B ¼ L,

p v,Bð Þ ¼ μB
μ

1� 1� e�μvð Þ=μvð Þ, ð8:40Þ

with μ ¼ μA + μL.
In particular, the marginal distribution of the variable k(i,B, vi), for B ¼ A or

B ¼ L, is a binomial distribution with parameters (ki, p(vi,B)).
Proof is given in Appendix 8.2. Lemma 8.11 equips us with the technique for

testing an unusual behavior of the number of events prior to interim time using
P-values.
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Lemma 8.12 Assuming a hypothesis H0 and given enrollment data (ki, vi) in center
i, the number of events (kA(i), kL(i)) and estimated event’s rates (μA, μL), the upper
and low P-values for the actual number of events B are calculated as follows:

PUpp i, Bð Þ ¼ Pr Bin ki, p vi,Bð Þð Þ � kB ið Þð Þ,B ¼ A,L

PLow i, Bð Þ ¼ Pr Bin ki, p vi,Bð Þð Þ � kB ið Þð Þ,B ¼ A,L

These values can be computed in R using standard functions for binomial
distribution:

Pr Bin k, pð Þ � nð Þ ¼pbinom n, size ¼ k, prob ¼ pð Þ,
n ¼ 0, 1, . . . , k:

By selecting different thresholds, we can select the sets of centers with small
P-values for both types of events. In particular, centers with small upper P-values for
event L reflect the case of high number of lost to follow-up patients.

8.4.3 Forecasting in Event-Driven Trials at Interim Stage

Consider now forecasting of the number of events. Assume that at the interim time t1
there can be two types of events, A and L, and there are N active centers with the
following data:

ki—The number of patients recruited in center i
vi—The duration of active enrollment in center i up to time t1

Let also event data be divided in three groups of patients:

• Group O: no events, nO patients, durations of follow-up periods zk
• Group A: the event A happened, nA patients, durations of follow-up periods xi
• Group L: patients are lost to follow-up, nL patients, durations of follow-up periods

yj

Assume that the enrollment follows a PG model with the same parameters for all
centers and the rates of events μA and μL are the same for all patients and centers.

Denote by (α, β) the parameters of a PG model estimated using enrollment data
and ML technique as described in Sect. 8.2.3 and by μA and μL the estimated event
rates (8.39).

Consider some region I with N(I ) active centers where the numbers of events
in three groups defined above are nO(I ), nA(I ), and nL(I ), correspondingly. Denote by
k(I, t,A) the predictive number of events A in region I in time interval [t1, t1 + t]. Put
also T1 ¼ [T � t1]+ , the remaining enrollment duration at the interim time.
Furthermore, given data (ki, vi) in center i, define for each active center the posterior
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rate eλl which has a gamma distribution with parameters (α + ki, β + vi). Assume also
that it can be some number of new centers N2(I ) that are planned to be initiated in the
future at given times t1 + uiwhere the enrollment rates λi have the expected mean and
variance mi and s2i . Let also νR(A) ¼ ν(A) � nA be the remaining number of events
A and TR be the remaining duration of the trial (to reach in total ν(A) events).

Theorem 8.1 The predictive number of new events A, k(I, t,A), that will happen in
region I in time interval [t1, t1 + t] can be represented as a convolution of two
independent random variables:

k I, t,Að Þ ¼ Π Σ I, t,A,T1ð Þð Þ þ Bin nO Ið Þ, pA t,Lð Þð Þ, ð8:41Þ

where

Σ I, t,A, T1ð Þ ¼
X

i2I,active
eλiqA t, 0, T1ð Þ þ

X
i2I,newλiqA t, ui, T1ð Þ, ð8:42Þ

with function qA(t, a, b) defined in (8.33), where the first sum is taken across all
active centers in I, and the second sum is taken across new centers, and pA(t,L ) is
defined in (8.31).

Correspondingly, the probability to complete trial in time is

Pr k TR,Að Þ � νR Að Þð Þ: ð8:43Þ

Here k(t,A) is the predictive total number of events A in time interval [t1, t1 + t]
which is represented as in (8.41) where in calculations the sums are taken across all
centers.

The proof follows from results of Lemmas 8.6, 8.8, and 8.9.
Note that the variable Π(Σ(I, t,A,T1)) can be approximated by a PG variable

using similar considerations as in Lemma 8.2, where the mean and the variance

of posterior rates eλl in active centers are given in (8.16) and in the new centers
mi ¼ α

β , s
2
i ¼ α

β2
. Therefore, the distribution of k(I, t,A) can be approximated by the

convolution of two independent random variables as in (8.41), PG and binomial.
From another side, the mean and the variance of k(I, t,A) in (8.41) can be

computed directly as the means and variances of the values eλi and λi are known.
Thus, for rather large number of events, we can use a normal approximation and
derivations similar to Sect. 8.2.2.2 for evaluating the mean and predictive bounds for
the number of events A over time and also for the probability to complete the trial in
time (8.43).

Analytic representations (8.41), (8.42) also open wide opportunities for the
analysis of the adaptive trial adjustment (e.g., how many centers to add if the time
to complete trial is rather long) and for creating an optimal design by minimizing
costs given some restrictions and probability to complete.
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8.5 Modeling Trial Operational Characteristics

To model other types of events (e.g., repeated events) and more complicated
hierarchic operational characteristics let us first describe an innovative methodology
for modeling evolving processes on the top of enrollment. This methodology covers
modeling repeated events associated with patients, patient’s visits, number of
patients in follow-up period, costs analysis, etc. (Anisimov 2016a).

Let us introduce a construction of the evolving stochastic process that was defined
first for other stochastic models in (Anisimov 1991). This class of processes can be
used as some general framework to describe various types of operational processes
related to patient enrollment.

Assume that upon arrival each patient generates a stochastic process describing
the evolution of some operational characteristics, future visits, different events
associated with this patient, etc. To formalize this model, consider for center i a
sequence of patient’s arrival times {t1i � t2i � . . .} and define a family of stochastic
processes {ξki(t, θ), t � 0, k ¼ 1, 2, . . .} where the process ξki(t, θ) is associated with
k-th patient, and θ is some unknown parameter. These processes are jointly inde-
pendent at different i and k with distributions not depending on k. For example,
ξki(t, θ) can be a Poisson process with unknown rate θ of some events during the
follow-up period, or a point process of follow-up visits. More examples are given
below.

Various operational characteristics can be represented as sums of evolving
processes, for example, the total number of particular events in a site, the number
of AE, screen failures, etc. Define in center i the evolving process as

Zi tð Þ ¼
X

k:tki�t
ξki t � tki, θð Þ: ð8:44Þ

On global (study) level the evolving process is defined as Z tð Þ ¼PiZi tð Þ.
In this way, we can represent various operational characteristics and, in particular,

the evolution of different type events. Parameter θ can represent some unknown
parameters and has to be estimated using trial data. In the following exposition we
will omit θ for simplicity.

Consider several examples where the evolving process describes the number of
particular events that may happen for the newly recruited patients in event-driven
trials.

Example 8.1 Modeling one type of events A in event-driven trials.
Consider one center i and the model of event’s appearance described in Lemma

8.6. Define the process ξki(t) as follows:

ξki tð Þ ¼ 0, t < τki Að Þ and ξki tð Þ ¼ 1, t � τki Að Þ,
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where the variables τki(A) are jointly independent and have the same distribution as
τA. Then the process Zi(t) represents the number of events A in center i in time
interval [0, t].

Example 8.2 Modeling two types of events in event-driven trials.
Consider the model of appearance of events A and L described in Lemma 8.8.

Define the process ξki(t) as follows:
Let {xki(t), t � 0} be a family of jointly independent right-continuous Markov

chains in continuous time with three states {0,A,L}, where the states A and L are
absorbing and the transition rates from 0 to A and from 0 to L are μA and μL,
respectively.

To model a two-dimensional vector (k(t,A), k(t, L )) of the number of events A and
L in interval [0, t], we define a two-dimensional process:

ξki tð Þ ¼ χ xki tð Þ ¼ Að Þ, χ xki tð Þ ¼ Lð Þð Þ,

where χ(B) is the indicator of event B: χ(B) ¼ 1 if B happened, and χ(B) ¼ 0
otherwise. Denote by τki a time of transition of xki(t). Then ξki(t)¼ (0, 0) while t< τki,
and for t � τki, ξki(t) ¼ (1, 0), or ξki(t) ¼ (0, 1) depending on whether the transition
happened to state A or L. Then the process Zi(t) represents the vector (k(t,A), k(t, L ))
in center i.

Consider now rather general representation of multiple events. Assume that there
can be multiple events A1, A2, . . ., AK, and the evolution of events appearance for one
patient is described by some generic multistate right-continuous process x(t) where
the states A1, A2, . . ., AK are absorbing, and the processes xki(t) are jointly indepen-
dent and have the same distributions for different patients. Define K-dimensional
process:

ξki tð Þ ¼ χ xki tð Þ ¼ A1ð Þ, χ xki tð Þ ¼ A2ð Þ, ::, χ xki tð Þ ¼ AKð Þð Þ:

Then the process Zi(t) in (8.44) represents the vector of the number of events
(k(t,A1), k(t,A2), . . ., k(t,AK)) that may happen in center i in time interval [0, t].

In this general setting, it is also possible to extend the results of Lemma 8.8 and
derive similar to (8.32) the representation of the joint predictive distribution for the
vector (k(t,A1), k(t,A2), . . ., k(t,AK)) as K-dimensional PG distribution.

The following rather general result is valid.

Lemma 8.13 Assume that the enrollment in center i follows a doubly stochastic
Poisson process with rate λ(t) and for the process of event’s evolution x(t) the
transition probabilities

Q 0,Ak , tð Þ ¼ Pr x tð Þ ¼ Ak j x 0ð Þ ¼ 0ð Þ, k ¼ 1, ::,K

can be calculated where 0 is the initial state of x(t).
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Then the vector (k(t,A1), k(t,A2), . . ., k(t,AK)) in center i has a K-dimensional
doubly stochastic Poisson distribution with a vector parameter (g(t,A1), .., g(t,AK)),
where according to (8.29)

g t,Akð Þ ¼
Z t

0

λ uð ÞQ 0,Ak , t � uð Þdu, k ¼ 1, ::,K: ð8:45Þ

In particular, if the rate λ(u) is deterministic, then components of the vector
(k(t,A1), k(t,A2), . . ., k(t,AK)) are independent and follow Poisson distributions
with parameters (8.45).

Note that multiple events can appear in different therapeutic areas, e.g., oncology
studies, multiple sclerosis, etc. For particular models of events appearance, the
process x(t) can be described as a Markov chain and transition probabilities can be
derived in a closed form.

For example, in (Anisimov 2011b) for the case of oncology trials with three types
of events, recurrence, death, and lost to follow-up, a Markov chain with six states is
considered, and formulae for transition probabilities are derived and used in predic-
tive modeling.

For calculating the mean and the variance of the evolving process in a closed
form, we can use the following result. Assume for simplicity that some center is
active in interval [0,T], the enrollment rate is λ which can be also random, and the
evolving process in one center Z(t) is constructed according (8.44) using a generic
process ξ(t). Denote A(t) ¼ E[ξ(t)], B2(t) ¼ E[ξ2(t)]. The following lemma follows
directly from Lemma 2.1 (Anisimov 2016a).

Lemma 8.14 For any t > 0,

E Z tð Þ½ � ¼ E λ½ �
Zmin t,Tð Þ

0

A t � uð Þdu, ð8:46Þ

Var Z tð Þ½ � ¼ E λ½ �
Zmin t,Tð Þ

0

B2 t � uð Þduþ Var λ½ �
Zmin t,Tð Þ

0

A t � uð Þdu

0B@
1CA

2

:

This result can be used for creating predictive intervals at rather large number of
centers basing on normal approximation. It is interesting to note that under rather
general conditions it is also possible to calculate a moment generating function
(MGF) of Z(t). Let us define a MGF of ξ(t),

f ψ , tð Þ ¼ E exp ψξ tð Þð Þ½ �,

where we assume that this function exists in some region ψ � ψ0 for any t > 0.

400 V. V. Anisimov



Theorem 8.2 Assume that some center is active in interval [0,T], the enrollment
rate is λ which can be also random, and the evolving process Z(t) in this center is
constructed according (8.44) using a generic process ξ(t). Then for any t > 0, the
MGF of Z(t) has the form:

E exp ψZ tð Þð Þ½ � ¼ E exp �λmin t,Tð Þ 1� ϕ ψ , t,Tð Þð Þð Þ½ � ð8:47Þ

where

ϕ ψ , t,Tð Þ ¼ 1
min t, Tð Þ

Zmin t,Tð Þ

0

f ψ , t � uð Þdu:

If λ has a gamma distribution with parameters (α, β), then

E exp ψZ tð Þð Þ½ � ¼ βα βþ min t, Tð Þ 1� ϕ ψ , t,Tð Þð Þð Þ�α: ð8:48Þ

Proof is given in Appendix 8.3.
Note that in the case where the process Z(t) takes integer values in the space

{0, 1, 2, . . .}, it is more convenient to use a probability generating function (PGF)
G(z, t) ¼ E[zZ(t)], |z| � 1. There is a simple relation G(z, t) ¼ M(log(z), t) where
M(ψ , t) is a MGF.

Let us illustrate these results using a model for predicting the number of repeated
events associated with follow-up patients in one center.

Example 8.3 Repeated events.
Consider one center that is initiated at time 0 and assume that the enrollment

follows a PG process with gamma distributed rate λ. Suppose that upon arrival each
patient generates a Poisson process of some events A with a constant rate μ. These
can be some clinical or operational events. Denote by Y(t) the total number of events
in time interval [0, t]. Then the process Y(t) can be represented as the evolving
process where the generic process ξ(t) is a homogeneous Poisson process with rate μ.

Note that in spite of rather simple formulation, it is not possible to derive simple
formulae for the distribution of Y(t). However, it is possible to derive an expression
for a PGF which can be used to calculate probabilities via calculating the n-th order
derivatives. Another opportunity is using a normal approximation for a large number
of centers.

Consider first a normal approximation and use Lemma 8.14. Then the functions
A(t) and B2(t) are

A tð Þ ¼ E ξ tð Þ½ � ¼ μt,B2 tð Þ ¼ E ξ2 tð Þ� � ¼ μt þ μ2t2

Using formulae (8.46), it is easy to calculate that
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E Y tð Þ½ � ¼ mμt2

2
,Var Y tð Þ½ � ¼ m

μt2

2
þ μ2t3

3

 �
þ s2

μ2t4

4
,

where m ¼ E[λ], s2 ¼ Var[λ].
Thus, for predictive number of events A in N centers at large N, we can use a

normal approximation with mean NE[Y(t)] and variance NVar[Y(t)].
Now let us derive a MGF of the process Y(t) in one center. Assume for simplicity

that the rate λ is deterministic. Using notation of Theorem 8.2 where we omit T, we
get

f ψ , tð Þ ¼ E exp ψξ tð Þð Þ½ � ¼ exp μt eψ � 1ð Þð Þ,

ϕ ψ , tð Þ ¼ 1
μt eψ � 1ð Þ eμt e

ψ�1ð Þ � 1
� 	

,

and

E exp ψY tð Þð Þ½ � ¼ exp �λt 1� ϕ ψ , tð Þð Þð Þ:

Then a PGF has the form

P z, tð Þ ¼ E zY tð Þ
h i

¼ exp �λt 1� 1
μt z� 1ð Þ eμt z�1ð Þ � 1

� 	� �� �
:

ð8:49Þ

Using the formula for PGF, it is possible to calculate the probability distribution
using relations Pr(Y(t) ¼ 0) ¼ P(0+, t) and

Pr Y tð Þ ¼ kð Þ ¼ 1
k!
∂kP z, tð Þ

∂zk

�����
z¼þ0

, k ¼ 1, 2, . . .

In our example it is easy to see that

Pr Y tð Þ ¼ 0ð Þ ¼ exp �λt 1� 1� e�μtÞ=μtð Þð Þ:ð ð8:50Þ

Correspondingly, calculating the first derivative and putting z ¼ 0 we get

Pr Y tð Þ ¼ 1ð Þ ¼ λ
μ

1� e�μt � μte�μtð Þ
� exp �λt 1� 1� e�μtÞ=μtð Þð Þ:ð

ð8:51Þ

Other probabilities can be also calculated step-by-step or evaluated using numer-
ical algorithms of calculating higher derivatives. However, on this way we can
reliably calculate only a few probabilities for not very large values of k.
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Using (8.49) it is also possible to analyze an approximate behavior of Y(t) for
small number of events. Indeed, assume that μt is rather small which means that the
events happen rather rare. Then

P z, tð Þ � exp � λμt2

2
1� zð Þ

� �
:

This PGF corresponds to a Poisson process with rate λμt2/2.
Thus, at small μt and not so large λt (usual enrollment rate), the value λμt2 is also

rather small, and the probability distribution of Y(t) is approximated as follows:

Pr Y tð Þ ¼ 0ð Þ � 1� λμt2=2, Pr Y tð Þ ¼ kð Þ � λμt2ð Þk
k!

, k ¼ 1, 2, . . .

These relations are in agreement with (8.50) and (8.51).
This is rather unusual result which shows that for this model the number of events

is growing over the time proportionally to t2 in both cases of large and small λμt2.
Note that the results of this example can be extended to the case when center is

active only in interval [0, T], the rate λ has a gamma distribution, and each patient has
a fixed follow-up period U. However, the formulae will be more complicated as the
result will depend on the relations between t, T and U. Interested readers can try to
derive these formulae themselves.

Some other examples on using evolving processes to model the number of
follow-up and lost patients, multiple patient’s visits and operational costs associated
with visits are given in (Anisimov 2016a).

8.6 Discussion

The chapter is focused on the development and discussion of different techniques for
predictive analytic modeling and forecasting clinical trials operation including
patient enrollment and screening processes, event’s modeling in event-driven trials,
risk-based monitoring of some operational characteristics including enrollment
performance and detecting the unusual event’s patterns.

For modeling and predicting operational processes associated with patient enroll-
ment a new methodology that uses evolving stochastic processes is proposed. This
provides rather general and unified framework to describe wide range of operational
processes including follow-up patients, various associated events including dropout,
different patient’s visits, and related costs. Some examples on calculating predictive
distributions of the number of events that appear during the follow-up period are
considered.

The background technique uses a PG model for modeling enrollment, which is
extended further to model other processes constructed on the top of enrollment. This
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technique has several advantages compared to other approaches used for global
enrollment modeling. It accounts for multicenter’s effects, different times of opening
and closing centers; allows predicting the mean and credibility bounds for the
number of recruited patients (on different levels, center/country/global) and for
time to complete enrollment; and also can predict probability to complete a trial
in time.

The developed technique also allows an optimal interim adaptive adjustment: if
enrollment is going not as planned, evaluate the optimal set of new centers needed to
be added with the purpose to complete enrollment in time with a given confidence
accounting for time constraints and minimizing costs.

This technique has also several other features that are available only in the
stochastic framework, e.g., supporting risk-based monitoring and evaluating cen-
ter/country enrollment performance using probabilistic thresholds based on P-values
and quantiles for corresponding PG distributions.

It is essential to note that all basic characteristics can be calculated or approxi-
mated using closed-form expressions. Thus, there is no need to use Monte Carlo
simulation. The availability of formulae has many advantages as it allows investi-
gating the functional dependences on different parameters (number of centers, rates,
center’s delays, etc.) and, thus, analyzing in real time the impact of various factors
and finding the optimal solutions. This would be hard to achieve using simulation.

Note also that during the course of clinical trial, the enrollment and other
processes at different levels are in general nonhomogeneous doubly stochastic
hierarchic processes where the global and individual parameters depend on pro-
cesses of initiation and closing centers. These types of dependences are captured by a
PG model, and this feature profitably differentiates a PG model from other models
that are used mainly for global prediction: using global Poisson models in Deng et al.
(2014), Gajewski et al. (2008), and Williford et al. (1987), and Brownian and
fractional Brownian motions in Lai et al. (2001) and Zhang and Lai (2011).

Therefore, the methodology developed in the chapter opens very wide opportu-
nities to modeling various operational characteristics of clinical trials and improving
the efficiency of clinical trial operations.
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Appendix

Appendix 8.1: Proof of Lemma 8.8

Given λ, at time t the total number of both events, A and L, according to Lemma 8.7
has a Poisson distribution with parameter λq(t, a, b) in the form (8.30) where we
should put μA ¼ μ. According to properties of a Poisson process, given some event
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happen, this event will be A or L with probabilities μA/μ or μL/μ. Thus, the values k(t,
A) and k(t,L ) are independent and have Poisson distributions with parameters λqA(t,
a, b) and λqL(t, a, b), respectively, and we get the second part of the statement with
relations (8.33).

Assume now that λ has a gamma distribution with parameters (α, β). Then the
vector (k(t,A), k(t,L )) has a mixed two-dimensional Poisson distribution with vector
parameter (λqA(t, a, b), λqL(t, a, b)) that is

Pr k t,Að Þ ¼ k, k t,Lð Þ ¼ jð Þ

¼ E exp �λ qA t, a, bð Þ þ qL t, a, bð Þð Þ λqA t, a, bð Þð Þk
k!

ðλqL t, a, bð Þ j
j!

� �
:

 ð8:52Þ

According to (8.1) the following relation is true:

E exp �λtð Þ λtð Þk
k!

 �
¼ Γ αþ kð Þ

k!Γ αð Þ
tkβα

βþ tð Þαþk , k ¼ 0, 1, 2, . . .

This relation together with (8.52) implies (8.32).

Appendix 8.2: Proof of Lemma 8.11

The patients arrive to a center according to a PG process. For a Poisson process
Πλ(v), it is known (Snyder and Miller 2012: 62) that given Πλ(v) ¼ k, the arrival
times have the same distribution as the order statistics of k independent variables ti
with the common uniform distribution in interval [0, v]. This result does not depend
on λ, thus, it is also true for a random λ. Furthermore, if the patient arrived at time ti
that has a uniform [0, v] distribution, then using (8.31) we get that the probability to
have event B in interval [0, v] is

p v,Bð Þ ¼ μB
μ

1
v

Zv
o

1� e�μ v�xð Þ
� 	

dx:

This implies (8.40). Therefore, the total number of events B has a binomial
distribution Bin(k, p(v,B)). Correspondingly, as each time it may happen either
event A or L, then the joint distribution of the number of events A and L is a
multinomial distribution.
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Appendix 8.3: Proof of Theorem 8.2

By construction:

E exp ψZ tð Þð Þ½ � ¼ E exp ðψ
X
k:tk�t

ξk t� tkð ÞÞ
" #

¼ E

"X1
n¼0

E½ exp ðψ
Xn
k¼1

ξk t� tkð ÞÞjΠλ min t,Tð Þð Þ ¼ n�

�PrðΠλðminðt,TÞÞ ¼ njλÞ
#
:

GivenΠλ(v)¼ n, the arrival times have the same distribution as the order statistics
of n independent variables tk with the common uniform distribution in interval [0, v]
(Snyder and Miller 2012: 62). Thus,

E exp ðψ
Xn
k¼1

ξk t � tkð ÞÞ j Πλ min t,Tð Þð Þ ¼ n

" #
¼

¼ E exp ðψ
Xn
k¼1

ξk t � Uk min t,Tð Þð Þð Þ
" #

,

where Uk(a) are independent and uniformly distributed in (0, a) variables. Note that

E exp ψξ1 t � U1 min t,Tð Þð Þð Þð � ¼ ϕ ψ , t, Tð Þ:½

Thus,

E exp ðψ
Xn
k¼1

ξk t � Uk min t,Tð Þð Þð Þ
" #

¼ ϕn ψ , t, Tð Þ:

As

Pr Πλ min t,Tð Þð Þ ¼ n j λð Þ ¼ exp ð�λmin t,Tð ÞÞ ðλmin t,Tð ÞÞn
n!

then

E exp ψZ tð Þð Þ½ � ¼ E
X1
n¼0

ϕn ψ , t,Tð Þ exp ð�λmin t,TÞð Þ ðλmin t,Tð Þn
n!

" #
:

406 V. V. Anisimov



Taking sum, we get the expression (8.47). This completes the main part of the
proof. For the case when λ is gamma distributed, the relation (8.48) follows from
(8.1) for k ¼ 0 by putting instead of t the value min(t, T )(1 � ϕ(ψ , t, T )).
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Chapter 9
Better Together: Examples
of Biostatisticians Collaborating in Drug
Development

Russell Reeve, Seth Berry, and Brandon Swift

9.1 Introduction

A man was sitting near a table, when his supervisor approached him. The supervisor
pointed to the table and told the man to clean it. The man looked puzzled and said he
could not clean it. Usually the employee was very hard working, so this was unusual.
“What do you mean you cannot clean it?” asked the supervisor. The employee
replied “I do not know what you want to do with it. If you want to use the table for
potting flowers, I am just going to dust off the dirt, and have a nice flat spot for the
work. If you want to have a picnic on the table, then I may wash it off with water, and
maybe scrub it clean. If you want to have a nice dinner, I’ll put on a table cloth,
maybe with a flower centerpiece. If you want to do surgery, I will clean with
disinfectant, and also disinfect the walls, the floor, the doors, and any equipment
in the room. Unless I know how you want to use the table, I cannot clean it properly.”

This parable from quality guru Ed Deming illustrates (Walton 1986, Deming
2016) several important points that are important for biostatisticians in the drug
development industry. Two points that are particularly relevant to this chapter are
(1) the need for context in our work and (2) the critical importance of collaboration.
These points are well-illustrated in this parable.

We cannot do our work without appropriate context. This is true of the table
cleaner and is equally true of the biostatistician. The statistical analysis, the study
design, the data collection plan, assay development and validation, manufacturing
process development and quality control, formulation development, regulatory
strategy, and almost every aspect of the job of a biostatistician needs to be governed
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by the context. The biostatistician needs to know how the study fits into the larger
program and the objectives of the program, how the data analysis supports the trial,
and how the development activity relates to the design and analysis. Examples of this
will be discussed in each of the sections below. Understanding the context is key for
making both the clinical and nonclinical work effective and without understanding
the context important gaps in the outputs can derail trials and programs. And the
context needs to go beyond the program itself, to also incorporate knowledge of the
organizational objectives, tempered by the market. To understand the context, the
biostatistician will need to collaborate with other disciplines. To design a trial, the
biostatistician will need to talk with the medical expert, the pharmacokineticist, the
data manager, the project manager, and the commercial team, whose thoughts are
expressed through the target product profile. Since all of these individuals will
provide key information and context that will need to be utilized, the biostatistician
will also need to collaborate with all of these individuals. Hence, to understand the
context, we also need constructive collaboration.

Biostatisticians within the pharmaceutical industry collaborate with a wide vari-
ety of scientists and experts in other disciplines. Statisticians collaborate in areas of
drug design, assay development and validation, toxicology, manufacturing process
development and quality control, pharmacokinetics, formulation development, clin-
ical developers, data management, regulatory strategy, and commercial. No single
method of collaboration will apply in all of these varied circumstances, though some
common principles will apply. We will explore some of those principles in this
chapter and give examples of successful and not so successful collaborative
experiences.

Collaboration has certainly been an area of intense interest within statistical
communities in the past. For example, Peck et al. (1998) consists entirely of
industry/academic collaborations. While there have been many examples of indus-
try/academic collaboration that has produced innovative statistics, there is still a
need for additional collaboration with subject matter experts (e.g., Lee (2000)).
Biostatistics, being motivated by applied problems, has a long history of collabora-
tion. We only need to think of the foundations of statistics as a separate academic
discipline with the agricultural field experiments of Fisher and the development of
the t-test to solve specific industrial problems. Many foundational properties—such
as the central limit theorem developed to solve insurance problems, split plot designs
to solve agricultural research problems, and the sequential likelihood ratio test
originally designed collaboratively with quality control engineers to solve
manufacturing process monitoring problems—are now commonly employed in the
practice of statistics.

In this chapter, we will discuss some case studies of fruitful collaboration. The
themes are the importance of understanding the context of the work and the benefits
of collaboration. These are chiefly case studies of various types, with data being
masked to protect confidentiality. We start with clinical research, which has a never-
ending list of problems for biostatistician involvement. Within clinical, we discuss
the issues of biosimilar sample size, dose-response testing, adaptive design, trial
design, and operational planning. We should note that sample size calculations may
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seem like a lone biostatistician task, but a successful sample size estimation is truly a
collaborative exercise. We also discuss nonclinical collaboration, which is a very
interesting area of application for biostatisticians. Areas in nonclinical statistics that
we will present are in analytical similarity—of keen interest in biosimilar develop-
ment—followed by assay development, formulation development, assay acceptance
criteria, and software device application development, an area of growing interest
among pharmaceutical companies.

9.2 Clinical

9.2.1 Biosimilar Sample Size for Equivalence Studies

Biosimilar products are compounds developed to be similar to a previously licensed
biological therapy, and intended to be licensed for the same indications, or a subset
of those indications. The biosimilar compounds are developed to mimic as closely as
possible the structure of the predecessor compound, but the compounds are very
large and are produced via biological systems, and hence may not be identical to the
existing compound. Recent examples of products that have been approved for
marketing of a biosimilar include Lapelga and Pegex for pegfilgrastim; Bevacirel
and Cizumab for bevacizumab; and Amjevita and Amgevita for adalimumab. Most
of the biosimilars under development are monoclonal antibodies or derivatives
thereof. A ribbon diagram of a generic antibody is shown in Fig. 9.1.

Biological compounds revolutionized many areas of medical care. Biologics have
been shown to have an improved benefit/risk profile compared to non-biologic
treatments and are often the treatment of last resort in severe illnesses; see, e.g.,
Duffy (2013); Griffin and Morley (2013); Mosak and Furie (2013); Ahluwalia
(2012); Ferrante et al. (2009); Scheinberg and Kay (2012); and Horton and Emery
(2012). However, the downside to biologicals is that the compounds are very
expensive. In fact, the average costs can be as much as 25 times higher than for a
small-molecule drug (Thomson Reuters BioWorld). Hence, there is a need for
cheaper alternatives to these costly but highly effective therapies, hence the interest
in biosimilar products.

Until recently, there has not been any avenue for licensing these biological
compounds in the United States even when the predecessor compound lost patent
protection. For small molecule generics, the licensing is straightforward by using the
abbreviated new drug application (ANDA) pathway. This is easier since the com-
pound is identical to the reference compound, with the only difference being the
formulation. For a biosimilar, the formulation may be similar, but the biologic
compound itself may have amino acid sequences that differ from the reference
biologic, hence the name “biosimilar.”

Biosimilar development follows a stepwise approach, progressing from preclin-
ical, to early phase clinical (often denoted as Phase I), and then to late stage clinical
(often denoted as Phase III). The biosimilar must be shown to be analytically similar
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to the licensed biologic compound. The objectives at each stage vary and build on
the prior stages. Do not let the phase notations confuse the situation, as they do not
directly correspond to the stages of a new molecular entity. In biosimilar develop-
ment, Phase I is a confirmatory study, not an exploratory study, and can be more
important (cf. FDA 2015: 18) than the efficacy study in patients (Phase III).

In this section, we will discuss the early phase clinical development. The objec-
tive is to show that the biosimilar is pharmacokinetically similar to the predecessor or
reference product. Similarity is usually assessed via a bioequivalence study and
appropriate statistical analysis following the FDA bioequivalence guidance. These
bioequivalence studies tend to be run as parallel arms due to the long half-life, often
in patients, and of fairly large size, ranging up to 180 patients, though some studies
may be crossover. An important aspect that guides the decision between crossover
and parallel design is the half-life (Table 9.1). Products with longer half-lives are
better suited for parallel designs, even at the cost of additional patients.

Finally, the marketing strategy of the sponsor organization must be accounted for
early in the development. If the sponsor is seeking a biosimilar marketing authori-
zation only for a single region (e.g., United States (US)), then the sponsor will
require only a two-arm study. However, if the sponsor seeks marketing authorization
in both the US and European Union (EU) regions, a three-arm study will be required
since regulators will require a reference product from each source region, and in this
case multiplicity will need to be accounted for.

Fig. 9.1 A ribbon diagram of a monoclonal antibody. The molecular formula for trastuzumab is
C6470H10012N1726O2013S42, with a molecular weight of 145,531.5 g/mol. In contrast, aspirin has a
molecular weight of 180.157 g/mol
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For example, a sponsor is designing a study to show PK comparability. In
general, the regulatory authorities are looking for the sponsor to show that the
biosimilar product shows comparable characteristics in the most sensitive population
or the population where potential differences would most easily be observed. Several
questions that need to be answered that will affect study design include:

– Study population. Healthy volunteers or patients? If patients, what disease and
severity of disease?

– Dose of product. If the reference product has a dose-response relationship, then
the dose should not be at the top of the dose-response relationship, but in the
middle, since any performance differences at the top of the dose-response curve
would be unlikely to be observed.

– Study design. Compounds with short half-lives (typically less than 5 days) would
be better studied with a crossover design, since the comparisons between com-
pounds will be based on intra-patient differences, eliminating inter-patient vari-
ability in the statistical comparisons. However, for longer half-life products (see,
e.g., Table 9.1), a parallel design is preferable.

– Endpoints. Endpoints need to be selected and appropriate for the study design
and population. The PK endpoints are often a version of area under the
concentration-versus-time curve (AUC) and the observed maximum concentra-
tion (Cmax). Pharmacodynamic endpoints may also be studied if appropriate to
the disease area and study design.

– Variability. Variability in the endpoints will determine the sample size, and this
varies with study design, drug presentation, and possibly disease area. Crossover
studies generally have lower variability than parallel since the inter-patient
component is eliminated. Intravenous (IV) delivery generally has less variability
than subcutaneous (SC), though in some cases variability as a result of SC
administration can be reduced when hyaluronidase is used in the formulation.
Furthermore, PK variability may differ between healthy volunteers and patients.

– Multiplicity and power. The marketing strategy will determine the number of
treatment arms and hence whether multiple comparisons among the treatment
arms are necessary. If the intended strategy is to seek licensing in EMA and FDA
regulatory regions, then a three-arm study will be needed; if the strategy is the
seek licensing in only one regulatory region, then a two-arm study will suffice.
The power calculations must be consistent with the objectives of the study.

Table 9.1 Half-lives of selected biological agents with active biosimilar development

Compound Half-life range Half-life (weeks) 6 half-lives (weeks)

Pegfilgrastim 15–18 h 0.1 0.6

Etanercept 70 (7–300) h 0.4 2.5

Rituximab 22 (6.1–52) days 3.1 18.9

Bevacizumab 20 (11–50) days 2.9 17.1

Adalimumab 10–20 days 2.1 12.9

Tocilizumab 4 days 0.6 3.4

Panitumumab 7.5 (3.6–10.9) days 1.1 6.4
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For this study design, the compound being studies is bevacizumab. With a half-
life of 2.9 weeks, a parallel study is indicated. In this example, we will assume a
two-arm study, hence no need to adjust power for multiplicity of comparisons. The
process will be to establish the variability of the PK endpoints based on prior
literature. Based on the variability, then the sample size can be calculated.

Let us consider the variability. Often, the data reported in the literature is of fairly
small sample size (n ¼ ~30), with often different point estimates in each of the
publically reported studies. For example, in a literature review of bevacizumab, the
coefficient of variation for maximum observed concentration (Cmax) was reported
between 51 and 66% based on sample sizes of between 15 and 31, and for area under
the concentration-time curve (AUC), the variability ranged between 26 and 36% (see
Table 9.2). Even though the analysis of the data will be based on standard
non-compartmental analyses (NCA) of the exposure parameters (e.g., AUC and
Cmax), a population PK model can help derive better estimates of the variability
for the following reasons. Population PK models are often based upon a meta-
analysis of data incorporating results from Phase I, II, and III studies, thus reflecting
a much larger sample size. Furthermore PK data may often be collected using a
sparse sampling (n ¼ 2–3 samples per subject) which make calculations of AUC or
Cmax parameters unreliable or infeasible, but with a population PK modeling
approach can be more accurately estimated.

In this example, a biostatistician worked with a pharmacokineticist, using popu-
lation PK models reported in the literature, to simulate PK concentrations for virtual
subjects. To achieve this goal, in silico patients were simulated as analytical methods
will yield poor estimates of the actual variability due to the nonlinearity inherent in
the PK model. To estimate the variability, a three-step process was implemented:

1. Using the population PK model, generate drug concentrations for K in silico
patients from some large K (say 10,000).

2. Using the simulated drug concentrations, calculate the post hoc PK parameters,
just as if these were concentrations from actual patients.

3. Calculate the variability, and use that to power the study.

Table 9.2 Bevacizumab
coefficients of variation
(CV) for Cmax and AUC

CV

Study n Dose (mg/kg) Cmax (%) AUC (%)

Study 1 15 10 51.0

Study 2 25 7.5 67.2 36.8

Study 2 31 15 66.2 30.8

Study 3 30 5 32.5

Study 3 32 10 26.3

CV coefficient of variation, n clinical study sample size. PK
parameters determine using standard non-compartmental analysis
(NCA). Note that some papers reported only one of the two
parameters of interest
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Continuing with the case study of bevacizumab, a population PK model was
developed by Lu et al. (2008), consisted of a two-compartment model with
covariates on the parameters. The model was developed on Phase I through Phase
III data in the original development of the compound and included data from
491 patients with a total of 4629 bevacizumab concentrations. Equations for the
covariate models for clearance (CL) and volume of central compartment (Vc) are
listed below. Further details and parameter estimates can be found in Lu et al. (2008).

log CL ¼ log θ1 þ log 1þ θ5GDRð Þ þ θ6 log WT=74ð Þ
þ θ7 log ALBU=37ð Þ þ θ8 log ALK=102ð Þ
þ θ10 log SGOT=26ð Þ ð9:1Þ

log Vc ¼ log θ2 þ log 1þ θ11GDRð Þ þ θ12 log WT=74ð Þ
þ θ13 log ALBU=37ð Þ ð9:2Þ

In the model, the between subject variability for PK parameters assumes a
log-normal distribution and is expressed using an exponential model

P j ¼ θ � exp η j

� � ð9:3Þ

where P is the parameter of interest, j is the jth individual, θ is the estimate of the
population mean, and ηj is the deviation from the population mean for the jth

individual, under the assumption that

η~N 0,ω2
θ

� �
: ð9:4Þ

with mean 0 and variance ω2. The residual variability was characterized by an
additive-proportional error model of the form:

Yij ¼ Cij � 1þ ε
!
ij

� �
þ ε2ij ð9:5Þ

where Yij is the observed concentration for the j
th individual’s ith concentration, Cij is

the predicted concentration, and εij is the residual proportional error term under the
assumption

ε~N 0, σ2ε
� �

: ð9:6Þ

with mean 0 and variance σ2.
The pharmacokinetics expert implemented the model and used it to simulate

concentrations for 10,000 in silico patients. Since the PK parameters are dependent
on the covariates, the PK sampling scheme, and dose designated in the protocol, we
simulated individual concentration-time profiles that reflect the planned study design
and protocol. The results were based on 500 bootstraps with 200 subjects in each
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replicate. PK parameters were calculated using an NCA approach using both the area
under the concentration-time profile from time zero to infinity (AUC0-1) and from
time zero to the last sampling time (AUC0-tlast). The parameters were summarized to
calculate the mean, standard deviation, and CV, which could then be used to
calculated sample size by the biostatistician. The summary statistics are shown in
Table 9.3, where we see that the CV for AUC is approximately 28% and that for
Cmax is approximately 22%. In this case, we would expect AUC to dominate the
sample size calculation. It is interesting that Knight et al. (2016) found CV of
approximately 15–16% for AUC and 14–15% for Cmax, using a 5 mg/kg dose,
which is much lower than the results reported in Table 9.1.

Using this approach, several options are now available to help understand the
design’s operating characteristics and to optimize the trial design. We can look at the
effect of the multiplicity of endpoints on power (AUC0-1 and Cmax, for instance) and
to understand the effect of different covariate patterns in the current study relative to
the originator study. In what can be an iterative optimization process, the pharma-
cokinetics can alter the sampling times based on this model to yield studies with the
highest power, incorporating dropout timing, inclusion/exclusion criteria, quantifi-
cation limits of the assays, population uncertainty, and other factors as needed, so the
statistician can calculate the power or sample size based on the results. Working
together, this optimization process can be made more efficient and will yield better
trial designs than if the pharmacokineticist and biostatistician worked alone on their
separate pieces.

The multiplicity between AUC and Cmax may be an issue, since the correlation is
relatively weak; see Fig. 9.2 for a plot of AUC0-1 versus Cmax. The pre-determined
equivalence hypotheses for each parameter are calculated separately, but the trial
will be a success only if both hypotheses succeed. To answer this question, the
pharmacokineticist and the biostatistician used the population PK model to investi-
gate the correlation between the primary endpoints and the effect this has on the
power of the trial. The power under both the null and alternative hypotheses are
shown in Table 9.4 under the assumption of a two-arm study, each with 60 patients
and no dropouts. It was found that the Type I error rate of the joint hypothesis for
both AUC0-1 and Cmax is very low, <0.01.

Combining the skillsets of a pharmacokineticist and a biostatistician allows for a
better overall design. The pharmacokineticist provides expertise in the appropriate
endpoints, PK modeling, blood sample timing, and effects of covariates on the blood
concentrations, and the statistician provides the summarization and implications for
trial results. Additionally, working together allows for a solution to be found more
efficiently since less duplicated effort was required.

Table 9.3 Summary statistics of non-compartmental analysis parameters calculated from 500 boot-
strap data files with 200 in silico patients dosed at 2 mg/kg

Parameter Mean SD %CV

AUC0-inf (μg�day/mL) 12,900 3720 28.8%

AUC0-tlast (μg�day/mL) 12,700 3510 27.6%

Cmax (μg/mL) 1360 294.5 21.7%
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9.2.2 Trial Design via Simulation

Clinical trial design methods greatly enhance the opportunities for collaboration
among many members of the trial design community, including the biostatistician,
pharmacokineticist, physician, and operational team members. In fact, just pushing
different members of the team to discuss the assumptions of the trial in preparation of
a clinical trial simulation can be a useful and to make the study as rigorous as
possible based on literature data. Many times what is considered to be true is in fact
false, just by examining the literature in more detail. The following is one such
example where the pharmacokinetic model is used as the basis for constructing
pharmacokinetic-pharmacodynamic (PK-PD) relationships to then define the oper-
ational characteristics of the trial.

Using Phase I data, the pharmacokineticist developed a nonlinear mixed-effect
population pharmacokinetic model. A two-compartment model with first-order
absorption and elimination adequately fit the data, with body weight as a covariate
on clearance. Because of large between subject variability in exposure, overlapping

Fig. 9.2 Correlation between AUC0-1 and Cmax for n ¼ 60 bevacizumab subjects simulated as a
single virtual clinical trial using the population PK model published by Lu et al. (2008)

Table 9.4 Power calculations for bevacizumab for n ¼ 60 under both null and alternative
hypotheses, denoted by H

P{Reject H0|H} AUC0-1 Cmax AUC0-1 and Cmax

H ¼ H0 0.049 0.045 0.006

H ¼ HA 0.984 1 0.984
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exposure distributions could be expected among the proposed dose cohorts, making
dose-response relationships more difficult to discern. A more robust study design
could have been a randomized concentration-controlled trial, which would yield
study cohorts with better separation in exposures, helping to clarify the dose-
response relationship (see, e.g., Reeve and Hale 1994; Hale and Reeve 1994; Hale
et al. 1998; Endrenyi and Zha 1994); however this approach was not considered.

Adverse events (AEs) observed in the multiple dose-ascending Phase I trial in
patients were modeled as a function of dose. Using an unsupervised data analysis
technique, a data-mining expert found that the level of adverse events increased for
the first 4 weeks, then stabilized. However, it was clear that the actively treated
patients had higher adverse event levels than the placebo patients. One advantage of
this modeling approach is predictive scores are calculated for each patient based on
their baseline characteristics. In this case, since adverse events are predominantly
due to tolerability and are positively correlated with dropout probability (see
Fig. 9.3), excluding patients that are more likely to not tolerate the drug could
improve study performance by eliminating participants who are unlikely to benefit
from the compound. One should be aware that this may not be appropriate in all
cases: Oncology patients may not drop out of the trial due to tolerability, but rather
only for lack of response or dose limiting toxicity, and in other indications one may
not want to reduce the pool of potential patients due to a host of reasons, including

Fig. 9.3 Dropout rate of patients by treatment
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desire to maintain a broad marketing authorization, lack of generalizability to a
broader population based on a more narrow population, and recruiting.

Adverse event modeling is a critical and often overlooked component in trial
simulation. In this case, modeling of AEs was critically important in the simulation
process because of its effect on the dropout rate. Because we are often looking for
unexpected safety signals, data mining methodologies can be useful in being able to
detect safety concerns early in drug development. Based on experience within the
drug development community, such as that with the Cox-2 inhibitors such as Vioxx
which was found to have increased risk of cardiovascular events (Krumholz et al.
2007), safety modeling and data mining is critical to developing drugs and finding
appropriate dosing regimens.

To further explore concentration-adverse event relationships, seven of the most
commonly observed adverse events, as measured by incidence rate, were further
modeled using logistic regression. The explanatory variable was chosen among the
candidates Cmax, AUC or average observed concentration (Cavg). Results of this
modeling were fairly consistent among these three variables, as would be expected
from a drug with linear kinetics. For several adverse events, including nausea and
vomiting, statistically significant relationships were observed. The models indicated
higher concentrations had significantly lower tolerability. See Fig. 9.4 for an exam-
ple of an exposure-safety relationship or for a more thorough look; see, e.g.,
Tompson et al. (2013).

Since no efficacy data were available from the Phase I trial in healthy volunteers,
a dose-response curve was not available for planning the study. Hence, it was
decided that the best design would bracket the dose range covered in the Phase
1 study. From a PK-PD perspective, the design should be constructed to estimate the
dose-response curve with sufficient precision that Phase III doses can be chosen. The
endpoint and timing were selected in consultation with the medical expert on the
program. Two design options were available: (1) a fixed dose-ranging design and
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(2) an adaptive dose-ranging design. An adaptive design has the advantage of
efficiently estimating the dose-response curve (cf. Reeve and Turner 2013). How-
ever, adaptive designs can be more complicated than fixed designs to plan and
execute, and hence the benefits cannot automatically be assumed. In practice,
adaptive designs require a fair amount of advanced planning, require statistical
expertise versed in the issued of adaptive designs, and need careful wording in the
protocol to ensure that the statistical properties of the trial are controlled and
understood. Since the modeling from Phase I indicated linearity between doses
and exposures, dose was used as a surrogate for drug exposure in designing the trial.

The fixed design is straightforward to simulate once the PK-PD model is settled.
For the adaptive design, recruitment needed to be modeled in order to assure time
during study execution for interim analysis and planned changes. The operations
team was consulted on the rate of recruitment of this indication, and it was deter-
mined that the recruitment rate was expected to be slow relative to the 3-month time
point at which the clinical efficacy endpoint would be observed. We should note that
patient recruitment can be modeled as a mixture of Poisson processes, and this will
be needed to adequately investigate the effect of any adaptive design. Other chapters
of this book explore this process more thoroughly, so we will not here.

A Bayesian design was chosen, where arms would drop for futility if specific
criteria were fulfilled. The upper bound on the number of subjects is denoted N. For
this trial two values were compared: N ¼ 50 and N ¼ 100. If this design were fixed,
N/4 subjects would be randomized to each trial arm. In the adaptive design, the trial
would act as a fixed design trial until a fraction ( f ) of the total subjects have been
randomized; the subjects in this fraction f were called the “run-in” group. After that
point, the adaptive algorithm would adjust the probabilities of being assigned to each
of the four treatment groups based on the accumulated data. The frequency of
updating could be adjusted, from many interim analyses to only one. This model
was constructed to perform the interim analysis at a fixed frequency in time, which
yields a varying frequency in number of subjects analyzed, and hence the number of
interim analyses varied among the studies simulated.

For this design, doses of 0, 5, 10, and 15 mg were chosen for study, the same as
for the fixed design. The model chosen was the normal dynamic linear model
(cf. Petris et al. 2009). Let μk, 0 � k � 3 represent the mean of dose level k, where
k ¼ 0 represents the placebo group. Then the means are modeled by the relationship

μk ¼ μk�1 þ Δk�1, ð9:7Þ

where Δk � 1 is distributed as a Gaussian N(0, τ2) and the variability parameter τ,
which has the inverse gamma distribution IG(τ0, τ0τn/n), acting as a shrinkage
parameter to reduce random variability in the mean estimates of each dose level.
Each of the prior parameters in the prior can be adjusted to tune the performance of
the adaptive algorithm so that the algorithm performs well over a set of dose-
response curves. From prior studies, the standard deviation of the observations
was estimated to be 10 units. Three dose-response curves were simulated, and the
best design would perform well on all three scenarios: (1) null hypothesis case of no
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response; (2) S-shaped function dose response (denoted as expected); and
(3) U-shaped function dose response. The study would stop for futility if P(Success
in Phase III)< 0.2. The study would be declared successful if the P(Success in Phase
III) > 0.7 by the end of the study.

A factorial design (Table 9.5) on the study design parameters was performed in
order to optimize those parameter values. Operating characteristics were proportion
of subjects saved (due to stopping early for futility), maximum probability (across
doses) that each non-placebo dose is better than placebo, and probability of success
in Phase III trial, under the assumption of 300 subjects in the Phase III, where the
best dose is taken forward.

Each parameter affected different operating characteristics. Effect of changing the
fraction f on the probability of futility is shown in Fig. 9.5 (for the null hypothesis)
and Fig. 9.6 (for an alternative hypothesis).

Results show that the value of τ0 has an impact on the performance, but only for
extreme values. For values greater than 1, τ0 has minimal impact; see Figs. 9.7 and
9.8. Similarly, τn was also looked at. The inverse gamma parameter τn is an indicator
of how much information is available on the variability of the treatment means;
performance was robust once τn was greater than 1; see Fig. 9.7.

In this adaptive design, doses would be dropped if the predictive probability of
superior relative to placebo dropped below 0.1. The trial was characterized a success
if the dose with the highest probability of achieving success in a Phase III trial
(assuming N ¼ 300 in the Phase III trial) was greater than 0.7 and was considered a
failure if this probability <0.3 at the end; intermediate values yielded an inconclu-
sive trial. Measures of interest were the expected sample size savings from a fixed
trial, probability of success, and predictive probability of success in the Phase III
trial. Three scenarios were investigated: (1) null hypothesis of a flat dose-response
curve; (2) expected dose-response curve with a significant improvement at the
highest dose, and intermediate improvements at intermediate doses; and

Table 9.5 Simulation design parameters to optimize the adaptive trial

Standard deviation of differences
among means (τ0)

Maximum
sample size

First futility sample
size (fraction f)

5 50 15 (30%)

50 25 (50%)

50 35 (70%)

100 30 (30%)

100 50 (50%)

100 70 (70%)

10 50 15 (30%)

50 25 (50%)

50 35 (70%)

100 30 (30%)

100 50 (50%)

100 70 (70%)
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(3) U-shaped dose response where the maximum response occurs at an intermediate
point and the maximum dose has an intermediate but still positive response.

A Bayesian adaptive design using four dose levels had high probability of success
in scenarios 2 and 3 and lower probability of success in the scenario 1 versus a
design with more dose levels. One concern was the priors on the parameters in a
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Bayesian framework might have a deleterious effect on study performance. How-
ever, our analysis indicated that within reasonable ranges, trial performance was
fairly robust against variation in priors. Using an adaptive design would have saved
on average between 10 and 20% of the cost of the trial, and so would have benefited
the program with cost savings. Additionally, the adaptive design would have stopped
the trial early for futility in this case, thereby providing supportive evidence to
discontinue product development.
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Decisions affecting the development of the compound and trial designs within
that development were improved by the interaction among the different subject-
matter expertise: clinical, pharmacokinetic, and biostatistics. Each expert contrib-
uted to the decision processes, by agreeing on which metrics should be employed,
what endpoints were most valuable at each stage of development, and whether an
innovative trial design could be used. Adaptive trials themselves require a degree of
collaboration more stringent than the traditional designs, since the operational (e.g.,
blinding, drug supply, results communication with the sites, etc.), statistical, and
clinical aspects (e.g., power of study, doses to be studied, endpoints used) are all
closely linked.

9.3 Nonclinical Research and Chemistry, Manufacturing,
and Controls (CMC)

9.3.1 Bioanalytical Assay Development

An assay is a procedure for detecting or quantifying an analyte. An analyte is that
species of chemical, endogenous or exogenous, that is being analyzed, which
typically resides in a biological sample; this sample is referred to as the matrix.
For this example, an organization was developing an immunoassay, which uses
immunological complexes to quantify the analyte, which in this case is a protein. For
instance, consider an assay for interleukin-6 (IL-6), which is a large protein secreted
by T cells and macrophages to stimulate immune response. A possible assay for
quantifying IL-6 in blood would be an enzyme-linked immunosorbent assay
(ELISA).

A sandwich ELISA consists of several steps, as shown in Fig. 9.9. Antibodies are
used since they tend to be highly specific and have strong attachments. At each step,
there are several parameters the analyst could adjust: concentration of the reagent,
pH, and incubation time. The assay is performed in a rectangular 96-well (8 � 12
grid) PVC plate, with each plate well containing different concentrations of analyte.
The steps of the assay are shown in Fig. 9.10.

The task for the biochemist is to (a) find which parameters (variables) have
significant effect on assay performance, as measured by bias and variability, and
(b) find optimal values for those significant parameters. In this case, it was chiefly
concentrations of reagents and incubation times. After talking about the parameters
with the biochemist, the variables of primary interest in the screening study were
selected and are shown in Table 9.6. Since this was a screening study, a main effects
model would be most appropriate (cf. Myers et al. 2016). A Plackett-Burman design
is good for this sort of study, even with only seven factors. One could do a fractional
factorial design with only 8 runs, but each run requires only 1 plate, and so 12 plates
would not be excessive. Furthermore, Placket-Burman designs reduce the deleteri-
ous effects of confounding possible interactions with main effects by spreading the
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Fig. 9.9 Diagram of the steps to perform a sandwich ELISA. ELISA consists of several steps:
(a) anti-antigens, called capture antibodies, are coated to the plate surface of each well; (b) antigen
containing matrix is allowed to incubate in well, and antigen is captured/bound by the capture
antibody; (c) detecting antibody (targeting another site on the analyte) are incubated and attach to
the antigen forming the “sandwich” of capture antibody to antigen to detecting antibody; (d) anti-
antibodies with marker attached (e.g., biotin) are incubated, and these anti-antibodies attach to the
detecting antibodies; not pictured, a substrate is added, which interacts with the marker to form a
color, with intensity being assumed proportional to the number of molecules of the antigen

Coat with Capture antibody
1. Coat the wells of plate with 1-10 µg/mL in carbonate buffer (pH 9.6)
2. Incubate overnight at 4°C

Blocking and Adding Samples
3. Add 200 µL blocking buffer
4. Incubate 1-2 hours at room temperature
5. Add 100 µL of diluted samples to each well (would normally have a 

dilution sequence down or across the plate to generate a curve)
6. Incubate 90 min at 37°C
7. Remove samples and wash plate twice with 200 µL phosphate buff-

ered saline (PBS)

Detection Antibody
8. Add 100 µL of diluted detection antibody (normally constant to satu-

ration)
9. Incubate 2 hours at room temperature
10. Wash plate 4 times with PBS
11. Add 100 µL of secondary antibody conjugated, diluted at the optimal 

concentration
12. Incubate 1-2 hours at room temperature
13. Wash plate 4 times with PBS

Fig. 9.10 Sandwich ELISA protocol as defined by Abcam (abcam.com)
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interactions out among several different main effects, whereas a fractional factorial
design would completely confound main effects with interactions. This design is
shown in Table 9.7.

In talking over this design with the biochemist, our conversation turned to runs
1 and 5. The time to execute these runs was too long, making this experiment into a
very long day. We had to cut off the corner, making the times shorter. Reducing all
of the incubation times appropriately had very little effect on the statistical properties
of the design, since all main effects were still estimable with approximately the same
properties. Fortunately, Plackett-Burman designs are a type of D-optimal design, and
experience indicates these tend to be fairly robust against departures from optimal.
But the biochemist was able to organize the day in a reasonable period of time.
Working with the biochemist, the runs were organized where the timing of each
incubation start and stop allowed for the whole process to be completed by two
technicians.

Table 9.6 Key variables for
screening study (step number
from Fig. 9.10 in parentheses)

Variable number Variable evaluated

1 Carbonate concentration

2 Incubation 2 (4)

3 Incubation 3 (6)

4 Detection antibody concentration (8)

5 Incubation 4 (9)

6 Conjugated antibody concentration (11)

7 Incubation 5 (12)

Table 9.7 Values of variables in Plackett-Burman design, along with sum of incubation times for
each plate

Run
Var 1
(μg/mL)

Var 2
(hr)

Var 3
(hr)

Var 4
(μg/mL)

Var 5
(hr)

Var 6
(conc)

Var 7
(hr)

Total incubation
time (hr)

1 10 2 2 High 3 High 2 9

2 1 2 1.5 High 3 High 1 7.5

3 1 1 2 Low 3 High 2 8

4 10 1 1.5 High 2 High 2 6.5

5 1 2 1.5 Low 3 Low 2 8.5

6 1 1 2 Low 2 High 1 6

7 1 1 1.5 High 2 Low 2 6.5

8 10 1 1.5 Low 3 Low 1 6.5

9 10 2 1.5 Low 2 High 1 6.5

10 10 2 2 Low 2 Low 2 8

11 1 2 2 High 2 Low 1 7

12 10 1 2 High 3 Low 1 7

The total incubation time is a key variable for the analyst
Var variable listed in Table 9.6, conc concentration, hr hours
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This whole process was made much easier by a couple of key factors: The
statistician had engaged in assay work in the laboratory, learned the details of the
processes, had a working knowledge of the biochemistry, and had gained the trust of
the laboratory team by working with them on other projects, a partnership between
biochemist and statistician. Hence, the statistician also knew that some shortcuts
would be necessary: Run order was not randomized as would be normally the
practice, but were ordered to accommodate laboratory processes. This allowed for
some statistical risk, but was necessary given the practicalities of the problem.
Additionally, since the statistician learned the language of biochemistry, they
could easily communicate in the natural language of the problem.

The planned data was to calculate the mean and standard deviation of quality
control (QC) samples, which had known concentrations of IL-6. Calculations are
based on relative potencies calculated by comparing the horizontal distances
between two Michaelis-Menten curves. Some of the data are presented in
Fig. 9.11. Many of the runs failed to produce a titration curve that could reasonably
be fit with a Michaelis-Menten curve. For example, in Fig. 9.11b the data appear as a
random collection of values, and not as a curve. Looking at the curves together, the

Fig. 9.11 Examples of titration curves resulting from a screening study; (a) perfect curve with no
variability, presented for reference; (b) bad titration curve, given a low score; (c) excellent titration
curve, given high score; (d) mediocre titration curve, given medium score
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biochemist and statistician came on a different plan to analyze the results of the
experiment. Plots of the curves were made and pinned to the walls of the laboratory
for grading. The curves were graded according to their quality, with both the
statistician and biochemist categorizing the results, with a score of 1 for a very
poor curve and 5 for a very good curve. These scores were then analyzed using a
linear regression model to estimate the factors that had the largest effect. The results
were more difficult to analyze than expected since many of the curves were of lower
quality than anticipated; while this posed difficulties, the collaborative nature of the
work allowed for an alternative analysis plan and development strategy. It is difficult
to imagine this experiment succeeding without the trust and the collaboration
between both biochemist and biostatistician, who brought their own perspective to
the problem, but could understand each other’s problems and approach.

The result of this exercise was the identification of several key variables and the
direction for improvement. At this point, the assay was run using operating param-
eters chosen from the curve quality analysis of the screening design. Based on the
results of these confirmation runs (not shown here), the biochemist and statistician
jointly decided that the quality of the assay was sufficient to move to the next phase:
assay validation.

9.3.2 Bioanalytical Assay Acceptance Criteria

Measurement systems need to be developed and validated prior to use in studies
following good clinical practice (GCP) guidelines. The validation process generates
significant amounts of data that need to be analyzed and interpreted, and decisions
about acceptability of the measurement system need to be pre-specified in standard
operating procedures. Interactions between analytical chemists and statisticians are
very productive in this area.

Consider the case of validation of an assay for amount of drug in a tablet. A
common methodology is high-performance liquid chromatography (HPLC). In an
HPLC, the compound of interest (analyte) is injected into an effluent that is under
high pressure (often up to 1500 psi), and this mixture is pushed through a solid phase
column to separate the analyte of interest from the other compounds in the effluent.
The effluent is monitored at the end by a form of detector (ultra-violet visible light
spectrophotometer, radiochemical, etc.) and measures the analyte over time (see step
7 in Fig. 9.12). The area of the peak in the chromatogram at a specific time is used to
determine the amount of analyte exiting the column.

The peak areas (example units can be mV s) need to be calibrated to known
standards. Reeve and Giesbrecht (1998) provide some data for a calibration curve.
Given a standard with known quantity of drug, denoted x, then the peak area
(denoted y) can be expressed by the simple linear equation
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y ¼ aþ bxþ e, ð9:8Þ

where a and b are parameters to be estimated and e (with mean 0 and variance σ2)
represents assay variability. HPLC usually uses a linear calibration curve, though the
variability is often proportional to the mean. Three approaches to the
heteroscedasticity issue can be investigated:

• Weighted regression, with weights proportional to 1/x2

• Box-Cox transformation
• Log-log transformation

Teeter-Totter Model of Regression
A good example for regression leverage that gives non-statisticians an intuitive
understanding is a teeter-totter. The angular force (leverage) on a teeter-totter
is proportional to the square of the distance from the fulcrum times the force
acting at that point; in a regression problem, the fulcrum is always x, and the
force is the distance between the fitted value and the observed value. Hence, a
point farther from the fulcrum (x ¼ 1000 in the example, since x ¼ 180) has
greater influence than does a point closer to the fulcrum (x ¼ 0). This effect
can be seen, e.g., in Fig. 10.14, where the deviation from the fitted line is most
pronounced at the lower end of the calibration curve.

It is helpful to explain regression as a series of springs attached to a linear
board, with a fulcrum at the means of the independent and dependent vari-
ables. Seen in this light, one clearly wants the springs attached to the board so
that the attachment points are uniformly spread out, which is what happens in
the log-log regression. In the weighted regression, the springs are attached in a
cluster just below the fulcrum, with one spring attached to the top end: The

(continued)

Fig. 9.12 Diagram of HPLC system. (1) Solvent, (2) gradient valve, (3) high-pressure pump,
(4) sample injection loop, (5) analytical column, (6) detector, and (7) computer. Source: Download
for free at http://cnx.org/contents/8419f350-7091-4f8f-bb0b-b777c5e97d96@4
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springs do not alter the behavior of the angular forces on the board imparted by
the springs, but only the relative spring constants.

The weighted regression approach is often preferred by the scientists, since much
of the software developed and shipped for free with the equipment uses this
approach. If we assume e is normally distributed, then this approach is compatible
with the distributional assumptions. The weighting by 1/x2 is due to the fact that
a � 0 and hence x is approximately proportional to the mean of y. But the properties
of this approach are not necessarily well-understood by the scientists, and it is the
responsibility of the statistician to explain the issues. One critical issue is the
influence of the extreme observations on fit. This may not be a big issue in the
case of manufacturing quality control samples since the range of concentrations is
fairly limited, clustering around 100% of the label strength (%LS). For bioanalytical
assays, the range of concentrations (multiple orders of magnitude) can be large, and
in those cases the standards tend to be placed in a geometric progression (e.g., 0, 1,
3, 10, 30, 100, 300, 1000). Even with appropriate weighting, this generates large
relative errors at the bottom end of calibration range, since most of the influence will
be in the top sample. The leverage of a point is defined as how much the prediction
moves as the observation moves or the change in the predicted value by as a function
of the change in the observation y at the same point. Mathematically, this is given by

dby
dy

¼ 1
n
þ x� xð Þ2Pn

j¼1 x j � x
� �2 ð9:9Þ
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The influence of a point is the product of the leverage and the “pull” of the data,
which is proportional to the difference between the observation and the predicted
value. See the Teeter-totter Model of Regression box for an explanation based on a
physical process, the teeter-totter. Often the physical analogies are helpful to give
subject-matter experts an intuitive grasp of statistical properties.

Re-expressing the data to a more appropriate scale is an excellent method for
improving calibrating performance and is underappreciated by most analytical
scientists. In statistical jargon, this process of re-expressing on a different scale is
called a transformation. In this application, a transformation that stabilizes the
variance across the calibration curve will be the preferred scale. The Box-Cox family
of variance stabilizing transformations has been shown to work well in many
calibration applications. The family consists of the transformation indexed by a
parameter λ given the expression

y ! yλ � 1
� �

=λ: ð9:10Þ

The limit of this transformation as λ! 0 is the log transformation, and hence the
log-log transformation is actually a special case of the Box-Cox family. The family
tends to give reasonably similar results across a wide range of values for the
parameter λ, and hence using a value for λ other than the optimal value typically
yields similar benefits. Therefore practitioners will often use a set of parameters that
should be tried first, such as λ 2 {0, 0.25, 0.5, 0.75, 1}.

Consider the calibration data shown in Table 9.8 (Dolan 2009). The data are
plotted in Fig. 9.13 along with four different prediction lines. Included also are the
prediction lines for each of three different weighting schemes and also for a log-log

Table 9.8 Example calibra-
tion data for an HPLC assay

Concentration Peak area ratio

5 0.0632

5 0.0725

10 0.1126

10 0.1344

50 0.6078

50 0.583

100 1.0714

100 1.1227

500 5.129

500 5.4232

1000 10.3892

1000 10.5105

5000 46.7262

5000 51.1182

Concentration represents known standards of a given
concentration, and peak area ratio represents areas of an
analyte of interest relative to that of another compound,
known as an internal standard.
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regression. The mean of the concentration is 952, and hence the fulcrum of the
teeter-totter sits at about the 1000 concentration. The effect of the weighting is not as
large as one would expect, but it appears the 1/x2 weighting produces a counterin-
tuitive result, where the calibration curve is higher than either of the points at a
concentration of 5000. A log-log plot gives some insight into the differences
between the fits; see Fig. 9.14. On this plot, it is clear that the unweighted and the
1/x weighting schemes produces predictions too high at the lower end of the
calibration range, and these would yield unreliable results. The 1/x2 weighting and
the log-log regression yield similar results. The residual plots of both the 1/x2

weighting scheme and the log-log regression, however, paint different stories, and
it is clear than the log-log regression is a better fit to the data (Fig. 9.15). The reason
for this is not the heteroscedasticity, since both methods appropriately account for
that, but rather the placement of the fulcrum and the springs.

The key question of interest is whether the assay is precise and accurate enough.
The role of the statistician is to answer this question in a manner that is scientifically
useful and statistically meaningful, but also understandable to the biochemist. This
will be answered in the context of the metric known as percent recovered or the
predicted concentration of a known sample that is treated as an unknown divided by
the actual amount in the sample. If the calibration curve fits the calibration data, then
the recovery should equal 100%, and this is true regardless of shape of the curve,
assuming strict monotonicity. To see this, let the response y be modeled as a function
of the concentrations x by the function

y ¼ f xð Þ þ e, ð9:11Þ

Fig. 9.13 Plot of
calibration data. The four
regression lines are also
superimposed for the three
weighting schemes plus the
log regression approach.
Ratio (y-axis) represents
area of an analyte of interest
relative to that of the area of
the internal standard. conc
(x-axis) represents known
standards of a given nominal
concentration
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for a differentiable, invertible function f and error e ~ N(0, σ2). The predicted
concentration xp is then calculated as

xp ¼ f�1 y� eð Þ ¼ f�1 f xð Þ � eð Þ � xþ ue, ð9:12Þ

for some constant u. The approximation at the end becomes an equal if f is linear. In
this case, we have the relative recovery, denoted R, given by the expression

Fig. 9.14 Plot of
calibration data on the
log-log scale. From this
perspective, all weight
schemes produce similar
results on the upper half of
the curve, but vary wildly on
the lower half. Ratio (y-axis)
represents area of an analyte
of interest relative to that of
the area of the internal
standard. conc (x-axis)
represents known standards
of a given nominal
concentration

Fig. 9.15 Residual plots of
1/x2 weighting scheme and
the log-log regression
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R � xp=x ¼ 1þ ue=x: ð9:13Þ

To develop the best statistical approach to accepting or rejecting the method, the
statistician and the scientist will need to work together. A couple of approaches that
have been found useful is to test the hypothesis

H01 : E Rf g ¼ 1 versus HA1 : E Rf g 6¼ 1: ð9:14Þ

This hypothesis tests for a difference between actual and desired recovery; i.e., do
we see a difference from the preferred recovery? H01 implies that there is no
difference, and HA1 implies that there is a difference. This works well in the case
of an assay with a relatively defined variance structure, and it is uncertain as to how
large a difference is important. For release testing, another test may be more
appropriate based on an equivalence hypothesis of the form

H02 : E Rf g � 1� δ or E Rf g � 1þ δ versus HA2 : 1� δ < E Rf g
< 1þ δ, ð9:15Þ

where δ is predefined constant. In many release testing cases, δ ¼ 0.06.
Let us contrast the pairs of hypotheses being considered here. For the hypothesis

pair H01 and HA1, the objective is not to reject the null hypothesis, since that would
indicate that the assay is flawed in some way: It provides evidence that the recovery
is not 100%. The equivalence hypothesis pair of H02 and HA2 provides a statement
on the acceptable nearness to 100% recovery, and the objective is to reject the
hypothesis H02 that the recovery differs from 100% by more than the acceptable
difference. In terms of motivation, the biochemist will prefer to not reject H01, but
will want to reject H02. However, the value of the acceptable deviation from 100%,
δ, is a critical parameter in the equivalence hypothesis, one that should be discussed
between the biochemist and the statistician. Each can provide useful information to
provide insight on a value that would be useful. This discussion is critical to have
and can only be accomplished in the context of a collaborative effort.

In general, the equivalence hypothesis H02 would be a better choice than the
testing of the point null hypothesis H01 because it provides evidence that the mean
recovery is acceptably close to the desired value. One consequence of setting up the
problem this way is that it rewards better development: The difference hypothesis
H01 would be rejected less often if less data are collected, and H01 would be rejected
more often for an assay with very little variability. In contrast, the power to reject
equivalence hypothesis H02 would be increased with a larger sample size, and also
H02 would be rejected more often if the assay has very little variability. Hence, the
difference hypotheses reward poor assay performance and poor validation proce-
dures, whereas the equivalence approach rewards good assay performance and
careful validation procedures. Let P{A | θ} denote the probability of accepting the
method when E{R} ¼ 1 + θ. In the case of H01, we accept the method if we fail to
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reject the null hypothesis; in the case of H02, we accept the assay if we reject the null
hypothesis. Then we have the following two properties:

• P{A | θ} increases as the sample size increases under H02 for any�δ< θ< δ, but
decreases under H01 for any θ 6¼ 0.

• P{A | θ} increases as the variability of the assay decreases under H02 for any
�δ < θ < δ, but increases under H01 for any θ 6¼ 0.

9.3.3 Formulation Development

This case study will look at the development of a dry-compression tablet formula-
tion. Most pharmaceutical products designed for oral administration are not amena-
ble to direct compression into tablets and hence need additional ingredients to
support tableting.

To understand the thinking of the formulation scientist, one needs to understand
the manufacturing process of the tablets. Tablet manufacturing is made in a series of
steps. The steps typically include the following:

1. Agglomeration:

(a) Most often done with wet granulation, but some tablets use dry granulation

2. Mix the drugs and the excipients.
3. Preparation of binder solution.
4. Mix binder solution with dry mix to form wet mass.
5. Dry the moist granules.
6. Mix the dry granules with lubricants.
7. Press into tablets:

(a) Without the lubricants, the mix will clog the system.
(b) But with too much lubricant and not enough binder, the tablets will not hold

together in the bottle.

8. Coat.

To hold the tablet together after the press, tablets contain binding agents. How-
ever, the tablet must also function once in the biological system, and specifically the
tablet needs to dissolve efficiently in the appropriate organ (stomach versus small/
large intestine), and not dissolve before then. Hence, tablets often have a disintegrant
to allow the absorption of the drug.

When working with formulation scientists, the first question that arises is how
many ingredients are being considered, and the second is how many different
formulations one can afford to develop. This gives the boundaries in which to
work. For developing a formulation, a response surface design was used and
included discussions with the formulation scientists. The formulation scientist may
or may not be familiar with designed experiments, so the statistician may need to
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provide some instruction on the benefits of a response surface design. This is
primarily due to formulation scientist reliance upon the concept of one-factor-at-a-
time (OFAT) experiments. OFAT designs are inefficient and can be misleading in
the presence of interactions.

A degree of pragmatism is needed for the biostatistician as well, since the perfect
D-optimal experiment may not be satisfactory for the experimental conditions. And
the time it takes to develop the perfect experiment may be more effort than possible
benefit. To illustrate this, while working with a pharmaceutical scientist developing a
tablet formulation, six critical variables were identified that needed to be
investigated:

– Amount of talc
– Amount of magnesium stearate
– Amount of cellulose
– Amount of water in the wet massing step
– Wet massing time
– Die pressure

Other variables may also affect tablet performance, but these were the ones that
the pharmaceutical scientist wished to investigate at this point. Since no investiga-
tion into the product had commenced, it was decided a screening trial would be most
useful. In a screening experiment, interaction terms are ignored, and a design only
for the main effects is constructed. A typical main effects design is a 12-run Plackett-
Burman design, which is shown in Table 9.9. In the display, a low value for a
variable is coded as�1 and a high value as +1. The advantage of a Plackett-Burman
design is that possible interactions are spread across three different variables, and not
confounded with any specific variable. Hence, they are fairly robust in a setting
where getting maximum information quickly is important, but interactions are likely

Table 9.9 Complete Plackett-Burman design for 12 runs

FID X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 1 1 1 1 1 1 1 1 1 1 1

2 �1 1 �1 1 1 1 �1 �1 �1 1 �1

3 �1 �1 1 �1 1 1 1 �1 �1 �1 1

4 1 �1 �1 1 �1 1 1 1 �1 �1 �1

5 �1 1 �1 �1 1 �1 1 1 1 �1 �1

6 �1 �1 1 �1 �1 1 �1 1 1 1 �1

7 �1 �1 �1 1 �1 �1 1 �1 1 1 1

8 1 �1 �1 �1 1 �1 �1 1 �1 1 1

9 1 1 �1 �1 �1 1 �1 �1 1 �1 1

10 1 1 1 �1 �1 �1 1 �1 �1 1 �1

11 �1 1 1 1 �1 �1 �1 1 �1 �1 1

12 1 �1 1 1 1 �1 �1 �1 1 �1 �1

FID Formulation ID. Note can have up to 11 variables. Order of runs should be randomized.
Variables are X1 through X11; �1 indicates a low setting for the variable, 1 indicates a high setting
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to exist. In this case, six of the columns were selected to use in the design, and the
remaining five were ignored; if however, we decided later to add another factor, we
could then use one of the remaining columns for that new factor.

The formulation scientist was grateful for the design, went off to think about it. A
week later the formulation scientist returned, explained that this design would take
too long to complete, and asked to reduce the size of the design. Another option
would be a 26-3 standard design, which is shown in Table 9.10. In this design,
interactions would be directly confounded and hence was a more risky design than
the 12-run Plackett-Burman design, but with the payoff of 33% fewer formulations
to construct. Again, after explaining the benefits and risks with this design, the
formulation scientist went off to plan the experiment.

Another week later the formulation scientist returned, once again explaining that
this design was also too time-consuming, requesting another reduction in the size.
While the design could be reduced to a seven run design, thereby dropping one
variable, the biostatistician strongly recommended against that course of action due
to the increased risk and advised an analysis of this design with fewer runs would not
be possible. At this point, the biostatistician asked how long it would take to run all
eight formulations. The answer was 2 or 3 days. This is a classic example of over-
optimized designs, since we spent nearly 3 weeks to shave off 1 or 2 days of
laboratory work. Cost otherwise was not an issue. The follow-up was that the design
was executed on the eight-run format and the key variables were identified to move
the program forward.

Trust between the formulation scientist and the biostatistician is important in
process design and optimization problems, especially as the cost of the experiment
increases. When prior data are available, scientists are reluctant to run new planned
studies, but would prefer to analyze already collected data. This is not always the
optimal plan, but this can usually be addressed only if the biostatistician is consid-
ered part of the team. For this reason, it is best if the biostatistician works with the
pharmaceutical scientists repeatedly, instead of dropping in as a “rescue” expert. The
reason that prior data may not answer the questions lies in the working of interac-
tions, which are usually not well-understood. In another tablet manufacturing prob-
lem, friability was an issue. The culprit was thought to be in the wet massing step,
which is critical for producing consistently high-quality tablets, but other steps could

Table 9.10 Factorial 26-3

design
FID X1 X2 X3 X4 X5 X6

1 �1 �1 �1 1 1 1

2 1 �1 �1 �1 �1 1

3 �1 1 �1 �1 1 �1

4 1 1 �1 1 �1 �1

5 �1 �1 1 1 �1 �1

6 1 �1 1 -1 1 -1

7 -1 1 1 -1 -1 1

8 1 1 1 1 1 1

FID Formulation ID

9 Better Together: Examples of Biostatisticians Collaborating in Drug Development 437



not be ruled out. Data on the past 50 lots was assembled, with the idea of analyzing
the data to assess the effects of different variables.

A multivariable linear regression was assembled to fit the data. First variable
selection using backward elimination, followed by stepwise regression, was used to
narrow down the field of variables to study. This produced six variables of interest,
but with relatively poor fitting results. To improve fitting, higher-order polynomial
terms were added, to the point of adding up to quartic terms. Since the model
generated predictions that were inconsistent with experience in the manufacturing
of tablets, management concurred with the biostatistical team that this model was not
an appropriate solution, and a more controlled line of attack must be attempted,
hence a planned experiment.

A planned experiment in a full-scale manufacturing setting is no small undertak-
ing, since the plant must be taken out of service to run the experiment and millions of
dollars of active pharmaceutical ingredient (API) and excipients are involved. As we
discussed elsewhere, large amounts of resources are at risk in these high-stakes
experiments. Hence, a lengthy round of discussion involving the biostatistical team,
formulation team, and manufacturing engineers, including the quality control team,
were initiated.

In these cases, the biostatistical role is essential, but delicate. The biostatistician
possesses the expertise and the technological know-how to develop a line of attack to
efficiently answer the question. But one must be wholly committed to and consid-
ered part of the team; otherwise this process is likely to end in a sub-optimal solution,
possibly even acrimony. Consider the viewpoint of the manufacturing engineer,
someone who has extensive education and many years of experience running a tablet
manufacturing facility. The engineer is facing a problem that he cannot solve in a
timely manner. He is unlikely to appreciate an outsider, with no knowledge of
manufacturing issues, telling the engineer that there is a better way of solving the
problem. In these cases, consulting can be counterproductive. The biostatistician
truly needs to collaborate with the subject-matter experts, and the easiest path to
success is to be a valuable part of the team, with actual knowledge and experience in
these problems. And the way to become part of the team is to get out of the office,
into the plan, into the laboratories, involved in the QC decisions. In short, become an
actual pharmaceutical scientist that takes full responsibility for the operations along
with the technical and managerial team of the facility.

9.3.4 Software as a Medical Device (SaMD)

Many medical devices incorporate software; for example, home-based glucose
monitoring devices have physical components, but the functionality of the device
would be non-existent without the software built into them. Conversely, software
can also be the device. These software devices can facilitate better dosing than would
be available otherwise. Pharmacokineticists and biostatisticians play a key role in
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developing, evaluating, and gaining marketing approval for these types of precision
dosing devices.

SaMD can be used to help personalize a dose for an individual patient, and this
can be achieved in different ways. For example, one can have a target exposure level
for a patient, and the dose or dosing interval can be altered to achieve a target
exposure level or response. For example, aminoglycoside dosing in infectious
disease, Factor VIII/Factor IX in hemophilia, or warfarin for anticoagulation,
where the target is to achieve an international normalized ratio1 (INR) between 2.0
and 3.0.

Developing SaMD tools to help determine an individualized dosing regimen to
achieve a specific exposure level can be useful in several contexts, including:

• Patient care, where achieving a target exposure level helps to improve product
performance (e.g., in renal, hepatic, or immune-impaired patients; special
populations like pediatrics/geriatrics; transplant patients; addressing drug-drug
interactions; and optimizing the usage of expensive medications)

• Clinical studies, where a randomized concentration-controlled trial will have
advantages over more traditional randomized dose-controlled trials

For this example, the exposure parameters of interest were time above a target
through concentration, clearance, and area under the concentration-versus-time
curve (AUC). The SaMD aims to reduce the burden on the patients in terms of the
number of blood draws used to adequately estimate these parameters. The goal was
to use only two samples to estimate each parameter, instead of the full complement
of eight or nine samples. This sample reduction is not a new concept; this was
successfully performed for mycophenolate mofetil in a clinical trial in renal trans-
plant patients in the early-1990s in order to properly dose patients in an RCCT (see,
e.g., Hale et al. 1998; Reeve and Hale 1994; Hale and Reeve 1994; Reeve 1996). To
construct this SaMD, we need:

1. A population PK model based on dense sampling.
2. An algorithm which produces Bayesian posterior estimates of the PK model

parameters based on a small subsample of time points, using the population PK
model parameters and variability estimates (e.g., standard deviation of the ran-
dom effects in the population PK model) as the priors.

3. An implementation of the model in software with a simple delivery method to the
point of use (e.g., a website or mobile interface).

4. A method for evaluation of the software device. This may involve development of
a comparative trial, with corresponding sample size calculations to validate the
software estimation and predictions.

1The INR is the ratio of prothrombin time between a test and normal tissue (PTtest/PTnormal)
ISI, for

some factor ISI which is a function of the particular normal (control) sample.
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As can be seen, this requires the close collaboration of several different areas of
expertise, including pharmacokinetics, regulatory, biostatistics, and software
development.

In this case study, a population PK model was developed for the compound by the
pharmacokineticist using a nonlinear mixed effects modeling software called
NONMEM (ICON Development Solutions, Elliott City, Maryland), for use by a
precision dosing software application. The population PK model consisted of a
two-compartment structural IV model with between subject variability terms for
both clearance (CL) and the central compartment volume of distribution (Vc) along
with a proportional within subject variability (residual) error model. Weight and
creatinine clearance were both identified as significant covariates for CL in a median
normalized manner. Weight was also identified as a significant covariate on the Vc in
a median normalized manner. For model validation, the population PK model
demonstrated suitable model stability after evaluation of the condition number
(e.g., condition number less than 20 Mould and Upton (2013)) and non-parametric
bootstrapped confidence intervals (e.g., confidence interval endpoints within 20% of
the point estimate). Likewise, evaluation of numeric and visual predictive checks
indicated that the model adequately predicted concentrations.

The device user interface collected the individual patient demographic, weight,
and creatinine clearance values. In addition, the interface also collected the patient’s
current dosing regimen and PK sample collection activities with the date and times
of each. These data were then fed into the Bayesian estimation algorithm, originally
implemented using the post hoc random effects prediction built into the NONMEM
system. However, to achieve faster reporting speeds on the device to be used in the
clinic, the model was re-coded into C++ since NONMEMwas found to run slowly in
a mobile or web environment (other typical mobile or web interface computer
languages include Java and Perl). The individual parameter estimates along with
graphical representation of the model fits were presented within the interface.
Finally, the individual parameter estimates could then be used to predict exposure
levels of potential new dosing regimens for selection to optimize the exposure levels
(see Fig. 9.16).

The clinical trials used for validation of the medical device was relatively simple
to design in terms of implementation using intra-patient comparisons of the dosing
regimen AUC values produced by the software device (based upon the minimal
sampling scheme) with AUC obtained by NCA methods using the full profile. The
criteria for success were that 95% of all patients have device AUCs within 	15% of
the NCA AUCs and that 99% are within 	20%. We also summarized the results
using the root mean squared error (RMSE ¼ [Δ2 + v2]1/2 where Δ is the mean
difference and v is the standard deviation of the within-subject differences) of the
difference in predicted and actual AUC within the same subject.

Data to support the sample size calculation came from two sources: (1) historical
data from completed clinical studies and (2) simulated data. Historical data are data
from subjects that have already been analyzed within other trials of the clinical
program. Simulated data were constructed by creating virtual patients with realistic
covariate relationships and simulated concentration levels based upon the population
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PK model developed from the clinical studies (historical data). The simulations were
useful since the sample size in the historical data is fairly limited, and the variability
estimate would have a large inherent uncertainty. The simulated results can be
thought of as a bootstrapping approach to better estimate the uncertainty in the
variability (Fig. 9.17).

As noted, the device estimate of AUC is derived from a Bayesian calculation
based on the population PK model using just a few optimal samples. Two and three
sample options were looked at with regard to the choice of the sparse sample times
used to estimate the predicted AUC. The mean, standard deviation, and root mean
squared error were estimated for both the historical and the simulated data.

Given the variability and the proportion of success estimated from both the
historical and simulated data, the sample size can be calculated for both the propor-
tion and the RMSE endpoints. For the proportion, the point estimate of the propor-
tion needs to be larger than 95%, and hence power will be defined as the probability
that the estimate of the proportion within 	15% is at least 95%.

The power, denoted π, on the proportion can be calculated as

π ¼ 1� Bin 0:95nb c, n j p ¼ 0:97ð Þ ð9:16Þ

Fig. 9.16 Screenshot of a
precision dosing software
application mobile user
interface
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where bxc is the greatest integer less than x and Bin(k, n | p)¼ P{X � k | n, p} is the
cumulative distribution function for a binomial random variable. The power function
is shown in Fig. 9.18. We note immediately that increasing sample size does not
increase the power necessarily, but may in fact reduce it. This behavior often comes
as a surprise to both biostatisticians and pharmacokineticists alike and will need to be
discussed with the trial team to ensure adequate trial power. The minimum power
occurs on multiples of 20, and this is due to the discreteness of the binomial
distribution.

Fig. 9.17 Schematic of the
clinical trial, and the
comparisons needed. The
standard method is the
traditional PK data analysis
which involves the
estimation of individual
pharmacokinetic parameters
through nonlinear
regression using an
individual’s dense
concentration-time data. A
second stage then calculates
descriptive summary
statistics such as mean
parameters estimates,
variance, and covariance of
the individual parameter
estimates obtained during
the first stage
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Fig. 9.18 Probability of observed proportion within 15% being greater than 95% given the
estimate of 97% based on historical variability
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This project requires close collaborations between the pharmacokineticist, bio-
statistician, and software developers to succeed. The pharmacokineticist brings
expert knowledge of the PK model and the possibilities for dose adjustment, along
with practical knowledge of behavior in the clinic. Physicians also can be involved to
support what dose time point would be acceptable to patients, how the device should
function for ease of interpretation by the clinical customers, and knowledge of which
patients to include in the clinical study. Likewise, the software developer needs to
work with the team very closely to implement the model in a native device language,
ensure that the device’s user interface works well on the platforms being used, and
can provide necessary outputs. And the biostatistician needs to provide power
calculations, device testing data and scenarios, and work closely with the
pharmacokineticist as the models are optimized to achieve good parameter
estimation.

9.4 Conclusion

Collaboration within the pharmaceutical industry between biostatisticians and
subject-matter experts is very productive. Collaboration allows for solutions to
problems that would be difficult without the collaboration and allows the solutions
to be developed much more efficiently than without the collaboration. Biostatistical
input is valuable in many areas of clinical development, including clinical trial
design, nonclinical areas such as assay development, manufacturing process devel-
opment and control, and formulation development, and in newer areas such as
personalized precision dosing. Collaboration is also very rewarding for the biostat-
istician, since working with our colleagues in other areas of expertise allows the
biostatistician to contribute to the solutions of difficult, important problems facing
the drug development organization.

Collaboration of biostatisticians across the organization can also contribute to
cost savings. Consider the case of model-based drug development (MBDD), which
requires a close collaboration between biostatisticians, pharmacokineticists, and
clinicians. MBDD is the process of using predictive models, based on statistical
and pharmacokinetics-pharmacodynamics modeling, including exposure-response
models. Based on an analysis of Lalonde et al. (2007), the cost savings within one
organization was $75 million for 2006 and $100 million for 2007. Savings accrued
chiefly through two benefits:

• Smaller dose-response studies instead of the traditional Phase II studies
• Fewer late phase studies, since the information used in drug development is

improved under the MBDD paradigm

The experience of the authors with MBDD is that it improves decision-making
within drug development through two mechanisms:
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• Better quantitative decisions; using a learn and confirm approach to the drug
development process is more efficient than traditional development
methodologies.

• Forces active collaboration among different experts.

MBDD itself is a collaborative method, whereby biostatisticians, pharmacoki-
neticists, and clinicians develop models that describe the input/output systems (i.e.,
dose-exposure-response models). This process requires input from each of the
different areas of expertise, and the model is the language that everyone can use to
describe the biological and clinical trial process.
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