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If the whole materia medica, as now used, 
could be sunk to the bottom of the sea, it 
would be all the better for mankind, and all 
the worse for the fishes.

Oliver Wendell Holmes
Comments and Counter‐Currents in 

Medical Science

The history of drug regulation in the United 
States is largely a history of political responses 
to epidemics of adverse drug reactions, each 
adverse reaction of sufficient public health 
importance to lead to political pressure for reg
ulatory change.

The initial law, the Pure Food and Drug Act, 
was passed in 1906. It was a response to the 
excessive adulteration and misbranding of foods 
and drugs. The 1938 Food, Drug, and Cosmetic 
Act was passed in reaction to an epidemic of 
renal failure resulting from a brand of elixir of 
sulfanilamide formulated with diethylene glycol. 
The 1962 Kefauver–Harris Amendment to the 
Food, Drug, and Cosmetic Act was enacted in 
response to the infamous “thalidomide disaster,” 
in which children exposed to thalidomide in 
utero were born with phocomelia; that is, with 
flippers instead of limbs. The resulting regulatory 
changes led, in part, to the accelerated develop
ment of the field of clinical pharmacology, which 
is the study of the effects of drugs in humans.

Subsequent decades continued to see an 
accelerating series of accusations about major 
adverse events possibly associated with drugs. 

Those discussed in the first edition of this book 
included liver disease caused by benoxaprofen, 
subacute myelo‐optic‐neuropathy (SMON) 
caused by clioquinol, oculomucocutaneous syn
drome caused by practolol, acute flank pain and 
renal failure caused by suprofen, liver disease 
caused by ticrynafen, and anaphylactoid reac
tions caused by zomepirac. Added in the second 
edition were cardiac arrhythmias from astemi
zole and terfenadine; hypertension, seizures, 
and strokes from postpartum use of bromocrip
tine; deaths from fenoterol; suicidal ideation 
from fluoxetine; hypoglycemia from human 
insulin; birth defects from isotretinoin; cancer 
from depot‐medroxyprogesterone; multiple ill
nesses from silicone breast implants; memory 
and other central nervous system disturbances 
from triazolam; and hemolytic anemia and 
other adverse reactions from temafloxacin. 
Further added in the third edition were liver 
toxicity from amoxicillin‐clavulanic acid; liver 
toxicity from bromfenac; cancer and myocardial 
infarction from calcium channel blockers; car
diac arrhythmias with cisapride; primary pul
monary hypertension and cardiac valvular 
disease from dexfenfluramine and fenfluramine; 
gastrointestinal bleeding, postoperative bleed
ing, deaths, and many other adverse reactions 
associated with ketorolac; multiple drug inter
actions with mibefradil; thrombosis from newer 
oral contraceptives; myocardial infarction 
from sildenafil; seizures with tramadol; eosino
philia  myalgia from tryptophan; anaphylactic 
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reactions from vitamin K; and liver toxicity 
from troglitazone. Added in the fourth edition 
were ischemic colitis from alosetron; myocar
dial infarction from celecoxib, naproxen, and 
rofecoxib; rhabdomyolysis from cerivastatin; 
cardiac arrhythmias from grepafloxacin; stroke 
from phenylpropanolamine; bronchospasm 
from rapacuronium; and many others. Added in 
the fifth edition were progressive multifocal leu
koencephalopathy from natalizumab; hepato
toxicity from pamoline and from lumiracoxib; 
serious cardiovascular complications from 
rosiglitazone, tegaserod, sibutramine, rimona
bant, valdecoxib, pergolide, and propoxy
phene; fatal adverse reactions when used with 
alcohol from palladone; and serious and some
times fatal brain infections from efalizumab. 
New in the sixth edition are serious infections 
of the  genital area from sodium‐glucose 
Cotransporter‐2 (SGLT2) inhibitors; serious 
low blood sugar levels and mental health side 
effects from fluoroquinolones; increased risk of 
heart‐related death and death from all causes 
from gout medicine febuxostat; increased risk 
of leg and foot amputations from canagliflozin; 
possible increased risk of bladder cancer from 
pioglitazone; heart failure risk from saxagliptin 
and alogliptin; possible increased risk of heart 
attack and stroke from testosterone; and poten
tially fatal heart rhythms from azithromycin. 
Some of these resulted in drug withdrawals. 
Published data also suggest that adverse drug 
reactions could be as much as the fourth leading 
cause of death. These and other serious but 
uncommon drug effects have led to the develop
ment of new methods to study drug effects in 
large populations. Academic investigators, the 
pharmaceutical industry, regulatory agencies, 
and the legal profession have turned for these 
methods to the field of epidemiology, the study 
of the distribution and determinants of disease 
in populations.

Major new changes have been made in drug 
regulation and organization, largely in response 
to a series of accusations about myocardial 

infarction and stroke caused by analgesics, 
each detected in long‐term prevention trials 
rather than in normal use of the drugs. For 
example, the pharmacoepidemiology group at 
the US Food and Drug Administration (FDA) 
was doubled in size; the FDA was given new 
regulatory authority after drug marketing, and 
was also charged with developing the Sentinel 
Initiative, a program to conduct medical 
 product safety surveillance in a population to 
exceed 100 million. Further, the development 
since January 1, 2006 of Medicare Part D, a US 
federal program to subsidize prescription 
drugs for Medicare recipients, introduces to 
pharmacoepidemiology a new database with a 
stable population of 25 million, as well as the 
interest of what may be the largest healthcare 
system in the world. These developments have 
brought about major changes for our field.

The bridging of the fields of clinical pharma
cology and epidemiology resulted in the devel
opment of a new field: pharmacoepidemiology, 
the study of the use of and effects of drugs in 
large numbers of people. Pharmacoepidemiology 
applies the methods of epidemiology to the con
tent area of clinical pharmacology. This new 
field became the science underlying postmar
keting drug surveillance, studies of drug effects 
that are performed after a drug has been 
released to the market. In recent years, pharma
coepidemiology has expanded to include many 
other types of studies as well.

The field of pharmacoepidemiology has 
grown enormously since the publication of the 
first edition of this book. The International 
Society of Pharmacoepidemiology, an early idea 
when the first edition was written, has grown 
into a major international scientific force, with 
over 1476 members from 63 countries, an 
extremely successful annual meeting attracting 
more than 1800 attendees, a large number of 
very active committees and special interest 
groups, and its own journal. In addition, a num
ber of established journals have targeted phar
macoepidemiology manuscripts as desirable. 
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As  new scientific developments occur within 
mainstream epidemiology, they are rapidly 
adopted, applied, and advanced within our field 
too. We have also become institutionalized as a 
subfield within the field of clinical pharmacol
ogy, with a Drug Utilization and Outcomes 
community within the American Society for 
Clinical Pharmacology and Therapeutics, and 
with pharmacoepidemiology a required part of 
the clinical pharmacology board examination.

Most of the major international pharmaceuti
cal companies have founded dedicated units to 
organize and lead their efforts in pharmacoepi
demiology, pharmacoeconomics, and quality‐
of‐life studies. The continuing parade of drug 
safety crises continues to emphasize the need 
for the field, and some foresighted manufactur
ers have begun to perform “prophylactic” phar
macoepidemiology studies, so as to have data in 
hand and available when questions arise, rather 
than waiting to begin collecting data after a cri
sis has developed. Pharmacoepidemiologic data 
are now routinely used for regulatory decisions, 
and many governmental agencies have been 
developing and expanding their own pharma
coepidemiology programs. Risk management 
programs are now required by regulatory bodies 
with the marketing of new drugs, as a means of 
improving drugs’ benefit/risk balance. Require
ments that a drug be proven to be cost‐effective 
have been added to national, local, and insur
ance healthcare systems, either to justify reim
bursement or even to justify drug availability. A 
number of schools of medicine, pharmacy, and 
public health have established research pro
grams in pharmacoepidemiology, and a few of 
them have also established pharmacoepidemi
ology training programs in response to a des
perate need for a bigger pharmacoepidemiology 
labor force. Pharmacoepidemiologic research 
funding is now more plentiful, and even support 
for training is now available, albeit limited.

In the United States, drug utilization review 
programs are required, by law, of each of the 50 
state Medicaid programs, and have been imple

mented as well in many managed care organiza
tions. However now, years later, the utility of 
drug utilization review programs has been ques
tioned. In addition, the Joint Commission cur
rently requires that every hospital in the US has 
an adverse drug reaction monitoring program 
and a drug use evaluation program, turning 
every hospital into a mini‐pharmacoepidemiol
ogy laboratory. Stimulated in part by the inter
ests of the World Health Organization and the 
Rockefeller Foundation, there is even substantial 
interest in pharmacoepidemiology in the devel
oping world. Yet, throughout the world, the pub
lic’s increased concern about privacy has made 
pharmacoepidemiologic research much more 
difficult.

In the first edition of this book, the goal was 
to help introduce this new field to the scientific 
world. The explosion in interest in the area, the 
rapid scientific progress that has been made, 
and the unexpectedly good sales of the first edi
tion led to the second. The continued matura
tion of what used to be a novel field, the marked 
increase in sales of the second edition over the 
first, and the many requests from people all over 
the world led to the third edition. Thereafter, 
much in the field has changed, and the fourth 
edition was prepared. We also produced a text
book version, which has been widely used. Now, 
seven years after the fifth edition, the field con
tinues to rapidly change, so it is time for a new 
edition.

In the process, most chapters in the new edi
tion have been thoroughly revised. New chap
ters have been added, along with many fresh 
authors. With reorganization of some sections 
and careful pruning of old chapters, the net size 
of the book has been kept the same.

As in earlier editions, Part I provides back
ground information on what is included in the 
field of pharmacoepidemiology, a description of 
the study designs it uses, a consideration of its 
unique problem – the requirement for very large 
sample sizes – and a discussion about when one 
would want to perform a pharmacoepidemiology 
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study. Also included is a chapter providing basic 
principles of clinical pharmacology. Part II pre
sents a series of discussions on the need for the 
field, the contributions it can make, and some of 
its problems, from the perspectives of aca
demia, industry, and regulatory agencies. Part III 
describes the systems that have been developed 
to perform pharmacoepidemiologic studies, and 
how each approaches the problem of gather
ing large sample sizes of study subjects in a 
cost‐effective manner. We no longer attempt to 
include all the databases in the field, as they have 
continued to multiply. Instead, in this edition we 
have combined databases into categories, rather 
than dedicating a separate chapter to each. 
Part IV describes selected special opportunities 
for the application of pharmacoepidemiology to 
address major issues of importance. These are of 
particular interest as the field continues to turn 
its attention to questions beyond just those of 
adverse drug reactions. Part V presents state‐of‐
the‐art discussions of some particular methodo
logic issues that have arisen in the field. Finally, 
Part VI provides our personal speculations about 
the future of pharmacoepidemiology.

This book is not intended as a textbook of 
adverse drug reactions; that is, a compilation of 
drug‐induced problems organized either by drug 
or by problem. Nor is it intended  primarily as a 

textbook for use in introductory pharmacoepi
demiology courses (for which Textbook of Phar
macoepidemiology might be more appropriate). 
Rather, it is intended to elucidate the methods 
of investigating adverse drug reactions, as well as 
other questions of drug effects. It is also not 
intended as a textbook of clinical pharmacology, 
organized by disease or by drug, or a textbook of 
epidemiology, but rather as a text describing the 
overlap between the two fields.

It is our hope that this book can serve both as 
a useful introduction to pharmacoepidemiology 
and as a reference source for the growing num
ber of people interested in this field, in aca
demia, in regulatory agencies, in industry, and 
in the law. It will also hopefully be useful as a 
reference text for the numerous courses now 
underway in this subject. We have been excited 
by the rapid progress and growth that our field 
has seen, and delighted that this book has played 
a small role in assisting this. With this new edi
tion, it will document the major changes that 
have occurred. In the process, we hope that it 
can continue to serve to assist in the develop
ment of pharmacoepidemiology.

Brian L. Strom, MD, MPH
Stephen E. Kimmel, MD, MSCE

Sean Hennessy, PharmD, PhD
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A desire to take medicine is, perhaps, the 
great feature which distinguishes man from 
other animals.

Sir William Osler, 1891

In recent decades, modern medicine has been 
blessed with a pharmaceutical armamentarium 
that is much more powerful than it had before. 
Although this has given healthcare providers 
the ability to provide better medical care for 
their patients, it has resulted too in the ability to 
do much greater harm. It has also generated an 
enormous number of product liability suits 
against pharmaceutical manufacturers, some 
appropriate and others inappropriate. In fact, 
the history of drug regulation parallels the his-
tory of major adverse drug reaction “disasters.” 
Each change in pharmaceutical law was a politi-
cal reaction to an epidemic of adverse drug 
reactions. A 1998 study estimated that 100 000 
Americans die each year from adverse drug 
reactions, and 1.5 million US hospitalizations 
each year result from adverse drug reactions; 
yet, 20–70% of adverse drug reactions may be 
preventable [1]. The harm that drugs can cause 
has also led to the development of the field of 
pharmacoepidemiology, which is the focus of 
this book. More recently, the field has expanded 

its focus to include in addition many issues 
other than adverse reactions.

To clarify what is, and what is not, included 
within the discipline of pharmacoepidemiology, 
this chapter will begin by defining pharmacoep-
idemiology, differentiating it from other related 
fields. The history of drug regulation will then 
be briefly and selectively reviewed, focusing on 
the US experience as an example, demonstrat-
ing how it has led to the development of this 
new field. Next, the current regulatory process 
for the approval of new drugs will be outlined, in 
order to place the use of pharmacoepidemiol-
ogy and postmarketing drug surveillance into 
proper perspective. Finally, the potential scien-
tific and clinical contributions of pharmacoepi-
demiology will be discussed.

 Definition of 
Pharmacoepidemiology

Pharmacoepidemiology is the study of the use of 
and the effects of drugs in large numbers of peo-
ple. The term pharmacoepidemiology obviously 
contains two components: “pharmaco” and 
“epidemiology.” In order to better appreciate 

1
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and understand what is and what is not included 
in this new field, it is useful to compare its scope 
to that of other related fields. The scope of phar-
macoepidemiology will first be compared to 
that of clinical pharmacology, and then to that 
of epidemiology.

Pharmacoepidemiology versus 
Clinical Pharmacology

Pharmacology is the study of the effects of 
drugs. Clinical pharmacology is the study of the 
effects of drugs in humans (see also Chapter 2). 
Pharmacoepidemiology obviously can be con-
sidered, therefore, to fall within clinical phar-
macology. In attempting to optimize the use of 
drugs, one central principle of clinical pharma-
cology is that therapy should be individualized, 
or tailored, to the needs of the particular patient 
at hand. This individualization of therapy 
requires the determination of a risk/benefit 
ratio specific to the patient. Doing so requires a 
prescriber to be aware of the potential beneficial 
and harmful effects of the drug in question and 
to know how elements of the patient’s clinical 
status might modify the probability of a good 
therapeutic outcome. For example, consider a 
patient with a serious infection, serious liver 
impairment, and mild impairment of his or her 
renal function. In considering whether to use 
gentamicin to treat the infection, it is not suffi-
cient to know that gentamicin has a small prob-
ability of causing renal disease. A good clinician 
should realize that a patient who has impaired 
liver function is at a greater risk of suffering 
from this adverse effect than one with normal 
liver function [2]. Pharmacoepidemiology can 
be useful in providing information about the 
beneficial and harmful effects of any drug, thus 
permitting a better assessment of the risk/ben-
efit balance for the use of any particular drug in 
any particular patient.

Clinical pharmacology is traditionally divided 
into two basic areas: pharmacokinetics and 

 pharmacodynamics. Pharmacokinetics is the 
study of the relationship between the dose admin-
istered of a drug and the serum or blood level 
achieved. It deals with drug absorption,  distribution, 
metabolism, and excretion. Pharmacodynamics 
is the study of the relationship between drug level 
and drug effect. Together, these two fields allow 
one to predict the effect one might observe in a 
patient from administering a certain drug regi-
men. Pharmacoepidemiology encompasses ele-
ments of both of these fields, exploring the effects 
achieved by administering a drug regimen. It 
does not normally involve or require the meas-
urement of drug levels. However, pharmacoepi-
demiology can be used to shed light on the 
pharmacokinetics of a drug when used in clinical 
practice, such as exploring whether aminophyl-
line is more likely to cause nausea when adminis-
tered to a patient who is simultaneously taking 
cimetidine. However, to date this is a relatively 
novel application of the field.

Specifically, the field of pharmacoepidemiol-
ogy has primarily concerned itself with the 
study of adverse drug effects. Adverse reactions 
have traditionally been separated into those 
which are the result of an exaggerated but oth-
erwise usual pharmacologic effect of the drug, 
sometimes called type A reactions, versus those 
which are aberrant effects, so called type B reac-
tions [3]. Type A reactions tend to be common, 
dose‐related, predictable, and less serious. They 
can usually be treated by simply reducing the 
dose of the drug. They tend to occur in individ-
uals who have one of three characteristics. First, 
the individuals may have received more of a 
drug than is customarily required. Second, they 
may have received a conventional amount of the 
drug, but they may metabolize or excrete it unu-
sually slowly, leading to drug levels that are too 
high (see also Chapter 2). Third, they may have 
normal drug levels, but for some reason are 
overly sensitive to the drug.

In contrast, type B reactions tend to be 
uncommon, not related to dose, unpredictable, 
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and potentially more serious. They usually 
require cessation of the drug. They may be due 
to what are known as hypersensitivity reac-
tions or immunologic reactions. Alternatively, 
type B reactions may be some other idiosyn-
cratic reaction to the drug, either due to 
some  inherited susceptibility (e.g., glucose‐6‐ 
phosphate dehydrogenase deficiency) or due to 
some other mechanism. Regardless, type B 
reactions are the most difficult to predict or 
even detect, and represent the major focus 
of  many pharmacoepidemiologic studies of 
adverse drug reactions.

One typical approach to studying adverse drug 
reactions has been the collection of spontaneous 
reports of drug‐related morbidity or mortality 
(see Chapter  10), sometimes called pharma-
covigilance (although other times that term is 
used to refer to all of pharmacoepidemiology). 
However, determining causation in case reports 
of adverse reactions can be problematic (see 
Chapter  29), as can attempts to compare the 
effects of drugs in the same class (see Chapter 26). 
Further, drug–drug interactions, predicted based 
on pharmacokinetic data (see Chapter 2), require 
massive sample sizes to confirm in people (see 
Chapter 40). This has led academic investigators, 
industry, the US Food and Drug Administration 
(FDA), and the legal community to turn to the 
field of epidemiology. Specifically, studies of 
adverse effects have been supplemented with 
studies of adverse events. In the former, investiga-
tors examine case reports of purported adverse 
drug reactions and attempt to make a subjective 
clinical judgment on an individual basis about 
whether the adverse outcome was actually caused 
by the antecedent drug exposure. In the latter, 
controlled studies are performed examining 
whether the adverse outcome under study occurs 
more often in an exposed population than in an 
unexposed population. This marriage of the 
fields of clinical pharmacology and epidemiology 
has resulted in the development of a further field: 
pharmacoepidemiology.

Pharmacoepidemiology versus 
Epidemiology

Epidemiology is the study of the distribution 
and determinants of diseases in populations 
(see Chapter  3). Since pharmacoepidemiology 
is the study of the use of and effects of drugs in 
large numbers of people, it obviously falls 
within epidemiology as well. Epidemiology is 
also traditionally subdivided into two basic 
areas. The field began as the study of infectious 
diseases in large populations; that is, epidem-
ics. It has since been expanded to encompass 
the study of chronic diseases. The field of phar-
macoepidemiology uses the techniques of 
chronic disease epidemiology to study the use 
of and the effects of drugs. Although applica-
tion of the methods of pharmacoepidemiology 
can be useful in undertaking the clinical trials 
of drugs that are performed before marketing 
[4], the major application of these principles is 
after drug marketing. This has primarily been 
in the context of postmarketing drug surveil-
lance, although in recent years the interests of 
pharmacoepidemiologists have broadened 
considerably. Now, as will be made clearer in 
future chapters, pharmacoepidemiology is con-
sidered of importance in the whole life cycle of 
a drug, from the time it is first discovered or 
synthesized through to when it is no longer 
sold as a drug.

Thus, pharmacoepidemiology is a relatively 
new applied field, bridging between clinical 
pharmacology and epidemiology. From clini-
cal pharmacology, pharmacoepidemiology 
borrows its focus of inquiry. From epidemiol-
ogy, pharmacoepidemiology borrows its 
methods of inquiry. In other words, it applies 
the methods of epidemiology to the content 
area of clinical pharmacology. In the process, 
multiple special logistical approaches have 
been developed and multiple special meth-
odologic issues have arisen. These are the 
primary foci of this book.
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 Historical Background

Early Legislation

The history of drug regulation in the US is simi-
lar to that in most developed countries, and 
reflects the growing involvement of govern-
ments in attempting to insure that only safe and 
effective drug products were available and that 
appropriate manufacturing and marketing prac-
tices were used. The initial US law, the Pure 
Food and Drug Act, was passed in 1906, in 
response to excessive adulteration and mis-
branding of the food and drugs available at that 
time. There were no restrictions on sales or 
requirements for proof of the efficacy or safety 
of marketed drugs. Rather, the law simply gave 
the federal government the power to remove 
from the market any product that was adulter-
ated or misbranded. The burden of proof was on 
the federal government.

In 1937, over 100 people died from renal fail-
ure as a result of the marketing by the Massengill 
Company of elixir of sulfanilimide dissolved in 
diethylene glycol [5]. In response, Congress 
passed the 1938 Food, Drug, and Cosmetic Act. 
Preclinical toxicity testing was required for the 
first time. In addition, manufacturers were 
required to gather clinical data about drug safety 
and to submit these data to FDA before drug 
marketing. The FDA had 60 days to object to 
marketing or else it would proceed. No proof of 
efficacy was required.

Little attention was paid to adverse drug reac-
tions until the early 1950s, when it was discov-
ered that chloramphenicol could cause aplastic 
anemia [6]. In 1952, the first textbook of adverse 
drug reactions was published [7]. In the same 
year, the American Medical Association (AMA) 
Council on Pharmacy and Chemistry estab-
lished the first official registry of adverse drug 
effects, to collect cases of drug‐induced blood 
dyscrasias [8]. In 1960, the FDA began to collect 
reports of adverse drug reactions and sponsored 
new hospital‐based drug‐monitoring programs. 

The Johns Hopkins Hospital and the Boston 
Collaborative Drug Surveillance Program devel-
oped the use of in‐hospital monitors to perform 
cohort studies to explore the short‐term effects 
of drugs used in hospitals [9,10]. This approach 
was later to be transported to the University of 
Florida–Shands Teaching Hospital as well [11].

In the winter of 1961, the world experienced 
the infamous “thalidomide disaster.” 
Thalidomide was marketed as a mild hypnotic, 
and had no obvious advantage over other drugs 
in its class. Shortly after its marketing, a dra-
matic increase was seen in the frequency of a 
previously rare birth defect, phocomelia: the 
absence of limbs or parts of limbs, sometimes 
with the presence instead of flippers [12]. 
Epidemiologic studies established its cause to 
be in utero exposure to thalidomide. In the UK, 
this resulted in the establishment in 1968 of the 
Committee on Safety of Medicines. Later, the 
World Health Organization (WHO) established 
a bureau to collect and collate information from 
this and other similar national drug‐monitoring 
organizations (see Chapter 10).

The US had never permitted the marketing of 
thalidomide and so was fortunately spared this 
epidemic. However, the “thalidomide disaster” 
was so dramatic that it resulted in regulatory 
change in the US as well. Specifically, in 1962 
the Kefauver–Harris Amendments were passed. 
These amendments strengthened the require-
ments for proof of drug safety, requiring exten-
sive preclinical pharmacologic and toxicologic 
testing before a drug could be tested in humans. 
The data from these studies were required to be 
submitted to the FDA in an Investigational New 
Drug (IND) application before clinical studies 
could begin. Three explicit phases of clinical 
testing were defined, which are described in 
more detail later in this chapter. In addition, a 
new requirement was added to the clinical test-
ing, for “substantial evidence that the drug will 
have the effect it purports or is represented to 
have.” “Substantial evidence” was defined as 
“adequate and well‐controlled investigations, 
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including clinical investigations.” Functionally, 
this has generally been interpreted as requiring 
randomized clinical trials to document drug 
efficacy before marketing. This new procedure 
also delayed drug marketing until the FDA 
explicitly gave approval. With some modifica-
tions, these are the requirements still in place in 
the US today. In addition, the amendments 
required the review of all drugs approved 
between 1938 and 1962, to determine if they too 
were efficacious. The resulting DESI (Drug 
Efficacy Study Implementation) process, con-
ducted by the National Academy of Sciences’ 
National Research Council with support from a 
contract from the FDA, was not completed until 
years later, and resulted in the removal from the 
US market of many ineffective drugs and drug 
combinations. The result of all these changes 
was a great prolongation of the approval pro-
cess, with attendant increases in the cost of drug 
development, in what was termed the “drug lag” 
[13] (discussed later in the chapter). However, 
the drugs that do reach the market are presum-
ably much safer and more effective.

Drug Crises and Resulting 
Regulatory Actions

Despite the more stringent process for drug reg-
ulation, subsequent years have seen a series of 
major adverse drug reactions. Subacute myelo‐
optic‐neuropathy (SMON) was found in Japan 
to be caused by clioquinol, a drug marketed in 
the early 1930s but not discovered to cause this 
severe neurologic reaction until 1970 [14]. In 
the 1970s, clear cell adenocarcinoma of the cer-
vix and vagina and other genital malformations 
were found to be due to in utero exposure to 
diethylstilbestrol two decades earlier [15]. The 
mid‐1970s saw the UK discovery of the ocu-
lomucocutaneous syndrome caused by practo-
lol, five years after drug marketing [16]. In 1980, 
the drug ticrynafen was noted to cause deaths 
from liver disease [17]. In 1982, benoxaprofen 
was noted to do the same [18]. Subsequently 

the  use of zomepirac, another nonsteroidal 
anti‐inflammatory drug, was noted to be 
 associated with an increased risk of anaphylac-
toid reactions [19]. Serious blood dyscrasias 
were linked to phenylbutazone [20]. Small intes-
tinal perforations were noted to be caused by a 
particular slow‐release formulation of indo-
methacin [21]. Bendectin®, a combination prod-
uct indicated to treat nausea and vomiting in 
pregnancy, was removed from the market 
because of litigation claiming it was a teratogen, 
despite the absence of valid scientific evidence 
to justify this claim [22] (see Chapter 22). Acute 
flank pain and reversible acute renal failure 
were noted to be caused by suprofen [23]. 
Isotretinoin was almost removed from the US 
market because of the birth defects it causes 
[24,25]. The Eosinophilia‐Myalgia syndrome 
was linked to a particular brand of L‐tryptophan 
[26]. Triazolam, thought by The Netherlands in 
1979 to be subject to a disproportionate number 
of central nervous system side effects [27], was 
discovered by the rest of the world to be prob-
lematic in the early 1990s [28–30]. Silicone 
breast implants, inserted by the millions in the 
US for cosmetic purposes, were accused of 
causing cancer, rheumatologic disease, and 
many other problems, and restricted from use 
except for breast reconstruction after mastec-
tomy [31]. Human insulin was marketed as one 
of the first of the new biotechnology drugs, but 
soon thereafter was accused of causing a dispro-
portionate amount of hypoglycemia [32–36]. 
Fluoxetine was marketed as a major new, impor-
tant and commercially successful psychiatric 
product, but then lost a large part of its market 
due to accusations about its association with 
suicidal ideation [37,38]. An epidemic of deaths 
from asthma in New Zealand was traced to 
fenoterol [39–41], and later data suggested that 
similar, although smaller, risks might be present 
with other beta‐agonist inhalers [42]. The pos-
sibility was raised of cancer from depot‐
medroxyprogesterone, resulting in initial refusal 
to allow its marketing for this purpose in the US 
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[43], multiple studies [44,45], and ultimate 
approval. Arrhythmias were linked to the use of 
the antihistamines terfenadine and astemizole 
[46,47]. Hypertension, seizures, and strokes 
were noted from postpartum use of bromocrip-
tine [48,49]. Multiple different adverse reactions 
were linked to temafloxacin [50]. Other exam-
ples include liver toxicity from amoxicillin‐ 
clavulanic acid [51]; liver toxicity from bromfenac 
[52,53]; cancer, myocardial infarction, and gas-
trointestinal bleeding from calcium channel 
blockers [54–61]; arrhythmias with cisapride 
interactions [62–65]; primary pulmonary 
hypertension and cardiac valvular disease from 
dexfenfluramine and fenfluramine [66–68]; gas-
trointestinal bleeding, postoperative bleeding, 
deaths, and many other adverse reactions asso-
ciated with ketorolac [69–72]; multiple drug 
interactions with mibefradil [73]; thrombosis 
from newer oral contraceptives [74–77]; myo-
cardial infarction from sildenafil [78]; seizures 
from tramadol [79,80]; anaphylactic reactions 
from vitamin K [81]; liver toxicity from troglita-
zone [82–85]; and intussusception from rotavi-
rus vaccine [86].

Later drug crises have occurred due to allega-
tions of ischemic colitis from alosetron [87]; 
rhabdomyolysis from cerivastatin [88]; bron-
chospasm from rapacuronium [89]; torsades de 
pointes from ziprasidone [90]; hemorrhagic 
stroke from phenylpropanolamine [91]; arthral-
gia, myalgia, and neurologic conditions from 
Lyme vaccine [92]; multiple joint and other 
symptoms from anthrax vaccine [93]; myocar-
ditis and myocardial infarction from smallpox 
vaccine [94]; and heart attack and stroke from 
rofecoxib [95].

Major adverse drug reactions continue to 
plague new drugs, and in fact have been as com-
mon if not more common in the last several 
decades. In total, 36 different oral prescription 
drug products have been removed from the US 
market since 1980 alone (alosetron, 2000; apro-
tinin, 2007; astemizole, 1999; benoxaprofen, 
1982; bromfenac, 1998; cerivastatin, 2001; 

cisapride, 2000; dexfenfluramine, 1997; efali-
zumab, 2009; encainide, 1991; etretinate, 1998; 
fenfluramine, 1998; flosequinan, 1993; grepa-
floxin, 1999; levomethadyl, 2003; lumiracoxib, 
2007; mibefradil, 1998; natalizumab, 2005; 
nomifensine, 1986; palladone, 2005; pemoline, 
2005; pergolide, 2010; phenylpropanolamine, 
2000; propoxyphene, 2010; rapacuronium, 
2001; rimonabant, 2010; rofecoxib, 2004; 
sibutramine, 2010; suprofen, 1987; tegaserod, 
2007; terfenadine, 1998; temafloxacin, 1992; tic-
rynafen, 1980; troglitazone, 2000; valdecoxib, 
2007; zomepirac, 1983). The licensed vaccines 
against rotavirus [86] and Lyme [92] were also 
withdrawn because of safety concerns (see 
Chapter 20). Further, between 1990 and 2004, at 
least 15 noncardiac drugs, including astemizole, 
cisapride, droperidol, grepafloxacin, halofan-
trine, pimozide, propoxyphene, rofecoxib, 
sertindole, sibutramine, terfenadine, terodiline, 
thioridazine, vevacetylmethadol, and ziprasi-
done, were subject to significant regulatory 
actions because of cardiac concerns [96].

Since 1993, trying to deal with drug safety 
problems, the FDA morphed its extant sponta-
neous reporting system into the MedWatch pro-
gram of collecting spontaneous reports of 
adverse reactions (see Chapters 8 and 10), as 
part of that issuing monthly notifications of label 
changes. Compared to the 20–25 safety‐related 
label changes that were being made every month 
by mid‐1999, between 19 and 57 safety‐related 
label changes (boxed warnings, warnings, con-
traindications, precautions, adverse events) 
were made every month in 2009 [97]. From 
January of 2010 to July of 2016, there were 3324 
safety‐related label changes, with a range per 
month of 19–87 (median 41). Among all safety‐
related label changes (January 2010 to July 2016), 
8%, 13%, 56%, and 65% were boxed warnings, 
contraindications, warnings, and precautions, 
respectively [97].

According to a study from a number of years 
ago by the US Government Accountability 
Office, 51% of approved drugs have serious 
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adverse effects not detected before approval 
[98]. Further, there is recognition that the initial 
dose recommended for a newly marketed drug 
is often incorrect, and needs monitoring and 
modification after marketing [99–101].

In some of the examples given, the drug was 
never convincingly linked to the adverse reac-
tion, yet many of these accusations led to the 
removal of the drug involved from the market. 
Interestingly, however, this withdrawal was not 
necessarily performed in all of the different coun-
tries in which each drug was marketed. Most of 
these discoveries have led to litigation as well, 
and a few have even resulted in criminal charges 
against the pharmaceutical manufacturer and/or 
some of its employees (see Chapter 9).

Legislative Actions Resulting 
from Drug Crises

Through the 1980s, there was concern that an 
underfunded FDA was approving drugs too 
slowly, and that the US suffered, compared to 
Europe, from a “drug lag” [102]. To provide addi-
tional resources to the FDA to help expedite the 
drug review and approval process, Congress 
passed in 1992 the Prescription Drug User Fee 
Act (PDUFA), allowing the FDA to charge manu-
facturers a fee for reviewing new drug applica-
tions [103,104]. This legislation was reauthorized 
by Congress three more times: PDUFA II, also 
called the Food and Drug Modernization Act of 
1997; PDUFA III, also called the Public Health 
Security and Bioterrorism Preparedness and 
Response Act of 2002; and PDUFA IV, also called 
the Food and Drug Administration Amendments 
(FDAAA‐PL 110‐85) of 2007. The goals for 
PDUFA I–IV were to enable the FDA to complete 
review of over 90% of priority drug applications in 
6 months, and complete review of over 90% of 
standard drug applications in 12 months (under 
PDUFA I) or 10 months (under PDUFA II–IV). In 
addition to reauthorizing the collection of user 
fees from the pharmaceutical industry, PDUFA II 
allowed the FDA to accept a single well‐controlled 

clinical study under certain conditions, to reduce 
drug development time. The result was a system 
where more than 550 new drugs were approved 
by the FDA in the 1990s [105].

However, whereas 1400 FDA employees in 
1998 worked with the drug approval process, 
only 52 monitored safety; FDA spent a mere 
$2.4 million on extramural safety research. This 
state of affairs coincided with the growing num-
bers of drug crises already cited. With succes-
sive reauthorizations of PDUFA, this markedly 
changed. PDUFA III for the first time allowed 
the FDA to use a small portion of the user fees 
for postmarketing drug safety monitoring, to 
address safety concerns.

Nevertheless, there now was growing con-
cern, in Congress and among the US public, that 
perhaps the FDA was approving drugs too fast 
[106,107]. There were also calls for the develop-
ment of an independent drug safety board, anal-
ogous to the National Transportation Safety 
Board [108,109], with a mission much wider 
than the FDA’s regulatory mission, to comple-
ment the latter. For example, such a board could 
investigate drug safety crises such as those dis-
cussed, looking for ways to prevent them, and 
could deal with issues such as improper physi-
cian use of drugs, the need for training, and the 
development of new approaches to the field of 
pharmacoepidemiology.

Recurrent concerns about the FDA’s manage-
ment of postmarketing drug safety issues led to 
a systematic review of the entire drug risk 
assessment process. In 2006, the US General 
Accountability Office issued its report of a 
review of the organizational structure and effec-
tiveness of FDA’s postmarketing drug safety 
decision‐making [100], followed in 2007 by the 
Institute of Medicine’s independent assessment 
[110]. Important weaknesses were noted in the 
current system, including failure of the FDA’s 
Office of New Drugs and Office of Drug Safety 
to communicate with each other on safety 
issues, failure of the FDA to track ongoing post-
marketing studies, the ambiguous role of the 
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FDA’s Office of Drug Safety in scientific advi-
sory committees, limited authority by the FDA 
to require the pharmaceutical industry to per-
form studies to obtain needed data, concerns 
about culture problems at the FDA where rec-
ommendations by members of its drug safety 
staff were not followed, and concerns about 
conflicts of interest involving advisory commit-
tee members. This Institute of Medicine report 
was influential in shaping PDUFA IV.

Indeed, with the passage of those amend-
ments, the FDA’s authority was substantially 
increased, with the ability, for example, to 
require postmarketing studies and levy heavy 
fines if these requirements were not met. 
Further, its resources were substantially 
increased, with a specific charge to (i) fund epi-
demiology best practices and data acquisition 
($7 million in fiscal 2008, increasing to $9.5 mil-
lion in fiscal 2012); (ii) fund new drug trade 
name review ($5.3 million in fiscal 2008, rising 
to $6.5 million in fiscal 2012); and (iii) fund risk 
management and communication ($4 million in 
fiscal 2008, rising to $5 million in fiscal 2012) 
[111] (see also Chapter  24). In addition, in 
another use of the new PDUFA funds, the FDA 
plans to develop and implement agency‐wide 
and special‐purpose postmarket information 
technology (IT) systems, including the 
MedWatch Plus Portal, the FDA Adverse Event 
Reporting System, the Sentinel System (a virtual 
national medical product safety system; see 
Chapter 25), and the Phonetic and Orthographic 
Computer Analysis System to find similarities 
in spelling or sound between proposed propri-
etary drug names that might increase the risk of 
confusion and medication errors [111].

The Food and Drug Administration Safety 
and Innovation Act of 2012 (FDASIA), the fifth 
authorization of PDUFA, expanded the FDA’s 
authority with the ability to safeguard and 
advance public health by: (i) “giving the author-
ity to collect user fees from industry to fund 
reviews of innovator drugs, medical devices, 
generic drugs and biosimilar biological  products”; 

(ii) “promoting innovation to speed patient 
access to safe and effective products”; (iii) 
“increasing stakeholder involvement in FDA 
processes”; and (iv) “enhancing the safety of the 
drug supply chain” [112]. Also enacted in 2012, 
the Generic Drug User Fee Amendments 
(GDUFA) permitted the FDA to assess industry 
user fees with the intention of increasing the 
predictability and timeliness of generic drug 
application reviews [113]. The Biosimilar User 
Fee Act (BsUFA), also enacted in 2012, author-
ized the FDA to collect fees directly from 
 biosimilar drug product applicants to expedite 
the review of biosimilar applications [114]. The 
FDA Reauthorization Act of 2017 (FDARA) 
reauthorized PDUFA, GDUFA, and BsUFA 
through fiscal year 2022.

Among other aims, the 21st Century Cures 
Act (enacted in December 2016) was intended 
to expedite the process by which new drugs and 
devices are approved by easing the require-
ments put on drug companies looking for FDA 
approval on new products or new indications 
on existing drugs. It calls for the use of “data 
summaries” to support the approval of certain 
drugs for new indications, rather than full clini-
cal trial data. It also allows drug companies to 
promote off‐label uses to insurance companies, 
enabling them to expand their markets. Of par-
ticular relevance to pharmacoepidemiology, it 
permits the use of “real world evidence” rather 
than just clinical trial results [115]. Depending 
on how these new rules are interpreted, this 
could massively change drug development in 
the US, and in particular the role of pharma-
coepidemiology in that drug development.

Intellectual Development of 
Pharmacoepidemiology Emerging 
from Drug Crises

Several developments in the 1960s can be 
thought to have marked the beginning of the 
field of pharmacoepidemiology. The Kefauver–
Harris Amendments that were introduced in 
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1962 required formal safety studies for new 
drug applications. The DESI program that was 
undertaken by the FDA as part of those amend-
ments required formal efficacy studies for old 
drugs that were approved earlier. These require-
ments created a demand for new expertise and 
new methods. In addition, the mid‐1960s saw 
the publication of a series of drug utilization 
studies [116–120]. These provided the first 
descriptive information on how physicians use 
drugs, and began a series of investigations of the 
frequency and determinants of poor prescribing 
(see also Chapters 18 and 19).

In part in response to concerns about adverse 
drug effects, the early 1970s saw the develop-
ment of the Drug Epidemiology Unit, now the 
Slone Epidemiology Center, which extended the 
hospital‐based approach of the Boston 
Collaborative Drug Surveillance Program by 
collecting lifetime drug exposure histories from 
hospitalized patients and using these to perform 
hospital‐based case–control studies [121] (see 
Chapter 16). The year 1976 saw the formation of 
the Joint Commission on Prescription Drug 
Use, an interdisciplinary committee of experts 
charged with reviewing the state of the art of 
pharmacoepidemiology at that time, as well as 
providing recommendations for the future 
[122]. The Computerized Online Medicaid 
Analysis and Surveillance System (COMPASS®) 
was first developed in 1977, using Medicaid bill-
ing data to perform pharmacoepidemiologic 
studies [123] (see Chapter  12). The Drug 
Surveillance Research Unit, now called the Drug 
Safety Research Trust, was developed in the UK 
in 1980, with its innovative system of prescrip-
tion event monitoring [124] (see Chapter  15). 
Each of these represented major contributions 
to the field of pharmacoepidemiology, and 
together with newer approaches are reviewed in 
Part III of this book.

In the examples of drug crises mentioned ear-
lier, there were serious but uncommon drug 
effects, and these experiences led to an acceler-
ated search for new methods to study drug 

effects in large numbers of patients. This 
resulted in a shift from adverse effect studies to 
adverse event studies, with a concomitant 
increasing use of new data resources and new 
methods to study adverse reactions. The 
American Society for Clinical Pharmacology 
and Therapeutics issued, in 1990, a position 
paper on the use of purported postmarketing 
drug surveillance studies for promotional pur-
poses [125], and the International Society for 
Pharmacoepidemiology (ISPE) issued, in 1996, 
Guidelines for Good Epidemiology Practices for 
Drug, Device, and Vaccine Research in the 
United States [126], which were updated in 2007 
[127] and 2015. Since the late 1990s, pharma-
coepidemiologic research has also been increas-
ingly burdened by concerns about patient 
confidentiality [128–132] (see also Chapter 31).

There is also increasing recognition that most 
of the risk from most drugs to most patients 
occurs from known reactions to old drugs. As 
an attempt to address concerns about underuse, 
overuse, and adverse events of medical prod-
ucts and medical errors that may cause serious 
impairment to patient health, a new program of 
Centers for Education and Research on 
Therapeutics (CERTs) was authorized under 
the FDA Modernization Act of 1997 (as part of 
the same legislation that reauthorized PDUFA 
II). Starting in 1999 and incrementally adding 
more centers in 2002, 2006, and 2007, the 
Agency for Healthcare Research and Quality 
(AHRQ) that was selected to administer this 
program had funded up to 14 CERTs [133], 
although the program ended in 2016 (see also 
Chapter 6).

The research and education activities spon-
sored by AHRQ through the CERTs program 
since the late 1990s take place in academic cent-
ers. The CERTs conduct research on therapeu-
tics, exploring new uses of drugs, ways to 
improve the effective uses of drugs, and the 
risks associated with new uses or combinations 
of drugs. They also develop educational mod-
ules and materials for disseminating the research 
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findings about medical products. With the 
development of direct‐to‐consumer advertising 
of drugs since the mid‐1980s in the US, the 
CERTs’ role in educating the public and health-
care professionals by providing evidence‐based 
information has become especially important.

Another impetus for research on drugs 
resulted from one of the mandates (in Sec. 1013) 
of the Medicare Prescription Drug, 
Improvement, and Modernization Act of 2003 
to provide beneficiaries with scientific informa-
tion on the outcomes, comparative clinical 
effectiveness, and appropriateness of healthcare 
items and services [134]. In response, the AHRQ 
created in 2005 the DEcIDE (Developing 
Evidence to Inform Decisions about 
Effectiveness) Network to support in academic 
settings the conduct of studies on the effective-
ness, safety, and usefulness of drugs and other 
treatments and services [135]. This too ended, 
in 2012.

Another major new initiative of close rele-
vance to pharmacoepidemiology is risk man-
agement. There is increasing recognition that 
the risk/benefit balance of some drugs can only 
be considered acceptable with active manage-
ment of their use, to maximize their efficacy 
and/or minimize their risk. In response, in the 
late 1990s, new initiatives ranged from FDA 
requirements for risk management plans to an 
FDA Drug Safety and Risk Management 
Advisory Committee, and the issuing of risk 
minimization and management guidance in 
2005. More information is provided in Chapters 
8 and 24.

Another initiative closely related to pharma-
coepidemiology is the Patient Safety movement. 
In the Institute of Medicine’s report, “To Err Is 
Human: Building a Safer Health System,” the 
authors note that (i) “even apparently single 
events or errors are due most often to the con-
vergence of multiple contributing factors”; (ii) 
“preventing errors and improving safety for 
patients requires a systems approach in order to 
modify the conditions that contribute to errors”; 

and (iii) “the problem is not bad people; the 
problem is that the system needs to be made 
safer” [136]. In this framework, the concern is 
not about substandard or negligent care, but 
rather about errors made by even the best 
trained, brightest, and most competent profes-
sional health caregivers and/or patients. From 
this perspective, the important research ques-
tions ask about the conditions under which peo-
ple make errors, the types of errors being made, 
and the types of systems that can be put into 
place to prevent errors altogether when possi-
ble. Errors that are not prevented must be iden-
tified and corrected efficiently and quickly, 
before they inflict harm. Turning specifically to 
medications, from 2.4% to 6.5% of hospitalized 
patients suffer adverse drug effects, prolonging 
hospital stays by 2 days, and increasing costs by 
$2000–2600 per patient [137–140]. Over 7000 
US deaths were attributed to medication errors 
in 1993 [141]. Although these estimates have 
been disputed [142–147], the overall impor-
tance of reducing these errors has not been 
questioned. In recognition of this problem, the 
AHRQ launched a major new grant program of 
over 100 projects at its peak with over $50 mil-
lion/year of funding. While only a portion of 
this is dedicated to medication errors, they are 
clearly a focus of interest and relevance to many. 
More information is provided in Chapter 41.

The 1990s and especially the 2000s saw 
another shift in the field, away from its exclusive 
emphasis on drug utilization and adverse reac-
tions, to the inclusion of other interests as well, 
such as the use of pharmacoepidemiology to 
study beneficial drug effects, the application of 
health economics to the study of drug effects, 
quality‐of‐life studies, meta‐analysis, studies of 
biologics, data mining, studies of drugs of abuse, 
drug interactions, and so on. These new foci are 
discussed in more detail in Parts IV and V of 
this book.

Moreover, with the publication of the results 
from the Women’s Health Initiative indicating 
that combination hormone replacement  therapy 
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causes an increased risk of myocardial infarc-
tion rather than a decreased risk [148,149], 
there has been increased concern about reliance 
solely on nonexperimental methods to study 
drug safety after marketing [150–153]. This led 
to increased use of massive randomized clinical 
trials as part of postmarketing surveillance (see 
Chapter  32). This is especially important 
because often the surrogate markers used for 
drug development cannot necessarily be relied 
upon to map completely to true clinical out-
comes [154].

Finally, with the advent of the Obama 
administration in the US, there was enormous 
interest in comparative effectiveness research 
(CER). CER was defined in 2009 by the 
Federal Coordinating Council for Comparative 
Effectiveness Research as “the conduct and syn-
thesis of research comparing the benefits and 
harms of different interventions and strategies 
to prevent, diagnose, treat and monitor health 
conditions in “real world” settings. The purpose 
of this research is to improve health outcomes 
by developing and disseminating evidence‐
based information to patients, clinicians, and 
other decision‐makers, responding to their 
expressed needs, about which interventions are 
most effective for which patients under specific 
circumstances” [155]. By this definition, CER 
includes three key elements: (i) evidence syn-
thesis, evidence generation, and evidence dis-
semination. Typically, CER is conducted 
through observational studies of either large 
administrative or medical record databases (see 
Part IIIb), or large naturalistic clinical trials (see 
Chapter  32). In many ways, the UK has been 
focusing on CER for years via its National 
Institute for Health and Clinical Excellence 
(NICE), an independent organization respon-
sible for providing national guidance on pro-
moting good health and preventing and 
treating ill health [156]. However, the Obama 
administration included $1.1 billion for CER 
in its federal stimulus package, and had plans 
for hundreds of millions of dollars of support 

per year thereafter. While CER does not over-
lap completely with pharmacoepidemiology, 
the scientific approaches are very close. 
Pharmacoepidemiologists evaluate the use 
and effects of medications. CER investigators 
compare, in the real world, the safety and ben-
efits of one treatment to those of another. CER 
extends beyond pharmacoepidemiology in 
that it can include more than just drugs; phar-
macoepidemiology extends beyond CER in 
that it includes studies comparing exposed to 
unexposed patients, not just alternative expo-
sures. However, to date, most work done in 
CER has been in pharmacoepidemiology. See 
Chapter 26 for more discussion.

 The Current Drug Approval 
Process

Drug Approval in the US

Until the early 1990s, there was a decline in the 
number of novel drugs approved per year 
[101,157], while the cost of bringing a drug to 
market has risen sharply [158]. The total cost of 
drug development to the pharmaceutical indus-
try increased from $24 billion in 1999, to $32 
billion in 2002 [159], and to $65.2 billion on 
research and development in 2008 [160]. The 
cost to discover and develop a drug that suc-
cessfully reached the market rose from over 
$800 million in 2004 [161] to an estimated $1.3–
1.7 billion currently [162]. In addition to the siz-
able costs of research and development, a 
substantial part of the total cost is determined 
also by the regulatory requirement to test new 
drugs during several premarketing and post-
marketing phases, as will be reviewed next.

The current drug approval process in the US 
and most other developed countries includes 
preclinical animal testing followed by three 
phases of clinical testing. Phase I testing is usu-
ally conducted in just a few normal volunteers, 
and represents the initial trials of the drug in 
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humans. Phase I trials are generally conducted 
by clinical pharmacologists, to determine the 
metabolism of the drug in humans, a safe dos-
age range in humans, and to exclude any 
extremely common toxic reactions that are 
unique to humans.

Phase II testing is also generally conducted by 
clinical pharmacologists, on a small number of 
patients who have the target disease. Phase II 
testing is usually the first time patients are 
exposed to the drug. Exceptions are drugs that 
are so toxic that it would not normally be con-
sidered ethical to expose healthy individuals to 
them, like cytotoxic drugs. For these, patients 
are used for Phase I testing as well. The goals of 
Phase II testing are to obtain more information 
on the pharmacokinetics of the drug and on any 
relatively common adverse reactions, and to 
obtain initial information on its possible effi-
cacy. Specifically, Phase II is used to determine 
the daily dosage and regimen to be tested more 
rigorously in Phase III.

Phase III testing is performed by clinician‐
investigators in a much larger number of 
patients, in order to rigorously evaluate the 
drug’s efficacy and provide more information 
on its toxicity. At least one of the Phase III stud-
ies needs to be a randomized clinical trial (see 
Chapter 3). To meet FDA standards, at least one 
of the randomized clinical trials usually needs to 
be conducted in the US. Generally between 500 
and 3000 patients are exposed to a drug during 
Phase III, even if drug efficacy can be demon-
strated with much smaller numbers, in order to 
be able to detect less common adverse reac-
tions. For example, a study including 3000 
patients would allow one to be 95% certain of 
detecting any adverse reactions that occur in at 
least 1 exposed patient out of 1000. At the other 
extreme, a total of 500 patients would allow one 
to be 95% certain of detecting any adverse reac-
tions that occur in 6 or more patients out of 
every 1000 exposed. Adverse reactions that 
occur less commonly than these are less likely to 
be detected in these premarketing studies. The 

sample sizes needed to detect drug effects are 
discussed in more detail in Chapter 4. Nowadays, 
with the increased focus on drug safety, premar-
keting dossiers are sometimes being extended 
well beyond 3000 patients. However, as one can 
tell from the sample size calculations in 
Chapter 4 and Appendix A, by itself these larger 
numbers lead to little additional information 
being gained about adverse drug reactions, 
unless one were to increase to perhaps 30 000 
patients, well beyond the scope of most premar-
keting studies.

Finally, Phase IV testing is the evaluation of 
the effects of drugs after general marketing. The 
bulk of this book is devoted to such efforts.

Drug Approval in Other Countries

Outside the US, national systems for the regula-
tion and approval of new drugs vary greatly, 
even among developed countries and especially 
between developed and developing countries. 
While in most developed countries at least the 
general process of drug development is very 
analogous to that in the US, its implementation 
varies widely. A WHO comparative analysis of 
drug regulation in 10 countries found that not 
all even have a written national drug policy doc-
ument [163]. Regulation of medicines in some 
countries is centralized in a single agency that 
performs the gamut of functions, involving 
product registration, licensing, product review, 
approval for clinical trials, postmarketing sur-
veillance, and inspection of manufacturing 
practice. Examples for this are Health Canada 
[164], the China Food and Drug Administration 
(CFDA) [165], the Medicines Agency in 
Denmark [166], the Medicines Agency in 
Norway [167], the Center for Drug 
Administration in Singapore [168], and the 
Medicines and Medical Devices Safety Authority 
in New Zealand [169]. In other countries, regu-
latory functions are distributed among different 
agencies. An example of the latter is The 
Netherlands, where the Ministry of Health, 
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Welfare and Sports performs the functions of 
licensing; the Healthcare Inspectorate checks 
on general manufacturing practice; and the 
Medicines Evaluation Board performs the func-
tions of product assessment and registration 
and adverse drug reaction monitoring [163]. As 
another example, in Singapore two independent 
agencies (the Center for Pharmaceutical 
Administration and the Center for Drug 
Evaluation) were previously responsible for 
medicinal regulation and evaluation, but are 
currently merged into a single agency (the 
Center for Drug Administration) [168].

Another dimension on which countries may 
vary is the degree of autonomy of regulatory deci-
sions from political influence. Drug regulation in 
most countries is performed by a department 
within the executive branch (Australia, Cuba, 
Cyprus, Tunisia, and Venezuela are examples 
cited by the WHO report, and Denmark [166], 
India [170], and New Zealand [169] are other 
examples). In other countries, this function is per-
formed by an independent commission or board. 
An example of the latter arrangement is The 
Netherlands, where members of the Medicines 
Evaluation Board are appointed directly by the 
Crown, thereby enabling actions that are inde-
pendent of interference by other government 
authorities, such as the Ministry of Health [163]. 
All 10 countries examined by the WHO require 
registration of pharmaceutical products, but they 
differ on the documentation requirements for 
evidence of safety and efficacy [163]. Some coun-
tries carry out independent assessments while 
others, especially many developing countries, rely 
on WHO assessments or other sources [163]. 
With the exception of Cyprus, the remaining nine 
countries surveyed by the WHO were found to 
regulate the conduct of clinical trials, but with 
varying rates of participation of healthcare pro-
fessionals in reporting adverse drug reactions 
[163]. Another source noted that countries also 
differ on the extent of emphasis on quantitative or 
qualitative analysis for assessing pre‐ and post-
marketing data [171].

Further, within Europe, each country has its 
own regulatory agency, for instance the UK 
Medicines and Healthcare Products Regulatory 
Agency (MHRA), formed in 2003 as a merger of 
the Medicines Control Agency (MCA) and the 
Medical Devices Agency (MDA). In addition, 
since January 1998, some drug registration and 
approval within the European Union (EU) has 
shifted away from the national licensing author-
ities of EU members to the centralized authority 
of the European Medicines Evaluation Agency 
(EMEA), which was established in 1993 [172]. 
To facilitate this centralized approval process, 
the EMEA pushed for harmonization of drug 
approvals. While the goals of harmonization are 
to create a single pharmaceutical market in 
Europe and to shorten approval times, concerns 
were voiced that harmonized safety standards 
would lower the stricter standards that were 
favored by some countries such as Sweden, and 
would compromise patient safety [173]. Now 
called the European Medicines Agency (EMA), 
this is a decentralized EU body responsible for 
the scientific evaluation and supervision of 
medicines. These functions are performed by 
the EMA’s Committee for Medicinal Products 
for Human Use (CHMP). EMA authorization to 
market a drug is valid in all EU countries, but 
individual national medicines agencies are 
responsible for monitoring the safety of 
approved drugs and sharing this information 
with the EMA [174].

 Potential Contributions 
of Pharmacoepidemiology

The potential contributions of pharmacoepide-
miology are now well recognized, even though 
the field is still relatively new. However, some 
contributions are already apparent (see 
Table  1.1). In fact, in the 1970s the FDA 
requested postmarketing research at the time of 
approval for about one third of drugs, compared 
to over 70% in the 1990s [175]. Since the passage 
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of PDUFA IV, the FDA has the right to require 
that such studies be completed. In this section 
of this chapter, we will first review the potential 
for pharmacoepidemiologic studies to supple-
ment the information available prior to market-
ing, and then review the new types of 
information obtainable from postmarketing 
pharmacoepidemiologic studies, but not obtain-
able prior to drug marketing. Finally, we will 
review the general, and probably most impor-
tant, potential contributions such studies can 
make. In each case, the relevant information 
available from premarketing studies will be 
briefly examined first, to clarify how postmar-
keting studies can supplement it.

Supplementary Information

Premarketing studies of drug effects are neces-
sarily limited in size. After marketing, nonex-
perimental epidemiologic studies can be 

performed, evaluating the effects of drugs 
administered as part of ongoing medical care. 
These allow the cost‐effective accumulation of 
much larger numbers of patients than those 
studied prior to marketing, resulting in a more 
precise measurement of the incidence of adverse 
and beneficial drug effects (see Chapter 4). For 
example, at the time of drug marketing, prazo-
sin was known to cause a dose‐dependent first 
dose syncope [176,177], but the FDA requested 
that the manufacturer conduct a postmarketing 
surveillance study of the drug in the US to quan-
titate its incidence more precisely [122]. In 
recent years, there has even been an attempt, in 
selected special cases, to release critically 
important drugs more quickly by taking advan-
tage of the work that can be performed after 
marketing. Probably the best‐known early 
example was zidovudine [178,179]. More 
recently, this has been the case with a number of 
cancer drugs, including at least one where initial 
expectations of efficacy were not confirmed in 
definitive trials after marketing, and were then 
proven again later in a subgroup, leading to the 
product being removed from the market and 
then marketed again. As already noted, the 
increased sample size available after marketing 
also permits a more precise determination of 
the correct dose to be used [99,101,180,181]. 
The study of drug interactions, as previously 
discussed, is analogous (see also Chapter 40).

Premarketing studies also tend to be very arti-
ficial. Important subgroups of patients are not 
typically included in studies conducted before 
drug marketing, usually for ethical reasons. 
Examples include the elderly, children, and 
pregnant women. Studies of the effects of drugs 
in these populations generally must be con-
ducted after drug marketing [182]. (See also 
Chapter 22.)

Additionally, for reasons of statistical effi-
ciency, premarketing clinical trials generally 
seek subjects who are as homogenous as possi-
ble, in order to reduce unexplained variability in 
the outcome variables measured and increase 

Table 1.1 Potential contributions of 
pharmacoepidemiology.

A) Information which supplements the information 
available from premarketing studies – better 
quantitation of the incidence of known adverse and 
beneficial effects
1) Higher precision
2) In patients not studied prior to marketing, e.g., 

the elderly, children, pregnant women
3) As modified by other drugs and other illnesses
4) Relative to other drugs used for the same 

indication
B) New types of information not available from 

premarketing studies
1) Discovery of previously undetected adverse and 

beneficial effects
i) Uncommon effects

ii) Delayed effects
2) Patterns of drug utilization
3) The effects of drug overdoses
4) The economic implications of drug use

C) General contributions of pharmacoepidemiology
1) Reassurances about drug safety
2) Fulfillment of ethical and legal obligations
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the probability of detecting a difference between 
the study groups, if one truly exists. For these 
reasons, certain patients are often excluded, 
including those with other illnesses or those 
who are receiving other drugs. Postmarketing 
studies can explore how factors such as other ill-
nesses and other drugs might modify the effects 
of the drugs, as well as looking at the effects of 
differences in drug regimen, adherence, and so 
on [183]. For example, after marketing, the oph-
thalmic preparation of timolol was noted to 
cause many serious episodes of heart block and 
asthma, resulting in more than 10 deaths. These 
effects were not detected prior to marketing, as 
patients with underlying cardiovascular or res-
piratory disease were excluded from the pre-
marketing studies [184].

Finally, to obtain approval to market a drug, a 
manufacturer needs to evaluate its overall safety 
and efficacy, but does not need to evaluate its 
safety and efficacy relative to any other drugs 
available for the same indication. To the con-
trary, with the exception of illnesses that could 
not ethically be treated with placebos, such as 
serious infections and malignancies, it is gener-
ally considered preferable, or even mandatory, 
to have studies with placebo controls. There are 
a number of reasons for this preference. First, it 
is easier to show that a new drug is more effec-
tive than a placebo than to show that it is more 
effective than another effective drug. Second, 
one cannot actually prove that a new drug is as 
effective as a standard drug. A study showing 
that a new drug is no worse than another effec-
tive drug does not provide assurance that it is 
better than a placebo; one simply could have 
failed to detect that it was in fact worse than the 
standard drug. One could require a demonstra-
tion that a new drug is more effective than 
another effective drug, but this is a standard 
that does not and should not have to be met. 
Yet, optimal medical care requires information 
on the effects of a drug relative to the alterna-
tives available for the same indication. This 
information must often await studies conducted 

after drug marketing. Indeed, as noted, this is a 
major component of the new focus on CER (see 
Chapter 26).

New Types of Information Not 
Available from Premarketing Studies

As already mentioned, premarketing studies are 
necessarily limited in size (see also Chapter 4). 
The additional sample size available in postmar-
keting studies permits the study of drug effects 
that may be uncommon but important, such as 
drug‐induced agranulocytosis [185].

Premarketing studies are also necessarily lim-
ited in time; they must come to an end, or the 
drug could never be marketed. In contrast, 
postmarketing studies permit the study of 
delayed drug effects, such as the unusual clear 
cell adenocarcinoma of the vagina and cervix, 
which occurred two decades later in women 
exposed in utero to diethylstilbestrol [15].

The patterns of physician prescribing and 
patient drug utilization often cannot be pre-
dicted prior to marketing, despite pharmaceuti-
cal manufacturers’ best attempts to predict 
when planning for drug marketing. Studies of 
how a drug is actually being used, and determi-
nants of changes in these usage patterns, can 
only be performed after drug marketing (see 
Chapters 18 and 19).

In most cases, premarketing studies are per-
formed using selected patients who are closely 
observed. Rarely are there any significant over-
doses in this population. Thus, the study of the 
effects of a drug when ingested in extremely 
high doses is rarely possible before drug mar-
keting. Again, this must await postmarketing 
pharmacoepidemiologic studies [186].

Finally, it is only in the past decade or two that 
pharmacoepidemiologists have become more 
sensitive to the costs of medical care, and the 
techniques of health economics been applied to 
evaluate the cost implications of drug use [187]. 
It is clear that exploration of the costs of drug 
use requires consideration of more than just the 
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costs of the drugs themselves. The costs of a 
drug’s adverse effects may be substantially 
higher than the cost of the drug itself, if these 
adverse effects result in additional medical care 
and possibly even hospitalizations [188]. 
Conversely, a drug’s beneficial effects could 
reduce the need for medical care, resulting in 
savings that could be much larger than the cost 
of the drug itself. As with studies of drug utiliza-
tion, the economic implications of drug use can 
be predicted prior to marketing, but can only be 
rigorously studied after marketing (see 
Chapter 34).

General Contributions 
of Pharmacoepidemiology

Lastly, it is important to review the general 
contributions that pharmacoepidemiology can 
make. As an academic or a clinician, one is 
most interested in the new information about 
drug effects and drug costs that can be gained 

from pharmacoepidemiology. Certainly, these 
are the findings that receive the greatest public 
and political attention. However, often no new 
information is obtained, particularly about 
new adverse drug effects. This is not a disap-
pointing outcome, but in fact a very reassuring 
one, and this reassurance about drug safety is 
one of the most important contributions that 
pharmacoepidemiologic studies can make. 
Related to this is the reassurance that the spon-
sor of the study, whether manufacturer or reg-
ulator, is fulfilling its organizational duty 
ethically and responsibly by looking for any 
undiscovered problems that may exist. In an 
era of product liability litigation, this is an 
important assurance. One cannot change 
whether a drug causes an adverse reaction, and 
the fact that it does will hopefully eventually 
become evident. What can be changed is the 
perception about whether a manufacturer did 
everything possible to detect it and was not 
negligent in its behavior.
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Generally, pharmacology deals with the study of 
drugs, while clinical pharmacology deals with 
the study of drugs in humans. More specifically, 
clinical pharmacology evaluates the characteris-
tics, effects, properties, reactions, and uses of 
drugs. Of particular interest is their therapeutic 
value in humans, including their toxicology, 
safety, pharmacodynamics, and pharmacoki-
netics. While the foundation of the discipline is 
underpinned by basic pharmacology (i.e., the 
study of the interactions that occur between a 
living organism and exogenous chemicals that 
alter normal biochemical function), the impor-
tant emphasis is the application of pharmaco-
logic principles and methods in the care of 
patients. It has a broad scope, from the discov-
ery of new target molecules and molecular 
 targets to the evaluation of clinical utility in spe-
cific populations. Clinical pharmacology bridges 
the gap between laboratory science and medical 
practice. Its main objective is to promote the 
safe and effective use of drugs, maximizing 
 beneficial drug effects while minimizing 
 harmful side effects. It is important that car-
egivers are skilled in areas of drug information, 
medication safety, and other aspects of phar-
macy practice related to clinical pharmacology. 

Clinical pharmacology is an important bridging 
discipline that necessitates knowledge about 
dose exposure (pharmacokinetics), exposure 
response (pharmacodynamics), and response 
outcomes to define the therapeutic window 
(i.e.,  the dosage of a medication between the 
amount that produces the desired or beneficial 
effect and the amount that produces more 
adverse effects than desired effects) of a drug in 
various patient populations. Likewise, clinical 
pharmacology principles also guide dose modi-
fications in various patient subpopulations 
(pediatrics, pregnancy, the elderly, and those 
with organ impairment) and/or dose adjust-
ments for various lifestyle factors (food, time of 
day, drug interactions).

The discovery and development of new med-
icines are reliant upon clinical pharmacology 
research. Scientists in academic, regulatory, 
and industrial settings participate in this 
research as part of the overall drug develop-
ment process. Likewise, the output from clini-
cal pharmacology investigation appears in the 
drug monograph or package insert of all new 
medicines, and forms the basis of how drug 
dosing information is communicated to health-
care providers.
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 Clinical Pharmacology 
and Pharmacoepidemiology

Pharmacoepidemiology is the study of the 
 utilization and effects of drugs in large numbers 
of people (see Chapter  1). To accomplish this, 
pharmacoepidemiology borrows from both 
clinical pharmacology and epidemiology. Thus, 
pharmacoepidemiology can also be called a 
bridging science spanning both clinical phar-
macology and epidemiology. Part of the task of 
clinical pharmacology is to provide a risk– 
benefit assessment for the effect of drugs in 
patients. Studies that estimate the probability of 
beneficial effects in populations, or the proba-
bility of adverse effects in populations, will 
 benefit from  using epidemiologic methods. 
Pharmacoepidemiology then can also be defined 
as the application of epidemiologic methods to 
the content area of clinical pharmacology. 
Figure  2.1 illustrates the relationship between 

clinical pharmacology and pharmacoepidemiol-
ogy, as well as some of the specific research 
areas reliant on both disciplines.

 Basics of Clinical Pharmacology

Clinical pharmacology encompasses drug com-
position, drug biopharmaceutic properties, 
interactions, toxicology, and effects (both 
 desirable and undesirable) that can be used in 
therapy of diseases. As described earlier, under-
lying the discipline of clinical pharmacology are 
the fields of pharmacokinetics and pharmacody-
namics, and each of these disciplines can be 
 further defined by the unique processes that 
 dictate composite pathways (e.g., absorption, 
distribution, metabolism, elimination). Clinical 
pharmacology is essential both to our 
 understanding of how drugs work as  well as 
how  to guide their administration. Individual 

Clinical
pharmacology Epidemiology

PK

PD

P

E

CP + PE
Overlap

• Drug interactions
• Global trends in prescribing
• Generic vs reference utilization
• Management of ADRs
• Screening studies (drug

development)
• Lifestyle effects on drug therapy
• Special population drug therapy
• Equivalence testing
• Spontaneous reporting of safety 

Pharmacoepidemiology borrows from 
both clinical pharmacology and 
epidemiology. Thus, pharmacoepide-
miology can also be called a bridging 
science spanning both clinical 
pharmacology and epidemiology. 
Part of the task of clinical pharmacol-
ogy is to provide a risk-benefit 
assessment for the effect of drugs in 
patients. 

Figure 2.1 Relationship between clinical pharmacology and pharmacoepidemiology, illustrating the overlapping 
areas of interest. ADRs, adverse drug reactions; CP, clinical pharmacology; PD, pharmacodynamics; PE, 
pharmacoepidemiology; PK, pharmacokinetics.



Pharmacooinetics 29

pharmacotherapy can be challenging due to 
physiologic factors that may alter drug kinetics 
(age, size, etc.), pathophysiologic differences 
that  may alter pharmacodynamics, disease 
 subpopulations that may differ from the 
“ mainstream population,” and other factors that 
may result in great variation in safety and efficacy 
outcomes. The situation becomes even more 
 difficult when one considers critically ill popula-
tions and the  paucity of well‐controlled clinical 
trials in  vulnerable populations. Likewise, health-
care providers who prescribe medications to the 
 critically ill and other  difficult‐to‐manage 
patients must have some understanding of the 
basic processes that govern the current dosing 
recommendations for their patients.

 Pharmacokinetics

Pharmacokinetics refers to the study of the 
mechanisms of absorption and distribution of 
an administered drug, the chemical changes of 
the substance in the body (metabolism), and the 
effects and routes of excretion of the metabo-
lites of the drug (elimination). Each of these 
subprocesses is defined in greater detail.

Absorption

Absorption is the process of drug transfer from 
the site of administration to the bloodstream. 
The rate and efficiency of absorption depend on 
the route of administration. For intravenous 
administration, absorption is complete; the total 
dose reaches the systemic circulation. Drugs 
administered enterally may be absorbed by 
either passive diffusion or active transport. The 
bioavailability (F) of a drug is defined by the 
fraction of the administered dose that reaches 
the systemic circulation. If a drug is adminis-
tered intravenously, then the bioavailability is 
100% and F = 1.0. When drugs are administered 
by routes other than intravenously, the bioavail-
ability is usually less. Bioavailability is reduced 

by incomplete absorption, first‐pass metabo-
lism, and distribution into other tissues.

Volume of Distribution

The volume of distribution (Vd) is a hypotheti-
cal volume of fluid through which a drug is 
 dispersed. A drug rarely disperses solely into the 
water compartments of the body. Instead, the 
majority of drugs disperse to several compart-
ments, including adipose tissue and plasma 
 proteins. The total volume into which a drug 
disperses is called the apparent volume of distri-
bution. This volume is not a physiologic space, 
but instead a conceptual parameter. It relates 
the total amount of drug in the body to the con-
centration of the drug (C) in the blood or 
plasma: Vd = Drug/C.

Figure 2.2 represents the fate of a drug after 
intravenous administration. After administra-
tion, a maximal plasma concentration is 
achieved, and the drug is immediately distrib-
uted. The plasma concentration then decreases 
over time. This initial phase is called the alpha 
(α) phase of drug distribution, where the decline 
in plasma concentration is due to the distribu-
tion of the drug. Once a drug is distributed, it 
undergoes metabolism and elimination. The 
second phase is called the beta (β) phase, where 
the decline in plasma concentration is due to 
drug metabolism and clearance. The terms A 
and B are intercepts with the Y axis. The extrap-
olation of the beta phase defines B. The dotted 
line is generated by subtracting the extrapolated 
line from the original concentration line. This 
second line defines alpha and A. The plasma 
concentration can be determined using the 
 formula C = Ae−αt + Be−βt. The distribution and 
elimination half‐lives can be determined by t1/2α 
= 0.693/α and t1/2β = 0.693/β, respectively [1]. 
For drugs in which distribution is homogenous 
along the varied physiologic spaces, the distinc-
tion between the alpha and beta phases may be 
subtle, and essentially a single phase best 
describes the decline in drug concentration.
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Metabolism

The metabolism of drugs is catalyzed by 
enzymes, and most reactions follow Michaelis 
Menten kinetics: V(rate of drug metabolism) = 
[((Vmax)(C)/Km) + (C)], where C is the drug 
concentration and Km is the Michaelis Menten 
constant [1]. In most situations, the drug 
 concentration is much less than Km and the 
equation simplifies to V = (Vmax)(C)/Km. In 
this case, the rate of drug metabolism is directly 
proportional to the concentration of free drug 
and follows first‐order kinetics. A constant 
 percentage of the drug is metabolized over time, 
and the rate of elimination is proportional to the 
amount of drug in the body.

Most drugs used in the clinical setting are 
eliminated in this manner. A few drugs, such as 
aspirin, ethanol, and phenytoin, are used in 
higher doses, resulting in higher plasma con-
centrations. In these situations, C is much 
greater than Km, and the equation reduces to 
V(rate of drug metabolism) = (Vmax)(C)/(C) = 
Vmax. The enzyme system becomes saturated 
by a high free‐drug concentration, and the rate 
of metabolism is constant over time. This is 

called zero‐order kinetics, and a constant 
amount of drug is metabolized per unit of time. 
A large increase in serum concentration can 
result from a small increase in dose for drugs 
that follow zero‐order elimination.

The liver is the principal organ of drug metab-
olism. Other organs that display considerable 
metabolic activity include the gastrointestinal 
tract, the lungs, the skin, and the kidneys. 
Following oral administration, many drugs are 
absorbed intact from the small intestine and 
transported to the liver via the portal system, 
where they are metabolized. This process is 
called first‐pass metabolism, and may greatly 
limit the bioavailability of orally administered 
drugs. In general, all metabolic reactions can be 
classified as either Phase I or Phase II biotrans-
formations. Phase I reactions usually convert 
the parent drug to a polar metabolite by intro-
ducing or unmasking a more polar site (‐OH,  
‐NH2). If Phase I metabolites are sufficiently 
polar, they may be readily excreted. However, 
many Phase I metabolites undergo a subsequent 
reaction in which endogenous substances such 
as glucuronic acid, sulfuric acid, or an amino 
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acid combine with the metabolite to form a 
highly polar conjugate. Many drugs undergo 
these sequential reactions. However, Phase II 
reactions may precede Phase I reactions, as in 
the case of isoniazid.

Phase I reactions are usually catalyzed by 
enzymes of the cytochrome P450 system. These 
drug‐metabolizing enzymes are located in the 
lipophilic membranes of the endoplasmic retic-
ulum of the liver and other tissues. Three gene 
families, CYP1, CYP2, and CYP3, are responsi-
ble for most drug biotransformations. The 
CYP3A subfamily accounts for more than 50% 
of Phase I drug metabolism, predominantly by 
the CYP3A4 subtype. CYP3A4 is responsible 
for the metabolism of drugs commonly used in 
the intensive care setting, including acetami-
nophen, cyclosporine, diazepam, methadone, 
midazolam, spironolactone, and tacrolimus. 
Most other drug biotransformations are per-
formed by CYP2D6 (e.g., clozapine, codeine, 
flecainide, haloperidol, oxycodone), CYP2C9 
(e.g., phenytoin, S‐warfarin), CYP2C19 (e.g., 
diazepam, omeprazole, propranolol), CYP2E1 
(e.g., acetaminophen, enflurane, halothane), 
and CYP1A2 (e.g., acetaminophen, caffeine, 
theophylline, warfarin).

Drug biotransformation reactions may be 
enhanced or impaired by multiple factors, 
including age, enzyme induction or inhibition, 
pharmacogenetics, and the effects of other 
 disease states [2]. For example, the metabolic 
pathways for acetaminophen have been well 
studied. Approximately 95% of the metabolism 
occurs via conjugation to glucuronide (50–60%) 
and sulfate (25–35%). Most of the remainder 
of  acetaminophen is metabolized via the 
cytochrome P450 forming N‐acetyl‐p‐benzo-
quinone imine (NAPQI), which is thought to be 
responsible for hepatotoxicity. This minor but 
important pathway is catalyzed by CYP 2E1, 
and to a lesser extent by CYP 1A2 and CYP 3A4. 
NAPQI is detoxified by reacting with either 
 glutathione directly or through a glutathione 
transferase catalyzed reaction. When the 

hepatic synthesis of glutathione is overwhelmed, 
manifestations of toxicity appear, producing 
centrilobular necrosis. In the presence of a 
potent CYP 2E1 inhibitor, disulfiram, there was 
a 69% reduction in the urinary excretion of 
these 2E1 metabolic products, which supports 
the assignment of a major role for 2E1 in the for-
mation of NAPQI [3]. Studies of inhibitors of 
other CYP pathways (e.g., 1A2 and 3A4) have 
failed to document a significant effect on the 
urinary excretion of glutathione conjugates [4]; 
thus, 2E1 appears to be the primary pathway 
overwhelmingly responsible for NAPQI. CYP 
2E1 is unique among the CYP gene families in 
its ability to produce reactive oxygen radicals 
through a reduction of O2, and is the only CYP 
system strongly induced by alcohol, which is 
itself a substrate. In addition to alcohol, isonia-
zid acts as an inducer and a substrate. 
Ketoconazole and other imidazole compounds 
are inducers but not substrates. Barbiturates 
and phenytoin, which are nonspecific inducers, 
have no role as CYP 2E1 inducers, nor are they 
substrates for that system. Phenytoin in fact 
may be hepatoprotective, because it is an 
inducer of the glucuronidation metabolic path-
way for acetaminophen, thus shunting metabo-
lism away from NAPQI production [5].

Elimination

Elimination is the process by which a drug is 
removed or “cleared” from the body. Clearance 
(CL) is usually referred to as the amount of 
blood from which all drug is removed per unit 
of time (volume/time). The main organs respon-
sible for drug clearance are the kidneys and the 
liver. The total body clearance of a drug is equal 
to the sum of the clearances from all mecha-
nisms. Typically, this is partitioned into renal 
and nonrenal clearance. Most elimination by 
the kidneys is accomplished by glomerular 
 filtration. The amount of drug that is filtered is 
determined by glomerular integrity, the size and 
charge (electrostatic force of a molecule related 



Basic Principles of Clinical Pharmacology Relevant to Pharmacoepidemiologic Studies32

to whether it has gained or lost electrons, 
 positive or negative respectively) of the drug, 
water solubility, and the extent of protein bind-
ing. Highly protein‐bound drugs are not readily 
filtered. Therefore, estimation of the glomerular 
filtration rate (GFR) has traditionally served as 
an approximation of renal function.

In addition to glomerular filtration, drugs 
may be eliminated from the kidneys via active 
secretion. Secretion occurs predominantly at 
the proximal tubule, where active transport 
 systems secrete primarily organic acids and 
bases. Organic acids include most cephalospor-
ins, loop diuretics, methotrexate, nonsteroidal 
anti‐inflammatories, penicillin, and thiazide 
diuretics. Organic bases include ranitidine and 
morphine. As drugs move toward the distal 
convoluting tubule, their concentration 
increases. High urine flow rates decrease the 
concentration of the drug in the distal tubule, 
decreasing the likelihood that the drug will 
 diffuse from the lumen. For both weak acids and 
bases, the nonionized form of the drug is 
 reabsorbed more readily. Altering the pH (ion 
trapping) can minimize reabsorption, by plac-
ing a charge on the drug and preventing its dif-
fusion. For example, salicylate is a weak acid. In 
case of salicylate toxicity, urine alkalization 
places a charge on the molecule, and increases 
its elimination. The liver also contributes to 
elimination through metabolism or excretion 
into the bile. After a drug is secreted in the bile, 
it may then be either excreted into the feces or 
reabsorbed via enterohepatic recirculation [6].

The half‐life of elimination is the time it 
takes to clear half of the drug from plasma. It is 
directly proportional to the Vd, and inversely 
proportional to CL: t1/2β = (0.693) (Vd)/CL.

 Special Populations

The term “special populations” as applied to 
drug development refers to discussions in 
the early 1990s among industry, academic, and 

 regulatory scientists struggling with the then 
current practice that early drug development 
was focused predominantly on young, 
Caucasian male populations. Representatives 
from the US, Europe, and Japan jointly issued 
regulatory requirements for drug testing and 
labeling in “special populations” (namely the 
elderly) in 1993. In later discussions, this gener-
alization was expanded to include four major 
demographic segments (women, the elderly, 
pediatric, and major ethnic groups); despite the 
large size of each of these population segments, 
pharmaceutical research had been limited in 
each of these areas. Current appreciation for 
these populations also benefits from a greater 
understanding of the heterogeneity of the even-
tual marketplace for many new chemical enti-
ties. More importantly, these “special 
populations” also represent diverse subpopula-
tions of patients in whom dosing guidance is 
often needed, and likewise targeted clinical 
pharmacology research is essential.

Elderly

There are many physical signs consistent with 
aging, including wrinkles, change of hair color 
to gray or white, hair loss, lessened hearing, 
diminished eyesight, slower reaction times, and 
decreased agility. In clinical pharmacology, we 
are more concerned with how aging affects 
physiologic processes that dictate drug pharma-
cokinetics and pharmacodynamics. Advancing 
age is characterized by impairment in the 
 function of the many regulatory processes that 
provide functional integration between cells 
and organs. Under these circumstances, failure 
to maintain homeostasis under conditions of 
physiologic stress can exist. This can often 
explain, at least in part, the increased interindi-
vidual variability that occurs as people age.

Cardiac structure and function, renal and gas-
trointestinal systems, and body composition are 
the physiologic systems most often implicated 
when pharmacokinetic or pharmacodynamic 
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differences are observed between elderly and 
young populations. Table  2.1 lists the primary 
physiologic factors affected by aging [7]. 
Recognition of these factors is important for 
predicting the implications of aging for drug 
pharmacokinetics especially.

With respect to absorption, the impact of age 
is unclear, and many conflicting results exist. 
While many studies have not shown significant 
age‐related differences in absorption rates for 
specific drugs, the absorption of vitamin B12, 
iron, and calcium is slower through reduced 
active transport mechanisms [8,9]. A reduction 
in first‐pass metabolism is associated with 
aging, most likely due to a reduction in liver 
mass and blood flow. Likewise, drugs undergo-
ing a significant first‐pass effect experience an 
increase in bioavailability with age. This is the 
case for drugs like propranolol and labetalol. 

Conversely, drugs administered as prodrugs and 
requiring activation in the liver (e.g., ACE 
[ angiotensin converting enzyme] inhibitors 
enalapril and perindopril) are likely to experi-
ence  reduction in this phase and likewise 
reduced exposure of the active species.

Based on age‐related changes in body com-
position, polar drugs, which are primarily water 
soluble, often exhibit smaller volumes of distri-
bution, resulting in higher plasma concentra-
tions in older patients. This is the case for 
agents including ethanol, theophylline, digoxin, 
and gentamicin [7,10]. Conversely, nonpolar 
compounds are often lipid soluble and exhibit 
larger volumes of distribution in older patients. 
The impact of the larger Vd is prolongation of 
half‐life with age. This is the case for drugs such 
as chlormethiazole and thiopentone [11,12]. 
Conflicting results have been reported with 

Table 2.1 Physiologic systems affected during aging that influence drug pharmacokinetic and/or pharmacodynamic 
behavior.

Physiologic System Impact of Aging

Cardiac structure and 
function

 ● Reduced elasticity and compliance of the aorta and great arteries (higher systolic 
arterial pressure, increased impedance to left ventricular hypertrophy, and 
interstitial fibrosis)

 ● Decrease in rate of myocardial relaxation
 ● Left ventricle stiffens and takes longer to relax and fill in diastole
 ● Isotonic contraction is prolonged and velocity of shortening reduced
 ● Reduction in intrinsic heart rate and increased sinoatrial node conduction time

Renal system  ● Renal mass decreases (reduction in nephrons)
 ● Reduced blood flow in the afferent arterioles in the cortex
 ● Renal plasma flow and glomerular filtration rate decline
 ● Decrease in ability to concentrate the urine during water deprivation
 ● Impaired response to water loading

Gastrointestinal system  ● Secretion of hydrochloric acid and pepsin is decreased under basal conditions
 ● Reduced absorption of several substances in the small intestine, including sugar, 

calcium, and iron
 ● Decrease in lipase and trypsin secretion in the pancreas
 ● Progressive reduction in liver volume and liver blood flow

Body composition  ● Progressive reduction in total body water and lean body mass, resulting in a relative 
increase in body fat
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respect to age effects on protein binding [13,14], 
making generalization difficult.

Several drug classes, including water‐soluble 
antibiotics, diuretics, water‐soluble beta‐
adrenoceptor blockers, and nonsteroidal anti‐
inflammatory drugs [7,15], exhibit changes in 
clearance with age as a result of declining renal 
function. With respect to hepatic metabolism, 
studies have shown that significant reductions 
in clearance with age are observed for Phase I 
pathways in the liver [16–18].

From the standpoint of a clinical trial, age 
 categories are necessary to define the inclusion 
and exclusion criteria for the population tar-
geted for enrollment. Most developed world 
countries have accepted the chronological age 
of 65 years as a definition of “elderly” or an older 
person. The salient point is that pharmaceutical 
sponsors are increasingly encouraged to include 
a broader range of ages in their pivotal trials 
than before, or specifically to target an elderly 
subpopulation in a separate trial, consistent 
with Food and Drug Administration (FDA) 
guidance. The FDA guideline for studies in the 
elderly is directed principally toward new 
molecular entities likely to have significant use 
in that population, either because the disease 
intended to be treated is characteristically a 
 disease of aging (e.g., Alzheimer’s disease) or 
because the population to be treated is known 
to include substantial numbers of geriatric 
patients (e.g., hypertension).

Pediatrics

As children develop and grow, changes in body 
composition, development of metabolizing 
enzymes, and maturation of renal and liver 
function all have impacts on drug disposition 
[19,20] (see also Chapter 22).

Renal
Renal function in the premature and full‐term 
neonate, both glomerular filtration and tubular 
secretion, is significantly reduced compared to 

older children. Maturation of renal function is a 
dynamic process that begins during fetal life 
and is complete by early childhood. Maturation 
of tubular function is slower than that of glo-
merular filtration. The glomerular filtration 
rate is approximately 2–4 ml/minute/1.73 m2 in  
full‐term neonates, but it may be as low as  
0.6–0.8 ml/minute/1.73 m2 in preterm neonates. 
The glomerular filtration rate increases rapidly 
during the first two weeks of life and continues 
to rise until adult values are reached at 8– 
12 months of age. For drugs that are renally 
eliminated, impaired renal function decreases 
clearance, increasing the half‐life. Therefore, for 
drugs that are primarily eliminated by the 
 kidney, dosing should be performed in an age‐
appropriate fashion that takes into account both 
maturational changes in kidney function [21].

Hepatic
Hepatic biotransformation reactions are sub-
stantially reduced in the neonatal period. At 
birth, the cytochrome p450 system is 28% of 
that of the adult [22]. The expression of Phase I 
enzymes such as the P‐450 cytochromes 
changes markedly during development. 
CYP3A7, the predominant CYP isoform 
expressed in the fetal liver, peaks shortly after 
birth and then declines rapidly to levels that are 
undetectable in most adults. Within hours after 
birth, CYP2E1 activity increases, and CYP2D6 
becomes detectable soon thereafter. CYP3A4 
and CYP2C appear during the first week of life, 
whereas CYP1A2 is the last hepatic CYP to 
appear, at 1–3 months of life [22,23]. The ontog-
eny of Phase II enzymes is less well established 
than the ontogeny of reactions involving Phase I 
enzymes. Available data indicate that the indi-
vidual isoforms of glucuronosyltransferase 
(UGT) have unique maturational profiles with 
pharmacokinetic consequences. For example, 
the glucuronidation of acetaminophen (a sub-
strate for UGT1A6 and, to a lesser extent, 
UGT1A9) is decreased in newborns and young 
children compared with adolescents and adults. 
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Glucuronidation of morphine (a UGT2B7 
 substrate) can be detected in premature infants 
as young as 24 weeks of gestational age [24,25].

Gastrointestinal
Overall, the rate at which most drugs are 
absorbed is slower in neonates and young 
infants than in older children. As a result, the 
time required to achieve maximal plasma levels 
is longer in the very young. The effect of age on 
enteral absorption is not uniform and is difficult 
to predict [19,23]. Gastric emptying and intesti-
nal motility are the primary determinants of the 
rate at which drugs are presented to and dis-
persed along the mucosal surface of the small 
intestine. At birth, the coordination of antral 
contractions improves, resulting in a marked 
increase in gastric emptying during the first 
week of life. Similarly, intestinal motor activity 
matures throughout early infancy, with conse-
quent increases in the frequency, amplitude, 
and duration of propagating contractions 
[26,27]. Changes in the intraluminal pH in 
 different segments of the gastrointestinal tract 
can directly affect both the stability and the 
degree of ionization of a drug, thus influencing 
the  relative amount of the drug available for 
absorption. During the neonatal period, intra-
gastric pH is relatively elevated (greater than 4). 
Thus, oral administration of acid‐labile com-
pounds such as penicillin G produces greater 
bioavailability in neonates than in older infants 
and  children [28]. In contrast, drugs that are 
weak acids, such as phenobarbital, may require 
larger oral doses in the very young in order to 
achieve  therapeutic plasma levels. Other factors 
that affect the rate of absorption include age‐ 
associated development of villi, splanchnic 
blood flow, changes in intestinal microflora, and 
intestinal surface area [27].

Body Composition
Age‐dependent changes in body composition 
alter the physiologic spaces into which a drug 
may be distributed. The percentage of total body 

water drops from about 85% in premature infants 
to 75% in full‐term infants to 60% in the adult. 
Extracellular water decreases from 45% in the 
infant to 25% in the adult. Total body fat in the 
premature infant can be as low as 1%, compared 
to 15% in the normal, term infant. Many drugs 
are less bound to plasma proteins in the neonate 
and infant than in the older child [29]. Limited 
data in neonates suggest that the passive diffu-
sion of drugs into the central nervous system is 
age dependent, as reflected by the progressive 
increase in the ratios of brain phenobarbital to 
plasma phenobarbital from 28 to 39 weeks of 
 gestational age, demonstrating the increased 
transport of phenobarbital into the brain [30].

Pregnancy

The FDA classifies drugs into five categories of 
safety for use during pregnancy – that is, nor-
mal pregnancy, labor, and delivery  –  as out-
lined in Table  2.2 (see also Chapter  22). Few 
well‐ controlled studies of therapeutic drugs 

Table 2.2 FDA categories of drug safety during pregnancy.

Category Description

A Controlled human studies show no fetal 
risks; these drugs are the safest

B Animal studies show no risk to the fetus 
and no controlled human studies have 
been conducted, or animal studies show 
a risk to the fetus but well‐controlled 
human studies do not

C No adequate animal or human studies 
have been conducted, or adverse fetal 
effects have been shown in animals but 
no human data are available

D Evidence of human fetal risk exists, but 
benefits may outweigh risks in certain 
situations (e.g., life‐threatening disorders, 
serious disorders for which safer drugs 
cannot be used or are ineffective)

X Proven fetal risks outweigh any possible 
benefit
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have been conducted in pregnant women. 
Most information about drug safety during 
pregnancy is derived from animal studies and 
uncontrolled studies in people (e.g., postmar-
keting reports).

Observational studies have documented that 
pregnant women take a variety of medicines 
during pregnancy [31]. While changes in drug 
exposure during pregnancy are well docu-
mented, a mechanistic understanding of these 
effects is not clear [32]. The few studies that 
have been conducted suggest that bioavailabil-
ity is not altered during pregnancy, though 
increased plasma volume and protein binding 
changes can alter the apparent volume of dis-
tribution of some drugs [32]. Likewise, changes 
in volume of distribution and clearance during 
pregnancy can cause increases or decreases in 
the terminal elimination half‐life of drugs. 
Renal excretion of unchanged drugs is 
increased  during pregnancy [32] and hence 
these agents may require dose increases. 
Likewise, the metabolism of drugs via select 
P450‐mediated pathways (3A4, 2D6, and 2C9) 
and UGT isoenzymes is increased during preg-
nancy, necessitating increased dosages of 
drugs metabolized by these pathways [32,33]. 
In contrast, CYP1A2 and CYP2C19 activity is 
decreased during  pregnancy, suggesting dos-
ing reductions for agents metabolized via these 
pathways. The effect of pregnancy on trans-
port proteins is unknown. These data are lim-
ited and, hence, more clinical evidence‐based 
studies to determine the effect of pregnancy on 
the pharmacokinetics and pharmacodynamics 
of commonly used drugs are sorely needed (see 
also Chapter 22).

Organ Impairment

Renal Dysfunction
Renal failure can affect the pharmacokinetics 
of  drugs. In renal failure, the binding of acidic 
drugs to albumin is decreased, because of com-
petition with accumulated organic acids and 

 uremia‐induced structural changes in albumin, 
which decrease drug binding affinity, altering the 
 volume of distribution [15]. Drugs that are more 
than 30% eliminated unchanged in the urine 
are likely to have significantly diminished clear-
ance in the presence of renal insufficiency [15].

Hepatic Dysfunction
Drugs that undergo extensive first‐pass metab-
olism may have a significantly higher oral 
 bioavailability in patients with liver failure than 
in normal subjects. Gut hypomotility may 
delay the peak response to enterally adminis-
tered drugs in these patients. Hypoalbuminemia 
or altered glycoprotein levels may affect the 
 fractional protein binding of acidic or basic 
drugs, respectively. Altered plasma protein 
concentrations may affect the extent of tissue 
distribution of drugs that are normally highly 
protein bound. The presence of significant 
edema and ascites may alter the volume of 
 distribution of highly water‐soluble agents, 
such as aminoglycoside antibiotics. The capac-
ity of the liver to metabolize drugs depends on 
hepatic blood flow and liver enzyme activity, 
both of which can be affected by liver disease. 
In addition, some p450 isoforms are more sus-
ceptible than others to liver disease, impairing 
drug metabolism [18].

Cardiac Dysfunction
Circulatory failure, or shock, can alter the phar-
macokinetics of drugs frequently used in the 
intensive care setting. Drug absorption may 
be  impaired because of bowel wall edema. 
Passive hepatic congestion may impede first‐
pass metabolism, resulting in higher plasma 
concentrations. Peripheral edema inhibits 
absorption by intramuscular parenteral routes. 
The balance of tissue hypoperfusion versus 
increased total body water with edema may 
unpredictably alter the volume of distribution. 
In addition, liver hypoperfusion may alter drug‐
metabolizing enzyme function, especially flow‐
dependent drugs such as lidocaine [34,35].
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Drug Interactions

Patients are often treated with more than one 
drug, and often many, increasing the chance of a 
drug–drug interaction (see also Chapter  40). 
These interactions can alter absorption, distri-
bution, metabolism, and clearance. Drug inter-
actions can affect absorption through formation 
of drug–drug complexes (e.g., significantly 
increased bioavailability of fexofenadine in the 
presence of St. John’s wort [36]), alterations in 
gastric pH, and changes in gastrointestinal 
motility. This can have a substantial impact on 
the bioavailability of enterally administered 
agents. The volume of distribution may be 
altered with competitive plasma protein  binding 
and subsequent changes in free drug concentra-
tions [13,14,37].

Drug biotransformation reactions vary greatly 
among individuals and are susceptible to drug–
drug interactions. Induction is the process by 
which enzyme activity is increased by exposure 
to a certain drug, resulting in an increase in the 
metabolism of other drugs and lower plasma 
concentrations. Common inducers include 
 barbiturates, carbamazepine, isoniazid, and 
rifampin. In contrast, inhibition is the process by 
which enzyme activity is decreased by exposure 
to a certain drug, resulting in a decrease in the 
metabolism of other drugs, and subsequent 
higher plasma concentrations. Common enzyme 
inhibitors include ciprofloxacin, fluconazole, 
metronidazole, quinidine, and valproic acid [2]. 
Inducers and inhibitors of Phase II enzymes 
have been less extensively characterized, but 
some clinical applications of this information 
have emerged, including the use of phenobarbi-
tal to induce glucuronyl transferase activity in 
icteric neonates. Water‐soluble drugs are elimi-
nated unchanged in the kidneys. The clearance 
of drugs that are excreted entirely by glomerular 
filtration is unlikely to be affected by other drugs. 
Organic acids and bases are renally secreted, and 
can compete with one another for elimination, 
resulting in unpredictable drug disposition [15].

 Pharmacodynamics

Pharmacodynamics, in general terms, seeks to 
define what a drug does to the body (i.e., the 
effects or response to drug therapy). 
Pharmacodynamic modeling attempts to char-
acterize measured, physiologic parameters 
before and after drug administration, with the 
effect defined as the change in a physiologic 
parameter relative to its pre‐dose or baseline 
value. Baseline is defined as the physiologic 
parameter without drug dosing, and may be 
complicated in certain situations due to 
 diurnal variations. Efficacy can be defined 
numerically as the expected sum of all benefi-
cial effects following treatment (see also 
Chapter  33). In this case we refer to clinical 
and not necessarily  economic benefits, though 
there clearly may be concordance (see also 
Chapter 34). Similarly, toxicity can be charac-
terized either by the time course of a specific 
toxic event or the composite of toxic responses 
attributed to a common toxicity.

Overview

Pharmacodynamic response to drug therapy 
evolves only after active drug molecules reach 
their intended site(s) of action. Hence, the link 
between pharmacokinetic and pharmacody-
namic processes is implicit. Likewise, the 
respective factors that influence various sub-
processes (absorption, distribution, tolerance, 
etc.) are relevant and may necessitate separate 
study. Differences in pharmacodynamic time 
course among drug entities can be broadly asso-
ciated with the nature of the concentration–
effect relationship as being direct (effect is 
directly proportional to concentration at the 
site of measurement, usually the plasma) or 
indirect (effect exhibits some type of temporal 
delay with respect to drug concentration, 
either  because of differences between site of 
action and measurement, or because the effect 
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of interest results after other physiologic or 
pharmacologic conditions are satisfied).

Direct effect relationships are easily observed 
with cardiovascular agents whose site of action 
is the vascular space. Pharmacologic effects such 
as blood pressure, ACE inhibition, and inhibi-
tion of platelet aggregation can be characterized 
by direct response relationships. Such relation-
ships can usually be defined by three typical pat-
terns: linear, hyperbolic (Emax), and sigmoid Emax 
functions [38]. These are shown in Figure 2.3. In 
each case, the plasma concentration and drug 
concentration at the effect site are proportional. 

Likewise, the concentration–effect relationship 
is assumed to be independent of time.

Other drugs exhibit an indirect relationship 
between concentration and response. In this 
case, the concentration–effect relationship is 
time dependent. One explanation for such 
effects is hysteresis, which refers to the phenom-
enon where there is a time lapse between a cause 
and its effect. With respect to pharmacodynam-
ics, this most often indicates a situation in which 
there is a delay in equilibrium between plasma 
drug concentration and the concentration of 
active substance at the effect site (thiopental, 
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Figure 2.3 Representative pharmacodynamic relationships for drugs that exhibit direct responses: (A) linear, 
(B) hyperbolic, and (C) Sigmoid‐Emax relationships are shown. S is the slope of the linear response; Emax refers to the 
maximum effect observed; EC50 refers to the concentration at which 50% of the maximal response is achieved; and n 
is the degree of sigmoidicity or shape factor (sometimes referred to as the Hill coefficient).
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fentanyl, and many others). Three conditions 
predominate: the biophase (actual site of drug 
action) is not in the central compartment, the 
mechanism of action involves protein synthesis, 
and/or active metabolites are present. One can 
conceptualize a hypothetical effect compart-
ment (a physical space where drug concentra-
tions are directly correlated with drug actions) 
such that the relationships defined in Figure 2.4 
are only observed when the effect site concen-
tration (Ce) is used as opposed to the plasma 
concentration (Cp). In this situation, a hysteresis 
loop is observed when plotting Ce versus Cp 
(see Figure 2.4).

More complicated models (indirect response 
models) have been used to express the same 
observations, but typically necessitate a greater 
understanding of the underlying physiologic 
process (e.g., cell trafficking, enzyme recruit-
ment, etc.) [38]. The salient point is that 
 pharmacodynamic characterization and like-
wise dosing guidance derived from such investi-
gation stand to be more informative than drug 
concentrations alone. Likewise, pharmacody-
namics may be the discriminating characteristic 
that defines dose adjustment in special popula-
tions. This is the case for the observed markedly 
enhanced sensitivity in infants compared with 
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older children and adults with respect to 
the immunosuppressive effects of cyclosporine 
[39], and for calcium channel blocking effects 
on the PR interval in the elderly [40,41].

 Pharmacogenomics

Pharmacogenomics is the study of how an 
 individual’s genetic inheritance affects the 
body’s response to drugs (see also Chapter 30). 
Pharmacogenomics holds the promise that 
drugs might one day be tailored to individuals 
and adapted to each person’s own genetic 
makeup. Environment, diet, age, lifestyle, and 
state of health all can influence a person’s 
response to medicines, but understanding an 
individual’s genetic composition is thought to 
be the key to creating personalized drugs with 
greater efficacy and safety. Pharmacogenomics 
combines traditional pharmaceutical sciences, 
such as biochemistry, with annotated knowl-
edge of genes, proteins, and single nucleotide 
polymorphisms (SNPs). Genetic variations, or 
SNPs, in the human genome can be a diagnos-
tic tool to  predict a person’s drug response. For 
SNPs to be used in this way, a person’s DNA 
must be sequenced for the presence of specific 
SNPs. SNP screenings will benefit drug devel-
opment and those people whose pharmacog-
enomic screening shows that the drug being 
tested would be harmful or ineffective for them 
would be excluded from clinical trials. Pre‐
screening  clinical trial subjects might also allow 
clinical  trials to be smaller, faster, and therefore 
less expensive. Finally, the ability to assess an 
individual’s reaction to a drug before it is pre-
scribed will increase confidence in prescribing 
the drug and the patient’s confidence in taking 
the drug, which in turn should encourage 
the development of new drugs tested in a like 
 manner. For example, the major enzyme 
responsible for tacrolimus metabolism is 
CYP3A. CYP3A5 genes have  multiple SNPs. 
One study found that at 3, 6, and 12  months 

after heart transplantation, there was a signifi-
cant difference in tacrolimus blood concentra-
tions per dose/kg/day between the CYP3A5 
*1/*3 (CYP3A5 expresser) and the *3/*3 (nonex-
presser) genotypes, with the *1/*3 patients 
requiring larger tacrolimus doses to achieve the 
same blood concentration. It was concluded that 
specific genotypes of CYP3A5 in pediatric heart 
transplant patients require larger tacrolimus 
doses to maintain their tacrolimus blood con-
centration, and that this information could be 
used prospectively to manage patients’ immuno-
suppressive therapy. (See also Chapter  30 for 
molecular pharmacoepidemiology.)

 Model‐Informed Drug 
Development

One of the more recent developments in the 
evolution of clinical pharmacology in the 
 facilitation of early stage drug development is in 
the implementation of model‐informed drug 
development (MIDD) principles by many 
 pharmaceutical and biotech companies. The 
approach is also endorsed by the global regula-
tory community, including the European 
Medicines Agency (EMA) and the FDA. The use 
of modeling and simulation approaches to de‐
risk decision making in drug development is not 
new, but the  systematic integration of the unique 
model assets in an evolving computing environ-
ment that expands with knowledge about candi-
date molecules and/or vaccines is still a work in 
progress for many pharmaceutical sponsors. 
However, feedback from early adopters suggests 
that the approach can reduce both time and cost 
in drug development when conducted in an 
appropriate manner. Figure 2.5 highlights many 
of the common early drug development decision 
milestones, in conjunction with the various 
model types and methodologies that represent 
key stage‐gate milestones.

Many of these milestones represent contri-
butions from clinical pharmacology and the 
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 supportive quantitative disciplines which 
 collaborate in the MIDD effort (e.g., bioinfor-
matics, system pharmacology, drug metabolism 
and pharmacokinetics [DMPK], pharmacomet-
rics, and biostatistics). As Figure  2.5 suggests, 
many of these milestones are not only critical to 
the progression of drug and/or vaccine candi-
dates, but also represent critical go/no go crite-
ria requiring quantitative definition around the 
pace of potential outcomes. The MIDD likewise 
is effective at generating scenarios that explore 
the space of potential outcomes, either through 
direct experimentation or model‐based projec-
tion (i.e., simulation).

In addition to the utility of MIDD in the 
 decision‐making process, MIDD  implementation 
generates modeling assets that can be used in 
later stages of drug development. These can 
 represent inputs to epidemiologic modeling and 
simulation exercises that explore the utility of 
projecting candidate attributes on target popula-
tions of interest, and also accommodate the 
 complexity of the existing standard of care, popu-
lation, and subpopulation differences influenced 
by socioeconomic and lifestyle factors. This 
 represents a new frontier for these disciplines to 
further interact and inform each other.

 Conclusion

Clinical pharmacology serves an important role 
in the development of new drugs and the man-
agement of pharmacotherapy. It is essential 
knowledge that must inform the drug developer, 
the investigator or trialist, the regulator, and the 
caregiver in their respective settings. In the con-
text of pharmacoepidemiologic investigations, 
clinical pharmacology also provides a fundamen-
tal backbone for understanding the expected 
associations between drug therapy and clinical 
benefit, as well as potential toxicity. The pharma-
coepidemiologist must also have intimate knowl-
edge of clinical pharmacology, as the projection of 
performance (clinical and economic), the connec-
tion between utilization, compliance, and the 
complexities of multimodal therapy, and the asso-
ciations of drug behavior with disease‐ or popula-
tion‐specific indices must be defined relative to 
the known clinical pharmacologic principles that 
govern how we expect drugs to behave in humans. 
In an era in which more holistic approaches are 
sought to maintain homeostasis and clinical strat-
egies engage more preventive approaches, clinical 
pharmacology will be an essential discipline to 
discriminate options that are truly beneficial.
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Figure 2.5 The model‐informed drug development (MIDD) approach learns and confirms key characteristics of new 
molecular entities in a quantitative manner, with the goal of providing explicit, reproducible, and predictive evidence 
for optimizing drug development plans and enabling critical decisions. CTS, clinical trial simulation; FTIM, first time in 
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Pharmacoepidemiology applies the methods of 
epidemiology to the content area of clinical 
pharmacology. Chapter  2 reviewed the basic 
principles of clinical pharmacology. Therefore, 
in order to understand the approaches and 
methodologic issues specific to the field of 
 pharmacoepidemiology, the basic principles of 
epidemiology must be understood as well. To 
that end, this chapter will begin with an over-
view of the scientific method in general. This 
will be followed by a discussion of the different 
types of errors one can make in designing a 
study. Next, the chapter will review the criteria 
for the causal nature of an association, which are 
how one can decide whether an association 
demonstrated in a particular study is, in fact, a 
causal association. Finally, the specific study 
designs available for epidemiologic studies, or in 
fact for any clinical studies, will be reviewed. The 
next chapter discusses a specific methodologic 
issue which needs to be addressed in any study, 
but which is of particular importance for phar-
macoepidemiologic studies: the issue of sample 
size. These two chapters are intended to be an 
introduction to the field of epidemiology for the 
neophyte. More information on these principles 
can be obtained from any textbook on epidemi-
ology or clinical epidemiology [1–24].

 Overview of the Scientific  
Method

The scientific method to investigate a research 
question involves a three‐stage process (see 
Figure 3.1). In the first stage, one selects a group 
of subjects for study. These subjects may be 
patients or animals or biologic cells, and are the 
sources for the data sought by the study to 
answer a question of interest. Second, one uses 
the information obtained in this sample of study 
subjects to generalize and draw a conclusion 
about a population in general. This conclusion 
is referred to as an association. Third, one 
 generalizes again, drawing a conclusion about 
a  scientific theory or causation. Each will be 
 discussed in turn.

Any given study is performed on a selection 
of individuals, who represent the study sub-
jects. These study subjects should theoreti-
cally represent a random sample of some 
defined population. For example, one might 
perform a randomized clinical trial of the effi-
cacy of enalapril in lowering blood pressure, 
randomly allocating a total of 40 middle‐aged 
hypertensive men to receive either enalapril or 
placebo and observing their blood pressure six 
weeks later. One might expect to see the blood 

3

Basic Principles of Clinical Epidemiology Relevant 
to Pharmacoepidemiologic Studies
Brian L. Strom

Rutgers Biomedical and Health Sciences, Newark, NJ, USA



OerOiew oof the Scientiofic  ethod 45

pressure of the 20 men treated with the active 
drug decrease more than the blood pressure of 
the 20 men treated with a placebo. In this 
example, the 40 study subjects would repre-
sent the study sample, theoretically a random 
sample of middle‐aged hypertensive men. In 
reality, the study sample is almost never a true 
random sample of the underlying target popu-
lation, because it is logistically impossible to 
identify every individual who belongs in the 
target population and then randomly choose 
from among them. However, the study sam-
ple  is usually treated as if it were a random 
sample of the target population.

At this point, one would be tempted to make 
a generalization that enalapril lowers blood 
pressure in middle‐aged hypertensive men. 
However, one must explore whether this 
observation could have occurred simply by 
chance; that is, due to random variation. If the 
observed outcome in the study was simply a 
chance occurrence, then the same observation 
might not have been seen if one had chosen a 
different sample of 40 study subjects. Perhaps 
more importantly, it might not exist if one 
were able to study the entire theoretical 
 population of all middle‐aged hypertensive 
men. In order to evaluate this possibility, one 
can perform a statistical test, which allows an 
investigator to quantitate the probability that 

the observed outcome in this study (i.e., the 
difference seen between the two study groups) 
could have happened simply by chance. There 
are explicit rules and procedures for how one 
should properly make this determination: the 
science of statistics. If the results of any study 
under consideration demonstrate a “statisti-
cally significant difference” (i.e., ruling out the 
probability of a chance occurrence), then one 
is said to have an association. The process of 
assessing whether random variation could 
have led to a study’s findings is referred to 
as  statistical inference, and represents the 
major  role for statistical testing in the scien-
tific method.

If there is no statistically significant differ-
ence, then the process in Figure  3.1 stops. 
If there is an association, then one is tempted to 
generalize the results of the study even further, 
to state that enalapril is an antihypertensive 
drug in general. This is referred to as scientific 
or biologic inference, and the result is a conclu-
sion about causation, that the drug really does 
lower blood pressure in a population of treated 
patients. To draw this type of conclusion, how-
ever, requires one to generalize to populations 
other than that included in the study, including 
types of people who were not represented in the 
study sample, such as women, children, and the 
elderly. Although it may be apparent in this 
example that this is in fact appropriate, that may 
well not always be the case. Unlike statistical 
inference, there are no precise quantitative rules 
for biologic inference. Rather, one needs to 
examine the data at hand in light of all other rel-
evant data in the rest of the scientific literature, 
and make a subjective judgment. To assist in 
making that judgment, however, one can use the 
criteria for the causal nature of an association 
described later in the chapter. First, however, we 
will place causal associations into proper per-
spective by describing the different types of 
errors that can be made in performing a study 
and the different types of associations in which 
each results.

Study sample

Conclusion about a population
(association)

Conclusion about scientific theory
(causation)

Statistical inference

Biological inference

Figure 3.1 Overview of the scientific method.
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 Types of Errors That One Can 
Make in Performing a Study

There are four basic types of associations that can 
be observed in a study (Table 3.1). The basic pur-
pose of research is to differentiate among them.

First, of course, one could have no association.
Second, one could have an artifactual associ-

ation; that is, a spurious or false association. 
This can occur by either of two mechanisms: 
chance or bias. Chance is unsystematic, or ran-
dom, variation. The purpose of statistical  testing 
in science is to evaluate this, estimating the 
probability that the result observed in a study 
could have happened purely by chance.

The other possible mechanism for creating an 
artifactual association is bias. Epidemiologists’ 
use of the term bias is different from that of the 
lay public. To an epidemiologist, bias is system-
atic variation, a consistent manner in which two 
study groups are treated or evaluated differ-
ently. This consistent difference can create an 
apparent association where one actually does 
not exist. Of course, it also can mask a true 
association.

There are many different types of potential 
biases [25]. For example, consider an interview 
study in which the research assistant is aware of 
the investigator’s hypothesis. Attempting to 
please the boss, the research assistant might 
probe more carefully during interviews with 
one study group than during interviews with the 
other. This difference in how carefully the 
 interviewer probes could create an apparent but 

false association, which is referred to as inter-
viewer bias. Another example would be a study 
of drug‐induced birth defects that compares 
children with birth defects to children without 
birth defects. A mother of a child with birth 
defect, when interviewed about any drugs she 
took during her pregnancy, may be likely to 
remember drug ingestion during pregnancy 
with greater accuracy than a mother of a healthy 
child, because of the unfortunate experience she 
has undergone. The improved recall in the 
mothers of the children with birth defects may 
result in false apparent associations between 
drug exposure and birth defects. This sys-
tematic difference in recall is referred to as 
recall bias [26].

Note that biases, once present, cannot be 
 corrected. They represent errors in the study 
design that can result in incorrect results in the 
study. It is important to note that a statistically 
significant result is no protection against a bias; 
one can have a very precise measurement of an 
incorrect answer! The only protection against 
biases is proper study design. (See Chapter 43 
for more discussion about biases in pharma-
coepidemiologic studies.)

Third, one can have an indirect, or con-
founded, association. A confounding variable, 
or confounder, is a variable, other than the risk 
factor and other than the outcome under study, 
which is related independently to both the risk 
factor and the outcome and which may create 
an apparent association or mask a real one. For 
example, a study of risk factors for lung cancer 
could find a very strong association between 
having yellow fingertips and developing lung 
cancer. This is obviously not a causal associa-
tion, but an indirect association, confounded by 
cigarette smoking. Specifically, cigarette smok-
ing causes both yellow fingertips and lung can-
cer. Although this example is transparent, most 
examples of confounding are not. In designing a 
study, one must consider every variable that can 
be associated with the risk factor under study or 
the outcome variable under study, in order to 

Table 3.1 Types of associations between factors 
under study.

1) None (independent)
2) Artifactual (spurious or false)

a) Chance (unsystematic variation)
b) Bias (systematic variation)

3) Indirect (confounded)
4) Causal (direct or true)
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plan to deal with it as a potential confounding 
variable. Preferably, one will be able to specifi-
cally control for the variable, using one of the 
techniques listed in Table 3.2. (See Chapters 33 
and 43 for more discussion about confounding 
in pharmacoepidemiologic studies.)

Fourth, and finally, there are true, causal 
associations.

Thus, there are three possible types of errors 
that can be produced in a study: random error, 
bias, and confounding. The probability of ran-
dom error can be quantitated using statistics. 
Bias needs to be prevented by designing the 
study properly. Confounding can be controlled 
either in the design of the study or in its analy-
sis. If all three types of errors can be excluded, 
then one is left with a true, causal association.

 Criteria for the Causal Nature 
of an Association

The “criteria for the causal nature of an associa-
tion” were first put forth by Sir Austin Bradford 
Hill [27], but have been described in various 
forms since, each with some modification. 
Probably the best known description of them 
was in the first Surgeon General’s Report on 
Smoking and Health [28], published in 1964. 
These criteria are presented in Table 3.3, in no 
particular order. No one of them is absolutely 
necessary for an association to be a causal 
 association. Analogously, no one of them is suf-
ficient for an association to be considered a 

causal association. Essentially, the more criteria 
that are present, the more likely it is that an 
association is a causal association. The fewer 
criteria that are met, the less likely it is that an 
association is a causal association. Each will be 
discussed in turn.

The first criterion listed in Table 3.3 is coher-
ence with existing information or biological 
plausibility. This refers to whether the associa-
tion makes sense, in light of other types of infor-
mation available in the literature. These other 
types of information could include data from 
other human studies, data from studies of other 
related questions, data from animal studies, or 
data from in vitro studies, as well as scientific or 
pathophysiologic theory. To use the example 
provided earlier, it clearly was not biologically 
plausible that yellow fingertips could cause lung 
cancer, and this provided the clue that con-
founding was present. Using the example of the 
association between cigarettes and lung cancer, 
cigarette smoke is a known carcinogen, based 
on animal data. In humans, it is known to cause 
cancers of the head and neck, the pancreas, and 
the bladder. Cigarette smoke also goes down 
into the lungs, directly exposing the tissues in 
question. Thus, it certainly is biologically plau-
sible that cigarettes could cause lung cancer 
[29]. It is much more reassuring if an associa-
tion found in a particular study makes sense, 
based on previously available information, and 
this leads one to be more comfortable that it 

Table 3.2 Approaches to controlling confounding.

1) Random allocation
2) Subject selection

a) Exclusion
b) Matching

3) Data analysis
a) Stratification
b) Mathematical modeling

Table 3.3 Criteria for the causal nature 
of an association.

1) Coherence with existing information (biologic 
plausibility)

2) Consistency of the association
3) Time sequence
4) Specificity of the association
5) Strength of the association

a) Quantitative strength
b) Dose–response relationship
c) Study design
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might be a causal association. Clearly, however, 
one could not require that this criterion always 
be met, or one would never have a major break-
through in science.

The second criterion listed in Table 3.3 is the 
consistency of the association. A hallmark of 
 science is reproducibility: if a finding is real, one 
should be able to reproduce it in a different 
 setting. This could include different geographic 
settings, different study designs, different popu-
lations, and so on. For example, in the case of 
cigarettes and lung cancer, the association has 
now been reproduced in many different studies, 
in different geographic locations, using different 
study designs [30]. The need for reproducibility 
is such that one should never believe a finding 
reported only once; there may have been an 
error committed in the study, which is not 
apparent to either the investigator or the reader.

The third criterion listed is the time sequence: 
a cause must precede an effect. Although this 
may seem obvious, there are study designs from 
which this cannot be determined. For example, 
if one were to perform a survey in a classroom 
of 200 medical students, asking each if they 
were currently taking diazepam and also 
whether they were anxious, one would find a 
strong association between the use of diazepam 
and anxiety, but this does not mean that diaze-
pam causes anxiety! Although this is obvious, as 
it is not a biologically plausible interpretation, 
one cannot differentiate from this type of cross‐
sectional study which variable came first and 
which came second. In the example of cigarettes 
and lung cancer, obviously the cigarette smok-
ing usually precedes the lung cancer, as a patient 
would not survive long enough to smoke much 
if the opposite were the case.

The fourth criterion listed in Table 3.3 is spec-
ificity. This refers to the question of whether the 
cause ever occurs without the presumed effect, 
and whether the effect ever occurs without the 
presumed cause. This criterion is almost never 
met in biology, with the occasional exception 
of  infectious diseases. Measles never occurs 

without the measles virus, but even in this 
example, not everyone who becomes infected 
with the measles virus develops clinical measles. 
Certainly, not everyone who smokes develops 
lung cancer, and not everyone who develops 
lung cancer was a smoker. This is one of the 
major points the tobacco industry stresses when 
it attempts to make the claim that cigarette 
smoking has not been proven to cause lung can-
cer. Some authors even omit this as a criterion, 
as it is so rarely met. When it is met, however, it 
provides extremely strong support for a conclu-
sion that an association is causal.

The fifth criterion listed in Table  3.3 is the 
strength of the association. This includes three 
concepts: its quantitative strength, dose–
response, and the study design. Each will be 
 discussed in turn.

The quantitative strength of an association 
refers to the effect size. To evaluate this, one 
asks whether the magnitude of the observed dif-
ference between the two study groups is large. 
A  quantitatively large association can only be 
created by a causal association or a large error, 
which should be apparent in evaluating the 
methods of a study. A quantitatively small asso-
ciation may still be causal, but it could be cre-
ated by a subtle error, which would not be 
apparent in evaluating the study. Conventionally, 
epidemiologists consider an association with a 
relative risk of less than 2.0 a weak association. 
Certainly, the association between cigarette 
smoking and lung cancer is a strong association: 
studies show relative risks ranging between 
10.0 and 30.0 [30].

A dose–response relationship is an extremely 
important and commonly used concept in 
clinical pharmacology and is used similarly in 
epidemiology. It exists when an increase in the 
intensity of an exposure results in an increased 
risk of the disease under study. Equivalent to 
this is a duration–response relationship, which 
exists when a longer exposure causes an 
increased risk of the disease. The presence of 
either relationship strongly implies that an 
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 association is, in fact, a causal association. 
Certainly in the example of cigarette smoking 
and lung cancer, it has been shown repeatedly 
that an increase in either the number of 
 cigarettes smoked each day or in the number 
of years of smoking increases the risk of devel-
oping lung cancer [30].

Finally, study design refers to two concepts: 
whether the study was well designed, and which 

study design was used in the studies in question. 
The former refers to whether the study was sub-
ject to one of the three errors described earlier 
in this chapter, namely random error, bias, and 
confounding. Table  3.4 presents the study 
designs typically used for epidemiologic studies, 
or in fact for any clinical studies. They are 
organized in a hierarchical fashion. As one 
advances from the designs at the bottom of the 

Table 3.4 Advantages and disadvantages of epidemiologic study designs.

Study design Advantages Disadvantages

Randomized clinical trial Most convincing design Most expensive
(experimental study) Only design which controls for Artificial

unknown or unmeasurable Logistically most
confounders difficult

Ethical objections
Cohort study Can study multiple outcomes Possibly biased

outcome data
Can study uncommon exposures More expensive
Selection bias less likely If done prospectively,

may take years to
complete

Unbiased exposure data
Incidence data available

Case–control study Can study multiple exposures Control selection
problematic

Can study uncommon diseases Possibly biased
exposure data

Logistically easier and faster
Less expensive

Analyses of secular trends Can provide rapid answers No control of
confounding

Case series Easy quantitation of incidence No control group, so
cannot be used for
hypothesis testing

Case reports Cheap and easy method for Cannot be used for
generating hypotheses hypothesis testing
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table to those at the top, studies get progres-
sively harder to perform, but are progressively 
more convincing. In other words, associations 
shown by studies using designs at the top of the 
list are more likely to be causal associations than 
associations shown by studies using designs at 
the bottom of the list. The association between 
cigarette smoking and lung cancer has been 
reproduced in multiple well‐designed studies, 
using analyses of secular trends, case–control 
studies, and cohort studies. However, it has not 
been shown using a randomized clinical trial, 
which is the “Cadillac” of study designs, as will 
be discussed later in the chapter. This is the 
other major defense the tobacco industry 
employs. Of course, it would not be ethical or 
logistically feasible to randomly allocate indi-
viduals to smoke or not to smoke and expect to 
follow them for 20 years to observe the outcome 
in each group.

The issue of causation is discussed more in 
Chapter 10 as it relates to the process of sponta-
neous reporting of adverse drug reactions, and 
in Chapter 29 as it relates to determining causa-
tion in case reports.

 Epidemiologic Study Designs

In order to clarify the concept of study design 
further, each of the designs in Table 3.4 will be 
discussed in turn, starting at the bottom of the 
list and working upward.

Case Reports

Case reports are simply reports of events 
observed in single patients. As used in pharma-
coepidemiology, a case report describes a  single 
patient who was exposed to a drug and experi-
ences a particular, usually adverse,  outcome. 
For example, one might see a published case 
report about a young woman who was taking 
oral contraceptives and who suffered a pulmo-
nary embolism.

Case reports are useful for raising hypotheses 
about drug effects, to be tested with more rigor-
ous study designs. However, in a case report one 
cannot know if the patient reported is either 
typical of those with the exposure or typical of 
those with the disease. Certainly, one cannot 
usually determine whether the adverse outcome 
was due to the drug exposure or would have 
happened anyway. As such, it is very rare that a 
case report can be used to make a statement 
about causation. One exception to this would be 
when the outcome is so rare and so characteris-
tic of the exposure that one knows that it was 
likely to be due to the exposure, even if the 
 history of exposure were unclear. An example of 
this is clear cell vaginal adenocarcinoma occur-
ring in young women exposed in utero to 
diethylstilbestrol [31]. Another exception would 
be when the disease course is very predictable 
and the treatment causes a clearly apparent 
change in this disease course. An example would 
be the ability of penicillin to cure streptococcal 
endocarditis, a disease that is nearly uniformly 
fatal in the absence of treatment. Case reports 
can be particularly useful to document causa-
tion when the treatment causes a change in 
 disease course which is reversible, such that the 
patient returns to their untreated state when the 
exposure is withdrawn, can be treated again, 
and when the change returns upon repeat treat-
ment. Consider a patient who is suffering from 
an overdose of methadone, a long‐acting nar-
cotic, and is comatose. If this patient is then 
treated with naloxone, a narcotic antagonist, 
and immediately awakens, this would be very 
suggestive that the drug indeed is efficacious as 
a narcotic antagonist. As the naloxone wears off 
the patient would become comatose again, and 
then if they were given another dose of naloxone 
they would awaken again. This, especially if 
repeated a few times, would represent strong 
evidence that the drug is indeed effective as a 
narcotic antagonist. This type of challenge–
rechallenge situation is relatively uncommon, 
however, as physicians generally will avoid 
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exposing a patient to a drug if the patient 
 experienced an adverse reaction to it in the 
past.  This issue is discussed in more detail in 
Chapters 10 and 29.

Case Series

Case series are collections of patients, all of 
whom have a single exposure, whose clinical 
outcomes are then evaluated and described. 
Often they are from a single hospital or medical 
practice. Alternatively, case series can be collec-
tions of patients with a single outcome, looking 
at their antecedent exposures. For example, one 
might observe 100 consecutive women under 
the age of 50 who suffer from a pulmonary 
embolism, and note that 30 of them had been 
taking oral contraceptives.

After drug marketing, case series are most 
useful for two related purposes. First, they can 
be useful for quantifying the incidence of an 
adverse reaction. Second, they can be useful for 
being certain that any particular adverse effect 
of concern does not occur in a population which 
is larger than that studied prior to drug market-
ing. The so‐called Phase IV postmarketing 
 surveillance study of prazosin was conducted 
for the former reason, to quantitate the inci-
dence of first‐dose syncope from prazosin [32]. 
The Phase IV postmarketing surveillance study 
of cimetidine [33] was conducted for the latter 
reason. Metiamide was an H‐2 blocker, which 
was withdrawn after marketing outside the US 
because it caused agranulocytosis. Since cimeti-
dine is chemically related to metiamide, there 
was a concern that cimetidine too might cause 
agranulocytosis [32]. In both examples, the 
manufacturer asked its sales representatives to 
recruit physicians to participate in the study. 
Each participating physician then enrolled the 
next series of patients for whom the drug was 
prescribed.

In this type of study, one can be more cer-
tain  that the patients are probably typical of 
those  with the exposure or with the disease, 

depending on the focus of the study. However, 
in the absence of a control group, one cannot be 
certain which features in the description of the 
patients are unique to the exposure or outcome. 
As an example, one might have a case series 
from a particular hospital of 100 individuals 
with a certain disease, and note that all were 
men over the age of 60. This might lead one to 
conclude that this disease seems to be associ-
ated with being a man over the age of 60. 
However, it would be clear that this would be an 
incorrect conclusion once one noted that the 
hospital this case series was drawn from was a 
Veterans Administration hospital, where most 
patients are men over the age of 60. In the previ-
ous example of pulmonary embolism and oral 
contraceptives, 30% of the women with pulmo-
nary embolism had been using oral contracep-
tives. However, this information is not sufficient 
to determine whether this is higher, the same as, 
or even lower than would have been expected. 
For this reason, case series are also not very 
 useful in determining causation, but provide 
clinical descriptions of a disease or of patients 
who receive an exposure.

Analyses of Secular Trends

Analyses of secular trends, also called “ecologic 
studies,” examine trends in an exposure that is a 
presumed cause and trends in a disease that is a 
presumed effect and test whether the trends 
coincide. These trends can be examined over 
time or across geographic boundaries. In other 
words, one could analyze data from a single 
region and examine how the trend changes over 
time, or one could analyze data from a single 
time period and compare how the data differ 
from region to region or country to country. 
Vital statistics are often used for these studies. 
As an example, one might look at sales data for 
oral contraceptives and compare them to death 
rates from venous thromboembolism, using 
recorded vital statistics. When such a study was 
actually performed, mortality rates from venous 
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thromboembolism were seen to increase in 
 parallel with increasing oral contraceptive sales, 
but only in women of reproductive age, not in 
older women or in men of any age [34].

Analyses of secular trends are useful for rap-
idly providing evidence for or against a hypoth-
esis. However, these studies lack data on 
individuals; they utilize only aggregated group 
data (e.g., annual sales data in a given geographic 
region in relation to annual cause‐specific mor-
tality in the same region). As such, they are 
 unable to control for confounding variables. 
Thus, among exposures whose trends coincide 
with that of the disease, analyses of secular 
trends are unable to differentiate which factor is 
likely to be the true cause. For example, lung 
cancer mortality rates in the US have been 
increasing in women, such that lung cancer is 
now the leading cause of cancer mortality in 
women [35]. This is certainly consistent with 
the increasing rates of cigarette smoking 
observed in women until the mid‐1960s [36], 
and so appears to be supportive of the associa-
tion between cigarette smoking and lung can-
cer. However, it would also be consistent with an 
association between certain occupational expo-
sures and lung cancer, as more women in the US 
are now working outside the home.

Case–Control Studies

Case–control studies compare cases with a 
 disease to controls without the disease, looking 
for differences in antecedent exposures. As an 
example, one could select cases of young women 
with venous thromboembolism and compare 
them to controls without venous thromboem-
bolism, looking for differences in antecedent 
oral contraceptive use. Several such studies have 
been performed, generally demonstrating a 
strong association between the use of oral con-
traceptives and venous thromboembolism [37].

Case–control studies can be particularly use-
ful when one wants to study multiple possible 
causes of a single disease, as one can use the 

same cases and controls to examine any number 
of exposures as potential risk factors. This 
design is also particularly useful when one is 
studying a relatively rare disease, as it guaran-
tees a sufficient number of cases with the dis-
ease. Using case–control studies, one can study 
rare diseases with markedly smaller sample 
sizes than those needed for cohort studies (see 
Chapter  4). For example, the classic study of 
diethylstilbestrol and clear cell vaginal adeno-
carcinoma required only 8 cases and 40 controls 
[31], rather than the many thousands of exposed 
subjects that would have been required for a 
cohort study of this question.

Case–control studies generally obtain their 
information on exposures retrospectively; that 
is, by recreating events that happened in the 
past. Information on past exposure to potential 
risk factors is generally obtained by abstracting 
medical records or by administering question-
naires or interviews. As such, case–control 
studies are subject to limitations in the validity 
of retrospectively collected exposure informa-
tion. In addition, the proper selection of 
 controls can be a challenging task and appro-
priate control selection can lead to a selection 
bias, which may lead to incorrect conclusions. 
Nevertheless, when case–control studies are 
done well, subsequent well‐done cohort studies 
or randomized clinical trials, if any, will gener-
ally confirm their results. As such, the case–
control design is a very useful approach for 
pharmacoepidemiologic studies.

Cohort Studies

Cohort studies identify subsets of a defined pop-
ulation and follow them over time, looking for 
differences in their outcome. Cohort studies 
generally are used to compare exposed patients 
to unexposed patients, although they can also 
be used to compare one exposure to another. 
For example, one could compare women of 
reproductive age who use oral contraceptives to 
users of other contraceptive methods, looking 
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for the differences in the frequency of venous 
thromboembolism. When such studies were 
performed, they in fact confirmed the relation-
ship between oral contraceptives and thrombo-
embolism, which had been noted using analyses 
of secular trends and case–control studies 
[38,39]. Cohort studies can be performed either 
prospectively, that is simultaneous with the 
events under study, or retrospectively, that is 
after the outcomes under study had already 
occurred, by recreating those past events using 
medical records, questionnaires, or interviews.

The major difference between cohort and 
case–control studies is the basis upon which 
patients are recruited into the study (see 
Figure  3.2). Patients are recruited into case–
control studies based on the presence or absence 
of a disease, and their antecedent exposures are 
then studied. Patients are recruited into cohort 
studies based on the presence or absence of an 
exposure, and their subsequent disease course is 
then studied.

Cohort studies have the major advantage of 
being free of the major problem that plagues 
case–control studies: the difficult process of 
selecting an undiseased control group. In addi-
tion, prospective cohort studies are free of the 
problem of the questionable validity of retro-
spectively collected data. For these reasons, an 

association demonstrated by a cohort study is 
more likely to be a causal association than 
one  demonstrated by a case–control study. 
Furthermore, cohort studies are particularly 
useful when one is studying multiple possible 
outcomes from a single exposure, especially a 
relatively uncommon exposure. Thus, they are 
especially useful in postmarketing drug surveil-
lance studies, which are looking at any possible 
effect of a newly marketed drug. However, 
cohort studies can require extremely large 
 sample sizes to study relatively uncommon out-
comes (see Chapter 4). In addition, prospective 
cohort studies can require a prolonged time 
period to study delayed drug effects.

Analysis of Case–Control and Cohort Studies

As can be seen in Figure 3.2, both case–control 
and cohort studies are intended to provide the 
same basic information; the difference is how 
this information is collected. The key statistic 
reported from these studies is the relative risk, 
the ratio of the incidence rate of an outcome in 
the exposed group to the incidence rate of the 
outcome in the unexposed group. A relative 
risk of greater than 1.0 means that exposed 
 subjects have a greater risk of the disease under 
study than unexposed subjects, or that the 
exposure appears to cause the disease. A rela-
tive risk of less than 1.0 means that exposed 
subjects have a lower risk of the disease than 
unexposed subjects, or that the exposure seems 
to protect against the disease. A relative risk of 
1.0 means that exposed subjects and unexposed 
subjects have the same risk of developing the 
disease, or that the exposure and the disease 
appear unrelated.

One can calculate a relative risk directly from 
the results of a cohort study. However, in a 
case–control study one cannot determine the 
size of either the exposed population or the 
unexposed population from which the diseased 
cases and undiseased controls were drawn. The 
results of a case–control study do not provide 

Case–Control Studies

Disease

C
oh

or
t s

tu
di

es

R
is

k 
F

ac
to

r

Present
(cases)

Absent
(not exposed)

Present
(exposed)

Absent
(controls)

A

DC

B
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information on the incidence rates of the 
 disease  in exposed and unexposed individuals. 
Therefore, relative risks cannot be calculated 
directly from a case–control study. Instead, in 
reporting the results of a case–control study 
one generally reports the odds ratio, which is a 
close estimate of the relative risk when the dis-
ease under study is relatively rare. Since case–
control studies are generally used to study rare 
diseases, there generally is very close agreement 
between the odds ratio and the relative risk, and 
the results from case–control studies are often 
loosely referred to as relative risks, although 
they are in fact odds ratios.

Both relative risks and odds ratios can be 
reported with P values. These P values allow 
one to determine if the relative risk is statisti-
cally significantly different from 1.0; that is, 
whether the differences between the two study 
groups are likely to be due to random variation 
or are likely to represent real associations.

Alternatively, and probably preferably, relative 
risks and odds ratios can be reported with confi-
dence intervals, which are an indication of the 
range of relative risks within which the true rel-
ative risk for the entire theoretical population is 
most likely to lie. As an approximation, a 95% 
confidence interval around a relative risk means 
that we can be 95% confident that the true rela-
tive risk lies in the range between the lower and 
upper limits of this interval. If a 95% confidence 
interval around a relative risk excludes 1.0, then 
the finding is statistically significant with a P 
value of less than 0.05. A confidence interval 
provides much more information than a P value, 
however. As an example, a study that yields a 
relative risk (95% confidence interval) of 1.0 
(0.9–1.1) is clearly showing that an association 
is very unlikely. A study that yields a relative risk 
(95% confidence interval) of 1.0 (0.1–100) pro-
vides little evidence for or against an associa-
tion. Yet, both could be reported as a relative 
risk of 1.0 and a P value greater than 0.05. As 
another example, a study that yields a relative 
risk (95% confidence interval) of 10.0 (9.8–10.2) 

precisely quantifies a 10‐fold increase in risk 
that is also statistically significant. A study that 
yields a relative risk (95% confidence interval) of 
10.0 (1.1–100) says little, other than that an 
increased risk is likely. Yet, both could be 
reported as a relative risk of 10.0 (P<0.05). As a 
final example, a study yielding a relative risk 
(95% confidence interval) of 3.0 (0.98–5.0) is 
strongly suggestive of an association, whereas a 
study reporting a relative risk (95% confidence 
interval) of 3.0 (0.1–30) would not be. Yet, both 
could be reported as a relative risk of 3.0 
(P>0.05).

Finally, another statistic that one can calculate 
from a cohort study is the excess risk, also called 
the risk difference or, sometimes, the attributa-
ble risk. Whereas the relative risk is the ratio of 
the incidence rates in the exposed group versus 
the unexposed groups, the excess risk is the 
arithmetic difference between the incidence 
rates. The relative risk is more important in 
considering questions of causation. The excess 
risk is more important in considering the public 
health impact of an association, as it represents 
the increased rate of disease due to the expo-
sure. For example, oral contraceptives are 
strongly associated with the development of 
myocardial infarction in young women [37]. 
However, the risk of myocardial infarction in 
nonsmoking women in their 20s is so low, that 
even a fivefold increase in that risk would still 
not be of public health importance. In contrast, 
women in their 40s are at higher risk, especially 
if they are cigarette smokers as well. Thus, oral 
contraceptives should not be as readily used in 
these women [37].

As with relative risks, excess risks cannot be 
calculated from case–control studies, as inci-
dence rates are not available. As with the other 
statistics, P values can be calculated to deter-
mine whether the differences between the two 
study groups could have occurred just by 
chance. Confidence intervals can be calculated 
around excess risks as well, and would be inter-
preted analogously.
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Randomized Clinical Trials

Finally, experimental studies are studies in 
which the investigator controls the therapy that 
is to be received by each participant. Generally, 
an investigator uses that control to randomly 
allocate patients between or among the study 
groups, performing a randomized clinical trial. 
For example, one could theoretically randomly 
allocate sexually active women to use either oral 
contraceptives or no contraceptives, examining 
whether they differ in their incidence of subse-
quent venous thromboembolism. The major 
strength of this approach is random assignment, 
which is the only way to make it likely that the 
study groups are comparable in potential con-
founding variables that are either unknown or 
unmeasurable. For this reason, associations 
demonstrated in randomized clinical trials are 
more likely to be causal associations than those 
demonstrated using one of the other study 
designs reviewed here.

However, even randomized clinical trials are 
not without their problems. The randomized 
clinical trial just outlined, allocating women to 
receive contraceptives or no contraceptives, 
demonstrates the major potential problems 
inherent in the use of this study design. It would 
obviously be impossible to perform, ethically 
and logistically. In addition, randomized clinical 
trials are expensive and artificial. Inasmuch as 
they have already been performed prior to mar-
keting to demonstrate each drug’s efficacy, they 
tend to be unnecessary after marketing. They 
are likely to be used in pharmacoepidemiologic 
studies mainly for supplementary studies of 
drug efficacy [40]. However, they remain the 
“gold standard” by which the other designs must 
be judged. Indeed, with the publication of the 
results from the Women’s Health Initiative indi-
cating that combination hormone replacement 
therapy causes an increased risk of myocardial 
infarction rather than a decreased risk [41–44], 
there has been increased concern about reliance 
solely on nonexperimental methods to study 

drug safety after marketing [45–47], and we are 
seeing the use of massive randomized clinical 
trials as part of postmarketing surveillance 
(see Chapter 32).

 Discussion

Thus, a series of different study designs are 
available (Table 3.4), each with their respective 
advantages and disadvantages. Case reports, 
case series, analyses of secular trends, case–
control studies, and cohort studies have been 
referred to collectively as observational study 
designs or nonexperimental study designs, in 
order to differentiate them from experimental 
studies. In nonexperimental study designs the 
investigator does not control the therapy, but 
simply observes and evaluates the results of 
ongoing medical care. Case reports, case series, 
and analyses of secular trends have also been 
referred to as descriptive studies. Case–control 
studies, cohort studies, and randomized clinical 
trials all have control groups, and have been 
referred to as analytic studies. The analytic 
study designs can be classified in two major 
ways: by how subjects are selected into the study 
and by how data are collected for the study (see 
Table 3.5). From the perspective of how subjects 
are recruited into the study, case–control stud-
ies can be contrasted with cohort studies. 
Specifically, case–control studies select subjects 
into the study based on the presence or absence 
of a disease, while cohort studies select subjects 
into the study based on the presence or absence 
of an exposure. From this perspective, rand-
omized clinical trials can be viewed as a subset 
of cohort studies, a type of cohort study in 
which the investigator controls the allocation of 
treatment, rather than simply observing ongo-
ing medical care. From the perspective of tim-
ing, data can be collected prospectively, that is 
simultaneously with the events under study, or 
retrospectively, that is after the events under 
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study had already developed. In the latter 
 situation, one recreates events that happened in 
the past using medical records, questionnaires, 
or interviews. Data can also be collected using 
cross‐sectional studies, studies that have no time 
sense, as they examine only one point in time. In 
principle, either cohort or case–control studies 
can be performed using any of these time 
frames, although prospective case–control 
studies are unusual. Randomized clinical trials 
must be prospective, as this is the only way an 
investigator can control the therapy received.

The terms presented in this chapter, which 
are those that will be used throughout the book, 
are probably those used by a majority of epide-
miologists. Unfortunately, however, other terms 
have been used for most of these study designs 
as well. Table 3.5 presents several of the syno-
nyms that have been used in the medical litera-
ture. The same term is sometimes used by 
different authors to describe different concepts. 
For example, in this book we are reserving the 
use of the terms “retrospective study” and 
“ prospective study” to refer to a time sense. As 
is apparent from Table 3.5, however, in the past 
some authors have used the term “retrospective 
study” to refer to a case–control study and 
“ prospective study” to refer to a cohort study, 
confusing the two concepts inherent in the 

 classification schemes presented in the table. 
Other authors use the term “retrospective 
study” to refer to any nonexperimental study, 
while others appear to use it to refer to any 
study  they do not like, as a term of derision! 
Unfortunately, when reading a scientific paper, 
there is no way of determining which usage the 
author intended. More important than the ter-
minology, however, are the concepts underlying 
the terms. Once they understand these con-
cepts, readers can choose to use whatever 
 terminology they are comfortable with.

 Conclusion

From the material presented in this chapter, it 
is hopefully now apparent that each study 
design has an appropriate role in scientific pro-
gress. In general, science proceeds from the 
bottom of Table 3.4 upward, from case reports 
and case series that are useful for suggesting an 
association to analyses of trends and case–
control studies that are useful for exploring 
these associations. Finally, if a study question 
warrants the investment and can tolerate the 
delay until results become available, then 
cohort studies and randomized clinical trials 
can be undertaken to assess these associations 
more definitively.

For example, regarding the question of whether 
oral contraceptives cause venous thromboembo-
lism, an association was first suggested by case 
reports and case series, then was explored in 
more detail by analyses of trends and a series of 
case–control studies [37]. Later, because of the 
importance of oral contraceptives, the number of 
women using them, and the fact that users were 
predominantly healthy women, the investment 
was made in two long‐term, large‐scale cohort 
studies [38,39]. This question might even be 
worth the investment of a randomized clinical 
trial, except it would not be feasible or ethical. In 
contrast, when  thalidomide was marketed, it was 

Table 3.5 Epidemiologic study designs.

A)  Classified by how subjects are recruited into 
the study
1) Case–control (case‐history, case‐referent, 

retrospective, trohoc) studies
2) Cohort (follow‐up, prospective) studies
3) Experimental studies (clinical trials, intervention 

study)
B) Classified by how data are collected for the study

1) Retrospective (historical, nonconcurrent, 
retrolective) studies

2) Prospective (prolective) studies
3) Cross‐sectional studies
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not a major breakthrough; other hypnotics were 
already available. Case reports of phocomelia in 
exposed patients were followed by case–control 
studies [48] and analyses of secular trends [49]. 
Inasmuch as the adverse effect was so terrible 
and the drug was not of unique importance, the 
drug was then withdrawn, without the delay that 
would have been necessary if cohort studies and/
or randomized clinical trials had been awaited. 
Ultimately, a retrospective cohort study was 
 performed, comparing those exposed during the 
critical time period to those exposed at other 
times [50].

In general, however, clinical, regulatory, com-
mercial, and legal decisions need to be made 

based on the best evidence available at the time 
of the decision. To quote Sir Austin Bradford 
Hill [27]:

All scientific work is incomplete—whether it 
be observational or experimental. All scien-
tific work is liable to be upset or modified by 
advancing knowledge. That does not confer 
upon us a freedom to ignore the knowledge 
we already have, or to postpone the action 
that it appears to demand at a given time. 
Who knows, asked Robert Browning, but the 
world may end tonight? True, but on availa-
ble evidence most of us make ready to 
 commute on the 8:30 next day.
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Chapter  1 pointed out that between 500 and 
3000 subjects are usually exposed to a drug 
prior to marketing, in order to be 95% certain of 
detecting adverse effects that occur in between 
1 and 6 in 1000 exposed individuals. While 
this  seems like a reasonable goal, it poses 
some  important problems that must be taken 
into account when planning pharmacoepide-
miologic studies. Specifically, such studies 
must  generally include a sufficient number of 
subjects to add significantly to the premarket-
ing experience, and this requirement for 
large   sample sizes raises logistical obstacles to 
cost‐effective studies. This central special need 
for large  sample sizes is what has led to the 
innovative approaches to collecting pharma-
coepidemiologic data that are described in 
Part III of this book.

The approach to considering the implica-
tions of a study’s sample size is somewhat dif-
ferent depending on whether a study is already 
completed or is being planned. After a study 
is completed, if a real finding was statistically 
significant, then the study had a sufficient 
sample size to detect it, by definition. If a 

finding was not statistically significant, then 
one can use either of two approaches. First, 
one can examine the resulting confidence 
intervals in order to determine the smallest 
differences between the two study groups that 
the study had sufficient sample size to exclude 
[1]. Alternatively, one can approach the ques-
tion in a manner similar to the way one would 
approach it if one were planning the study de 
novo. Nomograms can be used to assist a 
reader in interpreting negative clinical trials 
in this way [2].

In contrast, in this chapter we will discuss in 
more detail how to determine a proper study 
sample size, from the perspective of one who is 
designing a study de novo. Specifically, we will 
begin by discussing how one calculates the min-
imum sample size necessary for a pharmacoepi-
demiologic study, to avoid the problem of a 
study with a sample size that is too small. We 
will first present the approach for cohort stud-
ies, then for case–control studies, and then for 
case series. For each design, one or more tables 
will be presented to assist the reader in carrying 
out these calculations.

4

Sample Size Considerations for Pharmacoepidemiologic Studies
Brian L. Strom

Rutgers Biomedical and Health Sciences, Newark, NJ, USA
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 Sample Size Calculations 
for Cohort Studies

The sample size required for a cohort study 
depends on what you are expecting from the 
study. To calculate sample sizes for a cohort 
study, one needs to specify five variables (see 
Table 4.1) [3,4].

The first variable to specify is the alpha (α) or 
type I error that one is willing to tolerate in the 
study. Type I error is the probability of concluding 
that there is a difference between the groups 
being compared when in fact a difference does 
not exist. Using diagnostic tests as an analogy, a 
type I error is a false positive study finding. The 
more tolerant one is willing to be of type I error, 
the smaller the sample size required. The less tol-
erant one is willing to be of type I error, the smaller 
one would set alpha, and the larger the sample 
size that would be required. Conventionally alpha 
is set at 0.05, although this certainly does not have 
to be the case. Note that alpha needs to be speci-
fied as either one‐tailed or two‐tailed. If only one 

of the study groups could conceivably be more 
likely to develop the disease and one is interested 
in detecting this result only, then one would spec-
ify alpha to be one‐tailed. If either of the study 
groups may be likely to develop the disease and 
either result would be of interest, then one would 
specify alpha to be two‐tailed. To decide whether 
alpha should be one‐tailed or two‐tailed, investi-
gators should consider what their reaction would 
be to a result that is statistically significant in a 
direction opposite to the one expected. For exam-
ple, what if one observed that a drug increased the 
frequency of dying from coronary artery disease 
instead of decreasing it, as expected? If the inves-
tigator’s response to this would be “Boy, what a 
surprise, but I believe it,” then a two‐tailed test 
should be performed. If the investigator’s response 
would be “I don’t believe it, and I will interpret 
this simply as a study that does not show the 
expected decrease in coronary artery disease in 
the group treated with the study drug,” then a 
one‐tailed test should be performed. The more 
conservative option is the two‐tailed test, assum-
ing that the results could turn out in either direc-
tion. This is the option that is usually, although 
not always, chosen.

The second variable that needs to be specified 
to calculate a sample size for a cohort study is 
the beta (β) or type II error that one is willing to 
tolerate in the study. A type II error is the prob-
ability of concluding that there is no difference 
between the groups being compared when in 
fact a difference does exist. In other words, a 
type II error is the probability of missing a real 
difference. Using diagnostic tests as an analogy, 
a type II error is a false negative study finding. 
The complement of beta is the power of a study; 
that is, the probability of detecting a difference 
if a difference really exists. Power is calculated 
as 1‐β. Again, the more tolerant one is willing to 
be of type II errors  –  that is, the higher the 
beta – the smaller the sample size required. The 
beta is conventionally set at 0.1 (i.e., 90% power) 
or 0.2 (i.e., 80% power), although again this need 
not be the case. Beta is always one‐tailed.

Table 4.1 Information needed to calculate a study’s 
sample size.

For cohort studies For case–control studies

1) Alpha, or type I error, 
considered tolerable, 
and whether it is one‐
tailed or two‐tailed

2) Beta, or type II error, 
considered tolerable

3) Minimum relative  
risk to be detected

4) Incidence of the 
disease in the 
unexposed control  
group

5) Ratio of unexposed 
controls to exposed 
study subjects

1) Alpha, or type I error, 
considered tolerable, 
and whether it is one‐
tailed or two‐tailed

2) Beta, or type II error, 
considered tolerable

3) Minimum relative risk 
to be detected

4) Prevalence of the 
exposure in the 
undiseased control 
group

5) Ratio of undiseased 
controls to diseased 
study subjects
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The third variable one needs to specify in 
order to calculate sample sizes for a cohort 
study is the minimum effect size one wants to be 
able to detect. For a cohort study, this is 
expressed as a relative risk. The smaller the rela-
tive risk that one wants to detect, the larger the 
sample size required. Note that the relative risk 
often used by investigators in this calculation is 
the relative risk the investigator is expecting 
from the study. This is not correct, as it will lead 
to inadequate power to detect relative risks that 
are smaller than expected, but still clinically 
important to the investigator. In other words, if 
one chooses a sample size that is designed to 
detect a relative risk of 2.5, one should be com-
fortable with the thought that, if the actual rela-
tive risk turns out to be 2.2, one may not be able 
to detect it as a statistically significant finding.

In a cohort study one selects subjects based 
on the presence or absence of an exposure of 
interest and then investigates the incidence of 
the disease of interest in each of the study 
groups. Therefore, the fourth variable one needs 
to specify is the expected incidence of the study 
outcome in the unexposed control group. Again, 
the more one asks of a study (e.g., the power to 
detect very small differences), the larger the 
sample size needed. Specifically, the rarer the 
outcome of interest, the larger the sample size 
needed.

The fifth variable one needs to specify is the 
number of unexposed control subjects to be 
included in the study for each exposed study 
subject. A study has the most statistical power 
for a given number of study subjects if it has the 
same number of exposed and unexposed sub-
jects (controls). However, sometimes the num-
ber of exposed subjects is limited and, therefore, 
inadequate to provide sufficient power to detect 
a relative risk of interest. In that case, additional 
power can be gained by increasing the number 
of controls alone. Doubling the number of con-
trols –  that is, including two controls for each 
exposed subject – results in a modest increase 
in the statistical power, but it does not double it. 

Including three controls for each exposed sub-
ject increases the power further. However, the 
increment in power achieved by increasing the 
ratio of control subjects to exposed subjects 
from 2 : 1 to 3 : 1 is smaller than the increment in 
power achieved by increasing the ratio from 1 : 1 
to 2 : 1. Each additional increase in the size of 
the control group increases the power of the 
study further, but with progressively smaller 
gains in statistical power. Thus, there is rarely a 
reason to include more than three or four con-
trols per study subject. For example, one could 
design a study with an alpha of 0.05 to detect a 
relative risk of 2.0 for an outcome variable that 
occurs in the control group with an incidence 
rate of 0.01. A study with 2319 exposed individ-
uals and 2319 controls would yield a power of 
0.80, or an 80% chance of detecting a difference 
of that magnitude. With the same 2319 exposed 
subjects, ratios of control subjects to exposed 
subjects of 1 : 1, 2 : 1, 3 : 1, 4 : 1, 5 : 1, 10 : 1, and 
50 : 1 would result in statistical powers of 0.80, 
0.887, 0.913, 0.926, 0.933, 0.947, and 0.956, 
respectively.

It is important to differentiate between the 
number of controls (as has been discussed and 
illustrated) and the number of control groups. 
It is not uncommon, especially in case– 
control studies where the selection of a proper 
control group can be difficult, to choose more 
than one control group (for example, a group 
of hospital controls and a group of community 
controls). This is done for reasons of validity, 
not for statistical power, and it is important 
that these multiple control groups not be 
aggregated in the analysis. In this situation, 
the goal is to insure that the comparison of the 
exposed subjects to each of the different con-
trol groups yields the same answer, not to 
increase the available sample size. As such, the 
comparison of each control group to the 
exposed subjects should be treated as a sepa-
rate study. The comparison of the exposed 
group to each control group requires a sepa-
rate sample size calculation.
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Once the five variables outlined have been 
specified, the sample size needed for a given 
study can be calculated. Several different 
 formulas have been used for this calculation, 
each of which gives slightly different results. 
The formula that is probably most often used is 
modified from Schlesselman [3]:
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where p is the incidence of the disease in the 
unexposed, R is the minimum relative risk to be 
detected, α is the type I error rate which is 
acceptable, β is the type II error rate which is 
acceptable, Z1‐α and Z1‐β refer to the unit normal 
deviates corresponding to α and β, Κ is the ratio 
of number of unexposed control subjects to the 
number of exposed subjects, and

U
Kp pR

K 1  

Z1−α is replaced by Z1−α/2 if one is planning to 
analyze the study using a two‐tailed alpha. Note 
that K does not need to be an integer.

A series of tables are presented in Appendix 
A, which were calculated using this formula. In 
Tables A1–A4 we have assumed an alpha (two‐
tailed) of 0.05, a beta of 0.1 (90% power), and 
control to exposed ratios of 1 : 1, 2 : 1, 3 : 1, and 
4 : 1, respectively. Tables A5–A8 are similar, 
except they assume a beta of 0.2 (80% power). 
Each table presents the number of exposed sub-
jects needed to detect any of several specified 
relative risks, for outcome variables that occur 
at any of several specified incidence rates. The 
total study size will be the sum of exposed sub-
jects (as listed in the relevant table) plus the 
controls.

For example, what if one wanted to investigate 
a new nonsteroidal anti‐inflammatory drug that 
is about to be marketed, but premarketing data 
raised questions about possible hepatotoxicity? 
This would presumably be studied using a 
cohort study design and, depending upon the 
values chosen for alpha, beta, the incidence of 
the disease in the unexposed population, the 
relative risk one wants to be able to detect, and 
the ratio of control to exposed subjects, the 
sample sizes needed could differ markedly (see 
Table 4.2). For example, what if your goal was to 
study hepatitis that occurs, say, in 0.1% of all 
unexposed individuals? If one wanted to design 
a study with one control per exposed subject to 
detect a relative risk of 2.0 for this outcome vari-
able, assuming an alpha (two‐tailed) of 0.05 and 
a beta of 0.1, one could look in Table A1 and see 
that it would require 31 483 exposed subjects, as 
well as an equal number of unexposed controls. 
If one were less concerned with missing a real 
finding, even if it were there, one could change 
beta to 0.2, and the required sample size would 
drop to 23 518 (see Table 4.2 and Table A5). If 
one wanted to minimize the number of exposed 
subjects needed for the study, one could include 
up to four controls for each exposed subject 
(Table 4.2 and Table A8). This would result in a 
sample size of 13 402, with four times as many 
controls, a total of 67 010 subjects. Finally, if one 
considers it inconceivable that this new drug 
could protect against liver disease and one is not 
interested in that outcome, then one might use a 
one‐tailed alpha, resulting in a somewhat lower 
sample size of 10 728, again with four times as 
many controls. Much smaller sample sizes are 
needed to detect relative risks of 4.0 or greater; 
these are also presented in Table 4.2.

In contrast, what if one’s goal was to study 
elevated liver function tests, which, say, occur in 
1% of an unexposed population? If one wants to 
detect a relative risk of 2 for this more common 
outcome variable, only 3104 subjects would be 
needed in each group, assuming a two‐tailed 
alpha of 0.05, a beta of 0.1, and one control per 
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exposed subject. Alternatively, if one wanted to 
detect the same relative risk for an outcome 
variable that occurred as infrequently as 0.0001, 
perhaps cholestatic jaundice, one would need 
315 268 subjects in each study group.

Obviously, cohort studies can require very 
large sample sizes to study uncommon diseases. 
A study of uncommon diseases is often better 
performed using a case–control study design, as 
described in the previous chapter.

Table 4.2 Examples of sample sizes needed for a cohort study.

Hypothetical 
disease

Incidence 
rate assumed 
in unexposed Alpha Beta

Relative 
risk to be 
detected

Control : exposed 
ratio

Sample size 
needed in 
exposed group

Sample size 
needed in 
control group

Abnormal 
liver function 
tests

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (1‐tailed)
0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (1‐tailed)

0.1
0.2
0.2
0.2
0.1
0.2
0.2
0.2

2
2
2
2
4
4
4
4

1
1
4
4
1
1
4
4

3104
2319
1323
1059

568
425
221
179

3104
2319
5292
4236

568
425
884
716

Hepatitis 0.001 0.05 (2‐tailed) 0.1 2 1 31 483 31 483
0.001 0.05 (2‐tailed) 0.2 2 1 23 518 23 518
0.001 0.05 (2‐tailed) 0.2 2 4 13 402 53 608
0.001 0.05 (1‐tailed) 0.2 2 4 10 728 42 912
0.001 0.05 (2‐tailed) 0.1 4 1 5823 5823
0.001 0.05 (2‐tailed) 0.2 4 1 4350 4350
0.001 0.05 (2‐tailed) 0.2 4 4 2253 9012
0.001 0.05 (1‐tailed) 0.2 4 4 1829 7316

Cholestatic 
jaundice

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (1‐tailed)
0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (2‐tailed)
0.05 (1‐tailed)

0.1
0.2
0.2
0.2
0.1
0.2
0.2
0.2

2
2
2
2
4
4
4
4

1
1
4
4
1
1
4
4

315 268
235 500
134 194
107 418

58 376
43 606
22 572
18 331

315 268
235 500
536 776
429 672

58 376
43 606
90 288
73 324
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 Sample Size Calculations 
for Case–Control Studies

The approach to calculating sample sizes for 
case–control studies is similar to the approach 
for cohort studies. Again, there are five variables 
that need to be specified, the values of which 
depend on what the investigator expects from 
the study (see Table 4.1). Three of these are alpha, 
or the type I error one is willing to tolerate; beta, 
or the type II error one is willing to tolerate; and 
the minimum odds ratio (an approximation of 
the relative risk) one wants to be able to detect. 
These are defined and described in the section 
on cohort studies.

In addition, in a case–control study one selects 
subjects based on the presence or absence of the 
disease of interest, and then investigates the 
prevalence of the exposure of interest in each 
study group. This is in contrast to a cohort study, 
in which one selects subjects based on the pres-
ence or absence of an exposure, and then studies 
whether or not the disease of interest develops in 
each group. Therefore, the fourth variable to be 
specified for a case–control study is the expected 
prevalence of the exposure in the undiseased 
control group, rather than the incidence of the 
disease of interest in the unexposed control 
group of a cohort study.

Finally, analogous to the consideration in cohort 
studies of the ratio of the number of unexposed 
control subjects to the number of exposed study 
subjects, one needs to consider in a case–control 
study the ratio of the number of undiseased 
 control subjects to the number of diseased study 
subjects. The principles in deciding upon the 
appropriate ratio to use are similar in both study 
designs. Again, there is rarely a reason to include 
a ratio greater than 3 : 1 or 4 : 1. For example, if one 
were to design a study with a two‐tailed alpha of 
0.05 to detect a relative risk of 2.0 for an exposure 
which occurs in 5% of the undiseased control 
group, a study with 516 diseased individuals and 
516 controls would yield a power of 0.80, or an 

80% chance of detecting a difference of that size. 
Studies with the same 516 diseased subjects and 
ratios of controls to cases of 1 : 1, 2 : 1, 3 : 1, 4 : 1, 
5 : 1, 10 : 1, and 50 : 1 would result in statistical 
powers of 0.80, 0.889, 0.916, 0.929, 0.936, 0.949, 
and 0.959, respectively.

The formula for calculating sample sizes for a 
case–control study is similar to that for cohort 
studies (modified from [3]):

N
p V

Z
K

U U

Z p p K V V

1 1 1 1

1 1

2 1

1
2
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where R, α, β, Z1‐α, and Z1‐β are as earlier, p is the 
prevalence of the exposure in the control group, 
and K is the ratio of undiseased control subjects 
to diseased cases,

U p
K

K R
p R1 1 1  

and

V pR
p R1 1  

Again, a series of tables that provide sample 
sizes for case–control studies is presented 
in  Appendix A. In Tables A9–A12, we have 
assumed an alpha (two‐tailed) of 0.05, a beta of 
0.1 (90% power), and control to case ratios of 
1 : 1, 2 : 1, 3 : 1, and 4 : 1, respectively. Tables A13–
A16 are similar, except they assume a beta of 0.2 
(80% power). Each table presents the number of 
diseased subjects needed to detect any of a 
number of specified relative risks, for a number 
of specified exposure rates.

For example, what if again one wanted to 
investigate a new nonsteroidal anti‐inflamma-
tory drug that is about to be marketed, but pre-
marketing data raised questions about possible 
hepatotoxicity? This time, however, one is 
attempting to use a case–control study design. 
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Again, depending upon the values chosen of 
alpha, beta, and so on, the sample sizes needed 
could differ markedly (see Table 4.3). For exam-
ple, what if one wanted to design a study with 
one control (undiseased subject) per diseased 
subject, assuming an alpha (two‐tailed) of 0.05 
and a beta of 0.1? The sample size needed to 
detect a relative risk of 2.0 for any disease would 
vary, depending upon the prevalence of use of 
the drug being studied. If one optimistically 
assumed that the drug will be used nearly as 
commonly as ibuprofen, by perhaps 1% of the 
population, then one could look in Table A9 and 
see that it would require 3210 diseased subjects 
and an equal number of undiseased controls. If 
one were less concerned with missing a real 
association, even if it existed, one could opt for 
a beta of 0.2, and the required sample size would 
drop to 2398 (see Table 4.3 and Table A13). If 
one wanted to minimize the number of diseased 
subjects needed for the study, one could include 
up to four controls for each diseased subject 
(Table 4.3 and Table A16). This would result in a 
sample size of 1370, with four times as many 
controls. Finally, if one considered it inconceiv-
able that this new drug could protect against 
liver disease, then one might use a one‐tailed 
alpha, resulting in a somewhat lower sample 
size of 1096, again with four times as many con-
trols. Much smaller sample sizes are needed to 
detect relative risks of 4.0 or greater and are also 
presented in Table 4.3.

In contrast, what if one’s estimates of the new 
drug’s sales were more conservative? If one 
wanted to detect a relative risk of 2.0 assuming 
sales to 0.1% of the population, perhaps similar 
to tolmetin, then 31 588 subjects would be 
needed in each group, assuming a two‐tailed 
alpha of 0.05, a beta of 0.1, and one control per 
diseased subject. In contrast, if one estimated 
the drug would be used in only 0.01% of the 
population (i.e., in controls without the study 
disease of interest), perhaps like phenylbuta-
zone, one would need 315 373 subjects in each 
study group.

Obviously, case–control studies can require 
very large sample sizes to study relatively 
uncommonly used drugs. In addition, each dis-
ease of interest requires a separate case group 
and, thereby, a separate study. As such, as 
described in Chapter 3, studies of uncommonly 
used drugs and newly marketed drugs are usu-
ally better done using cohort study designs, 
whereas studies of rare diseases are better done 
using case–control designs.

 Sample Size Calculations 
for Case Series

As described in Chapter  3, the utility of case 
series in pharmacoepidemiology is limited, as 
the absence of a control group makes causal 
inference difficult. Despite this, however, this is 
a design that has been used repeatedly. There 
are scientific questions that can be addressed 
using this design, and the collection of a control 
group equivalent in size to the case series would 
add considerable cost to the study. Case series 
are usually used in pharmacoepidemiology to 
quantitate better the incidence of a particular 
disease in patients exposed to a newly marketed 
drug. For example, in the “Phase IV” postmar-
keting drug surveillance study conducted for 
prazosin, the investigators collected a case 
series of 10 000 newly exposed subjects recruited 
through the manufacturer’s sales force, to quan-
titate better the incidence of first‐dose syncope, 
which was a well‐recognized adverse effect of 
this drug [5,6]. Case series are normally used to 
determine whether a disease occurs more fre-
quently than some predetermined incidence in 
exposed patients. Most often, the predeter-
mined incidence of interest is zero, and one is 
looking for any occurrences of an extremely rare 
illness. As another example, when cimetidine 
was first marketed, there was concern over 
whether it could cause agranulocytosis, since it 
was closely related chemically to metiamide, 
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another H‐2 blocker, which had been removed 
from the market in Europe because it caused 
agranulocytosis. This study also collected 
10 000 subjects. It found only two cases of 
neutropenia, one in a patient who was also 
receiving chemotherapy. There were no cases 
of agranulocytosis [7].

To establish drug safety, a study must include 
a sufficient number of subjects to detect an 
elevated incidence of a disease, if it exists. 

Generally, this is calculated by assuming that 
the frequency of the event in question is van-
ishingly small, so that the occurrence of the 
event follows a Poisson distribution, and then 
one generally calculates 95% confidence inter-
vals around the observed results.

Table A17 in the Appendix is useful for mak-
ing this calculation [8]. In order to apply this 
table, one first calculates the incidence rate 
observed from the study’s results; that is, the 

Table 4.3 Examples of sample sizes needed for a case–control study.

Hypothetical 
drug

Prevalence 
rate assumed 
in undiseased Alpha Beta

Odds ratio to 
be detected

Control : case 
ratio

Sample size 
needed in 
case group

Sample size 
needed in 
control group

Ibuprofen 0.01 0.05 (2‐tailed) 0.1 2 1 3210 3210
0.01 0.05 (2‐tailed) 0.2 2 1 2398 2398
0.01 0.05 (2‐tailed) 0.2 2 4 1370 5480
0.01 0.05 (1‐tailed) 0.2 2 4 1096 4384
0.01 0.05 (2‐tailed) 0.1 4 1 601 601
0.01 0.05 (2‐tailed) 0.2 4 1 449 449
0.01 0.05 (2‐tailed) 0.2 4 4 234 936
0.01 0.05 (1‐tailed) 0.2 4 4 190 760

Tolmetin 0.001 0.05 (2‐tailed) 0.1 2 1 31 588 31 588
0.001 0.05 (2‐tailed) 0.2 2 1 23 596 23 596
0.001 0.05 (2‐tailed) 0.2 2 4 13 449 53 796
0.001 0.05 (1‐tailed) 0.2 2 4 10 765 43 060
0.001 0.05 (2‐tailed) 0.1 4 1 5856 5856
0.001 0.05 (2‐tailed) 0.2 4 1 4375 4375
0.001 0.05 (2‐tailed) 0.2 4 4 2266 9064
0.001 0.05 (1‐tailed) 0.2 4 4 1840 7360

Phenylbutazone 0.0001 0.05 (2‐tailed) 0.1 2 1 315 373 315 373
0.0001 0.05 (2‐tailed) 0.2 2 1 235 579 235 579
0.0001 0.05 (2‐tailed) 0.2 2 4 134 240 536 960
0.0001 0.05 (1‐tailed) 0.2 2 4 107 455 429 820
0.0001 0.05 (2‐tailed) 0.1 4 1 58 409 58 409
0.0001 0.05 (2‐tailed) 0.2 4 1 43 631 43 631
0.0001 0.05 (2‐tailed) 0.2 4 4 22 585 90 340
0.0001 0.05 (1‐tailed) 0.2 4 4 18 342 73 368
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number of subjects who develop the disease of 
interest during the specified time interval, 
divided by the total number of individuals in the 
population at risk. For example, if three cases of 
liver disease were observed in a population of 
1000 patients exposed to a new nonsteroidal 
anti‐inflammatory drug during a specified 
period of time, the incidence would be 0.003. 
The number of subjects who develop the dis-
ease is the “Observed number on which esti-
mate is based (n)” in Table A17. In this example, 
it is 3. The lower boundary of the 95% confi-
dence interval for the incidence rate is then the 
corresponding “Lower limit factor (L)” multi-
plied by the observed incidence rate. In this 
example, it would be 0.206 × 0.003 = 0.000618. 
Analogously, the upper boundary would be the 
product of the corresponding “Upper limit fac-
tor (U)” multiplied by the observed incidence 
rate. In the example, this would be 2.92 × 0.003 
= 0.00876. In other words, the incidence rate 
(95% confidence interval) would be 0.003 
(0.000618–0.00876). Thus, the best estimate of 
the incidence rate would be 30 per 10 000, but 
there is a 95% chance that it lies between 6.18 
per 10 000 and 87.6 per 10 000.

In addition, a helpful simple guide is the so‐
called rule of threes, useful in the common situ-
ation where no events of a particular kind are 
observed [8]. Specifically, if no events of a par-
ticular type (i.e., the events of interest to the 
study) are observed in a study of X individuals, 
then one can be 95% certain that the event 
occurs no more often than 3/X. For example, if 
500 patients are studied prior to marketing a 
drug, then one can be 95% certain that any event 
which does not occur in any of those patients 
may occur with a frequency of 3 or less in 500 
exposed subjects, or that it has an incidence rate 
of less than 0.006. If 3000 subjects are exposed 
prior to drug marketing, then one can be 95% 
certain that any event which does not occur in 
this population may occur in no more than 3 in 
3000 subjects, or the event has an incidence rate 
of less than 0.001. Finally, if 10 000 subjects are 

studied in a postmarketing drug surveillance 
study, then one can be 95% certain that any 
events which are not observed may occur in no 
more than 3 in 10 000 exposed individuals, or 
that they have an incidence rate of less than 
0.0003. In other words, events not detected in 
the study may occur less often than in 1 in 3333 
subjects in the general population.

 Discussion

The discussions about sample size determina-
tions in cohort and case–control studies assume 
that one is able to obtain information on each of 
the five variables that factor into these sample 
size calculations. Is this realistic? Four of the 
variables are, in fact, totally in the control of the 
investigators, subject to their specification: 
alpha, beta, the ratio of control subjects to study 
subjects, and the minimum relative risk to be 
detected. Only one of the variables requires data 
derived from other sources. For cohort studies, 
this is the expected incidence of the disease in 
the unexposed control group. For case–control 
studies, it is the expected prevalence of the 
exposure in the undiseased control group. In 
considering this needed information, it is 
important to realize that the entire process of 
sample size calculation is approximate, despite 
its mathematical sophistication. There is cer-
tainly no compelling reason why an alpha should 
be 0.05, as opposed to 0.06 or 0.04. The other 
variables specified by the investigators are simi-
larly arbitrary. As such, only an approximate 
estimate is needed for this missing variable. 
Often the needed information is readily availa-
ble from some existing data source, for example 
vital statistics or commercial drug utilization 
data sources. If not, one can search the medical 
literature for one or more studies that have col-
lected these data for a defined population, either 
deliberately or as a by‐product of their data‐ 
collecting effort, and assume that the  population 
one will study will be similar. If this is not an 
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appropriate assumption, or if no such data exist 
in the medical literature, one is left with two 
alternatives. The first, and better, alternative is 
to conduct a small pilot study within one’s pop-
ulation, in order to measure the information 
one needs. The second is simply to guess. In the 
second case, one should consider what a reason-
able higher guess and a reasonable lower guess 
might be as well, to see if the sample size should 
be increased to take into account the impreci-
sion of the estimate.

Finally, what if one is studying multiple out-
come variables (in a cohort study) or multiple 
exposure variables (in a case–control study), 
each of which differs in the frequency one 
expects in the control group? In that situation, 
an investigator might base the study’s sample 
size on the variable that leads to the largest 
requirement, and note that the study will have 
even more power for the other outcome (or 
exposure) variables. Regardless, it is usually bet-
ter to have a somewhat larger sample size than 
the minimum, to allow some leeway if any of the 
underlying assumptions were wrong. This also 
will permit subgroup analyses with adequate 
power. In fact, if there are important subgroup 
analyses that represent a priori hypotheses that 
one wants to be able to evaluate, one should 
perform separate sample size calculations for 
those subgroups. In this situation, one should 
use the incidence of disease or prevalence of 
exposure that occurs in the subgroups, not that 
which occurs in the general population.

Note that sample size calculation is often an 
iterative process. There is nothing wrong with 
performing an initial calculation, realizing that 
it generates an unrealistic sample size, and then 
modifying the underlying assumptions accord-
ingly. What is important is that investigators 
examine their final assumptions closely, asking 
whether, given the compromises made, the 
study is still worth undertaking.

Note also that this discussion was restricted 
to sample size calculations for dichotomous 
variables; that is, variables with only two 

options: a study subject either has a disease or 
does not have a disease. Information was not 
presented on sample size calculations for con-
tinuous outcome variables; that is, variables that 
have some measurement, such as height, weight, 
blood pressure, or serum cholesterol. Overall, 
the use of a continuous variable as an outcome 
variable, unless the measurement is extremely 
imprecise, will result in a marked increase in the 
power of a study. Details about this are omitted 
because epidemiologic studies unfortunately do 
not usually have the luxury of using such varia-
bles. Readers who are interested in more infor-
mation on this can consult a textbook of sample 
size calculations [9].

All of the previous discussions have focused 
on calculating a minimum necessary sample 
size. This is the usual concern. However, two 
other issues specific to pharmacoepidemiology 
are important to consider as well. First, one of 
the main advantages of postmarketing pharma-
coepidemiologic studies is the increased sensi-
tivity to rare adverse reactions that can be 
achieved, by including a sample size larger than 
that used prior to marketing. Since between 500 
and 3000 patients are usually studied before 
marketing, most pharmacoepidemiologic 
cohort studies are designed to include at least 
10 000 exposed subjects. The total population 
from which these 10 000 exposed subjects would 
be recruited would need to be very much larger, 
of course. Case–control studies can be much 
smaller, but generally need to recruit cases and 
controls from a source population of equivalent 
size as for cohort studies. These are not com-
pletely arbitrary figures, but are based on the 
principles described in this chapter, applied to 
the questions which remain of great importance 
to address in a postmarketing setting. 
Nevertheless, these figures should not be rigidly 
accepted, but should be reconsidered for each 
specific study. Some studies will require fewer 
subjects, many will require more. To accumu-
late these sample sizes while performing cost‐
effective studies, several special techniques have 
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been developed, which are described in Part III 
of this book.

Second, because of the development of these 
new techniques and the development of large 
electronic data systems (see Part IIIb), pharma-
coepidemiologic studies have the potential for 
the relatively unusual problem of too large a 
sample size. It is even more important than 
usual, therefore, when interpreting the results of 
studies that use these data systems, to examine 

their findings, differentiating clearly between 
statistical significance and clinical significance. 
With a very large sample size, one can find 
 statistically significant differences that are 
 clinically trivial. In addition, it must be kept in 
mind that subtle findings, even if statistically 
and clinically important, could easily have been 
created by biases or confounders (see Chapter 3). 
Subtle findings should not be ignored, but 
should be interpreted with caution.
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As discussed in the previous chapters, pharma-
coepidemiologic studies apply the techniques of 
epidemiology to the content area of clinical 
pharmacology. This chapter will review when 
pharmacoepidemiologic studies should be per-
formed. It will begin with a discussion of the 
various reasons why one might perform phar-
macoepidemiologic studies. Central to many of 
these is one’s willingness to tolerate risk. 
Whether one’s perspective is that of a manufac-
turer, regulator, academician, or clinician, one 
needs to consider the risk of adverse reactions 
that one considers tolerable. Thus, the chapter 
will continue with a discussion of the difference 
between safety and risk. It will conclude with a 
discussion of the determinants of one’s toler-
ance of risk.

 Reasons to Perform 
Pharmacoepidemiologic Studies

The decision to conduct a pharmacoepidemio-
logic study can be viewed as similar to the 
 regulatory decision about whether to approve a 
drug for marketing or the clinical decision 
about whether to prescribe a drug. In each case, 

decision‐making involves weighing the costs 
and risks of a therapy against its benefits.

The main costs of a pharmacoepidemiologic 
study are obviously the costs (monetary, effort, 
time) of conducting the study itself. These costs 
clearly will vary, depending on the questions 
posed and the approach chosen to answer them. 
Generally, the cost per patient in a postmarket-
ing study, with the exception of postmarketing 
randomized clinical trials, is likely to be at least 
an order of magnitude less than the cost of a pre-
marketing study. Other costs to consider are the 
opportunity costs of other research that might 
be left undone if this research is performed.

One risk of conducting a pharmacoepidemio-
logic study is the possibility that it could iden-
tify an adverse outcome as associated with the 
drug under investigation when in fact the drug 
does not cause this adverse outcome. Another 
risk is that it could provide false reassurances 
about a drug’s safety. Both these risks can be 
minimized by appropriate study designs, skilled 
researchers, and appropriate and responsible 
interpretation of the results obtained.

The benefits of pharmacoepidemiologic stud-
ies could be conceptualized in four different 
 categories: regulatory, marketing, clinical, and 
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legal (see Table 5.1). Each will be of importance to 
different organizations and individuals involved 
in deciding whether to initiate a study. Any given 
study will usually be performed for several of 
these reasons, which will be discussed in turn.

Regulatory

Perhaps the most obvious and compelling 
 reason to perform a postmarketing pharma-
coepidemiologic study is regulatory: a plan for a 
postmarketing pharmacoepidemiologic study is 
required before the drug will be approved for 
marketing. Requirements for postmarketing 
research have become progressively more fre-
quent in recent years. For example, in the 1970s 
the US Food and Drug Administration (FDA) 
required postmarketing research at the time of 
approval for about one third of drugs, a require-
ment which increased to over 70% in the 1990s 
[1]. Many of these required studies have been 
randomized clinical trials, designed to clarify 
residual questions about a drug’s efficacy. 
Others focus on questions of drug toxicity. 
Often it is unclear whether the pharmacoepide-
miologic study was undertaken in response to a 
regulatory requirement or in response to merely 
a “suggestion” by the regulator, but the effect is 
essentially the same. Early examples of studies 
conducted to address regulatory questions 
include the “Phase IV” cohort studies performed 
of cimetidine [2] and prazosin [3], discussed in 
Chapters 1 and 3. Now that the FDA has the 
authority to require such studies, such require-
ments are becoming more common.

Sometimes a manufacturer may offer to per-
form a pharmacoepidemiologic study with the 
hope that the regulatory agency might thereby 
expedite drug approval. If the agency believed 
that any new serious problem would be detected 
rapidly and reliably after marketing, it could feel 
more comfortable about releasing the drug 
sooner. Although it is difficult to assess the 
impact of volunteered postmarketing studies on 
regulatory decisions, the very large economic 
impact of an earlier approval has motivated 

some manufacturers to initiate such studies. In 
addition, in recent years regulatory authorities 
have occasionally released a particularly impor-
tant drug after essentially only Phase II testing, 

Table 5.1 Reasons to perform pharmacoepidemiologic 
studies.

A) Regulatory
1) Required
2) To obtain earlier approval for marketing
3) As a response to question by regulatory agency
4) To assist application for approval for marketing 

elsewhere
B) Marketing

1) To assist market penetration by documenting the 
safety of the drug

2) To increase name recognition
3) To assist in repositioning the drug

a) Different outcomes, e.g., quality of life and 
economic

b) Different types of patients, e.g., the elderly
c) New indications
d) Less restrictive labeling

4) To protect the drug from accusations about 
adverse effects

C) Legal
1) In anticipation of future product liability litigation

D) Clinical
1) Hypothesis testing

a) Problem hypothesized on the basis of drug 
structure

b) Problem suspected on the basis of preclinical 
or premarketing human data

c) Problem suspected on the basis of 
spontaneous reports

d) Need to better quantitate the frequency of 
adverse reactions

2) Hypothesis generating – need depends on:
a) whether it is a new chemical entity
b) the safety profile of the class
c) the relative safety of the drug within its class
d) the formulation
e) the disease to be treated, including:

i) its duration
ii) its prevalence

iii) its severity
iv) whether alternative therapies are available
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with the understanding that additional data 
would be gathered during postmarketing test-
ing. For example, zidovudine was released for 
marketing after only limited testing, and not 
until later were additional data gathered on both 
safety and efficacy, data which indicated, among 
other things, that the doses initially recom-
mended were too large [4].

Some postmarketing studies of drugs arise in 
response to case reports of adverse reactions 
reported to the regulatory agency. One response 
to such a report might be to suggest a labeling 
change. Often a more appropriate response, 
clinically and commercially, would be to pro-
pose a pharmacoepidemiologic study. This 
study would explore whether this adverse event 
in fact occurs more often in those exposed to 
the drug than would have been expected in the 
absence of the drug and, if so, how large is the 
increased risk of the disease. As an example, a 
Medicaid database was used to study hypersen-
sitivity reactions to tolmetin [5], following 
reports about this problem to the FDA’s 
Spontaneous Reporting System [6].

Finally, drugs are obviously marketed at dif-
ferent times in different countries. A postmar-
keting pharmacoepidemiologic study conducted 
in a country which marketed a drug relatively 
early could be useful in demonstrating the safety 
of the drug to regulatory agencies in countries 
which have not yet permitted its marketing. 
This is becoming increasingly feasible, as both 
the industry and the field of pharmacoepidemi-
ology are becoming more international, and 
regulators are collaborating more.

Marketing

As will be discussed later in this chapter, phar-
macoepidemiologic studies are performed 
 primarily to obtain the answers to clinical ques-
tions. However, it is clear that a major underly-
ing reason for some pharmacoepidemiologic 
studies is the potential marketing impact of 
those answers. In fact, some companies make 
the  marketing branch of the company  responsible 

for pharmacoepidemiology, rather than the 
medical branch.

Because of the known limitations in the infor-
mation available about the effects of a drug at 
the time of its initial marketing, many physi-
cians are appropriately hesitant to prescribe a 
drug until a substantial amount of experience in 
its use has been gathered. A formal postmarket-
ing surveillance study can speed that process, as 
well as clarify advantages or disadvantages a 
drug has compared to its competitors.

A pharmacoepidemiologic study can also be 
useful to improve product name recognition. 
The fact that a study is underway will often be 
known to prescribers, as will its results once it is 
publicly presented and published. This 
increased name recognition will presumably 
help sales. An increase in a product’s name rec-
ognition is likely to result particularly from 
pharmacoepidemiologic studies that recruit 
subjects for the study via prescribers. However, 
while this technique can be useful in selected 
situations, it is extremely expensive and less 
likely to be productive of scientifically useful 
information than most other alternatives avail-
able. In particular, the conduct of a purely mar-
keting exercise under the guise of a 
postmarketing surveillance study, not designed 
to collect useful scientific information, is to be 
condemned [7]. It is misleading and could 
endanger the performance of future scientifi-
cally useful studies, by resulting in prescribers 
who are disillusioned and, thereby, reluctant to 
participate in future studies.

Pharmacoepidemiologic studies can also be 
useful to reposition a drug that is already on the 
market; that is, to develop new markets for the 
drug. One could explore different types of out-
comes resulting from the use of the drug for the 
approved indication, for example the impact of 
the drug on the cost of medical care (see 
Chapter 34) and on patients’ quality of life (see 
Chapter 42). One could also explore the use of 
the drug for the approved indication in types of 
patients other than those included in premar-
keting studies, for example in children, in the 



When Should One Perform Pharmacoepidemiologic Studies?74

elderly, or in patients with multiple comorbidi-
ties and/or taking many concomitant medica-
tions. By exploring unintended beneficial 
effects, or even drug efficacy (see Chapter 33), 
one could obtain clues to and supporting infor-
mation for new indications for drug use. Finally, 
whether because of questions about efficacy or 
questions about toxicity, drugs are sometimes 
approved for initial marketing with restrictive 
labeling. For example, bretylium was initially 
approved for marketing in the US only for the 
treatment of life‐threatening arrhythmias. 
Approval for more widespread use requires 
additional data. These data can often be 
obtained from pharmacoepidemiologic studies.

Finally, and perhaps most importantly, phar-
macoepidemiologic studies can be useful to 
protect the major investment made in develop-
ing and testing a new drug. When a question 
arises about a drug’s toxicity, it often needs an 
immediate answer, or else the drug may lose 
market share or even be removed from the mar-
ket. Immediate answers are often unavailable, 
unless the manufacturer had the foresight to 
perform pharmacoepidemiologic studies in 
anticipation of this problem. Sometimes these 
problems can be specifically foreseen and 
addressed. More commonly, they are not. 
However, the availability of an existing cohort of 
exposed patients and a control group will often 
allow a much more rapid answer than would 
have been possible if the study had to be con-
ducted de novo. One example of this is provided 
by the experience of Pfizer Pharmaceuticals, 
when the question arose about whether piroxi-
cam (Feldene®) was more likely to cause deaths 
in the elderly from gastrointestinal bleeding 
than the other nonsteroidal anti‐inflammatory 
drugs. Although Pfizer did not fund studies in 
anticipation of such a question, it was fortunate 
that  several pharmacoepidemiologic research 
groups had data available on this question 
because of other studies that they had per-
formed [8]. McNeil was not as fortunate 
when questions were raised about anaphylactic 

reactions caused by zomepirac. If the data it 
eventually was able to have [9] had been availa-
ble at the time of the crisis, they might not have 
removed the drug from the market. Later, 
Syntex recognized the potential benefit, and the 
risk, associated with the marketing of parenteral 
ketorolac, and chose to initiate a postmarketing 
surveillance cohort study at the time of the 
drug’s launch [10–12]. Indeed, the drug was 
accused of multiple different adverse outcomes, 
and it was only the existence of this study, and 
its subsequently published results, that saved 
the drug in its major markets.

Legal

Postmarketing surveillance studies can theoreti-
cally be useful as legal prophylaxis, in anticipa-
tion of eventually having to defend against 
product liability suits (see Chapter 9). One often 
hears the phrase “What you don’t know, won’t 
hurt you.” However, in pharmacoepidemiology 
this view is shortsighted and, in fact, very wrong. 
All drugs cause adverse effects; the regulatory 
decision to approve a drug and the clinical 
 decision to prescribe a drug both depend on a 
judgment about the relative balance between the 
benefits of a drug and its risks. From a legal per-
spective, to win a product liability suit using a 
legal theory of negligence, a plaintiff must prove 
causation, damages, and negligence. A pharma-
ceutical manufacturer that is a defendant in such 
a suit cannot change whether its drug causes an 
adverse effect. If the drug does, this will presum-
ably be detected at some point. The manufac-
turer also cannot change whether the plaintiff 
suffered legal damages from the adverse effect; 
that is, whether the plaintiff suffered a disability 
or incurred expenses resulting from a need for 
medical attention. However, even if the drug did 
cause the adverse outcome in question, a manu-
facturer certainly could document that it was 
performing state‐of‐the‐art studies to attempt to 
detect whatever toxic effects the drug had. In 
addition, such studies could make easier the 
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defense of totally groundless suits, in which a 
drug is blamed for producing adverse reactions 
it does not cause.

Clinical

Hypothesis Testing
The major reason for most pharmacoepidemio-
logic studies is hypothesis testing. The hypoth-
eses to be tested can be based on the structure 
or the chemical class of a drug. For example, the 
cimetidine study mentioned earlier [2] was con-
ducted because cimetidine was chemically 
related to metiamide, which had been removed 
from the market in Europe because it caused 
agranulocytosis. Alternatively, hypotheses can 
also be based on premarketing or postmarket-
ing animal or clinical findings. For example, the 
hypotheses can come from spontaneous reports 
of adverse events experienced by patients taking 
the drug in question. The tolmetin [5], piroxi-
cam [8], zomepirac [9], and ketorolac [10–12] 
questions mentioned are all examples of this. 
Finally, an adverse effect may clearly be due to a 
drug, but a study may be needed to quantitate 
its frequency. An example would be the post-
marketing surveillance study of prazosin, per-
formed to quantitate the frequency of first‐dose 
syncope [3]. Of course, the hypotheses to be 
tested can involve beneficial drug effects as well 
as harmful drug effects, subject to some impor-
tant methodologic limitations (see Chapter 33).

Hypothesis Generating
Hypothesis‐generating studies are intended to 
screen for previously unknown and unsus-
pected drug effects. In principle, all drugs could, 
and perhaps should, be subjected to such stud-
ies. However, some drugs may require these 
studies more than others. This has been the 
focus of a formal study, which surveyed experts 
in pharmacoepidemiology [13].

For example, it is generally agreed that new 
chemical entities are more in need of study than 
what are called “me too” drugs. This is because 

the lack of experience with related drugs makes 
it more likely that the new drug has possibly 
important, unsuspected effects.

The safety profile of the class of drugs should 
also be important to the decision about whether 
to conduct a formal screening postmarketing 
surveillance study for a new drug. Previous 
experience with other drugs in the same class 
can be a useful predictor of what the experience 
with the new drug in question is likely to be. For 
example, with the finding that troglitazone had 
an increased risk of liver disease [14], that 
became a concern as well with the later thiazoli-
dinediones, pioglitazone and rosiglitazone [15]. 
Similarly, with the finding that rofecoxib was 
associated with myocardial infarction, that 
became a concern as well with celecoxib [16].

The relative safety of the drug within its class 
can also be helpful. A drug that has been studied 
in large numbers of patients before marketing 
and appears safe relative to other drugs within 
its class is less likely to need supplementary 
postmarketing surveillance studies. An exten-
sion of this approach, of course, is comparative 
effectiveness research (see Chapter 26).

The formulation of the drug can be consid-
ered a determinant of the need for formal 
screening pharmacoepidemiologic studies. A 
drug that will, because of its formulation, be 
used mainly in institutions, where there is close 
supervision, may be less likely to need such a 
study. When a drug is used under these condi-
tions, any serious adverse effect is likely to be 
detected, even without any formal study.

The disease to be treated is an important 
determinant of whether a drug needs additional 
postmarketing surveillance studies. Drugs used 
to treat chronic illnesses are likely to be used for 
a long period of time. As such, it is important to 
know their long‐term effects. This cannot be 
addressed adequately in the relatively brief time 
available for each premarketing study. Also, 
drugs used to treat common diseases are impor-
tant to study, as many patients are likely to be 
exposed to them. Drugs used to treat mild or 
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self‐limited diseases need careful study too, 
because serious toxicity is less acceptable. This 
is especially true for drugs used by healthy 
 individuals, such as contraceptives. On the 
other hand, when one is using a drug to treat 
individuals who are very ill, one is more tolerant 
of toxicity, assuming the drug is efficacious.

Finally, it is important to know whether alter-
native therapies are available. If a new drug is 
not a major therapeutic advance, since it will be 
used to treat patients who would have been 
treated with the old drug, one needs to be more 
certain of its relative advantages and disadvan-
tages. The presence of significant adverse 
effects, or the absence of beneficial effects, is 
less likely to be tolerated for a drug that does not 
represent a major therapeutic advance.

 Safety versus Risk

Clinical pharmacologists are used to thinking 
about drug “safety”: the statutory standard that 
must be met before a drug is approved for mar-
keting in the US is that it needs to be proven to 
be “safe and effective under conditions of 
intended use.” It is important, however, to 
 differentiate safety from risk. Virtually nothing 
is without some risks. Even staying in bed is 
associated with a risk of acquiring bed sores! 
Certainly no drug is completely safe. Yet, the 
unfortunate misperception by the public 
 persists that drugs mostly are and should be 
without any risk at all. Use of a “safe” drug, how-
ever, still carries some risk. It would be better to 
think in terms of degrees of safety. Specifically, a 
drug “is safe if its risks are judged to be accept-
able” [17]. Measuring risk is an objective but 
probabilistic pursuit. A judgment about safety is 
a personal and/or social value judgment about 
the acceptability of that risk. Thus, assessing 
safety requires two extremely different kinds of 
activities: measuring risk and judging the 
acceptability of those risks [17]. The former is 
the focus of much of pharmacoepidemiology 

and most of this book. The latter is the focus of 
the following discussion. More detail is presented 
in Chapter 39.

 Risk Tolerance

Whether or not to conduct a postmarketing 
surveillance pharmacoepidemiologic study also 
depends on one’s willingness to tolerate risk. 
From a manufacturer’s perspective, one can 
consider this risk in terms of the risk of a poten-
tial regulatory or legal problem that may arise. 
Whether one’s perspective is that of a manufac-
turer, regulator, academician, or clinician, one 
needs to consider the risk of adverse reactions 
that one is willing to accept as tolerable. There 
are several factors that can affect one’s willing-
ness to tolerate the risk of adverse effects from 
drugs (see Table 5.2). Some of these factors are 
related to the adverse outcome being studied. 
Others are related to the exposure and the set-
ting in which the adverse outcome occurs.

Features of the Adverse Outcome

The severity and reversibility of the adverse reac-
tion in question are of paramount importance to 
its tolerability. An adverse reaction that is severe 
is much less tolerable than one that is mild, even 
at the same incidence. This is especially true for 
adverse reactions that result in permanent harm, 
for example birth defects or death.

Another critical factor that affects the tolera-
bility of an adverse outcome is the frequency of 
the adverse outcome in those who are exposed. 
Notably, this is not a question of the relative risk 
of the disease due to the exposure, but a  question 
of the excess risk attributed to the drug of inter-
est (see Chapter 3). Use of tampons is extraordi-
narily strongly linked to toxic shock: prior 
studies have shown relative risks of between 10 
and 20. However, toxic shock is sufficiently 
uncommon that even a 10‐ to 20‐fold increase 
in the risk of the disease still contributes an 
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extraordinarily small excess risk of toxic shock 
syndrome in those who use tampons [18].

In addition, the particular disease caused by 
the drug is important to one’s tolerance of its 
risks. Certain diseases are considered by the 
public to be “dread diseases,” those that generate 
more fear and emotion than others. Examples 
are AIDS and cancer. It is less likely that the risk 
of a drug will be considered acceptable if it 
causes one of these diseases.

Another relevant factor is whether the adverse 
outcome is immediate or delayed. Most 
 individuals are less concerned about delayed 
risks than immediate risks. This is one of the 
factors that have probably slowed the success of 
antismoking efforts. In part this is a function of 
denial; delayed risks seem as if they may never 
occur. In addition, the economic concept of 
“discounting” plays a role here. An adverse event 
in the future is less bad than the same event 
today, and a beneficial effect today is better than 
the same beneficial effect in the future. 
Something else may occur between now and 
then that could make that delayed effect irrele-
vant or, at least, mitigate its impact. Thus, a 
delayed adverse event may be worth incurring if 
it can bring about beneficial effects today.

It is also important whether the adverse 
 outcome is a type A reaction or a type B reac-
tion. As described in Chapter  1, type A reac-
tions are the result of an exaggerated but 
otherwise usual pharmacologic effect of a drug. 
Type A reactions tend to be common, but they 
are dose related, predictable, and less serious. In 
contrast, type B reactions are aberrant effects of 
a drug. Type B reactions tend to be uncommon, 
are not related to dose, and are potentially more 
serious. They may be due to hypersensitivity 
reactions, immunologic reactions, or some 
other idiosyncratic reaction to the drug. 
Regardless, type B reactions are the more diffi-
cult to predict or even detect. If one can predict 
an adverse effect, then one can attempt to 
 prevent it. For example, in order to prevent ami-
nophylline‐induced arrhythmias and seizures, 
one can begin therapy at lower doses and follow 
serum levels carefully. For this reason, all other 
things being equal, type B reactions are usually 
considered less tolerable.

Finally, the acceptability of a risk also varies 
according to how well established it is. The 
same adverse effect is obviously less tolerable if 
one knows with certainty that it is caused by a 
drug than if it is only a remote possibility.

Characteristics of the Exposure

The acceptability of a risk is very different 
depending upon whether an exposure is essen-
tial or optional. Major adverse effects are much 
more acceptable when one is using a therapy 
that can save or prolong life, such as chemother-
apy for malignancies. On the other hand, ther-
apy for self‐limited illnesses must have a low 
risk to be acceptable. Pharmaceutical products 
intended for use in healthy individuals, such as 
vaccines and contraceptives, must be exceed-
ingly low in risk to be considered acceptable.

The acceptability of a risk is also dependent 
on whether the risk is from the presence of a 
treatment or its absence. One could conceptual-
ize deaths from a disease that can be treated by 

Table 5.2 Factors affecting the acceptability of risks.

A) Features of the adverse outcome
1) Severity
2) Reversibility
3) Frequency
4) “Dread disease”
5) Immediate versus delayed
6) Occurs in all people vs. just in sensitive people
7) Known with certainty or not

B) Characteristics of the exposure
1) Essential versus optional
2) Present vs. absent
3) Alternatives available
4) Risk assumed voluntarily
5) Drug use will be as intended vs. misuse is likely

C) Perceptions of the evaluator
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a drug that is not yet on the market as an adverse 
effect from the absence of treatment. For exam-
ple, the six‐year delay in introducing beta‐
blockers into the US market has been blamed 
for resulting in more deaths than all recent 
adverse drug reactions combined [19]. As a 
society, we are much more willing to accept 
risks of this type than risks from the use of a 
drug that has been marketed prematurely. 
Physicians are taught primum non nocere – first 
do no harm. This is somewhat analogous to our 
willingness to allow patients with terminal 
 illnesses to die from these illnesses without 
intervention, while it would be considered 
unethical and probably illegal to perform eutha-
nasia. In general, we are much more tolerant of 
sins of omission than sins of commission.

Whether any alternative treatments are availa-
ble is another determinant of the acceptability of 
risks. If a drug is the only available treatment for 
a disease, particularly a serious disease, then 
greater risks will be considered acceptable. This 
was the reason zidovudine was allowed to be 
marketed for the treatment of AIDS, despite its 
toxicity and the limited testing that had been per-
formed [4]. Analogously, studies of toxic shock 
syndrome associated with the use of  tampons 
were of public health importance, despite the 
infrequency of the disease, because consumers 
could choose among other available tampons 
that were shown to carry different risks [18].

Whether a risk is assumed voluntarily is also 
important to its acceptability. We are willing to 
accept the risk of death in automobile accidents 
more than the much smaller risk of death in 
 airline accidents, because we control and under-
stand the former and accept the attendant risk 
voluntarily. Some people even accept the enor-
mous risks of death from tobacco‐related 
 disease, but would object strongly to being given 
a drug that was a small fraction as toxic. In gen-
eral, it is agreed that patients should be made 
aware of possibly toxic effects of drugs they are 
prescribed. When a risk is higher than it is with 
the usual therapeutic use of a drug, as with an 

invasive procedure or an investigational drug, 
one usually asks the patient for formal informed 
consent. The fact that fetuses cannot make 
 voluntary choices about whether or not to take 
a drug contributes to the unacceptability of 
drug‐induced birth defects.

Finally, from a societal perspective, one needs 
to be concerned about whether a drug will be 
and is used as intended or whether misuse is 
likely. Misuse, in and of itself, can represent a 
risk of the drug. For example, a drug is consid-
ered less acceptable if it is addicting and, so, is 
likely to be abused. In addition, the potential for 
overprescribing by physicians can decrease the 
acceptability of the drug. For example, in the 
controversy about birth defects from isotreti-
noin, there was no question that the drug was a 
powerful teratogen, and that it was a very effec-
tive therapy for serious cystic acne refractory to 
other treatments. There was no question either 
about its effectiveness for less severe acne. 
However, that effectiveness led to its widespread 
use, including in individuals who could have 
been treated with less toxic therapies, and a 
larger number of pregnancy exposures, abor-
tions, and birth defects than otherwise would 
have occurred [20].

Perceptions of the Evaluator

Finally, much depends ultimately upon the 
 perceptions of the individuals who are making 
the decision about whether a risk is acceptable. In 
the US, there have been more than a million 
deaths from traffic accidents over the past 
30 years; tobacco‐related diseases kill the equiva-
lent of three jumbo jet loads every day; and 3000 
children are born each year with embryopathy 
from their mothers’ use of alcohol in pregnancy 
[21]. Yet, these deaths are accepted with little 
concern, while the uncommon risk of an airplane 
crash or being struck by lightning generates fear. 
The decision about whether to allow isotretinoin 
to remain on the market hinged on whether the 
efficacy of the drug for a small number of people 
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who had a disease which was disfiguring but not 
life threatening was worth the birth defects that 
would result in some other individuals. There is 
no way to remove this subjective component 
from the decision about the acceptability of risks. 
Indeed, much more research is needed to eluci-
date patients’ preferences in these matters. 
However, this subjective component is part of 
what makes informed consent so important. 
Most people feel that the final subjective judg-
ment about whether an individual should assume 
the risk of ingesting a drug should be made by 
that individual, after education by their physi-
cian. However, as an attempt to assist that 
 judgment, it is useful to have some quantitative 
information about the risks inherent in some 
other activities. Some such information is pre-
sented in Table 5.3.

 Conclusion

This chapter reviewed when pharmacoepide-
miologic studies should be performed. After 
beginning with a discussion of the various rea-
sons why one might perform pharmacoepide-
miologic studies, it reviewed the difference 
between safety and risk. It concluded with a 
discussion of the determinants of one’s toler-
ance of risk. Now that it is hopefully clear 
when one might want to perform a pharma-
coepidemiologic study, the next part of the 
book will provide perspectives on pharma-
coepidemiology from some of the different 
fields that use it.
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Every year prescribers and patients have more 
medications at their disposal, each with its own 
efficacy, side effects, and cost. When a new drug 
is introduced, its benefit/risk relationship is 
often understood in only a preliminary way, as is 
its cost‐effectiveness. This provides a limited 
perspective on how it ideally should be used. 
High‐profile withdrawals of drugs for safety rea
sons, along with prominent warnings about 
widely used medications that remain on the 
market, have caused physicians, patients, and 
policymakers to become more aware of drug 
safety concerns. At the same time, healthcare 
systems all over the globe are struggling with 
how to provide the most appropriate care in the 
face of rising costs and increasingly tight fiscal 
constraints. Pharmacoepidemiology can serve 
as a key tool for helping to address all of these 
concerns. These issues are growing throughout 
the healthcare system, and particularly in 
 academic medical centers.

Once a drug is approved for marketing, it 
enters a complex healthcare system in which its 
prescription, its use by patients, and its out
comes often go largely unassessed. Until recently, 
scant attention has been paid to systematic sur
veillance of these actions, except for the atypical 
settings of some integrated  healthcare delivery 

systems. The prevailing view has been that after 
the US Food and Drug Administration (FDA) or 
comparable national authority approves a drug, 
it is used at the discretion of the clinician, with 
little formal follow‐up of the appropriateness or 
consequences of such decisions. The problem is 
made more acute by the fact that many regula
tory agencies purposely (and often by statute) 
do not base their approval decisions on a medi
cation’s clinical or economic value compared to 
similar products; often superiority over placebo 
is sufficient for a drug to be approved. In addi
tion, it is generally no one’s responsibility (other 
than the harried prescriber) to determine how 
faithfully patients are adhering to the prescribed 
regimen. Increasingly, more attention is being 
paid to assessing the outcomes of medication 
use on a population level, considering what its 
useful and harmful outcomes are when it is 
taken by hundreds, thousands, or even millions 
of patients rather than by single individuals in a 
clinical trial or in routine practice. It is now 
widely appreciated that some adverse events 
can be identified and their risk quantified only 
by observing a drug’s use in large numbers of 
patients. The best perspective on the impact of 
a medication on the health of the public requires 
measuring those outcomes in the healthcare 
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system itself, rather than for one person at a 
time. It is here that the insights of pharma
coepidemiology are playing an increasingly 
central role.

Driven by the pressures just noted, this situa
tion is evolving, with growing appreciation of 
several important problems, each of which can 
be informed by the methods and tools of phar
macoepidemiology: (i) medications that seem 
acceptably safe on approval may prove to have 
important risks which were underappreciated at 
the time of approval; (ii) in typical practice, cli
nicians often make prescribing decisions that 
do not reflect the best evidence base or guide
line recommendations; (iii) even this evidence 
base is often thinner than it should be because 
head‐to‐head comparisons of drug effectiveness 
or safety  –  either trial based or observa
tional – have not been done [1]; (iv) as a result, 
inadequate information is available to inform 
decisions about which drugs work best, or most 
cost‐effectively, for specific indications; and (v) 
patients frequently fail to take their medications 
as directed.

Pharmacoepidemiology is the core discipline 
required for a rigorous understanding of each of 
these areas, and to guide the development and 
evaluation of programs to address them. Many 
of these topics are discussed in detail in the 
chapters that follow; this chapter provides an 
overview of how the field and its methods can 
contribute to these larger themes in medical 
care delivery and health services research, from 
the perspective of academia.

 The Drug Approval Process

Each national healthcare system must grapple 
with the following inherent paradox of pharma
cology: a new therapy must be evaluated for 
approval when the available data on its benefits 
and harms are still modest. Yet, waiting until 
“all the evidence is in” can pose its own public 
health threat, if this prevents an important new 

 treatment from being used by patients who 
need it. Since any medication that is effective is 
bound to have some adverse effect in some 
organ system in some patients at some doses, 
any approval must by definition be based on a 
judgment that a drug’s efficacy is “worth it” in 
light of the known risks of the treatment. 
However, the trials conducted by a given drug 
manufacturer to win approval are often pow
ered statistically (see Chapter 4) to demonstrate 
success for that single product in achieving a 
prespecified therapeutic endpoint. Especially 
when this is demonstration of superiority over 
placebo, and/or when the required endpoint is 
reaching a surrogate outcome – for example, a 
change in a laboratory test such as hemoglobin 
A1c or low‐density lipoprotein (LDL) choles
terol  –  the number of subjects required for 
these exercises and the duration of the studies 
are often inadequate to reveal important safety 
problems if they are present. This is exacer
bated by the extensive exclusion criteria for 
study participation, a particular problem for 
high‐risk populations such as the frail elderly, 
pregnant women, and children (see also 
Chapter 22) [2].

As a result, additional methods need to be 
applied even to preapproval data to aggregate 
adverse events from multiple study populations 
to provide the power needed to assess safety. 
Meta‐analysis (see Chapter  36) of adverse 
effects data from multiple preapproval trials 
represents the first opportunity to use these 
tools to inform the appropriate use of medica
tions. This makes it possible to combine find
ings from different, smaller studies  –  many of 
them conducted before the drug in question 
was approved – to produce evidence of poten
tial harm for drugs such as rofecoxib (cardiovas
cular harm) [3], rosiglitazone (myocardial 
infarction) [4], or the selective serotonin reup
take inhibitors (SSRIs) used in children (suici
dality) [5].

These shortcomings of premarketing trials 
are likely to become even more salient as 
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 regulators move toward alternative drug 
approval  processes. The European Medicines 
Agency recently completed a pilot project to 
explore approval via adaptive pathways, which 
are intended to provide earlier and progressive 
patient access to new drugs. The US FDA main
tains several expedited regulatory pathways. 
Postapproval monitoring of drugs approved 
through these pathways is even more critical, 
because safety information is more likely to 
emerge in the postmarketing setting for drugs 
approved by these pathways compared to con
ventional pathways [6,7]. In 2016 the US 
Congress enacted the 21st Century Cure Act, 
which included, among other sections, provi
sions that modify the data required for FDA 
approval. In particular, the law promotes the use 
of biomarkers and surrogate measures to sup
port the approval of new drugs as well as “real‐
world evidence” from observational data to 
support supplemental indications for existing 
products [8]. As these new provisions are imple
mented, pharmacoepidemiology will have an 
even greater role in generating the real‐world 
evidence for supplemental indications [9], and 
will be increasingly relied upon to evaluate the 
impact on clinical outcomes, both beneficial 
and harmful, of new drugs approved on less rig
orous evidence.

 Prescribing Practices

Once a drug has entered the healthcare deliv
ery system, a growing literature documents 
several areas in which prescribing falls short of 
existing knowledge. These issues can also be 
elucidated using the tools of pharmacoepide
miology. First, and often neglected, is the issue 
of underprescribing. Studies of many impor
tant chronic  diseases such as hypertension, 
hypercholesterolemia, and diabetes reveal that 
many patients with these conditions have not 
been diagnosed by their physicians, and, when 
they have, they are often not prescribed an 

adequate regimen to control their risks, or 
even any regimen at all [10]. Even with a data
base that includes only drug utilization 
 information, pharmacoepidemiology makes it 
possible to achieve a good first approximation 
of the problem of undertreatment by measur
ing the age‐ and gender‐adjusted prevalence of 
use of medications to manage specific chronic 
conditions by a given clinician, or a given prac
tice or health system (see Chapter 18). When 
patterns of use are combined with other 
research on prescriber characteristics and 
decision‐making, it becomes possible to iden
tify more clearly when and how prescribing 
falls short, insights which can then be used to 
shape programs to improve care (see later dis
cussion) [11].

When medications are used, there is good 
evidence that clinicians frequently do not pre
scribe regimens that are optimal, based on the 
available clinical evidence, or prescribe medica
tions that may interact with other drugs a 
patient takes, or choose more expensive drugs 
when comparable generic preparations would 
work as well and be much more affordable. 
Pharmacoepidemiology makes it possible to 
assess the distribution of drugs used for a given 
indication by clinician, practice, or system, even 
if only drug utilization datasets are available, 
though it is necessary to take into account 
whether a given prescriber is a specialist who 
may see in referral most of the refractory 
patients cared for by colleagues.

When diagnostic data are also available, a 
more sophisticated approach can also take into 
account contraindications and compelling 
indications related to specific drug choices, to 
refine the assessment of the appropriateness of 
prescribing in an entire healthcare system, or 
for individual clinicians (see Chapter  19). 
Numerous studies have documented these 
shortfalls in several domains of care. For exam
ple, one study assessed all hypertension‐related 
medication use and diagnoses in one large 
state‐funded program of medications for the 
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elderly. The availability of clinical information 
made it possible to determine how well the 
regimen of each patient conformed to the rec
ommendations of the then‐current guidelines 
of the Joint National Committee (JNC) on 
Prevention, Detection, and Treatment of High 
Blood Pressure. This study found that a sub
stantial proportion of treated hypertensive 
patients were not receiving a regiment consist
ent with JNC guidelines [12]. Often, such sub
optimal prescribing involved omissions of an 
indicated class (e.g., angiotensin‐converting 
enzyme inhibitors in patients with diabetes 
mellitus), or use of a calcium channel blocker 
when a beta‐blocker would have been more 
appropriate (e.g., in a hypertensive patient who 
has had a myocardial infarction). Another 
analysis reviewed all clinical encounters of 
patients who had filled prescriptions for clopi
dogrel and found that about half did not have 
any evidence of conditions (such as coronary 
artery stenting) for which the drug had an 
approved indication, or any other evidence‐
based reasons for its use [13].

Moving up an additional level in database 
detail, more sophisticated health records sys
tems are becoming available each year that 
integrate pharmacy data with information 
from clinical laboratories, electronic health 
records, registries, and sources of patient‐
reported information to measure the ade
quacy of use of cholesterol‐lowering agents, 
diabetes drugs, antihypertensives, and other 
drugs. This makes it possible to assess the 
effectiveness of prescribing outcomes for a 
given clinician (or practice or system), by 
measuring how well target metrics such as 
normotension or goal LDL cholesterol or 
hemoglobin A1c are being achieved. In all 
these analyses, pharmacoepidemiology makes 
it possible to evaluate the appropriateness of 
medication use in selected populations, even 
if it cannot with certainty determine whether 
a given prescription in a particular patient 
was the best choice.

 Evaluation of Patients’ Use of 
Drugs in the Healthcare System

Even when a medication is appropriately pre
scribed, patients may underuse it or use it in 
unsafe ways. Underuse of needed drugs by 
patients is one of the most common  medication‐
related problems, and one that can be readily 
identified by pharmacoepidemiology (see also 
Chapter  38) [14]. Although it is less striking 
than obvious drug‐induced adverse events, 
underuse is probably responsible for at least as 
much morbidity and mortality, if not more. To 
be fully understood, this requires the kind of 
denominator‐grounded population orientation 
of a pharmacoepidemiologic perspective, which 
is still lacking in many healthcare systems [15]. 
The clinical trialist or the treating physician 
focuses on patients who are assigned to receive 
a drug in a study, or who are prescribed a drug 
in practice, respectively. But by expanding the 
view to the larger population of people of which 
those study subjects or patients make up a sub
sample, the pharmacoepidemiologist can also 
take into account all those people with a par
ticular diagnosis who are not taking a given drug 
or drug class, perhaps because their clinician 
did not prescribe treatment, or because the 
patient did not have access to the medication, or 
had stopped treatment because of side effects.

The failure of a patient to fill a prescribed 
medication has been described using various 
terms, each with its own sociocultural baggage. 
(In fact, even the word “failure” is loaded in this 
way.) The word compliance has been criticized 
because it is seen as depicting a master– 
subservient relationship between doctor and 
patient, implying that a “noncompliant” patient 
is engaging in a kind of misbehavior. Many pre
fer the term adherence, which is more neutral. 
Persistence refers to the degree to which a 
patient sticks with a prescribed regimen over 
time. Intelligent nonadherence (or intelligent 
noncompliance) describes a situation in which a 
patient stops a therapy because it is producing 
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excessively burdensome side effects or failing to 
relieve symptoms effectively. Until around 1990, 
the field of adherence research was understud
ied, and most clinicians assumed that after they 
wrote a prescription, a patient filled it and took 
it more or less as directed. Once large‐scale 
computerized pharmacy claims datasets and 
the methods of pharmacoepidemiology made it 
possible to readily measure the prescription‐fill
ing behavior of large numbers of people, it 
became clear that this simple assumption was 
often false (see Chapter 38) [16,17].

Datasets based on the complete paid‐claims 
files of drug benefit programs (see Chapter 12) 
provided the first means of studying adherence 
in defined populations. Because such a claim is 
usually necessary before the pharmacy can be 
paid, and because insured patients are unlikely 
to pay out of pocket to fill prescriptions outside 
the system, such datasets provide an excellent 
record of what medications are actually dis
pensed [18]. When such datasets are analyzed, a 
grim fact emerges: averaging across studies, 
about half of all medications prescribed for the 
treatment of chronic conditions such as hyper
cholesterolemia, elevated blood pressure, osteo
porosis, glaucoma, and so on are not taken [19]. 
This causes a massive and still underappreci
ated shortfall – at both the clinical and public 
health levels – in the benefit that these regimens 
could generate in preventing myocardial infarc
tion, strokes, fractures, or visual loss, respec
tively [20]. The full magnitude of this problem is 
still not completely appreciated by clinicians or 
policymakers.

Because many assessments of underuse are 
based on pharmacy‐generated data on filled 
prescriptions, it is sometimes difficult to know 
whether nonuse of an indicated drug was the 
result of a failure of the patient to fill a prescrip
tion, or the failure of the clinician to write it. 
Electronic prescribing makes it possible to 
define this problem more precisely. As bad as 
the problem of low refill rates is, these newer 
analyses have made it clear that the situation is 

even worse [21]. One large study found that a 
fourth of initial prescriptions written electroni
cally were never picked up at the pharmacy [22]. 
As a result, the approximately 50% rate of non
adherence seen over time in pharmacoepide
miologic datasets based on filled prescriptions 
is a best‐case scenario, as it does not even take 
into account the additional millions of regimens 
that are not initiated by the patient. Terminology 
has evolved to define the two aspects of this 
problem: secondary nonadherence refers to the 
failure by a patient to continue to use a medica
tion already begun; primary nonadherence 
occurs when a clinician writes a prescription 
that the patient does not even fill once. The 
magnitude of both primary and secondary non
adherence is substantial, and varies by drug 
class as well as by country [23–26].

These findings about adherence have implica
tions for other aspects of pharmacoepidemio
logic studies. First, they raise important 
concerns about the validity of large databases 
(such as the UK Clinical Practice Research 
Database and other electronic health record 
databases) that define drug exposure in terms of 
what a clinician prescribed, as opposed to what 
the patient actually obtained from the phar
macy (see Chapters 13 and 37). Second, the very 
high rates of nonuse in typical practice settings 
cast doubt on randomized trial‐based assump
tions about the clinical benefit, public health 
impact, and cost‐effectiveness of many regi
mens in widespread use. This issue points up 
the value of the “real‐world” analyses performed 
by pharmacoepidemiologists using data from 
typical practice settings (see Chapters 11–14).

Many pharmacoepidemiologic studies have 
attempted to identify risk factors for poor 
adherence, with the goal of helping prescribers 
to spot proactively which patients are likely to 
be nonadherent [27]. Yet this literature has 
identified remarkably few such predictors. High 
drug cost has been one, especially in patients 
without adequate pharmacy benefit insurance. 
Such studies have also demonstrated that 
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insured patients prescribed a higher‐cost medi
cation adhere less well to their regimens than 
those prescribed a lower‐cost generic in the 
same therapeutic class [28,29]. Several studies 
have identified claims‐based measures of 
patients’ prior adherence to other medications 
as a strong predictor of their future adherence 
to a new medication, likely reflecting their gen
eral willingness or ability to adhere to prescribed 
treatments [30,31]. Another consistent risk fac
tor has been race, suggesting an important 
problem in physician–patient communication 
and/or trust for nonwhite patients [32]. 
However, other variables such as physician 
characteristics, or patient age, level of educa
tion, or morbidity, have not consistently been 
found to be associated with poor medication 
adherence, making the management of this 
common problem even more difficult.

 Assessment of the Quality 
and Outcomes of Medication 
Use in Populations

Much attention is now being paid to assessment 
of the outcomes of medication use in typical 
real‐world populations. This perspective is 
based on the difference between efficacy, the 
effect of a medication in the rigorous but ideal
ized setting of a clinical trial, and its effective-
ness, a measure of its outcomes in typical 
practice settings (see Chapter 33). These often 
differ. For example, one important conventional 
randomized trial demonstrated convincingly 
that the addition of spironolactone to the regi
men of patients with congestive heart failure 
substantially improved their clinical status and 
reduced mortality [33]. However, a population‐
based analysis later established that when these 
findings were applied in routine practice by typ
ical physicians treating a much larger number of 
typical patients, there was a significant increase 
in hyperkalemia‐associated morbidity and 

 mortality [34]. By contrast, an analysis of pre
scribers’ responses to a different study that pro
vided new evidence about the optimal 
management of atrial fibrillation demonstrated 
a more positive change in practice [35].

Other “lost in translation” analyses document 
that despite overwhelming randomized trial evi
dence showing the efficacy of warfarin use in 
preventing stroke in patients with atrial fibrilla
tion, population‐based studies of older patients 
living in nursing homes revealed a surprisingly 
low prevalence of use of this therapy [36]. Such 
underuse was found to be associated with physi
cians’ recent experience with adverse events 
caused by the drug [37], as well as by their per
ceptions of and attitudes to risks and benefits 
[38]. Other pharmacoepidemiologic studies of 
medication use in nursing homes have docu
mented similar dramatically low use of other 
well‐documented medications in these high‐risk 
populations, such as drugs to treat osteoporosis, 
even in patients who have already had a hip frac
ture [39]. This kind of real‐world population 
research can lay the foundation for enlightened 
interventions to address such nonuse, by taking 
on its underlying causes.

Pharmacoepidemiologic methods can also be 
used to track the diffusion of new medication 
classes into practice [40], as well as the reaction 
of practitioners in various settings to new infor
mation about the comparative benefits and risks 
of drugs, as in the case of warnings about the 
cardiovascular toxicity of rosiglitazone [41]. 
Acknowledging the gap between the character
istics of clinical trial participants and those who 
often use a medication in practice, methods are 
also being developed and applied to generalize 
trial results to more typical patient populations. 
For example, the newer oral anticoagulant, dab
igatran, was approved on the basis of a large 
randomized trial comparing it to warfarin, an 
older oral anticoagulant. A simulation‐based 
approach was used to assess how the compara
tive benefits and risks would translate to cohorts 
of patients who use these drugs outside of the 
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randomized trial and in usual routine care [42]. 
Such an approach preserves the strengths of the 
randomized trial, but makes the results more 
useful to patients and clinicians.

 Policy Analysis

Usually, policy changes are implemented in the 
healthcare system with no systematic plans for 
their evaluation, and no follow‐up studies of 
their impact; this can be hyperbolically but 
poignantly characterized as a form of large‐
scale, sloppy human experimentation without 
informed consent. Such changes in benefit 
design are often applied to medication use. 
However, even if a policy is changed in a way 
that does not anticipate an evaluation, popula
tion‐based observational studies after the fact 
can still yield important conclusions concerning 
its effects, both good and bad. For example, 
when the Canadian province of British Columbia 
implemented a reference‐pricing policy for 
antihypertensive medications in which it reim
bursed only the cost of an effective generic drug 
in several classes, critics charged that any sav
ings would come at the cost of increased mor
bidity and healthcare utilization. However, a 
careful time‐series analysis of all medication 
use, physician visits, and hospital care in the 
province before and after policy implementa
tion provided compelling evidence that the new 
reimbursement system produced no important 
clinical downsides, but did achieve substantial 
savings for the provincial healthcare budget 
[43]. Such observational methods have also 
been combined with population‐based rand
omized policy trials, and were found to yield 
similar results [43].

Similarly, one large US employer introduced a 
change in its drug benefit plan that reduced or 
eliminated patient co‐payment requirements 
for cholesterol‐lowering drugs and an expensive 
antiplatelet agent. While this new policy seemed 
intuitively appealing, no plan had been put in 

place to determine whether the additional costs 
incurred by the employer would result in patient 
benefit. A pharmacoepidemiologic analysis 
compared adherence rates to these medications 
by employees of that company with rates for 
comparable people insured by similar employ
ers with less generous drug benefit plans, and 
found that the change in benefit design 
 significantly improved adherence [44]. A similar 
policy was later tested by randomizing patients 
in a large health insurance plan who had recently 
been discharged from the hospital with myocar
dial infarction to either their usual drug benefit 
plan or to no co‐payments for their  postdischarge 
statins, beta‐blockers, angiotensin‐converting 
enzyme inhibitors, or angiotensin‐receptor 
blockers [45]. The elimination of co‐payments 
improved adherence without increasing total 
health spending, and also reduced the incidence 
of subsequent cardiac events. The tools of phar
macoepidemiology have also been used to eval
uate other interventions to improve medication 
adherence, such as automated refill programs 
[46], automated and live reminder calls from 
pharmacists [47], and medication synchroniza
tion programs, which are designed to align 
patients’ prescription refills on the same date 
to reduce the number of pharmacy visits per 
month [48].

Not all such policy interventions are as well 
conceived. Hard‐pressed governmental pro
grams such as Medicaid must often resort to 
prior approval requirements for certain costly 
drugs, which require prescribers to seek per
mission from the program before a given medi
cation is dispensed. Sometimes the criteria that 
determine whether permission is granted are 
evidence based and plausible; other times they 
are not [49,50]. The methods of pharmacoepi
demiology are increasingly used to assess the 
clinical and economic consequences of such 
policies [51–53]. One study documented an 
increase in the use of clopidogrel in one 
Canadian province after a highly restrictive pol
icy was replaced with a more lenient one; this 
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change was associated with a significant con
comitant reduction in adverse cardiovascular 
outcomes [54].

 Interventional 
Pharmacoepidemiology

Once the tools of pharmacoepidemiology make 
it possible to define patterns of suboptimal use 
such as poor drug choices, underuse, overuse, 
problematic dosing, and concomitant use of 
interacting drugs, such surveillance can be 
employed to identify problems amenable to 
interventions to improve utilization. Although 
epidemiology is traditionally seen as a merely 
observational discipline, it can also be used for 
what might be called “interventional epidemiol
ogy” – in this case, using the tools of pharma
coepidemiology to define baseline medication 
use, to direct the implementation of programs 
to improve such use, and then to employ the 
same rigorous ascertainment of practice pat
terns and clinical events to evaluate the effec
tiveness of those interventions.

One example of such interventional pharma
coepidemiology has been the development, 
testing, and widespread deployment of the form 
of educational outreach known as “academic 
detailing,” discussed in greater detail in 
Chapter  19. This approach was designed to 
address observational data showing that pre
scribing patterns often appear to be shaped by 
the promotional efforts of drug manufacturers 
more strongly than by evidence‐based guide
lines. This is in large part because drug compa
nies are much more effective in communicating 
their messages about what clinicians should 
prescribe than are academics. Much of indus
try’s successful behavior change results from the 
activities of pharmaceutical sales representa
tives, known as “detailers,” who go to the physi
cian’s office and engage in interactive 
conversations with the clinician that are specifi
cally designed to change prescribing behavior. 

By contrast, most traditional continuing medi
cal education offered by the academic world is 
far more passive: the physician is expected to 
come to a central location to attend a didactic 
presentation, usually with little interaction or 
feedback, and no clear‐cut behavioral goal.

In the early 1980s, the academic detailing 
approach was developed, which used the engag
ing interactive outreach of the pharmaceutical 
industry, but put it in the service of transmitting 
messages based solely on evidence‐based rec
ommendations of optimal prescribing, devel
oped by academic physicians [55]. Building on 
pharmacoepidemiologic assessment of overall 
prescribing patterns in a given area, the method 
was then tested in several population‐based 
randomized trials in which it was shown to be 
effective in improving prescribing, as well as in 
reducing unnecessary medication expenditures 
[56–58].

The first academic detailing programs repre
sent some of the earliest uses of population‐
based medication use datasets (in this case, 
from US Medicaid programs) to define 
 medication use by large and well‐defined pop
ulations of practitioners and patients. The 
availability of complete data on actual claims 
from the pharmacy datasets made possible a 
rigorous assessment of the interventions’ 
 efficacy as well as of their cost‐effectiveness. 
Based on these initial observations, such pro
grams have been subjected to over 60 subse
quent randomized trials, and are now in 
widespread use globally.

As computerized drug and medical data have 
matured, their role has expanded to support 
large‐scale, multicenter, pragmatic randomized 
trials of medications themselves [59]. In the 
Salford Lung Study, investigators randomized 
over 4000 typical patients with asthma to 
receive an inhaled combination of a beta‐ago
nist and a corticosteroid or to usual care [60]. 
The trial was conducted in more than 70 
 general practice clinics in the UK, using an 
integrated electronic health record system that 
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enabled the  investigators to collect study data 
during the course of the trial, with little addi
tional interaction required between patients 
and trial staff.

 Economic Assessment of 
Medication‐Related Issues

Using population‐based datasets that contain 
information on expenditures as well as utiliza
tion makes it possible to assess the economic 
impact of such prescribing issues as well (see 
Chapter  34). The previously mentioned study 
of patients treated for hypertension, for exam
ple, found that better adherence to the JNC 
guideline recommendations would not only 
have led to more evidence‐based prescribing 
(and therefore better clinical outcomes), it 
would also have resulted in savings of $1.2 bil
lion annually if the findings were projected 
nationally [12]. Similarly, the clopidogrel use 
study suggested that if aspirin had been substi
tuted in patients who lacked an evidence‐based 
or FDA‐approved indication for use of the more 
costly drug, it would have saved $1.5 billion at a 
national level [13].

Another important application of pharma
coepidemiology to the economic assessment of 
medications builds on its capacity to model the 
effects of clinical trials well beyond their often 
brief duration [61]. For example, although 
statins usually must be taken for a lifetime, 
many randomized trials demonstrating their 
benefit have lasted for a much shorter time, 
often under two years. Epidemiologic methods 
make it possible to project the likely trajectories 
of simulated study subjects in both the experi
mental and control arms of a study. Based on 
differences observed during the trial itself, and 
some assumptions about their durabil
ity – assumptions which should be both trans
parent and conservative –  it becomes possible 
to estimate the lifelong benefits, risks, and costs 
of use of such treatments [62].

 The Academic Medical Center

The academic medical center represents a spe
cial case of inquiry for pharmacoepidemiology, 
and one where the field can make particularly 
useful contributions. These centers are the 
home base for many researchers in the field, and 
such settings are more likely than many routine 
practices to have available the electronic data
sets that make such analyses possible. In recent 
years, the Institute of Medicine has been pro
moting the idea of a Learning Healthcare System 
in which the data generated within a medical 
center are analyzed and used to improve the 
delivery of care within the system. The science 
of pharmacoepidemiology is central to the col
lection, analysis, and interpretation of the data 
generated and used in this continuous feedback 
loop for several reasons, including its capacity 
to rigorously specify treatment exposures and 
outcomes, and its perspective that takes into 
account the concept of “population at risk” [63].

The application of population‐based approa
ches can make it possible to subject problematic 
prescribing in an academic medical center to data‐
guided interventions, particularly if a  computer‐
based order‐entry system is being used (see 
Chapter 41) [64]. Until recently, this was possible 
only in advanced comprehensive healthcare 
organizations. However, in any institution in 
which prescriptions are written on a computer
ized order‐entry system, prompts can be installed 
to propose more evidence‐based medication use 
[65]. In addition, academic detailing programs or 
other interventions can then be deployed to 
address specific prescribing problems, and evalu
ated using the same order‐entry data  [57]. For 
academic medical centers that evolve in the com
ing years to become the hubs of comprehensive 
accountable care organizations, the availability of 
such data and investigator teams will make it pos
sible to use these epidemiologic tools to 
study  –  and improve  –  the patterns of use and 
outcomes of medications across the entire 
 inpatient–outpatient continuum of care.
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 Consortia of Academic 
Medical Center Programs 
for Pharmacoepidemiologic 
Research

As the field of pharmacoepidemiology matures, 
new collaborations are emerging to enhance the 
capacity of the healthcare delivery system and of 
academic centers to address important ques
tions in medication use. Such collaborations can 
bring together large groups of patients for study, 
increasing the size of populations available for 
research, as well as their diversity and repre
sentativeness (see Chapter 25). Equally impor
tantly, such consortia can bring together the 
expertise of several groups whose skills may be 
complementary in addressing the difficult 
methodologic issues inherent in observational 
studies of drug use and outcomes. The European 
Medicines Agency has created ENCePP, the 
European Network of Centres for 
Pharmacoepidemiology and Pharmacovigilance 
[66]. The project has developed an inventory of 
European research centers and data sources in 
pharmacoepidemiology and pharmacovigi
lance, and provides a public index of such 
resources. ENCePP has also developed an elec
tronic register of studies that provides a publicly 
accessible means of identifying all registered 
ongoing projects in pharmacoepidemiology and 
pharmacovigilance. In order to be registered 
and receive formal ENCePP approval, study 
investigators must agree to a Code of Conduct 
[67], which sets forth a set of principles for such 
studies concerning methodologic practices and 
transparency; they must also agree to adhere to 
a checklist of methodologic standards [68].

Examples in the US include the FDA’s Sentinel, 
the Center for Disease Control and Prevention’s 
(CDC) Vaccine Safety Datalink (VSD), and the 
Patient‐Centered Outcome Research Institute’s 
(PCORI) PCORnet. Sentinel is the FDA’s 
national monitoring system that brings together 
a large number of electronic healthcare data 

providers and academic investigators to con
duct postapproval safety surveillance of FDA‐
regulated medical products. The VSD, which is 
a collaborative project between the CDC and 
healthcare organizations that provide data and 
scientific expertise, is a precursor to Sentinel 
that focuses on vaccine safety surveillance, such 
as monitoring the safety of the seasonal influ
enza vaccine. A product of the healthcare 
reform program enacted in 2010, PCORI was 
designed to provide funding for comparative 
effectiveness research (CER), which was to 
include the study of medications, often by 
means of observational studies (see Chapter 26). 
PCORnet is PCORI’s collaborative network of 
health systems, clinicians, researchers, patients, 
and data intended to foster patient‐centered 
research across various health systems. 
However, those who expected PCORI to func
tion as a CER resource that would fund trial or 
observational studies comparing relevant treat
ment options head to head have been surprised 
at what a small proportion of its activities have 
supported such work.

 The Future

The continuing evolution of healthcare systems 
in both the industrialized and developing worlds 
will bring about a growing role for pharmacoepi
demiology in multiple settings. Many new medi
cations have novel efficacy but also daunting 
risks of toxicity, and often enormous costs. 
Healthcare systems all over the world face pres
sures to provide only those interventions that 
have the best efficacy and safety, but also at a 
price. To accomplish this will require relying on 
more than manufacturers’ assessments of the 
utility, safety, or economic value of their own 
products, and more than clinicians’ received wis
dom or traditional prescribing habits. Nor will 
the interest of some insurers in promoting use of 
the most inexpensive medications  necessarily 
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lead to optimal outcomes clinically, economi
cally, or ethically. Pharmacoepidemiology (and 
its related discipline, pharmacoeconomics) can 
provide the tools for rigorous assessment of the 

good and harm that specific medications pro
vide, and hold the promise of applying science to 
therapeutic decisions that are still too dominated 
by other forces.
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Epidemiology is recognized as a key component 
of risk management and safety assessment 
activities during pre‐ and postapproval drug 
development. In addition to risk management, 
epidemiology contributes to several other 
important functions within a biopharmaceuti
cal company, including portfolio development, 
studies of beneficial drug effects, the commer
cialization of drugs, and benefit–risk assess
ments. The use of epidemiology to support the 
appropriate marketing of drugs, including stud
ies of beneficial drug effects, health economics, 
quality‐of‐life measures, and benefit–risk 
assessment, are discussed elsewhere in this 
book (see Chapters 26, 33, 34, 35, and 42). The 
most consistent contribution of epidemiology 
in the biopharmaceutical industry is arguably 
drug safety evaluation, including the contextu
alization and refinement of safety signals, and 
examination of specific research hypotheses. To 
meet these aims, epidemiologists design and 

implement background epidemiology studies 
among indicated populations, risk management 
interventions and evaluations, and postapproval 
safety studies. Additionally, epidemiologists 
contribute content, expertise, and strategy to 
regulatory documents such as global risk man
agement plans (RMP), pediatric investigation 
plans (PIP), and orphan drug applications, and 
are key contributors in interactions with regula
tory authorities.

This chapter discusses the specific application 
of pharmacoepidemiology to safety assessment 
throughout the development life cycle, from the 
perspective of epidemiologists working within 
the biopharmaceutical industry. Throughout 
this chapter we will refer as an example to the 
epidemiology strategy implemented to support 
the development, approval, and postapproval 
activities for Xeljanz® (tofacitinib), a Janus 
kinase (JAK) inhibitor for treatment of rheuma
toid arthritis (RA).
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Focus on Risk Management 
and Epidemiology

Biopharmaceutical risk management (see also 
Chapter  24) is fundamentally concerned with 
preserving an appropriate benefit–risk balance 
among patients using a medicine, vaccine, or 
device. There are many tools by which this goal 
can be achieved, but risk assessment and risk mit-
igation are the two primary components of risk 
management. Epidemiologists play a vital role in 
the quantification and interpretation of risk. 
Preapproval, they contextualize risks emerging 
from clinical studies by understanding the back
ground rates of disease occurrence in the indi
cated population. Postapproval, they assess the 
safety of drugs as used in actual clinical practice. 
Epidemiologists’ training in observational 
research, data analysis and interpretation, and 
survey and program design also contributes to 
effective risk mitigation program planning and 
assessment.

The Evolution of Biopharmaceutical 
Risk Management

The guidance and regulations around risk man
agement have evolved since the 1990s. Public 
pressure to speed up drug approvals for HIV and 
cancer drugs led to the Prescription Drug User 
Fee Act (PDUFA) in the US. Ten years later, con
cern that speed might come at the expense of 
fully evaluating safety led to the inclusion of a 
risk management framework for safety assess
ment in PDUFA III in 2002. For the first time, 
dedicated funding was provided to the Food and 
Drug Administration (FDA) for risk manage
ment resources. In response to this regulation, 
the FDA issued three guidance documents in 
2005: (i) Pre‐Marketing Risk Assessment, (ii) 
Pharmacovigilance and Pharmacoepidemiology, 
and (iii) Risk Minimization Action Plans 
(RiskMAPs).

After a number of widely used drugs were 
withdrawn in 2004 and 2005 for safety reasons, 
the public questioned the effectiveness of the 
FDA’s methods of assessing and approving 
drugs. The Institute of Medicine (IOM) was 
tasked with evaluating the US drug safety sys
tem and making recommendations for improve
ments to risk assessment, safety surveillance, 
and the safer use of drugs. The IOM committee 
made numerous recommendations, several of 
which pertained to epidemiologists, including 
that the FDA receive additional funding and 
staff; improve communications on drug safety, 
incorporating a larger role for drug safety staff; 
and, most importantly, be given additional 
authority and enforcement tools [1].

As a result of the IOM report and other stake
holder research and advocacy, Congress passed 
the Food and Drug Administration Amendment 
Act (FDAAA) in 2007, which further strength
ened the FDA’s oversight of risk management 
activities. With FDAAA, the FDA was granted 
the ability to mandate postapproval studies 
(postmarketing requirements, or PMR) and risk 
evaluation and mitigation strategies (REMS; see 
the later section for further information) by 
imposing substantial fines for noncompliance 
or denial/revocation of drug approval. FDAAA 
also allowed for voluntary postmarketing com
mitments (PMC); that is, studies that may not 
necessarily be required, but could provide 
important public health information. 
Observational studies could be either PMRs or 
PMCs, and are further described in the FDA 
Guidance for Industry Postmarketing Studies 
and Clinical Trials [2].

Europe passed similar legislation in 2005, the 
Rules Governing Medicinal Products in the 
European Union, Volume 9A, which provide 
guidelines on pharmacovigilance and risk man
agement between companies and the European 
Medicines Agency (EMA) [3]. European Union 
(EU) law requires companies to submit a formal 
RMP with each marketing authorization appli
cation (MAA). Following a review of the 
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European system of safety monitoring as well as 
extensive public consultation, a Directive and 
Regulation (also called the new EU pharma
covigilance legislation) were adopted by the 
European Parliament and Council of Ministers 
in December 2010, which became effective in 
July 2012, bringing about significant changes in 
the safety monitoring of medicines across the 
EU. The new EU pharmacovigilance legislation 
introduced a pharmacovigilance system master 
file (PSMF), required RMPs for all new prod
ucts, enhanced postauthorization measures 
with legally binding postauthorization safety 
studies (PASS), including evaluation of the 
effectiveness of additional risk minimization 
measures (aRMMs), and postauthorization effi
cacy studies (PAES). The new EU pharmacovig
ilance legislation also introduced clarity in the 
oversight by the authorities for noninterven
tional studies: the national competent authority 
is responsible for nationally authorized prod
ucts; EMA and its Pharmacovigilance and Risk 
Assessment Committee (PRAC) has oversight 
responsibility when more than one member 
state is involved. To facilitate the performance 
of pharmacovigilance in accordance with the 
new EU legislation, the EMA developed good 
pharmacovigilance practices (GVP) modules. 
The modules that are most relevant to epidemi
ologists are Module VIII  –  Post‐authorization 
safety studies [4] and Module XVI – Risk mini
mization measures: selection of tools and effec
tiveness [5].

Besides the US and EU, regulations on risk 
management planning, including postapproval 
safety studies, are evolving in other parts of the 
world, such as Asia and Latin America. In Japan, 
postmarketing surveillance (PMS) is required 
for newly approved medicine and must be con
ducted in according with good postmarketing 
study practice (GPSP), a set of standards unique 
to Japan. The GPSP ordinance mandates PMS 
studies, commonly known as drug use results 
surveys (DURS), and defines the approach for 
the conduct of DURS. There is a little flexibility 

in design and format, and protocol finalization 
and approval are usually streamlined processes. 
Japan’s Pharmaceuticals and Medical Devices 
Agency (PMDA) has been working to strengthen 
its drug safety assessment framework. The 
Medical Information for Risk Assessment 
Initiative (MIHARI) project was initiated in 
2009 with the aim of utilizing large‐scale elec
tronic health information databases as novel 
information sources for pharmacoepidemio
logic drug safety assessments in Japan. After 
conducting extensive pilot studies, the frame
work was implemented in practical applications 
in 2014, and is expected to play an important 
role in Japan’s pharmacovigilance and risk man
agement in the future.

In China, policies for postapproval safety 
studies, known as intensive monitoring, are still 
evolving, and the available guidance and overall 
approach are not as comprehensive as in the US, 
EU, or Japan. However, the basis for intensive 
monitoring has evolved over the past decade, 
and provisions for the ideas of postmarketing 
reevaluation and reregistration are delineated in 
China’s Food and Drug Administration 
regulations.

In Mexico, the Federal Commission for 
Protection against Health Risks (COFEPRIS) is 
the regulatory authority for pharmaceuticals. 
The National Center of Pharmacovigilance 
within COFEPRIS is responsible for the over
sight of all pharmacovigilance activities, in addi
tion to setting local policies in line with national 
and international pharmacovigilance guide
lines. The main standard guideline governing 
pharmacovigilance, including PMS studies, in 
Mexico is the Installation and Operation of 
Pharmacovigilance (2013).

Epidemiology has become increasingly 
important to risk management over the last 
three decades with the evolution of pharma
covigilance regulation globally, which has fur
ther solidified epidemiology’s role in informing 
the benefit–risk assessment of medicines 
throughout the development lifecycle.
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Background

The safety profile of any drug reflects an evolv
ing body of knowledge, extending from preclini
cal investigations through to the postapproval 
life cycle of the product. Drug manufacturers 
traditionally relied on two major sources for 
information on the safety of drugs: the clinical 
trials supporting the new drug application 
(NDA) and, once the drug was marketed, spon
taneous reports received throughout the world 
(see Chapter  10). Clinical trials and spontane
ous reports are useful and have a unique place in 
assessing drug safety (e.g., signal detection). 
However, both sources have limitations that can 
be addressed, in part, by the proper use of 
observational epidemiology. Epidemiologic 
studies complement these two sources of data to 
refine the safety signals they generate and to 
provide a more comprehensive and pragmatic 
picture of the safety profile of a drug as it is used 
in clinical practice.

Pharmacoepidemiology Study 
Designs

Pharmacoepidemiologic analyses can be 
descriptive or analytic in nature; may involve 
existing data, primary data collection, or a 
hybrid of secondary and primary data; and may 
be used to generate, refine, or examine hypoth
eses. Industry epidemiologists compile drug 
safety information from published epidemio
logic literature, pooled clinical trials, trial exten
sions, electronic health records (e.g., insurance 
claims data or electronic medical records), 
existing registries, and de novo observational 
studies. Commonly used study designs include 
the cohort study, case–control study, and cross‐
sectional study (see also Chapter 3).

In addition to typical epidemiologic designs, 
depending on the specific safety research 

hypothesis, epidemiologists design and imple
ment active surveillance studies, pragmatic tri
als (including the most naturalistic version, the 
large simple trial), and self‐controlled designs 
such as the case‐crossover study and self‐ 
controlled case series. Active surveillance  studies 
can be defined as descriptive studies intended 
to solicit information on adverse events among 
a specified population, such that the numerator 
and denominator are as complete as possible, 
potentially allowing calculation of incidence. 
An example describing the active surveillance 
program established for juvenile idiopathic 
arthritis can be found later in this chapter in the 
section on pediatrics.

Purely observational epidemiologic studies 
may not always be the most appropriate method 
of evaluating safety signals or comparing the 
safety profile of different medications, espe
cially when there are concerns of confounding 
by indication. Confounding by indication occurs 
when the risk of an adverse event is related to 
the indication for medication use, such that in 
the absence of the medication, those actually 
exposed are at higher or lower risk of the adverse 
event than those unexposed. As with any other 
form of confounding, one can, in theory, control 
for its effects if the severity of the underlying ill
ness (i.e., any conditions specified as labeled 
indications or contraindications, or included in 
the precautions or warnings) can be validly 
measured (see Chapter  43). Confounding by 
indication is more of an issue when a particular 
property of the drug is very likely to affect the 
type of patient it is used by or prescribed to. In 
these cases, studies using randomization to 
treatment may be necessary. A pragmatic clini
cal trial (PCT) is a randomized clinical trial with 
one or more pragmatic elements, and a large 
simple trial (LST) is a type of PCT that  combines 
randomization to treatment with observational 
follow‐up of patients. The LST design allows for 
a theoretical balance of known and unknown 
confounding factors, while maintaining more 
real‐world safety assessment than typical 
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 clinical trials. By maintaining simplicity in study 
procedures, including the study’s inclusion/
exclusion criteria, patients’ use of concomitant 
medications, and the frequency of patient mon
itoring, LSTs approximate real‐life practice. 
Further, the large study size provides the power 
needed to evaluate small absolute and relative 
risks. The characteristics of LSTs are further 
described in Chapter 32.

Self‐controlled designs, in which each case 
serves as its own control, were developed to 
assess effects of intermittent exposures on 
abrupt‐onset events or diseases (see also 
Chapter  43). The case‐crossover study is one 
form of self‐controlled design, analogous to a 
traditional matched case–control design. The 
risk window is defined as a time period just 
before the outcome occurred and the control 
window(s) is (are) defined as other (nonoverlap
ping) time periods before the outcome occurred. 
For example, the case‐crossover design was 
used to evaluate whether PDE5 inhibitors (i.e., 
sildenafil, vardenafil, and tadalafil), as a class, 
triggered the onset of acute nonarteritic ante
rior ischemic optic neuropathy (NAION) [6,7]. 
NAION is a rare condition, necessitating a 
design that identifies patients based on their 
disease status. However, identifying appropri
ate controls was deemed very challenging with 
a standard case–control study design. 
Furthermore, the case‐crossover study was ide
ally suited to this research question, since PDE5 
inhibitors are taken on an as‐needed basis, 
which constitutes an intermittent exposure; 
acute NAION is characterized by sudden onset 
and is experienced by the patient as an abrupt 
visual change, often first detected upon awak
ening; and each case subject is effectively 
matched to him‐ or herself, such that the poten
tial effects of confounders that do not vary over 
the study period, such as age, diabetes, and 
hypertension, are effectively held constant.

In the self‐controlled case series design 
(SCCS), originally developed to study vaccine 
safety (see Chapter  20), the risk and control 

windows are defined within some observation 
period of interest. The risk window is defined as 
a time period after the exposure of interest 
occurs (among those exposed) and the control 
windows are all other time periods before and 
after the risk window (among those exposed), or 
all time periods (for those unexposed) within 
the observation period. The SCCS was used to 
evaluate the global risk of Guillain–Barré syn
drome (GBS) following vaccination against 
Influenza A (H1N1) [8]. In this case, the SCCS 
design was chosen because it does not require 
the infrastructure needed to establish complete 
population denominators. In addition, the study 
design requirements were met, for instance 
H1N1 vaccine was an intermittent exposure, 
GBS is rare and has an abrupt onset, and the 
likelihood of H1N1 vaccine exposure was not 
expected to be impacted by the development of 
GBS [9].

Data Sources for 
Pharmacoepidemiology Studies

In order to respond rapidly and responsibly to 
safety issues, high‐quality and valid data resources 
must be available. As a result of this need, the 
development and use of record linkage and auto
mated databases, including hospital databases, 
have grown considerably over the past several dec
ades (see also Chapters 11–14). These databases 
offer several advantages over primary data collec
tion epidemiology studies or randomized trials 
(see Chapters 15, 16, and 32). First, automated 
databases are usually large in size, ranging from 
hundreds of thousands to millions of patients, 
often with many years of “observation.” A second 
advantage is speed: since information on study 
subjects is already computerized, the data can be 
accessed quickly rather than waiting years for the 
results of studies in which patients are identified 
and followed over time. The third advantage is 
cost relative to primary data collection studies. 
Primary data collection observational studies and 
 randomized trials can cost tens to hundreds of 
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millions of dollars, compared to hundreds of thou
sands of dollars for database studies.

Considerable progress has been made in the 
development of new and existing research data
bases containing information on drug usage and 
health‐related outcomes. This progress is advan
tageous, as a variety of data sources are necessary 
for research in pharmacoepidemiology. The limi
tations of many automated datasets are well estab
lished and need to be considered before conducting 
a study on a newly marketed medication. Each 
data source will have its own strengths and limita
tions, which are usually related to important fac
tors: the reasons for collecting the data (e.g., 
research, monitoring clinical practice, or reim
bursement); the type of data collected; the coding 
systems used; the resources devoted to evaluating 
and monitoring the research quality of the data; 
and national or regional variations in medical 
practice. Many data collection systems were 
designed for administrative, rather than research, 
purposes. As a result, information needed to 
assess a specific safety issue may be unavailable 
and the quality of medical information may be 
inadequate. Validation of outcomes based on diag
nostic or procedural codes used for reimburse
ment purposes (or algorithms based on these 
codes) against at least a subset of medical records 
is often desirable, as the usefulness of this type of 
research to answer an important safety question 
may be limited if the data are not properly vali
dated. For some databases, medical record review 
may not be feasible due to laws and/or policies 
regarding patient confidentiality or anonymity. 
Continuing studies of the research validity of these 
databases are crucial, and should be pursued when 
feasible [10–14]. Further information on specific 
data sources can be found in Chapters 11–17.

Another common research limitation of auto
mated data sources is that sufficient numbers of 
users may not yet be recorded, or the medication 
may not be marketed in the country where the 
database is located. Some data resources suffer 
from a considerable “lag time” between data 
entry and availability for research purposes. 

Further, even though many health maintenance 
organizations and national patient registries 
have a very large number of unique persons 
(often millions), these numbers may be inade
quate to study potential drug risks of extremely 
rare outcomes. Finally, results from these sources 
are often limited in their generalizability.

Epidemiologic studies with primary data col
lection are considered when it is not feasible to 
address safety issues using existing databases. 
The NAION case‐crossover studies described 
earlier and the ziprasidone LST (described in 
Chapter 32) are examples of epidemiology stud
ies that involved primary data collection. These 
types of studies take a relatively long time for 
data collection and are more costly. In some 
instances, it is possible to conduct a hybrid 
 primary–secondary data collection study by 
identifying patients or physicians in automated 
databases, and supplementing the existing data 
source with information collected directly from 
patients or physicians through telephone inter
views or via electronic communications [15,16].

To address any specific product safety con
cerns, it is important to consider the validity 
and feasibility of all potential study design and 
data source options to enable selection of the 
most appropriate, and to implement epidemio
logic studies in accordance with relevant guide
lines such as the Guidelines for Good 
Pharmacoepidemiology Practices (GPP) [17], 
the EMA’s European Network of Centres for 
Pharmacoepidemiology and Pharmacovigilance 
(ENCePP) Guide on Methodological Standards 
in Pharmacoepidemiology [18], and the FDA 
Guidance for Industry and FDA Staff: Best 
Practices for Conducting and Reporting of 
Pharmacoepidemiologic Safety Studies Using 
Electronic Healthcare Data Sets [19].

Contributions of Preapproval 
Epidemiology

Before evaluation of a potential medicine can 
begin, extensive preclinical research is con
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ducted, involving lengthy in vitro and in vivo test
ing. Preclinical safety studies evaluate and 
identify potential toxic effects of the drug, which 
include assessing whether a medicine is carcino
genic, mutagenic, or teratogenic. Although the 
information generated from  preclinical studies 
provides guidance on the selection of a safe start
ing dose for the first administration‐to‐human 
study, the limited predictability of animal studies 
to the toxicity of drugs in human is well recog
nized. However, these studies can provide impor
tant information about hypothetical drug risks.

Randomized clinical trials (RCTs) provide 
abundant high‐quality data about identified 
and hypothetical risks, but have limitations. 
Preapproval RCTs typically involve highly 
selected subjects, followed for a short period of 
time, and in the aggregate include at most a 
few thousand patients. These studies are gen
erally sufficiently large to provide evidence of a 
beneficial clinical effect, exclude large increases 
in risk of common adverse events, and identify 
the most common and acutely occurring 
adverse events. However, they are rarely large 
enough to detect small differences in the risk 
of common adverse events or to reliably esti
mate the risk of rare events. Using the “rule of 
three,” where the sample size needed is roughly 
three times the reciprocal of the frequency of 
the event, at least 300 patients would be 
required in a trial in order to observe at least 
one adverse event that occurs at a rate of 1/100. 
Likewise, a sample of 3000 is needed to observe 
at least one adverse event with 95% probability 
if the frequency of the event is 1/1000. (See 
Chapter  4 for more discussion of the sample 
sizes needed for studies.) Increasingly, preap
proval studies – particularly in rare diseases or 
where long‐term placebo treatments are 
unethical – include unbalanced randomization 
or treatment arms with a short duration of pla
cebo or active comparator, or use noncontem
poraneous controls. While clinical trials are 
not intended or designed to address all poten
tial safety issues related to a particular drug 

[20], like preclinical studies, they often give 
rise to signals that cannot be adequately 
addressed from trial data alone.

Preapproval epidemiology complements safety 
data from preclinical and clinical studies and 
provides a context for signals arising from clinical 
trials. Comprehensive reviews of the epidemio
logic literature are complemented by epidemio
logic studies to establish among patients expected 
to use the new medication (i.e., indicated popula
tions) the background epidemiology (e.g., inci
dence, prevalence, mortality) of the indication; 
the expected prevalence/incidence of risk fac
tors, co‐morbidities, and complications; patterns 
of healthcare utilization and prescribing of cur
rently approved treatments; and background 
rates of mortality and serious nonfatal events.

Epidemiologic studies conducted before or 
during the clinical development program are 
often critical to place the incidence of adverse 
events observed in clinical trials in perspec
tive. Data are often lacking on the expected 
rates of events in the population likely to be 
treated. For example, studies examining the 
risk factors for and rates of sudden unex
plained death among people with epilepsy 
were able to provide reassurance that the rates 
observed in a clinical development program 
were within the expected range for individuals 
with comparably severe disease [21–23]. 
Epidemiologists use information from the 
published literature, descriptive epidemio
logic studies, and standing cohorts (i.e., open 
cohorts of indicated populations which are 
updated over time and queried for incidence 
of safety events and other data as needed) to 
support regulatory filings and to complete 
epidemiology sections of key regulatory docu
ments (e.g., risk management and pediatric 
investigation plans, orphan drug applications). 
These background epidemiology data can also 
be a key component for internal decision mak
ing, such as trial design, data monitoring com
mittee decisions to stop/continue trials, 
decisions to move/not move to the next phase 
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of development, risk management  decisions, 
and risk mitigation planning.

During development, in addition to summariz
ing the existing relevant literature and designing 
and executing background epidemiology studies, 
industry epidemiologists are often involved in 
safety signal evaluation, observational analyses of 
RCT data (e.g., as treated or observed versus 
expected analyses), and designing postapproval 
epidemiology studies and risk minimization 
planning. Planning for successful postapproval 
epidemiology studies often begins well before 
approval. During the periapproval phase, epide
miologists may conduct feasibility assessments 
for planned postapproval studies, start key oper
ational aspects of postapproval studies (e.g., 
identifying key external partners such as contract 
research organizations and scientific steering 
committee members for the design and conduct 
of the study), and contribute to regulatory sub
missions, responses, and negotiations (e.g., 
responding to regulatory inquiries related to epi
demiology, participate in regulatory meetings).

There are several other areas where epidemi
ologists are increasingly providing their exper
tise to support preapproval development. In the 
context of risk minimization planning, the epi
demiologist may conduct research to test the 
comprehension and utility of educational mate
rials, evaluate the proposed risk minimization 
tools and processes to assess their burden on the 
healthcare system and patients, pilot and/or user 
test assessment materials such as surveys, and 
generally contribute to the design and imple
mentation of these programs. Furthermore, 
many regulatory agencies are utilizing various 
benefit–risk assessment frameworks in their 
reviews. Epidemiologists can provide inputs or 
lead both quantitative and qualitative benefit–
risk assessments such as multicriteria decision 
analysis (MCDA) [24], stochastic multicriteria 
acceptability analysis (SMAA) [25], and the 
PhRMA Benefit‐Risk Action Team (BRAT) 
framework [26], among others (see Chapter 35). 
Lastly, several accelerated/conditional approval 

pathways and regulations exist in the EU, and are 
anticipated for the US and other regions, which 
have requirements for real‐world data and evi
dence (RWD/RWE) to complement the incom
plete or uncertain data from abbreviated 
development programs in areas of high unmet 
need. Epidemiologists’ expertise in regulatory‐
quality RWD/RWE generation is often critical to 
the success of these accelerated options.

Example: Tofacitinib Preapproval 
Epidemiology Strategy
The epidemiologic strategy for tofacitinib incor
porated several distinct but complementary 
efforts for risk characterization, including liter
ature reviews, meta‐analyses, and a standing 
cohort within a US‐based registry of patients 
with RA (see Figure 7.1). While all RCTs in the 
tofacitinib RA development program included 
at least one control group (placebo or active), 
the size of the control groups and duration of 
treatment did not permit precise comparative 
assessments for adverse events with low fre
quency or long latency. Long‐term extension 
(LTE) studies provided greater exposure in 
patients taking tofacitinib. However, the lack of 
a control group within the LTE studies pre
cluded direct comparative risk assessment; 
interpretation, therefore, was difficult, in that 
no data were collected that could provide evi
dence of the expected rates in a concurrent and 
directly comparable patient population. The use 
of indirect comparative methods via external 
patient cohorts provided such context, while 
taking into account key potential differences in 
the populations compared, whose baseline 
demographic characteristics, disease course, 
and treatment history varied. Data from multi
ple sources (i.e., observational studies, RCTs 
with other agents, and cohorts of patients strati
fied by RCT inclusion/exclusion criteria) were 
used to provide these indirect comparisons, 
drawing from the strengths of each data source 
while balancing their weaknesses. The output of 
the analyses was used to assess the rates of 
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 identified and potential risks of interest in the 
tofacitinib clinical program compared with 
those from cohorts of RA patients treated with 
biologic disease‐modifying antirheumatic drugs 
(bDMARDs). These efforts were articulated 
within regulatory documents, including the 
NDA for the FDA and the briefing document 
(i.e., summary of clinical safety [SCS], clinical 
overview [CO], etc.) for the EMA, and the data 
were also presented at the FDA Advisory 
Committee Meeting for tofacitinib (May 2012).

Due to the timing of approvals and regulatory 
interactions in the EU, these descriptive analy
ses were expanded to include four EU‐based 
database studies. The strategy and accompany
ing power analysis were presented in several 
meetings with European national regulatory 
authorities and key EMA decision‐makers. 
After deliberations, the EMA agreed to the 
inclusion of an integrated summary of the risk 
characterization work and key findings within 
the submission dossier (with analysis‐specific 
component reports as appendices). The collec
tive body of evidence (including interim data 

from the US‐based registry study) provided 
substantial additional context to rates of selected 
adverse events observed in the tofacitinib clini
cal trial program, and therefore addressed the 
uncertainties related to the potential risks pre
viously expressed by the EMA. Tofacitinib was 
approved in the EU in March 2017.

Contributions of Postapproval 
Epidemiology

The need for a postapproval epidemiology study 
can be known and devised preapproval or can 
arise once a new drug is marketed. Postapproval 
signals may come from clinical trial extension 
data (e.g., LTE studies), spontaneous reports, 
published case series, or signal detection of 
electronic healthcare data. Postapproval, epide
miologists execute postapproval commitments 
(e.g., epidemiology studies, active surveillance 
studies, other registries, REMS/aRMM evalua
tions, PIP observational studies, etc.); conduct 
studies evaluating the effectiveness of risk miti
gation activities; perform signal detection in 

Risk Characterization via
External Patient Cohorts Evaluate Medication Risk

Postapproval Safety Studies

Risk Minimization

Evaluate the effectiveness of risk
minimization measures (e.g., label/
education) via HCP surveys & drug
utilization studies

Power Analyses

Rapid Queries
Estimate expected risks
in the indicated
population via incidence
rates and SIRs

Rates from external cohorts provide a range of
plausible values to determine the number of patient
years needed to detect a potential increase in risk of
speci�c AEs versus established therapies

Cohorts Derived from
Complementary
Data Sources

Approval

Observational
Literature Reviews

Meta-Analyses of
Published RCTs

US Corrona RA
Registry

4 European RA
Registries

Compare the safety of Xeljanz with approved
bDMARDs within the real world setting, as
prescribed and taken during routine clinical
practice (PASS embedded within the US
Corrona Registry, US OTIS Pregnancy
Registry & 4 EU Registries). Matched 
analysis within the Corrona Registry
contrasting registry data with clinical data to
evaluate CV & malignancy risks.

Figure 7.1 Harnessing the power of real‐world evidence: Pharmacoepidemiology strategy for Xeljanz® (tofacitinib). 
AE, adverse event; CV, cardiovascular; HCP, healthcare professional; RA, rheumatoid arthritis; RCT, randomized 
controlled trial; SIR, standardized incidence rate.
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existing cohorts (e.g., via claims or electronic 
patient record data); and design and implement 
new studies as additional signals arise (e.g., from 
spontaneous reports, signal detection, or other 
sources). Epidemiologists also communicate 
scientific findings through oral and poster pres
entations at scientific conferences and peer‐
reviewed publications.

Spontaneous reporting systems are the most 
commonly used pharmacovigilance method to 
generate signals on new or rare adverse events 
not discovered in clinical trials (see Chapter 10). 
However, there are several important limita
tions in interpreting spontaneous report data. 
Due to the lack of complete numerator (number 
of cases) data and the need to estimate the 
denominator (total number of patients actually 
exposed to the drug), it is not possible to deter
mine the incidence of a particular event from 
spontaneous reports. Further evaluation of an 
apparent association between a drug and an 
adverse reaction usually requires postapproval 
epidemiologic studies.

Likewise, the nature of preapproval clinical 
trials often necessitates further safety evalua
tion through postapproval epidemiology. In 
addition to the limited sample size and length of 
follow‐up of preapproval RCTs, with respect to 
drug safety an additional limitation of these 
studies lies in the common strict inclusion/
exclusion criteria. Patients included in preap
proval clinical studies may be the healthiest seg
ment of that patient population. Special groups 
such as the elderly, pregnant women, or chil
dren are frequently excluded from trials. 
Patients in clinical trials also tend to be treated 
for well‐defined indications, have limited and 
well‐monitored concomitant drug use, and are 
closely followed for early signs and symptoms of 
adverse events which may be reversed with 
proper treatment.

In contrast, once a drug is marketed, it is used 
in a real‐world clinical context. Patients using 
the drug may have multiple co‐morbidities for 
which they are being treated simultaneously. 

Patients may also be taking over‐the‐counter 
medications, “natural” remedies, or illicit drugs, 
unbeknown to the prescribing physician. The 
interactions of various drugs and treatments 
may result in a particular drug having a different 
safety profile in a postmarketing setting com
pared to the controlled premarketing environ
ment. An example is the drug mibefradil, which 
was voluntarily withdrawn from the market by 
the manufacturer after less than a year as a 
result of new information about multiple poten
tially serious drug interactions. Adherence to 
medications also often differs between closely 
monitored trials and general postapproval use, 
as is the case with antihypertensives.

Because of the logistical complexity, high 
cost, and low external validity, large controlled 
trials have not been widely used for the post
marketing evaluation of drugs. Regulators and 
the medical community have communicated a 
desire for safety data from the populations that 
actually use the drugs in real‐world clinical 
practice. This has led to a greater emphasis on 
the use of observational methods to understand 
the safety profile of new medications after they 
are marketed.

Tofacitinib Postapproval Epidemiology 
Strategy
As a condition for the approval of tofacitinib in 
the US, two observational postapproval safety 
studies were initiated: (i) an active surveillance 
study within the Corrona RA registry (ENCEPP/
SDPP/5708) (see Figure  7.2), and (ii) a preg
nancy outcome study within the OTIS registry 
(ENCEPP/SDPP/5703). Both studies were 
designed with the goal of characterizing the 
safety of tofacitinib within the real‐world or 
clinical practice setting. In February 2018, both 
studies were in their fifth year.

Similarly, to assess the safety of tofacitinib in 
the EU postapproval setting, four five‐year sur
veillance studies embedded within existing reg
istries were proposed as a commitment to the 
EMA (i.e., ARTIS, BIOBADASER, BSRBR, and 
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RABBIT). The objective of the surveillance 
 program is to evaluate any excess risk in the 
occurrence of known or potential adverse 
events, after accounting for confounding factors 
including disease severity and concomitant 
therapy. These studies, in addition to the 
aRMM‐related work (i.e., HCP survey and drug 
utilization study) and ongoing pharmacovigi
lance (i.e., spontaneous reports, etc.), serve to 
address regulatory concerns regarding drug 
safety among European patients receiving care 
in the real world.

Drug Safety Evaluation in Special 
Populations

As already noted, most trials are conducted in 
populations that reflect a broad representation 
of the intended user to achieve regulatory 
approval. However, there are often populations 
of special interest, such as the elderly or chil
dren, who were omitted or insufficiently studied 
in these trials, necessitating additional research 
on these targeted populations.

In what follows we describe some additional 
examples of epidemiology studies in these 

 special populations, and outline some of the 
unique challenges to and potential solutions for 
performing observational research in these 
groups.

Pregnancy and Birth Outcomes
The safety of a medicine when used during 
pregnancy is often unknown at the time of mar
keting approval (see also Chapter 22). Unless a 
medication is being developed specifically to 
treat a pregnancy‐related condition or a vaccine 
is developed for maternal immunization, preg
nant women are generally excluded from clini
cal trials for ethical reasons, due to potential 
risks to the developing fetus and newborn. In 
addition, most clinical trials that enroll women 
cease study of pregnant women upon detection 
of pregnancy. Thus, at the time of introduction 
to market, the effects of many medications on 
pregnancy are not well known, with the founda
tion of drug safety during pregnancy often rest
ing largely on animal reproductive toxicology 
studies, whose extrapolation to humans is ques
tionable. The paucity of data is potentially a 
serious concern for public health, particularly if 
the medication will be used by many women of 

Corrona Standing
Cohort

Corrona Active
Surveillance Study

Approval

• Broad patient population

• Tofa patients with 2 age- and gender-matched comparator groups

• ∼5-year study with quarterly reports

• Complements the PMR RCT

• Analyses include evaluation of benefits and risks

• Starts with simple descriptive statistics, can include formal comparisons over time as data
  accumulate

• Multidisciplinary/cross-functional study team and internal steering committee

Figure 7.2 A closer look at the Xeljanz® (tofacitinib) postapproval Corrona active surveillance study. PMR, 
postmarketing requirements; RCT, randomized controlled trial.
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childbearing potential, since approximately half 
of all pregnancies in the US are unplanned [27] 
and more than half of all pregnant women in 
Western countries take medication during 
pregnancy [28]. While postmarketing sponta
neous adverse event reporting of pregnancy 
outcomes may be helpful for identifying 
extremely rare outcomes associated with medi
cation use during gestation, the limitations of 
these data are well established. Therefore, well‐
designed observational studies have become the 
primary way of generating evidence on the ben
efit and risk of medication use in pregnant 
women and their offspring.

In certain circumstances, registries are used 
to obtain information about the safety of new 
medications during pregnancy. A pregnancy 
exposure registry is typically prospective and 
observational, conducted to actively collect 
information about medication exposure during 
pregnancy and subsequent pregnancy outcome. 
The FDA and EMA issued guidelines regarding 
the circumstances when it is appropriate to 
establish a pregnancy registry [29,30]. The 
FDA’s Office of Women’s Health maintains an 
online list of pregnancy exposure registries [31], 
including some for HIV/AIDS medications, the 
human papillomavirus (HPV) and hepatitis B 
vaccines, and medications for cancers, depres
sion, migraine, diabetes, and other conditions. 
Such registries differ from passive postmarket
ing surveillance systems, in that they collect 
data from women prior to knowledge of preg
nancy outcomes, which has the effect of mini
mizing recall bias. The prospective nature of 
properly designed pregnancy registries also 
allows them to examine multiple pregnancy 
outcomes within a single study. Ideally, a preg
nancy registry will allow for increased general
izability by being population based. It may aid 
the study of a cause–effect assessment between 
drug exposure and outcome by being prospec
tive in nature; by collecting information on the 
timing of drug exposure, detailed treatment 
schedule, and dosing; by using standard and 

predefined definitions for pregnancy outcomes 
and malformations; and by recording these data 
in a systematic manner. The registry will ideally 
also follow offspring of medication‐exposed 
women for a prolonged period after birth, to 
allow for detection of any delayed malforma
tions in children who seem normal at birth.

Although pregnancy registries have advan
tages over passive surveillance methods, there 
are a number of major limitations that should be 
carefully considered. One of the major chal
lenges of a pregnancy registry is a low level of 
enrollment. For example, the pharmaceutical 
company GlaxoSmithKline sponsored four 
international registries, but none of them 
reached the enrollment milestone of 1000 preg
nancies during the first 10 years of data collec
tion, considered by the European Medicines 
Agency Committee for Medical Products for 
Human Use to be necessary to be representative 
of widespread exposure [32,33]. The voluntary 
nature of enrollment can result in selection bias 
if women opting to enroll differ from those who 
do not, in terms of factors associated with the 
underlying risk of the outcome being studied. 
Pregnancy registries may also suffer from refer
ral bias, with healthcare professionals being 
more or less likely to enroll women based on 
their disease severity. Sometimes more than 
one‐third of pregnancies are then lost to follow‐
up, which makes the representativeness of the 
study population questionable [34]. Further, 
pregnancy registries often rely on self‐reported 
medication exposures, which may result in mis
classification of exposures, and often do not 
capture data on pregnancy losses (especially 
early losses). Another major challenge of a preg
nancy registry is to establish an appropriate 
comparator group, especially when there is a 
possibility that the medical condition being 
treated may itself be associated with the out
come of interest, such as diabetes or epilepsy. 
Ideally, a pregnancy registry should allow for 
effects of the medication on pregnancy outcome 
to be distinguished from the effects of the 
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 disease state warranting the treatment, if appli
cable, on pregnancy outcome. This can be 
achieved by enrolling two comparator groups: 
pregnant women who are disease free and not 
on the medication under study, and pregnant 
women with the disease who are not undergo
ing treatment or who are on a different treat
ment. In practice, however, it is usually not 
feasible to have comparator groups within preg
nancy registries, because it is difficult to enroll 
pregnant women who are disease free or not 
using medication. Thus, in many cases, only 
pregnant women with the disease using the 
drug of interest, or other treatments for the dis
ease, are enrolled and followed.

Given the limitations of pregnancy registries 
and the rapid development of large computer
ized healthcare databases, electronic healthcare 
databases are increasingly being used to evalu
ate the safety of medicine exposure during preg
nancy, due to their ability to identify large 
populations in a timely, efficient manner. Using 
electronic healthcare databases for pregnancy 
studies can minimize selection bias by identify
ing all pregnant women who are exposed to a 
medication, and can avoid recall bias by using 
prescription data that are independently 
recorded by prescribers or claims. Internal 
comparator groups can be identified that repre
sent the general population or women with the 
same underlying condition exposed to no medi
cation or other medications within the class of 
interest. However, there is a lack of information 
on whether the women actually took the medi
cine and the precise timing of exposure. In addi
tion, over‐the‐counter medication exposure is 
not captured in these databases.

There are three main types of electronic 
healthcare databases: national population‐
based registers in Nordic countries (Denmark, 
Sweden, Norway, Iceland, and Finland), elec
tronic patient medical records, and administra
tive claims for reimbursement of medical 
treatment and prescriptions (see Chapters 11–
14). Each type of data source has its own unique 

strengths and limitations, in addition to the 
general strengths and limitations of electronic 
healthcare databases already discussed. A key 
strength of national population‐based registers 
in Nordic countries is the mandatory reporting 
of all live births and stillbirths within a country, 
which allows the capture of exposure and out
comes data from a representative sample of 
women, alleviating any concerns about the gen
eralizability of study findings. These registers 
routinely collect information on gestational age 
at birth, birth weight, congenital malforma
tions, mother’s reproductive history, type of 
birth, delivery characteristics, and complica
tions. Data on body mass index, smoking status, 
and alcohol intake are collected in most 
registers.

However, there are a few unique challenges 
that are not seen in other types of epidemiologic 
studies when using administrative claims data
bases to evaluate the safety of medication use 
during pregnancy. First, the information from 
the mother and that from the infant must be 
linked to each other. Researchers have used a 
variety of methods to establish the mother–
infant linkage, such as unique family identifica
tion numbers included in the health plan 
enrollment data, date of birth and delivery date, 
or co‐insurance information of the newborn, 
with reported linkage rates ranging from 63% to 
88% [35–38]. Secondly, data on gestational age, 
an important variable for determining the tim
ing of exposure during pregnancy, is not directly 
recorded in claims data. Pregnancy‐related 
diagnosis and procedure codes can be used to 
estimate trimesters and weeks of gestation in 
administrative claims databases. A number of 
algorithms have been validated against the ges
tational age information on birth certificates or 
in medical records [39,40]. Claims data contain 
information on a number of confounding fac
tors, such as maternal demographics, medical 
conditions that require medical attention, and 
concomitant medication exposure. However, 
information on mother’s reproductive history, 
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body mass index, smoking status, and alcohol 
intake are typically not available or documented 
completely.

The large number of pregnancies captured 
within electronic healthcare databases and the 
fact that the data are routinely collected make 
them a valuable tool for evaluation of the bene
fit and risk of medicine use during pregnancy. 
Even with the large populations of electronic 
healthcare databases, a single data source may 
not have enough pregnancies or outcomes of 
interest, depending on the prevalence of the 
medical condition being studied and the fre
quency of use of the medication being pre
scribed. Therefore, pooling of multiple data 
sources for specific pregnancy studies is often 
needed to achieve sufficient statistical power. 
For example, national register data from five 
Nordic countries were pooled to assess whether 
maternal use of selective serotonin reuptake 
inhibitors increases the risk of persistent pul
monary hypertension in the newborn [41]; 
automated data from three healthcare claims 
databases and one electronic medical record 
database were used to evaluate topiramate use 
in pregnancy and the prevalence of oral clefts 
[42]; and recently, a planned study to examine 
the safety of Trumenba® vaccine exposure 
during pregnancy using electronic data from 
multiple healthcare systems in the US, all of 
which participate in the Sentinel distributed 
network [43].

Pediatrics
In the context of drug development, children 
are considered a special population (see also 
Chapter  22). This categorization is due to the 
unique physiologic characteristics of children: 
developing organ systems often result in differ
ent and unpredictable pharmacokinetic and 
pharmacodynamic profiles compared to adults, 
beyond standard adjustments for smaller body 
size and weight. The special population desig
nation is also a result of the special ethical issues 
associated with testing unapproved substances 

in this vulnerable population, who cannot pro
vide true informed consent.

There is drug development legislation specifi
cally for pediatrics in both the EU and US. They 
differ slightly in their requirements and timing, 
but they both focus on early preparation of 
pediatric development plans and early submis
sion (typically in Phase II) of these plans to reg
ulatory authorities for review and approval. 
Similar to the EU RMP, the paediatric investiga
tion plan (PIP) in Europe and the pediatric study 
plan (PSP) in the US require extensive informa
tion on the background epidemiology of the dis
ease in children by age and other demographic 
and geographic subgroups; epidemiologists may 
play an important role in providing this infor
mation. Waiver requests, because of insufficient 
numbers of pediatric patients or because the 
disease does not exist in pediatrics, are another 
area that epidemiologists may support. The EU 
PIP process also requires that the adult RMP be 
expanded to include pediatric indications and 
to expand or conduct relevant safety studies, if 
applicable. In both regions, separate pediatric 
observational safety studies as conditions of 
approval are fairly common, given the lack of 
long‐term safety data that is typically available 
in this population.

An important consequence of the US and EU 
pediatric legislation is that companies are now 
required to integrate pediatric planning much 
earlier in development than before. It also 
requires that epidemiologists become more 
familiar with general pediatric research issues, 
as well as pediatric population sources and 
research networks, since any patent‐protected 
or patent‐eligible drug or biologic with a 
European filing, regardless of the point in its life 
cycle, must submit a PIP. The regulatory changes 
in the US and general attention to active safety 
monitoring of vulnerable populations have also 
strengthened the need for postapproval obser
vational safety studies in pediatrics.

Unlike drug development programs in 
adults, which typically encompass thousands of 
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 individuals treated prior to approval, many 
pediatric drug development programs comprise 
a single pivotal clinical study of several hundred 
children. This small study size may be due to the 
lower incidence/prevalence of the disease in 
children, or the reluctance of parents to expose 
their children to experimental therapies. The 
small sample sizes drive the need for and 
increased focus on adequate long‐term safety 
monitoring beyond traditional passive surveil
lance (i.e., spontaneous reports) in pediatrics, 
yet raise interesting methodologic challenges 
for epidemiologists studying the safety of drugs 
in children. One is frequently faced with assess
ing both a very rare exposure and a very rare 
outcome of interest. This conundrum necessi
tates observational approaches, because a tra
ditional RCT cannot be feasibly conducted, 
but also may require creative approaches to 
design and data source selection that would 
not be necessary in adult populations. 
Utilizing existing registries or creating a new 
one, active surveillance programs using either 
primary or secondary data collection modali
ties, or collaborations with pediatric specialty 
research networks are just a few potential 
solutions.

Pediatric rheumatology, pediatric oncology, 
and many rare diseases represent common 
therapeutic areas that face these methodologic 
and ethical issues with several examples from 
which to draw [44–47]. In other instances, chil
dren are the primary target or vector for dis
ease, as in many common infectious diseases. 
The primary methodologic limitation facing 
the epidemiologist may no longer be adequate 
sample size, but instead finding an unexposed 
comparator group, such as when studying a 
vaccine that is part of a universal vaccination 
campaign. More information on the nuances of 
vaccine safety evaluation is available in 
Chapter 20. Both situations highlight the need 
for novel approaches and methodologies to 
better support long‐term safety monitoring of 
biopharmaceuticals in children.

 Epidemiology in Evaluation 
of Risk Mitigation 
Interventions

Epidemiology not only plays an important role 
in evaluation of the drug safety profile pre‐ 
and postapproval, but, as noted earlier, also 
makes significant contributions to the evalua
tion of the effectiveness of risk mitigation 
intervention measures (see also Chapter  24). 
This component of biopharmaceutical risk 
management has grown considerably in the 
last decade, with the US, EU members, Taiwan, 
Egypt, Australia, and a number of other coun
tries implementing legislation that supports 
risk mitigation interventions.

Under FDAAA, the FDA can require a spon
sor to submit a proposed REMS as part of its 
initial application, if the FDA finds that a REMS 
is necessary to ensure the benefits of the drug or 
biologic product outweigh the risks [48]. The 
FDA may also require a REMS postapproval 
based on new safety information. The FDAAA 
has defined this as any information obtained 
during the initial review process, as a result of 
postapproval studies, or from spontaneous 
reports [48]. REMS are intended to be utilized 
to reduce known or hypothetical risks when tra
ditional minimization approaches (i.e., the 
product label) are insufficient. These tools gen
erally fall into three categories: enhanced edu
cation, that is patient labeling (including 
Medication Guides) or communication plans 
such as prescriber training programs; elements 
to assure safe use (ETASU), such as requiring 
documentation of laboratory tests before each 
prescription, or restricting distribution only to 
those who are certified prescribers; and an 
implementation system to monitor and evaluate 
ETASU. A critical addition to this legislation 
that was particularly relevant to epidemiologists 
within industry was the requirement to perform 
assessments of the effectiveness of these risk 
minimization tools and to submit these to the 
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FDA for review at prescribed time points, gen
erally at 18 months, 3 years, and 7 years. The 
FDA draft guidances on REMS assessments and 
survey design were issued in January 2019, and 
it is unknown when these will be finalized. The 
EU has similar legislation to require sponsors to 
implement aRMMs where necessary to ensure 
that the benefits outweigh the risks, and a simi
lar requirement to assess the effectiveness of the 
aRMMs, although without defined timelines. 
These aRMM programs and assessments are 
described in the EU RMP [4,5,49].

Epidemiologists play a critical role in the 
design and implementation of these assess
ments because of their expertise in observa
tional study design, survey design, data analysis, 
and program evaluation. For example, using an 
automated healthcare or claims database, 
assessments may measure compliance with 
monitoring guidelines or whether a contraindi
cated population is prescribed the drug. 
Assessments may also examine the frequency of 
occurrence of an adverse event of interest before 
and after implementation of the risk minimiza
tion tool. Most commonly, however, assess
ments measure prescriber, pharmacist, or 
patient comprehension of risk information or 
self‐reported adherence to risk minimization 
behaviors, and require the epidemiologist to 
craft cross‐sectional surveys specific to each 
recipient, drug, and associated unique risk pro
file, since standardized or validated question
naires that measure these concepts do not exist. 
An example of a comprehensive Tysabri® REMS 
program is shown in Box 7.1.

The implementation of the REMS and aRMM 
legislation has highlighted a number of difficul
ties. The mandated assessments may be difficult 
to achieve, or to achieve within the US legisla
tive timelines, for many reasons: the need to 
develop and pilot knowledge/comprehension 
surveys unique to each drug subject to a REMS; 
the requirement to design, implement, and 
assess complex safe use programs; the scarcity 
of patients treated with the drug of interest; or 

difficulties in identifying such patients through 
automated channels. The fractured healthcare 
and prescription delivery system in the US and 
the wide variety of health systems, legal and pri
vacy requirements, and attitudes to these pro
grams and research participation across Europe 
present a barrier to the efficient distribution of 
educational materials, to the implementation of 
many safe use elements, and to the scientifically 
valid evaluation of these programs overall. 
Unfortunately, there is relatively little scholarly 
work published on how best to assess these bur
densome but important risk mitigation pro
grams, how best to define success, and, where 
necessary, how best to improve them [54–57]. 
Knowledge in these areas continues to mature 
as more companies and the regulatory agencies 
garner additional experience, and we expect 
that existing guidance [5] will evolve. Risk miti
gation evaluation is thus still an emerging area 
for epidemiologists in industry, but one that 
complements our specialized training and 
expertise.

Tofacitinib Risk Mitigation Evaluation
The US REMS for tofacitinib was originally 
approved on November 6, 2012 and consisted of 
a Medication Guide, a communication plan, and 
a timetable for submission of REMS assessment 
(i.e., surveys at 18 months, 3 years, and 7 years). 
The FDA deemed the 18‐month REMS epide
miologic assessment adequate, citing that the 
survey data demonstrated that patients under
stood the risks associated with therapy. 
Therefore, in accordance with Section 505‐1(g)
(4)(B) of the Food, Drug, and Cosmetic Act, the 
FDA determined that maintaining the 
Medication Guide as part of the approved labe
ling was sufficient to address safety‐related con
cerns. As such, it was no longer necessary to 
include the Medication Guide as an element of 
the approved REMS, and the survey of patient 
knowledge and understanding was removed.

As a condition of approval within the EU, 
aRMMs were implemented within the EU, 
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Box 7.1 Tysabri® risk evaluation and mitigation strategies (REMS) case study

The FDA approved Tysabri (natalizumab), the first humanized monoclonal antibody for the treatment 
of relapsing multiple sclerosis (MS), via accelerated approval in November 2004. Approximately three 
months later, in February of 2005, Biogen/IDEC voluntarily suspended all sales and ongoing clinical 
studies due to two cases of progressive multifocal leukoencephalopathy (PML), one of which was fatal, 
in MS patients in long‐term extension studies. Although no spontaneous reports had yet been reported 
to either the Sponsors or the FDA, the suspension was driven by the concern that the association 
between PML and natalizumab use was unclear, that PML is almost universally fatal, and that other 
patients may have undetected early‐stage PML who would otherwise continue to receive the medica-
tion [50]. A third fatal case was identified in a Crohn’s disease patient shortly thereafter [51].

At the time of suspension, little was known about the risk of PML in the general or MS population. 
In the general population, PML is extremely rare, and seldom occurs in immunocompetent individu-
als. It is estimated that 1–5% of AIDS patients may be diagnosed during their lifetime. PML also occurs 
in organ transplant recipients and cancer patients who have received immunosuppressive medica-
tions, but no cases in MS patients had previously been documented [50]. The Sponsors designed a 
comprehensive program to better understand the risk factors associated with PML development and 
developed a comprehensive RiskMAP program (later converted to a “Deemed REMS” under FDAAA) 
called the TOUCH™ (Tysabri Outreach: Unified Commitment to Health) Prescribing Program [52, 53]. 
The goals of TOUCH™ are as follows:

  

Risk Assessment Goals

• Determine the incidence and
risk factors for PML

• Assess long-term safety in
clinical practice  

• Promote informed benefit–risk
decisions

• Minimize the risk of PML
• Potentially minimize death

Risk Minimization Goals

The program entails all REMS elements: a patient medication guide; additional physician education 
and accompanying assessments of knowledge and behavior; prescriber and patient attestation of risk 
understanding at enrollment; restricted distribution of the drug; and mandatory certification of physi-
cians and infusion centers.

TOUCH Risk Minimization System

Mandatory
Enrollment
Form

Controlled
Centralized

Registered Infusion
Centers

Neurologists

Infusion
Nurses

MS Patients

Based on this comprehensive program and a FDA Advisory Committee review in 2006, the clinical 
hold was lifted and natalizumab was reintroduced to the market in June of that year. Biogen/I DEC and 
regulatory agencies continue to closely monitor the incidence of PML potentially associated with natal-
izumab use (approximately 1 in 1000 in clinical trials) and communicate the updated safety information 
monthly to all stakeholders (e.g., neurologists, nurses, regulatory agencies). Additional research on risk 
factors and risk stratification, such as the impact of duration of use, the total number of infusions, and 
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 consisting of an educational program intended 
to enhance the communication of the risks and 
risk minimization practices to patients and 
healthcare professionals (HCP). The elements 
of the aRMM include:

 ● Xeljanz® HCP brochure
 ● Xeljanz® HCP treatment initiation checklist
 ● Xeljanz® HCP treatment maintenance check list
 ● Educational website
 ● Xeljanz® patient alert card

Under the purview of epidemiology, two 
studies were designed and implemented to 
evaluate the effectiveness of the aRMM. The 
studies are underway as of this writing and 
include a survey of HCPs and a drug utilization 
study.

 Big Data and the Future 
of Pharmacoepidemiology

In recent years, the concept of “Big Data” has 
become more relevant to pharmacoepidemiol
ogy, with increases in the size and type of data 
available, as well as the computational capability 
to rapidly execute analyses across large datasets. 
Big Data is typically characterized by at least “3 

Vs”: velocity, variety, and volume; some 
 commentators posit that veracity, variability, or 
value should be added to the list. However 
defined, Big Data and its associated analytic and 
machine learning techniques are having impacts 
on how pharmacoepidemiology is applied to 
drug development and safety assessment today. 
In the near future, we expect its use by industry 
to broaden across multiple functional activities, 
and its importance for decision making to 
increase within industry pharmacovigilance 
functions.

The greatest change in pharmacovigilance 
analytics being applied today, and the one most 
connected to the Big Data revolution, is wider 
use of observational data, as evidenced by phar
macoepidemiologic studies conducted across 
multiple databases and the development of large 
networks of observational databases of elec
tronic healthcare records in North America, 
Europe, and Asia [58] (see also Chapter  25). 
There are now hundreds of existing longitudinal 
observational databases (LODs) available for 
secondary use in epidemiologic studies in North 
America, Europe, and Asia, from drug or out
come registries to transactional insurance 
claims databases and electronic medical record 
(EMR) databases [59], and increasingly these 
are being linked.

the role of JC‐virus infection, continue to be evaluated. The program has demonstrated a high degree 
of PML awareness and compliance with the requirements; most importantly, the fatality and disability 
rates appear lower than observed in clinical trials and the literature. Natalizumab was approved by the 
FDA in January 2008 for another indication, Crohn’s disease, further supporting the effectiveness of the 
risk mitigation program [51, 53].

Key Points:

 ● Comprehensive risk assessment and mitigation plans (REMS) can preserve a positive benefit–risk 
 balance in appropriate patient populations.

 ● Effective programs combine strict controls and tailored education, yet are dynamic (i.e., evolve as 
information becomes available and clinical practice and treatment options change over time).

 ● Transparent and frequent communication involving all stakeholders is critical, even if the safety 
 profile is unknown or emerging.
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The best‐known example of a LOD network 
for safety assessment is the US FDA’s Sentinel 
system, initiated in pilot form in 2009 and con
sisting primarily of private transactional insur
ance claims data. The system was specifically 
designed to investigate potential safety concerns 
[60] to respond to the perceived weaknesses of a 
safety surveillance system reliant on spontane
ous reporting. Sentinel, now in routine use at 
the FDA, conducts hundreds of assessments of 
products, conditions, and product–outcome 
pairs each year (Jeff Brown, personal communi
cation). Analyses are conducted across a distrib
uted network of data from 16 health plans (with 
additional datasets coming online over time), 
with currently over 220 million members and 
over 425 million person‐years of data for analy
sis. Partners retain physical and operational 
control over their data by using a common data 
model (CDM). Standard, executable programs 
are then sent to each data partner to perform 
analyses or create analysis files for pooling sum
mary data, which are then returned and com
piled at a coordinating center. The network 
routinely uses standardized, simple queries that 
have as fast as a one‐week turnaround from 
query initiation to result, a rapid analysis capa
bility not seen previously on large‐scale obser
vational data. The distributed database, which is 
updated quarterly, has information on over 
7 billion medical encounters and 6 billion out
patient pharmacy dispensations, and is growing 
at nearly 1 billion encounters a year (Jeff Brown, 
personal communication).

The Sentinel initiative is increasingly 
described as a component of a national evidence 
generation system [61]. In practice, this means 
exploring a broader use of this data network by 
connecting it to additional data types, including 
disease or drug registries, and/or other data 
networks, such as PCORNet, a network of EMR 
repositories [62], resulting in data systems 
encompassing more than half and up to two‐
thirds of the US population. These systems are 
envisaged as having value for research other 

than safety assessment, such as comparative 
effectiveness studies (see Chapter  26), prag
matic trials, or investigational trials in real‐
world settings. If the Sentinel system is truly a 
national resource, it also means developing gov
ernance and procedures for use by stakeholders 
other than the FDA, naturally with appropriate 
safeguards in place, to study important public 
health and safety research questions. The 
Reagan‐Udall Foundation’s Innovation in 
Medical Evidence Development and 
Surveillance (IMEDS) program was designed to 
develop a process for such access by stakehold
ers other than the FDA. In the first pilot con
ducted with IMEDS by Pfizer, policies and 
procedures were developed and subsequently 
tested by two use cases: the risk of venous 
thromboembolism associated with oral contra
ceptives; and the impact of an FDA labeling 
change on usage patterns of proton pump inhib
itors [63–65].

Similar networks for safety surveillance have 
been developed around the world: AsPEN in 
Asia [66], CNODES in Canada [67], and several 
multinational European networks, such as the 
Innovative Medicines Initiative (IMI) PROTECT 
project [68], ARITMO [69], and SOS [70], while 
other networks, for instance OMOP and OHDSI, 
have primarily focused on methods testing and 
informatics tool development [71,72]. The 
Japanese regulatory authorities have also created 
a distributed network called MID‐NET that 
links multiple Japanese hospitals and has a struc
ture similar to that of Sentinel [73].

Many of these networks have developed 
CDM‐based systems. CDM use for healthcare 
databases has clear benefits, but also limitations. 
For example, as ecosystems of tools grow to sup
port efficient use of each CDM, this can lead to 
discordant results across systems [74]. A CDM is 
not a prerequisite for a data network. The IMI 
project PROTECT had a work package focused 
on pharmacoepidemiology that  executed multi
ple study designs for six drug–outcome pairs 
across several European data sources using a 
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common protocol executed across data sources 
rather than a CDM. PROTECT demonstrated 
that through careful epidemiologic reasoning to 
produce a common protocol across multiple 
centers and countries, analyses conducted 
locally yielded generally concordant and pre
dictably discordant results across databases [68]. 
Naturally, the amount of concordance varied by 
drug–outcome pair, study design, country, and 
database, but in a predictable manner.

As more observational data analyses are con
ducted, it is essential to ensure that studies are 
conducted only when there is a research ques
tion appropriate for observational study designs; 
techniques for confounding control are expected 
to be reasonably good at controlling for impor
tant confounders, particularly confounding by 
indication and severity; and regulatory and 
international scientific good practice guidelines 
are followed. Increased transparency in the con
duct and reporting of studies may support bet
ter reproducibility and replicability. Recent 
guidance from the joint International Society of 
Pharmacoepidemiology–International Society 
for Pharmacoeconomics and Outcomes 
Research (ISPE–ISPOR) task force on “Real 
World Evidence in Health Care Decision 
Making” looks to provide guidance on the 
design and reporting of pharmacoepidemio
logic analyses of longitudinal healthcare data
bases [75–78]. In the coming years, we expect 
further improvements in the quality and variety 
of clinical data available and linkages in these 
networks. For example, to study the prevalence 
of congenital malformations among infants 
exposed and not exposed to varenicline in utero, 
Danish and Swedish medical birth registries 
were used to identify live‐born infants, then 
data on maternal varenicline use and congenital 
malformations in offspring were obtained by 
linkage to nationwide registries of dispensed 
prescriptions and hospital admissions [78]. 
Similarly, a planned study for meningitis B vac
cination will look to examine the safety of 
Trumenba® vaccine exposure during pregnancy 

using electronic healthcare data and linked 
birth certificates from multiple healthcare 
systems in the US, all of which participate in 
the Sentinel distributed network [79]. 
Advances in these networks will also occur 
through data enrichment, such as linkage to 
clinical disease and drug registries or other 
primary data collection systems, or supple
menting coded data with information 
obtained from the free text of medical records 
using natural language processing (NLP) or 
similar automated techniques [80].

The Big Data promises that have been most 
clearly fulfilled are the existence of these large 
networked data systems, coupled with the abil
ity to gain insights into a study question within 
days rather than months or years as in the past 
[81]. With these advances, researchers have 
recently explored how these healthcare data
bases and systems might be used for exploratory 
assessment, rather than the usual signal evalua
tion approaches applied to these data. In this 
approach, the goal is to capture emerging and 
previously unsuspected signals; that is, hypoth
esis‐free signal detection in healthcare data
bases [82]. There are limitations to the data, 
however, that currently hamper their usefulness 
in signal detection, including the lack of a 
learned reporter that suspects a medicine–
adverse event relationship and is able to provide 
detailed medical information and a rationale for 
that suspicion; incomplete linkage of data from 
primary, specialist, and inpatient visits; and 
delays in updating and making available the data 
for research, which take up to a year for some 
databases. There is now a nascent literature on 
comparison of healthcare databases to sponta
neous reports for signal detection, where there 
is cautious promise, at least for outcomes with 
high background event rates, which are difficult 
to capture as safety signals in spontaneous 
reporting systems [83]. For now, research sug
gests that, at best, this approach is likely to be 
complementary rather than to replace sponta
neous reports.
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Consumer wearable technology (such as fit
ness devices and smartphones) and “smart” dig
ital technology (such as thermometers, or 
glucose or heart monitors) have the potential to 
supplement these approaches by providing bet
ter, more detailed health and behavioral infor
mation than that collected routinely in 
electronic healthcare databases. Some of the 
data are collected automatically, such as a 
phone’s (and therefore individual’s) location at a 
particular day and time. These data can then be 
linked to other information known about the 
location, for example the weather or air pollu
tion levels. Most of the mobile data streams, 
though, are collected through “apps” that are 
intended to collect information about subjective 
experience and/or objective measures, such as 
heart rate or number of paces. These subjective 
data streams are potentially more representa
tive and systematic than social media data 
streams, since they are able to prompt the user 
to enter data and provide data summaries that 
are useful or of interest to the user. For example, 
researchers in the UK are using smartphones 
and linked mobile data to study the relationship 
between weather patterns and RA symptom 
severity [84]. This study collects information 
about the severity of pain symptoms from an 
app and then links it to weather information 
based on the patient’s location at time of data 
entry. To encourage participation and frequent 
data entry, the researchers have created the app 
so that it is relevant to patients: patients may 
view their individual symptom reporting over 
time as well as aggregate reporting trends for 
the entire study population. Elsewhere, com
puter games are used to collect data on reaction 
times to better understand disease progression 
[85], and smartphone apps are being explored as 
tools to collect safety information during 
research studies.

The use of consumer wearable technology for 
pharmacoepidemiologic research is in its 
infancy, although some researchers argue that 
the line between medical devices and consumer 

wearable technologies is already beginning to 
blur [86]. If large‐volume data streams are being 
created that may be accessible in near real time 
and proximal temporally to a healthcare 
encounter or experience following the use of a 
medication, the promise for pharmacoepidemi
ology is great, particularly as these streams 
increasingly focus on medical and behavioral 
data (e.g., heart rate, personal and family medi
cal history, smoking status, diet, alcohol con
sumption, and exercise patterns). Additionally, 
our analytic capabilities are being advanced, as 
these data streams and networks of sensors 
make it possible to examine relationships 
between data types previously unknown at this 
scale. To give three examples, not yet to our 
knowledge applied to drug safety research: stud
ies demonstrating how noncontact visual 
images can be used to infer muscle activity and 
force [87], which one could anticipate would be 
of value in monitoring the progression of amyo
trophic lateral sclerosis (ALS); video‐recorded 
data can be used to allow more accurate health 
insights and therefore treatment in asthma 
patients [88]; and research into food‐related 
object recognition [89] could potentially lead to 
objectively recorded dietary data being linked to 
electronic healthcare databases.

We anticipate that patients whose healthcare 
is complex, with an impact on their daily life, 
such as the chronically ill or those who are part 
of active and organized patient communities, 
will be early adopters of sharing their informa
tion for research purposes, despite the loss of 
privacy. This assumes of course that these data 
collection tools offer value to the individual 
patient and, when appropriate, their healthcare 
providers. Privacy, the perceived risk of misuse 
of data, and the regulatory considerations over 
tools that measure objective medical data (and 
therefore may be considered medical devices) 
are current hurdles to more widespread use. 
While it is impossible to predict the rapidity in 
uptake of these types of apps, we expect it will 
occur faster among younger generations of 
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healthcare providers and patients, who are 
arguably more comfortable with sharing data in 
this way and perhaps more likely to find it 
valuable.

As the amount of data of potential interest to 
companies has grown, so have computational 
advances for the analysis of these data sources. This 
has meant that traditional analytic approaches can 
be employed more rapidly, and/or extended in ways 
that were computationally intractable previously, 
such as large‐scale high‐dimensional propensity 
score matching and empirical Bayesian analysis 
approaches for shrinkage regression. Additionally, 
methods that would not have been practical in pre
vious decades are now computationally viable ana
lytic solutions on the large datasets of interest to 
pharmacoepidemiology. Examples of the latter are 
approaches for machine learning, artificial intelli
gence (AI), and cognitive computing. Currently, 
they appear most suited to making progress on 
questions requiring unsupervised pattern recogni
tion, for example unexpected cluster detection in 
databases or predictive modeling [90]. Other tech
nologies loosely connected to the Big Data move
ment may also have enormous impacts on 
pharmacoepidemiologic research strategies; for 
example, more widespread use of blockchain tech
nologies may change the way we collect, structure, 
access, and thus analyze healthcare data.

Safeguarding patient safety and wellbeing is 
the ultimate purpose of these efforts to analyze 
new data streams and apply new analytic 
approaches. For this reason, as we consider the 
steady stream of new data and technology plat
forms of potential reliance to pharmacoepide
miology, we need to evaluate critically the 
impact of innovative data sources and tech
niques, and whether these should complement 
or replace existing approaches or are redundant, 
adding little or no value to current routine prac
tice. Such evaluations will need to assess perfor
mance across data streams carefully, comparing 
their timeliness, effectiveness, and reliability for 
detecting emerging safety issues. Key to these 
evaluations is testing compared to appropriate, 

established external reference sets and trans
parent and measurable performance criteria. 
Objective and reproducible performance assess
ments are essential if such evaluations are 
intended to modify or enhance or replace com
ponents of current practice. There has been a 
recent focus in the field of pharmacovigilance 
on further developing the science of measuring 
the impact of pharmacovigilance activity.

 Conclusions

Epidemiology makes a significant contribution to 
the development and marketing of safe and effec
tive biopharmaceutical products worldwide. It 
facilitates the regulatory process and provides a 
rational basis for drug safety evaluation, particu
larly in the postapproval phase, and the evalua
tion of risk mitigation interventions. Like any 
other discipline, it must be properly understood 
and appropriately utilized. Industry has an 
opportunity to contribute to the development of 
the field and the responsibility to do so in a man
ner that expands resources while assuring scien
tific validity. With the passage of the 2007 
FDAAA legislation and the 2010 EMA Regulation 
on Pharmacovigilance, the need for scientists 
with training and research experience in phar
macoepidemiology has never been greater. To 
best support drug safety evaluation, epidemiol
ogy strategies must (i) begin early in develop
ment, (ii) continue throughout the life cycle of 
the drug, (iii) evolve as new safety information 
becomes available, and (iv) be innovative, requir
ing epidemiologists to be aware of new method
ologies and methods specific to the disease area. 
Epidemiologists within industry have an oppor
tunity to build on the successes of the last 
40  years by collaborating with academics, non
profit organizations, and regulators to advance 
the methods of drug safety evaluation and risk 
management. In the near future, we expect the 
use and importance of Big Data to  broaden 
within industry pharmacovigilance functions.



The Role of Pharmacoepidemiology in Industry120

 References

 1 Institute of Medicine. The Future of Drug 
Safety: Promoting and Protecting the Health of 
the Public. Washington, DC: National 
Academies Press, 2007. https://doi.
org/10.17226/11750

 2 Food and Drug Administration. Postmarketing 
studies and clinical trials — Implementation of 
Section 505(O)(3) of the Federal Food, Drug, 
and Cosmetic Act. 2011. https://www.fda.gov/ 
downloads/Drugs/GuidanceComplianceRegula 
toryInformation/Guidances/UCM172001.pdf 
(accessed May 2019).

 3 European Commission. The rules governing 
medicinal products in the European Union. 
Volume 9A: Guidelines on pharmacovigilance 
for medicinal products for human use. 2008. 
https://ec.europa.eu/health/sites/health/files/
files/eudralex/vol‐9/pdf/vol9a_09‐2008_en.pdf 
(accessed May 2019).

 4 European Medicines Agency. Guideline on 
good pharmacovigilance practices (GVP). 
Module VIII – Post‐authorisation safety studies 
(Rev 3). 2017. https://www.ema.europa.eu/en/
documents/scientific‐guideline/guideline‐
good‐pharmacovigilance‐practices‐gvp‐
module‐viii‐post‐authorisation‐safety‐studies‐
rev‐3_en.pdf (accessed May 2019).

 5 European Medicines Agency. Guideline on 
good pharmacovigilance practices (GVP). 
Module XVI – Risk minimisation measures: 
selection of tools and effectiveness indicators 
(Rev 2). 2017. https://www.ema.europa.eu/en/
human‐regulatory/post‐authorisation/
pharmacovigilance/good‐pharmacovigilance‐
practices (accessed May 2019).

 6 Campbell UB, Walker AM, Gaffney M, et al. 
Acute nonarteritic anterior ischemic optic 
neuropathy and exposure to phosphodiesterase 
type 5 inhibitors. J Sex Med 2015; 12(1): 
139–51.

 7 Flahavan EM, Li H, Gupte‐Singh K, et al. 
Prospective case‐crossover study investigating 
the possible association between nonarteritic 

anterior ischemic optic neuropathy and 
phosphodiesterase type 5 inhibitor exposure. 
Urology 2017; Jul(105): 76–84.

 8 Dodd CN, Romio SA, Black S, et al.; Global 
H1N1 GBS Consortium. International 
collaboration to assess the risk of Guillain 
Barré Syndrome following Influenza A 
(H1N1) 2009 monovalent vaccines. Vaccine 
2013; 31(40): 4448–58.

 9 Gault N, Castañeda‐Sanabria J, De Rycke Y, 
Guillo S, Foulon S, Tubach F. Self‐controlled 
designs in pharmacoepidemiology involving 
electronic healthcare databases: a systematic 
review. BMC Med Res Methodol 2017; 17(1): 25.

 10 Glynn RJ, Monane M, Gurwitz JH, 
Choodnovskiy I, Avorn J. Agreement between 
drug treatment data and a discharge diagnosis 
of diabetes mellitus in the elderly. Am J 
Epidemiol 1999; 149(6): 541–9.

 11 Melfi CA, Croghan TW. Use of claims data for 
research on treatment and outcomes of 
depression care. Med Care 1999; 37(4): 
AS77–80.

 12 Lewis JD, Brensinger C, Bilker WB, Strom BL. 
Validity and completeness of the General 
Practice Research Database for studies of 
inflammatory bowel disease. 
Pharmacoepidemiol Drug Saf 2002; 11(3): 
211–18.

 13 Metlay JP, Hardy C, Strom BL. Agreement 
between patient self‐report and a Veterans 
Affairs national pharmacy database for 
identifying recent exposures to antibiotics. 
Pharmacoepidemiol Drug Saf 2003; 12(1): 
9–15.

 14 Hennessy S, Bilker WB, Weber A, Strom BL. 
Descriptive analyses of the integrity of a US 
Medicaid claims database. Pharmacoepidemiol 
Drug Saf 2003; 12(2): 103–11.

 15 Eng P, Seeger JD, Loughlin J, et al. Serum 
potassium monitoring for users of ethinyl 
estradiol/drospirenone taking medications 
predisposing to hyperkalemia: physician 



References 121

compliance and survey of knowledge and 
attitudes. Contraception 2007; 75(2): 101–7.

 16 Eng P, Johannes CB, Chaing CC, West WA, 
Seeger JD, Walker AM. Survey of disability, 
medication use, and medication satisfaction 
among members with rheumatoid arthritis of 
a large health care plan database. 
Pharmacoepidemiol Drug Saf 2005; 14: S5.

 17 International Society for Pharmacoepide
miology. Guidelines for good 
pharmacoepidemiology practices (GPP). 
Pharmacoepidemiol Drug Saf 2008; 17(2): 
200–8.

 18 European Network of Centres for 
Pharmacoepidemiology and 
Pharmacovigilance (ENCePP). Guide on 
Methodological Standards in 
Pharmacoepidemiology (Revision 6). 2017. 
http://www.encepp.eu/standards_and_
guidances/documents/
ENCePPGuideofMethStandardsinPE_Rev6.
pdf (accessed May 2019).

 19 Food and Drug Administration. Guidance for 
industry and FDA staff: best practices for 
conducting and reporting 
pharmacoepidemiologic safety studies using 
electronic healthcare data. 2013. https://www.
fda.gov/regulatory‐information/search‐fda‐
guidance‐documents/best‐practices‐
conducting‐and‐reporting‐
pharmacoepidemiologic‐safety‐studies‐using‐
electronic (accessed May 2019).

 20 Faich GA, Lawson DH, Tilson HH, Walker 
AM. Clinical trials are not enough: drug 
development and pharmacoepidemiology. J 
Clin Res Drug Dev 1987; 1: 75–8.

 21 Tennis P, Cole TB, Annegers JF, Leestma JE, 
McNutt M, Rajput A. Cohort study of 
incidence of sudden unexplained death in 
persons with seizure disorder treated with 
antiepileptic drugs in Saskatchewan, Canada. 
Epilepsia 1995; 36(1): 29–36.

 22 Derby LE, Tennis P, Jick H. Sudden unexplained 
death among subjects with refractory epilepsy. 
Epilepsia 1996; 37(10): 931–5.

 23 Leestma JE, Annegers JF, Brodie MJ, et al. 
Sudden unexplained death in epilepsy: 
observations from a large clinical 
development program. Epilepsia 1997; 38(1): 
47–55.

 24 Mussen F, Salek S, Walker S. A quantitative 
approach to benefit–risk assessment of 
medicines – part 1: the development of a new 
model using multi‐criteria decision analysis. 
Pharmacoepidemiol Drug Saf 2007; 16: 
S2–S15.

 25 Tervonen T, van Valkenhoef G, Buskens E, 
Hillege HL, Postmus D. A stochastic 
multicriteria model for evidence‐based 
decision making in drug benefit‐risk analysis. 
Stat Med 2011; 30(12): 1419–28.

 26 Coplan P, Noel R, Levitan B, Ferguson J, 
Mussen F. Development of a framework for 
enhancing the transparency, reproducibility 
and communication of the benefit–risk 
balance of medicines. Clin Pharmacol Ther 
2011; 89: 312–15.

 27 Finer LB, Zolna MR. Declines in unintended 
pregnancy in the United States, 2008–2011. 
N Engl J Med 2016; 374(9): 843–52.

 28 Daw JR, Hanley GE, Greyson DL, Morgan SG. 
Prescription drug use during pregnancy in 
developed countries: a systematic review. 
Pharmacoepidemiol Drug Saf 2011; 20(9): 
895–902.

 29 Food and Drug Administration. Guidance for 
industry: establishing pregnancy exposure 
registries. 2002, http://www.fda.gov/
downloads/Drugs/GuidanceComplianceRegul 
atoryInformation/Guidances/ucm071639.pdf 
(accessed May 2019).

 30 European Medicines Agency, Committee for 
Medicinal Products for Human Use (CHMP). 
Guideline on the exposure to medicinal 
products during pregnancy: need for post‐
authorisation data. 2005. http://www.ema.
europa.eu/docs/en_GB/document_library/
Regulatory_and_procedural_
guideline/2009/11/WC500011303.pdf 
(accessed May 2019).



The Role of Pharmacoepidemiology in Industry122

 31 Mastroianni AC, Faden R, Federmen D. 
Women and Health Research: Ethical and 
Legal Issues of Including Women in Clinical 
Trials. Washington, DC: National Academy of 
Science Press, 1994.

 32 European Medicines Agency, Committee for 
Medicinal Products for Human Use (CHMP). 
Guideline on risk assessment of medicinal 
products on human reproduction and 
lactation: from data to labelling. 2008. https://
www.ema.europa.eu/en/documents/scientific‐
guideline/guideline‐risk‐assessment‐
medicinal‐products‐human‐reproduction‐
lactation‐data‐labelling_en.pdf (accessed May 
2019).

 33 Charlton RA, Cunnington MC, de Vries CS, 
Weil JG. Data resources for investigating drug 
exposure during pregnancy and associated 
outcomes. Drug Saf 2008; 31(1): 39–51.

 34 Kendle International Inc. Buproprion 
Pregnancy Registry: Final report 1, September 
1997 through 31 March 2008. 2008. http://
pregnancyregistry.gsk.com/documents/
bup_report_final_2008.pdf (accessed May 
2019).

 35 Cole JA, Modell JG, Haight BR, Cosmatos IS, 
Stoler JM, Walker AM. Bupropion in 
pregnancy and the prevalence of congenital 
malformations. Pharmacoepidemiol Drug Saf 
2007; 16(5): 474–84.

 36 Davis RL, Rubanowice D, McPhillips H, et al. 
Risks of congenital malformations and 
perinatal events among infants exposed to 
antidepressant medications during pregnancy. 
Pharmacoepidemiol Drug Saf 2007; 16(10): 
1086–94.

 37 Layton JB, Butler AM, Li D, et al. Prenatal 
Tdap immunization and risk of maternal and 
newborn adverse events. Vaccine 2017; 35(33): 
4072–8.

 38 Garbe E, Suling M, Kloss S, Lindemann C, 
Schmid U. Linkage of mother–baby pairs in 
the German Pharmacoepidemiological 
Research Database. Pharmacoepidemiol Drug 
Saf 2011; 20(3): 258–64.

 39 Li Q, Andrade SE, Cooper WO, et al. 
Validation of an algorithm to estimate 
gestational age in electronic health plan 
databases. Pharmacoepidemiol Drug Saf 2013; 
22(5): 524–32.

 40 Margulis AV, Palmsten K, Andrade SE, et al. 
Beginning and duration of pregnancy in 
automated health care databases: review of 
estimation methods and validation results. 
Pharmacoepidemiol Drug Saf 2015; 24(4): 
335–42.

 41 Kieler H, Artama M, Engeland A, et al. 
Selective serotonin reuptake inhibitors during 
pregnancy and risk of persistent pulmonary 
hypertension in the newborn: population 
based cohort study from the five Nordic 
countries. BMJ 2012; 344.

 42 Mines D, Tennis P, Curkendall SM, et al. 
Topiramate use in pregnancy and the birth 
prevalence of oral clefts. Pharmacoepidemiol 
Drug Saf 2014; 23(10): 1017–25.

 43 Panozzo CA, Purcell B, Andrade S, et al. 
Safety of Trumenba vaccine among pregnant 
women in the United States: planning and 
design of a large‐scale multi‐site observational 
study. Pharmacoepidemiol Drug Saf 2017; 
26(S2): 410.

 44 O’Leary M, Krailo M, Anderson JR, Reaman 
GH. Progress in childhood cancer: 50 years of 
research collaboration, a report from the 
Children’s Oncology Group. Semin Oncol 
2008; 35(5): 484–93.

 45 Ringold S, Hendrickson A, Abramson L, et al. 
A novel method to collect medication adverse 
events in juvenile arthritis: results from the 
Childhood Arthritis and Rheumatology 
Research Alliance enhanced drug safety 
surveillance project (EDSSP). Arthrit Care Res 
2015; 67(4): 529–34.

 46 Rowe SM, Borowitz DS, Burns JL, et al. 
Progress in cystic fibrosis and the CF 
Therapeutics Development Network. Thorax 
2012; 67(10): 882–90.

 47 Sobel RE, Lovell DJ, Brunner HI, et al.; for the 
PRCSG. Safety of celecoxib and non‐selective 



References 123

non‐steroidal anti‐inflammatory drugs in 
juvenile idiopathic arthritis: results of the Phase 
4 Registry. Pediatr Rheumatol 2014; 12: 29.

 48 FDA. REMS: FDA’s application of statutory 
factors in determining when a REMS is 
necessary: guidance for industry. 2019. 
https://www.fda.gov/regulatory‐information/
search‐fda‐guidance‐documents/rems‐fdas‐
application‐statutory‐factors‐determining‐
when‐rems‐necessary‐guidance‐industry 
(accessed May 2019).

 49 European Medicines Agency. Guideline on 
good pharmacovigilance practices (GVP) 
Module V – Risk management systems (Rev 
2). 2017. https://www.ema.europa.eu/en/
documents/scientific‐guideline/guideline‐
good‐pharmacovigilance‐practices‐module‐v‐
risk‐management‐systems‐rev‐2_en.pdf 
(accessed May 2019).

 50 Holmes LB, Wyszynski DF, Lieberman E. The 
AED (antiepileptic drug) pregnancy registry: a 
6‐year experience. Arch Neurol 2004; 61: 
673–8.

 51 Tomson T, Battino D, Craig J, et al. Pregnancy 
registries: differences, similarities, and 
possible harmonization. Epilepsia 2010; 51: 
909–15.

 52 Smith MY, Sobel RE, Wallace CA. Monitoring 
the long‐term safety of therapies for children 
with juvenile idiopathic arthritis: time for a 
consolidated patient registry. Arthritis Care 
Res (Hoboken) 2010; 62: 800–4.

 53 European Medicines Agency. Long‐term 
pharmacovigilance for adverse effects in 
childhood arthritis focusing on immune 
modulatory drugs. http://www.ema.europa.
eu/docs/en_GB/document_library/
Presentation/2010/06/WC500091508.pdf 
(accessed June 2011).

 54 Department of Health and Human Services. 
Office of Inspector General: FDA lacks 
comprehensive data to determine whether 
REMS improve drug safety. 2013. https://oig.
hhs.gov/oei/reports/oei‐04‐11‐00510.asp 
(accessed May 2019).

 55 Gridchyna I, Cloutier AM, Nkeng L, Craig C, 
Frise S, Moride Y. Methodological gaps in the 
assessment of risk minimization interventions: 
a systematic review. Pharmacoepidemiol Drug 
Saf 2014; 23(6): 572–9.

 56 Kesselheim AS, Donneyong M, Dal Pan GJ, 
et al. Changes in prescribing and healthcare 
resource utilization after FDA Drug Safety 
Communications involving zolpidem‐
containing medications. Pharmacoepidemiol 
Drug Saf 2017; 26(6): 712–21.

 57 Nyeland ME, Laursen M, Callréus T. 
Evaluating the effectiveness of risk 
minimisation measures: the application of a 
conceptual framework to Danish real‐world 
dabigatran data. Pharmacoepidemiol Drug Saf 
2017; 26(6): 607–14.

 58 Trifirò G, Coloma PM, Rijnbeek PR et al. 
Combining multiple healthcare databases for 
postmarketing drug and vaccine safety 
surveillance: why and how? J Intern Med 2014; 
275(6): 551–61.

 59 Hennessy S. Use of health care databases in 
pharmacoepidemiology. Basic Clin Pharmacol 
Toxicol 2006; 98(3): 311–13.

 60 Platt R, Wilson M, Chan KA, Benner JS, 
Marchibroda J, McClellan M. The new 
Sentinel Network: improving the evidence of 
medical‐product safety. N Engl J Med 2009; 
361(7): 645–7.

 61 Califf RM, Robb MA, Bindman AB, et al. 
Transforming evidence generation to support 
health and health care decisions. N Engl J Med 
2016; 375(24): 2395–400.

 62 Fleurence RL, Curtis LH, Califf RM, Platt R, 
Selby JV, Brown JS. Launching PCORnet, a 
national patient‐centered clinical research 
network. J Am Med Inform Assoc 2014; 21(4): 
578–82.

 63 Ball R, Robb M, Anderson SA, Dal Pan G. The 
FDA’s Sentinel initiative: a comprehensive 
approach to medical product surveillance. 
Clin Pharmacol Ther 2016; 99(3): 265–8.

 64 Bate A, Sobell RE, Marshall J, et al. Oral 
contraceptives and VTE across the Sentinel 



The Role of Pharmacoepidemiology in Industry124

data network: an IMEDS evaluation pilot 
assessment. Pharmacoepidemiol Drug Saf 
2016; 25(S3).

 65 Sobel RE, Bate A, Marshall J, et al. Risk 
minimization evaluation in a distributed data 
network: an IMEDS evaluation pilot 
assessment of the 2010 class label change for 
proton pump inhibitors. Pharmacoepidemiol 
Drug Saf 2016; 25(S3).

 66 AsPEN collaborators; Andersen M, Bergman 
U, Choi NK, et al. The Asian 
Pharmacoepidemiology Network (AsPEN): 
promoting multinational collaboration for 
pharmacoepidemiologic research in Asia. 
Pharmacoepidemiol Drug Saf 2013; 22(7): 
700–4.

 67 Suissa S, Henry D, Caetano P, et al. CNODES: 
the Canadian Network for Observational 
Drug Effect Studies. Open Med 2012; 6(4): 
e134–e40.

 68 Klungel OH, Kurz X, de Groot MC, et al. 
Multi‐centre, multi‐database studies with 
common protocols: lessons learnt from the 
IMI PROTECT project. Pharmacoepidemiol 
Drug Saf 2016; 25(Suppl 1): 156–65.

 69 Mor A, Frøslev T, Thomsen RW, et al. 
Antibiotic use varies substantially among 
adults: a cross‐national study from five 
European countries in the ARITMO project. 
Infection 2015; 43(4): 453–72.

 70 Valkhoff VE, Schade R, ’t Jong GW, et al. 
Population‐based analysis of non‐steroidal 
anti‐inflammatory drug use among children in 
four European countries in the SOS project: 
what size of data platforms and which study 
designs do we need to assess safety issues? 
BMC Pediatr 2013; 13: 192.

 71 Hripcsak G, Duke JD, Shah NH, et al. 
Observational Health Data Sciences and 
Informatics (OHDSI): opportunities for 
observational researchers. Stud Health 
Technol Inform 2015; 216: 574–8.

 72 Stang PE, Ryan PB, Racoosin JA, et al. 
Advancing the science for active surveillance: 
rationale and design for the Observational 

Medical Outcomes Partnership. Ann Intern 
Med 2010; 153(9): 600–6.

 73 Ishiguro C, Takeuchi Y, Uyama Y, Tawaragi T. 
The MIHARI project: establishing a new 
framework for pharmacoepidemiological drug 
safety assessments by the Pharmaceuticals and 
Medical Devices Agency of Japan. 
Pharmacoepidemiol Drug Saf 2016; 25: 854–9.

 74 Xu Y, Zhou X, Suehs BT, et al. A comparative 
assessment of observational medical outcomes 
partnership and mini‐Sentinel common data 
models and analytics: implications for active 
drug safety surveillance. Drug Saf 2015; 38(8): 
749–65.

 75 Bate A. Guidance to reinforce the credibility 
of health care database studies and ensure 
their appropriate impact. Pharmacoepidemiol 
Drug Saf 2017; 26(9): 1013–17.

 76 Berger ML, Sox H, Willke R. Good practices 
for real‐world data studies of treatment and/
or comparative effectiveness: 
recommendations from the Joint ISPOR‐ISPE 
Special Task Force on real‐world evidence in 
healthcare decision making. 
Pharmacoepidemiol Drug Saf 2017; 26(9): 
1033–9.

 77 Wang SV, Schneeweiss, S. On behalf of the 
joint ISPE‐ISPOR Special Task Force on real‐
world evidence in health care decision 
making: reporting to improve reproducibility 
and facilitate validity assessment for 
healthcare database studies V1.0. 
Pharmacoepidemiol Drug Saf 2017; 26(9): 
1018–32.

 78 Olsen M, Petronis KR, Frøslev T, et al. 
Maternal use of varenicline and risk of 
congenital malformations. 
Pharmacoepidemiol Drug Saf 2015; 24(S1): 
244.

 79 Panozzo CA, Purcell B, Andrade S, et al. 
Safety of Trumenba vaccine among pregnant 
women in the United States: planning and 
design of a large‐scale multi‐site observational 
study. Pharmacoepidemiol Drug Saf 2017; 
26(S2): 410.



References 125

 80 Walker AM, Zhou X, Ananthakrishnan AN, 
et al. Computer‐assisted expert case definition 
in electronic health records. Int J Med Inform 
2016; 86: 62–70.

 81 Curtis LH, Weiner MG, Boudreau DM, et al. 
Design considerations, architecture, and use 
of the Mini‐Sentinel distributed data sysem. 
Pharmacoepidemiol Drug Saf 2012; 21(Suppl 
1): 23–31.

 82 Noren GN, Sundberg R, Bate A, Edwards IR. 
Temporal pattern discovery in longitudinal 
electronic patient records. Data Min Knowl 
Discov 2010; 20(3): 361–87.

 83 Pacurariu AC, Straus SM, Trifirò G, et al. Useful 
interplay between spontaneous ADR reports 
and electronic healthcare records in signal 
detection. Drug Saf 2015; 38(12): 1201–10.

 84 Reade S, Spencer K, Sergeant JC, et al. Cloudy 
with a chance of pain: engagement and 
subsequent attrition of daily data entry in a 
smartphone pilot study tracking weather, 
disease severity, and physical activity in 
patients with rheumatoid arthritis. JMIR 
Mhealth Uhealth 2017; 5(3): e37.

 85 Strickland E. Akili: diagnosing Alzheimer’s 
with a game. IEEE Spectrum 2014; 51(5): 25–6.

 86 Piwek L, Ellis DA, Andrews S, Joinson A. 
The rise of consumer health wearables: 
promises and barriers. PLoS Med 2016; 
13(2): e1001953.

 87 Sagawa R, Yoshyyasu Y, Alspach A, Ayusawa K, 
Yamane K, Hilton A. Analyzing muscle activity 
and force with skin shape captures by non‐
contact visual sensor. Pacific‐Rim Symposium 
on Image and Video Technology. New York: 
Springer, 2015.

 88 Rich M, Lamola S, Amory C, Schneider L. 
Asthma in life context: Video Intervention/
Prevention Assessment (VIA). Pediatrics 
2000; 105(3 Pt 1): 469–77.

 89 Bolanos M, Garolera M, Radeva P. Active 
labeling application applied to food‐related 
object recognition. Proceedings of the 5th 
International Workshop on Multimedia for 
Cooking & Eating Activities. New York: 
ACM, 2013.

 90 Goldstein BA, Navar AM, Pencina MJ, 
Ioannidis JP. Opportunities and challenges 
in developing risk prediction models with 
electronic health records data: a systematic 
review. J Am Med Inform Assoc 2017; 24(1): 
198–208.



Pharmacoepidemiology, Sixth Edition. Edited by Brian L. Strom, Stephen E. Kimmel and Sean Hennessy. 
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

126

The regulation of pharmaceuticals aims at 
ensuring that the public has access to medi
cines that are effective, acceptably safe, and of 
high quality. A wide range of regulatory activi
ties spans the entire life cycle of a medicine, 
involving laboratory‐based understanding of 
pharmacologic action, animal testing, provid
ing scientific and regulatory input to drug 
development programs, protection of human 
subjects during clinical trials, assuring the 
integrity of the manufacturing process, review
ing the dossier to support product approval or 
licensure, monitoring the safety of medicines 
after they enter the market, and many other 
activities. These regulatory activities are firmly 
rooted in science, have a strong public health 
focus, and are executed within a legal and regu
latory framework.

 The Scope of 
Pharmacoepidemiology 
throughout the Medicinal 
Product Life Cycle

Assessing the Need for Medicines

Pharmacoepidemiology, along with other areas 
of medical epidemiology, can be used in drug 
development long before a medicine is licensed 
or even tested in humans. Pharmacoepidemiologic 
approaches can be used to examine patterns of 
utilization of existing disease treatments, in order 
to identify and characterize disease populations 
and subpopulations for which unmet medical 
needs exist. In some cases, there may be no avail
able therapies. In other cases, available therapy 
may be ineffective for or poorly tolerated by 
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 certain patients. In these cases, pharmacoepide
miologic approaches can be used to characterize 
patients who experience a suboptimal response 
to the medicine, and thus to define the target 
population for a drug development program. For 
example, population‐based databases can be 
used to characterize the frequency and distribu
tion of characteristics of patients with a specific 
disease, so that relevant populations can be 
included in the developmental clinical trials. 
Healthcare databases can be used to estimate the 
frequency of co‐morbid conditions in the setting 
of the specific underlying disease to be treated, so 
that relevant background rates can be derived to 
place in context potential adverse events that 
arise during development. This is especially 
 useful for clinical events that are seen more fre
quently in patients with the disease for which the 
new treatment is being tested, but which could 
also represent an adverse drug reaction. This 
 situation, known as confounding by indication 
(see also Chapters 3, 33, and 43), is a well‐known 
methodologic problem in observational pharma
coepidemiologic studies, but can also complicate 
the interpretation of adverse events in clinical tri
als, especially if the trial is not designed or pow
ered to analyze these events. In these situations, 
careful understanding of background rates can 
be important.

Orphan Drugs

In the last decade, there has been substantial 
activity and progress in the development of 
drugs for rare diseases [1]. Orphan drug pro
grams are designed to provide incentives to 
pharmaceutical manufacturers that develop 
medicines for rare conditions, known as “orphan 
drugs.” In the US, an orphan drug designation is 
given to a drug or biologic that has shown prom
ise as a therapy intended to treat a disease 
affecting fewer than 200 000 persons in the 
country [2]. In Japan, orphan designation is 
granted for drugs or medical devices if they are 
intended for use in fewer than 50 000 patients in 

the nation and for which there is a high medical 
need [3]. In the European Union (EU), a preva
lence rate of 5 per 10 000 persons in the EU is 
used [4]. When all rare diseases are taken 
together, their public health impact is signifi
cant; approximately 25 million people in North 
America are affected by these diseases [5].

Medical epidemiology is central to the desig
nation of a product as an orphan drug, as deter
mination of prevalence is the basis for such a 
designation. Data sources for determining 
prevalence can include administrative health
care databases, electronic medical record 
 systems, registries, and surveys. In many cases, 
combining data from multiple sources will be 
necessary. In most cases, data from these 
sources, even when combined, will not cover 
the entire  jurisdiction for which the orphan 
designation applies. Thus, some form of extrap
olation must be performed to determine if the 
relevant population prevalence has been 
exceeded. Most orphan drug designations are 
for diseases or conditions whose prevalence is 
much lower than the 200 000 prevalence thresh
old in the US. A review of 25 years’ experience 
with the orphan drug program in the US, 
 covering 1892 orphan designations, found that 
the median prevalence was 39 000; the most 
common patient prevalence was 10 000 or 
fewer patients, with relatively few prevalence 
rates near the 200 000 threshold. For estimates 
of population prevalence near the threshold, 
care must be taken to ensure that the most 
 rigorous methods have been used to estimate 
the population prevalence of a rare disease. The 
closer the estimated prevalence is to the thresh
old, the greater the precision needed to charac
terize the prevalence.

Planning Drug Development Programs

Despite the availability of an increasing number 
of medicines, there remain a substantial num
ber of unmet medical needs. Advances in 
understanding the molecular pathogenesis of 
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cancers, rare diseases, and infectious diseases 
have led to a rapid rise in the number of drug 
development programs targeting these condi
tions. At the same time, the aging population 
across the globe has led to a need for improved 
treatments for widespread diseases such as 
 diabetes, hypertension, ischemic heart dis
ease,  chronic obstructive pulmonary disease, 
Alzheimer disease, other neurodegenerative 
disorders, and many others. The continuing 
emergence of antibacterial resistance and the 
threat of new viral illnesses prompt the need for 
new antimicrobial agents. Infections with 
Mycobacterium tuberculosis, Plasmodium falci-
parum, human immunodeficiency virus (HIV), 
endemic parasitic diseases, and other agents 
contribute substantially to the global burden 
of disease and require new treatments [6].

Regulatory agencies have responded to this 
demand with a variety of regulatory programs 
and pathways designed to promote efficient 
development of medicines and to reduce drug 
development time so that these unfulfilled 
 medical needs can be met. Some of these 
 programs seek to optimize drug development 
by providing timely consultation between the 
regulator and the company developing a drug to 
 clarify scientific requirements; other programs 
allow clinical development to be shortened by 
allowing the use of surrogate markers rather 
than clinical markers. In the US, the break
through therapy designation [7] allows the Food 
and Drug Administration (FDA) to work closely 
with drug sponsors to plan a development 
 program that will efficiently generate evidence 
of effectiveness and safety for drugs that meet 
two general criteria: (i) the drug must be for 
a  disease or condition that is serious or life‐
threatening; and (ii) there is preliminary 
 evidence that  the drug may demonstrate a 
 substantial improvement over existing therapy. 
When breakthrough designation is granted, the 
agency commits to provide intensive advice on 
drug development, involve senior managers 
throughout development, review portions of 

the application before the complete application 
is submitted (a “rolling review”), and take other 
actions to expedite review, as necessary [8]. The 
European Medicines Agency (EMA) launched 
the PRIME (PRIority MEdicines) initiative to 
provide support for the development of medi
cines that show a potential to benefit patients 
with an unmet medical need. For drugs selected 
for PRIME, the EMA provides guidance on the 
overall development program as well as scien
tific advice at key development milestones, 
assigns rapporteurs from relevant EMA com
mittees and a dedicated point of contact, and 
determines whether the marketing application 
may be eligible for accelerated assessment [9]. 
In Japan, the SAKIGAKE review program was 
introduced as part of the “Japan Revitalization 
Strategy” to improve access to medicines [10]. 
Sakigake is a Japanese word meaning “frontrun
ner” or “pioneer.” The SAKIGAKE review 
 program applies to medicines that meet four 
general criteria: (i) a mechanism of action 
 different from that of other drugs; (ii) the target 
disease is serious and life threatening, or causes 
chronic disabling symptoms, for which there is 
no cure; (iii) there is no approved product or 
product anticipated to be markedly more effec
tive than existing treatments; and (iv) there is 
the intent to have early development and  initial 
approval in Japan. The SAKIGAKE designation 
allows for priority consultations with the 
Japanese Pharmaceutical and Medical Devices 
Agency (PMDA), rolling review, priority review, 
and other features that enhance sponsors’ inter
actions with the PMDA. In each of these situa
tions, pharmacoepidemiologic analyses can aid 
in the comparison of new treatments to existing 
treatments, especially when data on existing 
treatments are derived from clinical experience 
and not from formal clinical trials.

The goal of a drug development program is to 
demonstrate that a medicine has a beneficial 
and meaningful effect on a clinically important 
outcome, generally a measure of how the 
patient  feels, functions, or survives. Clinical 
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 trials whose primary endpoint is a direct meas
ure of a clinically important outcome may be 
very long and delay patients’ access to effective 
therapies. To allow patient access as rapidly as 
is feasible, and to ensure that definitive evi
dence of effectiveness is obtained, an alterna
tive approach allows marketing approval for a 
new drug product on the basis of adequate and 
well‐controlled clinical trials establishing that 
the drug product has a beneficial effect on a 
surrogate endpoint. A surrogate endpoint is an 
outcome measure that is used in place of a 
direct measure of a clinically meaningful out
come when the effect of treatment on the sur
rogate endpoint is expected to reflect changes 
in the clinically meaningful outcome [11]. In 
the context of drug development, a validated 
surrogate endpoint is one for which evidence 
exists that the effect of treatment on the surro
gate endpoint predicts the effect of treatment 
on the clinical outcome of interest. For exam
ple, systolic blood pressure is used as a  surrogate 
endpoint in clinical trials of antihypertensive 
agents, because it predicts the risk of occur
rence of stroke. Similarly, HIV viral load is used 
as a surrogate endpoint in clinical trials of 
antiretroviral agents, because it predicts the 
development of an acquired immunodeficiency 
syndrome  diagnosis [12]. Validated surrogate 
markers are widely employed to support 
approval of medicines.

There are, however, many serious and life‐
threatening conditions for which there are no 
validated surrogate markers, yet there is still an 
urgent need to bring effective therapies to 
patients in a timely way. For this latter situation, 
the concept of “accelerated approval” has been 
developed. Under this framework, the US FDA 
may grant approval to a medicine intended to 
treat a serious or life‐threatening disease based 
on an unvalidated surrogate endpoint that is 
reasonably likely, depending on epidemiologic, 
therapeutic, pathophysiologic, or other evi
dence, to predict clinical benefit on the basis 
of  an effect on a clinical endpoint other than 

survival or irreversible morbidity [13]. In these 
cases, postmarketing studies must be conducted 
to demonstrate the actual clinical benefit of the 
medicine [14].

A key regulatory tool in the EU to fulfill unmet 
medical needs is the conditional marketing 
authorization, which has reduced data require
ments linked to a one‐year, time‐limited author
ization, where the authorization’s renewal is 
linked to further data submission [15]. Under 
the applicable regulations, manufacturers must 
study the drug further once it is approved, to 
verify and describe its clinical benefit, where 
there is uncertainty about the relationship of the 
surrogate endpoint to clinical benefit, or of the 
observed clinical benefit to ultimate outcome. 
At the time of approval, postmarketing studies 
would usually already be underway.

In Japan, the Pharmaceuticals, Medical Devices 
and Other Therapeutics Products (PMD) Act 
established a system of conditional and time‐ 
limited approval for regenerative medicines based 
on probable benefit from early clinical  trials [16]. 
After obtaining such approval, the marketing 
authorization holder is required to submit a 
standard marketing application with additional 
data on safety and efficacy. Similarly, from 2017 a 
conditional early approval program applies to 
drugs offering high efficacy and clinical useful
ness in the treatment of serious diseases, drugs for 
which conducting confirmatory studies is imprac
ticable, and other designated drugs. One prereq
uisite for approval will be a commitment to 
complete postmarketing studies as necessary in 
order to reconfirm product safety and efficacy.

Understanding the relationship between a 
surrogate endpoint and a clinically relevant 
endpoint, as well as validation of the surrogate 
endpoint, is an opportunity for pharmacoepide
miologists to contribute to drug development. 
Pharmacoepidemiologists can use principles of 
epidemiology to distinguish simple correlation 
between a potential endpoint and a clinically 
meaningful outcome, on the one hand, from a 
true surrogate marker. For example, a marker of 
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disease status used in natural history studies 
may not be an adequate surrogate endpoint in a 
clinical trial, because it is not related to the 
 disease mechanisms that give rise to symptoms, 
morbidity, and mortality [17].

Preapproval Review of Clinical Safety Data

While the traditional role of pharmacoepidemi
ology, from a regulatory standpoint, has been 
the assessment of the safety of medicines in the 
postlicensing period, pharmacoepidemiology 
can play an important role during the prelicens
ing review of safety data. The limitations of 
prelicensing clinical trials in defining the full 
scope of adverse drug reactions are mainly 
related to the fact that clinical trials are rela
tively small in size, compared to the population 
of patients that will ultimately take the medicine 
once it is marketed. Patients who participate in 
clinical trials may have fewer co‐morbidities 
and take fewer concomitant medications than 
those treated in actual practice. Prelicensing 
clinical trials generally provide relatively little 
data, or no data at all, in certain populations 
such as children, the elderly, and pregnant 
women, or at‐risk groups such as immunosup
pressed patients. These groups, however, are 
treated with the medicine in the course of clini
cal practice once it is licensed.

The analytic methods of clinical trials are best 
suited for data arising from randomized, con
trolled, comparative trials. Many clinical trials 
of medicines intended for chronic or long‐term 
use, including those trials in preapproval drug 
development programs, may have single‐arm, 
open‐label extensions after participants have 
completed the randomized portion of the trial. 
For data generated from this portion of the clin
ical trial, the techniques of observational phar
macoepidemiology may be appropriate. In 
addition to tallying the frequencies of specific 
adverse events, data from long‐term extension 
studies can be examined to characterize  patterns 
of adverse event onset over time. If appropriate, 

analyses based on person‐time can be per
formed. In this setting, the interpretations of 
adverse events must take into account the prior 
treatment received during the randomized por
tion of the trial, the duration of treatment, the 
underlying frequency of medical outcomes in 
the population with the disease being treated, 
and other factors. Pharmacoepidemiology can 
inform this approach.

Planning for Postapproval Studies

At the time a medicine is approved, there are 
uncertainties and unknowns regarding its safety 
profile. In many cases, the nature of the safety 
issues that will unfold postapproval cannot be 
predicted at the time the product is brought to 
market. In some cases, however, a careful review 
of the clinical data at the time of approval can 
lead to a proactive approach to obtaining more 
safety information.

Pharmacoepidemiology can play an important 
role in several specific situations. First, drug 
development programs based on the use of 
unvalidated surrogate markers, as described ear
lier, generally require postmarketing studies to 
demonstrate definitively the clinical effective
ness of the product. In these situations, pharma
coepidemiologists can be involved in studies 
assessing the validity of the surrogate marker.

Secondly, pharmacoepidemiologists can be 
involved in the design and interpretation of 
postmarketing studies designed to assess the 
impact of new formulations of medicines devel
oped to have a more favorable safety profile than 
earlier versions. For example, the widespread 
abuse of opioid‐containing drug products has 
generated interest in the development of abuse‐
deterrent formulations of these products. While 
a variety of different physicochemical and phar
macologic mechanisms can confer the abuse‐
deterrent property, the true public health impact 
of the reformulation can be assessed only 
through formal epidemiologic analysis when the 
product is in actual use [18].
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Thirdly, pharmacoepidemiologists can be 
involved in planning postmarketing studies 
when safety signals are detected prior to 
approval. An example of a proactive approach is 
the strategy the US FDA has developed to 
require sponsors of antidiabetic agents to char
acterize as fully as possible the cardiovascular 
risks of these medicines [19]. The strategy starts 
prior to approval, when data from clinical trials 
are examined to determine the cardiovascular 
risk of the new medicine to that of comparative 
agents. A relative risk estimate is calculated. 
If  the upper limit of the 95% confidence limit 
of  this estimate exceeds 1.8, the product will 
require a large cardiovascular outcomes clinical 
trial prior to approval. If the upper bound of the 
95% confidence limit falls between 1.3 and 1.8, 
the product can be marketed, provided of course 
that all other criteria for approval are met, and 
the manufacturer will be required to conduct a 
postapproval clinical trial to determine the fre
quency of adverse cardiovascular outcomes rel
ative to other antidiabetic agents. If the upper 
limit of the 95% confidence interval is below 1.3, 
and the product otherwise qualifies for approval, 
no further cardiovascular study is needed. This 
strategy provides a tiered approach, spanning 
the pre‐ and postapproval periods, to assessing 
the cardiovascular risks of antidiabetic agents, 
and accounts for the level of uncertainty in the 
preapproval data.

Monitoring Postapproval Safety

For the regulator, the postmarketing assessment 
of the safety of medicines involves both a 
 proactive approach and, of necessity, a reactive 
approach. The International Council for 
Harmonisation of Technical Requirements for 
Pharmaceuticals for Human Use (ICH) has 
developed a useful and practical framework that 
summarizes the known safety issues of a  product 
and can form the basis of ongoing monitoring 
and, as needed, specific studies [20]. The ICH 
framework characterizes important identified 

risks, important potential risks, and important 
missing information. This framework allows 
pharmacoepidemiologists and others to devise 
proactive strategies to design observational 
studies or clinical trials to address unanswered 
questions about the safety profile of a medicine. 
The approach to studying the cardiovascular 
risk of antidiabetic agents, already noted, is an 
example of a proactive step taken at the time of 
approval. However, the identification of knowl
edge gaps can occur at any time in the life cycle 
of a medicine, and can be based on data from 
clinical trials or observational studies of the 
medicine, or safety findings from other medi
cines in the same class. In these cases, careful 
review of the available data can allow the regula
tor, often working with the developer, to develop 
a thoughtful and rational approach to drug 
safety issues in the postapproval period.

Reactive approaches are also needed in regu
latory pharmacoepidemiology, because the 
adverse effects of medicine can become recog
nized at any time, sometimes many years, after 
approval. To the extent that regulators can use 
proactive pharmacoepidemiologic approaches, 
in theory reactive approaches can be mini
mized. However, not all drug safety issues can 
be predicted, so regulators will continue to 
need reactive approaches. These approaches 
require efficient review of the existing data, 
careful and timely assessment of the need for 
immediate or near‐term regulatory action, and 
interaction with the product’s manufacturer 
to  plan further study. Reactive approaches 
become necessary, for example, when new 
safety issues are identified from spontaneously 
reported suspected adverse drug reactions, or 
when drug safety findings are published by 
independent groups, and neither the regulator 
nor the manufacturer is aware of them before
hand. Reactive approaches may also be needed 
when events such as manufacturing‐related 
product recalls result in a large number of 
adverse event reports that need to be reviewed 
in a short period of time [21].
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The specific scientific approach to an individ
ual postapproval safety issue is beyond the 
scope of this chapter. From the regulator’s point 
of view, the scientific studies that form the basis 
of regulatory actions must be as sound and 
robust as possible. Importantly, these studies 
should be designed to address the specific drug 
safety issue at hand, ideally in as short a time as 
possible. If there are ongoing planned studies, 
these may serve to contextualize the newly iden
tified safety issue.

Assessing Actual Use Patterns of a Medicine

Regulators are interested not only in whether a 
medicine meets the relevant regulatory stand
ards for approval, but also in how it is actually 
used in clinical practice. Because the harms of 
medicines can result not only from their intrin
sic pharmacologic properties but also from how 
they are used, or misused, in practice, under
standing the actual usage allows regulators to 
assess the degree to which the medicine is used 
in ways that are consistent with its safe use as 
described in the label or marketing authoriza
tion. To do so, regulators can use a variety of 
pharmacoepidemiologic techniques, including 
administrative claims data, electronic medical 
records, or other public health databases.

An analysis of emergency department visits in 
the US found that the rate of such visits involv
ing both opioid analgesics and benzodiazepines 
increased from 11.0 to 32.4 per 100 000 popula
tion between 2004 and 2011. During that same 
period, overdose deaths involving drugs from 
both classes increased from 0.6 to 1.7 per 
100 000 [22]. To shed light on this finding, an 
analysis of trends in the concomitant prescrib
ing of opioids and benzodiazepines in the US 
between 2002 and 2014 found that concomitant 
prescribing increased by 41%, from 6.8% to 9.6% 
[23]. These drug utilization data were an impor
tant component of the body of evidence that led 
to warnings advising against the concomitant 
use of benzodiazepines and opioids [24].

An analysis of outpatient electronic medical 
records at a university hospital in Japan com
pared prescribed doses of agents for rheuma
toid arthritis, diabetes, high blood pressure, and 
depression to standard approved doses [25]. 
The study found notable differences in the clini
cal characteristics of patients between the actual 
practice setting and the clinical trial setting. The 
average prescribed doses of agents for rheuma
toid arthritis and depression were lower than 
standard approved doses, especially in older 
patients. The findings also suggested that the 
incidence of certain adverse events may differ 
between actual practice and clinical trials. 
Findings such as these, which describe how 
medicines are used in practice, can form the 
basis of more targeted drug safety studies.

Assessing the Impact of Regulatory Actions

Because of its public health focus, drug regula
tion must ensure that its actions lead to the 
intended public health outcomes. For serious 
safety issues, it is not enough simply to add a 
warning to a product label. Such an action is in 
itself an intervention, and it is thus important to 
understand its impact. Recognizing the funda
mental importance of the need for such assess
ments, the Pharmacovigilance Risk Assessment 
Committee of the EMA developed a formal 
strategy to measure the impact of pharma
covigilance activities. The strategy is aimed 
both at informing the review of individual 
 medicines that have been the subject of major 
risk minimization efforts and at determining 
which  activities are successful and which are 
not, in order to optimize the pharmacovigilance 
system. Pharmacoepidemiology is critical to this 
endeavor, as it can relate regulatory activities 
to  the outcomes that those activities are 
intended  to  affect. Pharmacoepidemiologic 
thinking and methodologies underpin the EMA’s 
strategy [26].

One domain of assessment of the impact of 
regulatory activities is an understanding of the 
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effectiveness of regulatory agencies’ communi
cations about the risks of medicines. A study 
that examined the extent to which patients 
understand important information about a 
 serious risk of a medicine that they are taking 
considered the results of patient‐directed 
knowledge surveys for 66 medicines for which 
patients were supposed to have received a 
Medication Guide, a type of patient‐directed 
labeling [27]. For each Medication Guide, 
acceptable knowledge was defined as 80% or 
more of patients correctly answering questions 
about the medicine’s primary risk. The study 
found that only 20 Medication Guides (30.3%) 
met the 80% threshold, a finding that under
scores the need for improved patient‐directed 
information.

To understand the diffusion of an emerging 
drug safety message, a series of studies in the US 
employed several complementary methodolo
gies, including quantitative and qualitative anal
ysis of traditional and social media, patient and 
prescriber interviews, a patient survey, and 
pharmacoepidemiologic analysis of healthcare 
claims data [28]. These studies, which examined 
drug safety communications concerning the 
risk of next‐day drowsiness and mental impair
ment with the sleep aid zolpidem and a recom
mendation to change the starting dose from 
10  mg to 5 mg, found that traditional media 
reported widely some of the messages in the 
safety communication, but reported other 
 messages less widely [29]. Semi‐structured 
interviews of patients and physicians, which 
were designed to assess awareness and under
standing of the messages, found that patients 
and physicians use a variety of sources of drug 
safety information, and that some of the 
 messages in the drug safety information were 
communicated effectively to patients and physi
cians, though none of the patients had recalled 
hearing all of the messages and some patients 
did not understand fully how the message 
applied to them [30]. Studies such as these 
allow  regulators to assess the impact of their 

communications and thus provide an opportu
nity for improvement of these efforts.

Analysis of the impact of regulatory actions is 
not limited to the assessment of actions related 
to individual medicines. Rather, it can look 
broadly at how the functioning of a drug regula
tory system contributes to the system’s public 
health mission. Because of the rapidly changing 
and expanding data that inform pharmacoepi
demiologic studies, studies that examine overall 
performance are important because they can 
lead to system‐wide improvements. For exam
ple, an analysis of 144 safety‐related actions 
taken in 2012 by the Japanese Ministry of 
Health, Labour, and Welfare (MHLW) and the 
PMDA found that 83.5% were based on sponta
neous reports [31]. The actions were not limited 
to recently approved medicines, since the 
median duration between drug approval and 
the safety‐related regulatory action was 8 years. 
While the median duration between signal 
detection and a tentative or final decision was 
relatively short (49 and 84 days, respectively), 
assessments involving older products or multi
ple products required substantially more time. 
Studies such as this one can point to the need 
for the development of pharmacoepidemiologic 
assessment that utilizes health information 
databases in addition to spontaneous reports. 
A new program advanced by the PMDA, known 
as MIHARI (Medical Information for Risk 
Assessment Initiative), seeks to fulfill this need, 
and is described later in the chapter. In Japan, 
pharmacoepidemiologic studies using health 
information databases are permissible as stud
ies for postapproval requirement purposes 
under the PMD Act. In addition, the MHLW 
and PMDA recently launched the Clinical 
Innovation Network (CIN) project, which aims 
to promote clinical studies by the use of disease 
registry data.

In another example, the Food and Drug 
Administration Amendments Act of 2007 
required the US FDA to perform a summary 
safety analysis of newly approved medicines 
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18 months after approval or after 10 000 patients 
had taken the drug, whichever was later. These 
analyses were to be performed in addition to the 
FDA’s ongoing safety monitoring of the drug. 
An evaluation of these summary safety analyses 
revealed that of 458 products that had been 
approved for at least 18 months, 300 had been 
the subject of a summary safety analysis; many 
products had not reached the 10 000‐patient 
threshold and thus were not the subject of a 
summary safety analysis [32]. A new safety sig
nal that resulted in a safety‐related label change 
was found for 11 of these products. To provide 
context for this findings, these 11 safety‐related 
label changes represented less than 2% of the 
713 safety‐related label changes made for these 
products. These findings suggested that the 
summary safety analysis had minimal value over 
standard pharmacovigilance activities. The 
FDA’s requirement for these summary safety 
analyses was removed in a subsequent law [33].

 Advancing the Science 
of Pharmacoepidemiology

Pharmacoepidemiology is a complex, dynamic, 
and changing field. It relies on the integration of 
epidemiology, clinical pharmacology, pharmacy, 
medicine, statistics, and other disciplines for its 
full execution. Increasingly, the rapid advances 
in the availability of large, diverse, and relevant 
datasets have made informatics an important 
contributing discipline to pharmacoepidemio
logic efforts. Acquiring expertise in pharma
coepidemiology thus requires an environment 
that provides access to experts in all the relevant 
disciplines. Furthermore, this discipline relies 
on population‐based healthcare data and thus 
an understanding of the healthcare system in 
which the data were generated, which experts in 
the above fields may not have. As more and 
more drug safety questions arise that require 
expertise in pharmacoepidemiology as well 
as  appropriate data, it is crucial that there be 

sufficient capacity, both in the form of well‐
trained pharmacoepidemiologists and in the 
availability of systems, such as networks that 
combine relevant data with scientific expertise, 
that can be used for pharmacoepidemiologic 
studies. Because pharmacoepidemiology is a 
multidisciplinary effort, there must also be 
appropriate mechanisms for collaboration. 
Regulatory agencies play a role in facilitating the 
reaching of these goals.

To strengthen the monitoring of marketed 
medicines, the EMA developed the European 
Network of Centres for Pharmacoepidemiology 
and Pharmacovigilance (ENCePP) [34]. The 
EMA identified available expertise and research 
experience in the fields of pharmacovigilance 
and pharmacoepidemiology across Europe, and 
developed a network of centers with the capac
ity to perform postauthorization studies focus
ing on safety and benefit–risk. The ENCePP’s 
principal activities include the development of a 
Code of Conduct to promote scientific inde
pendence and transparency [35]; the promulga
tion of scientific standards and guidance, 
including the ENCePP Guide on Methodolo
gical Standards in Pharmacoepidemiology [36], 
which provides guidance on methodology that 
is intended to supplement that in formal text
books and regulatory guidance, and the ENCePP 
Checklist of Study Protocols [37], which is 
intended to promote the quality of pharma
coepidemiologic studies; and the ENCePP 
Resources Database, which provides an index of 
pharmacoepidemiologic research organiza
tions, networks, and data sources in the EU [38]. 
The ENCePP project illustrates one way in 
which a regulatory agency can be involved in 
building pharmacoepidemiologic capacity.

The FDA, as one of its commitments under 
the reauthorization of the Prescription Drug 
User Fee Act in 2007, was tasked with develop
ing a guidance document, with input from 
 academia, industry, and others, “that addresses 
epidemiology best practices and provides 
 guidance on carrying out scientifically sound 
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observational studies using quality data 
resources” [39]. The guidance document [40] 
illustrates another mechanism through which 
regulatory agencies can promote the field of 
pharmacoepidemiology.

Because pharmacoepidemiology depends on 
many areas of expertise, fostering collaboration 
to advance the field is another potential role that 
regulators can play. Through a project funded 
by the Innovative Medicines Initiative (IMI), the 
EMA, along with the national drug regulatory 
agencies from Denmark, Spain, and the UK, 
partnered with a number of public and pri
vate organizations, academic organizations, and 
pharmaceutical companies to form IMI 
PROTECT (Pharmacoepidemiological Research 
on Outcomes of Therapeutics by a European 
Consortium), a consortium dedicated to 
strengthening the methods used to monitor the 
benefits and risks of medicines [41]. (See also 
Chapter  25.) Topic areas covered by IMI 
PROTECT included enhancing data collection 
from consumers; improving early and proac
tive signal detection from spontaneous reports 
(including comparing different signal detec
tion algorithms), electronic health records, 
and clinical trials; developing, testing, and 
 disseminating methodologic standards for the 
design, conduct, and analysis of pharmacoepi
demiologic studies; developing methods for 
continuous benefit–risk monitoring of medi
cines; and testing and validating various 
 methods developed in PROTECT. By fostering 
collaboration across multiple disciplines, IMI 
PROTECT generated 74 original peer‐
reviewed scientific publications that not only 
advanced important pharmacoepidemiologic 
methodologies, but did so in a way that consid
ered and enabled the potential regulatory 
application of such work [42].

Regulatory agencies can also promote pharma
coepidemiology by collaborating with external 
partners to develop and implement networks 
that allow for the regulatory agency to conduct 
its own specific pharmacoepidemiologic  studies. 

In Japan, the PMDA launched the Medical 
Information for Risk Assessment Initiative 
(MIHARI), the aim of which is to use a variety 
of large‐scale sources of electronic health infor
mation for pharmacoepidemiologic assess
ments [43]. Mihari is a Japanese word meaning 
“to monitor” or “to watch over.” As part of its 
efforts to prepare the MIHARI for full‐scale 
deployment, the PMDA has conducted more 
than 40 pilot studies during the past several 
years that made use of several large‐scale data
bases: a nationwide insurance claims database 
covering nearly the entire Japanese population; 
a claims database maintained by health insurers 
covering a substantial portion of Japan; a data
base of electronic medical records maintained 
by medical institutions (e.g., the Medical 
Information Database NETwork, MID‐NETⓇ, 
described later in the chapter); and an inpatient 
care database containing data in a format 
 compatible with the Diagnosis Procedure 
Combination (DPC) system, a comprehensive 
inpatient reimbursement system. Guided by 
the results of these pilot studies, in 2014 the 
PMDA introduced a novel regulatory frame
work for conducting postmarketing drug safety 
assessments using electronic health informa
tion databases. In addition to implementing 
this new framework, the PMDA also published 
the Guidelines for  Pharmacoepidemiological 
Studies Using Health Information Databases 
for Drug Safety Assessments in 2014 [44]. The 
MID‐NET system was established jointly by the 
MHLW and PMDA as a new database for use in 
drug safety assessment operations. It is a dis
tributed database that compiles electronic 
medical records, insurance claims data, and 
DPC‐compatible inpatient care data under a 
common data model. As of 2018, MID‐NET 
had provided reliable data concerning approxi
mately 4  million patients who received medical 
care from 23 medical institutions. In addition, 
in 2018, use of MID‐NET was opened to rele
vant members of industry and academic 
researchers for use in pharmacoepidemiologic 



The Role oftPharmacoepidemiology intRegulatory Agencies136

studies investigating drug product safety and 
effectiveness.

FDA’s Sentinel initiative (see also Chapter 25) 
also represents an example of a program 
 sponsored by a regulatory agency that seeks to 
advance pharmacoepidemiology though a col
laborative effort [45]. The goal of Sentinel is to 
create a sustainable, linked system of electronic 
healthcare databases to investigate safety ques
tions about FDA‐regulated medical products. 
The use of healthcare data in this way raises 
many questions of public interest, including on 
governance, privacy, data standards, and public 
disclosure of results. In view of these issues, the 
FDA sought extensive stakeholder input as it 
worked with outside organizations to develop 
Sentinel. In addition to the logistic issues 
already  discussed, the fundamental premise of 
Sentinel – that data from many sources can be 
used to address a drug safety question in a 
timely way – implies that a collaborative effort is 
needed for the success of this project. The 
Sentinel system, the implementation of the ini
tiative, includes administrative claims data and 
electronic medical record data from several 
holders of such data that are transformed into a 
common data model across all data holders. To 
facilitate efficient analysis of these data, the 
Sentinel system uses pretested, validated, and 
parameterized analytic programs along with the 
common data model. The system is designed as 
a distributed database in which holders of the 
data retain physical and operational control 
over their electronic data, a feature that 
addresses privacy concerns [46]. The Sentinel 

system has been used for a variety of analyses 
involving drugs as well vaccines.

Pharmacoepidemiologic efforts such as 
ENCePP, MIHARI, and Sentinel all make use of 
various traditional sources of healthcare data 
derived from existing sources that reflect cur
rent clinical practice and actual patient experi
ences. While these contemporary systems often 
rely on large datasets and, at times, integration 
of datasets through networks, it is important to 
note that pharmacoepidemiologic research has 
a decades‐long tradition of using observational 
data recorded at the point of care to describe 
the effects of medicines in populations, though 
the scope of this work has largely focused on 
safety issues. The emergence in recent years of 
additional digital health‐related data, such as 
data generated from wearable devices and 
health‐related applications, has given rise to the 
notion that the expanding variety of electronic 
healthcare data can be used to study the effects 
of medicines beyond those related to safety. To 
promote further progress in this emerging area, 
numerous regulatory agencies from around the 
world resolved to work together to convert real‐
world data into real‐world evidence to support 
regulatory decision making at the 12th Summit 
of Heads of Medicines Regulatory Agencies 
held in October 2017 in Kyoto, Japan. As meth
ods to develop real‐world evidence move for
ward [47], pharmacoepidemiologists, including 
those in regulatory agencies, will have an impor
tant and growing role to play, particularly in 
supporting timely and robust public health 
decisions.
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The law describes the basic rules under which 
people live in modern society. Tort law, for exam
ple, provides a system of corrective justice and a 
coherent set of principles to decide whether a 
person deserves compensation for an injury he or 
she sustained. As another example, contract law 
provides a structure for adjudicating agreements 
between parties. In both cases, the existence of 
governing law helps influence the way people act. 
In the case of tort law, knowledge about its liabil
ity rules should incentivize people to take care to 
prevent accidents from happening.

In their daily work, pharmacoepidemiologists 
encounter many different aspects of the law. 
Perhaps the most recognizable connection occurs 
when patients seek redress in tort law for adverse 
effects from a medical product. In such circum
stances, pharmacoepidemiologic studies may pro
vide the scientific underpinning for the claim as to 
the association between the drug and the claimed 
outcome. Often, pharmacoepidemiologists are 
called as expert witnesses to interpret scientific 
findings for judges and juries. Other basic legal 
principles may also have important effects on the 
practice of pharmacoepidemiology. For example, 
pharmacoepidemiologists must navigate contract 
law when they develop research agreements with 

funding sources or owners of databases. 
Pharmacoepidemiologists interface with property 
law when they attempt to secure ownership rights 
over their discoveries using patents (a type of 
“intellectual property”).

This chapter outlines three of the most recog
nizable intersections of pharmacoepidemiology 
and the law: tort law, contract law, and intellec
tual property law. The chapter defines and 
describes basic legal rules in these subject areas, 
and uses these rules as a basis for additional dis
cussion about practical and ethical implications 
for pharmacoepidemiology. In each example, 
US law is used as the paradigm, with some 
attention to alternative models in Europe. Since 
much of the discussion is based on principles 
that are generally similar in other comparable 
legal systems, the lessons are applicable to phar
macoepidemiologists around the world.

 Tort Law and Product 
Liability Lawsuits

Product liability lawsuits provide an opportu
nity for individuals harmed by a drug to seek 
damages from its manufacturer. Recent widely 
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reported cases have included the nonsteroidal 
anti‐inflammatory drug (NSAID) rofecoxib 
(Vioxx®), the antidepressant paroxetine (Paxil®) 
and other selective serotonin reuptake inhibi
tors (SSRIs), olanzapine (Zyprexa®) and other 
atypical antipsychotics, the cholesterol‐lower
ing agent cerivastatin (Baycol®), the antidia
betic/anti‐inflammatory troglitazone (Rezulin®), 
and the serotoninergic anorectic drug dexfen
fluramine (Redux®). In this chapter, we will 
review how product liability lawsuits are adjudi
cated according to some common law princi
ples. A basic understanding of product liability 
law is essential for pharmacoepidemiologists, 
even for those who might never find themselves 
in a courtroom, because such lawsuits also exert 
substantial influence on the field. Tort litigation 
brought by government agencies and individual 
patients can help uncover previously unavaila
ble data on adverse effects, questionable prac
tices by manufacturers, and flaws in drug 
regulatory systems [1].

The Legal Theory of Product Liability

In the centuries‐old common law tradition of 
England, which forms the basis for legal systems 
in the US and a number of other countries, a 
consumer injured by a defective or contami
nated pharmaceutical product was not permit
ted a right of action unless the consumer 
purchased the preparation directly from the 
manufacturer. The emergence of product liabil
ity law altered that state of affairs, permitting 
consumers harmed by the many products sold 
widely in interstate commerce and through dis
tributors like pharmacies to seek redress for 
their injuries from the original manufacturers 
[2]. Originally, product liability was grounded in 
the theory of negligence, which meant that 
defendants would be liable for causing plaintiffs’ 
injuries if the defendants engaged in wrongful 
or unreasonable conduct, even if it was uninten
tional. To succeed in a claim for negligence, 
plaintiffs needed to show (i) that defendants had 

a duty to exercise reasonable care; (ii) that 
defendants’ conduct diverged from customary 
practices that would be followed by other man
ufacturers or members of the industry; (iii) that 
there was a causal link between the defendants’ 
lack of care and the outcome at issue; and (iv) 
that the preceding three factors led to damages.

However, negligence theory did not allow 
enough deserving plaintiffs to be compensated 
for product‐related injuries they suffered, par
ticularly in cases in which products were haz
ardous or dangerous. Judges rationalized that 
some products contained an inherent risk of 
harm, so manufacturers that chose to sell such 
products needed to bear the responsibility when 
the products caused injury. As a result, starting 
in the early 1960s, judges started applying the 
theory of strict liability to certain product liabil
ity cases. Strict liability merely requires demon
stration that the dangerous product caused the 
injury; as distinguished from negligence, the 
question is moot as to whether the defendants 
followed customary practices or exercised rea
sonable precautions. This principle permitted 
plaintiffs to seek compensation for injuries 
merely because the product was designed a cer
tain way, irrespective of other mitigating fac
tors. For example, the product could have a 
“manufacturing defect,” meaning that the prod
uct did not comply with the manufacturer’s own 
standards, or a “design defect,” meaning that the 
product was designed in a way that conferred 
inherently unreasonable risk for the consumer.

Strict product liability grew quickly in popu
larity. In 1965, US legal scholars proposed a 
consensus understanding of the area in the 
influential Restatement (Second) of Torts, find
ing that a seller of a product that is “in a defec
tive condition unreasonably dangerous to the 
user or consumer” should be strictly liable even 
if the seller “exercised all possible care in the 
preparation and sale of the product” [3]. Notably, 
the authors commented that warnings could be 
employed to prevent any product from being 
deemed “unreasonably dangerous,” although 
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such warnings needed to address risks that the 
seller “has knowledge, or by application of rea
sonable, developed human skill and foresight 
should have knowledge” [4]. Thus, strict prod
uct liability also allowed plaintiffs to bring 
causes of action against manufacturers based on 
inadequate warnings, otherwise known as a 
“failure to warn.”

Some courts were hesitant to apply strict prod
uct liability to cases emerging from the pharma
ceutical field. This reticence was reflected in 
the Restatement, which included an important 
annotation relevant to prescription drugs. In 
Comment k to this section of the document, the 
Restatement noted that a pharmaceutical prod
uct “properly prepared, and accompanied by 
proper directions and warning, is not defective, 
nor is it unreasonably dangerous” [5]. Thus, the 
Restatement excluded most prescription drugs 
from strict liability based on manufacturer or 
design defects. The authors separated pharma
ceutical products from other products because 
they believed the marketing and use of pharma
ceutical products “are fully justified, notwith
standing the unavoidable high degree of risk 
which they involve.” Prominent legal scholar 
William Prosser summed up the justification for 
treating prescription drugs differently:

The argument that industries producing 
potentially dangerous products should 
make good the harm, distribute it by liabil
ity insurance, and add the cost to the price 
of the product, encounters reason for pause, 
when we consider that two of the greatest 
medical boons to the human race, penicillin 
and cortisone, both have their dangerous 
side effects, and that drug companies might 
well have been deterred from producing and 
selling them. Thus far the courts have 
tended to hold the manufacturer to a high 
standard of care in preparing and testing 
drugs of unknown potentiality and in giving 
warning; but in the absence of evidence that 
this standard has not been met, they have 

refused to hold the maker liable for unfore
seeable harm. [6]

Ultimately, a minority of US courts have imple
mented the Comment k principle and offered 
pharmaceutical manufacturers a blanket pro
tection from strict liability for manufacturer or 
design defect claims [7]. The majority of courts 
charted a slightly different course. For example, 
in New Jersey, the state Supreme Court declined 
to adopt Comment k in the case of an infant 
who suffered severe tooth discoloration after 
being prescribed demeclocycline (Declomycin®), 
a tetracycline antibiotic. The court ruled that 
the Comment k shield should only apply to 
drugs that were “more vital to the public health 
and human survival than others,” while less use
ful drugs would continue to be evaluated under 
strict liability [8].

In 1997, the Restatement (Third) of Torts: 
Product Liability tried to clarify the question 
about liability for design defects. It reempha
sized that judicial risk–utility analysis was 
improper, arguing that a drug cannot be consid
ered to have a design defect if “reasonable health 
care providers, knowing of such foreseeable 
risks and therapeutic benefits” prescribed the 
drug to the patient [9].

Even in jurisdictions amenable to strict prod
uct liability for pharmaceuticals, the vast major
ity of drugs approved by the US Food and Drug 
Administration (FDA) are likely to meet courts’ 
balancing test. As a result, when a person is 
injured by a prescription drug, a “design defect” 
lawsuit based on the claim that the product was 
avoidably unsafe is very unlikely to succeed. 
Rather, plaintiffs usually seek to demonstrate 
“failure to warn” by the manufacturer about the 
adverse event at issue (nominally a strict liability 
claim). Alternatively, plaintiffs could sue based 
on a negligence theory that the manufacturer 
failed to take reasonable care in marketing its 
product, an analysis that also largely hinges 
on  the appropriateness of the accompany
ing  warnings. Practically speaking, the ultimate 
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 disposition of a case filed under a strict liability 
failure to warn or negligence theory turns on 
the question of whether the warning is reason
able [10]. After these historical twists and turns 
in legal theory in this area, the claim for “failure 
to warn” has become the most common basis 
for litigation over pharmaceutical products. In 
the next section, we will review the link between 
the work of pharmacoepidemiologists and fail
ure‐to‐warn claims.

Failure‐to‐Warn Claims

Whether based on strict liability or negligence, 
a failure‐to‐warn product liability action 
includes three main contentions: (i) knowledge 
of the drug risk by the manufacturer; (ii) 
improper warning of the drug risk; and (iii) cau
sation of damages.

Knowledge of the Drug Risk 
by the Manufacturer
First, the plaintiff must demonstrate that a phar
maceutical manufacturer knew, or should have 
known, of the risk. Apart from the rare case 
decided based on a strict liability design defect, 
a manufacturer of a pharmaceutical product is 
not held accountable for risks about which it 
could not have known. For example, in one case, 
a plaintiff brought a lawsuit claiming that her 
oral contraceptive medication led to her having 
a cerebrovascular accident, or stroke [11]. The 
court remarked, “Dates are thus vitally impor
tant as there is no duty to warn of unknown or 
unforeseeable risks, and the question is whether 
the risk was knowable or reasonably foreseeable 
at the time when the plaintiff was still taking the 
drug.” The jury found that the particular risk the 
plaintiff claimed could not have been known at 
the time the drug was prescribed, based in part 
on the testimony of the expert pharmacoepide
miologist who reported that “new techniques to 
measure these clotting effects had not then been 
developed” at the time of the injury. According 

to the court, “The warnings contained in the 
package inserts were adequate or … the state
ments contained therein were a fair representa
tion of the medical and scientific knowledge 
available at the time the drug was taken by the 
plaintiff.”

Knowledge can be actual or constructive. 
Actual knowledge is defined as literal awareness. 
Actual knowledge can be demonstrated by 
showing that the manufacturer was cognizant of 
reasonable information suggesting a particular 
risk that it did not pass on to consumers, for 
example when a defendant possesses data about 
relevant adverse events that were not disclosed. 
In the case of SSRIs used to treat depression, 
various manufacturers were found to have con
ducted clinical trials that showed an increased 
risk of suicidal ideation in adolescent patients 
taking the drug. Plaintiffs brought lawsuits 
charging that these findings were knowingly 
delayed for lengthy periods of time, not released, 
or the concerns not fairly represented [12]. For 
example, the largest study of paroxetine (Paxil®) 
in pediatric patients was conducted in the US 
from 1993 to 1996; it showed no benefit of the 
drug over placebo and 5 cases (out of 93) of sui
cidal ideation, as compared to 1 case out of 89 in 
the placebo arm and 1 case out of 95 in the com
parator (non‐SSRI) arm. The manufacturer, 
GlaxoSmithKline, allegedly sought to “effec
tively manage the dissemination of these data in 
order to minimize any potential negative com
mercial impact” [13]. To support this conten
tion, plaintiffs pointed to the fact that the data 
were only presented in abstract form in 1998 
and published in 2001 (when the authors con
cluded that the drug was “generally well toler
ated and effective for major depression in 
adolescents”) [14]. After the full data from this 
trial and others like it were made public, a new 
FDA health advisory in 2004 warned physi
cians to carefully monitor patients for “clinical 
 worsening, as well as agitation, irritability, 
 suicidality, and unusual changes in behavior” 
and emphasized that only the SSRI fluoxetine 
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(Prozac®) had been approved to treat pediatric 
major depressive disorder [15].

Constructive knowledge is sometimes called 
“legal knowledge,” because it is knowledge that 
the law assumes should be present, even if it is 
not. Constructive knowledge is knowledge 
that  a person did not have, but could have 
acquired by the exercise of reasonable care. For 
example, the cholesterol‐lowering drug cerivas
tatin (Baycol®) was removed from the market in 
2001 after it was linked to cases of rhabdo
myolysis, a potentially fatal kidney disease. The 
manufacturer, Bayer, was found to possess sev
eral reports from as early as 1999 suggesting a 
10‐fold risk of rhabdomyolysis relative to other 
medications in its class, but it allegedly did not 
process these reports and pass them along to 
patients or regulators [16]. A memorandum 
from a Bayer official stated, “If the FDA asks for 
bad news, we have to give [it], but if we don’t 
have it, we can’t give it to them” [17]. In this 
case, Bayer could be said to have constructive 
knowledge of these concerns by 1999, because 
the company should have processed the reports 
and acted on them. In other cases, plaintiffs 
have tried to prove constructive knowledge 
by  arguing that manufacturers should have 
 performed different or additional analyses to 
better understand an important side effect of 
their product. The standard for constructive 
knowledge in these situations has been what a 
reasonably prudent company with expertise in 
this area would have undertaken.

Improper Warning of the Drug Risk
If a manufacturer has the duty to provide a 
warning about adverse events associated with 
its product, then the next question is whether 
an adequate warning was provided. A proper 
warning has certain hallmarks, including rele
vance, timeliness, and accuracy.

First, a warning about an adverse effect must 
be commensurate with the scope and extent of 
dangers associated with the drug. In the case of 
troglitazone (Rezulin®), an oral hypoglycemic 

approved in the US in 1997 and used by diabetic 
patients, the company was accused of minimiz
ing its presentation of liver toxicity in its warn
ing materials [18]. Elevations of hepatic enzymes 
in early testing were initially depicted in the 
descriptions of adverse effects simply as “>3‐
fold.” Yet, some were apparently more than 20‐
fold; several of those patients suffered acute 
liver failure. In the subsequent litigation, it was 
alleged that the warning was deficient because 
company did not initially acknowledge this clin
ically important difference [19].

Secondly, warnings must not be subject to 
undue delay. Some delays may be internal. In 
the case of rosiglitazone (Avandia®), another 
oral hypoglycemic drug, a 2007 meta‐analysis 
linked the drug to life‐threatening cardiovascu
lar adverse events [20]. However, after a review 
of internal company documents, a US Senate 
Finance Committee report suggested that the 
manufacturer knew about these risks years 
before this article was published, but delayed 
warning about them and sought to limit their 
dissemination [21]. A primary question in law
suits arising from the use of rosiglitazone is 
whether these tactics inappropriately delayed 
reasonable warnings about the adverse effect. 
Sometimes, interactions with regulators may 
cause delays. For example, cisapride (Propulsid®) 
was a pro‐kinetic agent linked to potentially 
fatal cardiac side effects. It was reported that the 
manufacturer and the FDA negotiated for five 
years over the details of how to change the 
drug’s label to include adverse event data that 
had been submitted to the agency but not made 
fully available to the public [22].

Thirdly, warnings must be of appropriately 
urgent tone. In the case of rofecoxib (Vioxx®), a 
new type of NSAID used for arthritis, preap
proval clinical trials suggested enhanced risk of 
serious cardiovascular side effects, a result 
 consistent with a later pivotal manufacturer‐
sponsored trial comparing the drug to nap
roxen, another older NSAID, in a population of 
patients with rheumatoid arthritis (but no 
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known cardiovascular disease) [23]. When the 
drug’s official FDA label was updated in 2002 to 
account for these findings, subsequent lawsuits 
alleged that the warning was insufficiently 
urgent because the risk of cardiovascular events 
was described in vague terms and placed in the 
less prominent “precautions” section of the 
labeling [24].

Finally, a manufacturer’s duty does not end 
with the initial warning, because it must keep up 
with emerging scientific data and patient reports, 
and warn of new side effects discovered after ini
tial approval. In one case, plaintiffs brought a 
suit contending that their daughter’s serious 
birth defects were related to a teratogenic pro
gesterone formulation (Delalutin®) manufac
tured by the defendant. The court noted that the 
drug manufacturer is under a “continuous duty 
… to keep abreast of scientific developments 
touching upon the manufacturer’s product and 
to notify the medical profession of any additional 
side effects discovered from its use” [25]. The 
plaintiff ’s expert medical witness testified that 
there was “sufficient scientific information and 
literature relative to progesterones” at the time 
the drug was used to “make a prudent drug man
ufacturer do teratogenicity studies on any pro
gesterone agent” [25].

Causation of Damages
Another major issue in a pharmaceutical prod
uct liability case is whether the product at 
issue  actually caused the alleged injury. 
Pharmacoepidemiologists may be most com
fortable thinking about causation from a medi
cal or scientific point of view. Scientists generally 
posit hypotheses to explain particular outcomes 
and then test those hypotheses by studying 
whether variations in the outcomes exist across 
populations. However, legal causation usually 
requires a clear causal chain from exposure to 
outcome, in an individual. The legal standard 
for causation is therefore challenged by product 
liability cases, in which probabilistic evidence 
(i.e., P values or confidence intervals) often links 

drugs to injuries [26]. Courts must address two 
types of legal causation: general and specific 
causation.

General causation addresses whether a prod
uct can cause a particular injury in the popula
tion of patients like the plaintiff. The common 
law standard to prove general causation is that a 
particular product “more likely than not” caused 
the damages. Some courts have held that legal 
causation must be demonstrated by more than 
an association and a mere possibility of causa
tion, even though causal hypotheses based on 
such considerations are common in the scien
tific literature. A few courts have even gone fur
ther and defined “more likely than not” as 
having a relative risk of greater than 2.0, no mat
ter how tight the confidence intervals are 
around a statistically significant finding of asso
ciation between 1.0 and 2.0 [27]. Presumably 
this is based on the calculation of attributable 
risk in the exposed group exceeding 50%, when 
the relative risk exceeds 2.0. This standard has 
been replicated in the Federal Judicial Center’s 
Reference Manual on Scientific Evidence [28] 
and employed in some cases to exclude epide
miologic evidence with weaker associations. For 
example, in the case of the antinausea drug pyri
doxine/doxylamine (Bendectin®), which was 
claimed to be causally linked with birth defects, 
one court noted, “In terms of statistical proof … 
plaintiffs must establish not just that their 
mothers’ ingestion of Bendectin increased 
somewhat the likelihood of birth defects, but 
that it more than doubled it – only then can it be 
said that Bendectin is more likely than not the 
source of their injury” [29]. In one case related 
to litigation over the link between silicone breast 
implants and inflammatory disease, a court 
excluded a study linking the product and the 
outcome with a relative risk of 1.24, noting that 
the finding was “so significantly close to 1.0” 
that the study “was not worth serious considera
tion for proving causation” [30].

However, all courts do not adhere rigidly to the 
2.0 relative risk principle for general  causation. 
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Both clinical trials and epidemiologic studies of 
the product at issue can establish general causa
tion between a pharmaceutical product and an 
outcome. Animal studies, meta‐analyses, case 
reports/case series, and secondary source mate
rials (such as internal company documents) have 
been used in court as they are in the medical 
field – to help support establishing a causal link. 
Since pharmacoepidemiologic studies tend to 
assess the presence of an association, rather than 
directly addressing causation, courts sometimes 
apply the Bradford Hill criteria to connect an 
association with general causation (see Table 9.1 
and Chapter 1).

To demonstrate specific causation, a plaintiff 
must show that the product in question caused 
the alleged injury in the plaintiff. This can be a 
particularly complex issue for pharmaceutical 
products. In some cases, like instantaneous 
allergic reactions, the causal link between a 
product and an outcome is clear. For more suba
cute or later‐onset responses, however, specific 
causation may be hard to demonstrate. For 
example, in one case against Merck brought by a 
plaintiff who suffered a myocardial infarction 
shortly after starting rofecoxib, the manufac
turer argued that the outcome was attributable 

to the plaintiff ’s prior existing coronary artery 
disease. The plaintiff countered with the fact 
that he was in a state of stable cardiovascular 
health prior to initiation of rofecoxib, that he 
simultaneously developed two coronary artery 
clots after the drug’s initiation (a rare presenta
tion for ischemic heart disease), and that many 
studies have confirmed the link between 
rofecoxib and cardiovascular disease (a point 
relevant to general causation) [31]. While the 
trial court held for the plaintiff, the decision was 
reversed on appeal; the appeals court ruled that, 
“although plaintiffs were not required to estab
lish specific causation in terms of medical cer
tainty, nor to conclusively exclude every other 
reasonable hypothesis, because [the plaintiff ’s] 
preexisting cardiovascular disease was another 
plausible cause of his death, the plaintiffs were 
required to offer evidence excluding that cause 
with reasonable certainty” [32].

Another important aspect of specific causa
tion is that the plaintiff must demonstrate that 
the inadequate warnings about the adverse 
effect were relevant to the plaintiff ’s receiving 
the drug. If a defendant can demonstrate that 
even an adequate warning would have made no 
difference in the decision to prescribe the drug, 
or to monitor the patient postprescription, the 
case may be dismissed for lack of a proximate 
cause.

Learned Intermediary Defense

If a plaintiff successfully argues these issues and 
demonstrates a prima facie case of product lia
bility based on a failure to warn, the manufac
turer has a few possible defenses. The most 
relevant in the field of pharmaceutical law is the 
learned intermediary defense.

Originally, product liability law imposed on all 
manufacturers a duty to warn consumers about 
the risks of their products. However, starting in 
the 1960s, pharmaceutical manufacturers argued 
that it would be more effective for them to 
warn physicians, the gatekeepers of prescription 

Table 9.1 Bradford Hill criteria.

1) Strength of association
2) Consistency and replication of findings
3) Specificity with respect to both the substance and 

injury at issue
4) Temporal relationship
5) Biological gradient and evidence of a dose–response 

relationship
6) Plausibility
7) Coherence
8) Experimental removal of exposure
9) Consideration of alternative explanation

Source: Adapted from Hill AB. The environment and 
disease: association or causation? Proc R Soc Med 1965; 58: 
295–300. Reproduced with permission of SAGE 
Publications.
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medicines [33]. Courts accepted that physicians’ 
advanced training and direct contact with 
patients put them in an optimal position to 
understand and relay complex information about 
possible side effects. Physicians are also well 
placed to discuss risks and benefits applicable to 
particular clinical circumstances in their patients. 
The “learned intermediary” rule allows pharma
ceutical manufacturers to fulfill their duty to 
warn by providing an accurate and adequate 
warning to prescribing physicians [34].

The implications of the learned intermediary 
defense are that the debates in plaintiffs’ cases 
tend to focus on the propriety of the warning 
vis‐à‐vis the physician, rather than the patient. 
Therefore, warnings do not have to be offered 
about risks that should be obvious or are gener
ally known to skilled medical practitioners [35]. 
However, when the information given to physi
cians omits, underemphasizes, misstates, or 
obfuscates dangers, this deficiency is legally 
transferred to the patient, who maintains a right 
of redress against the manufacturer if those 
dangers materialize and cause injury.

If the manufacturer imparts an appropriate 
warning to physicians, then the manufacturer 
can be insulated from liability. In such cases, the 
focus of the litigation then often turns to the con
duct of the physician and the physician–patient 
interaction. For example, in one case a lawsuit 
was brought following the suicide of a patient 
who had been prescribed two antihypertensive 
drugs, hydrochlorothiazide (HCTZ) and reser
pine (Harmonyl®). The label for HCTZ stated 
that it might “potentiate the action of other anti‐
hypertensive drugs,” while the insert for reser
pine stated that the drug should be discontinued 
at any sign of “despondence” and that there were 
reports of drug‐related depression severe enough 
to result in suicide. Because the physician was 
presumed to have had constructive knowledge of 
both of these warnings, the court insulated the 
manufacturers from liability [36].

In special situations, pharmaceutical manu
facturers may lose the ability to invoke the 

learned intermediary defense. If a manufacturer 
markets its product very aggressively and without 
sufficient attention to certain risks, courts may 
rule that it has essentially undone the physician–
patient prescribing relationship. Direct‐to‐ 
consumer advertising (DTCA) is one modality 
that can undercut the assumption that patients 
are largely ignorant of prescription drug risks and 
that manufacturers lack means of interacting with 
patients other than through physicians. DTCA is 
currently only permitted in two industrialized 
countries around the world: the US and New 
Zealand. The New Jersey Supreme Court has 
ruled that DTCA created a limited exception to 
the learned intermediary defense [37], and in 
2007 the West Virginia Supreme Court rejected 
the learned intermediary defense in its entirety on 
this basis [38]. Nonetheless, in most jurisdictions, 
the learned intermediary rule still stands.

Expertise and Daubert

Pharmacoepidemiologists often serve as 
expert  witnesses in product liability cases. 
Pharmacoepidemiologists can help judges and 
juries understand data about drugs and help 
determine whether warning information appro
priately reflects the risk posed by a drug. Experts 
are usually called on to describe the current 
state of knowledge about the adverse event at 
issue, and may be asked to perform additional 
pharmacoepidemiologic analyses of available 
data to present before the court.

However, courts can exclude some practition
ers and some analyses from trial. Traditionally, 
the judge is responsible for evaluating whether 
expert witnesses lack qualifications or espouse 
scientific theories out of step with accepted 
knowledge [39]. In the 1993 case of Daubert v. 
Merrell Dow, the US Supreme Court outlined a 
number of criteria for reviewing the appropriate
ness of expert witness testimony, including 
whether the theory was current and whether it 
had been tested or subjected to peer review and 
publication [40]. A subsequent case applied these 
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rules and further refined them in evaluating a 
debate over the admissibility of expert testimony 
suggesting that polychlorinated biphenyls (PCBs) 
can cause lung cancer. The research was excluded 
because the experts did not validate their conclu
sions: the epidemiologic studies did not report a 
statistically significant causal link between PCBs 
and lung cancer, lacked proper controls, and 
examined substances other than PCBs [41]. As 
federal circuit court judge Richard Posner has 
explained in separate circumstances, “the court
room is not the place for scientific guesswork, 
even of the inspired sort” [42].

In the US, some state courts have embraced 
the Daubert guidelines, which have also been 
taken up by revised Federal Rules of Evidence 
[43]; others adhere to an alternative doctrine 
that excludes testimony containing theories that 
do not enjoy “general acceptance in the relevant 
scientific community” [44]. Thus, pharmacoepi
demiologists seeking to present expert evidence 
in litigation will routinely face judicial inquiry to 
determine whether they are fit to serve in that 
role. Judicial oversight in general sets a low floor 
for reliable expert testimony, although it can be 
expected to exclude experts who lack the rele
vant qualifications, lack facts to back up their 
perspectives, lack reliable methods, or fail to 
apply the methods appropriately [45]. There is 
considerable skepticism about the effectiveness 
of courts as a gatekeeper for expert witnesses, 
with some commentators citing judges’ lack of 
the technical knowledge needed to meaningfully 
evaluate medical and scientific expertise [46].

 The Effect of Regulation on 
Product Liability Litigation 
in the US

In the last few years, there has been a wave of 
controversy about the role of government regu
lation of pharmaceuticals in product liability 
claims against drug manufacturers. Under the 

US Food, Drug, and Cosmetic Act, originally 
passed in 1938, the FDA is required to certify 
that prescription drugs are safe enough and 
show efficacy for their intended indication 
before being sold on the US market [47] (see 
also Chapters 1 and 8). At the time of approval, 
the FDA also endorses the official drug labeling, 
which presents a description of the basis for the 
drug’s efficacy as well as safety concerns that 
have emerged during the preapproval testing 
[48]. The labeling, which is generally written by 
the manufacturer and approved by the FDA, has 
legal significance as well. For example, because 
the FDA restricts certain types of manufacturer 
communication about non‐FDA‐approved (or 
“off‐label”) indications, the label determines 
what a pharmaceutical manufacturer can com
municate to physicians and the public about its 
product [49]. The FDA requires the manufac
turer to mention important warnings that are in 
the official labeling when marketing its product, 
but does not require manufacturers to mention 
warnings that are not in the labeling.

For most of its history, the FDA has regulated 
the drugs sold in the US without any direct 
role  in product liability litigation brought by 
consumers injured by FDA‐approved drugs 
[50]. The agency’s noninterventionist posture 
changed for the first time in September 2002 in 
a product liability case brought after a man was 
prescribed the SSRI sertraline (Zoloft®) and 
started experiencing agitation, confusion, and 
suicidal thinking, ultimately leading him to take 
his own life one week later [51]. The plaintiffs 
claimed that the manufacturer failed to warn 
appropriately about the risks of suicide. The 
manufacturer contended that such a claim could 
not be brought because the FDA had not 
included such a warning in the official label, and 
the Supremacy Clause of the US Constitution 
preempts states from imposing legal require
ments (in this case, via a tort action in state 
court) that directly contradict federal law [52]. 
Driven by the political preferences of its leader
ship at the time, the FDA filed an amicus brief in 
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the case on behalf of the defendant manufac
turer, arguing that imposition of product liabil
ity would “undermine the agency’s authority to 
protect the public health” [53]. The brief claimed 
that an adverse court ruling would force compa
nies to add warnings not approved by the FDA 
and could upset the delicate benefit/risk balanc
ing that went into the construction of the drug 
labeling, which could result in overwarning and 
ultimately underuse of an effective drug.

The major deficiency in the logic of those 
favoring FDA preemption in this area is that 
these arguments inappropriately regard the 
FDA’s official label as the final word on drug 
safety. In fact, preapproval clinical trials neces
sarily involve only a limited sample of patients 
and are often powered to detect changes in effi
cacy‐related endpoints, rather than rates of 
adverse events (see Chapter  4). The FDA will 
not have a complete picture of the safety of 
drugs, even at the time the labeling is written. 
After approval, the FDA lacks the resources 
and  capability to actively monitor evolving 
knowledge about a drug [54]. Until the FDA 
Amendments Act (FDAAA) of 2007 (Public 
Law 110‐85), the FDA had no authority to com
pel manufacturers to update the warnings in 
drug labeling. After the withdrawal of rofecoxib, 
Sandra Kweder, Deputy Director of the FDA’s 
Office of New Drugs, said in testimony at a US 
Senate hearing, “We don’t have the authority to 
tell a company, ‘This is how your label has to 
look. This is the language that needs to go into 
your label. Here is where it goes, end of story.’ 
We have to negotiate with the company the spe
cific language of how things should be worded, 
the placement, those kinds of things” [55]. The 
FDAAA gave the FDA limited authority to 
“require” labeling changes “if the Secretary 
becomes aware of new safety information that 
the Secretary believes should be included in the 
labeling of the drug,” but made these decisions 
reviewable through an alternative dispute reso
lution procedure [56]. Although this new 
authority strengthened the FDA’s hand some

what, ensuring compliance can still involve a 
lengthy and resource‐intensive legal process. 
While the pathway established by FDAAA has 
rarely been publicly invoked in the decade since 
passage of the law, its existence may strengthen 
the FDA’s position in its negotiations with man
ufacturers over inclusion of warning language in 
a drug’s labeling.

Manufacturers, by contrast, are in an optimal 
position to learn about emerging safety con
cerns after FDA approval, because they closely 
monitor the use of their products, organize 
postmarketing studies, and receive spontaneous 
reports from physicians and other sources about 
adverse events arising in the course of therapy 
(see Chapter  7). Manufacturers have a strong 
financial incentive to increase sales of their 
products, but manufacturers may also some
times be faced with their own safety‐related 
data that suggest limiting use of their product, 
or withdrawing it from the market altogether. In 
such situations, manufacturers have made poor 
decisions that adversely affect public health. For 
example, when drug safety issues have emerged 
after approval, some manufacturers have 
decided to downplay reports of side effects to 
physicians [57] and the FDA [58,59]. Failure‐to‐
warn litigation, therefore, serves an important 
supplementary regulatory function  –  without 
undermining FDA requirements – by providing 
a disincentive (in the form of substantial mone
tary penalties) for manufacturers’ decisions to 
hide or downplay reports of safety issues that 
emerge after a product reaches the market. 
Notably, former FDA commissioners have con
firmed that “Although the FDA might later dis
approve of a [strengthened warning] label …, 
the FDA’s power to disapprove does not make 
the manufacturer’s voluntarily strengthened 
label a violation of federal law” [60]. At any time, 
a manufacturer can strengthen the labeling by 
adding warnings to it without first notifying the 
FDA and receiving approval to do so. In fact, the 
Code of Federal Regulations states, “The labe
ling shall be revised to include a warning as 
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soon as there is reasonable evidence of an asso
ciation of a serious hazard with a drug; a causal 
relationship need not have been proved” [61].

Despite these considerations, the FDA’s ami
cus brief argument was repeated in subsequent 
failure‐to‐warn cases, and a few courts expressly 
adopted the position [62]. In 2006, the FDA 
attempted to solidify its position further in a 
surprise preamble to a set of regulations regard
ing the format of the label, in which it reiterated 
its new contention that any FDA‐approved labe
ling, “whether it be in the old or new format, 
preempts … decisions of a court of law for pur
poses of product liability litigation” [63]. The 
FDA suggested that preemption should apply 
even if a manufacturer failed to warn adequately 
about a known risk, unless a patient could prove 
that the company intentionally committed fraud 
on the FDA, which is a very difficult legal stand
ard to meet [64].

Ultimately, the US Supreme Court reviewed 
the legal foundation of the claimed FDA 
preemption of product liability related to pre
scription drugs. The pivotal case, Wyeth v. 
Levine, was based on a lawsuit from a patient 
who was treated with an intravenous antinausea 
medication for her migraine headache. The 
product extravasated and caused gangrene in 
her forearm, leading to amputation. The patient 
sued the drug manufacturer for inadequately 
warning on the label about the known risks of 
certain intravenous uses of its medication. A 
Vermont jury determined after fully consider
ing the record that the label did not sufficiently 
describe the drug’s known risks with intrave
nous drip administration. The manufacturer 
appealed the verdict, and the Vermont Supreme 
Court affirmed, finding that the jury’s verdict 
did not conflict with the FDA’s labeling require
ments, which “create a floor, not a ceiling, for 
state regulation” [65].

The manufacturer appealed again to the 
Supreme Court, arguing that it was impossible 
to comply with the federally approved label and 
that the state court judgment would obstruct 

the purpose of federal drug laws. The manufac
turer charged that the FDA, not the drug manu
facturer, had the primary responsibility for the 
drug label. In a 6–3 decision, the Supreme Court 
upheld the Vermont decision and struck down 
the notion of federal preemption in this field 
[66]. Justice John Paul Stevens, writing for the 
majority, noted, “It has remained a central 
premise of drug regulation that the manufac
turer bears responsibility for the content of its 
label at all times.”

After Wyeth v. Levine, there remains no con
troversy about whether FDA approval of a drug 
label preempts failure‐to‐warn claims. However, 
the decision did leave open the possibility that 
preemption could be invoked if the FDA had 
“consider[ed] and reject[ed] a stronger warn
ing.” That is, if the FDA reviews all the data sur
rounding a particular safety issue and makes a 
specific statement that a strong warning is not 
necessary, such an action could be invoked by a 
defendant to support preemption of a failure‐
to‐warn lawsuit.

 Product Liability Law 
in Europe

The European Union (EU) is a political and eco
nomic coalition that currently consists of 28 
countries in Europe. The main sources of EU 
law are regulations, directives, and decisions. 
Regulations are immediately enforceable in 
member states when they come into force and 
automatically override conflicting local provi
sions. By contrast, directives usually leave mem
ber states discretion as to how they are to be 
adopted [67].

Product liability has been called an “American 
invention” [68], and the general product liability 
directive for the EU (85/374/EEC) was origi
nally enacted in 1985. A liability action arising 
under this directive includes the following 
 contentions: (i) defective product; (ii) causation 
of damage’ and (iii) no exclusion of liability. 
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A product is defective if it does not provide the 
safety that a person is entitled to expect, taking 
all circumstances in account, including the 
presentation of the product, the use reasonably 
expected of the product, and the time when the 
product was put into circulation. However, a 
product may not be considered defective simply 
because a better product was subsequently put 
into circulation [69].

Product liability in non‐EU European countries 
is defined by country‐specific laws, although the 
approach is similar to that in the EU. In Switzerland 
(a non‐EU country), for example, there is no 
 specific legislation covering drug liability. 
Nonetheless, the generally applicable Product 
Liability Act requires a showing of (i) damage 
(design defect or failure to warn); (ii) causation of 
damage; and (iii) no exclusion of liability.

Like in the US, most product liability lawsuits 
in EU and non‐EU countries in Europe are 
based on failure‐to‐warn claims about the 
adverse event at issue, rather than design 
defects. One of the exclusions of liability, as in 
US, is the learned intermediary defense. For 
example, in Switzerland, a 16‐year‐old patient 
was prescribed the oral contraceptive medica
tion drospirenone/ethinylestradiol (Yasmin) 
and experienced a thromboembolism with a 
subsequent stroke. The patient sued the manu
facturer based on a failure‐to‐warn claim. The 
labelling states that there is a higher risk for 
thrombosis and in the information letter to the 
physician, the risk for a thromboembolism is 
reported to double with the intake of the con
traceptive medication. The Supreme Court 
ruled that this information was sufficient [70]. 
As previously discussed, since DTCA is not 
available in Europe, it is not possible for that 
practice to undermine the learned intermediary 
defense.

Within the EU, because the product liability 
rule is a directive, member states retain some 
flexibility in implementing aspects of it, such as 
whether they permit compensation for noneco
nomic damages (e.g., pain and suffering) or 

which manufacturer defenses they seek to 
incorporate [71]. As a result of this flexibility, 
there is substantial diversity across EU  countries 
in how product liability cases are adjudicated 
[72]. Still, countries can be limited by the direc
tive. For example, in a series of cases, the 
European Court of Justice prevented France, 
Spain, and Denmark from enacting provisions 
considered to be too friendly to the damaged 
party [73].

Product liability related to prescription drugs 
in Germany bears special attention, since this is 
the only EU country that has implemented (even 
prior to the enactment of the EU liability direc
tive) particular rules in this field via its Medicines 
Act. This is the consequence of the international 
thalidomide birth defect public health crisis of 
the late 1950s and early 1960s, which affected 
approximately 7000 children in Germany alone 
[74]. Liability exists if, when used in accordance 
with the intended purpose, the drug has harmful 
effects which exceed the limits considered toler
able in the light of current medical knowledge 
(i.e., a design defect), or the damage has occurred 
as a result of labelling that does not comply with 
current medical knowledge (i.e., a failure to 
warn) [75]. However, determining liability is 
based on a strict liability model that requires 
only demonstration of (i) damages; (ii) causation 
of damages; and (iii) no exclusions from liability 
(e.g., the learned intermediary defense) [76]. 
Another characteristic of German drug liability 
is the limitation of the amount of compensation 
for damages. In a case of death of or injury to a 
person, the pharmaceutical company is liable 
only for a capital amount of up to €600 000 or an 
annuity of up to €36 000 per year. In a case of 
death of or injury to several persons by the same 
drug, the pharmaceutical company shall be lia
ble for a capital amount of up to €120 million or 
an annuity of up to €7.2 million per year [77].

German law also provides an interesting 
case example about the labeling requirements 
covering prescription drugs in Europe. The 
European Medical Agency (EMA) regularly 
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issues guidelines that specify the content and 
presentation of the labeling [78], including for 
example categorizing the frequency of possible 
side effects as very often (>10%), often (1–10%), 
occasional (0.1–1%), rare (0.01–0.1%), and very 
rare (<0.01%). In addition, Section  10 of the 
German Medicines Act lists all categories of 
information that need to be placed on a drug’s 
labeling, such as indications, dosage, duration of 
intake, reference to overdose, expiration date, 
and adverse events. In describing adverse 
events, manufacturers must include a descrip
tion of all adverse reactions that can occur when 
the drug is used as intended, the countermeas
ures to be taken if possible in the event of 
adverse reactions, and an additional standard 
text that explicitly instructs patients to inform 
their physicians, pharmacists, health profes
sionals, or the competent higher federal author
ity directly of every suspected adverse reaction 
[79]. The German Supreme Court has ruled that 
more detailed information must be provided as 
the severity and probability of a potential 
adverse event increase [80].

Overall, product liability law in Europe is in 
many ways similar to that in the US, especially 
with regard to the principles of strict liability 
and the learned intermediary defense. However, 
failure‐to‐warn claims are less likely to succeed 
in Europe than in the US, and damages practices 
and rules generally lead to lower compensation 
for patients. As a result, fewer drug liability 
claims are brought in Europe, and the outcome 
of a case can vary widely whether a claim is 
being brought to court in the US or in a European 
country.

 Pharmacoepidemiology and 
Contract Law

Many studies in the field of pharmacoepidemi
ology emerge from collaborations among 
 individuals at different institutions. Different 
researchers may bring specific types of  expertise 

to a project or different resources [81,82]. For 
example, researchers may have all the comput
ing power they need, but require access to a 
 certain external database to address a question. 
Collaborations may occur among academic 
centers, between nonprofit and for‐profit 
 companies, or with the government. Cooperative 
work can allow more complex research to be 
performed and help advance the field of 
 pharmacoepidemiology in several ways.

One type of collaborative work of particular 
public health importance is contract research. 
Contract research is undertaken by an individ
ual, academic, or nonprofit investigator sup
ported by a sponsor (usually an industry 
or  governmental agency). Most contractual 
research relationships are defined by the gener
ation of a “deliverable,” which can be a database, 
a research report, or some other product. The 
contract is the centerpiece of the relationship 
and classically represents the full outline of the 
agreement between the parties. The mutually 
agreed‐upon terms are used as evidence of the 
parties’ intentions if the agreement later runs 
into trouble and ends up in court. Relationships 
with industry are common; one survey of 
 clinical epidemiologists and health services 
researchers in the US found that about 40% 
reported currently being involved in such rela
tionships, while 50% reported forming collabo
rations with industry leading to publications 
[83]. In countless cases, contract research in 
pharmacoepidemiology has led to important 
public health findings and changes in healthcare 
delivery.

However, contract research may pose various 
potential pitfalls as well. Concern about con
tract research generally centers around (i) trial 
design; (ii) access to data and data analysis; and 
(iii) publication of results. It has long been 
known that there is a statistically significant 
relationship between a favorable study result 
and the source of research funding [84,85]. 
These results can be explained by choices made 
in trial design, when subjective decisions about 
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comparators [86] or the inclusion or exclusion 
of certain variables or potential confounders in 
epidemiologic and economic studies can affect 
the ultimate results of the trial [87]. Investigators 
should be wary of performing contract research 
in which the sponsor has the right to unduly 
influence the design of the trial. Many sponsors 
prefer to retain control of the data and insert 
their own statistical analyses. They argue that 
such efforts guard against “investigators [who] 
want to take the data beyond where the data 
should go,” while investigators argue that this 
arrangement provides the company with an 
opportunity to “provide the spin on the data 
that favors them” [88]. In one case of an experi
mental AIDS vaccine, after a negative trial, the 
sponsor demanded that its contradictory analy
ses be inserted into the manuscript and ulti
mately sued the investigators for $7 million after 
the article was published [89].

Access to clinical trial data is critically impor
tant for academic researchers. In the case of 
rosiglitazone, a clinical trial organized by the 
manufacturer sought to compare the product 
against other treatment options for diabetes, 
and an independent academic steering commit
tee was organized to oversee the data analysis 
[90]. Company documents suggest that the clin
ical trial database was exclusively controlled by 
the company, which provided limited access to 
the investigators [91]. When members of the 
steering committee questioned the presentation 
of the results, their concerns were largely 
 overlooked [77]. In reviewing this case, one 
commentator concluded that the absence of 
independent access to all of the data in the trial 
may allow physician‐scientists to be manipu
lated by the sponsor, resulting in a manuscript 
that does not provide the most accurate assess
ment of the risks and benefits of the therapy 
[77]. Contracts should be carefully scrutinized 
for the way in which they delineate who controls 
access to the data.

Finally, there have been conflicts over so‐
called gag clauses that prevent contract investi

gators from publishing their results [92]. For 
example, when a University of Toronto physi
cian identified safety issues related to an experi
mental drug used to treat iron overload in 
transfusion‐dependent patients with thalas
semia [93], she was not granted permission to 
publish her results. When she ultimately 
exposed her findings, she was the subject of a 
breach of contract lawsuit from the sponsor, on 
the basis that her research contract provided 
that the published work‐product was “secret 
and confidential” and could not be disclosed 
except with the manufacturer’s “prior written 
consent” [94]. In the case of the cholesterol‐low
ering drug ezetimibe (Zetia®), the outside inves
tigator leading a large‐scale clinical trial found 
that the drug lacked important efficacy in car
diovascular outcomes. He reportedly pressured 
the manufacturer to no avail to speed the release 
of the data, and due to contractual obligations 
was unable to come forward with the data on his 
own without such approval [95].

Such problems are not limited to private 
industry contracts. In the US, a report from the 
Association of American Universities and the 
Council on Government Relations found that 
federal agencies commonly include controls 
on  the dissemination of research results in 
their  sponsored contracts and grants [96]. 
Contracting issues related to liability, trial 
design, access to data and data analysis, and 
publication of results are also not limited to a 
particular country [97]. In Europe, for example, 
countries aware of the challenges in setting up 
contracts between investigators and industry in 
particular offer government assistance and tem
plates to help balance the diverging interests. In 
Switzerland, the ethics committee provides 
templates for clinical trial agreements on its 
website [98], and the UK and the European 
Commission also offer such templates and guid
ance notes [99].

For researchers based in academic medical 
centers, institutional research administration 
offices usually handle the details of contract 
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negotiation with research sponsors. However, a 
survey of academic medical centers in 2001 
found that academic institutions routinely 
engage in industry‐sponsored research without 
sufficient protection for investigators [100]. For 
example, a median of 1% of research adminis
tration offices (interquartile range 0–21%) in US 
universities reported requiring that authors 
have access to all the data for multicenter trials. 
A 2005 survey found little change. Nearly half of 
academic institutions reported that they allowed 
contract provisions permitting the research 
sponsor to insert its own statistical analyses and 
draft the manuscript, while prohibiting investi
gators from sharing data with third parties after 
a trial had ended. The survey also found that 
17% of academic research centers reported dis
putes between researchers and sponsors about 
control of or access to data [101].

A few expert bodies have offered recommen
dations on legal guidelines for the conduct of 
contract research [102]. The best known and 
most authoritative have emerged from the 
International Committee for Medical Journal 
Editors (ICMJE). Their guidelines for original 

research articles submitted to biomedical jour
nals require that the investigators be independ
ent of the sponsors’ role in the research, fully 
accountable for the design and conduct of 
the  trial, have independent access to all trial 
data, and control all editorial and publication 
decisions [103]. Each of these criteria must 
be worked out at the beginning of the contr
actual relationship between the sponsor and 
investigators.

Whether or not they receive support from 
research administration offices, pharmacoepi
demiologists must be aware of the ICMJE guide
lines and thoroughly evaluate contracts guiding 
research for inappropriate language regarding 
control of design of the trial, access to data, and 
reporting of results (see Table 9.2). They should 
also be aware that some peer‐reviewed journals 
have even more strict standards than the ICMJE; 
for example, Pharmacoepidemiology and Drug 
Safety currently requires disclosure of any con
trol the sponsor had on the study and manu
script. Problematic language includes overly 
broad confidentiality clauses, clauses that define 
and assign ownership of intellectual property, 

Table 9.2 Potentially objectionable language in research contracts for pharmacoepidemiologists.

Category Contractual terms Critique

Control over 
investigator 
work‐product

“____ shall provide confidential information to 
CONSULTANT for the purpose of conducting the 
CONSULTANT’S professional services. All 
information whether written or verbal provided by, 
or developed for ______, and all data collected 
during the performance of this Agreement is deemed 
to be the Confidential Information of ______.”

Broad definition of 
“confidential information” 
seems to cover all information. 
Researcher’s work‐product 
becomes sponsor’s 
confidential information.

Gag clauses “No information regarding this Agreement or the 
interest of ____ or Client in the subject matter hereof 
shall be disclosed to any third party without the prior 
written consent of _____”

Prevents disclosure of 
existence of the contract as a 
financial source in publication.

Opportunity 
to influence 
outcome

Client “shall not present or publish, nor submit for 
publication, any work resulting from the Services 
without _____ prior written approval.”

Contract allows sponsor to 
quash publication unless it 
approves analyses.

All examples are anonymized but otherwise unchanged excerpts from actual contracts written to cover sponsored 
pharmacoepidemiologic research.
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and clauses that require approval from a spon
sor prior to publication. It may be reasonable to 
allow sponsors a limited amount of time to 
review proposed publications for inadvertent 
release of proprietary company information or 
to contribute suggestions based on their exper
tise. However, researchers have an ethical obli
gation to ensure that contracts do not 
unreasonably delay the publication of poten
tially important results. Poorly written con
tracts can lead to inappropriate secrecy of 
results, which can have public health concerns, 
as well as resulting in litigation against research
ers. Balancing the contractual tightrope might 
not be easy, but it is important. As Dr. Curt 
Furberg has said, “Companies can play hardball, 
and many investigators can’t play hardball back. 
You send the paper to the company for com
ments, and that’s the danger. Can you handle 
the changes the company wants? Will you give 
in a little, a little more, then capitulate? It’s tricky 
for those who need money for more studies” [104].

 Pharmacoepidemiology and 
Intellectual Property Law

Patent law is a field of growing importance to 
the practice of pharmacoepidemiology. A pat
ent is a formal grant of market exclusivity 
authorized by the federal government. The 
concept of a patent may have originated in 
ancient Greece, but became a formal legal 
instrument in England and Europe in the four
teenth and fifteenth centuries. In the US, the 
original Patent Act was passed under authority 
from the Constitution, which permits Congress 
to develop laws that “promote progress of 
Science and the Useful Arts” [105]. Patents give 
inventors the right to exclude others from mak
ing, using, offering to sell, or selling the inven
tion claimed in the patent for 20 years from the 
patent application date [106]. The goal of a pat
ent is to encourage inventors to invest in the 

development of their ideas, because it gives 
them a competition‐free period in which to 
market a successful invention. Patents can be 
issued for any process, machine, manufacture, 
or composition of matter. To be worthy of a pat
ent, an innovation in one of these categories 
must be useful, novel, and nonobvious to a per
son of ordinary skill in the field. These criteria 
aim to ensure that patents cannot be awarded 
for inventions that already exist, or small, nonin
novative improvements on those inventions. In 
recent years, numerous patents have been 
obtained on methods and techniques used in 
pharmacoepidemiology, including investigating 
characteristics of drug use and adverse events.

In filing for a patent, an inventor must fully 
disclose the content of the claimed invention in 
a patent document. This disclosure must pro
vide clear detail about the invention and must 
enable any person skilled in the art to use it, 
including the “best mode” (if they have contem
plated one) available for making the inventions 
work. The process for obtaining a patent 
involves submitting the patent document to 
examiners at institutions such as the European 
Patent Office (EPO) and the United States 
Patent and Trademark Office (USPTO) who 
have expertise in the general subject matter of 
the patent. An examiner checks the application 
for technical accuracy and evaluates the innova
tiveness of the claimed invention by comparing 
it to previous publications and issued patents 
(in legal terminology, publicly available docu
ments such as these are termed the “prior art”), 
to see if all the basic criteria are met. This pro
cess generally involves substantial back‐and‐
forth between the examiner and the applicant, 
and may take several years to complete. 
Inventors may submit patent applications them
selves, or enlist the help of specially trained pat
ent agents or patent attorneys.

Inventors may have numerous justifications 
for pursuing patents. First, patents provide an 
incentive for investment in research by offering 
an opportunity to recoup start‐up costs after 
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dissemination of a product. Other inventors 
may seek a way to publish their innovative pro
cesses while still retaining control over what 
they consider to be their intellectual property. A 
patent is classically thought of as a “quid pro 
quo” between inventors and society [107]. The 
government provides its police power to protect 
an inventor’s intellectual property for a set 
length of time and, in exchange, the inventor 
makes the invention available to the public and 
fully describes it, so that others can use it and 
potentially improve on it in subsequent innova
tion. However, patents can also be controversial. 
Patents over scientific research tools have been 
implicated in barriers to effective cooperation 
[108], enhanced secrecy among researchers 
[109], and restrictions on availability of the 
products of research to patients [110].

Patents have become increasingly visible in 
the practice of pharmacoepidemiology. Most 
fall into the “process” category, such as methods 
of analyzing claims data and comparing out
comes to identify adverse events. The US 
Supreme Court has held that patentable pro
cesses may not include fundamental principles 
such as “laws of nature, natural phenomena, or 
abstract ideas” [111], or purely mental processes 
[112]. However, applications of laws of nature to 
a particular process may still be patentable. For 
example, a well‐known case involved a patent 
over a method of curing synthetic rubber that 
used the Arrhenius equation to calculate the 
optimal cure time. The process was found to be 
patentable because the formula was a part of a 
larger inventive process for curing rubber [94].

Patents related to the practice of pharmacoepi
demiology have been obtained by applicants 
ranging from individuals (e.g., a patent covering a 
method for assessing the association of genomic 
data with drug safety adverse event data [113]) to 
large healthcare data collectors such as Microsoft 
(e.g., a patent covering a method for large‐scale 
data collection and data mining to infer health‐
related observations [114]). For example, one 
patent was awarded to inventors and assigned to 

a start‐up company for a “method, system, and 
software for analyzing pharmacovigilance data.” 
The patent covers a process of:

[D]etermining a sample size‐independent 
measure of association between two condi
tions of interest in the dataset of pharma
covigilance data; using a hypergeometric 
distribution to determine a measure of statis
tical unexpectedness between the conditions 
of interest in said dataset … and displaying 
the measure of association with the measure 
of the statistical unexpectedness to identify a 
significant association between conditions of 
interest. [115]

The concept of “hypergeometric distribution” 
may not be patentable as an abstract idea, but in 
this case the USPTO clearly considered the pro
cess patentable overall despite its integral use of 
that principle.

There are important ethical and legal con
cerns related to patenting processes that pro
vide exclusive control over various aspects of 
the conduct of pharmacoepidemiology and 
pharmacovigilance research. First, patents that 
are sufficiently broad could prevent others from 
conducting necessary research into drug out
comes and effects, unless potentially expensive 
third‐party licenses were negotiated before
hand. In one case, an HIV researcher at Stanford 
faced a patent‐infringement lawsuit over a pub
licly available database he created to help guide 
antiretroviral therapy based on the resistance 
characteristics of the disease, because searching 
this database may involve a similar process to 
one previously patented (but never imple
mented) by a for‐profit company [116]. In 
another case, a patent‐seeker in the field argued 
that researchers should patent the adverse reac
tions discovered in pharmacoepidemiologic 
studies to enhance funding from for‐profit 
pharmaceutical companies that might be inter
ested in novel and nonobvious processes that 
link drugs and adverse events [117]. However, a 
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proliferation of patents over processes linking 
drug delivery to reported adverse events could 
increase costs through “another layer of bureau
crats and patent attorneys” and hurt the public 
health, as “real information could get easily lost 
in a blizzard of patented factoids” [118].

The US Supreme Court has stepped into the 
controversy over process patents. In 2008, the 
Court of Appeals for the Federal Circuit, the 
highest US patent appeals court below the 
Supreme Court, revisited its interpretation of 
what may be considered a patentable process. 
The case involved a patent over a business 
method for reducing risk in situations of fluctu
ating prices. The Federal Circuit Court held that 
for a process to be patentable, it must be tied to 
a particular machine or apparatus, or transform 
an object into a different state or thing [119]. 
Notably, as pertaining to pharmacoepidemio
logic patents, the Federal Circuit Court held 
that “in most cases, gathering data would not 
constitute a transformation” because “every 
algorithm inherently requires the gathering of 
data inputs” [120]. The Supreme Court in Bilski 
v. Kappos reviewed this standard and agreed 
that the machine‐or‐transformation test was 
one valid way of determining whether a busi
ness method was patentable, although it was not 
the exclusive test [121].

Despite the Supreme Court’s reluctance to 
draw a bright line separating patentable from 
nonpatentable processes, the Court’s support 
for the machine‐or‐transformation test may 
undercut certain patents related to pharma
coepidemiology and pharmacovigilance [122]. 
For example, the Federal Circuit Court used the 
test to invalidate a patent related to a method of 
adverse effect detection [123]. In that case, an 
inventor had secured a patent on a method of 
using adverse event data regarding vaccine 
administration to inform subsequent healthcare 
delivery. The patent at issue claimed:

A method of determining whether an immu
nization schedule affects the incidence or 

severity of a chronic immune‐mediated dis
order in a treatment group of mammals, rela
tive to a control group of mammals, which 
comprises immunizing mammals in the 
treatment group of mammals with one or 
more doses of one or more immunogens, 
according to said immunization schedule, 
and comparing the incidence, prevalence, 
frequency, or severity of said chronic 
immune‐mediated disorder or the level of a 
marker of such a disorder, in the treatment 
group, with that in the control group. [124]

Pharmacoepidemiologists are likely to continue 
to come across patented methods in their daily 
work and be faced themselves with the question 
of whether to pursue patents on their research 
tools. This is particularly true in the US, where 
the Bilski decision left the door open for pat
ents to be issued on processes involved in 
 medical practice or pharmacoepidemiologic 
research.

 Intellectual Property Law 
in Europe

In Europe, the European Patent Convention 
(EPC) provides the legal framework under 
which patents are granted. The establishment of 
patentability is framed in terms of fulfilling 
three prerequisites: novelty, usefulness, and an 
inventive step (equivalent to the “nonobvious
ness” requirement under US law) [125]. Like in 
the US, the maximum term of a European pat
ent is 20 years from its filing date [126].

The US and European standards with regard 
to the patentability for methods and techniques 
are also close. The EPC provides a nonexhaus
tive list of nonpatentable inventions: discover
ies, scientific theories, and mathematical 
methods; aesthetic creations; schemes, rules, 
and methods for performing mental acts, play
ing games, or doing business, and programs for 
computers; and presentations of information 
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[127]. Patents can be obtained on software 
according to the Technical Boards of Appeal of 
the EPO if the software produces a further tech
nical effect when it runs on a computer

which goes beyond the “normal” physical 
interactions between program (software) 
and computer (hardware). … Although it 
may be said that all computer programming 
involves technical considerations since it is 
concerned with defining a method which can 
be carried out by a machine, that in itself is 
not enough to demonstrate that the program 
which results from the programming has 
technical character; the programmer must 
have had technical considerations beyond 
“merely” finding a computer algorithm to 
carry out some procedure. [128]

According to the Guidelines for Examination in 
EPO, such a further technical effect can be 
found, for example, in the control of an indus
trial process or in the internal functioning of the 
computer itself or its interfaces under the influ
ence of the program, or can affect the efficiency 
or security of a process. Software that imple
ments a mathematical method that itself makes 
a technical contribution can also qualify as a 
further technical effect [129].

There are three possible routes for obtaining 
patent protection in Europe. One can apply for a 
patent directly to the national patent office of a 
particular country (national patent); one can 
apply for a patent to the EPO and designate spe
cific EU member states where patent protection 
is wanted (“classical” European patent); or – as 
part of a new pathway intended to start in 
2019 – one can apply for a patent to the EPO 
with the designation of a unitary patent that will 
be applicable for all of the EU member states 
where the government has ratified the 
Agreement on a Unified Patent Court [130].

The European patent system enables a central 
examination by the EPO, which is more efficient 
than the national patent process. However, 

granted European patents have to be subse
quently validated individually in each country in 
which they are intended to take effect, and vali
dation requirements can differ. The goal of the 
new unitary patent system is to reduce com
plexity and lower costs. Unitary patents will 
confer uniform protection, since the substantive 
patent law has been harmonized in the 
Agreement on a Unified Patent Court [131], 
which 25 EU member states have ratified (up to 
2017) [132]. The member states also set up a 
Unified Patent Court to deal with the infringe
ment and validity of unitary patents and 
European patents, intended to enhance legal 
certainty through harmonized case law in the 
area of patent infringement and validity and 
enable more efficient judicial procedures [133].

The choice among seeking a national patent, 
European patent, or unitary patent needs to be 
made depending on the preferences of the indi
vidual applicant. For example, applicants should 
weigh the need for broad geographic coverage 
versus protection in one (or a few) member 
states. Furthermore, consideration should also 
be given to whether the patent should be subject 
to the exclusive jurisdiction of the Unitary 
Patent Court, or if it is preferred to use national 
courts with a more limited geographic jurisdic
tion. While a classical European patent contains 
the costs for validation and renewal fees in each 
member state in which protection is required, 
the unitary patent does not include validation 
costs, except the cost for one translation during 
the transitional period as well as a single renewal 
fee [134].

 Conclusion

Legal issues intersect with the practice of 
 pharmacoepidemiology in many ways. 
Pharmacoepidemiologists may be involved in 
product liability cases brought by individuals 
against drug manufacturers, either as expert 
witnesses or on the basis of academic work they 
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undertake. These cases traditionally involve a 
claim of a failure to warn, which requires proof 
that the manufacturer knew of the safety issue, 
that any provided warnings were insufficient, 
and that the injury received was directly caused 
by use of the drug. Manufacturers can invoke a 
“learned intermediary” defense to deflect 
responsibility onto the treating physician, but in 
the US after Wyeth v. Levine can no longer argue 
that FDA approval of the drug labeling pre
cludes providing additional warnings about 
adverse effects for cases in which the warnings 
are warranted by the data. While similar prod

uct liability rules apply in Europe, fewer cases 
are brought to court and damage compensation 
is lower.

Pharmacoepidemiologists may also be 
involved in contract research, but should 
 carefully consider contractual requirements 
related to ownership of the work product and 
withholding publication.

Finally, both in the US and in Europe, 
 pharmacoepidemiologists may decide to try to 
patent their research methods, but should weigh 
up the risks and benefits of this form of 
 intellectual property.
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Potential signals for adverse drug reactions 
(ADRs) or adverse drug effects most often arise 
from postmarketing spontaneous case reports, 
which are collated and analyzed by drug safety 
experts, evaluated as clinical case series, and 
considered for potential regulatory action. 
These efforts are not possible without input 
from dedicated health professionals and other 
concerned stakeholders. Adverse events (AEs) 
thought to be potentially drug related may be 
reported by a consumer or a health professional 
to a drug’s manufacturer, or they may be 
reported directly to a health authority through 
programs such as MedWatch or EudraVigilance 
[1,2]. In addition, case reports and case series 
with valuable clinical details may be published 
in a peer‐reviewed journal [3]. Concerned 
stakeholders  –  health professionals as well as 
consumers – are the source of the signals that 
can trigger hypothesis generation, hypothesis 
testing, and appropriate regulatory action when 
needed to protect the public from unnecessary 
risks or harms. At times, a drug causal associa-
tion may seem clear due to strong temporal 

association between exposure to the product 
and onset of an adverse effect, or when there is 
confirmation of positive rechallenge (i.e., signs 
or symptoms resolve when exposure is stopped 
but recur when reintroduced). But more 
often,  causality assessment is challenging (see 
Chapter  29), and well‐designed pharmacoepi-
demiology or clinical studies are needed to 
assess the signal [4,5].

In the United States, the Food and Drug 
Administration (FDA) issues Drug Safety 
Communications (DSCs) to alert the public 
about emerging safety issues, such as investiga-
tions into potential safety signals that may alter 
the balance of therapeutic benefit and risk for a 
medical product [6]. Recently, the FDA launched 
a new web portal that enables the public to view 
summary charts and listings of deidentified 
cases from the FDA Adverse Event Reporting 
System (FAERS), a compilation of all postmar-
keting adverse event (AE) reports received by 
the FDA [7].

In recent years, the term “pharmacovigilance” 
has become widely used to denote postmarketing 
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safety activities, and is defined by the World 
Health Organization (WHO) as “the science and 
activities relating to the detection, assessment, 
understanding and prevention of adverse effects 
or any other possible drug‐related problems” [8].

Monitoring and understanding the safety 
of  drug and therapeutic biologic products is a 
process that proceeds throughout the product’s 
life cycle, spanning the period prior to first 
administration to humans through the entire 
marketing life of the product. Throughout the 
product life cycle, astute clinical observations 
made at the point of care constitute an impor-
tant source of information. While new technol-
ogies have enabled more thorough knowledge 
of a drug’s actions, and computerized databases 
have enabled large‐scale, population‐based anal-
yses of drug safety investigations, these advance-
ments are adjuncts to, and not substitutes for, 
careful, well‐thought‐out clinical observations.

Preapproval drug safety assessment includes 
animal toxicology and pharmacologic studies, 
first in humans studies (Phase I), proof‐of‐prin-
ciple studies for the disease or condition under 
study (Phase II), and confirmatory studies of 
safety and efficacy (Phase III). In each of these 
stages of drug development, important drug 
safety information is obtained.

In the preapproval review process, regulatory 
authorities review these safety data, along with 
data on the product’s efficacy, to determine if 
the anticipated benefits of the drug are likely to 
outweigh any risks with its intended use. In the 
US, as part of the approval process, the FDA 
reviews the professional labeling (package 
insert), to ensure that the product’s uses and 
risks are explained adequately.

Although the preapproval testing of a drug is 
typically rigorous, and the review of the data is 
thorough, there are still inevitable uncertainties 
about the complete safety profile of a drug when 
it is brought to market. Several factors contrib-
ute to these uncertainties. First, the number of 
patients treated with the drug prior to approval 
is limited, generally from several hundred to a 

few thousand. Second, patients in clinical trials 
tend to be carefully selected for inclusion in 
these trials, and are thus more clinically homo-
geneous than patients treated in the course 
of  clinical practice once a drug is marketed. 
Compared to patients in clinical trials, patients 
treated in clinical practice may have a broader 
range of co‐morbidities, take a wider variety of 
concomitant medications, and have a wider 
clinical severity spectrum of the underlying 
 disease being treated. Third, additional popula-
tions of patients, such as children or older 
adults, who may not have been studied in large 
numbers in premarketing clinical trials, may be 
treated with the product once it is marketed. In 
addition, marketed drug products are often 
used for diseases or conditions for which they 
are not indicated, or at doses outside the 
approved range. Because of this “off‐label use,” 
patients treated in clinical practice are more 
diverse than those treated in clinical trials. For 
these reasons, a postmarketing drug pharma-
covigilance reporting system is necessary.

 Description

Adverse Events and Adverse Drug 
Reactions

A key concept in pharmacovigilance is the 
 distinction between the closely related, but none-
theless distinct, concepts of adverse event 
and  adverse drug reaction. The International 
Conference on Harmonization of Technical 
Requirements for Registration of Pharmaceuticals 
for Human Use (ICH) E2D guideline on Post‐
Approval Safety Data Management: Definitions 
and Standards for Expedited Reporting defines 
an adverse event as follows [9]:

An adverse event (AE) is any untoward medi-
cal occurrence in a patient administered a 
medicinal product and which does not nec-
essarily have to have a causal relationship 
with this treatment. An adverse event can 
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therefore be any unfavorable and unintended 
sign (for example, an abnormal laboratory 
finding), symptom, or disease temporally 
associated with the use of a medicinal prod-
uct, whether or not considered related to this 
medicinal product.

The same guideline describes an adverse drug 
reaction as follows:

All noxious and unintended responses to a 
medicinal product related to any dose should 
be considered adverse drug reactions.

The phrase “responses to a medicinal 
product” means that a causal relationship 
between a medicinal product and an adverse 
event is at least a possibility.

A reaction, in contrast to an event, is 
 characterized by the fact that a causal rela-
tionship between the drug and the occur-
rence is suspected. If an event is spontaneously 
reported, even if the relationship is unknown 
or unstated, it meets the definition of an 
adverse drug reaction [9].

The principal difference between an adverse 
event and an adverse drug reaction is that a causal 
relationship is suspected for the latter, but is not 
required for the former. In this framework, 
adverse drug reactions are a subset of adverse 
events. In some countries, postmarketing phar-
macovigilance reporting systems are focused on 
adverse drug reactions, while in others data on 
adverse events are collected. In the United States, 
for example, the scope of reporting requirements 
is “[a]ny adverse event associated with the use of 
a drug in humans, whether or not considered 
drug related …” [10].

While many of the principles discussed in this 
chapter apply equally to adverse events and 
adverse drug reactions, it is important to under-
stand the distinction between these two con-
cepts. Specifically, some databases may contain 
only adverse drug reactions, while others may 
contain adverse events. These databases may 

behave differently when used for data mining. 
However, because many of the principles of 
drug safety surveillance apply to both adverse 
events and adverse drug reactions, we will use 
the term “AE/ADR” to refer to these two terms 
collectively in this chapter, for convenience. 
When needed, we will use the individual terms 
if a distinction between the two is required. 
Although the medical literature may sometimes 
erroneously use these terms interchangeably, 
there has been increasing attention to the 
 distinction [11].

The Concept of Spontaneous  
AE/ADR Reporting

A core aspect of pharmacovigilance is the vol-
untary reporting of AEs/ADRs either directly to 
established national or regional centers, or 
alternatively to pharmaceutical manufacturers, 
who in turn are obligated to report pertinent 
information to regulators. National reporting 
systems are typically run by regulatory agencies 
(e.g., the US FDA runs the MedWatch program) 
[1] or by centers designated by the health minis-
try or the drug regulatory authority. In a few 
countries, the national pharmacovigilance 
center is run by a university or other scientific 
body. In the United States for example, AEs/
ADRs in individual patients are generally identi-
fied at the point of care. Patients, physicians, 
nurses, pharmacists, or anyone else who sus-
pects that there may be an association between 
an AE/ADR and a drug or therapeutic biologic 
product are encouraged to, but are generally not 
required to, report the case to either the manu-
facturer or the FDA.

This system of AE/ADR reporting is often 
referred to as a spontaneous reporting system; 
“spontaneous” because the person who initially 
reports the AE/ADR to either the reporting 
center or the manufacturer chooses what 
events to report. Sometimes, spontaneous 
reporting systems are also labeled as “passive,” 
based on the argument that the reporting 
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center or manufacturer passively receives this 
information rather than actively seeking it out. 
However, this term does not do justice to the 
proactive way in which many pharmacovigi-
lance centers seek to operate, even if resource 
constraints often limit the ability to interact 
adequately with reporters. Moreover, “sponta-
neous reporting” does not fit well with the 
reporting situation of today, when most coun-
tries have introduced or enacted legislation 
which mandates reporting from pharmaceuti-
cal companies. Reporting may also include 
canvassed or stimulated reporting of suspected 
reactions of particular interest.

Underlying the concept of a spontaneous post-
marketing AE/ADR pharmacovigilance report-
ing system is the notion that clinical observations 
made at the point of care are often valuable pieces 
of information in further refining the knowledge 
of a drug’s safety profile. This is an important, 
though frequently underemphasized, idea.

First, after approval, when formal study often 
ends and marketing of the medicine begins, 
there is often no further systematic way to con-
tinue the study of a medicine’s safety, or even to 
generate drug safety hypotheses. While scien-
tific advances and access to new data sources 
(e.g., electronic healthcare records) may provide 
some opportunity to monitor the safety of a 
marketed medicine, these alternative approaches 
to safety signal detection remain unproven. Such 
sophisticated methods are not widely used in 
many regions, and when used, may cover a lim-
ited number of drugs and outcomes. In contrast, 
existing pharmacovigilance reporting systems 
apply to all marketed medicines and are relevant 
to most drug safety issues of interest.

Second, when healthcare professionals, patients, 
and consumers want to make notification of a 
potentially adverse effect of a medication, it is use-
ful for this information to be systematically organ-
ized, stored, and analyzed. A reporting system fills 
this need. If such information were not systemati-
cally collected, potentially valuable data about 
medicines would be lost.

Third, this system implies an important role 
for healthcare professionals in postmarketing 
safety assessment. Although the practices and 
systems for healthcare professionals to report 
AEs/ADRs vary from region to region, the qual-
ity of reports is always dependent on the details 
provided by these professionals.

Spontaneous Reports and Solicited Reports
Another key concept in understanding the 
 contents of a pharmacovigilance database is the 
distinction between a “spontaneous report” and a 
“solicited report.” While many pharmacovigi-
lance databases are often referred to as “sponta-
neous report databases,” the reports in them are 
often a mix of spontaneous and solicited reports, 
as well as reports from other sources. The differ-
ences between these two types of reports can 
explain the quantity and quality of reports in 
a  pharmacovigilance database, and often can 
explain important distinctions between pharma-
covigilance databases.

The ICH E2D guideline on Post‐Approval 
Safety Data Management: Definitions and 
Standards for Expedited Reporting defines a 
spontaneous report as follows [9]:

A spontaneous report is an unsolicited 
 communication by a healthcare professional 
or consumer to a company, regulatory author-
ity or other organization (e.g. WHO, Regional 
Center, Poison Control Center) that describes 
one or more adverse drug reactions in a 
patient who was given one or more medicinal 
products and that does not derive from a 
study or any organized data collection scheme. 
Stimulated reporting can occur in certain sit-
uations, such as notification by a “Dear 
Healthcare Professional” letter, publication in 
the press, or questioning of healthcare profes-
sionals by company representatives. These 
reports should be considered spontaneous. 
Consumer adverse reaction reports should be 
handled as spontaneous reports irrespective 
of any subsequent “medical confirmation”. 
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Regulatory Authorities might require medical 
confirmation for the purpose of expedited 
reporting. Emphasis should be placed on the 
quality of the report and not on its source. 
Even if reports received from consumers do 
not qualify for regulatory reporting, the cases 
should be retained.

Several features of this definition are worth not-
ing. First, by requiring that the report be 
directed to a pharmaceutical company, regula-
tory authority, or other organization responsi-
ble for surveillance of the adverse effects of 
medicines, the definition implies, but does not 
explicitly state, that the reporter specifically 
intended to report a suspected adverse drug 
reaction. However, in current practice, most 
pharmacovigilance reporting systems do not 
consider the reporter’s intent when determining 
if a report is a spontaneous report. For example, 
a patient who has been on a chronic daily medi-
cine for hypercholesterolemia for many years 
may contact that medicine’s manufacturer to 
ask if there are any known drug interactions 
between that medicine and another product, 
such as an antiinflammatory agent that may 
have been recently prescribed for a sprained 
ankle after a sports injury. The intent of the call 
was to seek information, not to report a sus-
pected adverse drug reaction. Nonetheless, this 
report meets the definition of a spontaneous 
report, at least in those systems in which adverse 
events, and not only adverse drug reactions, 
are  collected. The consideration of stimulated 
reports as spontaneous reports is consistent 
with this logic.

Second, and importantly for pharmacovigi-
lance systems that require reporting of adverse 
events and not only adverse drug reactions, the 
definition does not require a causality assess-
ment. For the purposes of meeting adverse event 
reporting requirements, ICH E2D notes that 
“spontaneous reports associated with approved 
drugs imply a suspected causal relationship” [9]. 
It is important to note that this implied causal 

relationship is for the purposes of regulatory 
reporting, and need not represent a scientific or 
medical conclusion.

Third, the requirement that the report not 
derive from a study or an organized data collection 
scheme necessitates existence of another category 
of report to describe adverse events occurring in 
clinical trials, other studies, and certain organized 
programs sponsored by pharmaceutical compa-
nies that may collect data on adverse events. 
CIOMS V (Council for International Organizations 
of Medical Sciences) recognized the need to 
describe those adverse event reports derived not 
only from formal clinical trials or other studies, 
but also from the increasing number of com-
pany‐sponsored programs, such as marketing 
programs and patient‐support programs, that 
promote interaction between the company and 
patients – and thus the chance for companies to 
learn about adverse events [12]. CIOMS V pro-
posed the idea of “solicited” reports, which was 
formalized in ICH E2D as follows [9]:

Solicited reports are those derived from 
organized data collection systems, which 
include clinical trials, registries, post‐
approval named patient use programs, other 
patient support and disease management 
programs, surveys of patients or healthcare 
providers, or information gathering on effi-
cacy or patient compliance. Adverse event 
reports obtained from any of these should 
not be considered spontaneous.

For the purposes of safety reporting, solic-
ited reports should be classified as study 
reports, and therefore should have an appro-
priate causality assessment by a healthcare 
professional or an MAH. Further guidance 
on study‐related issues, such as managing 
blinded therapy cases, can be found in the 
ICH E2A guideline.

Unlike its recommendation for spontaneous 
reports, ICH E2D recommends that solicited 
reports be subjected to a causality assessment 
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for regulatory reporting; in general, only 
those serious adverse events deemed causally 
related are to be reported. ICH E2D also notes 
other types of adverse event reports, such as 
reports from the medical literature, reports 
from the internet, reports a company obtains 
in accordance with contractual relationships 
with another company, and reports a com-
pany receives from a regulatory authority. 
The first two types are considered unsolicited 
(though not spontaneous) while the latter two 
are considered solicited [9].

The CIOMS [12] and ICH E2D [9] efforts 
were initiated to provide a framework for reg-
ulatory reporting of adverse events, and many 
jurisdictions have incorporated the ICH E2D 
principles in their directives, regulations, 
guidelines, and guidance documents. While a 
discussion of regulatory reporting require-
ments is beyond the scope of this chapter, an 
understanding of the distinction between 
spontaneous reports and solicited reports is 
important because it is essential to under-
standing the contents of a pharmacovigilance 
database. For example, if a pharmaceutical 
company contributes the majority of reports 
to a particular pharmacovigilance database, 
that database can be expected to have more 
solicited reports, as well as spontaneous 
reports that result from interactions between 
the company’s sales force and healthcare 
 professionals, than a pharmacovigilance data-
base whose reports are derived mainly from 
hospital‐based pharmacovigilance centers. 
The distinction may also be important in the 
comparison of adverse event reports between 
two products in the same pharmacovigilance 
database. For example, in a single pharma-
covigilance database, there may be more 
adverse event reports for a product that is 
actively promoted and marketed (and thus has 
a large sales force and one or more patient‐
focused marketing programs) than a product 
for which such an extensive marketing 
 program is not in place.

Overview of Pharmacovigilance 
Reporting Systems

The goal of a postmarketing, or postapproval, 
safety program is to identify drug‐related AEs 
or ADRs that were not identified prior to 
approval, to refine knowledge of the known 
adverse effects of a drug, and to understand 
better the conditions under which the safe use 
of a drug can be assured.

The scope of pharmacovigilance is broad. The 
core activity is usually the identification of previ-
ously unrecognized AEs/ADRs with use of the 
drug. However, it is not sufficient simply to note 
that use of a drug can lead to an AE/ADR. Rather, 
an investigation into not only the potential 
causal role of the drug in the development of the 
AE/ADR, but also the conditions leading to the 
occurrence of the AE/ADR in one person or 
population and not in others must be the focus 
of any postmarketing drug safety effort. Factors 
such as dose–response relationships, drug–drug 
interactions, drug–disease interactions, drug–
food interactions, and the possibility of medica-
tion errors must be carefully considered.

A full understanding of the factors that can 
lead to an AE/ADR may yield ideas for effective 
interventions to minimize the severity or occur-
rence of the AE/ADR, and thus enhance the safe 
use of the drug. For this reason, the approach to 
detecting and understanding clinically impor-
tant AEs/ADRs in the postmarketing period 
must be as comprehensive as possible.

The identification of a new safety issue with a 
medicinal product often begins with a single 
observation. Such observations may arise from 
animal studies, chemical studies and assays, or 
observations of human experience with the 
medicine. In the postmarketing period, such 
observations are usually clinical observations, 
often made at the point of care in the course of 
clinical practice. A practitioner or patient notes 
the development of symptoms or signs that 
were not present, or were present in less severe 
form, prior to the patient’s using the medicine. 
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If this sign or symptom is not listed in the 
 product’s approved labeling, patients and 
healthcare professionals may not think to attrib-
ute it to the medicine. If further evaluation 
reveals a clinically significant process (e.g., liver 
injury, rhabdomyolysis, agranulocytosis), it is 
important to keep in mind the possibility of a 
side effect due to a medication in the differential 
diagnosis of the event. If a medication side effect 
is not included in the differential diagnosis, a 
potential association between a medicine and 
previously unrecognized side effect will not be 
made, and the patient may not be treated 
 appropriately. If, on the other hand, the practi-
tioner believes the medicine played a role in the 
development of the new clinical findings, he or 
she can forward relevant clinical information to 
either the medicine’s manufacturer or to a drug 
regulatory authority, such as the FDA in the 
United States or other national or regional 
authorities, as appropriate.

In the postmarketing period, the investigation 
of AEs/ADRs is a multidisciplinary effort. The 
analysis of a complex AE/ADR can involve the 
fields of medicine, pharmacology, epidemiology, 
statistics, pharmacy, toxicology, and others. 
There are several methods of clinical postmar-
keting safety assessment. These include the 
review of case reports and case series from spon-
taneous reporting systems, a wide variety of 
types of observational epidemiologic studies, and 
clinical trials. This chapter will focus on sponta-
neous pharmacovigilance reporting systems. No 
one method is a priori better than another in all 
settings. Rather, the choice of methods depends 
on the particular safety question to be answered.

Spontaneous AE/ADR reports have at times 
served as a necessary and sufficient basis for 
regulatory actions including product withdraw-
als. For instance, in August 2001 the manufac-
turer of cerivastatin withdrew the drug from 
marketing based on “a markedly increased 
reporting rate of fatal rhabdomyolysis” com-
pared to the other drugs in the statin class [13]. 
Additional confirmation of the unacceptably 

high risk of rhabdomyolysis with cerivastatin 
was eventually available three years later when 
results of a well‐designed epidemiologic study 
were published [14]. Clearly, that time frame 
would have been far too long to delay decisive 
action, which in retrospect was soundly based 
on the signal from spontaneous reports. The 
timely detection of this signal would not have 
happened without the efforts of the point‐of‐
care clinicians who took the time to report 
rhabdomyolysis when it occurred in their 
patients. Some drug safety experts have argued 
that decisive action could have been taken even 
earlier based on clinical trial data with a higher 
unapproved dose of cerivastatin, coupled with 
early postmarketing experience [15].

Patient Reports and Healthcare 
Professional Reports
Spontaneous adverse event reports, by their 
nature, originate at the point of care. While some 
pharmacovigilance systems were once restricted 
only to reports from healthcare professionals, 
there has been growing recognition of the 
importance of reports from patients, and many 
systems now accept patient‐generated reports. 
For example, Italy, Denmark, the Netherlands, 
and Sweden have accepted patient reports since 
the early 2000s, while Australia has accepted 
them since 1964 [16]. The United States, which 
has accepted adverse event reports from con-
sumers since 1969, developed the MedWatch 
program [17] in 1993 to facilitate adverse event 
reporting from both patients and healthcare 
professionals. Nonetheless, as recently as 2012, 
some countries with highly developed regula-
tory systems were not actively collecting patient 
reports. Of 50 countries with developed drug 
regulatory systems surveyed in 2013, 44 had 
direct patient reporting systems, 17 of which 
were started in 2012 or 2013 [16].

There is no internationally recognized defini-
tion of a “patient report.” ICH E2D defines a 
“consumer” as “a person who is not a healthcare 
professional such as a patient, lawyer, friend, or 
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relative of a patient” and notes that “consumers” 
can submit adverse event reports [9]. Of note, in 
2016 approximately 1.7 million reports were 
entered into the US FAERS; consumers were the 
source of about half (845 355) of these reports, 
the majority of which were submitted via 
 pharmaceutical companies [7].

Despite initial skepticism about the value of 
patient reports [18], there is growing evidence 
that they are valuable because they often con-
tain more detail than reports generated by 
healthcare professionals and can serve to com-
plement those reports [19]. A study of the 
United Kingdom’s Yellow Card system, which 
allows for AE reporting by both healthcare 
practitioners and patients, found that reports 
generated by patients had a higher median 
number of suspected adverse drug reactions per 
report compared to those generated by health-
care professionals, had a higher median word 
count, had more detailed information about 
symptoms, and more description of the emo-
tional and social impact of the adverse event 
[20]. A study comparing adverse event reports 
submitted by patients and those submitted by 
healthcare professionals to the Dutch National 
Pharmacovigilance Center Lareb found that 
reports from patients were comparable to those 
from health professionals for the purpose of 
causality analysis [21]. Similarly, a recent UMC‐
Lareb collaboration assessed the contribution of 
patient reports to global signal detection in 
VigiBase, and concluded that patient reports 
provide unique information valuable in signal 
assessment, and recommended their inclusion 
in signal detection processes [22].

In addition to their value in describing adverse 
drug reactions, patient reports contribute to sig-
nal detection. A study of signals sent from the 
Dutch National Pharmacovigilance Center 
Lareb to the Dutch Medicines Evaluation Board 
found that the number of patient reports that 
contributed to a signal increased from zero in 
2003 to 31 in 2008, and that the proportion of 
patient reports contributing to signal generation 

equaled their proportion in the database [23]. In 
one pharmaceutical company’s AE database, 
 signals were detected earlier when patient 
reports were included, compared to when only 
reports from healthcare providers were included 
[24]. Experience in the UK Yellow Card system 
suggests that, when analyzed separately from 
healthcare professional reports, patient reports 
may generate additional signals based on dispro-
portionality [25].

Given the potential importance of patient 
reporting, efforts have been made to both 
encourage and simplify it. In 2012, the World 
Health Organization published a guide for 
countries to use in setting up a reporting system 
for the general public [26], which recommends 
that a patient reporting system ideally be estab-
lished in the setting of an existing spontaneous 
reporting system. The reporting form for 
patients may be a dedicated patient‐reporting 
form or the same form used by health profes-
sionals, but it should be understandable by a 
layperson. Education of the public on the impor-
tance of patient reporting as well as training of 
pharmacovigilance staff in the assessment of 
patient reports are other elements of the WHO 
guideline.

At the national level, a law passed in the US in 
2008 required pharmaceutical manufacturers to 
include the following statement in direct‐to‐con-
sumer advertising: “You are encouraged to report 
negative side effects of prescription drugs to the 
FDA. Visit www.fda.gov/safety/medwatch, or 
call 1–800–FDA–1088.” This statement, how-
ever, did little to increase patient reporting of 
adverse events. In a sample of 123 drugs, the 
average monthly increase following the imple-
mentation of this statement was 0.24 reports per 
drug [27]. More recently, in 2013, the FDA intro-
duced a consumer‐friendly adverse event report-
ing form [28], following the introduction of 
which patient reporting increased by 36% [29].

Because most AE/ADR reporting systems 
rely on healthcare professionals, patients, and 
consumers to submit reports voluntarily, it is 
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generally recognized that there is substantial 
underreporting of AEs/ADRs via current sys-
tems. Two survey‐based studies conducted in 
the US in the 1980s, one in Maryland [30] and 
the other in Rhode Island [31], examined phy-
sician reporting to the FDA and concluded 
that fewer than 10% of AEs/ADRs were 
reported to the FDA. These studies were con-
ducted prior to the development of the cur-
rent MedWatch program [1] in 1993, and do 
not consider the contribution of reporting 
from sources other than physicians.

Calculating the proportion of adverse event 
reports that a reporting system receives requires 
that the true number of AEs/ADRs in the popula-
tion be known. For most AEs/ADRs, this number 
is not known or readily available. In some cases, 
however, data are available that allow an estimate 
of the extent of reporting to be calculated. For 
example, the extent of reporting to the FDA of 
cases of hospitalized rhabdomyolysis associated 
with statin use was estimated [32] using a pro-
jected estimate of the number of such cases in the 
US and comparing it to the number of reports of 
statin‐associated hospitalized rhabdomyolysis in 
the FAERS, a database that houses the FDA’s 
postmarketing adverse event reports. The pro-
jected national estimate was obtained by using 
incidence rates from a population‐based cohort 
study, and applying those rates to national esti-
mates of statin use. Across four statins (atorvas-
tatin, cerivastatin, pravastatin, and simvastatin), 
the estimated overall extent of AE reporting was 
17.7%. For individual statins, the estimated extent 
of reporting ranged from 5.0% (atorvastatin) to 
31.2% (cerivastatin). Further analysis revealed 
that the high proportion of reporting of cerivas-
tatin cases was driven by reports received after 
the dissemination of a Dear Healthcare 
Professional letter notifying physicians of the 
risks of cerivastatin‐associated rhabdomyolysis. 
The estimated extent of reporting was 14.8% 
before the letter and rose to 35.0% after. It is 
important to note that the results of this study 
apply only to reporting cases of statin‐associated 

rhabdomyolysis. The extent of reporting for 
different drug‐event pairs will be different, and 
cannot be estimated from the results of this 
study.

Once reports are received by national phar-
macovigilance centers, they are entered into 
AE/ADR databases. These databases can then 
be inspected for drug safety signals, which form 
the basis of further study, necessary regulatory 
action, or both.

Report Characteristics

The individual case report is the fundamental 
unit of a postmarketing pharmacovigilance 
reporting system. The extent to which such a 
reporting system can address specific drug 
safety questions depends, in large part, on the 
characteristics and quality of the individual 
reports. Specific report formats differ across 
jurisdictions, though many countries and 
regions collect information compatible with 
the ICH E2B format. The updated electronic 
messaging standard ICH E2B (R3) [33] speci-
fies both administrative and product identifica-
tion information, as well as information on the 
case. The standard is designed to work with a 
variety of national and international systems 
and incorporates endorsement of standards by 
participating standards development organiza-
tions such as the International Standards 
Organization (ISO), Health Level Seven (HL7), 
European Committee for Standardization 
(CEN), and Clinical Data Interchange Standards 
Consortium (CDISC) to enable wider interop-
erability across the regulatory and healthcare 
communities. Although potentially compre-
hensive in scope, the format also allows for lim-
ited data to be submitted. The principal 
domains of case information in the ICH E2B 
standard include patient characteristics, 
reaction(s) or event(s), results of tests and pro-
cedures relevant to the investigation of the 
patient, drug(s) information, and a narrative 
case summary and further information.
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Regardless of the specific formatting require-
ments across jurisdictions, there are some fun-
damental components of an individual safety 
report that are important for a thorough review.

Product identification, in as much detail as 
possible, is essential for an assessment of a case 
report. For pharmaceuticals, the identification 
of the active ingredient(s) is critical to product 
identification. However, other factors can also 
be important, depending on the specific safety 
question. For example, the formulation of the 
product can be important, as certain active 
ingredients may be present in a variety of for-
mulations. Many opioid agents come in oral, 
injectable, and transdermal formulations. 
Because the pharmacokinetic and other phar-
maceutical properties can differ across these 
formulations, information on the formulation is 
important in determining if there are formula-
tion‐specific effects, including those that may 
result from medication errors. Additionally, if 
the drug safety question involves the assessment 
of an AE/ADR related to a product quality 
defect, information on both manufacturer and 
lot/batch number can be very important, as 
product quality problems typically involve spe-
cific lots from an individual manufacturer.

Reports describing medication errors, or the 
potential for medication errors, ideally contain 
information on the product involved, the 
sequence of events leading up to the error, the 
work environment in which the error occurred, 
and the type of error that occurred [34].

Characteristics of a good‐quality case report 
have been published [33,34]. As discussed below, 
these characteristics include adequate informa-
tion on product use, patient characteristics, medi-
cal history, and concomitant treatments, and a 
description of the AE/ADR, including response to 
treatments and clinical outcome. Our experience, 
based on many years of reviewing case reports, is 
that while a substantial amount of useful clinical 
information can be written in a succinct narrative, 
most narratives are incomplete, many to the 
extent that they are uninterpretable. While 

follow‐up with the reporter is sometimes feasible 
for drug safety analysts during case review, this 
has been the exception rather than the rule, often 
due to resource constraints. Incomplete and 
uninterpretable case reports limit the effective-
ness of postmarket pharmacovigilance reporting 
systems. Attempts to improve the systems will 
need to address the problem of poor case report 
quality rather than merely increasing the number 
of reports. Unfortunately, it is not unusual for the 
FDA to receive potentially important spontane-
ous reports which cannot be evaluated because of 
missing key information. For instance, 13 (2%) of 
a total 675 reports of hypersensitivity AEs/ADRs 
associated with heparin administration during an 
investigation of tainted heparin were excluded 
from an analysis of AERS data because the reports 
were “not interpretable” [35].

Information on product use should include 
the start date(s), stop date(s), doses, frequency 
of use, and indication for use. Dosage informa-
tion is important in exploring dose–event rela-
tionships. Duration of use is important for 
characterizing the time course of AEs/ADRs 
relative to initiation of product use. Indication 
for use is also an important piece of informa-
tion, as many products are used for more than 
one indication (either on‐label or off‐label). 
Certain AEs/ADRs may be related to specific 
indications. Alternatively, concomitant medica-
tions and other factors related to one indication 
but not others may confound interpretation of 
the AE/ADR. For these reasons, indication for 
use is an important element of a case report.

Patient information should include age, gen-
der, medical history, and concomitant medica-
tion usage. The presence of factors that could 
confound the relationship of the drug to the AE/
ADR, especially elements of the medical history 
and concomitant medication usage, are critical 
to the interpretation of individual case safety 
reports.

A description of the AE/ADR that allows for 
independent medical assessment is critical. A 
simple listing of coded diagnostic and procedure 
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terms is generally insufficient for adequate 
assessment of the report. A narrative of the event 
that includes the temporal relationship of drug 
usage to the development of the AE/ADR, the 
clinical and diagnostic features, the clinical 
course, any measures instituted to treat the AE/
ADR, the response to these measures, and the 
clinical outcome are all essential components of a 
high‐quality case report. Results of laboratory 
tests, imaging, and pathology results facilitate an 
independent interpretation of the report. 
Information on dechallenge (the resolution of the 
AE/ADR when the medication is withdrawn) and 
rechallenge (the redevelopment of the AE/ADR 
when the drug is reintroduced), if available, can 
be invaluable.

Social Media

Social media are a range of computer‐based 
technologies that allow the creation and shar-
ing of information, ideas, photographs, and 
other messages via electronic communication. 
User‐generated content is a defining feature of 
social media. This content can be made availa-
ble to others via computer‐based networks that 
connect one user with other users or groups to 
form social networks. Depending on privacy 
settings, which in some cases may be chosen by 
the user, the user’s content may be widely avail-
able to other users or it may be restricted to 
only certain users or groups. Given the wide-
spread use of the internet and, to a lesser 
degree, of social media for health‐related top-
ics, there is interest in whether social media can 
be a source of drug safety signals or otherwise 
shed light on adverse drug reactions [36]. 
Because social media posts describe individual 
experiences, they can, in theory, describe 
adverse reactions to medicines. The use of 
social media for pharmacovigilance presents 
both opportunities and challenges [37,38].

With an estimated 2.5 billion users of social 
media worldwide [39], including in parts of the 
world where formal pharmacovigilance programs 

are not highly developed, social media have the 
potential to be a source of patient‐ and con-
sumer‐generated information about adverse 
events [37]. The ability to tap into this potential 
source of information is especially relevant 
given the growing importance of, and attention 
to, patient‐ and consumer‐generated reports in 
pharmacovigilance.

The challenges of identifying drug safety sig-
nals in social media include all those inherent in 
traditional spontaneous reporting systems (e.g., 
underreporting, duplicate reports, lack of rele-
vant details, and stimulated reporting) as well as 
additional ones posed by the unique features of 
social media. These latter challenges include the 
general lack of structure of social media posts, 
the often informal nature of writing, the use of 
“street names” for established pharmaceuticals 
without corresponding use of standard brand 
names or active ingredient names, the use of 
slang or other informal language to describe 
symptoms or other medical concepts, and the 
diffuse audiences in social media. A further 
challenge is that while there are millions of 
social media posts, only a small percentage will 
concern adverse drug reactions. These chal-
lenges might be expected to pose more prob-
lems in large general social media sites than in 
smaller, health‐related social media sites. For 
example, a study using the general social media 
site Twitter to identify adverse drug reactions 
found that of 10 822 tweets that mentioned a 
drug of interest, an adverse drug reaction, deter-
mined by expert annotation, was present in 
approximately 1200 [40]. By contrast, a similar 
study based in the health‐related social media 
site DailyStrength found that approximately 
24% of posts that mentioned a drug also men-
tioned an adverse drug reaction [41].

In traditional adverse event reporting systems, 
data are entered using a structured format, such 
as the ICH E2B standard, and drug and adverse 
event information are coded using standard dic-
tionaries and terminologies. Importantly, data 
collection methods in these traditional systems 
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usually are designed to collect relevant informa-
tion and have the final data structure in mind. 
Social media do not share these characteristics. 
Because most social media posts do not concern 
drugs or drug‐related adverse events, techniques 
to identify adverse events in social media must 
first identify mentions of drugs, and then must 
further identify mentions of drug–adverse event 
pairs. Once these pairs are identified, further 
analyses can begin.

The use of social media for pharmacovigi-
lance is an area of active research to address 
these challenges [38]. Current research focuses 
on the use of natural‐language processing and 
other techniques, such as supervised machine 
learning, to identify drug‐related adverse events 
in social media [42]. One of the biggest 
 challenges in this regard is the distinction of 
drug mentions associated with an adverse event 
from those with no association to an adverse 
event, a task complicated by the fact that though 
the former group is the relevant one, it is usually 
notably smaller than the latter group.

Another area of research is determining the 
utility of social media in pharmacovigilance. In 
2014, the Innovative Medicines Initiative (IMI), 
a public–private partnership between the 
European Union and the European Federation 
for Pharmaceutical Industries and Associations, 
launched WEB‐RADR: Recognising Adverse 
Drug Reactions to develop new technical tools 
to facilitate the detection and analysis of poten-
tial adverse drug reactions in social media sites. 
It also aimed to develop a mobile phone app for 
the reporting of suspected ADRs to regulatory 
authorities in the European Union (in the con-
text of traditional adverse event reporting). 
One of several planned outgrowths of these 
efforts is the establishment of a regulatory 
framework for social media mining for adverse 
drug reactions [43].

Preliminary results of IMI WEB‐RADR, based 
largely on analyses of posts in Twitter, suggest 
that some medicines receive more attention in 
social media relative to their frequency in 

VigiBase, while others receive much less. 
Individual Twitter posts were deemed to be not 
valuable, perhaps due to Twitter’s character 
length restrictions; however, combining infor-
mation from multiple posts generated by the 
same user was not examined [44]. Preliminary 
recommendations from IMI WEB‐RADR for a 
regulatory framework note that data from social 
media should be treated as a “secondary use of 
data,” the use of social media for signal detec-
tion and validation should be optional, report-
ing of individual case safety reports of adverse 
drug reactions from social media sites should 
not be required, and follow‐up with social 
media users should not be required. Rather, 
drug manufacturers should include insights 
gained from social media regarding the safety of 
their products in the product’s periodic safety 
update report or risk management plan [45]. In 
conclusion, more work is needed to refine the 
methods of extracting and analyzing data from 
social media for detection of adverse drug 
reactions.

National Pharmacovigilance Systems

The organization of postmarketing safety report-
ing systems and national pharmacovigilance sys-
tems varies around the world. The fundamental 
feature is that health professionals, and in some 
cases patients or consumers, are encouraged to 
send reports of AEs/ADRs to one or more speci-
fied locations. These locations can be the drug 
regulatory authority, an academic or hospital‐
based pharmacovigilance center (often working 
with or on behalf of a drug regulatory authority), 
or the drug manufacturer. The roles of these 
institutions vary from country to country, and 
depend greatly on the regulatory and national 
drug monitoring system in the country.

In low‐ and middle‐income countries, with 
varying regulatory infrastructure, the focus in 
pharmacovigilance has been different from that 
in the more affluent parts of the world. Reports 
can result from counterfeit and substandard 
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drugs, known ADRs and drug interactions of 
concern to reporters, and ADRs resulting from 
medical error. In some countries, responding to 
queries about adverse reaction incidence, diag-
nosis, and management is a major part of the 
work of pharmacovigilance centers. In develop-
ing countries, there are often deficiencies in 
access to up‐to‐date information on drug safety 
that need remedying. On the other hand, large 
donations of new drugs to combat the endemic 
scourges of malaria, HIV/AIDS, tuberculosis, 
infestations, and other diseases, along with 
 vaccines, have led to the high priority of moni-
toring their use for both safety and efficacy.

However, in many low‐ and middle‐income 
countries there is currently not enough capacity 
for effective drug safety monitoring, and the 
improved access to new medicines adds addi-
tional strain on already overburdened or nonex-
istent pharmacovigilance systems. A survey 
from 2010 of pharmacovigilance systems in 
low‐ and middle‐income countries found that 
seven of 55 responding countries indicated that 
they had no designated system in place, and 
fewer than half of the respondents had a budget 
for pharmacovigilance [46]. Consequently, lack 
of funding was mentioned as a hindrance to the 
development of pharmacovigilance, together 
with lack of training and a culture that does not 
promote AE/ADR reporting. Suggested key 
developments included training for health 
workers and pharmacovigilance program man-
agers; active surveillance methods, sentinel sites 
and registries; and better collaboration between 
pharmacovigilance centers and public health 
programs, with a designated budget for phar-
macovigilance included in the latter.

The WHO is now working together with 
major donor organizations to address the urgent 
need for capacity building in low‐ and middle‐
income countries. The strategy is focused on 
sustainable development, covering not only the 
implementation of reporting systems, technical 
support, and training of healthcare profession-
als, but also improvements in governance and 

infrastructure to support pharmacovigilance 
activities in the broader context of regulatory 
systems strengthening.

The perceived responsibility of healthcare 
professionals to report AEs/ADRs often varies 
around the world. Because the largest gaps in 
drug safety knowledge are believed to be for 
recently approved medicines, most countries 
emphasize the need to report AEs/ADRs, even 
less serious ones, for this group of medicines. 
For example, in the United Kingdom, recently 
approved drugs containing new active ingredi-
ents are marked in the British National 
Formulary with a black triangle [47], a symbol 
used to denote a product whose active ingre-
dient has been newly licensed for use in the 
UK. In some cases, drug products meeting 
certain additional criteria are also marked 
with a black triangle, even if the active ingre-
dient has been previously approved. The aim 
of the black triangle program is to prompt 
health professionals to report all suspected 
adverse reactions associated with the use of 
these products. In some countries, it is man-
datory for physicians and dentists to report 
cases of suspected adverse drug reactions to 
the regulatory authority. Most countries, how-
ever, do not have such specific programs or 
requirements, but health professionals are 
encouraged to report and the national report-
ing centers provide general advice to health 
professionals on what events to report.

In a majority of countries, including countries 
in the ICH regions, other high‐income coun-
tries, and 33 of 55 low‐ and middle‐income 
countries responding to a 2008 survey [46], 
pharmaceutical companies that hold marketing 
authorizations are obligated to report AEs or 
ADRs to the regulatory authority. In some coun-
tries, the event is reportable only if an attribu-
tion of causality has been made. In other 
countries, the event is reportable even if no 
attribution has been made. For example, in the 
United States, pharmaceutical companies are 
required by law to submit spontaneous reports 
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of AEs/ADRs, regardless of attribution of 
 causality, on an expedited basis if they are seri-
ous and unexpected. The AE/ADR is consid-
ered serious [1] when the patient outcome is 
death; life‐threatening; hospitalization (initial 
or prolonged); disability; congenital anomaly; or 
requires intervention to prevent permanent 
impairment or damage. Periodic reporting of 
other types of AEs/ADRs, such as those consid-
ered serious and expected (labeled), or nonseri-
ous, is typically required as well. The periodicity 
of such aggregate reports is determined by the 
length of time the drug has been marketed, with 
increased frequency for newly approved drugs, 
and decreased frequency (e.g., annual) with 
older drugs.

While spontaneous reports of AEs/ADRs 
usually originate initially from the point of care, 
the more proximal source of reports coming 
into the national pharmacovigilance centers 
may vary from country to country. In countries 
outside the ICH regions, the majority of reports 
are received directly from physicians in hospital 
and in general practice. Cumulatively over the 
past 40 years, most reports in the ICH region 
have come from the point‐of‐care initial 
reporter via the pharmaceutical companies to 
the regulatory authority; however, in several EU 
countries (e.g., all the Nordic countries), reports 
coming directly from health professionals to the 
regulatory authority greatly exceed company 
reports during this period. The patterns are 
likely to change towards a higher proportion of 
company reports in those many countries where 
pharmaceutical companies are legally obliged to 
report AEs/ADRs. Some countries restrict 
reports to those received by physicians. Other 
countries accept reports from pharmacists, 
nurses, and patients. There is a current trend 
towards encouraging direct patient or consumer 
reporting, replacing the notion held by many in 
the past that such reports would not be a relia-
ble and useful source of information.

In most countries, the national pharmacovigi-
lance center is part of the drug regulatory 

authority; in some, the monitoring is carried 
out  jointly by the drug regulatory authority/
Ministry of Health and an independent institu-
tion. In Germany, the Federal Institute for Drugs 
and Medical Devices (BfArM) maintains a joint 
database for recording reported adverse drug 
reactions, together with the Drug Commission 
of the German Medical Profession. According 
to the professional code of conduct of physi-
cians in Germany, all adverse drug reactions 
should be reported to the Drug Commission. In 
The Netherlands, the practical responsibility for 
postmarketing surveillance is shared between 
the Medicines Evaluation Board (MEB) and the 
Netherlands Pharmacovigilance Centre (Lareb). 
The MEB handles communications with market 
authorization holders; the role of Lareb is to 
process and analyze reports from health profes-
sionals and patients.

Decentralized drug monitoring systems exist 
both within and outside the ICH region. In 
France, the French Medicines Agency coordi-
nates the network of 31 regional centers that are 
connected to major university hospitals. In the 
UK, there are four regional centers connected to 
university hospitals which have the special func-
tion of encouraging reporting in their regions. 
The reporting system in China involves 31 
regional centers reporting to the National Center 
for Adverse Drug Reaction Monitoring in the 
China Food and Drug Administration (CFDA). 
In India, the Pharmacovigilance Programme of 
India has been in operation since 2010, with the 
Indian Pharmacopoeia Commission (IPC) run-
ning the National Coordinating Centre. The sys-
tem is now operating nationwide, with 250 local 
monitoring centers in medical institutes.

National and International 
Postmarketing Safety Databases

Once submitted to the national drug safety moni-
toring program, individual case safety reports are 
stored in computerized postmarketing safety 
databases. Many national drug regulatory 
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authorities have databases which include sus-
pected AE/ADR reports derived from a postmar-
keting reporting system, as well as reports from 
other sources, such as the published medical lit-
erature, and sometimes certain types of serious 
adverse events (e.g., those considered by a clin-
ical investigator to be potentially caused by 
a  study drug) from clinical trials. Examples of 
national reporting systems and databases 
include the Blue Card system (Australia), Canada 
Vigilance (Canada), the Canadian Adverse Events 
Following Immunization Surveillance System 
(CAEFISS) database (Canada), the French 
Pharmacovigilance Spontaneous Reporting 
System database (France), the Adverse Drug 
Reaction Information Management System of 
the Pharmaceutical and Medication Devices 
Agency, Ministry of Health, Labor, and Welfare 
(Japan), the Lareb database (Netherlands), the 
BiSi database (Sweden), the MHRA ADR data-
base (United Kingdom), the FDA Adverse Event 
Reporting System (FAERS) database (United 
States), and the Vaccine Adverse Event Reporting 
System (VAERS) database (United States). In 
addition, there are two international reporting 
and database systems: EudraVigilance [2] in the 
European Union (run by the European Medicines 
Agency, EMA) and VigiBase [48] pooling data 
from the more than 120 member countries 
of  the WHO International Drug Monitoring 
Programme (run by the Uppsala Monitoring 
Centre, UMC). VigiBase is also the system used 
as the national database by around 70 pharma-
covigilance centers around the world; reports are 
stored directly in VigiBase but entered, managed, 
and analyzed remotely through an internet‐based 
data management tool, VigiFlow.

To understand the results of an analysis of indi-
vidual case reports from a postmarketing safety 
database, it is necessary to understand the unique 
features of the database, as each large postmar-
keting safety database differs from the others. It is 
necessary to understand if, and how, the data are 
coded. Many databases code drugs according to a 
local or national standard drug dictionary, while 

others use a standard international dictionary, 
such as WHODrug [49]. Similarly, many data-
bases code individual AE/ADR reporter verbatim 
terms which describe the AE/ADR according to a 
standard medical dictionary, such as the Medical 
Dictionary for Regulatory Activities (MedDRA) 
[50]. In the ICH regions (Europe, Japan, and the 
United States), use of MedDRA is mandatory for 
coding of AEs/ADRs.

Beyond coding, several other features of the 
database are important to understand. First, does 
the database include only reports from postmar-
keting systems, or does it include reports from 
other sources, such as the medical literature or 
clinical trials? Second, does the database include 
reports only from health professionals, or does it 
also include reports from patients and consum-
ers? Third, what is the range of medical products 
included in the database – drugs, biologics, blood, 
blood products, vaccines, dietary supplements? 
Fourth, does the database include reports from 
only one country or region, or does it include 
reports from regions outside the jurisdiction of 
the regulatory authority? Fifth, does the database 
include both “nonserious” and “serious” AEs/
ADRs; if so, what proportion of the reports have 
been classified by the health authority (or other 
database manager) as serious? Sixth, does the 
database include all adverse events (i.e., events 
which may or may not be judged to be causally 
related to a medicine) or does it include only 
adverse drug reactions (i.e., events for which a 
likely causal relationship has been determined 
prior to entering the report into the database)? 
Seventh, how many individual case reports are in 
the database? Each of these factors is important in 
determining the utility of a particular database in 
answering a specific drug safety question.

Detecting Signals from a Postmarketing 
Safety Database

The impetus to use a postmarketing safety data-
base to evaluate the potential relationship of 
an AE/ADR to a drug may come from various 
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sources. For example, postapproval animal 
studies may suggest that a certain AE/ADR may 
be associated with a drug. The finding that a 
particular member of a drug class is associated 
with a specific adverse effect may prompt a 
search for the same reaction in other members 
of the class. Publication of case reports or case 
series, or unanticipated safety findings from 
ongoing clinical trials can be important sources 
of new safety questions for a marketed product. 
These stimuli for more intensive review of AE/
ADR reports are external to the database.

Identifying potential associations of AEs/ADRs 
to drugs using only information within the data-
base involves the detection of signals. According 
to the WHO, a signal is “reported information on 
a possible causal relationship between an adverse 
event and a drug, the relationship being unknown 
or incompletely documented previously” [51]. 
While there have been many definitions of a sig-
nal put forth over the years, the important under-
lying principle is that a signal is a hypothesis that 
calls for further work to be performed to evaluate 
that hypothesis. Signal detection is the act of 
looking for or identifying signals from any source.

In the setting of a relatively small number of 
reports, review of groups of reports or periodic 
summaries of reports has been a standard method 
of signal detection. For example, one could look at 
a list of all reports in which the outcome was 
“death” to see if this outcome was reported more 
frequently for some drugs than others. Summaries 
based on specific organ class toxicities could be 
reviewed to examine whether reports in one sys-
tem organ class were proportionately more fre-
quent for one drug than others. These methods 
depend on the ability of a drug safety specialist to 
recognize new or unusual patterns of case reports. 
While an astute specialist can identify signals 
using this method, this manual review is often 
neither practical nor reproducible for detecting 
signals from large postmarketing safety databases, 
some of which contain several million records.

In an effort to address this challenge, data 
mining techniques have been applied to 

 pharmacovigilance AE/ADR databases. In 
broad terms, data mining refers to a process of 
analyzing data to find patterns. In the case of 
AE/ADR databases, most of these patterns 
would not be visible without the use of statisti-
cally based, computerized algorithms. A variety 
of specific algorithms have been applied to 
safety signal detection in AE/ADR databases 
(see Chapter 27) [52,53].

The fundamental feature of data mining tech-
niques used to analyze adverse event databases 
is that each is based on finding “disproportion-
alities” in data; that is, the finding that a given 
AE/ADR is reported for a particular drug more 
often than would be expected based on the 
number of reports of that AE/ADR for all other 
drugs in the database. Several features of these 
methods are worth noting.

First, the methods are transparent. While the 
total number of reports for a drug varies over 
time (and may be highest in the first few years of 
reporting), this temporal trend will not neces-
sarily alter the proportion of specific reactions 
for the drug. Thus, a given reaction may still be 
found to be disproportionately reported even as 
the total number of reports for the drug changes.

Second, these methods rely exclusively on 
reports within the database; no external data are 
needed. For this reason, understanding the char-
acteristics of the database, as discussed above, is 
important. This feature has several conse-
quences. Because the expected number of reports 
of a specific AE/ADR for a given drug (and thus 
the disproportionality of the drug–event pair) 
depend on the reports within the individual data-
base, the degree of disproportionality for a given 
drug–event pair may vary from one database to 
the next. In the extreme, a given drug–event pair 
may have a strong signal of disproportionality in 
one database and no such signal in another. A 
second consequence is that as the background 
information for all drugs in the database changes, 
so does the expected number of reports of a spe-
cific AE/ADR for a given drug (and again the dis-
proportionality of the drug–event pair).
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Third, a signal of disproportionality is a 
 measure of a statistical association within a col-
lection of AE/ADR reports (rather than in a 
population), and it is not a measure of causality. 
In this regard, it is important to underscore that 
the use of data mining is for signal detec-
tion – that is, for hypothesis generation – and 
that further work is needed to evaluate the 
signal.

Fourth, the absence of a signal of dispropor-
tionality in a postmarketing safety database is 
not evidence that an important AE/ADR is not 
associated with a particular drug.

Data mining is sometimes done using a subset 
of an AE/ADR database; for example, a portion 
of the database limited to a specific class of 
drugs might be used to find relative differences 
in the frequencies of specific AEs/ADRs across 
the class [54]. Some of the data mining tech-
niques used in pharmacovigilance have included 
the proportional reporting ratio, the reporting 
odds ratio, the Bayesian Confidence Propagation 
Neural Network (BCPNN), and the empirical 
Bayes method (also known as the Gamma 
Poisson Shrinker or the Multi‐item Gamma 
Poisson Shrinker) [55]. As part of the IMI, a 
public‐private partnership in Europe, the 
EMA established the Pharmacoepidemiological 
Research on Outcomes of Therapeutics by a 
European Consortium (IMI PROTECT) with a 
goal of conducting research to develop and test 
new tools for the benefit–risk assessment of 
marketed drugs. A range of signal detection 
algorithms were compared across seven sponta-
neous reporting databases, with no method 
found to be better than the others. Findings 
were inconsistent across databases. The choice 
of signaling criteria had a greater impact on sig-
nal detection performance than the choice of 
disproportionality methods [56,57].

Review of Case Reports

The review of individual case reports of AEs/
ADRs is a complex process that has been 

described elsewhere [58,59,60]. It typically 
begins by identifying one or more case reports 
with the outcome of interest. Because the case 
reports that form a case series often come from 
disparate sources, it is usually necessary to 
develop a case definition. The case definition 
centers on the clinical characteristics of the 
event of interest, without regard to the causal 
role of the medicine whose relationship to the 
adverse event is being investigated. Once a case 
definition is established, each report is reviewed 
to determine if the event meets the case defini-
tion and if the report is to be included in the case 
series. Depending on the specific question(s) to 
be answered by the case series, other exclusion 
criteria may also apply. For example, one would 
always exclude a case in which the report sug-
gests that the patient never took the medicine of 
interest. In other cases, one may restrict the 
case series to only certain formulations of the 
medicine (e.g., include case reports in which an 
intravenous formulation, but not an oral formu-
lation, was used, if such exclusion is appropriate 
for the question at hand), or to certain age 
groups (e.g., limit the case series to only case 
reports describing the suspected adverse events 
in pediatric patients, if such exclusion is appro-
priate for the question at hand), or to certain 
indications for use (e.g., limit the case series to 
case reports in which the medicine was used for 
a certain off‐label indication, if such exclusion is 
appropriate to the question at hand). Exclusion 
criteria for a case series must be carefully con-
sidered so that potentially relevant cases are not 
excluded, and all available information is fully 
assessed. In general, if the purpose of the case 
series is to examine the relationship between a 
medicine and a suspected AE/ADR that has not 
been previously associated with it, it is best to 
err on the side of inclusion to avoid missing 
clinically relevant, though incomplete, informa-
tion about cases of interest.

Once the case series has been developed, it 
is next necessary to review each case report 
individually to determine whether there is a 
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plausible causal relationship between the medi-
cine and the adverse event. At the level of the 
individual case report, it is often difficult to 
establish with certainty that the medicine caused 
the adverse event of interest (see Chapter  29) 
[61,62,63]. For example, if the AE/ADR of inter-
est is already common in the population that 
takes the medication, establishing a causal role 
for the medicine in the development of the con-
dition is generally not feasible using individual 
case reports or case series. For example, the inci-
dence of Parkinson disease is much higher in per-
sons over age 60 years than it is in persons below 
that age [64]. In this situation, review of a report 
describing a myocardial infarction in a 70‐year‐
old patient on an antiparkinsonian agent will 
generally not be informative in determining if the 
agent played a causal role in the development of 
the myocardial infarction, as myocardial infarc-
tion occurs commonly in this age group. Similarly, 
review of a case report is not likely to shed light 
on the causal relationship between a medicine 
and an AE/ADR when the AE/ADR is a manifes-
tation of the underlying illness which the medi-
cine is treating. For example, review of case 
reports of worsening asthma in patients taking 
an antiasthma medication is not likely to be suf-
ficient to establish a causal link between the 
worsening asthma and the medication.

Review of a case series to establish a causal 
relationship between a drug and an AE/ADR is 
most straightforward when the suspected AE/
ADR: (1) is rare in the population when the 
medication is not used, (2) is not a manifesta-
tion of the underlying disease, (3) has a strong 
temporal association with drug administration, 
and (4) is biologically plausible as a drug reac-
tion or is generally the result of a drug reaction 
based on other clinical experience. Examples of 
AEs/ADRs that often meet these criteria are 
acute hepatic failure, aplastic anemia, agranulo-
cytosis, rhabdomyolysis, serious skin reactions 
such as Stevens–Johnson syndrome and toxic 
epidermal necrolysis, and certain arrhythmias, 
such as torsades de pointes.

The approach to assessing the causal role of a 
medicine in the development of an AE/ADR has 
evolved over recent decades. In general, the 
approach relies on a systematic review of each 
case report to ascertain the temporal relation-
ship between drug intake and development of 
the adverse reaction, an assessment of any co‐
existing diseases or medications that could con-
found the relationship between the medicine 
and the AE/ADR, the clinical course after with-
drawing the drug (dechallenge), and the clinical 
course after reintroduction of the drug (rechal-
lenge), when applicable. Naranjo and colleagues 
described a method based on these general 
principles for estimating the likelihood that a 
drug caused an adverse clinical event [65]. The 
WHO has developed a qualitative scale for cat-
egorizing causality assessments [66].

In the development of a case series, once the 
individual cases are reviewed, it is important to 
integrate the findings across the cases to deter-
mine patterns that may point to a relationship 
between the drug and the AE/ADR. For exam-
ple, does the AE/ADR appear at some doses but 
not at others? Does the AE/ADR appear after 
one or a few doses, or does it appear only after a 
more prolonged exposure? Is the spectrum of 
severity of the event homogeneous or heteroge-
neous? Are certain co‐morbidities or concomi-
tant medications more likely to be present in 
patients with the event? In the review of a case 
series, there are no prespecified answers to 
these questions that establish or exclude the 
possibility that the drug led to the AE/ADR. 
Rather, the characteristics of the individual 
cases, taken together with the patterns observed 
in the case series itself, can lead the analyst to 
determine if the medication has a reasonable 
possibility of causing the condition of interest.

Reporting Ratios

Because postmarketing safety reporting systems 
do not capture all cases of an event of interest, it 
is not possible to calculate an incidence rate for 
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a particular drug–event pair. However, analysis 
of AEs/ADRs based simply on numbers of 
reports, even after thorough analysis of these 
reports, does not in itself put these reports into 
the context of how widely a medicine is used.

To adjust for the extent of drug utilization in a 
population in the analysis of AE/ADR reports, a 
reporting ratio can be used. A reporting ratio is 
defined as the number of cases of a particular 
AE/ADR reported to a drug safety database dur-
ing a specific time period divided by some 
measure of drug utilization in the same time 
period. Across drugs, the reporting ratios meas-
ure the relative frequency of the AE/ADR 
reports adjusting for differences in level of drug 
utilization. The numerator is derived from 
counts of AE/ADR reports associated with the 
drug of interest that are recorded in the post-
marketing safety database during a specified 
time period. In the past, the denominator typi-
cally consisted of the number of dispensed pre-
scriptions, used as a surrogate measure of drug 
exposure in the population over that same time 
period, and often estimated from proprietary 
drug utilization databases. The number of dis-
pensed prescriptions was used because data on 
the number of unique individuals using the drug 
in a specified time period were generally not 
available.

More recently, such data have become availa-
ble, and reporting ratios based on persons using 
the medication, and not prescriptions, are being 
calculated. In some cases, information is availa-
ble on not only the number of persons receiving 
the drug or the number of prescriptions dis-
pensed, but also on the duration of use. When 
such data are available, the denominator for the 
reporting ratio may be expressed in person‐time. 
When using denominators based on person‐
time, it is important to be mindful of the assump-
tions of the person‐time method, especially the 
assumption that events in the numerator occur 
uniformly over time. Because AEs/ADRs may 
not occur uniformly over time after a drug is 
started, this assumption does not always hold.

Because the reporting ratio (sometimes 
referred to as “reporting rate”) is not a measure 
of incidence or prevalence, it must be inter-
preted cautiously. For AEs/ADRs that are rare in 
the general population (e.g., aplastic anemia), 
reporting ratios are sometimes compared to the 
background rate (incidence or prevalence) of 
that event in a defined population. In other situ-
ations, individual reporting ratios of a particular 
AE/ADR across different drugs used for a simi-
lar indication or within the same class are calcu-
lated and the magnitude of the differences in 
reporting ratios is compared. Interpretation of 
the comparison of reporting ratios across drugs 
must be undertaken with caution, since such 
comparisons are highly sensitive to variation in 
AE/ADR reporting and thus it is necessary to 
consider the differential underreporting of AEs 
in the postmarketing safety reporting system. 
The underlying assumption in estimating 
reporting ratios for comparison across a group 
of drug products is that each of the respective 
manufacturer’s reporting practices for the drug 
of interest is similar over the reporting period. 
However, this assumption may not hold true in 
some cases, and a comparison of reporting 
ratios across drugs may not be valid.

 Strengths

Signal Detection

The principal strength – and, arguably, the prin-
cipal purpose  –  of a postmarketing safety 
reporting system is that it allows for signal 
detection, the further exploration of drug safety 
hypotheses, and appropriate regulatory deci-
sion making and action when necessary. As 
noted earlier in this chapter, signals can be 
detected by data mining methods, review of 
individual case reports, or assessment of case 
series. In many instances, further work is 
needed to determine with more certainty the 
relationship of the drug to the AE/ADR. The 
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capability for timely and effective signal 
detection is a key strength of a postmarketing 
pharmacovigilance reporting system.

Another key strength of a well‐designed and 
effectively utilized postmarketing pharmacovig-
ilance reporting system is that, in certain cases, 
the relationship of a drug to an AE/ADR can be 
established with sufficient confidence, usually 
by a case series, that necessary regulatory action 
can be taken. AEs/ADRs for which the relation-
ship to a drug can be established with reasona-
ble certainty are generally those that have a 
strong temporal association with drug adminis-
tration, a low or near absent frequency in the 
underlying population, are not part of the 
underlying illness being treated, are generally 
the result of exposure to a drug or other toxin, 
and have no other likely explanation. Aplastic 
anemia, agranulocytosis, acute liver failure, 
rhabdomyolysis, certain arrhythmias such as 
torsades de pointes, and serious skin reactions 
such as Stevens–Johnson syndrome are exam-
ples of adverse events whose relationship to a 
drug can often be established by case series 
[67,68,69]. However, relative to all signals 
detected in a postmarketing safety reporting 
system, those about which a reasonably firm 
conclusion can be made on the basis of AE/ADR 
reports alone are few in number.

Opportunity for the Public to Report 
AEs/ADRs

Postmarketing safety reporting systems allow 
healthcare professionals to report suspected 
AEs/ADRs to national pharmacovigilance 
centers, drug regulatory authorities, and/or 
manufacturers. Such systems allow for direct 
engagement of healthcare professionals in the 
drug safety monitoring system. The advantage of 
this involvement is that it allows for careful clini-
cal observations, made at the point of care, to 
inform drug safety surveillance. Clinicians can 
provide succinct but detailed accounts of rele-
vant symptoms, signs, diagnostic test results, 

past medical history, concomitant medications, 
and clinical course of an AE/ADR, including 
information on dechallenge and rechallenge. 
Such a synthesis of clinical information is gener-
ally not available from automated data sources. 
For those AEs/ADRs that are serious, rare, and 
often the result of a medication exposure, the 
ability to obtain detailed information directly 
from the point of care is an essential feature 
of  postmarketing pharmacovigilance reporting 
systems.

Postmarketing safety reporting systems also 
can accept reports from consumers and patients, 
though this practice is not a feature of all report-
ing systems. In the US, where consumers and 
patients can report either to the manufacturer 
or directly to the FDA, the percentage of reports 
in 2016 that originated from consumers was 
about 50% [7]. When consumer‐ and patient‐
generated reports do not contain sufficient 
medical detail for meaningful review, subse-
quent follow‐up with health professionals may 
be possible in potentially important cases, so 
that more complete clinical information (e.g., 
hospital discharge summary) can be obtained.

Scope

The scope of a postmarketing safety reporting 
system is quite broad. The system can cover all 
medicines used in the population, and it can 
receive reports of AEs/ADRs occurring in any 
member of the population. Because it need not 
restrict the reports it receives, it can receive AE/
ADR reports throughout a medicine’s marketed 
life cycle. Thus, AEs/ADRs recognized late in a 
product’s life cycle, such as those resulting from 
prolonged exposure to a medicine, can, in theory, 
be ascertained. In practice, such ascertainment is 
difficult to achieve, because healthcare profes-
sionals may be less likely to ascribe an AE/ADR 
not known to be associated with a medicine that 
has been marketed for several years. In addition, 
patients who take a medicine for several years 
may also receive other treatments during that 
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time, making it difficult to conclude that there is 
an association between the medicine and the AE/
ADR.

Despite this broad scope, a postmarketing 
spontaneous reporting system can be relatively 
inexpensive. Most of these pharmacovigilance 
systems rely on voluntary reporting, and those 
who report AEs/ADRs are generally not paid. 
Thus, information collection is not expensive 
from the perspective of effective pharmacovigi-
lance, given that the system has the capacity to 
handle all medicines and all outcomes. This is in 
contrast to other data used to study drug safety 
questions, such as data from clinical trials, reg-
istries, and electronic healthcare data, each of 
which is relatively expensive to operate.

 Limitations

Quality of Reports

Perhaps the major potential limitation of a spon-
taneous postmarketing safety reporting system is 
that it depends quite heavily on the quality of 
individual reports. Although data mining and 
other informatics methods can detect signals 
using coded bioinformatics terms in safety data-
bases, each individual case report must still be 
carefully reviewed by a clinical analyst to deter-
mine if there is a plausible relationship between 
the medicine and development of the AE/ADR. 
The quality of the report, as described earlier in 
this chapter, is critical for an informative and 
meaningful review. Report quality depends on 
the care, effort, and judgment of the person sub-
mitting the report, as well as the diligence of the 
person receiving and/or transmitting it to the 
health authority. Reports without sufficient 
information for an independent determination of 
the relationship between the medicine and the 
AE/ADR are problematic for drug safety surveil-
lance. However, with successful follow‐up, some-
times even such deficient reports can yield useful 
information.

Underreporting

Another well‐recognized limitation of spontane-
ous postmarketing reporting systems is underre-
porting. Because most systems are voluntary, not 
all AEs/ADRs are reported. A consequence of 
underreporting is that population‐based rates of 
AEs/ADRs cannot be calculated, because all such 
occurrences in the population are not reported 
and the extent of underreporting for any individ-
ual AE/ADR is not known. Reporting ratios, dis-
cussed earlier in this chapter, allow the reported 
number of AEs/ADRs to be put into the context 
of drug utilization, though this measure is not an 
incidence rate.

Nonuniform Temporal Trends 
in Reporting

Another limitation of spontaneous reporting 
systems is that temporal trends in the number 
of AE/ADR reports for a drug–event combina-
tion may not reflect actual population‐based 
trends for that combination. This is because 
multiple factors can affect the number of AE/
ADR reports received for a given drug–event 
pair.

First, the number of reports for a medicine is 
thought to peak in the second year after approval 
and decline thereafter, even though the drug 
may be used more widely. This phenomenon, 
known as the Weber effect, was originally 
described in relation to nonsteroidal antiin-
flammatory medicines [70]. A more recent anal-
ysis of reporting patterns for the angiotensin II 
receptor blocker class of medicines revealed no 
discernible trend when the number of reports 
over time was examined [71]. Specifically, this 
analysis did not confirm that the number of 
reports increased toward the end of the second 
year and declined thereafter. Rather, it indicated 
that additional factors, such as the approval of 
additional indications and modifications of the 
firms’ reporting requirements, affected the total 
number of reports received. However, when the 



Postmarketing Spontaneous Pharmacovigilance Reporting Systems190

number of reports in a year was adjusted for 
the number of prescriptions dispensed in 
that period, it was found that the adjusted 
number of reports was highest in the first 
years after approval and declined thereafter. 
The frequency of AE/ADR reports per esti-
mated unit of drug utilization may not be 
constant over time, although a recent analy-
sis of FAERS data for 62 drugs did not con-
firm a reporting pattern over time as 
described by Weber [72].

Second, publicity about an important new 
AE/ADR often gives rise to a large number of 
reports shortly after the publicity, with a 
decline in the number of reports shortly there-
after. This phenomenon is known as stimu-
lated reporting and was observed, for example, 
in the reporting pattern of statin‐induced hos-
pitalized rhabdomyolysis after publicity of this 
risk. For these reasons, changes in the number 
of AE/ADR reports for a given drug–event 
pair cannot reliably be interpreted as a change 
in the population‐based frequency of the AE/
ADR.

Another limitation of a postmarketing 
reporting system is that it is usually not well 
suited to ascertaining the relationship of a 
medicine to an AE/ADR that is common in 
the treated population, especially if the condi-
tion is a manifestation of the underlying ill-
ness. In such cases, the combined effect of 
confounding of patient factors and indication 
makes causality assessment of individual 
cases difficult.

Finally, duplicate reports of the same AE/
ADR may be received by drug manufacturers 
and health authorities and if undetected as 
duplicates, may be entered into the database as 
multiple occurrences of the same event. 
Algorithms have been developed and various 
methods can be used to identify such reports; 
nonetheless, this issue is a potential source of 
bias and limits the utility of data mining or other 
calculations which rely on “crude” case counts 
which have not been “deduplicated.”

 Particular Applications

Fingolimod

Fingolimod, a sphingosine‐1‐phosphate recep-
tor modulator that reduces the number of lym-
phocytes in peripheral blood, is used to reduce 
the frequency of clinical exacerbations and 
delay the accumulation of physical disability in 
patients with relapsing forms of multiple sclero-
sis. When the product was initially approved in 
the US in September 2010, the product label 
noted a dose‐dependent reduction in peripheral 
lymphocyte count of 20–30% of baseline values 
and warned of the risk of serious infections. 
Based on experience in premarketing clinical 
trials, the label described the specific risk of 
fatal herpetic infections in two patients who 
received a dose higher than the recommended 
dose for multiple sclerosis. The label also noted 
that while the overall rates of infections and 
serious infections were similar in fingolimod‐
treated and placebo‐treated patients in clinical 
trials, bronchitis and pneumonia were more 
common in fingolimod‐treated patients.

Approximately three years after approval in 
the US, a patient in Europe was reported to have 
developed progressive multifocal leukoenceph-
alopathy (PML), a demyelinating central nerv-
ous system disease caused by the JC virus. PML 
is a rare disease; when it occurs, it is usually in 
the setting of immunosuppression. Because the 
patient in whom PML was reported had received 
prior immunosuppressants, the PML could not 
be conclusively linked to fingolimod. At the 
time this case was reported, approximately 
71 000 patients worldwide had received fingoli-
mod, according to the manufacturer.

Two years after the initial case report of PML, 
the US FDA announced that it had received two 
case reports of fingolimod‐treated patients with 
no prior immunosuppressant treatment [73]. In 
the first case, a 49‐year‐old patient with a five‐
year history of multiple sclerosis was suspected 
to have PML when results of a routine magnetic 
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resonance imaging test (MRI) showed lesions, 
not present at the time fingolimod treatment was 
initiated, that were atypical for multiple sclerosis 
and more consistent with PML. The patient had 
prior treatment with interferon beta‐1a and 
intermittent corticosteroids. Cerebrospinal fluid 
analysis was positive for JC virus DNA. Based on 
the MRI findings and cerebrospinal fluid analy-
sis, a diagnosis of probable PML was made, in 
accordance with the diagnostic criteria of the 
American Academy of Neurology consensus 
statement [74].

The second case concerned a 54‐year‐old 
patient with a 14‐year history of multiple sclero-
sis who had been taking fingolimod for 2.5 years 
when PML was diagnosed. The patient had pre-
viously been treated with interferon beta‐1a for 
11 years, and was then switched to treatment 
with fingolimod. At the time of the PML diag-
nosis, the patient had been receiving treatment 
with mesalazine for ulcerative colitis for four 
years. After 2.5 years of treatment with fingoli-
mod, the patient developed walking instability, 
clumsiness, inattention, and somnolence. A 
brain MRI was suggestive of PML, and cerebro-
spinal fluid analysis was positive for JC virus 
DNA. Based on the symptoms, MRI findings, 
and cerebrospinal fluid analysis, a diagnosis of 
definite PML was made, in accordance with the 
American Academy of Neurology diagnostic 
criteria. On the basis of these two cases, the 
product label for fingolimod in the US was 
updated to include a warning for progressive 
multifocal leukoencephalopathy.

This example illustrates some important fea-
tures of the analysis of individual case safety 
reports. First, individual reports can be used to 
establish a causal relationship between a drug 
and an adverse event when the adverse event is 
rare in the population. In this example, PML is 
extremely rare, and when it occurs, it is usually in 
the setting of immunosuppression due to treat-
ment with certain medicines or certain malig-
nancies. If PML occurred spontaneously (i.e., in 
the absence of these particular conditions) in the 

general population or in patients with multiple 
sclerosis, it would be quite difficult to establish a 
causal relationship between PML and fingolimod 
therapy. Second, detailed, though not necessarily 
lengthy, case reports are important for robust 
case analysis, and especially for causality assess-
ment. The two case reports in this example 
included detailed information about prior and 
concomitant medications (none of which is 
known to cause PML). Without information on 
prior and concomitant medications, the uncer-
tainty about exposure to immunosuppressants 
would have limited the conclusions that could be 
made from the case reports. Third, the inclusion 
of relevant clinical information used to establish 
the diagnosis of the adverse event allows review-
ers of the case report to come to an independent 
conclusion about the diagnosis. In this case, the 
details of the diagnosis were applied to the pub-
lished consensus‐driven diagnostic criteria set 
forth by a professional society. While use of such 
criteria is ideal, formal, established diagnostic 
criteria are not available for all adverse outcomes 
of interest, and reviewers of individual case safety 
reports should establish their own criteria.

Finally, this example is unusual in that a causal 
relationship between a drug and a serious AE 
was established based on two individual case 
reports. Because establishing a diagnosis and 
evaluating causality are difficult with individual 
case safety reports, a higher number is usually 
needed.

Dabigatran

Dabigatran is an oral direct thrombin inhibitor 
approved in the US in October 2010 to reduce 
the risk of stroke and systemic embolism in 
patients with nonvalvular atrial fibrillation. It 
was the first oral anticoagulant approved for 
this indication since warfarin had been approved 
for a similar indication. In the clinical trial that 
supported dabigatran’s approval, 6076 patients 
were randomized to dabigatran 150 mg twice 
daily, and 6022 were randomized to warfarin 
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treatment. The rates of major bleeding were 3.3 
per 100 person‐years in dabigatran‐treated 
patients and 3.6 per 100 person‐years in 
 warfarin‐treated patients (hazard ratio 0.93, 
95% confidence interval (CI) 0.81–1.07). The 
corresponding rates for life‐threatening bleeds 
were 1.5 per 100 person‐years and 1.9 per 100 
person‐years in the dabigatran and warfarin 
groups, respectively (hazard ratio 0.80, 95% 
confidence interval 0.66–0.98). Gastrointestinal 
bleeding was more common in dabigatran‐
treated than in warfarin‐treated patients (1.6% 
vs 1.1%, hazard ratio 1.5, 95% confidence inter-
val 1.2–1.9). In the first 14 months after dabi-
gatran’s approval, the US FDA received 2347 
case reports of bleeding with dabigatran (348 
with a fatal outcome), compared to 647 case 
reports of bleeding with warfarin (46 with a fatal 
outcome) [75].

On its face, this disparity in report numbers 
between the two agents suggested that dabi-
gatran might be responsible for more bleeding 
in actual practice, a finding that was contrary to 
the preapproval observations. These numbers 
also raised the possibility of increased mortality 
with dabigatran relative to warfarin. A popula-
tion‐based analysis using administrative claims 
data, however, found that the rates of bleeding 
associated with dabigatran use were no higher 
than those associated with warfarin use [76]. A 
subsequent study using data from the US 
Medicare system found that, in actual practice 
settings, dabigatran was associated with a lower 
risk of ischemic stroke, intracranial hemorrhage 
and death and a higher risk of major gastroin-
testinal bleeding, relative to warfarin – findings 
that were consistent with those of the preap-
proval clinical trial data [77].

This example illustrates some important limi-
tations concerning use of aggregate spontane-
ous report data to estimate population‐based 
risk or relative risk of an adverse event between 
two drugs. A comparison of raw numbers of 
adverse event reports generally cannot be used 
to estimate the relative frequency of the adverse 

event in a population between two drugs. 
Population‐based rates of an adverse event gen-
erally cannot be estimated from spontaneous 
reporting data because of underreporting and 
lack of a reliable measure of population expo-
sure. Importantly, there often is a differential 
extent of underreporting of adverse events 
across a product’s marketed life. Studies of 
adverse event reporting patterns of angiotensin 
receptor blockers and antiepileptic drugs have 
shown that, after adjustment for drug utiliza-
tion, there were more adverse event reports in 
the first year after approval compared to subse-
quent years [71,78].Thus, even though a newly 
approved drug may not be widely used, there 
may be more spontaneous adverse event reports 
received for the newer drug compared to an 
older, widely used drug, even if there is no true 
difference in risk between them.

Peginesatide

Peginesatide, a novel synthetic peptide which 
was considered to be an important break-
through for treatment of anemia in patients 
with dialysis‐dependent chronic kidney disease, 
was withdrawn from marketing in 2012, within 
months of becoming commercially available, 
when the manufacturer received an unexpected 
number of case reports of fatal anaphylaxis [79]. 
Subsequent analyses suggested that the root 
cause of the reactions may have been a preserv-
ative present in the commercially available 
multiple‐use vials but not in the single‐use 
 formulation that had been used exclusively in 
clinical trials [80,81].

Anaphylaxis, whether mediated by immuno-
logic or nonimmunologic mechanisms, is a rare, 
unpredictable adverse reaction that can occur 
within minutes of exposure to an offending 
agent. Such reactions can alter the benefit–risk 
balance of newly approved drugs or biologics. 
Because fatal anaphylaxis is a rare occurrence 
with a strong temporal relationship between a 
triggering exposure and the onset of severe 
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symptoms, it represents a good example of the 
type of adverse drug reaction for which post-
marketing spontaneous reporting systems are 
the primary means of timely signal detection. 
Although the decision to withdraw peginesatide 
from marketing was relatively swift, the results 
of subsequent nonclinical analyses suggesting 
an unexpected root cause illustrate the role of 
multiple data streams [82].

Drugs to Treat Attention‐Deficit/
Hyperactivity Disorder

In other examples of postmarketing pharma-
covigilance issues, spontaneous reports have 
provided actionable information about the clin-
ical spectrum of adverse drug effects that may 
not have been well recognized in more restric-
tive clinical trial settings. An FDA safety evalua-
tor became aware of several spontaneous 
reports describing psychiatric adverse events in 
otherwise normal children who were being 
treated with an extended‐release formulation of 
methylphenidate for attention‐deficit/ hyperac-
tivity disorder (ADHD), and presented her find-
ings at a Pediatric Advisory Committee meeting 
in June 2005. Committee members expressed 
concern, and a comprehensive evaluation of 
psychiatric adverse effects with drug treatments 
of ADHD was undertaken with the full coopera-
tion of the drug’s manufacturers. The results of 
the analysis were presented at a subsequent 
Pediatric Advisory Committee meeting in 
March 2006 and were also later published in a 
peer‐reviewed journal [83]. Data were analyzed 
from 49 randomized controlled clinical trials. 
Results showed a total of 11 psychosis/mania 
adverse events which occurred during 743 per-
son‐years of double‐blind treatment with the 
drugs of interest, compared to no similar 
adverse events during 420 person‐years of pla-
cebo exposure in the same trials. Analysis of 
postmarketing spontaneous data yielded a total 
of 865 unique reports of psychosis or mania‐
type adverse events associated with these drugs. 

These findings were the basis for a MedWatch 
Alert in 2007, and for the addition of new warn-
ings and medication guides for all of the ADHD 
drug treatments which were studied [84].

Medication Errors

The detection of medication errors is now an 
established area of pharmacovigilance [85,86]. 
An analysis of the EudraVigilance database 
revealed that between 2002 and 2015, a total of 
147 824 cases of medication errors had been 
reported, with the annual number of such 
reports increasing throughout that period. 
Between 2010 and 2015, case reports of medica-
tion errors accounted for 1–2% of all reports in 
EudraVigilance [87].

For the purposes of pharmacovigilance, there 
is not an internationally accepted definition of a 
medication error. In the US, the National 
Coordinating Council for Medication Error and 
Reporting defines a medication error as “any 
preventable event that may cause or lead to 
inappropriate medication use or patient harm 
while the medication is in the control of the 
health care professional, patient, or consumer” 
[88]. In the European Union, the Good Practice 
Guidance defines a medication error as “an 
unintended failure in the drug treatment pro-
cess that leads to, or has the potential to lead to 
harm to the patient.” Regardless of the specific 
definition used, preventability is a key concept 
underlying the detection of medication errors. 
Careful analysis of case reports of medication 
errors can lead to changes in the design of a 
product, changes to its instructions for use, 
changes to carton or container labeling, or other 
changes aimed at reducing the frequency of pre-
ventable errors.

Because a medication error can occur at many 
points in the drug use process, attentive health-
care professionals, patients, and others can 
detect the error (such as a wrong drug or wrong 
dose) before it reaches the patient – a so‐called 
“near miss.” Thus, unlike case reports of adverse 
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events, which describe an adverse outcome 
associated with use of a medicine, a case report 
of a medication error describes a medication 
error along any point in the medication use pro-
cess, whether or not the patient receives the 
medication or experiences harm. Analysis of 
case reports of medication errors focuses on the 
product(s) involved, the sequence of events 
leading up to the error, the work environment in 
which the error occurred, the personnel 
involved (healthcare professionals, patient, fam-
ily, and others), the type(s) of errors that 
occurred, and other contributing factors. For 
these reasons, case reports of medication errors 
should include detailed information on these 
factors [34]. The Medical Dictionary for 
Regulatory Activities (MedDRA) [50] contains 
terminology for medication errors, which allows 
for both broad and narrow searches of reports 
of medication errors in pharmacovigilance 
databases.

For example, the antidepressant vortioxetine 
was approved in the US in September 2013 and 
carried the proprietary name Brintellix®. By June 
2015, the US FDA had received 50 case reports 
describing medication errors in which the name 
Brintellix was mistaken for Brilinta®, the propri-
etary name of the antiplatelet agent ticagrelor. 
Review of the case reports indicated that the 
wrong medication was dispensed in at least 12 
cases, though there were no reports of ingestion 
of the wrong medicine. The case reports also 
indicated that this medication error occurred 
both when prescribing the medication and 
when dispensing it. Based on analyses of the two 
proprietary names, the confusion was likely due 
to the drugs’ having the same first three letters, 
being presented near each other in a computer-
ized order entry system, lack of pharmacist 
familiarity with the recently approved medica-
tion Brintellix, and the drug names looking and 
sounding similar to each other.

Between the analysis of these cases and a subse-
quent regulatory action, the FDA received an 
additional five case reports of Brintellix being 

confused with Brilinta. In one case, the medical 
record of a patient undergoing a lung biopsy indi-
cated that the patient was taking Brilinta but the 
medical staff confused it for Brintellix. Not aware 
that the patient was taking an antiplatelet agent at 
the time of the lung biopsy, the medical staff did 
not take the necessary precautions and the patient 
experienced bleeding and a collapsed lung. In 
May 2016, the FDA approved a change in the pro-
prietary name from Brintellix to Trintellix [89].

Data Mining Signals

According to the UMC glossary of pharmacovig-
ilance terms, a signal is “a hypothesis of a risk 
with a medicine, with various levels of evidence 
and arguments to support it” [8]. Signals are 
identified by UMC analysts from the WHO 
Global Individual Case Safety Report (ICSR) 
database (VigiBase) by applying a predefined tri-
age algorithm (data mining). The disproportion-
ality measure used by the UMC is the information 
component (IC), originally introduced through 
the BCPNN, which is a logarithmic measure of 
the disproportionality between the observed and 
expected reporting of a drug–event pair. A posi-
tive IC value means that a particular drug–event 
pair is reported more often than expected, based 
on all the reports in the database. Signals from 
VigiBase are reported quarterly in the Signal doc-
ument, which is circulated in restricted fashion 
to national pharmacovigilance centers for the 
purpose of communicating the results of UMC 
evaluations of potential data mining signals from 
the WHO database. A recent analysis found that 
of 43 UMC signals disseminated between 2007 
and 2010 for products with approved labeling, 15 
(35%) were labeled, and eight of the labeled sig-
nals were subsequently updated after the signal 
communication, supporting the relevance of rou-
tine data mining [90].

Below is an example of a WHO program sig-
nal identified by data mining applied to the 
WHO Global Individual Case Safety Report 
Database, VigiBase.
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Topiramate and Glaucoma
Topiramate was approved in the US in 1996 as 
an anticonvulsant drug [91]. In the second quar-
ter of 2000, reports of topiramate and glaucoma 
in VigiBase reached the threshold of an “associ-
ation” (i.e., the lower limit of a 95% Bayesian 
confidence interval for the IC exceeded zero). 
When potential signals are identified, the avail-
able information is reviewed by the UMC staff 
and an expert review panel. At the time, there 
were six cases reported to VigiBase. After 
review, a summary of the findings were circu-
lated in the Signal document in April 2001 to all 
national pharmacovigilance centers in the 
WHO program. On September 26 the same 
year, the Market Authorization Holder issued a 
Dear Healthcare Professional letter warning 
about “an ocular syndrome that has occurred in 
patients receiving topiramate. This syndrome is 
characterized by acute myopia and secondary 
angle closure glaucoma.” By August 17, there 
were 23 reported cases according to the com-
pany. The FDA issued a warning in the revised 
labeling on October 1, 2001 [91].

Signals from Developing Countries
At the annual meetings of the WHO program 
members, country representatives are invited to 
share problems of current interest in their coun-
tries. Below are two examples illustrating the 
kind of issues that have been investigated in 
developing countries, presented at the 2017 
meeting in Uganda [92].

Blindness and Retinal Disorder Associated 
with Clomifene Citrate: Case Series Assessment
A case of retinal detachment with the use of clo-
mifene citrate that caused irreversible blindness 
triggered an assessment by the Eritrean 
Pharmacovigilance Centre. A search of VigiBase 
identified 24 cases of blindness and retinal disor-
der. All cases were evaluated using Austin 
Bradford Hill considerations to assess the causal 
relation. In all cases, clomifene was reported as 
the sole suspected drug and in all but three cases, 

no concomitant drugs were reported. There were 
two cases of blindness in which the reaction 
abated with sequelae following withdrawal of 
clomifene. The conclusion was that the findings 
support a causal relationship and warrant further 
investigation to substantiate the signal [93].

Signal of Alpha‐Chymotrypsin and Anaphylaxis
Alpha‐chymotrypsin is a biological product 
commonly used in Vietnam for numerous con-
ditions. The efficacy of the oral product was 
questioned because this product is a large mol-
ecule product and the potential for safety issues 
of the injectable form warranted an investiga-
tion. From the national spontaneous reporting 
database, significant signals related to hyper-
sensitivity, including anaphylactic reactions 
(reporting odds ratio [ROR] 2.12; 95% CI 1.46–
3.07). Since 2010, 249 reports were received 
nationwide, of which 65 cases were related to 
anaphylactic reactions, and this is approxi-
mately equal to all spontaneous reports related 
to alpha‐chymotrypsin obtained from VigiBase. 
The National Centre sent an official letter to the 
Drug Administration of Vietnam, Ministry of 
Health to advocate a safety effectiveness revi-
sion for this product [92].

Deployment of Pharmacovigilance During 
Mass Drug Administration in Sierra Leone
The specific challenges for pharmacovigilance in a 
developing country during a public health emer-
gency were illustrated by Wiltshire Johnson, 
Registrar and CEO of the Pharmacy Board of 
Sierra Leone during the May 2016 Uppsala Forum 
conference [94]. Pharmacovigilance during the 
Ebola crisis in 2014 meant not only the safety sur-
veillance of experimental treatments, but also of 
products such as disinfectants, rubber gloves, and 
other equipment. Treatment of malaria, as well as 
pneumonia and diarrhea, became difficult due to 
the reluctance to seek medical help; many feared 
that the similarity of symptoms with Ebola would 
prevent them from returning home. The surveil-
lance of the antimalarial mass drug administration 
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of over 5 million doses of artesunate‐amodiaquine 
that needed to be rolled out during the peak of the 
Ebola outbreak stretched all capacity, but became 
a success story. In collaboration with the National 
Malaria Control Programme, the Pharmacy 
Board’s National Pharmacovigilance Centre 
actively participated in real‐time pharmacovigi-
lance by going into the communities and search-
ing for, identifying, and managing adverse events. 
The data analysis led to changing first‐line treat-
ment of malaria from artesunate‐amodiaquine to 
artemether‐lumefantrine [94].

 The Future

Spontaneous AE/ADR reporting is an impor-
tant component of drug safety surveillance. The 
widespread availability of electronic healthcare 
data may, at first, seem to undermine the impor-
tance of AE/ADR reporting. This is not likely to 
be the case. Because careful observation at the 
point of care is an essential component of phar-
macovigilance, electronic systems may be able 
to facilitate AE/ADR reporting in the future but 
will not replace it. It is technologically and 
administratively feasible for carefully designed 
systems to allow clinicians to report AEs/ADRs 
directly from electronic medical record systems. 
If designed properly, these systems could allow 
for the accurate, complete, and efficient inclu-
sion of laboratory, radiologic, and other diag-

nostic test results, information which is often 
incomplete in current AE/ADR reports. The 
challenge of such a system will be to encourage 
reporters to routinely provide a clinically mean-
ingful narrative that explains concisely the clini-
cal course of the AE/ADR and its relationship to 
medication usage.

There is also interest in using modern infor-
matics techniques to facilitate review of adverse 
event reports, especially in large AE databases. 
For example, the use of natural language pro-
cessing techniques is being explored to deter-
mine if they can identify individual case safety 
reports that warrant further evaluation, or indi-
vidual case reports that suggest a causal associa-
tion between a medicine and an adverse event. 
Postmarketing safety reporting systems depend 
on the involvement of healthcare professionals 
and, in some areas, consumers and patients as 
well, for high‐quality AE/ADR reports.

As new medicines become available, it will 
be increasingly necessary to monitor post-
marketing safety. Postmarketing safety 
reporting systems will continue to be the cor-
nerstone of this effort, because of their 
unique advantages. As social media, active 
surveillance, and the use of large healthcare 
databases begin to play a role in drug safety 
surveillance, demonstrate their utility, and 
realize their potential, they could become 
valuable adjuncts to existing pharmacovigi-
lance reporting systems worldwide.
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Once hypotheses about drug‐induced adverse 
effects are generated, usually from spontaneous 
reporting systems (see Chapter 10), techniques 
are needed to test these hypotheses. Usually 
between 500 and 3000 patients are exposed to 
the drug during Phase III testing, even if drug 
efficacy can be demonstrated with much smaller 
numbers of patients. Studies of this size would 
be expected to observe a single case of outcomes 
with an incidence of 1 per 1000 to 6 per 1000 
(see Chapter 4). Given this context, postmarket-
ing studies of drug effects must then generally 
include at least 10 000 exposed persons in a 
cohort study, or enroll diseased patients from a 
population of equivalent size for a case–control 
study. Given a study of this size, the upper 95% 
confidence limit for the incidence any event that 
is not identified would be 3 per 10 000 (see 
Chapter  4). However, prospective studies this 
large are expensive and difficult to perform. Yet 
such studies often need to be conducted quickly, 
to address acute and serious regulatory, com-
mercial, and/or public health crises. For all of 
these reasons, the past decades have seen a 
growing use of electronic databases containing 
healthcare data, sometimes called “automated 
databases,” as potential data sources for phar-
macoepidemiologic studies.

Large electronic databases can often meet the 
need for a cost‐effective and efficient means of 
conducting postmarketing surveillance studies. 
To meet the needs of pharmacoepidemiology, 
the ideal database would include records from 
inpatient and outpatient care, emergency care, 
mental health care, all laboratory and radiologi-
cal tests (including pharmacogenomic tests that 
may not have been performed as part of clinical 
care), functional assessments, and all prescribed 
and over‐the‐counter medications, as well as 
alternative therapies. The population covered 
by the database would be large enough to per-
mit discovery of rare events for the drug(s) in 
question, and the population would be stable 
over its lifetime. Although it is generally prefer-
able for the population included in the database 
to be representative of the general population 
from which it is drawn, it may sometimes be 
advantageous to emphasize the more disadvan-
taged groups that may have been absent from 
premarketing testing. The drug(s) under 
 investigation must of course be present in the 
formulary and must be prescribed in sufficient 
quantity to provide adequate power for 
analyses.

Other requirements of an ideal database are 
that all parts are easily linked by means of a 
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patient’s unique identifier, that the records are 
updated on a regular basis, and that the records 
are verifiable and reliable. The ability to conduct 
medical chart review to confirm outcomes is 
also a necessity for most studies (unless vali-
dated algorithms for the study outcome already 
exist), as diagnoses entered into an electronic 
database may include rule‐out diagnoses or 
interim diagnoses and recurrent/chronic, as 
opposed to acute, events. Information on poten-
tial confounders, such as smoking and alcohol 
consumption, may only be available through 
chart review or, more consistently, through 
patient interviews. With appropriate permis-
sions and confidentiality safeguards in place, 
access to patients is sometimes possible and 
useful for assessing compliance with the medi-
cation regimen as well as for obtaining biosam-
ples or information on other factors that may 
relate to drug effects. Information on drugs 
taken intermittently for symptom relief, over‐
the‐counter drugs, and drugs not on the formu-
lary must also be obtained directly from the 
patient.

These automated databases are the focus of 
this section of the book. Of course, no single 
database is ideal for all questions. In the current 
chapter, we will introduce these resources, pre-
senting some of the general principles that apply 
to them all. In Chapters 12–14 of this book, we 
will present more detailed descriptions of those 
databases that have been used in a substantial 
amount of published research, along with the 
strengths and weaknesses of each.

 Description

So‐called automated databases have been used 
for pharmacoepidemiologic research in North 
America since 1980, and are primarily adminis-
trative in origin, generated by the request for 
payments, or claims, for clinical services and 
therapies. In contrast, electronic health record 
databases were developed for use by researchers 

in Europe, and similar databases have been 
developed in the US more recently.

Claims and other Administrative 
Databases

Claims data arise from billable interactions 
between patients and the healthcare system. 
When a patient goes to a pharmacy and gets a 
drug dispensed, the pharmacy bills the insur-
ance carrier for the cost of that drug, and has to 
identify which medication was dispensed, the 
milligrams per tablet, number of tablets, etc. 
Analogously, if a patient goes to a hospital or to 
a physician for medical care, the providers of 
care bill the insurance carrier for the cost of the 
medical care, and have to justify the bill with a 
diagnosis. If there is a common patient identifi-
cation number for both the pharmacy and the 
medical care claims, these elements could be 
linked and analyzed as a longitudinal medical 
record.

Since drug identity and the amount of drug 
dispensed affect reimbursement, and because 
the filing of an incorrect claim about drugs dis-
pensed is fraud, claims are often closely audited, 
for example by Medicaid. Indeed, there have 
been numerous validity checks on the drug data 
in claims files that showed that the drug data are 
of extremely high quality, such as confirming 
that the patient was dispensed exactly what the 
claim showed was dispensed, according to the 
pharmacy record. In fact, claims data of this 
type provide some of the best data on drug 
exposure in pharmacoepidemiology (see 
Chapter 37).

The quality of disease data in these databases 
is somewhat less perfect. If a patient is admitted 
to a US hospital, the hospital charges for the 
care and justifies that charge by assigning diag-
nosis codes (until recently International 
Classification of Diseases, Ninth Revision, 
Clinical Modification [ICD‐9‐CM] codes) and a 
Diagnosis‐Related Group (DRG). Hospital diag-
nosis codes are reasonably accurate diagnoses 
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that are used for clinical purposes, based pri-
marily on the discharge diagnoses assigned by 
the patient’s attending physician. (Of course, 
this does not guarantee that the physician’s 
diagnosis is correct.) The amount paid by the 
insurer to the hospital is based on the DRG, so 
there is no financial incentive to provide incor-
rect diagnosis codes. In fact, most hospitals 
have mapped each set of diagnosis codes into 
the DRG code that generates the largest 
payment.

In contrast, however, outpatient diagnoses are 
assigned by the practitioners themselves, or by 
their office staff. Once again, reimbursement in 
the US does not usually depend on the actual 
diagnosis, but rather on the visit intensity dur-
ing the outpatient medical encounter, and the 
resulting procedure codes indicate the intensity 
of the services provided. Thus, there is no incen-
tive for the practitioner to provide incorrect 
diagnosis codes, but there is also no incentive 
for them to be particularly careful or complete 
about the diagnoses provided. For these rea-
sons, the outpatient diagnoses are the weakest 
link in claims databases.

Some other databases are not made up of 
actual claims but derive from other administra-
tive processes, such as data from US health 
maintenance organizations or other data 
sources. The characteristics of these data are 
similar in many ways to those of claims data, 
and they are discussed together as encounter‐
based databases in Chapter 12.

Electronic Health Record Databases

In contrast, electronic health record databases 
are a more recent development, arising out of 
the increasing use of computerization in medi-
cal care. Initially, computers were used in medi-
cine primarily as a tool for literature searches. 
Then, they were used for billing. Now, however, 
there is increasing use of computers to record 
medical information at the point of care. In 
most instances, this is replacing the paper 

record as the primary medical record. As medi-
cal practices increasingly become electronic, 
this opens up a unique opportunity for pharma-
coepidemiology, as larger and larger numbers of 
patients are available in such systems. The best‐
known and most widely used example of this 
approach is the UK Clinical Practice Research 
Datalink® (CPRD®), along with the newer data-
base, The Health Improvement Network® 
(THIN®), both described in Chapter 13. As gen-
eral practice databases, these contain primarily 
outpatient data. In addition, recently inpatient 
electronic health record databases are becom-
ing available (Chapter 14).

Electronic health record databases have 
unique advantages. Important among them is 
that the validity of the diagnosis data in these 
databases is probably better than that in claims 
databases, as these data are being used to docu-
ment medical care rather than just for billing 
purposes. When performing a pharmacoepide-
miologic study using these databases, there is 
no purpose in validating the data against the 
actual medical record, since one is analyzing the 
data from the actual medical record. However, 
there are also unique issues one needs to be 
concerned about, especially the uncertain com-
pleteness of the data from other physicians and 
sites of care. Any given practitioner provides 
only a piece of the care a patient receives, and 
inpatient and outpatient care are unlikely to be 
recorded in a common medical record.

 Strengths

Computerized databases have several impor-
tant advantages, including their potential for 
providing a very large sample size. This is 
 especially important in the field of pharmacoep-
idemiology, where achieving an adequate sam-
ple size is uniquely problematic. In addition, 
these databases are relatively inexpensive to use, 
especially given the available sample size, as 
they are by‐products of existing administrative 
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systems. Studies using these data systems do not 
need to incur the considerable cost of data col-
lection, other than for those subsets of the pop-
ulations for whom medical records are 
abstracted and/or interviews are conducted. 
The data can be complete; for example, for 
claims databases, information is available on all 
medical care provided for covered services, 
regardless of who the provider was. As indicated 
above, this can be a problem for electronic 
health record databases, especially in the US, 
where primary care providers often do not serve 
as gatekeepers to specialty care. In addition, 
these databases can be population based, they 
can include outpatient drugs and diseases, and 
there is no opportunity for recall and inter-
viewer bias, as they do not rely on patient recall 
or interviewers to obtain their data. Another 
advantage is that these databases can potentially 
be linked to other external electronic databases 
(e.g., death records, maternal‐child records, 
police accident records), to expand the capabili-
ties and scope of research. This requires the use 
of common identification elements (e.g., name 
and date of birth) and standardized semantics to 
allow communication across databases.

 Weaknesses

The major weakness of such data systems is the 
uncertain validity of diagnosis data. This is 
especially true for claims databases, and for out-
patient data. For these databases, access to med-
ical record data for validation purposes is 
usually needed. This issue is less problematic for 
electronic health record databases; however, the 
validity of medication data from electronic 
health record databases in the United States is 
less certain than pharmacy dispensing data 
from claims databases. The addition of labora-
tory results data to these resources can assist in 
diagnosis validity, as well.

In addition, such databases can lack informa-
tion on some potential confounding variables. 

For example, in claims databases there are no 
data on date of menopause, and diagnosis‐based 
algorithms to identify smoking and alcohol 
abuse may have poor sensitivity, all of which can 
be of great importance to selected research 
questions. This argues that one either needs 
access to patients or physician records if these 
contain the data in question, or one needs to be 
selective about the research questions that one 
seeks to answer through these databases, avoid-
ing questions that require data on variables 
which may be important potential confounders 
that must be controlled for.

Another major disadvantage of administrative 
data is the instability of the population due to 
job changes, employers’ changes of health plans, 
and changes in coverage for specific employees 
and their family members. The opportunity for 
longitudinal analyses is thereby hindered by the 
continual enrollment and disenrollment of plan 
members. Another source of population insta-
bility is when patients transfer out of the system 
due to death or relocation. The effect of this is 
an inflated list with patients no longer seeking 
medical care. This will invalidate calculations of 
patient‐time in studies of disease incidence, for 
example, because the denominator is inflated. 
The challenge for the investigator is to be crea-
tive in devising strategies to guard or correct for 
this incomplete information in the database 
(e.g., by performing sensitivity analysis censor-
ing follow‐up one or two years after the patient’s 
last recorded entry in the database). 
Alternatively, strategies can be adopted for 
selecting stable populations within a particular 
database and, for example, by examining pat-
terns of prescription refills for chronically used 
medications and restricting the study popula-
tion to include only continuously enrolled 
patients. Of course, the largest such data sys-
tem, US Medicare, suffers much less from this 
problem since it covers the elderly, so people 
never lose eligibility. Even there, however, 
patients can switch between fee‐for‐service 
plans and managed care plans, and the latter 
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may not record all healthcare which is provided 
(see Chapter 12).

Further, by definition, such databases only 
include illnesses severe enough to come to med-
ical attention. In general, this is not a problem, 
since illnesses that are not serious enough to 
come to medical attention and yet are uncom-
mon enough for one to seek to study them in 
such databases are generally of lower 
importance.

Some results from studies that utilize these 
databases may not be generalizable, for example 
on healthcare utilization. This is especially rel-
evant for databases created by data from a pop-
ulation that is atypical in some way, such as US 
Medicaid data.

Finally, as noted briefly above, as an increas-
ing number of electronic health record data-
bases emerge in the US, to date all are 
problematic in that they do not include com-
plete data on a defined population. In the US 
health system, unlike other countries, patients 
can, and often do, seek medical care from a vari-
ety of different healthcare providers at unaffili-
ated institutions with a nonlinked electronic 
health record systems. Thus, providers’ elec-
tronic health records are inherently incomplete, 
and need to be linked to administrative data in 
order to be useful for quality research. This is 
different from the situation in, for example, the 
UK, where electronic health record databases 
are much more likely to be complete given the 
general practitioner gatekeeper paradigm and 
unique patient identifier for all healthcare 
services.

 Particular Applications

Based on these characteristics, one can identify 
particular situations when these databases are 
uniquely useful or uniquely problematic for 
pharmacoepidemiologic research. These data-
bases are useful in situations: (1) when looking 

for uncommon outcomes because of a large 
sample size; (2) when a denominator is needed 
to calculate incidence rates; (3) when one is 
studying short‐term drug effects (especially 
when the effects require specific drug or surgi-
cal therapy that can be used as validation of the 
diagnosis); (4) when one is studying objective, 
laboratory‐driven diagnoses; (5) when recall or 
interviewer bias could influence the association; 
(6) when time is limited; and (7) when the 
budget is limited.

Uniquely problematic situations include: (1) 
illnesses that do not reliably come to medical 
attention; (2) inpatient drug exposures that are 
not included in some of these databases; (3) out-
comes that are poorly captured by the coding 
system, such as Stevens–Johnson syndrome; (4) 
descriptive studies, if the population studied is 
nonrepresentative; (5) delayed drug effects, 
wherein patients can lose eligibility in the 
interim; and (6) important confounders about 
which information cannot be obtained without 
accessing the patients, such as cigarette smok-
ing, occupation, menarche, menopause, etc.

 The Future

Given the frequent use of these data resources 
for pharmacoepidemiologic research in the 
recent past, we have already learned much 
about their appropriate role. As it appears that 
these uses will be increasing, we are likely to 
continue to gain more insight in the coming 
years, especially with the access in the US to 
Medicare data, and the advent in the US of the 
FDA’s Sentinel system, exceeding 170 million 
individuals (see Chapter  25). However, care 
must be taken to ensure that all potential con-
founding factors of interest are available in the 
system or addressed in some other way, that 
diagnoses under study are chosen carefully, and 
that medical records can be obtained when 
needed to validate the diagnoses.
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In this section of the book, Chapters 12–14, 
we will review the details of a number of these 
databases. The databases selected for review 
have been chosen because they have been the 
most widely used for published research. They 
are also good examples of the different types of 

data that are available. There are multiple others 
like each of them and undoubtedly many more 
will emerge over the ensuing years. Each has its 
advantages and disadvantages, but each has 
proven it can be useful in pharmacoepidemio-
logic studies.
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Encounter databases contain electronic records of 
healthcare encounters for large, defined popula-
tions. They capture information on patient char-
acteristics, prescription fills, and medical services, 
as part of the routine administration or reimburse-
ment of healthcare. This is in contrast to electronic 
health record (EHR) databases, described in detail 
in Chapter 13, which are primarily intended and 
maintained to support patient care. Encounter 
data may contain records at various levels of gran-
ularity, ranging from records of individual services 
(fee‐for‐service claims) to aggregate records of 
care episodes (hospital discharge records). 
Encounter databases exist in many countries and 
within a number of vastly different healthcare sys-
tems. An increasing number are available for 
research and consequently, encounter databases 
have become a cornerstone of pharmacoepidemi-
ologic research. Although they vary markedly in 
their specific characteristics, encounter databases 
share a number of defining features that warrant 
their discussion as a group.

While previous editions of Pharmacoepide
miology provided detailed information on a few 

select encounter databases in several dedi-
cated chapters, this sixth edition presents this 
information in more general terms in a single 
chapter. This change in approach reflects the 
continued growth in the number of encounter 
databases used for pharmacoepidemiologic 
research and the often significant changes in 
the characteristics of individual databases over 
time. Rather than attempting to provide an 
encyclopedic description of available data-
bases, this chapter focuses on the description 
of key commonalities and distinctions across 
encounter databases, illustrated with selected 
examples and supplemented by references to 
more comprehensive resources in the litera-
ture. The chapter now also includes a dedi-
cated discussion of the considerations faced 
by researchers when evaluating the appropri-
ateness of a specific encounter database or 
deciding among multiple encounter databases 
for their research question. The use of encoun-
ter databases for multi‐database studies 
within  distributed data networks is discussed 
in Chapter 25.
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 Description

Encounter data arise as part of the routine 
administration of a person’s interactions with 
various sectors of the healthcare system. When 
combined, these data can be used to infer a 
longitudinal picture of a person’s medical and 
treatment history. The quality of that pic-
ture, that is, its usefulness for pharmacoepide-
miologic and other research, depends on the 
completeness and validity of the information 
available.

The essential attribute of all encounter data-
bases useful for pharmacoepidemiologic research 
is a defined population for which healthcare ser-
vices are recorded regardless of the provider or 
location where care is received [1]. Such data-
bases are considered population based (see 
Chapter  17). Precise definition of the database 
population avoids various forms of selection bias 
common in nonpopulation‐based studies (e.g., 
biased control selection in hospital‐based case–
control studies). Complete capture of all relevant 
healthcare services avoids bias from incomplete 
and potentially differential measurement of 
healthcare services (e.g., incomplete ascertain-
ment of hospitalizations occurring in a non-
participating healthcare system). Although 
representativeness of a geographic region or 
the general population is often desirable, it is 
not necessary as long as the database popula-
tion is accurately defined.

While encounter databases ideally capture all 
healthcare services, in practice specific service 
types may not be captured due to the nature of 
the data collection process (most often due to 
lack of reimbursement). However, accurate 
qualitative description of the specific service 
types with lack of coverage or incomplete cap-
ture is critically important to allow evaluation of 
the appropriateness of the database for a given 
research question.

Encounter databases are maintained by a num-
ber of different entities including government 

agencies, insurance companies, health plans, and 
information services companies. The primary 
purpose of encounter databases is often the reim-
bursement of fee‐for‐service payment claims, 
and such encounter data are often referred to as 
claims data. In some instances, for example in US 
health plans with staff model delivery systems or 
capitated payment models, the purpose is purely 
administrative with no processing of payments 
for individual services. This distinction can be 
important as the accuracy and validity of data 
correspond to the purpose of the record. For 
example, claims records are routinely audited to 
prevent fraud and thus assure high accuracy of 
the data in instances where the information is 
directly relevant to the processing of the correct 
payment amount (e.g., quantity and dose of med-
ications dispensed by a community pharmacy or 
type of procedure performed during an outpa-
tient physician visit). In contrast, data elements 
that are not directly tied to the payment, for 
example the specific diagnoses associated with 
an outpatient visit or procedure, may be recorded 
with lower accuracy. In purely administrative 
databases, data characteristics depend on the 
specific data collection and quality assurance 
processes in place for each of the data elements.

While an ideal encounter database would cap-
ture all types of healthcare services, in practice, 
individual databases often lack coverage of cer-
tain service types, depending on the purpose of 
the database and the nature of the data collec-
tion process. The completeness of information 
captured in a database is a function of the types 
of healthcare services (data domains) included, 
as well as of the comprehensiveness of data cap-
ture within each domain. Encounter databases 
useful for pharmacoepidemiologic research typ-
ically contain the following core data domains: 
(1) eligibility and basic demographic informa-
tion, (2) outpatient pharmacy dispensations, and 
(3) medical services (typically including hospi-
talizations; commonly also including outpatient 
health services).
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Data domains may be maintained in separate 
files within a single integrated database (e.g., 
US private and governmental databases), or in 
 multiple autonomous databases that together 
function as a federated virtual database (e.g., 
Nordic healthcare databases), depending on 
whether the data are collected and maintained 
by a single or multiple entities. Both integrated 
and federated databases require reliable linkage 
of an individual’s records over time and between 
data domains. Box 12.1 summarizes commonly 
available data elements within the core data 
domains. The content of the core data domains 
often varies across individual databases in terms 
of which types of healthcare services are  captured. 
While some databases are limited to hospital dis-
charge data, many also capture data on outpa-
tient office‐based physician visits, outpatient 
clinic visits, long‐term care facilities, dental, 
and vision. Another example of incomplete data 
capture within a data domain is incomplete or 
lack of recording of over‐the‐counter medication 

fills in prescription databases. Similar variability 
across databases exists in terms of access to 
nonencounter data, such as electronic health 
records, laboratory test results, diagnostic exam-
inations, provider specialty/characteristics, vital 
statistics, or disease registries. Lastly, profound 
differences also exist in data structure and cod-
ing systems.

Because the primary purpose of encounter data 
is administrative, any inferences about a patient’s 
medical history made from these data have to be 
carefully evaluated. Validation of encounter data, 
ranging from the validation of individual data ele-
ments to the validation of complex encounter 
data‐based algorithms, is critical for rigorous 
pharmacoepidemiologic research with encounter 
databases (see Chapter 37). Validation necessi-
tates the ability to reliably link an individual’s 
encounter data to nonencounter data sources that 
serve as the external gold standard, such as elec-
tronic or paper medical records, disease regis-
tries, or survey data. Furthermore, linkage with 

Box 12.1 Core data domains in encounter databases

Membership Patient identifier, sex, age/date of birth, race/ethnicity (not universally available), zip code, 
dates of enrollment and disenrollment, benefits package/eligibility category (if applicable)

Medical
Outpatient 
services

Inpatient 
services

Patient identifier, encounter date, service location (physician office, hospital outpatient, etc.), 
procedure codes (e.g., CPT, HCPCS), primary and secondary diagnosis codes (e.g., ICD‐10‐
CM), provider identifier, provider profession/specialty
Patient identifier, primary diagnosis, secondary diagnoses, admission and discharge dates, 
length of stay, patient destination, hospital identifier. Inpatient data generally do not include 
information on in‐hospital medication use and typically represent summaries for an entire 
hospital stay, resulting in some lack of detail

Pharmacy Patient identifier, unique drug identifier (e.g., US‐NDC, Nordic article number) which 
identifies generic name, brand name, dosage form, and strength (crosswalks may be needed 
for some databases while others include the individual data elements coded by the unique 
identifier), date dispensed, quantity dispensed, prescription duration/days supply
Typically not recorded: indication for the prescription, inpatient drug use, over‐the‐ 
counter drugs

CPT, Current Procedural Terminology; HCPCS, Healthcare Common Procedure Coding System; ICD, International 
Classification of Diseases; NDC, National Drug Code.
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complementary nonencounter data resources or 
ad hoc data collection (see Chapter  16) is also 
commonly implemented in order to supplement 
an encounter database with variables that are 
required to answer a specific research question 
but are not available in the database, such as life-
style factors or disease severity.

Because of their size, population‐based nature, 
comprehensive capture of the full spectrum of 
healthcare encounters, and ability to rapidly 
assemble cohorts and identify outcomes among 
them, encounter databases represent a tremen-
dous resource for pharmacoepidemiologic stud-
ies. For some research questions, encounter data 
may be sufficient on their own, particularly 
when the outcome of interest has been previ-
ously validated and data on all important con-
founders are available within the database. In 
many instances, however, validation of outcomes 
and supplementation with external data is nec-
essary. In these cases, the encounter databases 
provide the study foundation (population base 
and comprehensive capture of healthcare inter-
actions) with certain data elements critical to the 
study question fleshed out through linkage with 
additional data resources.

Attributes of Encounter Databases

Although encounter databases share a basic set 
of defining characteristics, they differ in numer-
ous attributes that deserve consideration when 
evaluating the fit of a database to address a spe-
cific research question [2,3]. Importantly, in 
some databases, such as US commercial insur-
ance databases, these attributes can be hetero-
geneous across individual people, as availability 
of supplemental data (e.g., laboratory results or 
ability to retrieve medical records) or even core 
data domains (e.g., pharmacy data) may be 
restricted to subsets of the full database popu-
lation. In these instances, suitability of the 
database (e.g., in terms of sample size and rep-
resentativeness) should be evaluated based on 
the subset of the population in a given database 
for which the attributes required to address the 

question under study (i.e., key study variables) 
are available rather than the database popula-
tion as a whole.

Population and Coverage Period
The population captured is a critically important 
consideration when examining the suitability of 
an encounter database for the study of a specific 
research question. The size of the  database is 
typically one of the key criteria when consider-
ing an encounter database for a specific research 
question, in comparison to both electronic med-
ical record databases and alternative encounter 
databases. A large study population is generally 
necessary to ensure adequate statistical power 
when exposures or outcomes are rare (particu-
larly when both are rare), effect sizes are small, 
and when subgroup effects or treatment effect 
heterogeneity are of interest. In addition, some 
common study designs and analytic methods 
may further increase the size of the database 
necessary to achieve adequate statistical power. 
For example, the new‐user active comparator 
design results in study populations that often 
represent only a small fraction of the total num-
ber of users of a drug of interest during the study 
period [4]; restriction, a common approach to 
reduce confounding, can substantially decrease 
the size of study cohorts [5]; and instrumental 
variable methods are statistically inefficient 
compared to standard regression approaches 
(see Chapter 44) [6].

In addition to the size of the database, the 
characteristics of the database population have 
to be carefully considered. As a general rule, the 
population covered by an encounter database is 
a function of the underlying healthcare system 
in the respective country during the study 
period. Knowledge of these systems is a prereq-
uisite for informed consideration and use of 
databases for pharmacoepidemiologic research. 
Databases in countries or regions with universal 
single‐payer coverage, such as Taiwan, South 
Korea, Canadian provinces (with variations 
in  drug benefits between provinces), and the 
northern European countries, generally include 
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the entire population and do not impose eligi-
bility restrictions. All individuals are included 
and membership is maintained throughout a 
person’s life regardless of qualifying factors such 
as age, employment or financial situation. 
As  such, the characteristics of the population 
included in these databases are stable over time 
and closely track the characteristics of the pop-
ulation of the respective country or region as a 
whole. In contrast, database populations in 
countries or regions with less complete or more 
fragmented coverage, first and foremost in the 
US, are heterogeneous and far more compli-
cated. The fragmentation of the US healthcare 
system, in particular, leads to a complex land-
scape for encounter databases, with different 
databases covering distinctly different sub-
sets  of the US population (discussed in more 
detail below).

Furthermore, individuals may be included in 
different databases at different points in time 
based on their personal situation (e.g., employ-
ment and state of residence), resulting in short 
average enrollment periods (dwell times) in any 
specific database environment. Dwell time is an 
important consideration particularly when the 
research question involves studying a long‐term 
effect of a medicine. Similarly, when dwell time 
is short, it becomes increasing difficult to study 
new users of medicines as a lag time at the start 
of an individual’s data capture is required to dif-
ferentiate incident from prevalent medication 
exposure.

Lastly, the time period covered by a database 
often determines its usefulness for a given study 
question, depending on the start of data collec-
tion and recency of the latest available data. 
Studies examining trends in drug utilization over 
time or studies on the long‐term effects of drugs, 
such as those with cancer as an outcome, are best 
served by databases with long coverage peri-
ods and a stable population. Studies of newly 
approved medications primarily require the most 
current data available. The US Medicaid Analytic 
Extracts (MAX) data, for example, are generally 
not appropriate for studies of recently approved 

drugs, due to an approximately three‐year lag in 
data availability. Importantly, when studying 
long‐term utilization trends or long‐term drug 
effects, it is important to be aware of any changes 
over time in health service reimbursement and 
administration and appreciate their impact on 
drug utilization.

Services Covered and Data Completeness
For obvious reasons, medication data are a pre-
requisite for all encounter databases used for 
pharmacoepidemiologic research. Generally, 
these data are limited to information on medica-
tions dispensed by community pharmacies. 
Drugs administered during hospital stays or in 
long‐term care units, in the emergency room, or 
in outpatient physician office settings are  typically 
not included. The latter, however, can in some 
instances be captured through drug‐specific out-
patient procedure codes (e.g., drug‐specific pro-
cedure codes for injection administration). 
In‐hospital databases are discussed in Chapter 14. 
Over‐the‐counter (OTC) drug use is generally 
not recorded, unless OTC drugs are prescribed 
and specifically covered by the insurance or 
health system [7]. In databases for which data 
capture depends on a reimbursement mecha-
nism, drug dispensings may also be missing in 
cases where drugs are paid for entirely out of 
pocket (i.e., because the cash price is lower than 
the required co‐payment) [8], or for nonreim-
bursable drugs (benzodiazepines, for example, 
were excluded from reimbursement by Medicare 
Part D prior to 2013) [9].

Lastly, drug formularies, stepped therapy 
requirements, and prior authorization pro-
grams may impose restrictions on availability 
and co‐payments and thus have a significant 
impact on use rates of individual medications 
and medication classes. Individual formularies 
may apply to an entire database population or 
vary widely across individuals, depending on 
the underlying healthcare system.

Encounter databases also vary substantially in 
terms of which medical services are included 
and, importantly, what information is captured 
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about these services. Most widely used encounter 
databases capture hospital services, including 
emergency departments. Hospital services are 
generally recorded as hospital discharge data 
that summarize information for an entire hospi-
tal or emergency department stay rather than 
provide documentation of individual services. 
Differences, however, exist in the granularity of 
these data, such as number of diagnosis fields 
and availability of procedure codes.

Even greater variation between databases 
exists in the capture of outpatient services. For 
example, in contrast to databases in the US, 
Canada, Taiwan, and South Korea, the Nordic 
countries do not maintain a database of outpa-
tient office‐based physician visits, though visits 
to outpatient hospital/specialty clinics are cap-
tured. As such, Nordic database studies of out-
comes that do not result in hospitalizations or 
require outpatient office‐based diagnoses for 
adjustment of confounding have to rely on medi-
cation use as a proxy for outpatient office‐based 
diagnoses [10]. Capture of other service types, 
such as dental, vision, or long‐term care, also 
depends on the database and the patient’s spe-
cific insurance coverage. Lastly, particularly in 
the US, specific benefits such as mental health or 
other specialty services may be excluded (“carved 
out”) in certain benefits packages and thus are 
not captured for individuals covered under these 
plans. For many databases, it is thus important 
to evaluate the availability of data on specific 
service types not only at the level of the database 
but at the individual level and over time using 
information on each person’s benefit package.

Finally, databases differ in the information 
available about the patient and service pro-
vider. For example, data on the patient’s race 
and ethnicity are generally not available in US 
administrative claims databases but are availa-
ble in US governmental databases. Similarly, 
databases differ in the availability of provider 
specialty and identity for physician medical 
services as well as prescriber specialty and 
identity for dispensing data.

Linkage to Nonencounter Data
Many pharmacoepidemiologic research ques-
tions cannot be answered with encounter data 
alone. Some questions will require randomized 
trials (see Chapter  32) or prospective primary 
data collection (see Chapter 16). However, link-
ages to complementary sources of data may help 
to overcome inherent limitations of encounter 
data. Commonly used sources for nonencoun-
ter data include electronic or paper medical 
records, laboratory results, cause of death regis-
tries or autopsy records, disease or immuniza-
tion registries, census data, biobanks, or survey 
data.

Linkage of encounter data to complementary 
data sources serves two distinct purposes: (1) 
validation of encounter‐based information 
against an external gold standard, and (2) provi-
sion of supplementary data not available in the 
encounter database. Linkage to an external gold 
standard, ideally the medical record, for a sam-
ple of cases is particularly critical in order to 
facilitate outcome validation and calculation of 
positive predictive values (PPVs) of encounter 
data‐based algorithms. In the absence of the 
medical record, validation may be performed 
against disease registries or patient self‐report/
survey. The validity of pharmacoepidemiologic 
drug and diagnosis data as well as approaches to 
the conduct of validation studies are discussed 
in detail in Chapter  37. The ability to retrieve 
medical records for outcome validation varies 
between databases and is often a critical factor 
in database selection.

Linkage to nonencounter data may also be 
necessary to provide supplemental information 
on variables that are unmeasured or poorly 
measured in the encounter data but necessary 
to adjust for confounding or appropriate restric-
tion of the study population (e.g., indication for 
drug prescribing, lifestyle factors, measures of 
disease severity). Supplemental information 
such as laboratory test results or autopsy records 
may also be required for outcome ascertain-
ment (e.g., Hba1c level as an outcome for a study 
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on the comparative effectiveness of various 
hypoglycemic agents).

Due to privacy restrictions that prevent the 
sharing or use of personal identifiers, retrieval 
of medical records or information obtained 
through direct contact with physicians or 
patients is generally not performed by investiga-
tors, but rather facilitated through third parties 
(e.g., retrieval of redacted medical records for 
US Medicaid and Medicare) or handled inter-
nally by employees of the participating health 
plans (e.g., in several US commercial insurance 
databases). Depending on the database, encoun-
ter and nonencounter data may be available 
under the same umbrella organization (e.g., 
linkage to EHRs in many US health plans) or 
require linkage to outside entities (e.g., retrieval 
of hospital medical records for US Medicaid 
beneficiaries for the purpose of outcome 
 validation), which greatly affects the feasibility, 
efficiency, cost, and success rates of the linkage.

Healthcare data linkages are governed by both 
privacy restrictions and the availability of com-
mon linkage variables in the respective data-
bases. Privacy regulations governing the ability 
to link personal health information are complex 
and vary between countries and database own-
ers, and over time. When these regulations do 
not preclude linkage, health information data-
bases can be linked using either deterministic or 
probabilistic methods [11]. Briefly, in determin-
istic linkage, a unique identifier or a combina-
tion of several nonunique variables available in 
both databases must match exactly (though the 
match can be implemented based on trans-
formed versions of the variables, e.g., phonetic 
codes instead of names to minimize the impact 
of spelling errors). Deterministic linkage is most 
useful if reliable unique identifiers are available 
(e.g., US social security number) but is also 
achievable with combinations of multiple non‐
unique variables (e.g., birth dates, admission 
dates, and names). However, use of variables 
with low discriminative power and errors or 
missingness in the matching variable(s) will lead 

to a high number of overlooked (false‐negative) 
matches.

Probabilistic linkage methods can reduce the 
number of overlooked (false‐negative) matches 
by allowing imperfect matches due to partially 
inaccurate or missing data but in turn may pro-
duce false‐positive matches. Choice of matching 
method thus involves a trade‐off between false‐
negative matches (i.e., missed matches) and false‐
positive matches (i.e., incorrectly matched 
records). Simulation studies have suggested that 
deterministic linkage is an equally valid but less 
computationally intensive method for databases 
with low rates of missingness and error in the 
linkage variables [12]. However, probabilistic 
linkage is more accurate in error‐prone data. 
Although often challenging, validation of linkage 
quality is critically important as all linkage meth-
ods are susceptible to error. The Nordic prescrip-
tion database networks are examples of highly 
reliable linkages between encounter data and dis-
ease registries with unique identifiers [13] while 
the Dutch PHARMO system uses probabilistic 
record linkage methods [14].

Access
Access regulations, costs, and feasibility consid-
erations vary widely between encounter data-
bases and often have a major impact on database 
choice. Access may, for example, be restricted to 
certain researchers, such as those working in 
academia or governmental agencies. Some 
encounter databases facilitate direct access to 
either “off‐the‐shelf” or customized anonymized 
datasets which may be physically transferred to 
the researcher’s institution or accessed remotely 
(e.g., select US commercial databases, US gov-
ernmental databases, or the South Korean 
HIRA data), while others require in‐house data 
analyses and thus necessitate collaborative 
agreements with researchers employed by the 
database custodian or affiliated research insti-
tutes (e.g., US health plan databases or Nordic 
prescription databases). Some databases are 
directly accessible in anonymized form but 
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require in‐house analysis performed by the 
database custodian when additional “custom” 
linkages that require personal identifiers have to 
be implemented (e.g., Truven MarketScan). For 
studies conducted through the database custo-
dian, it is important to not only consider the 
attributes of the database itself, but also the data 
analytic capacity and track record of the in‐
house research collaborators. While complexity 
of database structure varies between databases 
and studies, all work with large encounter data-
bases requires sophisticated programming skills 
as well as a comprehensive understanding of 
database‐specific details. The latter considera-
tion can be a major advantage of collaborative 
arrangements that include researchers or pro-
grammers from the database custodian.

Costs of data access vary across databases and 
often within databases, depending on the spe-
cific characteristics of the study in question. 
Fees often vary by size (number of individuals) 
and complexity (number of files/data sources) 
of the requested dataset as well as by funding 
source (e.g., federal versus commercial fund-
ing). In‐house data analysis often imposes sub-
stantial additional costs.

Application processes vary widely as well. 
While all databases require compliance with 
data privacy and security restrictions, some 
may also impose scientific vetting of the 
research plan or a justification of the benefit of 
the research to the public. Particularly in pro-
jects that require custom linkage with identifi-
able patient or provider information, close 
collaboration with the database custodian is 
needed to obtain necessary approvals and 
maintain confidentiality. In addition, the time 
required for the creation of study‐specific 
data‐cuts depends on the staffing resources 
and experience at the database custodian and 
the complexity of the required dataset. As a 
result, the duration from the beginning of the 
application process until the start of the 
research can vary dramatically between sev-
eral weeks to multiple years.

In practice, while access considerations and 
familiarity with a given database are often 
important drivers of database choice, it is vital 
never to lose sight of the suitability of the data-
base for the specific research question under 
study.

Selected Encounter Databases

A selection of widely used encounter databases 
and database types with their basic characteris-
tics is presented in Table  12.1 and discussed 
below. Databases will be discussed by region 
and include US databases, Canadian databases, 
European databases, and Asian databases.

Encounter Databases in the United States
US encounter databases are arguably both the 
largest databases available and the most frag-
mented. Unlike most industrialized nations, the 
US does not have a uniform health system or 
universal healthcare coverage, resulting in data-
bases with characteristics that differ markedly 
from databases in the rest of the world. In 2016, 
292 million people, or 91% of the US popula-
tion, had health insurance coverage, with 
28  million uninsured [15]. 216 million people 
had coverage from private plans (68%), mostly 
employment‐based plans (179 million; 56%). 
120 million people (37%) had coverage from a 
governmental plan; 62 million by Medicaid 
(19%), 53 million by Medicare (17%), and 
15 million had military coverage (5%). Note that 
these census data‐based estimates show some 
inconsistencies with the reporting from the 
Centers for Medicare and Medicaid Services 
(CMS) presented later in the chapter.

Broadly speaking, most employed individuals 
and their dependents are covered by commercial 
insurance, adults 65 years and older and qualify-
ing individuals with disabilities are covered by 
Medicare, and the poor and other disadvantages 
groups are covered by Medicaid. Furthermore, 
insurance coverage in the US is not mutually 
exclusive. In 2016, 22% of the population with 



Table 12.1 Database characteristicsa

Type Government, US Government, US
Health System 
Databases, US

Commercial 
Insurance, US

Government, 
Canada

Government, 
Northern Europe

Government, 
Asia

Examples Medicare Medicaid Analytic 
eXtract (MAX)

Kaiser, Geisinger HealthCore, 
MarketScan, 
Optum, 
Pharmetrics

Saskatchewan, 
Quebec

Denmark, Norway, 
Sweden, 
Netherlands

South Korea, 
Taiwan

Networks Sentinel Sentinel HCSRN, Sentinel, 
PCORnet, VSD

Sentinel, 
CNODES

CNODES PROTECT AsPEN

Population Province Country Country
Relative size +++ +++ ++ +++ ++ ++ +++
Dwell time +++ + to ++ + to ++ + +++ ++++ ++++
Lag in availability 3–4 years 1–2 years <1/2 year <1/2 year Variable Up to 2 years Variable
Access Direct Direct In‐house In‐house <1–2 years In‐house Variable
Retrieval of medical 
records for validation

Yes Yes Yes Partial Nob Yes Yes for some 
databases

Coding, drug NDC NDC NDC NDC AHFS ATC ATC
Coding, Dx ICD‐9‐CM, 

ICD‐10‐CM
ICD‐9‐CM, 
ICD‐10‐CM

ICD‐9‐CM, 
ICD‐10‐CM

ICD‐9‐CM, 
ICD‐10‐CM

ICD‐9‐CM, 
ICD‐10‐CM

ICD−8, −9 and ‐10 ICD‐10, 
ICD‐9

Validation +++ +++ ++++ + to +++ ++ ++ ++
Supplementation +++ ++ ++++ + to +++ ++ +++ +++

a Drugs and claims only in subset.
b Apart from a few rare exceptions, one cannot retrieve medical charts of cases ascertained in a given study. However, can identify patients in medical records in 
institutions and link back to the database.
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health insurance had multiple coverage types 
due to either switches in coverage type or to 
simultaneous coverage to supplement their pri-
mary insurance type.

With the exception of Medicaid programs, 
which generally provide prescription drug cover-
age for all beneficiaries, prescription drug insur-
ance is typically provided separately from medical 
insurance, resulting in subgroups of patients in 
major databases for whom only pharmacy or 
medical data are available. Although pharmacy 
claims are recorded with high accuracy, medica-
tion dispensings can be incompletely captured in 
patients covered by multiple insurance programs 
or in instances where the co‐payment is greater 
than the cash price of the medication [16,17]. In 
recent years, several large US retailers have begun 
to offer low‐cost generic medications for as little 
as $4 for a monthly supply, considerably less than 
the average tier 1 co‐payment ($11 in 2017) 
[8,18]. Since there is no financial incentive, phar-
macies may not submit insurance claims when 
patients pay cash, resulting in potential underas-
certainment of low‐cost generic medications. To 
date, empirical studies examining the missing-
ness of dispensings in claims databases have 
reported a limited impact of such generic drug 
discount programs [16,17,19]. Payments rates 
and modalities for medical services vary widely, 
ranging from fee‐for‐service to capitated arrange-
ments in which providers receive a fixed payment 
per patient per unit of time for the delivery of a 
specified set of services. Detailed claims data are 
often not available for services or patients cov-
ered by such capitated payment models as the 
payment amount is independent from the spe-
cific services provided.

Several large US encounter databases are 
available and have been widely used for phar-
macoepidemiologic research [20–22]. These 
databases include markedly different groups of 
the population and often individuals with 
 heterogeneous healthcare coverage are included 
within the same database. To complicate  matters 
further, significant mobility exists between 

databases as changing life circumstances (loss of 
employment, change in employer, disability, 
reaching age 65/Medicare eligibility) result in 
changes in insurance coverage. This is often 
referred to as “churning” and substantially 
affects the average dwell time of individuals in 
US encounter databases [23].

US databases generally use the National Drug 
Code (NDC) for medication data, the Current 
Procedural Terminology (CPT) coding and 
Healthcare Common Procedure Coding System 
(HCPCS) for procedures, and the International 
Classification of Diseases, Clinical Modification 
(ICD‐CM) system for diagnoses. The US transi-
tioned from ICD‐9‐CM to ICD‐10‐CM on 
October 1, 2015 [24], which has important impli-
cations for pharmacoepidemiologic research 
conducted in US databases. Despite the existence 
of crosswalks, the performance characteristics of 
encounter data‐based algorithms have to be 
demonstrated for the new coding system and 
studies that span the transition date will have to 
implement multiple coding systems in a single 
study. Data privacy and security of identifiable 
healthcare data in the US are governed by the 
Health Insurance Portability and Accountability 
Act of 1996 (HIPAA) [25].

US Private Insurance Databases
Most healthcare in the US is covered through 
private insurance, predominantly employer‐
based insurance. For‐profit and not‐for‐profit 
insurance companies offer a wide range of plans 
that vary in characteristics such as premium, 
co‐payment/co‐insurance, deductibles, out‐of‐
pocket limits, services covered, drug formular-
ies, and provider choice. Payment systems and 
business models are complex and undergo con-
tinuing change over time. Because most private 
insurance plans are associated with the employer, 
many patients frequently change insurance plans 
due to changes in employment or when employ-
ers change their contracted insurance portfolio. 
Although there are hundreds of health insurance 
companies in the US, a relatively small number 
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of companies provide coverage for a majority of 
the privately insured population. The great 
majority of the privately insured population are 
covered by insurance systems that pay for the 
care provided by others [20]. Commercial insur-
ance databases derived from these systems are 
some of the largest databases available for phar-
macoepidemiologic research. A smaller group is 
covered by integrated, often not‐for‐profit, 
healthcare delivery systems that assume respon-
sibility for preventive and therapeutic health ser-
vices to a defined population, often employ 
group or staff model delivery systems, and fre-
quently operate their own hospitals (e.g., Kaiser 
Permanente) [22]. Though typically smaller in 
size, the databases associated with these health-
care systems offer extensive data resources that 
combine encounter data with detailed clinical 
data resources, including EHRs and direct access 
to patients and providers.

Commercial insurance databases are longitu-
dinal collections of billable healthcare interac-
tions [20]. These databases are maintained by a 
variety of entities. This includes large insurance 
companies, often through health data analytics‐
focused subsidiaries (e.g., Optum Clinformatics/
UnitedHealth Group [26]; HealthCore Integrated 
Research Database/Anthem, Comprehensive 
Health Insights Outcomes Data/Humana), as 
well as health information technology companies 
(e.g., Truven Health MarketScan [27], IQVIA 
PharmetricsPlus). Commercial insurance data-
bases typically include several millions to tens of 
millions of individuals cross‐sectionally and 
cumulatively often exceed 100 million unique 
patients over the life span of the database. 
Importantly, however, the extremely large sizes of 
these databases do not necessarily translate 
directly into the size of pharmacoepidemiologic 
study cohorts. Given the approximately 30% 
annual churn rate in commercial insurance cov-
erage and the fact that prescription drug cover-
age is often separately administered or absent, 
only approximately 50%, 30%, and 15%, of benefi-
ciaries with medical coverage have continuous 

medical and pharmacy coverage for 1, 2, and 4+ 
years, respectively [20].

Another important and often underappreci-
ated feature of commercial insurance data-
bases is the large within‐database heterogeneity 
in data availability, completeness, quality, and 
ability to link member data to nonencounter 
data. Within a typical commercial database, 
members are covered by a variety of insurance 
products (often from multiple insurance com-
panies), leading to substantial differences in 
services captured in the database. Drug formu-
laries, which determine coverage and out‐
of‐pocket costs for prescription drugs, for 
example, vary widely between plans. Similarly, 
a study that requires data on dental procedures 
would have to be limited to the subset of bene-
ficiaries with a dental benefit during a specific 
time period. Completeness and quality of the 
claims data also depend on the payment model 
employed by the respective insurance prod-
ucts. As discussed earlier, completeness and 
accuracy with which services are captured may 
differ substantially depending on whether ser-
vices are reimbursed through fee‐for‐service 
payments or capitated arrangements. Such cap-
itated arrangements may apply to all medical 
coverage or be limited to specific services (e.g., 
specialist visits or mental health services).

The ability to validate or supplement the claims 
data is also often limited to subgroups of mem-
bers included in the database. For example, for 
databases maintained by subsidies of insurance 
companies, data validation and supplementation 
may not be permitted for the (sometimes sub-
stantial) proportion of individuals in “self‐
funded” plans, where the employer assumes 
direct risk for payment and the insurance com-
pany only provides administrative services (ASO 
members). Similarly, the ability to identify 
patients and validate or supplement patient data 
depends on the contractual arrangements with 
the data sources (employers, health plans) and is 
generally restricted to a limited subset of the 
full database populations. Given the substantial 
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heterogeneity in multiple data attributes within 
and between commercial databases, thoughtful 
consideration of detailed information on mem-
bers’ individual benefit packages is critical to 
facilitate restriction of the study population to 
those for whom all necessary data elements and 
linkages are captured or available in the database.

Several models exist to enable research access to 
commercial insurance databases. Some databases 
are directly available in their entirety through 
licensing arrangements (e.g., MarketScan®), while 
others are solely accessible on a project‐by‐project 
basis via collaborative arrangements involving in‐
house programmers. Databases available for 
licensing are deidentified, with all personal identi-
fiers removed, and as such do not support external 
linkages. Studies that require such linkages for 
validation or supplementation of the encounter 
data typically require collaboration with research-
ers employed by the database custodian. Such col-
laborations have the added advantage of tapping 
into the often substantial experience of the custo-
dian research team. Most major commercial 
insurance providers also participate as data part-
ners for the Sentinel System (see Chapter 25).

Integrated healthcare delivery system databases 
differ from commercial insurance databases in 
that they include a defined population whose 
entire spectrum of care is the responsibility of and 
provided by the integrated delivery system. 
Similar to commercial insurance databases, the 
delivery system databases include pharmacy dis-
pensing data as well as encounter data on diagno-
ses and procedures from care delivered in both 
ambulatory and inpatient settings. However, 
because all care is provided by the delivery sys-
tem, these databases also have access to full inpa-
tient and outpatient electronic and paper medical 
records, and have the ability to interact with pro-
viders and patients. Although the latter features 
are also available for subsets of patients in many 
commercial insurance databases, the uniqueness 
of integrated delivery systems databases lies in the 
fact that these linkages cover the entire care 
received by the patient and are not limited to care 

received by specific practices or hospitals. Since 
many EHR systems include information on drugs 
prescribed, delivery system databases have often 
access to both prescription and dispensing 
data, which can be useful for a variety of research 
questions, such as questions of primary nonad-
herence [28]. In addition, several integrated 
healthcare delivery systems include affiliated 
research centers that maintain a variety of addi-
tional data resources such as registries for cancer, 
diabetes, or cardiovascular disease. Integrated 
health delivery systems have a long track record of 
pharmacoepidemiologic research, and many are 
consortium members in the Health Care System 
Research Network (HCSRN, formerly known as 
the HMO Research Network) and data partners 
for the Sentinel System (see Chapter 25) [22].

US Government
The US government funds healthcare services 
through several major programs, including 
Medicare and Medicaid, as well as the 
Department of Veterans Affairs Healthcare 
System (VA). In contrast to the VA, which is a 
large provider of healthcare services operating 
numerous hospitals, clinics, and nursing homes, 
Medicaid and Medicare function as payers. 
Both programs pay directly for services using 
fee‐for‐service arrangements, but a large and 
growing proportion of beneficiaries receives 
Medicaid (68% in 2016) [29] or Medicare (30% 
in 2016) [30] coverage administered by private 
insurance companies through capitated man-
aged care plans. For beneficiaries covered by 
managed care plans, encounter data for indi-
vidual services have only recently become avail-
able (Medicare) [31] or of mixed completeness 
and quality (Medicaid) [32] and thus research 
with Medicaid or Medicare data has historically 
been restricted to individuals with fee‐for‐
service coverage.

The Centers for Medicare and Medicaid 
Services (CMS) administer Medicare and 
Medicaid data and facilitate access to research 
identifiable files for research purposes. Requests 
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for these data files require a research protocol 
and data use agreement, and are reviewed by 
CMS’s Privacy Board. The application process is 
managed and supported by the Research Data 
Assistance Center (ResDAC) at the University of 
Minnesota, which provides technical assistance 
to researchers interested in CMS Medicare and 
Medicaid data. Data access requires payment of 
fees based on the requested population size as 
well as the number of data files requested, which 
can be provided through release of data files to 
investigators or remotely via the CMS Virtual 
Research Data Center (VRDC). A mechanism to 
obtain inpatient hospital and emergency depart-
ment medical records corresponding to Medicare 
and Medicaid claims has been described and 
implemented [33,34]. Medicaid and Medicare 
data for select states or populations are also avail-
able from commercial entities (e.g., IBM Watson 
Health) [27].

Medicaid is a joint state/federal program 
intended to provide health coverage for low‐
income individuals. It is administered separately 
by each state and state‐specific eligibility rules 
differ within federal regulations. Traditionally, 
the program has provided coverage limited to 
certain groups of low‐income individuals, 
including pregnant women, low‐income families 
with children, the chronically disabled, and the 
elderly. Following the passage of the Affordable 
Care Act in 2010, about one half of US states 
have expanded coverage to all individuals under 
certain income thresholds. In 2016, the average 
monthly enrollment in Medicaid was 70.9 mil-
lion (5.7 million aged, 10.6 million blind/disa-
bled, 28 million children, 26.7 million adults 
including 11.2 million adults eligible through 
Medicaid expansion) [30]. In 37 states, ≥50% of 
beneficiaries were covered through private man-
aged care plans [29]. Medicaid coverage for eligi-
ble individuals is generally comprehensive 
although each state, within federally mandated 
parameters, administers its Medicaid program 
differently, resulting in variations in Medicaid 
coverage across the country.

Medicaid Analytic eXtract (MAX) data files 
include enrollment and claims data for all 
Medicaid enrollees in the 50 states and the 
District of Columbia as well as for the approxi-
mately 6.5 million (2016) enrollees in the 
Children’s Health Insurance Program (CHIP) 
which serves uninsured children up to age 19 in 
families with incomes too high to qualify for 
Medicaid. MAX files have been produced since 
1999 and are available per state per year [35]. 
MAX data are organized in five files: (1) person 
summary (demographic characteristics and 
enrollment information); (2) inpatient (inpa-
tient hospital claims with one record per stay; 
procedure and diagnosis codes); (3) long‐term 
care (e.g., nursing facility claims); (4) prescrip-
tion drug (outpatient pharmacy data including 
national drug code, quantity dispensed, days 
supply); and (5) other services (e.g., laboratory 
and other diagnostic claims). MAX data are 
based on state‐level data submitted through the 
Medicaid Statistical Information System (MSIS) 
and produced by CMS using extensive editing 
and quality control. There is a substantial lag of 
approximately 3–4 years between the end of a 
calendar year and MAX availability. Because the 
files are produced by state, some states may 
have MAX data available sooner than others. 
Once released, MAX data are final.

Importantly, the state reporting system is 
currently under transition from MSIS to 
Transformed‐MSIS (T‐MSIS). T‐MSIS adds new 
file types (third‐party liability, provider, and man-
aged care plan data), new data elements, and 
modification of existing data elements [36]. One 
of the intentions of T‐MSIS is to improve the 
capture and quality of encounter data for benefi-
ciaries covered by managed care plans [37]. Data 
for these beneficiaries have historically been con-
sidered not to be up to research standards and 
have typically been excluded from most pharma-
coepidemiologic research [21,32]. Given that a 
great majority of Medicaid enrollees are now 
covered under managed care plans, availability of 
research‐quality data for this population (after 
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extensive quality checks and validation studies) 
would substantially increase the potential of 
MAX data as a resource for pharmacoepidemio-
logic research. Gaps in data capture due to peri-
ods of ineligibility are common as eligibility is 
typically determined monthly and changes with 
income and life circumstances. This issue affects 
individual eligibility groups differently, with 
more stable enrollment for those qualifying 
based on disability and less stable enrollment for 
low‐income adults. Exclusion of beneficiaries 
without stable enrollment has been implemented 
based on eligibility files as well as through 
requirements for Medicaid encounters during 
specified periods before and after person‐time 
under study.

Because Medicaid is administered at the state 
level, state‐specific policies (e.g., opioid quan-
tity limits or prior approval requirements) have 
to be considered in the research design. 
Medicaid and Medicare data for dually eligible 
beneficiaries can be linked. Such linkage is 
important in studies of dual enrollees since 
Medicaid or Medicare data alone fail to docu-
ment the full spectrum of care provided to such 
dual enrollees [38]. Medicaid data for research 
are also available directly from individual states 
but access is often limited to researchers with 
established ties to the specific state Medicaid 
programs.

Medicare is the federal program that provides 
healthcare coverage for almost all people 65 years 
and over as well as for qualifying individuals with 
permanent disabilities [39]. Medicare coverage 
consists of four parts: Medicare Part A (Hospital 
Insurance), Medicare Part B (Medical Insurance), 
Medicare Part C (Medicare Advantage), and 
Medicare Part D (Medicare Prescription Drug 
Coverage). All parts of Medicare coverage require 
beneficiaries to pay deductibles and some stipu-
late cost sharing. Part A covers inpatient care in 
hospitals and skilled nursing facilities, as well as 
hospice. It is premium free for the great majority 
of beneficiaries. Part B covers physician and other 
outpatient services. It is an optional program that 

requires monthly premiums. Approximately 90% 
of Medicare beneficiaries enroll in Part B. Part C 
allows Medicare beneficiaries to enroll in private 
health plans that administer Part A and B bene-
fits. The large majority of these so‐called Medicare 
Advantage plans also include Part D benefits (i.e., 
prescription drug coverage). Part C plans are 
optional and require premiums. In 2016, 30% of 
Medicare beneficiaries received coverage through 
Medicare Advantage plans. Importantly, encoun-
ter data for Medicare Advantage beneficiaries 
have only recently become available through 
CMS (to date solely for service year 2015) [31].

Part D provides outpatient prescription drug 
coverage. Established in 2006, the program is 
administered by private companies that provide 
coverage through hundreds (782 in 2017) of 
prescription drug plans (PDPs) that differ in for-
mulary coverage and cost sharing. Enrollment 
in Part D is voluntary and requires a monthly 
premium that varies between the individual 
PDPs. Medicare Part D imposes a coverage gap 
(doughnut hole) that requires beneficiaries to 
pay a substantial percentage of the cost of their 
medications (35% and 44% for brand name and 
generic drugs, respectively, in 2018) until they 
reach the out‐of‐pocket spending limit ($5000 
in 2018). A large proportion of Medicare benefi-
ciaries have some type of supplemental cover-
age (employer sponsored, Medicaid, so‐called 
Medigap policies) to reduce out‐of‐pocket costs 
from cost‐sharing requirements. In 2016, the 
average monthly Medicare enrollment was 57 mil-
lion (48 million aged, 9 million disabled) [30]. 
17 million beneficiaries were covered through 
Medicare Advantage and 41 million had a Part 
D benefit, including 16 million through Medicare 
Advantage plans [40].

Medicare data are available in several file 
types that are linkable to each other, as well as to 
Medicaid data for dually enrolled beneficiaries. 
File types include Master Beneficiary Summary 
Files (MBSFs), which include files on demo-
graphics and enrollment, chronic conditions, 
and cost and utilization; Institutional Claims, 
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which include files on inpatient services, skilled 
nursing facilities, and hospice; Noninstitutional 
Claims, which include outpatient physician 
claims (Carrier file) and claims for durable 
 medical equipment; and the Part D event data 
file, which provides detailed prescription‐level 
outpatient pharmacy claims. Supplementary 
files provide information on Part D plan charac-
teristics, pharmacies, drugs (crosswalks from 
First DataBank), prescribers, and formularies.

Since prescription drug data for Medicare 
have become available after the establishment of 
Medicare Part D in 2006, Medicare, due to its 
large and stable population, has become one of 
the largest and most comprehensive resources 
for pharmacoepidemiologic research.

Encounter Databases in Canada
Canada, with its population of approximately 
36 million, has a universal healthcare program 
covering all residents regardless of age or 
income. Program administration is the respon-
sibility of each of its ten provinces. Physician 
visits, diagnostic tests, procedures (in‐ or out-
patient), and hospitalizations are provided 
without payment by the patient at the point of 
care. Encounter data are transactional and 
consist of billings submitted by healthcare pro-
viders on a fee‐for‐service basis. A small num-
ber of physicians may have all or a portion of 
their activities covered by salary so the services 
they provide may not be included in the medi-
cal services databases. In contrast, public drug 
coverage programs differ among provinces; 
programs have been available for varying 
lengths of time and differ with respect to eligi-
bility criteria as well as characteristics (i.e., co‐
payments and deductibles). Some provinces, 
such as Saskatchewan and Manitoba, provide 
coverage for the entire population while in the 
others, public drug programs restrict coverage 
to specific segments of the population, such as 
the elderly, welfare recipients, or those who do 
not have access to private insurance plans 
through their employers.

Within each province, three encounter data-
bases are available: (1) beneficiary, (2) medical 
services, and (3) prescription drugs. These data-
bases are linkable through a unique patient 
identifier that remains unchanged over time. 
Additional linkage capacities are available to 
hospitalization databases, population health 
surveys [41] or province‐specific disease regis-
tries [42]. Linkage of hospital charts or outpa-
tient charts for validation of diagnoses or 
collection of data that are not present in the 
databases requires approval from the provincial 
information access commissioner and may not 
be feasible in all provinces. A number of valida-
tion studies of Canadian databases, primarily of 
diagnoses codes in the medical services data-
bases, can be found in the literature but valida-
tion data remain far from comprehensive [43].

Each province maintains its own medical ser-
vices encounter database, which includes all 
claims submitted by physicians regardless of 
setting (inpatient, outpatient, or emergency 
department) as long as the physician is paid on 
a fee‐for‐service basis. The nature of the 
 information in the various provincial medical 
services databases is similar though differences 
exist in coding systems, such as the ICD version. 
For each medical service, the following informa-
tion is recorded: service (date, description, 
 location, diagnosis, and cost), provider (identi-
fier and specialty). The vast majority of claims 
are submitted electronically, and the resulting 
medical services claims databases are populated 
in real time. In a few provinces, such as Nova 
Scotia, Manitoba, and British Columbia, mental 
health services, including psychotherapy, are 
recorded in a distinct database [44].

Unlike the medical services databases, hospitali-
zation databases are intended for the creation of 
health statistics rather than for reimbursement 
purposes. The databases contain clinical data 
related to hospital discharges from acute or chronic 
care units, or rehabilitation centers, as well as day 
surgeries. With the exception of Quebec, which 
maintains its own hospital discharge database 
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(MED‐ECHO), all provinces contribute to the 
Discharge Abstract Database (DAD) maintained 
by the Canadian Institute for Health Information 
(CIHI) [45]. The information is therefore homoge-
neous across provinces. In the hospitalization data-
bases, diagnosis was coded with ICD‐9‐CM until 
31 March 2006 and with ICD‐10 thereafter. In the 
DAD database, information on mental health 
resources, cancer staging, and reproductive history 
was added in 2009–2010. Hospitalization data-
bases are typically available six months after the 
end of the fiscal year (March 31).

Province‐specific prescription drug databases 
record all prescription drugs dispensed in an 
outpatient setting to individuals covered by the 
public drug plan. Drugs obtained over the coun-
ter, in hospital, in long‐term care units, not 
included in the formulary, or covered only by 
private insurance programs are not usually 
included in the database. One exception is 
PharmaNet in British Columbia that links all 
pharmacies to a central data system. Every pre-
scription dispensed in the outpatient setting 
is  recorded regardless of coverage; hence, it 
includes medications covered by the public drug 
plan and private insurance programs, as well as 
those acquired out of pocket. Drugs are coded 
according to the Canadian‐specific Drug 
Information Number (DIN) as well as the 
American Hospital Formulary Service (AHFS). 
For each dispensing, the following information 
is recorded: drug (date of dispensing, drug 
name, dose per unit, mode of administration, 
prescribed duration [not recorded in 
Saskatchewan], cost including dispensing fees), 
pharmacist (identifier, pharmacy location), and 
prescriber (identifier, specialty). Indication for a 
drug prescription is not recorded in any of the 
dispensing databases. While data and coding 
systems are similar across provinces, inclusion 
of individual drugs in the formulary and type of 
listing (general or restricted) may vary. For each 
patient, the years of entry and exit from the drug 
program are available in the beneficiary data-
base. This is important information for studies 

that include segments of the population whose 
membership in the drug program may be transi-
tory, such as membership based on income or 
access to private insurance programs.

Only seven of the 10 Canadian provinces 
make prescription data available for pharma-
coepidemiologic research. Approximately half 
of these databases are accessible through custo-
dians located in a university setting while the 
other half are accessible through provincial 
government agencies. In addition to the drug 
databases, custodians also act as a repository 
for other provincial databases and are responsible 
for their linkage.

Database access varies across provinces. Some 
provinces (Saskatchewan, Quebec, Nova Scotia) 
provide raw anonymized datasets to researchers 
(from academic or industry settings) while oth-
ers (Ontario, BC) require data to be analyzed 
in‐house by specific research organizations. To 
maintain confidentiality of the data, no patient, 
healthcare provider (including pharmacist), or 
institution identifiers are transmitted to 
researchers. Additional restrictions are in place 
in individual provinces. For example, in Quebec 
only a random sample of approximately 75% of 
the population eligible for a given study (capped 
at a maximum of 125 000 eligible patients) may 
be obtained, and no birthdates are transmitted. 
Exceptions can be granted through a request 
to  the Provincial Access to Information 
Commission, which substantially increases the 
delay in data extraction.

Although Canadian encounter databases are 
much smaller than US encounter databases, 
their greatest advantage is that they include a 
stable population, thereby allowing longer fol-
low‐up periods. This is, for example, illus-
trated through a study on benzodiazepines 
and Alzheimer’s disease, in which a 10‐year 
follow‐up was available [46]. The time required 
for database extraction varies across prov-
inces, ranging from 10–20 weeks to one year, 
more if a request to the Provincial Access to 
Information Commission is required.
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Encounter Databases in Europe
Nordic Prescription Databases
The Nordic countries (Denmark, Iceland, Norway, 
Sweden, and Finland) have tax‐supported univer-
sal health coverage. All citizens (a combined pop-
ulation of over 25 million people ranging from 
~300 000 in Iceland to more than 9 million in 
Sweden) are provided with unrestricted access to 
health services including partial or complete reim-
bursement of medications.

Pharmacies electronically submit information 
on dispensed prescriptions to national data-
bases without a requirement for informed con-
sent by the patient (available since 1994 in 
Finland and Denmark, 2004 in Norway, 2005 in 
Sweden, and 2006 in Iceland) [47]. Unique civil 
registration codes facilitate unambiguous link-
age to various national databases using a central 
patient router file. Linkable national databases 
include but are not limited to hospital dis-
charge databases, laboratory data including 
results, pathology databases, medical birth 
databases, cancer registries, and cause of death 
databases, as well as census data, health surveys, 
biobanks, and patient records. Together, these 
databases create a federated database network 
that provides exposure information from the 
prescription database as well as patient and 
clinical outcome data from the patient router 
file and multiple linked autonomous databases.

The prescription databases largely include sim-
ilar data elements with slight variations between 
countries. Besides a patient identifier (which also 
encodes birth year and sex), data include drug 
data (dispensing date, Nordic article number, a 
unique identifier similar to the NDC code used in 
the US, ATC classification, quantity dispensed in 
defined daily doses), a prescriber identifier 
(which can be linked to prescriber data such as 
basic demographics, profession, specialty, prac-
tice site), and pharmacy data (name and loca-
tion). OTC drugs are not included unless they are 
obtained via prescription. Importantly, some 
drugs that are also available OTC are used pri-
marily via prescription, to ensure reimbursement 

[7]. Besides the difference in the age of the data-
bases, the most noticeable difference is the fact 
that nonreimbursed drugs are not covered by the 
Finnish database.

Outcome data are primarily based on national 
hospital discharge databases (registries). While 
comparable, some differences exist in the age of 
the patient databases, with the Finnish database 
dating back to 1969 [48], followed by the Danish 
(1977) [49], Swedish (1987) [50], and Norwegian 
registry (2008) [51]. Numerous other databases 
including cancer, birth, and death, together with 
pathology and laboratory results, further com-
plement the dataset. Importantly, no large‐scale 
data are available that provide details regarding 
general practice visits or other nonhospital 
health services. This is often referred to as a lack 
of “outpatient” data. However, this term can 
lead to misunderstandings in the context of the 
Nordic healthcare model. All hospital databases 
cover activities within hospital outpatient clin-
ics, and as such all specialized care is covered. 
However, in all Nordic countries, general prac-
tice physicians serve as gatekeepers to special-
ized care (including both hospital and private 
practicing specialists). Detailed data, such as 
diagnoses or laboratory data, are not available. 
However, data on contacts (without specifica-
tion for the reason for such contacts) can be 
obtained.

Rules governing data access vary between the 
Nordic countries, but generally require collabo-
ration with local researchers. Access to Danish 
prescription data is particularly restrictive. 
Consequently, data from the Danish National 
Prescription Registry [52] cannot leave the data 
havens provided by Danish authorities. For 
multinational studies involving Danish individ-
ual‐level prescription data, pooled analyses 
require data to be transferred to, for example, 
Statistics Denmark [53] or metaanalysis tech-
niques to be applied to obtain pooled estimates 
[54]. Other sources of Danish prescription data 
are not restricted in the same way, but either 
only offer local coverage [55,56] or only provide 
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data on reimbursed prescriptions and only 
cover more recent years [57].

Other European Encounter Databases
Pharmacy‐based federated database networks 
also exist in The Netherlands (PHARMO) [14] 
and Scotland (Tayside MEMO) [58]. These net-
works are limited to specific regions of their 
respective countries and have the ability to link 
to a number of databases that provide outcome 
and confounder information similar to those in 
the Nordic countries. In addition, integrated 
encounter databases are available in France [59] 
and some regions of Italy (Lombardy, Tuscany) 
[60]. The French national claims database, 
SNIIRAM, captures data for more than 66 mil-
lion individuals (~98% of the French population) 
regardless of socioeconomic or employment 
 status. It captures encounter data on outpatient 
visits, dispensed medication, procedures, 
chronic conditions, hospital admission diagno-
ses and procedures, and date of death. Data 
access, however, is complex.

Encounter Databases in Asia
There are many encounter databases available 
across the Asia‐Pacific region. Many of these 
are population‐wide databases due to the prom-
inence of nationwide healthcare coverage in 
these countries. For example, South Korea and 
Taiwan both have single‐payer, universal gov-
ernment‐run health insurance systems that pre-
dominantly operate on a fee‐for‐service basis 
and have established national research data-
bases. The National Health Insurance Databases 
of South Korea and Taiwan are the most well‐
established and widely used Asian encounter 
databases. Similar to encounter databases in the 
US, Canada, and Europe, they capture patient 
demographic information, medical (in‐ and out-
patient) services and prescription and dispens-
ing data. Encounter databases also exist in 
Australia and Japan [61]. In Australia, the com-
monwealth government maintains a dataset of 
dispensing of subsidized medicines under the 

Pharmaceutical Benefits Scheme (PBS) and 
medical services under the Medicare Benefits 
Schedule (MBS) [62]. A 10% sample of these 
data, linked longitudinally, is available and has 
been used for research [63,64]. Additionally, 
an  encounter database of services provided 
to  Australian veterans is maintained by the 
Australian Department of Veterans Affairs 
(DVA). These data include all prescriptions dis-
pensed, medical services claimed and hospital 
visits attended by the veterans, their depend-
ents, and spouses. The DVA data have been 
used widely for research [65,66].

One of the advantages of databases across the 
Asia‐Pacific region is the consistency of coding 
systems. For example, encounter databases in 
South Korea, Taiwan, and Australia all use ATC 
codes to identify individual medicines and all but 
Taiwan use ICD‐10 codes to identify diagnoses. 
This allows for comparisons of similar products 
across different countries without the need to 
map individual country‐specific codes. This has 
allowed cross‐national studies to be conducted 
using a distributed network approach through the 
Asian Pharmacoepidemiology Network (AsPEN) 
[67]. Pharmacoepidemiologic studies using Asian 
databases have historically been limited due to 
restrictions in the accessibility of these data. One 
study found that of 54 encounter databases across 
the Asia‐Pacific region, very few allowed access to 
raw data [68]. Databases in Australia, Taiwan, and 
Japan, for example, were considered as having a 
high level of data accessibility, while South Korea 
had a medium level and Thailand, China, Malaysia, 
and Singapore had a low level of accessibility. The 
level of accessibility can differ for individual data-
bases within the same country; some databases 
may require a local researcher to access data 
while  others do not provide raw data with only 
summary‐level data available for researchers.

Taiwanese National Health Insurance Research 
Database
Established in 1995, the National Health Insurance 
(NHI) program of Taiwan covers approximately 
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23 million individuals, more than 99% of the 
country’s population [69]. The NHI maintains the 
National Health Insurance Research Database 
(NHIRD), which is accessible for research. The 
NHIRD includes but is not limited to patient 
demographics, prescription and dispensing data, 
outpatient visits, hospitalizations, and dental 
care. Data are updated biannually. The NHIRD 
can be linked to a number of external national 
databases through a unique and universal per-
sonal identification number. Databases available 
for linkage include numerous registries (birth, 
death, immunization, cancer, reportable infec-
tious diseases, suicide), population‐based screen-
ing programs (various cancers, myopia, urine, 
newborns) as well as regular examinations in 
school children. Strict procedures for data access 
and human subject review are in place to assure 
protection of confidentiality and data security.

South Korean Health Insurance Review 
and Assessment Data
South Korea has provided universal health cov-
erage since 1989. In 2000, all health insurance 
systems were integrated into a single national 
system, creating the National Health Insurance 
Service (NHIS) and the Health Insurance 
Review and Assessment Service (HIRA). All 
healthcare providers are covered under the 
NHIS and are, with a few exceptions, reim-
bursed on a fee‐for‐service basis. Claims are 
electronically submitted by providers to the 
HIRA for reimbursement and form the basis for 
the HIRA database, which contains healthcare 
utilization and prescribed medications for 
approximately 50 million individuals [70]. Use 
of the database was initially limited until it 
became publicly available for research in 2009.

The HIRA research data include beneficiary 
ID, basic demographics, procedures, diagnostic 
tests, all diagnosis received by the benefi-
ciary  (coded in KCD6, the Korean Standard 
Classification of Disease Version 6, which is 
closely based on the ICD‐10 system), in‐ and 
outpatient prescriptions (including brand name, 

generic name, prescription and dispensing date, 
duration, dose, and route of administration), as 
well as provider ID and characteristics. Validity 
of diagnosis data in the HIRA database has been 
shown to vary according to the severity of the 
condition (with greater validity for more severe 
conditions) and the care setting (with higher 
validity for inpatient than outpatient diagnoses) 
[71]. HIRA data are available to researchers in 
academia and government agencies and for 
those in the private sector such as pharmaceuti-
cal companies and medical device companies 
but access requires in‐person consultation at 
the HIRA and submission of a study proposal. 
Once approval is given, tailored data extracts 
with encrypted ID information for protection of 
privacy are uploaded in a remote access system 
accessible only by the individual researcher for 
the study. Importantly, HIRA data are currently 
available only for a five‐year period beginning 
from the current year although plans exist to 
expand this period to 10 years.

 Strengths

Encounter databases have a number of strengths 
in comparison to other data sources for phar-
macoepidemiologic research, which explain 
their broad representation in the literature.

First, automated healthcare databases facilitate 
the rapid and cost‐efficient assembly of extremely 
large cohorts of patients and provide data on drug 
exposures, health outcomes, and potential con-
founding factors. Encounter databases, in par-
ticular, are the largest available population‐based 
healthcare databases. Several of the databases dis-
cussed in this chapter cumulatively include more 
than 100 million individuals and provide the abil-
ity to rapidly assemble cohorts that are substan-
tially larger than analogous cohorts from EHR 
databases or ad hoc data collection.

Encounter databases thus are uniquely able to 
address research questions that require the larg-
est possible study sizes. The following example 
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illustrates the differences in cohort sizes for the 
same study in selected encounter and EHR data-
bases. Filion and colleagues examined proton 
pump inhibitors and the risk of hospitalization 
for community‐acquired pneumonia among 
new users of NSAIDs, aged ≥40 years in multi-
ple databases within the Canadian Network for 
Observational Drug Effect Studies (CNODES) 
[72]. The respective sizes of study cohorts 
assembled using a common protocol and allow-
ing multiple cohort entry dates for a single 
patient were approximately 2.2 million for 
MarketScan, 1.5 million for the combined 
Canadian provincial databases, and 0.6 million 
for the UK GPRD, the largest population‐based 
EHR database. The MarketScan cohort was 
more than 3.5 times larger than the GRPD 
cohort, despite not including data on ≥65 year 
olds who made up around 35% of the total study 
population.

Second, because encounter databases are 
population based and provide a comprehen-
sive  capture of covered healthcare encounters 
regardless of the provider, they can support the 
full range of epidemiologic study designs 
including cohort, nested case–control, and self‐
controlled designs. While this strength is 
shared by a number of other population‐based 
automated databases, it is a critical limitation 
to nonpopulation‐based data sources such as 
EHR databases of individual institutions or 
health systems.

Third, many encounter databases facilitate 
systematic or ad hoc linkage to nonencounter 
data resources, including electronic or paper 
medical records, disease registries, laboratory 
results, or patient and provider surveys. Such 
linkages can support validation of study out-
comes and allow supplementation of encounter 
data with variables such as laboratory results or 
lifestyle data. In ideal circumstances, such link-
ages thus provide the ability to take advantage of 
the size and population‐based nature of encoun-
ter data, while also accruing the advantages of 
higher data quality and greater clinical detail 

available from data sources such as EHRs, 
 disease registries, or patient and provider sur-
veys. Importantly, however, linkage ability and 
quality vary substantially between individual 
encounter databases and have to be carefully 
considered for each study question.

Fourth, many large encounter databases are 
broadly representative of nations, regions, or 
particular health systems. As such, they can 
often serve an important role in facilitating 
health services and health policy research. 
Many include very stable populations that facili-
tate assessment of long‐term safety effects and 
long‐term trends in treatment practice and 
quality. Further, encounter databases from 
countries or regions with universal health cov-
erage – by definition – are free from selection 
bias as inclusion in the database is universal.

Fifth, for encounter data generated from fee‐
for‐service payment claims, data elements that 
directly pertain to the payment amount are sub-
ject to auditing and considered highly accurate. 
This is true for procedure claims (type of proce-
dure performed) [73] as well as for pharmacy 
claims (date, drug, and quantity dispensed) [74]. 
Importantly however, the accuracy of procedure 
data primarily relates to the occurrence of the 
procedure billed while the accuracy of the clini-
cal indication associated with the procedure 
may be substantially lower. For example, a vali-
dation study that used specific surgical proce-
dure codes in Medicaid data as part of an 
algorithm to identify cases of hip fracture found 
in medical record review that while all of the 
procedures billed for were actually performed, 
some of the procedures were used to correct 
orthopedic conditions other than hip fracture 
[75]. A further advantage of pharmacy data 
compared to prescription data recorded in EHR 
databases (see Chapter 13) is the fact that pre-
scription dispensings are one step closer to 
ingestion than what was prescribed and thus are 
subject to a lesser degree of exposure misclassi-
fication [76]. The accuracy of encounter data 
generated by administrative processes not 
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related to payment is less well established and 
likely to vary depending on the existence and 
rigor of quality assurance processes.

Sixth and last, data capture processes in 
encounter data are automated and independent 
of the study question and hypothesis, greatly 
diminishing the likelihood of recall or assess-
ment biases.

 Limitations

Encounter databases are primarily intended and 
maintained for payment or other administrative 
purposes, and therefore are subject to impor-
tant limitations when used for research.

First, one of the greatest concerns when using 
encounter databases for pharmacoepidemio-
logic research is the uncertain validity of diag-
nostic information (see Chapters 11 and 37) 
[49]. While these concerns apply to all diagnos-
tic encounter data, they are amplified for diag-
noses recorded in the outpatient setting where 
diagnosis is typically not directly linked to a par-
ticular level of payment. It is thus critically 
important for all encounter‐based research to 
validate diagnostic data (for both outcomes and 
important confounders) against external gold 
standards such as the medical record or disease 
registries. These gold standards, of course, may 
not be correct either when compared to 
research‐grade diagnoses as employed by rand-
omized controlled trials.

Second, encounter data lack clinical detail 
such as markers of disease severity (e.g., blood 
pressure, ejection fraction) and lifestyle factors 
(tobacco and alcohol use, body mass index, 
physical activity). Oftentimes, data elements are 
available (e.g., diagnostic codes for obesity or 
smoking status) but of extremely low sensitivity. 
For example, a study using data from the 
National Health and Nutrition Examination 
Survey to validate diagnosis of obesity in 
Medicare claims found that claims‐based diag-
nostics codes fail to identify a great majority of 

patients with obesity (sensitivity of 18%) [77]. 
Though still far from perfect, clinical details 
such as disease severity and lifestyle factors are 
generally better captured by paper or electronic 
medical records. Because such clinical detail is 
often critical for confounding adjustment, 
methods that minimize unmeasured or resid-
ual confounding (self‐controlled designs, 
active comparator new‐user designs, instru-
mental variable analyses, propensity score 
calibration) are of great importance to encoun-
ter‐based pharmacoepidemiologic research 
(see Chapter 43).

Third, while limitations of encounter data-
bases can often be overcome by facilitating link-
age to nonencounter data such as EHRs, disease 
registries, or laboratory results, such linkages 
are typically time‐consuming and costly and, in 
many cases, only available to subsets of the 
database population. Further, when compared 
to population‐based EHR databases, the result-
ing linked/enriched encounter data typically 
remain less comprehensive, and validation is 
often restricted to small samples often with 
poor response/retrieval rates.

Fourth, in certain situations, medication dis-
pensing information may not capture data for 
specific drugs or drug classes. This may include 
drugs excluded from reimbursement, drugs 
that are primarily obtained over the counter, as 
well as low‐cost generic drugs that are paid for 
out of pocket because the cash price is lower 
than the required co‐payment. This may result 
in misclassification of exposure, such that 
some patients will appear not to be exposed 
to  a medicine when in fact they were. 
Nonreimbursable drugs as well as low‐cost 
generics are often better captured in EHR 
databases, which contain information on all 
prescriptions written. However, the disadvan-
tage of prescription information is that not all 
prescriptions will be dispensed and will result 
in misclassification of exposure, such that 
some patients will appear to be exposed to a 
medicine when in fact they were not.
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Fifth and last, due to the fragmentation of the 
US healthcare system, many large US encounter 
databases lack representativeness of the general 
population and feature significant turnover and 
short dwell times (e.g., US private insurance 
databases, MAX) [20,21,78].

 Particular Applications

Encounter databases have been used in thou-
sands of pharmacoepidemiologic publica-
tions, many of which have shaped clinical 
medicine or regulatory decision making. 
These databases have supported work across a 
wide spectrum of areas including drug safety, 
comparative effectiveness, drug utilization 
and health services research, methods and 
validation, as well as pharmacoeconomics. 
Descriptions of numerous specific applica-
tions of individual databases can be found in 
the 5th edition of Pharmacoepidemiology 
[14,20–22,45].This section outlines some typi-
cal activities involved in encounter database 
studies and presents some of the considera-
tions in choosing the optimal encounter data-
base when multiple options are available or 
assessing the suitability of a specific database 
for a given research question.

Typical Activities Involved in Studies 
Using Encounter Databases

Although encounter databases vary in data 
structure, coding schemes, and numerous 
other specifics, a number of activities are typ-
ical across all such databases [20]. Virtually all 
pharmacoepidemiologic studies of encounter 
databases require linkage of records between 
data files and over time. Records from 
 different data domains, such as membership, 
outpatient services, inpatient services, and 
pharmacy, are linked so that an individual’s 
entire set of encounters over the study period 
can be available for analysis. Another ubiquitous 

step in the conduct of pharmacoepidemio-
logic studies involves the aggregation of drug, 
diagnosis, and procedure codes into meaning
ful study variables. Exposures, outcomes, 
potential confounders, and inclusion/exclu-
sion criteria for study are defined via code 
lists using drug, diagnosis, and procedure 
codes, or combinations thereof. These code 
lists are typically study and database specific 
using the coding schemes utilized by the 
respective database and drugs approved and 
available for the study population during the 
study period. It is often desirable to use previ-
ously validated algorithms for the definition 
of study outcomes and important confound-
ing variables. Such algorithms often combine 
diagnostic codes, drug codes, and procedure 
codes for more accurate measures of disease 
(see Chapter 37).

Together with demographic information, 
these study‐specific variables (e.g., drug 
classes, disease states) facilitate the creation 
of the study population. Study populations 
often consist of (new) users of specific drugs 
or drug classes within individuals who meet 
specific inclusion and exclusion criteria based 
on their encounter‐derived medical history. 
Once the study population is identified in the 
dataset, analytic plans often specify the con-
struction of longitudinal histories. Exposure, 
occurrence of outcome events, and presence 
of confounding factors are measured over 
time, typically in temporal relation to the 
study’s index date. This facilitates the assess-
ment of exposure periods and person‐time at 
risk, and allows calculation of incidence rates 
and measures of association. If additional 
data not available in the encounter database 
are required, complementary information 
may be gathered through linkage to electronic 
medical records, data obtained directly from 
patients or their physicians from surveys, 
retrieval of paper medical records, or data 
routinely collected in disease, immunization, 
or national vital registries.
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Deciding Between Individual 
Encounter Databases

Database choice or evaluation of suitability of a 
single database should involve consideration of 
all database attributes relevant to the research 
question under study [3]. Some of the key attrib-
utes that differentiate individual encounter 
databases are shown in Table 12.1 and discussed 
below.

Target Population
The database should capture a large and repre-
sentative sample of the target population (e.g., 
patients exposed to a particular drug) to ade-
quately address the study question. For exam-
ple, Stroup and colleagues aimed to examine the 
effectiveness of initiating treatment with either 
clozapine or a standard antipsychotic among 
adults with evidence of treatment‐resistant 
schizophrenia using national US Medicaid 
data [79]. On first glance, this might not be an 
obvious choice as the adult Medicaid popula-
tion is highly selective and often transient. 
However, Medicaid covers approximately two‐
thirds of all US adults with schizophrenia 
because most patients with severe schizophre-
nia qualify for disability [80]. In addition, 
because these individuals qualify for Medicaid 
because of disability rather than because of their 
economic condition, they are typically stably 
enrolled without breaks in coverage. While 
non‐US encounter databases might have pro-
vided similarly large numbers of stably enrolled 
patients with schizophrenia, the authors sought 
a US database because of the pronounced differ-
ences in psychiatric treatment practice between 
US and most other countries. The study was 
conducted as a 1:1 propensity score matched 
cohort study and found that clozapine‐treated 
patients compared to patients treated with a 
standard antipsychotic had a decreased risk of 
psychiatric hospital admission (hazard ratio 
0.78, 95% confidence interval (CI) 0.69–0.88) 
but an increased risk of diabetes mellitus 
 (hazard ratio 1.63, 95% CI 0.98–2.70).

Database Size
The database should be large enough to provide 
sufficient power to answer the research ques-
tion, that is, to detect a meaningful difference 
between treatment groups (should a difference 
truly exist). This assessment should be based 
not on the size of the overall database but rather 
the size of the actual study cohort, that is, the 
cohort after exclusion of individuals for whom 
required data elements are unavailable (e.g., 
after exclusion of individuals under capitated 
payment plans), and after application of inclu-
sion and exclusion criteria (e.g., sufficient unin-
terrupted baseline period).

A study by Shin et al. aimed to determine the 
risk of cardiovascular conditions in children 
and adolescents with ADHD associated with 
use of methylphenidate [81]. As the outcome 
was rare, the South Korean HIRA database of 
over 50 million participants was used. From this 
large population database, 144 258 patients aged 
less than 18 with a diagnosis of ADHD were 
retrieved. Of these, 114 657 were new users of 
methylphenidate and 1224 had an incident car-
diovascular event. Due to the rare outcome, a 
self‐controlled case series design was used 
which, compared to other designs, has the 
advantage of requiring fewer patients for similar 
power (see Chapter 43).

Ability to Validate Outcomes
Because encounter data are primarily collected 
for administrative purposes, the ability to vali-
date or adjudicate outcome definitions derived 
from these data is essential for pharmacoepide-
miologic studies. Outcome validation should 
generally be performed as part of any encoun-
ter‐based study unless the outcome measures 
have previously been validated for the database. 
However, the ability to validate outcomes, 
through reliable linkage to external gold stand-
ards such as the medical record or disease regis-
tries, varies markedly between databases and is 
often a major consideration for database 
selection.
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Lo Re and colleagues, for example, conducted a 
series of postauthorization safety studies to exam-
ine the safety (hospitalization for major adverse 
cardiovascular events, acute kidney injury, acute 
liver failure, infections, and severe hypersensitiv-
ity events) of saxagliptin compared to other oral 
antidiabetic drugs in patients with type 2 diabetes 
[82,83]. The studies were conducted separately in 
two EHR databases (Clinical Practice Research 
Datalink, The Health Improvement Network) 
and two encounter databases (Medicare, 
HealthCore Integrated Research Database). One 
of the requirements for the choice of encounter 
databases in this study was the ability to obtain 
inpatient medical records for outcome adjudica-
tion. Using a new‐user active comparator cohort 
design, the study found no evidence of increased 
risk of any of the outcome events within any of the 
four databases.

Other outcomes are notoriously undercoded 
in encounter data and require development of 
custom algorithms. For example, using data 
from Quebec, Moride et al. developed and vali-
dated a case detection algorithm for suicide 
attempts in youth through a review of medical 
charts [84]. The following algorithm was used: 
diagnostic code of injury or intoxication with a 
location of service in the ED, followed by a psy-
chiatric consult or a psychiatric diagnosis (psy-
chiatric diagnoses consisting of depression, 
eating disorder, schizophrenia, ADHD, sub-
stance abuse, others) within two days of the ED 
visit. This algorithm had a sensitivity of 70% and 
a specificity of 97.6%.

Availability of Nonstandard Encounter Data
While all encounter databases provide informa-
tion on medical services and prescription drugs, 
studies often require encounter data on services 
that are not universally available in all databases. 
For example, Gupta and colleagues examined 
opioid prescribing practices among US dentists 
from 2010 to 2015 using the MarketScan data-
base [85]. Because dental services are not cap-
tured for all individuals in the database, the 

study population was appropriately restricted to 
those with simultaneous enrollment in a medi-
cal and a dental plan.

Ability to supplement with non‐encounter 
data: Studies using encounter data may require 
clinical detail not available from encounter 
data often for the purpose of confounding 
adjustment or to supplement outcome identifi-
cation. The ability to perform linkages that 
allow enrichment of the dataset with non‐
encounter data is thus vital and often a decisive 
consideration in choosing a study database. 
For example, Huybrechts and colleagues exam-
ined the comparative mortality risk of individ-
ual antipsychotics in elderly nursing home 
residents using data for US nursing home resi-
dents dually eligible for Medicaid and Medicare 
[86]. Clinical variables such as cognitive func-
tion or behavioral symptoms of dementia are 
important potential confounders but poorly 
measured in encounter databases. Linkage to 
the Minimum Data Set (MDS, available from 
CMS), a federally mandated health assessment 
tool used in nursing homes that captures infor-
mation on physical, psychological, and psycho-
social functioning, active clinical diagnoses, 
health conditions, treatments, and services, 
allowed the inclusion of these important co‐
variates into the study. Using a propensity 
score‐adjusted new‐user cohort design, the 
authors showed that compared to initiators of 
risperidone, initiators of haloperidol had an 
increased mortality risk and initiators of que-
tiapine had a decreased mortality risk.

As another example, a Swedish‐Danish study 
investigated the risks associated with being 
admitted to an emergency department with sus-
pected poisoning, most often psychotropics or 
analgesics. Leveraging the ability to link data on 
admissions and prescription fills to a dataset 
including detailed ECGs on those admitted to the 
hospital, they could estimate not only the occur-
rence of QTc prolongation within the population 
but also to what extent QTc prolongation as a 
marker was associated with 30‐day mortality [87].
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 The Future

Pharmacoepidemiologic research with encoun-
ter databases has become more and more widely 
used and involves an increasing number of data-
bases in a growing number of regions of the 
world. This trend is expected to continue, 
 particularly as encounter databases become 
available in regions for which currently no data 
are available. In addition, the following three 
major factors are likely to shape the future of 
encounter databases: (1) advances in informa-
tion technology (IT), (2) privacy regulations, 
and (3) changing healthcare systems. Advances 
in IT will continue to expand the boundaries of 
data storage and processing, and increasingly 
facilitate linkages with new and more complex 
sources of data, including biomarkers, social 
media, web searches, and around‐the‐clock 
 biometric information from wearables. In addi-
tion, automated tools for data visualization and 
analysis of health data are becoming more 
accessible.

The potential for rapid development of pro-
gressively complex, detailed, and complete data 
resources is likely to be counteracted by increas-
ingly strict regulations governing data privacy. 
These regulations will vary substantially 
between countries and are likely subject to rapid 
change.

Last, and maybe most importantly, encounter‐
based data are a secondary byproduct of 
administrative systems, created to support the 
local healthcare system; research applications 
are secondary uses. As such, encounter‐based 
healthcare data will continue to be subject to 
changes in the healthcare systems that generate 
the data. Again, these changes are likely to vary 
drastically between countries and over time.

For example, the US healthcare environ-
ment is undergoing enormous transformation. 
Historically, healthcare providers in the US 
have been paid using a fee‐for‐service 
approach, where providers bill health insur-
ance companies for the cost of the services 

they provide, generally justifying those bills 
with diagnoses. These paid claims represent 
the core of these encounter databases. 
However, the net result of this approach is that 
the more providers do, the more they are paid, 
which may result in overservicing and wasted 
resources. The result has been a large incen-
tive to increase utilization, and rapidly increas-
ing costs in the US for providing healthcare, 
made worse by an aging population. Under 
this model, the levels of expenditure are 
unsustainable. This has led to a shift from a 
fee‐for‐service model to a “per patient per 
month” payment system, so‐called “popula-
tion health”, which of course switches the 
incentive to providing less care. In order to 
attempt to address that, incentives are being 
put in place to ensure that people are not 
receiving too little care, referred to as “value 
health”. The US is in the middle of this transi-
tion now, varying greatly in different parts of 
the country. However, in response, there has 
been a remarkable consolidation of physician 
practices, hospitals, etc., in order to achieve 
sufficient scale to create the needed extensive 
and costly data infrastructure, and to assume 
the large risk associated with population 
health. Many other initiatives are under way as 
well, to limit the increasing costs of medical 
care. The results will likely be large changes 
over the next few years in the data as part of 
US encounter databases.

Encounter‐based data are an important 
resource for pharmacoepidemiologic research. 
These data are comprehensive and often have a 
high level of quality as they are collected for 
payment purposes. As these data are generated 
for purposes other than research, consideration 
of their applicability, completeness, and gener-
alizability needs to be carefully weighed against 
their convenience. As with any data source, 
careful consideration should be given to the 
issues of bias and confounding (see Chapter 3) 
which are not problems diminished by the 
increased size of the database.
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Databases that contain health information can 
be divided into two broad categories: those that 
collect information for administrative purposes, 
such as filing claims for payment (administra
tive claims databases), and those that serve as 
the patient’s medical record (electronic health 
record [EHR] databases), which physicians use 
to track health information about their patients. 
Administrative claims databases are maintained 
for billing or administrative purposes rather 
than for the actual provision of patient care. In 
contrast, data from EHR databases are thought 
more likely to be clinically accurate because 
they are collected for patient care, recorded by 
clinicians (versus coders), and reflect informa
tion that may not relate to billing. Unlike admin
istrative databases, EHR databases are more 
likely to capture important health information 
about patients, such as symptoms of illness, his
torical data, family history, smoking and alcohol 
use, vital signs (e.g., body mass index [BMI]), 
and laboratory data  [1]. Of note, we use the 
term electronic health record databases to 

encompass their use in the provision of clinical 
care (that is, as medical records) as well as the 
interoperability of these electronic systems 
across broad healthcare networks, serving vari
ous nonclinical functions, such as administra
tion, billing, and research [2].

Despite their many advantages, EHR databases 
have certain limitations. Some EHR databases, 
like that of the Veterans Affairs (VA) and other US 
EHRs, may not capture diagnoses and treatments 
from out‐of‐system care. Other EHR databases, 
particularly European primary care databases, 
lack information from secondary care settings 
(e.g., hospitals and specialists), and linkage to sec
ondary care datasets is not available for some 
databases. While EHR databases are thought to 
have greater clinical accuracy in recorded diagno
ses, one cannot presume the validity of diagnostic 
codes without formal validation. EHR databases 
usually contain data on prescribed outpatient 
drugs, but many databases lack information 
on  drug dispensing or inpatient medications. 
In  addition, there may be a high proportion of   

13

Electronic Health Record Databases
Daniel B. Horton1, Harshvinder Bhullar2, Lucy Carty3, Francesca Cunningham4, 
Alexis Ogdie5, Janet Sultana6, and Gianluca Trifirò6

1 Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers Center for Pharmacoepidemiology and Treatment Science,  
New Brunswick, NJ, USA
2 Real‐World Insights, IQVIA, London, UK
3 Clinical Practice Research Datalink, Medicines and Healthcare products Regulatory Agency, London, UK
4 Pharmacy Benefits Management, and Center for Medication Safety, US Department of Veterans Affairs, Hines, IL, USA
5 University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
6 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy



Electronic Health Record Databases242

Table 13.1 Overview of EHR databases.

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Country or 
countries (and 
region)

Italy (Caserta) Spain United Kingdom Italy Netherlands Germany, France, United 
Kingdom

Italy Spain (Catalonia) United Kingdom United States

Year data collection 
initiated

2000 2001 1987 1998 1989 1992 2000 2006 2002 1997

Number of 
patients and 
amount of  
follow‐up time*

0.6M patients, 3.4M 
person‐years

7.9M patients; 
49.7M 
person‐years

30M patients (>15M 
research standard 
patients; 10M actively 
followed patients); 
>100M person‐years

1.6M patients; 
19.2M 
person‐years

2.4M patients; >12.1M  
person‐years [166]

Germany: 34M patients (including 
17.2M German specialty patients); 
54.5M person‐years
France: 10.5M patients; 6.0M 
person‐years [22]
UK: 
4.2M patients; 17.9M person‐years

0.4M pediatric 
patients (0.2M 
actively followed); 
1.8M person‐years

5.6M patients; 5.7M 
person‐years

18M patients (3.1M 
actively followed 
patients); >90M 
person‐years

14.5M patients; 168M 
person‐years

Sex distribution* Female: 0.31M  
(51.0%)
Male: 0.28M (49.0%)

Female: 4.1M 
(52.3%)
Male: 3.8M 
(47.7%)

Female: 49.3%
Male: 50.7% [18]

Female: 0.83M 
(51.8%)
Male: 0.77M 
(48.2%)

Female: 1.2M (51.2%)
Male: 1.2M (48.8%)

Germany
Female: 19M (41%)
Male: 15M (32%)
Unknown: 12.5M (27%)
France
Female: 5.5M (52%)
Male: 5M (47%)
Unknown: 0.06M (1%)

Active patients:
Females: 0.10M 
(48.2%)
Males: 0.11M  
(51.8%)

Female: 2.9M (50.7%)
Male: 2.8M (49.2%)

Female: 9.4M (52.2%)
Male: 8.6M (47.8%)

Female: 1.9M (13.1%)
Male: 12.5M (86.4%)
Unknown: 0.07M (0.5%)

Age distribution* 0–10: 0.01M (1.3%)
11–20: 0.05M (8.6%)
21–44: 0.22M (36.2%)
45–64: 0.18M (30.4%)
65–84: 0.11M (18.9%)
≥65: 0.03M (4.5%)
Unknown: 0.03M 
(4.3%)

0–10: 1.2M 
(15.1%)
11–20: 0.72M 
(9.1%)
21–44: 2.9M 
(36.6%)
45–64: 1.7M 
(21.6%)
65–84: 1.2M 
(15.0%)
≥85: 0.20M 
(2.6%)

<18: 20.2%
18–64: 61.8%
≥65: 18.1% [18]

0–14: 0 (0%)
15–24: 0.08M 
(9.9%)
25–44: 0.48M 
(30.3%)
45–64: 0.54M 
(33.9%)
65–84: 0.35M 
(21.9%)
≥85: 0.06M 
(4.0%)

0–9: 0.26M (10.8%)
10–19: 0.27M (11.3%)
20–39: 0.64M (26.5%)
40–59: 0.65M (23.9%)
60–79: 0.46M (19.1%)
≥80: 0.13M (5.5%)

0–9: 1.5M (4.4%)
10–19: 2.6M (7.7%)
20–39: 7.9M (23.2%)
40–59: 9.5M (28.0%)
60–79: 8.2M (24.1%)
≥80: 4.3M (12.6%)

Active patients:
0–4: 0.04M (19.6%)
5–9: 0.06M (28.6)
10–16: 0.11M  
(51.8%)

0–10: 0.63M (11.2%)
11–20: 0.55M (9.7%)
21–44: 1.9M (33.3%)
45–64: 1.5M (27.1%)
65–84: 0.88M (15.6%)
≥85: 0.17M (3.1%)

Active patients:
0–10: 0.39M (12%)
11–20: 0.35M (11%)
21–44: 1M (32%)
45–64: 0.85M (27%)
65–84: 0.50M (16%)
≥85: 0.08M (2%)

<21: 0.24M (1.7%)
21–44: 2.4M (16.6%)
45–64: 3.5M (24.0%)
65–84: 5.3M (36.8%)
≥85: 2.4M (16.4%)
Unknown: 0.65M (4.5%)

Race and ethnicity 
distribution

Not available Mostly not 
available; some 
PCPs may have 
recorded race 
and ethnicity 
in free text

Available for 27% of 
patients in CPRD and 
79% of inpatients in 
HES [167]. Known race/
ethnicity distribution:
White: 87%
South Asian: 6%
Black: 4%
Mixed: 1%
Other: 2%

Not available Not available Not available Not available Not available Not available White 9.0M
(62.4%)
Black 1.9M (12.9%)
Asian 0.24M (1.7%)
Hispanic 0.48M (3.4%)
Other 0.11M (0.8%)
Unknown 2.8M (18.8%)

Number of 
physicians or 
practices included*

300 GPs [34] 4910 GPs, 842 
pediatricians

851 practices  
(actively  
contributing)

800 GPs [168] Approximately 600 GPs  
from 200 practices [169]

Germany: 2357 general practices, 
2010 specialty practices
France: 2091 practices
UK: 218 practices [22]

300 family 
pediatricians

3414 GPs, 853 primary 
care pediatricians [170]

Over 700 practices Healthcare professionals: 
127 211
Physicians: 23 973

Diagnostic  
coding system

ICD‐9 ICD‐9, ICPC Read, ICD‐10 (HES) ICD‐9 ICPC ICD‐10, Read (UK) ICD‐9, ICD‐10 ICD‐10 Read, ICD‐10 (HES) ICD‐9, ICD‐10, CPT

Drug coding  
system

ATC, NDC ATC Gemscript ATC ATC ATC ATC, NDC, Italian 
MINSAN codes

ATC, NDC Gemscript VA Drug Classification 
System [171], NDC

*Numbers updated through 2017.
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Table 13.1 Overview of EHR databases.

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Country or 
countries (and 
region)

Italy (Caserta) Spain United Kingdom Italy Netherlands Germany, France, United 
Kingdom

Italy Spain (Catalonia) United Kingdom United States

Year data collection 
initiated

2000 2001 1987 1998 1989 1992 2000 2006 2002 1997

Number of 
patients and 
amount of  
follow‐up time*

0.6M patients, 3.4M 
person‐years

7.9M patients; 
49.7M 
person‐years

30M patients (>15M 
research standard 
patients; 10M actively 
followed patients); 
>100M person‐years

1.6M patients; 
19.2M 
person‐years

2.4M patients; >12.1M  
person‐years [166]

Germany: 34M patients (including 
17.2M German specialty patients); 
54.5M person‐years
France: 10.5M patients; 6.0M 
person‐years [22]
UK: 
4.2M patients; 17.9M person‐years

0.4M pediatric 
patients (0.2M 
actively followed); 
1.8M person‐years

5.6M patients; 5.7M 
person‐years

18M patients (3.1M 
actively followed 
patients); >90M 
person‐years

14.5M patients; 168M 
person‐years

Sex distribution* Female: 0.31M  
(51.0%)
Male: 0.28M (49.0%)

Female: 4.1M 
(52.3%)
Male: 3.8M 
(47.7%)

Female: 49.3%
Male: 50.7% [18]

Female: 0.83M 
(51.8%)
Male: 0.77M 
(48.2%)

Female: 1.2M (51.2%)
Male: 1.2M (48.8%)

Germany
Female: 19M (41%)
Male: 15M (32%)
Unknown: 12.5M (27%)
France
Female: 5.5M (52%)
Male: 5M (47%)
Unknown: 0.06M (1%)

Active patients:
Females: 0.10M 
(48.2%)
Males: 0.11M  
(51.8%)

Female: 2.9M (50.7%)
Male: 2.8M (49.2%)

Female: 9.4M (52.2%)
Male: 8.6M (47.8%)

Female: 1.9M (13.1%)
Male: 12.5M (86.4%)
Unknown: 0.07M (0.5%)

Age distribution* 0–10: 0.01M (1.3%)
11–20: 0.05M (8.6%)
21–44: 0.22M (36.2%)
45–64: 0.18M (30.4%)
65–84: 0.11M (18.9%)
≥65: 0.03M (4.5%)
Unknown: 0.03M 
(4.3%)

0–10: 1.2M 
(15.1%)
11–20: 0.72M 
(9.1%)
21–44: 2.9M 
(36.6%)
45–64: 1.7M 
(21.6%)
65–84: 1.2M 
(15.0%)
≥85: 0.20M 
(2.6%)

<18: 20.2%
18–64: 61.8%
≥65: 18.1% [18]

0–14: 0 (0%)
15–24: 0.08M 
(9.9%)
25–44: 0.48M 
(30.3%)
45–64: 0.54M 
(33.9%)
65–84: 0.35M 
(21.9%)
≥85: 0.06M 
(4.0%)

0–9: 0.26M (10.8%)
10–19: 0.27M (11.3%)
20–39: 0.64M (26.5%)
40–59: 0.65M (23.9%)
60–79: 0.46M (19.1%)
≥80: 0.13M (5.5%)

0–9: 1.5M (4.4%)
10–19: 2.6M (7.7%)
20–39: 7.9M (23.2%)
40–59: 9.5M (28.0%)
60–79: 8.2M (24.1%)
≥80: 4.3M (12.6%)

Active patients:
0–4: 0.04M (19.6%)
5–9: 0.06M (28.6)
10–16: 0.11M  
(51.8%)

0–10: 0.63M (11.2%)
11–20: 0.55M (9.7%)
21–44: 1.9M (33.3%)
45–64: 1.5M (27.1%)
65–84: 0.88M (15.6%)
≥85: 0.17M (3.1%)

Active patients:
0–10: 0.39M (12%)
11–20: 0.35M (11%)
21–44: 1M (32%)
45–64: 0.85M (27%)
65–84: 0.50M (16%)
≥85: 0.08M (2%)

<21: 0.24M (1.7%)
21–44: 2.4M (16.6%)
45–64: 3.5M (24.0%)
65–84: 5.3M (36.8%)
≥85: 2.4M (16.4%)
Unknown: 0.65M (4.5%)

Race and ethnicity 
distribution

Not available Mostly not 
available; some 
PCPs may have 
recorded race 
and ethnicity 
in free text

Available for 27% of 
patients in CPRD and 
79% of inpatients in 
HES [167]. Known race/
ethnicity distribution:
White: 87%
South Asian: 6%
Black: 4%
Mixed: 1%
Other: 2%

Not available Not available Not available Not available Not available Not available White 9.0M
(62.4%)
Black 1.9M (12.9%)
Asian 0.24M (1.7%)
Hispanic 0.48M (3.4%)
Other 0.11M (0.8%)
Unknown 2.8M (18.8%)

Number of 
physicians or 
practices included*

300 GPs [34] 4910 GPs, 842 
pediatricians

851 practices  
(actively  
contributing)

800 GPs [168] Approximately 600 GPs  
from 200 practices [169]

Germany: 2357 general practices, 
2010 specialty practices
France: 2091 practices
UK: 218 practices [22]

300 family 
pediatricians

3414 GPs, 853 primary 
care pediatricians [170]

Over 700 practices Healthcare professionals: 
127 211
Physicians: 23 973

Diagnostic  
coding system

ICD‐9 ICD‐9, ICPC Read, ICD‐10 (HES) ICD‐9 ICPC ICD‐10, Read (UK) ICD‐9, ICD‐10 ICD‐10 Read, ICD‐10 (HES) ICD‐9, ICD‐10, CPT

Drug coding  
system

ATC, NDC ATC Gemscript ATC ATC ATC ATC, NDC, Italian 
MINSAN codes

ATC, NDC Gemscript VA Drug Classification 
System [171], NDC

(Continued)
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Table 13.1 (Continued)

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Software used SANI.A.R.P. Various, mainly 
OMI‐AP [37]

Vision and EMIS Millewin Various Various Junior Bit e‐CAPTM Vision Various

Quality checks, 
standards, and 
feedback to 
clinicians

Arianna conducts 
periodic data checks. 
GPs whose recorded 
data do not meet 
preestablished 
standards are 
excluded from 
research [34]

BIFAP performs 
extensive quality 
and validity 
checks of raw 
data from 
individual 
autonomous 
regions, including 
physician‐ and 
patient‐level data. 
Patient data that 
are inconsistent 
or fail quality 
checks are 
excluded.
BIFAP provides 
feedback to 
participating GPs 
and pediatricians 
by comparing 
their patients’ 
registrations, 
disease 
characteristics, 
and prescribing 
indicators with 
those of other 
clinicians within 
BIFAP

CPRD performs 
permanent, ongoing 
quality checks of data 
from all practices.
Patients with 
noncontiguous 
follow‐up or poor  
data recording are 
excluded. Remaining 
patients are flagged 
as acceptable for use 
in research.
See text for  
description of 
Up‐to‐Standard  
dates

IQVIA 
performs 
periodic 
quality checks 
based on 
coding 
accuracy, 
concordance 
between 
GP‐specific and 
national 
prevalence of 
selected 
diseases, and 
mortality rates 
[168]. Data 
from GPs that 
do not meet set 
standards are 
excluded [25]

IPCI evaluates each GP practice 
for data quality based on several 
indicators. Data from practices 
below a preestablished 
quality threshold are excluded 
from research. GPs are not 
permitted to keep paper‐based 
records to improve data 
quality [172]

IQVIA checks all data for quality 
standards and plausibility. IQVIA 
gives all physicians monthly 
feedback reports showing their 
prescription patterns and those of 
colleagues within the IQVIA panel 
and within their specialty group. 
Data from DA Germany are also 
checked annually by the German 
Medical Association

Data quality in 
Pedianet is evaluated 
for every study 
conducted, either by 
a central database 
unit or by 
researchers. Quality 
checks include 
validation of ICD‐ 
9‐based diagnoses 
in the clinical chart 
and free text

SIDIAP performs 
systematic quality 
checks to harmonize data 
and identify duplicate 
patients, logical errors, 
and implausible values  
and inconsistent units 
within laboratory data. 
SIDIAP initially used  
the Registry Quality 
Standard score to  
assess data quality  
[173], but this has been 
discontinued

IQVIA performs 
ongoing consistency 
and integrity checks 
on all THIN data.
See text for description 
of Acceptable Mortality 
Reporting

All VA data are updated 
regularly and checked 
for quality. Drug data are 
updated daily with 
quality checks

Data access and 
approval

Arianna is available 
through collaboration 
with either the Local 
Health Unit of 
Caserta or academic 
institutions with data 
access, such as the 
University of 
Campania or the 
University of Messina. 
Researchers must 
first notify their local 
ethics committee 
before using the data. 
Full ethics committee 
evaluation is not 
needed (anonymized 
data, no direct patient 
interaction)

BIFAP is 
available to 
affiliated and 
other 
noncommercial 
researchers. 
Investigators 
must receive 
approval from 
the BIFAP 
scientific 
committee

CPRD (www.cprd.
com) licenses online 
access to the  
database. Researchers 
can download CPRD 
data using a secure  
file transfer protocol. 
CPRD receives  
annual regulatory 
ethics approval to 
supply anonymized 
linked data for public 
health research. All 
research requests to 
access data held by 
CPRD are reviewed  
by the Independent 
Scientific Advisory 
Committee

Within Italy, 
LPD Italy 
(www.
healthsearch.
it/?lang=en) is 
available 
through 
collaboration 
with the Italian 
College of 
General 
Practitioners or 
with IQVIA 
(www.iqvia.
com)

Access to IPCI (www.ipci.nl/
Framework/Framework.php) is 
provided through collaboration 
with the Erasmus Medical 
Centre. Protocols for studies 
using IPCI data must be 
approved by the IPCI ethics 
committee [174]

IQVIA (www.iqvia.com) 
administers DA France or 
Germany with various options: 
researchers can buy the software 
and data with monthly updates, 
preprocessed datasets, or data 
analyzed directly by IQVIA. 
Approval for IQVIA DA France 
and Germany requires only local 
IRB approval

Pedianet data 
(pedianet.it/en/ 
about) can be 
obtained by 
collaboration with 
Pedianet‐affiliated 
epidemiologists

Researchers must pay a  
fee and sign an agreement 
to obtain data from 
SIDIAP. Commercial 
organizations may not  
use SIDIAP data directly 
but can contract the core 
SIDIAP research team to 
conduct studies with  
input from the scientific 
and ethical committee

IQVIA (www.iqvia.com) 
makes THIN data 
available in a few forms: 
a sublicense for the 
whole research‐
formatted dataset, a  
data subset, or a 
preprocessed dataset 
with some data 
manipulation. THIN 
studies require approval 
by the Scientific Review 
Committee of 
independent researchers. 
If additional information 
will be collected, ethics 
approval is required 
from the NHS Multi‐
Centre Research Ethics 
Committee

Access to VA data is 
limited to researchers 
employed by the VA or 
with VA appointments, 
and their collaborators. 
Approval by the local or 
central VA IRB is 
required
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Table 13.1 (Continued)

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Software used SANI.A.R.P. Various, mainly 
OMI‐AP [37]

Vision and EMIS Millewin Various Various Junior Bit e‐CAPTM Vision Various

Quality checks, 
standards, and 
feedback to 
clinicians

Arianna conducts 
periodic data checks. 
GPs whose recorded 
data do not meet 
preestablished 
standards are 
excluded from 
research [34]

BIFAP performs 
extensive quality 
and validity 
checks of raw 
data from 
individual 
autonomous 
regions, including 
physician‐ and 
patient‐level data. 
Patient data that 
are inconsistent 
or fail quality 
checks are 
excluded.
BIFAP provides 
feedback to 
participating GPs 
and pediatricians 
by comparing 
their patients’ 
registrations, 
disease 
characteristics, 
and prescribing 
indicators with 
those of other 
clinicians within 
BIFAP

CPRD performs 
permanent, ongoing 
quality checks of data 
from all practices.
Patients with 
noncontiguous 
follow‐up or poor  
data recording are 
excluded. Remaining 
patients are flagged 
as acceptable for use 
in research.
See text for  
description of 
Up‐to‐Standard  
dates

IQVIA 
performs 
periodic 
quality checks 
based on 
coding 
accuracy, 
concordance 
between 
GP‐specific and 
national 
prevalence of 
selected 
diseases, and 
mortality rates 
[168]. Data 
from GPs that 
do not meet set 
standards are 
excluded [25]

IPCI evaluates each GP practice 
for data quality based on several 
indicators. Data from practices 
below a preestablished 
quality threshold are excluded 
from research. GPs are not 
permitted to keep paper‐based 
records to improve data 
quality [172]

IQVIA checks all data for quality 
standards and plausibility. IQVIA 
gives all physicians monthly 
feedback reports showing their 
prescription patterns and those of 
colleagues within the IQVIA panel 
and within their specialty group. 
Data from DA Germany are also 
checked annually by the German 
Medical Association

Data quality in 
Pedianet is evaluated 
for every study 
conducted, either by 
a central database 
unit or by 
researchers. Quality 
checks include 
validation of ICD‐ 
9‐based diagnoses 
in the clinical chart 
and free text

SIDIAP performs 
systematic quality 
checks to harmonize data 
and identify duplicate 
patients, logical errors, 
and implausible values  
and inconsistent units 
within laboratory data. 
SIDIAP initially used  
the Registry Quality 
Standard score to  
assess data quality  
[173], but this has been 
discontinued

IQVIA performs 
ongoing consistency 
and integrity checks 
on all THIN data.
See text for description 
of Acceptable Mortality 
Reporting

All VA data are updated 
regularly and checked 
for quality. Drug data are 
updated daily with 
quality checks

Data access and 
approval

Arianna is available 
through collaboration 
with either the Local 
Health Unit of 
Caserta or academic 
institutions with data 
access, such as the 
University of 
Campania or the 
University of Messina. 
Researchers must 
first notify their local 
ethics committee 
before using the data. 
Full ethics committee 
evaluation is not 
needed (anonymized 
data, no direct patient 
interaction)

BIFAP is 
available to 
affiliated and 
other 
noncommercial 
researchers. 
Investigators 
must receive 
approval from 
the BIFAP 
scientific 
committee

CPRD (www.cprd.
com) licenses online 
access to the  
database. Researchers 
can download CPRD 
data using a secure  
file transfer protocol. 
CPRD receives  
annual regulatory 
ethics approval to 
supply anonymized 
linked data for public 
health research. All 
research requests to 
access data held by 
CPRD are reviewed  
by the Independent 
Scientific Advisory 
Committee

Within Italy, 
LPD Italy 
(www.
healthsearch.
it/?lang=en) is 
available 
through 
collaboration 
with the Italian 
College of 
General 
Practitioners or 
with IQVIA 
(www.iqvia.
com)

Access to IPCI (www.ipci.nl/
Framework/Framework.php) is 
provided through collaboration 
with the Erasmus Medical 
Centre. Protocols for studies 
using IPCI data must be 
approved by the IPCI ethics 
committee [174]

IQVIA (www.iqvia.com) 
administers DA France or 
Germany with various options: 
researchers can buy the software 
and data with monthly updates, 
preprocessed datasets, or data 
analyzed directly by IQVIA. 
Approval for IQVIA DA France 
and Germany requires only local 
IRB approval

Pedianet data 
(pedianet.it/en/ 
about) can be 
obtained by 
collaboration with 
Pedianet‐affiliated 
epidemiologists

Researchers must pay a  
fee and sign an agreement 
to obtain data from 
SIDIAP. Commercial 
organizations may not  
use SIDIAP data directly 
but can contract the core 
SIDIAP research team to 
conduct studies with  
input from the scientific 
and ethical committee

IQVIA (www.iqvia.com) 
makes THIN data 
available in a few forms: 
a sublicense for the 
whole research‐
formatted dataset, a  
data subset, or a 
preprocessed dataset 
with some data 
manipulation. THIN 
studies require approval 
by the Scientific Review 
Committee of 
independent researchers. 
If additional information 
will be collected, ethics 
approval is required 
from the NHS Multi‐
Centre Research Ethics 
Committee

Access to VA data is 
limited to researchers 
employed by the VA or 
with VA appointments, 
and their collaborators. 
Approval by the local or 
central VA IRB is 
required

ATC, Anatomical Therapeutic Chemical; CPT, Current Procedural Terminology; GPs, general practitioners; HES, Hospital 
Episode Statistics; ICD, International Classification of Diseases; ICPC, Classification of Primary Care; M, million; NDC, 
National Drug Code; NHS, National Health Service; PCP, primary care professional.
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Table 13.2 Selected variables in EHR databases available for epidemiologic research.

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Healthcare 
professional 
demographics

Arianna provides 
physicians’ age, sex, 
years since graduation

BIFAP provides 
geographic area of 
GP but not GPs’ 
demographic data. 
One cannot 
determine whether 
nurse or doctor 
entered data

CPRD reports if 
nurse or doctor 
entered data

One can identify GPs’ 
geographic  
region but not  
demographics

GPs’ demographics  
are not available

IQVIA DA provides 
physicians’ age, sex, and 
years in practice

Pedianet provides pediatricians’ 
age, sex, and city of clinic. More 
detailed information (e.g., years 
since graduation) is available by 
request

SIDIAP provides age, 
sex, type of primary care 
professional, and 
performance indicators 
(quality of care, quality 
of prescriptions, and 
quality of diagnosis)

THIN reports if nurse or 
doctor entered data

One can identify 
the doctor, nurse, 
or pharmacist who 
entered 
prescription data

Types of 
physicians

GPs Mainly GPs but also 
other members of 
the primary care 
team, such as 
pediatricians and 
nurses

GPs GPs GPs Mainly GPs; IQVIA DA 
Germany and France also 
include specialists (e.g., 
cardiologists, 
dermatologists)

Family pediatricians Health professionals 
working in primary 
care: GPs, pediatricians, 
dentists, nurses, 
midwives

GPs Mainly PCPs but 
also physician 
specialists (e.g., 
cardiologists) and 
other clinicians 
(e.g., nurse 
practitioners, 
clinical pharmacy 
specialists)

Practice and 
patient 
demographics

Practice:
Location
Patient:
DOB, sex, healthcare 
exemption (based on 
salary and disability)

Practice:
Number of patients 
registered with GP; 
number of persons 
registered in practice 
available upon 
request
Patient:
DOB, sex

Practice:
Region, practice size, 
practice‐level SES 
(Index of Multiple 
Deprivation and 
Townsend scores, 
~60%), date of last 
registration, 
Up‐to‐Standard date 
(see text)
Patient:
YOB for adults, 
month and YOB for 
children; sex, 
ethnicity (~25% 
recorded; also 
available via census 
data), census‐based 
socioeconomic class; 
patient status (active, 
died, transferred out)

Practice:
Location
Patient:
DOB, sex healthcare 
exemption  
(based on salary and 
disability)

Practice:
Number of  
employees may  
be available  
for some  
practices
Patient:
DOB, sex

Practice:
Region, community size, 
patients per practice, 
number of doctors, 
number of employees, 
type (e.g., GP vs 
specialty)
Patient:
Age, sex, health 
insurance status (e.g., 
private, statutory), 
medical insurance 
company, region, town 
size (>100 000 vs 
<100 000)

Practice:
Region, patients per practice
Patient:
YOB, age, sex, region of residence, 
nationality, information about 
parents (e.g., nationality, habits, 
blood group, mother’s educational 
level, socioeconomic level)

Practice:
Location, urban/rural, 
number of patients, 
deprivation index 
(MEDEA)
Patient:
DOB, sex, country of 
origin

Practice
Region, number of 
patients, 
computerization date, 
Vision date, Acceptable 
Mortality Reporting (see 
text)
Patient:
YOB for adults, month 
and YOB for children; 
patient‐level, location‐
based socioeconomic 
status (Townsend 
deprivation scores, 95% 
recording), region, 
ethnicity, (20% 
recording), patient status 
(active, died, transferred 
out)

Practice:
Region, facility, type 
of facility (medical 
center clinics vs 
community‐based 
outpatient clinics), 
facility’s level of 
complexity
Patient:
DOB, sex, race, 
ethnicity, zip code

Vital signs and 
social history

Height, weight, BMI, 
smoking, alcohol use 
available for 25% 
persons aged ≥65 
(2013–present); BP 
available for some 
patients 
(2016–present)

Weight, BMI, BP, 
smoking, and 
alcohol consumption

Height, weight, BP, 
and BMI recorded 
but may be biased 
towards patients with 
a more relevant need 
for these 
measurements; 
smoking (83–93%) 
[175,176], obesity 
(61–79%) [175–177], 
alcohol (~80%) 
[175,178]

BMI [179], BP [172],  
smoking,  
alcohol intake [180]

BP, weight, BMI,  
and smoking  
[181] available  
but recorded only  
when GPs  
consider them  
relevant

BMI (~40% [182]); 
smoking and alcohol 
recording unknown

Gestational age, birth weight, birth 
height, neonatal jaundice; growth 
measurements (e.g., height, 
weight); parental smoking

BP, BMI, smoking, 
alcohol intake, 
Framingham score.
Pediatric screening data 
(height, weight, head 
circumference, pubertal 
development)

Height, weight, BP, and 
BMI recorded but may 
be biased towards 
patients with a more 
relevant need for these 
measurements; smoking 
(86–94%) [86,183–185], 
obesity (73–83%) [185], 
alcohol intake (75–85%) 
[185]

BP, HR, height, 
weight, SES, 
education, marital 
status, smoking 
history (>90%)
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Table 13.2 Selected variables in EHR databases available for epidemiologic research.

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Healthcare 
professional 
demographics

Arianna provides 
physicians’ age, sex, 
years since graduation

BIFAP provides 
geographic area of 
GP but not GPs’ 
demographic data. 
One cannot 
determine whether 
nurse or doctor 
entered data

CPRD reports if 
nurse or doctor 
entered data

One can identify GPs’ 
geographic  
region but not  
demographics

GPs’ demographics  
are not available

IQVIA DA provides 
physicians’ age, sex, and 
years in practice

Pedianet provides pediatricians’ 
age, sex, and city of clinic. More 
detailed information (e.g., years 
since graduation) is available by 
request

SIDIAP provides age, 
sex, type of primary care 
professional, and 
performance indicators 
(quality of care, quality 
of prescriptions, and 
quality of diagnosis)

THIN reports if nurse or 
doctor entered data

One can identify 
the doctor, nurse, 
or pharmacist who 
entered 
prescription data

Types of 
physicians

GPs Mainly GPs but also 
other members of 
the primary care 
team, such as 
pediatricians and 
nurses

GPs GPs GPs Mainly GPs; IQVIA DA 
Germany and France also 
include specialists (e.g., 
cardiologists, 
dermatologists)

Family pediatricians Health professionals 
working in primary 
care: GPs, pediatricians, 
dentists, nurses, 
midwives

GPs Mainly PCPs but 
also physician 
specialists (e.g., 
cardiologists) and 
other clinicians 
(e.g., nurse 
practitioners, 
clinical pharmacy 
specialists)

Practice and 
patient 
demographics

Practice:
Location
Patient:
DOB, sex, healthcare 
exemption (based on 
salary and disability)

Practice:
Number of patients 
registered with GP; 
number of persons 
registered in practice 
available upon 
request
Patient:
DOB, sex

Practice:
Region, practice size, 
practice‐level SES 
(Index of Multiple 
Deprivation and 
Townsend scores, 
~60%), date of last 
registration, 
Up‐to‐Standard date 
(see text)
Patient:
YOB for adults, 
month and YOB for 
children; sex, 
ethnicity (~25% 
recorded; also 
available via census 
data), census‐based 
socioeconomic class; 
patient status (active, 
died, transferred out)

Practice:
Location
Patient:
DOB, sex healthcare 
exemption  
(based on salary and 
disability)

Practice:
Number of  
employees may  
be available  
for some  
practices
Patient:
DOB, sex

Practice:
Region, community size, 
patients per practice, 
number of doctors, 
number of employees, 
type (e.g., GP vs 
specialty)
Patient:
Age, sex, health 
insurance status (e.g., 
private, statutory), 
medical insurance 
company, region, town 
size (>100 000 vs 
<100 000)

Practice:
Region, patients per practice
Patient:
YOB, age, sex, region of residence, 
nationality, information about 
parents (e.g., nationality, habits, 
blood group, mother’s educational 
level, socioeconomic level)

Practice:
Location, urban/rural, 
number of patients, 
deprivation index 
(MEDEA)
Patient:
DOB, sex, country of 
origin

Practice
Region, number of 
patients, 
computerization date, 
Vision date, Acceptable 
Mortality Reporting (see 
text)
Patient:
YOB for adults, month 
and YOB for children; 
patient‐level, location‐
based socioeconomic 
status (Townsend 
deprivation scores, 95% 
recording), region, 
ethnicity, (20% 
recording), patient status 
(active, died, transferred 
out)

Practice:
Region, facility, type 
of facility (medical 
center clinics vs 
community‐based 
outpatient clinics), 
facility’s level of 
complexity
Patient:
DOB, sex, race, 
ethnicity, zip code

Vital signs and 
social history

Height, weight, BMI, 
smoking, alcohol use 
available for 25% 
persons aged ≥65 
(2013–present); BP 
available for some 
patients 
(2016–present)

Weight, BMI, BP, 
smoking, and 
alcohol consumption

Height, weight, BP, 
and BMI recorded 
but may be biased 
towards patients with 
a more relevant need 
for these 
measurements; 
smoking (83–93%) 
[175,176], obesity 
(61–79%) [175–177], 
alcohol (~80%) 
[175,178]

BMI [179], BP [172],  
smoking,  
alcohol intake [180]

BP, weight, BMI,  
and smoking  
[181] available  
but recorded only  
when GPs  
consider them  
relevant

BMI (~40% [182]); 
smoking and alcohol 
recording unknown

Gestational age, birth weight, birth 
height, neonatal jaundice; growth 
measurements (e.g., height, 
weight); parental smoking

BP, BMI, smoking, 
alcohol intake, 
Framingham score.
Pediatric screening data 
(height, weight, head 
circumference, pubertal 
development)

Height, weight, BP, and 
BMI recorded but may 
be biased towards 
patients with a more 
relevant need for these 
measurements; smoking 
(86–94%) [86,183–185], 
obesity (73–83%) [185], 
alcohol intake (75–85%) 
[185]

BP, HR, height, 
weight, SES, 
education, marital 
status, smoking 
history (>90%)

(Continued)
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Table 13.2 (Continued)

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Referrals, 
procedures, 
results of 
investigations

Laboratory test 
results for ~25%; 
linkage to hospital 
discharge data, 
referral data, and 
orders for diagnostic 
tests

PCPs’ referrals to 
specialists and 
hospitals; results 
from referrals may 
be recorded in coded 
fields or as free text; 
self‐referrals (less 
common) not 
available

Detailed information 
on referrals, 
procedures, and 
laboratory tests 
available for 
approximately 75% of 
all patients through 
linkage to HES

Referral data and orders for 
diagnostic tests  
available for all patients

Often not  
available; letters  
from hospitals to  
GPs with test  
results may be  
available for  
some practices;  
test results may  
be manually  
recorded in  
free‐text notes

HbA1c, blood glucose, 
cholesterol, LDL, HDL 
available; other test 
results variably available 
but can be requested 
from paper files

Apgar scores, laboratory and 
imaging tests ordered and reasons 
for request; test results not always 
available

Laboratory tests (date, 
results), diagnostic and 
imaging referrals; 
spirometry; referrals for 
therapeutic procedures; 
referrals to secondary 
and tertiary care [186] 
(date, reason of referral 
[ICD‐10], specialty 
referred)

Electronic referrals 
available; older referrals 
may be in paper files; 
most outpatient 
laboratory results 
available

Provider referrals 
for specialists 
available; all 
laboratory results 
available but must 
be standardized

Type of drug 
data

Drugs prescribed in 
community setting; 
drug dispensing by 
linkage to claims

Drugs prescribed 
and dispensed in 
community setting; 
vaccine data 
available

Drugs prescribed in 
primary care; some 
OTC drug data 
available (see text); 
vaccine data available

Drugs prescribed in 
community setting; vaccine 
data available

Drugs prescribed  
in community  
setting; vaccine  
data available

Drugs prescribed Drugs prescribed and dispensed 
in community setting, including 
drugs not covered by healthcare 
system; inpatient drug data 
available if reported to 
pediatrician; noncompulsory 
vaccine data available, remaining 
vaccine data identified via linked 
claims

Drugs prescribed and 
dispensed in community 
setting for drugs 
covered by the national 
healthcare system; 
vaccine data available

Drugs prescribed in 
primary care; vaccine 
data available

Drugs prescribed 
and dispensed in 
outpatient and 
inpatient settings; 
vaccine data 
available

Available drug 
information

Drug ATC code, NDC 
(with brand, 
formulation, units), 
indication for use

Drug name, active 
substance, number 
of prescribed 
packages, duration, 
prescribed daily 
dose, strength, 
indication for use

Drug name, route, 
strength, frequency, 
duration; 
immunizations 
including batch; cost 
of therapy upon 
request

Drug name, route, dose, 
frequency, duration, cost of 
therapy

Drug name,  
quantity, strength,  
dose [187]

Drug name, route, dose, 
frequency, duration, cost 
of therapy

Drug name, ATC code, indication 
for use, Italian MINSAN code, 
NDC (with brand, formulation, 
units), number of prescribed 
packages, dose (not available for 
30%)

ATC code, NDC, 
indication for use, 
profession of prescriber; 
prescribing data only: 
start and end date, drug 
units per day; 
dispensing data only: 
units per package, 
number of packages per 
month, month of drug 
dispensation

Drug name, route, 
strength, frequency, 
duration; immunizations 
including batch; linkage 
available to cost of 
therapy

Drug name, route, 
strength, dose, 
frequency, quantity, 
duration; cost of 
therapy

Health care 
utilization

GP visits; hospital 
discharge letters, 
referrals to specialists, 
admission to ED 
available by linking 
with claims data

GP visits; referrals 
by GP to secondary 
care and ED; 
hospital admissions 
available if patients 
referred to GPs after 
discharge

GP visits, 
hospitalizations, and 
consultant visits; 
links to HES provide 
detailed ward‐level 
resource utilization 
(England only)

GP visits, hospital discharge 
letters, referrals to specialists

GP visits; other  
data generally  
not available  
unless hospital  
discharge letters  
sent to GP

GP visits, 
hospitalizations, sick 
leave

Pediatrician visits, ED or hospital 
admission if referred by 
pediatrician

PCP visits, referrals to 
secondary and tertiary 
care, sick leave (date, 
length, ICD‐10), 
hospital discharge

GP visits, 
hospitalizations entered 
by GP, sick leave (if 
issued by GP); links to 
HES provides detailed 
ward‐level resource 
utilization (England 
only)

Outpatient visits, 
ED visits, 
hospitalization 
(including medical 
surgical, and 
intensive care 
units), community 
living center (VA 
nursing home)

Identification of 
pregnancy and 
families

ICD‐9 codes for 
pregnancy or birth by 
linkage to claims data; 
cannot identify 
families

ICD‐9/ICPC codes 
for pregnancy; 
cannot identify 
families

Pregnancy and 
pregnancy outcomes, 
family/ household 
identification 
number; mother–
baby link via family/ 
household number 
and algorithm

Not available Some birth‐related  
data available  
through hospital  
discharge letters;  
cannot identify  
families

Pregnancy variable, 
gynecologist records; 
family data incomplete

May identify siblings Pregnancy and 
pregnancy outcomes; 
mother–baby link 
available

Pregnancy and 
pregnancy outcomes; 
mother–baby link via 
family/household 
number and algorithm

ICD‐9/ICD‐10 
codes for pregnancy

(Continued)
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Table 13.2 (Continued)

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Referrals, 
procedures, 
results of 
investigations

Laboratory test 
results for ~25%; 
linkage to hospital 
discharge data, 
referral data, and 
orders for diagnostic 
tests

PCPs’ referrals to 
specialists and 
hospitals; results 
from referrals may 
be recorded in coded 
fields or as free text; 
self‐referrals (less 
common) not 
available

Detailed information 
on referrals, 
procedures, and 
laboratory tests 
available for 
approximately 75% of 
all patients through 
linkage to HES

Referral data and orders for 
diagnostic tests  
available for all patients

Often not  
available; letters  
from hospitals to  
GPs with test  
results may be  
available for  
some practices;  
test results may  
be manually  
recorded in  
free‐text notes

HbA1c, blood glucose, 
cholesterol, LDL, HDL 
available; other test 
results variably available 
but can be requested 
from paper files

Apgar scores, laboratory and 
imaging tests ordered and reasons 
for request; test results not always 
available

Laboratory tests (date, 
results), diagnostic and 
imaging referrals; 
spirometry; referrals for 
therapeutic procedures; 
referrals to secondary 
and tertiary care [186] 
(date, reason of referral 
[ICD‐10], specialty 
referred)

Electronic referrals 
available; older referrals 
may be in paper files; 
most outpatient 
laboratory results 
available

Provider referrals 
for specialists 
available; all 
laboratory results 
available but must 
be standardized

Type of drug 
data

Drugs prescribed in 
community setting; 
drug dispensing by 
linkage to claims

Drugs prescribed 
and dispensed in 
community setting; 
vaccine data 
available

Drugs prescribed in 
primary care; some 
OTC drug data 
available (see text); 
vaccine data available

Drugs prescribed in 
community setting; vaccine 
data available

Drugs prescribed  
in community  
setting; vaccine  
data available

Drugs prescribed Drugs prescribed and dispensed 
in community setting, including 
drugs not covered by healthcare 
system; inpatient drug data 
available if reported to 
pediatrician; noncompulsory 
vaccine data available, remaining 
vaccine data identified via linked 
claims

Drugs prescribed and 
dispensed in community 
setting for drugs 
covered by the national 
healthcare system; 
vaccine data available

Drugs prescribed in 
primary care; vaccine 
data available

Drugs prescribed 
and dispensed in 
outpatient and 
inpatient settings; 
vaccine data 
available

Available drug 
information

Drug ATC code, NDC 
(with brand, 
formulation, units), 
indication for use

Drug name, active 
substance, number 
of prescribed 
packages, duration, 
prescribed daily 
dose, strength, 
indication for use

Drug name, route, 
strength, frequency, 
duration; 
immunizations 
including batch; cost 
of therapy upon 
request

Drug name, route, dose, 
frequency, duration, cost of 
therapy

Drug name,  
quantity, strength,  
dose [187]

Drug name, route, dose, 
frequency, duration, cost 
of therapy

Drug name, ATC code, indication 
for use, Italian MINSAN code, 
NDC (with brand, formulation, 
units), number of prescribed 
packages, dose (not available for 
30%)

ATC code, NDC, 
indication for use, 
profession of prescriber; 
prescribing data only: 
start and end date, drug 
units per day; 
dispensing data only: 
units per package, 
number of packages per 
month, month of drug 
dispensation

Drug name, route, 
strength, frequency, 
duration; immunizations 
including batch; linkage 
available to cost of 
therapy

Drug name, route, 
strength, dose, 
frequency, quantity, 
duration; cost of 
therapy

Health care 
utilization

GP visits; hospital 
discharge letters, 
referrals to specialists, 
admission to ED 
available by linking 
with claims data

GP visits; referrals 
by GP to secondary 
care and ED; 
hospital admissions 
available if patients 
referred to GPs after 
discharge

GP visits, 
hospitalizations, and 
consultant visits; 
links to HES provide 
detailed ward‐level 
resource utilization 
(England only)

GP visits, hospital discharge 
letters, referrals to specialists

GP visits; other  
data generally  
not available  
unless hospital  
discharge letters  
sent to GP

GP visits, 
hospitalizations, sick 
leave

Pediatrician visits, ED or hospital 
admission if referred by 
pediatrician

PCP visits, referrals to 
secondary and tertiary 
care, sick leave (date, 
length, ICD‐10), 
hospital discharge

GP visits, 
hospitalizations entered 
by GP, sick leave (if 
issued by GP); links to 
HES provides detailed 
ward‐level resource 
utilization (England 
only)

Outpatient visits, 
ED visits, 
hospitalization 
(including medical 
surgical, and 
intensive care 
units), community 
living center (VA 
nursing home)

Identification of 
pregnancy and 
families

ICD‐9 codes for 
pregnancy or birth by 
linkage to claims data; 
cannot identify 
families

ICD‐9/ICPC codes 
for pregnancy; 
cannot identify 
families

Pregnancy and 
pregnancy outcomes, 
family/ household 
identification 
number; mother–
baby link via family/ 
household number 
and algorithm

Not available Some birth‐related  
data available  
through hospital  
discharge letters;  
cannot identify  
families

Pregnancy variable, 
gynecologist records; 
family data incomplete

May identify siblings Pregnancy and 
pregnancy outcomes; 
mother–baby link 
available

Pregnancy and 
pregnancy outcomes; 
mother–baby link via 
family/household 
number and algorithm

ICD‐9/ICD‐10 
codes for pregnancy

(Continued)
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Table 13.2 (Continued)

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Identification of 
death and cause 
of death

Date of death by 
linkage to claim data

Date of death; cause 
of death not 
available consistently

Date and cause of 
death available via 
CPRD data and 
linkage to Office for 
National Statistics

Date of death Date of death;  
cause of death  
available via  
free text

Date and cause of death 
seldom recorded

Date and cause of death Date of death Death date, sometimes 
cause of death; death 
certificates may be 
accessed for a fee if 
ethics approval is 
obtained

Date of death

Additional data, 
such as consult 
records, free 
text, or paper 
files

No free text or letters 
available

Anonymized 
free‐text notes by 
GPs are available

Hospital discharge 
summaries, 
consultant letters; no 
free text available

No free text or letters 
available

Free text available  
on request

No free text available Free text available on request Hospital discharge for 
30% of the SIDIAP 
patients; other data 
available by request

Hospital discharge 
summaries, consultant 
letters; no free text 
available

Additional data 
including consult 
records and free 
text available by 
chart review

Questionnaires 
and 
investigator‐
initiated 
outcome 
validation

Not possible to 
administer 
questionnaires

Questionnaires can 
be given to GPs

Questionnaires can 
be given to GPs and 
patients; response 
rates from three 
recent studies were 
~90% [188] (and 
CPRD internal data)

Not possible to administer 
questionnaires

Possible to  
administer  
questionnaires  
but response rates  
usually low

Questionnaires available 
upon request

Patients and families can be 
contacted for structured or 
unstructured interviews by phone 
calls from participating 
pediatricians

Questionnaires can be 
given to sample of GPs

Questionnaires can be 
given to GPs and 
patients; response rates 
to paper questionnaires 
~90% [51] (and THIN 
internal data)

Charts may be 
reviewed for 
validation

Settings and 
types of missing 
data

Inpatient data (except 
via discharge forms 
with main diagnoses), 
laboratory results for 
75%, OTC drugs, 
vaccines

Inpatient data, OTC 
drugs (few OTC 
drugs in Spanish 
national healthcare 
system)

Prescriptions in 
secondary care, OTC 
drugs (exceptions in 
text), drug 
dispensing, 
adherence

Inpatient data, OTC drugs, 
drug dispensing, pediatric 
clinical and prescribing data 
(any setting)

Inpatient and  
specialist data,  
OTC drugs, drug  
dispensing;  
linkage available  
to Dutch  
PHARMO  
database with  
dispensing data

Secondary care records, 
vaccine data, linkage 
between patients seen in 
both primary care and 
specialty clinics

Inpatient data not available for  
60%; OTC drug data  
(unless reported to pediatrician); 
adult health data

Inpatient data not 
available except 
admission/discharge  
data for hospitals of the 
Catalan Health Institute; 
OTC drugs, indication 
for drug use, drugs not 
covered by national 
health system

Prescriptions in 
secondary care, OTC 
drugs (exceptions in 
text), drug dispensing, 
adherence

Encounter and drug 
data from 
healthcare facilities 
outside VHA, 
including for 
patients taken to 
nearby hospitals for 
acute events (e.g., 
stroke); some 
inpatient 
medications housed 
in floor stock for 
acute care
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Table 13.2 (Continued)

Arianna BIFAP CPRD LPD Italy IPCI IQVIA DA Pedianet SIDIAP THIN VA

Identification of 
death and cause 
of death

Date of death by 
linkage to claim data

Date of death; cause 
of death not 
available consistently

Date and cause of 
death available via 
CPRD data and 
linkage to Office for 
National Statistics

Date of death Date of death;  
cause of death  
available via  
free text

Date and cause of death 
seldom recorded

Date and cause of death Date of death Death date, sometimes 
cause of death; death 
certificates may be 
accessed for a fee if 
ethics approval is 
obtained

Date of death

Additional data, 
such as consult 
records, free 
text, or paper 
files

No free text or letters 
available

Anonymized 
free‐text notes by 
GPs are available

Hospital discharge 
summaries, 
consultant letters; no 
free text available

No free text or letters 
available

Free text available  
on request

No free text available Free text available on request Hospital discharge for 
30% of the SIDIAP 
patients; other data 
available by request

Hospital discharge 
summaries, consultant 
letters; no free text 
available

Additional data 
including consult 
records and free 
text available by 
chart review

Questionnaires 
and 
investigator‐
initiated 
outcome 
validation

Not possible to 
administer 
questionnaires

Questionnaires can 
be given to GPs

Questionnaires can 
be given to GPs and 
patients; response 
rates from three 
recent studies were 
~90% [188] (and 
CPRD internal data)

Not possible to administer 
questionnaires

Possible to  
administer  
questionnaires  
but response rates  
usually low

Questionnaires available 
upon request

Patients and families can be 
contacted for structured or 
unstructured interviews by phone 
calls from participating 
pediatricians

Questionnaires can be 
given to sample of GPs

Questionnaires can be 
given to GPs and 
patients; response rates 
to paper questionnaires 
~90% [51] (and THIN 
internal data)

Charts may be 
reviewed for 
validation

Settings and 
types of missing 
data

Inpatient data (except 
via discharge forms 
with main diagnoses), 
laboratory results for 
75%, OTC drugs, 
vaccines

Inpatient data, OTC 
drugs (few OTC 
drugs in Spanish 
national healthcare 
system)

Prescriptions in 
secondary care, OTC 
drugs (exceptions in 
text), drug 
dispensing, 
adherence

Inpatient data, OTC drugs, 
drug dispensing, pediatric 
clinical and prescribing data 
(any setting)

Inpatient and  
specialist data,  
OTC drugs, drug  
dispensing;  
linkage available  
to Dutch  
PHARMO  
database with  
dispensing data

Secondary care records, 
vaccine data, linkage 
between patients seen in 
both primary care and 
specialty clinics

Inpatient data not available for  
60%; OTC drug data  
(unless reported to pediatrician); 
adult health data

Inpatient data not 
available except 
admission/discharge  
data for hospitals of the 
Catalan Health Institute; 
OTC drugs, indication 
for drug use, drugs not 
covered by national 
health system

Prescriptions in 
secondary care, OTC 
drugs (exceptions in 
text), drug dispensing, 
adherence

Encounter and drug 
data from 
healthcare facilities 
outside VHA, 
including for 
patients taken to 
nearby hospitals for 
acute events (e.g., 
stroke); some 
inpatient 
medications housed 
in floor stock for 
acute care

BP, blood pressure; DOB, date of birth; ED, emergency department; GPs, general practitioners; HES, Hospital Episode 
Statistics; ICD, International Classification of Diseases; ICPC, International Classification of Primary Care; NDC, National 
Drug Code; OTC, over the counter; PCP, primary care professional; SES, socioeconomic status; VHA, Veterans Health 
Administration; YOB, year of birth.
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missing data for some variables of interest, such 
as disease severity, smoking history, body mass 
index, and patients’ race or occupation.

In this chapter, we focus on selected primary 
care EHR databases from Europe and a national 
EHR database for veterans from the United 
States. Several European databases are available 
for licensing by investigators in government, 
academia, and industry, while access to certain 
European databases and to VA data requires 
collaboration with affiliated researchers. These 
databases have been used by epidemiologists, 
and in particular pharmacoepidemiologists, 
resulting in thousands of published studies. 
While there are many similarities among the 
databases, there are also important differences, 
which we describe in more detail below (see also 
Tables 13.1 and 13.2). Of note, we do not discuss 
other outpatient EHR databases that may have 
been used in pharmacoepidemiologic research 
but are less widely utilized or less representative 
of broader source populations. Claims data
bases from various countries are covered in 
Chapter 12, and inpatient EHR databases will be 
discussed at length in Chapter 14.

 Description

Europe and the United Kingdom

Overview of Healthcare Systems 
and Populations
France, Italy [3], Spain [4], and the UK have uni
versal, government‐funded healthcare systems. 
Germany and the Netherlands require all per
sons to have medical insurance to cover health
care [5]. In several of these and other European 
countries, general practitioners (GPs) act as 
gatekeepers for medical care. In Italy and Spain, 
family pediatricians function similarly as gate
keepers of most children’s healthcare. Except in 
certain European countries (e.g., France, 
Germany), practically the entire population 
have primary care professionals (GPs or family 
pediatricians), and the vast majority of these 

 clinicians have EHRs. Where GPs and pediatri
cians act as gatekeepers of the health system, 
they not only provide general (primary) medical 
care but are also involved in or informed of 
nearly all medical events involving their patients, 
including referrals to specialists, admission to 
emergency departments or hospitals, and pre
scribing of medicines recommended by con
sulting specialists. Thus, European primary 
care‐based EHR databases capture most of their 
patients’ health information.

Of note, the Italian and Spanish healthcare 
systems are strongly decentralized [6]. 
Healthcare services in these countries are man
aged and provided at the regional level, and 
their respective EHR databases reflect this 
regionalization. Notably, while both France and 
Germany have universal healthcare systems, 
patients often have additional private insurance, 
and GPs have less of a gatekeeper role than in 
other countries. These more open healthcare 
systems, therefore, make the French and 
German EHR databases less complete records 
of patients’ health information [7–10].

Overview of Databases
The UK was the setting of the first European 
EHR database, Clinical Practice Research 
Datalink® (CPRD®), (previously known as Value 
Added Medical Products [VAMP] database 
and then the General Practice Research 
Database® [GPRD®]). CPRD was established in 
1987 as a tool for conducting public health 
research. The Dutch IPCI database followed 
shortly thereafter in 1989. Since then, multiple 
other European health record databases were 
developed and used for research purposes (see 
below and Table 13.1).

Clinical Practice Research Datalink is a 
research service of the UK government, sup
ported by the Medicines and Healthcare prod
ucts Regulatory Agency (MHRA) and National 
Institute of Health Research. The Health 
Improvement Network® (THIN®) was set up in 
2002 as a collaboration between software and 
database companies (respectively, Cegedim and 
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Epic Database Research Company Ltd, now part 
of IQVIA; THIN is a Cegedim database). CPRD 
and THIN collect similar health information 
from approximately 3–5 million individuals per 
year seen by GPs in the UK, representing 5–8% 
of the population [11–19]. The same practices 
may contribute to both CPRD and THIN, but 
the proportion of overlap changes over time as 
new practices join or leave each database.

In a study validating well‐established drug–
outcome associations from the literature, find
ings were similar in CPRD practices and 
non‐CPRD practices within THIN [16]. As an 
example of the overlap of these two databases, 
one study identified over 60% of individuals ini
tiating a particular drug in both THIN and 
CPRD [20]. Increasingly, pharmacoepidemiolo
gists are combining information from both 
databases to increase sample size and improve 
statistical power and generalizability. Because 
CPRD and THIN are not mutually exclusive, 
merging data requires identification and singu
lar inclusion of practices contributing to both 
databases in a given year. Investigators have 
developed an algorithm for identifying overlap
ping practices while maintaining anonymity 
based on total numbers of patients per practice 
stratified by gender and birth year [21].

The IQVIA Disease Analyzer databases (DA, 
previously known as Mediplus®) were set up in 
France, Germany, and the UK. Because the DA 
UK database is no longer available, it will not be 
discussed in detail, but additional information 
may be found in Tables  13.1 and 13.2. The 
IQVIA DA databases include anonymized 
patient records from primary care practices as 
well as some office‐based specialists, including 
cardiologists, dermatologists, diabetes special
ists, gynecologists, neurologists, orthopedists, 
otolaryngologists, pediatricians, psychiatrists, 
and urologists [22,23]. Patients who see both 
general practitioners and specialists have differ
ent identity codes in the databases to preserve 
patient confidentiality, making it challenging to 
track patients across different settings of care. 
With nearly 30 million patients (5–7% of the 

total population), DA Germany is larger than 
DA France, which has over 10 million patients 
(16% of the total population).

In Italy, the Health Search Longitudinal 
Patient Database (LPD Italy from IQVIA) con
tains data on 1.6 million people from GPs across 
the nation (2.6% of the population), making it 
the country’s largest EHR database [24–29]. 
Founded in 1998 by the Italian College of 
General Practitioners, LPD Italy is now owned 
by IQVIA. The Arianna database contains EHR 
data on approximately 600 000 people (60% of 
inhabitants) in a region of southern Italy [30–
34]. The Arianna database is the only Italian 
EHR database that systematically links to sev
eral administrative claims databases and 
includes drug dispensing and hospital discharge 
data (see Chapter  12 for other data sources 
combining claims and EHR data). Of note, 
Arianna data may be linked to comprehensive 
geriatric assessments (systematic, multidimen
sional evaluations of health status covering cog
nitive and physical function, mobility, disability, 
social support, etc.) for almost three‐quarters of 
the local elderly population (90 000 since 2014), 
making it a valuable resource for geriatric 
research [35]. On the other side of the age spec
trum, Pedianet contains data on over 400 000 
children throughout Italy since 2000, over half 
of whom are being actively followed (see 
Chapter 22 for other data resources for pediat
ric pharmacoepidemiologic research).

In Spain, Base de Datos para la Investigación 
Farmacoepidemiológica en Atención Primaria 
(BIFAP) and Sistema de Información para el 
Desarrollo de la Investigación en Atención 
Primaria (SIDIAP) are primary care EHR data
bases that differ in catchment area. Founded in 
2000 by the Spanish Agency on Medicines and 
Medical Devices, BIFAP contains data on 7.9 
million individuals from nine of 17 autonomous 
communities (17% of the Spanish population) 
[36,37]. SIDIAP was founded in 2006 by the 
Catalan Institute of Health and the Primary Care 
Research Institute Jordi Gol. SIDIAP  contains 
data on almost 5.6 million persons from a single 
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autonomous community, Catalonia (85% of the 
Catalonian population).

General practitioners across the Netherlands 
contribute data to Integrated Primary Care 
Information (IPCI, previously known as 
Interdisciplinary Processing of Clinical 
Information). As of 2018, 2.4 million individuals 
(14% of the Dutch population) are registered in 
IPCI.

Data Collection and Structure
Practitioners use electronic health records to 
document a wide range of clinical information 
about their patients. These data are then 
 electronically extracted for research purposes 
by specialized software (see Table  13.1), 
 examined for completeness and accuracy by 
database administrators, and uploaded in 
anonymized form into the database. The fre
quency of data extraction and transmission 
varies among databases. Some EHR databases 
receive frequent data updates (e.g., real‐time 
contributions in Pedianet, daily in CPRD, three 
times per week in THIN, monthly in Arianna). 
Other databases receive new clinical data just 
1–2 times per year (e.g., BIFAP, IPCI, LPD 
Italy). Nonetheless, all of these databases con
tinue to accrue new information over time, 
adding data on new patients entering the 
healthcare system and updating data on exist
ing patients who are followed longitudinally. 
There is substantial heterogeneity in how 
information is extracted for research across 
databases, and sometimes within databases, 
reflecting the diversity of software and health
care systems. For example, in Spain, some 
autonomous regions send data to BIFAP 
directly, whereas other regions use local soft
ware programs for data extraction.

Primary care EHR databases generally contain 
a minimum set of clinical information, including 
data on patient demographics, medical diagno
ses, and drug prescriptions. Table 13.2 contains 
detailed lists of data collected in each database 
and highlights differences among them.

European EHR databases use a variety of 
standardized coding systems to record diagno
ses: Read codes (THIN and CPRD); International 
Classification of Diseases, 9th edition (ICD‐9) 
(Arianna, one autonomous region in BIFAP, 
LPD Italy, and Pedianet); ICD‐10 (IQVIA DA, 
SIDIAP, part of Pedianet, Hospital Episode 
Statistics [HES] data linked with CPRD and 
THIN); and the International Classification of 
Primary Care (ICPC) (IPCI, most autonomous 
regions in BIFAP).

The European EHR databases also vary in the 
ways they record drug data. CPRD and THIN 
employ British National Formulary (BNF) codes 
through the Gemscript system. European data
bases outside the UK record medications using 
Anatomical Therapeutic Chemical (ATC) clas
sification codes, although many countries have 
national drug codes contained within a govern
mental formulary or similar compendium. All 
European EHR databases discussed in this 
chapter contain data on prescribed medica
tions. Arianna, BIFAP, Pedianet, and SIDIAP 
also contain drug dispensing data. Additionally, 
Arianna, BIFAP, Pedianet, and (for roughly half 
of drugs) DA databases specify the indications 
for drugs.

All the above databases are representative of 
their respective source populations in terms of 
the distribution of age and sex and the preva
lence of most diseases and prescribed drugs 
[18,19,22]. However, because data are collected 
for clinical and not research purposes, the 
reported frequency of certain diseases may 
vary across databases depending on local or 
disease‐specific patterns of clinical care 
[38,39]. BIFAP, CPRD, DA France and 
Germany, IPCI, LPD Italy, and THIN include 
most regions of their respective countries. 
However, the distribution of patients across 
regions in these databases may not reflect the 
actual populations of those regions [1,15,17,40]. 
Similarly, the spectrum of socioeconomic sta
tus found in the databases may differ from the 
country as a whole [40].
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Vital signs (e.g., blood pressure, height, weight, 
BMI) and laboratory test results are available in 
Arianna, BIFAP [41], CPRD [42], DA [43], IPCI, 
Pedianet, SIDIAP [44–46], and THIN [47] to 
varying degrees (see Table 13.2). For example, in 
both THIN and CPRD, laboratory data from 
after approximately 2000 is better recorded, but 
some older laboratory tests may not be available 
electronically if they were received by GPs on 
paper. Furthermore, height and weight are 
recorded for most adults in the UK but may be 
missing for many children (see Incompleteness 
of Clinical Data). In DA Germany, HbA1c for 
diabetic patients is nearly complete, but many 
other laboratory values are not recorded. 
Laboratory test results are also available in 
Arianna (~25% of patients), BIFAP, Pedianet 
(with indications for testing), and SIDIAP.

Hospitalizations, referrals, and the resulting 
consultation letters are recorded to varying 
degrees in European EHR databases. In the UK, 
discharge summaries and other hospital and 
consultant letters are sent to the GP, although 
these identified paper documents are not 
directly available to researchers. Linkage of 
THIN and CPRD to HES data allows research
ers to access additional details from hospitaliza
tions, such as diagnosis codes on admission and 
discharge and length of hospital stay. Referrals 
to other care settings are captured in both 
CPRD and THIN, and data from outside con
sultations may be obtained by linkage to HES 
data. Details on available data for hospitaliza
tions and referrals in other databases are listed 
in Table 13.2.

Data from social history, including smoking 
and alcohol usage, are available to varying 
extents in most EHR databases (see Data 
Quality: Accuracy and Completeness, and 
Table 13.2). Substance exposure information is 
less consistently recorded in DA databases and 
IPCI. Pedianet contains information on paren
tal smoking habits. Certain components of 
social history, such as occupation, are not rou
tinely recorded in some databases [48].

In most of the European EHR databases 
described, most data are entered using struc
tured (coded) fields rather than free text [49–52]. 
In contrast, BIFAP and IPCI contain large vol
umes of unstructured data. These and other 
databases make information from anonymized 
free text entries available to researchers (see 
Table 13.2). These free text data can be used to 
identify and validate outcomes and supplement 
available data in structured fields. Some practi
tioners may still keep paper record files, which 
could include precomputerization records, hos
pital discharge paperwork, or letters from spe
cialists. Multiple databases, including THIN and 
CPRD, have additional fee‐based data services 
that will obtain and anonymize paper‐based data 
from GPs (see Table  13.2). To maximize the 
quality of the electronic record, IPCI does not 
permit participating GPs to keep paper records, 
but Dutch GPs record extensive free text notes, 
which are available to researchers [29].

Aside from the availability of unstructured 
data, several databases, including BIFAP, 
CPRD, DA Germany, Pedianet, SIDIAP, and 
THIN, allow researchers to administer ques
tionnaires to clinicians or patients [51,53–55]. 
Like free text data, such questionnaires can be 
used to validate existing data or provide addi
tional information that is not otherwise avail
able in the database. Moreover, unlike free text 
entries, such questionnaires can be tailored in 
their content and administration based on the 
specific research question and population of 
interest [51,56]. Researchers must pay fees to 
administer supplementary questionnaires, a 
portion of which participants receive to com
plete the questionnaires. Of note, investigator‐
initiated surveys are also permitted in IPCI, 
but anecdotally response rates among GPs 
tend to be low.

Data Quality: Accuracy and Completeness
Data quality checks are performed by the 
European EHR databases at regular intervals on 
three levels: (1) practitioner recording, (2) data 
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extraction, and (3) maintenance of the database 
(see Table 13.1 for details on database‐specific 
measures of quality assurance). When data are 
uploaded or extracted from the health records, 
the company processing the data performs 
additional quality checks to make sure the data 
have been correctly uploaded or extracted. 
Subsequent updates to the databases are veri
fied for accuracy [1,40,57]. All databases 
undergo routine updating of the software used 
to collect, check, transfer, and present data.

In the UK, national quality improvement ini
tiatives as well as advances in software have 
increased overall capture and accuracy of data. 
The national UK initiative the Quality and 
Outcomes Framework (QOF), a pay‐for‐perfor
mance program, was instituted in 2004 to 
improve performance using 146 quality indica
tors for 10 chronic diseases [58]. The QOF 
measures increased GP input in the EHR, lead
ing to more complete data recording, especially 
for the targeted medical conditions [59,60]. 
Even after certain financial incentives were 
removed, performance for many quality indica
tors persisted across UK practices [61]. However, 
it is unclear whether reporting also improved 
for other, nonspecified quality indicators or dis
eases [62]. Some researchers have reported that 
the QOF has not contributed to decreases in 
mortality, better care coordination, or better 
patient experiences in the UK [63]. In its current 
form, therefore, this program’s future is uncer
tain [64].

The QOF is only one of multiple quality 
improvement strategies implemented in the UK 
since the 1990s [62,65]. In coordination with 
specific databases, GPs receive training in the 
use of their software and regular evaluation of 
their data recording and prescribing behavior. 
GPs contributing to THIN or CPRD receive 
feedback reports with tips on improving record
ing and, in some cases, a summary of their pre
scribing habits relative to similar practices and 
other GPs in the UK. Other database‐directed 
quality measures include audits of newly added 

practices and comparison of acquired data to 
national databases (e.g., mortality, hospitaliza
tions, cancer, and cardiovascular registries) 
[22,66]. Finally, as incentives to take part in 
research studies, GPs and practices contribut
ing to CPRD or THIN may receive income 
through questionnaires or participation in 
interventional clinical studies.

In CPRD, only data from practices that meet 
quality standards (~90% of practices) are pro
vided for research. The Up‐to‐Standard (UTS) 
date is a practice‐based quality marker corre
sponding to when a practice in CPRD is consid
ered to have continuous and complete recording 
of data  [17]. The UTS date is based on two 
parameters: the presence of gaps in the data 
stream and the existence of an appropriate rate 
of recorded deaths at the practice. For THIN, 
IQVIA employs a quality measure known as 
acceptable mortality reporting (AMR), denoting 
the year in which mortality reporting was 
deemed complete for each practice [40,53]. 
Other European EHR databases have their own 
standards for ensuring quality and completeness 
(see Table 13.1 – Quality checks, standards, and 
feedback for details).

With regard to specific variables, complete
ness of data varies among databases (see 
Incompleteness of Clinical Data and Table 13.2). 
Pregnancy, family structure, mortality, and 
cause of death are variably recorded and may be 
difficult to ascertain. Family structure may 
require the use of coding algorithms  [66–74]. 
CPRD offers a probabilistic mother–baby link 
algorithm, which identifies likely mother–baby 
pairs based on an anonymized family number, 
maternity information from the mother’s pri
mary care record, and the month of birth of 
newly registered babies. CPRD may also be 
linked to mortality records from the Office for 
National Statistics to improve death estimates 
and confirm cause of death [75–77]. Researchers 
may also use algorithms for data in THIN to link 
family members or determine cause‐specific 
mortality [78,79]. Risk factors such as smoking 
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and obesity may have gaps. The introduction of 
QOF measures led to a substantial increase in 
recording of these and other variables within 
CPRD and THIN [80–85]. For example, record
ing of data on adult patients’ smoking habits 
rose from 75% before 2004 to nearly 90% by 
2007 [86]. By 2005, 99% of patients with diabe
tes had a reported HbA1c value in the past 15 
months compared to 87% in 1998.

As with other data sources, investigators need 
to consider the local context when interpreting 
dates in European EHR databases. Dates in the 
medical files may reflect dates of data entry or 
dates on which observations were made. In the 
case of new registrations in general practice, 
dates may reflect entry of data obtained from 
previous practitioners or from previous record
ing systems.

Data Access for Researchers
Research performed using European EHR data
bases must first be reviewed by the home institu
tion’s institutional review board (IRB) and the 
ethics board for the respective database. Given 
researchers’ inability to identify individual 
patients in anonymized databases, such studies 
often meet the criteria for IRB exemption. 
Investigators must usually receive approval from 
the ethics board of the respective database before 
conducting their research. Requirements for 
approval change over time, so investigators 
should check with the data vendor about approval 
requirements prior to starting a study. Companies 
may also require completion of a data use agree
ment before initiation of a study. See Table 13.1 
(Data access and approval) for more details.

United States: Department 
of Veterans Affairs Healthcare

Overview of Healthcare System 
and Population
The Department of Veterans Affairs (VA) was 
established in 1930 as the Veterans 
Administration based on congressional approval 

to “consolidate and coordinate Government 
activities affecting war veterans” [87,88]. The 
VA’s Veterans Health Administration (VHA) is 
one of the largest integrated healthcare systems 
in the United States, providing medical, surgi
cal, and rehabilitative care to a diverse group of 
military veterans as well as active duty reservists 
and National Guard. In contrast to the general 
US population, the VA population consists of 
predominantly older men (87% male, 47% over 
age 65 as of 2017) who often have multiple 
chronic medical or psychiatric conditions. The 
female population in the VA has increased over 
the last several years and represents a younger 
cohort of veterans. In 2016, the VA healthcare 
system consisted of 18 regional integrated net
works encompassing 145 hospitals and medical 
centers, over 1200 ambulatory care, mobile, 
independent, and community‐based outpatient 
clinics, and 132 community living centers (VA 
nursing homes) [89,90].

The VHA is primarily a direct provider of 
healthcare services, funded by the US govern
ment. While veterans receiving healthcare are 
not required to pay premiums for coverage, 
some are charged co‐payments for certain med
ical services and outpatient prescriptions [88]. 
The vast majority of medications within the 
VHA are prescribed by VA clinicians and dis
pensed by VA pharmacies. To facilitate access to 
care, veterans may also see and receive medica
tions from certain authorized private providers 
outside the VA [91]. Prescriptions from this 
program (<1% of all VA prescriptions as of 2017) 
are similarly dispensed and recorded within the 
VHA. Of note, dual‐care veterans with Medicare 
coverage (which covers virtually all US citizens 
age 65 years and older) may receive medications 
through both the VA and the Medicare Part D 
Plan. This arrangement may result in duplicate 
or excessive drug usage for some patients  –  a 
clinically important situation that might be 
overlooked by clinicians and researchers alike 
who do not jointly consider both sources of 
medical care [91–93]. Because the VHA is not a 
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closed medical system, veterans may receive 
out‐of‐network care, compromising one’s abil
ity to study certain outcomes (see Incom
pleteness of Clinical Data).

In 2017, approximately 6.3 million veterans 
(more than one‐third of US veterans) were 
treated in the VA healthcare system, with over  
5 million receiving prescriptions (see Table 13.1 
for details) [89].

Overview of Database
The VA database contains demographic, clini
cal, and administrative data from 1997 to the 
present along with prescription data since 1999 
and laboratory data starting in 2002. This data
base contains health information on 14.5 mil
lion patients; in 2017, the number of veterans in 
the VA database was about 2% of the US popula
tion and 32% of US veterans [89].

Data Collection and Structure
Local VA medical centers record and store clini
cal and administrative data within the Veterans 
Health Information Systems Technology and 
Architecture (VistA) system. The National 
Patient Care Database (NPCD) contains inpa
tient data and (through 2018) outpatient data 
extracted, organized, and integrated from VistA. 
These data include demographics, diagnoses 
(ICD‐9 and ICD‐10 codes), clinic visits, admis
sions, discharges, transfers, prescription orders, 
laboratory, surgical procedures, provider spe
cialty, and administrative services [94,95]. The 
VA’s Corporate Data Warehouse (CDW), a pri
marily operational database, contains raw clini
cal, medication and administrative data through 
VistA [96,97]. While less structured than the 
NPCD, the CDW contains similar information 
as well as additional data, including vital signs, 
radiology results, free text notes, consults, and 
health factors (e.g., smoking status). Since 2019, 
the CDW has been the primary source of outpa
tient VA data.

These data may be used for quality improve
ment efforts and research. The VA Vital Status 

File contains some demographics (birth date, 
gender) and death data from multiple sources 
[98]. Death data are cross‐checked monthly 
with the Social Security Administration Death 
Master File [98]. In addition, VA has several dis
ease‐specific registries that are used for patient 
care and research, including cancer, diabetes, 
severe mental illness, amyotrophic lateral scle
rosis, rheumatoid arthritis, and the human 
immunodeficiency virus and hepatitis C clinical 
case registry.

Unlike most EHR databases, the VA database 
contains information on both prescribing and 
dispensing of drugs in both outpatient and inpa
tient settings. Pharmacy data systems record 
outpatient and inpatient drug dispensing in the 
CDW and Pharmacy Benefit Management 
(PBM) databases [99,100]. The PBM database 
also contains information on dispensing of non
prescription medications and specific medical 
supplies. The majority (85%) of outpatient med
ications are dispensed via the VA’s consolidated 
mail‐order pharmacies. While the PBM data
base records the dispensing of inpatient drugs, 
the Bar Code Medication Administration 
(BCMA) database contains records of adminis
trations of medications to inpatients [101]. The 
VHA also maintains its own adverse drug event 
reporting system (also see Chapter  10); as of 
2018, this system contains over 500 000 reports 
related to drugs or vaccines.

Investigators may also extract data for 
research directly from the EHR. Such primary 
data collection can facilitate, for example, the 
validation or ascertainment of outcomes in 
unstructured portions of the EHR, such as 
reports (e.g., biopsies), text‐embedded test 
results (e.g., cardiac ejection fraction from an 
echocardiogram), and free text notes. 
Researchers may extract data through manual 
chart review in the local web‐based EHR portal 
or via natural language processing programs 
[102,103]. In addition to EHR data, surveys of 
veterans and clinicians permit access to 
 additional information [104].
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Data Quality: Accuracy and Completeness
The CDW, a nontransformed mirror of the med
ical record, is updated nightly. Updates of the 
Vital Status File occur monthly. The accuracy 
and completeness of data reflect the EHR and 
beneficiary claims they source (see Tables 13.1 
and 13.2 for more details). For instance, demo
graphic race and ethnicity data can have up to 
20% missing data in certain years [105].

The PBM database undergoes daily quality 
assurance processes to ensure completeness 
and accuracy [99]. As with medications obtained 
through Medicaid (see Chapter 12), low or nil 
co‐payments produce strong financial incen
tives for veterans to obtain outpatient prescrip
tions through the VA.

Data Access for Researchers
Researchers may obtain data through any of the 
aforementioned VA data systems (see Data 
Collection and Structure) following approval by 
the local or central VA IRB. Access to VA data is 
limited to VA‐affiliated researchers and their 
collaborators.

 Strengths

Population‐Based Data, Sample Size, 
and Length of Follow‐up

Population‐based studies draw subjects from 
the greater population to produce a derived 
sample that reflects the source [106]. Many 
European EHR databases allow researchers to 
use population‐based study designs, minimiz
ing selection bias and improving the validity and 
generalizability of epidemiologic studies. 
Although patients can opt out of having their 
information used, few do so.

Population‐based data sources are ideal for 
nested case–control studies, in which all cases 
(e.g., individuals with the outcome) or a 
 representative subsample are ascertained in a 
precisely defined population, and unaffected 

controls are sampled randomly from the same 
source population at the time when cases develop 
the outcome (incidence density sampling) [107]. 
Similarly, population‐based data allow for the 
design of cohort studies, given the availability of 
prospective data with long follow‐up periods. 
The large numbers of patients with longitudinal 
follow‐up (see Table  13.1) may allow for suffi
cient statistical power to study rare exposures, 
diseases, and outcomes. These large, population‐
representative databases are excellent settings for 
a wide variety of methodologic and applied stud
ies (see Particular Applications and Table 13.3).

Given the preponderance of older, sicker men 
in the VA system, the VA database is distinctly 
not representative of the US population or even 
of all US veterans, a majority of whom do not 
receive care within the VA system. However, the 
VA serves a high proportion of traditionally 
underrepresented and vulnerable groups, 
including the elderly and those with multiple 
co‐morbidities, mental illness, disabilities, and 
lower socioeconomic status. The large and 
growing size of the VA population and retention 
of patients in the system, often until their death, 
facilitate large longitudinal studies within this 
special population of veterans.

Validity of Clinical Information

Epidemiologic studies in any of the EHR data
bases involve use of lists of codes, and some
times algorithms, for specific medical 
conditions, drugs or other exposures of inter
est, and co‐variates. Methods for deriving such 
code lists have been described [49,108]. The 
validity of such code lists and algorithms has 
been extensively studied in many of these data
bases. Studies of agreement between recording 
in the EHR and capture of data (e.g., prescrip
tion medications and specialist referrals) have 
been performed for certain databases 
[17,22,50,66,67,109]. Numerous studies have 
validated outcomes within EHR databases (see 
Table  13.3). For unvalidated outcomes of 
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Table 13.3 Examples of studies using EHR databases

Type of research Setting or subject area Sample of publications

Validation 
studies

BIFAP Community‐acquired pneumonia [189], ischemic stroke [190], 
meningioma [191], myocardial infarction [192], Stevens–Johnson 
syndrome and toxic epidermal necrolysis [193], and upper 
gastrointestinal bleeding [194]

CPRD [17] Atrial fibrillation [195], autism [196], cancer [197], cataract [198], 
chronic obstructive pulmonary disease [199–201], familial 
hypercholesterolemia [202], inflammatory bowel disease [203], liver 
injury [204], lymphoma [205], myocardial infarction and heart 
disease [206,207], pregnancy outcomes [68,69], pressure ulcers 
[208], psoriasis [48,209,210], psychosis [211], rheumatoid arthritis 
and juvenile idiopathic arthritis [212], Stevens–Johnson syndrome 
and toxic epidermal necrolysis [213], suicide [214], and venous 
thromboembolism [215]

IQVIA DA 
databases [22]

Venous thromboembolism [216], general validation of 
pharmacoepidemiologic and pharmacoeconomic studies [22]

LPD Italy Heart failure, ischemic heart disease, hypertension, and type 2 
diabetes [3]

THIN [16] Quality of cancer reporting [1,217], date of death and mortality 
reporting [53], hepatitis C virus infection [51], myocardial 
infarction [50], nonmelanomatous skin cancer [54], peptic ulcer 
disease [50,185], psoriasis [210], and stroke [50]

VA Acute kidney injury [218], fatty liver disease [219], heart failure 
[220], hepatocellular cancer [221], inflammatory bowel disease 
[222], myocardial infarction and related cardiac procedures [223], 
posttraumatic stress disorder [224], sepsis [225], and stroke [226]

Methodologic 
studies

Database‐specific 
research (CPRD or 
THIN)

Timing and validity of diagnoses and outcomes relative to EHR‐
specific administrative dates [133,227,228] and clinical coding 
practices [229–231]; methods to impute missing drug information 
[134]; potential for misclassification and resultant bias due to 
missing data within free text [232,233], paper records, [234] and 
linked hospitalization records [235]

Generalizable research 
using EHR databases 
(various)

Sources and types of bias [236–240]; novel study designs, such 
as self‐controlled designs [241], regression discontinuity 
designs [242], and prevalent new‐user cohort designs [243]; 
various analytic approaches for causal inference, such as 
propensity scores [244], high‐dimensional propensity scores 
[245], simulation [246], marginal structural models [247,248], 
targeted maximum likelihood estimation [249], and 
instrumental variable analysis [250]; handling of missing 
data [251–253]; handling of repeated data [254,255]; and 
identification of outliers [256]
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Type of research Setting or subject area Sample of publications

Applied 
studies

General epidemiologic 
studies

Europe: representative incidence and prevalence studies [177,195,257–
266] (e.g., shoulder complaints in primary care [267], newly diagnosed 
heart failure [268], bullous pemphigoid [269], and pemphigus vulgaris 
[269]); natural history of disease (e.g., irritable bowel syndrome [270]); 
risk of disease‐related outcomes [260,271–279] (e.g., lymphoma among 
inflammatory bowel disease patients [205], myocardial infarction in 
patients with psoriasis [274], and complications of diabetes [280]); 
research on associated conditions [208,281] (e.g., obesity and liver 
disease [282]); patterns of diseases or symptoms [199]; rates of referral 
(e.g., chronic pelvic pain [283,284]); impact of geography [285,286] and 
pollution [287–289] on disease incidence and outcomes
US VA: burden of illness associated with irritable bowel syndrome 
[290], military sexual trauma [291], patients awaiting major joint 
arthroplasty [292], and mental illness among veterans [293]

Pharmacoepidemiologic 
studies

Europe: studies assessing risks [113,197,214,279,294–304] and 
outcomes [305–311] of medication (e.g., risk of myopathy and myalgias 
by statins [299]); safety and tolerability of medications 
[14,29,33,248,298,312–319]; studies of medication exposure and 
pregnancy outcomes [71,320,321]; reduction of morbidity or mortality 
by medication [306,322,323] and vaccinations [324]; persistence of 
medication use [325–327] (e.g., antihypertensives [328,329], 
bisphosphonates [330,331], and glaucoma therapies [332]); compliance 
and adherence [24,25,333,334]; physician’s use of guidelines in 
prescribing medications [335–338] (e.g., antibiotics in children 
[339,340], antidepressants [341]); trends in prescribing [342–351]; 
device utilization [352,353], effectiveness [354], and safety [355,356]
US VA: risks of myocardial infarction or musculoskeletal pain 
associated with bisphosphonates [357], dysglycemia with 
fluoroquinolones [358], neuropsychiatric adverse events with 
smoking cessation therapy [359], gastrointestinal bleeding with 
selective serotonin reuptake inhibitors [360], glucocorticoid‐
induced osteoporosis [361], and antipsychotic‐associated mortality 
in dementia patients [362]

Pharmacoeconomics, 
health services research, 
and pharmacovigilance

Europe: cost‐effectiveness and safety of bisphosphonates [363], 
comparison of cost between glaucoma therapies [332,364], use and 
cost‐effectiveness of long‐term hormonal contraception [26,365], 
cost‐effectiveness of treatment of gastroesophageal reflux disease 
[366]; health insurance‐related barriers in access to and compliance 
with medicines [367–370]; healthcare utilization in fibromyalgia [371] 
and diabetes [30,372–376]; prescribing trends and their financial 
impact [377,378]; comparison of care of the elderly and nonelderly 
regarding symptoms concerning for ovarian cancer [379]; research on 
disparities and health outcomes [285,380–384]; variability in resource 
utilization and prescribing [385,386]; vaccination uptake and 
distribution [387–389]; impact of risk minimization measures [27,31]
US VA: costs of erythropoietin therapy [390,391], treatment for 
metastatic prostate cancer [392], atrial fibrillation and stroke 
prevention [393], and healthcare costs of a collaborative intervention 
for chronic pain [394]; impact of clinical practice guidelines on 
quality of care [395] and adherence to the diabetes guidelines [396]

Table 13.3 (Continued)
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 interest, one should strongly consider validat
ing outcomes before or during a study to ensure 
that the specified diagnostic codes or algo
rithms reflect patients’ true conditions. Codes 
or diagnoses that have not been validated may 
lead to spurious results and compromise a 
study’s validity [50,51] (see also Chapter 37).

Accuracy of Drug Information

Electronic health record databases contain 
information on the name, strength, and quan
tity of prescribed drugs, which can be used to 
estimate their expected end date. In the UK, 
unlike in other countries, the prescription is the 
payment document. Although information is 
usually lacking on whether a prescribed drug 
has been dispensed from a UK pharmacy or 
taken by the patient, new prescriptions are gen
erated and recorded when the current refills 
have been used and the patient requests a refill. 
A prespecified number of repeat prescriptions 
can be issued upon request of patients, after 
which a repeat clinical evaluation is required to 
ensure the prescribed therapy is still appropri
ate. The number of prespecified refills depends 
on factors such as patients’ medical history and 
the drug in question.

Arianna, BIFAP, Pedianet, SIDIAP, and the VA 
databases contain information on outpatient 
drug dispensing in addition to the prescription 
data. VA databases also include detailed data on 
inpatient drug dispensing and administration. 
Of note, research using THIN has shown a high 
correspondence between issued and dispensed 
prescriptions except for a few selected drug 
classes; antipsychotics, drugs for malignancy, 
and immunosuppressants had lower redemption 
rates while anesthesia and vaccines were under
reported as prescribed [110].

Ability to Access Original Health Records

Electronic health record databases contain 
information from patients’ actual health 
records, which gives researchers insights into 

medical and social histories that are not possi
ble with other types of databases (e.g., claims). 
For instance, researchers can access informa
tion about antecedent symptoms, prior medical 
conditions, family history, vital signs, physical 
exam finding, laboratory data, and prescribed 
medications, as detailed above. Particularly in 
closed medical systems where GPs and family 
pediatricians are the gatekeepers, health infor
mation in the EHR tends to be relatively com
prehensive (see Europe and the United 
Kingdom, Overview of Healthcare Systems and 
Populations). Notably, some EHR databases 
permit access to anonymized free text data 
(e.g.,  IPCI), anonymized copies of paper records 
(e.g., THIN), or the entire EHR (e.g., VA), as well 
as access to clinicians or patients via surveys. 
These options allow researchers to verify infor
mation found elsewhere in a database or obtain 
additional supplemental data (see Data 
Collection and Structure). In published studies 
from the UK, response rates for health record 
requests have been greater than 80–90% 
[111–113].

Linkage to External Patient‐Level Data

Many EHR databases may be linked to other 
health‐related, patient‐level information, thus 
extending the functionality and utility of EHR 
data. More than 75% of applications submitted 
to CPRD request the use of linked data (some
times customized for a study) to augment the 
information available for research. The data 
source most commonly linked to CPRD and 
THIN is HES, which can provide data on hospi
tal visits and stays, accident and emergency epi
sodes, and tests by specialists, including 
imaging. The combination of data from primary 
care and HES facilitates research on conditions 
managed across multiple healthcare settings 
[114–117]. Linkage to official death records 
may improve the accuracy of mortality studies 
and validate data from general practice 
[118,119]. Researchers can link EHR data with 
other data sources, including disease (e.g., 
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 cancer) registries, mental health datasets, and 
socioeconomic and deprivation indices [120–
124]. Furthermore, linkage of EHR data to indi
vidual patient‐generated data is also possible, 
including patient‐reported outcomes, environ
mental data, drug diaries, and biospecimens 
[125–127].

Electronic health record databases outside 
the UK also permit linkages to other data 
sources, including Arianna (e.g., claims data and 
registries on regional hospitalizations, national 
drug dispensing, and mortality), SIDIAP, and 
the VA (e.g., genetic information from the 
Million Veteran Program biobank [128] and 
administrative claims data from Medicare and 
Medicaid [92,129,130]). See Chapter  12 for 
information about other data sources that 
 combine EHR and claims data.

 Limitations

Incompleteness of Clinical Data

When using EHR databases for research, inves
tigators rely on recording of patients’ history 
and events by their clinicians and the health sys
tems they work in. In clinical practice, human 
errors and omissions naturally occur, but sys
tematic errors in recording can lead to bias. For 
example, in studies of the elderly, researchers 
can use available geriatric data to create a frailty 
score [131]. Notably, such data are likely to be 
selectively recorded for frailer patients [132]. 
Failure to account for such patterns of missing
ness could lead to bias. Although most EHR 
data are in electronic form, information received 
from outside sources (e.g., consultants or hospi
tals) in hard copy may not be fully captured if 
results are not manually reentered by clinicians. 
As with the above example, clinicians may be 
more likely to record laboratory or radiologic 
findings that are abnormal, but even abnormal 
results may not be documented reliably.

Because European EHR databases are 
designed to capture health information from 

primary care settings, they typically lack infor
mation from specialists. IQVIA DA databases 
record data from certain specialists, but these 
encounters are not linked directly to patients’ 
primary care records. In other databases, 
recording of information from secondary care 
relies on communication between GPs and 
other clinicians. Researchers using THIN or 
CPRD may access more extensive and reliable 
data from other settings through linkage with 
HES data and other sources (see Linkage to 
External Patient‐Level Data).

The nature of illness can affect the pattern of 
data recording. Unlike in administrative claims 
databases, codes for chronic diseases may be 
entered only once into EHR databases. For this 
reason, episodes of care involving acute events 
may be better recorded than chronic diseases 
[48,109,133]. Likewise, codes for chronic or 
inactive medical conditions may predate a 
study’s follow‐up or fixed baseline period. 
Failure to account for historical diagnoses could 
lead to misclassification of important study var
iables. Another consideration for studies using 
EHR data involves follow‐up time and censor
ing: patients may transfer out of a given practice 
and entire practices may stop contributing 
patient‐level data to the database. If such drop
out relates both to exposure status and the out
come, bias could result.

While certain types of information can be 
found in EHR data and not administrative 
claims, some of these same variables often con
tain missing data. Examples include race and 
ethnicity, smoking and alcohol use, BMI, 
 socioeconomic status, employment status, and 
occupation (see Tables 13.1 and 13.2 for data
base‐specific details on percent recording). 
Unless incentives or other processes actively 
encourage recording (see Data Quality: 
Accuracy and Completeness), clinicians may 
more likely document these variables of inter
est (potential confounders) when they consider 
them relevant to patients’ health. Of note, 
some databases, including CPRD, THIN, and 
SIDIAP, derive socioeconomic data from 



Electronic Health Record Databases264

patients’ location of residence rather than their 
own finances.

Another source of missing data involves 
 pediatric growth measurements in the UK. GPs 
routinely measure and record the height and 
weight of children in a paper record provided to 
families. However, GPs inconsistently docu
ment these same measurements electronically. 
As a result, longitudinal measures of pediatric 
growth are frequently incomplete in CPRD and 
THIN; as with other variables, recording of 
these measures may relate to other clinical char
acteristics. Recording of growth measurements 
in children is more comprehensive in Pedianet, 
although the overall size of Pedianet’s pediatric 
population is smaller than that of either UK 
database.

Veterans in the VHA may receive health
care outside the VHA either by choice (espe
cially veterans aged 65 and older with 
Medicare coverage) or by necessity. For 
instance, veterans with urgent or emergent 
conditions are taken to the nearest hospital 
for care, as their VHA hospitals may be far
ther away or may lack a true emergency 
department. As a result, occurrences of acute 
conditions, such as myocardial infarction, 
stroke, and severe hypoglycemia, may be gen
erally missed in inpatient data from VA hospi
tals, potentially resulting in missing outcome 
data. The frequent omission of acute out
comes of interest represents a major limita
tion of the VA database, making it less useful 
for some types of pharmacoepidemiologic 
studies when used as the only data source. Of 
note, in studies of veterans age 65 and older, 
one can overcome this limitation by linking 
VA data to Medicare claims data [91–93].

Incompleteness of Drug Data

Information on days’ supply and daily dosage of 
prescribed medicines may not be explicitly 
recorded in EHR data. Methods are available for 
imputing days’ supply [134]. Information 

obtained from the timing of repeat prescrip
tions or refills can inform the imputation of 
daily doses [135,136]. Additionally, algorithms 
have been developed to determine daily dosage 
and other drug data (e.g., frequency) from 
unstructured text [137–139]. Only a few data
bases (Arianna, BIFAP, Pedianet, and to some 
extent DA) specifically link prescribed drugs to 
a particular diagnosis. Without this informa
tion, one can refer to diagnoses recorded in or 
around encounters that correspond to pre
scribed drugs.

One must remember that prescribing records 
do not indicate which prescriptions were filled. 
Only a few of the EHR databases discussed 
(Arianna, BIFAP, Pedianet, SIDIAP, and the VA) 
also contain drug dispensing data, providing a 
more complete picture of drug utilization. Data 
on OTC drugs are frequently missing from EHR 
databases, but exceptions exist where health
care systems pay for OTC drugs. For example, 
long‐term use of certain OTC medications, 
such as aspirin and nonsteroidal antiinflamma
tory drugs, is recorded in UK databases [140] 
and Arianna [32,33]. The UK National Health 
Service provides free prescription items to cer
tain segments of the population (e.g., patients 
over 60, children under 16, people in full‐time 
education). Patients over age 60 also have free 
access to some chronically used nonprescrip
tion medications that are prescribed by GPs. 
These accommodations lead to more reliable 
usage data for OTC drugs in some UK popula
tions. Additionally, Pedianet and SIDIAP cap
ture prescribing and dispensing of drugs 
irrespective of coverage by the respective 
national health systems, leading to comprehen
sive recording of OTC medications. Notably, 
medication adherence is not well recorded in 
any setting; thus, documentation of prescribing 
or dispensing does not imply that patients actu
ally take their medications (see Chapter 38 on 
Adherence).

In European EHR databases, data on 
 medications restricted to specialist care, 
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 dispensed from hospital pharmacies (e.g., 
biologics), and given during hospitalization 
or upon hospital discharge may be missing. 
In the UK, patients generally receive a lim
ited quantity of medications upon hospital 
discharge, which in some cases may last two 
weeks. In the VA, certain medications are 
recorded in the EHR but are not accessible in 
the prescription databases, for example med
ications obtained from floor stock or admin
istered acutely in acute care areas. The 
administration of other drugs may occasion
ally be incomplete due to work‐arounds in 
documentation [141].

Complexity and Costs

The size and complexity of these databases 
require adequate computer hardware, soft
ware, and storage space as well as experienced 
data managers and analysts. These require
ments carry costs in addition to the costs of 
using many databases themselves. Open‐
source software is available for managing and 
analyzing EHR data [142,143], including algo
rithms for use and analysis of free text 
[144,145].

 Particular Applications

The aforementioned EHR databases have been a 
rich scientific setting for thousands of epidemi
ologic and pharmacoepidemiologic investiga
tions. Research using these databases has 
included assessments of the incidence and natu
ral history of disease; research on drug utiliza
tion, safety, and effectiveness; pharmacovigilance 
and signal detection; health economics research 
including cost‐effectiveness; studies using case–
control, cohort, longitudinal, self‐controlled, 
and other designs; and a variety of methodo
logic studies. Examples of these studies are pro
vided in Table 13.3. More comprehensive lists of 

publications using these databases may be found 
on their respective websites.

 The Future

Electronic health records continue to evolve 
and expand in pursuit of delivering high‐qual
ity, high‐value healthcare [146]. Interoperable 
EHR platforms and health information 
exchanges can enable broader access to and 
sharing of data across clinical settings. Such 
advances enable better coordination of care, 
reduce redundancy, and improve efficiency 
within and across healthcare systems. New 
technologies have improved communication 
not just among clinicians. Clinicians and their 
patients can now correspond electronically via 
the EHR and even interact in virtual clinical 
encounters through telemedicine. In some set
tings, patients can see their EHR data through 
patient‐specific portals and upload their own 
data (e.g., patient‐reported outcomes, con
sumer‐wearable technology, “smart” digital 
technology) into the EHR. All these changes 
rely on and generate increasing volumes of 
data. Through advanced data analytics, health
care systems can harness these data to learn 
from their patients, align and streamline 
 processes of care, and improve patient 
 outcomes  –  key objectives of learning health 
systems [147].

As EHR systems evolve, systems adminis
trators, clinical informatics specialists, and 
end users must address important challenges. 
Missing data and variability in recording are 
common in EHRs. To optimize clinical care 
and maximize the potential for high‐quality 
research, healthcare systems must implement 
approaches to ensure consistent and com
plete clinical documentation within the EHR. 
Future research will be needed to determine 
whether continuing education, financial 
incentive programs (e.g., QOF), targeted 
feedback, or other strategies can improve 
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patient outcomes while being cost‐effective 
and sustainable.

In an age of ever‐growing threats to data 
 security, EHR databases require enhanced 
 vigilance, technology, and standards to maintain 
individuals’ privacy and confidentiality. 
Healthcare systems, industries, regulatory agen
cies, and governments must balance the poten
tial societal benefits of broad access to and 
linking of health data with the personal risks to 
privacy and safety [148]. Contractual, practical, 
and technical barriers must be overcome to link 
and share data from disparate, proprietary EHR 
platforms.

The many advancements in EHR systems have 
important implications for the conduct of 
research. New technologic approaches, such as 
natural language processing, artificial intelligence, 
and other big‐data analytics, have enabled 
researches to organize and use complex EHR data 
in novel ways [149–152]. Nonetheless, the clinical 
value of artificial intelligence‐based methods to 
study medicines in observational settings remains 
unclear [153,154]. Large international research 
networks, such as ARITMO [29], SOS [155], and 
TEDDY [156] have demonstrated the capacity 
and power of international collaborations to use 
EHR databases for large‐scale research on drug 
utilization and outcomes. Such collaborations 
lead to increased statistical power to study rare 
diseases, uncommonly used drugs, and rare out
comes; they also have greater external validity 
than research conducted within a single region or 
country. Linkage of EHRs with hospital data, 
administrative claims, and other data sources 
(e.g., patient registries) is increasingly important 
to maximize the advantages of each data 
source and minimize their respective limita
tions (see also Chapters 12 and 14) [92,116,157]. 
Furthermore, linkage of EHR data to patient‐
generated data and biospecimens adds to 
the  possibilities for inquiry and discovery 
through  population‐representative, patient‐cen
tered research and molecular pharmacoepidemi
ology [128,158,159]. Researchers can also use the 

clinical networks and information infrastructure 
of EHR systems to conduct large pragmatic trials 
[160–162]. In addition, expansion of EHRs in 
low‐ and middle‐income countries facilitates 
research and improvements in healthcare in areas 
of great need [163]. High‐quality research con
ducted within EHR databases can favorably influ
ence public policy and public health [164].

In the area of pharmacovigilance and regula
tion, EHR databases have an important role in 
postmarket evaluation. With rapid, nearly real‐
time analyses of recent population‐based data, 
EHR databases are useful data sources to con
duct postauthorization safety studies that moni
tor utilization and potential health risks of new 
drugs. Researchers, industries, and regulatory 
agencies may also use EHRs to quantify the 
impact of risk minimization measures, such as 
drug safety warnings issued by national drug 
agencies [165].

Through high‐quality clinical and transla
tional research and pharmacovigilance, EHR 
systems of the future will continue to serve as 
key platforms for answering important ques
tions and improving the health of patients, com
munities, and populations.
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Nationally representative nonexperimental 
studies evaluating the clinical effectiveness, 
safety, and variation in inpatient therapeutic 
practices were previously few in number. The 
dearth of these studies was primarily a function 
of available data sources that provide ample and 
accurate clinical and medication data in the 
inpatient setting to allow sufficiently precise 
and unbiased estimates of treatment effects. 
Furthermore, the data source needs to allow 
the researcher to establish temporal sequence of 
in‐hospital exposures and events to facilitate 
testing of hypotheses about cause–effect rela-
tionships. Fortunately, the past two decades 
have seen a virtual renaissance for the develop-
ment of databases containing more detailed 
information on inpatient medication use and 
clinical outcomes than has historically been 
captured by previous administrative data. These 
contemporary databases routinely incorporate, 
albeit to varying degrees, inpatient laboratory 
and radiologic test results and electronic health 

record (EHR) clinical data. This compilation of 
data from multiple institutions and across 
 multiple settings of care (e.g., office visits, emer-
gency room visits, inpatient hospitalizations) 
into comprehensive augmented administrative 
databases has afforded researchers the opportu-
nity to conduct rigorous observational studies 
to answer important pharmacoepidemiologic 
research questions.

In this chapter, we first provide a general 
overview of how inpatient databases can be 
used to conduct pharmacoepidemiologic 
research studies. We include descriptions of a 
variety of existing databases that capture inpa-
tient encounters, including Cerner Health Facts 
(HF), Pediatric Health Information System 
(PHIS), Premier Healthcare Database (PHD), 
and Truven MarketScan. Next, we review the 
common strengths and weaknesses of using 
these types of inpatient databases to conduct 
pharmacoepidemiologic research. Then, we 
provide illustrative examples of published 
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 pharmacoepidemiologic studies to demonstrate 
how these databases can be applied to particular 
types of research questions (temporal trends, 
clinical practice variation, adverse event evalua-
tion and therapeutic monitoring, and compara-
tive effectiveness studies). Finally, because 
inpatient databases continue to evolve rapidly 
with the inclusion of more information, we pre-
sent several considerations for future research 
studies that utilize these valuable resources.

 Description

The availability of inpatient and other data-
bases can give pharmacoepidemiologists an 
opportunity to define and create datasets rep-
resenting a large number of patients from a 
multitude of medical institutions across the 
United States (see also Chapters 12 and 13). In 
an appropriately performed study, these data 
can be a valuable primary or adjunctive resource 
in helping to define the effectiveness or safety 
of various medications or interventions. The 
availability of clinical and sometimes labora-
tory data elements in these databases affords 
the researcher versatility to answer pharma-
coepidemiologic questions related to common 
or rare medical [1–3]. Data from medical 
encounters (including those recording in‐ 
hospital drug use and outcomes) for the same 
patient can often be linked longitudinally and 
the timing of a particular intervention or medi-
cation exposure can be ascertained. Formatting 
the data in such a way allows for the investiga-
tion of time variant medication exposures and 
to assess for outcomes and safety events that 
may be more distant in time to the actual 
 exposure. As multiple hospitalizations for indi-
vidual patients can be linked over time, these 
databases afford the opportunity to  analyze 
both common and rare illnesses that may 
require frequent contact with the medical 
 system (e.g., malignancy or autoimmune condi-
tions). Furthermore, the continuous collection 

of data allows researchers to trend the impact 
of certain illnesses from year to year (e.g., 
methicillin‐resistant Staphylococcus aureus). 
This ability to consider the chronological asso-
ciation of an exposure and outcome rather than 
just an ecological association has the potential 
to further strengthen the implication of such an 
association. Additionally, these databases often 
contain payment and/or insurance information 
that enables utilization and cost analyses to be 
performed. Finally, the datasets are often repre-
sentative of a large geographic area (nationally 
or regional) and thus the data provide an oppor-
tunity to examine differences by region, includ-
ing variations in treatment practices for a 
specific illness [4].

In the US, the common core data elements are 
similar between databases and the data are 
 typically fully compliant with the Privacy Rule 
of the  US Health Insurance Portability and 
Accountability Act (HIPAA). While variable 
names, values, and value labels may differ, each 
database generally contains the following sub-
ject‐specific data elements:

 ● demographic data
 ● visit data (e.g., office visit, emergency room 

visit, or inpatient admission)
 ● ICD‐9‐CM and ICD‐10‐CM diagnosis and 

procedure codes associated with a specific 
instance of care

 ● detailed prescription data
 ● laboratory and radiologic imaging orders
 ● payment data (Table 14.1).

Each specific database may contain additional 
unique variables of interest.

A select set of augmented inpatient databases 
is summarized in alphabetical order below; some 
of these databases also offer data from other 
types of healthcare encounters, such as ambula-
tory or emergency department visits, which are 
discussed in more depth in Chapters 12 and 13. 
Table 14.2 provides a more granular comparison 
of these databases to further emphasize their 
particular strengths and limitations. Certainly, 
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this group of datasets is not exhaustive of 
all  currently available databases containing 
 inpatient data. However, these  databases were 
 chosen based on author familiarity and to 

 provide the reader with a reasonable landscape 
of the different existing options.

Cerner Health Facts® Database

The Cerner Corporation (www.cerner.com) 
maintains an EHR‐derived database called 
Health Facts (HF). HF is a nationally representa-
tive longitudinal database containing clinical, 
laboratory, and administrative data from more 
than 116 adult hospital systems across the United 
States that cumulatively include 84   million 
patients available for analysis [5]. The contribut-
ing hospitals are primarily urban teaching facili-
ties representing a wide range of bed sizes. The 
database elements are populated from Cerner 
EHRs and include detailed laboratory results 
(e.g., source of specimens, timing of collection, 
and results with reference ranges). Hospitalized 
patients can be tracked longitudinally post dis-
charge if they return for outpatient or inpatient 
encounters within the same health system.

Pediatric Health Information System 
Database

The Pediatric Health Information System 
(PHIS) (www.childrenshospitals.org) is a com-
parative pediatric administrative database 
 containing clinical and financial data elements 
for over 18 million patient encounters cumula-
tively from 45 not‐for‐profit, tertiary children’s 
hospitals in the US. The PHIS was created and is 
managed by the Children’s Hospital Association 
(CHA) (formerly the Child Health Corporation 
of America, CHCA). CHA is owned coopera-
tively by free‐standing, noncompeting children’s 
hospitals within the US, most of which contrib-
ute to the PHIS database. Member hospitals 
represent most of the major metropolitan areas 
across the US. Data are updated on a quarterly 
basis and made available to each hospital 
through a web‐based reporting tool. A deidenti-
fied medical record number allows a patient 
to  be tracked across multiple admissions at a 

Table 14.1 Examples of common data elements.

Data type Selected data elements

Demographic Date of birth
Race
Gender
Admission date (or encounter date 
for outpatient encounters)
Discharge date
APR‐DRG classification

Diagnoses Discharge (or encounter) diagnosis 
based on ICD‐9‐CM or ICD‐10‐
CM codes
Order of discharge (or encounter) 
diagnoses

Pharmacy Medication ordered
Dose of medication
Route of administration
Day of administration (or date of fill 
for outpatients)
Days supplied for outpatient 
encounters
Pharmacy charge

Procedures Procedures performed based on 
ICD‐9‐CM or ICD‐10‐CM codes
Date of procedure

Supply Supply ordered
Day supply delivered
Supply charge

Laboratory Lab ordered
Day lab delivered
Lab charge
Availability of actual results varies 
by database

Radiologic 
imaging

Imaging procedure ordered
Utilization of contrast media
Day imaging procedure was ordered
Availability of results varies by 
database

Clinical Clinical service provided
Day service provided
Charge associated with service

APR‐DRG, all patient refined – diagnosis related groups.



Table 14.2 Comparison of selected inpatient databases that contain medication data.

Data source

Subject 
sample 
size (in 
millions)

Data 
setting

Underlying 
sample

Longitudinal 
patient 
linking

Laboratory 
& radiology 
resultsa,b

Electronic 
health 
record 
dataa,b

Public 
insurancea Disabilitya Mortalitya

External 
dataset 
linkage 
possible

HIPAA 
compliant

Relative 
cost of 
data

Specific 
comments

Cerner 
Health 
Facts (HF) 
[32]

84 OP, 
ED, IP

116 US 
hospitals

Yes Yes Yes Medicaid 
Medicare

No Yes, if 
death 
occurred 
in medical 
facility

No Yes $ Must be a 
member hospital 
to acquire data

Pediatric 
Health 
Information 
System 
(PHIS)

18 ED, IP 45 Free‐
standing US 
children’s 
hospitals

Yes No No Medicaid No Yes, if 
death 
occurred 
in medical 
facility

Yes Yes $ Pediatric‐specific 
database; must 
be a member 
hospital to 
acquire data; 
limited 
outpatient data

Premier 
Healthcare 
Database 
(PHD) [33]

147 OP, 
ED, IP

700 US 
hospitals

Yes Yesc No Medicaid
Medicare

No Yes, if 
death 
occurred 
in medical 
facility

No Yes $$

Truven 
MarketScan 
[34]

240 OP, 
ED, IP

Enrollees of 
employer‐
based 
insurances

Yes Yes Yes Medicare 
Advantage
Medicaid

Yes Yes, if 
death 
occurred 
in medical 
facility

Yes Yes $$$ Includes retail, 
mail order, 
specialty 
pharmacy claims

a Typically available for a significantly smaller subset of the core sample, of the order of 10%.
b Typically limited to specific set of values, e.g., oxygen saturation, blood pressure, respiratory rate, BMI; not available at all visits by same patient.
c PHD does collect microbiology specific data for a select subset of participating institutions.
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particular hospital. Assuming that appropriate 
institutional review board approval has been 
obtained from the respective institution, a 
researcher can request that the unique identifi-
ers for patients admitted to their PHIS‐affiliated 
institution be descrambled into the original 
medical record number. This allows for the 
 possibility of performing additional chart 
abstraction to supplement or validate the data 
contained in PHIS.

Premier Healthcare Database

Premier (www.premierinc.com) is a consortium 
of US not‐for‐profit hospitals and health  systems, 
created and owned by an alliance of more than 
200 hospital and health systems. The Premier 
Prospective Database (PHD) originated as a 
merger of Premier with American Health 
Alliance and Sun Alliance in 1997 and continues 
to be managed by Premier, Inc. The PHD con-
tains information cumulatively for 147 million 
patients available for analysis. Since its inception, 
Premier has collected and managed data from 
more than 700 hospitals and in so doing captures 
approximately 20% of all hospitalizations in the 
United States. Premier member hospitals are 
located across the US and range in size and set-
ting from small rural to large inner‐city hospitals. 
The PHD represents hospitals that admit both 
children and adults but is not typically inclusive 
of free‐standing children’s hospitals.

Truven Health MarketScan Database

The Truven Health (www.truvenhealth.com) 
MarketScan Research Databases contain three 
core databases  –  Commercial, Medicare 
Supplemental, and Medicaid  –  that cumula-
tively represent 240 million patients available 
for analysis. Administrative and clinical data are 
collected for all locations of patient care: inpa-
tient, outpatient, outpatient pharmacy, mail 
order, and specialty pharmacy. For a subset of 
the larger database (approximately 10–15%), the 

claims data can be linked to additional datasets 
such as productivity management; health risk 
assessment; dental, laboratory, and medical 
records; and hospital data – including inpatient 
medication use  –  at the deidentified patient 
level. For example, the Truven MarketScan 
Hospital Drug Database contains inpatient drug 
utilization data from hospital discharge records 
that can be linked to the core databases at the 
patient level, which allows researchers to study 
medication utilization across both inpatient and 
outpatient settings [6].

 Strengths

Data Quality

Many existing inpatient databases have been col-
lecting data for over a decade. Each of the data-
bases has data quality assurance processes in 
place, ensuring that the data they contain meet 
quality standards. For example, PHIS data audits 
primarily check for valid entries (e.g., valid 
ICD‐9‐CM or ICD‐10‐CM diagnosis codes) and 
reasonable patient information (e.g.,  birth 
weight). Researchers utilizing these  databases 
and/or contributing organizations typically 
receive quality and benchmarking reports based 
on internal and external data audits, including 
advice on the impact of missing data elements. 
Finally, although studies using these databases 
are performed retrospectively, the actual data are 
collected in a prospective fashion independent of 
the study itself. This eliminates some of the 
inherent biases commonly identified for tradi-
tional retrospective studies (e.g., recall bias, 
interview bias or data collection biases).

Data Accessibility

These HIPAA‐compliant databases are typically 
available either commercially (HF, Truven 
MarketScan) or by membership as a contribut-
ing data partner (PHD, PHIS). The cost of data 
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can depend on the status of the data recipient 
(e.g., not for profit versus for profit) and the 
extent of information requested for the desired 
dataset. Depending on the data vendor, data-
bases can be readily accessed via a virtual 
 network, web interface, or with assistance from 
the database administrators. By performing 
defined queries to the parent database, a 
researcher can “collect” necessary data from 
years of admissions in a matter of hours to days. 
Once the data are obtained, additional data 
cleaning and manipulation are usually necessary 
to establish a dataset suitable for analysis. For 
example, the data can be easily transformed into 
a time‐dependent format for survival analysis.

 Weaknesses

When using these databases for pharmacoepide-
miologic studies, a researcher must consider 
several common limitations. First, the generaliz-
ability of study findings will depend on the 
degree to which the institutions that contribute 
to the dataset differ from noncontributing insti-
tutions, in terms of clinical practice or patient 
case mix. For example, the PHIS may accurately 
reflect practices within a free‐standing children’s 
hospital, but may not be generalizable to the 
typical community hospital. Similarly, the 
Truven MarketScan databases may allow 
researchers to ask questions that were previously 
impossible to answer without laboratory and 
radiology results, but the findings may not be 
generalizable because the databases are built 
from a large, nonrandom convenience sample of 
insurance claims from large employers [6].

Second, the research questions that these 
datasets can address may be limited by the lack 
of certain data elements. For example, study 
designs could be improved if the results of 
 laboratory or radiographic tests performed on 
particular days of interest were reliably available 
(e.g., within 30 days prior to the index date). 
Even for datasets that include these types of 

data, laboratory and radiology results are not 
necessarily available for all patients or for all 
encounters by the same patient. Similarly, infor-
mation regarding the precise day within a 
 hospitalization on which a specific diagnosis 
was made, timing of onset of a complication, or 
documentation of a patient’s condition at the 
time of admission or discharge are not always 
available. While alternative approaches can be 
taken to overcome certain data ascertainment 
challenges (e.g., creation of a severity of illness 
metric composed of resource utilization) this is 
not always possible. The existence of these 
 metrics would enable more sophisticated analy-
sis and allow for the researcher to draw conclu-
sions with stronger inferences.

Finally, the validity of findings may be 
 compromised because of some unknown degree 
of misclassification regarding several aspects of 
patient classification.

 ● Disease status, since the accuracy of clinical 
diagnoses, encoded as ICD‐9‐CM and ICD‐10‐
CM codes at the time of hospital discharge, 
cannot be readily validated across all settings of 
care, and these diagnostic codes used for billing 
may not reflect the comprehensive set of clini-
cal diagnoses that were made for a given patient.

 ● Exposure status, since drug exposure data are 
based on billing for dispensed drugs, which 
most likely but not always were administered 
to the patient.

 ● Outcome status, for the same reason mentioned 
above regarding disease status, as well as the 
possibility of the outcome occurring after hospi-
tal discharge and the patient either being read-
mitted to another hospital or not hospitalized.

 Particular Applications

The comprehensiveness of these augmented 
databases makes them attractive options for test-
ing clinically important pharmacoepidemiologic 
hypotheses in adult and pediatric patients, 
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hypotheses that were previously limited by 
 insufficient data. Pharmacoepidemiologists have 
already utilized these databases to publish impor-
tant findings that consider the diagnosis of less 
common outcomes after a pharmaceutical 
 exposure, temporal trends of a particular disease, 
descriptions in variations of therapeutic practices, 
reports on therapeutic or drug toxicity monitor-
ing, and comparative effectiveness  studies. 
Examples of both pediatric and adult studies for 
each of these categories are discussed below.

Temporal Trends

Venous thromboembolism
Venous thromboembolism (VTE), consisting of a 
blood clot in the medium or large vessel venous 
circulation, poses several health hazards, includ-
ing potential subsequent pulmonary embolism, 
thrombophlebitis, venous stasis, and diminished 
central venous access. It was hypothesized that the 
epidemiology of VTE was changing, due on the 
one hand to increasing use of intravascular venous 
catheters in ill patients and on the other hand to 
increasing prevalence of obesity and use of oral 
contraceptive hormones. Each of these factors, by 
different mechanisms, predisposes to the forma-
tion of VTEs. Data regarding the incidence of 
pediatric VTE, however, were sparse, consisting of 
two studies in Canada and The Netherlands, with 
only three and two years of data from the 1990s. 
Thus, both studies lacked sufficient precision to 
detect temporal trends, should they have existed. 
Furthermore, standard treatment for VTE 
includes anticoagulation, which with the advent of 
fractionated low molecular weight heparin in the 
1990s has shifted to some degree from warfarin to 
enoxaparin, but the degree of this therapeutic shift 
had not been measured.

A study using PHIS, consisting of 41 children’s 
hospitals that contributed data continuously 
from January 2001 to December 2007, identified 
(among 2.9 million hospitalizations) 13 449 
 hospital admissions of 9936 patients, with one 
hospitalization associated with a VTE diagnosis 

and 1401 patients with recurrent VTE diagno-
ses across several hospitalizations [7]. The 
annual proportion of VTE‐associated admis-
sions between 2001 and 2007 rose from 34 to 58 
cases per 10 000 admissions, a 70% increase 
(P<0.001). The upward trend was observed 
across the age spectrum (Figure 14.1A). During 
the same time period, the proportion of patients 
diagnosed with VTE who received enoxaparin 
rose from 29% to 49%, while the proportion 
receiving warfarin declined slightly from 11% to 
10% (P<0.001 for both trends) (Figure  14.1B). 
These findings helped to focus attention on 
improving the prevention, diagnosis, and treat-
ment of VTE in pediatric patients.

Clinical Practices Variation

Henoch–Schönlein Purpura (HSP)
The most common pediatric vasculitis is HSP, 
and up to 40% of children with HSP are hospi-
talized to manage acute disease manifestations 
such as severe pain, gastrointestinal bleeding, 
hypertension, or glomerulonephritis [8]. There 
is no standard approach to diagnose and treat 
HSP. Clinicians use various laboratory and 
 radiographic tests to make the diagnosis, and 
the subsequent treatment may include combi-
nations of corticosteroids, antihypertensives, 
nonsteroidal antiinflammatory drugs (NSAIDs) 
and opioids, or nothing at all.

In order to describe inpatient variation in 
practice for HSP, researchers assessed hospitali-
zation records from 36 children’s hospitals con-
tained in the PHIS between 2000 and 2007 [3]. 
Despite controversy regarding the effectiveness 
of corticosteroids in the treatment of HSP, 56% 
of patients during an initial hospitalization with 
HSP received this class of drug, compared to 
36% who received opioids, 35% nonsteroidal 
antiinflammatory drugs, and 11% antihyperten-
sive drugs. Substantial variation in the use 
of  these medications was evident across the 
hospitals (Figure  14.2), and this variation per-
sisted despite adjustment for case‐mix differences 
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Figure 14.1 Temporal trends in (A) diagnosis and (B) treatment of VTE. Source: Adapted from Raffini et al. [7] with 
permission from the American Academy of Pediatrics.
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among hospitals. These findings underscored 
the need for additional pharmacoepidemiologic 
research to enable the formulation of evidence‐
based practice guidelines.

Adverse Event Evaluation 
and Therapeutic Monitoring

Medication Use in Hospitalized Elderly Patients
Older adults tend to respond to certain medica-
tions differently from younger patients, with 

either reduced drug effectiveness or heightened 
susceptibility to adverse effects. Consequently, 
it is deemed best to avoid some drugs when 
treating geriatric patients. The Beers list, first 
developed in 1991 with multiple subsequent 
revisions, identifies such drugs to be avoided 
[9]. This list has been employed by the US 
Centers for Medicare and Medicaid Services 
and the US National Committee on Quality 
Assurance for regulatory and quality of care 
measurement purposes.
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Figure 14.2 Variation in (A) corticosteroid and (B) NSAID use among hospitals in unadjusted and adjusted models. 
Source: Adapted from Weiss et al. [3] with permission from Elsevier.
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Rothberg et  al. used the PHD to identify 
493 971 patients over 65 years of age (with a 
mean age of 78 years) cared for in 384 hospitals 
from 2002 to 2005 [10]. The study found that 
49% of these inpatients were exposed to at least 
one potentially inappropriate medication (PIM, 
as defined by the 2002 Beers list), with 6% 
receiving three or more PIMs. The most 
 commonly used PIMs were promethazine, 
 diphenhydramine, propoxyphene, clonidine, 
amiodarone, and higher doses of lorazepam. 
Compared to internists, geriatricians were less 
likely to prescribe high‐severity PIMs (adjusted 
odds ratio [AOR] 0.69; 95% confidence interval 
[CI] 0.61–0.78) as were hospitalists (AOR 0.90; 
95% CI 0.84–0.96). However, cardiologists 
(AOR 1.32; 95% CI 1.28–1.36) and pulmonolo-
gists (AOR 1.10; 95% CI 1.05–1.15) were more 
likely to prescribe these high‐severity PIMs. Of 
note, seven hospitals with more than 300 
patients each had no PIMs dispensed to any of 
their elderly patients, suggesting a possible 
mechanism for future quality improvement 
efforts. Alternatively, targeted management of 
just three drugs (promethazine, diphenhy-
dramine, propoxyphene) by hospital formular-
ies or pharmacies would eliminate the use of 
PIMs in 24% of the geriatric patients.

This study example not only highlights the 
potential to identify areas for concern but also 
represents an opportunity to efficiently direct 
resources to effect a change.

Death and Cefepime Exposure
Cefepime is a fourth‐generation cephalosporin 
antibiotic with broad‐spectrum gram‐positive 
and gram‐negative activity. It is available as an 
intravenous formulation and is often used as 
empiric therapy for hospitalized patients with 
suspected bacteremia and sepsis. The adminis-
tration of chemotherapy to children with cancer 
often renders them neutropenic with a high risk 
for bacterial infections. When a child becomes 
febrile during a period of neutropenia, it is 
 recommended that they be admitted to hospital 
for initiation of broad‐spectrum antibiotics 

[11]. In many instances, cefepime is the primary 
antibiotic utilized for these fever and neutrope-
nia episodes. In 2007 a metaanalysis was pub-
lished that questioned the safety of cefepime 
relative to other broad‐spectrum antibiotics. 
The study pooled mostly adult randomized 
 trials from various patient populations and 
found an increased risk of all‐cause mortality in 
patients receiving cefepime compared to those 
receiving other beta‐lactam antibiotics [12].

These data raised significant concern about 
the safety of cefepime. However, uncertainty 
existed regarding the true implications of the 
results from the metaanalysis for multiple rea-
sons. First, the pooled studies included patient 
populations that were heterogeneous and 
included primarily adult studies; second, for 
each included study, mortality was not a pri-
mary endpoint, which called into question the 
completeness of this data point as the primary 
endpoint for the metaanalysis; lastly, a plausible 
mechanism for the increased risk for mortality 
secondary to cefepime was not identified. It was 
clear that additional data and analyses were 
needed to further evaluate the questioned asso-
ciation, especially among pediatric patients.

Therefore, using the PHIS database, a retro-
spective nationally representative homogene-
ous cohort of pediatric patients with acute 
myeloid leukemia (AML) was assembled. 
Children with AML were chosen for this analy-
sis as they have frequent episodes of fever and 
neutropenia resulting in significant exposures 
to broad‐spectrum antibiotics such as cefepime. 
Additionally, AML unfortunately carries a high 
mortality rate, thus establishing a cohort with a 
significant exposure to cefepime and more fre-
quent rate of the outcome of interest (death). In 
total, 917 children in the PHIS database were 
found to have an ICD‐9 code and chemotherapy 
receipt consistent with AML between 2002 and 
2006. Table  14.3 displays the demographic 
 characteristics of this PHIS‐created cohort in 
comparison to the demographics of a cohort of 
patients with AML enrolled in a prospective 
chemotherapy trial sponsored by the Children’s 
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Oncology Group. As the table illustrates, the 
two cohorts have similar distributions of gen-
der, age, and race, establishing some external 
validity to the cohort created retrospectively via 
the PHIS [13].

After extracting all admission information for 
each patient for up to one year from diagnosis, a 
survival dataset was created. After adjusting, in a 
Cox regression model, for potential confounding 
factors such as age, gender, race, severity of 
 illness, and variation in proportional hazards, 
there were no identified differences in all‐cause 
in‐ hospital mortality in the year after treatment 
between patients recently exposed to cefepime 
versus those exposed to ceftazidime (hazard ratio 
[HR] 1.29; 95% CI 0.53–3.15), an antipseu-
domonal penicillin (HR 1.08; 95% CI 0.44–2.66), 
or carbapenem (HR 1.03; 95% CI 0.45–2.33) [14].

These results had an immediate impact by 
giving pediatric clinicians reassurance in the 
continued use of cefepime in their patient 
 population. In fact, the data from this study 
were shared with the US Food and Drug 
Administration (FDA), which at the time was 
performing a review of the results of the initial 
metaanalysis. The FDA’s own review and 
metaanalysis did not identify an increased risk 
of death associated with cefepime overall, nor 

did an additional pediatric‐specific metaanaly-
sis and systematic review [15].

Comparative Effectiveness

Antibiotics for Chronic Obstructive 
Pulmonary Disease
It has been estimated that as many as 24 million 
US residents suffer from chronic obstructive 
pulmonary disease (COPD) [16]. Acute exacer-
bations of COPD require inpatient care, result-
ing in as many as 600 000 hospital admissions 
annually, totaling an estimated $20 billion in 
direct costs each year [17]. Infection is a pri-
mary contributor for such exacerbations. Prior 
iterations of COPD treatment guidelines sup-
ported antibiotic administration at the time of 
admission in those COPD exacerbations that 
are associated with purulent sputum, an 
increase in sputum production, or an increase 
in dyspnea [18–20]. At the time, this recom-
mendation for antibiotics was based on limited 
data from relatively small randomized trials, 
most of which were performed close to two 
 decades previously [21].

A retrospective cohort of patients hospital-
ized between January 1, 2006 and December 31, 
2007 for an acute exacerbation of COPD was 

Table 14.3 Comparison of demographic variables from a pediatric AML cohort created retrospectively in PHIS 
and another cohort assembled in a prospective chemotherapy trial [13,14].

Retrospective PHIS AML cohort [21]
(n=917)

Prospective AML chemotherapy trial [20]
(n=492)

Sex
Male (%)

 
513 (56%)

 
263 (53%)

Age
Median (IQR)
0 to less than 2 yrs
2 to less than 16 yrs
Older than 16 yrs

 
9.2 (2.9 to 14.2)
186 (20.3%)
603 (65.8%)
128 (14.0%)

 
9.6 (Not available)
107 (22%)
318 (65%)
67 (14%)

Race
White
Black

 
649 (71%)
119 (14%)

 
316 (64%)
42 (9%)

AML, acute myeloid leukemia; IQR, interquartile range; PHIS, Pediatric Health Information System.
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assembled using the PHD. Patients were included 
in the analysis if they were at least 40 years old, 
had a principal ICD‐9‐CM code for an acute 
exacerbation of COPD and did not have other 
infectious diagnoses (e.g., pneumonia, cellulitis). 
Using this cohort, the investigators compared 
the effectiveness of antibiotics in the first two 
days of admission to no antibiotics in those first 
two days [16]. The primary outcome for the 
analysis was a composite measure of progression 
to mechanical ventilation, in‐hospital mortality, 
and readmission within 30 days of admission.

The comprehensive analyses included various 
multivariable models which utilized propensity 
scores (see Chapter  43) to balance measured 
baseline measured confounders that may have 
contributed to the clinicians’ choice for starting 
or not starting antibiotics in the first two hospi-
tal days. Additionally, a logit link generalized 
 estimating equation excluding antibiotic status 
was implemented to predict the risk of treat-
ment failure so that the impact of antibiotics 
could be evaluated across three strata of pre-
dicted risk of treatment failure.

The cohort consisted of 84 621 patients, 79% 
of whom received antibiotics in the first two 
hospital days. In the propensity score and co‐
variate adjusted model, the resultant odds ratio 
was 0.87 (95% CI 0.82–0.92) favoring early anti-
biotic administration. This apparent beneficial 
effect of early antibiotic use was most pro-
nounced among those patients deemed to have 
the highest risk for treatment failure. Importantly, 
the presence of increased or purulent sputum 
production, as reflected by a ICD‐9‐CM proce-
dure code for sputum testing on hospital day 1 
or 2, did not alter the point estimate; similarly, 
the presence of severe dyspnea, as reflected by a 
ICD‐9‐CM procedure code for arterial blood gas 
measurement on day 1 or 2, did not alter the 
point estimate. This study identified a poten-
tially important benefit for early antibiotic 
administration in the setting of COPD exacerba-
tion. Furthermore, the results suggest that in 
contrast to the recommendations contained in 

prior iterations of the guidelines, antibiotics 
were associated with improved outcomes in 
patients requiring hospitalization.

Although this study cannot be considered 
equivalent to a large randomized controlled 
trial, the importance of its results to guiding 
clinical care should not be underestimated. This 
was an efficient and relatively inexpensive 
approach to establish a large cohort to analyze 
the utility of antibiotics for acute exacerbations 
of COPD. The statistical analysis was thorough 
and the results provide clinicians with reasona-
ble estimates of the benefits for early antibiotic 
initiation in this group of patients.

Activated Protein C and Sepsis
Sepsis has been and will continue to be a major 
cause of inpatient morbidity and mortality. It 
has been estimated that close to 10% of all 
intensive care unit admissions are sepsis 
related, that sepsis‐associated mortality ranges 
from 30% to 50%, and that the estimated annual 
cost for sepsis approaches $17 billion per year 
in the United States [22–24]. Given the high 
mortality of sepsis, researchers and clinicians 
have attempted to identify effective therapies to 
improve outcomes. One such therapy, human 
recombinant activated protein C (APC), has 
been evaluated in various prospective trials 
with mixed results [25–27]. Furthermore, these 
trials raised a concern about hemorrhagic com-
plications from the APC therapy. Additional 
randomized controlled trials were being 
planned but those results will be several years 
in the making, leaving clinicians without fur-
ther guidance on their current patients.

Therefore, a retrospective study using the 
PHD was performed to investigate the effective-
ness of APC in reducing in‐hospital mortality 
due to sepsis and, importantly, to report the 
rates of hemorrhagic complications [28]. The 
study included a cohort of patients admitted to 
one of 404 hospitals between June 1, 2004 and 
June 30, 2006. Patients were deemed to have 
sepsis if they had an ICD‐9‐CM code consistent 
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with sepsis, were admitted to an intensive care 
unit and received antibiotics and vasopressors 
within the first two days of admission.

The investigators identified 33 749 patients 
meeting the study eligibility criteria, of which 
4.7% received APC in the first two hospital days. 
A multivariable analysis including patient and 
hospital characteristics was utilized to define 
each patient’s propensity to be given APC (see 
Chapter  47). Subsequently, a multivariable 
model comparing patients treated and not 
treated with APC matched by propensity score 
was performed, suggesting a benefit of APC 
on mortality (oods ratio [OR] 0.87; 95% CI 080–
0.95). Interestingly, the rates of gastrointestinal 
bleeding, intracranial hemorrhage, and major 
transfusions were similar between those treated 
with APC and those not treated. While the 
results from this study do not negate the impor-
tance of previous and concurrently active rand-
omized controlled trials, this well‐done 
nonrandomized study provided both timely and 
relevant data regarding the treatment of sepsis 
in routine clinical practice.

 The Future

Inpatient databases will continue to rapidly 
evolve given the ever‐increasing types and vol-
ume of available clinical data. The size, struc-
ture, and complexity of these data will require 
researchers to employ creative new approaches 
and cutting‐edge techniques from the fields of 
pharmacoepidemiology, biostatistics, and data 
science, including advanced approaches for 
addressing confounding in observational 
 studies, methods for longitudinal data analysis, 
procedures for exploratory data mining and 
machine learning, and techniques for data 
 visualization [29,30]. As analytic capabilities 
advance, pharmacoepidemiologists will have 
unprecedented opportunities to ask and answer 
new and innovative research questions across 
broad patient populations.

Several of the database options reviewed in this 
chapter already include internal linkages to certain 
types of novel patient data; additionally, the data in 
many of these databases can also be combined or 
merged with other novel data sources, such as a 
data source containing patient‐specific data from 
emergency department or ambulatory clinic 
encounters, or about hospitals’ processes of care. 
For example, a study of infection control practices 
in children’s hospitals supplemented PHIS data 
with data regarding each hospital’s level of use of 
alcohol‐based hand hygiene gel (gathered by a 
 survey). The resultant dataset was used to demon-
strate a reduced odds of nosocomial gastrointesti-
nal infections (AOR 0.64; 95% CI 0.49–0.85) 
among children cared for in hospitals where the 
hand gel was present [31]. Such data linkages will 
continue to increase in the era of improved cap-
ture of EHR data, patient‐reported outcomes data, 
and, perhaps not so far off in the future, the results 
of pharmacogenomic testing.

Additionally, improved generalizability may 
result from analyzing the same pharmacoepide-
miologic question using each of the different 
available databases. Because each of the dis-
cussed databases represents different medical 
institutions, and thus different patient popula-
tions, such an approach would help to prove the 
generalizability of certain outcomes or to iden-
tify important differences in outcomes that may 
be attributable to variability across the types of 
medical institutions. For example, the data from 
the PHIS and PHD can be combined to provide 
sampling coverage of both children’s hospitals 
(as represented in the PHIS and to a much lesser 
extent in the PHD) and general hospitals (as 
represented only in the PHD), thereby present-
ing a more complete and accurate representa-
tion of the entire realm of pediatric hospital 
care. Likewise, analyzing multiple inpatient 
databases that include the entire range of 
 commercially and publicly insured subjects will 
ensure more generalizable results that improve 
pharmacotherapy and enhance drug safety for 
the largest possible number of patients.
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Pharmacovigilance involves the detection, 
assessment, understanding, and prevention of 
adverse effects attributable to medications, in 
addition to any other problems related to 
 medication use [1]. Pharmacoepidemiology is 
an important source of evidence for pharma-
covigilance, the goals of which are to enhance 
patient care and safety and to provide evidence 
for the effective assessment of benefit–risk pro-
files of medications [1]. The birth of modern‐day 
pharmacovigilance arose from the consequences 
of thalidomide, which was licensed in the UK in 
1958 and withdrawn in 1961 [2,3]. Globally, an 
estimated 8000–10 000 children were born with 
phocomelia to mothers who took thalidomide 
during pregnancy for morning sickness [4]. The 
length of time taken to identify the safety signal 
and establish causality was the stimulus for estab-
lishing pharmacovigilance systems that are still 
in use today to monitor for suspected adverse 
drug reactions (ADRs).

In 1964, the Committee on Safety of Drugs 
(CSD) in the UK was formed (which later became 
the Committee on Safety of Medicines [CSM] 
and is now the Commission on Human Medicines 
[CHM]), which subsequently established a 
national spontaneous reporting system, known 
as the Yellow Card system (see Chapter 10). This 
was followed by the Medicines Act which was 

signed into law in the UK in 1968, requiring effi-
cacy, safety, and quality to be established with all 
marketed medications [5]. The reasons for moni-
toring postmarketing drug safety were summa-
rized in 1971 in a report of the CSD [6]:

No drug which is pharmacologically effective 
is entirely without hazard. The hazard may 
be insignificant or may be acceptable in rela-
tion to the drug’s therapeutic action. 
Furthermore, not all hazards can be known 
before a drug is marketed; neither tests in 
animals nor clinical trials in patients will 
always reveal all the possible side effects of a 
drug. These may only be known when the 
drug has been administered to large numbers 
of patients over considerable periods of time.

Past experience has shown that unexpected 
hazards can occur with older medications as well 
as newly licensed drugs and this evidence provides 
support for the concept of “postmarketing surveil-
lance.” The limitations of premarketing studies for 
examining safety of medications have been out-
lined previously (see Chapter 1) and include, but 
are not limited to, sample size, duration of study, 
and the patient selection process. Therefore, there 
has been general agreement for more than 50 
years on the importance of postmarketing adverse 
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event monitoring and postmarketing safety stud-
ies in providing complementary information on 
the clinically necessary understanding of the safety 
of a drug.

Study designs for postmarketing surveillance 
include both spontaneous reporting systems and 
other event monitoring methods. There are many 
advantages to spontaneous reporting systems, 
including the ability to identify rare ADRs, though 
limitations of such systems have been noted previ-
ously [7]. While spontaneous reporting methods 
are an important part of modern‐day pharmacovig-
ilance systems, nonpassive studies which actively 
monitor for events are also needed. Justification for 
active studies can be found through historical 
events such as in the case of practolol, which was 
licensed in 1970 by the CSD for the management of 
angina pectoris and cardiac dysrhythmias [8]. It was 
commercially a very successful drug but was associ-
ated with a rare condition known as occulomu-
cocutaneous syndrome which was not detected by 
spontaneous reporting systems as the symptoms 
were not initially linked: rash, dry eyes, and scleros-
ing peritonitis [8,9]. The condition was eventually 
detected and the drug withdrawn in 1975 [8], 
although the five‐year time period to detect this 
safety signal may have been avoided with the use of 
an active event monitoring system.

In June 1983, the CSM established a Working 
Party on Adverse Reactions which outlined a 
need for a prescription‐based monitoring process 
to provide a method for monitoring new drugs.

The Postmarketing Drug Surveillance Research 
Unit was established in 1980 by Professor William 
Inman, to address the need for active drug 
monitoring [10,11]. Financial assistance for this 
endeavor was provided by the Office of the Chief 
Scientists of the Department of Health and Social 
Security; while it was initially formed as part of 
the Department of Medicine of the University of 
Southampton, the unit was reconstituted as a 
charitable trust in 1986 and the name was changed 
to the Drug Safety Research Unit (DSRU) which 
has remained to the present day. The DSRU event 

monitoring methodology is based on the funda-
mental concept of monitoring events regardless 
of relatedness to drug exposure, as first pro-
posed by Finney in 1965 [10]. Over the years, this 
method has evolved from prescription event 
monitoring (PEM), to modified PEM (M‐PEM) to 
the most recent design, specialist cohort event 
monitoring (SCEM). While PEM was retired by 
the DSRU in recent years, M‐PEM and SCEM are 
still in use today.

The event monitoring designs used by the 
DSRU are the only national systems in the UK 
developed solely to monitor the utilization and 
safety of recently marketed medicines available 
to all primary care physicians (general practi-
tioners [GPs]), besides the Yellow Card system. 
It is important to note that there are differences 
in the type of data collected in event monitoring 
compared with the Yellow Card system, the 
most important being that the majority of 
events reported with event monitoring will not 
be attributable to the drug (i.e., not adverse 
reactions) and should not be treated as sponta-
neous ADR reports. Nevertheless, both postap-
proval systems are able to generate hypotheses 
regarding safety signals. Event monitoring pro-
vides estimates of common to rare events while 
the Yellow Card scheme is able to detect signals 
of very rare events because of the size of the 
population being monitored. Thus, the Yellow 
Card spontaneous reporting system and event 
monitoring provide complementary informa-
tion on hazards associated with medicines.

 Description

Design and Source Data

Two different approaches are used to identify 
patients within M‐PEM and SCEM studies, 
though the fundamental data collection design 
remains the same (see also subsection on Data 
Collection).
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M‐PEM Design and Data Source
Modified PEM is very similar to the original 
PEM method in that it uses an observational 
cohort design for active surveillance of targeted 
medicinal products in England. Products that 
are selected for study by M‐PEM are usually new 
to the market, although established products 
can be monitored with specific justification; for 
example, a new indication or extending usage to 
a new population will usually require evidence 
from a postmarketing study to be submitted as 
part of the risk management plan (RMP). M‐
PEM utilizes the structure of the UK National 
Health Service (NHS), whereby all individuals 
are registered with a GP, who provides primary 
medical care and acts as a gateway to specialist 
and hospital care. Medical records (in paper and 
electronic form) are held for each individual 
within each general practice, are generally life-
long and are transferable among general prac-
tices when a patient moves to a new area. 
Medical records data include not only informa-
tion obtained in primary care but information 
about all contacts with secondary and tertiary 
care, including letters from specialist clinics, 
hospital discharge summaries, results of labora-
tory and other investigations and  information on 
GP‐issued NHS prescriptions for the medicines 
the GP considers medically warranted.

Individuals are identified in M‐PEM where 
they have received an NHS‐issued prescription 
for the drug of interest. These prescriptions will 
be dispensed to patients at pharmacies with an 
NHS contract. Pharmacists are required to sub-
mit information on dispensed prescriptions for 
medications to a central prescription process-
ing center within the NHS Business Services 
Authority (NHSBSA), formerly the Prescription 
Pricing Division (PPD). Reimbursement through 
the NHS can only be processed by following 
this  procedure. Due to a long‐standing agree-
ment and via secure file transfer, the DSRU is 
provided with electronic copies of all those pre-
scriptions issued throughout England for the 

drugs being monitored on a monthly basis (see 
also subsection on Ethics and Confidentiality). 
Since the NHSBSA only handles the remunera-
tion and reimbursement to dispensing contrac-
tors across England, data are not available for 
Scotland, Wales, and Northern Ireland; how-
ever, where information is required from these 
areas, SCEM methodology can be utilized (see 
SCEM subsection).

The NHSBSA receives remuneration from the 
DSRU for providing prescription data. These 
data are reconciled with GP identifier records 
available from the NHS Organization Data 
Services (ODS), to obtain prescriber contact 
details and, with existing records on the DSRU 
customized database, to ascertain whether the 
data pertain to an existing eligible patient 
already within the DSRU database. It should be 
noted that all relevant prescriptions are col-
lected, irrespective of whether they are a new or 
repeat course. Repeat prescriptions can be iden-
tified and separated from initial prescriptions 
for a medication for individual patients.

The DSRU arrangement with the NHSBSA 
operates for the necessary length of time 
required to collect a sufficient number of pre-
scriptions to identify the required study sample 
size of patients. Since collection of dispensed 
prescription data usually begins immediately 
after the new drug has been launched, the eligi-
ble patient study population can be described 
either as an inception cohort (where the study 
drug is a new entity) or a new user cohort (where 
the drug under study might be a revised formu-
lation and the patients may be regarded as 
“switchers” and exposed to the new formulation 
for the first time). In addition, as the data are 
sampled at national level, the cohort is repre-
sentative of the population registered within the 
NHS in England.

SCEM Design and Data Source
To complement the already well‐established 
technique of M‐PEM, the DSRU developed 
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SCEM in response to the need to provide safety 
studies in secondary care and other specialist 
settings. SCEM methods allow the collection of 
exposure and outcome data on patients identi-
fied in other healthcare settings, such as hospi-
tals and secondary care settings. By capturing 
data in specialist care through SCEM studies, 
safety data is collected on those who may be 
more complex in terms of underlying disease, 
co‐morbidities, and concomitant medications 
than in the general disease population, as seen 
in M‐PEM. SCEM methods differ from M‐PEM 
methods in that patients are not identified via 
dispensed prescription data.

The DSRU works collaboratively with the UK 
National Institute of Health Research (NIHR) 
Clinical Research Networks (CRNs), which are 
associated with undertaking research with 
health service providers (trusts) at a national 
level. Prescribers are identified through these 
networks and patients are subsequently identi-
fied by these specialist prescribers and their 
informed consent is obtained for participation. 
Research personnel are used to aid with recruit-
ment of prescribers to the study, although only 
prescribers have any contact with patients. As 
with M‐PEM, data are sampled at national level 
and research personnel can be used to recruit in 

all areas of the UK, where required. In addition, 
the distribution of prescribers and patients is 
examined in further detail to ensure representa-
tiveness. Recruitment for a study continues until 
the desired sample size is achieved. A comparison 
of the M‐PEM and SCEM study designs is 
provided in Figure 15.1.

Ethics and Confidentiality

Both M‐PEM and SCEM studies are conducted 
according to national and international guide-
lines for ethical conduct of research involving 
human subjects [12–14]. Following the princi-
ples of good practice [15,16], a full research pro-
tocol is written for each study to monitor and 
research the safety of medicines. Where these 
protocols describe a postauthorization safety 
study that forms part of the EU RMP, European 
Medicines Agency guidelines are adhered to [17]. 
For M‐PEM studies, under Section  251 of the 
NHS Act 2006, the DSRU has received support 
from the Ethics and Confidentiality Committee 
of the National Information Governance Board 
to gain access to and process patient identifiable 
information without consent for the purposes of 
medical research. In contrast, for SCEM studies, 
informed consent is obtained from each patient 

M-PEM Study SCEM Study

Prescribers Primary Care Specialist Care

Design Observational cohort Observational cohort

Treatment Naturalistic
(non-interventional)

Naturalistic
(non-interventional)

Period of Observation Longer period (e.g.
12 months)

Shorter period (e.g.
12 weeks)

Ethics No patient consent
required

Patient consent required

Risk Less likely to capture
high risk patients

More likely to capture
high risk patients

Figure 15.1 Comparison of M‐PEM and SCEM study designs.
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prior to participation in the study. A single UK‐
wide ethical opinion is applied for from the 
National Research Ethics Service and local 
Research and Development (R&D) approval is 
also required at each participating NHS trust. 
Considerable care is taken to preserve the confi-
dentiality of patient data and the DSRU databases 
are fully protected. Patient information security 
is assured through strict measures guided by 
DSRU policies. Furthermore, highly confidential 
patient data (name and address) supplied by the 
NHSBSA for M‐PEM studies are made anony-
mous through use of a unique study identifier 
code assigned by the DSRU and separately one 
supplied by the GP on the questionnaire at the 
point of return. These codes are used for any sub-
sequent correspondence.

Data Collection

Process for M‐PEM and SCEM
Relevant study data are currently collected via a 
manual process (as summarized in Figure 15.2).

The process for data collection in M‐PEM 
and SCEM studies is usually the same, though in 
SCEM studies there is often a questionnaire 
sent at baseline in addition to the main study 
questionnaire. For both study designs, after a 
protocol‐specified time interval (range 3–12 
months) from the date of the first prescription 

for each eligible patient, questionnaires are sent 
to prescribers. For M‐PEM studies, these ques-
tionnaires are sent by surface mail in monthly 
batches according to the chronological order of 
prescription issue date to those GPs who pre-
scribed the newly marketed medicine, continu-
ing until the target sample size is achieved. 
Prepaid envelopes are provided for return by 
surface mail. For SCEM studies, questionnaires 
are usually printed by the prescriber directly 
from the study website and returned via prepaid 
surface mail. However, the process is now in 
place for data to be entered electronically into a 
dedicated website by doctors in SCEM studies.

Historically, PEM questionnaires were com-
monly referred to as “Green Forms” because of 
their color. These were intended to be simple in 
order to expedite data collection in order to 
enhance surveillance and encourage response in 
the interest of drug safety, especially given there 
was no remuneration to respondents. Given 
that M‐PEM and SCEM studies provide remu-
neration to prescribers, these questionnaires are 
more detailed than the original Green Forms 
and are no longer green in color. The number of 
M‐PEM study questionnaires sent on a monthly 
basis to each GP is limited (maximum of four 
per GP), but questionnaires for patients 
excluded because of this rule are subsequently 
included in the following month. As illustrated 

DSRU identifies patients prescribed study drug of interest

↓
Questionnaires sent to prescriber (e.g., at baseline, 3, 6 or 12 months after first prescription issued for patient)

↓
Information requested on questionnaire includes: baseline demographic data, drug exposure details, events and other

outcomes, important risk factors and prescribing patterns

↓
Questionnaires returned, scanned, reviewed and data entered onto DSRU database

↓
Selected events of medical interest (suspected ADRs, RAIDAR* events, deaths (where cause not known),

pregnancies) and other outcomes which require further evaluation may be followed-up

[Patient confidentiality maintained throughout]

Figure 15.2 The event monitoring process. *RAIDAR, Rare and Iatrogenic Adverse Reactions.
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in Figure 15.3, the standard Green Form PEM 
questionnaires were used to request data on 
patient demographics (age, gender), indication 
for treatment, prescribing information (dose 
and duration), reasons for stopping (if stopped), 
details of all significant events (for definition see 
Box 15.1) that have been recorded in patients’ 
medical records during a specific time period 
after starting the PEM study drug, and cause(s) 
of death if applicable.

Questionnaire Design
In parallel with developments in the field of 
pharmacoepidemiology in general, event moni-
toring questionnaires have evolved over time to 
extend the range of data that could be collected 
on drug utilization patterns as well as important 
risk factors for selected outcomes of interest. In 
recent years, further expansion and modifica-
tion of the nature and type of information 
requested on questionnaires for the whole 
cohort have led to the adoption of more com-
plex forms; these are currently in use for both 
M‐PEM and SCEM studies. Customized ques-
tionnaires have been developed to permit a 
wider exploration of more specific safety issues 
through collection of relevant information, 
while the underlying process remains the same.

Figure  15.4 illustrates the first page of the  
M‐PEM questionnaire for lumiracoxib. Such cus-
tomized questionnaires are designed to accom-
modate the increasing need for supplementary 

information which is relevant to a number of 
outcomes. Specifically, important identified and 
potential risks from the RMP, in addition to 
important missing information, can be explored. 
As a result, M‐PEM and SCEM studies can 
explore a range of research questions, such as 
safety in special populations, drug utilization, 
and targeted surveillance of specific safety con-
cerns. Because of the increased complexity of 
event monitoring questionnaires, prescribers 
receive remuneration for returning completed 
customized forms. Completion of these forms 
by prescribers remains voluntary.

Supplemental Information
During the course of any study, selected medical 
events (as described in Box 15.2) and other out-
comes undergo preliminary evaluation for pur-
poses of summarizing common or unusual 
features/manifestations, clinical course, and 
prognosis of conditions. Supplemental informa-
tion may be sought from prescribers using tar-
geted questionnaire(s), where such information 
is not provided on the main study question-
naires. For example, where a cerebrovascular 
accident (CVA) is reported, a specially designed 
questionnaire can be sent to obtain detailed 
information on the type of CVA, lab results, and 
risk factors for the event. Such questionnaires 
are sent within weeks of the initial review but in 
some cases, where an objective of a study might 
be to monitor events with a long latency, a 
lag  period may be introduced, for example 
12 months from the date of first occurrence of 
the event of interest, such as androgenic mani-
festations with testosterone use in women. 
However, the lag period can be increased sig-
nificantly for studying delayed outcomes, such 
as reports of cancer. Remuneration is paid to 
physicians in appreciation of the time taken to 
complete these supplementary questionnaires.

Box  15.3 lists the medically serious events 
that have been associated with the use of medi-
cines, as compiled by the DSRU. Cases of these 
events routinely undergo further evaluation (see 

Box 15.1 Definition of an event in event 
monitoring

Any new diagnosis, any reason for referral to a 
consultant or admission to hospital, any unex-
pected deterioration (or improvement) in a 
concurrent illness, any suspected drug reac-
tion, any alteration of clinical importance in 
laboratory values, or any other complaint that 
was considered of sufficient importance to 
enter into the patient’s notes.
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Figure 15.3 Green Form for the PEM study on Celebrex (celecoxib).
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Figure 15.4 Questionnaire for the M‐PEM study on Prexige (lumiracoxib).
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Figure 15.4 (Continued)
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section on Qualitative Evaluation of Important 
and Medically Important Adverse Events). All 
pregnancies reported during treatment or 
within three months of stopping the drug are 
followed up using a supplementary question-
naire to determine the outcome of the preg-
nancy. All reported deaths for which no cause is 
specified are also followed up to try to establish 
the cause of death.

Data Processing

Each event monitoring questionnaire returned 
for each patient is scanned onto the database 
and electronic copies are reviewed by the 
DSRU research fellow monitoring the study. 
This initial review aims to identify possible 
serious ADRs or events requiring action, such 
as external communications or expedited fol-
low‐up. In accordance with DSRU procedures, 
any events of interest or deaths reported on 
questionnaires require further review by a 
clinical research fellow who will determine if 
supplementary information is required. It 
should be noted that event monitoring is 
designed to capture all events, regardless of 
attribution, unlike spontaneous reporting sys-
tems which collect events for which there is 
often an inherent assumption of a causal rela-
tionship with the treatment in the mind of the 
reporter. These events may be expected or 
unexpected and may be either serious or 
nonserious.

For each patient, trained coding staff prepare 
a computerized, longitudinal, chronological 
record of demographic, exposure, and outcome 
data associated with starting the study drug. All 
events reported on questionnaires are coded 
onto a DSRU database using MedDRA® [18]. 
This hierarchical dictionary, which is arranged 
by system‐organ class, groups associated lowest 
level terms (terminology used by the prescrib-
ing physician) under preferred terms; similarly, 
related preferred terms are grouped under fur-
ther broader terms (high‐level term and higher 

level group term) [18]. Selected attributes can be 
linked to selected data; for example, an event can 
be flagged as a suspected ADR if the GP speci-
fied that the event was attributable to a drug 
(either the study drug or another drug taken 
during the study observation period). Other 
examples include if the event had a fatal out-
come or if the event was a reason for stopping.

Good clinical data management is a high pri-
ority. The DSRU has a set of rules and processes 
associated with the conduct of all studies which 
undergo regular review. Data quality is assured 
through a number of methods based on error 
prevention, data monitoring, data cleaning, and 
documentation. For example, data cleaning is 
undertaken to screen for errors, missing values, 
or extreme values and to diagnose their cause.

Sample Size and Duration

As summarized in Chapter  4, the ability to 
detect an adverse event in a cohort study is 
dependent on the expected incidence rate of the 
adverse event in those exposed to the drug, the 
background rate in those not exposed to the 
drug, and the total number of patients. In origi-
nal PEM studies, the sample size of 10 000 
exposed patients was driven by PEM’s original 
objective to bridge the gap between randomized 
trials and spontaneous reporting regarding sen-
sitivity to rare and uncommon events that can 
be achieved by including a larger sample size 
than premarketing studies. Based on the general 
‘rule of 3’ (see Chapter  4), it follows that the 
larger the sample size, the rarer the event that 
can be detected. A sample size of 10 000 patients 
allows one to be 95% certain that any events not 
observed occur less often than 1 in 3333 cases 
(incidence <0.0003) (see Chapter 4).

A sample size of 10 000 should allow for the 
detection of at least three cases of an adverse 
event, with 85% power, if the event occurs at a 
rate of at least one in 2000 patients (assuming 
the background rate is zero) [19]. If the back-
ground rate is known and there is an a priori 
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hypothesis of the effect size, then it is possible 
to analyze the statistical power of a study given 
a fixed sample size. For example, assuming 5% 
(two‐sided test) significance, the power of a 
study based on 10 000 subjects to detect as 
 statistically significant an increase in incidence 
from 0.1% to 0.2% would be 80% [20].

Because of the customized nature of M‐PEM 
and SCEM studies, a specific sample size is calcu-
lated depending on the research question of 
interest, for which the outcomes are chosen and 
defined through internal DSRU scientific discus-
sion as those which best reflect the research 
question. For example, if the study has been 

designed to test an increase in risk of an event 
between two study periods, then the sample size 
will depend on the background rate of the event, 
the estimated effect size of the adverse drug 

Box 15.2 Categories of events and outcomes 
which undergo further evaluation

Medically importanta adverse events:
Reported during premarketing development
Reported during postmarketing in other 
countries (for products launched elsewhere 
before the UK)
For the therapeutic class
Previous undocumented medically impor-
tant events considered to be possibly associ-
ated with the study drug during the study

Rare and Iatrogenic Adverse Reactions (RAIDAR) 
events (see Box 15.3)

Any other adverse events deemed to be of 
medical importance by the DSRU during the 
study

Specific outcomes associated with the study 
aims and objectives, for example aspects of 
prescribing, preexisting medical conditions or 
use of other medications immediately prior to 
or concurrently with the study drug which 
may be contraindicated, or which requires 
special warnings or precautions for use

a Defined as “events that may not be immediately life 
threatening or result in death or hospitalization, but 
may jeopardize the patient or require medical interven-
tion to prevent serious sequelae.”

Box 15.3 Rare serious adverse events that have 
been associated with the use of medicines

Agranulocytosis
Alveolitis
Anemia, aplastic
Anaphylaxis
Angioneurotic edema
Arrhythmia
Bone marrow, abnormal
Congenital abnormality
Dermatitis, exfoliative
Disseminated intravascular coagulation
Erythema multiforme
Erythroderma
Guillain–Barré syndrome
Hepatic failure
Hepatitis
Jaundice
Leukopenia
Multiorgan failure
Nephritis
Nephrotic syndrome
Neuroleptic malignant syndrome
Neutropenia
Pancreatitis
Pancytopenia
Pseudomembranous colitis
Renal failure, acute
Retroperitoneal fibrosis
Rhabdomyolysis
Stevens–Johnson syndrome
Sudden unexpected death
Thrombocytopenia
Torsade de pointes
Toxic epidermal necrolysis
Any event for which there is a positive rechallenge

This list is based on a similar list used by the Medicines and 
Healthcare products Regulatory Agency (MHRA), UK.
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event, the level of significance used (the fixed 
probability of wrongly rejecting the null hypoth-
esis when no real difference exists; most com-
monly set at 5% – the type I error or false‐positive 
result) and the desired power (the probability that 
the test will reject a null hypothesis that is false, 
i.e., that it will not make a type II error, usually 
taken to be 80%, which means a 20% chance of a 
type II error or false‐negative result). The back-
ground rate and the expected adverse effect size 
are estimated from the published  literature and 
clinical study data. For the majority of M‐PEM 
and SCEM studies that have been undertaken to 
date, the sample size has been smaller than the 
10 000 required for original PEM studies.

The duration of any study is dependent on the 
level of prescribing of the study drug by physi-
cians in the UK; if the desired sample size has not 
been reached by a prespecified date then the 
study may either be extended or finalized, depend-
ent on discussions with the marketing authoriza-
tion holder and regulatory agencies. Interim 
analyses are usually undertaken at prespecified 
milestones (e.g., annually) or defined sample sizes 
(e.g., 2500 patients) and contacts are, whenever 
possible, maintained with the marketing authori-
zation holder, so that the pharmaceutical compa-
nies (although the study is independent of them) 
can comply with the drug safety reporting proce-
dures of the regulatory authorities.

The DSRU has completed 111 PEM studies to 
date with a median cohort size of 11 541 patients 
(interquartile range 8482–13 643). In addition, 
13 M‐PEM studies have been completed with a 
median cohort size of 4624 patients (interquar-
tile range 1666–12 135). Two SCEM studies have 
also been completed to date and other M‐PEM 
and SCEM studies are currently ongoing. A wide 
range of drugs have been studied using event 
monitoring, including agents to treat hyperten-
sion, angina, asthma and chronic obstructive 
pulmonary  disease (COPD), diabetes, epilepsy, 
depression, schizophrenia, erectile dysfunction, 
and urinary incontinence. In addition, a number 
of nonsteroidal antiinflammatory drugs (includ-

ing selective COX‐2 inhibitors), several antibiot-
ics, and antiviral agents have been studied.

Data Analysis

The primary objective of pharmacovigilance is 
signal detection and evaluation. Several methods 
are applied for signal detection in event monitor-
ing, both qualitative and quantitative, not only to 
look for new unexpected adverse reactions but 
also for further information regarding expected 
drug–adverse event associations of interest that 
might affect the benefit–risk balance of a drug.

Qualitative Evaluation of Important 
and Medically Important Adverse Events
As described earlier, each questionnaire is eval-
uated for adverse events that may possibly be 
related to drug exposure. This qualitative evalu-
ation by the DRSU research fellow takes into 
 consideration a number of points (see Box 15.4). 
An example of a safety signal generated in event 
monitoring as a result of careful clinical evalua-
tion is the visual field defects in patients receiv-
ing long‐term treatment with the antiepileptic 
drug vigabatrin [21].

Because of the epidemiologic nature of the 
design of event monitoring studies, any infer-
ences on drug‐relatedness will be made on an 
aggregate basis at study milestones, such as 
when the interim and final reports are written. 
Such aggregate analyses can help formulate 
 possible hypotheses, which then require further 
analytic study. Event monitoring is dynamic in 
nature and the types and nature of events evalu-
ated may evolve during the course of the study, 
for example, following publications of case 
reports or regulatory concerns. An example is 
that of serious skin reactions and selective 
COX‐2 inhibitors [22].

Quantitative Analysis of Events
All event monitoring studies provide a numera-
tor (the number of reports of an event) and 
denominator in terms of the number of patients 



Description 319

and the number of patient‐months of exposure 
to the drug; all are collected within a known 
time frame. This allows for event  profiles over 
time to be examined through application of var-
ious statistical methods; such analyses are per-
formed using “high‐level” event terms from 
MedDRA (or  historically, higher level terms 
from the DSRU dictionary). The trend of reports 
after starting treatment can be very informative: 
pharmacologically related side effects tend to 
occur early in the study (although this period 
may also be affected by carryover effects from 
previous medication), or the number of reports 
may rise as time passes (as with long latency 
adverse reactions).

Analysis by Event Counts (Incidence)
One simple but effective descriptive method is 
to examine the incidence of events for the whole 

cohort by month, by system‐organ‐class (SOC). 
Such tables can generate signals; for example, 
the incidence of an event in the first month or 
subsequent months may be unusually high 
(in contrast to that expected from the Summary 
of Product Characteristics [SPC]). An example 
of such a signal is gynecomastia with finasteride 
(Case example 15.1) [23].

Analysis by Event Rates (Incidence Densities)
Event monitoring takes advantage of the infor-
mation on duration of exposure that is provided 
on the questionnaire and, for M‐PEM, from the 
NHSBSA. Rates (incidence densities [IDs]) can 
be calculated for a given fixed time period 
(t) – IDt –for all events reported in patients for 
a given time period and are expressed in units of 
first event reports per 1000 patient‐months of 
treatment (the time between treatment start 
and stop dates) or observation (the time 
between start date and end of survey date) if 
pattern of drug use is continuous or intermit-
tent, respectively.

Thus:

ID pert

t

t

patient-months of 

treatment  N
D

1000

or observation 1000

where Nt = number of 1st reports of an event dur-
ing treatment (or observation) for period t, and 

D

Number of patient-days of treatment
 for 

t
or observation pperiod t

30

where 30 defines a 30‐day month.
Incident densities can be calculated for each 

individual month for the relevant study period, 
as well as combinations of months (this being 
dependent on the study question  –  see later) 
and all months combined (IDA). Ideally, the 
exposure time would be censored at the time of 
the first event. However, since there are a large 
number of health outcomes of interest and the 

Box 15.4 Points for consideration in 
evaluation of reported events

 ● The temporal relationship (time to onset)
 ● The clinical and pathologic characteristics of 

the event
 ● The pharmacologic plausibility based on 

 previous knowledge of the drug and the 
therapeutic class, if appropriate

 ● Whether the event was previously repor ted 
as an adverse reaction in clinical trials or post-
marketing in the UK or in other countries

 ● Any possible role of concomitant medica-
tions or medications taken prior to the event

 ● The role of the underlying or concurrent 
illnesses

 ● The effect of dechallenge or dose reduction
 ● The effect of rechallenge or dose increase
 ● Patient’s characteristics, including previous 

medical history, such as history of drug aller-
gies, presence of renal or hepatic impair-
ment, etc.

 ● The possibility of drug interactions
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Case example 15.1 Finasteride and gynecomastia 

Background
 ● Indicated for the treatment and control of 

benign prostatic hyperplasia (BPH).
 ● Finasteride is an inhibitor of 5‐alpha‐reductase, 

which catalyzes the conversion of testosterone 
to dihydrotestosterone (DHT).

 ● Company literature at time of marketing 
 indicated that the most frequent AEs were 
related to sexual function and that there 
were feminizing effects; gynecomastia was 
not included in the data sheet when the 
product was launched.

Question
 ● How did PEM help in identifying this signal?

Approach
 ● Quantitative methods included constructing a 

list of events, by system–organ class and 
according to treatment status, with denomina-
tors of number of male patients still in the 
study, by month. Data were then compared 
across other drugs within the PEM base.

 ● Qualitative methods involved further evalua-
tion and characterization of the event.

Results
 ● The PEM cohort comprised 14 767 males 

(mean age 69 years).
 ● Reports of impotence/ejaculatory failure and 

decreased libido were received in relation to 
the first and all subsequent months of treat-
ment, but reports of gynecomastia were only 
rarely received before the fifth month of ther-
apy (Figure 15.5).

 ● To assess whether gynecomastia was an 
adverse event with finasteride, the data for 
41 completed PEM studies were examined for 
reports of this event; only 17 of these 41 stud-
ies had gynecomastia. There were 42 reports 
(39 on drug) for finasteride (incidence rate 
0.26  per 1000 patient‐months of treatment) 
compared to 75 (56 on drug) for the other 
17  studies combined (incidence range 0.03–
0.23 per 1000 patient‐months of treatment). 
These results strengthened the signal further.

 ● Follow‐up of these cases of gynecomastia and 
12 “potential” cases (with signs and symptoms 
of the condition based on other events) 
reported that the gynecomastia resolved on 
dechallenge in 15 of the 31 men in whom 
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Figure 15.5 Reports of gynecomastia during treatment with finasteride.
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censoring would be different for each outcome, 
the denominator for the crude ID does not ini-
tially account for censoring. Any subsequent 
analysis of particular signals would use appro-
priately censored denominator data. One of the 
many different evaluations possible is to rank 
these data in descending order of the estimate of 
ID1 (ID in month 1) and to examine the fre-
quency of clinical events unlikely to be con-
founded by indication. See Case example 15.2 
which describes the PEM study of drospirenone/
ethinyl estradiol [24].

Comparisons of Event Rates (Incidence Densities)
Calculating measures of impact (ID rate differ-
ences) or measures of effect (rate ratios) are 
other quantitative evaluations that can be used 
to identify events that occur significantly more 
frequently soon after starting the study drug. 
The null hypothesis is that the incidence rates 
are constant between the two time periods in a 
fixed cohort, that is, the events are not related 
to treatment in any way; the alternative hypoth-
esis is that the incidence rates are different 
between the two time periods in a fixed cohort. 
In rejecting the null hypothesis where substan-
tial differences are observed, this could be 
explained by a number of factors, including 
drug treatment. Most frequently, for each 
reported event, the difference or ratio between 

the IDs in the first month after starting treat-
ment and the IDs for months two to six (ID1 –
ID2‐6) is calculated to allow the examination of 
the null hypothesis that the rate for the event is 
not increasing or decreasing between these two 
time periods.

A confidence interval (CI) (99% or 95%) is 
applied to the difference or ratio in the rates 
between months as specified above; these are 
computed based on the Normal approximation. 
Thus, where the ID1–ID2‐6 value for an event is 
positive, or ID1/ID2‐6 is above one and the confi-
dence limits around the point estimate exclude the 
null value (zero or one respectively), the rate of 
events in month 1 is significantly greater than the 
rate of events in month 2–6 combined. This result 
can be considered a signal for an event associated 
with starting treatment with the study drug.

In comparing these two time periods, the 
assumption is made that, given an event, its 
reporting is equivalent in both periods in a fixed 
cohort. It is recognized that there are a number 
of limitations to this method of examining the 
data  –  these will be discussed subsequently. 
Similarly, ID differences or ratios can be used to 
identify events that have a delayed onset, for 
example where the ID1–ID2‐6 value for an event 
is negative, or the ID1/ID2‐6 is less than one and 
the confidence limits around the point estimate 
exclude the null value (0 or 1 respectively). 

 finasteride was given in the absence of other 
relevant concomitant therapy.

Strengths
 ● This shows the complementary and essential 

nature of qualitative and quantitative methods 
in assessing risk.

Limitations
 ● The incidence rate calculated was a crude meas-

ure, and there was no ability to control for 
confounding.

 ● Follow‐up was not systematic for all reports in 
the database, so only additional data were 
obtain for the cases exposed to finasteride.

Key points
 ● This postmarketing surveillance study gener-

ated a signal that was not identified in premar-
keting clinical trials of finasteride.

 ● While the incidence measure may have been 
subject to bias, the outcome was that the data 
sheet was amended.
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In  such settings, the rate of events in months 
2–6 combined is considered to be significantly 
greater than during month 1 and this result is 
considered to be a signal for a delayed‐onset 

event. These signals then require confirmation 
or refutation by further study. Table 15.1 shows 
a summary of such data from a typical PEM 
study of a drug (oxcarbazepine) for which 

Case example 15.2 Yasmin®

Background
 ● Yasmin is a combined oral contraceptive (COC) 

containing ethinyl estradiol and a new pro-
gestogen, drospirenone; it was launched in the 
UK in May 2002.

 ● While the association between estrogen‐ 
containing oral contraceptives and venous 
thromboembolism (VTE) is well established, 
VTE is a rare event in young women and the 
risk associated with a new COC cannot gener-
ally be determined from clinical trials.

 ● The initial prescribing information for Yasmin 
stated that “It is not yet known how Yasmin 
influences the risk of VTE compared with other 
oral contraceptives.”

Question
 ● How can prescription event monitoring help 

to evaluate the risk of this new drug?

Approach:
 ● Obtain prescriptions for all new users in 

England, which avoids the selection bias inher-
ent in premarketing clinical trials.

 ● Obtain outcomes, which are events, regardless 
of causality, reported by the patients’ doctors 
(who have access to the patients’ health informa-
tion in both primary care and hospital contact).

 ● Apply qualitative and quantitative methods to 
generate and test hypotheses.

Results
 ● The PEM study for Yasmin identified 13 cases 

(deep vein thrombosis 5; pulmonary embolism 
8) in 15 645 females using Yasmin, with a crude 
incidence rate of 13.7 cases per 10 000 woman‐
years (95% CI 7.3–23.4).

 ● Each of the cases had one or more possible risk 
factors for VTE.

Strengths
 ● The PEM allowed for a rapid assessment of risk; 

to our knowledge, this was the first description 
of cases of DVT and PE in users of Yasmin in the 
primary care setting in England.

Limitations
 ● Although an incidence rate has been calcu-

lated, there was no control group and no abil-
ity to account for confounding.

 ● Cases all had risk factors for VTE and therefore 
the events may not have been related to 
the drug.

Key points
 ● While premarketing clinical trials identified 

many aspects of the safety of Yasmin, appar-
ently no cases of VTE were reported.

 ● An association between COCs and VTE has 
been recognized for more than 40 years so it is 
important to know whether a new COC is asso-
ciated with VTE and to what extent.

 ● The lack of selection bias and large numbers 
of women studied led to identification of 
women who developed VTE while taking 
Yasmin, all of whom had risk factors for VTE. 
The PEM study raised the need for special con-
sideration before women with risk factors for 
VTE take Yasmin.

 ● While the incidence of VTE in the PEM study 
may have been subject to bias, it is the first 
computed incidence for this condition with 
Yasmin. Nonetheless, it needs to examined by 
other studies.



Table 15.1 Incidence densities (ID per 1000 patient‐months) for standard PEM study for oxcarbazepine ranked in order of ID1 for all events during 
treatment (between date of starting and stopping) where ID1 ≥3. Events associated with starting treatment are in bold italic.

Higher term N1 N2–6 ID1 ID2–6 ID1‐ID2–6 99% CI NA (%) IDA RFS ADR

Dose increased 95 104 49.22 12.91 36.30 22.90, 49.71 278 (12.4) 15.30 ‐ ‐
Convulsion, epilepsy 81 102 41.96 12.66 29.30 16.87, 41,73 247(11.0) 13.59 41 2
Not effective 40 133 20.72 16.51 4.21 −5.00, 13.42 270 (12.0) 14.86 262 ‐
Drowsiness, sedation 38 44 19.69 5.46 14.22 5.73, 22.72 103(4.6) 5.67 57 15
Nausea, vomiting 33 33 17.10 4.10 13.00 5.12, 20.88 75(3.3) 4.13 23 6
Malaise, lassitude 31 37 16.06 4.59 11.47 3.79, 19.14 83 (3.7) 4.57 44 9
Dizziness 30 32 15.54 3.97 11.57 4.04, 10.10 74 (3.3) 4.07 31 4
Dose reduced 27 51 13.99 6.33 7.66 0.36, 14.95 131 (5.8) 7.21 ‐ ‐
Rash 22 23 11.40 2.86 8.54 2.10, 14.98 60 (2.7) 3.30 32 5
Headache, migraine 21 32 10.88 3.97 6.91 0.53, 13.28 62 (2.8) 3.41 21 3
Visual defect 20 37 10.36 4.59 5.77 −0.51, 12.04 73 (3.3) 4.02 26 5
Hospital referrals no admission 16 31 8.29 3.85 4.44 −1.19, 10.07 70 (2.1) 3.85 26 ‐
Unspecified side effects 16 24 8.29 2.98 5.31 −0.25, 10.87 56 (2.5) 3.08 51 56
Electrolyte abnormal 15 29 7.77 3.60 4.17 −1.28, 9.62 67 (3.0) 3.69 30 1
Nonsurgical admissions 14 22 7.25 2.73 4.52 −0.69, 9.73 56 (2.5) 3.08 9 ‐
Ataxia 10 9 5.18 1.12 4.06 −0.26, 8.39 20 (0.8) 1.10 7 3
Condition improved 8 13 4.14 1.61 2.53 −1.41, 6.48 31 (1.4) 1.71 20 ‐
Intolerance 8 5 4.14 0.62 3.52 −0.32, 7.38 18 (0.8) 0.99 17 3
Unsteadiness 8 14 4.14 1.74 2.41 −1.55, 6.36 29 (1.4) 1.60 6 3
Confusion 7 18 3.63 2.23 1.39 −2.39, 5.17 37 (1.7) 2.04 15 5
Fall 7 10 3.63 1.24 2.38 −1.29, 6.06 28 (1.3) 1.54 2 1
Depression 6 25 3.11 3.10 0.00 −3.63, 3.64 42 (2.1) 2.31 7 4

(Continued)
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Table 15.1 (Continued)

Higher term N1 N2–6 ID1 ID2–6 ID1‐ID2–6 99% CI NA (%) IDA RFS ADR

Patient request 6 8 3.11 0.99 2.12 −1.28, 5.51 22 (1.0) 1.21 22 ‐
Pruritus 6 10 3.11 1.24 1.87 −1.55, 5.29 20 (0.8) 1.10 8 1
Tremor 6 2 3.11 0.25 2.86 −0.44, 6.16 11 (0.5) 0.61 5 2

N1 = Total number of reports of each event during the first month of treatment.
N2–6 = Total number of reports of each event during treatment in months 2–6.
ID1 = Incidence density for each event during the first month of treatment (where D1 = 1930).
ID2–6 = Incidence density for each event during treatment months 2–6 (where D2–6 = 8054).
ID1–ID2–6 = Arithmetic difference between ID1 and ID2–6.
99% CI = 99% confidence intervals for ID1–ID2–6.
NA (%) = Total number of reports of each event (% incidence in total cohort) during total treatment period.
IDA = Incidence density for each event for the total treatment period (where DA = 18170).
RFS = Reason for stopping oxcarbazepine (total no. reports = 932 in 698 patients (31.1% of cohort).
ADR = Adverse drug reaction (total no. reports = 158 in 105 patients – 4.7% of cohort).
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 pattern of use is considered continuous; it is 
restricted to events reported during treatment 
(between start date and stop date) and with 
 corresponding denominator of patient‐months 
of treatment. Events associated with starting 
treatment are in bold.

For drugs where pattern of use is intermittent 
and/or short term, such summaries are also 
produced, but there are several differences. 
First, the numerator is based on total incident 
counts irrespective of treatment status (whether 
recorded during or after treatment or whether 
“unknown”) and the denominator takes into 
account the observation period (between start 
date and end of survey date). Second, the com-
parator (reference) period may be restricted. 
Table 15.2 shows a summary of such data from a 
PEM study of a drug (levocetirizine) intended 
for short‐term (<30 days) intermittent use, 
where the second month was considered most 
appropriate as the reference period.

Time to Onset
It is acknowledged that the generalized approach 
to segregation of time periods may not be 
appropriate for all events with respect to their 
most relevant time periods of excess. It is pos-
sible to explore the time taken for an event of 
interest to occur by using time‐to‐event analy-
sis, thus providing an additional tool for signal 
generation purposes. One example is the inci-
dence rate of venous thromboembolism (VTE) 
as reported in the PEM study of strontium [25].

Plotting a hazard function in a fixed cohort 
for events of interest is another useful method 
to determine whether the hazard (instantane-
ous risk) of the event increases or decreases 
with time. A constant hazard over time may be 
consistent with a background (i.e., not caused 
by the drug) event rate, whereas a nonconstant 
hazard over time may be an indicator of a drug–
event relationship. Since it is desirable to under-
stand the shape of the underlying survival 
function, parametric time‐to‐event models can 
estimate the baseline hazard function and the 

instantaneous change in hazard over time, and 
the goodness‐of‐fit can be assessed. An example 
is the examination of hazard rates of neuropsy-
chiatric events as reported in the M‐PEM study 
of varenicline [26].

Reasons for Stopping the Drug
All event monitoring questionnaires ask the 
prescriber to record the reason why the drug 
was stopped, where treatment cessation 
occurred. This is informative because it includes 
possible adverse reactions which the physician 
and/or the patient considered serious or suffi-
ciently troublesome to stop the medication. 
Clinical and nonclinical reasons for stopping a 
drug are presented in two ways: by system‐
organ class by month, and also ranked by total 
count. The ranked reasons for discontinuation 
can be compared with the ranked incidence 
density estimates and this comparison can also 
generate signals. There is usually a good corre-
lation in terms of the most frequently reported 
events (see examples in Tables 15.1 and 15.2).

Outcomes of Pregnancy
All pregnancies reported during event monitor-
ing studies are followed up in order to deter-
mine the outcome in those babies exposed 
in utero to the drugs being monitored. There is 
interest in determining the proportion and 
nature of congenital anomalies in babies born to 
women exposed to newly marketed drugs dur-
ing pregnancy, in particular in the first trimes-
ter. PEM studies have shown that from 831 such 
pregnancies, 557 infants were born, of whom 
14  (2.5%) had congenital anomalies [27]. It is 
important that studying pregnancy outcomes 
continues in order to exclude, to the greatest 
extent possible, teratogenic effects of medicines 
(see Chapter 22).

Drug Utilization
In recent years, the focus on drug utilization has 
become more important in terms of safety, espe-
cially in relation to use in special populations 



Table 15.2 Incidence densities (ID per 1000 patient‐months) for standard PEM study for levocetirizine ranked in order of ID1 for all events during 
observation (between date of starting and end of observation) in the first two months after starting treatment (where IDobsm1 >1).

Higher terma N1 N2 IDobsm1 IDobsm2 IDobsm1/m2 (95% CI) ADR Reason for stoppingb

Condition improved 1470 434 118.90 35.15 3.38 (3.04, 3.77) NA 1896
No further request 640 59 51.77 4.78 10.83 (8.29, 14.40) NA 699
Not effective 460 133 37.21 10.77 3.45 (2.84, 4.22) NA 588
Course completed 160 29 12.94 2.35 5.51 (3.69, 8.49) NA 189
Other drug substituted 62 26 5.02 2.11 2.38 (1.48, 3.92) NA 88
Upper respiratory tract infection 56 25 4.53 2.03 2.24 (1.37, 3.74) 0 4
Drowsiness, sedation 46 4 3.72 0.32 11.48 (4.19, 43.93) 5 43
Headache, migraine 22 9 1.78 0.73 2.44 (1.08, 6.02) 2 6
Hospital referrals no admission 22 11 1.78 0.89 2.00 (0.93, 4.56) 0 10
Noncompliance 21 2 1.70 0.16 10.49 (2.56, 92.24) NA 18
Rash 20 9 1.62 0.73 2.22 (0.97, 5.53) 1 8
Pregnancy 11 2 1.53 0.28 5.49 (1.20, 51.00) NA 5
Urinary tract infection 18 12 1.46 0.97 1.50 (0.68, 3.41) 0 0
Anxiety 17 4 1.38 0.32 4.24 (1.38, 17.34) 0 0
Lower respiratory tract infection 17 21 1.38 1.70 0.81 (0.40, 1.61) 0 0
Pain joint 15 8 1.21 0.65 1.87 (0.75, 5.10) 0 0
Nonformulary product 13 8 1.05 0.65 1.62 (0.62, 4.52) NA 21

a Clinical events associated with starting treatment are highlighted in bold.
b 3732 reasons for stopping during months 1 and 2 of observation, of 5509 (for whole study period).
ADR, events recorded as adverse drug reactions (25 reports [in months 1 and 2 of observation] of 31 [for whole study observation period]); ID, incidence 
densities; IDobsm1, incidence density for each event during observation month 1; IDobsm2, incidence density for each event during observation month 2; 
IDobsm1/m2, relative difference between IDobs1 and IDobs2; N1, total number of first reports of each event during observation in month 1; N2, total number 
of first reports of each event during observation in month 2; NA, not applicable.
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and off‐label use. There is interest in determin-
ing the prevalence of use in such populations, in 
addition to adverse event profiles. For example, 
an M‐PEM study on extended‐release quetia-
pine found that the prevalence of off‐label pre-
scribing in terms of indication and high doses 
was common, as was use in special populations 
such as the very elderly [28].

 Strengths

Representativeness and Size

Event monitoring uses a noninterventional 
cohort design; it does not interfere with the 
decision to prescribe a medication and infor-
mation is collected after the prescribing deci-
sion has been made and implemented. This 
means that in event monitoring, data are col-
lected on patients who have received the study 
drug because the doctor considered it the most 
appropriate treatment for that patient, as in 
everyday real‐world clinical practice the patient 
would have been prescribed the drug regardless 
of whether they were included in the event 
monitoring study. In contrast to clinical trials, 
there are no predefined selection criteria in 
terms of prescribers or patients based on spe-
cific characteristics. These study characteris-
tics make it likely that the event monitoring 
cohort is representative of all patients who have 
started the study drug under similar circum-
stances on a national scale in England. As a 
result, generalizability is ensured, unlike in 
many clinical trials.

In terms of size, event monitoring has been 
shown to be successful in collecting informa-
tion on very large cohorts of patients exposed 
to new treatments in the UK. Cohorts of 
10 000 patients were regularly established 
during original PEM studies and current M‐
PEM and SCEM studies have gathered appro-
priate sample sizes based on the objectives of 
the study.

Variable Direction of Investigation

Event monitoring consists of both prospective 
data collection and retrospective collection 
where required. Patient medical history can be 
studied, in addition to prospective data collec-
tion on specific events or conditions of interest.

Exposure Data

It is important for drug safety that exposure 
windows are appropriately calculated to mini-
mize biased estimates of association (ID differ-
ences) or estimates of effects (ID ratios) where 
internal a priori comparisons are undertaken. 
In M‐PEM, exposure data are derived from 
 dispensed prescriptions, with validation from 
prescribers through confirmation of such data 
on the questionnaires. Considering the large 
proportion of patients who are prescribed a 
medication but do not get the prescription filled 
[29], this is an advantage in that M‐PEM expo-
sure data are more accurate than those derived 
from records of physician‐issued prescriptions 
(which are not always dispensed), as held in 
some pharmacoepidemiologic databases. In 
SCEM studies, exposure data are not based on 
dispensed prescriptions; however, since patients 
are under specialist care in such studies, they 
are likely to be more closely monitored in terms 
of medication use and adherence. Many patients 
will also visit their specialist at frequent inter-
vals, unlike in the primary care setting.

Outcome Data

In event monitoring, the study design collects 
information on events regardless of causality. 
Therefore, event monitoring is able to identify 
signals of adverse reactions or syndromes 
which none of the participating physicians sus-
pect to have been due to an ADR [30]. If the 
physician suspects an event is due to the use of 
a drug, then they can specify this on the ques-
tionnaire. In addition, the nonpassive design 



Event Monitoring in the UK328

prompts the physician to fill in the question-
naire regardless of any events experienced and 
does not rely on them taking the initiative to 
report. This “prompting” effect of event moni-
toring is critical because ADR reporting is 
enhanced in event monitoring compared to the 
passive Yellow Card spontaneous ADR report-
ing system in the UK [31].

Signal Strengthening

Event monitoring can be used to identify 
patients with potential ADRs who can be stud-
ied further. Case series can be used to examine 
clinical characteristics of particular adverse 
events within patients at aggregate level. In 
addition, comparisons within the DSRU data-
base are also possible and can be conducted to 
refine signals [32,33]. These comparisons are 
appropriate because the database is composed 
of new drug user populations with exposure in 
the immediate postmarketing period since 
introduction of each product. It is also possible 
to conduct external comparisons using demo-
graphic data of the population as a whole, such 
as standardized mortality ratio [34]. However, in 
contrast to event monitoring data, some medical 
record databases (such as the Clinical Practice 
Research Datalink or The Health Improvement 
Network, see Chapter 13) have limited data on 
recently introduced products, which precludes 
reliable comparisons being made because of 
small sizes of the population exposed.

Definitive Answers

Event monitoring can also confirm or refute 
drug safety signals. Various approaches can be 
used, such as nesting a case–control study within 
an event monitoring cohort. This method over-
comes some of the disadvantages associated 
with nonnested case–control studies while 
incorporating some of the advantages of a cohort 
study [35]. As a pharmacoepidemiologic tool for 
risk management plans, the design potentially 

offers impressive reductions in costs and efforts 
of data collection and analysis compared with 
the full cohort approach, with relatively minor 
loss in statistical efficiency. Event monitoring 
cohorts provide opportunities to conduct such 
nested case–control studies, for example, for 
patients who develop selected ADRs and 
matched patients who receive the same drug 
without developing ADRs. One example is the 
possible association between the use of an atypi-
cal antipsychotic and extrapyramidal symptoms. 
Other approaches include comparisons between 
event monitoring cohorts, such as comparing 
the risk of drowsiness and sedation between two 
antihistamines [32].

Use of Reference (Contextual) Cohorts

Event monitoring studies can use reference 
( contextual) cohorts when it is considered inap-
propriate to use counterfactual comparative 
cohorts. The objective of such contextual cohorts 
is to examine differences in characteristics 
between patients who receive a new medicine 
and those who are on standard therapy. This is 
undertaken when it is expected that there are 
substantial  differences in the characteristics of 
the two cohorts which will impact on compara-
tive safety and where this cannot be adequately 
addressed by methods usually used in pharma-
coepidemiology to handle such imbalances [36].

Participation in Research

For physicians in the UK, research and aca-
demic medical practice are considered noncore 
activities and therefore receive no payment 
from the NHS. Although GPs have a duty of 
care to report ADRs and cooperate with 
requests for information from organizations 
monitoring public health, those GPs who par-
ticipate in event monitoring studies do so on 
behalf of research and not for monetary inter-
est – the remuneration received for completion 
of forms barely covers administration costs for 
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M‐PEM, while for SCEM studies remuneration 
is paid to the NHS trust and not to the physi-
cian. This is also the case for other pharma-
covigilance activities such as the Yellow Card 
spontaneous reporting scheme, where no 
money is received for participation.

Since the early 1980s, close contact has been 
fostered between the research staff in the DSRU 
and the reporting doctors; focus groups and 
advisory committees are used to ensure maxi-
mum response and maintain good relationships 
with physicians. This facilitates the gathering of 
supplementary information on important 
events, pregnancies, deaths, etc. (see Table 15.1 
and Box  15.1), which allows for the maximal 
clinical understanding of biases, the natural his-
tory of ADRs, and other important risk factors 
(which could be potential confounders for pre-
specified internal comparisons).

 Limitations

Single‐Group Cohort Design

As highlighted earlier, event monitoring uses a 
simple single‐group cohort design where sub-
jects have been assembled based on a common 
exposure (the particular medication under 
 surveillance). Compared to the “classic” cohort 
design with an explicit comparator, it is more 
efficient in terms of resources. In event 
 monitoring studies with absence of data on an 
unexposed comparator, calculating measures 
of effect (relative risks) is restricted to internal 
comparisons between subgroups defined by 
particular characteristics, or external compar-
isons to carefully selected data sources. 
Moreover, as stated above, in recent years, the 
DSRU has modified the event monitoring 
design to include a contextual comparator 
within certain studies; for example, a warfarin 
cohort was also recruited for the Rivaroxaban 
Observational Safety Evaluation (ROSE) 
SCEM study. This comparator was chosen to 
inform on the adoption of rivaroxaban into 

clinical practice and variation in determinants 
of treatment choices though it was not used to 
calculate  differences in risk between treat-
ment groups.

Bias

Validity in observational studies is an impor-
tant consideration and selection bias can be 
introduced if a nonrepresentative sample of 
the  population is recruited [37]. Such error 
cannot be adjusted for. How an event moni-
toring cohort differs to all other patients with 
the same indication receiving other healthcare 
in the UK cannot be assessed since, as men-
tioned previously, event monitoring does not 
always monitor an unexposed cohort concur-
rently. Channeling of new drugs can also 
introduce selection bias through preferential 
prescribing. Patterns of adoption of a new 
drug cannot be predicted, and while it may be 
examined in event monitoring, it cannot 
be controlled.

Nonresponse bias is another form of selection 
bias which is possible since not all M‐PEM ques-
tionnaires are returned. The response rates for 
M‐PEM studies are usually over 50%, which is 
comparable to response rates reported elsewhere 
for GP postal surveys [38] and higher than the 
reporting rates of suspected ADRs in the Yellow 
Card scheme [31,39]. In M‐PEM, it is not known 
whether the prescribers who do not respond 
(and their patients) differ from those prescribers 
(and their patients) who do participate.

Underreporting, including underreporting of 
serious and fatal adverse events, is possible in 
event monitoring since it depends on reporting 
by physicians. Information bias in terms of mis-
classification of outcome and exposure is also 
possible since the data depend on the accuracy 
and thoroughness of the physicians in diagno-
sis, record keeping, and reporting.

In event monitoring, exposure misclassifica-
tion may be introduced through inaccurate 
 calculation of exposure (time on treatment). 
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It  is important because inappropriately calcu-
lated exposure windows can result in a biased 
estimate of effect, particularly if unnecessarily 
long because relative differences get diluted as 
the time window widens and a potential signal 
may be lost. In M‐PEM, exposure is calculated 
from dispensed prescriptions, which means 
that exposure data used for M‐PEM are more 
accurate than exposure data based on physi-
cian‐issued prescriptions alone. In SCEM, 
exposure data are based on the prescription 
date from specialist care, which is likely to be 
closely  monitored by the specialist and in some 
cases event administered within a hospital 
 setting. Nevertheless, patients may not take all 
the  dispensed medication. In this regard, the 
misclassification of exposure is likely to be non-
differential, being the same across the new drug 
cohorts, and the effect estimate (ID rate differ-
ence/ratio) biased towards the null. As for 
observational studies in general, assumptions 
are made regarding compliance and for drugs 
used for chronic conditions, the assumption is 
made that individual patients take the medica-
tion up to the end of treatment (or stop date) 
unless otherwise indicated. However, for drugs 
taken over long periods of time, repeat dispens-
ing is not an absolute proof of good compliance 
but is a usually a good marker of compliance.

Confounding

Event monitoring is affected by a limitation 
common to all observational studies  –  the 
 inability to control for factors that might dif-
fer  between groups being compared [37]. 
Hypotheses generated by event monitoring 
may be further explored using traditional 
hypothesis‐testing techniques, such as case–
control methods. However, it is important to 
acknowledge that the range of data that can be 
collected on important co‐variates for all 
 possible outcomes may be limited. In such 
cases, when examining relationships between 
exposure and outcomes within a case series, or 

when conducting comparisons between sub-
group populations within a drug or between 
drugs to strengthen or refine signals, data may 
be incomplete or missing and residual con-
founding is likely. Nevertheless, M‐PEM and 
SCEM provide considerable opportunities to 
enhance collection of supplementary data on 
important risk factors.

Limited Statistical Power  
and Sample Size

It is possible to calculate power and sample size 
for a single cohort study, provided one has a 
hypothesis about the effect size and the back-
ground rate involved. However, the detection of 
rare ADRs is not always possible, even with 
cohorts of 10 000–15 000 patients. Due consid-
eration should also be given to the nature of 
event monitoring statistical analysis which 
involves running routine multiple comparisons 
whereby event ID difference or ratio statistics 
are generated to examine the null hypothesis 
that event rates are constant between two time 
periods. A minimum 95% confidence interval 
has routinely been used in event monitoring to 
aid decision making, but in terms of signal gen-
eration for safety surveillance, there is still the 
chance of a type II error, that is, of missing a dif-
ference that really is there.

 Particular Applications

Signal Strengthening

Signal Strengthening through 
Quantitative Evaluation
Once a signal has been recognized, supplemen-
tary analysis is required to further characterize 
important attributes. As highlighted previously, 
PEM provides the opportunity for further 
 collection of detailed information on reported 
events and allows systematic review of individ-
ual case reports and aggregate data.
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One important example of follow‐up explora-
tion in relation to a long‐latency adverse event 
concerned visual field defects in patients receiv-
ing long‐term treatment with vigabatrin [21]. 
The initial PEM study showed three cases of 
bilateral, irreversible peripheral field defects, 
whereas no similar reports occurred with other 
antiepileptic drugs or in any of the other 
drugs already monitored by PEM. A follow‐up 
 exploration with a repeat questionnaire, sent to 
the doctors whose patients had received vigaba-
trin for over six months, showed that the 
 incidence of this serious event was much higher 
and that many of the relevant patients had 
objective evidence of visual field defects. 
Another example of signal follow‐up is given in 
Case study 15.1 in relation to gynecomastia and 
finasteride [23].

Signal Strengthening and Hypothesis Testing
Comparison of Event Rates and Risks
Comparisons can be used to give estimates of 
relative measures of associations (e.g., relative 
risk) and are often associated with hypothesis 
testing. However, such pharmacoepidemiologic 
methods can be used to explore or strengthen 
signals as an extension of postmarketing safety 
surveillance. In event monitoring, a variety of 
targeted comparisons of event rates and risks 
occurring between different patient populations 
are conducted to explore apparent associations. 
These can be segregated into two sorts: using 
internal comparators such as subsets of patients 
within the same drug cohort or between drugs 
within the same therapeutic class; or using an 
external comparator. The research question 
being asked (usually) determines which phar-
macoepidemiologic design for these compari-
sons should be used and the most appropriate 
statistical analyses required.

Various methods are applied to enable nested 
internal comparisons between subgroups 
defined by particular characteristics. Such com-
parisons can be conducted using event moni-
toring data, including simple stratification, 

“before and after” matched analyses, multivari-
ate modeling, and standardization.

Simple stratification
Through simple stratification, event profiles in 
subgroups of patients can be examined, and 
rates of preselected events compared between 
these subgroups by calculating crude relative 
risks or rate ratios. The assumption is that all 
other characteristics are constant because the 
subgroups are nested within the new user 
cohort, although residual confounding is likely 
(as discussed above).

One example, for which the aim was to look 
for evidence of channeling a new drug to prob-
lem patients, was to examine and compare the 
frequency of gastrointestinal events reported in 
a PEM study of the COX‐2 selective inhibitor 
celecoxib in those patients with gastrointestinal 
(GI) risk factors (past history of GI conditions, 
gastroirritant drugs, use of concomitant gastro-
protective agents) to those without [40]. In this 
example the null hypothesis was that risk was 
the same in both subgroups. In this study, sig-
nificantly higher rates of GI events were 
observed in patients with risk factors, which 
supports the possibility of channeling bias.

In another example, a M‐PEM study exam-
ined the frequency of major and minor depres-
sive episodes with rimonabant (an obesity 
treatment) after starting treatment. This was a 
safety concern identified at the time of market-
ing approval and so patients with a previous 
 history of psychiatric illness were examined 
separately to those without a previous history. 
In patients without a previous history of psychi-
atric illness, there were more major and minor 
depressive episodes in the six months after 
starting treatment compared with the six 
months before starting treatment with rimona-
bant (relative risk [RR] 1.7; 95% CI 1.2–2.3 and 
RR 1.33; 95% CI 1.20–1.48, respectively). The 
same was not found for those who had a previ-
ous history of psychiatric illness [41]. Marketing 
authorization for rimonabant was withdrawn in 
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October 2008, mainly because the psychiatric 
adverse effects could not be addressed by fur-
ther risk minimization [41].

Before and After Studies
”Before and after” studies compare the rate of 
particular outcomes during a defined period of 
exposure (or observation) after starting the 
study drug with those rates in the same individ-
uals during a defined period of observation 
before starting, using a matched pair analysis. 
The null hypothesis is that event rates are the 
same before and after starting treatment.

One example was the examination of rates of 
respiratory events with the introduction of a 
new chlorofluorocarbon (CFC)‐free formula-
tion of an anticholinergic (ipratropium) 
metered‐dose inhaler (MDI) in populations 
who were “switchers” from the original MDI 
and those naïve to ipratropium treatment [42]. 
The analyses suggested that characteristics of 
these two subpopulations differed such that 
naïve patients were more likely to be children, 
have an indication of asthma, and have milder 
disease severity, while switchers were more 
likely to be adults, have an indication of COPD, 
and have more severe disease. Such differences 
have an important impact on ongoing evalua-
tion of benefit/risk balance of the new formula-
tion. Common respiratory events occurred at 
higher rates after starting treatment than 
before for switchers, for example lower respira-
tory tract infection (LRTI) (RR 1.45; 99% CI 
1.17–1.81) and worsening asthma (RR 1.58; 99% 
CI 1.00–2.51). Of these events, only LRTI was 
significant for naïve patients (RR 1.42; 99% CI 
1.04–1.95).

Modeling
Multivariable modeling examines the potential 
effect of one variable on the outcome of interest 
while controlling for many other variables. An 
example of multivariable conditional logistic 
regression modeling was a within‐PEM study 
comparison to examine the risk of pioglitazone 

treatment combinations (with insulin or other 
antidiabetic agents) on risk of hypoglycemia 
[43]. The null hypothesis was that the risk of this 
outcome was the same regardless of treatment. 
Pioglitazone may be used alone or in combina-
tion with a sulfonylurea, metformin, or insulin 
as an adjunct to diet and exercise for the 
 management of type 2 (noninsulin‐dependent) 
diabetes mellitus (NIDDM). The summary of 
product characteristics states that hypoglyce-
mia is common when pioglitazone is adminis-
trated in combination with insulin and very 
common during the triple combination treat-
ment with metformin and sulfonylurea [43]. 
Patients taking combination therapy with 
 sulfonylurea or insulin were estimated to have 
approximately three and four times the hazard 
of having an event compared with those who 
were not taking these adjunctive therapies 
( hazard ratio [HR] 3.11; 95% CI 1.64–5.88; HR 
4.15; 95% CI 1.74–9.91, respectively). Patients 
treated with adjunctive metformin were 25% 
less likely to experience hypoglycemia than 
those who did not take concomitant metformin 
(HR 0.75; 95% CI 0.44–1.27). This suggests that 
patients taking pioglitazone with insulin or 
 sulfonylurea had higher risks than those on 
pioglitazone monotherapy [43].

An example of the application of Poisson 
regression modeling (which takes different 
exposure durations into account) was to exam-
ine whether there was a difference in incidence 
rates for thromboembolic (TE; cardiovascular, 
cerebrovascular, and peripheral venous) events 
reported for patients dispensed rofecoxib and 
meloxicam, because of the unexpected associa-
tion shown in a clinical trial [44]. The null 
hypothesis was that event rates were the same 
regardless of drug. This study reported a rela-
tive increase in the rate of cerebrovascular TE 
events (RR 1.68; 95%CI 1.15–2.46) and a relative 
reduction in peripheral venous thrombotic 
events (RR 0.29; 95% CI 0.11–0.78) for rofecoxib 
compared to meloxicam, after adjusting for age 
and sex. There was no difference in the rate of 
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cardiovascular thrombotic events. This particu-
lar example shows how the DSRU event moni-
toring database provides a resource to evaluate 
signals and hypotheses generated by other 
sources. Another example is the comparison of 
mortality and rates of cardiac arrhythmias with 
atypical antipsychotic drugs [45].

Standardization
Where appropriate, comparisons are made 
between patients identified within an event 
monitoring study and an external reference 
group, if a suitable internal reference cohort 
cannot be found and the research question 
requires the result to be contextual. For instance, 
calculation of standardized mortality ratio 
(SMR) is an indirect method of adjusting a mor-
tality rate to that the observed death rate can be 
compared to that expected if the study cohort 
has the same characteristics of the reference 
cohort. Thus, the SMR is the ratio of observed 
deaths to expected deaths. Hence through using 
this indirect method of standardization, the 
expected deaths in an event monitoring 
cohort can be calculated using information on 
the  general population age‐specific rates.

Following concerns about cardiovascular 
safety with sildenafil, the mortality from 
ischemic heart disease in users of sildenafil in a 
PEM study was compared with external epide-
miologic data for men in England [34]. The 
SMR for deaths reported to have been caused by 
ischemic heart disease (IHD) in the sildenafil 
PEM cohort was 31.41 (95% CI 18.29–50.29, 
based on Poisson error factors), indicating that 
the point estimate mortality in the cohort was 
68.6% lower than that for males in England in 
1998. However, the 95% CI is wide and there is 
no evidence to suggest a higher incidence of 
fatal IHD among men in England taking silde-
nafil. Similarly, death from ischemic heart 
 disease in the bupropion PEM (when used for 
smoking cessation) was compared with external 
data and showed no difference in the SMR [46]. 
Obviously, there is higher potential for bias 

when using external comparators than compari-
sons undertaken between event monitoring 
studies, principally due to differences in study 
design and data collection methods; results of 
external comparisons must therefore be inter-
preted very carefully.

Automated Signal Generation
The DSRU has previously explored the use of 
data‐mining disproportionality methods that 
are commonly used in pharmacovigilance (see 
Chapters 10 and 27) as a possible additional 
quantitative tool in event monitoring for signal 
generation, because of the large number of 
drug–event combinations held in the DSRU 
database. Feasibility studies have employed 
proportional reporting ratios (PRRs) [47] to 
quantify the ratio of observed‐to‐expected 
PEM event reports to explore historical sig-
nals  –  for example, Stevens–Johnson syn-
drome with the antiepileptic drug lamotrigine 
[48,49]. An extension to this method which 
integrates  available PEM data on exposure to 
calculate the incidence rate ratio (IRR) has also 
been examined and applied to investigating 
new signals such as exacerbation of colitis with 
rofecoxib [50].

There are a number of methodologic issues 
which may influence whether a signal is gener-
ated; these include selection of comparator(s), 
signal threshold, variation in duration of study 
observation period, handling small event 
counts, and the level of dictionary terms used, 
such as higher‐ or lower‐level terms. However, 
with refinement, automated signal generation 
can be a useful tool to support signal generation 
for event monitoring through other quantitative 
methods as described above.

Drug Utilization

Drug utilization research (see Chapter  18) is 
an essential part of pharmacoepidemiology, as 
it describes the extent, nature, and determi-
nants of drug exposure at the patient level. 
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Data from event monitoring studies can 
inform about  prescriber adoption of new 
drugs. The demographic and clinical charac-
teristics of new users can be described and 
examined in relation to signals of off‐label use, 
for example, indications, dose, and conditions 
or other  factors that are contraindicated or 
special warnings for use.

An example is the PEM study of testosterone 
patch indicated for hypoactive sexual desire 
disorder in surgically menopausal women 
receiving concomitant estrogen therapy. Given 
the narrow prescribing indication, only 20.9% 
of the cohort were being prescribed the patch 
according to the manufacturer’s recommenda-
tions [51].

In addition, PEM studies can examine aspects 
of adherence to prescribing guidelines. For 
example, in both PEM studies of rofecoxib and 
celecoxib, not only were high proportions of 
new users recorded as NSAID naïve (approxi-
mately 50%), but also a significant proportion 
(38% and 46%, respectively) had no prior history 
of gastrointestinal conditions (i.e., were at low 
risk) [40,52]. These observations were discord-
ant with national NSAID prescribing practice 
during the time these drugs were first marketed, 
and agree with findings from elsewhere [53]. In 
addition, in the M‐PEM study of extended‐
release quetiapine, off‐label prescribing in terms 
of indication and high doses was common, as 
was use in special populations such as the very 
elderly [28].

Monitoring Drug Safety in Children

The safety of medication use in children is of 
major public and regulatory interest. However, 
there is a significant lack of safety data when a 
new drug is launched because of the limited 
number of clinical trials in this population. 
Furthermore, postmarketing pharmacovigi-
lance systems for this population face signifi-
cant challenges, particularly in regard to data 
capture of “off‐label” use. European regulations 

have been issued that oblige pharmaceutical 
companies to submit a Pediatric Investigation 
Plan (PIP) for all new compounds, indications, 
and formulations. Pediatric pharmacovigilance 
activities have to be included in the benefit/risk 
management plan (see Chapter  24) and other 
pharmacovigilance activities. Therefore, phar-
macovigilance tools may need to be adapted 
to  examine specific issues associated with this 
 special population.

Given that event monitoring studies capture 
drug usage under “real‐life” conditions in gen-
eral practice, including off‐label prescribing to 
the pediatric population, it is possible to explore 
differences in risk profiles between children and 
adults using these studies. An example is a study 
which compared the adverse event profiles of 
children and adults taking lamotrigine, using 
modified signal detection methods [54]. Data 
were stratified by age and IDs were examined 
between two time periods after starting treat-
ment (month 1 and months 2–6 combined). 
Proportional reporting ratios (PRR) and inci-
dence rate ratios compared the risk of adverse 
events between adults (n=7379) and children 
(n=2457). Rash (PRR 1.2) and Stevens–Johnson 
syndrome (PRR 4.5) were more commonly 
reported in children, and confusion more fre-
quently in adults (PRR 6.3). In children, 33% of 
events suspected to be ADRs (15/46) were 
reported to the regulatory authority compared 
with 44% (56/128 reports) in adults. In another 
PEM study of the oral iron chelating agent 
 deferasirox, reported events were stratified by 
pediatric age groups relevant to the licensed 
indications for use, allowing examination of the 
safety profile within these specific groups [55].

Quantifying ADR Reporting

The characteristics of ADR reporting have been 
examined previously within the DSRU database. 
Two studies conducted on different PEM stud-
ies and over different periods of time compared 
events that were considered as ADRs by doctors 
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reported in PEM, with spontaneous reports 
sent by the same doctors to the regulatory 
authority [31,39]. The first study showed that 
275 of 3045 suspected ADRs reported on the 
questionnaires of 10 PEM studies (9%) (95% CI 
8.00–10.00) were spontaneously reported to the 
UK regulatory authority [39]. The estimate was 
similar in the second study conducted in 2001, 
based on 15 other completed PEM studies. In 
that study, 376 of 4211 ADRs (9%) (95% CI 
8–9.8) reported on the PEM questionnaires 
were reported on Yellow Cards to the CSM [49]. 
This represents an underreporting rate of 91% 
in both studies. It is of interest that a higher pro-
portion of serious than nonserious reactions 
were reported to the regulatory authority by 
doctors in both studies (53.0% vs 8.4% and 22.8% 
vs 8.3%, respectively), which suggests that doc-
tors use the spontaneous adverse reaction 
reporting system more energetically when 
reporting those serious reactions that concern 
them most.

It is possible to use event monitoring to 
study general patterns of ADRs. Our studies in 
this area have also shown that, in general prac-
tice in England, suspected ADRs to newly 
marketed drugs are recorded more often in 
adults aged between 30 and 59 years and are 
60% more common in women than in men 
[56]. Possible explanations for these observa-
tions include increased frequency of consult-
ing rates for women compared to men, 
pharmacologic  differences between men and 
women in distribution of medication in the 
body, and increased rates of recording of clini-
cal events with age. Another important factor 
is prescriber type  –  whether they routinely 
participate in postmarketing studies or not.

Supporting Pharmacovigilance Risk 
Management Plans

The management of risk of medicines requires 
identification, measurement, and assessment of 
risk, followed by benefit/risk evaluation, then 

taking actions to eliminate or reduce the risk, 
followed by methods to monitor that the actions 
taken achieve their objectives. Event monitor-
ing not only contributes to the identification 
and measurement of risks of medicines but, 
with some additions, can examine how the risks 
of medicines are being managed in real‐world 
clinical settings.

An example of such a study was conducted to 
monitor the introduction of carvedilol for the 
treatment of cardiac failure [57]. The product 
(a combined alpha‐ and beta‐adrenergic blocker) 
has been used for the treatment of angina and 
hypertension for some time, but there was con-
cern about its appropriate use for cardiac failure 
in the community. The aim of the M‐PEM study 
was to monitor how the product was being man-
aged in the community; for example, what clinical 
investigations were undertaken prior to starting 
the drug, who supervised the dose titration (GP 
or specialist), was the drug given to patients with 
the appropriate severity of heart failure, etc. The 
design included sending an eligibility question-
naire followed by up to three detailed question-
naires for a period of up to two years. Overall, 
regulatory guidelines for the use and risk manage-
ment of carvedilol were mostly adhered to [55].

Since risk management of medicines became 
a regulatory requirement in Europe in 2005, a 
number of event monitoring studies have been 
undertaken to address specific questions related 
to detailed examination of particular adverse 
events and studying drug utilization patterns 
(Table 15.3). Such studies support the construc-
tion of risk management plans by providing 
opportunities for a number of additional 
research applications which can be used to gen-
erate signals of potential ADRs and to further 
evaluate safety concerns identified by other 
pharmacovigilance methods or arising from 
regulatory concerns. Their customized sample 
size is advantageous in terms of study conduct, 
limiting costs and providing timely information 
to the dynamic risk management process. Thus, 
they should be considered a valuable tool when 



Table 15.3 Design and applications of event monitoring methods.

Type Method Applications Examples of completed or ongoing M‐PEM studies

Special 
populations

Patients identified 
according to 
prespecified criteria 
(age, sex, indication) 
through use of 
eligibility 
questionnaire

 ● New indications
 ● License extensions
 ● Reclassifications
 ● New formulations
 ● Switching
 ● Regulatory intervention
 ● Hospital initiations
 ● Health outcomes 

management

Carvedilol [57] – Licensed for angina and hypertension with extension in 1998 to 
treat mild to moderate chronic heart failure. M‐PEM monitored compliance with 
UK regulatory authority’s request for monitoring the use and safety of carvedilol 
in heart failure in clinical practice, and assessed clinical risk management of 
patients within the new indication
Travoprost – Eye drops initially approved for second‐line use in the treatment 
of ocular hypertension in open‐angle glaucoma; license extension to first‐line 
use was granted in 2003. M‐PEM monitored long‐term development of 
discoloration of the iris
CFC‐free MDIs (Flixotide Evohaler® and Seretide Evohaler®) [60,61] – EMA 
produced guidelines for the conduct of postmarketing surveillance studies to 
assess the introduction of CFC‐free inhalers. M‐PEMs collected data 3 months 
before and after exposure to allow event comparison before and after starting

Drug 
utilization

Collection of data 
on extent, nature, 
and determinants 
of drug use and 
prescribing over 
time

 ● Adherence to 
prescribing 
recommendations/ 
clinical guidelines

 ● Exploration of  
off‐label use

 ● Characterization of 
real‐life populations

Atomoxetine [62] –Licensed in the UK in May 2004 for the treatment of 
attention‐deficit/hyperactivity disorder in children (6+ years) and adolescents. 
M‐PEM monitored drug utilization with targeted data capture on psychiatric 
events, convulsions, abnormal liver function, and selected cardiovascular events
Ivabradine – Licensed in the UK in 2006; indicated for the treatment of chronic 
stable angina pectoris in patients with normal sinus rhythm, with a 
contraindication or intolerance for beta‐blockers. M‐PEM investigated its use in 
relation to diseases/conditions that are contraindicated or warnings for use

Targeted 
event 
surveillance

Collection of data 
on relevant risk 
factors

 ● Hypothesis 
strengthening/testing

Quetiapine extended‐release formulation [28] – First marketed in the UK in 
September 2008; indicated for the treatment of schizophrenia and manic episodes 
associated with bipolar disorder with license extension for add‐on therapy for 
major depressive disorder. M‐PEM included prospective nested matched 
case–control study to explore relationship between dose and events of 
somnolence and EPS. SCEM study examined safety and use in the specialist care 
setting
Rivaroxaban – First marketed in the UK in December 2011 for the new indication 
of prevention of stroke and systemic embolism in adult patients with nonvalvular 
atrial fibrillation and the treatment of deep vein thrombosis (DVT) and 
pulmonary embolism (PE), and prevention of recurrent DVT and PE in adults. 
Complementary M‐PEM and SCEM studies conducted to examine safety in both 
the primary care setting and the specialist care setting

CFC, chlorofluorocarbon; MDI, metered‐dose inhaler.
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developing a risk management plan for the 
 evaluation of the safety of a new medicine.

The DSRU is registered within the European 
Network of Centres for Pharmacoepidemiology 
and Pharmacovigilance (ENCePP) Database of 
Research resources, which serves as a central 
resource for both researchers and study 
 sponsors seeking to identify organizations and 
datasets for conducting specific pharmacoepi-
demiologic and pharmacovigilance studies in 
Europe. The protocols for many of the individ-
ual studies conducted by the DSRU are also 
 registered with the ENCePP.

 The Future

In the future, event monitoring aims to utilize 
improvements in information technology, by 
collecting data electronically through tools such 
as online surveys. Additionally, plans are under 
way to complement the information obtained 
through event monitoring studies with data 
from across Europe, through collaborative 
 networks spanning multiple countries.

Electronic Data Capture

Historically, all event monitoring studies at the 
DSRU have captured data through paper sur-
veys; however, advances in information technol-
ogy now allow data capture through a variety of 
methods, such as online surveys, text messag-
ing, mobile applications, and email.

Several recent studies at the DSRU have tested 
these methods; a pilot study on the safety of the 
intranasal quadrivalent live attenuated influ-
enza vaccine (QLAIV) was conducted. The 
 primary objective of the study was to estimate 
the crude incidence rate of adverse events of 
interest (AEIs) following vaccination with the 
nasal QLAIV early in the 2014–2015 influenza 
season in children and adolescents in England. 
Participant outcomes, validated by a healthcare 
professional (general practitioner) where appro-

priate, were captured through questionnaires 
sent by the participant’s method of choice: 
 surface mail, telephone or web survey with 
email reminders. In total, 53.8% of those who 
consented to participate chose to complete 
questionnaires online [58]. The results of this 
pilot study indicate that offering electronic data 
capture is important in new studies and may 
help to improve response rate.

Another study examined the feasibility of rap-
idly monitoring safety with the new swine flu vac-
cines in the UK. Email and text messaging were 
two forms of data capture offered in this study. 
The methodology and use of modern technolo-
gies to collect safety data from large numbers of 
patients were considered successful and indicated 
that these could be used again for future studies 
[59] The questionnaire format of event monitor-
ing studies is highly compatible with electronic 
data capture and the success of previous studies 
utilizing these techniques indicates that these are 
appropriate for the future of event monitoring.

Multicountry Network Studies

The 2012 EU pharmacovigilance legislation 
made it necessary in some cases to conduct a 
postauthorization safety study (PASS) in several 
European countries. The EMA’s pharmacovigi-
lance committee, PRAC, and Member State 
rapporteurs expect some risk management and 
risk minimization studies to be conducted in 
such a way. The DSRU has extensive experience 
designing and implementing event monitoring 
studies in the UK, but can also work as the 
 coordinating center for PASS studies in a 
 network of several European countries.

The “network of studies” is established by ini-
tially identifying research units in multiple 
European countries that have data sources 
 capable of answering the research question and 
that can work together. The analysis of the 
 network studies depends on the nature of the 
study and the expected results. Depending on 
the characteristics of the data and their analysis, 
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a metaanalysis or pooling of the results is under-
taken. The advantages of these European net-
work studies are many and include conducting 
PASS studies in several EU countries with their 
different healthcare systems, increasing the 
sample size and providing assurance that risk 
management and risk minimization are working 
in a number of member states. Such EU net-
work studies provide a way forward to integrat-
ing pharmacovigilance across the EU, while 
complementing the information provided from 
event monitoring studies within the UK.

Conclusion

Event monitoring contributes to the better 
understanding of medicines safety. Both sig-
nals generated by event monitoring itself and 
those generated in other systems and studied 
further by event monitoring have been useful 
to inform the debates on the safety of medi-
cines, including supporting public health and 
regulatory decisions.

Like all scientific approaches, event monitor-
ing is evolving, aiming to reduce its weaknesses 
and enhance its strengths. The most significant 
development of event monitoring in the last 
few years has been the introduction of M‐PEM 
and SCEM studies which obtain more informa-
tion about background history and baseline 

details of clinical information as well as more 
details about specific events. M‐PEM and 
SCEM also provide opportunities for compari-
sons of event rates of different drugs. New 
methodologic modifications and additions 
include more effective utilization of informa-
tion technology, as well as collaborative studies 
across multiple countries.

Pharmacovigilance and pharmacoepidemiology 
are emerging and exciting disciplines with evolv-
ing study methods. Event monitoring continues to 
contribute to the progress of these important sci-
entific and public health disciplines.
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 Introduction

Primary data collection refers to data that are 
collected specifically for a given research 
study or program, while secondary data are 
data that were collected to meet needs other 
than the research for which they are being 
used. Primary data collection can be used in 
all types of pharmacoepidemiologic study 
designs, both interventional and noninterven
tional, cohort, and case–control studies, as 
well as patient registries, which are conceptu
ally a data collection structure for disease‐ or 
product‐related studies, and in practice may 
closely resemble observational cohort study 
designs. These studies generally address effec
tiveness and safety of various medical treat
ments, and also are used to characterize 
diseases including progression over time.

Research Questions That Require 
Primary Data

The nature of the research question(s) and 
accompanying study design determine the need 
for collection of primary data from clinicians, 
patients, and/or others to address the study’s 

aims, and are generally weighed against the 
 sufficiency of availability of the required infor
mation in existing data sources (see Chapter 17). 
Some studies may combine existing data with 
limited supplementary primary data collection 
in order to collect critical aspects of the patient 
or healthcare provider experience; in those 
 situations, accurate linkage is required between 
primary data collection and existing data 
(see  section on “Hybrid or Enriched Designs” 
later in this chapter).

Research questions that may require primary 
data include the following.

Designs Involving Randomization
Pragmatic and explanatory randomized clinical 
trial designs (see Chapter 32) generally necessi
tate at least minimal site and/or patient contact 
for screening to determine eligibility and con
sent to participate in the trial. Pragmatic rand
omized trials are particularly useful for studying 
products that may not be widely used, either 
because they are newly approved or because 
they are not covered by health insurance plans 
or their costs are only covered to a small extent. 
Assignment of treatment through a randomiza
tion schedule assures that the  product will be 
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used in the  target population of interest, and in 
the doses, sequence, and/or combinations of 
interest. Treatment may or may not be blinded, 
depending on whether the outcome can be 
measured objectively. Blinding (or masking) 
treatment is particularly important for out
comes that may be heavily influenced by the 
patient’s or clinician’s estimation of the benefit 
of the study treatment [1]. Placebos are used in 
drug development but in pragmatic randomized 
trials (see Chapter  26), the comparators are 
more frequently either a single product or what
ever is being used in the locale of interest as 
treatment for the condition of interest, often 
called the “standard of care.”

While randomized studies frequently involve 
extensive primary data collection to meet the 
trial objectives, these considerations overlap 
with those of observational designs and will be 
addressed further in that context.

Endpoint Assessment/Adjudication
Studies may require collection of detailed pri
mary data for endpoint assessment and/or for 
endpoint adjudication. Collection of primary 
data for endpoint assessment becomes impor
tant when study endpoints are not consistently 
recorded in available medical records systems, 
or are not recorded with the reliability, timing or 
frequency needed to meet study aims. 
Additional primary data may also be collected 
to validate or confirm endpoints collected 
through secondary data or patient self‐reports.

Endpoint validation can be particularly 
important for studies that use the patient as the 
primary reporter, since patients report as 
 consumers, and clinical validation may be 
needed to confirm the endpoint of interest. 
For  example, in the European PROTECT 
(Pharmacoepidemiological Research on 
Outcomes of Therapeutics) Consortium, 
funded by the Innovative Medicines Initiative, 
data were collected directly from pregnant 
women recruited online from the UK, Denmark, 
The Netherlands, and Poland [2]. Researchers 

learned that women could accurately report 
serious birth defects, but there were many 
reports of potential abnormalities that were 
 difficult to classify without more clinical infor
mation [3].

Some observational as well as interventional 
studies, especially those designed to meet 
 postmarketing requirements with safety or 
effectiveness endpoints that require an addi
tional level of rigor, may include a full or modi
fied approach to clinical endpoint review or 
adjudication by a central committee over and 
above the reporting by individual study sites. 
Reasons for this additional adjudication include 
concerns regarding investigator bias, if they 
hold strong opinions as to the benefit or harm 
associated with a treatment under study, the 
need to apply consistent standard definitions 
given variability in diagnostic criteria in usual 
practice, and lack of detail or inconsistent use of 
standard coding practices in accessible second
ary data sources [4].

Clinical Assessments Not Consistently 
Captured in Secondary Data
Even as the collection of medical data from 
 routine care is increasingly recorded and avail
able from electronic as well as paper medical 
records, substantial variability in performing 
assessments on the part of healthcare providers 
according to individual and local practice, mag
nified by patients’ variability in coming in for 
recommended routine visits, limits the extent to 
which clinical data from secondary sources can 
be used to address some research questions. 
See  section on “Clinician‐ or Site‐Reported 
Outcomes” later in this chapter.

Commonly, prospective studies, including 
planned analysis of laboratory data or imaging 
studies over time, may incorporate primary data 
collection to ensure complete collection of 
assessments and that timing of assessments is 
aligned with the study follow‐up period. 
Additionally, use of a central lab to reduce 
 variability in laboratory measures may be 
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 considered to further increase the validity 
of  study results. The PROVALID study 
(PROspective cohort study in patients with type 
2 diabetes mellitus for VALIDation of biomark
ers), launched in five EU countries (Austria, 
Hungary, The Netherlands, Poland, and 
Scotland), will obtain laboratory measurements 
on 4000 enrolled patients with type 2 diabetes 
treated in the primary care setting to examine 
the impact of medication and predict the  clinical 
course of disease, including renal and cardio
vascular events. PROVALID requires collection 
of a minimum set of clinical data parameters, 
with the option to collect many additional labo
ratory and medical history  characteristics on 
enrolled patients [5].

Characterization of Patient‐Reported 
Outcomes Not Captured in Secondary Data
It is often important to evaluate the burden of 
disease on patients and how that burden is 
affected by various treatments. For example, 
the symptom burden on work‐related abilities 
was evaluated in patients being treated for 
locally recurrent or metastatic breast cancer. 
Information on the ability to perform work was 
ascertained directly from patients [6]. More 
information on patient engagement and  
direct‐to‐patient designs can be found in an 
 electronic book on 21st Century Patient 
Registries [7] and in the section on “Patient‐
Reported Outcomes and Other Patient‐
Reported Measures” later in this chapter.

Studies of Rare Populations
When it is necessary to assemble as large and 
representative a sample as possible from a rare 
population, one or more existing data sources 
may not capture enough of the patient popula
tion of interest to address study aims.

Rare disease registries and pregnancy expo
sure registries commonly face the challenge of a 
small number of patients with the condition or 
exposure of interest, distributed over many 
countries, for which no single existing data 

source likely includes enough patients to address 
research aims.

The lysosomal storage disorders (LSDs) are 
a group of genetic conditions characterized 
by enzyme deficiencies that leave cells unable 
to clear waste products, which accumulate 
with a range of harmful physical effects if not 
successfully treated. A number of global reg
istries developed to study the natural history, 
treatment patterns, and effectiveness of exist
ing treatments for LSDs, including Fabry, 
Gaucher, hereditary angioedema, mucopoly
saccharidosis I (MPS 1) and 2 (MPS 2, Hunter 
syndrome), and Pompe disease have been 
sponsored by manufacturers of enzyme 
replacement therapies and other treatments, 
and by patient associations [8–12]. In the case 
of such rare conditions, where small numbers 
of patients and the providers who treat them 
are scattered across the globe, a registry 
serves multiple purposes of linking individual 
patients with each other and with a treatment 
community, as well as potentially drawing 
upon a large and representative population 
available for research. The validity of conclu
sions that may be drawn from analyses of this 
kind of  registry data depends on the degree to 
which subjects in the registry are not selec
tively included because of their treatment 
outcomes, and that follow‐up is relatively 
complete.

Vaccine Safety
Some adverse events (AEs) of interest may not 
be routinely captured in existing data sources 
(see Chapter 20).

Beginning in 2014, the European Medicines 
Agency (EMA) has required annual enhanced 
safety surveillance (ESS) for all seasonal influ
enza vaccines. The interim guidance from the 
Pharmacovigilance Risk Assessment Committee 
(PRAC) included the requirement to collect 
data that would support the identification of any 
significant change in frequency or severity of 
reactogenicity in comparison with previous 
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years’ experience with the same vaccine compo
sition [13]. Reactogenicity AEs of interest as 
specified in the guidance include vaccination 
site reactions, headache, malaise, myalgia, 
 shivering, rash, vomiting, nausea, arthralgia, 
decreased appetite, irritability, and crying (in 
pediatric vaccinees less than 5 years of age). 
Such symptoms, especially when mild or mod
erate in severity, are not commonly reported to 
healthcare providers and thus medical records 
are not a useful source of data to study these 
outcomes following vaccination. Instead, stud
ies and surveillance activities to implement the 
requirements for ESS have incorporated patient 
(and proxy for pediatric patients) self‐report of 
occurrence of symptoms to obtain this informa
tion in a systematic manner, for example 
through distribution of Safety Report Cards 
allowing patients to report these symptoms by 
telephone or mail [14].

Studies of Medical Devices
Device studies may require information on 
batch and manufacture location that are not 
often available in existing data sources (see 
Chapter  21). Additional information on the 
“operator” or healthcare provider implanting 
or  administering the device may also help to 
provide a full characterization of product 
safety and effectiveness.

For example, the National Cardiovascular 
Data Registry compares the effectiveness of 
drug‐eluting and bare metal stents in reducing 
risk of death or myocardial infarction [15]. 
Studies of the Björk–Shiley heart valve showed 
the importance of manufacturing site as a risk 
factor for valve failure [16].

Special Requirements, Controlled 
Distribution Products
Some products are approved by regulatory 
authorities with special requirements for 
reporting mainly related to safety concerns. 
Often such requirements necessitate data 

 collection specific to the product to ensure 
robust monitoring of safety concerns.

Several active mandated safety registries 
and an example of a multisponsor pediatric 
safety registry were described in the Pink 
Sheet in 2009, “Registries Rising: FDA Looking 
at TNF Inhibitors; AHRQ Updates Standards” 
[17]. These examples included a pregnancy 
registry for the same product (ClinicalTrials.
gov identifier NCT01026077), a pregnancy 
registry as part  of a restricted distribution 
program for  eltrombopag (ClinicalTrials.gov 
identifier NCT01064336), a thrombopoietin 
receptor agonist for treatment of idiopathic 
thrombocytopenia purpura (ITP) sponsored 
by GlaxoSmithKline, and a safety registry for 
teriparatide, an anabolic treatment for osteo
porosis and an expanded indication of gluco
corticoid‐induced osteoporosis sponsored by 
Eli Lilly.

Hybrid or Enriched Designs

Some studies may not rely on primary or sec
ondary data alone. The terms “hybrid” or 
“enriched” are frequently used to describe study 
designs that draw upon both primary and sec
ondary data, with some data collected de novo 
specifically for the purposes of the study and 
other study‐specific data collected via probabil
istic or deterministic linkage with other data 
sources, such as electronic health records, 
administrative claims and billing data, vital 
records, and genetic information.

The DISCOVER study is an example of an 
enriched study. The study objective is to char
acterize and describe the management of 
patients initiating second‐line therapy for type 
2 diabetes; data are being collected from 
patients at sites in 38 countries, with linkage of 
electronic health records where feasible. 
Information is collected about diabetes man
agement including patients’ health‐related 
quality of life [18]. For more information see 
www.discoverdiabetes.com/.
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 Description

Clinician‐ or Site‐Reported Outcomes

The traditional approach to primary data collec
tion has been to recruit healthcare providers 
(HCPs) for study and then for those HCPs to 
recruit patients following agreed‐upon inclusion 
and exclusion criteria as described in the proto
col. When HCPs can form accurate assessments 
after observation of a patient’s health condition, 
those clinician‐reported outcomes (ClinROs) 
can become the measurement on which a study 
endpoint is based. Traditionally, data collection 
was performed on paper, but now most such 
data collection is electronic through case report 
forms (CRFs) designed  specifically for study 
purposes. This model requires institutional 
board review (ethical review) and site contracts 
with each investigator. Generally, investigators 
expect some payment for data collection, and 
such payments must be proportional to time 
spent and fair market value.

Patient‐Reported Outcomes and Other 
Patient‐Reported Measures

There is a growing interest in collecting data 
from patients on exposures and outcomes. 
These data can be collected directly from 
patients without the intervention of HCPs or 
can be collected from patients during a study 
visit or electronically in between study visits.

Recent research has established the validity of 
patient‐reported prescription medication use, 
laying a foundation for its reliability as well as 
demonstrating the rich additional information 
that can be obtained, such as nonprescription 
medication use, recreational drug use, smoking, 
and alcohol intake [3]. There are a large number 
of validated patient‐reported outcome (PRO) 
measures that can provide important insights 
into the patient experience, including treatment 
satisfaction, quality of life, ability to care for 
oneself, work, etc., and new tools are constantly 

in development. If patients will be contacted for 
any study data, supplementary information can 
often be obtained at a small marginal cost, espe
cially if data collection is as brief as possible.

Despite good motivations, the more data that 
are sought from patients, the less likely it is that 
they will complete the questions or continue to 
participate in the study. Also, clinical input may 
be needed to accurately and fully report patients’ 
medical histories and serious health events of 
special interest. Clinical validation is often 
obtained for patient‐reported clinical events of 
special interest.

Objective measures of patients’ physical 
activity are of interest in numerous therapeutic 
areas for pharmacoepidemiologic research, 
including chronic obstructive pulmonary dis
ease, cardiovascular disease, and depression. 
Quantification of the validity and reliability of 
wearable sensors that collect information about 
physical activity and various other clinically 
useful data will encourage greater use in longi
tudinal observational studies and pragmatic 
 trials. At the time of this chapter, mainly smaller 
or cross‐sectional observational studies and a 
few randomized clinical trials have incorpo
rated accelerometry measurement of physical 
activity as a study exposure, covariate of inter
est, or endpoint [19,20].

Registries as Means of Data Collection

As previously mentioned, registries may be 
established to fill a need for data collection that 
may support multiple research and/or public 
health surveillance objectives.

Population‐based state, regional, and national 
cancer registries have played a major role in 
cancer surveillance, by quantifying cancer inci
dence and mortality, and trends over time 
throughout the world, and in pharmacoepide
miology, by providing data on prognostic fac
tors, treatment, and outcomes for analysis 
within single or across linked databases. In the 
United States, the Surveillance, Epidemiology, 
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and End Results (SEER) program of the National 
Cancer Institute works from a network of 18 
cancer registries in 14 states that actively collect 
information on all reported cancers diagnosed 
in their coverage areas [21].

Pharmacoepidemiologic studies using cancer 
registries have included case–control studies 
such as the Cancer and Steroid Hormone 
(CASH) study of oral contraceptive use and 
breast [22], ovarian [23], and endometrial [24] 
cancer, and patterns of care studies of the dis
semination of advanced cancer treatment 
modalities throughout different population 
groups and into community practice [25–27]. 
With approval, researchers may be granted 
access to the SEER‐Medicare linked data files, 
which include Medicare claims before, during, 
and following cancer diagnosis and treatment 
[28]. Topics studied include influences of treat
ment, facility, and provider characteristics and 
interventions on survival and cost outcomes 
[29–31], as well as disparities in care [32].

Biobanks/Specimen Banks

Clinical data are increasingly being linked with 
biorepository data to guide researchers in the 
identification of biomarkers that are predictive 
of clinical outcomes and support the develop
ment of targeted therapies, for example by 
identifying patients whose tumors harbor a 
genomic variant that can potentially be tar
geted by a new drug. Some biobanks are being 
set up internationally, such as the EuroBioBank 
network, which was created to support 
research on rare diseases [33]. The UK Biobank 
is also a good example of an international long‐
term registry accessible for research, which is 
following around 500 000 volunteers for at 
least 25 years to investigate the contributions 
of genetic predisposition and environmental 
exposure (including nutrition and lifestyle) to 
disease development, and gain valuable 
insights to support the development of new 
medicines [34].

Guidelines on the Quality of Data 
Collection

There are a variety of recent guidelines that 
broadly speak to studies that use primary data 
collection, such as the Guidelines for Good 
Pharmacoepidemiologic Practice developed 
by  the International Society for Pharmacoepi
demiology [35], the checklist for study protocols 
developed by the European Network of Centers 
for Pharmacoepidemiology and Pharmacovigi
lance [36], and principles of good epidemiologic 
methods and practice (see Chapter 3) [37]. Also, 
the GRACE (Good Research for Comparative 
Effectiveness) Principles for conducting and 
evaluating observational studies of comparative 
effectiveness are applicable to studies that 
use primary data collection and may help guide 
the study design [38,39]. More detail about oper
ational aspects of primary data  collection can be 
found in the Registries for Evaluating Patient 
Outcomes: A  User’s Guide [40]. In that guide, 
the chapter on assessing  quality provides a 
detailed listing of various aspects of primary 
data collection relating to research quality and 
evidence quality, describing both the basic 
 elements of good practice and potential 
enhancements [41].

 Strengths

A notable strength of primary data collection is 
that it can address research objectives that 
require information that is not otherwise acces
sible or not consistently recorded in available 
secondary data sources. This type of informa
tion can be particularly meaningful to clini
cians, patients, regulators, payers, and those 
involved in drug development, and is often 
more directly useful than inferences derived 
from billing data and often cryptic and spotty 
electronic health data.

Studies that use data collection directly from 
patients also provide the opportunity to follow 
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patients over long periods of time and to evalu
ate a variety of outcomes. For chronic diseases, 
patients may be followed for years by their treat
ing physicians, regardless of whether a patient’s 
health insurance program changes – an impor
tant limitation of health insurance claims data. 
Patients may also be followed directly for self‐
reported outcomes, both for clinical outcomes 
(which may be confirmed with medical records 
or by physicians, as needed) and quality‐of‐life 
measures. It is often the patient’s relationship 
with the physician, and the physician’s relation
ship with the research program, that is particu
larly effective for long‐term retention. For 
example, the VIRGO study followed patients 
with metastatic breast cancer in collaboration 
with their treating physicians to understand 
the impact of treatment on quality of life as the 
 disease progressed [42].

 Limitations

Primary data collection requires cooperation of 
data contributors, often over long periods of 
time (follow‐up). While it would seem that 
altruism should be a sufficient motivation, 
experience has shown that successful primary 
data collection requires an infrastructure sup
porting patient and/or physician enrollment 
and retention, as well as an active program of 
data curation to assure that the data collected 
are accurate and reliable. Further, one must be 
mindful about the use of patient‐centered 
 endpoints, especially pertaining to general and 
disease‐specific quality of life assessments and 
to detailed information on past exposures, such 
as in case–control studies where the study 
 outcome is known to the patients at the time of 
the assessment [43]. Like all data, the contribu
tion to be made by patients in recall of past 
medical diagnoses and exposures of interest to 
pharmacoepidemiologic studies must be con
sidered carefully in view of their strengths and 
limitations [44–46].

It is also important to keep in mind that 
 consumers are likely to report serious AEs quite 
differently from clinicians, and such reports 
may require clinical validation for use for 
research purposes. For example, the PROTECT 
study examined medication use during preg
nancy using biweekly or monthly question
naires administered via the internet, with the 
frequency of follow‐up determined according to 
the participants’ choosing [47]. Respondents 
were able to clearly describe serious but rare 
birth defects, but used common terms that were 
difficult to code for less serious conditions that 
might not meet the clinician threshold for 
being  considered a birth defect, for example 
the eyes were too small or the nose appeared to 
be off‐center.

In addition to data quality, the two major 
challenges in primary data collection relate to 
enrollment and retention. It is often difficult to 
find and recruit clinicians who treat patients of 
interest, or patients who have the exposures or 
conditions of interest, no matter how important 
the research question. For example, Pfizer made 
great fanfare over the launch of its first “virtual 
trial” called REMOTE, that focused on overac
tive bladder treatment. The study was halted 
less than a year after launch because of poor 
recruitment, with a spokesman from the spon
soring organization commenting that social 
media was a great way to spread awareness of 
the trial but did not build enough trust for 
patients to actually sign up [48].

“Sufficient” retention (regardless of the tar
get) can be difficult to achieve when using pri
mary data collection. Retention rates are often 
higher for studies that are (1) responsive to the 
needs of patients and physicians. so they are 
motivated to continue participating (a special 
concern for pregnancy registries and other vul
nerable populations), and (2) parsimonious in 
their data collection [49]. Operational chal
lenges relate to the need to deploy primary data 
collection systems that are easy to use, and sim
ple enough to encourage steady reporting but 
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which do not result in reporting fatigue. Multiple 
methods of data entry such as internet, text mes
saging, and/or mail can be an advantage, consid
ering the demographics of the target population, 
although many researchers believe that there is a 
positive impact on retention from consistent 
personal interactions between study staff and 
clinical investigators and/or patients, a tech
nique often deployed in pregnancy registries.

While there is some optimism that newer 
technologies and the nearly universal adoption 
of smartphones would support the use of text 
messaging and internet‐based patient surveys, 
results from the PROTECT study raised a 
 cautionary note  [47]. Researchers noted that 
internet‐based recruitment of pregnant women 
was surprisingly difficult and study retention 
was low, speculating that although it was rela
tively easy to send questionnaires frequently, 
participants appeared to tire quickly of respond
ing to the same questions over time.

Enrollment logs that record some information 
about those who are eligible to participate but 
decline or later drop out can be used to evaluate 
selection bias and the impact of loss to follow‐
up. For example, studies that collect some basic 
personal identifiers such as name (first, last, 
and  middle initial) and date of birth can be 
linked with the National Death Index in the 
United States to search for deaths and obtain 
information on cause of death.

 Particular Applications

To provide further illustration of some of the 
applications of primary data collection in mod
ern pharmacoepidemiologic research, several 
examples are described in further detail in this 
section. These include a prospective compara
tive effectiveness research (CER) study incor
porating collection of clinical endpoints and 
PROs, a novel hybrid study intended to provide 
data in support of a label expansion with FDA, 
use of large registry data as a framework for 

conduct of multiple observational studies, and 
incorporation of measures of physical activity 
through accelerometry as part of the UK 
Biobank effort.

The Registry in Glaucoma Outcomes 
Research (RiGOR) study, funded by the US 
Agency for Healthcare Research and Quality, 
was a prospective observational study that used 
primary data collection to address which treat
ment strategy for open‐angle glaucoma was 
associated with the greatest improvement in 
patient outcomes [50]. The study found that 
patients treated with incisional surgery after 
failing at least one course of medication were 
twice as likely as patients treated with additional 
medication to achieve a 15% reduction in 
intraocular pressure (IOP) at 12 months, while 
patients treated with laser surgery had similar 
results to those who were treated with addi
tional medication [51]. While IOP is routinely 
recorded when glaucoma patients see their oph
thalmologists, in order to ensure complete 
assessment of IOP at around six and 12 months 
of follow‐up, it was a required element in the 
study’s CRF, along with a vast array of other 
detailed clinical information. The RiGOR study 
also included several validated PROs assess
ments as secondary endpoints, which further 
required patients to complete these question
naires at the time of a study visit or at home 
through mail or electronic means [52].

The Bioventus Exogen® device registry is a 
novel example of a hybrid or enriched design 
involving both primary and secondary data. 
This study was planned following extensive 
 discussions with the US Food and Drug 
Administration Center for Drug Evaluation and 
Research (FDA CDER) regarding this novel 
design for a label expansion. The study utilizes a 
prospective direct‐to‐patient product registry 
linked with a propensity score matched com
parator group from a commercial claims 
 database for study of a device used to treat bone 
fracture nonunion, currently used broadly out
side of labeled indications to treat fracture [53].
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Two European cancer registries provide exam
ples of registry infrastructure being built to 
address innumerable current and future research 
questions pertaining to cancer incidence and 
survival. The EUROCARE (European Cancer 
Registry Based Study on Survival and Care of 
Cancer Patients) registry is a very large collabo
rative research project on cancer survival [54]. 
The registry started in 1989, aiming to provide 
updated descriptions of cancer survival time 
trends and differences across European coun
tries, to measure cancer prevalence, and study 
patterns of care of cancer patients. Its fifth and 
current edition, EUROCARE‐5, includes data on 
more than 21 million cancer diagnoses provided 
by 116 cancer registries in 30 European coun
tries [55]. At least 165 publications have been 
generated from EUROCARE‐1–5, covering 
trends in survival across a very broad range of 
cancer types as well as patterns of care and pre
dictors of survival and other outcomes [56]. The 
European Cancer Observatory (ECO) is another 
important project developed at the International 
Agency for Research on Cancer (IARC) in part
nership with the European Network of Cancer 
Registries (ENCR) in the framework of the 
EUROCOURSE project which is supported by 
the European Commission. It presents national 
estimates of cancer incidence, mortality, and 
prevalence for 24 major cancer types in 40 
European countries for 2012. This registry also 
allows for the exploration of geographical pat
terns and temporal trends [57]. Access to cancer 
datasets is possible on a user registration and 
permission request basis [58].

An additional area of data collection for the 
UK Biobank to support the inclusion of objec
tive measures of physical activity in large‐scale 
observational studies has been to obtain meas
ures of physical activity from accelerometers 
from over 100 000 participants [59]. Forty‐five 
percent of those invited to wear accelerometers 
for seven days accepted the invitations; from 
these, over 93% provided sufficient valid data 
for analysis.

 The Future

Newer methods of collecting data directly from 
patients and from doctors, including internet‐
based data collection, integrated voice response 
systems with auto‐coding features, and use of 
wearable sensors, will facilitate rapid accumula
tion of data; however, the validity, accuracy, and 
usefulness of these new methods need to be 
evaluated. Factors that affect recruitment and 
retention also must be considered. Just because 
it may be relatively easy to contribute data does 
not mean that patients will continue to do so 
over a long period of time. In focus groups used 
in the PROTECT study, pregnant women 
reported that some reimbursement for their 
time for each survey completed, even some
thing nominal, would increase their interest in 
staying in a study since it would show that 
researchers value their input [60].

An exciting new direction is the potential for 
enriched studies to be conducted on a more 
routine basis. For example, there is growing 
interest in expanding patient registry data col
lection to allow patients to authorize linkage 
with other of their healthcare data on an ongo
ing basis. In these situations and where local law 
allows, the Informed Consent document is 
likely to require inclusion of general informa
tion described below.

 ● I have read the contents of this form and 
I  understand, agree, and allow my Health 
Plan, The REGISTRY Coordinating Center at 
XXXX, and my healthcare provider to use and 
release information about me as described 
above. I also understand that signing this 
form is of my own free will and will in no way 
affect the medical care that I receive.

 ● If I choose not to participate in this linkage to 
claims information, I understand that my 
Health Plan will not base decisions regarding 
my treatment, eligibility for benefits, enroll
ment in a Health Plan, or payment of claims 
on my decision regarding study participation.
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 ● If I choose not to participate in this linkage it 
will not impact my participation in the main 
REGISTRY. Additionally, I can choose to 
withdraw from the linkage at any time and 
remain in the main REGISTRY if I choose.

 ● I have the right to withdraw this approval at 
any time by giving written notice of my with
drawal to the REGISTRY. I understand that 
my withdrawing this approval will not affect 
any action taken before I do so. I also under
stand that once my information is shared out
side the REGISTRY, it will not be traceable to 
me. However, the information from my 
records will still be protected by other privacy 
rules and agreements.

 ● At my request, I will be given a copy of this 
form either when I sign it or while the study 
is ongoing.

In summary, despite the growing availability 
of large amounts of data on treatments and 

patients’ clinical experience, it is unlikely that 
such data will ever contain all information 
needed for every study purpose; thus, the need 
for primary data collection will remain. 
Traditionally, HCPs have been the primary 
reporters/recorders of data for studies that use 
primary data collection, although there is grow
ing interest in collecting data directly from 
patients either exclusively or in combination 
with wearable devices and/or clinician‐reported 
data, and/or to enrich existing data. While the 
methods for such data collection can and will 
change over time, it is likely that researchers will 
always need to invest time in data curation to 
assure that the data are accurately represented 
and to check for critical data that are systemati
cally missing. Primary data collection will con
tinue to be a mainstay of pharmacoepidemiologic 
research, either as the sole method of data col
lection or as a key component of research that 
uses many modes of data collection.
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As discussed in previous chapters, pharma-
coepidemiologic studies apply the techniques of 
epidemiology to the content area of clinical 
pharmacology. Between 500 and 3000 individu-
als are usually studied prior to drug marketing. 
Most postmarketing pharmacoepidemiologic 
studies need to include at least 10 000 subjects, 
or draw from an equivalent population for a 
case–control study, in order to contribute suffi-
cient new information to be worth their cost 
and effort (see Chapter  4). This large sample 
size raises logistical challenges. Chapters 10–16 
presented many of the different data collection 
approaches and data resources that have been 
developed to perform pharmacoepidemiologic 
studies efficiently, meeting the need for these 
very large sample sizes. This chapter is intended 
to synthesize this material, to assist the reader in 
choosing among the available approaches.

 Choosing among the 
Available Approaches to 
Pharmacoepidemiologic 
Studies

Once one has decided to perform a pharma-
coepidemiologic study, one needs to decide 

which of the data collection approaches or data 
resources described in the earlier chapters of 
this book should be used. Although to some 
degree the choice may too often be based upon 
a researcher’s familiarity with given data 
resources and/or the investigators who have 
been using them, it is very important to tailor 
the choice of pharmacoepidemiologic resource 
to the question to be addressed. One frequently 
may want to use more than one data collection 
strategy or resource, in parallel or in combina-
tion. If no single resource is optimal for address-
ing a question, it can be useful to use a number 
of approaches that complement each other. 
Indeed, this is probably the preferable approach 
for addressing important questions. Regardless, 
investigators are often left with a difficult and 
complex choice.

In order to explain how to choose among 
the  available pharmacoepidemiologic data 
resources, it is useful to synthesize the informa-
tion from the previous chapters on the relative 
strengths and weaknesses of each of the availa-
ble pharmacoepidemiologic approaches, exam-
ining the comparative characteristics of each 
(see Table  17.1). One can then examine the 
characteristics of the research question at hand, 
in order to choose the pharmacoepidemiologic 
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Table 17.1 Comparative characteristics of pharmacoepidemiologic data resources.

Pharmacoepidemiologic approach
Relative 
size

Relative 
cost

Relative 
speed Representativeness

Population 
based

Cohort studies 
possible

Case–control 
studies possible

Spontaneous reporting ++++ + ++++ ++ — — + (with external 
controls)

Health maintenance 
organizations/health plans

++ +++ +++ +++ ++ ++++ ++++

Commercial insurance databases ++ +++ +++ +++ ++ ++++ ++++
US government claims databases +++ ++ ++ variable ++++ ++++ ++++
UK medical record databases ++ ++ +++ +++ +++ ++++ ++++
In‐hospital databases + ++ +++ ++ — ++ ++
Canadian provincial databases ++ ++ +++ ++++ ++++ ++++ ++++
Pharmacy‐based medical record 
linkage systems

++ ++ +++ ++++ ++++ ++++ ++++

Ad hoc studies
Case–control surveillance variable +++ + variable — — ++++
Prescription Event Monitoring +++ +++ + +++ ++ ++++ + (nested)
Registries variable +++ + variable variable +++ +++
Field studies
Ad hoc case–control studies as feasible +++ + as desired as desired — ++++
Ad hoc cohort studies as feasible ++++ — as desired as desired ++++ ++ (nested)
Randomized trials as feasible ++++ — — — ++++ ++ (nested)
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Pharmacoepidemiologic approach
Validity of 
exposure data

Validity of 
outcome data

Control of 
confounding

Inpatient drug 
exposure data

Outpatient 
diagnosis data

Loss to 
follow‐up

Spontaneous reporting +++ ++ — +++ +++ N/A
Health plans ++++ +++ ++ — ++ 3–15%/year
Commercial insurance databases ++++ +++ ++ — ++ about 25%/

year
US government claims databases ++++ +++ ++ — ++ variable
UK medical record databases +++ ++++ ++ — ++ nil
In‐hospital databases ++++ +++ ++ ++++ — nil
Canadian provincial databases ++++ +++ ++ — ++ nil
Pharmacy‐based medical record 
linkage systems

++++ + + — — nil

Ad hoc studies
Case–control surveillance ++ ++++ +++ — + N/A
Prescription Event Monitoring +++ +++ ++ — +++ variable
Registries +++ +++ ++ + variable N/A
Field studies

Ad hoc case–control studies ++ ++++ +++ ++ + N/A
Ad hoc cohort studies +++ +++ +++ ++ ++++ variable
Randomized trials ++++ +++ ++++ ++ ++++ N/A

Note: See the chapter text for descriptions of the column headings, and previous chapters for descriptions of the data resources. N/A, not applicable.
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approach best suited to addressing that ques-
tion (see Table  17.2). The assessment and 
weights provided in this discussion and in the 
accompanying tables are arbitrary. They are not 
being represented as a consensus of the phar-
macoepidemiologic community, but represent 
the judgment of this author alone, based on the 
material presented in earlier chapters of this 
book. Nevertheless, I think that most would 
agree with the general principles described, and 
even many of the relative ratings. My hope is 
that this synthesis of information, despite some 
of the arbitrary ratings inherent in it, will make 
it easier for the reader to synthesize the large 
amount of information presented in prior 
chapters.

Note that there are a number of other data 
sources not discussed here, some of which have 
been, or in the future may be, of importance to 
pharmacoepidemiologic research. Examples 
include the old Boston Collaborative Drug 
Surveillance data [1], MEMO [2], Pharmetrics® 
[3], Aetna [4], Humana [5], and many others, 
many reviewed in prior editions of this book. 
Given the wonderful proliferation of pharma-
coepidemiologic data resources, we are making 
no attempt to include them all. Instead, we will 
discuss them in categories of types of data, as we 
did in the chapters themselves.

Comparative Characteristics 
of Pharmacoepidemiologic Data 
Resources

Table  17.1 lists each of the different pharma-
coepidemiologic data resources that were 
described in earlier chapters, along with some 
of their characteristics.

The relative size of the database refers to the 
population it covers. Only spontaneous report-
ing systems, US Medicare, some of the phar-
macy‐based medical record linkage systems, 
and Prescription Event Monitoring in the UK 
cover entire countries or large fractions thereof. 
Of course, population databases differ consider-

ably in size, based on the size of their underlying 
populations. Aggregations of Medicaid data-
bases are the next largest, with the commercial 
databases approaching that. The UK electronic 
health record databases would be next in size, as 
would the health maintenance organizations 
(HMOs), depending on how many are included. 
The Canadian provincial databases again could 
be equivalently large, depending in part on how 
many are included in a study. The other data 
resources are generally smaller. Case–control 
surveillance, as formerly conducted by the Slone 
Epidemiology Unit, can cover a variable popula-
tion, depending on the number of hospitals and 
metropolitan areas included in the network for 
a given study. The population base of registry‐
based case–control studies depends on the reg-
istries used for case finding. Ad hoc studies can 
be whatever size the researcher desires and can 
marshal resources for.

As to relative cost, studies that collect new 
data are most expensive, especially randomized 
trials and cohort studies, for which sample sizes 
generally need to be large and follow‐up may 
need to be prolonged. In the case of randomized 
trials, there are additional logistical complexi-
ties. Studies that use existing data are least 
expensive, although their cost increases when 
they gather primary medical records for valida-
tion. Studies that use existing data resources to 
identify subjects but then collect new data about 
those subjects are intermediate in cost.

With regard to the relative speed of study 
completion, studies that collect new data take 
longer, especially randomized trials and cohort 
studies. Studies that use existing data are able to 
answer a question most quickly, although con-
siderable additional time may be needed to 
obtain primary medical records for validation. 
Studies that use existing data resources to iden-
tify subjects but then collect new data about 
those subjects are intermediate in speed.

Representativeness refers to how well the sub-
jects in the data resource represent the popula-
tion at large or a more specific population of 



Table 17.2 Characteristics of research questions and their impact on the choice of pharmacoepidemiologic data resources.

Pharmacoepidemiologic approach
Hypothesis 
generatinga

Hypothesis 
strengtheningb

Hypothesis 
testingc

Study of benefits 
(versus risk)

Incidence rates 
desired

Low incidence 
outcome

Low prevalence 
exposure

Spontaneous reporting ++++ + — — — ++++ ++++
Health plans ++ ++++ +++ ++ +++ +++ +++
Commercial insurance databases ++ ++++ +++ ++ +++ +++ +++
US government claims databases ++ ++++ +++ ++ +++ ++++ ++++
UK medical record databases ++ ++++ +++ ++ ++++ +++ +++
In‐hospital databases + ++++ +++ ++ +++ + +
Canadian provincial databases ++ ++++ +++ ++ +++ +++ +++
Pharmacy‐based medical record 
linkage systems

+ ++ ++ ++ +++ +++ +++

Ad hoc studies
Case–control surveillance +++ +++ +++ +++ — ++++ +
Prescription Event Monitoring ++ ++ +++ +++ +++ +++ +++
Registries + +++ +++ +++ +++ +++ +++
Field studies

Ad hoc case–control studies + ++ +++ +++ + ++++ +
Ad hoc cohort studies + ++ +++ +++ ++++ ++ +++
Randomized trials + + ++++ ++++ ++++ + ++++

(Continued)
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Table 17.2 (Continued)

Pharmacoepidemiologic 
approach

Important 
confounders

Drug use inpatient 
(versus outpatient)

Outcome does not 
result in hospitalization

Outcome does 
not result in 
medical attention

Outcome a 
delayed effect

Exposure to 
a new drug

Urgent 
question

Spontaneous reporting — +++ ++++ + + ++++ ++++
Health plans +++ — +++ — + ++ +++
Commercial insurance 
databases

++ — +++ — + +++ +++

US government claims 
databases

++ — +++ — + to +++ ++ ++

UK medical record databases +++ — +++ — +++ +++ +++
In‐hospital databases ++ ++++ — — — +++ +++
Canadian provincial databases ++ — +++ — +++ ++ +++
Pharmacy‐based medical 
record linkage systems

+ — — — ++ +++ +++

Ad hoc studies
Case–control surveillance +++ + — — ++ + +
Prescription Event 
Monitoring

++ + ++++ + + ++++ +

Registries ++ ++ + ++ ++ +++ +
Field studies
Ad hoc case–control studies +++ ++++ ++ — ++ + +
Ad hoc cohort studies +++ +++ ++++ +++ + ++++ +
Randomized trials ++++ +++ ++++ ++++ + ++++ +

Notes: See the text of the chapter for descriptions of the column headings, and previous chapters for descriptions of the data resources.
a Hypothesis‐generating studies are designed to raise new questions about possible unexpected drug effects, whether adverse or beneficial.
b Hypothesis‐strengthening studies are designed to provide support for, although not definitive evidence for, existing hypotheses.
c Hypothesis‐testing studies are designed to evaluate in detail hypotheses raised elsewhere.
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interest. US Medicare, Prescription Event 
Monitoring in the UK, the provincial health 
databases in Canada, and the pharmacy‐based 
medical record linkage systems include entire 
countries, provinces, or states, and so are typi-
cal populations. Spontaneous reporting systems 
are drawn from entire populations, but of course 
the selective nature of their reporting could lead 
to less certain representativeness. Medicaid 
programs are limited to the disadvantaged, and 
so include a population that is least representa-
tive of a general population. Analogously, rand-
omized trials include populations limited by the 
various selection criteria plus their willingness 
to volunteer for the study. The Clinical Practice 
Research Datalink® (CPRD®) and The Health 
Improvement Network® (THIN®) use a nonran-
dom large subset of the total UK population, 
and so may be representative of the overall UK 
population. Health plans and commercial data-
bases are closer to representative populations 
than a Medicaid population would be, although 
they include a largely working population and, 
so, include few patients of low socioeconomic 
status and fewer than normal elderly. Some of 
the remaining data collection approaches or 
resources are characterized in Table  17.1 as 
“variable,” meaning their representativeness 
depends on which hospitals are recruited into 
the study. Ad hoc studies are listed in Table 17.1 
“as desired,” because they can be designed to be 
representative or not, as the investigator wishes.

Whether a database is population based refers 
to whether there is an identifiable population 
(which is not necessarily based on geography), 
all of whose medical care would be included in 
that database, regardless of the provider. This 
allows one to measure incidence rates of dis-
eases, as well as being more certain that one 
knows of all the medical care that any given 
patient receives. As an example, assuming little 
or no out‐of‐plan care, the Kaiser programs are 
population based. One can use Kaiser data, 
therefore, to study medical care received in and 
out of the hospital, as well as diseases that may 

result in repeat hospitalizations. For example, 
one could study the impact of the treatment ini-
tially received for venous thromboembolism on 
the risk of subsequent disease recurrence. In 
contrast, hospital‐based case–control studies 
conducted outside a closed network like Kaiser 
are not population based: they include only the 
specific hospitals that belong to the system and 
do not capture all healthcare services a patient 
may receive. Thus, a patient diagnosed with and 
treated for venous thromboembolism in a par-
ticipating hospital could be readmitted to a dif-
ferent, nonparticipating hospital if the disease 
recurred. This recurrence would not be detected 
in a study using such a system. The data 
resources that are population based are those 
that use data from organized healthcare deliv-
ery or payment systems. Registry‐based and ad 
hoc case–control studies can occasionally be 
conducted as population‐based studies, if all 
cases in a defined geographic area are recruited 
into the study [6], but this is unusual (see also 
Chapters 3 and 16).

Whether cohort studies are possible within a 
particular data resource would depend upon 
whether individuals can be identified by whether 
or not they were exposed to a drug of interest. 
This would be true in any of the population‐
based systems, as well as any of the systems 
designed to perform cohort studies.

Whether case–control studies are possible 
within a given data resource depends upon 
whether patients can be identified by whether 
or not they suffered from a disease of interest. 
This would be true in any of the population‐
based systems. Data from spontaneous report-
ing systems can be used for case finding for 
case–control studies, although this has been 
done infrequently [7].

The validity of the exposure data is most cer-
tain in hospital‐based settings, where one can 
be reasonably certain of both the identity of a 
drug and that the patient actually ingested it. 
Exposure data in spontaneous reporting sys-
tems come mostly from healthcare providers 
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and so are probably valid. However, one cannot 
be certain of patient adherence in spontaneous 
reporting data. Exposure data from claims data 
and from pharmacy‐based medical record link-
age systems are unbiased data recorded by 
pharmacies, often for billing purposes, a pro-
cess that is closely audited as it impacts reim-
bursement. These data are likely to be accurate 
with regard to medication possession, although, 
again, one cannot assure adherence. Refill 
adherence, though, has been found to correlate 
closely with adherence measured using micro-
chips embedded in medication bottles (see 
Chapter 38). However, there are drugs that may 
fall beneath a patient’s deductibles or co‐pay-
ments, or not be on formularies, so dispensed 
by the pharmacy but paid for in cash. In claims 
databases, these scenarios may result in mis-
classification of true medication exposure, as 
the patient would falsely appear unexposed. 
Also, since drug benefits vary depending upon 
the plan, pharmacy files may not capture all pre-
scribed drugs if beneficiaries reach the drug 
benefit limit or pay for the prescription out of 
pocket. In the UK medical record systems, 
drugs prescribed by physicians other than the 
general practitioner could be missed, although 
continued prescribing by the general practi-
tioner would be detected. Ad hoc case–control 
studies generally rely on patient histories for 
exposure data. These may be very inaccurate, as 
patients often do not recall correctly the medi-
cations they are taking [8]. However, this would 
be expected to vary, depending upon the condi-
tion studied, type of drug taken, questioning 
technique used, and so on [8–16] (see 
Chapter 37).

The validity of the outcome data is also most 
certain in hospital‐based settings, in which the 
patient is subjected to intensive medical surveil-
lance (see Chapter 14). It is least certain in out-
patient data from organized systems of medical 
care. There are, however, methods of improving 
the accuracy of these data, such as using drugs, 
laboratory data, and procedures as markers of 

the disease and obtaining primary medical 
records (see Chapter  37). The outcome data 
from automated databases are listed as variable, 
therefore, depending upon exactly which data 
are being used and how. The UK medical record 
systems analyze the actual medical record, 
rather than claims, and can access additional 
questionnaire data from the general practitioner 
as well. Thus, their outcome data may be more 
accurate.

Control of confounding refers to the ability to 
control for confounding variables. As discussed 
in Chapter  3, randomization is the most con-
vincing way of controlling for unknown, 
unmeasured, or unmeasurable confounding 
variables. Approaches that collect sufficient 
information to control for known and measura-
ble variables are next most effective. These 
include health plans, the UK medical record 
systems, case–control surveillance, ad hoc 
case–control studies, and ad hoc cohort studies. 
Users of health databases in Canada, commer-
cial databases, and Medicaid (sometimes) can 
obtain primary medical records, but not all 
information necessary is always available in 
those records. They generally are unable to con-
tact patients directly to obtain supplementary 
information that might not be in a medical 
record. Finally, spontaneous reporting systems 
do not provide enough systematically collected 
information for control of confounding.

Relatively few of the data systems have data 
on inpatient drug use. The exceptions include 
spontaneous reporting systems, in‐hospital 
databases (see Chapter  14), and some ad hoc 
studies if designed to collect such.

Only a few of the data resources have suffi-
cient data on outpatient diagnoses available 
without special effort to be able to study them as 
outcome variables. Ad hoc studies can be 
designed to be able to collect such information. 
In the case of ad hoc randomized clinical trials, 
this data collection effort could even include 
tailored laboratory and physical examination 
measurements. In some of the resources, the 
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outpatient outcome data are collected observa-
tionally, but directly via the physician, and so 
are more likely to be accurate. Included are 
spontaneous reporting systems, the UK medical 
record systems, HMOs, Prescription Event 
Monitoring, and some ad hoc cohort studies. 
Other outpatient data come via physician claims 
for medical care, including Medicaid databases, 
commercial databases, and the provincial health 
databases in Canada. Finally, other data 
resources can access outpatient diagnoses only 
via the patient, so they are less likely to be 
 complete; although the diagnosis can often be 
validated using medical records, it generally 
needs to be identified by the patient. These 
include most ad hoc case–control studies.

The degree of loss to follow‐up differs sub-
stantially among the different resources. They 
are specified in Table 17.1.

Characteristics of Research Questions 
and Their Impact on the Choice 
of Pharmacoepidemiologic Data 
Resources

Once one is familiar with the characteristics of 
the pharmacoepidemiologic resources available, 
one must then examine more closely the 
research question, to determine which resources 
can best be used to answer it (see Table 17.2).

Pharmacoepidemiologic studies can be 
undertaken to generate hypotheses about drug 
effects, to strengthen hypotheses, and/or to test 
a priori hypotheses about drug effects. 
Hypothesis‐generating studies are studies 
designed to raise new questions about possible 
unexpected drug effects, whether adverse or 
beneficial. Virtually all studies can and do raise 
such questions, through incidental findings in 
studies performed for other reasons. In addi-
tion, virtually any case–control study could be 
used, in principle, to screen for possible drug 
causes of a disease under study, and virtually 
any cohort study could be used to screen for 
unexpected outcomes from a drug exposure 

under study. In practice, however, the only set-
tings in which this has been attempted system-
atically have been health plans, case–control 
surveillance, Prescription Event Monitoring, 
and Medicaid databases. To date, the most pro-
ductive source of new hypotheses about drug 
effects has been spontaneous reporting. 
However, this is the goal of Sentinel, a 
Congressionally mandated data system of over 
100 million US lives, initially built primarily for 
hypothesis strengthening as “Mini‐Sentinel,” 
although now being used for hypothesis genera-
tion as well, in addition to the traditional 
approach of using such data for hypothesis test-
ing (see Chapter  25). In the future, new 
approaches using the internet (e.g., health web-
sites with consumer posting boards and other 
social media) could potentially be used for 
hypothesis generation of events, including those 
not coming to medical attention.

Hypothesis‐strengthening studies are designed 
to provide support for, although not definitive 
evidence for, existing hypotheses. The objective 
of these studies is to provide sufficient support 
for, or evidence against, a hypothesis to permit a 
decision about whether a subsequent, more 
definitive study should be undertaken. As such, 
hypothesis‐strengthening studies need to be 
conducted rapidly and inexpensively. They can 
include crude analyses conducted using almost 
any dataset, evaluating a hypothesis which arose 
elsewhere. Because not all potentially con-
founding variables would be controlled, the 
findings could not be considered definitive. 
Examples would be the modular studies con-
ducted within Sentinel (see Chapter  25). 
Alternatively, hypothesis‐strengthening studies 
can be more detailed, controlling for confound-
ing, conducted using the same data resource 
that raised the hypothesis. In this case, because 
the study is not specifically undertaken to test 
an a priori hypothesis, the hypothesis‐testing 
type of study can only serve to strengthen, not 
test, the hypothesis. Spontaneous reporting sys-
tems are useful for raising hypotheses, but are 
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not very useful for providing additional support 
for those hypotheses. Conversely, randomized 
trials can certainly strengthen hypotheses, but 
are generally too costly and logistically too com-
plex to be used for this purpose. (Post‐hoc anal-
yses of randomized trials can obviously be 
reanalyzed, for the purposes of generating or 
strengthening hypotheses, but then they are 
really being analyzed as cohort studies.) Of the 
remaining approaches, those that can quickly 
access, in computerized form, both exposure 
data and outcome data are most useful. Those 
that can rapidly access only one of these data 
types, only exposure or only outcome data, are 
next most useful, while those that need to gather 
both data types are least useful, because of the 
time and expense that would be entailed.

Hypothesis‐testing studies are designed to 
evaluate in detail hypotheses raised elsewhere. 
Such studies must be able to have simultaneous 
comparison groups and must be able to control 
for most known potential confounding varia-
bles. For these reasons, spontaneous reporting 
systems cannot be used for this purpose, as they 
cannot be used to conduct studies with simulta-
neous controls (with rare exceptions, see [2]). 
The most powerful approach, of course, is a ran-
domized clinical trial, as it is the only way to 
control for unknown or unmeasurable con-
founding variables. Instrumental variable analy-
ses can approximate a randomized clinical trial, 
but only in the circumstances, to date limited, 
that all the underlying assumptions are met. 
(On the other hand, studies of dose response, 
duration response, drug–drug interactions, 
determinants of response, etc. are more readily 
done in nonrandomized than randomized stud-
ies; see Chapter  3.) Techniques which allow 
access to patients and their medical records are 
the next most powerful, as one can gather infor-
mation on potential confounders that might 
only be reliably obtained from one of those 
sources or the other. Techniques which allow 
access to primary records but not the patient are 
next most useful.

The research implications of questions about 
the beneficial effects of drugs are different, 
depending upon whether the beneficial effects 
of interest are expected or unexpected. Studies 
of unexpected beneficial effects are exactly anal-
ogous to studies of unexpected adverse effects, 
in terms of their implications for one’s choice of 
approach; in both situations one is studying side 
effects. Studies of expected beneficial effects, or 
drug efficacy, raise the special methodologic 
problem of confounding by the indication: 
patients who receive a drug are different from 
those who do not in a way which usually is 
related to the outcome under investigation in 
the study. This issue is discussed in detail in 
Chapter 33. As described there, it is sometimes 
possible to address these questions using non-
experimental study designs. Generally, however, 
the randomized clinical trial is far preferable, 
when feasible.

In order to address questions about the inci-
dence of a disease in those exposed to a drug, 
one must be able to quantify how many people 
received the drug. This information can be 
obtained using any resource that can perform a 
cohort study. Techniques that need to gather 
the outcome data de novo may miss some of the 
outcomes if there is incomplete participation 
and/or reporting of outcomes, such as with 
Prescription Event Monitoring, ad hoc cohort 
studies, and outpatient pharmacy‐based cohort 
studies. On the other hand, ad hoc data collec-
tion is the only way of systematically collecting 
information about outcomes that need not 
come to medical attention (see below). The only 
approaches that are free from either of these 
problems are hospital‐based approaches. 
Registry‐based case–control studies and ad hoc 
case–control studies can occasionally be used to 
estimate incidence rates, if one obtains a com-
plete collection of cases from a defined geo-
graphic area. The other approaches listed 
cannot be used to calculate incidence rates.

To address a question about a low incidence 
outcome, one needs to study a large population 
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(see Chapter  4). This can best be done using 
spontaneous reporting, US Medicare, 
Prescription Event Monitoring, or the phar-
macy‐based medical record linkage systems, 
which can or do cover entire countries. 
Alternatively, one could use commercial data-
bases, health plans, or aggregates of Medicaid 
databases, which cover a large proportion of the 
US, or the medical record systems in the UK. 
Canadian provincial databases can also be fairly 
large, and one can perform a study in multiple 
such databases. Ad hoc cohort studies could 
potentially be expanded to cover equivalent 
populations. Case–control studies, either ad 
hoc studies, studies using registries, or studies 
using case–control surveillance, can also be 
expanded to cover large populations, although 
not as large as the previously mentioned 
approaches. Because case–control studies 
recruit study subjects on the basis of the patients 
suffering from a disease, they are more efficient 
than attempting to perform such studies using 
analogous cohort studies. Finally, randomized 
trials could, in principle, be expanded to achieve 
very large sample sizes, especially large simple 
trials (see Chapter 32), but this can be extremely 
difficult and costly.

To address a question about a low prevalence 
exposure, one also needs to study a large popu-
lation (see Chapter  4). Again, this can best be 
done using spontaneous reporting, US 
Medicare, the pharmacy‐based medical record 
linkage systems, or Prescription Event 
Monitoring, which cover entire countries. 
Alternatively, one could use commercial data-
bases, large health plans, or aggregates of 
Medicaid databases, which cover a large pro-
portion of the US, or the medical record data-
bases in the UK. Ad hoc cohort studies could 
also be used to recruit exposed patients from a 
large population. Analogously, randomized tri-
als, which specify exposure, could assure an 
adequate number of exposed individuals. Case–
control studies, either ad hoc studies, studies 
using registries, or studies using case–control 

surveillance, could theoretically be expanded to 
cover a large enough population, but this would 
be difficult and expensive.

When there are important confounders that 
need to be taken into account in order to answer 
the question at hand, then one needs to be cer-
tain that sufficient and accurate information is 
available on those confounders. Spontaneous 
reporting systems cannot be used for this pur-
pose. The most powerful approach is a rand-
omized trial, as it is the most convincing way to 
control for unknown or unmeasurable con-
founding variables. Techniques which allow 
access to patients and their medical records are 
the next most powerful, as one can gather infor-
mation on potential confounders that might 
only be reliably obtained from one of those 
sources or the other. Techniques which allow 
access to primary records but not the patient are 
the next most useful.

If the research question involves inpatient 
drug use, then the data resource must obviously 
be capable of collecting data on inpatient drug 
exposures. The number of approaches that have 
this capability are limited, and include sponta-
neous reporting systems and inpatient database 
systems. Ad hoc studies could also, of course, be 
designed to collect such information in the 
hospital.

When the outcome under study does not result 
in hospitalization, but does result in medical 
attention, the best approaches are randomized 
trials and ad hoc studies, which can be specifi-
cally designed to be sure this information can be 
collected. Prescription Event Monitoring and 
the UK medical record systems, which collect 
their data from general practitioners, are excel-
lent sources of data for this type of question. 
Reports of such outcomes are likely to come to 
spontaneous reporting systems as well. 
Medicaid databases and commercial databases 
can also be used, as they include outpatient 
data, although one must be cautious about the 
validity of the diagnosis information in outpa-
tient claims. Canadian provincial databases are 
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similar, as are health plans. Finally, registry‐
based case–control studies could theoretically 
be performed, if they included outpatient cases 
of the disease under study.

When the outcome under study does not result 
in medical attention at all, the approaches avail-
able are much more limited. Only randomized 
trials and prospective cohort studies can be spe-
cifically designed to be certain this information 
is collected. Finally, occasionally one could col-
lect information on such an outcome in a spon-
taneous reporting system, if the report came 
from a patient or from a healthcare provider 
who became aware of the problem while the 
patient was visiting for medical care for some 
other problem. In the future, as already noted, 
new approaches using the internet (e.g., health 
websites with consumer posting boards) could 
potentially be used for hypothesis generation of 
events not coming to medical attention.

When the outcome under study is a delayed 
drug effect, then one obviously needs approaches 
capable of tracking individuals over a long 
period of time. The best approach for this are 
some of the provincial health databases in 
Canada. Drug data are available in some of these 
for more than 25 years, and there is little turno-
ver in the population covered. Thus, this is an 
ideal system within which to perform such long‐
term studies. Some health plans have even 
longer follow‐up time available. However, as 
health plans they suffer from substantial turno-
ver, albeit more modest after the first few years 
of enrollment. Commercial databases are simi-
lar. Any of the methods of conducting case–
control studies can address such questions, 
although one would have to be especially careful 
about the validity of exposure information col-
lected many years after the exposure. Medicaid 
databases have been available since 1973. 
However, the large turnover in Medicaid pro-
grams, due to changes in eligibility with changes 
in family and employment status, makes stud-
ies of long‐term drug effects problematic. 
Similarly, one could conceivably perform studies 

of long‐term drug effects using Prescription 
Event Monitoring, the pharmacy‐based medi-
cal record linkage systems, ad hoc cohort stud-
ies, or randomized clinical trials, but these 
approaches are not as well suited to this type of 
question as the previously discussed tech-
niques. Theoretically, one also could identify 
long‐term drug effects in a spontaneous report-
ing system. This is improbably, however, as a 
physician is unlikely to link a current medical 
event with a drug exposure long ago.

When the exposure under study is a new drug, 
then one is, of course, limited to data sources 
that collect data on recent exposures, and pref-
erably those that can collect a significant num-
ber of such exposures quickly. Ad hoc cohort 
studies or a randomized clinical trial are ideal 
for this, as they recruit patients into the study 
on the basis of their exposure. Spontaneous 
reporting is similarly a good approach, as new 
drugs are automatically and immediately cov-
ered, and in fact reports are much more com-
mon in the first three years after a drug is 
marketed. The major databases are next most 
useful, especially the commercial ones, as their 
large population base will allow one to accumu-
late a sufficient number of exposed individuals 
rapidly, so one can perform a study sooner. In 
some cases, there is a delay until the drug is 
available on the program’s formulary; however, 
that especially can be an issue with HMOs. The 
US government claims databases (Medicare and 
Medicaid) have a delay in availability of their 
data, which makes them less useful for the new-
est drugs. Ad hoc case–control studies, by what-
ever approach, must wait until sufficient drug 
exposure has occurred that it can affect the out-
come variable being studied.

Finally, if one needs an answer to a question 
urgently, potentially the fastest approach, if the 
needed data are included, is a spontaneous 
reporting system; drugs are included in these 
systems immediately, and an extremely large 
population base is covered. Of course, one can-
not rely on any adverse reaction being detected 
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in a spontaneous reporting system. The com-
puterized databases are also useful for these 
purposes, depending on the speed with which 
the exposures accumulate in them; of course, if 
the drug is not on the formulary in question, it 
cannot be studied. Modular analyses in Sentinel 
were designed for exactly this purpose (see 
Chapter 25). The remaining approaches are of 
limited use, as they take too long to address a 
question. One exception to this is Prescription 
Event Monitoring, if the drug in question hap-
pens to have been a subject of one of its studies. 
The other, and more likely, exception is case–
control surveillance, if the disease under study 
is available in adequate numbers in its database, 
either because it was the topic of a prior study or 
because there was a sufficient number of indi-
viduals with the disease collected to be included 
in control groups for prior studies.

 Examples

As an example, one might want to explore 
whether nonsteroidal anti‐inflammatory drugs 
(NSAIDs) cause upper gastrointestinal bleeding 
and, if so, how often. One could examine the 
manufacturer’s premarketing data from clinical 
trials, but the number of patients included is not 
likely to be large enough to study clinical bleed-
ing, and the setting is very artificial. Alternatively, 
one could examine premarketing studies using 
more sensitive outcome measures, such as 
endoscopy. However, these are even more artifi-
cial. Instead, one could use any of the databases 
to address the question quickly, as they have 
data on drug exposures that preceded the hospi-
tal admission. Some databases could only be 
used to investigate gastrointestinal bleeding 
resulting in hospitalization (e.g., Kaiser 
Permanente, except via chart review). Others 
could be used to explore inpatient or outpatient 
bleeding (e.g., Medicare, Medicaid, Canadian 
provincial databases). Because of confounding 
by cigarette smoking, alcohol, and so on, which 

would not be well measured in these databases, 
one also might want to address this question 
using case–control or cohort studies, whether 
conducted ad hoc or using any of the special 
approaches available, for example case–control 
surveillance or Prescription Event Monitoring. 
If one wanted to be able to calculate incidence 
rates, one would need to restrict these studies to 
cohort studies, rather than case–control stud-
ies. One would be unlikely to be able to use reg-
istries, as there are no registries, known to this 
author at least, which record patients with 
upper gastrointestinal bleeding. One would not 
be able to perform analyses of secular trends, as 
upper gastrointestinal bleeding would not 
appear in vital statistics data, except as a cause 
of hospitalization or death. Studying death from 
upper gastrointestinal bleeding is problematic, 
as it is a disease from which patients usually do 
not die. Rather than studying determinants of 
upper gastrointestinal bleeding, one would 
really be studying determinants of complica-
tions from upper gastrointestinal bleeding, dis-
eases for which upper gastrointestinal bleeding 
is a complication, or determinants of physicians’ 
decisions to withhold supportive transfusion 
therapy from patients with upper gastrointesti-
nal bleeding, for example age, terminal illnesses, 
and so on.

Alternatively, one might want to address a 
comparable question about nausea and vomit-
ing caused by NSAIDs. Although this question 
is very similar, one’s options in addressing it 
would be much more limited, as nausea and 
vomiting often do not come to medical atten-
tion. Other than a randomized clinical trial, for 
a drug that is largely used on an outpatient basis 
one is limited to systems which request infor-
mation from patients, or ad hoc cohort studies.

As another example, one might want to follow 
up on a signal generated by the spontaneous 
reporting system, designing a study to investi-
gate whether a drug which has been on the mar-
ket for, say, five years is a cause of a relatively 
rare condition, such as allergic hypersensitivity 
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reactions. Because of the infrequency of the dis-
ease, one would need to draw on a very large 
population. The best alternatives would be 
Medicare or Medicaid databases, health plans, 
commercial databases, case–control studies, or 
Prescription Event Monitoring. To expedite 
this hypothesis‐testing study and limit costs, it 
would be desirable if it could be performed 
using existing data. Prescription Event 
Monitoring and case–control surveillance 
would be excellent ways of addressing this, but 
only if the drug or disease in question, respec-
tively, had been the subject of a prior study. 
Other methods of conducting case–control 
studies require gathering exposure data de novo.

As a last example, one might want to follow 
up on a signal generated by a spontaneous 
reporting system, designing a study to investi-
gate whether a drug which has been on the mar-
ket for, say, three years is a cause of an extremely 
rare but serious illness, such as aplastic anemia. 
One’s considerations would be similar to those 

just described, but even Medicare or Medicaid 
databases would not be sufficiently large to 
include enough cases, given the delay in the 
availability of their data. One would have to 
gather data de novo. Assuming the drug in ques-
tion is used mostly by outpatients, one could 
consider using Prescription Event Monitoring 
or a case–control study.

 Conclusion

Once one has decided to perform a pharma-
coepidemiologic study, one needs to decide 
which of the resources described in the earlier 
chapters of this book should be used. By 
 considering the characteristics of the pharma-
coepidemiologic resources available as well as 
the characteristics of the question to be 
addressed, one should be able to choose those 
resources that are best suited to addressing the 
question at hand.
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 Historical Background

Interest in drug utilization studies began on 
both sides of the Atlantic in the early 1960s. 
There was recognition of the virtual explosion 
in the marketing of new drugs, the wide varia-
tions in the patterns of drug prescribing and 
consumption, growing concern about delayed 
adverse effects, and increasing concern about 
drug expenditure, as reflected in the increase in 
both the monetary sales and the volume of drug 
prescriptions [1,2]. However, the development 
of pharmacoepidemiologic methods can be 
characterized by two different lines of work 
(drug utilization studies as performed in Europe 
versus pharmacoepidemiology as performed in 
the US), approaching each other from opposite 
directions, strongly influenced by variations in 
availability and accessibility of data sources.

Drug utilization studies at the national and 
international levels have been more developed 
in Europe, and pioneered by the Nordic coun-
tries, Scotland, the Czech Republic, and 
Northern Ireland. Under the auspices of the 
World Health Organization (WHO) Regional 

Office for Europe, a Drug Utilization Research 
Group was established in the 1970s to stimulate 
interest in studies comparing drug utilization 
between countries using a common methodol-
ogy [1]. Factors that contributed greatly to this 
line of development, primarily in the countries 
of Northern Europe, have been the relatively 
small size of the populations involved, the lim-
ited number of pharmaceutical products on the 
market (2000–3000 in Norway and Sweden), 
and the availability of centralized statistics on 
wholesaler sales or dispensed prescriptions [1]. 
The early drug utilization studies were con-
ducted during a time when data were not 
 computerized and when there was no uniform 
classification system for medicines. However, 
with the growth of registers and computer tech-
nology, the size of the population is less of an 
issue and studies can be conducted on large 
populations. During the last decades, national 
databases with patient‐level data on prescrip-
tion medicines have been established in most 
European countries, but there is still a lack of 
comprehensive databases on medicines used in 
inpatient care [3,4].
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Drug utilization studies in Europe were origi-
nally predominantly quantitative, describing 
and comparing patterns of utilization of specific 
groups of drugs according to geographic regions 
and time. For example, international compara-
tive studies have documented wide variations in 
the utilization of antidiabetic [1,5], psychotropic 
[6], nonsteroidal anti‐inflammatory drugs 
(NSAIDs) [7,8], antihypertensive [1,6], antibi-
otic [9], and lipid‐lowering drugs [10] in 
European and other countries. Longitudinal 
studies on the utilization of antidiabetic and 
antihypertensive drugs in some of these coun-
tries indicate that the differences cannot be 
explained only by differences in the prevalence 
of disease [11,12], and studies on, for instance, 
lipid‐lowering agents have shown that the large 
increases in statin utilization were not associ-
ated with a subsequent decrease in coronary 
heart disease (CHD) mortality [13]. This illus-
trates that drug utilization patterns are com-
plex  and dependent on a range of factors. 
Furthermore, there is substantial room for 
improvement in the quality of medicines use; 
that is, how patients use medicines.

National studies have also revealed striking 
variations in drug utilization between regions 
and communities within the same country [1,6]. 
However, most of these studies have been 
descriptive and only a few of them have 
addressed the relation between variations in 
drug sales and treatment outcomes [14]. Since 
many of the studies have an ecologic design, 
examining associations between exposure and 
outcome in populations rather than individuals, 
they cannot directly be interpreted as associa-
tions at the level of the individual.

In Canada and the US, drug utilization 
research developed on a smaller scale, primarily 
at institutional or local health program levels. 
Factors that have hindered studies at a national 
level were originally the size of the population, 
the number of pharmaceutical products on the 
market (20 000–30 000), and the lack of an all‐
encompassing pharmaceutical data collection 

system [15]. Data on drug use are more readily 
available from health plans, health delivery insti-
tutions, and public healthcare programs. For 
example, early studies of physician prescribing 
showed that prescribing patterns varied greatly 
among physicians, according to their place and 
type of practice and the community in which 
they prescribed [16]. North American drug utili-
zation research placed greater emphasis on stud-
ying the quality of physician prescribing 
practices, in particular with respect to antibiot-
ics, in both hospital and outpatient  settings  
[17–19]. This was followed by studies that tar-
geted medications for cardiovascular diseases 
[20–23]. Studies describing national patterns of 
drug utilization and expenditures in the US are 
scarce [15], while those addressing the use of 
various types of medications, including herbal 
and other natural products, in adults and chil-
dren are performed more often [24–27].

Drug utilization research has also developed 
in Latin America, Australia, Asia, and Africa. In 
Latin America, a drug utilization research group 
(the Latin American Group for Drug Utilization, 
DURG‐LA) was founded in 1991 [28]. Over the 
years Latin American drug utilization research-
ers have conducted a wide range of studies on 
rational use of medicines, often using primary 
data collection in people’s homes, in pharma-
cies, or in health facilities. Secondary data on 
drug utilization have traditionally been frag-
mented and difficult to access in Latin America 
[29]. There has been a rapid development of 
drug utilization research in low‐ and middle‐
income countries. In the early 1990s, the WHO 
and the International Network for the Rational 
Use of Drugs (INRUD) published a simple 
 sampling method and a standard set of indica-
tors to describe core aspects of prescribing 
and  dispensing [30]. The first International 
Conference on Improving the Use of Medicines 
(ICIUM), held in Chiang Mai, Thailand, in 1997, 
systematically reviewed interventions to pro-
mote rational drug use in developing countries 
[30]. Substantial problems of irrational use of 
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medicines were identified and some key areas 
were highlighted for future research, such 
as interventions to improve the use of antibiot-
ics and antimalarial drugs, methods to assess the 
impact of Drugs and Therapeutic Committees, 
and the impact of financial incentives on drug 
utilization patterns. During the last decade, we 
have witnessed a rapid growth of large prescrip-
tion databases in Asia [31]. It is likely that these 
will further contribute to the globalization of 
drug utilization research.

 Definitions

Drug utilization research can be defined as “an 
eclectic collection of descriptive and analytical 
methods for the quantification, the understand-
ing and the evaluation of the processes of 
 prescribing, dispensing and consumption of 
medicines and for the testing of interventions to 
enhance the quality of these processes” [32]. 
This definition includes both quantitative and 
qualitative research methods.

The WHO defined drug utilization as the 
“marketing, distribution, prescription and use 
of drugs in a society, with special emphasis on 
the resulting medical, social, and economic con-
sequences” [33]. Some authors have suggested 
that the development of drugs relative to health 
priorities should also be included in studies of 
drug utilization [34]. This broad definition dif-
fers from the narrower one that appeared in the 
North American literature, “the prescribing, 
dispensing and ingesting of drugs” [35,36].

In the US, drug utilization review (DUR), or 
drug use evaluation (DUE), refers to an author-
ized, structured, ongoing review of prescribing, 
dispensing, and use of medication (see 
Chapter 19). It involves a comprehensive review 
of patients’ prescription and medication data 
before, during, and/or after dispensing to ensure 
appropriate medication decision making and 
positive patient outcomes. As such, DUR is a 
quality assurance measure [37].

In all of these definitions, recognition is 
granted, explicitly or implicitly, of the nonclin-
ical (e.g., socio‐anthropological, behavioral, 
and economic) factors influencing drug utili-
zation. Studies of the process of drug utiliza-
tion focus on the factors influencing and 
events involved in the prescribing, dispensing, 
administration, and taking of medication. 
However, the broader definitions of the WHO, 
the Academy of Managed Care Pharmacy 
(AMCP), and the European Drug Utilization 
Group go beyond the “process” of drug utiliza-
tion, which is the movement of drugs along 
the therapeutic drug chain, to include consid-
eration of the various outcomes, such as use of 
drugs of doubtful or no clinical efficacy, and 
the quality of drug use [38]; that is, the degree 
to which it adheres to established norms. 
According to these definitions, studies of drug 
utilization include not only studies of the 
medical and nonmedical factors influencing 
drug utilization, but also the effects of drug 
utilization at all levels, from the individual 
patient to the society. Studies of how drug uti-
lization relates to the effects of drug use, ben-
eficial or adverse, are usually labeled analytic 
pharmacoepidemiologic research. These two 
aspects of the study of drug utilization have 
developed along parallel lines, but may now be 
regarded as interrelated and part of a contin-
uum of interests and methods.

As stated by Lunde and Baksaas [39], the gen-
eral objectives of drug utilization studies are:

problem identification and problem analysis 
in relation to importance, causes, and conse-
quences; establishment of a weighted basis 
for decisions on problem solution; assess-
ment of the effects of the action taken. These 
objectives are relevant to problems and 
 decision making throughout the drug and 
health chain. The approaches may vary 
according to the purpose and the needs of the 
users. Those include the health authorities, 
the drug manufacturers, the academic and 
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clinical health professionals, social  scientists, 
and economists as well as the media and 
the consumers.

Since many drug utilization studies have a 
strong focus on health policy, the discipline may 
be seen as the bridge between pharmacoepide-
miology and health services research. It is also 
closely connected to clinical pharmacology, 
with the principal aim of drug utilization 
research being to facilitate the safe and effective 
use of medicines in populations [40].

This chapter focuses on the current status of 
descriptive epidemiologic approaches to the 
study of the processes of drug utilization and 
analytic studies on factors associated with 
drug  utilization patterns. The epidemiologic 
approaches to the study of the beneficial and 
harmful effects of drug utilization are covered 
elsewhere in this book.

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

In order for a drug to be marketed, it must be 
shown that it can effectively modify the natural 
course of disease or alleviate symptoms when 
used appropriately, for the right patient, with 
the right disease, in the proper dosage and 
 intervals, and for the appropriate length of time. 
Used inappropriately, however, drugs often fail 
to live up to their potential, with consequent 
morbidity and mortality and waste of resources.

Drug utilization research describes the extent 
and pattern, quality, determinants, and out-
comes of drug exposure. Pattern of use covers 
the extent, profiles, and trends in drug use and 
costs over time. It gives answers and helps 
understand how drugs are used in terms of inci-
dence, prevalence, and trends over time. Quality 
of use is determined using audits to compare 
actual use to national prescription guidelines or 

local drug formularies. Indicators of quality of 
drug use may include the choice of drug (adher-
ence with the guideline or formulary), drug cost 
(compliance with budgetary recommenda-
tions), drug dosage (awareness of interindivid-
ual variations in dose requirements and age 
dependence), awareness of drug interactions 
and adverse drug reactions, and the proportion 
of patients who are aware of or unaware of the 
costs and benefits of the treatment.

Drug utilization research may generate hypoth-
eses for further investigation by comparing drug 
utilization patterns and costs between different 
regions or time periods and by comparing 
observed patterns of drug use with current rec-
ommendations and guidelines for the treatment 
of a certain disease. These considerations should 
include both underuse and overuse of drugs. 
Determinants of use include user characteristics 
(e.g., sociodemographic parameters and attitudes 
towards drugs), prescriber characteristics (e.g., 
specialty, education, and factors influencing 
therapeutic decisions), and drug characteristics 
(e.g., therapeutic properties and cost).

A number of studies have addressed the fac-
tors that influence prescribing decision making, 
including education, advertising, colleagues, 
working circumstances, personality, control and 
regulatory measures, demands from society and 
patients, and cultural factors [41–43]. Some 
controversy exists concerning the relative 
impact of the various sources of influence on 
prescribing behavior, particularly the influence 
of pharmaceutical advertising. In studies of 
 hospital practice the following factors have been 
stated to contribute to inappropriate prescrib-
ing: simple errors of omission; physician 
 ignorance of cost issues in prescribing; failure 
to review medication orders frequently and crit-
ically; inability to keep up to date with develop-
ments in pharmacology and therapeutics; 
insulation of physicians and patients from cost 
considerations because of third‐party coverage; 
and lack of communication between physicians 
and pharmacists [44].
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Cultural factors are known to play a role in 
 illness behavior and drug prescribing/consump-
tion. A popular model describing cultural 
 differences that may also influence drug pre-
scribing is Hofstede’s model of cultural dimen-
sions. Five cultural dimensions are defined by 
which countries may be scored: power distance, 
individualism, masculinity, uncertainty avoid-
ance, and long‐term orientation. Power distance 
refers to the degree of hierarchy in a country and 
the extent to which the less powerful members 
of organizations and institutions accept and 
expect that power is distributed unequally. 
Individualism refers to the prevalence of the 
interests of an individual versus the group and 
the degree to which individuals are integrated 
into groups. Masculinity refers to a culture in 
which the emotional roles of the two genders are 
clearly separated. The assertive, competitive 
pole has been called “masculine” and the  modest, 
caring pole “feminine.” Uncertainty avoidance 
deals with a societal tolerance for uncertainty 
and ambiguity. It indicates to what extent a cul-
ture programs its members to feel either uncom-
fortable or comfortable in unstructured 
situations. Long‐term orientation values are 
thrift and perseverance, while short‐term orien-
tation values are respect for tradition,  fulfilling 
social obligations, protecting one’s “face” [45]. It 
has been found that power distance and uncer-
tainty avoidance are cultural dimensions associ-
ated with higher antibiotic use, suggesting that 
hierarchical societies use more antibiotics (diffi-
culties dealing with authority), whereas more 
egalitarian societies use fewer, and in societies 
that tend to avoid uncertainty antibiotics have a 
defensive function (as the prescriber and the 
patient aim for certainty) [46,47].

Drug utilization research enables assessment 
of whether interventions to improve drug use 
had the desired impact, as well as the extent to 
which other factors influenced the pattern of 
use, including regulatory changes, reimburse-
ment policy, pharmaceutical industry promo-
tional activities, and others.

Intervention strategies aimed at improving 
prescribing behavior in hospital as well as pri-
mary care settings have been critically reviewed 
[48–51]. These are discussed in Chapter 19 and 
include dissemination of printed educational 
materials alone; multimedia warning cam-
paigns; drug utilization audit followed by mailed 
or interactive feedback of aggregated results; 
group education through lectures or rounds; 
use of computerized reminder systems; use of 
opinion leaders to informally endorse or sup-
port specific behavior change interventions; 
one‐to‐one education initiated by a drug utiliza-
tion expert; required consultation or justifica-
tion prior to the use of specific drugs; and use of 
clinical guidelines.

Drug utilization research addresses the medi-
cal, social, and economic aspects of drug use 
[32,52]. Even when used appropriately, drugs 
have the potential to cause harm. However, a 
large proportion of their adverse effects is pre-
dictable and preventable [53,54]. Adverse drug 
reactions and drug nonadherence are important 
causes of hospital admissions in both adult and 
pediatric patients [54–56] (see also Chapter 38). 
Studies in the US have estimated that adverse 
drug events account for up to 28% of emergency 
department visits and 25% of ambulatory care 
encounters; up to 70% of these visits are deemed 
preventable [57]. Similar figures are also found 
in the UK and Sweden [54,58,59].

Many of these drug‐related admissions may 
be preventable through the application of 
existing principles and data [60,61]. The situa-
tions that may lead to preventable adverse drug 
reactions and drug‐induced illness include the 
use of a drug for the wrong indication; the use 
of a potentially toxic drug when one with less 
risk of toxicity would be just as effective; the 
concurrent administration of an excessive 
number of drugs, thereby increasing the pos-
sibility of drug–drug interactions (see 
Chapter 40); the use of excessive doses, espe-
cially for pediatric or geriatric patients; and 
continued use of a drug after evidence becomes 



Studies of Drug Utilization380

available concerning important toxic effects. 
Many contributory causes have been proposed: 
excessive prescribing by the physician; failure 
to define therapeutic endpoints for drug use; 
the increased availability of potent prescrip-
tion and nonprescription drugs; increased 
public exposure to drugs used or produced 
industrially that enter the environment; the 
availability of illicit preparations; and prescrib-
ers’ lack of knowledge of the pharmacology 
and pharmacokinetics of  prescribed drugs 
[53]. Increased morbidity or mortality due to 
medication error [62] (see Chapter  41), poor 
patient adherence [63] (see Chapter  38), dis-
continuation of therapy [64–66], and problems 
in communication resulting from modern‐day 
fragmentation of patient care are also to be 
considered (see Chapter 39).

Medication underdosing and underpre-
scribing are often overlooked and can result in 
poor patient outcomes. The failure of physi-
cians to prescribe an effective drug or effective 
doses for a treatable disease is a significant 
concern. For example, in a geographic area of 
Sweden with a higher suicide rate than average 
for the country, sales of antidepressant drugs 
were about half of those in other areas [67]. 
In  the US, the underuse of beta‐blockers in 
elderly patients with myocardial infarction 
was associated with an increased risk of death 
[20]. Other studies have documented signifi-
cant underuse of antithrombotic drugs 
[21,68,69], lipid‐lowering therapy [66,70–72], 
beta‐blockers [22], aspirin [73], and thrombo-
lytics [23] in patients with appropriate indica-
tions, but where outcomes were not assessed. 
In addition, underuse of beneficial medica-
tions may have other reasons, such as lack of 
access due to economic reasons or geographic 
access to the pharmacy and availability of 
 prescription drugs [74–76].

Therapeutic practice, as recommended by 
 relevant professional bodies, academic research-
ers, and opinion leaders, is initially based pre-
dominantly on data from premarketing  clinical 

trials. However, the comparative effectiveness 
(i.e., the effectiveness of one medication com-
pared to another medication in the real‐world 
setting; see Chapter 26) and safety of new agents 
cannot be known with certainty until a drug has 
been on the market for many years or been 
extensively used. Complementary data from 
clinical experience and studies in the postmar-
keting period may result in changes in indica-
tion (e.g., a specific antibiotic no longer being a 
choice due to antimicrobial resistance), treat-
ment duration (e.g., short‐course antibiotic 
treatment of community‐acquired pneumonia 
in children under 5 years of age), regimen (e.g., 
changes due to tolerance to oral hypoglycemic 
agents), precautions and contraindications (e.g., 
gastrointestinal bleeding with NSAIDs), and 
safety‐based withdrawals [77,78]. For instance, 
when serious adverse reactions or special prob-
lems occur, particularly those that may lead to 
death or serious injury, a prominently displayed 
boxed warning, the so‐called black box, is added 
to the US Food and Drug Administration (FDA) 
labeling of drugs or drug products. As therapy 
recommendations are updated through guide-
lines and other approaches, drug utilization 
studies must address the relationship between 
therapeutic practice as recommended and 
actual clinical practice [79].

 Methodologic Problems 
to Be Solved by 
Pharmacoepidemiologic 
Research

There are several methodologic issues in drug 
utilization research. Most of them are the same 
as for other pharmacoepidemiologic studies 
and are well described in other parts of the 
book. In this section, some specific issues of 
importance related to the different study designs 
in drug utilization are described, along with an 
overview of the available data sources.
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Study Designs

There are many types of drug utilization stud-
ies. Research methods in drug utilization can be 
either quantitative or qualitative. Quantitative 
research deals with quantities; data are pre-
sented in numeric figures in categories or 
rank  order and measured in various units. 
Quantitative research usually starts with a pre-
defined hypothesis or theory, followed by data 
collection to provide an answer to the research 
questions formulated. Associations between 
variables and differences between different 
 categories may be studied by using different 
 statistical methods. Qualitative research, on the 
other hand, refers to the examination, analysis, 
and interpretation of observations for the pur-
pose of discovering underlying meanings and 
patterns of relationships [80]. Qualitative stud-
ies include information that is not in numeric 
form collected through focus group discussions, 
open‐ended questionnaires, in‐depth inter-
views, and observations. Such studies may be 
used to explore the views of prescribers, dis-
pensers, and patients in dealing with medicines. 
Consequently, they are important to gain a 
deeper understanding of various phenomena in 
drug utilization. Qualitative drug utilization 
studies are not further described in this chapter. 
For further reading on qualitative studies, there 
is a separate chapter on qualitative methods in 
drug utilization research in the handbook on 
drug utilization research [81].

The simplest quantitative drug utilization stud-
ies are descriptive. Such studies identify patterns 
or trends in drug utilization, without any attempt 
to draw conclusions about factors influencing 
drug use. Objectives of descriptive studies may be 
to quantify the present state, developmental 
trends, and time course of drug usage at various 
levels of the healthcare system, whether national, 
regional, local, or institutional. Routinely com-
piled drug statistics or drug utilization data that 
are the result of such studies can be used to esti-
mate drug utilization in populations by age, sex, 

social class, morbidity, and other characteristics, 
and to identify areas of possible over‐ or underu-
tilization. They also can be used as denominator 
data for calculating rates of reported adverse drug 
reactions in the context of spontaneous reporting 
systems (see Chapter 10); to monitor the utiliza-
tion of specific therapeutic categories where par-
ticular problems can be anticipated (e.g., narcotic 
 analgesics, hypnotics and sedatives, and other 
psychotropic drugs); or as markers for very crude 
estimates of disease prevalence (e.g., antiparkin-
sonian drugs for Parkinson’s disease); to plan for 
drug importation, production, and distribution; 
and to estimate drug expenditures [34].

Descriptive drug utilization studies may also 
address quality of drug prescribing, dispensing, 
or use. In these studies, explicit predetermined 
criteria are created against which aspects of the 
quality, medical necessity, and appropriateness of 
drug prescribing may be compared. Drug use cri-
teria may be based on such parameters as indica-
tions for use, daily dose, or length of therapy. 
Other possible criteria for poor drug prescribing 
include the failure to select a more effective or 
less hazardous drug if available, the use of a fixed 
combination drug when only one of its compo-
nents is justified, or the use of a costly drug when 
a less costly equivalent drug is available [82]. In 
North America, these studies are known as drug 
utilization review (DUR) studies. For example, a 
large number of studies in North America 
have  documented the extent of inappropriate 
prescribing of drugs, in particular antibiotics, 
and the associated adverse clinical, ecologic, and 
 economic consequences [17–19].

Analytic drug utilization studies aim to gain a 
deeper understanding of the explanatory factors 
behind utilization patterns. The most robust 
analytic study designs are cohort studies or 
case–control studies. In traditional pharma-
coepidemiology, such studies are used to assess 
the effectiveness or safety of drug therapy, where 
drug utilization is the exposure and clinical 
events constitute the outcome. In analytic drug 
utilization studies, drug exposure is the outcome 
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and the explanatory factors behind drug use 
constitute the exposure. The same methods for 
matching or confounder adjustment could thus 
be applied as for cohort and case–control stud-
ies used to assess safety or effectiveness. These 
methods are well described in other chapters of 
this book (see Chapter  43). Some examples of 
cohort studies in drug utilization include persis-
tence studies, where discontinuation is the out-
come to drug treatment [83–85]. Theoretically, 
case–control studies may also be conducted, 
selecting subjects on the basis of whether they 
have (or had) been prescribed or dispensed the 
drug of interest or not. An investigation of previ-
ous exposure to a factor might reveal whether 
there is an association between the drug utiliza-
tion and previous exposure. Such studies are 
scarce in the literature, however.

In the absence of individual‐level data to link 
drug utilization to other factors, ecologic studies 
could be conducted. In these studies, group‐level 
data on dispensed or prescribed drugs are com-
pared with other datasets, either for different 
geographic areas or population groups at a cer-
tain point in time or for the same population at 
different times. Some examples of ecologic stud-
ies in drug utilization research include the asso-
ciations between antidepressant use and suicide 
[86]; respiratory medication prescribing, air pol-
lution, and deprivation [87]; coronary heart 
mortality and statin use [88]; and unemploy-
ment rates and prescription drug utilization pat-
terns [89]. Ecologic studies are simple to conduct, 
but they have limited value since no individual 
linkage has been conducted between exposure 
and outcome. Consequently, the correlations 
found in these studies cannot be interpreted as 
associations at the individual patient level.

Types of Data on Drug Utilization

A considerable amount of drug use data may 
be obtainable or is already available, the useful-
ness of which depends on the question at hand. 
All the data have certain limitations in their 

direct clinical relevance [90]. For quantitative 
studies, the ideal is a count of the number of 
patients in a defined population who ingest a 
drug of interest during a particular time frame, 
with a certain diagnosis or indication. The data 
available are only approximations of this for 
reasons that are described shortly, and thereby 
raise many questions about their presentation 
and interpretation.

Since most statistics on drug consumption 
were compiled for administrative or commer-
cial reasons, the data were usually aggregated 
and expressed in terms of volumes or expendi-
ture. First, data on drug utilization can be avail-
able as total costs or unit cost, such as cost per 
package, tablet, dose, or treatment course. 
Although such data may be useful for measur-
ing and comparing the economic impact of drug 
use, these units do not provide information on 
drug exposure in the population. Moreover, 
data on expenditure are influenced by price 
fluctuations over time, distribution channels, 
inflation, exchange rate fluctuations, price con-
trol measures, and so on [91].

Volume data may be available from manufac-
turers, importers, or distributors as the overall 
weight of the drug that is sold or the unit vol-
ume sold; that is, the number of tablets, cap-
sules, or doses sold. However, tablet sizes vary, 
making it difficult to translate weight into even 
the number of tablets. Prescription quantities 
also vary, so it is difficult to translate number of 
tablets into the number of exposed patients.

The number of prescriptions (either written 
or dispensed) has traditionally been one of the 
most frequently used measures in drug utiliza-
tion studies. This measure may have some 
 relevance in studies of medicines given for short 
treatment courses, such as antibiotics. For 
 medicines used for chronic treatment the value 
is limited, since different patients receive a dif-
ferent number of prescriptions in any given 
time interval, and the amount allowed to pre-
scribe or dispense on a prescription may vary 
substantially between countries. To translate 
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the number of prescriptions into the number of 
patients, one must divide by the average num-
ber of prescriptions per patient, or else distinc-
tions must be made between first prescriptions 
and refill prescriptions. The former is better for 
studies of new drug therapy, but will omit indi-
viduals who are receiving chronic drug therapy. 
Additional problems may be posed by differ-
ences in the number of distinct drugs written in 
each prescription. Finally, it should be noted 
that these aggregate measures of prescribed or 
dispensed volumes represent approximate esti-
mates of true consumption. The latter is ulti-
mately modified further by the patients’ actual 
drug intake; that is, their degree of adherence.

In the context of DUR, drug utilization data 
may be presented in the form of prescribing 
profiles for individual physicians or practices 
according to the number, monetary value, and 
even type of prescription ordered during a given 
time period. Pharmacies may also be ranked 
according to the number, cost, and type of 
 prescription dispensed for similar intervals. 
However, these gross measures of prescription 
activity and drug use are limited in their capac-
ity to reflect the wide spectrum of specific prob-
lems in prescribing. For example, they ignore 
problems such as the wrong drug for the indica-
tion, the wrong drug for the patient, the wrong 
dose, the wrong dosing interval, and the wrong 
duration of therapy. Also, one’s deviation from 
the practices of the mean practitioner is not a 
good measure of one’s “appropriateness” as a 
provider. Purely quantitative data characteriz-
ing prescribers as “high” or “low” may be driven, 
for example, by the number of patients seen by 
the physician and the type and severity of the 
patients’ diseases. Data presented by pharmacy 
are even less informative, since patients may be 
dispensed prescriptions from an unknown 
range of different healthcare providers. 
However, for studies of medicine use in hospi-
tals and studies of over‐the‐counter (OTC) 
products, pharmacy sales data may provide 
important information. Finally, it is important 

to emphasize that data on expenditures are not 
necessarily indicative of appropriateness, 
whether high or low relative to the mean.

In recent years, large patient‐level prescrip-
tion databases have become increasingly avail-
able [3]. They may contain all dispensed 
prescription drugs regardless of the reimburse-
ment status and irrespective of who the pre-
scriber is. These data are also closer to 
estimating actual drug exposure compared to 
prescribing data from electronic health 
records. However, there may be problems of 
poor sensitivity, with patients having other 
ways of receiving medications (e.g., drugs pur-
chased abroad, OTC medicines, or drugs “bor-
rowed” from relatives), or poor specificity, 
with patients not taking the drugs they have 
purchased. There are many  useful methods 
available for studying drug utilization using 
individual data on dispensed prescriptions. 
Based on experiences from Denmark, Hallas 
and Støvring discussed three nonspecific 
 analytic templates that could be applied to 
individual‐level data on dispensed prescrip-
tions [92]. Such methods include the ratio of 
prevalence odds to incidence rate to estimate 
the average duration for drug use, the Lorenz 
curve, and the waiting time distribution. The 
Lorenz curve expresses skewness in drug use. 
It shows the proportion of drug use that is 
accounted for by percentiles of drug users, 
ranked according to their volume of drug 
intake. It may express the extent of heavy users 
as well as sporadic small‐volume users and 
may, for example, be used to screen for an 
unsuspected abuse potential of a drug. 
Figure  18.1 illustrates the use of insulin in a 
defined population: 50% of the users used 76% 
of the volume [92].

The waiting time distribution is a frequency 
distribution of first occurrences of drug use 
within a time window (Figure 18.2). It forms the 
basis for estimates of prevalence and incidence 
rate. Furthermore, it displays visual correlates of 
epidemiologic prescribing parameters such as 
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period prevalence, point prevalence, incidence 
rate, duration, prescription renewal rate, relapse 
of treatment, and seasonality.

From a quality‐of‐care perspective, to inter-
pret drug utilization data appropriately, there is 
a need to relate the data to the reasons for the 
drug usage. Data on morbidity and mortality 
may be obtained from national registries 
( general or specialized); national samples where 
medical service reimbursement schemes oper-
ate; ad hoc surveys and special studies; hospital 
records; physician records; and patient or 
household surveys. “Appropriateness” of use 
must be assessed relative to indication for 
 treatment, patient characteristics (age‐related 

physiologic status, sex, habits), drug dosage 
(over‐ or underdosage), concomitant diseases 
(which might contraindicate or interfere with 
the chosen therapy), and the use of other drugs 
(interactions). However, no single source is 
generally available for obtaining all of this infor-
mation. Moreover, because of incompleteness, 
the medical record may not be a very useful 
source of drug use data [93,94].

Generally agreed standards or criteria for 
appropriateness, based on currently available 
knowledge, are essential elements of the DUR 
process. These criteria must be based on scien-
tifically established evidence; updated regularly 
according to new scientific evidence; explicitly 
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Figure 18.1 Lorenz curve for insulin 
use. The graph shows the proportion 
of insulin use that is accounted for by 
percentiles of insulin users, ranked 
according to their annual insulin 
consumption. Data from county of 
Funen, Denmark, 2003. Source: Hallas J, 
Støvring H. Templates for analysis of 
individual‐level prescription data. 
Basic Clin Pharmacol Toxicol 2006; 
98(3): 260–5, Figure 1. Reproduced 
with permission of John Wiley & Sons.
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stated (to ensure consistency in evaluations); 
and applicable to a given setting. The develop-
ment and standardization of these criteria are 
major undertakings. Finally, for DUR programs, 
even the strategy to be used to optimize one’s 
intervention is still unclear.

Data Sources

A large variety of data sources can be used for 
drug utilization research. They may provide 
either primary or secondary data [95]. Primary 
data sources refer to original data collected by 
the investigator conducting the research for a 
specific purpose [96]. Secondary data sources 
include already collected data; that is, data 
which have not been usually generated for a 
specific research purpose but can be adapted to 
the analysis of a new research question [95].

Drug utilization studies have been conducted 
using a large variety of secondary data sources, 
including sales registries, procurement records, 
reimbursement/claims databases, medical 
records, pharmacy dispensing records, phar-
macy stock records, disease‐based registries, 
and population health surveys. The availability 
of such data varies substantially between coun-
tries, but there has been a large growth in access 
to them over time everywhere. The ongoing 
digitalization of healthcare brings further 
opportunities to access large amounts of clinical 
data for DUR. Some of these data may be 
unstructured and tricky to analyze, but new 
techniques and methods have been developed 
to address these challenges.

In the earlier editions of this book, we listed 
some diagnosis‐linked and non‐diagnosis‐linked 
computer databases for drug utilization studies, 
as well as providing an overview of historical 
databases important for the development of 
pharmacoepidemiology and drug utilization 
research. In this edition, electronic databases are 
discussed in separate chapters (Chapters 11–14) 
and here we briefly give an overview of some 
types of sources that may be used. A more 

 comprehensive overview of secondary data 
sources may be found in a recent textbook on 
drug utilization research [97].

Drug utilization data may be collected at any 
point in the pharmaceutical supply chain, start-
ing with the manufacturer, passing through 
wholesalers and pharmacies, and ending with 
patients. Aggregate level sales data (from manu-
facturer/wholesaler/pharmacy) or purchases 
(from purchaser/payer, e.g., hospitals or com-
munity pharmacies) are regularly collected in 
most countries. Such data do not contain any 
information on number of patients, or any clini-
cal data. Consequently, these data have limited 
value in analytic studies on the effectiveness and 
safety of medicine use. Still, they may be valuable 
in studies assessing quality of medicine use or to 
assess the effect on interventions in health sys-
tems. They may also be used in ecological stud-
ies comparing utilization patterns with other 
data, generating hypotheses to be studied with 
more robust study designs. At pharmacies, drug 
dispensing data may be recorded at an individual 
patient level. These data may subsequently be 
collected by insurers or reimbursement agen-
cies. Such patient‐level databases provide valua-
ble sources for drug utilization, with and without 
linkage to other clinical information. Finally, 
healthcare providers are another important 
source of data on drug utilization studies, with 
information on drugs prescribed to patients 
available in their health records. Healthcare pro-
viders may also report information on selected 
drugs to disease‐based patient registries.

Aggregated sales data have been used in drug 
utilization research for decades. Today, most 
countries keep some records of drug sales, at a 
regional or national level. These data can be 
obtained from health authorities [4,5] as well 
as from private companies such as IQVIA, a 
well‐known commercial source of drug utiliza-
tion data. An overview of European data-
bases  performed by Pharmacoepidemiological 
Research on Outcomes of Therapeutics by a 
European ConsorTium (PROTECT) indicates 
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that  aggregate sales data are widely collected 
across Europe [3,4]. In the US, the IQVIA 
National Sales Perspective database docu-
ments sales data for prescription drugs, OTC 
products, and some self‐administered diagnos-
tic products. Data collected include volume of 
dollars and quantities moving from manufac-
turers in various outlets within all states. In 
Canada, the IQVIA CompuScript database 
contains data on prescriptions sold from about 
two‐thirds of Canadian retail pharmacies. 
Sales data collected by authorities or by com-
panies such as IQVIA may be the only second-
ary source available to studies conducted in 
regions where other databases are not yet 
established or not accessible.

Dispensing data containing unique identifiers 
of patients are regularly collected at pharma-
cies. Since patients visit a pharmacy to fill their 
prescriptions, such data provide a more appro-
priate estimation on actual drug exposure than 
prescribing data from electronic health records. 
However, it is important to acknowledge that 
patients may also have other ways of obtaining 
medications (e.g., purchasing abroad, receiving 
in inpatient care, or “borrowing” from relatives), 
Furthermore, even though the patient claimed 
the prescription, it is uncertain whether the 
patient has taken the medicine as indicated by 
the prescriber. In Europe, the first patient‐level 
research databases were established in the late 
1960s to early 1970s [76]. These databases were 
based on prescriptions dispensed at the phar-
macies and primarily used to study drug utiliza-
tion. They were too small for drug safety studies. 
In the 1980s and 1990s larger databases were 
created, also based on administrative data, such 
as prescriptions dispensed at pharmacies, in 
Scotland [40], Denmark [98], Italy [99], and the 
Netherlands. An example of such a dispensing 
database is the Swedish Prescribed Drug 
Register, established in 2005, containing data 
with unique patient identifiers for the entire 
population of 10 million inhabitants for all dis-
pensed prescriptions in ambulatory care [100]. 

This registry includes data on the patient 
(age, sex, personal identification number, place 
of residence), dispensed drug (Anatomic 
Therapeutic Chemical [ATC] classification 
code, defined daily dose [defined shortly] num-
ber, prescribed dose, package, reimbursement, 
date of prescribing and dispensing), prescriber 
(profession, specialty, workplace), and phar-
macy (identifier, location). It can be linked to 
many other registers including outcome data 
and many quality registers with clinical data for 
different diseases. A recent review summarized 
the scientific output from the register after the 
first decade [101].

In many countries, third‐party payers (public 
or private) collect medication data from phar-
macies for billing purposes. Drug reimburse-
ment/claims databases typically contain unique 
patient identifier, prescriber (either individual 
prescriber and/or clinic/practice), pharmacy 
dispensing the drug, drug name and ATC code, 
strength, dosage form, quantity dispensed, date 
of prescription and dispensation, days’ supply, 
as well as patient co‐payment and total drug 
expenditure. In some countries reimbursement 
data also include information on diagnosis, as 
an International Classification of Diseases (ICD) 
code is written on prescriptions. Reimbursement 
databases are commonly used in DUR. A limita-
tion, though, is that they may only contain those 
drugs that are reimbursed. Furthermore, they 
are sensitive to changes in co‐payment over 
time. There are also differences between health 
systems in regulations and reimbursement and, 
consequently, the amount of information docu-
mented in these databases varies. In some coun-
tries, prescription drugs are funded only for 
selected groups of the population (e.g., the 
elderly) [102,103], and various other public and 
private prescription plans may be used for other 
population groups.

In countries with many different insurers (e.g., 
in the US), it may be difficult to follow people 
over time, since patients move in and out as 
their insurance eligibility changes [104]. In the 



Currently Available Solutions 387

US, Medicaid medical and pharmaceutical 
 billing data have been available for drug utiliza-
tion studies for many years. With the disadvan-
taged and disabled population included in 
Medicaid, however, the generalizability of the 
results is a potential concern, especially for such 
descriptive studies. In contrast, in many 
European and some Asian countries with 
national health systems, insurance coverage can 
be close to 100% of the population, thus provid-
ing a complete picture of medicine use in these 
countries [4,105].

Large databases are also derived from elec-
tronic health records. The key advantage of 
these databases is that they contain clinical data 
such as diagnoses. One example is the General 
Practice Research Database® (GPRD®) in the UK 
(see Chapter  14), which is based on medical 
records from general practitioners (GPs). 
Hundreds of GPs contribute anonymized 
patient information to a central database, that 
now contains millions of patients. Included are 
prescriptions issued by the GP but with no 
information from the pharmacy (compliance/
adherence). All these databases were primarily 
used for drug safety studies, but have also been 
used to study drug utilization [96,106].

Another example is the Integrated Primary 
Care Information (IPCI) database, established 
at Erasmus University in the Netherlands. It 
consists of the computer‐based patient records 
of 150 general practitioners. To date the data-
base has accumulated data on approximately 
500 000 patients. The records are coded to 
ensure the anonymity of patients; data include 
patient demographics, symptoms (in free 
text),  diagnoses (based on the International 
Classification for Primary Care and free text), 
clinical examination findings, referrals, labora-
tory test results, hospitalizations, and physi-
cian‐linked drug prescriptions and dosage 
regimen (but no information from the phar-
macy on compliance/adherence).

The National Disease and Therapeutic Index 
(NDTI), by IQVIA, is an ongoing study of 

 physician prescribing that is conducted mainly 
for use by pharmaceutical companies for 
 marketing [107]. This study employs a rotating 
sample of office‐based physicians, who record 
all patient encounters and corresponding “drug 
mentions” for two‐day periods four times a year. 
A special prescription form is used to collect 
information on the drug (specific product, 
 dosage form, new vs. continuing therapy), 
patient characteristics (sex), prescriber (spe-
cialty, location, region), type of consultation 
(first versus subsequent), concomitant drugs 
and diagnoses, and the desired pharmacologic 
action [15]. Data have been made available to 
academic researchers (for a fee) and the FDA 
[15]. Although useful for studies of prescribing, 
longitudinal patient‐specific studies are not 
possible with this database.

 Currently Available Solutions

DUR studies are activities aimed at the detec-
tion and quantification of problems. They 
should be distinguished from DUR programs. 
DUR studies are usually one‐time projects, not 
routinely conducted. They provide only mini-
mal feedback to the involved prescribers and, 
most importantly, do not include any follow‐up 
measures to ascertain whether any changes in 
drug therapy have occurred. A DUR program, 
on the other hand, is an intervention in the form 
of an authorized, structured, and ongoing system 
for improving the quality of drug use within a 
given healthcare institution. The quality of drug 
prescribing is evaluated by employing predeter-
mined standards for initiating administrative or 
educational interventions to modify patterns of 
drug use that are not consistent with these 
standards. The measurement of the effective-
ness of these interventions is ideally an integral 
part of the program [108,109].

In the US, DUR programs (commonly known 
in hospitals as DUE programs) are part of 
the  quality assurance activities required by 
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Medicaid–Medicare regulations, the Joint 
Commission, the former Professional Standards 
Review Organizations (PSRO), and Section 4401 
of the Omnibus Budget Reconciliation Act of 
1990 [109]. In Europe, DUR programs have 
been proposed as periodic “therapeutic audits” 
performed at various levels (patient, prescriber, 
hospital, county, municipality, country, and 
groups of countries), assessing not only the 
 clinical consequences of drug utilization, but 
also the social and economic consequences. 
These studies are to be followed by whatever 
feedback is felt to be necessary and appropriate 
to effect changes in therapeutic practices 
[6,110,111]. Most commonly, these therapeutic 
audits have been based on aggregate data analy-
sis of medicines consumption at a national level 
and interventions, usually regulatory or infor-
mational and educational, and are aimed 
accordingly at whole populations or subgroups, 
rather than specific individuals. Despite their 
widespread implementation in the US, the 
effectiveness of DUR programs in reducing pre-
scribing errors and improving patient outcomes 
remains to be established (as discussed later).

Units of Measurement

The defined daily dose (DDD) method was 
developed in response to the need to convert 
and standardize readily available volume data 
from sales statistics or pharmacy inventory data 
(quantity of packages, tablets, or other dosage 
forms) into medically meaningful units, to make 
crude estimates of the number of persons 
exposed to a particular medicine or class of 
medicines [112].

The DDD method is useful for working with 
readily available gross drug statistics; allows 
comparisons between drugs in the same thera-
peutic class and between different healthcare 
settings or geographic areas, and evaluations of 
trends over time; and is relatively easy and 
 inexpensive to use. The method is firmly estab-
lished in Europe and is increasingly used by 

researchers in other regions [113–118]. A 
WHO manual on drug utilization research pro-
vides an overview of the method [119]. 
Guidelines for classifying medicines and their 
assigned DDDs are updated annually by the 
WHO Collaborating Centre for Drug Statistics 
Methodology (www.whocc.no).

The DDD is a technical statistical unit 
defined as the assumed average daily mainte-
nance dose for a drug for its main indication in 
adults. It is only a measurement unit and does 
not necessarily reflect the prescribed or rec-
ommended dose. To enable comparison of 
drug use in DDDs the information has to be 
presented with an adequate denominator; that 
is, the population that was exposed to a drug. 
Ambulatory drug use is commonly expressed 
as DDDs per 1000 inhabitants per day. For 
chronically used drugs, it can be interpreted 
as the proportion of the population that 
receives treatment with a particular medicine 
on any given day. For example, if the use of a 
drug is measured as 30 DDDs/1000 inhabit-
ants/day in a given country, this indicates that 
around 3% of the country’s population receives 
that drug daily. Sometimes better estimates 
can be given by adjusting the denominator for 
a target population (e.g., for oral contracep-
tives the denominator is females below 
45  years of age). For use in hospital settings, 
the unit is expressed as DDDs per 100 bed‐
days (adjusted for occupancy rate); it suggests 
the proportion or percentage of inpatients 
that receive a DDD in a day. For example, 
30  DDDs/100 bed‐days indicates that 30% of 
patients in a day receive a certain drug. For 
medicines that are used in the outpatient set-
ting for short‐term periods, such as antimi-
crobials, the unit is expressed as DDDs per 
inhabitant per year; this provides an estimate 
of the number of days for which each person is 
treated with a particular medication in a year. 
For example 8 DDDs/inhabitant/year indi-
cates that every inhabitant is on average 
treated with that drug for 8 days in a year.
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The DDD method has been useful in describing 
and comparing patterns of drug utilization 
[1,2,111], providing denominator data to estimate 
reported adverse drug reaction rates [120], per-
forming epidemiologic screening for problems 
in  drug utilization [111], and monitoring the 
effects of informational and regulatory activities 
[113,121]. It has also been used to study variations 
in antimicrobial utilization [9,122,123], as well 
as  antimicrobial utilization and its correlation 
with antimicrobial resistance in outpatient 
[123,124] and inpatient settings in Europe [125], 
and to report on sustained reduction of antibiotic 
use and low bacterial resistance with implemen-
tation of a multidisciplinary, coordinated national 
antimicrobial and rational use program [126].

The European Surveillance of Antimicrobial 
Consumption Network, ESAC‐Net (formerly 
ESAC), collects and analyzes data on antimicro-
bial consumption from European Union (EU) 
and European Economic Area/European Free 
Trade Association (EEA/EFTA) countries, using 
the DDD methodology. The data on community 
and hospital antimicrobial consumption are 
publicly available from ESAC‐Net [127].

The DDD method should be used and inter-
preted with caution. The DDD is not a recom-
mended or a prescribed dose, but a technical unit 
of comparison; it is usually the result of literature 
review and available information on use in vari-
ous countries. Thus, the DDDs may be high or 
low relative to actual prescribed doses. Moreover, 
the DDDs refer to use in adults. Since children’s 
doses are substantially lower than the established 
DDDs, if unadjusted this situation will lead to an 
underestimation of population exposures, which 
may be significant in countries with a large 
 pediatric population. Although pediatric DDDs 
have also been proposed [128], the concept and 
its applicability have not been incorporated into 
the WHO method [119]. Finally, DDDs do not 
take into account variations in adherence.

The prescribed daily dose (PDD) is another 
unit, developed as a means to validate the DDD. 
The PDD is the average daily dose prescribed, as 

obtained from a representative sample of pre-
scriptions [129]. Problems may arise in calculat-
ing the PDD because of a lack of clear and exact 
dosage indication in the prescription, as is often 
the case with the prescribing of insulin. 
Prescriptions for chronic therapy, as in the case 
of insulin, may be refilled many times and the 
dosage may be altered verbally between prescrib-
ing events [130]. For certain groups of drugs, 
such as oral antidiabetics, the mean PDD may be 
lower than the corresponding DDD. Up to 
 twofold variations in the mean PDD have been 
documented in international comparisons [129]. 
Higher PDDs have been observed in the US rela-
tive to Sweden for commonly prescribed drugs, 
such as hydrochlorothiazide, diazepam, and 
oxazepam [131]. In studies assessing whether 
antidepressants increase the risk of suicide, a 
refined person‐year of use estimate was obtained 
from adjusting the DDD by the average PDD for 
individual antidepressants [132]. Although the 
DDD and the PDD may be used to estimate pop-
ulation drug exposure “therapeutic intensity,” the 
method is not useful to estimate incidence and 
prevalence of drug use, or to quantify or identify 
patients who receive doses lower or higher than 
those considered effective and safe.

The Infectious Diseases Society of America 
and the Society for Healthcare Epidemiology of 
America (IDSA/SHEA) have recommended days 
of therapy (DOT) for expressing antimicrobial 
drug use [133]. DOT is the number of days when 
at least one dose of a medication was adminis-
tered irrespective of dose or route of administra-
tion. They are not impacted by dose adjustments 
and can be used in both adult and pediatric pop-
ulations. Similar to PDDs, expressing drug use in 
the number of DOTs requires patient‐level use 
data, which may not be feasible at every facility.

Drug and Disease Classification Systems

The Anatomic Therapeutic Chemical classifica-
tion system is generally used in conjunction with 
the DDD method [112,119]. It was originally 



Studies of Drug Utilization390

developed by the Norwegian Medicinal Depot, 
which became a WHO Collaborating Centre for 
Drug Statistics Methodology; the center is now 
located at the Norwegian Institute of Public 
Health (www.whocc.no). The ATC system is 
based on the main principles of the Anatomical 
Classification system developed by the European 
Pharmaceutical Market Research Association 
(EPhMRA) and the International Pharmaceutical 
Market Research Group (IPMRG).

The ATC system consists of five hierarchical 
levels: a main anatomical group, two therapeu-
tic subgroups, a chemical‐therapeutic sub-
group, and a chemical substance subgroup. The 
coding of furosemide preparations is used to 
illustrate the ATC classification structure in 
Table 18.1. The first three levels are modifica-
tions of the three‐level EPhMRA and IPMRG 
classification system. The fourth and fifth levels 
are extensions that are developed and updated 
by the WHO Collaborating Centre for Drug 
Statistics Methodology. Ongoing discussions 
aim to identify differences in the two classifica-
tion systems and harmonize the first three 
 levels. Statistics reported with the ATC system 
should not be directly compared with figures 
prepared with the EPhMRA system.

Medicinal products are classified according to 
the main therapeutic indication for the princi-
pal active ingredient. Most products are 
assigned only one ATC code. However, some 
active medicinal substances may have more 
than one ATC code, if the drug has different 
uses at different strengths (acetylsalicylic acid as 
a platelet aggregation inhibitor and as an anal-
gesic–antipyretic), dosage forms (timolol to 
treat hypertension and to treat glaucoma), or 
both (medroxyprogesterone for cancer therapy 
and as a sex hormone). Prednisolone is an exam-
ple of a drug that has six different codes. Fixed‐
dose combination products pose classification 
difficulties. For example, a combination product 
that contains an analgesic and a tranquilizer is 
classified as an analgesic, even though it also 
contains a psychotropic substance. Because the 

ATC codes and DDDs may change over time 
with regular revisions, researchers must care-
fully document which version of the classifica-
tion and DDD assignment is used, so that the 
resulting drug statistics may be adequately 
interpreted [134].

The European Drug Utilization Research 
Group (EuroDURG), formerly the WHO Drug 
Utilization Research Group and currently an 
association of European national Drug 
Utilization Research Groups, and the 
International Society of Pharmacoepidemiology 
Special Interest Group in Drug Utilization 
Research (ISPE SIG DUR) recommend the use 
of the ATC classification system for reporting 
drug consumption statistics and conducting 
comparative drug utilization research [130]. 
The WHO International Drug Monitoring 
Program uses the system for drug coding in 
adverse drug reaction monitoring (www.who‐
umc.org). Some developing countries also use 
the ATC system to classify their essential drugs 
[135,136]; this may eventually lead to the prepa-
ration of annual drug utilization statistics [137].

In the US, the Iowa Drug Information System 
(IDIS) is a hierarchical drug coding system that 
is based on the three therapeutic categories of 
the American Hospital Formulary Society 
(AHFS), to which a fourth level was added to 
code individual drug ingredients [138]. The 
IDIS code has eight numeric digits, two digits 
per level (see Table  18.1). This coding system 
was used in the Established Populations for 
Epidemiologic Studies of the Elderly survey 
[138]. Other coding systems such as the National 
Drug Code and the Veterans’ Administration 
Classification [139] do not provide unique codes 
for drug ingredients.

In the UK, British National Formulary (BNF) 
codes are widely used for drug utilization stud-
ies. The BNF provides monographs for drugs 
available in the UK. The numbering system is 
produced by NHS Prescription Services, part 
of the NHS Business Services Authority in 
England [140].



Table 18.1 Anatomic Therapeutic Chemical (ATC) and Iowa Drug Information System (IDIS) classification and coding structures for furosemide.

ATC Classification (C03CA01)
C Cardiovascular System

(First level, main 
anatomical group)
03 Diuretics

(Second level, main 
therapeutic group)
C High‐ceiling diuretics

(Third level, therapeutic 
subgroup)
A Sulfonamides, plain

(Fourth level, chemical 
therapeutic subgroup)
01 Furosemide

(Fifth level, 
chemical substance)

IDIS Classification (40280401)
40 Electrolyte Solutions

(First level, main 
therapeutic group)
28 Diuretics

(Second level, 
therapeutic subcategory)
04 Loop‐diuretics

(Third level, therapeutic 
subcategory)
01 Furosemide

(Fourth level, chemical 
substance)
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The International Classification of Diseases is 
a system of diagnostic codes for classifying 
 diseases and other health problems. The ICD is 
published by the WHO and used worldwide in 
morbidity and mortality statistics, drug reim-
bursement systems, and automated decision 
support in healthcare. The system includes cat-
egories relating to medicinal substances, but in 
the  context of adverse outcomes, and often in 
quite broad terms. It does not include codes suit-
able for recording and classifying drug utiliza-
tion [141].

The Systematized Nomenclature of Medicine 
(SNOMED) provides a core general terminol-
ogy for use in various medical fields. SNOMED 
clinical terms (CT) contain more than 311 000 
active concepts in clinical settings, organized in 
different hierarchies. An individual number 
represents each concept, and several concepts 
can be used in combination to describe a com-
plex condition. Clinical finding/disorder and 
procedure/intervention are examples of the 
main levels in SNOMED CT. Substance and 
pharmaceutical/biologic product are also in the 
main levels. The pharmaceutical/biologic 
 product hierarchy was introduced as a top‐level 
 hierarchy in order to distinguish drug products 
from their chemical constituents (substances). 
It contains multiple levels of granularity, used 
to  support a variety of purposes, including 
 electronic prescribing and formulary manage-
ment (www.ihtsdo.org).

Quality Indicators

Drug utilization studies assessing the quality of 
drug prescribing involve the use of various types 
of quality indicators [142]. These may be defined 
as “A measurable element of prescribing perfor-
mance for which there is evidence or consensus 
that it can be used to assess quality, and hence in 
changing the quality of care provided.” Quality 
indicators for drug utilization may be classified 
based on the amount of clinical information 
incorporated in the indicator. Drug‐oriented 

indicators focus solely on the drugs pre-
scribed, dispensed, or consumed. The simplest 
approaches only require aggregate data on the 
volume and expenditure of prescribed or dis-
pensed drugs. Such data could be presented as 
time trends or top‐ten lists and used as a cata-
lyst to stimulate discussion around areas for 
improvement in drug therapy. Simple drug‐ 
oriented indicators can be constructed to 
 compare practices, clinics, or regions. Such 
drug‐oriented indicators are based on drug data 
alone and can be used irrespective of the indica-
tion for which the drug is prescribed. The most 
commonly used drug‐oriented indicator is the 
ratio between different drugs. Some examples 
include the ratio of COX‐2 inhibitors to all 
NSAIDs measured in DDDs, the ratio of simv-
astatin to statins, and the ratio of angiotensin‐
converting enzyme (ACE) inhibitors to all 
renin‐angiotensin drugs [143–146]. Other types 
of drug‐oriented indicators have been focused 
on inappropriate drugs in children and the 
elderly [147–150].

Another approach analyzed the number of 
drugs that accounted for 90% of drug utilization 
(DU90%) and the percentage of these drugs that 
were included in evidence‐based guidelines 
[151]. The first studies on the DU90% method 
used the guidelines on rational drug use issued 
by the regional Drug & Therapeutics Committee 
in Stockholm, Sweden [152]. (See Figures 18.3 
and 18.4.) These guidelines consist of approxi-
mately 200 medicines recommended as first‐
line choices for the treatment of common 
diseases. The 90% level was arbitrarily selected 
to focus on the bulk of prescribing, yet allow 
some degree of individual variation. The num-
ber of different products in the DU90% segment 
varied between 117 and 194 among 38 primary 
healthcare centers in Stockholm; adherence to 
the guideline varied at between 56% and 74%. 
The Swedish Medical Quality Council has rec-
ommended the DU90% method for assessing 
quality in drug prescribing. Using this method, 
researchers in the Netherlands did not find any 
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DU 90% = 169 substances

LIGHT GRAY = Included in the Wise Drug List 2000

Adherence to guideline within DU90% = 77%
Note: DU90% figures are originally
produced with colour (green-red) to
highlight the most important areas

SUBSTANCE (DDD) DDD % TOT Rx COST COST/DDD
1 Acetylsalicylic acid 1 tablet 39,894,782 4.9% 650,808 22,995,814 0.58
2 Simvastatin 30 mg 29,455,125 3.6% 438,802 26,731,380 0.91
3 Enalapril 10 mg 25,632,413 3.2% 296,329 18,111,103 0.71
4 Furosemide 40 mg 22,513,352 2.8% 409,630 18,091,910 0.80
5 Omeprazol 20 mg 19,140,338 2.4% 399,298 30,122,076 1.57
6 Cyanocobalamin 1 mg 18,125,259 2.2% 319,737 11,711,704 0.65
7 Amlodipine 5 mg 17,685,421 2.2% 165,634 10,209,168 0.58
8 Metoprolol 0.15 g 17,160,653 2.1% 498,845 72,421,602 4.22
9 Levothyroxine sodium 0.15 mg 17,030,980 2.1% 405,353 23,094,330 1.36

10 Ramipril 2.5 mg 16,743,688 2.1% 95,412 8,323,952 0.50
11 Felodipine 5 mg 15,807,331 2.0% 177,725 13,901,701 0.88
12 Candesartan 8 mg 14,695,169 1.8% 118,979 59,427,671 4.04
13 Zopiclone 7.5 mg 14,059,603 1.7% 426,875 16,073,585 1.14
14 Paracetamol 3 g 13,597,335 1.7% 621,717 35,916,832 2.64
15 Citalopram 20 mg 13,065,325 1.6% 266,993 12,672,896 0.97
16 Sertraline 50 mg 10,178,236 1.3% 119,262 11,241,414 1.10
17 Hydroc.thiazide + amiloride * 10,145,923 1.3% 120,927 5,066,822 0.50
18 Calcium combinations 10,047,562 1.2% 206,568 24,983,957 2.49
19 Propiomazine 25 mg 9,729,948 1.2% 174,248 12,173,527 1.25
20 Metformin 2 g 9,297,143 1.2% 152,190 18,415,868 1.98
...

169
727,456,526 90.0% 14,034,056 2,648,199,198 3.64
80,552,999 10.0% 2,699,117 2,370,147,348 29.42

808,009,524 100.0% 16,733,173 5,018,346,546 6.21

Bold = in guideline
* = Different DDDs for various routes of administration
Medicines without DDD excluded (455, corresponding to 511 million SEK)

DU 90%       1 - 169
    170 - 853
TOTAL      1 - 853

Figure 18.3 DU90% (number of substances accounting for 90% of the volume in DDDs) in Stockholm Healthcare 
Region in 2009. Dark gray, nonrecommended drugs; DDD, defined daily dose; DU, drug utilization. Source: Gustafsson 
LL, Wettermark B, Godman B, et al. The “Wise List”: a comprehensive concept to select, communicate and achieve 
adherence to recommendations of essential drugs in ambulatory care in Stockholm. Basic Clin Pharmacol Toxicol 
2011; 108(4): 224–33, Figure 4. Reproduced with permission of John Wiley & Sons.
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association between different levels of perfor-
mance in pharmacotherapy audit meetings and 
quality of prescribing for seven drug classes. 
They suggested that for certain drug classes, 
such as antidepressants, duration of treatment 
may be more relevant for quality prescribing 
than using the drug of first choice in the guide-
lines; for diabetes, co‐medication with statins 
may be more important than the number of dif-
ferent oral antidiabetics; and for obstructive 
 airway diseases, concomitant use of corticoster-
oids may be more a more appropriate criterion 
than choices within the guidelines [153].

DU90% has also been used, for example, to 
compare NSAIDs prescribing in Denmark, 
Italy, Croatia, and Sweden [7,8], antibiotics in 
Denmark and Italy 199], and general intensive 
care unit antibiotic prescribing and cost pat-
terns in Israel [154], and to assess the effect of 
financial incentives linked to self‐assessment 
of prescribing patterns in Swedish primary 
care [155]. In Stockholm, the DU90% profile 
was useful in following up adherence to rec-
ommendations of essential drugs in ambula-
tory care for 15 years [152,156]. Furthermore, 
integrating resistance to the antibiotic DU90% 

profiles showed striking figures on the use of 
antibiotics that were cheap but resistant rather 
than effective and more expensive [157]. (See 
Figure 18.5.)

Access to patient‐level data enables the 
 construction of more clinically relevant drug‐
oriented indicators linking different drugs to 
each other or over time. Some examples of 
approaches include the identification of inap-
propriate or interacting drugs (questionable 
combinations) prescribed to individual patients 
[60,61,150,158,159] or co‐prescribing of beta‐
adrenoreceptor antagonists and agonists [160]. 
They may also be used to identify in which order 
drugs are initiated to patients, for instance the 
proportion of patients initiated on angiotensin 
receptor blockers previously dispensed ACE‐
inhibitors [161].

Disease‐oriented indicators include infor-
mation on drugs linked to the diagnosis or 
healthcare problem. They may either indicate 
to what extent patients are being treated with 
the recommended drugs for a certain condi-
tion, or to what extent drugs are avoided for 
patients with conditions for which the drugs 
should not be used.
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Figure 18.4 Adherence to “Wise List” recommendations for 156 primary healthcare centers for prescriptions 
dispensed in 2009. The thick black line equals the adherence range for the same practices in 2003. Observe that the 
order of the practices may differ between the two years. Source: Gustafsson LL, Wettermark B, Godman B, et al. The 
“Wise List”: a comprehensive concept to select, communicate and achieve adherence to recommendations of 
essential drugs in ambulatory care in Stockholm. Basic Clin Pharmacol Toxicol 2011; 108(4): 224–33, Figure 5. 
Reproduced with permission of John Wiley & Sons.
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Patient‐oriented indicators include informa-
tion on drugs linked to individual clinical 
 characteristics of the patient, such as the sever-
ity of the disease and whether a certain treat-
ment is suitable for a specific patient [160].

Although the use of health insurance 
 databases has been reported in countries out-

side North America, Europe, and Asia [31,162–
164], medical and pharmaceutical databases are 
 generally not available in most low and middle 
income countries. An approach based on the 
use of standardized criteria (indicators) to 
measure changes in medicines prescribing, dis-
pensing, and patient care was developed in the 

1 2 3

SUBSTANCE (DDD) DDD % TOT DDD/100 COST/DDD % RESIST
BED-DAYS (rubles)

1 Gentamicin 0.24 g 6 687 20% 3,1 5 80%
2 Cefazolin 3 g 4 865 15% 2,3 41 23%
3 Amoxicillin + clav. acid 1 g 4 242 13% 2,0 105 nd
4 Ampicillin + Oxacillin 8UD (2g) 2 438 7% 1,1 13 nd
5 Benzylpenicillin 3.6 g 2 435 7% 1,1 129 49%
6 Pefloxacin 0.8 g 2 245 7% 1,1 6 nd
7 Ampicillin 2 g 1 838 6% 0,9 10 74%
8 Metronidazole 1.5 g 1 726 5% 0,8 50 nd
9 Lincomycin 1.8 g 1 357 4% 0,6 5 nd

10 Amikacin 1 g 1 099 3% 0,5 143 49%
11 Ciprofloxacin 1 g 845 3% 0,4 400 66%
12 Pipemidic acid 0.8 g 828 2% 0,4 22 nd

30 603 92% 14,4
2 477 8% 1,2

33 080 100% 15,5

DU 90%       1 - 12
    13 - 25
TOTAL       1 - 25

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Black = resistance + intermediate
Dark gray = sensitive
Light gray = not determined

Note: DU90% figures are originally
produced with colour (green-red) to highlight
the most important areas

DU90% = 12
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Figure 18.5 DU90% profile for “antibacterial for systemic use” (J01, ATC/DDD classification) in university hospital N2 
of St Petersburg, Russia in 2003. The 12 antibiotics are ranked in order of number of defined daily doses (DDDs) 
corresponding to 90% of use (data from the hospital pharmacy). The black parts correspond to the percentage of 
resistance (resistance + intermediate) for the antibiotics, and the dark gray to the percentage of sensitivity. Antibiotics 
not tested for bacterial sensitivity are light gray. nd, not determined. Source: Goryachkina K, Babak S, Burbello A, 
Wettermark B, Bergman U. Quality use of medicines: a new method of combining antibiotic consumption and 
sensitivity data – application in a Russian hospital. Pharmacoepidemiol Drug Saf 2008; 17(6): 636–44.



Studies of Drug Utilization396

early 1990s by INRUD and the WHO [165]. The 
approach has facilitated the study of drug utili-
zation in developing countries. It includes rec-
ommendations on minimum  sample sizes, 
sampling methods, and data  collection tech-
niques, depending on study  objectives. The 
method recommends 12 core indicators and 
7  complementary indicators to study drug use 
in health facilities (Table 18.2). These indicators 
can be used to describe prescribing practice 
[166], for conduct monitoring and supervision 
[167], and to assess the impact of interventions 
[168–170]. The WHO has compiled indicator 
results and other  findings reported in studies 
conducted in 97  developing and transitional 
countries between 1990 and 2006 [171].

INRUD has also developed simple low‐cost 
indicators to measure adherence to antiretroviral 
(ARV) treatment in resource‐poor  settings. 
Adherence measures derived from dispensing 
data in pharmacy records, self‐report data in 
medical records, and attendance logs predicted 
key clinical outcome related to individual patient 
treatment success, and were feasible to collect 
[172]. The four indicators were percentage of 
patients with self‐reported full adherence, per-
centage of days covered by ARVs dispensed, per-
centage of records with a 30‐day gap in ARVs 
dispensed, and percentage of patients who 
attended within 3 days of the scheduled appoint-
ment. These indicators allow assessment and 
comparison of programs and facilities, and mon-
itoring and evaluation of interventions.

Intervention Strategies Based 
on Drug Utilization Data

Numerous studies have described interventions 
aimed at improving prescribing by the use of drug 
utilization data obtained from drug utilization 
studies, and are discussed further in Chapter 19. 
Two intervention strategies may illustrate different 
approaches to the use of drug utilization data avail-
able from computer databases of office practice.

In a randomized clinical trial, Avorn and 
Soumerai [173] used Medicaid data to identify 
physicians who were prescribing drugs that were 
assessed as inappropriate (based on considera-
tions of documented efficacy, relative efficacy, 
and relative cost). These physicians were tar-
geted for educational or information activities, 
as either face‐to‐face contacts or written drug 
information. Schaffner et al. [174] and Ray et al. 
[175] used a similar approach in another con-
trolled intervention study, comparing different 
strategies aimed at modifying physician pre-
scribing behavior: written drug information 
 versus personal visits by pharmacists versus per-
sonal visits by physician educators. These two 
studies demonstrated the efficacy of face‐to‐face 
methods in improving drug prescribing.

Table 18.2 World Health Organization/International 
Network for the Rational Use of Drugs drug use indicators.

Core indicators
Prescribing indicators
Average number of drugs per encounter
Percentage of drugs prescribed by generic name
Percentage of encounters with an antibiotic prescribed
Percentage of encounters with an injection prescribed
Percentage of drugs prescribed from essential drugs list 

or formulary
Patient care indicators
Average consultation time
Average dispensing time
Percentage of drugs actually dispensed
Percentage of drugs adequately labelled
Patient’s knowledge of correct dosage
Facility indicators
Availability of copy of essential drugs list or formulary
Availability of key drugs
Complementary indicators
Percentage of patients treated without drugs
Average drug cost per encounter
Percentage of drug costs spent on antibiotics
Percentage of drug costs spent on injections
Prescription in accordance with treatment guidelines
Percentage of patients satisfied with care they received
Percentage of health facilities with access to impartial 

drug information

Source: How to Investigate Drug Use in Health Facilities: 
Selected Drug Use Indicators. EDM Research Series No. 
007. Reproduced with permission of WHO.



The Future 397

The second approach uses claims data to 
 perform computerized screening for patients 
who may be at increased risk for drug‐induced 
illness, using patient‐specific medical and drug 
histories [176–178]. Health professionals then 
evaluate profiles of patients with possibly inap-
propriate drug use. If drug use is indeed consid-
ered inappropriate, a letter is sent to the 
prescriber providing a profile of the patient’s 
relevant computerized claims record and a 
warning of the potential for drug‐induced 
 disease. Often the problem is a concomitant 
drug or diagnosis of which the prescriber was 
unaware. This approach is obviously much less 
expensive than the face‐to‐face approach. Using 
before‐and‐after comparisons, a significant 
reduction in drug‐induced hospitalizations has 
been noted [177]. However, the interpretation 
of these results is hampered by the use of a non-
experimental design. Other authors have found 
no effect on measures of prescribing or on 
patient outcomes [179]. A simultaneously con-
trolled trial is needed to adequately assess the 
value of this approach.

Many other studies have described intervention 
strategies based on providing drug utilization data 
feedback, alone or in combination with printed 
material and/or other “educational strategies,” for 
example group discussions, lectures, seminars, or 
personal visits by “experts.” The results from these 
studies are conflicting. Some suggest that meth-
ods that involve only feedback of drug utilization 
data or audit results are ineffective. Others suggest 
a transient effectiveness for those that combine 
the use of drug utilization review data with group 
discussions, lectures, and visits by experts. 
However, these are difficult to interpret because of 
limitations in their research designs [180].

Conceptually, DUR programs are aimed at the 
improvement of medical care and cost contain-
ment. However, in practice traditional 
approaches have focused on control of the abuse 
or overuse of drugs, polypharmacy, or patients 
obtaining prescriptions from many different 
prescribers. Moreover, most DUR studies have 

emphasized process measures of quality of care, 
for example the use of clinical laboratory tests 
to monitor for adverse effects during chloram-
phenicol or aminoglycoside therapy. The 
approach described by Strom et  al. [176], Lee 
Morse et  al. [177], and Groves [178] was a 
 significant advance in DUR programs, as it was 
primarily aimed at improving measurable 
patient outcomes. Also, it does not impose arbi-
trary restrictions on drug use, potentially 
impairing patient care, but seeks to reduce costs 
by improving patient care. In seeking to reduce 
the financial impact of drug use, it does not 
focus on the drug costs themselves, but on the 
effects of the drugs. By reducing the need for 
medical care through the beneficial effects of 
drugs, or by increasing the need for remedial 
medical care because of drug toxicity, pharma-
ceuticals can have a financial impact on the 
healthcare system that is much larger than the 
cost of the drugs themselves. (This is discussed 
more in Chapter 35.)

Despite their appeal, the effectiveness of DUR 
programs remains to be established. A study of 
six Medicaid programs failed to identify an effect 
of retrospective DUR on the rate of potential 
prescribing errors and rate of all‐cause or spe-
cific‐cause hospitalizations [179]. Another study 
did not find effects of two state prospective DUR 
interventions on the frequency of drug prob-
lems, utilization of prescription drugs and other 
health services, and clinical outcomes [181].

 The Future

Opportunities

Drug utilization research is rapidly expanding in 
all countries across the globe, from the early 
descriptive studies to advanced studies combin-
ing different data sources to further understand 
medicine use in the population. In the early 
days, drug utilization studies were suggested to 
focus on the medical, social, and economic 
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aspects of drug utilization [2]. Medical aspects 
included potential inappropriate prescribing in 
different groups such as children and the elderly. 
Social aspects included attitudes to medicines 
and health, drug abuse and dependence, and 
their causes and trends, as well as socioeco-
nomic inequities. Economic aspects included 
drug prices and expenditure for generics and 
brands, as well as allocation of resources 
(money, personnel, facilities) to drugs and other 
aspects of healthcare. All these aims are still rel-
evant for future drug utilization research. 
However, the types of drugs in focus will differ, 
with 42% of the substances in drug development 
being biologics, compared to 8% on the market 
today [182]. The growing pressures on all 
healthcare systems with aging populations, ris-
ing patient expectations, stricter clinical targets, 
and expensive new medicines will further 
increase the need for drug utilization studies to 
monitor that resources are used wisely and that 
new medicines are prescribed to those who may 
benefit most from them.

From a public health perspective, the observed 
differences in national and international 
 patterns of drug utilization require much 
 further study. The medical consequences as well 
as the explanations for such differences are still 
not well documented. The increasing availabil-
ity of patient‐level databases on dispensed med-
icines will facilitate studies of the incidence and 
prevalence of medicine use, as well as more 
sophisticated studies on patterns of use, includ-
ing drug combinations, dosing regimens, and 
persistence to drug therapy. These databases 
contain or may be linked to diagnoses and other 
clinical data that facilitate drug utilization stud-
ies, where drug utilization can be understood in 
its clinical context. The ongoing digitalization 
of healthcare will further increase access to 
large amounts of data for drug utilization 
research. Considerable amounts of healthcare 
data are generated every day, some of it from 
data sources to a large extent unexplored or 
unused in drug utilization research, such as 

clinical records systems, mail traffic, social 
media, and various devices.

Numerous studies have addressed the factors 
influencing drug prescribing. However, the rel-
ative importance of the many determinants of 
appropriate prescribing is still to be adequately 
elucidated. Further research is needed to better 
define to what degree and which determinants 
of inappropriate prescribing are susceptible to 
modification, and what might be an appropri-
ate mix of interventions to achieve optimal 
impact. Although regulation is effective, it is 
not possible to regulate all aspects of the clini-
cal decision‐making process to ensure optimal 
drug prescribing [183]. Other approaches in 
addition to educational and informational 
measures are being explored. It is also impor-
tant to emphasize the growing role of the 
patient in drug utilization research, both as a 
source of information to understand how drugs 
are used in reality, and also as a partner in 
designing and conducting research.

There is a need too for many more interven-
tion studies targeted at the various stakehold-
ers  involved in the process of prescribing, 
dispensing, and consumption of medicines. 
Many strategies aimed at modifying prescribing 
behavior have been proposed and adopted. The 
evidence to date indicates that mailed educa-
tional materials alone are not sufficient to mod-
ify prescribing behavior [173,180]. Early studies 
conducted in Australia [184] and Denmark 
[185] concluded that mailed, unsolicited, cen-
tralized, government‐sponsored feedback, one 
based on aggregate prescribing data and the 
other with a clinical guideline, had no impact on 
physician prescribing. For interventions that 
have been shown to be effective in improving 
drug prescribing (discussed in Chapter  38), 
there is a need to further define their relative 
efficacy and proper role in a comprehensive 
strategy for optimizing drug utilization. 
Questions yet to be addressed through a proper 
methodology deal with the role of printed drug 
information such as drug bulletins; the duration 
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of effect of educational interventions such as 
group discussions, lectures, and seminars, each 
in both the outpatient as well as the inpatient 
settings; and the generalizability of face‐to‐face 
methods, as described by Avorn and Soumerai 
[173], Schaffner et al. [174], and Ray et al. [175]. 
There is also a need for more research on 
whether the benefits and savings achieved with 
intervention strategies outweighed the costs of 
performing the intervention.

More clinically applicable approaches to DUR 
programs, such as the computerized screening 
of patient‐specific drug histories in outpatient 
care to prevent drug‐induced hospitalizations, 
still require further development and assess-
ment. Although numerous studies have 
described the results of these and other novel 
programs [177,178,186,187], adequate docu-
mentation of their efficacy in improving quality 
of care is an important subject for future work. 
Patient outcome measures as well as process 
measures of quality of drug utilization have to 
be included in such studies. To be effective and 
efficient, healthcare policy options should be 
based on sound scientific evidence [188].

Challenges

The use of computerized databases has greatly 
facilitated studies of drug utilization. Although 
useful, most of these databases are far from ideal, 
as they have been set up mainly for administra-
tive purposes, such as reimbursement, and drug 
utilization data are obtained as “spin‐off” infor-
mation. The model information system that will 
suit both medical and administrative needs [189] 
is still unavailable, although there is increasing 
use of electronic medical records for routine 
practice in countries such as the Netherlands, 
Australia, the UK, and the US. There is also a 
general lack of patient‐level databases on medi-
cine use in inpatient care [190]. Existing medical 
and pharmaceutical databases, with all their 
described limitations, will continue to be the 
main resources for these drug utilization studies. 

There is, however, a rapid growth of data coming 
from other sources. Even though new computer 
techniques and machine learning have been 
developed, many challenges remain, such as how 
to deal with missing data,  unstructured data, 
poor data validity, and interoperability.

We have been fortunate to live in an era when 
large amounts of drug utilization data have 
become available for research. It is important 
to  recognize, however, that the increasing 
amounts of digitalized personal data may 
add  fuel to the debate on confidentiality. 
Confidentiality of patient data has so far been 
successfully handled and procedures have been 
implemented in most countries that are con-
sistent with the guidelines for good practice in 
data privacy, medical record confidentiality, 
and research developed by the International 
Society for Pharmacoepidemiology (ISPE). 
Still, it is important to acknowledge the ongo-
ing debate. In the EU, a new data protection 
framework is being implemented in all member 
states. Similar initiatives are being taken in 
other countries. Hopefully, this will not prevent 
opportunities for conducting research.

Even though drug utilization analyses today 
are conducted routinely in most health systems, 
this does not imply that drug utilization research 
is awarded high priority. The recruitment and 
training of researchers may be hampered by 
limitations in funding, as well as limitations in 
career opportunities. These two problems 
impose constraints on the future development 
of studies in drug utilization. However, despite 
this, the search continues for simple and 
 relatively inexpensive methods to conduct 
descriptive studies of drug utilization, and effec-
tive intervention strategies that may contribute 
to the optimization of drug therapy. Fortunately, 
the increasing commitment to drug utilization 
research is reflected in the development and 
growth of international groups such as ISPE 
(www.pharmacoepi.org) [191], the International 
Clinical Epidemiology Network (INCLEN; 
www.inclentrust.org) [192], EuroDURG (www.
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eurodurg.com) [193], DURG‐LA [28], and 
INRUD (www.msh.org/INRUD) [194,195].

In summary, the study of drug utilization 
continues to evolve. The development of com-
puterized databases is allowing the linkage of 
drug utilization data to clinical data and much 
other information to get a better understanding 
of drug utilization. The WHO/INRUD indica-
tor‐based approach to drug utilization studies 
is facilitating the development of drug utiliza-
tion research in developing and transitional 
countries. Many strategies have already been 

proposed, tested, and implemented to improve 
the quality of drug prescribing in developed 
[196] and developing countries [197]. DUR 
programs, particularly approaches that take 
into primary consideration patient outcome 
measures, merit further rigorous study and 
improvement. Opportunities for the study of 
drug utilization are still underexplored, but the 
political issue regarding the confidentiality of 
medical records, as well as limitations in fund-
ing and personnel, may limit the growth of drug 
utilization research.
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Research and clinical practice may be on par
allel tracks headed in the same direction, but 
in contact only through rotting ties. [1]

The broad purposes of pharmacoepidemiology 
are to advance our knowledge of the risks and 
benefits of medication use in real‐world popula
tions, and to foster improved prescribing and 
patient health outcomes. If, however, physicians 
and other health practitioners fail to update 
their knowledge and practice in response to 
new and clinically important evidence on the 
outcomes of specific prescribing patterns, then 
the “fruits” of pharmacoepidemiologic research 
may have little impact on clinical practice.

It is for these reasons that a new discipline in 
the fields of health services research and clinical 
decision making has grown rapidly in impor
tance – the science of assessing and improving 
clinical practices. The rapid growth of this new 
field (sometimes referred to as T‐2 translational 
research or knowledge translation research) is 
based on the recognition that passive knowl

edge dissemination (e.g., publishing articles, 
distributing practice guidelines) is generally 
insufficient to improve clinical practices with
out supplemental behavioral change interven
tions based on relevant theories of diffusion of 
innovations, persuasive communications, and 
adult learning or social cognitive theory 
[1–10].

This chapter reviews some of these develop
ments as they relate to medication use, defines 
several types of drug prescribing problems, dis
cusses several thorny methodologic problems in 
this literature, reviews existing pharmacoepide
miologic and other evidence on the effective
ness of common interventions to improve 
prescribing, and concludes with a discussion of 
future research needs. For a more detailed and 
comprehensive examination of the literature on 
prescribing education, the role of the pharma
cist as a change agent, disease management 
strategies for use in various settings, and the use 
of financial incentives and penalties, the reader 
is advised to consult several previous works 
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published elsewhere [11–33]. Portions of this 
chapter are derived from this body of work; in 
addition, we conducted computerized literature 
searches for papers published through early 
2017, hand‐searched our personal files and the 
cited references, and extensively consulted the 
Cochrane Effective Practice and Organisation 
of Care (EPOC) Group, a rigorous and continu
ously updated registry and synthesis of available 
evidence on studies of interventions to change 
physician behaviors [33].

 Clinical Problems to 
Be Addressed by 
Pharmacoepidemiologic 
Research

There is little doubt that the importance of sub
optimal prescribing practice (both underuse 
and overuse) vastly outweighs the costs of medi
cations themselves [33–37] (see also 
Chapter 38). Drug therapies are the most com
mon treatments in medical practice and more 
than three‐quarters of all visits to a physician 
terminate with the writing of a prescription 
[15]; the potential for drug therapies for both 
alleviating and causing illness is illustrated 
throughout this book. As suggested by Lee [37], 
in this chapter we take a broad view of the con
cept of prescribing errors, and consider issues 
related to underuse, overuse, and misuse, since 
all contribute to the suboptimal utilization of 
pharmaceutical therapies. For example, we 
would consider as prescribing “errors” the 
following:

 ● Use of toxic or addictive drugs when safer and 
clinically appropriate agents are available 
(e.g., opioids instead of nonsteroidal anti‐
inflammatory drugs for pain [38,39]).

 ● Use of drug therapy when no therapy is 
required (e.g., antibiotics for viral respiratory 
infections).

 ● Use of an ineffective drug for a given indication 
(e.g., hormone therapy for prevention of cardi
ovascular disease in postmenopausal women).

 ● Use of a costly drug when a less expensive 
preparation would be just as effective (e.g., 
newer angiotensin‐receptor blockers, instead 
of effective and inexpensive angiotensin‐con
verting enzyme inhibitors or thiazide diuret
ics, for uncomplicated hypertension).

 ● Misuse of effective agents (e.g., too low doses of 
narcotic analgesics or too high dosages of ben
zodiazepines, when indicated, for the elderly).

 ● Failure to discontinue therapy when the drug 
is no longer needed (e.g., use of proton pump 
inhibitors for months to years in patients 
without documented gastroesophageal reflux 
disease).

 ● Failure to introduce new and effective drugs 
into practice (e.g., failure to use inhaled corti
costeroids for asthma or spironolactone for 
heart failure).

 ● Failure to prescribe necessary drug therapies 
(e.g., failure to use beta‐blockers following 
acute myocardial infarction or bisphospho
nates after an osteoporotic fracture).

 ● Failure to achieve recommended therapeutic 
goals (e.g., failure to achieve systolic blood 
pressure levels below 130 mmHg or LDL cho
lesterol levels below 70 mg/dL for the second
ary prevention of myocardial infarction).

Specific illustrations of these problem catego
ries are ubiquitous in the literature. In the out
patient setting, numerous studies have 
documented that as much as 50% of antibiotic 
use is potentially inappropriate, with the unin
tended consequence that overuse of antibiotics 
may lead to the emergence of resistant patho
gens [40]. A group at particular risk of iatro
genic injuries as a result of inappropriate 
medication exposure appears to be the frail 
elderly, whether they reside in the community 
or in nursing homes [34,41,42].

Because of the absence of diagnostic data in 
most published drug utilization research, and 
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because of the emphasis on cost containment 
within drug utilization review (DUR) programs 
(see subsequent definition), the existing litera
ture may underemphasize the clinically impor
tant problem of underuse of highly effective 
medications. For example, Berlowitz et al. found 
that nearly 40% of patients with documented 
hypertension in the Veterans Administration 
(VA) healthcare system had uncontrolled hyper
tension (>160/90 mmHg), despite adequate 
healthcare and prescription drug coverage and 
more than six hypertension‐related primary 
care visits each year [43]. Indeed, this demon
strates profound clinical inertia, as changes in 
antihypertensive therapy occurred in less than 
10% of all of these visits [43]. In another study of 
623 outpatients treated for acute myocardial 
infarction at the Yale‐New Haven Hospital, 
researchers found that one‐third of patients 
meeting strict randomized controlled trial 
(RCT) eligibility criteria for use of beta‐blockers 
did not even receive a trial of therapy – contrary 
to existing guidelines. These patients experi
enced a 20–40% higher mortality rate postmyo
cardial infarction than may have been necessary 
[44]. There are many other examples of under
use and resultant unnecessary morbidity and 
mortality throughout the pharmacoepidemio
logic literature.

Why do these problems occur? Can a compre
hensive theory of behavioral change or knowl
edge translation provide the basis for programs 
designed to improve prescribing? Such an ideal 
model must be complex given the diversity of 
economic, organizational, educational, psycho
logical, social, informational, and technological 
influences on daily prescribing practices [1–
10,45–52]. Some of the factors responsible for 
suboptimal prescribing include the following:

 ● The failure of clinicians to keep abreast of 
important new findings on the risks and ben
efits of medications [6–8,45,52].

 ● Excessive promotion of some drugs through 
pharmaceutical company advertising, sales 

representatives, or other marketing strategies 
[45,52].

 ● Lack of promotion of highly effective but 
nonprofitable medications (e.g., spironolac
tone for heart failure) [45,52].

 ● Simple errors of omission [8,23,25,48,52].
 ● Negative attitudes toward issues of cost effec

tiveness of medications.
 ● Direct‐to‐consumer marketing strategies and 

other competing influences [49].
 ● Patient and family demand for a particular 

agent, even when it is not scientifically sub
stantiated [49,50,52].

 ● Physician overreliance on clinical experience 
in opposition to scientific data [50,51].

 ● Skepticism toward, and distrust of, the litera
ture and academia among some community‐
based physicians [51].

 ● Clinical inertia [52].
 ● The need to take some definitive therapeutic 

action even when “watchful waiting” may be 
the most justifiable action [50,52].

 ● Concerns related to medicolegal liability and 
the perceived need to practice defensive med
icine [37,50,51].

 ● Influence from clinical opinion leaders or 
other health practitioners [50–52].

These diverse influences suggest the need for 
tailoring multifaceted intervention strategies to 
the key factors influencing a given clinical 
behavior, based on models of behavioral change 
and knowledge translation.

 Methodologic Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

Research on the impact of educational and 
administrative interventions to improve drug 
prescribing presents numerous methodologic 
challenges. This section will review several of 
the most important methodologic problems, 
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such as internal validity, regression toward the 
mean, unit of analysis errors, logistical issues, 
ethical and legal problems, and the detection of 
effects on patient outcomes.

Internal Validity

As early as 1975, Gilbert et al. established that 
poorly controlled studies produce misleading 
estimates of the effects of a variety of social pro
grams [53]. Many nonintervention factors can 
affect medication use over time, such as market
ing campaigns, mass media, state or federal 
regulatory policies, seasonal effects, changing 
staff of healthcare organizations, other “com
peting” interventions, changes in eligibility for 
insurance programs, shifting demographics, 
and so on. Because RCTs are sometimes not fea
sible (e.g., contamination of controls within a 
single institution) or ethical (e.g., withholding 
quality assurance programs from controls), 
other strong quasi‐experimental designs (e.g., 
interrupted time series with or without com
parison series, pre–post with concurrent com
parison group studies) should be used instead of 
weak one‐group post‐only or pre–post designs 
that do not generally permit causal inferences. 
In fact, the Cochrane Collaboration’s EPOC 
Group considers rigorously conducted time‐
series studies and pre–post studies with a con
current comparison group (and several baseline 
observations to control for secular trends) to be 
sufficiently valid to merit inclusion within its 
systematic reviews [54].

Interrupted time‐series designs include multi
ple observations (often eight or more) of study 
populations before and after intervention. Such 
designs often permit investigators to control for 
preintervention secular changes in study out
comes, and to estimate the size and statistical 
significance of sudden changes in the level or 
slope of the time series occurring at initiation of 
the treatment. The availability of a comparison 
series collected from a similar, but unexposed, 
comparison group can further increase causal 

interpretability if no simultaneous change in 
trend is observed for this group [18,55].

Another popular design that may lead to valid 
results is the pre–post with comparison group 
design. Ideally, this design includes several 
observations before and at least one observation 
after treatment in a nonrandomly selected 
group exposed to a treatment (e.g., physicians 
receiving feedback on specific prescribing prac
tices) [54], as well as simultaneous before‐and‐
after observations of a similar (comparison) 
group not receiving treatment. Although this 
design controls for many threats to the validity 
of causal inferences (e.g., due to the effects of 
testing or maturation), it sometimes cannot 
control for unknown factors (e.g., a regulatory 
policy), which might result in preintervention 
differences in trends between study and com
parison groups, and it is thus not as rigorous as 
a controlled interrupted time‐series design 
[53,55].

The weakest, and not uncommon, design is 
the one‐group, post‐only design, which consists 
of making only one observation on a single 
group that has already been exposed to a treat
ment. The one‐group pre–post design merely 
adds a single preintervention observation to the 
previous design. Such weak designs are unlikely 
to produce valid or reliable estimates of the 
effects of interventions, so much so that they 
are routinely excluded from careful reviews of 
the literature [18–24,54]. Furthermore, many (if 
not most) studies of newer technology‐based 
approaches to improving prescribing, such as 
computerized physician order entry and other 
types of computerized decision support, have 
used the post‐only or one‐group pre–post 
designs to evaluate their efficacy and effective
ness [56–58].

Inadequately controlled studies may exagger
ate the effectiveness of many interventions to 
improve prescribing. For example, inadequately 
controlled studies of the dissemination of print‐
only materials used alone have all reported posi
tive effects on behavior, while well‐controlled 
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studies of such strategies all reported small or 
nonexistent changes in behavior [59]. The “suc
cess” of uncontrolled studies is often due to the 
attribution of preexisting trends in practice pat
terns to the studied intervention.

There are many examples of the potential bias 
involved in failing to account for prior trends. In 
one study, the naturally occurring trends in the 
use of 23 categories of medication were exam
ined in a four‐year study of 390 000 enrollees in 
the New Jersey Medicaid program [60]. The 
results indicated that 50% of the estimated one‐
year percentage changes in prescriptions per 
1000 enrollees exceeded +20.3% or –10.8% of 
baseline levels. Effect sizes reported in the pre
scribing intervention literature are similar to 
these natural fluctuations [61], suggesting that 
changes in drug use attributed to such interven
tions could merely reflect these underlying 

 secular trends. This is particularly noteworthy, 
because the effect sizes reported for valid inter
vention studies tend to be modest at best, with 
improvements in the quality of prescribing (as 
variously defined by investigators) usually 
reported on the order of a 10–20% absolute 
improvement over controls.

Recently the Institute for Health Improvement 
(IHI) in the US failed to control for baseline 
trends before its nationwide hospital safety pro
gram, the “100,000 Lives Program,” and falsely 
stated that the program saved 130 000 lives until 
a reanalysis including a long baseline showed 
already occurring mortality changes before the 
policy (Figure 19.1) [62].

These examples provide further support for 
more widespread application of RCTs or, when 
RCTs are not feasible, time‐series and other 
valid comparison series designs to evaluate 
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whether suddenly introduced interventions are 
associated with corresponding changes in the 
level or slope of the utilization series, after con
trolling for prior trends. If the collection of 
time‐series data is not feasible, investigators 
may consider using pre–post with comparison 
group designs (ideally incorporating several 
baseline points), which also control to some 
degree for temporal changes and unforeseen co‐
interventions that may concurrently affect pre
scribing or utilization, as described in respected 
texts on intervention research design [53,55].

Regression toward the Mean

Regression toward the mean – the tendency for 
observations on populations selected on the 
basis of exceeding a predetermined threshold 
level to approach the mean on subsequent 
observations – is a common and insidious prob
lem in much of the drug utilization literature. 
For example, the most common Medicaid DUR 
programs typically screen prescribing data and 
eligibility files for possible co‐occurrences of 
two interacting medications, or higher than rec
ommended dosages for individual drugs. After 
case‐by‐case review by expert committees, let
ters (or email equivalents) are written to respon
sible physicians questioning the practice and 
asking for written responses. However, meth
odologic papers on this topic indicate that pub
lished research evaluating DUR used poorly 
controlled designs that were unable to control 
for regression to the mean [14,17,18]. For exam
ple, in one often‐cited DUR study [61], 50% of 
prescribing problems were absent several 
months after letters were sent, suggesting to the 
noncritical reader that the program was effec
tive. However, it is equally plausible that the 
offending medications were withdrawn because 
the patients’ conditions improved or because 
the physicians detected the error on their own.

The likelihood that all screening algorithms 
employed in DUR programs are subject to 
regression toward the mean argues strongly for 

the need to conduct RCTs and well‐controlled 
quasi‐experiments (e.g., pre–post with compar
ison group design) to justify the efficiency and 
effectiveness of these interventions before they 
become a routine part of private and public 
quality improvement programs [14,17,18]. If 
regression effects are unavoidable – for  example, 
due to selection of at‐risk populations – investi
gators may consider including a “wash‐out” 
period after selection and before pre‐ and 
postintervention observations [18,46].

Unit of Analysis

A common methodologic problem in studies 
of physician behavior is the incorrect use of 
the patient as the unit of analysis [63–66]. 
Such a practice violates basic statistical 
assumptions of independence, because pre
scribing behaviors and outcomes for individ
ual patients are likely to be correlated within 
each physician’s practice. To some degree, the 
prescribing practices of physicians within a 
group practice may also not be statistically 
independent of each other [64–66]. These 
forms of hierarchical “nesting” or statistical 
“clustering” often lead to accurate point esti
mates of effect but inappropriately low P val
ues and narrow confidence intervals, when the 
unit of analysis is assumed to be a statistically 
independent patient and the analytic frame
work does not account for correlation among 
patients treated by the same physician, or 
groups of physicians within a practice or hos
pital [64–66]. As a result, interventions may 
appear to lead to statistically significant 
improvements in prescribing practices because 
of mistakenly inflated sample sizes. For exam
ple, one review of articles on physicians’ patient 
care behavior found that 70% of 54 articles 
incorrectly analyzed the data using the patient 
as the unit of analysis without accounting for 
statistical clustering; among 19 reviewed studies 
of medication prescribing, 58% used the 
incorrect unit of analysis [66].
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The simplest, although overly conservative, 
solution to the problem of incorrect unit of 
analysis is to analyze data by facility or physi
cian. Fortunately, more statistically efficient 
methods for analyzing clustered data are 
becoming increasingly available; such models 
can simultaneously account for clustering of 
observations at the patient, physician, and facil
ity levels [65–70]. Such models allow aggrega
tion at the patient level by accounting for 
correlation between patients cared for by the 
same provider or facility. The resulting P values 
for differences in prescribing rates between 
study and control groups are almost always 
more conservative (and confidence intervals 
wider) than assuming no intraclass correlation, 
but are still greater (narrower confidence inter
vals) than the most conservative methods of 
analyzing at the provider or facility level. Much 
methodologic work remains to be done in terms 
of understanding what the appropriate unit of 
allocation and analysis is for various studies, 
how to best estimate power and sample sizes, 
and whether sensitivity analyses regarding unit 
of analysis need to be conducted or presented in 
the results of such studies.

Logistical Issues

While continuity of care is a goal in most health
care settings, many patients, particularly those 
treated within academic medical centers, see 
multiple primary providers over time. For exam
ple, patients treated by residents may be reas
signed to other residents at the end of the 
academic year. Providers may go on extended 
leave and transfer cases to other clinicians. 
Patients themselves may choose another pri
mary care provider. In addition, many patients 
develop ongoing relationships with specialists 
as particular problems develop and are resolved.

While these changes may or may not affect 
patients’ care, they almost always complicate 
and sometimes weaken research conducted in a 
clinical setting. Particularly in settings where 

providers may be assigned to both “interven
tion” and “control” patients, contamination 
problems are difficult to avoid. Even when inter
ventions can be focused effectively on the 
intended patients or providers, informal com
munication among providers can lead to con
taminated effects, thereby decreasing the 
likelihood of detecting significant changes.

Fortunately, some solutions to these problems 
exist. First, investigators should identify, 
through baseline interviews and organizational 
records, the extent to which patients are cared 
for by multiple providers, and the patterns of 
consultations and referrals between caregivers 
within and between facilities. If randomization 
of clinicians is likely to lead to contamination of 
controls, or if patient–provider pairs are fre
quently broken, then randomization of facilities 
should be used, such that an entire facility or 
subunit cluster (e.g., the “firm” within an aca
demic teaching hospital or the “primary care 
practice” in the community) is assigned to the 
same study group. For instance, a quality 
improvement intervention cluster randomized 
37 hospitals in one state to intervention or con
trol status [69]. However, when this strategy is 
not feasible, because it results in a small sample 
of facilities and inadequate statistical power, 
investigators are encouraged to collect data dur
ing multiple observation periods both before 
and after the intervention, and to use time‐
series regression methods that can often detect 
modest changes in utilization levels after as few 
as 6–12 months.

Ethical and Legal Problems Hindering 
the Implementation of Randomized 
Clinical Trials

Adequate control groups are essential for rigor
ous evaluation of results. Yet it has been argued 
that there are ethical and legal problems related 
to withholding interventions designed to 
improve drug prescribing practices. This argu
ment explicitly assumes that the proposed 
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interventions are known to be beneficial. In 
fact, the efficacy and effectiveness of many pro
grams to improve drug use is the very question 
that should be under investigation. Some com
mentators have argued, quite reasonably, that 
mandating such programs or interventions 
without adequate and valid proof of benefit is in 
fact unethical. For example, many researchers 
and policymakers have stated that computer
ized physician order entry (CPOE) does not 
need to be studied, and the Leapfrog advocacy 
group has gone so far as to state that not having 
CPOE compromises patient safety and quality 
of care [71]. What is important is to demon
strate that such interventions are safe, effica
cious, and cost‐effective before widespread 
adoption. Later studies have, in fact, found that 
health information technology can cause unin
tended patient harms or deaths [72,73]. Even a 
safe and nonefficacious intervention is associ
ated with opportunity costs and unknown 
harms; if this given intervention is widely 
adopted or legislatively mandated, many 
resources will have been diverted away from 
other parts of the healthcare delivery system. In 
those very rare instances in which the interven
tion has shown unusual promise in similar pop
ulations, the application of RCTs may be 
inappropriate, but alternative research designs 
should still be considered to better define the 
absolute risks, benefits, and costs of the inter
vention. Feasible design alternatives are quasi‐
experimental designs such as interrupted 
time‐series analysis or staged implementation, 
in which the control population (or regions) 
receives the intervention after comparative data 
have been collected [29,55,65,70,74,75].

Detecting Effects on Patient 
Outcomes

While a number of studies have demonstrated 
beneficial effects of various interventions on 
prescribing practices, few large well‐controlled 
studies have linked such changes in the 

 processes of care to improved patient outcomes. 
A notable exception was a randomized trial of 
computerized alerts to improve venous throm
boprophylaxis for hospitalized patients in a 
teaching hospital of over 700 beds [75]. Kucher 
et  al. allocated about 2500 patients and their 
physicians to either usual care or exposure to a 
computerized alerting system that automati
cally generated a clinical risk of deep venous 
thrombosis score, and alerted physicians to the 
need for prophylaxis using either drugs or 
devices. Unlike most studies, this trial was 
designed to detect a difference in clinical events, 
namely objectively diagnosed life‐threatening 
deep venous thrombosis or pulmonary embo
lism [75]. The computerized system more than 
doubled rates of appropriate prophylaxis (34% 
vs. 14% for controls), although there was still 
room for improvement. More importantly, it led 
to a clinically important (41% decrease) and sta
tistically significant (P = 0.001) reduction in 
adverse clinical events. There are only a limited 
number of studies suggesting a tight link 
between improvements in processes of care and 
patient‐related outcomes. Under most circum
stances, it is profoundly difficult to demonstrate 
statistically significant changes in patient out
comes in response to intervention. Explanations 
for the far more commonly observed dissocia
tion between improvements in prescribing and 
better patient outcomes include that (i) easily 
available clinical measures (e.g., mortality, 
unplanned hospital admission) may not be sen
sitive to the kinds of patient‐related outcomes 
that might be affected by introduction or with
drawal of medications; (ii) changes in physician 
prescribing may lead to little or no change in 
patients’ health status if patients do not adhere 
to the recommended regimens; and (iii) many 
medical therapies require months to years of 
continued persistence before clinical benefits 
become apparent.

Because of these problems, sample sizes may 
need to be enormous to detect even very mod
est changes in patient outcomes (see Chapter 4 
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for a discussion of methods for determining sta
tistical power). These problems are much less 
severe in drug trials (especially placebo‐con
trolled studies) because of experimenter control 
over the major independent variable – exposure 
to medications (see Chapter 36). However, pro
cess outcomes (e.g., use of recommended medi
cations for acute myocardial infarction from 
evidence‐based practice guidelines) are often 
sensitive, clinically reasonable, and appropriate 
measures of the quality of care [74–76], and 
improvements in process should not be dis
missed outright as surrogate outcomes. They 
may be important in and of themselves, as long 
as the processes are a measure of evidence‐
based and proven effective therapy [74–76].

 Conceptual Framework 
for Changing Clinical 
Behaviors

A useful starting point for designing an inter
vention to improve prescribing is to develop a 
framework for organizing the clinical and non
clinical factors that could help or impede desired 
changes in clinical behaviors [7–10,77]. The 
theory of planned behavior [9,10] is amenable to 
developing such a framework, as is the predis
posing, enabling, and reinforcing (PRECEDE) 
model [77]. PRECEDE was developed for adult 
health education programs by Green and 
Kreuter [77], and proposes factors influencing 
three sequential stages of behavior change (pre
disposing, enabling, and reinforcing factors). 
Predisposing variables include such factors as 
awareness of a consensus guideline on appro
priate use of a thrombolytic agent, knowledge of 
clinical relationships supporting such a guide
line (e.g., major actions of thrombolytics in the 
artery), beliefs in the efficacy of treatment (e.g., 
probability of survival), attitudes or values asso
ciated with recommended behaviors (e.g., risk 
of intracranial hemorrhage associated with 

therapy), and a myriad of other potential factors 
[8,52]. However, while a mailed drug bulletin or 
email alert may predispose some physicians to 
new information (if they read it), behavior 
change may be impossible without new enabling 
skills (e.g., skills in administering a new therapy, 
or overcoming patient or family demand for 
unsubstantiated treatments). Once a new pat
tern of behavior is tried, multiple and positive 
reinforcements (e.g., through peers, reminders, 
feedback, and incentives) may be necessary to 
establish the new behavior fully. Several reviews 
of the literature have come to a similar conclu
sion [20,34,52,78]: multifaceted interventions 
that encompass all stages of behavior change are 
most likely to improve physician prescribing.

 Empirical Evidence on the 
Effectiveness of 
Interventions to Improve 
Prescribing

Does existing empirical evidence on the effec
tiveness of alternative prescribing interventions 
provide any lessons on the key characteristics of 
successful approaches to this problem? 
Illustrative findings from several research syn
theses will be used to evaluate the effectiveness 
of the most commonly studied or applied 
approaches. Because of severe biases intro
duced by uncontrolled designs that do not 
measure preexisting trends in target drug use 
behaviors (see prior “Methodologic Problems” 
section), only studies using valid experimental 
or quasi‐experimental research designs (e.g., 
RCTs and time‐series designs) are discussed.

Educational Interventions

Printed Educational Materials and 
Guidelines
Distributing printed educational materials 
aimed at improving prescribing practice 
remains the most ubiquitous form of  prescribing 
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education in the industrialized world. While the 
most sophisticated materials may incorporate 
visually arresting graphs, illustrations, and 
headlines to convey important behavioral and 
educational messages, such a strategy rests on 
assumptions that physicians will be exposed to 
the information, and that such rational informa
tion will be sufficiently persuasive to change 
clinical practices. Unfortunately, several reviews 
provide consistent evidence that use of dissemi
nated educational materials alone (such as drug 
bulletins, self‐education curricula, objective, 
graphically illustrated “un‐advertisements,” or 
other professionally prepared educational bro
chures) may affect some of the predisposing 
variables in the change process, but will have a 
minimal (and often no) effect on actual pre
scribing practice [11,19,23,52,78–81].

Clinical practice guidelines are a distinct sub
set of educational materials. Although primarily 
educational in nature, they are also a codifica
tion of current best practice, and are intended to 
improve quality and decrease costs by minimiz
ing unnecessary variations in practice. However, 
faith in the simple act of guideline dissemina
tion presupposes that information alone, 
regardless of how reliable or well referenced, 
can change behavior. In general, when rigor
ously studied, guideline dissemination alone 
does not influence prescribing behavior or other 
practices to a clinically important degree 
[11,19,34,80–86]. Given the proliferation and 
availability of numerous guidelines, dissemina
tion of a particular guideline should be consid
ered part of “usual care,” and so unlikely to 
change practice, and to provide a reasonable 
control “intervention” with which to compare 
more effective interventions or strategies. The 
failed IHI 100,000 Lives Program cited earlier 
also relied only on printed guidelines to avert 
hospital deaths [87].

In summary, simple dissemination of educa
tional materials does not appear to be effective 
by itself in altering prescribing patterns, but 
these materials may provide a necessary 

 predisposing foundation for other enabling and 
reinforcing strategies.

One‐to‐One Education (Academic 
Detailing)
A number of controlled studies support the 
conclusion that programs with brief face‐to‐
face visits (15–25 minutes) by pharmacists, phy
sician counsellors, or peer leaders (academic 
detailers) are effective in promoting evidence‐
based practice and improving patient outcomes 
[11,19,88–91]. For instance, a Cochrane review 
of 30 trials suggests a 6% increase in compliance 
with practice guidelines when any intervention 
in which educational meetings were a compo
nent was compared to no intervention [19], and 
another indicates interventions involving peer 
leaders were associated with a 12% increase in 
compliance with practice guidelines [88]. The 
principles and methods of this approach are 
described in detail elsewhere [12], and include 
(i) targeting of physicians with higher than aver
age needs for education (e.g., through analyses 
of administrative data); (ii) conducting motiva
tional research (e.g., surveys of focus group 
interviews) in advance of the intervention to 
understand the causes of suboptimal prescrib
ing patterns; (iii) sponsorship by authoritative 
and credible medical organizations; (iv) two‐
way communication with prescribers to increase 
clinician involvement and relevance to different 
patient populations and settings; (v) presenta
tion and discussion of counterarguments to 
which physicians have been exposed; (vi) brev
ity; (vii) use of high‐quality, graphical educa
tional materials; (viii) repetition of major 
messages; and (ix) follow‐up visits for positive 
reinforcement. Of course, pharmaceutical 
industry detailing also shares many of these 
principles and methods. What sets academic 
detailing apart from industry efforts is that the 
messengers and the messages of the former are 
independent, objective, and evidence based.

A formal economic analysis of academic 
detailing in this study, conducted from a  societal 
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perspective (in this case, a Medicaid program), 
concluded that targeting moderate to high pre
scribers of propoxyphene, cephalexin, and vaso
dilators using administrative claims databases 
could lead to a benefit‐to‐cost ratio of more 
than 2, even without considering positive spillo
ver effects to nonparticipating physicians, 
improved quality of care, or possible cost sav
ings due to elimination of adverse drug effects 
[84]. The main barrier to more widespread use 
of the strategy is its perceived labor intensive
ness. Nevertheless, academic detailing is a con
sistently effective method for changing 
physician practice [11,19,88,90–93].

Group Education and Group Detailing
Although rounds, seminars, and other group 
didactic educational programs are among the 
most universal methods for prescribing educa
tion, controlled studies of this approach are 
almost nonexistent in the literature, especially 
in nonteaching settings. Nevertheless, small 
group discussions conducted by clinical leaders 
in academic primary care settings have been 
shown to improve use of antibiotics [40] and 
agents for hypertension treatment and control 
[94]. These successful approaches have included 
reviews of patient records to establish the need 
for change and participatory methods based on 
adult learning theory, and have more in com
mon with academic (individual or group) detail
ing than traditional modalities of continuing 
medical education. Traditional large‐group, 
didactic continuing medical education seminars 
have not been as successful, by themselves, in 
improving physician performance [19,20,95,96]. 
Even the most rigorous internet‐based exten
sions of traditional continuing medical educa
tion had yielded only negligible incremental 
advantage over more traditional approaches 
[96]. The results of one early but important 
RCT of continuing medical education were 
summed up by the authors as follows: “Put 
simply, in terms of the effects of continuing 
education on the documented quality of care, 

wanting continuing education … was as good 
as getting it” [95].

A number of controlled trials have replicated 
the positive results of one‐to‐one outreach with 
smaller group outreach sessions, often referred 
to as “group detailing” [97]. Group detailing has 
the potential advantage of encouraging discus
sions within the group, which may enhance the 
diffusion of ideas and increase their impact. For 
example, in a cluster RCT to improve the use of 
antihypertensive medications in primary care in 
the US, Simon et  al. randomly allocated three 
practice sites to group detailing (n = 227 pre
scribers), three to individual detailing (n = 235 
prescribers), and three to usual care (n = 319 
prescribers). Individual detailing entailed a 
physician‐educator meeting individually with 
clinicians to address barriers to prescribing 
guideline‐recommended medications. The 
group detailing intervention incorporated the 
same social marketing principles in small groups 
of clinicians. Results of this study suggested that 
both group and individual academic detailing 
improved antihypertensive prescribing (adjusted 
odds ratio [OR], 1.40; 95% confidence interval 
[CI], 1.11–1.76 and adjusted OR, 1.30; 95% CI, 
0.95–1.79, respectively) compared to usual care, 
but may require reinforcement to sustain 
improvement [98].

It is likely that as long as the group size is kept 
relatively small (i.e., fewer than 5–10 partici
pants), and the other precepts of academic 
detailing are adhered to, group detailing is a rea
sonable alternative approach to individualized 
educational outreach.

Local Opinion Leaders
The role of local opinion leaders in the adoption 
of new pharmaceutical agents has been well 
documented by Coleman et  al. [2]. Their data 
indicated that after opinion leaders adopted 
particular drugs, other less integrated physi
cians eventually followed in a classic curve of 
technology diffusion. In several studies of the 
diffusion of scientific information on treatment 
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of arthritis and the inappropriate use of 
Cesarean sections [85,99], local opinion leaders 
or educationally influential physicians have 
been identified and encouraged to consult infor
mally with colleagues. These opinion leaders are 
approached frequently for clinical advice, are 
trusted by their colleagues to evaluate new 
medical practices in the context of local norms, 
have good listening skills, and are perceived as 
clinically competent and caring [3,69,85,89,99–
101]. In addition to opinion leader involvement, 
these interventions generally included a brief 
orientation to research findings, printed educa
tional materials, and encouragement to imple
ment guidelines during informal “teachable 
moments” that occur naturally in their ongoing 
collegial associations. The success of these pro
grams was attributed to “the importance of the 
local community’s norms, the orientation of 
practitioners to locally credible individuals, and 
the need to translate the research findings into a 
locally applicable message” [100]

Although the recruitment and use of opinion 
leaders show great promise in accelerating the 
adoption of evidence into practice, overall the 
results of rigorous opinion leader studies have 
been mixed [88], and whether or not such 
interventions are reproducible across diseases 
and settings [101], can improve prescribing for 
multiple conditions outside the hospital set
ting, and are cost effective remains to be 
determined.

Monitoring and Feedback

Prescribing, Audit, and Feedback
A popular approach to improving physician 
performance has been some form of “feedback” 
of prescribing patterns to individuals or groups 
of physicians. It has been estimated that, annu
ally, more than one‐half of all US physicians 
receive some clinical or economic feedback 
regarding their prescribing practices [25,102].

Audit and feedback interventions often 
compare practice patterns with peers or 

 predetermined standards such as practice 
guidelines. The former is typified by interven
tions of peer comparison feedback, while the 
latter are typified by formal drug utilization 
review programs. Systematic reviews consist
ently conclude that peer comparison feedback 
has a statistically significant, but clinically 
minimal, effect on prescribing or other physi
cian behaviors [11,21,25,102]. For instance, a 
Cochrane review of 49 trials suggests a 4.3% 
increase in healthcare professionals’ compli
ance with practice guidelines and a 0.4% 
decline in dichotomous patient outcomes 
(e.g., the proportion of patients with appropri
ate management) [102].

Furthermore, it seems these programs would 
be unlikely to offset the costs of the interven
tions themselves, much less lead to cost savings. 
The conclusions of these reviews were sup
ported by a methodologically rigorous RCT of 
the effect of peer comparison feedback on the 
prescription of five unrelated groups of medica
tion [103]. These Australian investigators went 
so far as to conclude, based on their null results, 
that “feedback is not worthwhile and should not 
be seen as a high priority by government 
 agencies” [103].

In addition to the type or content of the feed
back, a number of variables must be considered. 
Communication channels could be by letter, 
computer, or face‐to‐face encounter with a 
supervisor or colleague. Even more importantly, 
the credibility of the source of the feedback 
information probably influences its effective
ness more than the content of messages. Thus, 
feedback programs operated by a government 
regulator or managed care organization may be 
less effective than professionally based educa
tional programs in which an ongoing relation
ship exists between the sender and receiver of 
information [103–108].

Lastly, if physicians are not able to respond 
immediately to the feedback delivered, by alter
ing prescribing during a specific patient encoun
ter, they may not respond at all. It is not 
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necessarily true that physicians will generalize 
behavior from one specific encounter to similar 
clinical situations [104,105].

One important advance in the area of audit 
and feedback, which attempts to address many 
of the aforementioned problems, is the devel
opment of the concept of the “achievable 
benchmarks of care” by Kiefe et al. [105]. The 
underlying theory is that viewing one’s per
sonal performance within the context of peers’ 
performance should be a powerful motivator 
for change [89]. In essence, the achievable 
benchmark represents the average perfor
mance of the top 10% of local physicians being 
assessed [105]. By design, achievable bench
marks are higher than the group mean – and 
group mean data are what are most often pro
vided in audit and feedback programs. Kiefe 
et al. undertook a cluster RCT and allocated 
physicians (n ~ 100) and their diabetic patients 
(n ~ 2000) to either “usual care” (in fact, it was 
a standard quality improvement intervention 
that profiled physicians and provided them 
with individual and group mean performance 
feedback on five different quality indicators, 
such as influenza vaccination, foot examina
tion, and measurement of glycosylated hemo
globin) or to an experimental intervention 
(usual care plus the provision of top 10% 
achievable benchmark data). The intervention 
was associated with 15–57% relative improve
ments in all indicators compared with usual 
care; three out of five of these improvements 
were also statistically significant [105].

Drug Utilization Review
DUR programs have been defined as “struc
tured, ongoing initiatives that interpret patterns 
of drug use in relation to predetermined crite
ria, and attempt to prevent or minimize inap
propriate prescribing” [14,17]. DUR has many 
synonyms, including drug use review, drug use 
evaluation, and medication review. It involves a 
comprehensive review of patients’ prescription 
and medication data before, during, and after 

dispensing to ensure appropriate medication 
decision making and positive patient outcomes. 
DUR programs provide prescriber feedback at 
the patient level.

Prospective or retrospective DUR are well‐
studied forms of prescriber feedback. It has fre
quently been hypothesized that simply making 
clinicians aware of all of the medications a 
patient may be prescribed might be an effective 
method for reducing use of excessive, duplica
tive, or interacting medications. The best con
trolled trials of this approach confirm that 
simply distributing such profiles, without 
explicit suggestions for changes in practices, has 
no detectable effect on prescribing practice 
[103,109,110]. Likely reasons for the failure of 
this intuitively appealing approach include that 
(i) much of the generated information was prob
ably clinically irrelevant; (ii) unsynthesized and 
voluminous data may cause information “over
load” and desensitization of busy clinicians; (iii) 
there was no provision of alternative measures 
to improve care; and (iv) the feedback was not 
derived from credible sources of information. 
This approach represents one of the few 
instances in which the volume of negative find
ings from methodologically rigorous studies 
strongly supports the exclusion of this strategy 
from future research.

Many existing DUR programs attempt to 
review the appropriateness of medication pre
scribing for individual patients (e.g., drug inter
actions and dosage). Since the majority of 
feedback messages are likely to be clinically 
unimportant [14,17,18,103], the clinically rele
vant messages could be unintentionally ignored. 
Recent systematic reviews of medication review 
in adult hospitalized patients and nursing home 
residents found no evidence that medication 
review reduces mortality or hospitalizations 
[111,112]. In fact, the best‐controlled studies do 
not yet support the effectiveness of either retro
spective or prospective DUR, even though both 
are mandated for all state Medicaid programs 
[14,17,18].
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Reminders and Computerized Decision 
Support Systems
Often, physicians are predisposed to certain 
therapeutic interventions, but simply omit them 
due to oversight or lack of coordination in the 
healthcare/communications system. In these 
cases, computerized reminders can enable phy
sicians to reduce these errors of omission by 
issuing alerts to perform specific actions in 
response to patient‐level information such as 
laboratory findings or diagnoses.

Several studies in hospitals, managed care 
organizations, and primary care settings have 
provided strong evidence that such systems can 
prevent the omission of essential preventive 
services such as deep venous thrombosis proph
ylaxis, influenza immunization, and others 
[57,75,113–115]. It is noteworthy that comput
erized reminders and decision support systems 
(see later discussion) are perhaps the most‐
studied aspect of the various functionalities 
 present within the electronic health record. A 
rigorous review of 28 trials examining real‐time 
point‐of‐care computerized reminders demon
strated that, when compared with controls, the 
median improvement in process‐of‐care meas
ures was only 4%; the median improvement in 
appropriate medication prescribing was only 3% 
(interquartile range 1–11%) [113]. Although 
statistically significant, the magnitude of 
improvements is far smaller than expected and 
in many cases might not be considered worth
while. Other systematic reviews [114,115] also 
concluded that reminders probably slightly 
improve quality of care, in terms of compliance 
with clinical guidelines, but little evidence exists 
on whether reminders improve patient out
comes. The effects of reminders on improving 
quality of care vary across settings and condi
tions. Such systems are more likely to be effec
tive if the reminder requires a response from the 
clinician and provides an explanation of the 
reminder’s content or advice [114]. “Reminder 
fatigue,” with concurrent bypassing of computer 
screens or generalized neglect of all alerts, is an 

important problem that has not been well 
addressed [116,117].

A major component of health information 
technology (HIT) is computerized decision sup
port systems (CDSS) integrated with electronic 
health records. They are intended to support 
physicians’ prescribing decisions at the point of 
ordering, including alerts regarding dosage, 
drug interactions, schedule, suboptimal choices, 
and prevention of adverse drug events 
[113,118,119]. This promise, however, should 
not be assumed [57,72,73,113,119]. In one older 
but very rigorous study of advanced computer 
decision support, Eccles et al. conducted a clus
ter RCT of 60 busy primary care practices in the 
UK [10]. These practices already had electronic 
records and electronic prescribing. Eccles et al. 
randomized them to a computerized guideline/
decision support intervention that was fully 
integrated into the electronic clinic record; half 
of the practices were allocated to a symptomatic 
coronary disease guideline (n = 1415 interven
tion patients) and the other practices to an 
asthma guideline (n = 1200 intervention patie
nts). After one year, there were no significant 
improvements in any one of more than 40 dif
ferent quality indicators for either condition 
[10]. Available systematic reviews suggest that 
CDSS might moderately improve process of 
care such as rates of laboratory monitoring and 
prescribing decisions, and that they may help 
reduce the length of hospital stay compared 
with routine care while comparable or better 
cost‐effectiveness is achieved, but there is no 
evidence that CDSS have fulfilled their prom
ised effect on healthcare costs, mortality, or 
other clinical adverse events [120–124]. 
Furthermore, there have also been well‐docu
mented harms and adverse events induced by 
various CDSS [72,73]. With these cautionary 
notes, we refer the interested reader to a more 
detailed examination of adverse drug events in 
general, and the potential roles of CPOE and 
computerized decision support, in recent sys
tematic reviews [57,108,113,120–123,125].
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Multimedia Campaigns

Occasionally, the discovery of important 
adverse effects of marketed drugs is accompa
nied by dissemination of educational materials 
to physicians as part of a broader warning cam
paign involving the medical and popular press, 
internet, newspapers, television, and radio. 
When the adverse effects are severe and pre
ventable, alternative agents exist, and the mes
sages are simple enough to convey in mass 
communications, such multimedia campaigns 
may be effective in changing prescribing pat
terns in large populations.

Figure  19.2 provides data from a US study 
suggesting that widespread reporting by the 
medical and lay press of the risk of Reye’s syn
drome associated with pediatric aspirin use was 
associated with declines in Reye’s syndrome 
incidence. This media campaign was conducted 
after several epidemiologic studies identified 
the association between Reye’s syndrome and 

aspirin use and antecedent viral illnesses [126]. 
The authors concluded, based on this and other 
studies, that mass media warnings may be effec
tive in changing both consumer and physician 
behavior when the illness is severe or life threat
ening, the behavioral message is simple, no or 
few barriers to alternative behaviors (e.g., aceta
minophen versus aspirin) are present, and the 
campaign is comprehensive, involving both 
health professionals and consumers.

Figure  19.3 provides data from another 
 example of the effects of multimedia campaigns. 
A recent study [127] examined the effects of 
widespread reporting by the medical and lay 
press of suicidality risk associated with pediatric 
antidepressant use. In a 10‐year interrupted 
time‐series analysis in 11 health plans across the 
US, the authors found that the drug safety warn
ings and hyped media coverage led to substan
tial reductions in antidepressant use and small, 
visible increases in psychotropic drug poison
ings treated in emergency rooms and hospitals.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1974 1976 1978 1980 1982 1984 1986 1988

Year

0

10

20

30

40

N
um

be
r 

of
 c

ita
tio

ns

In
ci

de
nc

e 
pe

r 
10

0  
00

0 
po

pu
la

tio
n 

<
18

 y
ea

rs
 o

ld

Figure 19.2 Trend in number of (○) medical and (□) lay press citations on aspirin and Reye’s syndrome, and the 
incidence of Reye’s syndrome (●) among children. Newspaper index limited to four continuously reporting national 
newspapers described in text. Source: Soumerai SB, Ross‐Degnan D, Spira J. The effects of professional and media 
warnings about the association between aspirin use in children and Reye’s syndrome. Milbank Q 1992; 70: 155–82. 
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Formulary Interventions 
and Financial Incentives

In response to escalating drug costs, an increas
ing number of physician practices in the US are 
entering into capitated drug risk‐sharing 
arrangements with managed care organizations 
[22–24]. These innovative drug payment mech
anisms are designed to control drug costs by 
encouraging physicians to prescribe “preferred” 
drug products (e.g., generic drugs or those that 
are on the health plan’s formulary). Some ana
lysts assert that capitation encourages physi
cians to examine their prescribing more 
critically, resulting in the choice of appropriate, 
effective, and low‐cost medications. This belief 
is based on a number of untested assumptions: 
(i) practices are large enough to absorb risk, so 
that costly but appropriate prescribing deci
sions for the individual patient are not unduly 

affected; (ii) performance feedback to prescrib
ers is timely and provides specific advice about 
costs, risks, and possible substitutions; and (iii) 
physicians understand and are sensitive to dif
ferences in drug pricing. Because it is unlikely 
that these assumptions (in general) are met, any 
intervention using financial incentives must be 
considered experimental. This is perhaps most 
true for various “pay‐for‐performance” schemes 
that have been introduced in many settings 
[128–130]. The most mature pay‐for‐performance 
program is that linked to the UK Quality and 
Outcomes Framework for primary care [128]. 
There were more than 100 indicators intro
duced, and by most standards the  incentives 
were considered generous – up to an additional 
25% of an individual physician’s income could 
be generated within the scheme, and collec
tively the equivalent of about $1  billion annually 
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was spent by the National Health Service. 
Rigorous studies, using time‐series methods, 
demonstrated small, if any improvements in 
performance indicators; protracted follow‐
up, however, demonstrated that performance 
plateaued and in fact quality of care may have 
even decreased for those conditions or indi
cators that were not incentivized [128–130]. 
In a recent RCT [131] of a pay‐for‐performance 
intervention, physicians were randomized to 
receive economic incentives for each patient 
who met target cholesterol levels, whereas 
physicians in the control groups received no 
economic incentives for achieving better out
comes. Results of this RCT suggest that phy
sician payments did not produce any 
meaningful changes in quality of care com
pared with an equivalent group receiving no 
incentives.

Preferred drug lists (PDLs) are commonly 
used in the US and elsewhere by policymakers 
to contain drug costs; prescribing of nonpre
ferred drugs requires prior authorization. Well‐
controlled studies have assessed their effects on 
the quality of prescribing, unintended conse
quences, and patient outcomes. Rigorous, lon
gitudinal studies reported that prior 
authorization is associated with lower use of 
nonpreferred cardiovascular drugs [132,133], 
and with treatment discontinuity among 
patients with severe mental illness such as 
schizophrenia and bipolar illness [134–136] 
with few cost savings. Following treatment dis
continuation associated with prior authoriza
tion, a pre–post design with a control group 
study [137] found significant and concerning 
reductions in psychiatric visits among the sick
est patients with bipolar illness and increases in 
emergency room visits among less severely ill 
patients, which may reflect attempts by patients 
to improve access to medication. An interrupted 
time‐series study found that prior authoriza
tion was associated with substantial reductions 
in initiation of nonpreferred medications [138] 
for severe mental illness without offsetting 

increases in use of preferred agents. These 
results suggest that prior authorization acts as 
an administrative barrier and is associated with 
underuse of maintenance medications. This is a 
major concern for the quality of care of this 
population, because underuse of maintenance 
medications could lead to acute episodes of ill
ness, suicide, and hospitalization. Moreover, 
targeting essential drug classes with heteroge
neous patient responses and side effects could 
reduce appropriate care, adversely affect health 
status, and cause shifts to more costly types of 
care. Assessing inappropriate use of high‐cost 
drugs before implementing regulations and 
instituting simple mechanisms to exempt high‐
risk patients could maximize savings and 
 minimize harm.

 The Future

Based on this synthesis of the research litera
ture, it is clear that our knowledge of the charac
teristics of successful interventions to improve 
prescribing is growing rapidly. Passive dissemi
nation of evidence is a necessary but insufficient 
method for improving most prescribing behav
iors. In general, the achievement of long‐term 
changes in practice will depend on the inclusion 
of multiple strategies that predispose, enable, 
and reinforce the desired prescribing behaviors. 
The following characteristics seem to recur in 
successful interventions:

 ● Using theoretical and conceptual frameworks 
to identify key factors influencing prescribing 
decisions through surveys, focus groups, or 
in‐depth interviews.

 ● Targeting physicians in need of education 
(e.g., through review of prescribing data) to 
increase effectiveness and efficiency.

 ● Recruitment and participation of local 
 opinion leaders.

 ● Use of credible and objective messengers and 
materials.
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 ● Face‐to‐face interaction, especially in primary 
care settings.

 ● Audit and feedback (if they are used at all) 
that incorporate achievable benchmarks, 
comparisons with peers, and patient‐specific 
data.

 ● Repetition and reinforcement of a limited 
number of messages at one time.

 ● Provision of acceptable alternatives to the 
practices that are deemed necessary to be 
extinguished.

 ● Brief, graphic educational guidelines and evi
dence summaries to predispose and reinforce 
messages.

 ● Use of multiple evidence‐based strategies to 
address multiple barriers to best practice.

 ● Emphasis on the goal of improvement in the 
quality of prescribing and patient safety, not 
just cost minimization in the guise of quality 
improvement.

There is also a tremendous need for carefully 
controlled research of some existing and new 
methods for improving prescribing, and how 
best to combine various evidence‐based strate
gies to allow for rapid local implementation of 
prescribing guidelines. New models are needed 
to predict the most effective types of interven
tion for specific problem types, and a number of 
broader questions still need to be answered: 
What is the correct, or at least most reasonable, 
rate of adherence to a given prescribing guide
line? Are face‐to‐face interventions (either one 
on one or in small groups) always necessary to 
address strongly held incorrect beliefs? What 
should we consider a “clinically important” 
improvement for a complex practice change 
strategy? Can reminder systems that are some
times effective in correcting errors of omission 
change more resistant errors of commission? 
Even if single reminders are effective, is there a 
point of multiple reminder fatigue and dimin
ishing clinical returns? Lastly, are advanced 
CDSS safe and effective, and, if so, are they 
worth the time, effort, and opportunity costs 

necessary to implement and use them? The 
most recent, rigorous research questions the 
efficacy, efficiency, and safety of health informa
tion technology mandated by the economic 
stimulus of 2008 [87].

Practice settings may also influence the 
choice of interventions to be evaluated. For 
example, organized systems of clinicians (e.g., 
medical groups, independent practice associa
tions, integrated delivery systems) may be con
ducive to participatory approaches in which 
practicing physicians, and possibly patients, 
work with a facilitator/educator to explore 
current practices and barriers to change, and 
then develop or modify practice guidelines, 
along with methods to measure guideline 
adherence. These group meetings also serve as 
vehicles for active learning and begin to con
verge with the strategy of group detailing 
described earlier. In addition, we believe more 
attention needs to be paid to the study of 
changing the behavior of busy physicians in 
community practice. Many successful strate
gies may not be transferable from a university 
hospital to a busy ambulatory clinic.

Most of the studies we reviewed were designed 
to assess only whether an intervention changed 
behavior; few studies have undertaken formal 
cost–benefit analyses [22,93]. Several formal 
economic analyses of academic detailing trials 
demonstrated that the interventions led to a net 
saving from the societal or organizational 
 perspective [83,93,139]. This is a clear illustra
tion of what Eddy described as “getting more for 
less,” the potential to improve quality and reduce 
costs simultaneously [140]. There are still 
 relatively few controlled studies that compare 
the costs and benefits of alternative approaches 
to improving practice, and little has been pub
lished on when (or at what cost) it is reasonable 
to introduce an intervention to change physi
cians’ practice [93].

Although we know that prescribing problems 
exist, we still know surprisingly little about their 
prevalence or determinants. This paucity of 
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data is all the more remarkable considering that 
three‐quarters of all physician visits end in the 
prescription of a drug. In a study of more than 
30 000 hospital admissions, drug‐related com
plications were common and estimated to 
account for 19% of all adverse events, and almost 
one‐third of adverse drug events were prevent
able [141]. Less is known about the ambulatory 
setting [142–144], with estimates of preventable 
adverse drug events ranging from 11% to 28%. 
One retrospective analysis of a New England 
malpractice insurance carrier observed that 6% 
of all malpractice claims were related to adverse 
drug events, and that half of these claims 
occurred for events in the outpatient setting 
[144]. These investigators also estimated that 
three‐quarters of these adverse drug events 
were preventable, and that most medication 
errors occurred as a result of system deficien
cies (e.g., inadequate monitoring) or perfor
mance errors (e.g., wrong drug or wrong dose). 
Like most descriptions of adverse drug events, 

these studies documented only errors of com
mission; the extent of omission (e.g., underuse 
of effective therapies) has been extremely 
understudied (see Chapter 24).

Finally, studies examining the economic out
comes of interventions as well as studies that 
include patient‐reported outcomes would adv
ance the field. While policy‐induced reductions 
in the use of essential medications have been 
associated with adverse events [145], few analo
gous patient outcomes studies exist in the litera
ture on interventions to improve prescribing. 
Important effects of medications on many 
health outcomes have been demonstrated in 
clinical trials; therefore, it is reasonable to 
hypothesize that more appropriate use of some 
medications could reduce morbidity and mor
tality, increase patient functioning, and improve 
quality of life. Whether improved prescribing is 
a surrogate measure, or an outcome that directly 
leads to improved health outcomes, it remains a 
critically important area for future study.
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Vaccines are among the most cost‐effective and 
prevalent primary public health interventions 
[1,2]. Where immunizations are widely prac
ticed, rates of targeted vaccine‐preventable dis
ease (VPD) have declined considerably [3,4]. 
However, no vaccine is perfectly safe or effective 
[5]. With high rates of vaccinations and a low 
incidence of VPD, adverse events following 
immunizations (AEFI) are understandably of 
concern, and have received increasing attention 
[6–10]. Unfortu nately, this concern has often 
negatively affected the stability of immunization 
programs [11]. For example, questions about 
the safety of pertussis vaccine in Japan and else
where during the 1970s reduced the coverage 
rate for this vaccine, resulting in the resurgence 
of pertussis [12]. Similar concerns in the US led 
to lawsuits, substantial vaccine price increases, 
and loss of vaccine manufacturers [13], and were 
a potential deterrent to the development of new 
vaccines [14]. In the 1990s, concerns about the 
safety of mercury‐based thimerosal preservative 
used in vaccines [15,16] and the safety of vac

cines for anthrax [17] and smallpox [18] 
affected the stability of US civilian and military 
immunization programs, respectively. In the UK, 
a case series report of autism following measles–
mumps–rubella (MMR) vaccination in a small 
number of patients (n = 12; subsequently 
retracted) precipitated widespread vaccine safety 
concerns, leading to reduced MMR vaccination 
rates and subsequent measles outbreaks [19,20]. 
Similarly, vaccine safety concerns have affected 
public acceptance of hepatitis B vaccine in 
France [21], oral polio vaccine (OPV) in Nigeria 
[22,23], human papilloma virus (HPV) vaccine 
[24], and 2009 influenza A (H1N1) pandemic 
(pH1N1) vaccine in several countries [25,26].

More recently, parents have expressed concerns 
about the safety of the immunization schedule as 
a whole, worrying that children receive too many 
vaccines at a very young age and that the recom
mended immunization schedule overwhelms the 
immune system [27–29]. These sentiments cause 
parents to delay or refuse certain or all vaccines 
for their children, contributing to the adoption of 
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alternative immunization schedules in several 
high‐income countries.

In the early 1990s, the US Institute of Medicine 
(IOM) – later renamed the National Academy 
of Medicine (NAM)  –  reviewed vaccine safety 
knowledge and research capacity [30,31] and 
noted it had been limited by (i) inadequate under
standing of biologic mechanisms underlying 
AEFI; (ii) insufficient or inconsistent information 
from case reports and case series; (iii) inadequate 
size or length of follow‐up of many population‐
based epidemiologic studies; (iv) limitations of 
existing surveillance systems in providing persua
sive evidence of causation; and (v) few experimen
tal studies published relative to the total number 
of epidemiologic studies published. IOM/NAM 
concluded that, “if research capacity and accom
plishments [are] not improved, future reviews of 
vaccine safety [will be] similarly handicapped.” 
Many research and knowledge gaps continue 
to be identified in each IOM/NAM review of 
specific immunization safety controversies since 
2001, ranging from autism to unexpected infant 
deaths [17,32–40]. Pharmacoepidemiology has 
played a vital role since in providing the scientific 
methods for assessing vaccine safety in the US 
[41], Europe [42,43], and globally [10,44]. In this 
chapter, we discuss the major differences in how 
epidemiology is applied to vaccines versus other 
pharmaceutical products, giving consideration to 
both policy and methodology.

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

Policy Issues

Vaccines share many characteristics with 
other pharmaceuticals, such as their phased 
development and licensure, but differ funda
mentally in other ways [41]. Understanding 
these differences is important to appreciate the 
policy context of vaccine safety and the role of 

pharmacoepidemiology. Vaccines, for example, 
are biologic products that are inherently more 
complex than most small‐molecule drugs – both 
constituent components and the production 
process [45,46]. Each component of the vaccine 
formulation – the immunogen, conjugated pro
tein [47], preservative [15], adjuvant [48,49], stabi
lizer [50,51], diluent [52], and other excipients – has 
its respective safety considerations (e.g., sourcing, 
production, quality assurance, safety profile), indi
vidually as well as combined [53]. Programmatic 
errors such as mixing up vaccine vials and unsafe 
injection practices can also be a concern, espe
cially with poverty [52,54] and in the context of 
conflicts [55].

A higher standard of safety is also expected of 
vaccines. In contrast to other pharmaceuticals 
administered mostly to persons who are ill for 
curative or therapeutic purposes, vaccines are 
generally given to healthy people to prevent 
disease. Tolerance of adverse reactions to prod
ucts given to healthy people – especially healthy 
babies – is especially low. This lower risk toler
ance for vaccines translates into a need to detect 
and investigate the possible causes of much 
rarer events than would be acceptable for 
other pharmaceuticals. Events that occur at 
~1/105–1/106 doses administered, such as acute 
encephalopathy after whole‐cell pertussis vac
cine [30], Guillain‐Barré syndrome (GBS) after 
swine [56] or 2009 pH1N1 [57] influenza vac
cines, and OPV‐associated paralytic polio [58], 
are of concern for vaccines. In contrast, side 
effects are essentially universal for cancer chem
otherapy, and gastrointestinal side effects are 
very common (10–30%) among people on high‐
dose aspirin therapy [59].

The cost and the difficulty of studying 
events increase with their rarity, however (see 
Chapter 3). Furthermore, conclusions from epi
demiologic studies of rare events are less defin
itive. Attributable risks at about 1/105–1/106 are 
considered to be at the margin of resolution for 
epidemiologic methods [30,60]. The whole‐cell 
pertussis vaccine safety concern in the late 1970s 
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[12,30] illustrated this challenge. All British 
children from 2 to 35 months of age hospital
ized for several neurologic illnesses over three 
years (n = 1167) were enrolled in a very large 
case–control study; however, the finding of a 
statistically significant association between vac
cine and permanent brain damage was based on 
a small number of exposed cases with wide con
fidence intervals [61]. Whether or not this study 
finding was valid, it generated much contro
versy in and out of the courts [30,62]. Recent 
advances suggest rare de novo genetic mutation 
and not vaccine as the likely cause [63].

Despite considerably more robust data linking 
GBS with the 1976–1977 swine influenza vac
cine [56], subsequent controversy resulted in a 
court‐ordered independent reexamination of 
the data and ultimately to a partial repeat of the 
study, confirming the initial findings [64]. 
Robust results from two studies on rhesus‐rota
virus vaccine and intussusception [65,66] were 
also challenged [67], until the risk was also 
shown with the second‐generation vaccine, 
albeit one log rarer [68].

Perhaps not surprisingly, but adding to the 
confusion, much of the published literature on 
vaccine safety (and resultant media scares) his
torically has been in the form of case reports and 
case series (e.g., a subsequently retracted Lancet 
article alleging links between measles vaccina
tion and autism [19]) rather than controlled stud
ies with adequate power [30,31]. This problem is 
being ameliorated with the advent of carefully 
controlled large‐linked database studies in sev
eral, mostly high‐income countries [69,70].

A higher standard of safety is also required for 
vaccines because of the large number of people 
who are exposed, some of whom are compelled 
to be vaccinated by law or regulation for public 
health reasons [71]. Public health authorities 
have implemented such requirements because 
many VPDs (e.g., measles) are highly infectious. 
When a high proportion of the population is 
immunized, it creates “herd immunity,” so that 
some of the remaining unimmunized people will 

still be protected [72]. Without such mandates, a 
“tragedy of the commons” may occur where high 
vaccine coverage is reached and the individual 
benefit/risk ratio diverges from the societal ben
efit/risk ratio [73,74]. Persons may try to avoid 
the risks of vaccination while being protected by 
the herd immunity resulting from others being 
vaccinated. However, this “commons” provided 
by herd immunity may disappear if too many 
people avoid vaccination, with the resulting 
tragedy that outbreaks return [75], as was expe
rienced in the UK with both pertussis [12] and 
measles [20], and in the US with measles [76]. 
A similar policy consideration occurs for some 
mandatory military vaccinations like those 
against anthrax [17] and smallpox [18], where a 
higher vaccine reaction rate may be accepted in 
exchange for force readiness.

Because of the need for almost universal expo
sure to many vaccines, the medical maxim “first 
do no harm” applies even more in public health 
than in clinical medicine (where decisions usu
ally affect fewer people). Inadequately inactivated 
polio vaccine (IPV) was administered to about 
400 000 people in the “Cutter Incident,” resulting 
in 260 cases of polio [77]. The following incidents 
and others [78] have fortuitously not resulted in 
any documented harm to date. Nevertheless, 
they highlight the importance of ensuring the 
safety of a relatively universal human‐directed 
“exposure” like immunizations.

 ● Polio vaccine contaminated by simian virus 
40 may have been received by millions of peo
ple during the 1950s [35].

 ● Some vaccines may have contained gelatin 
stabilizers produced in cattle infected with 
bovine spongiform encephalopathy [79].

 ● Some US infants might have been exposed to 
doses of ethylmercury from thimerosal preserv
atives in vaccines, exceeding some federal safety 
guidelines established for ingestion of methyl
mercury, another form of organic mercury [15].

 ● Two of the new rotavirus vaccines were con
taminated by porcine circovirus [80].
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These concerns are the basis for strict regula
tory control and other oversight of vaccines by 
national regulatory authorities such as the US 
Food and Drug Administration (FDA), European 
Medicines Agency (EMA), and World Health 
Organization (WHO) [45,81,82]. Modern tech
nology will continue to improve the ability to 
detect contaminants in vaccines and influence 
regulatory decisions during manufacturing [83]; 
postlicensure monitoring will continue to be 
important should such findings raise safety 
concerns.

Very high standards of accuracy and timeli
ness for results are needed because vaccine 
safety studies have extremely narrow margins 
for error. Unlike many classes of drugs for which 
other effective therapy may be substituted, 
vaccines generally have few alternative strains 
or types (OPV and IPV being the best‐known 
exceptions). The decision to withdraw a vaccine 
[84] or switch between strains may also have 
wide ramifications [85]. In 1992, the UK author
ities stopped procuring mumps vaccines with 
Urabe strain after studies suggested a high rate 
of vaccine‐associated meningitis [86]. The man
ufacturers subsequently withdrew this product 
worldwide, leaving countries without an alter
native vaccine if the Urabe strain was their sole 
licensed mumps vaccine [87]. Safety concerns 
led to the withdrawal in the early 2000s of what 
were then the only licensed vaccines against 
rotavirus [65,66] and Lyme disease [88], render
ing these vaccines unavailable anywhere. 
Establishing associations of AEFI with vaccines 
and timely measurement of the attributable risk 
are critical in placing AEFI in the proper bene
fit/risk perspective. An erroneous association 
or attributable risk, especially with misinformed 
media or websites, can undermine confidence 
in a vaccine and have negative consequences for 
vaccine acceptance and disease incidence [20]. 
On the other hand, denials of association despite 
accumulating evidence can erode public confi
dence and compromise vaccination programs. 
For example, public dismay with delayed action 

on Urabe mumps vaccine‐associated aseptic 
meningitis in Japan forced the Ministry of Health 
to rescind compulsory school MMR vaccination 
requirements in 1993 [89].

Because many vaccinations are mandated for 
public health reasons and no vaccine is perfectly 
safe, several countries have established com
pensation programs for people who may have 
been injured by vaccination. Accurate assess
ment of whether AEFI can be caused by specific 
vaccines is essential to a fair and efficient vac
cine injury compensation program [90]. In the 
US, for example, the Vaccine Injury Table (VIT) 
contains the vaccines, adverse events, onset 
intervals, and other criteria after which no‐fault 
decisions are made in favor of the claimants. 
Periodic revisions of the VIT are necessary to 
reflect the best scientific information on asso
ciations between vaccines and adverse events, 
especially following the introduction of new 
vaccines [91].

Finally, recommendations for the use of vac
cines represent a dynamic balancing of risks and 
benefits. Vaccine safety monitoring is necessary 
to weigh this balance accurately. In the face of a 
meningococcal B epidemic in New Zealand, it 
was prudent to fast‐track the licensure of a new 
vaccine with limited prelicensure safety data but 
assurances of good postmarketing surveillance 
[92]. Even though the second‐generation rotavirus 
vaccine still increases the risk of intussuscep
tion, its lower attributable risk (1–6 excess 
cases/105 vaccinees) has been accepted relative 
to the major reduction in rotavirus disease [68]. 
When the target diseases are close to eradica
tion, high vaccine complication rates relative to 
that of the target wild‐type disease may lead to 
discontinuation or decreased use of the vaccine, 
as was done with smallpox vaccine [93]. Another 
example was the shift from live OPV to IPV to 
control OPV‐associated paralytic polio and 
circulation of OPV‐derived polio virus [94]. 
There may be a tradeoff between safety and cost, 
however. Some countries continue to use Urabe 
mumps vaccine despite its higher risk for 
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aseptic meningitis, after the manufacturer 
lowered the price [95].

With the fears of bioterrorism and importation 
of previously eliminated VPDs like measles and 
polio, stopping immunizations and allowing 
formation of gaps in herd immunity no longer 
seems advisable [96]. Almost all immunizations 
will likely be needed indefinitely, with their 
attendant adverse reactions and potential for 
loss of public confidence. Because of the success 
of immunizations in the near elimination of 
their target diseases, most healthcare providers 
(let alone parents) have not ever seen a case of 
some wild‐type VPDs. Each future generation 
must therefore be convinced of the need to be 
immunized, despite an increasingly remote 
experience of wild‐type disease but contempo
rary fear of AEFI.

Research on vaccine safety  –  while applying 
pharmacoepidemiologic principles  –  can help 
to distinguish true vaccine reactions from 
coincidental events, estimate their attributable 
risk [56,61,66,97–99], identify risk factors 
that may constitute valid contraindications 
[100,101], and, if the pathophysiologic mecha
nism becomes known, develop safer vaccines 
[102]. Equally importantly, such research dem
onstrates a commitment to reducing disease 
from all causes, vaccine preventable and vaccine 
induced, and may help to maintain public confi
dence in immunizations and the credibility of 
immunization programs.

Clinical Issues

Vaccines, like other pharmaceutical products, 
undergo extensive safety and efficacy evalua
tions in the laboratory, in animals, and in phased 
human clinical trials before licensure (see 
Chapter  1). Phase I trials usually include a 
small number of subjects, and can only detect 
extremely common AEFI. Phase II trials gener
ally enroll hundreds of subjects. When they are 
carefully coordinated, important conclusions 
such as the relationship between concentration 

of antigen, number of vaccine components, 
formulation technique, effect of successive 
doses, and profile of common reactions can be 
drawn from such trials [103]. Such studies can 
also affect the choice of the candidate vaccine 
for Phase III [45].

Sample sizes for Phase III vaccine trials gen
erally range between 5000 and 10 000 people, 
which is larger than most drug trials. In extremis, 
>600 000 schoolchildren were enrolled in the 
famous Francis field trial of inactivated Salk 
poliovirus vaccine [104]. To help rule out links 
with a rarer outcome like intussusceptions 
(background rate ~5 per 1000 infant years), the 
second‐generation rotavirus vaccine trials 
enrolled ~70 000 infants [68]. Traditionally, 
however, sample sizes for Phase III vaccine trials 
have been based primarily on efficacy consid
erations; inferences on safety are drawn to the 
extent possible based on the sample size (~100–
100 000) and the duration of observation (often 
less than 30 days) [45,105]. This usually means 
that observations of the common local and 
systemic reactions (e.g., injection site swelling, 
fever, fussiness) have been possible. Because of 
the experimental randomized, double‐blind, 
placebo‐controlled design of clinical trials, infer
ences on the causal relationship of an AEFI with 
the vaccine are relatively straightforward [30,31]. 
Brazilian investigators also used such a design to 
compare the risk of aseptic meningitis among 
three mumps vaccine strains [106]. However, 
study of rarer outcomes, vaccine exposures (e.g., 
specific permutation of vaccine antigens admin
istered simultaneously), or subpopulations is 
usually only practical postlicensure.

Better standardization of safety evaluations in 
prelicensure clinical trials is needed so that 
safety data across trials and vaccines can be 
compared (see also “Classifications and Case 
Definitions”). In the Phase III trials for infant 
diphtheria, tetanus, acellular pertussis (DTaP) 
vaccine, a standard case definition was developed 
for efficacy, but ironically not for safety  –  the 
main reason for the development of DTaP. 
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For example, definitions of high fever across 
trials varied by the temperature (39.5 °C ver
sus 40.5 °C), the mode of measurement (oral 
 versus rectal), and time after vaccination 
measured (48 versus 72 hours) [107]. However, 
for rarer events, it may be difficult to have 
standardized assessments across cultures and 
health systems, as illustrated in the Swedish and 
Italian trials, in which major differences were 
detected in rates of hypotonic‐hyporesponsive 
episodes after the same whole‐cell pertussis 
vaccine [108].

The finding of delayed excess mortality in 
some recipients of high‐titer measles vaccine in 
developing countries [109], now believed by 
some researchers to be due to a change in vac
cine sequence [110] or nonspecific effects of 
vaccinations [111], led to a call for increasing 
the current limited duration of follow‐up for 
AEFI in most trials [112,113]. This need was 
reinforced recently when, six years after the 
trial, recipients of a new dengue vaccine not 
previously infected by the virus developed 
more severe disease with subsequent dengue 
infection [114].

Many other new vaccines under development 
(e.g., malaria, tuberculosis) or recently licensed 
(e.g., rotavirus) are targeted for initial introduc
tion in resource‐limited settings. Both pre‐ and 
postlicensure safety studies will be needed, for 
longer follow‐up periods in settings where the 
pharmacovigilance infrastructure is limited or 
nonexistent [115,116].

Ideally, pharmacogenomics (see Chapter  34) 
and biobanking can be integrated into prelicen
sure trials (continuing through to postlicensure) 
to begin improving our understanding of the 
biologic/genetic basis for why some persons 
underrespond and others overrespond to an 
immunization with respect to immunogenicity 
and reactogenicity, as we shift from “one size fits 
all” to more personalized vaccinology [117,118]. 
Historically, the strategy to deal with vaccine 
recipients with insufficient immune response 
was straightforward, consisting of a multidose 

schedule. Those with overly vigorous reactions 
on the other hand were more problematic, and 
potentially at risk of being unfairly labeled 
“anti‐vaccine” if they questioned the safety of 
receipt of subsequent doses.

Despite over 200 years since Jenner  pioneered 
the smallpox vaccine, the medical science of 
diagnosing, managing, preventing, or treating 
rare, serious vaccine reactions remain rela
tively rudimentary. The reasons are multifold 
and the challenges are as much logistic as 
 scientific. Modern medicine cannot make 
 progress on rare disorders like leukemia (or 
rare serious vaccine reactions) by relying on 
primary care providers alone. Instead, tertiary 
subspecialties with an adequate referral base 
and research funds (e.g., hematology/oncol
ogy) are needed. With the exception of certain 
regions in Italy [119], Australia [120], and 
seven civilian Clinical Immunization Safety 
Assessment (CISA) project sites [121] and four 
military Regional Vaccine Safety Hubs [122] in 
the US, a similar well‐organized, well‐identi
fied subspecialty infrastructure has been miss
ing for the study of rare vaccine reactions in 
most countries. Such centers can also poten
tially play a role for studying newly hypothe
sized AEFI syndromes [19,123]. The diversity 
of vaccine exposures (active/passive, live/
inactivated, single/combined, etc.), combined 
with the range of adverse event outcomes (in 
essence the entire medical textbook, including 
some not yet defined), means that the new 
subspecialty will need to play a “case manager” 
role of drawing upon other subspecialty exper
tise as needed. However, most importantly, 
such CISA‐type centers could potentially pre
vent outliers (for example, based on genetic 
susceptibility) in reactogenicity response from 
becoming anti‐vaccine by recruiting them into 
mutually beneficial opportunities to improve 
our scientific understanding and prevent vaccine 
reactions [124,125] (e.g., a trial of a safer 
booster dose in children with extensive limb 
swelling after pertussis vaccination) [227].
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 Methodologic Problems to 
Be Addressed by 
Pharmacoepidemiologic Research

Signal Detection

Because biologics like vaccines are generally 
manufactured in living systems rather than via 
chemical synthesis like drugs, variation in rate 
of adverse reactions by manufacturer or even lot 
might be expected. Surveillance systems need to 
detect such potential anomalies in the expected 
number and type of AEFI in a timely manner. 
Some factors make identification of true safety 
signals difficult. Many vaccines are adminis
tered early in life, at a time when the baseline 
risk is constantly changing and may be affected 
by other infant events. Furthermore, by defini
tion, if vaccination rates are high, most people 
with adverse medical events will have had a 
history of vaccination. Distinguishing causal 
from coincidental events on a case‐by‐case basis 
is rarely possible (see Chapter 33), particularly 
for events where the pathophysiologic mecha
nisms are not known, regardless of vaccination. 
Since many vaccinations are administered to 
individuals either simultaneously or as a combi
nation vaccine, unless the number of people 
who also receive that exact permutation of 
vaccine exposures (including manufacturer and 
lot number) is known so that AEFI rates can be 
calculated, it may be difficult or impossible to 
know if an aberration has occurred. Similarly, 
when vaccine coverage rates are high and multi
ple vaccinations are administered concurrently, 
it can be difficult to disentangle the individual 
effects of each component, since simultaneous 
vaccination patterns are likely to be uniform 
across the population.

Unlike many public health surveillance systems, 
which focus on either a single exposure (e.g., 
lead) or a single disease outcome (e.g., measles), 
vaccine safety surveillance systems need to 
examine multiple exposures – for instance, dif
ferent vaccine antigens (frequently administered 

in combination or simultaneously), manufactur
ers, and lot numbers – and multiple disease out
comes. Until the recent advent of data‐mining 
methods (see Chapter 46), detection of a vaccine 
safety signal occurred as much due to a persistent 
patient [126] as due to data analysis [127]. The 
tradeoff between sensitivity and specificity 
depends critically on whether the goal of the sur
veillance is the detection of a previously unknown 
illness or syndrome (sensitivity > specificity) or 
tracking a known disease (specificity > sensitiv
ity). Vaccine safety surveillance systems are asked 
to monitor both previously known and previously 
unknown AEFI in the same system, however 
[128]. Nevertheless, the goal of early detection of 
an aberrant cluster of new AEFI remains identi
cal to other pharmacovigilance and public health 
surveillance systems.

Standard Definitions and Evaluative 
Protocols

Case definitions can be used at the time of 
reporting or at the time of analysis to improve 
specificity. Applying definitions at the time of 
reporting may reduce the number of reports 
processed and lower the operating cost [129]. 
The sensitivity of surveillance may be lower and 
the difficulty of assessing misclassification 
greater, however. Alternatively, if the reporting 
form is open‐ended [130], this may increase the 
sensitivity of surveillance, but only at the cost of 
sorting through many nonspecific reports. 
Definitions can then be applied at the time of 
analysis. Nevertheless, substantial variation in 
diagnostic work‐up and description of events 
makes post hoc classification difficult without 
additional follow‐up information, which in turn 
is usually costly.

Historically, it was challenging if not impos
sible to compare and collate vaccine safety data 
across clinical trials or surveillance systems in 
a valid manner because of lack of standard 
case definitions. We can advance our scientific 
knowledge of immunization safety by using a 
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common vocabulary, particularly helpful in the 
prelicensure setting where maximizing the yield 
of safety data may help with limited sample 
sizes. The Brighton Collaboration (see “Solutions: 
Classifications and Case Definitions”) is address
ing this gap [107].

Assessment of Causality

Aside from events like local reaction or anaphy
laxis, assessing whether any AEFI was actually 
caused by vaccine is generally not possible unless 
a vaccine‐specific clinical syndrome (e.g., myo
pericarditis in healthy young adult recipients of 
smallpox vaccine [18]), or repeat exposures 
resulting in the same AEFI (e.g.,  alopecia and 
hepatitis B vaccination [126]), or a vaccine‐spe
cific laboratory finding (e.g., Urabe mumps vac
cine virus isolation [131]) can be identified. 
Whenever the adverse event can also occur in the 
absence of vaccination (e.g., seizure), a very large 
clinical trial or more affordable epidemiologic 
study is necessary to assess whether vaccinated 
people are at higher risk than unvaccinated peo
ple. As noted earlier, when multiple vaccinations 
are administered simultaneously, determining 
whether events are attributable to particular 
components or one of several combinations is 
frequently difficult or impossible.

Exposure

Misclassification of exposure status may occur 
if there is poor documentation of vaccinations. 
Unlike children of school age where vaccination 
documentation is often required, ascertaining 
vaccination status in adults may be particularly 
difficult. In the US, recent and likely future 
increases in the number of licensed vaccines, 
the relative lack of combination vaccines, plus, 
historically, the high mobility among immuni
zation providers (up to 25% annually) because 
of changes in health insurance plans have led to 
a potentially confusing maze of vaccination 
history misclassifications [132].

For example, even though only the acellular 
pertussis vaccine is available in the US, AEFI 
reports of the old whole‐cell pertussis “DTP” 
vaccine continue to be received  –  presumably 
due to errors in recording by immunization 
nurses. An infant may have started their immu
nization series with one provider who uses 
DTaP combination vaccine from manufacturer 
A, but switched to another provider to complete 
the series with DTaP combination vaccine 
from manufacturer B. Add in the complexity of 
whether other vaccines like those against polio 
or hepatitis B are administered simultaneously, 
at different dose series in the schedule, at differ
ent ages, or using different lots of vaccine, and 
the number of permutations of vaccine expo
sures that need assessment for potential safety 
concerns quickly escalates. The availability of 
complete documentation of vaccine exposure 
on a large cohort of children in the Vaccine 
Safety Datalink (VSD) project allowed evalua
tion of the safety of thimerosal preservatives 
and the immunization schedule via multiple 
studies [133].

Outcome

Because of the higher standard required for 
vaccine safety (as discussed previously), events 
being assessed are frequently rare (e.g., enceph
alopathy, GBS) and identifying enough cases for 
a meaningful interpretation of study findings 
can be a major challenge. Even when technically 
feasible, a study may be logistically infeasible 
or the findings likely to be too inconclusive to 
justify the resources. This was the conclusion 
of   a 1989 IOM/NAM committee that evalu
ated whether the UK’s National Childhood 
Encephalopathy Study should be replicated in 
the US [62].

The difficulty in achieving adequate study 
power is further compounded in assessing rare 
events in populations less frequently exposed 
(e.g., early use soon after introduction on the 
market, vaccines given to travelers, or subpop
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ulations with special indications). This chal
lenge is well illustrated in studies of the potential 
association between GBS, which occurs at a 
background rate of about 1 per 100 000 person‐
years, and various vaccines. Study of GBS after 
newly introduced meningococcal conjugate 
vaccine required assembling data from 9 million 
adolescents [134]. A retrospective study of 
GBS after the 1992–1994 influenza vaccinations 
required assessing hospital records of over 
20 million people for 2 years [135]. Active GBS 
case finding among a population of 45 million 
may have detected an attributable risk of one 
additional case of GBS per million 2009 pH1N1 
vaccinations [57]. Whenever both the rarity of 
the adverse outcome and the number of expo
sures limit the ability to assess a small potential 
increased risk, identifying risk factors of such 
rare associations imposes an additional (and 
possibly prohibitive) level of sample size 
requirements – unless multinational collabora
tions are organized.

Many AEFI hypothesized to be caused by 
vaccines have poorly defined etiologies (e.g., 
encephalopathy [61], GBS [56], chronic fatigue 
syndrome [136], narcolepsy [137], sudden unex
plained infant deaths [138]). Attributing the 
outcome to vaccination can only be done after 
all other potential etiologies have been ruled 
out, and even then causality cannot be certain. 
Our scientific understanding of some diseases is 
frequently limited in the absence of vaccination, 
let alone with vaccination. This poor under
standing severely limits clinical and epidemio
logic studies of these illnesses. Furthermore, 
in highly vaccinated populations, risk‐interval 
analyses (where a specific risk/exposure period 
is assigned) may be the only epidemiologic study 
design possible (see “Study Designs, Analyses, 
Confounding, and Bias”). Predicting the onset of 
illness following an environmental exposure is 
critical in calculating the biologically plausible 
risk interval. For certain hypothesized AEFI, 
there is no known biologic mechanism to allow 
prediction of the risk interval. Diseases with 

insidious or delayed onset like autism [19], 
inflammatory bowel disease [139], and multiple 
sclerosis [36] do not permit prediction of the risk 
interval and are therefore also difficult to study.

Study Designs, Analyses, Confounding, 
and Bias

Analyzing observational studies of vaccine 
safety poses several methodologic challenges. 
Traditional epidemiologic study designs, such as 
the cohort and case–control designs, are limited 
because a large percentage of the population 
tends to be vaccinated. This implies that few 
unvaccinated individuals are available for analysis, 
and the unvaccinated tend to differ from the 
vaccinated by several potential confounding 
variables, including ethnicity, socioeconomic 
status, use of the healthcare system, and under
lying health disorders [140,141].

Another challenge is that serious AEFI are 
rare. Cohort studies typically require hundreds 
of thousands or even millions of study subjects 
to be able to detect an association between 
vaccination and the suspected adverse event 
[56,61,64–66,131]. Such studies can be pro
hibitively expensive, unless all the requisite 
information is automated and linkable.

A possible alternative to the cohort design is 
the case–control study design, in which cases 
are sampled from the source population and 
compared to a group of randomly selected 
event‐free controls. This design is well suited 
for rare events, and has been used for several 
studies of vaccine safety [65,98,142–144]. It is, 
however, particularly difficult to choose an 
appropriate control group without introducing 
selection bias if the study is not population 
based. Moreover, because childhood vaccines 
are generally administered on an age schedule 
and many childhood illnesses that may be 
potential AEFI are age dependent, age may 
confound exposure–outcome relations, for 
example DTP vaccine and febrile seizures or 
sudden infant death syndrome (SIDS) [145]. 
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Consequently, such factors must be controlled, 
generally by matching and subsequent adjust
ment in the statistical analysis.

To help address these limitations, self‐controlled 
study designs have been developed and imple
mented [146,147]. These designs involve cohorts 
of vaccinated individuals (risk interval) or analyses 
where vaccinated cases are compared to them
selves (self‐controlled case series). Such designs 
have been shown to be efficient and valid alter
natives to the traditional epidemiologic study 
designs [148–150]. For details on these methods, 
see “Methodologic Approaches.”

More difficult to control are factors leading to 
delayed vaccination or nonvaccination [140,141]. 
Such factors (e.g., low socioeconomic status, pre
ceding illness, parental choice) may confound 
studies of AEFI and lead to underestimates of 
the true relative risks. The extent of distortion 
introduced by confounding can be examined as 
a function of six variables (Table 20.1). Relatively 

little is known about the nature, frequency, and 
implications of these variables, however [140].

 Currently Available Solutions

Prelicensure

Standardized toxicity grading scales, initially 
developed to evaluate products treating cancer 
and AIDS, have been developed for preventive 
vaccine trials [151]. Their use allows for mean
ingful interpretation of prelicensure safety data, 
including rules for stopping the trial, especially 
when combined with standardized case defini
tions for adverse outcomes [107,152].

Whenever potentially important safety sig
nals are detected in prelicensure trials (e.g., 
intussusceptions after rotavirus vaccine [153]), 
it is critical that they are pursued postlicensure 
[154]. Given the need for improved under
standing of the safety of vaccines administered 
universally to healthy babies and the methodo
logic difficulties of assessing safety postlicensure, 
some researchers have argued that larger 
experimental trials may be needed to better 
assess rare but serious vaccine risks [105,155]. 
This could be done either with larger prelicen
sure trials, as has been done with antipyretics 
in children [155–157] and the post‐rhesus 
rotavirus vaccine trials [68], or in some organized 
stepwise manner postlicensure (e.g., registry of 
the first million vaccinations), prior to univer
sal recommendation of the vaccine for entire 
birth cohorts [156]. Even with these measures, 
separate large‐scale, long‐term randomized 
intervention trials would theoretically be the 
only way to study unforeseen delayed adverse 
effects [105,158] or nonspecific effects of 
immunizations [111]. Such trials would have 
to avoid withholding efficacious vaccines from 
people in need. Therefore, maximizing both 
the pre‐ and postlicensure assessment pro
cesses, as discussed in this chapter, remains 
optimal.

Table 20.1 Variables determining the extent of bias 
attributable to confounding in studies of vaccine 
adverse events (AE).

Variable Description

S Risk of AE in unvaccinated children who 
lack the contraindication*

R True relative risk of AE associated with 
vaccination

D Relative risk of AE associated with the 
contraindication

C Proportion of children with the 
contraindication

V Proportion vaccinated among children 
without the contraindication

P Proportion vaccinated among children 
with the contraindication

*“Contraindication” used here to mean any factor associated 
with avoidance or delay of vaccination.
Source: Fine PE, Chen RT. Confounding in studies of adverse 
reactions to vaccines. Am J Epidemiol 1992; 136(2): 121–35. 
Reproduced by permission of Oxford University Press.
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Data and Safety Monitoring Boards (DSMBs) 
represent an area of potential improvements 
in the prelicensure process. Currently, such 
DSMBs are constituted uniquely for each clinical 
trial. If instead there is greater overlap across 
prelicensure trials for the same vaccine, the 
DSMB may have a better ability to oversee the 
safety data for the experimental vaccine. The 
Council of International Medical Organizations 
(CIOMS) has also proposed an internationally 
harmonized Development Safety Update Report 
(DSUR) for summarizing the safety experience 
for a clinical trial (or entire development pro
gram). When aligned with the postapproval 
Periodic Safety Update Report (PSUR) for mar
keted products, these could be integrated into a 
single harmonized safety report that would 
cover a product throughout its life cycle [159].

Furthermore, despite its name, there is cur
rently no requirement for the DSMB to include 
someone with drug/vaccine safety experience. 
For vaccine trials, someone with rare disease 
(versus infectious disease) epidemiology skills, 
usually fine‐tuned from postlicensure safety 
monitoring experience, should be considered 
for the DSMB.

Another area of potential improvement is the 
method used to determine the likelihood of a 
causal relationship of an AEFI with the experi
mental exposure (e.g., a new vaccine; see 
Chapter 33). Traditionally, the principal investi
gator of a clinical trial makes an assessment of 
the causal relationship; this procedure is difficult 
to standardize and is prone to bias [160]. In an 
era of increasing automation of medical records 
and sophistication of methods for detecting 
nonrandom clusters or elevated rates, similar 
approaches to assessing prelicensure safety data 
are required. Finally, there is a need to improve 
clinical trial infrastructure in resource‐limited 
settings for assessing the safety and efficacy of 
various preventive and therapeutic products for 
poverty‐related diseases [115,161,162].

With the biotechnology revolution, new can
didate viral vector vaccines targeting challenging 

VPDs like Ebola and HIV are entering human 
clinical trials. The Brighton Collaboration Viral 
Vector Vaccines Safety Working Group (V3SWG) 
was formed to improve the ability to anticipate 
potential safety issues and meaningfully assess 
or interpret safety data, thereby facilitating 
greater public acceptance of a vaccine when 
licensed [163]. The V3SWG has a standardized 
template describing the key characteristics of a 
novel vaccine vector to facilitate the scientific 
discourse among key stakeholders and increase 
the transparency and comparability of its risk/
benefit information [164]. The V3SWG is also 
developing standardized guidance on critical 
issues such as potential risk of recombination 
between vaccine vector and wild‐type virus 
strains [165].

Postlicensure

Passive Surveillance or Spontaneous 
Reporting Systems
Informal or formal passive surveillance or 
spontaneous reporting systems (SRS) have been 
the cornerstone of most national vaccine safety 
monitoring systems because of their simplicity 
and relatively low cost [41,166]. As these terms 
imply, AEFI reports are generally voluntarily 
submitted to public health or regulatory agen
cies, and in some cases to vaccine manufacturers 
who in turn report, and the agencies passively 
receive these reports, rather than actively 
 collecting information on AEFI. The national 
reporting of AEFI can be done through the same 
reporting channels as those used for other 
adverse drug reactions [166], as is the practice 
in many European countries [167] and Japan 
[168]. Historically, however, few countries have 
forwarded their AEFI reports to the Uppsala 
Monitoring Center [169] (see also Chapter 10). 
An increasing number of countries are collect
ing safety data specific to vaccinations, either 
with reporting forms and/or surveillance systems 
different from the drug safety monitoring sys
tems. These countries include Australia [170], 
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Brazil [171], Canada [172], China [173], Cuba 
[174], Denmark [175], India [176], Italy [177], 
Germany [178], the Netherlands [179], New 
Zealand [180], Switzerland [181], and the US 
[182]. Vaccine manufacturers also maintain SRS 
for their products [183], which are usually for
warded subsequently to appropriate national 
regulatory authorities [45].

Because of their importance in infectious 
disease control, a significant proportion of 
vaccines in many countries is purchased or 
administered by national public health author
ities. For example, in the US the public sector 
(federal, state, and local governments) pur
chases over half of the childhood vaccines 
administered. In many developing countries, 
the Ministry of Health in conjunction with the 
WHO’s Expanded Program for Immunizations 
(EPI) administers almost all vaccines. Potential 
AEFI commonly are first reported by the health
care providers who administered the vaccine. 
In many countries, such healthcare providers 
also participate in public health surveillance 
for other diseases. Public health authorities 
(e.g., the US Centers for Disease Control and 
Prevention, CDC) therefore commonly lead or 
collaborate with the vaccine licensure and regu
latory agency (e.g., the FDA) in developing and 
administering AEFI reporting systems. A similar 
model for harmonization and avoiding duplica
tion is followed in Canada and six European 
countries [167], and is highly recommended for 
other countries [184].

The US Experience
The US National Childhood Vaccine Injury Act 
of 1986 mandated for the first time that health
care providers report certain AEFI [71,185]. 
The Vaccine Adverse Event Reporting System 
(VAERS) was implemented jointly by the CDC 
and FDA in 1990 to provide a unified national 
system for collection of reports of AEFI, includ
ing but not limited to those mandated for 
reporting [130,182]. To increase sensitivity, the 
VAERS form is designed to permit narrative 

descriptions of AEFI. All people, including 
patients or their parents and not just healthcare 
professionals, are permitted to report to VAERS, 
especially on medically important events. 
Vaccine manufacturers are required to report 
any AEFI that comes to their attention.

In 2016, 22% of US VAERS reports were 
submitted by patients, parents, or other uniden
tified sources, 27% by healthcare providers, and 
51% by vaccine manufacturers; in recent years 
leading up to and including 2016, VAERS 
received around 40 000 US reports annually 
(CDC, unpublished data). There are no restric
tions set on interval between vaccination and 
onset of illness or requirements that a patient 
must have received medical care in order for the 
event to be reported. Reports are accepted with
out judgment on whether the vaccine caused 
the AEFI. Although reporting is encouraged as 
soon as possible after the AEFI, there is no time 
limit for reporting.

Web‐based reporting became available in 
2002; experience to date shows it to be more 
complete and timely [186] and it was therefore 
heavily used during the 2003 US smallpox [187] 
and 2009 pH1N1 vaccination campaigns [188]. 
In 2017, the CDC and FDA implemented a 
revised VAERS reporting form and reporting 
process, called VAERS 2.0, which, along with 
the FDA eVAERS initiative using the FDA 
Electronic Submissions Gateway, allows for 
fully electronic reporting for the public and 
healthcare providers, and vaccine manufacturers 
[189]. Future potential developments include 
(i) enriched passive surveillance in VAERS using 
clinical decision support systems in electronic 
health record (EHR) systems to facilitate physi
cians’ identification of possible AEFI, automati
cally populate data elements of an AEFI report, 
and enable direct electronic reporting, resulting 
in more accurate, complete, efficient, and timely 
transmission of VAERS reports [190]; and (ii) 
incorporating immunization information system 
(IIS) data to estimate denominators for AEFI 
reporting rates in VAERS [191]. The latter is 
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especially important to overcome the problem 
of interpreting VAERS data in the face of the 
increasing heterogeneity of vaccine exposures 
in the US.

Enhancements to VAERS passive surveillance 
since its inception have included capability for 
near real‐time report review by CDC and FDA 
physicians and scientists, collaborations with 
professional medical associations, development 
of a user‐friendly public use data query tool, 
multiple options for web‐based reporting for 
consumers and healthcare providers, and direct 
electronic reporting for vaccine manufacturers. 
There is also more frequent review and dissemi
nation of safety data via publications and reports 
to advisory committees. “Enhanced passive” 
surveillance via VAERS has been successfully 
used to date in safety surveillance for rotavirus 
[192], yellow fever [193], smallpox vaccine [187], 
2009 pH1N1 vaccine [188], tetanus toxoid, 
reduced diphtheria toxoid, and acellular pertus
sis (Tdap) vaccine and inactivated influenza 
vaccine in pregnant women [194,195], and would 
likely be implemented in any future new vaccine 
or counter‐bioterrorism‐related wide‐scale 
vaccination program [196].

Approximately 7% of US VAERS reports are 
classified as serious (documenting death, life‐
threatening illness, permanent disability, hospi
talization, or prolongation of hospitalization), 
although the percentages of serious/nonserious 
reports vary by age group and type of vaccine. 
A contractor, under CDC and FDA supervision, 
collects, codes (using the Medical Dictionary 
for Regulatory Activities or MedDRA; https://
www.meddra.org), and enters VAERS data and 
reports into a database. Trained nurses follow 
up on AEFI classified as serious to obtain addi
tional medical information and recovery status. 
The CDC and FDA have access to the VAERS 
database, the original VAERS reports, and med
ical records obtained on follow‐up, and focus 
their efforts on analytic tasks of interest to the 
respective agencies. VAERS data with personal 
identifiers removed are available to the public as 

downloadable datasets and through a user‐
friendly data query tool at https://vaers.hhs.
gov/data.html.

Other High‐Income Nations’ Experiences
Several other countries also have substantial 
experience with passive surveillance for vac
cine safety, including Canada [197] and the 
Netherlands [198]. The UK and many members 
of the Commonwealth (e.g., Australia [170]) use 
the “yellow card” system, where a reporting 
form is attached to officially issued prescription 
pads [199]. Korea employs a multipronged 
approach that includes spontaneous surveillance, 
rapid response and AEFI investigation, and 
compensation when appropriate [200]. Data 
on adverse drug (including vaccine) events 
from many nations are compiled by the WHO 
Collaborating Center for International Drug 
Monitoring in Uppsala (www.who‐umc.org), 
which has also begun a vaccine focus [201].

Various approaches (short of database linkage) 
have been taken to supplement passive systems 
to help overcome their methodologic weak
nesses. Canada (the Immunization Monitoring 
Program – Active or IMPACT, operational since 
1990 [197], with a new variant for influenza 
[202]), Australia (the Paediatric Active Enhanced 
Disease Surveillance or PAEDS system [203], 
and Singapore [204] have active, pediatric 
 hospital‐based surveillance systems that 
searches all admissions for possible relation
ships to immunizations. In Canada, an Advisory 
Committee on Causality Assessment, consisting 
of a panel of experts, previously reviewed the 
serious passive reports [205].

Low‐ and Middle‐Income Countries’ (LMIC)  
Experience
As recently as 2012, 65% of WHO member 
states, including the majority of LMIC, did not 
have a functional postmarketing monitoring 
system [206,207]. In response, a comprehensive 
global manual on surveillance of AEFI was 
developed by WHO [208] as part of the Global 
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Vaccine Safety Initiative [209]. The manual pro
vides guidance on (i) the objectives of vaccine 
and immunization safety surveillance; (ii) the 
AEFI surveillance system: reporting, investiga
tion, causality assessment and classification of 
cause‐specific AEFI; (iii) understanding vaccine 
reactions for better decision‐making; (iv) the 
best use of surveillance data; and (v) response 
processes, including a communication strategy 
on immunization safety for the public and the 
media. The introduction of single‐use auto‐
disable syringes, “bundled” with vaccine pro
curement by donors, has significantly reduced 
the number of correctable programmatic errors 
like injection site abscesses (due to inadequate 
sterilization) [210].

As more new vaccines are (or are planned to 
be) first introduced in LMICs, there is increas
ing awareness of the need to improve currently 
inadequate pharmacovigilance systems in these 
countries [115,211]. The decades‐long delay in 
discovering serious AEFI after yellow fever 
vaccination [212] and BCG vaccination in 
human immunodeficiency virus‐infected 
infants [213] further highlights this urgent 
need. The WHO launched the Global Vaccine 
Safety Initiative in 2012, addressing many of the 
needs identified in the Global Vaccine Safety 
Blueprint [209]. While some progress has been 
attained despite limited funding, much capac
ity‐building remains [207,211]. For example, 
some of the challenges with causality assess
ment of AEFI identified by countries in South 
East Asia included poor quality of data (e.g., 
lack of autopsies for deaths), high staff turnover 
rates, and deficits in AEFI investigation train
ing and timely investigation (due to inadequate 
financial support for AEFI committees and 
investigation teams [214].

Classifications and Case Definitions
AEFI can be classified by frequency (common, 
rare), extent (local, systemic), severity (hospi
talization, disability, death), causality (probable, 
possible, unlikely, etc.), and preventability 

(intrinsic to vaccine, faulty production, faulty 
administration). Wilson developed the first 
classification system with a focus on errors of 
production (e.g., bacterial, viral, toxin contami
nation) and administration (e.g., nonsterile 
apparatus) [5]. In 2012, CIOMS/WHO updated 
its classification of AEFI (Table 20.2) [215].

The distinction between vaccine induced and 
vaccine precipitation, as first clarified for DTP 
and DT vaccine and infantile spasm [216], has 

Table 20.2 Types of adverse event following 
immunization (AEFI) by cause.

Cause Definition

Vaccine 
product‐related 
reaction

An AEFI that is caused or 
precipitated by a vaccine due to one 
or more of the inherent properties 
of the vaccine product

Vaccine quality 
defect‐related 
reaction

An AEFI that is caused or 
precipitated by a vaccine that is due 
to one or more quality defects1 of 
the vaccine product including its 
administration device as provided 
by the manufacturer

Immunization 
error‐related 
reaction

An AEFI that is caused by 
inappropriate2 vaccine handling, 
prescribing or administration and 
thus by its nature is preventable

Immunization 
anxiety‐related 
reaction

An AEFI arising from anxiety about 
the immunization

Coincidental 
event

An AEFI that is caused by 
something other than the vaccine 
product, immunization error or 
immunization anxiety

Notes: 1 Any deviation of the vaccine product as 
manufactured from its set quality specifications; 2 Usage 
(handling, prescribing, and administration) other than 
what is licensed and recommended in a given jurisdiction 
based on scientific evidence or expert recommendations.
Source: Council for International Organizations of Medical 
Sciences. Definition and application of terms for vaccine 
pharmacovigilance: report of CIOMS/WHO Working 
Group on Vaccine Pharmacovigilance. Geneva: CIOMS, 
2012. Reproduced by permission of CIOMS.
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been useful because vaccine precipitation 
does not result in excess vaccine‐attributable 
risk over time, whereas vaccine induced does 
(Figure 20.1).

The Brighton Collaboration was established 
in 2000 as an international voluntary effort to 
enhance vaccine safety science; it focused 
 initially on the development, evaluation, and 
dissemination of standardized case definitions 
of AEFI [107]. Global workgroups of experts are 
convened to develop case definitions that are 
then peer reviewed. The Brighton case defini
tions for each AEFI are arrayed by the level of 
evidence presented (insufficient, low, intermediate, 
and highest); therefore, they can also be used 
in settings with a range of resources (e.g., from 
prelicensure trials to postlicensure surveillance, 
or from LMIC to high‐income country settings). 
Over 50 Brighton case definitions are now avail
able for use at www.brightoncollaboration.org, 
including many related to safety assessment of 
immunization in pregnancy [217].

Adding the Brighton case definition into the 
Canadian national reporting form in 2009 
increased the proportion of seizure cases meet
ing the case definition three‐ to sixfold [172]. 

Alternatively, in a more open reporting system 
like VAERS, these definitions can be applied to 
reports to develop a case series for further 
investigation [218,219]. Real progress in imple
mentation of similar standards across national 
boundaries is being realized with the advent of 
the International Conference on Harmonization 
(ICH) [220] and the Brighton Collaboration 
[107]. For example, the wide use of Brighton 
case definition for studies of GBS after the 2009 
pH1N1 pandemic influenza vaccine facilitated 
meta‐analyses and cross comparisons [57].

Standardized Clinical Assessment Protocols  
and Centers
There has been an increasing awareness that the 
utility of SRS and vaccine injury programs [221] 
as potential registries of rare AEFI and the 
immunization safety infrastructure can be 
usefully augmented by tertiary clinical centers 
with expertise in vaccinology and vaccine safety. 
The US initiated its Department of Defense 
Vaccine Healthcare Centers Network [124] and 
the CDC’s civilian Clinical Immunization Safety 
Assessment (CISA) Project [121] to take advan
tage of this opportunity. These programs bring 

Association2
1.8
1.6
1.4
1.2

1
0.8

O
dd

s 
ra

tio

0.6
0.4
0.2

0

1 2 3 4

Weeks after immunization

> 4

Temporal shift
No-effect

Figure 20.1 Three theoretical models of the temporal relationship between immunization and an adverse effect: 
(i) Association: the risk exceeds 1 at all time windows postimmunization; (ii) temporal shift: the risk exceeds 1 
initially but then falls below 1, but coming back to 1 eventually, such that the area under the curve above and below 
1 is similar; and (iii) no effect: the risk stays around 1. Source: Goodman M, Lamm SH, Bellman MH. Temporal 
relationship modeling: DTP or DT immunizations and infantile spasms. Vaccine 1998; 16: 225–31. Reproduced with 
permission of Elsevier.
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together infectious disease epidemiologists, 
immunologists, neurologists, dermatologists, 
and other subspecialists from multiple partici
pating sites as needed for various tasks [32]. 
Among these tasks is the standardized assess
ment of complex clinical cases of AEFI in 
individual patients to improve our scientific 
understanding of the pathophysiology and risk 
factors of the reaction, and to provide guidance 
on future vaccination for patients who have 
experienced AEFI [121,205,222–225]. New 
understanding of the human genome, pharma
cogenomics, and immunology may now make 
it possible for us to better understand rare or 
newly recognized reactions for several vaccines 
(see also Chapter 34) [63,117].

Through these centers, standardized assess
ment protocols can be developed to examine 
patients with similar AEFI to see if they con
stitute a rare or a previously unrecognized 
clinical syndrome. If so, a case definition can 
be developed that permits identification of 
cases for follow‐up validation studies examin
ing the potential role of vaccination in causing 
this syndrome [226].

For patients who have had AEFI that generate 
concern but do not contraindicate completion 
of a vaccine series or further vaccination, such 
as hypotonic‐hyporesponsive episodes [222], 
extensive limb swelling after acellular pertussis 
vaccination [227), and sterile abscesses following 
aluminum adjuvant‐containing vaccines [228], 
the standardized clinical assessment centers, 
such as CISA, can provide assessment and 
guidance for the management of subsequent 
vaccinations.

Finally, standardized clinical assessment 
centers can provide regional referral and advice 
services – with the opportunity to follow up and 
document compliance with the advice provided 
and the outcomes, so that the rare experience 
can be added to our scientific knowledge. 
Ultimately, many AEFI diagnostic or manage
ment protocols can be made available on the 
internet for other clinicians to use (and to provide 

a mechanism for them to contribute their 
experience) [229]. Both the development and 
application of standardized case definitions and 
standardized evaluation of clinical syndromes 
play a “hypothesis‐strengthening” role, inter
mediate between hypothesis generation and 
hypothesis testing.

Assessment of Causality
The formal process of assessing causality in the 
association of an adverse event and an exposure 
(e.g., vaccine) is complex and can be considered 
in terms of the answers to three questions: Can 
It? Did It? and Will It? [230]. The answer to Can 
It? (i.e., the potential for a causal link) was the 
focus of the IOM/NAM reviews [30,39,231]. 
It is usually based on population‐level infer
ences drawn from epidemiologic studies and 
the following considerations: (i) strength of 
association, (ii) analytic bias, (iii) biologic gradi
ent/dose–response, (iv) statistical significance, 
(v) consistency, and (vi) biologic plausibility/
coherence [232].

For individual case reports, the Did It? ques
tion is more relevant. If the answer is yes, then 
Can It? is also answered in the affirmative. It is 
natural to suspect a vaccine to be the cause 
when an AEFI occurs in temporal association 
following vaccination. To base causal inference 
purely on temporal association, however, is to 
fall for the logical fallacy of post hoc ergo propter 
hoc (“after this, therefore because of this”) [31]. 
Information useful for assessing causality in 
individual case reports includes (i) previous 
general experience with the vaccine (e.g., dura
tion of licensure, number of vaccinees, whether 
similar events have been observed among other 
vaccinees or nonvaccinees, existence of animal 
models to test the vaccine as a cause); (ii) alter
native etiologies; (iii) biologic plausibility; (iv) 
individual characteristics of the vaccinee that 
may increase the risk of the AEFI; (v) timing of 
events; (vi) characteristics of the event (e.g., lab
oratory findings); and (vii) rechallenge [233,234] 
(see also Chapter 33).
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When a vaccine can cause an AEFI, Will It? 
refers to the probability that an individual will 
experience the event, or, for populations, the pro
portion that will experience the event as a result 
of vaccination (i.e., the attributable risk fraction). 
These data are critical for developing valid pre
cautions and contraindications for the individuals 
and benefit/risk policy decisions for the popula
tion. Will It? is usually very difficult to answer, 
however, as it can only be addressed based on epi
demiologic studies [31]. Further more, the sample 
sizes of such studies may be large enough to 
establish whether the vaccine can cause a given 
event, but yet inadequate to stratify by subgroups 
to examine risk factors that can help delineate 
potential contraindications [138].

Specific AEFI may be considered to be caused 
by a specific vaccine if the event is associated 
with a unique laboratory finding, and/or a very 
specific clinical outcome. For example, Urabe 
mumps vaccine virus was implicated as a cause 
of aseptic meningitis because mumps virus was 
isolated from the cerebrospinal fluid (a normally 
sterile body site) and was shown to be a vaccine 
and not wild‐type strain by genetic sequencing 
[131]; or vice versa for wild‐type varicella‐
induced paralysis, which was initially blamed on 
the vaccine [123]. The detection of IgG antibod
ies to the stabilizers in vaccine in children with 
hypersensitivity reactions confirms the etiology 
[51]. Demonstrations that severe local swelling 
following tetanus toxoid tended to occur in 
people with extremely high levels of circulating 
antitoxin (due to excessive tetanus boosters) 
support the proposed mechanism of an Arthus 
reaction [235]. Acute flaccid paralysis, espe
cially shortly after receipt (or contact with a 
recipient) of OPV, is almost pathognomonic of 
OPV‐associated paralytic polio in countries 
where wild‐type poliovirus is unlikely to be 
circulating [58]. Similarly, acute myopericarditis 
in otherwise healthy recent smallpox vac
cinees also supports a causal relationship [18]. 
Causality can sometimes be inferred if a specific 
and uncommon clinical finding occurs after 

each vaccination (i.e., challenge–rechallenge), 
as in cases of alopecia after hepatitis B vaccina
tion [126]. However, unlike in drug safety, 
dechallenge (disappearance of the adverse 
event by stopping the medication) is usually 
not feasible with immunizations.

If the adverse event is known to be associated 
with the wild‐type VPD (e.g., acute arthritis and 
idiopathic thrombocytopenic purpura [ITP] 
after rubella), its association with the live, atten
uated vaccine at a lesser frequency is not sur
prising [236]. This relationship is not universal, 
however, as pregnant women who receive live 
attenuated rubella vaccine, unlike those exposed 
to wild‐type rubella, have not been shown to 
have illness compatible with congenital rubella 
syndrome [237]. Clustering of events in time 
after vaccination can also suggest causation if 
“reporting bias” can be ruled out. Such bias may 
occur since parents and doctors are most likely 
to link AEFI with vaccinations the shorter the 
time interval between the two and the more 
serious the event. Febrile seizures associated 
with killed bacterial vaccines tend to occur 
within a day of vaccination, while those due to 
live viral vaccines are delayed by about a week 
due to viral replication [97,238]. Onset of GBS 
after the swine influenza vaccination was 
delayed by up to six weeks, but clustered at two 
to three weeks following vaccination, as autoim
mune demyelination is a slower process [56]. 
The pattern of the risk by time since vaccination 
may suggest that the relationship to vaccination 
is more one of temporal shift or triggering of an 
underlying susceptibility (Figure 20.1) [138,216].

Unfortunately, most serious reported AEFI 
lack these unique features that permit informed 
inferences on causality. Autism, chronic fatigue 
syndrome, SIDS, and GBS either have multiple 
or as yet unknown etiologies. In a highly vacci
nated population, it is not surprising that most 
cases of any adverse event have a history of prior 
vaccinations. Epidemiologic studies have to be 
relied upon to ascertain likelihood of associa
tion and, if related, the attributable fraction.
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Because of these challenges, some vaccine 
injury compensation programs may simplify 
their administrative proceedings by making a 
blanket assumption that all AEFI occurring 
within particular periods after vaccination are 
“caused” by the vaccine, irrespective of whether 
they were truly causal or just coincidental. This, 
unfortunately, may lead some individuals to 
imply inaccurately that all such compensated 
cases are caused by vaccinations. Despite these 
caveats, the timing of the onset interval after 
vaccination plays a major role in most causality 
assessment algorithms, as AEFI after live viral 
vaccines usually occur later than those of killed 
vaccines [97,238].

In some countries, expert committees of spe
cialists in relevant disciplines (e.g., pediatrics, 
infectious disease, neurology) review reports. 
This “global introspection” approach [230] has 
been used by some countries [200,239] to classify 
reports of AEFI in gradations of probable associ
ation to vaccination (see also Chapter 33).

The CISA Project developed a standardized 
algorithm to assist in collecting and interpreting 
data, and to help assess causality after individual 
AEFI, building on Canadian lessons [239] and 
review of 2009 pH1N1 AEFI [240]. The classifi
cations were based on the reported symptoms, 
the interval between vaccination and onset of 
symptoms, and a set of case definitions. Final 
classification generated by the process includes 
four categories in which the event is either 
(i)  consistent; (ii) inconsistent; or (iii) indeter
minate with respect to causal association. This 
algorithm (with a fourth unclassifiable category) 
has since been adapted by the WHO [241], with 
refinements proposed [242].

Because the opinions of experts play such a 
major role in this form of causality assessment, 
the results are less satisfying than results obtained 
from rigorously conducted scientific studies. 
After a review of available approaches, the 
European Vaccine Adverse Event, Surveillance & 
Communication (VAESCO) project concluded: 
“the usefulness of individual causality assessment 

of AEFI remains to be demonstrated. Well docu
mented cases and proper case definitions may be 
more important than causality assessment espe
cially for signal detection and evaluation” [233].

Signal Detection
Identifying a potential new vaccine safety problem 
(“signal”) requires a mix of clinical intuition, epi
demiologic expertise, the application of statistical 
data‐mining tools, and, frequently, a large increase 
in vaccine exposure. Unusual clinical features 
and/or AEFI clustering in time or space may sug
gest that something may be awry. Traditionally, a 
signal occurs when an observed number of events 
exceeds the number of events expected by chance 
alone for the specific data source (i.e., the back
ground rate). For example, no illness other than 
GBS was reported more commonly in the second 
and third weeks than in the first week after swine 
influenza vaccination, leading to further valida
tion studies [56]. In general, an acceptable type I 
error rate is set at 5%, with 80% statistical power 
to detect a signal. Once a signal has been detected, 
additional methods such as a temporal scan 
statistic can be used to detect nonrandom clus
tering of onset intervals

Several recent examples in the US and 
 elsewhere highlight the importance of rapidly 
identifying and responding to serious AEFI 
identified following new vaccines or newly rein
troduced vaccines. After a prelicensure signal 
[243], passive reports to VAERS of intussus
ception among children vaccinated with rhesus 
rotavirus vaccine were the first postlicensure 
signal of a problem [192], leading to several 
studies to verify these findings [65,66]. Similarly, 
initial reports to VAERS of a previously unrec
ognized serious yellow fever vaccine–associated 
viscerotropic disease [101] and neurotropic dis
ease [193] have since been confirmed elsewhere 
[244] and as early as 1973, in retrospect [245]. 
Acute myopericarditis has been a relatively 
unexpected finding among people vaccinated 
against smallpox in the US for bioterrorism 
preparedness [18].
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Less clinically serious, but important vaccine 
safety signals nonetheless, have also been 
detected. Oculorespiratory syndrome was 
found in association with influenza vaccines 
from one Canadian manufacturer in one season 
[246]. Bell’s palsy was detected in recipients of a 
new Swiss intranasal influenza vaccine [98]). 
While several GBS cases were reported to VAERS 
after the introduction of tetravalent meningo
coccal conjugate vaccine in adolescents in the 
US, subsequent large controlled studies found 
no association [247]. Febrile seizures in young 
children were observed more than expected in 
passive reporting in Australia and the US fol
lowing administration of two formulations of 
trivalent inactivated influenza vaccine (TIV) 
[248]; after evaluation in the VSD project, this 
signal was verified, with simultaneous adminis
tration of another vaccine contributing to the 
increased risk [249].

Historically, automated screening for signals 
using SRS reports had been challenging [250], 
largely because of the inherent methodologic 
problems of spontaneous reports (see earlier 
discussion and Chapter 10). For example, auto
mated signal generation will not flag events that 
are not uniquely coded (e.g., the coding system 
may lack a specific term for Sjögren’s disease 
or other rare conditions). However, new tools 
developed for pattern recognition in extremely 
large databases have increasingly been applied. 
VAERS is one of the largest databases for rare 
AEFI in the world, with hundreds of thousands 
of reports. Because of its continuously increas
ing size and the need to monitor a large number 
of vaccine–symptom combinations, there has 
been a substantial effort to apply various com
puter‐assisted techniques for automated detec
tion of unusual trends and patterns.

Several different data‐mining methods (see 
Chapter 27) that have been evaluated in VAERS 
to date include empirical Bayesian [251–253], 
association rule discovery [254], multi‐item 
gamma Poisson shrinkage [255], proportional 
morbidity distribution [256], and proportional 

reporting rate ratio [257,258]. No single method 
appears to be superior [259]. Rational approaches 
to prioritizing the large numbers of potential 
signals generated using automated algorithms on 
large passive AEFI report databases may involve 
the utilization of complementary approaches, 
such as data visualization and an array of different 
data‐mining methods (each with pros and cons), 
where a cumulative higher score might signal 
cause for greater concern. Ultimately, these 
methods represent a useful adjunct to, but not a 
substitute for, traditional methods of scrutinizing 
spontaneous reports in increasingly complex 
databases such as VAERS [257].

A near real‐time sequential analytic approach, 
called rapid cycle analysis (RCA), has been 
developed by the CDC VSD project (see 
“Automated Large‐Linked Databases”) to con
duct active surveillance of newly licensed and 
recommended vaccines, existing vaccines with 
new recommendations or indications, and sea
sonal influenza vaccine annually [260,261]. RCA 
takes advantage of the strengths of the VSD, 
with its ability to gather automated vaccination 
exposure, outcomes, and medical care utilization 
data from enrolled members in several integrated 
healthcare organizations. The process analyzes 
data weekly, or when a predetermined number of 
doses of a vaccine have been administered, and 
uses statistical techniques to account for multiple 
comparisons and data lags. RCA in the VSD has 
not only successfully simulated but also detected 
an observed increase in febrile seizures after the 
combination measles–mumps–rubella–varicella 
(MMRV) vaccine [262] and an increase in febrile 
seizures in young children following inactivated 
influenza vaccine (later determined to be associ
ated with concomitant 13‐valent pneumococcal 
conjugate vaccination) [249].

The VSD has a covered population of about 
12 million persons per year, which, while large, 
may still encounter difficulties detecting asso
ciations between rare exposures and very rare 
outcomes, or more common exposures or out
comes among a specific subpopulation, such as 
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pregnant women. In RCA, outcomes under 
surveillance are prespecified based on prior 
knowledge of the vaccine safety profile of the 
product from clinical trials or vaccine safety 
concerns in general, and tend to be limited in 
number compared to data mining, where out
comes are not identified a priori and are 
essentially unlimited. Therefore, RCA is more 
consistent with hypothesis testing rather than 
hypothesis generation, and is not a true source 
of de novo signals. New information theory 
approaches may provide a way of detecting pre
viously unexpected associations after vaccina
tion, including data mining in large‐linked 
databases [263]. Until these new procedures are 
validated, a large national passive surveillance 
system such as VAERS is still necessary as an 
early harbinger of potential vaccine safety 
 signals for very rare or unusual events.

Large Immunization Campaigns
Whenever very large numbers of vaccine doses 
are administered over a short time interval, this 
can either result in more prominent clusters 
of AEFI or, by their absence, can demonstrate 
their safety. Note that this occurs irrespective 
of whether the vaccine exposure is part of a 
planned mass immunization campaign or not. 
For example, the link drawn between hepatitis B 
vaccine and demyelinating disease in France 
was due in part to increased vaccinations beyond 
the intended adolescent age group [264]. 
Surveillance of AEFI around the time of mass 
immunization campaigns have been extremely 
useful in generating signals, either positive 
(e.g., allergic reaction after dextran‐stabilized 
measles vaccine [51], viscerotropic disease 
 following yellow fever vaccine [212], aseptic 
meningitis after mumps vaccine [265], GBS with 
swine influenza vaccine [56], GBS after OPV [266], 
allergic reactions after Japanese encephalitis 
vaccine [267], neuropathy after rubella vaccine 
[268] or absent (e.g., events after meningococcal 
vaccine [269], GBS after measles [270]. Such 
signals still require validation, however, since 

some, after more careful scientific studies, are 
not confirmed to represent a true association 
[271,272]. Mass psychogenic illness can plague 
mass vaccination campaigns, especially among 
adolescents in school settings [273].

Preparation in advance of mass vaccination 
campaigns is critical. During mass campaigns 
with new group A meningococcal conjugate 
vaccine [269] and during the large vaccination 
effort for 2009 pH1N1 influenza vaccine in the 
US and elsewhere [191,274], several systems 
were put in place to identify signals early. For 
the latter, in the US, VAERS offered the earliest 
available data to determine if there was a safety 
concern. An active GBS case finding project 
among a population of 45 million was also able 
to determine rapidly if there was an increased 
risk of GBS following 2009 pH1N1 vaccination. 
Both systems had strength in the population 
size and the rapid review of reports [275,276]. 
Additionally, near real‐time sequential moni
toring for multiple prespecified outcomes was 
performed in the VSD during the 2009 pH1N1 
influenza vaccination campaign in the US [277]. 
Assessing and having background rates for 
likely AEFI during mass campaigns is also very 
helpful [56,274,278]. Special registries or studies 
are needed, however, to monitor the outcome 
for subpopulations like pregnant women [279], 
who may need to be vaccinated with limited 
safety data during such campaigns. Even with 
planning, unexpected AEFI (e.g., narcolepsy) 
combined with media attention may create 
biases that are difficult to sort out via epidemio
logic studies [98,280].

Lessons Learned to Date
Lessons have emerged from SRS like VAERS 
[182,281–284]. Such systems worldwide have 
successfully detected previously unrecognized 
reactions and helped to obtain data to evaluate 
whether AEFI are causally linked to vaccines 
[18,98,126,192,193,246,248]. VAERS has also 
successfully served as a source of cases for fur
ther investigations of known associations such 
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as idiopathic thrombocytopenic purpura after 
MMR [285], anaphylaxis after MMR [286], and 
syncope after immunization [287]. VAERS has 
been of great value for answering routine public 
queries such as “Has adverse event X ever been 
reported after vaccine Y?” and describing the 
postlicensure safety profile of new vaccines 
[288–292]. Additionally, VAERS has been useful 
for rapidly assessing the safety of vaccines recom
mended in special populations when limited 
safety data existed at the time of the recommen
dation, such as the case of Tdap being recom
mended during each pregnancy regardless of 
prior Tdap vaccination history [293]. More 
recently, VAERS has demonstrated its usefulness 
in monitoring preventable vaccine administra
tion program errors [294,295].

When denominator data on doses are available 
from other sources (e.g., net doses distributed, 
vaccine coverage surveys, immunization regis
tries), VAERS can be used to evaluate changes 
in reporting rates over time or when new vaccines 
replace old vaccines. However, reporting rates 
may be susceptible to biases from media atten
tion, systems enhancement efforts, or other 
environmental changes that can increase 
reporting, making comparison over time diffi
cult. In addition, doses distributed in the mar
ketplace do not necessarily equate with doses 
administered (i.e., influenza vaccine wastage 
at the end of each influenza season), and it is 
not possible to estimate reporting rates in special 
populations (i.e., those with specific medical 
conditions) based only on information on gross 
doses distributed. Comparing the proportion 
of reports for specific events may be helpful to 
minimize this type of bias. For example, analysis 
of VAERS data showed that after millions of 
doses of DTaP had been distributed, the 
reported rate for serious events like hospitali
zation and seizures after DTaP in toddlers was 
one‐third that after DTP [256]. Reports 
to  VAERS of OPV‐associated paralytic polio 
disappeared after the shift from OPV to IPV in 
the US [283]. The proportion of GBS reports 

following inactivated influenza vaccines over 
several seasons did not vary, including following 
2009 pH1N1 vaccines, even though the report
ing rates for GBS were higher following 2009 
pH1N1, which was likely due to stimulated 
reporting from heightened media attention 
[296]. VAERS is also currently the only surveil
lance system that covers the entire US population, 
and the data are available on a relatively timely 
basis. It is, therefore, the major means available 
currently to detect possible new, unusual, or 
extremely rare AEFI, including whether certain 
lots of vaccines are associated with unusually 
high rates of AEFI [283], especially when com
bined with estimates of lot use denominator 
obtained from statistical models [297].

Data from SRS such as VAERS have helped to 
inform the potential clinical management [298] 
of AEFI and to identify potential risk factors for 
such events, such as advanced age [101] and 
thymic dysfunction [299] associated with yellow 
fever vaccine complications, concurrent zoster 
infection in varicella vaccinees resulting in 
meningitis [300], personal and family history 
of convulsions in pertussis vaccinees [100], and 
factors associated with postvaccinal syncope‐
related injuries [301]. Conversely, a review of 
VAERS reports of febrile seizures in young 
children following inactivated influenza vaccine 
confirmed that they were clinically similar to 
typical uncomplicated febrile seizures [248], pro
viding reassurance to clinicians and the public.

The reporting efficiency or sensitivity (i.e., 
the proportion of total AEFI reported) of an 
SRS can be estimated if the expected rates of 
AEFI generated from carefully executed studies 
are available. A study using this method showed 
that a higher proportion of serious events like 
seizures that follow vaccinations are likely 
to  be  reported to VAERS (or its predecessor, 
the  Monitoring System for Adverse Events 
Following Immunizations or MSAEFI) than 
milder events like rash, or delayed events 
requiring laboratory assessment, such as throm
bocytopenic purpura after MMR vaccination 
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(Table 20.3) [302]. The real incidence of smallpox 
vaccine myopericarditis in healthy military 
recruits (presumably averse to admitting chest 
pain) was ~200‐fold higher than passive sur
veillance [124]. “Capture–recapture” methods, 
when at least two independent sources are 
available to ascertain incident AEFI cases in the 
same population and enough identifying data 
on the cases are also available to identify indi
viduals ascertained in both dataset sources, can 
help assess the sensitivity of the reporting sys
tems. Using this method, only an estimated 47% 
of rhesus rotavirus vaccine–attributable cases 
of intussusception were reported to VAERS, 
despite the substantial associated media public
ity [303]. Although formal evaluation has been 
limited, the probability that a serious event 
reported to VAERS by a healthcare provider has 
been accurately diagnosed (i.e., predictive value 
positive) is likely to be high. Of 26 patients 
reported to VAERS who developed GBS after 

influenza vaccination during the 1990–1991 
season and whose hospital charts were reviewed 
by an independent panel of neurologists blinded 
to immunization status, the diagnosis of GBS 
was confirmed in 22 (85%) [304]. In general, the 
validity of diagnoses reported to VAERS is 
highly variable depending on condition.

Despite these uses, SRS for drug and vaccine 
safety have a number of major methodologic 
weaknesses (see also Chapter  10) and pitfalls 
for the unwary in the use of public use datasets 
[182,284]. Biased and incomplete reporting is 
inherent to all such SRS and potential safety 
concerns may be missed [284,302]. Aseptic 
meningitis associated with the Urabe mumps 
vaccine strain, for example, was not detected by 
SRS in most countries about a decade after 
licensure [87,97,131]. Most importantly, how
ever, the information content of such spon
taneous reports represents just cell “a” of a 
two‐by‐two table of vaccination versus adverse 

Table 20.3 Reporting efficiencies* for selected outcomes, two passive surveillance systems for adverse event 
following immunization, US.

Reporting efficiency(%)

Adverse event Vaccine MSAEFI
VAERS 
(overall)

VAERS 
(public sector)

Vaccine‐associated polio Oral polio vaccine (OPV) 72 68 **
Seizures Diphtheria–tetanus–pertussis 

(DTP)
42 24 36

Seizures Measles–mumps–rubella (MMR) 23 37 49
Hypotonic–hyporesponsive episodes DTP  4  3  4
Rash MMR <1 <1  5
Thrombocytopenia MMR <1  4 <1

Notes: *Calculated as the ratio of the rates at which adverse events were reported to each passive surveillance system divided 
by their rates. **Public‐ and private‐sector information is missing on these cases.
MSAEFI, Monitoring System for Adverse Events Following Immunizations; VAERS, Vaccine Adverse Event Reporting System.
Source: Rosenthal S, Chen R. The reporting sensitivities of two passive surveillance systems for vaccine adverse events. Am J 
Public Health 1995; 85(12): 1706–9. Reproduced by permission of Sheridan Content Solutions (on behalf of The American 
Public Health Association).
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event (Figure 20.2), and incomplete and biased 
content at that [305].

Use of data from SRS is further complicated 
by heterogeneity in reported clinical syndromes, 
absence of laboratory confirmation of many of 
the events, and simultaneous vaccinations that 
make proper attribution of the causal vaccine 
difficult. MedDRA and WHO Adverse Reaction 
Terminology (WHO‐ART) codes used to clas
sify signs and symptoms documented in AEFI 
reports do not necessarily represent medically 
confirmed diagnoses. Since much of “signal 
detection” relies on specific diagnoses and 
their coding into databases, new AEFI clinical 

syndromes may not be “recognized” and analyzed 
as such until hypothesis‐strengthening proce
dures such as the development of standardized 
case definitions and/or clinical/laboratory eval
uation are undertaken. Researchers in Canada 
did a series of such studies to characterize 
then “new” oculorespiratory syndrome after the 
2000–2001 influenza vaccination [246], which, 
in retrospect, probably also occurred in other 
influenza seasons [306] and other countries with 
other influenza vaccine manufacturers [307].

Current SRS are also prone to detecting 
increases in AEFI reporting that are not true 
increases. Instead, they may be due to an increase 

Adverse event No adverse event

Vaccinated and did not
have an adverse event

Vaccinated and had an
adverse event, which

was reported to VAERS

Vaccinated and had an
adverse event, but not

reported to VAERS

Vaccinated

Not vaccinated

A2 = VAERS database Incidence of AE in
vaccinated individuals

Incidence of AE in
unvaccinated individuals

Reporting  efficiency
to VAERS

=

=
A1 + A2

C

C+D

(A1 + A2)+B

Not vaccinated and had
an adverse event

Not vaccinated and did
not have an adverse event

A1 A2 B

DC

A2=
A1 + A2

Figure 20.2 “2 × 2” table necessary for epidemiologic analysis of causality between vaccine and an adverse event 
following immunization. AE, adverse event; VAERS, Vaccine Adverse Event Reporting System. Source: Shimabukuro TT, 
Nguyen M, Martin D, DeStefano F. Safety monitoring in the Vaccine Adverse Event Reporting System (VAERS). Vaccine 
2015; 33(36): 4398–405. Reproduced with permission of Elsevier.
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in (i) reporting efficiency; (ii) vaccination cover
age; (iii) public awareness about vaccine safety 
from media attention (i.e., stimulated reporting 
or awareness bias); or (iv) increases in the inci
dence of known or unknown etiologies for a 
particular AEFI. SRS are usually unable to sort 
out causally related from coincidentally related 
AEFI because of inherent methodologic weak
nesses. For example, an increase in GBS reports 
to VAERS in 1993–1994 influenza vaccinees 
compared to 1992–1993 influenza vaccinees 
was found to be due to improvements in vaccine 
coverage and increases in GBS background 
incidence, while the vaccination‐associated risk 
remained unchanged [135]. An increased report
ing rate of an AEFI following one hepatitis B 
vaccine brand compared to another was likely 
due to differential distribution of brands in 
the public versus private sectors, which have 
differential VAERS reporting rates (higher in 
the public sector) [308]. A signal of venous 
thromboembolic events in HPV vaccinees in 
VAERS was probably due to confounding from 
concurrent use of oral contraceptives [290]. 
Finally, an  approximately two‐ to threefold 
increase in 2009 pH1N1 reports to VAERS as 
compared to the 2009–2010 seasonal influenza 
vaccine occurred, most likely due to heightened 
public awareness and enhancements made to 
VAERS for safety monitoring efforts of the 2009 
pH1N1 vaccine [296].

These observations highlight the crude 
nature of the “signal” generated by VAERS, and 
the difficulty in ascertaining which vaccine 
safety concerns warrant further investigation. 
Not only are there problems with reporting 
efficiency and potentially biased reporting, but 
precise denominators for calculating true rates 
are usually not available. Instead, crude meas
ures such as doses distributed must often be 
used as surrogates for doses administered. 
Because of these difficulties, the requirement 
for manufacturers to notify FDA whenever they 
receive an increased number of reports has 
been dropped [309].

Historically, most (especially resource‐
limited) countries have relied on SRS alone for 
postlicensure vaccine safety monitoring. The 
inadequacy of scientific information on vaccine 
safety found by the IOM/NAM is related to the 
methodologic weaknesses inherent to SRS. The 
establishment of new population‐based immu
nization information systems in which all vaccines 
administered are entered may provide more 
timely submission of spontaneous reports, as 
well as more accurate and specific denomina
tors for doses administered, providing informa
tion necessary to calculate more accurate AEFI 
rates [310].

Clinical Trials
Prelicensure Clinical Trials
To demonstrate that a new vaccine candidate is 
safer than a previous vaccine, the two products 
can be compared head to head in a randomized 
trial, as was done for acellular and whole‐cell 
pertussis vaccine [103]. Alternatively, active 
surveillance in a large trial can be done to show 
that the attributable risk for a specific AEFI 
(e.g., intussusception) was lower for a new rota
virus vaccine, compared to the old one [68]. 
When another vaccine (vs. placebo) is used for 
comparison, however, there may be challenges 
in interpreting the safety signals detected [311]. 
Separately, when a new AEFI like myopericardi
tis was recognized after smallpox vaccination, 
trials of new vaccine candidates using a similar 
viral vector may require more safety assessment 
(e.g., electrocardiogram) [312]. The challenges 
and lessons learned from safety monitoring of 
recent trials of a new group A meningococcal con
jugate vaccine in Africa have been published [313].

Postlicensure Clinical Trials
To optimize vaccine use, clinical trials may be 
conducted after vaccine licensure to assess the 
effects of changes in vaccine formulation [314], 
vaccine strain [106,315], age at vaccination 
[316], the number and timing of vaccine doses 
[317], simultaneous administration [318], and 
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interchangeability of vaccines from different 
manufacturers [319] on vaccine safety and 
immunogenicity. The importance of such trials 
was demonstrated when studies showed an 
unanticipated differential mortality among 
recipients of high‐ and regular‐titer measles 
vaccine in resource‐limited countries [109], 
albeit lower than among unvaccinated children 
[320]. This finding resulted in a change in 
 recommendations by WHO for the use of such 
vaccines [321]. The development of automated 
large‐linked databases (LLDB; see later discus
sion) may permit an improved ability to monitor 
the safety of such postlicensure changes in 
vaccine use without necessarily conducting 
such clinical trials.

Postapproval Surveillance Studies
To improve the ability to detect AEFI that are 
not detected during prelicensure trials, most 
recently licensed vaccines in developed coun
tries have undergone formal postapproval sur
veillance studies on populations with sample 
sizes of 100 000. These studies have usually used 
computerized data from cohorts in health main
tenance organizations supplemented by diary or 
telephone interview. These methods were first 
extensively used after the licensure of polysac
charide and conjugated Hib [322,323], DTaP 
[324], and varicella vaccines (including multi
year evaluation for disease incidence, herpes 
zoster, and a pregnancy registry) [325,326]. 
Postapproval studies are now routine for newly 
licensed vaccines like MMRV vaccine [99], HPV 
vaccine [24], and second‐generation rotavirus 
vaccines [68]. Postapproval studies in Mexico 
and Brazil have found an increased risk of intus
susception in the newer rotavirus vaccines, 
albeit one‐tenth that of the first‐generation vac
cine [68]. Postapproval evaluation has even 
been extended to less frequently used vaccines, 
like Japanese encephalitis vaccine [327]. A large 
postlicensure randomized trial for this vaccine 
was also completed in China to improve the 
available data on its short‐term safety [328].

Ad Hoc Epidemiologic Studies
Historically, ad hoc epidemiologic studies have 
been conducted to assess signals of potential 
AEFI generated by SRS, the medical literature, 
or other mechanisms. Traditional analyses of 
secular trends (ecologic studies), cohort studies, 
and case–control studies have been used to 
gather information necessary to measure or 
compare risks of an AEFI following vaccination 
with risk in the absence of vaccination. Occa
sionally, data collected for other study outcomes 
may be reanalyzed to see if the vaccine was caus
ally related or not. Examples of ad hoc follow‐up 
studies to signals of vaccine safety issues are 
the investigations of poliomyelitis after IPV [77] 
and OPV [329]; SIDS after DTP vaccination 
[37,138]; encephalopathy after DTP vaccination 
[61,62]; meningoencephalitis after mumps vacci
nation [131]; injection site abscesses postvacci
nation [330]; intussusception after Rotashield 
vaccine [65,66,68]; vaccinations and autism 
[39,70]; GBS after influenza vaccine [56,135,275]; 
and GBS after meningococcal conjugate vaccine 
[247]. Many such studies have been compiled 
and reviewed by the IOM/NAM. While auto
mated LLDB (see next section and Chapters 
11–14) provide a more cost‐effective and flexible 
framework for hypothesis testing, ad hoc epide
miologic studies may still be needed in settings 
without automated LLDB [98,246], or where the 
statistical power of the automated LLDB may be 
inadequate to answer a question in a timely 
manner [134,135,304].

Automated Large, Linked Databases
Ad hoc epidemiologic studies of vaccine safety, 
while potentially informative about vaccine 
causality, are costly, time consuming, and usually 
limited to assessment of a single or small number 
of outcomes. As with drug safety research 
(see Chapters 11–14), efforts have increasingly 
turned to record linkage between automated 
exposure (immunization records in lieu of phar
macy) files and outcome medical files. This is 
nicely illustrated by comparing the methods of 
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the first rotavirus vaccine intussusception studies, 
ad hoc [65] versus LLDB [66], the latter being 
more timely and efficient.

The US Experience
Vaccine Safety Datalink Project
The CDC participated during the late 1980s in 
two pilot  vaccine safety studies using automated 
LLDBs in Medicaid and Managed Care 
Organizations (MCO) populations, respectively 
[331–333]. While validating this approach for 
vaccine safety studies and providing scientifi
cally rigorous results, these studies were limited 
by their relatively small sample sizes, inability 
to prospectively study new hypotheses, and 
focus on the most severe reactions [236]. These 
limitations, the constraints of VAERS, and the 
recognition of the need for improved monitor
ing of vaccine safety prompted the CDC to initi
ate the VSD project in 1990 [334]. To help 
overcome the previously identified shortcom
ings, the VSD prospectively collects vaccination, 
medical outcome (e.g., hospital discharge, out
patient visits, emergency room visits, and 
deaths), and covariate data (e.g., ethnicity and 
socioeconomic data on birth certificates, cen
sus) under joint protocol at multiple MCOs. 
Selection of staff model prepaid health plans also 
minimized potential biases for more severe out
comes resulting from data generated from fee‐
for‐service claims, a problem prior to the 
implementation of diagnosis‐related group 
(DRG) billing [335]. To increase patient confi
dentiality, the VSD shifted from annual data file 
submissions from the MCOs for data pooling 
and analysis at CDC to a distributed network 
data management model [336]; in parallel, the 
VSD is also increasing transparency via public 
access data sharing and external input [261].

Originally, the VSD conducted active surveil
lance on approximately 500 000 children from 
birth through 6 years of age (75 000 birth cohort, 
approximately 2% of the US population in these 
age groups) [334]. Expansion to eight MCOs 
(including data on all age groups at three MCOs) 

was accomplished in 2000 [337]. The VSD 
focused its initial efforts on examining potential 
associations between immunizations and 34 seri
ous neurologic, allergic, hematologic, infectious, 
inflammatory, and metabolic conditions. The 
VSD is also being used to test new ad hoc vaccine 
safety hypotheses that arise from the medical 
literature [16,338–340], from VAERS [66,308], 
from changes in immunization schedules 
[341,342], or from the introduction of new vac
cines [262,343]. In addition, the VSD has con
ducted influenza vaccine safety studies in which 
large cohorts of children are screened for evi
dence of increased medically attended events fol
lowing vaccination [344]. The size of the VSD 
population also permits separation of the risks 
associated with individual vaccines from those 
associated with vaccine combinations, whether 
given in the same syringe or simultaneously at 
different body sites [262,345]. Near real‐time 
surveillance was conducted on several combina
tion vaccines [346,347]. Surveillance on the safety 
of the influenza vaccine, including subgroups 
such as pregnant women [342], is ongoing.

When the VSD identifies an AEFI as being 
associated with a vaccine, data on the incidence 
rate attributable to the vaccine are available 
[66,262,340], permitting accurate benefit/risk 
assessment by both the public and policymakers 
[348]. Subgroup analyses may permit identifica
tion of risk factors for AEFI (or vaccine failures), 
which may be useful in identifying contraindica
tions to vaccinations [349]. Data from VSD have 
been useful in calculating background rates of ill
nesses in the absence of vaccination that can 
serve as expected rates when comparing rates of 
vaccine‐associated events in an SRS [278]. Also, 
incidence rates of vaccine‐associated AEFI derived 
from VSD can be used to evaluate the sensitivity 
of passive reporting systems [303]. The VSD data 
also aid the Vaccine Injury Compensation 
Program in determinations of what events should 
be compensated as vaccine “injuries” [71].

In addition to ad hoc epidemiologic studies, 
an RCA team was formed within the VSD to 
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conduct near real‐time active surveillance on 
newly licensed vaccines [260,261]. The RCA 
relies on analytic datasets that are created 
weekly from the automated MCO data. The 
weekly analytic datasets are used to investigate 
potential associations between vaccines and 
AEFI that are defined a priori. Statistical analysis 
for signal detection is conducted with methods 
that account for the multiple testing of accumu
lating data. The RCA team developed a statisti
cal method known as the maximized sequential 
ratio probability test (MaxSPRT) to detect safety 
signals in near real time, while accurately 
accounting for repeated testing of the data [350]. 
The first application of MaxSPRT was in safety 
assessment of the newly licensed meningococcal 
conjugate vaccine in 2005 [351]. RCA methods 
also were used to detect a twofold increased risk 
for febrile seizures following MMRV vaccination 
compared to MMR and varicella (MMR + V) 
administered separately [262]. This finding pre
cipitated changes in US immunization policy for 
MMRV and MMR + V in children.

The VSD has some limitations, however. The 
IOM/NAM, in its 2013 report, recommended 
that the VSD expand collaborations to include 
more diversity in its study population. In 
response, the VSD is collaborating with Denver 
Health, an integrated safety net healthcare sys
tem serving a large proportion of Denver’s indi
gent and minority populations, to integrate its 
data into the VSD [352]. More importantly, 
because of the high coverage attained in the 
MCOs for most vaccines, few nonvaccinated 
controls are available. Therefore, the VSD often 
relies on some type of “risk‐interval” analysis 
[331–334] (Box  20.1). The capability of this 
approach to assess associations between vacci
nation and AEFI with delayed or insidious onset 
(e.g., neurodevelopmental or behavioral outcomes) 
is limited [16]. The VSD also cannot easily 
assess AEFI that do not result in a healthcare 
visit, and therefore are not currently captured in 
existing MCO databases, because they do not 
result in a healthcare consultation (e.g., fever) 

[334]. The current VSD is also not large enough 
to examine modest increased risks of extremely 
rare events such as GBS after each season’s 
influenza vaccine. Finally, because the VSD 
relies on observational studies, it may not suc
cessfully control for confounding and bias in 
each analysis [140], and inferences on causality 
may be limited [353].

Despite these potential shortcomings, the 
VSD provides an essential, powerful, and rela
tively cost‐effective complement to ongoing 
evaluations of vaccine safety in the US [69].

Postlicensure Rapid Immunization Safety Moni toring
In 2009, the Department of Health and Human 
Services initiated the Post‐Licensure Rapid 
Immunization Safety Monitoring (PRISM) pro
gram in response to the need to supplement the 
preexisting active surveillance for the safety of 
the 2009 pH1N1 influenza vaccine [191). To 
ensure its sustainability, PRISM became the 
immunization safety monitoring component of 
the FDA’s Sentinel project (see Chapter  25), a 
postmarketing safety surveillance network to 
actively monitor the safety of medical products 
[354]. PRISM is a distributed data network that 
utilizes claims data from four national health 
insurers and vaccine data from eight immuniza
tion registries, and has the largest cohort size in 
the US for active vaccine safety surveillance, 
making it possible to study rare AEFI [355]. 
However, its limitations include updating of the 
data quarterly only and limited accessibility to 
medical records. PRISM has conducted several 
vaccine safety evaluations, including on the 
safety of monovalent pandemic 2009 pH1N1 
influenza vaccine during 2009–2010 [356], 
febrile seizures after 2010–2011 TIV [357], risk 
of venous thromboembolism after quadrivalent 
HPV vaccination [358], and intussusception risk 
after rotavirus vaccination in US infants [359]. 
Since the VSD and PRISM have different data 
sources and populations, they complement each 
other and serve as a check on the validity of 
results.
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PRISM is currently evaluating new data‐min
ing techniques such as TreeScan, which can be 
used to simultaneously evaluate multiple unsus
pected but potential AEFI while adjusting for 
multiple comparisons [360]. If it works, it could 
be an invaluable tool for signal detection. 
However, since this would not be able to adjust 
for all possible confounders, the statistical 
signals of public health concerns would still 
need evaluation using carefully designed epide
miologic studies [263].

Other High‐Income Nations’ Experience
In view of the methodologic and logistical advan
tages offered by automated LLDB, Denmark [70], 
the UK [97,131], France [361], Germany [362], 
and Canada [363] have also developed large 

automated databases linking immunization 
registries with medical files. Building on their 
experience with 2009 pH1N1 influenza vaccine 
safety surveillance, Europe [42] and Taiwan 
[274] have converted their systems into large, 
linked databases for routine vaccinations [138]. 
The European Accelerated Development of 
VAccine benefit–risk Collaboration in Europe 
(ADVANCE) consortium (http://www.advance‐
vaccines.eu) is a public–private partnership 
under the Innovative Medicines Initiative 
[44,364]. The Taiwan system links a National 
Immunization Information System with the 
outcomes from a successfully implemented 
National Health Insurance scheme [138]. Most 
high‐income countries should have similar 
capabilities if they prioritize vaccine safety.

Box 20.1 Example of method for risk‐interval analysis of association between a universally 
recommended three‐dose vaccine (with a few unvaccinated people for comparison) and adverse 
event following immunization.

1) Define “risk interval” for adverse event after vaccination (e.g., 30 days after each dose).
2) Partition observation time for each child in the study into periods within and outside of risk intervals, and 

sum respectively (e.g., for a child observed for 365 days during which three doses of vaccine were received; 
total risk interval time = 3×30 person‐days = 90 person‐days; total nonrisk interval time = 365 − 90 = 275 
person‐days).
o————————x====————————x====————————x====—————//————— > |
Birth    Dose 1      Dose 2      Dose 3         365 days

Add up (i) total risk interval and nonrisk interval observation times for each child in the study (=person‐time 
observed; for mathematical convenience, the example below uses 100 and 1000 person‐months of 
observation), and (ii) adverse events occurring in each time period to complete 2×2 table (for illustration, the 
example uses 3 and 10 cases):
Adverse event yes Person‐time observed (months) Incidence rate
Vaccinated in risk interval yes 3 100 0.03
Vaccinated in risk interval no 10 1000 0.01
Total 13 1100

Incidence rate adverse eventvaccinated = 3/100 = 0.03
Incidence rate adverse eventunvaccinated = 10/1000 = 0.01
Relative risk vaccinated: unvaccinated = 0.03/0.01 = 3.0
Probability finding due to chance: <5/100
Conclusion: There is a threefold increase in risk of developing the adverse event within the interval following 
vaccination.
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Low‐ and Middle‐Income Nations’ Experience
The first pilot LLDB in an LMIC was established 
in one province in Vietnam in 2002 [365]. Given 
that many vaccines against many poverty‐related 
diseases like rotavirus, malaria, and tuberculosis 
will be introduced first in such countries, there is 
a need to develop VSD‐like infrastructures there, 
too [44,115,211,366]. Affordable options in the 
near term include adapting hospital‐based 
surveillance for serious AEFI [162], building on 
existing demographic surveillance systems like 
the International Network for the Demographic 
Evaluation of Populations and Their Health 
(INDEPTH) [367], pilot implementation projects 
associated with the introduction of new vaccines 
[368], and others [369,370].

Injury Compensation
Many high‐income countries in Europe, North 
America, and Asia have programs to compen
sate individuals who may have been injured by 
vaccines [71,371]. A global no‐fault program 
has been proposed to facilitate the development 
of new vaccines for public health emergencies 
[90]. Although differences exist across coun
tries, some common principles and procedures 
guide the administration of compensation pro
grams. These are mostly no‐fault programs 
designed to be fair and as efficient and generous 
as possible. Vaccinations are in some situations 
mandatory and often recommended by public 
health authorities, and most AEFI and injuries 
are not due to negligence or malice (i.e., they are 
not foreseeable or preventable at the individual 
level). Therefore, a formal government‐man
aged program outside of the traditional tort sys
tem is advisable to protect individuals, 
vaccination programs, and vaccine manufactur
ers. Depending on the type of program, claims 
of vaccine injury may be adjudicated through 
legal or administrative processes. Funding 
sources to compensate individuals include 
general revenues, manufacturer contributions, 
or specific taxes on vaccine doses sold. Standard 
of proof generally follows a civil or modified 

civil standard, rather than a scientific standard 
for causality [71,371].

In the US, the National Vaccine Injury 
Compensation Program (VICP) was authorized 
by the US National Childhood Vaccine Act of 
1986 [71,372]. This no‐fault program is admin
istered by the Health Resources and Services 
Administration of the US Department of Health 
and Human Services. The US Department of 
Justice represents the government and cases are 
heard before the US Court of Federal Claims. 
Covered vaccines include those routinely rec
ommended by the CDC for use in children; 
however, there is no age limit and anyone who 
receives a covered vaccine is covered by the pro
gram (e.g., an adult receiving an IPV prior to 
travel would be covered, since IPV is routinely 
recommended by the CDC for children). Claims 
can be conceded by the government if they meet 
the requirements for a VIT injury; the VIT is 
designed to streamline adjudication of claims by 
allowing the government to concede causality in 
certain circumstances [91]. Claims can also be 
settled (both injuries listed on the VIT and “off‐
table” injuries), or cases decided by special mas
ters of the US Court of Federal Claims. Funding 
for the program is through an excise tax on each 
dose of covered vaccines sold in the US [71,372].

Injury compensation programs have helped 
vaccine‐injured individuals and their families 
deal with injury‐related financial burdens, 
improved confidence in vaccinations and 
immunization programs, and helped stabilize 
vaccine supply and prices [71]. An aspirational 
goal should be to extend injury compensation 
programs to all countries that manage national 
immunization programs [90,371].

Methodologic Approaches for Observational 
Epidemiology Studies

Exposures
In countries where vaccinations are required for 
entry into daycare, kindergarten, schools, and/
or colleges, documentation via vaccination 
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cards or medical records is usually available and 
of good quality for most infants and children. 
In the US, documentation of the vaccine type, 
date of vaccination, manufacturer, lot number, 
and vaccine provider in a permanent medical 
record has been required since 1988 for certain 
routine childhood vaccinations [372]. This 
requirement, along with improvements in tech
nology, has prompted state and local authorities, 
in collaboration with healthcare providers and 
health systems, to capture patient vaccination 
status, particularly for children, in electronic 
immunization information systems (formerly 
known as immunization registries) that often 
communicate with EHRs, which are increasingly 
common in higher‐income countries [310].

Although vaccination records can be manu
ally retrieved and reviewed for any study design, 
automated vaccination records greatly ease the 
logistics of organizing such studies. Whenever 
sampling is necessary in the design, automated 
records also ease the selection of samples that 
are representative. Assessing the accuracy of 
such automated data is important in any study 
[373,374]. When people receive their vaccina
tions from several providers (not uncommon in 
the US), their exposure status may be misclassi
fied [375]. This error could be minimized if a 
centralized Immunization Information System 
(IIS) was implemented to track all vaccinations 
from birth. Such IISs have been implemented 
in Australia [376], Canada [377], China [378], 
Denmark [70], Latin America [379], the UK 
[380], and the US [310]. Mobile phones and 
other sources of digital identification may aid 
adherence to vaccinations and their capture as 
data [381], including in LMICs [382].

The availability and quality of vaccination 
records generally decrease as people age, espe
cially beyond school age, where documentation 
is often required for school attendance. Some 
vaccines for older people may be administered 
in settings other than primary healthcare (e.g., 
tetanus–diphtheria boosters in emergency 
rooms, hepatitis B vaccinations for healthcare 

personnel). In addition to review of primary 
medical records, interviews or a review of data 
from secondary vaccination sites may therefore 
be necessary to accurately ascertain exposure 
status in AEFI studies of these vaccines in older 
populations. To increase the accuracy of expo
sure data in a study of adverse reactions to 
plasma‐derived hepatitis B vaccine among 
Alaskan natives, medical records from the  village, 
the hospital, and the regional public health nurse, 
in addition to the automated vaccination record, 
were reviewed [383]. Studies of GBS and 2009 
pH1N1 influenza vaccine relied on patient/fam
ily interview, hospital medical record, and/or 
validation with primary care providers for expo
sure ascertainment [275]. Interestingly, reliance 
on provider verification may lead to underascer
tainment of vaccination status, either because of 
poor record keeping [375] or concerns about 
liability in vaccine safety studies [135].

Standards are needed to improve the accuracy 
and efficiency of transfer of vaccine identification 
information from the vaccine vial to automated 
or paper immunization records. They include 
(i) abbreviations for new vaccine antigens and 
vaccine manufacturers; (ii) peel‐off labels; 
(iii) bar codes; (iv) lot numbers [384]; and (v) 
presentation of key identifier information on 
vaccine packaging (as on the nutrition label). 
The WHO has identified as a priority the devel
opment of a vaccine dictionary that will allow 
differentiation of vaccine formulations from 
various manufacturers [385].

Outcomes
To ensure both high sensitivity and specificity 
for an AEFI, a multistep approach is usually 
required for case ascertainment [338,340,344]. 
In step one, the automated databases are 
screened to identify International Classification 
of Diseases, 10th edition (ICD‐10) diagnostic 
codes for the condition of interest. The ICD‐10 
codes typically represent medical encounters 
in  the inpatient, outpatient, and emergency 
department settings. Additional data sources, 
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such as laboratory and pharmacy files, can also 
be used to identify potential cases. This initial 
screening definition tends to be highly sensitive 
but less specific. After the electronic cases have 
been identified, a trained abstractor, blinded to 
vaccination status, often reviews the medical 
records of the patients. On a standardized data 
collection form, the abstractor records detailed 
clinical information on presenting symptoms, 
sequelae, medications, underlying health condi
tions, diagnostic test results, and potential con
founding variables. For outcomes with insidious 
onset like multiple sclerosis, multiple dates (e.g., 
first symptom, first medical visit, first diagno
sis) and sources of information (patient recall, 
medical chart) may also need to be collected 
[386]. In the last step of the case ascertainment 
process, clinical experts review the abstracted 
medical information to determine if patients 
meet the final study case definition. For difficult 
diagnoses like GBS, a panel of specialists may 
also be asked to review the medical records after 
exposure status has been masked [64,135].

This process minimizes the likelihood of a 
false negative conclusion (due to bias toward 
the null) by ensuring that only cases meeting the 
most specific case definition are included in the 
analysis. It is also possible, however, that using 
such a narrowly focused outcome definition 
may miss broader syndromes or groups of 
symptoms related to the outcome. Follow‐up 
analyses of rhesus rotavirus vaccine reports to 
VAERS suggest that intussusception [192] may 
have been just the “tip of the iceberg” of a 
broader syndrome that also included bloody 
stool, vomiting, diarrhea, and abdominal pain 
[288]. Adverse neurologic outcomes other than 
GBS were reported among the 1976–1977 and 
2009 pH1N1 influenza vaccinees [240,387]. 
Unfortunately, whether these associations are 
causal remains unknown and controversial, as 
formal studies have not been done.

Should the concern be a new previously 
undescribed syndrome, analyses of existing 
databases may be inadequate. A study of Gulf 

War Syndrome and vaccinations relied on a 
thorough interview of patients meeting a de 
novo complex case definition before linkage 
with vaccination history [388].

In the context of real‐time surveillance, 
influenza vaccine safety monitoring is hindered 
by the rate at which LLDBs capture medical 
encounter data. In the VSD, for example, some 
of the MCO sites contract with independent 
hospitals to provide inpatient care. Therefore, 
there is often a considerable lag between the 
inpatient encounter and the date at which the 
encounter (outcome) is captured in the data
bases. At some sites, the average lag can be as 
long as four months [389]. For influenza vaccine 
safety monitoring, the influenza season may 
be over by the time the outcome data is fully 
captured, thereby rendering the real‐time 
analysis moot.

Study Design and Analytic Methods
Different analytic strategies are needed depend
ing on how a vaccine is used in the population. 
For vaccines used infrequently and typically in 
vaccinees who are generally no different than 
nonvaccinees (e.g., travel vaccines), comparison 
between two groups with adequate matching or 
adjustment is relatively straightforward. For 
example, in a cohort study, groups of vaccinated 
and unvaccinated individuals may be matched 
on several factors such as sex, study site, age, 
high‐risk condition, and calendar time. The 
cohorts of vaccinated and unvaccinated indi
viduals are then followed forward in time, and 
the incidence of events in the two groups is 
compared within predefined exposure windows 
following vaccination. These exposure windows 
are defined a priori based on the current under
standing of the most plausible biologic mecha
nism, should such an association actually exist. 
For most acute events, exposure windows of 
0–1, 1–14, 1–30, and 1–42 days are often used 
[334,340,344]. This study design provides a 
direct estimate of effect (the incidence rate 
ratio, IRR), is well suited for rare exposures 
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(but not rare outcomes), and can be used to 
analyze multiple outcomes [390,391]. Matching 
on age and calendar time helps to adjust for 
time‐varying variables that can confound the 
results when the vaccine and outcome are either 
seasonal or highly dependent on age. When the 
outcome is rare, however, the cohort design 
can be costly to implement and, for childhood 
vaccines that are universally recommended, 
there may be too few unvaccinated children for 
the comparison group. The design is also sus
ceptible to selection bias that can be introduced 
by comparing vaccinated and unvaccinated 
populations, as these groups may differ by factors 
frequently missing from LLDBs such as ethnicity, 
socioeconomic status, and underlying health 
state [140].

In contrast to the cohort design, case–control 
studies are conducted by first identifying indi
viduals who experienced a particular event over 
a predefined time period. This group of cases is 
then compared to a control group of outcome‐
free individuals from the same time period. 
Cases are often matched to controls by variables 
such as sex, age, study site, and calendar time 
[65,142,144]. This design tends to be more 
economical than the cohort design, and it is well 
suited for rare illnesses. As with the cohort 
method, however, the case–control design is 
limited when vaccine coverage rates are high and 
few unvaccinated cases and controls are availa
ble for analysis. In contrast to the cohort design, 
matching on confounding variables in a case–
control study will bias the results to the null 
hypothesis (i.e., toward no effect) if not explicitly 
adjusted for in the analysis [390]. It is also diffi
cult (and sometimes impossible) to estimate the 
attributable risk in a case–control design.

To address some of these limitations, alter
native methods known as the risk‐interval 
(or vaccinated cohort) and self‐controlled case 
series (SCCS) study designs have been developed 
for vaccine safety epidemiology [97,146,392,393]. 
These designs differ from more traditional epi
demiologic methods in that time intervals both 

before and after vaccination within the same 
individual are used to classify a person as 
exposed or unexposed. In the risk‐interval 
design, incidence rates for risk and nonrisk 
time periods are compared, but only vaccinated 
individuals are included in the analysis. A time 
period shortly following vaccination is defined 
as the exposed risk interval, and events that 
occur during this period are classified as exposed 
cases. Time periods outside of the risk inter
val – before and after the vaccination – are con
sidered the nonrisk (or unexposed) periods, in 
which occurrences of events are classified as 
unexposed cases. Because only vaccinated 
individuals are included in the study, the design 
eliminates biases associated with fixed factors 
that remain constant over time in the same indi
vidual, but differ between vaccinated and unvac
cinated populations. In addition, because control 
time periods both before vaccination and after 
the risk period are included in the analysis, the 
design is used to examine the risk of acute, self‐
limiting events following vaccination.

The SCCS method is a similar design in which 
incidence rates for risk and nonrisk time peri
ods are compared, but only cases with an event 
are included in the analysis [146,393,394]. The 
study population comprises cases that occur 
over a predefined observation period, and each 
case acts as its own control, thereby controlling 
for both measured and unmeasured confound
ing variables that do not vary over time (i.e., 
fixed confounding). With the SCCS method, 
multiple occurrences of independent events 
within an individual can be analyzed. Since only 
cases are required for the analysis, the SCCS 
study population is considerably smaller than 
that of the cohort, case–control, and risk‐inter
val designs. As discussed shortly, the SCCS has 
nearly as much statistical power as the cohort 
approach when a high proportion of the popula
tion is vaccinated. Both the risk‐interval and 
SCCS designs are analyzed with conditional 
Poisson regression to generate incidence rate 
ratios (IRRs).
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Possible limitations of the risk‐interval and 
SCCS methods stem from their inability to 
implicitly control for time‐varying confound
ers, such as seasonality or age. In contrast to the 
matched cohort analysis, these time‐varying 
variables must be explicitly defined as either 
continuous functions or categorical variables 
and added to parametric Poisson regression 
models [392,395]. Misspecifying such variables 
can lead to biased results – particularly when 
the event is rare [393]. Alternatively, it has also 
been shown that semi‐parametric Poisson 
regression models can be used to analyze 
SCCS data in which the time‐varying effects of 
age do not have to be explicitly defined before 
analysis [396].

An additional important limitation of the 
SCCS is that bias can be introduced if the occur
rence of an event influences the probability of 
receiving vaccination. For example, individuals 
with a history of contraindicating or precau
tionary conditions to vaccination  –  such as 
GBS, idiopathic thrombocytopenia, anaphy
laxis, and HIV – may have their immunizations 
either delayed or withheld indefinitely. In such a 
situation, the SCCS design would be limited, 
since only cases (i.e., those with an event) are 
followed forward in time, and time periods 
before vaccination could not be included in the 
analysis. This assumption of event‐independent 
exposure (vaccination) is not required for 
the  more traditional epidemiologic methods, 
because vaccination status is ascertained retro
spectively from the date of diagnosis in a case–
control study, and the onset of an event is 
ascertained prospectively from the date of vac
cination in a cohort study. An analytic method 
has been developed to account for the post
event dependence in an SCCS analysis when 
the postvaccination risk period is short and 
when the event is both rare and nonrecurrent 
[397]. Simulation analyses demonstrated that 
the estimation method helped to correct for 
bias associated with event‐dependent expo
sures, but it also produced IRR estimates that 

were attenuated to the null hypothesis (i.e., 
they underestimated the true effect). Future 
research is needed to develop this analytic 
technique further.

The characteristics of cohort, case–control, 
risk‐interval, and SCCS designs have been 
compared empirically with simulation studies 
[392,398]. In a study using VSD data and simu
lated cases of a rare, acute illness (immune 
thrombocytopenic purpura or ITP) after MMR 
vaccination [340], the risk‐interval, SCCS, and 
case–control study designs produced valid IRR 
estimates that were within 3% of a cohort gold 
standard. The case–control design, however, 
produced estimates that were less powerful, 
less precise, and biased by unmeasured fixed 
confounding when compared to the other study 
designs. The SCCS and risk‐interval, in con
trast, were as powerful as the cohort design and 
produced unbiased estimates in the presence of 
unmeasured fixed confounding. Of note, the 
SCCS design displayed similar characteristics to 
those of the risk‐interval and cohort, but 
required only a fraction (0.01%) of the study 
population for analysis. On average, the size of 
the simulated cohort, risk‐interval, and SCCS 
study populations were 2.7 million, 1.4 million, 
and 200 individuals, respectively.

Using similar simulation analyses, the charac
teristics of these four designs were evaluated in 
the context of real‐time, active surveillance of 
AEFI [148]. When the exposure and outcome 
were acute, the cohort proved to be the best 
study design for active surveillance, in terms of 
bias, statistical power, and signal detection time. 
When selection bias was a concern, the risk‐
interval design was shown to be valid alterna
tive. Of all the designs, the case–control design 
had the longest signal detection time and most 
biased relative risk estimates. Although the SCCS 
lagged behind the cohort and risk‐interval 
designs in signal detection time, it was accepta
bly accurate and powerful and required only a 
minimum of data. Thus, the results from these 
simulation studies demonstrate that the SCCS 



Pharmacoepidemiologic Studies of Vaccine Safety470

design is a valid, powerful, and economical 
epidemiologic tool for studying vaccine safety.

Clearly, the current methods for studying 
vaccine safety have contrasting strengths and 
limitations. In some instances, researchers 
employ multiple methods to address the various 
factors that can bias the results [98,340,389,395]. 
Studying the safety of the influenza vaccine, as 
an example, poses multiple methodologic 
challenges that cannot be addressed with one 
particular design. In a typical influenza season, 
more than 85% of the vaccines are administered 
in October and November [389,399]. It is also 
likely that certain conditions of interest – such 
as febrile seizures, gastrointestinal disorders, or 
rash  –  have a seasonal distribution across the 
influenza season from October through April, 
with the incidence peaking in winter months. 
Such distributions would make season a strong 
confounder, as it would be highly associated 
with both vaccination and the outcome of inter
est. The correlation may, in fact, be so high that 
one could not disentangle the individual effects 
of vaccination and season in the analysis. 
Although little can be done to rectify this poten
tial problem with any design, the SCCS and 
risk‐interval designs are particularly susceptible 
to this type of seasonal bias.

A newer strategy to account for seasonal 
time‐varying bias in vaccine safety studies is the 
case‐centered approach [399]. It was initially 
developed for assessing the effectiveness of 
influenza vaccines in the elderly, and has been 
adapted to evaluate the safety of vaccines in 
postmarketing settings [400]. In cases occurring 
during an influenza season, the method uses 
data from the entire cohort (cases and noncases) 
to calculate the probability of exposure (vacci
nation) for the day of the event. The logit of this 
probability is then placed into logistic regres
sion model as an offset term. In essence, this 
method provides a seasonal adjustment for 
exposure by conditioning on the odds of vacci
nation over the course of an influenza season. 
This strategy has been used to study the risk of 

GBS following the monovalent inactivated and 
seasonal influenza vaccines [401] and various 
vaccine safety hypotheses [147,402,403].

In addition to seasonality, studying the safety 
of influenza vaccination is challenged by the 
potential for selection bias. Even where the 
influenza vaccine is universally recommended, 
it is possible that individuals who receive influ
enza vaccination are different from those who 
do not. Moreover, in large‐linked MCO data
bases, it is possible that a certain proportion of 
the population received influenza vaccination 
outside of the MCO, which may not be captured 
in the automated databases [389]. As described 
earlier, this potential for selection bias and 
exposure misclassification is problematic for 
the cohort and case–control designs.

Impact of Larger Sample Size
The continued accumulation of data from larger 
study populations with common data dictionar
ies (e.g., by more sites and/or calendar time) has 
allowed new scientific evidence to emerge on 
longstanding vaccine safety questions.

Stratification of Risk Groups in Association Studies
Despite SIDS being reported among millions of 
DTP vaccinees annually since 1933, the likely 
association of a “temporal shift” phenomenon 
(Figure  20.1) was only unraveled recently with 
the availability of nationwide large‐linked data
bases in Taiwan. A study assembled ~2400 SIDS 
cases over 10 years (~tenfold larger than most 
past studies), allowed stratification of risk by days 
since vaccination with statistically significant 
results for the first time (RR = 1.66; 95% confi
dence interval: 1.05–2.60) for the first 24 hours 
postvaccination, followed by a compensatory 
decreased RR < 1.0 for the subsequent postvacci
nation periods) [138]. Similarly, assembling a 
cohort of all recipients of measles‐containing 
vaccinations at VSD sites over 10 years allowed 
analyses showing that the risk of fever and sei
zures was lower among vaccinees 12–15 months 
of age versus 16–23 months old [404].
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Studies of Very Rare Outcomes/Associations
While vaccine‐induced anaphylaxis and GBS 
were known to be rare, their true rates were 
difficult to ascertain. Combining LLDBs to 
identify potential cases that meet the Brighton 
Collaboration case definition for each AEFI 
have finally allowed such rates and association 
to be estimated with greater precision [57,405–
407] than classical meta‐analysis without 
Brighton validation [408,409]. For serious 
outcomes usually requiring hospitalization like 
GBS, combining hospitalization data and 
SCCS methods allows contribution of data 
from more sources [410].

 The Future

Although considerable progress has been 
made in the development of vaccine safety 
analytic methods, several challenges remain. 
Areas of particular importance include (i) 
identifying optimal risk windows; (ii) charac
terizing a lifetime dose–response relationship 
from multiple influenza and tetanus‐contain
ing vaccinations; (iii) evaluating the safety of 
the entire childhood immunization schedule; 
and (iv) data mining for unknown AEFI in 
real‐time active surveillance.

Although risk window lengths are often based 
on prior biologic knowledge, they are also 
somewhat arbitrarily defined (e.g., 0–1, 1–14, 
1–42 days after vaccination). Inaccurate specifi
cation of the risk window can result either in 
including the true control period in the risk 
window or including a segment of the risk win
dow in the control period, both of which would 
introduce bias. After an elevated risk has been 
identified in a prespecified risk window, a two‐
step data‐driven approach to identify the period 
of greatest risk has been proposed. Step 1 begins 
by specifying a minimum risk window length, 
for which a risk estimate is calculated using an 
appropriate regression model. The risk window 

is incrementally lengthened and risk estimates 
are generated for each subsequent window. 
The risk estimates are plotted against the varia
ble risk window lengths, and the researcher 
notes where risk is maximized. If the specified 
risk window is longer than the true risk window, 
an analytic approach is possible in step 2. 
Preliminary simulation and theoretical work 
applied to the SCCS design with conditional 
Poisson regression has shown that there is a 
linear relationship between the calculated risk 
and risk window length [411]. The analytic 
approach calculates an optimal risk window 
length based on maximum likelihood methods 
and the study design of interest. Future work 
should focus on applying the approach to other 
study designs and regression models.

Unlike all other vaccines, influenza vaccine is 
administered on an annual basis indefinitely. It 
is currently not known if the risk of certain AEFI 
increases with each subsequent dose. For 
children in particular, studying this relationship 
is problematic, since dose number is likely to be 
strongly correlated with age. In other words, 
since both age at vaccination and cumulative 
dose increase over time, it would be difficult to 
explain how much of the risk associated with a 
particular dose can be explained by age. To 
study adequately the relationship between dose 
number and the risk of AEFI, new methods for 
disentangling the correlation between dose and 
age are needed.

An increasing number of parents are choosing 
to either delay or refuse some or all vaccines for 
their children, often citing safety concerns 
[412–415]. These sentiments reflect the number, 
frequency, and timing of vaccines, leading par
ents to undervaccinate and adopt immunization 
schedules that differ from the ACIP recom
mended schedule, known as the alternative 
immunization schedule [141,415–419]. In its 
2013 report, IOM/NAM recommended that 
additional observational research was war
ranted to compare the health outcomes 
between children vaccinated according to the 
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ACIP schedule and those on an alternative 
schedule [420]. Using observational studies for 
these comparisons could be methodologically 
challenging, because health‐ and healthcare–
seeking behaviors may differ systematically 
between the two groups [141,421]. In addition, it 
involves defining exposure to multiple different 
immunization schedules, identifying biologically 
plausible AEFI outcomes to study in the context 
of the immunization schedule, and identifying 
epidemiologic and statistical methods to assess 
the safety of the schedule as a whole [133].

Defining exposure is particularly challenging, 
because even though undervaccination is com
mon, there is considerable variability in patterns 
of undervaccination and there could be multiple 
ways to assess it. A 2013 study showed that 48.7% 
of children under age 2 years were undervacci
nated for at least one day, and there were 1399 
different patterns of undervaccination using the 
eight recommended childhood vaccines and cat
egorizing them into three groups of all doses 
received on‐time, no doses received, or some 
doses either missing or not received on time 
[141]. These patterns did not consider other 
factors related to the schedule such as the age, 
spacing, or order of vaccinations, which would 
result in millions of different combi nations of 
vaccination patterns. Different approaches for 
identifying patterns of undervaccination have 
been proposed using the average days undervac
cinated and proportion of days undervaccinated 
metrics, which quantify the number of calendar 
days for which a child is undervaccinated across 
all recommended vaccines [141,422–424]. 
Another problem with defining the exposure is 
the potential for misclassification of the vaccina
tion status in EHRs. This could be minimized if 
there is an ICD code for vaccine refusal in the 
EHR, but these children would likely be too few 
to be able to study rare AEFI [425].

In the context of the entire immunization 
schedule, the outcomes to be studied need to be 
based on biologic plausibility, feasibility in the 
context of the overall immunization schedule, 

epidemiologic evidence, public health signifi
cance, and public concern [133,420]. Studying 
short‐term acute outcomes poses challenges, as 
they may occur before the completion of the 
schedule, and are typically associated with short 
risk periods following specific vaccines, doses, 
or combination of vaccines. Moreover, short‐
term outcomes may influence parents’ future 
decision to vaccinate their child and may lead to 
reverse causality.

The VSD vaccine schedule study team along 
with subject matter experts have prioritized a list 
of 20 plausible long‐term or chronic outcomes 
[133]. Some of the outcomes on this list are very 
rare events, such as meningitis, encephalopathy, 
and development of type 1 diabetes, and very 
large cohorts of children will have to be studied 
to be able to identify differences in risk. More 
common outcomes on the list, such as asthma 
and allergy development, would entail intensive 
primary data collection resources to address the 
potential for misclassification. A   particular 
challenge is the study of outcomes that have an 
insidious onset. Early symptoms of disease may 
alter parents’ vaccination decision for their child, 
but before any formal clinical diagnosis has been 
made, leading to reverse causality [133].

Deciding on study designs and analytic plans 
to evaluate the safety of the schedule can be 
complex, because these may be susceptible to 
selection bias, confounding, and misclassifi
cation. Undervaccinated children differ from 
children who receive the recommended vac
cines on time on important variables such as 
baseline health and healthcare utilization, race/
ethnicity, socioeconomic status, parental edu
cation, and family history of illness. These data 
are difficult to capture using EHRs and should 
be addressed using methods including directed 
acyclic graphs (DAGs), control outcomes, 
restriction, matching, primary data collection, 
and sensitivity analyses [133].

Lastly, data‐mining methods have been devel
oped to identify signals for unexpected AEFI. 
These methods for vaccine safety have been 
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applied to passive surveillance systems and ad 
hoc epidemiologic studies [344,426]. In these 
respective settings, however, data‐mining anal
yses have been limited by reporting bias, lack of 
denominator data, and low statistical power for 
rare events. Conducting data‐mining analyses 
in LLDBs with real‐time active surveillance will 
address some of these limitations. Such meth
ods would be a natural complement to targeted 
active surveillance, in which AEFI are specified 
a priori. For targeted active surveillance (see 
Chapter  46), sequential testing methods have 
been developed to protect against false positive 
signals (type I error) when data are analyzed on 
a weekly or monthly basis. The potential for 
type I error, however, will increase significantly 
when multiple unspecified outcomes are analyzed 
at the same time.

New analytic tools for using LLDBs to identify 
unsuspected AEFI in real time have recently 
been developed [360,427]. These methods 
should be sensitive enough to detect potentially 
serious AEFI, but also conservative enough to 
protect against too many false signals. Such 
methods also need to account for seasonality, 
selection biases, and other factors that can 
distort the findings. Perhaps most importantly, 
a process for signal validation (e.g., controlled 
epidemiologic studies with medical chart 
review) and a plan for risk communication must 
be in place should a signal arise [428].

More broadly, major integration (and possible 
reorganization) of the vaccinology enterprise 
writ large may be needed to allow a shift from a 
historically largely empiric “one size fits all” par
adigm to one allowing “personalized medicine” 

requiring knowledge in various “systems biology” 
processes [117]. One such process, adversom
ics, hopes to identify, characterize, and predict 
adverse or maladaptive immune responses 
[125]. To do so will eventually require linkage of 
basic science, clinical trial, and postmarketing 
surveillance databases, with appropriate ana
lytic tools and graphic displays. Gaps in knowl
edge or processes identified (e.g., biobanking of 
samples from persons with serious AEFI) will 
need resolution. As ongoing immunizations of a 
substantial proportion of the human population 
against an ever‐increasing list of VPDs globally 
is probable, both the sample size and logistic 
requirements are manageable, so the challenges 
are likely to be more financial and political. 
Advances in genomics may allow other improve
ments in vaccine safety. Deep sequencing assays 
can detect DNA/RNA sequences that have con
taminated the vaccine production process [429], 
help document exposure to them in vaccinees, 
or monitor for circulation of risky live vaccine 
strains [430]. Homology between vaccine candi
date and human genomic sequences can iden
tify potential causes of autoimmunity [431].

As recently as 2012, only one‐third of WHO 
member states had an effective vaccine safety 
monitoring system [206]. While progress has 
been made, significant challenges in capacity 
building remain – to initially establish an SRS, 
followed by effective response to any signals 
detected [209]. The recent availability of 
funding from the Global Alliance for Vaccines 
and Immunizations (GAVI) for these pur
poses in eligible LMICs should hopefully turn 
the tide [432].
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Medical devices save lives, prevent disease, 
improve health, and help patients live produc
tive lives. The last decade has seen an explosion 
in medical device technologies worldwide. It has 
been recently estimated that the global medical 
device market exceeded $389 billion in 2017 [1].

Groundbreaking innovations in the areas of 
transcatheter interventions, nanotechnology, 
telemedicine, robotic procedures, sophisticated 
health information technology software, and 
smart applications continue to offer new diag
nostic and therapeutic options to patients and 
clinicians. Recent approval of the first medical 
device that uses artificial intelligence to aid in 
diagnosis of retinopathy is a good example of 
the dynamic landscape where software as a 
medical device will play a more prominent role 
in the delivery of healthcare [2].

From the public health perspective, the availa
bility of diverse health technologies demands 
both the capacity and commitment to develop
ment of new methodologic approaches for 
 evidence generation, appraisal, and synthesis. 
Medical device epidemiology is well suited not 
only to studying the extent of utilization of 
 medical devices, but also to studying utilization 

patterns and quantifying risk/benefit for certain 
outcomes in defined populations. Furthermore, 
an attractive feature of modern device epidemiol
ogy is the implementation of techniques to 
integrate information available from the growing 
body of heterogeneous data. Operating at the 
intersection of scientific knowledge and health
care, it is the practice of epidemiology that ensures 
consistently reliable approaches to combine and 
update information in order to maximize quality, 
minimize bias, and reduce uncertainty in under
standing the risks and  benefits of new devices.

 What Is a Medical Device and 
How Is It Different from a Drug?

The definition of a medical device varies some
what by country (Table 21.1). The US govern
ment defines a medical device as:

an instrument, apparatus, implement, machine, 
contrivance, implant, in vitro reagent or other 
similar or related article, including any compo
nent part or accessory which is: (1) recognized 
in the official National Formulary, or United 
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States Pharmacopeia or any supplement of 
them; (2) intended for use in the diagnosis of 
disease or other conditions or in the cure, miti
gation, treatment or prevention of disease in 
men or other animals; or (3) intended to affect 
the structure or any function of the body of 
man or other animals, and which does not 
achieve its primary intended purposes through 
chemical action within or on the body of man 
or other animals and which is not dependent 
upon being metabolized for the achievement of 
any of its principal intended purposes. [3]

Definitions used in the European Union (EU), 
Canada, Australia, and Japan are slightly differ
ent (Table 21.1) [3–9].

There is a long history of international har
monization efforts in the regulation of devices. 
The Global Harmonization Task Force (GHTF), 
formed in 1992 in an effort to respond to the 
growing need for international harmonization 
in the regulation of medical devices, produced a 
harmonized definition of a medical device [9]. 
To build on the strong foundation of the GHTF, 
the International Medical Device Regulators 
Forum (IMDRF) emerged in 2011 as a driver of 
harmonization and convergence efforts among 
regulatory authorities on medical devices [10]. 
This voluntary organization brings together 
regulators from Australia, the EU, Canada, 
the  US, Singapore, China, Japan, and Brazil. 
The  IMDRF has made major steps toward a 

Table 21.1 International definitions of medical device.

Country Definition of Medical Device

United States An instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent or other 
similar or related article, including any component part or accessory which is:
1) recognized in the official National Formulary, or United States Pharmacopeia or any 

supplement of them;
2) intended for use in the diagnosis of disease or other conditions or in the cure, mitigation, 

treatment or prevention of disease in men or other animals, or,
3) intended to affect the structure or any function of the body of man or other animals, and 

which does not achieve its primary intended purposes through chemical action within or 
on the body of man or other animals and which is not dependent upon being metabolized 
for the achievement of any of its principal intended purposes.

European Union “Medical Device” means any instrument, apparatus, appliance, material or other article, 
whether used alone or in combination, including the software necessary for its proper 
application intended by the manufacturer to be used for human beings for the purpose of:

 ● diagnosis, prevention, monitoring, treatment or alleviation of disease,
 ● diagnosis, monitoring, treatment, alleviation of or compensation for an injury or 

handicap, investigation, replacement or modification of the anatomy or of a physiological 
process, control of conception, and which does not achieve its principal intended action 
in or on the human body by pharmacologic, immunologic or metabolic means, but which 
may be assisted in its function by such means.

“Accessory” means an article which whilst not being a device is intended specifically by its 
manufacturer to be used together with a device to enable it to be used in accordance with the 
use of the device intended by the manufacturer of the device.

“Device used for in vitro diagnosis” means any device which is a reagent, reagent product, kit, 
instrument, equipment or system, whether used alone or in combination, intended by the 
manufacturer to be used in vitro for the examination of samples derived from the human body 
with a view to providing information on the physiological state, state of health or disease, or 
congenital abnormality thereof.

(Continued )
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convergence of activities in the area of adverse 
event reporting, patient registries, software as a 
medical device, and the implementation of 
Unique Device Identification (UDI), among 
other efforts [11,12].

While there are similarities among countries 
regarding medical device definitions and classi
fications, the differences exist in the rigor 
required for device approval. For example, 
before a medical device is allowed to enter the 
US market, a reasonable assurance of its 
safety  and effectiveness must be established. 
Operationally, this goal is accomplished through 
the US Food and Drug Administration’s (FDA) 
use of regulatory controls and the classification 
process. Based on the varying levels of potential 
benefit and risk, devices are classified into 
one of three regulatory classes. Class I devices 

(e.g.,  elastic bandages, surgical gloves, manual 
surgical instruments) are subject to general con
trols such as labeling and good manufacturing 
processes. These devices present minimal 
potential for harm to the patient and require 
neither clinical testing nor special controls to 
establish a reasonable assurance of safety and 
effectiveness. Class II devices by definition are 
higher risk (e.g., infusion pumps, diagnostic 
ultrasound machines) and are subject not only 
to general controls, but also to special controls 
such as guidance and standards. Certain of 
these devices may require additional clinical 
testing as well. Medical devices with the highest 
level of risk (e.g., implantable deep brain stimu
lators, coronary stents, and hip resurfacing 
 systems) are categorized as class III and receive 
the highest level of scrutiny for regulatory 

Table 21.1 (Continued)

Country Definition of Medical Device

Canada Any article, instrument, apparatus, or contrivance, including a component, part or accessory 
thereof, manufactured, sold or represented for use in
a) the diagnosis, treatment, mitigation or prevention of a disease, disorder or abnormal 

physical state, or its symptoms, in human beings or animals,
b) restoring, correcting or modifying a body function or the body structure of human beings 

or animals,
c) the diagnosis of pregnancy in human beings or animals, or
d) the care of human beings or animals during pregnancy and at and after birth of the 

offspring, and includes a contraceptive device but does not include a drug.
Australia Any instrument, apparatus, appliance, material or other article (whether used alone or in 

combination, and including the software necessary for its proper application) intended by the 
person under whose name it is to be supplied, to be used for human beings for the purposes of 
one or more of the following:

 ● diagnosis, prevention, monitoring, treatment or alleviation of disease,
 ● diagnosis, monitoring, treatment, alleviation of or compensation for an injury or handicap,
 ● investigation, replacement or modification of the anatomy or of a physiological process,
 ● control of conception,

and does not achieve its principal intended action in or on the human body by pharmacologic, 
immunologic or metabolic means, but which may be assisted in its function by such means; or 
an accessory to such an instrument, apparatus, appliance, material or other article.

Japan Instruments and apparatus which are intended for use in the diagnosis, cure or prevention of 
diseases in man or animals, or intended to affect the structure or any function of the body of 
man or other animals, and which are designated by Cabinet Order.
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approval. In addition to general and special con
trols, these devices require submission of clinical 
data in support of premarket submissions. In 
addition, the effectiveness and safety of these 
devices need to be determined based on valid sci
entific evidence, defined as “evidence from well 
controlled investigations, partially controlled 
studies, studies and objective trials without 
matched controls, well documented case histo
ries, by qualified experts, and reports of signifi
cant human experience from a marketed device. 
More recent regulatory initiatives introduced a 
number of new opportunities for shifting scien
tific evidence generation to the postmarket 
 setting and leveraging real‐world evidence for 
regulatory decision‐making” [13–16].

Other countries have similar classifications. In 
Canada, devices of classes III and IV are subject 
to in‐depth regulatory evaluation, while class II 
devices require only the manufacturer’s declara
tion of device safety and effectiveness, and class 
I devices are exempted from premarket submis
sion. In the EU, manufacturers of devices of 
classes II and III, as well as devices of class I with 
either a measuring function or sterility require
ments, must submit to the regulator (competent 
authority) (i) a Declaration of Conformity to the 
appropriate European Commission (EC) 
Directives, and (ii) details of the conformity 
assessment procedure followed. In addition, for 
higher‐risk class devices that require design 
examination or type examination, the corre
sponding EC Certificates issued by a notified 
body must also be submitted to the competent 
authority [17]. In Australia, the risk‐based evalu
ation system also requires that all “registrable” 
devices must undergo rigorous premarket evalu
ation before market entry; “listable” devices are 
less rigorously regulated, but may be evaluated 
for safety (not efficacy) if there are regulatory 
concerns about the risk profile of the product. 
Registrable products include prescription and 
nonprescription medicines and implantable 
medical devices (e.g., active implantables and 
devices of animal origin), while listable goods 

include vitamins, minerals, herbal medicines, 
sunscreens, and most medical devices [18]. In 
Japan, all devices above class II must obtain a 
central government license for market entry.

Many countries are in the process of imple
menting new regulatory requirements to 
strengthen regulatory evidence, while relying 
more on the data generated by patient registries 
and other real‐world data sources. The com
mon regulatory theme underpinning classifica
tion and requirements across regions and 
countries is the level of risk, despite the differ
ences in how the risk is defined.

In this chapter, we concentrate on implanta
ble devices (US classes II and III) because of 
their significant public health impact, high risk 
for adverse events, and uncertainties surround
ing the effects of long‐term exposure.

Implantable medical devices comprise an 
important device category in the very heteroge
neous world of medical devices. As is true of 
other devices, implantables share characteris
tics that distinguish them not only from other 
devices, but also from regulated drugs. 
Table 21.2 highlights the characteristics that are 
further distinguished between medical devices 
or drugs in general.

Implantable devices, most of which are in 
class III (highest risk), can be further differenti
ated. This device category in general has longer 
product life cycles, although incremental 
changes do occur. Implantable devices may 
comprise multiple components (such as a total 
hip implant) or single components (such as a 
pacemaker lead). Exposures to such devices are 
typically chronic (an exception being temporary 
implantables, such as inferior vena cava filters), 
with the onset of exposure clearly defined at the 
time of implantation. Exposure ends at the time 
of device removal, but may not be clear cut if 
part of the device remains (e.g., in case of sili
cone leakage from ruptured breast implants, or 
components that are absorbed over time such as 
with biologically based dermal fillers or barrier 
adhesion devices).
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Table 21.2 Characteristics of medical devices as compared to drugs (US regulations).

Characteristic

Characteristics of medical devices as compared to drugs

Device Drug

Product life cycles Short to long Short
Incremental changes Common Rare
Equivalence Technological

(class I and II)
Therapeutic
(for generics)

Clinical trials required n = 1 (class III, some II) n = 2 (NDAs)
Trial reimbursement Frequent Rare
Orphan designation 4000 200 000
Assuring manufacturing quality ISO 9000 Good Manufacturing Practices

(cGMP)
Required postmarket studies Postapproval studies

Section 522 studies
Phase IV studies

Product identification Product codes
Unique Device Identifiers

NDCs

Components/ingredients Single or multiple
(may change over time)

Single or multiple

Exposures Acute, chronic, intermittent,
episodic

Similar

Stopping exposure Simple to complex Typically, simple
User interface Patient or clinician Typically, patient
Users of same product Single or multiple Single
How used Single use/disposable,

reusable, implantable, durable
Typically, multiple use

Product effects Typically localized
Acute or chronic

Systemic,
Typically, acute

Product hazards Human factors Less prominent
Noncompliance Same
Interactions More prominent
Malfunctions (manufacturing) Drug quality problems
Environmental hazards Same
Toxic/allergic More prominent
Packaging defects Same
Software glitches
Poor maintenance

NDA, New Drug Application; NDC, National Drug Code.
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Outcomes associated with implantable 
devices are affected not only by underlying 
patient factors and device factors (such as 
 biomaterials), but also, importantly, by user 
interface (e.g., operator technique, operator 
experience). Adverse effects of implantable 
devices are typically localized, but may be more 
systemic (e.g., secondary to toxic, inflammatory, 
allergic, autoimmune effects). Additional haz
ards may be related to human factors (e.g., 
proper programming of pacemakers) and inter
actions (e.g., magnetic resonance imaging [MRI] 
interaction with deep brain stimulator leads). 
Lastly, malfunctions may derive from several 
sources, including manufacturing problems, 
design‐induced errors, and anatomic or engi
neering effects (e.g., repetitive flexing of an 
implantable cardioverter defibrillator lead 
 causing fracture).

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

Diffusion to Clinical Practice and Utilization

The introduction and adoption of new medical 
devices may induce a breakthrough transforma
tion of clinical practice [19]. The rate of diffu
sion of medical device technology to clinical 
practice is influenced by many factors, includ
ing device complexity, relative advantage when 
compared with similar available treatments, 
positions of opinion‐leading organizations, 
healthcare reimbursement decisions, commer
cial competition, evidence‐based guidelines, 
publication of key research papers, regulatory 
actions, medical liability issues, and legislative 
environment [20]. Accordingly, the adoption of 
different new devices and their dissemination 
into routine clinical practice often follow differ
ent and  sometimes unpredictable patterns. 
These diffusion pathways may contribute con
siderably to  variations in patient outcomes and 

may have a prominent impact on the frequency 
of adverse events seen in the usual healthcare 
settings, when compared to patient experience 
in premarket clinical trials. An epidemiologic 
assessment of factors that can potentially influ
ence the adoption of new technology can inform 
regulatory science (both premarket and post
market), help in the development of clinical 
guidelines and policies, and can significantly 
shape national reimbursement strategies [21].

Evaluating Device Performance 
in the Real World

When traditional randomized clinical trials 
(RCTs) for new devices are planned, elite inves
tigators are often selected to participate. For 
example, in RCTs of devices used in surgery, the 
operators are typically early adopters, highly 
skilled, and quick learners, which influences the 
learning curve. The learning curve can be 
defined as a constant proportional improve
ment in performance, such as clinical outcomes 
of medical procedure, with each doubling of 
cumulative experience [22]. The rate of learning 
(the shape of the learning curve) and the inter
action with other variables for an average sur
geon are very difficult to gauge from RCTs, 
which include only a small number of selected 
surgeons. It is only once the approved device 
enters clinical practice where observational data 
are collected on patient outcomes for a wide 
range of surgeons and hospitals that it is possi
ble to estimate the effect of the learning curve 
on patient outcomes.

The operator’s learning curve can be steep, 
protracted, or anywhere in between, and can 
have a substantial impact on patient out
comes. Traditionally, the learning curve is 
studied using the volume–outcome relation
ship. Some volume–outcome studies have 
demonstrated that increased surgical volume 
has an inverse relationship with the likelihood 
of poor outcomes such as complications, revi
sion surgery, length of stay, and mortality 
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[23–25]. Other studies have shown a vol
ume  threshold for procedures, above which 
increasing volume is no longer associated 
with improved outcomes [26,27].

Lastly, other researchers have noted a tri‐
modal institutional learning curve: rapid initial 
phase, followed by declining success, represent
ing new adopters, and then recovery to an 
improved steady state [28]. These observations 
indicate three distinct components of the 
 volume–outcome relationship that can be stud
ied: (i) lifetime experience (operator’s volume); 
(ii) operator’s annual volume; and (iii) hospital 
volume where operators practice. Other factors 
beyond volume that relate to the learning curve, 
including the type of procedure (e.g., diagnostic 
vs. interventional) and practice setting (e.g., 
institutional teaching status), are also readily 
available in many observational databases and 
can be studied. Adequate study of learning 
curves can establish thresholds for proficiency 
based on background expertise related to physi
cians’ specialties [29]. This has been the case 
with the stenting of carotid arteries by operators 
from varying specialties (e.g., radiologists, car
diologists, and neurosurgeons).

By the nature of their design, RCTs involve 
select, nonrepresentative patient populations. 
A number of studies have highlighted the dis
parities in disease prevalence, progression, and 
health outcomes of medical device technology 
in subgroups of the population [30,31]. 
Premarket medical device trials often lack suf
ficient representation of important patient 
 populations (women, children, the elderly, 
racial and ethnic minorities, and others), which 
hampers the application of the results to real‐
world populations. Well‐designed observa
tional studies can provide more information on 
device performance in the subpopulations of 
interest in a real‐world setting. The public 
health utility of observational studies has been 
increasing, with advances in medical device 
data capture in medical records, electronic 
databases, and prospective registries, and the 

development of innovative analytic tools using 
observational data [32,33].

The recent increase in US interest in com
parative effectiveness, facilitated by the 
American Recovery and Reinvestment Act of 
2009 and subsequent healthcare reform legis
lation [34], has begun focusing the national 
attention on building methods and infrastruc
ture for emerging comparative effectiveness 
research (CER; see Chapter  26). CER, as 
defined by the US Institute of Medicine (IOM), 
is “generation and synthesis of evidence that 
compare the benefits and harms of alternative 
methods to prevent, diagnose, treat and moni
tor or improve the delivery of care” to “assist 
consumers, clinicians, purchasers and policy 
makers to make informed decisions that will 
improve health care at both the individual and 
population levels.” CER is vital for the improve
ment of healthcare quality, better regulatory 
decisions, and thoughtful guidelines for clini
cians and patients [35].

In recent years, several other countries have 
established agencies to evaluate health tech
nologies and inform healthcare policy deci
sions [36]. These organizations are different in 
terms of structures, methods, and processes, 
but in all of them CER is an effort that aims to 
address the needs of payers, patients, clinical 
professionals, and policymakers. Rapid growth 
of new medical devices, modifications of exist
ing models, and dramatically shorter device life 
cycles will continue to create demands for 
dynamic and up‐to‐date comparative effective
ness and safety efforts [37,38]. Epidemiologic 
research will play a prominent role in medical 
device evidence synthesis in the context of 
health technology evaluation

Long‐Term Safety and Effectiveness

Device premarket clinical trials are typically of 
short duration (e.g., 1–2 years) and generate 
limited information on long‐term safety and 
effectiveness. Due to the inherent complexity of 
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implantable devices, it is often difficult to pre
dict fully their long‐term safety and effective
ness based solely on preclinical testing and 
premarket clinical trials. The FDA’s postmarket 
attention is therefore increasingly directed 
toward ensuring that studies/surveillance of 
sufficient size and length of follow‐up are con
ducted in the postmarket setting to better illus
trate and assess problems occurring long term 
[39]. Other countries have established national 
registries of procedures involving implanted 
medical devices that collect long‐term patient 
outcomes and device performance (e.g., 
 orthopedic registries in Sweden, the UK, Australia, 
Canada, and other countries) [40–43]. During the 
past decades the US has also seen a growth in 
national registries (e.g., National Cardiovascular 
Data Registry, Kaiser Permanente National Joint 
Replacement Registry (NJRR), American Joint 
Replacement Registry (AJRR), and National Breast 
Implant Registry (NBIR) [44].

 Methodologic Problems to 
Be Addressed by 
Pharmacoepidemiologic 
Research

Evidence generation for implantable medical 
devices requires accounting for unique issues 
that typically do not arise when evaluating the 
benefits and risks of drugs. Key issues arise 
from the interaction of device, operator, and 
the setting (e.g., hospital, outpatient clinic) in 
which the device is being used. Furthermore, 
the device’s design, complexity, and specific 
biomaterial and mechanical characteristics can 
be as important to outcomes as the device’s 
clinical applications, such as the type of the 
lesion being treated, the severity of the disease, 
and concomitant therapy. In the commonly 
used device epidemiologic research databases, 
these details are often only partially available, 
and sometimes are missing.

Challenges in Individual Patient 
Exposure Assessment

The UDI captures critical device information, 
such as manufacturer name, brand, version or 
model, and device group terms. The UDI system 
has only recently been established, and the UDI 
is now entering data systems within the US, 
unlike pharmaceuticals, where the National 
Drug Code (NDC) Directory has a long history 
and is broadly used. Consequently, many data
bases still lack specific device identifiers, making 
exposure assessments challenging. For example, 
procedure codes may capture device groups 
(such as hip implants), but lack specificity to the 
manufacturer level. Characterization of the 
sensitivity and specificity of device identifiers 
found in medical records, clinical registries, or 
insurance claims databases will be important to 
understand errors in device exposure. Promoting 
routine documentation of UDIs in medical 
records and in other health databases will 
 contribute to a better understanding of device‐
specific performance [45].

Another challenge associated with medical 
device epidemiology relates to device complex
ity: devices are frequently approved or used as 
systems involving several components. Device 
components are often used in combination with 
components of the same or different brands. 
Thus, experience with capturing complete 
device exposure information is far more com
plex for devices than it is for drugs. Once com
pletely adopted, such a robust, widely 
incorporated medical device nomenclature will 
significantly further safety surveillance and 
 epidemiologic studies of medical devices [46].

Challenges in National Population 
Exposure Assessment

Incident and prevalent exposure data provide 
the necessary context for interpretation of the 
possible relationship between device exposure 
and outcome. Therefore, strategies to develop 
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the necessary infrastructure, methodologies, 
and partnerships will have to include incorpora
tion of UDIs into data systems, including 
 electronic health records, and routine docu
mentation of device use and patient problems 
associated with that use. Since 2010, under its 
Medical Device Epidemiology Network 
(MDEpiNet) Initiative, the FDA has worked 
with its partners to launch a series of strategic 
demonstration projects designed to advance 
and test‐drive novel approaches to methods and 
infrastructure development. To build on this 
foundational work, in 2012 the FDA launched a 
strategy to work with all stakeholders to develop 
a national system for evaluation of medical 
devices [26–28], leading to the establishment of 
the National Evaluation System for health 
Technology (NEST) Coordinating Center and 
partnering organizations [47].

Currently, in a less‐than‐ideal national sur
veillance environment, population exposure 
data for medical devices have to be derived from 
a variety of sources including, among others, 
medical billing claims data, registries, national 
surveys, nationally representative samples of 
providers, and market data. In addition, these 
sources differ in their level of device specificity 
(e.g., by device group in claims data compared 
to specific brand in registries). While these 
sources differ in the level of completeness and 
reliability, they may complement each other.

Challenges in Comparative Studies

Epidemiologic population‐based research relies 
on nonexperimental (or observational) 
approaches to develop evidence about the safety 
and effectiveness of medical products. While 
there is a recognition of the limitations related 
to observational data as compared to RCTs [48], 
we also need to recognize two facts. First, trial 
design characteristics such as randomization, 
allocation concealment, and masking/blinding, 
which are recognized as critical characteristics 
of high‐quality studies, are often difficult to 

adopt in device trials. Second, observational 
data frequently complement experimental data 
rather than replace them. In addition, observa
tional data derived from routine clinical practice 
are required to determine if the device can be 
successfully deployed or implanted (learning 
curve issues) outside of centers and subjects who 
participate in clinical trials, to quantify risks of 
adverse events in larger populations, and to 
assess any modifications to the product. These 
features are very real issues that affect the safety 
and effectiveness of medical devices, but are 
only partially applicable to pharmaceuticals.

Ensuring Comparability of Study Groups

Cohort designs offer the opportunity to create 
comparable groups of patients exposed to 
devices of interest. These observational studies 
should take advantage of statistical adjustments 
for known and measured confounders, rely on 
models with few parametric assumptions, and 
employ methods that demonstrate robustness 
of findings to deviations from assumptions [4]. 
For example [49], the “no unmeasured con
founder” assumption underlies most epidemio
logic studies, and methods are available to 
characterize the impact of residual confounding 
(see also Chapter  43). Prospective data collec
tion can minimize the risk of unmeasured con
founders through a priori determination and 
collection of such factors. Consecutive patient 
enrollment provides critical information to 
inform operator learning behaviors.

We have good tools to address unequal distri
bution in observed patient characteristics 
( confounders) that is not severely confounded 
by indication (see Chapter  43). Most of the 
adjustment techniques deal with imbalances in 
confounding factors between the study groups. 
In addition to addressing known imbalances, 
one can also theoretically remove the bias 
related to unobserved prognostic factors if the 
unobserved factors are highly correlated with 
the measured prognostic factors [50]. Of course, 
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this is an assumption which cannot be tested, but 
the size of the unmeasured confounders required 
to change the results can be quantified and 
reported. Additionally, including a “falsification 
outcome” may help diagnose residual confound
ing. For example, implantation of a coronary 
stent should not reduce in‐hospital mortality.

Several analytic methods are available to deal 
with selection factors and confounding. These 
methods involve stratification, regression models, 
or a combination of the two using a propensity 
score [51,52]. Each approach relies on a set of 
assumptions, which may or may not be appropri
ate in the particular setting. When it is felt that 
there is unmeasured confounding present beyond 
that accounted for in the collected information, 
another potential approach is using instrumental 
variable‐based methods, if a valid instrument can 
be found (see Chapter 43) [53–55].

Addressing Issues of Sample Size, 
Real‐World Performance, and 
Long‐Term Outcomes

As mentioned previously, premarket clinical tri
als are powered first and foremost for efficacy 
outcomes. Powering these trials based on less 
common or rare but serious side effects is not 
feasible in most instances (see Chapter 4). As is 
true for drugs, clinical trials of devices, because 
of small sample size and participant selection, 
often lack generalizability, defined as the exten
sion of research findings and conclusions from a 
study conducted on a target population to the 
population at large.

Systematic reviews with meta‐analyses (see 
Chapter  36) are observational studies that 
attempt to capitalize on the detailed data collec
tion within the studies that are the subject of the 
review. Systematic reviews are one mechanism 
to address the small study problems of clinical 
trials. Systematic reviews with meta‐analysis are 
based on the premise that most of the individual 
clinical trials of devices and surgery carefully 
record relevant clinical outcomes and offer a 

great opportunity to conduct evidence appraisal 
and synthesis when a reasonable number of 
studies are available.

Well‐designed cohort studies are often large 
and involve consecutive patient enrollment and 
data collection that is comprehensive. They are 
the best‐suited tools to evaluate the safety and 
effectiveness of devices in the real‐world popu
lations and are based on solid scientific knowl
edge accumulated about the devices.

With the explosion of electronic data acquisi
tion and exchange technologies, computing 
resources, and linkability across data sources, 
newer statistical methods that exploit high‐
dimensional data (e.g., the number of features 
can exceed the number of observations) provide 
more opportunities for medical device epidemi
ology researchers. With higher‐dimensional 
data, additional assumptions are required to 
prevent overfitting or to ensure that a unique 
solution exists. These additional assumptions 
are implemented using “regularization meth
ods” that effectively penalize the inclusion of 
many predictors. One group of regularization 
methods assumes sparseness, that a small num
ber of variables represent the underlying data 
structure. Approaches such as LASSO (least 
absolute shrinkage and selection operator) [56], 
sparse additive models [57], or sparse prior 
 distributions for regression coefficients are 
examples in this group. For instance, a weakly 
informative default prior distribution for regres
sion coefficients that centers the coefficients at 
zero but permits nonzero coefficients through 
the use of heavy tails falls into this category [58]. 
Another group of methods combines a large 
number of models in order to obtain a stronger 
model by averaging across models. Bagging 
(e.g., random forests), boosting, and stacking 
(e.g., Super Learner) [59,60] are algorithms that 
fall into this category. The intuition for these 
methods exploits the belief that more than one 
model may “fit” the data, so that averaging 
across multiple models may lead to better con
clusions. With large observational studies, one 
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can evaluate relevant subgroup effects as well as 
rare safety and effectiveness endpoints that can
not be captured by RCTs.

 Currently Available Solutions

Passive Surveillance

Once a device has received marketing approval, 
manufacturers must follow Good Manufacturing 
Practices and monitor the safety of their prod
ucts, including keeping a complaint file and for
warding reports of adverse events to the 
regulatory authorities. For example, in the US 
manufacturers are required to submit reports 
of  device‐related deaths, serious injuries, 
and malfunctions to the FDA. Healthcare pro
viders and consumers submit reports voluntar
ily through MedWatch [61]. These reports, 
obtained through passive surveillance (see also 
Chapter  10), are housed in the Manufacturer 
and User Facility Device Experience (MAUDE) 
database, established in 1996. As of May 2018, 
MAUDE contained more than 6 million reports 
and received approximately 80 000–110 000 
reports per month. The vast majority of reports 
are from manufacturers, with a small percent
age from user facilities, voluntary sources, and 
importers [62].

Regulatory agencies, including those partici
pating in IMDRF, have the authority to monitor 
the safety of devices by reviewing adverse event 
reports from users, sponsors, other available 
data sources, and the scientific literature [9]. In 
assessing these reports, in addition to specific 
patient characteristics, regulatory bodies con
sider the following factors: failure potential 
resulting from design or manufacturing prob
lems; use error potential from improper device 
assembly, misreading instructions, or improper 
surgical technique; incorrect clinical use; and 
inadequate instructions for use. Possible packag
ing errors, support system failure, adverse envi
ronmental factors, maintenance error, adverse 

device interactions such as electromagnetic 
interference, or toxic/idiosyncratic reactions are 
also considered [63]. Some manufacturers con
duct failure analyses on retained or returned 
products (including implantables) in the event of 
a reported device problem.

To enhance the usefulness of reported data, 
statistical tools are used to assist in detecting 
new signals [64,65] (see Chapter  27). Bayesian 
and other data‐mining methods are used to esti
mate the relative frequency of specific adverse 
event–device combinations, as compared to the 
frequency of the event with all other devices 
(in  the same group) in the database. To aid in 
this effort, and reporting and signal detection in 
general, an extensive hierarchical vocabulary for 
adverse device outcomes (e.g., high impedance 
in pacemakers) also has been developed [66].

Passive reporting systems have noticeable 
weaknesses, including (i) data may be incomplete 
or inaccurate and are typically not independently 
verified; (ii) data may reflect reporting biases 
driven by event severity or uniqueness or public
ity and litigation; (iii) causality cannot be inferred 
from any individual report (see Chapter 29); and 
(iv) events are generally underreported and this, 
in combination with a lack of denominator 
(exposure) data, precludes the determination of 
event incidence or prevalence. The latter point is 
particularly important for implantable devices, 
since reports may capture device‐associated 
events (such as thrombosis, infection, stroke, 
revision, or replacement) for which estimation of 
incidence is of paramount importance.

Enhanced Surveillance

To enhance the understanding of clinical issues 
for medical devices, the Medical Product Safety 
Network (MedSun) was established to provide 
national medical device surveillance based on a 
subset of user facilities in the US [67,68]. 
MedSun currently includes approximately 350 
hospitals nationwide. Through its ongoing bidi
rectional interactions, including educational 
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fora, problem‐solving and posting of reports, 
and targeted surveys, this enhanced surveil
lance network provides more timely amplifica
tion of potential safety signals.

Reports received through passive and 
enhanced systems have resulted in significant 
public health notifications, including those 
related to injuries (i) from transvaginal place
ment of surgical mesh [69]; (ii) associated with 
use of recombinant bone morphogenetic protein 
in cervical spine fusion [70]; and (iii) from MRI‐
induced interactions in patients with implanted 
neurologic stimulators [71]. Reports received 
have also spurred the development of significant 
observational studies elucidating risk factors for 
meningitis associated with cochlear implants 
[72], and hemorrhagic complications associated 
with the use of hemostasis devices, including 
one high‐risk device [73,74].

Signal Detection/Outlier 
Identification Using a Variety of Data 
Sources and Methods

Cumulative Sum of Outcomes (CUSUM) 
Methodology
CUSUM is a sequential statistical analysis 
method with graphic application that allows 
online identification of changing rates of device 
failure or surgical complications. For example, a 
likelihood‐based scoring method of calculation 
of CUSUM is used by the Scottish Orthopedic 
registry, described as part of the International 
Consortium of Orthopedics (ICOR) series [75]. 
Outlier device/surgeon status is identified at a 
point set in advance and is named the predic
tion limit. Setting the statistical thresholds at 
agreed levels helps balance the risk of failure 
against that of false alerts. Setting a prediction 
limit is not an exact science, and changing the 
statistical criteria will change outlier identifica
tion. Hence, the results should be interpreted as 
a potential signal that does not yet mean a 
poorly performing implant or device in general. 
One of the advantages of the CUSUM method is 

the ability to track both surgeons and the intro
duction of the new device to evaluate the 
 surgeon/surgical team/device “combination.” 
For example, CUSUM allows tracking of out
comes of high‐volume surgeons with changes in 
practice over time, and determination of peri
ods of outlier performance that were linked 
with the introduction of new implants [76].

Cumulative Revision Rate over Time
Depicting an unadjusted cumulative revision 
rate over time after implantation of the device is 
a simple but powerful technique allowing iden
tification of outlier implants when compared to 
the overall or group average. The method also 
allows calculation of accompanying 95% confi
dence intervals using various methods. For 
example, the Australian orthopedic registry 
process identified the ASR artificial hip as an 
outlier device using this method followed by 
Cox proportional‐hazards modeling to calcu
late the hazard ratios and adjust for age and sex, 
in order to conduct a comparative analysis of 
revision rate between groups [77].

Funnel Plots
Another graphic approach is funnel plots, which 
are based on the application of Shewhart charts 
in medicine [78]. Through the use of funnel plots 
such as that shown in Figure 21.1, it is  possible to 
compare the observed events (e.g., specific 
device failure) against the national average 
within the population [79]. For instance, devices 
falling above the 95% or 99.8% control limits (set 
in advance) for risk are deemed outliers. For var
ious true event rates around the gold‐standard 
rate, the funnel plot shows which devices can be 
called outliers. Like several other methods, this 
approach is heavily dependent on assumptions 
about equivalent underlying risk. If there is het
erogeneity in the underlying risk (as might occur 
with differing standards of care across sites, 
 differing expertise of operators, or differing dis
ease progression among patients between sites), 
then departures outside the  limits may be more 
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reflective of issues with the assumptions broadly, 
than with issues in the performance of those 
points outside the limits [12].

Automated Surveillance
In‐hospital safety signals (such as myocardial 
infarction) for recently introduced interven
tional cardiovascular devices (such as drug‐
eluting coronary stents) are possible to explore 
using an automated computerized safety sur
veillance system, DELTA (Data Extraction and 
Longitudinal Trend Analysis), which was 
designed to support flexible safety surveillance 
applicable to a broad range of medical devices 
[80,81]. The system is compatible with a broad 
array of potential data sources and supports a 
variety of statistical methods, allowing for both 
unadjusted and risk‐adjusted safety monitoring 
for prospective and retrospective analyses.

Data Linkages for Long‐Term 
Follow‐Up

Linking registry data to other data sources is 
often necessary to capture longitudinal data 
[82] and yield an enriched data source for regu
latory purposes, clinical decision‐making, and 
reimbursement purposes. In addition, linkage is 

often used for validation processes of patient 
registries. Complementary data may include 
but are not limited to other registries, national 
death records, electronic medical records, or 
longitudinal administrative medical claims/dis
charge databases.

There are two broad methods of data linkage:

 ● Deterministic (direct). Deterministic linkage 
algorithms aim to determine if record pairs 
agree or disagree on the available set of identi
fiers and when there is agreement on a given 
identifier.

 ● Probabilistic (indirect). Probabilistic 
approaches to link large datasets aim to use 
limited identifiers applied methodologically 
in a way that maximizes the probability that a 
data field agrees given that a record pair 
matches, minimizes the probability that a 
data field agrees given that a record pair is 
unmatched, and provides greater precision 
from nonuniformly distributed fields [83]. It 
is a method that enables the combination of 
record information in different datasets to 
form a new linked dataset. The probabilistic 
link uses several identifiers, in combination, 
to identify and evaluate links. Probabilistic 
binding is usually used when a unique identi
fier is not available or is of insufficient quality 
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Figure 21.1 Hypothetical funnel 
plot. In this hypothetical funnel 
plot from the Joint Replacement 
Registry, each circle represents one 
device. The X axis denotes the 
number of devices combined with 
the number of years followed up 
for a particular device tracked by 
the registry. The Y axis represents 
the “true” event rate (unobserved). 
Devices falling above 95% or 99.8% 
control limits (set in advance) for 
risk are deemed outliers. For 
various “true” event rates around 
the gold‐standard rate, the funnel 
plot shows which devices can be 
called outliers.
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(Australian Government, National Statistical 
Service, Data Linking) [12].

Both matching approaches have their strengths 
and their limitations. It is generally recom
mended to evaluate the probability of successful 
matching as a rule, and then employ a combina
tion of deterministic and probabilistic methods 
that optimizes the combination of completeness 
of the population and accuracy of matching [12].

Registries and Strategically 
Coordinated Registry Networks

Patient registries (see also Chapter  16) consti
tute a great infrastructure for conducting large‐
scale medical device studies. A pragmatic and 
adequate medical device registry is defined in 
the International Medical Device Regulators 
Forum (IMDRF) report [11] and the subsequent 
Lancet publications [84] as an

Organized system with a primary aim to 
improve the quality of patient care that con
tinuously collects relevant data, evaluates 
meaningful outcomes and comprehensively 
covers the population defined by exposure to 
particular device(s) at a reasonably generaliz
able scale (e.g. international, national, 
regional, and health system).

One important value that registries add is their 
ability to collect data on large numbers of 
patients and clinical settings and, through link
ages (see earlier discussion), on outcomes over 
time. Device registries have been historically 
designed to address issues related to clinical 
performance and quality improvements in 
healthcare. They have been more recently 
involved in comparative research, assessing 
technology for reimbursement, and monitoring 
postmarket device performance. Depending on 
the questions to be addressed, registries can be 
designed to capture data on exposures and/or 
conditions of interest, type of healthcare service 

delivered (e.g., surgical treatment or diagnostic 
procedure), or outcome of interest (e.g., adverse 
event, disorder, or disease). In the absence of a 
UDI code in many healthcare data sources, the 
added value of registries includes capturing 
brand/model‐specific information crucial for 
signal identification and comparative effective
ness/safety studies. The complexity and scien
tific rigor of a registry can vary from those 
designed to evaluate the quality of healthcare 
delivered, those specifically established to study 
the sustained effectiveness and safety of a spe
cific procedure, and those designed to system
atically collect long‐term data on many different 
types of treatment, including risk factors, clini
cal events, and outcomes in a defined popula
tion. Once the framework of a registry is in place, 
studies with various designs can be performed 
using registry data (cohort, case–cohort, case–
control, cross‐sectional, quasi‐experimental), 
both mandated and discretionary.

To build on the concept put forward in the 
2015 MDEpiNet National Medical Device 
Registry Task Force Report, the medical 
device  ecosystem (including industry, regula
tors, the clinical community, public health agen
cies, and academia) increased efforts to foster 
the development of strategically coordinated 
registry networks (CRNs) as a valuable tool for 
capturing the utilization of devices, identifying 
early signals, and studying the postmarket per
formance of medical technology. The CRN is an 
analytic paradigm with an emphasis on the 
development of strategically partnered elec
tronic health information systems that support 
both the implementation of structured device 
identifiers, core minimum data elements, and 
definitions within registries, and the ability to 
share complementary data across a number of 
information systems [85].

In the past seven years, the MDEpiNet Science 
and Infrastructure Center has implemented 
more than 14 CRNs (see the examples in 
Table  21.3). The existing CRNs are used to 
monitor the performance of high‐risk devices, 



Table 21.3 Selected examples of strategically coordinated registry networks (CRN) in the US and their international registry consortia.

CRN Name – US
Examples of medical 
devices captured

US registry
members

Linkage to other 
data sources

International registry 
consortium

Vascular Implants and 
Interventions Surveillance 
and Outcomes Network 
(VISION)

Carotid artery stents
Abdominal aortic 
aneurysm (AAA)
Peripheral stents

Vascular Quality Initiative
(VQI)

Administrative 
claims data

International Consortium 
of Vascular Registries 
(ICVR)

Orthopedic Devices CRN
(Ortho‐CRN)

Hip and knee 
arthroplasty devices

AJRR – American Joint 
Replacement Registry
Kaiser Permanente 
NJRR – National Joint 
Replacement Registry
MARCQI – Michigan
Arthroplasty Registry 
Collaborative Quality Initiative
Health East Arthroplasty 
Registry
Virginia Arthroplasty Registry
FORCE TJR –
Function and Outcome 
Research for Comparative 
Effectiveness in Total Joint 
Replacement Registry

Administrative 
claims data

International Consortium 
of Orthopedic Registries 
(ICOR)

National Breast Implants 
Registry (NBIR) CRN

Breast Implants 
(silicone, saline)

NBIR – National Breast 
Implants Registry
PROFILE – Registry for Breast 
Implants and Anaplastic Large 
Cell Lymphoma Outcomes, 
Epidemiology and Etiology

Administrative 
claims data

International 
Collaboration of Breast 
Registry Activities 
(ICOBRA)

0004410276.INDD   510 9/16/2019   6:35:54 AM
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such as the transcatheter aortic valve replace
ment (TAVR) device (designed to repair a nar
rowed aortic valve via a transcatheter approach) 
in the national Transcatheter Valve Therapy 
(TVT) registry; endovascular repair devices for 
abdominal aortic aneurism via the VISION initi
ative; and an orthopedic device (OrthoCRN) and 
other devices within their respective CRNs [59].

In other countries, national registries of proce
dures involving implanted medical devices have 
significantly augmented their national surveil
lance efforts [55–58]. Experience from these inter
national registries used for surveillance and 
observational research provided valuable insights 
into the development of CRNs and served as a 
solid platform for building a novel international 
surveillance infrastructure for regulatory evidence 
synthesis (e.g., ICOR and ICVR; see Table 21.3).

Mandated Postmarket Studies

The FDA has a unique statutory authority to 
mandate postmarket studies, either as a condi
tion of approval or “for cause” later in the post
market period. For class III devices, the FDA may 
utilize its premarket approval authority to order 
studies as a condition of approval. A major regu
latory/public health challenge that the FDA is 
facing is to strike an appropriate balance between 
pre‐ and postmarket data collection, such that 
only data essential to premarket clearance/
approval be submitted to ensure reasonable 
safety and effectiveness, while collecting other 
data best suited for collection in the postmarket 
period (such as longitudinal outcomes). 
Appropriate postmarket questions that can be 
answered in a mandated postapproval study 
include long‐term safety and effectiveness, real‐
world experience of the device as it enters broader 
user populations (clinicians and patients), effec
tiveness of training programs and learning curve 
effect, and device performance in certain 
 subgroups of patients not well studied in the pre
market clinical trials. Depending on the nature of 
the postmarket questions, a variety of study 

designs and approaches can be employed. 
Designing  scientifically sound but practical stud
ies and achieving adequate patient and  physician 
recruitment rates through adequate minimiza
tion of loss to follow‐up can be particularly 
 challenging for implantable device studies.

In addition, Section 522 of the US Food and 
Drug Administration Modernization Act 
(FDAMA) and added regulation (21CFR 822) 
allows the FDA to require a postmarket surveil
lance study for class II and III devices (i) that 
are intended to be implanted in the human 
body for longer than a year; (ii) that are life sus
taining or life supporting (and used outside of 
the user facility); (iii) whose failure would rea
sonably be likely to have serious health conse
quences; or (iv) that are anticipated to have 
significant use in the pediatric population. 
Possible study designs vary from detailed 
review of complaint history and the literature, 
nonclinical testing, use of registries, observa
tional study designs, and randomized clinical 
trials [86]. These studies may be ordered at the 
time of device clearance or approval, or “for 
cause” later in the postmarket period.

In a series of FDA public workshops held in 
2012, the FDA unveiled its National Medical 
Device Postmarket Surveillance Plan. In 2014, the 
National Medical Device Postmarket Surveillance 
System Planning Board and the National Medical 
Device Registries Task Force were established to 
guide implementation of this national plan, ulti
mately leading to the establishment of NEST. The 
importance of these efforts is that other sources of 
data, such as national registries, electronic health 
records, and administrative claims data, are 
increasingly being used in the conduct of man
dated studies in lieu of traditional, one‐off studies 
that require de novo data collection.

Administrative Claims Data

Claims and administrative databases have been 
used to evaluate devices and procedures in multi
ple clinical areas (see also Chapter 12). The scope 
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of research ranges from comparative effectiveness 
to longitudinal assessment of safety events. 
Results of these studies provide critical informa
tion and evidence for physicians and patients to 
facilitate informed clinical decision‐making.

Because administrative data often cover a large 
and representative population, studies based on 
these data can provide robust estimates and 
overviews of population trends in device and 
procedure use, although not specific to the 
brand  level. Studies based on national and 
regional databases investigating population use 
of a novel device or surgical technique reflect the 
real‐world adoption of devices after commercial
ization. These trends in device use, often assessed 
with trends in population disease status [87] or 
healthcare costs [88], can provide a comprehen
sive evaluation of the dissemination of new 
 technologies and associated practice or popula
tion disease change. Furthermore, the represent
ativeness and generalizability of administrative 
databases make them good candidates for 
assessing policy‐related changes, such as practice 
change following regulatory activities [89].

Administrative data have also been utilized in 
the comparative effectiveness assessment of 
devices and procedures in surgical care. A vari
ety of new devices and techniques have been 
increasingly adopted in surgical cancer care, 
including minimally invasive and robot‐assisted 
surgeries and other treatment modalities. 
National and regional administrative databases 
and linked databases of administrative data and 
cancer registries are useful data sources for this 
type of research. The scope of these studies 
range from short‐term effectiveness, including 
postoperative complications, length of stay, and 
readmissions, to long‐term safety and effective
ness, such as healthcare costs and patient sur
vival [90]. Apart from the comparison between 
surgical approaches, the comparative effective
ness of cancer surgery and other treatment 
modalities such as radiation therapy [91] and 
stent implantation [92] can also be assessed 
using these databases.

The usefulness of comparative effectiveness 
research utilizing administrative data is not 
limited to cancer surgical care. This type of 
study is useful in assessing real‐world outcomes 
for certain devices. Administrative data can 
provide a unique opportunity to evaluate 
devices such as surgical mesh for pelvic organ 
prolapse [93] and implants used in hystero
scopic sterilization [94].

Some national and regional databases not 
only provide representative cross‐section esti
mates, they also have the ability to follow 
patients up longitudinally and across facilities. 
For these reasons, administrative data can be 
used to study safety patterns of permanently 
implanted devices over the long term [95]. 
Moreover, some administrative bases record 
the  providers that performed the procedures, 
 making it possible to evaluate provider‐level 
(hospital‐level or surgeon‐level) effects on 
patient and device outcomes [96].

The use of administrative databases for epide
miologic research has the strengths of studying 
large numbers of patients with diverse charac
teristics and a wide variety of clinical practices, 
as well as the inclusion of longitudinal data 
from the continuum of clinical care, and a good 
representation of vulnerable populations. All 
these features lead to increased external validity 
(generalizability) [97] (see Part IIIb). The large 
number of diverse patients presents opportuni
ties to study treatment effect heterogeneity and 
to advance methods such as high‐dimensional 
propensity scores and instrumental variables 
(see also Chapter  43). With regard to medical 
devices, the limitations of administrative data
bases include the lack of UDIs, potential inac
curacy of coding of diagnosis, and missing data 
on laterality and type of revision procedure per
formed. The lack of clinical information in the 
administrative billing data can be supplemented 
by linking the billing data to data from registries 
or other clinically rich data from other data 
sources. The FDA has used these data to esti
mate patient characteristics and in‐hospital 
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mortality rates associated with aortic valve 
replacements and pacemaker implantation 
[98,99]. Other researchers have used the data to 
perform studies on artificial hips [100–104].

Methods for Implantable Device 
Outcome Evaluation

A methodologic framework for implantable 
device epidemiology and surveillance involves 
understanding factors affecting the decision to 
implant the device, identifying the comparison 
group(s), and estimating the safety and effec
tiveness of the device compared to the alterna
tive strategies. In the context of the multiple 
clinical issues and methodologic challenges 
noted previously, we believe that a key issue in 
addressing these goals relates to the multiple 
sources of variability that exist with implanta
ble devices. These sources relate to systematic 
and random variations due to the patient, to the 
surgeon/operator and the center, and to the 
device itself.

Sources of Variation
Patient Variation (X)
Measurable patient characteristics may predict 
what type of device is received as well as clinical 
and device outcomes. For instance, in the case 
of total hip replacements [104], it has been 
reported that advanced age, co‐morbidities 
such as heart failure and diabetes, and nonelec
tive admissions were associated with inferior 
patient outcomes. However, advanced age is 
also associated with increased use of metal‐on‐
polyethylene hip systems compared to hip 
 systems constructed from other bearing sur
faces [103]. The primary reason for the device 
implant also drives the clinical endpoints. For 
example, a left‐ventricular assist device could 
be implanted as a “bridge‐to‐transplant” or as 
“destination” therapy. In the former, the implant 
is meant as a relatively short‐term solution, 
whereas for the latter, the implant is meant as a 
permanent therapy.

Surgeon/Operator andaCenter Variation (Z)
Surgeon and surgical center skills may have a 
large impact on the type of hip replacement sur
gery and clinical outcomes. Several features of 
the surgical procedure in which the device is 
implanted vary. For example, orthopedic sur
geons may opt to use tissue‐sparing surgery 
when implanting a total hip replacement sys
tem. This technique, which differs from the 
standard lateral direct Hardinge approach, 
involves smaller incisions and less tissue disrup
tion, which are associated with less pain, 
reduced blood loss, and shorter hospital stays. 
However, complications can increase if the sur
geon is still early in his/her learning curve [105]. 
The surgical volume of the surgeon and of the 
center relate to procedural success. Other 
 features of the surgery can affect the clinical 
success of the procedure. For example, com
puter‐assisted navigation can increase the accu
racy of the positioning of the device.

Device Variation (D)
Several measurable characteristics of devices 
have been shown to be predictive of device use 
and outcome. Returning to hip replacement sys
tems, the type of bearing surface is related to 
revision rates. In particular, hard femoral head 
and hard cups, such as metal‐on‐metal or 
ceramic‐on‐ceramic, result in lower wear rates. 
Additionally, large‐diameter femoral head size 
may result in lower dislocation rates. The pro
cess of implantation fixation to the bone also 
results in variations in clinical outcomes. Hip 
systems can be implanted with bone cement 
that helps position the implant within the bone, 
or the systems may have a porous surface that 
permits bone to grow into its surface.

Understanding the Treatment 
Assignment Mechanism

A key principle of utilizing observational data 
for safety surveillance is to view observational 
studies as approximations to randomized  studies. 
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As such, the first step involves determining how 
devices are “assigned” to patients. In an RCT the 
investigator has control over the assignment, 
whereas in the surveillance setting this mecha
nism must be estimated. A statistical model 
uses baseline patient and surgeon characteris
tics to predict who gets which device. The type 
of statistical model and type of predictors will 
depend on the number of alternative competing 
therapies. For example, if the competing ther
apy is not a device, patient and surgeon charac
teristics must be commonly identified 
predictors. In comparing multiple devices with 
multiple nondevices, treatment and surgeon 
characteristics within each type of treatment 
strategy can vary.

In the case of two different devices, a natural 
choice to model device selection is a logistic 
regression that accounts for surgeon‐specific 
random effects. With more than two devices, 
extensions using multinomial or nested logit 
models can be estimated [106]. In the latter 
case, device characteristics can be included to 
differentiate among devices within a similar 
class. For example, the treatment options may 
include the use of a number of different hard‐
on‐hard total hip replacement systems com
pared to other types of hip replacement systems, 
such as metal‐on‐polyethylene. Center‐specific 
effects can be included through the incorpora
tion of an additional variance component. An 
understanding of the factors associated with 
device use will identify comparable patients in 
terms of measurable characteristics for estimat
ing safety and effectiveness for particular 
cohorts of patients.

Estimating Comparative 
Effectiveness and Safety

Estimation of the treatment assignment algo
rithm provides a numeric score for each patient 
(i.e., the propensity score, or probability of get
ting the particular device versus the alternative 
device), and this may be used to validate 

assumptions required to estimate causal effects. 
These assumptions relate to unmeasured con
founding, positivity of device assignments, and 
additive device effects. The positivity assump
tion [107] asserts that an individual subject is 
eligible to receive all the devices under study. 
For example, if a device comes in different sizes, 
some subjects may never receive a particular 
type of device, as the device is simply too big. In 
this situation, the positivity condition is violated 
and the researcher would need to eliminate the 
subject from the comparison as a causal effect, 
as the subject is not defined or stratified by 
device size. The additive treatment effect 
assumes that the outcome for a subject 
implanted with device A differs by a constant 
amount from the outcome had the subject been 
implanted with device B, and effectively implies 
no treatment modification by patient sub
groups. The definition of a favorable device 
effect if the device effect is not additive requires 
stating the effect in different patient subgroups.

Semi‐parametric estimators, such as match
ing estimators, weighted estimators, or double‐
robust estimators that augment weighted 
estimators with regression estimators [108], can 
then be used to make inferences. Importantly, 
with high‐dimensional data, machine learning 
algorithms modified to adhere to assumptions 
for causal inference can often provide more 
robust conclusions than standard propensity‐
score approaches. For example, targeted maxi
mum likelihood estimation is an approach that 
focuses on estimating a specific parameter 
rather than the entire likelihood and boasts 
many desirable statistical properties [109].

Simultaneously Combining All Available 
Evidence
Assume that rather than a single study, many 
studies involving a device are available. These 
studies may reflect different populations, such as 
registries from different countries or from simi
lar patient populations, or different comparison 
groups. Novel methods involve assembling all 
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the available evidence in order to reduce uncer
tainty about the performance of any particular 
device. To do this requires assuming that 
 particular relationships among the devices exist, 
although uncertainty about the relevance of 
these relationships remains. These uncertainties 
may relate to how the performance characteris
tics of different devices relate to patient out
comes; how devices that have been compared in 
other studies on similar outcomes but not to 
each other are related; and how devices that have 
been compared in other studies on different 
 outcomes but not to each other are related. The 
appendix to this chapter provides details regard
ing how to combine the data.

 The Future

Device Epidemiology and Digital 
Health

The broad scope of digital health includes cate
gories such as mobile health (mHealth), health 
information technology (IT), wearable devices, 
telehealth and telemedicine, and personalized 
medicine. These technologies open new oppor
tunities for patients and consumers to better 
manage and track their health and wellness 
through greater access to information. The 
interface of these devices and healthcare will 
continue to offer new opportunities for medical 
device epidemiology to lead evidence genera
tion, synthesis, and appraisal.

Translational Epidemiology

Epidemiologic data have an enormous potential 
to help guide basic science investigations (e.g., 
guiding the development of biomarkers for detec
tion of patient risks for development of adverse 
responses to implantable devices). In addition, 
when combined with preclinical and other data 
sources (e.g., genetic, explant retrieval), epide
miologic findings could significantly advance 

 evidence generation. In addition, epidemiology 
could leverage preexisting implant‐related data 
from observational data sources, in individuals 
with and without implant‐related adverse out
comes, to improve our understanding of implant 
safety and effectiveness. These types of interdisci
plinary application of epidemiology could lead to 
more effective identification of candidate bio
markers predictive of certain implant‐related 
responses (both local and systemic) in different 
patient subgroups. For instance, in silico 
approaches could combine epidemiologic and 
other data sources to help guide the development 
of biomarkers.

Device Epidemiology and 
Evidence‐Informed Practice and Policy

Medical device epidemiology will continue to 
draw from advances in electronic health records, 
electronic data capture, standard taxonomy, 
global patient identifiers, integrated security, 
and privacy services. Thus, contemporary 
device epidemiology will be able to mobilize the 
advances of translational health research 
 sciences through new methods that combine 
basic science and clinical data, leading to 
 evidence about the choices of best available 
treatment targeted to specific populations. In 
doing so, the epidemiology will have to balance 
the strengths and limitations of systematic 
review, quantitative, interpretive, narrative, 
sequenced, and other synthesis approaches 
within the context of specific public health 
 policy and healthcare settings,

Device Epidemiology and Regulatory Science

MDEpiNet is a global public–private partner
ship that seeks to advance the collection and use 
of real‐world data to improve patient outcomes. 
It brings together stakeholders from across the 
health ecosystem to develop and improve real‐
world data infrastructure, and carry out studies 
to better understand how devices perform in 
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the real world. This international effort is 
uniquely focused on medical devices and it 
comes at a particularly opportune time, when 
many recent developments, ranging from the 
creation and expansion of device registries to 
significant strides toward the universal adop
tion of electronic health records, provide new 
and promising opportunities for the epidemio
logic study of medical devices. The intent is to 
have a comprehensive, up‐to‐date risk–benefit 
profile of specific medical devices at any point 
in their life cycle, so that optimally informed 
decisions can be made and provide more useful 
information to practitioners, patients, and 
industry. Evolution of public–private partner
ships including NEST in the US will drive 
 collaborative knowledge‐sharing between 
members of the ecosystem. Important chal
lenges for MDEpiNet will be to develop and test 
novel methods for the synthesis and systematic 
evaluation of all available evidence relevant to a 
device’s risk–benefit profile, including premar
ket bench, animal, and clinical studies; postmar
ket surveillance studies; and adverse event 
reports to advance regulatory needs.

Device Epidemiology 
and International Infrastructure

The accelerating pace of emerging medical 
technologies worldwide will continue, and the 
information science applications are expected 
to further shape IT‐based healthcare, dealing 
with new demands for storage, transmission, 
management, and analysis of patient data. The 
future global impact of epidemiology on our 
understanding of implantable devices will 
depend on technological and policy solutions 
for international collaboration to achieve con
sistency between global data sources, regula
tions, and methodologic approaches for various 
medical device implant applications.

Collaborative research efforts can particularly 
help to fill a major gap via international consor
tia. Examples of such collaborative effort are 

ICOR [110], ICVR [111], and the International 
Coalition of Breast Registries Associations (I‐
COBRA) [112]. The development of an interna
tional infrastructure creates opportunities for 
novel method developments for epidemiologic 
studies. The methods for harmonization, shar
ing, and combining data are not well developed 
and require innovative approaches. Such inter
national collaborations, coupled with increasing 
regulatory convergence driven by IMDRF, pre
sent an unprecedented opportunity for influ
encing clinical and policy decision‐making, 
with enormous public health implications.

 Appendix: Simultaneously 
Combining All Available 
Evidence

Assume that Ysjkm denotes the mth outcome 
associated with the kth device for the jth group of 
patients within the sth study. A model that 
reflects heterogeneity among the outcomes 
assumes that the expected or average outcome, 
denoted E(Ysjkm), can be modeled linearly using 
a link function g(.), generically as

g E Y
a b c d

sjkm m k mk

s j s k s m s  

where αm = average for mth outcome; βk = effect 
of kth device in the average study and for the 
average outcome; γmk = deviation from the aver
age of device k on outcome m; as = main effect of 
sth study; bj(s) = study‐specific effect of jth group 
within sth study; ck(s) = study‐specific effect of 
treatment k within sth study; and dm(s) = study‐
specific effect of outcome m within the sth study.

The observed outcomes are summaries, e.g., 
the average failure rate, rather than at the 
patient level, although it is a simple modifica
tion to include patient‐level data. The model 
assumes that the observed outcomes are con
nected, in that any observed outcome defined 



References 517

by (s,j,k,m) is related to or “reached” from any 
other outcome defined by (s*,j*,k*,m*). This 
assumption permits borrowing of information 
from like‐devices studies to better estimate 
the  performance of particular devices. 
Heterogeneity among outcomes is permitted 
by assuming that γmk, as, bj(s), ck(s), and dm(s) are 

random effects. Fixed characteristics of the 
device, D, and of the patient groups, X, can be 
easily included in the model. Expected differ
ences in outcomes for one device compared to 
another device averaged over all patient groups 
can be obtained as functions of the parameters 
in the model.
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For ethical and other reasons, pregnant women 
and children have traditionally been excluded 
from premarketing clinical trials, under the 
assumption that findings of efficacy and safety 
can be extrapolated from nonpregnant adult pop
ulations. These well‐intentioned protections from 
the risks and burdens of trials have paradoxically 
left pregnant women and children more suscepti
ble to the potential risks of drugs used in everyday 
practice, frequently off‐label and without high‐
quality evidence of efficacy, effectiveness, or 
safety. The field of pharmacoepidemiology has an 
important role in supplying critical missing evi
dence about the beneficial and harmful effects of 
drugs, both old and new, in pregnant women and 
children. However, pharmacoepidemiologic 
research in these populations presents numerous 
methodologic and  practical challenges. Rapid 
and dramatic changes in growth, development, 
and physiology during pregnancy, infancy, and 
childhood can alter drugs’ pharmacokinetics, 
pharmacodynamics, and, thus, efficacy and safety. 

The specific biology and varying incidence of 
clinical conditions that affect each stage of preg
nancy and childhood also require consideration 
of separate subgroups. Given the infrequent use 
of most specific medications in these populations 
and the rarity of many serious outcomes of inter
est, problems arise related to sample size. In addi
tion to random error, observational studies in 
pregnant women and children are subject to sys
tematic errors – some errors that are shared with 
any pharmacoepidemiologic study and others 
that are fairly specific to these populations.

Case–control studies can efficiently estimate 
associations, provided the drugs are relatively 
commonly used. However, this design faces the 
challenge of retrospective data collection, selec
tion of valid controls, and samples restricted to 
motivated volunteers. Exposed pregnancy regis
tries can more efficiently oversample exposed 
pregnancies for uncommonly used drugs, collect 
drug utilization before outcomes are known, and 
estimate absolute risks rather than associations 
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alone. However, this design still includes popula
tions of volunteers and requires long, costly study 
periods to recruit and follow  sufficient partici
pants. Moreover, case–control designs are 
restricted to a few outcomes, and pregnancy regis
tries are restricted to a few drugs. Admini strative 
healthcare or clinical databases can  provide large 
study samples to address these difficulties, and 
pooling efforts across data sources is increasingly 
common. However, for research in pregnant and 
pediatric populations, automated databases may 
lack important dates (for instance, of conception 
or birth) and other key clinical information (such 
as children’s weight). For other limitations of auto
mated databases, see Chapters 11–14.

Various forms of bias can occur in observa
tional research in pregnant and pediatric popula
tions. Confounding may involve unmeasured 
factors (e.g., health‐seeking behaviors related to 
prenatal screening or parenting style, environ
mental exposures, income, genetics) and long 
latencies between maternal or early life expo
sures and long‐term pediatric outcomes. 
Moreover, when selecting the study population 
of pregnant women or children, sources of bias 
may include depletion of susceptibles (e.g., lethal 
malformation resulting in undocumented preg
nancy losses), left truncation (e.g., enrollment of 
pregnancies after prenatal screening), right cen
soring (e.g., exclusion of terminations), and selec
tive inclusion, exclusion, or dropout of vulnerable 
populations (e.g., children in foster care). 
Variability in the duration of pregnancy due to 
health problems may introduce spurious associa
tions due to differential opportunities for drug 
exposure (e.g., acute drug exposure in the third 
trimester and a lower risk of preterm delivery) 
and competing risks (e.g., an increase in sponta
neous abortions results in a lower risk of 
preeclampsia). Importantly, both pregnant and 
pediatric populations are marked by important 
genetic and environmental interdependencies: 
the pregnant woman and the embryo, fetus, and 
infant; children and their families. These inti
mate relationships have critical implications for 

health; information about family members can 
be instrumental to measuring certain exposures 
(e.g., prenatal medicines preceding congenital 
anomalies), controlling for confounding (e.g., 
family history of psychiatric illness), and identify
ing effect modifiers. Studies of siblings discord
ant for prenatal or early life exposures may permit 
better control for certain unmeasured confound
ers than traditional cohort studies. Father’s medi
cation use can serve as a negative control to 
differentiate in utero drug exposure from familial 
confounding. Nonetheless, not all data sources 
have available and valid linkages within families 
that facilitate such approaches.

This chapter focuses on two populations 
underrepresented in clinical trials  –  pregnant 
women and children – that have specific charac
teristics necessitating adaptations of study 
designs and other methodologic considerations. 
Certain considerations relate to shared interests 
in safety outcomes in children, as both maternal 
exposures and childhood exposures can adversely 
affect pediatric health. We will discuss (i) unique 
clinical aspects of pregnant and pediatric popula
tions that relate to exposures, outcomes, and 
confounding; (ii) methodologic issues and con
siderations for pharmacoepidemiologic research 
in pregnant women and children; and (iii) poten
tial solutions and settings to study drug utiliza
tion and effects in these populations. Each 
section of the chapter is organized by topic, and 
each topic contains material specific to pregnant 
women and/or children, sometimes preceded by 
information that applies to both populations.

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

Unique Biology and Epidemiology

Pregnant Women
A woman’s body undergoes vast physiologic 
changes in pregnancy to accommodate and enable 
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fetal growth, development, and childbirth. These 
biologic processes lead to rapid changes in base
line risks of maternal conditions and treatment 
indications that may occur in other stages of life, 
such as nausea, diabetes mellitus, gallstones, and 
thromboembolism. However, some outcomes are 
unique to pregnant women (e.g., ectopic preg
nancy, preeclampsia, placental abruption) or their 
offspring (e.g., neural tube defects, prematurity, 
cognitive delays). One must consider the fluctuat
ing timelines of risk for outcomes and susceptibil
ity to treatment effects. For example, the risk of 
pregnancy losses is highest during the first trimes
ter, and the risk of preeclampsia due to endothelial 
dysfunction increases toward the end of preg
nancy. Regarding teratogenicity, while critical por
tions of organogenesis occur in the first trimester, 
fetal organs continue to develop later in pregnancy, 
which explains later susceptibility to certain effects 
of treatment (e.g., nephrotoxicity from use of angi
otensin‐converting enzyme inhibitors in the sec
ond or  third trimester). Furthermore, epigenetic 
changes and alterations of germline cells can lead 
to adverse outcomes across generations  (e.g., 
diethylstilbestrol [1,2]), presenting  additional chal
lenges in measuring the timing of exposure.

Children
The epidemiology of pediatric diseases varies 
considerably from that for adults: acute ill
nesses are considerably more common than 
chronic diseases; some medical conditions are 
unique to children, while other conditions seen 
in adults do not affect children; and some pedi
atric diseases may have different clinical pres
entations, treatments, and prognoses from 
analogous conditions in adults. Considerations 
of timing of exposure and follow‐up are 
also  crucial when studying the treatment of 
children, who grow and develop dramatically 
across multiple health axes (e.g., physical, 
immunologic, nutritional, cognitive, social, 
behavioral, etc.) and whose own medical 
needs and risks change throughout childhood. 
Preterm infants might face any  number of 

life‐threatening acute events (e.g.,  respiratory 
distress syndrome, necrotizing enterocolitis) 
and long‐term conditions (e.g., retinopathy of 
prematurity, bronchopulmonary dysplasia) 
that spare nearly all term infants. These differ
ences underscore the importance of having 
information such as gestational age at birth, 
birth weight, and a granular consideration of 
age when evaluating outcomes in infants. 
Certain chronic early‐onset pediatric diseases, 
such as type 1 diabetes and some forms of juve
nile idiopathic arthritis, differ in incidence, 
pathophysiology, and clinical course from 
analogous diseases in adolescents and adults 
(e.g., type 2 diabetes, rheumatoid arthritis) and 
thus require independent validation. Other 
conditions, such as asthma, depression, or 
infections, may occur in children and adults, 
but have different treatments or prognoses 
based on age. For example, compared with 
adults, children have a substantially greater 
risk of developing rheumatic heart disease 
following group A streptococcal pharyngitis 
[3]. Researchers must consider carefully these 
age‐related clinical  differences when design
ing, conducting, or interpreting pediatric 
pharmacoepidemiologic research.

Treatment Responses and Patterns

Pregnant Women
The physiologic changes associated with preg
nancy can markedly alter pharmacokinetics. 
Extrapolating conclusions regarding dosing, 
efficacy, and safety from nonpregnant popula
tions will often be incorrect [4]. For example, 
the effectiveness of specific drug dosages may 
be affected by changes in drug clearance, while 
drug safety for the fetus throughout pregnancy 
may be affected by changes in the permeability 
of the blood–placental barrier and may pertain 
to the ongoing processes of structural develop
ment and fetal growth.

Drug utilization patterns (see Chapter 18) and 
medication adherence (see Chapter 38) also vary 
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more markedly around pregnancy. By 2008, over 
90% of women in the US reported the use of at 
least one prescription or over‐the‐counter (OTC) 
medication during pregnancy, marking a steady 
increase since the 1970s [5,6]. Some agents are 
contraindicated (e.g., live vaccines) while others 
are strongly recommended (e.g., inactivated 
influenza vaccine). Clinicians frequently change 
or discontinue chronic medications due to per
ceived or real risks associated with use during 
pregnancy (e.g., lithium, valproate) or expected 
improvement of symptoms during pregnancy 
(e.g., disease‐modifying therapies for multiple 
sclerosis). Women often decide themselves to 
discontinue their medications upon learning of 
their pregnancy because of concerns over fetal 
toxicity. Treatment decisions during pregnancy 
are frequently not evidence based and may result 
in inadequate and ineffective treatments that, 
nonetheless, expose the fetus to treatment‐
related risks [6]. Nonadherence or inappropriate 
discontinuation could also lead to undertreat
ment of diseases (e.g., asthma, systemic lupus 
erythematosus) that could adversely affect out
comes of pregnancy, of offspring, and of women 
after pregnancy [7]. These changing, often unre
corded patterns of maternal drug usage can lead 
to misclassification of exposure.

Children
As in pregnancy, pharmacokinetics changes 
rapidly in childhood with the maturation of the 
various organs needed to absorb, distribute, 
metabolize, and excrete drugs [8–10]. The phar
macokinetic machinery is particularly underde
veloped in premature infants, for whom there 
are special considerations in drug dosing [11]. 
Pharmacodynamics also change over time 
because of age‐related alterations in receptor 
density and molecular pathways [8,12–14]. 
Pediatric drugs are generally dosed based on 
body size, usually weight. Because of develop
mental changes in metabolism and excretion, 
in proportion to body size, per‐kilogram dos
ing tends to be lowest in infants (particularly 

premature infants) and highest in toddlers and 
younger children; dosing for adolescents tends 
to be similar to that in adults, but this may not 
be true for all drugs or all stages of adolescence 
and requires drug‐specific verification [15]. 
Drug labels for approved pediatric medications 
specify dosing based on weight and/or age. 
Guidance for dosing of off‐label drugs in chil
dren may come from institutional, regional, or 
national formularies, but this guidance may 
reflect expert opinion more than sound evi
dence. The frequency of off‐label drug usage in 
children combined with a lack of pediatric phar
macokinetic/pharmacodynamic data and uni
versal formularies for many pediatric drugs 
raises questions about both effectiveness and 
safety.

Rates of medication use among children have 
changed over time, with rises in the use of 
drugs for chronic disease such as asthma and 
attention deficit hyperactivity disorder, and of 
drug classes such as contraceptives and gluco
corticoids [16–19]. About 22–25% of children 
in the US take a prescribed drug each month 
[17], while over half of Canadian children 
receive at least one prescribed medication per 
year [20]. The prevalence of use of medicines 
at different ages reflects, in part, the changing 
prevalence of diseases throughout childhood 
[16,21]. The ability and willingness of children 
to take medications also change with age. 
Young children, for example, may be unable to 
swallow pills or unwilling to take unpalatable 
oral medications. Older children and adoles
cents with more control and independence 
may also be less adherent to medications or 
more likely to take medicines that are ineffec
tive or unsafe [22]. Thus, children’s adherence, 
and consequently drug effectiveness, may 
depend on available formulations, palatability, 
access (e.g., at school), and the capacity of car
egivers to give medication despite children’s 
refusal. Further, parents may inadvertently give 
incorrect doses of liquid medicines because 
of  confusion about dispensing devices, drug 
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concentration, or directions [23,24]. These 
physical measurement issues may not be 
apparent in either prescribing or dispensing 
data, but could still compromise the effective
ness or safety of drugs given to children in liq
uid formulations. Childhood is also a time of 
experimentation, ranging from the toddler 
who finds an open medicine bottle to adoles
cents abusing prescribed or diverted psycho
tropic or pain medications, leading in some 
situations to misclassification of exposure 
or  dosage as well as additional concerns for 
drug safety.

Biologic Plausibility 
for Teratogenicity: Pregnant Woman

Teratogens are agents that cause birth defects in 
the embryo (in Greek, terato means monster 
and genesis means birth). Whereas one can 
often predict a drug’s adverse effects based on 
its molecular structure or class and its pharma
cologic or toxicologic properties, this is not the 
case for teratogenic effects. There are a few 
instances where in vitro and animal experi
ments support the biologic plausibility of drug–
defect associations: these include the increased 
risk of anomalies derived from neural crest cells 
among infants exposed to retinoids [25] and the 
decreased risk of neural tube defects among 
infants exposed to folic acid [26,27]. However, 
biologic mechanisms remain unknown for 
many accepted human teratogens, including 
thalidomide. Thus, we cannot dismiss effects 
simply because they lack a biologically plausible 
explanation [28].

Growth and Development: Children

Multiple factors regulate pediatric growth and 
development, including genetics, hormones, 
nutrition, and the environment, as well as dis
eases and their treatments. States and rates of 
growth and development, thus, provide critical 
windows into pediatric health. Pediatric health 

professionals routinely monitor children’s 
growth using national or international growth 
charts. Absolute measurements can be useful if 
they deviate markedly from typical values, for 
example in defining pediatric obesity [29], wast
ing (low weight), and stunting (low height) [30]. 
Even when growth measurements are not 
extreme, changes in growth trajectory can also 
indicate important changes in health [31,32]. 
Like growth, there are multiple standards for 
charting development across multiple axes (e.g., 
cognitive, motor, social, skeletal, sexual) from 
early infancy through puberty.

Ethical and Regulatory Context 
for Research in Pregnant, Lactating, 
and Pediatric Populations

Regulations are in place throughout the world 
to guide the approval and surveillance of medi
cations used by pregnant and lactating women 
and by children. These are based on ethical 
principles that have been debated and  modified 
over time [33]. In general terms, a historical 
emphasis on protecting pregnant women and 
children from research has been counter‐ 
balanced by  the realization that exclusion of 
pregnant women and children exposes these 
populations to treatments with inadequate evi
dence about efficacy and safety and blocks 
their access to new medications (e.g., new 
drugs for resistant tuberculosis undergoing 
Phase III trials [34]). The ethical concern about 
protection of pregnant women and children 
has been based, in part, on their designation 
as “vulnerable populations.” However, the term 
“vulnerable” is a broad reference to different 
types of vulnerability and carries varying 
nuances in different contexts, including differ
ent definitions used by regulatory bodies of 
different countries and organizations [35,36]. 
As noted by Bracken‐Roche, in the case of 
pregnant women, “vulnerable” historically 
referred to concerns about drugs that may cross 
the placenta and adversely affect the fetus; the 
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term was also an acknowledgment that preg
nant women have dual concerns for the welfare 
of the fetus and themselves [36]. Additional 
issues may arise in societies where women 
have limitations on their autonomy. The cate
gorization of pregnant women as vulnerable 
has been challenged by some bioethicists in 
ways that might influence our thinking about 
clinical research in the future [37,38]. In many 
circumstances, children are considered vulner
able subjects because they are developing the 
cognitive and emotional abilities to make deci
sions and to protect themselves, and must rely 
on someone else (typically a parent or car
egiver) who has the capacity to protect their 
interests [35,36]. Children’s vulnerability also 
relates to increased susceptibility to infectious 
diseases (including higher risk of mortality at 
young ages) and to long‐term impacts of expo
sures on health and development [35,36].

Pregnant Women
Regulatory issues around research on medica
tions used by pregnant women are intertwined 
with general research policies regarding the 
inclusion of women, pregnant and nonpregnant, 
in drug trials [39]. Revelations of the teratogenic
ity of thalidomide led to the passing in the US of 
the Kefauver–Harris Amendments in 1962 
requiring evidence of efficacy for drug approval, 
but this legislation did not require any evidence 
for efficacy or safety in pregnancy [40]. Then in 
1977, the US Food and Drug Administration 
(FDA) recommended exclusion of women of 
childbearing age from participating in Phase I 
and early Phase II trials. This well‐intentioned 
guideline inadvertently led to the exclusion of 
the same population from Phase III and IV tri
als as well. This pattern reversed in 1994 with 
the establishment of an FDA Office of Women’s 
Health to promote the inclusion of women in 
clinical trials and the implementation of new 
policies [41]. However, no mandate emerged to 
collect clinical trial data specifically in preg
nant women.

In 2002, the FDA issued a Guidance to 
Industry providing recommendations on how 
to establish pregnancy exposure registries to 
monitor for outcomes of pregnancies exposed 
to drug products (see Chapter  16) [42]. In 
Europe, the 2014 EU Clinical Trial Regulation 
(No 536/2014) defined the conditions for inclu
sion of pregnant and lactating women in clinical 
trials, as well as protective measures to consider 
for all women of child‐bearing age [43,44]. The 
FDA’s Pregnancy and Lactation Labeling Rule 
(PLLR), effective in 2015, required changes to 
the content and format of information pre
sented on prescription drug labels, including 
separate sections for pregnant women and for 
lactating women [45]. The labeling information 
is intended to assist clinicians in assessing ben
efit versus risk and in counseling pregnant 
women and nursing mothers about medica
tions. The US 21st Century Cures Act (2016) 
established the Task Force on Research Specific 
to Pregnant Women and Lactating Women to 
study the effectiveness and safety of therapies 
and inform drug regulation in these populations 
[46]. Additional guidance on research protec
tions of women of child‐bearing age has come 
from the Council for International Organizations 
of Medical Sciences (CIOMS), a nongovern
mental organization. The CIOMS ethical guide
lines discuss the importance of informed 
consent regarding potential risks to a fetus in 
future pregnancies, as well as access to family 
planning services (e.g., contraception) and, if 
needed, obstetric medical care to help women 
manage unplanned pregnancies [47]. Multiple 
governments and organizations continue to 
develop new guidance and resources to address 
the complexities in this arena.

Children
The CIOMS ethical guidelines note:

Children and adolescents must be included 
in health‐related research unless a good 
 scientific reason justifies their exclusion. As 
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children and adolescents have distinctive 
physiologies and health needs, they merit 
special consideration by researchers and 
research ethics committees. However, their 
distinctive physiologies and emotional devel
opment may also place children and adoles
cents at increased risk of being harmed in 
the  conduct of research. Moreover, without 
appropriate support, they may not be able 
to  protect their own interests due to their 
evolving capacity to give informed consent. 
Specific protections to safeguard children’s 
rights and welfare in the research are there
fore necessary. [47]

The International Conference on Harmoni
zation of Technical Requirements of Pharma
ceuticals for Human Use (ICH) has worked to 
harmonize international policies on pediatric 
clinical trials [48]. Both Europe and the US have 
regulations in place requiring clinical data from 
pediatric populations; these regulations balance 
the ethical imperative to protect children along
side the ethical need to provide children with 
treatments that have been adequately tested. In 
the US, the 2003 Pediatric Research Equity Act 
authorized the FDA to require pediatric studies 
of drugs or biologics if the product was likely to 
be used in a substantial number of pediatric 
patients, or if it would provide meaningful ben
efits for children over existing treatments [49]. 
In Europe, the 2007 Pediatric Regulation dra
matically changed the regulatory environment 
for pediatric medicines [50]. This regulation 
established the Pediatric Committee (PDCO), 
which determines the studies that companies 
must conduct in children as part of pediatric 
investigation plans (PIPs). The PIP covers the 
studies needed to support a pediatric indication 
with an age‐appropriate formulation. In addi
tion to regulations requiring studies in chil
dren, legislation such as the Food and Drug 
Administration Modernization Act (1997) and 
the Best Pharmaceuticals for Children Act 
(2002) has provided financial incentives (in the 

form of patent extensions) to pharmaceutical 
companies that study medications in children. 
Such legislation has led to increases in pediatric 
drug research and approvals over time, even 
though many drugs used in children (including 
orphan drugs for rare diseases) continue to lack 
pediatric labeling [51–53].

Evidence to Inform Clinical Practice and 
the Role of Pharmacoepidemiology

There is usually very little premarketing infor
mation on the safety and efficacy of drugs in 
pregnant or pediatric populations. Given that a 
drug’s safety can rarely be predicted based on its 
structure and function alone, animal studies are 
often used to identify pregnancy‐related or 
pediatric toxicity. However, animal studies are 
limited in their ability to predict human mater
nal, fetal, or pediatric toxicity, both because of 
considerable variations in teratogenic and other 
toxic effects (even among various nonhuman 
mammalian species) and the usual absence of 
concordance between effects in animals and 
humans [54].

Because of the typical exclusions of pregnant 
women and children from clinical trials, most 
information regarding the benefit/risk profile of 
drugs in these populations is collected after a 
drug’s initial approval. In practice, women take 
drugs while pregnant either intentionally or 
unintentionally  –  intentionally because some 
conditions require treatment during pregnancy, 
and unintentionally because a large proportion 
of pregnancies are unplanned [55]. Embryonic 
exposure to medications at the most vulnerable 
period of development can, thus, occur before a 
pregnancy is detected. Similarly, many children 
are prescribed drugs approved for analogous 
adult conditions under the potentially wrong 
assumption of analogous efficacy and safety. 
Postmarketing data from case reports and case 
series can offer clues, but except for selected 
drugs with obvious and dramatic toxicity (e.g., 
thalidomide), they do not provide conclusive 
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evidence regarding causality. Selected reporting 
of exposed cases can lead to false alarms or 
exaggerated effects, while underreporting may 
keep other important effects unrecognized [56].

Therefore, postapproval controlled observa
tional studies provide the primary mechanism 
for identifying potential teratogenic and toxic 
effects in pregnant and pediatric populations. 
More generally, pharmacoepidemiologic stud
ies can contribute evidence on the comparative 
safety and effectiveness of therapeutic strategies 
during pregnancy and childhood to inform clin
ical decision‐making and policies, and ulti
mately improve health outcomes in pregnant 
women and children of all ages. The newer ana
lytic techniques developed to help mitigate con
founding in studies of unintended and perhaps 
intended consequences should prove useful in 
the context of pregnant and pediatric popula
tions as well (see Chapters 33 and 43).

 Methodological Problems 
to Be Solved by 
Pharmacoepidemiologic 
Research

Defining the Population

Pregnant Women
As in any study, it is crucial to specify the target 
population, inclusion and exclusion criteria, and 
start and end of follow‐up. To prevent biases, 
including immortal time bias (see Chapter 43), 
the study design should ideally align start of fol
low‐up, specification of eligibility, and treatment 
assignment [57]. For example, to assess whether 
influenza vaccination during the first trimester 
triggers spontaneous abortion, the follow‐up 
should start at the time of vaccination for the 
exposed, and at the same gestational time for the 
unexposed. The peculiarities of pregnancy 
research start when defining the target popula
tion, since the unit of observation may be the 
mother, the pregnancy (sibling clusters within 

mother), or the fetus (multifetal clusters within 
pregnancy). Sometimes twinning or parity is an 
outcome of interest itself; when it is not the out
come, some studies exclude multiples or select 
one pregnancy per woman to simplify the analy
ses, while others account for the correlation 
within pregnancy and within the mother [58]. In 
certain cases of treatments with epigenetic or 
germline effects (e.g., diethylstilbestrol [1,2]), 
the time of first relevant exposure might occur in 
grandparents or earlier generations, and relevant 
outcomes might similarly affect grandchildren 
or their offspring. Practically, however, most 
studies will begin at or after conception and con
tinue through the end of pregnancy for maternal 
outcomes, and through childhood for outcomes 
of offspring. Given the unplanned and unrecog
nized nature of many pregnancies, identification 
of pregnancy at conception and its earlier stages 
is challenging in routinely collected data. 
Similarly, given the variability of exposures and 
risks across stages of pregnancy, identification 
and consideration of gestational age can be 
important for many research questions.

Children
The age cutoff for pediatric populations varies 
across countries, organizations, and agencies, 
including ages under 17 (US FDA Center for 
Drug Evaluation and Research and Center for 
Biologics Evaluation and Research) [59] and 
under 18 (EMA [50] and the US National 
Institutes of Health [60]). Biologically, any such 
cutoff can be misleading; some individuals (usu
ally boys) continue to grow after age 18, and cer
ebral white matter (along with executive 
function) continues to mature into one’s 20s 
[61]. For these and other reasons, the American 
Academy of Pediatrics has discouraged the use 
of an arbitrary age limit to define pediatrics 
[62]. Irrespective of how we define pediatrics, 
age‐related developmental changes and the het
erogeneity of the pediatric population require 
consideration of study‐specific subgroups in 
pediatric research, such as infants (premature 
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and term), children (preschool and school age), 
and adolescents. As with definitions of pedi
atrics, the age cutoffs of these subgroups 
vary across regulatory bodies (US FDA [59], US 
Census [63], International Conference on 
Harmonisation [64], EMA [65]). The number 
and ranges of age subgroups applied to pediatric 
studies vary even more widely, depending on 
the study question [66]. Studies that combine 
children of all ages or combine children with 
adults, without consideration of differential 
effects by age, could miss an important source 
of effect modification and be uninterpretable.

Sample Size Requirements and Challenges

An important practical hurdle when studying 
the effects of medications in pregnancy and in 
children is the ability to attain adequate sample 
sizes because, more often than not, exposures 
are uncommon, and diseases and outcomes of 
interest are also uncommon. The importance of 
considering subgroups and effect modification 
by stage of pregnancy or pediatric age may 
increase the sample size needed.

While use of many medications in pregnancy 
and in children has increased over time (see 
“Treatment Responses and Patterns”), the pro
portion of pregnant women or children using a 
specific medication is still relatively low for most 
medications [17,21,67]. Likewise, many mater
nal, fetal, and pediatric adverse outcomes of 
interest are uncommon. An outcome of particu
lar interest in studies of pregnant women is con
genital malformations, which are diagnosed in 
2–3% of liveborn infants [68,69]. The prevalence 
of specific malformations ranges from about 1 
per 1000 live births (e.g., oral clefts [70]) to less 
than 1 per 10 000 (e.g., biliary atresia [71]). 
Similarly, serious outcomes in pediatric popula
tions, such as anaphylaxis, upper gastrointesti
nal bleeding, diabetes mellitus, or malignancy, 
are generally rare [72–74]. In the absence of 
large effects, the study size needed to study the 
association between less common exposures 

and outcomes rapidly becomes prohibitive (see 
Chapter 4 on sample size) [75–77]. To compen
sate for lack of statistical power, researchers 
often revert to grouping (“lumping”) exposures 
or outcomes, a potentially problematic solution 
(see “Exposure Ascertainment, Timing, and 
Misclassification” and “Outcome Definition and 
Ascertainment”).

A challenge of examining multiple rare expo
sures in association with multiple rare outcomes 
is the risk of chance findings in the context of 
multiple comparisons. All tested results, includ
ing the negative and nonsignificant ones, should 
be reported within studies. Selective interpreta
tion, reporting, or publication of only positive or 
statistically significant results (e.g., reporting of 
associations with at least five exposed cases) 
would lead to publication bias. New findings 
should be replicated, and the tenability of alterna
tive explanations, including both chance and bias, 
should be examined before we conclude there is a 
presence or absence of causal effects [78,79].

Exposure Ascertainment, Timing, 
and Misclassification

The main goal in ascertaining drug use in any 
pharmacoepidemiologic study is to minimize 
the misclassification of the exposure. As a gen
eral principle, we strive to define exposure dur
ing the etiologically relevant window with high 
specificity. In the tradeoff between sensitivity 
and specificity, we prioritize specificity in order 
to reduce the likelihood that a sizable propor
tion of women or children classified as exposed 
are, in fact, unexposed (i.e., false positives). In 
the context of uncommon exposures, this likeli
hood is quite high when using an exposure 
 definition with low specificity. Misclassifying 
unexposed women or children as exposed 
would dilute the association if one truly exists. 
There are many approaches to ascertain and 
define exposure that can be applied to preg
nant and pediatric populations (see Chapter 3). 
Nonetheless, research in pregnancy and  children 
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presents important challenges in defining such 
exposures accurately.

Pregnancy and childhood are highly dynamic 
times in medication management, including use 
of OTC medications [6,80] (see “Changes in 
Treatment Responses and Patterns”). These 
challenges are compounded by the frequent lack 
of a clear definition of the etiologically relevant 
window and the potential brevity of this window. 
Inclusion of exposures outside the relevant win
dow generally leads to exposure misclassifica
tion and bias toward the null. For many severe 
birth anomalies, the period of interest is the first 
trimester, but a narrower window is appropriate 
for specific anomalies (e.g., the first few weeks 
after conception for neural tube defects). Given 
the rapidity of physiologic changes in young 
children, etiologically relevant windows may be 
similarly short in duration (weeks to months 
long) for infants, particularly premature infants, 
and are likely longer for older children. The etio
logically relevant window may be unclear if the 
pathophysiology of the outcome is poorly under
stood (e.g., autism spectrum disorder, cognitive 
delays) or multifactorial (e.g., preeclampsia, 
childhood obesity), or if the mechanism by 
which the drug confers excess risk is not known. 
In these circumstances, it is important to explore 
different, potentially relevant windows, always 
acknowledging the exposure windows explored.

To ascertain exposures, we can either rely on 
secondary data (such as medication dispens
ings) or primary data collection (such as inter
views). Users of secondary data sources should 
be aware of the disconnect between prescribed, 
dispensed, and consumed medications and 
work with highly specific definitions of expo
sure (see Chapters 12–13). Studies with primary 
data collection rely on maternal, parental, or 
adolescent interviews for drug exposure infor
mation, which is often the only feasible way to 
obtain information on OTC drug use and verify 
the intake of medications. This approach raises 
concerns about the overall accuracy of recall. 
Moreover, researchers often conduct such 

interviews retrospectively after the outcome of 
interest has occurred (e.g., birth anomalies, 
pediatric cancer), raising concern about recall 
bias or differential misclassification of exposure. 
In theory, the birth of a malformed child or a 
severe pediatric condition may affect recall of 
prior, remote exposures (e.g., during pregnancy 
or infancy). More complete exposure recall 
among mothers of cases would create a false 
association between the drug and the birth 
anomaly or pediatric condition, or overestimate 
an association if it exists [81–83]. One approach 
to reducing this bias is improving accuracy by 
using well‐designed interviews with highly 
structured questions to maximize recall and 
minimize errors in exposure assessment [84]. 
Some studies of birth anomalies have used 
infants with other malformations as controls. 
Assuming that recall is unlikely to be outcome 
specific, using mothers of malformed infants as 
controls helps ensure that reporting accuracy is 
comparable among mothers of cases and con
trols [85]. When interviews are used to measure 
exposure, one should also consider the potential 
for misclassification due to social desirability 
bias, for example in studies of opioid use during 
pregnancy [86] or adolescence [87].

Pregnant Women
Not all pregnancies are 40 weeks in duration, 
and many outcomes of interest are associated 
with shorter gestational length (e.g., preterm 
delivery, preeclampsia, stillbirth). In those 
instances, one must avoid defining the expo
sure window in a way that creates differential 
opportunity for exposure in affected and unaf
fected pregnancies (e.g., exposure during the 
third trimester), as this will bias the associa
tion measure [88,89]. A few different strategies 
are available to avoid this bias, including (i) 
ending the exposure window prior to the start 
of follow‐up (e.g., at 22–24 weeks of gestation, 
the earliest time for viable birth); (ii) defining 
exposure in a fixed look‐back window (e.g., 
30 days) from time of delivery; and (iii) using a 
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time‐varying exposure definition (e.g., with a 
Cox model). Moreover, one outcome affects 
the opportunity for other outcomes in preg
nancy (e.g., competing risk between prematu
rity and preeclampsia). Depending on the 
specific question of interest, one may consider 
using fetuses‐at‐risk approaches to assess risks 
that vary with gestational age at birth [90–92] 
or other methods to account for competing 
risks (e.g., fetal death) [93,94].

A methodologic concern in pregnant popula
tions related to the grouping of medications is 
known as the fallacy of “class action” teratogene
sis. In reality, members of a given drug class do 
not necessarily have the same teratogenic or non
teratogenic potential. For instance, we may not 
know whether teratogenesis results  from the 
chemical structure common to a medication class 
or from the part of the structure that differentiates 
one class member from another. For example, two 
glutarimides, thalidomide (phthalimidoglutarim
ide) and glutethimide (phenylglutarimide), are 
both sedative‐hypnotics. Despite these structural 
and clinical similarities, thalidomide was identi
fied as a high‐risk teratogen, and glutethimide 
was not. Thus, we cannot assume that if one drug 
is a high‐risk teratogen, all other members of its 
class will share that effect. Conversely, we cannot 
assume that the safety of one drug in a given class 
connotes the safety of another. There are, how
ever, some exceptions in which we can hypothe
size a potential teratogenic effect based on the 
existing biologic evidence (e.g., folic acid antago
nists and other antimetabolites, which may exert 
toxic effects through impairment of growing cell 
division) [95].

Children
Because pediatric dosing is frequently weight 
based, studies of dose effects in children may rely 
on accurate determination of weight. Some auto
mated data sources, including administrative 
claims and some electronic heath record (EHR) 
databases (see Chapters 12–13), may lack relia
ble or any data on children’s weights. One 

potential solution is to estimate pediatric dos
age by imputing weight based on age and sex, 
using the appropriate pediatric growth charts 
(e.g., national, World Health Organization 
[WHO]), and creating broad weight‐based dose 
categories based on quantiles or prespecified 
cutoffs [96]. This approach allows for examina
tion of the population‐level effects of dose in 
children whose weight distribution is expected 
to resemble that of the source population. This 
assumption may be false when studying condi
tions that affect pediatric weight, such as mal
nutrition or other chronic diseases, for whom 
additional information should be incorpo
rated into any systematic imputation of weight. 
Additionally, imputed weight‐based dosage 
becomes less valid for more granular estima
tions of dose, which are more susceptible to 
misclassification at the individual level. Of note 
is that weight is not a universal determinant of 
drug dosing, which may also vary based on 
other (potentially unmeasured) growth meas
urements (e.g., body surface area) or pharma
cokinetic/pharmacodynamic factors [97,98].

Outcome Definition and 
Ascertainment

To obtain valid information on outcomes in 
pregnant and pediatric populations, some stud
ies have direct access to patients and families 
and use expert clinicians (e.g., teratologists 
or  other pediatric specialists, pathologists) to 
adjudicate all outcomes. Other studies using 
administrative claims or EHR data may use 
restrictive algorithms or validate outcomes 
using medical records (see also Chapter 37 on 
validation) [99–101]. It should be noted that 
birth certificates can be inaccurate records of 
birth anomalies and are not recommended as 
gold standards [102].

Replication of a known association (i.e., posi
tive control) can provide reassurance of valid 
outcome ascertainment. For example, as a posi
tive control, one could replicate the association 
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between pregestational diabetes (or insulin as a 
proxy) and major malformations.

Differential misclassification of outcomes 
with respect to exposure leads to additional 
analytic challenges. Diagnostic bias may occur 
if  exposed children or mothers‐to‐be receive 
more testing (e.g., because of suspicion of tera
togenic or other drug‐induced effects), resulting 
in more complete diagnosis or overdiagnosis of 
subclinical conditions (e.g., minor anomalies or 
viral illnesses).

Evaluation of long‐term outcomes following 
prenatal or early life exposures, such as develop
mental or neuropsychiatric disorders, is particu
larly challenging. First, identification of certain 
long‐term outcomes requires large longitudinal 
studies with information ranging from less fre
quent, clinically relevant conditions (e.g., psy
chotic disorders, malignancies) to more frequent 
outcomes with less readily available measures 
(e.g., cognitive impairment based on formal test
ing, scholastic performance, or educational 
attainment) or that do not consistently come to 
medical attention (e.g., autism spectrum disor
ders). Practically, such studies may be difficult to 
conduct in settings with high turnover (e.g., local 
EHR or US administrative claims databases), 
where relatively few children can be followed 
continuously for many years after birth. 
Transition of care from pediatric to adult health 
professionals can also lead to loss to follow‐up 
because of difficulties in finding new clinicians 
or transfers to different health systems or insur
ance. Methods for dealing with censoring should 
be applied, but loss to follow‐up could compro
mise statistical power and lead to bias if dropout 
is not random and censoring is informative.

Second, evaluations of the effects of prenatal or 
early life drug exposure on child development face 
multiple potential sources of confounding, such as 
shared home and family environment, genetic pre
disposition, and the impact of maternal or child
hood illness on parenting and healthcare utilization 
(see “Confounding”). Adjustment for time‐varying 
confounders affected by prenatal or early life 

 exposures (e.g., postpartum maternal mental 
health) can be problematic, since time‐varying fac
tors (e.g., maternal anxiety postpartum) might be 
affected by prenatal exposures (e.g., maternal use 
of antidepressants) and affect the outcome of inter
est (e.g., infant mental health) [103,104]. In this 
situation, adjustment for such covariates would 
violate the principle of not adjusting for factors on 
the causal pathway between exposure and out
come; but not adjusting would violate the principle 
of adjusting for confounders (e.g., if maternal anxi
ety postpartum is the only measure of maternal 
mental health available).

Pregnant Women
Drugs can induce a wide range of reproductive 
outcomes, including hampering fertility and 
interacting with contraception. Drugs given 
to  pregnant women may also lead to adverse 
obstetric outcomes, perinatal complications, 
and even neurodevelopmental delays in off
spring later in life. Effective drugs can also 
reduce adverse outcomes induced by the under
lying condition (e.g., reduction in obstetric 
complications by improving glycemic control in 
women with diabetes). Among outcomes of 
interest for pregnant women, teratogenesis has 
received special attention for being a rare but 
dramatic event. In recent years, however, preg
nancy researchers and regulators have expanded 
their attention to include fetal losses and long‐
term consequences in the child.

Researchers sometimes lump together various 
fetal malformations, partially for conservation 
of statistical power [105]. However, given the 
etiologic heterogeneity of malformations, the 
combination of multiple malformations into a 
single outcome may lack a sound embryologic 
basis, even when such outcomes are classified 
by organ system (e.g., cardiovascular) [106]. 
A more appropriate approach may be to create 
categories that reflect the embryologic tissue 
of origin (e.g., neural crest [107]) or terato
genic mechanism (e.g., disruption of the embry
onic vasculature [108]), when known [109]. 
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Depending on the outcome definition, the risk 
of malformations overall can range from 1% to 
over 10% [110]. Common exclusion criteria 
when evaluating teratogenicity include chro
mosomal anomalies, known genetic disorders, 
minor anomalies, birth marks, positional 
deformations, subclinical anatomic findings 
by ultrasound, and  complications of prematu
rity [111]. In some circumstances, confirma
tion may require specific procedures (e.g., an 
echocardiogram to measure the size of a septal 
defect) or follow‐up (e.g., patent foramen 
ovale persistent six weeks after birth). Another 
source of heterogeneity comes from the period 
of observation: some studies may include pre
natal diagnoses and over one year of follow‐up 
after birth; other studies may focus on an out
come ascertainment window of days around 
delivery [112]. Therefore, estimates of the risk 
of malformations from one study might not be 
comparable with estimates from birth anom
aly surveillance systems or other studies with 
different inclusion and exclusion criteria 
[113]. Consequently, investigators should 
strongly consider including an internal refer
ence group with consistent data collection and 
applying the same criteria to measure out
comes [114].

To estimate the risk of fetal losses, ad hoc 
pregnancy cohorts need to enroll women soon 
after conception to consider miscarriage, and 
they require large sample sizes to consider 
stillbirths (expected frequency 6 per 1000 in 
the US [115]). When comparing treatments, 
researchers must ensure that all groups have 
comparable gestational age at enrollment and 
that differential enrollment time (left trunca
tion) is handled correctly in the analysis [116].

Children
Given the many clinical and epidemiologic dif
ferences between children and adults (see 
“Unique Biology and Epidemiology”), pediatric 
researchers should be careful when applying 
validated definitions from adult populations to 

children. For example, depression (like many 
chronic diseases) is rarer in children than in 
adults, thus reducing the positive predictive 
value of a given algorithm, assuming equal sen
sitivity and specificity. One should also not 
assume that conditions with the same name or 
code represent the same disease in children as 
in adults, for instance neutropenia, since chil
dren are much more likely to have cyclic or 
chronic neutropenia [117]. As another exam
ple, compared with adults, children with dia
betes mellitus are more likely to have type 1 
diabetes, for which more specific diagnostic 
codes exist (although they may not reliably be 
used). Furthermore, type 1 diabetes is quite 
distinct from type 2 diabetes in pathophysiol
ogy, clinical presentation (e.g., thin children 
who are more likely to present with diabetes 
ketoacidosis than adults with incident type 2 
diabetes), and treatment (i.e., exclusively with 
insulin). Even conditions that are managed 
more similarly in pediatric and adult popula
tions (e.g., juvenile idiopathic arthritis versus 
rheumatoid arthritis, bipolar disorder) may 
have differences in prevalence, clinical presen
tation, coding, or outcomes that necessitate 
independent validation [118]. Thus, depending 
on the study question and setting, an outcome 
validated in adults should not be presumed to 
be valid in children, and vice versa.

As already mentioned, milestones in growth 
and development can serve as important out
comes in pediatric studies. For diseases that 
impair growth or delay puberty, for instance, 
by disrupting nutrition, absorption, or metab
olism (e.g., thyroid disease, inflammatory 
bowel disease, juvenile idiopathic arthritis), 
improved or normalized growth and develop
ment can be measures of drug effectiveness 
[119–121]. Additionally, growth and devel
opment can also be important markers of 
safety (e.g., slowed vertical growth with gluco
corticoids [122], impaired weight gain with 
stimulants [123], excessive weight gain with 
antibiotics [124]).
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Confounding

Because of the lack of randomization in obser
vational studies, there is no guarantee of bal
ance in characteristics between comparison 
groups. Confounding by indication can occur if 
children or pregnant women who receive a drug 
are more likely to have an underlying condition, 
or a more severe or active form of that condi
tion, which is associated with the risk of the 
 outcome. Available approaches to minimize 
confounding by indication include (i) adjusting 
for the presence of the underlying condition; 
(ii)  restricting both the treated and reference 
group to individuals with a recorded diagnosis 
for the underlying condition; (iii) restricting to 
pregnant women or children with the indica
tions and using an active reference group; (iv) 
comparing continuers with discontinuers of the 
medication of interest (more applicable to 
 studies of pregnancy); and (v) sibling discord
ance study to control for stable family factors 
(see “Currently Available Solutions, Newer 
Designs”). Confounding by disease severity 
poses additional challenges in observational 
research on medication safety and effectiveness 
(see also Chapter 33).

Aside from confounding by indication and 
disease severity, other putative risk factors for 
the outcome may be associated with exposure. 
One advantage of using large EHR or claims 
databases for research in pregnant women and 
children is that the researcher can exploit the 
richness of the data to identify and control for a 
large number of potential confounders or prox
ies for these variables. Given that outcomes 
tend to be rare, and the set of prespecified 
potential confounding variables may be large, 
the use of data‐reduction techniques such as 
propensity scores can help avoid problems with 
model overfitting (see Chapter 43).

Many secondary data sources, including EHR 
and claims data, do not have robust or complete 
information on certain potential confounders 
(e.g., socioeconomic status; smoking, alcohol 

use, or recreational drug use in adolescents, 
pregnant women, or caregivers; test results 
such as prenatal testing) and lack information 
on OTC medications (e.g., multivitamins, 
folate, analgesics and antipyretics; see Chapters 
11–14). Several approaches can mitigate poten
tial residual confounding from unmeasured 
factors, including the use of high‐dimensional 
propensity score analyses (if unmeasured con
founders are correlated with measured ones) 
[125] or external adjustment for unmeasured 
confounders [126,127]. After utilizing all 
approaches to minimize confounding during 
the stages of study design and analysis, one can 
conduct quantitative bias analysis, a sensitivity 
analysis that incorporates the level of uncer
tainty in estimates based on suppositions about 
unmeasured confounders (see Chapter  43) 
[128]. Another approach that provides reassur
ance about control for confounding is replica
tion of a null association (i.e., negative control). 
For example, one could document a null asso
ciation between paternal use of the drug at the 
time of the pregnancy and the risk of fetal 
growth restriction.

Pregnant Women
Although many treatment indications are not 
traditional risk factors for adverse outcomes of 
pregnancy, certain indications may be con
founded due to strong associations with other 
conditions or behaviors that are risk factors for 
the outcome. For example, women treated with 
antidepressants (including women with depres
sion and/or anxiety) may also be more likely to 
smoke, use substances, eat poorly, and have 
chronic conditions such as diabetes, hyperten
sion, and obesity – all factors that predispose to 
congenital heart anomalies [129]. In addition, 
women with anxiety may utilize more healthcare 
resources, including fetal or early‐life testing 
(e.g., echocardiography), than their unaffected 
counterparts. Hence, anxious women are more 
likely to have infants diagnosed with mild 
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 cardiac malformations that might have gone 
clinically undetected in children of other 
women, such as small muscular ventricular 
septal defects, which often remain subclinical 
before resolving spontaneously [130]. Failure 
to account for such sources of confounding 
when studying the safety of psychotropic med
ications might bias the results.

Children
Certain sources of confounding may play a 
large role in pediatric studies, including sec
ond‐hand smoke exposure, parental income 
and occupation (e.g., measures of socioeco
nomic status or environmental exposure), par
enting styles (including behaviors related to 
healthcare utilization; e.g., requests for testing 
or antibiotics, etc.), early childhood feeding 
practices (e.g., breastmilk or formula), medical 
conditions of parents and siblings (and more 
fundamentally, genetics), and vaccination sta
tus [131]. Birth weight and gestational age at 
birth can be particularly important to under
standing the indications and effects of treat
ment in the earliest days and months of life, 
especially in premature neonates and infants. 
Many of these variables can be difficult to 
measure in large data sources, particularly in 
administrative claims data.

Analyses of pediatric populations often need 
to adjust for age or stratify by age group with 
greater precision than in adult studies. Whereas 
10‐year age groupings in studies of adults may 
be highly appropriate, there are dramatic differ
ences between a 4‐year‐old and 14‐year‐old 
child, and even between a preterm infant, a 
term infant, and a 2‐year‐old (see “Unique 
Biology and Epidemiology” and “Defining the 
Population”). Thus, representation of age and 
age groups must consider the pediatric popula
tion and clinical question of interest. Date of 
birth, a variable that is unavailable in some de‐
identified data sources, can be an especially 
important consideration in studies of newborns, 
infants, and other young children. For example, 

date of birth can relate to seasonal events (e.g., 
viral and bacterial infections) and other tempo
ral changes (e.g., changes in vaccination prac
tices) in ways that are critical to interpreting 
associations between key drug exposures (e.g., 
antibiotics) and outcomes (e.g., asthma) [132]. 
Date of birth and birth cohort could, thus, 
be considered as a confounder, effect modifier, 
or even instrumental variable. At the earliest 
extreme, neonatal studies may require informa
tion about the hour of birth to evaluate out
comes that occur within several hours or days 
of birth.

In addition to considerations of age, states of 
growth and development could also be sources 
of confounding. For instance, malnourished or 
obese children may have increased risks for 
receiving treatment (e.g., antibiotics) and 
experiencing an outcome of interest (e.g., 
treatment‐refractory infection). Growth and 
development can also be a source of effect 
modification. For instance, the robust skeletal 
turnover and repair in growing children may 
protect them from adverse effects of drugs 
that damage bone in fully grown adolescents 
and adults [96,133,134].

Selection Bias

When selection into or retention in the study is 
directly or indirectly affected by the exposure 
and the outcome, selection bias may occur and 
distort the estimate of risk [135].

Pregnant Women
In nonpregnant populations, the importance of 
including new users to avoid a selection of 
exposed subjects nonsusceptible to potential 
adverse effects is well recognized [136]. In 
 pregnancy, there are also situations in which 
 considering prevalent users complicates the 
interpretation of results [136]. For example, in 
evaluating the effect of certain antipsychotic 
medications on the risk of gestational diabetes, 
inclusion of women on the drug at conception 
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who do not have diabetes at baseline might 
exclude patients susceptible to the cardiometa
bolic effects of the antipsychotics; those pregnant 
women entering the cohort, therefore, might not 
be susceptible to developing diabetes with drug 
exposure, biasing results to the null [137].

In clinical practice, recommendations for 
interventions in early pregnancy often affect not 
only women actively trying to become pregnant, 
but also any women of childbearing age, given 
that a large proportion of pregnancies are 
unplanned and there is no time to switch treat
ments before organogenesis and after pregnancy 
is recognized [55]. Similarly, in research, the 
ideal pregnancy cohort begins at or before con
ception, if not at the time of first exposure [138]. 
This situation occurs rarely in reality. More often 
studies enroll women after confirmation of a 
pregnancy. This form of left truncation may 
underestimate the risk of early pregnancy events 
(e.g., miscarriages). Differences in gestational 
age at enrollment between exposed and refer
ence groups could lead to biased relative risk 
estimates if the risk varies with gestational age. 
For example, consider a study investigating how 
a vaccine given during the first trimester affects 
the risk of miscarriage, which decreases after 
week 10 of gestation. A design that erroneously 
started follow‐up for exposed individuals after 
vaccination and for unexposed individuals after 
a positive pregnancy test would introduce selec
tion bias. To prevent this bias when evaluating 
the risk of early miscarriages, the safest approach 
is to enroll subjects as soon as possible after con
ception, and to start follow‐up of exposed and 
unexposed at comparable gestational ages.

Selection bias may also occur if the outcome 
affects enrollment differently in exposed and 
reference groups [116]. For example, concern
ing results from prenatal screening may moti
vate women on specific medications to enroll in 
a pregnancy registry. This scenario would lead 
to overestimation of risks among exposed 
women [116]. On the other hand, a study could 
preferentially select low‐risk pregnancies if the 

investigators declined to enroll women with 
concerning prenatal screening results, or if 
women were less likely to enroll after a thera
peutic abortion. To prevent this bias when eval
uating the risk of birth anomalies or other 
complications of pregnancy, the safest approach 
is to enroll subjects before the risk of the out
come is known; that is, before the completion of 
informative screening tests.

An issue unique to the study of birth anoma
lies is the possibility of pregnancy losses, 
whether spontaneous or induced. Many studies 
are restricted to live births, and studies that 
include pregnancy losses almost always lack 
information from pathology reports on the 
presence of structural anomalies. Moreover, 
some malformations become detectable at 
early stages of pregnancy, and some women 
decide to terminate these pregnancies. Studies 
of liveborn infants, thus, underestimate the risk 
of lethal and prenatally detectable anomalies. 
The proportion of fetuses identified to have 
birth anomalies after termination varies by type 
of malformation, ranging from under 5% for 
oral clefts to more than 40% for neural tube 
defects [139,140]. Bias could occur in instances 
where exposed and reference groups had differ
ent proportions of terminations of affected 
fetuses. For example, if women exposed to a 
putative teratogen were more likely to termi
nate a pregnancy with a malformed fetus, and 
this situation was not captured within the study, 
the relative risk estimate would be biased 
toward the null. Although the likelihood of ter
minating a pregnancy based on an adverse pre
natal diagnosis might not be affected by drug 
utilization [141], this assumption is usually 
untestable. Sensitivity analyses can be used to 
assess the uncertainty around the relative risk 
estimates due to selection bias, together with 
misclassification and confounding [142]. These 
methods do not substitute for a valid and care
fully conducted study design, but can produce a 
plausible range of estimates under realistic 
assumptions [143].
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Sometimes, studies include pregnancy losses 
without fetal autopsy information on structural 
malformations. These studies can include all 
pregnancies in the denominator of risk esti
mates, but still face the challenge of outcome 
classification in the numerator. Missing data 
after spontaneous abortions or terminated preg
nancies could lead to false negatives. If this out
come misclassification preferentially affected 
exposed women, this ascertainment bias would 
underestimate the relative risk of the drug. This 
situation can be considered a problem of right 
truncation, where follow‐up ends with unknown 
outcomes; or of competing risk where fetal 
demise competes with the risk of being born 
with a malformation. Similar competing risk cir
cumstances arise at the end of pregnancy, where 
pregnancy ends before an outcome can occur 
(e.g., competing risks between preterm delivery 
and the development of preeclampsia).

Case–control studies confront an additional 
type of selection bias resulting from inappropri
ate control selection. In some studies of birth 
anomalies, controls comprise infants with mal
formations other than the ones of interest 
affecting cases [144]. This approach is valid 
under the assumption that teratogens do not 
increase the risk of all malformations, including 
the specific malformation among controls 
[145,146]. The goal of using a malformed con
trol group is to reduce the opportunity for dif
ferential recall of exposure between mothers of 
cases and controls. Whether malformed or not, 
controls should be sampled from the same pop
ulation that gave rise to the cases. In multicenter 
case–control studies that identify cases from a 
large number of hospitals, controls should be 
identified from the same hospital catchment 
area [147], and the analyses should account for 
matching of cases and controls by center [148].

Lastly, one can introduce selection bias during 
the analysis by adjusting for variables that share 
common causes with the outcome or are affected 
by it. Thus, adjusting for these variables (e.g., low 
birth weight) will not reduce confounding and 
can introduce selection bias [135,149,150]. For 

example, adjustment for low birth weight is 
unwarranted when the analytic goal is to esti
mate the overall effect of prenatal variables, such 
as maternal drug use, on infant mortality, or 
when the goal is to estimate the direct effect but 
there is an unmeasured common cause of low 
birth weight and mortality [150]. Knowledge of 
the causal structure is a prerequisite to accu
rately labeling a variable as a confounder. In 
studies of pregnancy, events that occur after 
organogenesis cannot cause structural birth 
anomalies arising during the first trimester and, 
therefore, are not confounders. Nonetheless, 
they could be proxies for strong unmeasured 
confounders, in which case investigators may 
want to use them for statistical adjustment to 
reduce confounding.

Children
Large longitudinal cohorts and registries can be 
valuable settings to study the effects of drugs in 
pediatric populations (see “Prospective Cohorts” 
and “Registries”). However, differential entry or 
loss to follow‐up because of factors associ
ated with the outcome (e.g., disease severity, 
psychosocial risk) can introduce selection bias 
[151,152]. Selection bias may also affect research 
of other special pediatric populations at high 
risk of poor outcomes. Research in very prema
ture infants is often conducted within highly 
specialized referral neonatal intensive care units. 
Studies in which referral patterns and, thus, 
study inclusion relate to the risk of exposure 
(e.g., indomethacin) and outcomes (e.g., intra
ventricular hemorrhage, mortality) may result in 
selection bias [153,154].

Another highly vulnerable pediatric popula
tion is children in foster care, who are subject to 
early trauma and inconsistent preventive medi
cal care, leading to psychosocial disruption and 
potential overtreatment (e.g., with psychotropic 
drugs) [155,156]. One may use Medicaid claims 
data to study this vulnerable population, but 
Medicaid eligibility codes misclassify children 
who are in and not in foster care; correctly clas
sified children may be more likely to have higher 
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levels of healthcare utilization and case man
agement support [157,158]. As a result, studies 
on the effects of certain drugs in foster children 
may be biased in samples in which excluded 
children (e.g., those with low levels of support) 
have different risks of both exposure (e.g., to 
antipsychotics) and the outcome of interest 
(e.g., diabetes mellitus). Studies may reduce the 
risk for selection bias by accounting for these 
coding practices and utilizing supplemental 
data to better classify foster care status.

 Currently Available Solutions

In this section we review the main pharmacoep
idemiologic designs used for pregnant and pedi
atric populations to quantify the risk/benefit 
profile of medication exposure during preg
nancy, infancy, or childhood, and the solutions 
they offer to common forms of bias.

Prospective Cohorts

Pregnant Women
Prospective inception (or follow‐up) cohorts of 
pregnant women have the advantage of identi
fying drug exposure before the adverse out
comes are recognized. This approach involves 
the identification of a population of women to 
be followed as soon as possible after conception 
or at the stage of pregnancy planning, to allow 
the evaluation of early pregnancy events. Such 
studies should periodically collect information 
on demographic characteristics, exposures, and 
potential confounders, as well as formally evalu
ate offspring at birth (or fetal death) and ideally 
throughout childhood. Unless regular preg
nancy tests are conducted, studies will not 
detect fetal losses that occur before pregnancy 
is recognized. Because birth anomalies and still
births are rare outcomes, and because usually a 
small fraction of pregnant women will take 
 particular drugs, inception cohorts need to be 
large. Even exceptionally valuable research 
resources such as the Danish National Birth 

Cohort [159] or the Norwegian Mother and 
Child Cohort Study (MoBa) [160], with over 
90 000 pregnancies, were too small to examine 
the risks of specific birth anomalies related to 
specific drugs taken in pregnancy.

Children
Prospective cohorts may also permit evaluation 
of a variety of pediatric exposures and out
comes of interest, while allowing for detailed 
adjustment for confounders. Birth inception 
cohorts of premature infants and children are 
particularly useful to study the link between 
early life treatments and subsequent outcomes 
[161,162]. Birth inception cohorts have been 
used to study term infants as well, for example 
the link between probiotic use in the first 
month of life and subsequent development of 
type 1 diabetes‐related autoantibodies among 
genetically predisposed children [163]. Disease‐
focused prospective cohorts may also be useful 
for pharmacoepidemiologic research on chil
dren with rare diseases, such as chronic kidney 
disease [164], congenital heart disease [165], 
inflammatory bowel disease [166], juvenile idi
opathic arthritis [167], psychotic disorders 
[168], and venous thromboembolism [169]. 
Disease‐inception cohorts of treatment‐naive 
children may be less susceptible to selection 
bias than other prospective cohorts that volun
tarily enroll children who have already received 
treatment for their condition (see “Selection 
bias”). Like other observational settings for 
pediatric research, prospective cohorts are sub
ject to a variety of methodologic limitations, 
including confounding and limited sample size 
(see “Methodological Problems”).

Registries

Pregnant Women
For new or infrequently used drugs, it is more 
efficient to assemble cohorts of women exposed 
to a drug of interest in pregnancy and follow 
them to determine outcomes (known as expo
sure pregnancy registries) [170,171]. The pri
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mary objective of many exposure registries is to 
assess the relative risk of major congenital mal
formations in the offspring. However, registries 
can evaluate multiple maternal, obstetric, fetal, 
and infant outcomes [171]. These efforts are 
critically important for the detection of major 
adverse effects (e.g., isotretinoin teratogenicity) 
[25] that affect large proportions of exposed 
fetuses. However, the small size of most regis
tries (usually with no more than a few hundred 
women) prohibits the identification or disproof 
of small or moderate effects involving rare out
comes [172].

To avoid selection bias, women should be 
enrolled into a pregnancy registry before the 
pregnancy outcome is known. As in other stud
ies based on volunteers, self‐referral often results 
in a nonrepresentative population. Similarly, the 
participants who complete follow‐up may be 
even less representative. Selective inclusion or 
follow‐up may affect the generalizability of abso
lute risk estimates, and may bias the relative risk 
if selection or retention is related to both the 
exposure and the outcome.

In any pharmacoepidemiologic study, it is 
important to include comparable reference 
groups. Many registries only enroll exposed 
women and compare the incidence of malfor
mations with estimates from surveillance sys
tems. This approach raises concerns about the 
comparability of control groups, including 
demographic and clinical characteristics as 
well as the ways in which outcomes are defined, 
detected, and validated. Other registries com
pare the observed risks in exposed women to 
those in pregnancies without exposure or with 
exposure to unrelated (e.g., presumed nontera
togenic) drugs. These approaches rarely con
sider confounding by indication. As discussed 
earlier (see “Confounding”), one should com
pare women exposed to a drug of interest with 
other women who have similar indications, 
whether untreated or treated with alterna
tive drugs [173]. Therefore, when feasible, it is 
preferable to establish multidrug pregnancy 

registries that allow comparisons among 
drugs from the same class or indication. More 
recently, both private and government initia
tives have launched pregnancy registries using 
health apps for direct data collection from 
large populations of pregnant women (e.g., 
PregSource®). The validity of these data for drug 
safety research has not yet been established.

Children
Like other prospective disease cohorts, pediat
ric registries for children with rare chronic dis
eases can provide rich information about 
exposures, outcomes, and confounders [174–
176]. Rare pediatric disease registries may also 
collect biologic specimens that facilitate molec
ular pharmacoepidemiology [177–179]. Some 
pediatric registries are population based and 
comprehensive in their ascertainment of 
affected children and, therefore, can minimize 
selection bias and yield generalizable knowl
edge [180]. Other registries rely on participants 
or families to voluntarily enroll and may be, 
thus, subject to selection bias or reduced exter
nal validity [181,182].

Retrospective Cohorts and Nested 
Case–Control Studies within 
Automated Healthcare Databases

Population‐based automated healthcare data
bases, including national registries (e.g., Nordic 
registers), administrative claims databases 
(e.g.,  Medicaid), and EHR databases (e.g., 
Clinical Practice Research Datalink®, CPRD®), 
are frequently used sources of information for 
 pharmacoepidemiologic studies (see Chapters 
11–14) [183]. These databases allow researchers 
to conduct large‐scale observational postmar
keting studies on multiple rare or long‐term 
consequences of drug use [184]. While these 
resources have their own strengths and limita
tions, they all offer detailed, longitudinal records 
of healthcare utilization, diagnoses, procedures, 
and drug data (prescriptions, dispensings, or 
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both) across a range of healthcare settings. The 
clinical care represented in these databases 
reflects the real world, and study populations 
may include minorities and other marginalized 
populations that are often excluded from volun
teer‐based studies. Although the cost and time 
of working with large administrative and EHR 
datasets can be high, this approach is usually 
less costly and has greater breadth than primary 
data collection. The size and generalizability of 
population‐based automated healthcare data
bases can make them excellent settings for stud
ies of rare exposures or outcomes in pregnant 
women and children. However, some automated 
healthcare databases have substantial limita
tions due to lack of child–mother linkages or 
routinely collected data on gestational age, birth 
weight, maternal obesity, smoking, or use of 
nonprescription drugs [185].

Pregnant Women
Linkage of children’s records with those of their 
mothers is relatively comprehensive in Nordic 
countries, which have nationwide registries 
with national identification numbers that help 
link family members. Linkage between mater
nal and children’s records in US healthcare data
bases, integrated health systems, and most EHR 
databases is also feasible [186–189]. US admin
istrative claims databases lack information on 
gestational age, which needs to be estimated 
based on codes for preterm, term, or postterm 
delivery [190,191].

When exposure to the specific drug of inter
est involves a small fraction of the pregnant 
population, even these large cohorts are con
strained in their information. In this scenario, 
multisite collaborations offer a solution. The 
Medication Exposure in Pregnancy Risk 
Evaluation Program (MEPREP) is a collabora
tion among government, academic research 
centers, and healthcare organizations to com
bine large administrative databases, linking data 
together from mothers, babies, and birth certifi
cates [189]. This work has been continued in the 

Sentinel network [192] and is an important tool 
to study outpatient dispensing of medications 
during pregnancy and a number of validated 
pregnancy outcomes. More recently, interna
tional collaborations have allowed the identifi
cation of exposed pregnancy cohorts nested in 
multiple large healthcare databases with the 
goal of conducting not only surveillance but 
also etiologic research on the safety of medica
tions during pregnancy. For example, the goal of 
the International Pregnancy Safety Study 
(InPreSS) consortium is to provide the best 
available human data on the safety of prescrip
tion medications during pregnancy by combin
ing large‐scale data from several countries [193]. 
Currently, it includes nationwide US Medicaid 
data that capture nearly half of all pregnancies, 
plus the national registries in the five Nordic 
countries that capture virtually all pregnancies. 
Identification of exposed cohorts nested within 
an international network of population‐represent
ative, prospectively collected datasets replicates 
the traditional exposure pregnancy registries in 
a cost‐ and time‐efficient manner. This approach 
also avoids many of the potential biases that face 
ad hoc pregnancy registries [194]. One can also 
use collaborative research programs to rapidly 
follow up on safety signals initially identified in 
a single data source, thus reducing the chance 
for widespread worry based on concerning early 
findings that are not later substantiated. 
Premature dissemination of such false alarms 
creates challenges for pregnant women and 
their clinicians trying to make the best treat
ment decisions.

Children
A variety of automated databases have been 
used to study drug uses and effects in large 
pediatric populations, include encounter‐based 
databases [195–198] and national EHR data
bases [199–201]. EHR databases are more likely 
to contain relevant pediatric data, such as birth 
weight, gestational age at birth, and growth 
measurements (see also Chapter  13). Some 
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 databases that are also used to study pregnant 
women can be used to assemble retrospective 
birth inception cohorts that can jointly examine 
prenatal and postnatal exposures (e.g., antibiot
ics) in relation to subsequent outcomes [202,203]. 
As in pregnancy‐related research, multinational 
collaborations of pediatric researchers, such as 
the Global Research in Paediatrics (GRiP) 
Network of Excellence and the Task‐force in 
Europe for Drug Development for the Young 
(TEDDY) Network, have allowed for large‐scale 
studies on drug utilization and effects, includ
ing rare outcomes, in children [72,204,205]. 
Within the US, there are several collaborative 
networks of pediatric EHRs that can facilitate 
pharmacoepidemiologic research, including the 
Comparative Effectiveness Research through 
Collaborative Electronic Reporting (CER2) 
Consortium [206,207] and PEDSnet [208]. One 
population‐representative EHR database in Italy, 
Pedianet, is composed completely of data from 
family pediatricians (see Chapter 13).

Several hospital‐based databases have been 
used for pediatric pharmacoepidemiology 
research (see also Chapter 14). These include 
the Pediatric Hospital Information System 
(USA, >40 freestanding children’s hospitals), 
Pediatrix (USA, >350 neonatal intensive care 
units), and the Vermont Oxford Network 
(global, >1000 neonatal intensive care units). 
Inpatient pediatric databases can provide use
ful settings for studying inpatient drug uses 
and effects in children with serious diseases, 
including extreme prematurity, rare diseases, 
and children with complex chronic conditions 
[209–213]. A common limitation of all these 
databases is the lack of generalizability based 
on the settings of care (predominantly aca
demic pediatric hospitals) and the lack of out
patient data.

For certain pediatric outcomes, linkage of chil
dren’s records to mothers as well as other family 
members, including fathers and siblings,  may 
also be as important, because of concerns 
for  confounding from genetic factors or other 

shared  household factors (see “Confounding” 
and “Newer Designs”) [214,215]. Databases with 
household/family identifiers (e.g., Medicaid, 
The Health Improvement Network® [THIN®]) 
or information on biologic relationships (e.g., 
Swedish registries) facilitate linkage to family 
members [124,216,217]. Of note is that resi
dence identifiers do not necessarily specify 
which household members are biologically 
related, and one might need to make assump
tions about relationships based on age and gen
der (e.g., mother vs. father).

Outside of the home, school is one of the 
most important places in a child’s life and, 
thus, a unique setting for studies on medica
tions and devices used by children. Pediatric 
researchers may want to study the impact of 
medications on outcomes such as attendance, 
promotion, behavior, and test performance. In 
some settings, it may be possible to link health 
or medication data to scholastic or testing 
information [218,219]. In settings where one 
cannot easily link clinical data to school 
records, researchers may need to rely on self‐
report [220] or direct cognitive assessments 
[221,222].

Case–Control Studies

Case–control studies identify individuals with 
the outcome of interest (e.g., a specific birth 
anomaly or childhood illness) and compare 
their frequency of exposure to that in a control 
group without this outcome. This design offers 
advantages in the evaluation of associations 
between prenatal or early life exposure to rela
tively common medications and the risk for rare 
events [223,224]. Case–control studies have 
some important limitations, however. They col
lect information on exposure retrospectively 
[225,226], rarely have a sufficiently large sample 
size to evaluate infrequently used medications, 
and sometimes do not properly select controls 
from the same source population as the cases. 
Furthermore, case–control studies typically focus 
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on only one type of outcome (e.g., major con
genital malformations) and can estimate relative 
risks, but not the absolute risks associated with 
the drug, unless the study is nested within a 
defined cohort or otherwise contains additional 
information.

Pregnant Women
Case–control studies on birth anomalies are 
often based on interviews, thus allowing the col
lection of information on actual use of the drug 
(versus prescription or pharmacy dispensing), 
nonprescription drugs, and important covariates 
such as smoking, socioeconomic factors, or 
 obesity, which are often missing from other 
data  sources. Examples include the Slone 
Epidemiology Center birth defects study [35]; the 
National Birth Defects Prevention Study [67], 
which involved a number of state birth anomalies 
surveillance programs and was coordinated 
by  the US Centers for Disease Control and 
Prevention; EUROmediCAT, which incorporates 
data on prenatal drug exposures and birth anom
alies from multiple European registries [227]; 
and the ECLAMC (Latin‐American Collaborative 
Study of Congenital Malformations) network 
from Latin America [228].

Children
Many pediatric case–control studies are limited 
to particular outcomes of interest on a study‐
by‐study basis. In contrast, the Canadian 
Pharmacogenomics Network for Drug Safety 
uses a systematic case–control approach to 
study pharmacogenomic factors associated with 
a variety of serious outcomes in thousands of 
children. The network’s focus is on children 
with cancer, because of their high burden of 
exposure to toxic medications. The network 
collects detailed clinical information and 
genomic data on children with recognized seri
ous adverse drug effects and matched controls. 
In the future, this network plans to make its 
database and analytic tools publicly available to 
other pediatric researchers.

Newer Designs

Epidemiologists continue to explore more valid 
and efficient approaches to study pregnant 
women and children. In specific circumstances, 
when carefully conducted with clearly stated 
assumptions and interpretation of estimates, 
novel designs may bring advantages to the field.

Pregnant Women
To avoid between‐person confounding, one 
might study the risk of birth anomalies using 
multiple exposure windows within one preg
nancy (i.e., self‐controlled design) [229] or mul
tiple pregnancies in the same woman with 
discordant exposure status (i.e., sibling discord
ance study) [230]. However, the risk of time‐varying 
within‐person confounding remains (e.g., indi
cation for the drug at a particular time) [229]. In 
a self‐controlled design, one studies the presence 
and timing of exposure in people with the out
come of interest (see also Chapter  43 on self‐
controlled designs). For example, to study 
whether flu vaccine administration triggers mis
carriage, one could compare the frequency of 
vaccinations during the month before the event 
with the frequency in a one‐month control win
dow three months before the event. However, in 
the presence of gestational time trends of drug 
utilization, case‐crossover designs do not offer 
clear advantages over cohort or case–control 
designs to study birth anomalies [229]. In a sib
ling discordance study, the comparison is made 
between siblings born to the same parents but 
who differ with respect to their pregnancy expo
sure status (i.e., matching within mother rather 
than within pregnancy). This design exploits the 
fact that siblings share stable aspects of family 
context as well as half their genome, therefore 
accounting for unmeasured genetic and envi
ronmental factors that may be important sources 
for confounding. Sibling discordance studies are 
particularly valuable to test associations identi
fied in studies of unrelated individuals where 
unmeasured confounding is a concern [231].
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Children
Self‐controlled designs, including case‐crossover 
and self‐controlled case series, have also been 
applied to drug and vaccine safety research in 
children [232,233]. Self‐controlled designs are 
particularly appropriate for studies of incident, 
short‐term exposures (common in children 
[21]) and acute outcomes, including rare condi
tions that occur in pediatric populations. As in 
research on pregnancy, self‐controlled designs 
in children could be problematic if study periods 
extend across times of considerable personal 
change (e.g., first year of life) without adequate 
adjustment for age and other time‐varying 
confounders [234]. Sibling discordance studies 
have also been used successfully to validate, 
and sometimes refute, pediatric treatment–
outcome associations first suggested in tradi
tional cohort studies [202,235]. In research on 
treatment effectiveness, instrumental variables 
[236–238] and pragmatic trials [239,240] have 
been applied to pediatric populations.

 The Future

Professional organizations and governments 
have increasingly supported policies and regula
tions that prioritize research on medicines and 
devices for pregnant women and children. Large‐
scale, longitudinal, collaborative research using 
multiple data sources across multiple countries 
will become increasingly common and impor
tant for generating generalizable, actionable evi
dence for pregnant and pediatric populations. 
Collaborative networks and pooled resources, 
potentially through distributed data models, will 
enable the conduct of robust research on rare 
exposures and rare outcomes in pregnant women 
and children, including studies on specific drugs, 
drug dosage, and polytherapy in individuals 
with chronic conditions. Advancements in 
 pregnancy‐related and pediatric pharmacoepi
demiologic research will require not only larger 
data sources and collaboration, but also more 

transparency and sharing of protocols, data, and 
analytic code and tools. In particular, future 
efforts must help build capacity, expertise, and 
infrastructure to conduct pharmacoepidemio
logic studies in underserved settings and low‐ 
and middle‐income countries.

The epidemiology of diseases of pregnancy 
and childhood continues to evolve, with the ris
ing worldwide prevalence of obesity and associ
ated ailments, emerging infectious diseases 
affecting pregnant women and children (e.g., 
Zika virus), increases in survival from life‐
threatening pediatric diseases (e.g., cystic fibro
sis, malignancy, neuromuscular disorders), and 
many others. These changes in disease epide
miology will necessitate the generation and 
sharing of new evidence regarding drug safety 
and effectiveness for new indications in preg
nant women and children. There remains a 
dearth of high‐quality research on treatment 
effectiveness in these populations, in part 
because of the fundamental challenges of con
ducting observational effectiveness research 
(see Chapter  33). New methods on studying 
effectiveness and controlling for confounding 
by indication and disease severity will help 
improve the quality and quantity of effective
ness research for pregnant women and chil
dren. More research and better methods are 
also needed to study drug uses and effects 
in  lactating mothers and breastfed infants. 
Another population that warrants further 
attention is pregnant youth under age 18, who 
represent an ethically challenging and poten
tially high‐risk subgroup that is commonly 
excluded from pregnancy‐related research.

New and growing linkages between comple
mentary types of data – automated databases, 
registries, patient‐generated data, biobanks 
containing genomic and other ‐omic data, 
and  others  –  will open up new frontiers for 
the   discovery and validation of personalized 
 treatment regimens. From a methodologic per
spective, linkage between datasets will also 
facilitate the validation of outcomes and better 
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control for confounding through techniques 
such as propensity‐score calibration [241]. 
Because large healthcare databases will not be 
sufficient or appropriate for all research ques
tions about pregnant and pediatric popula
tions, we should continue to use, improve, and 
teach field methods for primary data collection 
(including biospecimens for pharmaco‐omic 
studies) from patients and families. With 
advancements in technology and expansions in 

information, clinicians, pregnant women, and 
families will need enhanced resources to curate 
and interpret the deluge of available data. 
Bedside tools for data analyses (e.g., pharma
cogenomic risk stratification) as well as shared 
decision‐making will help clinicians, patients, 
and families understand and discuss the risks 
and benefits of treating pregnant women and 
children in the face of clinical uncertainty, and 
make informed, personal decisions [242–245].
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Biologic therapies are complex molecules that 
include a variety of products, such as recombi-
nant therapeutic proteins, vaccines, blood 
components, gene therapy, and others. Their 
components or precursors are derived from liv-
ing sources. From the perspective of pharma-
coepidemiology, biologic drugs are therapeutic 
agents used to prevent or treat a health condi-
tion. They typically take one of three constructs: 
(i) fusion proteins that link a receptor with a pro-
tein (e.g., Fc region of an antibody) or a polyeth-
ylene glycol (PEG) fragment, which extends the 
half‐life of the receptor portion of the construct; 
(ii) custom monoclonal antibodies that can be 
humanized or chimeric (e.g., with both human 
and murine components); and (iii) an agent that 
mimics the human native signaling mechanism, 
such as erythropoietin, growth hormone, insu-
lin, or human parathyroid hormone.

Biologics are typically more difficult to syn-
thesize than traditional small molecules and 
require synthesis in a bioreactor. Examples of 
the molecular constructs for several biologics 
used for the treatment of autoimmune and 
inflammatory diseases are shown in Figure 23.1. 
Currently available biologics are administered 

parenterally, typically by intravenous infusion 
or subcutaneous injection; those given by injec-
tion are often but not always self‐administered 
by the patient.

In the US, biologics were approved for use in 
humans as early as 1986 [1], although develop-
ment efforts accelerated dramatically in the late 
1990s. Their clinical indications have expanded 
from somewhat narrow, niche uses (e.g., organ 
transplantation, adjunct treatment to percutane-
ous coronary intervention, treatment of specific 
types of malignancies) to more widespread use 
for a variety of autoimmune and inflammatory 
diseases, including rheumatoid arthritis (RA) 
and other forms of inflammatory arthritis (e.g., 
psoriatic arthritis, ankylosing spondylitis, gout), 
inflammatory bowel disease (IBD), psoriasis, 
and multiple sclerosis (MS); see Table  23.1. 
Over time, the indications for biologic use have 
expanded and now include noninflammatory 
conditions (e.g., osteoporosis). Although the spe-
cific mechanisms of action (MOA), safety con-
cerns, and effects of various biologics are highly 
variable, the general principles that underlie use 
of these drugs as related to pharmacoepidemio-
logic research will be reviewed in this chapter.
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 Clinical Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

The pharmacoepidemiology questions that sur-
round the use of most biologics are generally 
similar to those of other immunosuppressant 
medications. Because many of the disease indi-
cations for biologics (e.g., RA, IBD) have a rela-
tively low prevalence (e.g., population prevalence 
of each of approximately 1%), pharmacoepide-
miologic methods to study rare safety events 
have been particularly valuable to characterize 
the risks and benefits of these medications. 
Some safety concerns are common to all biolog-
ics, including risks for serious infections (both 
bacterial infections such as pneumonia and sep-
sis, as well as rare opportunistic infections such 
as tuberculosis) and malignancy. Others are 
more mechanism specific and related to particu-
lar effects of biologic pathways (e.g., lipid metab-
olism) that may increase concern for increased 
risk for particular types of events (e.g., myocar-
dial infarction). There are a few unique types of 

adverse reactions that have been associated with 
biologics that are thought to be related to the 
consequences of administering large, biologi-
cally active proteins. Each of these will be briefly 
discussed in what follows.

Serious Infections

All medications that suppress the immune sys-
tem are thought to increase the risk of infection. 
Unfortunately, it is difficult to quantify how 
much any specific medication suppresses the 
immune system. In general, infections that 
typically only occur in the setting of immuno-
suppression are referred to as opportunistic 
infections. Some medications may increase the 
risk of common infections (e.g., pneumonia), 
while others predispose to selected types of 
opportunistic infections. The complex nature of 
the human immune system results in different 
patterns of infection based on the aspect of the 
immune system that is being targeted.

Shortly after the marketing of anti‐TNF (tumor 
necrosis factor) drugs to treat immune‐mediated 
diseases, there was a signal in postmarketing 
reporting of an increased risk of opportunistic 
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Figure 23.1 Examples of the molecular constructs for several biologics used for the treatment of autoimmune 
and inflammatory diseases.
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Table 23.1 Examples of biologics, their mechanism of action, and FDA‐approved indications for non‐malignant 
conditions.

MOA Name (construct) Examples of FDA‐approved indications

Cytokine or cytokine receptor inhibition

TNF inhibitor (TNFi) Etanercept (fusion protein)
Adalimumab (humanized monoclonal 
antibody)
Infliximab (chimeric monoclonal antibody)
Golimumab (humanized monoclonal 
antibody)
Certolizumab (PEGylated protein)

RA, PsA, AS, JIA, PsO
RA, PsA, AS, JIA, PsO, uveitis
RA, PsA, AS, IBD, PsO
RA, PsA, AS, PsO
RA, PsA, AS, PsO, IBD

Anti‐IL6R Tocilizumab (monoclonal antibody)
Sarilumab (monoclonal antibody)

RA, sJIA, GCA
RA

Anti‐IL1R
IL‐1
Anti‐IL‐1β

Anakinra (fusion protein)
Rilonacept (soluble decoy receptor)
Canakinumb (monoclonal antibody)

RA, periodic syndromes
Periodic syndromes
sJIA, periodic syndromes, AOSD

IL‐17
IL‐12/23
IL‐23

Secukinumab, Ixekizumab (monoclonal 
antibody)
Ustekinumab (monoclonal antibody)
Guselkumab (monoclonal antibody)

PsO, AS, PsA
PsO
PsO, Crohn’s disease
PsO

RANK/RANKL Denosumab Osteoporosis
Anti‐interferon beta‐1 Multiple, directed against beta‐1a or beta‐1b MS

Other mechanisms of action
B‐cell depletion Rituximab (monoclonal antibody) RA, vasculitis
T‐cell co‐stimulation 
blockade

Abatacept (fusion protein) RA, PsA, JIA

B‐lymphocyte 
stimulator antagonist

Belimumab (monoclonal antibody) SLE

Recombinant 
mammalian urate 
oxidase (uricase)

Pegloticase (PEGylated protein) Gout

Antagonist to α4 
integrin

Natalizumab (monoclonal antibody) MS, IBD

Antagonist to α4β7 
integrin

Vedolizumab (monoclonal antibody) IBD

AOSD, adult‐onset Still’s disease; AS, ankylosing spondylitis; GCA, giant cell arthritis; IBD, inflammatory bowel disease; 
JIA, juvenile idiopathic arthritis; MOA, mechanism of action; MS, multiple sclerosis; PsA, psoriatic arthritis; PsO, psoriasis; 
RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
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infections. Specifically, there were multiple spon-
taneous reports of tuberculosis among patients 
treated with infliximab [2]. Given the rarity of 
tuberculosis in the US, this relatively large case 
series (70 events) was unusual, and, extrapolating 
from estimates of the number of patients who 
had been treated with the drug up that point in 
time, the incidence of tuberculosis appeared 
higher than would have been expected. This 
prompted a black box warning from the US 
Food and Drug Administration (FDA) and a 
change in clinician behavior, with routine testing 
for prior tuberculosis exposure before initiation 
of treatment.

Subsequently, investigators have examined 
the association of biologics used in the treat-
ment of immune‐mediated diseases with the 
risk of other opportunistic infections and 
more common infections. For example, use of 
anti‐TNF drugs has been associated with an 
increased risk of pneumonia among patients 
with inflammatory bowel disease [3]. Similar to 
tuberculosis, which can result from either de 
novo infection or reactivation of latent infec-
tion, there have been many cohort studies 
describing reactivation of hepatitis B among 
patients treated with anti‐TNF therapy [4]. 
Numerous systematic reviews and meta‐analy-
ses have addressed this question. A 2016 sys-
tematic review of clinical trials of anti‐TNF 
therapies for RA, ankylosing spondylitis, or pso-
riatic arthritis reported that anti‐TNF therapy 
was associated with a 20% increase in any infec-
tion and a 40% increase in serious infections. 
This risk translates into an absolute rate dif-
ference of approximately 1–2 per 100 patient‐
years. There was no reported increase in 
opportunistic infections other than tuberculo-
sis, but the authors noted that the rate of report-
ing of opportunistic infections in the clinical 
trials was very low [5].

Emphasizing the importance of the specificity 
of the targeting of different aspects of the 
immune system, two similar biologic drugs that 
target alpha‐4 integrins have been marketed for 

the treatment of Crohn’s disease. Natalizumab, 
which is also approved for the treatment of mul-
tiple sclerosis, targets α4β1 and α4β7; vedoli-
zumab, which is also approved for the treatment 
of ulcerative colitis, targets only α4β7. Because 
α4β7 only directs lymphocytes to the gut, 
whereas α4β1 directs homing of lymphocytes to 
the gut and the brain, the risk of opportunistic 
infections between these two medications has 
proven to be quite different. Natalizumab has 
been associated with development of a typically 
severe, often fatal brain infection, progressive 
multifocal leukoencephalopathy (PML) [6]. 
However, this potentially fatal reactivation of JC 
virus infection has not been observed in patients 
treated with vedolizumab [7]. In the absence 
of  immunosuppressant medication exposure, 
PML is typically only observed in the setting of 
other diseases associated with immunosuppres-
sion, such as HIV infection or malignancy. 
However, like most adverse drug reactions, 
PML is not uniquely associated with natali-
zumab and has been observed with other bio-
logic therapies, most notably rituximab in RA 
[8], although cases with anti‐TNF therapy have 
also been reported [9].

Neoplasia

Perhaps due to the dreaded nature of the dis-
ease, the fear of cancer has proven to be one of 
the major factors that limit the use of anti‐TNF 
medications for the treatment of immune‐
mediated diseases. Early after the marketing of 
anti‐TNF drugs, concern was raised about 
whether these medications increased the risk of 
cancer, particularly lymphoma. In post hoc 
analyses from premarketing clinical trials, there 
was evidence of an increased incidence of lym-
phoma among patients with RA who were 
treated with anti‐TNF medications compared 
to rates expected in the general population. 
This led to black box warnings for anti‐TNF 
medications for the risk of lymphoma [10–12]. 
However, these estimates were not based on 
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comparisons to patients with comparably 
severe RA who likely also had an increased risk 
of lymphoma [13,14]. Indeed, patients with 
more active RA may be at appreciably higher 
risk for lymphoma [15], consistent with the 
mechanistic explanation related to a greater 
burden of systemic inflammation and chronic 
immune activation. This hypothesis remains 
under study [16], and its relevance to pharma-
coepidemiology lies in the potential for con-
founding by disease activity and associated 
systemic inflammation. In addition, many 
patients who are treated with anti‐TNF drugs 
may have been previously or simultaneously 
treated with other medications that increase 
the risk of lymphoma, such as thiopurines [17]. 
This is particularly true in patients with IBD. 
Ultimately, many further studies have been 
published on this topic, often coming to differ-
ing conclusions in part due to low statistical 
power [18–23]. A recent large study from 
Sweden suggested that anti‐TNF therapy was 
associated with a small increased risk of lym-
phoma, and that concomitant therapy with 
thiopurines increased that risk further [24].

The risk of other cancers with biologic thera-
pies for immune‐mediated diseases seems to be 
small, if it is increased at all. There are some 
reports of a potential increased risk of mela-
noma with anti‐TNF drugs, but this has not 
been universally reproduced [25,26]. Because 
the incidence of melanoma in this population is 
so low (less than 1 per 1000 patient‐years), 
recent efforts have pooled data from a variety of 
data sources (e.g., multiple European registries) 
and have not confirmed this association [27]. As 
with lymphoma, all assessments of cancer risk 
need also to take into consideration the poten-
tial impact of other prior and concurrent immu-
nosuppressant medications [28]. In patients 
with a history of prior cancer, these medications 
are generally avoided until there is evidence that 
the cancer has been cured in that patient. 
However, with the possible exception of non-
melanoma skin cancer [29], the available data 

suggest that use of anti‐TNF medications is rel-
atively safe once prior cancers are thought to be 
cured [30,31].

Studies of the association of newer biologic 
drugs, in classes other than anti‐TNF, focusing 
on cancer have been relatively small, limiting 
the ability to draw strong conclusions [32,33].

Paradoxical Reactions

There are a few scenarios where treatment with 
biologic drugs results in a paradoxical reaction, 
meaning that the drug causes a syndrome simi-
lar to one that it is used to treat when being used 
to treat a different disease. The prototypical 
example of this is the development of a psoria-
form rash in patients treated with anti‐TNF 
drugs [34]. The rash often responds to similar 
medications as are used to treat psoriasis, and 
frequently recurs with switching between anti‐
TNF drugs. The exact mechanism that drives 
these paradoxical reactions is unknown.

Other Adverse Events of Interest 
with Biologic Drugs

There are a number of other adverse events 
that  have drawn attention with the biologic 
drugs used to treat immune‐mediated diseases. 
Tocilizumab, an interleukin‐6 receptor antago-
nist used to treat RA, has been associated with 
bowel perforation, typically of the lower gastro-
intestinal (GI) tract [35,36]. This pattern is 
 distinct from the more typical sites of GI perfo-
ration in RA patients that are associated with 
nonsteroidal anti‐inflammatory drugs, which 
are in the upper GI tract. Numerically adverse 
changes in low‐density lipoprotein (LDL) have 
also been observed with some biologic thera-
pies, including anti‐TNF agents [37], and par-
ticularly the anti‐IL6R class of medications (e.g., 
tocilizumab) [38]. While the ratio of LDL to 
high‐density lipoprotein is unchanged, the 
potentially adverse changes in lipid profiles ini-
tially raised safety concerns for an increased risk 
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of cardiovascular disease (CVD) related events. 
Reassuringly, CVD event rates from the tocili-
zumab clinical trial program [39] and recent 
results from a large safety trial of more than 
3000 patients with a CVD endpoint [40] showed 
no difference between anti‐TNF therapy and 
tocilizumab. These results were confirmed 
by  several observational analyses [41, 42, 43] 
that also  suggested tocilizumab does not 
increase CVD risk.

The anti‐TNF drugs frequently result in a 
positive antinuclear antibody and occasionally 
cause drug‐induced lupus [44]. Notably, reports 
of severe liver injury and pancreatitis with the 
biologic drugs for immune‐mediated disease 
have been relatively infrequent [45,46]. There 
have also been cases of new‐onset IBD or exac-
erbations of preexisting IBD associated with 
anti‐IL17 therapies, used for psoriasis and pso-
riatic arthritis, although a more systematic eval-
uation has not confirmed this association [47].

In contrast to the biologic drugs that are 
designed to suppress the immune system, the 
immune checkpoint inhibitors, such as ipili-
mumab and nivolumab, which are used as treat-
ment for cancer, are designed to increase activity 
of the immune system. The prototypical adverse 
reaction to these agents is the onset of colitis 
that mimics IBD [48].

Finally, as might be expected with a complex 
molecule, hypersensitivity reactions to admin-
istration of biologics are a potential safety 
 concern. These range from infusion reactions 
of mild severity that do not preclude contin-
ued treatment (generally with concomitant 
diphenhydramine and intravenous glucocorti-
coids), to anaphylactic reactions that may be 
life threatening and result in death. Although 
a  few medications have associated biologic 
markers that suggest that the risk of hyper-
sensitivity reactions may be increased (e.g., 
increasing serum uric acid for patients treated 
with pegloticase) or assays that can detect anti‐
drug antibodies (ADAs; discussed shortly), 
some hypersensitivity reactions are idiosyncratic 

and unpredictable. This type of rare but often 
serious safety event may be particularly suita-
ble to study using pharmacoepidemiologic 
methods (e.g., self‐controlled study designs, 
see Chapter 43) [49], given the rather predict-
able temporal association between exposure 
and outcome. For example, anaphylactic‐type 
reactions would be expected within 24 hours 
of intravenous administration.

Comparative Effectiveness of Biologic 
Drugs

Because many biologic drugs are foreign pro-
teins, many have been routinely administered 
in combination with other immunosuppres-
sant medications, with the hope of reducing 
the incidence of the development of ADAs 
and  improving both efficacy and durability of 
response [50,51]. For most disease indica-
tions, biologic drugs have been shown to have 
enhanced effectiveness if given as combination 
therapy with a background conventional ther-
apy (e.g., TNFi plus either methotrexate or thi-
opurines), as demonstrated in high‐quality 
randomized controlled trials [52,53]. In con-
trast, a few trials have attempted to combine 
multiple biologics together. These have gener-
ally shown negligible incremental clinical bene-
fit and a higher rate of adverse events, especially 
infections [54,55]. For the time being, it is there-
fore reasonable to assume for the purpose of 
characterizing exposure in a pharmacoepide-
miologic study that patients are not simultane-
ously receiving two biologic medications for 
the same disease indication.

While being on two immunosuppressive or 
immunomodulatory treatments may have syn-
ergistic effects with respect to clinical effective-
ness, use of the combination may affect safety. 
However, designing pharmacoepidemiology 
studies to compare combination therapy to 
monotherapy presents a unique challenge. Some 
patients will “step up” from monotherapy with one 
of the two medications to combination therapy, 
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while others will switch from one therapy to the 
other, and yet a third option is to start both med-
ications around the same time, although gener-
ally not on the same day. Determining which 
treatment pattern applies to which patient can 
be difficult when using administrative claims 
data or even electronic health records. One often 
needs to observe several months of treatment to 
determine whether the first medication has been 
continued, in order to know whether the patient 
added the second medication and is now on two 
treatments, or switched to the second medica-
tion as monotherapy. To avoid immortal time 
bias, one approach is to start follow‐up for all 
groups several months after the second drug was 
added to allow for clarity over to which treat-
ment group each patient should be assigned 
[56]. Unfortunately, this approach limits the abil-
ity to study outcomes that occur shortly after the 
initiation of combination therapy.

The reasons that patients may not continue 
the background treatment (e.g., methotrexate) 
may also be important when studying outcomes. 
Some patients may discontinue the background 
therapy due to fear of future side effects in the 
setting of lack of perceived benefit when taken as 
monotherapy. Some patients may not continue 
treatment due to intolerance or other “nuisance” 
side effects (e.g., alopecia, oral ulcers) that 
have minimal impact on major health outcomes. 
Other patients may not continue background 
conventional treatment because of co‐morbidi-
ties (e.g., chronic liver disease) or nonadherence 
to the required laboratory monitoring (e.g., liver 
enzyme testing). Thus, the underlying reasons 
why patients are not receiving combination ther-
apy may be important from a pharmacoepide-
miologic perspective, and may affect the risk for 
other types of adverse events. Measuring and 
controlling for these factors underlying use 
of  monotherapy (versus combination therapy) 
are  likely to be important to control for in any 
pharmacoepidemiologic study if these reasons 
(or proxies for them) are available in the analytic 
data source.

For most biologic indications, the large, Phase 
III studies conducted for regulatory purposes 
have compared biologics against placebo, and 
randomized comparative effectiveness trials are 
infrequent. In RA and IBD, for example, only a 
small handful of direct comparisons between 
biologics are available that are powered for 
superiority [57]; others have been designed as 
noninferiority studies against anti‐TNF therapy 
[58]. Anti‐TNF therapy is commonly used as the 
referent comparator agent, given that it was the 
first biologic class of drugs approved for most 
autoimmune and inflammatory conditions and 
has the greatest uptake worldwide. Indirect 
comparisons and meta‐analyses have suggested 
relatively comparable efficacy between thera-
peutic agents, although changing from first 
anti‐TNF therapy to a biologic with a different 
MOA may be preferable for patients with inad-
equate clinical efficacy [59]. Unfortunately, 
“inadequate clinical efficacy” and “loss of 
response” are imprecisely defined clinically and 
vary greatly by disease. More recently, newer 
biologics with different MOAs have been com-
pared against anti‐TNF therapy. Results from 
randomized controlled trials in psoriasis sug-
gest that biologics targeting the IL‐12/23 [60] 
and IL‐17 pathways likely have superior efficacy 
in psoriasis compared to TNFi therapy [61]. 
IL‐17 therapy appears to have superior efficacy 
even to ustekinumab [62]. However, this effect 
does not appear to extrapolate to other condi-
tions, even those that are closely related (e.g., 
psoriatic arthritis, PsA).

While clinical effectiveness of improvement 
in inflammatory arthritis (RA, PsA), in gut 
inflammation (IBD), or in the skin (psoriasis) 
are endpoints that are difficult to assess in 
claims or electronic health record (EHR) data 
sources used for pharmacologic research, a 
number of attempts have been made to create 
and validate algorithms to serve as proxies for 
clinical endpoints that can be applied to admin-
istrative data. In RA, for example, an algorithm 
that requires patients to remain on the biologic 
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with good adherence, not add a new conven-
tional therapy, undergo intra‐articular injection 
or increase systemic glucocorticoids, has been 
shown to mirror the clinical effectiveness of RA 
treatments with good sensitivity, specificity, and 
positive predictive value [63]. For other biologic 
indications, the relevant outcome measures 
may be directly available in claims or EHR data 
sources. For example, effectiveness outcomes 
such as avoidance of bowel surgery (IBD) [56] or 
fracture (osteoporosis) [64,65] can be studied 
directly with good validity in these data sources.

Safety of Switching and Restarting

Unlike with traditional small‐molecule drugs, a 
unique challenge of using biologic drugs is that 
each drug is seen by the patient’s immune sys-
tem as a foreign protein. Therefore, the patient’s 
immune system is programmed to make ADAs 
directed against the biologic drug. These neu-
tralizing antibodies lead to loss of response and 
increase the likelihood of having an allergic 
reaction to the medication.

Much has been learned about the risk of 
developing antibodies to biologics since the 
introduction of infliximab. When infliximab 
was initially approved for RA and Crohn’s dis-
ease, it was used episodically, being adminis-
tered when the patient became symptomatic 
again. This strategy allowed most patients to 
have sufficiently long gaps in therapy that the 
drug was completely cleared from the circula-
tion. However, this would prime the immune 
system to recognize the drug at the next infu-
sion and manifest with high levels of ADAs. The 
result was high rates of infusion reactions and 
loss of response. A landmark trial in Crohn’s 
disease clearly demonstrated that induction 
therapy with three doses of medication followed 
by maintenance dosing was superior to on‐
demand dosing for maintenance of remission 
and prevention of ADAs [66].

In clinical practice, even when induction and 
maintenance dosing are employed, there are 

times when patients may need to have gaps in 
therapy or will desire to restart a biologic drug 
after a period off medications. Such gaps put 
the patient at risk for allergic reactions driven 
by ADAs, although in the era of maintenance 
dosing this seems to be less common [67]. Of 
importance is that the risk for ADAs is some-
what disease specific, such that patients with 
RA and IBD are at higher risk than patients 
with PsA, psoriasis, and ankylosing spondyli-
tis. Regardless of the risk, concomitant therapy 
with methotrexate or thiopurines appears to 
significantly attenuate the risk of ADA forma-
tion, although does not abrogate it completely 
[68–71].

Switching drugs within the same class of bio-
logics is common when considering the anti‐
TNF drugs, where there are five approved for a 
variety of indications. The most common indi-
cation for switching within class is loss of 
response to a drug within the same class. At 
least in IBD, measuring drug levels and antidrug 
antibodies can help guide this strategy. When 
there are high levels of ADAs and low or absent 
drug levels, this suggests that the loss of response 
was mediated by the ADAs and that the patient 
would be more likely to respond to another drug 
within the same class [72]. In contrast, if there 
are high drug levels and low or absent antidrug 
antibodies, switching to a drug of a different 
class is more likely to be effective [72]. At this 
point, measuring drug levels and/or ADAs is 
unique to the management of IBD. However, the 
relevance of this strategy may increase given the 
expected future availability of multiple biosimi-
lar anti‐TNF medications that could increase 
use of this class of medications relative to other 
biologics with different MOAs that do not have 
a biosimilar equivalent available.

There are circumstances where patients may 
choose to switch drugs within the same class for 
convenience. For example, patients may switch 
from an intravenous drug to a self‐injected drug 
to avoid the need to schedule infusion visits. 
There are relatively little data on the safety of 
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such switches. A small trial in patients with 
Crohn’s disease suggested that patients who 
were in remission on infliximab were more 
likely to stay in remission and without adverse 
events if they remained on infliximab than if 
they switched to adalimumab [73]. However, 
even though biologics may have the same mech-
anism of action and therapeutic target (e.g., 
TNF), it should not be assumed that the clinical 
response to one agent in the class will necessar-
ily mirror the clinical response to another.

An evolving area of research is the question of 
switching between the originator drug and the 
biosimilar of the same drug. There are multiple 
definitions of biosimilars, but all are generally 
consistent with the FDA’s definition that the 
compound is highly similar to the reference 
product, and that there are no clinically mean-
ingful differences from the reference product in 
terms of safety, purity, and potency [74]. 
Approval of biosimilars for marketing has gen-
erally relied on a single clinical study showing 
noninferiority or equivalence, in which one 
group receives the originator drug and the other 
group the biosimilar. The potential cost savings 
of biosimilars are appreciable, up to 40–70% in 
Europe [75], although the savings are likely to be 
appreciably less in the US (e.g., 20–30%). There 
is interest in knowing whether one can safely 
switch between originator and biosimilar drugs 
in patients who are currently receiving therapy 
with the originator drug. The strongest evi-
dence of the safety of this strategy comes from 
the NOR‐Switch trial, in which patients with 
RA, Crohn’s disease, ulcerative colitis, psoriasis, 
PsA, and spondyloarthritis who were stable on 
treatment with infliximab for at least 6 months 
were randomly assigned to continue the origi-
nator infliximab or switch to CT‐P13 (inflixi-
mab‐dyyb, Inflectra®). The primary outcome 
was disease worsening. The overall adjusted 
rate of worsening slightly favored the originator 
drug, but was not significant, and it met the pre-
defined 15% threshold for equivalence (–4.4%, 
–12.7% to 3.9%) [76]. Although reassuring, there 

remain additional questions, such as the safety 
of repeated switching and switching between 
multiple biosimilars with respect to immuno-
genicity and the formation of ADAs.

 Currently Available 
Solutions: Methodologic 
Problems to Be Solved by 
Pharmacoepidemiologic 
Research

Accurate Identification of Biologic 
Exposure in Pharmacoepidemiology 
Data Sources

By their nature, biologic agents must be adminis-
tered parenterally, either subcutaneously or by 
intravenous administration. Some therapies (e.g., 
abatacept, tocilizumab, golimumab) can be given 
via either route of administration, and usteki-
numab, when used for Crohn’s disease, is given 
intravenously for the first dose and then subcuta-
neously thereafter. For some biologics, clinicians 
can vary either the dose and/or the frequency of 
administration. Dosing variation generally takes 
one of three forms, specific to each biologic and 
its indication(s): (i) fixed dose and frequency (e.g., 
Etanercept 50 mg once weekly for RA); (ii) fixed 
dose, with the possibility of increased frequency 
depending on clinical response (e.g., adalimumab 
40 mg every 2 weeks, with possibility of increase 
to 40 mg once weekly); and (iii) weight‐based dos-
ing (e.g., infliximab 5 mg/kg every 8 weeks, with 
possibility to both increase the dose and increase 
the frequency depending on clinical response). 
Self‐injected drugs are reimbursed under a phar-
macy benefit (e.g., Medicare part D), and intrave-
nous treatments are reimbursed under a medical 
benefit (e.g., Medicare part B). Infused biologics 
will be identifiable in most administrative data 
sources using Healthcare Common Procedure 
Code System (HCPCS) Level II codes as claims 
for medical procedures (e.g., infliximab, J1745). 
A few biologics can be reimbursed under either 
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the pharmacy benefit (e.g., certolizumab SQ, self‐
administered) or under the medical benefit (cer-
tolizumab SQ, administered once monthly by a 
healthcare provider).

Biologics identified in pharmacy data using 
National Drug Codes (NDC) are generally 
straightforward to classify in terms of the dose 
and quantity dispensed, given the specificity of 
NDC codes. Biologics billing as medical proce-
dures will typically have dose represented based 
on the units appearing on the medical procedure 
claim. For example, the HCPCS code J1745 for 
infliximab represents 10 mg, so 30 units would 
reflect a dose of 300 mg. Given that the starting 
dose of this medication is generally fixed by dis-
ease indication, one can infer the patient’s weight 
(or weight category) based on units dispensed. 
For example, in IBD, the starting dose is typically 
5 mg/kg, so an initial dose of 300 mg, 400 mg, or 
500 mg could be reasonably used to assume that 
the patient’s weight was approximately 60 kg, 
80 kg, or 100 kg, respectively. While not perfectly 
precise, given that the drug is provided in 100 mg 
vials and healthcare providers typically round up 
to the nearest whole vial, this approach is never-
theless potentially helpful to infer the patient’s 
weight category in data sources where it is not 
directly available (e.g., health plan claims).

One challenge in identifying biologics given as 
medical procedures is that after a biologic is 
approved, it is assigned a “nonspecific” HCPCS 
code by the Center for Medicare and Medicaid 
Services. This is typically replaced during the 
next year (or two) by a permanent HCPCS 
code that uniquely identifies the drug. Until this 
occurs, however, the drug is reimbursed under 
J3490 (Unclassified drug) or J3590 (Unclassified 
biologic). A combination of the associated dis-
ease indication (using International Classification 
of Diseases, ICD) codes, units dispensed, submit-
ted or allowed amount, and other features associ-
ated with the procedure claim can be used to 
specifically identify the drug [77]. The relevance 
for pharmacoepidemiology studies is that if this 
approach is not followed, it will fail to identify the 
earliest users of the medication, and it will mis-

classify the date of first use. The implications are 
that any new user study design [78] of biologics 
in their first 1–2 years after licensure may be 
meaningfully compromised if this issue is not 
appropriately addressed methodologically.

An additional consideration is to understand 
the duration of exposure in relation to each bio-
logic administration. As with other therapies, 
the effect of biologic drugs reflects not only the 
half‐life of the agents (i.e., pharmacokinetics), 
but also the duration of their effect on the body 
(i.e., pharmacodynamics). Subject matter exper-
tise is therefore needed to understand whether 
an “extension” to current exposure might be 
warranted. This decision depends on the drug, 
its pharmacokinetics and pharmacodynamics, 
and the outcome being studied. For outcomes 
with a short expected interval between expo-
sure and outcome, a relatively short (e.g., 30–90‐
day extension) is likely warranted [79]. As with 
all pharmacoepidemiology studies, researchers 
also must consider whether the relative hazard 
of the outcome is likely to be constant or time 
varying. For example, the association between 
biologic exposure and serious infections has 
been shown to peak early and then flatten [80]. 
A variety of factors may account for this, includ-
ing a true biologic effect reflecting a reduc-
tion in systemic inflammation (which has 
been  associated with infection risk), subsequent 
reduction in glucocorticoid use, or depletion of 
susceptible patients [81]. In contrast, for an out-
come like malignancy, where the shape of the 
hazard curve between exposure and outcome is 
not clear, “ever exposed” may be preferable, and 
risk with increasing cumulative exposure in dis-
crete time intervals should be estimated over 
the follow‐up period. Because switching of ther-
apies is common, particularly when the first 
medication fails to achieve complete symptom 
control, all of these studies must also consider 
the biologic plausibility of very early outcomes 
and those that occur long after a medication is 
discontinued, and the potential impact of prior, 
concomitant, and subsequent treatments on the 
outcome of interest.
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Biosimilar Naming Conventions 
and Representation in Administrative 
Data Sources

With generic drugs, the generic product is 
referred to solely by the name of the generic 
compound, since the medication is an exact 
replicate of the active ingredient. Biosimilars 
are not exact replicates of the referent biologic. 
Therefore, it is necessary for each biosimilar to 
have a unique name, but still have a name that 
reflects the nature of the product. Based on this, 
the FDA has proposed that biologics all have a 
four‐letter suffix added to the generic name. By 
requirement, this suffix can have no clinical 
meaning. For example, the original infliximab 
(Remicade®) has the suffix ‐hjmt (although cur-
rent guidance on nomenclature suggests to omit 
the suffix for the reference biologic product), 
while the biosimilar Inflectra® is infliximab‐
dyyb. These unique suffixes will allow for accu-
rate identification of the biosimilars within 
claims data and electronic health records [82]. 
Biosimilars administered by healthcare facilities 
will continue to be identified by HCPCS codes 
in the US. Prior to January 1, 2018, the HCPCS 
codes for biosimilars to the same originator 
product were the same, but with a unique modi-
fier that would be included in the billing data. 
For example, Inflectra® and Renflexis® share the 
same HCPCS code (Q5102) but have unique 
modifiers (ZB and ZC, respectively) [83]. 
However, when biosimilars are first released, 
before an HCPCS code is assigned, they may 
need to be identified by a generic J code, similar 
to the challenges of identification of any new 
biologic administered by a healthcare facility. 
After January 1, 2018, these rules have changed 
and guidance is now available from the Centers 
for Medicare and Medicaid Services [83]. Drug-
specific codes for individual biosimilars are now 
assigned. For example, new medical procedure 
codes were created to uniquely identify the 
 infliximab biosimilars, Q5103 (Inflectra®) and 
Q5104 (Renflexis®). A relatively similar system 
has been proposed for the European Union, but 

complete harmonization has not yet occurred 
and seems highly desirable [82].

Confounding by Indication

As with all pharmacoepidemiology and com-
parative effectiveness studies, confounding by 
indication is an important consideration. This 
may be an even greater concern with studies of 
biologic medications, due to the high cost of 
these medications leading to restrictions on 
access by some insurance plans until patients 
have failed to adequately respond to other less 
expensive medications or through other means 
[84,85]. The methods to address confounding 
by indication (see Chapter 43) in studies of bio-
logics do not differ from those of other medica-
tions, but should take into consideration this 
channeling process. Patients who are being 
treated with a second or third biologic are also 
likely to be more refractory to therapy than 
those receiving their first biologic drug. For 
example, in patients with IBD, those receiving 
vedolizumab were much more likely to respond 
to therapy if they had not been previously 
treated with an anti‐TNF drug [86,87]. The rea-
sons for switching from a first to a second (or 
subsequent) biologic are also likely important. 
For example, if patients with RA have had an 
inadequate clinical response to the first TNF 
drug, they are more likely to have an inadequate 
response to a subsequent TNF drug [88]. 
However, if they discontinued the first TNF 
drug for a safety or tolerability concern, then the 
clinical response to the subsequent TNF drug 
was unaffected, but it is more likely to fail for 
safety or tolerability reasons. In most adminis-
trative data sources, the reasons for discontinu-
ing or switching therapy are not known, but 
some registries or EHR data sources may cap-
ture this information.

More refractory patients who have received 
multiple biologics in the past also will typically 
have longer disease duration, a higher comor-
bidity burden, and may be at higher risk for 
serious adverse events such as infections [89]. 
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Thus, having sufficient historical data to fully 
account for the number of prior medications 
(both biologic and conventional therapies) with 
which the patient has been treated, particularly 
the number of different biologic and conven-
tional medications that the patient has received, 
is important to fully capture the disease sever-
ity. Ascertainment of prior treatment history is 
likely to be optimal if an extended baseline 
period of observation is available, and a varia-
ble “baseline” period (e.g., 12 months, plus all 
available prior data) may be useful for assess-
ment of these specific covariates [90,91].

To overcome confounding by indication, a 
number of considerations relevant to biologic 
access may be useful. Because health plans often 
dictate the selection of which biologic must be 
used first (and sometimes second), in what are 
called “fail‐first” policies, then selection is not 
predicated on individual patient characteristics, 
and patients with the same condition treated 
with different first‐line biologic agents may be 
compared between health plans. Assuming the 
health plan does not also dictate which second‐
line biologic treatment the patient may receive, 
there are major evidence gaps with respect to 
which biologic should be optimally be used 
next, and physician judgment (in the absence of 
evidence) may prevail. Instrumental variable 
methods (Chapter  43) using provider prefer-
ence (which may be affected by financial moti-
vations to use infusion‐based treatments [92]) 
or other logistics related to biologic use (e.g., 
driving distance to the infusion center for once‐
monthly infusion treatments) may be useful 
methodologic considerations to address con-
founding by indication and reduce bias.

Measuring Treatment Discontinuation

A related concept is measuring treatment dis-
continuation. Persistence on therapy is a com-
monly used endpoint in comparative effectiveness 
studies that is used as a surrogate for sufficient 
response to therapy to justify continued 
use  of  these expensive immunosuppressive 

therapies [56,93–95]. Similarly, assigning an 
exposure  category to an event requires knowl-
edge of whether the patient was exposed to the 
therapy when the event occurred. Because many 
biologic drugs are dosed intermittently due to 
long half‐lives, defining discontinuation can take 
several months after the last dispensing to deter-
mine whether the patient discontinued the medi-
cation. Furthermore, because many biologic 
drugs suppress the immune system, clinicians 
may temporarily hold these medications around 
the time of elective surgeries or if there is evi-
dence of an infection. Thus, it is important to 
account for potential gaps when considering per-
sistence on therapy. Defining the optimal dura-
tion of “gap” time while considering a patient to 
have continuous therapy as opposed to reinitia-
tion of therapy can sometimes be determined 
empirically from the available data by examining 
the pattern of drug dispensing, particularly 
focusing on dispensing that appears to be a reini-
tiation regimen based on the dose. Finally, as 
noted previously, because patients who have lost 
response to other biologics are more likely to lose 
response to the next biologic, accounting for 
prior biologic use is important in studies examin-
ing persistence on therapy.

 The Future

New Therapies

Although biologics have proved very effective for 
the treatment of autoimmune and inflammatory 
diseases, new small‐molecule targeted therapies 
have emerged that have similarly rapid onset 
(e.g., demonstrable benefit in the first 2 weeks of 
treatment and near‐maximal effect by 12 weeks) 
and comparable effectiveness and safety to bio-
logics. Unlike conventional and slower‐acting 
immunosuppressive drugs for these same indica-
tions that have may have multiple biologic effects, 
new synthetic immunomodulatory drugs that 
target specific immune and inflammatory path-
ways (e.g., the JAK/STAT signaling pathway) 
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have emerged and proven very effective com-
pared to biologics [96]. Some are already 
approved in the US (e.g., tofacitinib for RA, PsA, 
and UC; baricitinib for RA) and Europe (e.g., 
baricitinib for RA) and have particular safety 
concerns based on their mechanisms of action 
(e.g., increased rate of herpes zoster observed 
with janus kinase inhibitors, likely as a conse-
quence of effects on interferon gamma, and pos-
sibly increased rates of venous thromboembolism 
when JAK/STAT drugs are used at higher doses) 
[97]. Several other compounds targeting the 
JAK/STAT pathway, as well as other immune‐
related pathways (e.g., spleen tyrosine kinase, 
Syk) are in development and will continue to spur 
interest in real‐world evidence comparing these 
therapies to current and future biologics.

New Data Sources and Linked Data 
to Generate Real‐World Evidence

To date, many studies of biologic safety have been 
conducted in large administrative healthcare 
databases, and disease‐specific or drug‐specific 
(biologic) registries [98–101]. Recognizing the 
limitations of each of these types of data, there 
has been growing interest in expanding both the 
kinds of data sources used for comparative evalu-
ation of biologic safety and effectiveness, as well 
as linking between data sources. Large‐scale EHR 
data such as that available in the Patient‐Centered 
Clinical Research Network (PCORnet) [102–
104] and from specialty‐specific registries such 
as the American College of Rheumatology’s 
(ACR) Rheumatology Informatics System for 
Effectiveness (RISE) [105] offer the potential for 
large‐scale data analysis on patients treated with 
biologics. EHR data will generally provide more 
precise phenotypic information (including labo-
ratory results) than that available in health plan 
claims data alone. Beyond the many traditional 
registries available for the study of biologic safety 
and effectiveness, a growing number of patient‐
focused research registries in IBD, RA, psoria-
sis  and PsA, multiple sclerosis, and juvenile 
 idiopathic arthritis [106,107] have also been 

established and may provide unique information 
from a patient’s perspective. Many of these cap-
ture information on biologic use and outcomes 
using validated patient‐reported outcome (PRO) 
instruments, such as those available from the 
National Institute of Health’s Patient‐Reported 
Outcome Management System (PROMIS) [108].

A variety of methods may be used to link 
administrative claims, EHR, and traditional 
 registry data together, and combine them with 
other data (e.g., disease‐specific biomarker 
data). Deterministic methods applied to unique 
identifiers (e.g., social security numbers or 
health plan identifiers) can be used for linkage, 
but doing so may invoke privacy‐related con-
cerns. Probabilistic linkage using multiple, non-
unique identifiers (e.g., patient date of birth, 
visit dates, national provider identifiers, num-
ber of a patient’s physician, dates of outpatient 
clinic visits, or admission/discharge dates of 
hospitalization (for hospitalized patients, or 
those undergoing in‐hospital procedures) has 
been used successfully to link patients [109]. 
When no identifiers can be shared, a variety of 
privacy‐preserving methods are also available 
(e.g., one‐way hashing algorithms) to allow for 
sharing of minimally identifiable information, 
fully encrypted data, or statistical coefficients 
[110–112]. A number of use cases that have 
linked clinical information (e.g., disease activ-
ity) to registries or lab‐based data sources with 
outcomes commonly available in health plan 
data (e.g., healthcare costs, all‐cause hospitali-
zation) have been published in biologic‐exposed 
patients [113,114].

Value‐Based Care

Given the high cost of biologics, often in the 
range of several thousands of dollars per patient 
per month or more, increasing attention is 
placed on demonstrating and maximizing the 
value of these therapies. While value‐based 
reimbursement, risk‐sharing contracts, and so 
on are by no means unique to the use of bio-
logic agents, their high cost and the need to 
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characterize the safety profile of new molecu-
lar entities compared to existing treatments 
places  great importance on the careful study 
of  these medications. Pharmacoepidemiologic 
research is therefore likely to continue to play a 

prominent role in filling evidence gaps to 
 demonstrate improved clinical and patient‐
focused outcomes, and to promote the rational 
use of biologic therapies in the form of evidence‐
based guidelines.
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Risk management is widely used across a variety 
of settings to identify, quantify, and characterize 
risks, and to institute measures to mitigate these 
risks. Such measures can be used to minimize 
medical errors in healthcare settings; limit 
financial liability in the business sector; mini
mize or eliminate work‐related or recreational‐
related injuries in industrial and leisure settings, 
respectively; reduce transportation‐related 
accidents in the airline, automobile, and rail
road industries; and for many other purposes. 
Because of the wide‐ranging scope of risk man
agement endeavors, the methods of assessing 
risk vary according to the specific setting. 
Similarly, the measures used to mitigate risk 
vary across settings, again depending on the 
specific risk being managed. While specific 
measures may vary from setting to setting, at 
their core, these risk mitigation measures 
involve a structured approach  –  generally in 
the form of some combination of policies, pro
cedures, processes, or engineering solutions  – 
designed to reduce or eliminate one or more 
specific risks.

Regarding the use of medicines, risk manage
ment is used to ensure that the potential bene
fits of a medicine exceed its potential risks, and 
to minimize those risks throughout the life cycle 
of the product. As in other fields, risk manage
ment of medicines is not new, though it has 
received increased attention in the past few 
decades. Current understanding of the risks of 
medicines is based on the premise that the risk 
of a medicine derives not only from the inherent 
properties of the medicine, but also from how 
the medicine is used in actual clinical practice. 
Thus, current risk management efforts are 
geared toward understanding not only the harm 
that can result from the intrinsic properties of 
the medicine, but also the harm that can result 
from inappropriate use of a medicine in a com
plex medical care system.

In the context of human medicines in the US, 
the Food and Drug Administration (FDA) has 
defined risk management as:

an iterative process of 1) assessing a prod
uct’s benefit–risk balance, 2) developing and 
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implementing tools to minimize its risks 
while preserving its benefits, 3) evaluating 
tool effectiveness and reassessing the 
 benefit–risk balance, and 4) making 
adjustments, as appropriate, to the risk 
minimization tools to further improve the 
benefit–risk balance. This four‐part process 
should be continuous throughout a product’s 
lifecycle, with the results of risk assess
ment informing decisions regarding risk 
minimization. [1]

In the European Union (EU), the concept of risk 
management is established in legislation. Article 
1 (28b) of Directive 2001/83 EC, as amended, 
defines a risk management system as “a set of 
pharmacovigilance activities and interventions 
designed to identify, characterize, prevent or 
minimize risks relating to a medicinal product 
including the assessment of the effectiveness of 
those interventions” [2]. Thus, in the EU, risk 
management incorporates:

 ● the identification or characterization of the 
safety profile of the medicinal product, with 
emphasis on important identified and impor
tant potential risks and missing information, 
and also on which safety concerns need to be 
managed proactively or further studied (the 
“safety specification”);

 ● the planning of pharmacovigilance activities 
aimed at characterizing and quantifying 
clinically relevant risks, and identifying new 
adverse reactions (the “pharmacovigilance 
plan”); and

 ● the planning and implementation of risk 
minimization measures, including the evalua
tion of the effectiveness of these activities 
(the “risk minimization plan”).

As a result, in both the US and the EU, risk 
management measures are iterative processes 
frequently leading to the generation of similar 
data needs and conceptually similar risk man
agement tools.

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

All medicines have risks. For marketed medi
cines, at the time of authorization the benefits 
of the medicine are judged to outweigh the 
risks, provided that the medicines are used 
according to the licensed or approved indica
tion. Knowledge of a medicine’s benefits and 
risks is developed prior to approval, and refined 
after approval when the exposed population, as 
a result of “real‐world” usage, increases and 
becomes more heterogeneous, with potential 
diminishing responsiveness to the beneficial 
effects and increasing likelihood of detecting 
adverse drug effects. The traditional tools used 
to manage the risks of prescription medicines 
have been the prescription status itself (i.e., 
whether the drug was approved for prescrip
tion‐only use or whether it could be obtained 
without a prescription), labeling for healthcare 
professionals, and the requirement that phar
maceutical manufacturers monitor and report 
to regulatory authorities adverse events that 
occur with use of the medicine once it is 
marketed. In the past few decades, additional 
steps or minimization strategies have been 
undertaken to manage more proactively the 
risks of certain medicinal products. These meas
ures have included increased communication to 
patients as well as to healthcare professionals, 
and measures to restrict, in various ways, the 
usage of certain medicines. This chapter will 
explore these efforts in more detail.

The Complexities of the Medication 
Use System

The medication use system is a complex network 
of stakeholders, including patients, their families, 
physicians, nurses, pharmacists, other health 
professionals, healthcare organizations and 
healthcare facilities (e.g., hospitals, clinics), 



Clinical  roblems too eoAddressed by  harmacoepidemiologic Research 583

manufacturers, and regulatory agencies. Not 
only does each individual stakeholder have a 
role in ensuring the safe use of a medicine, the 
interactions among the various stakeholders are 
crucial to ensuring the safe use of a medicine. 
Thus, risk management strategies must con
sider not only the individuals and groups, but 
also the entire medication use system. The com
plexity of the medication use system implies 
that individual risk management measures must 
be directed at the appropriate part or parts of 
the system specific to the risk being managed. 
The accurate identification of these parts of the 
system will vary from one drug to the next, will 
depend on the specific risk, and will depend on 
how the medicine is used within the healthcare 
system. In this context, the approach to risk 
management must span the entire life cycle, be 
proactive, be scientifically driven, engage all 
relevant stakeholders, and consider all environ
ments where the medicine will be used (e.g., 
hospitals, long‐term healthcare facilities, physi
cians’ offices, outpatient home care).

Because the risks of medicines can occur at 
any point in the complex medication use sys
tem, managing the risks of medicines requires 

that the entire medication use system be 
involved. Involvement of the entire system can 
pose challenges, and some parts may be harder 
to involve than others. It is difficult, though 
perhaps not impossible, to compel each part of 
the system to do what it must to manage the risk 
of a medicine. While the involvement of the 
entire system is a strength of risk management 
systems, reliance on each part of the system is a 
limitation.

Sources of Risk from Medical Products

There are several sources of risks from medical 
products (Figure  24.1). The known risks of a 
product are based on prior experience or, in 
some cases, on the pharmacologic or other 
properties of the medicine (e.g., the dosage or 
route of administration). In some cases these 
risks are preventable, while in others they are 
not. Preventable risks can occur when a product 
is administered under a condition of use that 
imparts a risk that would not be present under a 
different condition of use. For example, if drug A, 
when used in combination with drug B, results 
in an unacceptable risk that is not present when 

Known Side Effects

Unavoidable

Medication Errors Quality Defects

Preventable
Adverse Events

Remaining
Uncertainties:

• Unexpected side effects
• Unstudied uses

• Unstudied populations

Injury or Death

Avoidable

Figure 24.1 Sources of risk from medical products.
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either drug is used alone, this unacceptable risk 
is preventable by ensuring that drug A and drug 
B are never co‐administered. Contraindicating 
concomitant use is a regulatory step that can be 
used to warn against concomitant use; actual 
avoidance of concomitant use can only be 
achieved by health professionals’ adherence to 
this labeled contraindication. Risk management 
efforts beyond approved labeling such as addi
tional targeted communication can be used to 
further minimize preventable adverse events.

Unavoidable risks are those that might occur 
when all the known necessary conditions for 
safe use of a product are followed. In these 
circumstances, risk minimization activities 
might be directed toward identifying the adverse 
consequences as early as possible, with the aim 
of preventing more serious harm. For example, 
a drug may be known to cause hepatic damage, 
but its occurrence in a specific patient may not 
be predictable or preventable. In this case, 
risk minimization activities might be directed 
toward regular monitoring of hepatic enzyme 
levels to identify any hepatic damage as early as 
possible, and thus to stop or modify the treat
ment to prevent serious hepatitis or hepatic 
failure.

In addition, risk management efforts can be 
used to ensure that medicines are not adminis
tered to patients at higher risk for a serious 
adverse event, or that they are administered 
only to patients for whom the benefits outweigh 
the risks, including the unpreventable risks. 
Thus, removing all risks from the use of all med
icines is not the overall goal of managing the 
risks of medicines. Rather, careful consideration 
of the benefit/risk balance, both for the individual 
patient and for the target population, is an 
important consideration of risk management.

Managing the known risk of medicines is a 
core activity of risk management programs. For 
most products, this can be achieved through 
product labeling; in some cases, as will be dis
cussed later in this chapter, additional steps are 
needed. Other sources of preventable adverse 

events are medication errors and, occasionally, 
injury from product quality defects.

Medication errors (also see Chapter  41) are 
defined by the National Coordinating Council 
on Medication Error Reporting and Prevention 
(NCCMERP) as follows:

A medication error is any preventable event 
that may cause or lead to inappropriate 
medication use or patient harm while the 
medication is in the control of the health care 
professional, patient, or consumer. Such events 
may be related to professional practice, health 
care practice, procedures, and systems, 
including prescribing; order communication; 
product labeling, packaging, and nomencla
ture; compounding; dispensing; distribution; 
administration; education; monitoring; and 
use. [3]

A similar definition is in place in the EU [4].
Because they are preventable, medication 

errors are well suited to risk management 
efforts. Each year in the US, serious preventable 
medication errors occur in 3.8 million inpatient 
admissions and 3.3 million outpatient visits 
[5,6]. A landmark study published in 2000 esti
mated that as many as 98 000 people die each 
year in the US from medical errors occurring in 
hospitals. The report described medication 
errors as a significant public health concern that 
accounts for an estimated 7000 deaths annually 
in the US [7]. In 2011, the Network for Excellence 
in Health Innovation reported that outpatient 
and inpatient preventable medication errors 
cost approximately $20 billion each year [8]. 
A  recent study in the EU showed a steady 
increase in the number and proportion of 
Individual Case Safety Reports (ICSRs) of med
ication errors in the EudraVigilance database 
between 2002 and 2015, to a peak of 5% of all 
ICSRs in the database. Several factors were felt 
to be responsible for this increase, including 
greater awareness of the need to report medica
tion errors, guidance on coding for medication 
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error events, and increased communication to 
patients and healthcare professionals, as well as 
the general public, regarding the importance of 
reporting medication errors [9].

Potential sources of medication errors can 
include the product’s proprietary (brand) name 
(if it is similar to the name of another medicine, 
especially if the two medicines have other simi
lar characteristics), the established (generic) 
name, and the design of the drug product and 
its container closure system or the container, 
carton, and packaging. Errors can also occur if 
the product labeling for healthcare profession
als or patients is not clear. Because medication 
errors can occur anywhere in the medication 
use system, efforts to minimize the risk of 
medication error must involve multiple 
stakeholders.

As already noted, other sources of preventa
ble adverse events include injury from product 
quality defects. Product quality problems are 
unusual in both the US and the EU because of 
the great attention paid to product quality 
control and quality assurance during manu
facturing [10,11]. A discussion of measures to 
mitigate manufacturing‐associated risks is 
beyond the scope of this chapter.

Because not all the risks of a medicine are 
known at the time the product is approved, risk 
management efforts must continue throughout 
the life cycle of a medicine, as discussed shortly.

Risk Management Strives to Be 
Scientifically Driven

Risk management plans can be scientifically 
driven, to the extent that there is available 
science to inform each component of the plan. 
The science of risk identification and risk assess
ment, while still evolving, is well developed, and 
indeed much of this book describes this science. 
The science of risk communication is also well 
developed in general, though its application to 
communicating the risks of medicines is still 
being developed (see Chapter 39). The scientific 

basis of minimizing risks of medicines is 
much newer, as is the science of assessing the 
impact of risk management plans. The scien
tific approach to risk management requires the 
integration of data from various studies and 
disciplines that, when taken together, can pro
mote the safe and effective use of a medicine. 
The scientific approach also compels manufac
turers and regulators to examine, throughout 
the life cycle of the medicine, the critical gaps in 
knowledge that exist. Such gaps may concern 
the pharmacologic properties of the medicine, 
clinical outcomes related to its use, including 
that in higher‐risk populations, or the way the 
medicine is used in actual practice. Any of these 
areas could lead to further postapproval studies, 
the results of which would lead to changes in 
labeling or other changes that could enhance 
the safe and effective use of the medicine. 
However, as noted in the example of cisapride in 
Chapter  8, changes in labeling do not always 
result in changes in prescribing practices.

Risk Management Proceeds 
throughout a Product’s Life Cycle

Knowledge about a product’s safety profile is 
always limited to some extent at the time of 
product approval, because of recognized practi
cal limitations in the drug development process. 
For example, rare side effects and long‐term 
side effects may not be known when a product is 
approved because of the relatively small size and 
short duration of clinical trials. Because some 
populations are generally not studied in preap
proval clinical trials (e.g., pregnant women, 
children, people with diseases or conditions 
other than the studied indications for use) or 
are minimally studied (e.g., older adults), side 
effects may be discovered if these groups are 
treated with a product after it goes on the mar
ket. Already approved drugs and biologics may 
receive approval for new uses or in new patient 
populations, which may necessitate increased 
vigilance years after the drug was originally 
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approved. Even after a product has been 
marketed for a decade or more, uncertainties 
will remain. For example, a study of new molec
ular entities approved for use by the US FDA 
between 2002 and 2014 indicated that safety‐
related labeling changes were being made as 
long as 13 years after the products were approved 
[12]. Because of this life‐cycle approach, all 
stakeholders – patients, practitioners, manufac
turers, and regulators  –  must remain vigilant 
about the benefit/risk profile of a medicine. 
Such vigilance is critical for informed decision 
making, which is an important component 
of  the safe and effective use of medicinal 
products.

Risk Management Applies to All Medicines

As has already been stressed, all medicines 
have risks. No medicine is free from harm in all 
persons who take it under all actual conditions 
of use. The magnitude, frequency, and severity 
of risks vary from medicine to medicine. For 
example, at one end of the spectrum, neutrope
nia is commonly associated with chemotherapy 
and other immunosuppressive agents and is a 
major risk factor for the development of infec
tions. Strategies to monitor, prevent, and/or 
manage these infections can lead to improved 
outcomes and will ensure the benefits of these 
drugs continue to outweigh the risk. At the 
other end of the spectrum, many topical over‐
the‐counter (OTC) medicines have very few 
side effects. The management of these risks is 
clearly much less intense. In the middle of this 
spectrum are the vast majority of medicines, 
mainly prescription medicines, for which a 
measured approach to risk management must 
be taken.

For most prescription medicines, the most 
common side effects are generally not life 
threatening. Rather, many are mild and self‐
limited. Others are bothersome, and some are 
so clinically significant that they require the 
medicine to be discontinued. Examples of these 

types of side effects whose significance depends 
upon severity are nausea, headache, and rash. 
For many medicines, the most serious side 
effects are relatively rare. Examples of rare, life‐
threatening side effects are acute liver failure, 
aplastic anemia, torsade de pointes, progressive 
multifocal leukoencephalopathy, cytokine release 
syndrome, and certain serious skin reactions, 
such as Stevens–Johnson syndrome. Along this 
continuum are other side effects that may be 
severe but generally not life threatening, and 
that are also more common than the most 
serious side effects such as tendon rupture, 
narcolepsy, and vision loss.

Over‐the‐counter medicines are drugs that 
have been found to be safe and appropriate for 
use without the supervision of a healthcare 
professional such as a physician, and they can 
be purchased by consumers without a prescrip
tion. Most OTC medicines are for symptomatic 
relief of conditions that consumers can diagnose 
and manage themselves. When these medicines 
are taken properly, most of their side effects are 
generally mild. However, there can be serious, 
even life‐threatening or fatal, side effects of 
OTC medicines when they are not taken prop
erly. For example, acetaminophen (paracetamol), 
one of the most widely used OTC analgesics, is 
a generally very safe when taken as recom
mended on the product’s label. Overdose, how
ever, can result in acute severe liver injury, which 
can lead to acute liver failure, and sometimes 
death or the need for liver transplantation. 
While this is a rare complication relative to the 
widespread use of acetaminophen, the fact that 
the use is so widespread means that this drug is 
the leading cause of drug‐induced acute liver 
failure in the US [13].

While much attention is paid to medicines 
that are known to have life‐threatening, fatal, or 
disabling side effects at therapeutic doses, there 
are also risks from medicines that do not have 
these serious side effects when taken properly, 
but which can cause serious side effects when 
taken improperly. For example, bromfenac 
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sodium capsules, an oral nonsteroidal anti‐
inflammatory agent, was introduced in the US 
in July 1997 for treatment of pain for 10 days or 
less. Despite the labeled recommendation for a 
treatment duration of 10 days or less, many 
patients received treatment courses of 30 days 
or longer. The FDA received several reports of 
hepatotoxicity resulting in death or liver trans
plantation attributable to bromfenac; in all 
cases, the patients had taken the medicine for 
longer than the recommended 10‐day duration 
of treatment. In July 1998, the manufacturer 
voluntarily withdrew bromfenac sodium cap
sules from the US market [14]. This example 
illustrates that improper use of a medicine – in 
this case treatment durations that exceeded the 
labeled duration of use – can give rise to serious 
adverse events.

Risk Management Is a Proactive Process

Risk management systems must be proactive to 
be optimally effective. The current framework 
of risk management systems allows a proactive 
approach in many ways. The ability to identify 
risks in the preapproval period enables manu
facturers to work with regulators on risk 
management planning and risk minimization 
strategies during the drug development phase. 
A proactive approach in the postapproval phase 
demands that manufacturers, regulators, and 
practitioners agree on a system to identify new 
risks, manage known risks, assess the effective
ness of the risk management efforts, and modify 
them as needed. Traditional pharmacovigilance 
systems based on spontaneous reports are 
sometimes referred to as “passive” systems (also 
see Chapter  10). While such systems can be 
used in reactive ways, these systems, along with 
other sources of postapproval drug safety data, 
can be used in proactive ways to learn as much 
about the safety of a medicine in as efficient a 
manner as possible.

Enhanced surveillance systems can be used 
to  proactively monitor the safety profile of a 

medicinal product following licensure. An 
example of an enhanced surveillance system 
in  EU is based on the European Medicines 
Agency’s (EMA) seasonal influenza vaccines 
requirements. Flu vaccine manufacturers are 
operating surveillance systems enhancing the 
reporting of adverse reactions by providing 
vaccination cards to all vaccinees in a region, 
and raising the awareness of healthcare profes
sionals of the events that might appear following 
vaccination. By collecting in near real time the 
usage of the vaccine, the manufacturers are 
able to monitor the safety profile of the vaccine 
and rapidly report any emerging signals to 
regulators, allowing suitable actions to be taken 
in the same vaccination season. Designs of such 
a system vary by manufacturer, but range from 
passive reporting systems with near‐real‐time 
estimation of the denominator, to solicited 
reports monitoring, to observational cohort 
studies and even clinical trial designs. A carefully 
designed risk management plan can identify or 
further characterize risks, communicate and 
manage risks using evidence‐based tools when 
possible, and assess the effectiveness of these 
efforts in a proactive way. Like the lifecycle 
approach noted earlier, the proactive nature of 
risk management planning demands the con
stant vigilance of all stakeholders.

 Risk Management Activities

Managing the risks of medicines is not a single 
activity or the province of a single profession 
or stakeholder group. Rather, it is an iterative 
process that involves a set of interrelated activities. 
In broad categories, these activities include 
risk assessment, risk minimization, and evalua
tion of risk minimization strategies with adjust
ments, as appropriate, to the risk minimization 
strategies to optimize the benefit/risk balance of 
the medicinal product. These activities occur 
throughout the product’s life cycle, and are 
adjusted and refined as new risk assessments 
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provide new information, and as evaluations of 
risk mitigation activities provide data upon 
which risk mitigation activities can be improved 
or modified. Conceptually, for each risk the 
iterative process starts during clinical develop
ment and repeats following authorization.

In the EU, most types of activities are con
centrated around important milestones in the 
lifecycle of the product:

 ● At initial approval, when the risk assessed 
using the information gained in the pre
clinical and clinical phase is balanced with 
choosing the optimal indication, supplemented 
with risk minimization recommendations 
in the product information or additional 
activities.

 ● At two other important fixed milestones in the 
postauthorization phase: (i) when the benefit/
risk balance of the product is reevaluated with 
the first renewal of marketing authorization 
(MA); and afterwards, (ii) during the first peri
odic safety update report (PSUR) evaluation 
(i.e., at 8 years in the life cycle of the product). 
The important reevaluations of risks are con
current with the evaluation of the effectiveness 
of the ongoing risk minimization activities; as a 
result, recommendations to optimize the safe 
and effective use of the medicinal product are 
issued.

 ● At other minor milestones for risk minimi
zation review and periodic benefit/risk 
evaluations, or at major changes in product 
use (e.g., an extension of indication to a new 
population).

Risk Assessment

Risk assessment consists of identifying, charac
terizing, and quantifying the risks associated 
with the use of a medicine, and evaluating their 
importance in relation to the benefit/risk balance. 
The nature, frequency, and severity of the risks 
are assessed. In addition, if possible, the condi
tions under which the risk is more likely to 

occur are identified. For example, if a drug 
causes a serious adverse reaction only when 
used in conjunction with another specific medi
cine, it is important to identify this drug–drug 
interaction, so that risk management efforts can 
be directed at minimizing the use of the two 
medicines together.

Risk assessment occurs throughout the 
premarketing and postmarketing phases of a 
product’s life cycle. Premarket, or preapproval, 
risk assessment is generally a very extensive 
process that involves preclinical safety assess
ments (e.g., animal toxicology testing), clinical 
pharmacology assessments, and clinical trials. 
Animal toxicology studies are performed prior 
to the first human exposure to a new medicine 
to establish the general toxicity profile of the 
drug and to guide initial human dosing. Further 
animal studies continue throughout the drug 
development process, and address areas such as 
toxicity (e.g., genotoxicity, carcinogenicity, 
immunotoxicity, and reproductive toxicity) or 
safety pharmacology (e.g., cardiovascular system, 
including electrocardiographic QT interval pro
longation, nervous system). Additional animal 
studies may be needed in specific situations. 
In addition to animal studies, preclinical testing 
typically involves the use of in vitro bacterial 
and cell preparations, which can look at effects 
on enzymes, metabolic pathways, receptors, 
mutability, and some interactions.

While preclinical research answers basic 
questions about the safety of a medicine, it is 
not a substitute for clinical studies to assess 
how the medicine interacts with the human 
body. Clinical pharmacologic studies establish 
the pharmacokinetic profile of the medicine 
and exposure–response relationships, and can 
be used to assess drug–drug interactions. 
Pharmacokinetic characteristics of the medi
cine under certain clinical situations, such as 
impaired renal function or impaired hepatic 
function, can also be assessed. Because proper 
dosing of a medicine is an important compo
nent of the safe use of the medicine, clinical 
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pharmacologic studies are an important com
ponent of a medicine’s risk assessment.

Preapproval clinical trials provide the efficacy 
and safety information that form the basis for 
an approval decision. The preapproval safety 
assessment generally quantifies and character
izes the common adverse events associated with 
a medicinal product. Depending on the number 
of subjects exposed prior to approval, less com
mon adverse events might also be detected. It is 
important to pay careful attention to the design 
of the preapproval safety program to maximize 
the information gained from clinical trials. The 
extent of safety information collected prior to 
approval is a function of the number of patients 
studied, the duration of treatment, the number 
of scheduled visits at which safety information 
is collected, and the specific safety evaluations 
performed. The design of the preapproval safety 
data collection effort depends, in turn, on a 
number of factors, including the novelty of the 
product, the relative safety of any available alter
native treatments, the intended population, the 
condition being treated, and the intended 
duration of use. The preapproval clinical safety 
program should also explore safety‐related dose 
effects and, for chronically administered medi
cines, the temporal profile of adverse events. 
It should use the available data to explore 
unanticipated drug–drug interactions, drug–
demographic interactions, drug–disease inter
actions, and drug–herbal interactions. In some 
drug development programs, comparative 
safety data can be obtained if an active compar
ator is used; however, in the EU and the US 
the licensing decision relies on the individual 
benefit/risk profile of the medicine.

Because even large clinical development pro
grams cannot identify all the risks associated 
with a product, it is imperative that risk assess
ment continue in the postapproval period, when 
large numbers of persons will be exposed to 
the medicine, including many with co‐morbid 
conditions or on concomitant medicines not 
present in clinical trials. Risk assessment is also 

imperative for products intended to treat rare 
diseases where smaller numbers of subjects are 
studied, or products intended to respond to 
emergencies, including terrorist events, where 
approval may be based on evidence of effective
ness from appropriate animal studies when 
human efficacy studies are not ethical nor fea
sible. In either scenario, greater risks may be 
accepted for a treatment that is an advantage 
over available therapy or addresses an unmet 
medical need.

Postapproval risk assessment can be based on 
either nonexperimental data or on clinical trial 
data. Nonexperimental data include individual 
case reports of suspected adverse drug reac
tions (spontaneous reports), case series of such 
reports, databases of spontaneous reports, 
disease‐based registries, drug‐based registries, 
electronic medical records systems, adminis
trative claims databases, drug utilization 
databases, poison control center databases, and 
other public health databases that track usage of 
the medicine. The use of many of these data 
sources, and the methods underlying their use, 
are covered in other chapters of this book (see 
Chapters 10–17), and will not be considered 
further here. For the purposes of this chapter, it 
is important to note that new risks of a medicine 
will continue to be recognized after the drug is 
on the market. Some of these risks will be suffi
ciently serious to alter the benefit/risk balance 
of the medicine, such that postapproval regula
tory action will be needed. Possible regulatory 
actions include updates to the professional labe
ling, development of or updates to the patient 
labeling, use of additional means of communicat
ing risk to patients or healthcare professionals, 
introduction of additional risk minimization 
activities (e.g., checklists or monitoring require
ments), restrictions on the use of the medicine, 
or, rarely, suspension or withdrawal of the 
marketing authorization.

Risk assessment of medicines, in both the 
preapproval and postapproval phases, often 
concentrates on the identification of adverse 



Risk Management590

reactions that are related to the medicine when 
used according to its labeled instructions. These 
newly identified adverse reactions can either 
be an exaggeration of the pharmacologic effect 
of the drug or an idiosyncratic reaction, the 
result of a previously unknown drug–drug 
interaction, or an adverse effect in a specific 
patient population.

It is also important for risk assessments to 
identify medication errors and the potential 
for  medication errors (see also Chapter  41) 
throughout the product’s life cycle. The identifi
cation and assessment of medication errors are 
different in some ways from the identification 
of adverse drug reactions. Proactive risk assess
ments that reflect human and environmental 
factors in drug product use should be employed 
from the earliest stages of product design 
to help anticipate potential medication errors. 
Ideally, proactive risk assessments should 
employ analytic approaches, for example failure 
mode and effects analysis (FMEA), formative 
evaluations, or simulated use testing. Consi
dering the end users’ needs, environments of 
use, and contexts of use in the development and 
design of a drug product alongside commercial
ization aspects can help reduce postapproval 
safety issues [15]. After approval, the identifica
tion of a medication error generally requires 
that someone report that an error has occurred, 
usually in the context of reporting an adverse 
reaction following the use of the medicine, 
though the initial report may not elucidate the 
reason for the error.

Because the medication use system is complex, 
the mere identification of an error (e.g., the 
patient received twice the intended dose) is 
usually not sufficient to understand the reason 
for the error. Since medication errors are, by 
definition, preventable events, risk assessment 
activities must focus on identifying the specific 
reason(s) for, or cause(s) of, the event. In this 
situation, it may be essential to conduct a root 
cause analysis (RCA) to understand the causes 
(i.e., the how and why) of the problem or 

medication error. This is an important tool to 
evaluate postmarketing problems or medication 
errors, and when evaluating proposed remedies 
for those problems or errors. Knowledge gained 
from evaluating the RCA of a known postmar
keting medication error can also be applied to 
the premarket safety assessments of other prod
ucts. The identified reasons and causes may 
relate to certain characteristics of the medicinal 
product itself, to the larger medication use 
system for the product, or to an interaction of 
the two. Understanding how and why medica
tion errors occur and what would be the impact 
on patients are essential to any risk assessment. 
Only once the specific set of reasons and causes 
that led to the error are understood can appro
priate risk mitigation and risk communication 
activities be developed.

An EU example of giving the medication to 
the wrong patient was observed during the 
clinical development of an autologous advance 
therapy medicinal product. The root cause identi
fied was a weak identification system, relying on 
the initials of the patient and treating physician. 
Once the identification system was improved 
by using a unique traceability code, from 
 harvest to implantation, no further such medi
cation errors occurred. Additional observed 
examples of medication errors and the risk 
minimization activities put in place are pro
vided in the EU good pharmacovigilance 
practice (GVP) guidelines [16].

Risk Minimization

Risk minimization or mitigation refers to a set 
of measures or interventions intended to prevent 
or reduce the occurrence of adverse reactions 
associated with exposure to a medicine, or to 
reduce the severity or impact on the patient 
should adverse reactions occur. Appropriate 
planning of risk minimization/mitigation allows 
for medicines with considerable risk to be 
approved and maintained on the market with a 
positive benefit/risk balance. The range of risk 
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mitigation activities varies from one country or 
region to the next, but certain common themes 
emerge.

First, many aspects of the modern drug regu
latory system are, in fact, risk mitigation activi
ties. The very fact that a medicine has to be 
approved is, in many ways, the most fundamen
tal risk mitigation activity, in that it prohibits 
the marketing of medicines that have not been 
judged to be safe and effective, thus virtually 
eliminating the risks of medicines being legally 
marketed for which there is no demonstrated 
benefit. The requirement that certain medicines 
be available only by prescription is another form 
of risk mitigation. The premise underlying the 
prescription‐only status of a medicine is that 
some medicines are potentially harmful or the 
method of their use is not safe without the 
involvement of an appropriately qualified 
healthcare professional, whose judgment can be 
used to ensure that, for a particular patient, the 
potential benefits outweigh the potential risks.

Risk Communication
Communicating information about the benefits 
and risk of medicines is central to minimizing 
the risks of these products. Risk communication 
is a broad field, and a full discussion is beyond 
the scope of this chapter (also see Chapter 39). 
Communication has traditionally been directed 
toward healthcare professionals, but in recent 
years increasing attention has been paid to com
munications directed toward patients and 
consumers.

The principal form of communication to health
care professionals in the US is the product’s 
approved professional labeling, which is designed 
to present to the healthcare professional 
information needed to prescribe the medicinal 
product in such a way that the potential benefits 
outweigh the potential risks. In the EU, this pro
fessional information is known as the Summary 
of Product Characteristics (SmPC).

There are several types of information in the 
professional label that can mitigate risk. First, 

the label often contains information on those 
clinical situations in which the drug should not 
be used, or should be used only with extreme 
caution. Second, the label contains information 
about the known risks of the medicine. If pre
scribers are aware of these risks, they can judge 
the individual benefit/risk balance for the 
patient and decide if the medicine is the best 
choice available; they can also advise patients 
on the appropriate symptoms to look for when 
taking the medicine. Upon hearing of these 
symptoms from patients, prescribers can recog
nize a potential adverse drug reaction and take 
appropriate action, such as changing the dose 
or stopping the medicine. Third, the label con
tains information about the conditions of safe 
use of the medicine, such as the proper dosing 
(including, when applicable, the dose adjust
ments needed for renal and hepatic impairment 
or dose adjustments based on age), drug–drug 
interactions, drug–disease interactions, use 
in  pregnant or lactating women, and use in 
other specific clinical situations or special 
populations.

Additional communications to healthcare 
professionals come in the form of “Dear 
Healthcare Professional Letters,” “Dear Doctor 
Letters,” or “Direct Healthcare Professional 
Communication.” These letters, typically issued 
by a medicine’s manufacturer, are usually one to 
a few pages in length, and generally focus on 
specific, newly identified safety information. 
The nature of the risk is explained, and a sum
mary of the changes to the product label or 
SmPC is often included. The letter usually high
lights actions that the healthcare professional 
should take in prescribing and dispensing the 
medicinal product, as well as other measures 
that can help ensure the product’s safe and 
appropriate use. Full prescribing information is 
generally attached, so that prescribers can put 
the new information into context.

In the EU, these letters are reserved for emerg
ing postmarketing safety issues. The letters can 
be either requested by a regulatory authority, 
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with the content agreed as part of the safety 
review, or voluntarily proposed by the manufac
turer. In the latter case, the manufacturer must 
notify the competent regulatory authorities of 
its intention to distribute the letter, but more 
often requests the text to be approved, as this 
enforces the message to healthcare profession
als that the text has had regulatory review and 
endorsement.

Labeling directed toward patients and con
sumers is also a risk mitigation tool, in that it 
highlights basic information necessary for the 
safe use of the product, and often provides 
instructions for actions to take when certain 
symptoms are present. Information for patients 
and consumers is relevant for both prescription 
and nonprescription medicines.

In the US, information to patients can come 
in a variety of forms. One common form is 
product‐specific information directed toward 
patients. This can take the form of approved 
patient labeling, which is developed by the 
manufacturer and reviewed and approved by 
the FDA. Examples of approved patient labeling 
include the Medication Guide, a Patient Package 
Insert or Instructions for Use. Medication 
Guides are used when there is a need to com
municate certain safety information, or when 
certain conditions of safe use must be high
lighted. By regulation, the FDA requires that 
Medication Guides be issued with certain pre
scribed drugs and biologic products when the 
Agency determines that:

 ● the drug product is one for which patient 
labeling could help prevent serious adverse 
effects;

 ● the drug product is one that has serious risk(s) 
(relative to benefits) of which patients should 
be made aware because information concern
ing the risk(s) could affect patients’ decision 
to use, or to continue to use, the product;

 ● the drug product is important to health and 
patient adherence to directions for use is 
crucial to the drug’s effectiveness.

The format and content of a Medication 
Guide as well as the distribution requirements 
are set forth in regulation [17].

Patient Package Inserts are another form of 
FDA‐approved patient labeling. They differ 
from Medication Guides in several important 
respects: (i) their use cannot be mandated, 
except in certain circumstances; (ii) there are no 
specified requirements for content and format; 
and (iii) there is no requirement that they be 
distributed.

The Instructions for Use or IFU is a form of 
prescription drug labeling developed for use by 
patients for drug products with complicated or 
detailed patient‐use instructions. The primary 
purpose of an IFU is to provide detailed, action‐
oriented, step‐by‐step, written and visual 
instructions in a patient‐friendly manner. The 
IFU is intended to help administer drug prod
ucts safely and effectively. It is developed by the 
manufacturer, reviewed and approved by the 
FDA, and provided to patients when the drug 
product is dispensed.

Consumer Medication Information is an alter
native form of drug‐specific patient information 
used in the US. Unlike FDA‐approved patient 
labeling, Consumer Medication Information is 
neither developed by the product’s manufac
turer nor is it regulated by the FDA. Rather, it is 
developed by independent, commercial, third‐
party vendors who often sell this and other prod
ucts to pharmacies, and is then distributed to 
patients in pharmacies.

In the EU, all medicines are required to have a 
package leaflet, sometimes referred to as a 
patient information leaflet, which must be 
provided to the patient as part of the product 
packaging, or in exceptional circumstances 
(e.g., a pandemic) as a separate leaflet, or even 
as online information. This leaflet is based upon 
the information provided in the SmPC, but 
written in patient‐friendly language. There is a 
requirement that the package leaflet reflects the 
results of readability testing with an appropriate 
target group of patients/consumers and that the 
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results be provided to the competent regulatory 
authorities prior to authorization.

Both the SmPC and the package leaflet are 
approved by the competent regulatory authority 
at the time of authorization and require a 
specific procedure, involving evaluation of the 
reasons for change and agreement of the authority 
to the revised text, in order to change the con
tent. Who the competent regulatory authority is 
depends upon how the medicine is authorized. 
In the centralized procedure it is the European 
Commission, whereas for other methods of 
authorization it is the appropriate regulatory 
authority in the Member States.

For most prescription medicines, the prescrip
tion status, the product information for health
care professionals and patients, and the labelling 
are sufficient risk minimization measures to 
ensure that the benefits of a medicine outweigh 
its risks. In some cases, additional communica
tion measures are needed.

Regulatory guidelines do not provide clear 
criteria or recognized algorithms to establish 
when additional risk minimization is warranted 
and what tools are best suited to do so. However, 
accurate recognition of important risks that 
need to be minimized is the basic starting point, 
and prioritization of safety concerns should 
take into account frequency, seriousness, sever
ity, impact on public health and preventability. 
In addition, the burden of imposing additional 
risk minimization on stakeholders and the 
healthcare system should be balanced with the 
expected reduction of the frequency and/or 
severity of the targeted risks.

If additional measures are utilized, they are 
generally designed to address one, or at most a 
few, specific important risks associated with a 
medicine. While specific measures may differ 
from one country or region to the next, these 
measures may include focused risk information 
targeted at practitioners that are likely to pre
scribe the medicine or care for patients who 
are treated with the medicine. Specific risk 
information may also be targeted at healthcare 

professional societies to share with their mem
bers. The types of communication can include 
letters or other educational tools, for example a 
prescriber checklist or an educational brochure. 
Communication for patients can include a dos
ing card for medicines with complicated dosing 
instructions or a patient alert card. In some 
cases, the communication is focused principally 
on the nature of a serious risk, so that patients 
and prescribers can make an informed decision 
as to whether the potential benefits outweigh 
the potential risks in their individual situation. 
In other cases, the communication focuses on 
both the nature of the risk (e.g., risk factors, pre
ventability, early signs and symptoms) and the 
specific steps that can be taken to prevent the 
event, or particular monitoring that should be 
carried out to detect the adverse event.

The extent to which specific information 
about the risk needs to be communicated will 
depend upon the context in which the product 
is used. For example, specific activities beyond 
the product information for a drug which has the 
potential to prolong the electrocardiographic 
QT interval will probably not be necessary if the 
medicine is one intended for use only by cardi
ologists. However, if the same risk occurs in a 
drug used by oncologists, additional activities 
targeted at informing prescribers of the need for 
periodic monitoring of heart function, and the 
risk of concomitant use with other QT interval‐
prolonging drugs, might be appropriate. In cer
tain cases, these additional communication 
measures may be required as part of a formal 
risk minimization plan in the EU, or risk evalua
tion and mitigation strategy (REMS) in the US.

Regulatory agencies have also been engaging 
in increasing efforts to communicate the risks of 
medicines. The FDA’s primary tool for commu
nicating important new and emerging safety 
information about a medicine is through a Drug 
Safety Communication or DSC. DSCs highlight 
new safety issues that pose potentially serious or 
life‐threatening risks or adverse events, about 
which the FDA thinks patients and healthcare 
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professionals should be informed. In establishing 
this system, the FDA recognized that there is a 
tension between providing early notification 
about potentially important safety information 
on the one hand, and being certain about the 
findings on the other. Because analyses and 
interpretations of drug safety information are 
often not clear cut, communication of findings 
requires a balanced and impartial approach.

In the EU, the competent regulatory authori
ties communicate drug safety information using 
different methods, which depend upon what 
has been established for the individual country. 
EMA plays a central role in coordinating these 
communications. When a drug safety issue 
has been discussed and agreed by the 
Pharmacovigilance Risk Assessment Committee 
(PRAC) or together with the Committee for 
Human Medicinal Products (CHMP), EMA will 
issue a public statement on its website giving 
information about the medicine, the risks, and 
what is being done to mitigate them. In addition, 
if a Member State or the European Commission 
has referred a public health issue to the PRAC 
or CHMP for a scientific opinion, then the start 
and reasons for the referral are also announced, 
as well as the final conclusions.

EMA also coordinates the release of informa
tion in Member States to avoid different infor
mation appearing at different times across 
Europe. Information about every medicine 
(including the risks and benefits) authorized 
via the centralized procedure is provided 
online by the European Public Assessment 
Report (EPAR). This is a scientific document 
which summarizes the information that EMA 
evaluated in giving its opinion about the medi
cine and how the decision to give a positive or 
negative opinion regarding authorization was 
reached. The EPAR is updated throughout the 
life cycle of the medicine to reflect major changes 
in the product’s marketing authorization. In 
addition, the SmPC, package leaflet, labeling, 
risk management plan (RMP) summary, and 
conditions for marketing authorization also 

appear on the EMA website and similarly are 
updated throughout the life cycle of the medicine. 
The requirement for an assessment report to 
be  publicly available also applies to medicines 
authorized by other routes (e.g., national, mutual 
recognition, and decentralized procedures), but 
the exact format in which it appears will vary.

In addition to the mechanisms already listed, 
manufacturers use a variety of other commu
nication tools to reach practitioners and 
patients. These can include print and broad
cast advertising, websites, and other commu
nications via electronic social media. In many 
cases, these communications are simply a part 
of a manufacturer’s marketing program; in 
some cases, however, they may be a formal 
risk minimization strategy. In the EU, adver
tising of prescription‐only medicines directly 
to patients is prohibited.

Additional Risk Minimization Strategies
A variety of other minimization strategies can be 
employed when product labeling and alternative 
forms of risk communication are not sufficient. 
For example, drug product design features that 
predispose end users to medication errors may 
not always be overcome by product labeling or 
healthcare provider or patient education. It is 
therefore preferable to eliminate, or minimize to 
the extent possible, these hazards from the 
product design. It is not possible to predict all 
medication errors; however, medication errors 
can be minimized by conducting premarketing 
risk assessments to evaluate how users will 
interact with the medicinal product in various 
environments of use within the medication use 
system. Because medication errors can occur 
anywhere in the medication use system, efforts 
to minimize the risk of medication error must 
involve multiple stakeholders.

In the US, the FDA reviews proposed propri
etary names of medicinal products to ensure 
that these names are not similar in spelling or 
pronunciation to the proprietary or established 
names of other medicines. In addition, the FDA 
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reviews the proposed container labels, carton 
labeling, packaging, and product design to 
ensure that these do not have features that could 
cause or contribute to medication errors.

Similarly, in the EU medicines authorized 
through the centralized procedure have their 
invented (or brand) name approved by the 
(invented) name review group, which checks 
that there are no products licensed with similar 
names in the EU which could lead to confusion. 
In the centralized procedure, the European 
Commission (based on a scientific assessment 
by CHMP) issues one license which applies to 
all the Member States, Norway, Iceland, and 
Liechtenstein. The layout, format, and wording 
on the immediate and outer packaging of the 
product are also reviewed as part of the evalua
tion procedure of the medicine, and these form 
part of the authorization. Any change to any of 
these aspects requires regulatory review and 
agreement.

There are a variety of other strategies that 
can be used to mitigate risks associated with a 
medicine. For healthcare providers, this might 
include specialized training for certain products, 
such as one that requires unique administra
tion or insertion (e.g., implants). It may also 
include materials that facilitate discussions 
between healthcare providers (HCPs) and 
patients (or caregivers), such as prescriber–
patient agreements. For teratogenic medica
tions, it may include strategies to prevent fetal 
exposure to a medicine, including required 
pregnancy testing prior to prescribing or 
 dispensing the medicine to individuals who 
could become pregnant, as well as contracep
tive counseling and assurance that the patient 
is using measures to prevent pregnancy while 
taking the teratogenic medicine. Some medi
cines may require patient monitoring or periods 
of observation by a healthcare professional 
after administration, or the medicine may have 
to be administered in a certain type of health
care setting that is equipped to manage the 
serious adverse event.

Pharmacists may play an important role in 
verifying that the medicine is appropriate for the 
patient, verifying that certain safe use conditions 
have been met prior to dispensing the medicine, 
or providing special instructions for the prepara
tion or administration of the medicinal product. 
Pharmacists are also well placed to counsel 
patients at the point of dispensing on the use of 
their medicines, including other medicines or 
foods to avoid, special dosing instructions, or 
storage instructions if, for example, accidental 
overdose or diversion is a concern.

When determining the specific risk mitigation 
strategy, it is important to consider its goals 
and objectives. Interventions should be selected 
that can achieve those goals and objectives. As a 
starting point, the risk mitigation interventions 
undertaken in clinical trials should be evaluated 
to determine if those strategies were effective. 
There should be consideration of the healthcare 
providers likely to prescribe the medicine, the 
probable setting in which the medicine will be 
used, the population likely to use the medicine, 
and if those interventions would be reasonably 
reproduced in the setting of real‐world use. In 
some cases, such an evaluation may lead to the 
conclusion that the product can be safely and 
appropriately used with labeling alone. In other 
cases, the evaluation may lead to the conclusion 
that labeling is insufficient, and that additional 
risk mitigation strategies are necessary to ensure 
a positive benefit/risk balance.

Some risk minimization strategies may 
require that prescribing and/or dispensing be 
limited to those willing to undertake additional 
steps to ensure safe use of the medicine. 
Measures that restrict the way a medicine is 
prescribed or used may introduce complexity 
and may require coordination with patients, 
pharmacists, and other stakeholders, particu
larly when patients move between various care 
settings (e.g., from an outpatient setting to an 
inpatient care setting).

In the EU and the US, a controlled distribution 
system may ensure that the medicinal product is 
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traceable to the pharmacy dispensing the 
product, to prevent the misuse and abuse of the 
medicine. When required, a set of additional 
risk minimization activities in the form of a 
controlled access program seeks to minimize an 
important risk with significant public health or 
individual patient impact for a product with 
clearly demonstrated benefits, but which would 
not otherwise be available. Patients’ access to 
the medicine in such a system is contingent on 
fulfilling strict requirements before the medicinal 
product is used, such as clinical testing, comple
tion of an educational program, enrollment in a 
systematic patient follow‐up and data collection 
system, or availability of the medicine only 
from approved or certified pharmacies. The 
requirements can continue during treatment, 
by imposing specific tests or monitoring proce
dures. Since a controlled access program has 
large implications for all stakeholders, the use of 
these types of programs is generally limited and 
is guided by a clear therapeutic need for the 
product based on its demonstrated benefit (e.g., 
the medicine treats a serious disease without 
alternative therapies, or it treats patients who 
have failed existing therapies), the nature of the 
associated risk (e.g., the risk is life threatening), 
and the likelihood that this risk can be managed 
by such a program.

Evaluation of Risk Minimization 
and Mitigation Measures

Evaluation of risk minimization and mitigation 
activities is a critical component of a risk man
agement system that follows the risk assessment 
and risk minimization steps. It is also a relatively 
new endeavor in the context of the medication 
use system. The evaluation of a risk mitigation 
activity aims to ensure that the objectives of the 
risk mitigation measures are fulfilled and that 
the activities in place are proportionate, taking 
into account the benefit/risk profile of the 
medicinal product and the efforts required to 
implement these measures. Such an evaluation 

is closely related to risk assessment activities, 
but it also differs in the way in which it enables 
modifications of the initial measures, if war
ranted, to improve the risk minimization strategy 
in the context of an iterative process of evalua
tion, correction, and reevaluation throughout the 
life cycle of a medicinal product.

In the EU, the pharmacovigilance legislation 
explicitly requires the active monitoring of the 
outcome of risk minimization activities con
tained in the risk management plan, placing an 
obligation on the manufacturers and regulatory 
authorities to undertake this activity. In the US, 
the metrics of a REMS assessment plan are 
approved in advance of REMS implementation. 
Assessment reports are submitted by the manu
facturers 18 months and 3 years after the REMS 
is initially approved, and in the seventh year 
after the REMS is initially approved, with addi
tional dates if more frequent assessments are 
necessary to ensure that the benefits of the drug 
continue to outweigh the risks.

There are a number of different conceptual 
models published as guides for developing 
efficient methods for measuring the effective
ness of risk minimization strategies. Despite 
some difference in the approaches, all models 
have the following common principles:

 ● Robust risk minimization evaluation is longi
tudinal in nature.

 ● A multifaceted assessment is needed for a 
comprehensive risk minimization evaluation.

 ● There are some key elements aimed at evaluat
ing the implementation of risk minimization, 
such as:
1) enablers and barriers for optimal program 

delivery and success;
2) stakeholders’ knowledge, attitudes, and 

perception of risk;
3) intended and observed clinical behavior.

 ● Safety outcome data define the ultimate suc
cess of a risk minimization program.

 ● The unintended consequences of risk minimi
zation measures should be taken into account.
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First, evaluation of risk mitigation activities 
can assess if certain processes specified by the 
risk mitigation strategy are being followed. For 
example, if the risk mitigation strategy consists 
of providing patients with specific information 
about measures that can be undertaken to 
minimize a particular risk, this first process 
component of the assessment could consist of 
determining the proportion of patients who 
receive the information. The proportion of 
physicians aware of specific risk mitigation 
measures is also an example, as well as the 
proportion of physicians and other prescribers 
who received and who are using a specific risk 
minimization tool, such as a dosage card.

The coverage of a risk minimization tool 
generally does not require properly designed 
studies on a sampled population, as risk mini
mization tools are supposed to be distributed 
to all end users. However, monitoring of tool 
distribution can be required and estimates of 
coverage provided on the basis of agreed time 
frames. Results of inadequate distribution/
coverage should lead to reconsideration of the 
delivery channels employed or help to deter
mine whether a different tool format is required. 
Tool utilization can be measured using target 
audience surveys or via proxy indicators such 
as healthcare professionals’ requests for refills 
of consumable risk minimization items (e.g., 
checklists and forms). Results can be analyzed 
as a whole or stratified to show how specific 
subgroups are performing, with the aim of 
highlighting areas where coverage, awareness, 
or usage is poorer and needs to be improved.

Second, the evaluation of risk minimization 
measures can focus on whether the target audi
ences understood both the purpose of the risk 
minimization tools and their key messages. 
These messages often relate to the safety risks, 
such as important signs and symptoms, or to 
actions that should or should not be taken, such 
as performing laboratory tests or not prescrib
ing a drug to specific subpopulations. Common 
process indicators to be considered include the 

proportion of end users correctly responding to 
specific questions aimed at measuring under
standing of the key messages contained in the 
risk minimization tool. When conducting such 
studies, scientifically rigorous survey methods 
should be applied and comprehensive guidelines 
for research can be retrieved from the published 
literature.

Overall, the following elements should be 
considered in the design and implementation 
of a survey in order to minimize potential biases 
and optimize the generalizability of the results 
to the intended population:

 ● The sampling frame should not be subjected 
to selection bias (random selection is generally 
the optimal approach) and recruitment sources 
should be appropriate (e.g., physicians lists 
from learned societies, patients lists from 
registries).

 ● The design and the administration of the 
survey questionnaire should ensure a fair and 
comprehensive evaluation. To build a robust 
questionnaire, the following three principles 
should be followed:

 – Pretesting and validation: to identify ques
tions that are poorly understood, ambiguous, 
or evoke undesirable responses, and to 
avoid leading questions.

 – Content validity: the questions should cap
ture all the aspects related to users’ compre
hension of the risk minimization activity, 
and should be clear and unambiguous.

 – Construct validity: the survey should be 
able to accurately measure (at different 
degrees) the risk minimization target audi
ence’s knowledge and comprehension.

Another level of the evaluation of risk minimi
zation/mitigation activities can determine 
whether certain behaviors are being followed. 
In the previous example, measurements of 
behavior could assess whether patients, who have 
read the information they are given, take the 
specific actions the information recommends. 
Questionnaire‐based stakeholder surveys are 
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not well suited to assess behavioral modification, 
because they rely on the respondent’s self‐
reporting and might provoke socially acceptable 
responses, which have a large impact on the 
validity of the study’s findings. Therefore, this 
evaluation strategy is better addressed with 
time‐trends analyses, relying mainly on infor
mation from electronic medical records (EMRs) 
included in healthcare databases.

Data from EMRs might in fact provide rapid 
feedback on the effectiveness of risk minimi
zation strategies, considering that information 
on drug exposure and patient clinical charac
teristics (which might define adherence to 
the recommendations contained in product 
labeling or educational material) is generally 
based on secondary data collection in an out
patient setting (i.e., primary care databases).

The ultimate measures of success of a risk 
minimization program are the safety outcomes. 
This evaluation can demonstrate whether the 
introduction of a risk mitigation strategy is 
correlated with a decrease in frequency of the 
health outcome that the risk mitigation strategy 
is designed to minimize. Safety indicators are 
mostly assessed by estimating incidence rates or 
cumulative incidence, for instance the number 
of new adverse reactions in subjects exposed 
to a certain medicinal product divided by the 
person‐time (or size) of the (exposed) popula
tion within a specified time period. Reporting 
rates (e.g., number of suspected adverse reac
tion reports attributed to a certain medicinal 
product over a fixed time period) should only 
be used with caution, due to the well‐known 
underreporting or due to the lack of patient‐
level linkage between drug exposure and adverse 
events. However, measuring reporting rates 
might be the only way to estimate the frequency 
of the adverse reaction in the treated population 
(e.g., with a rare event).

The incidence of adverse events can be 
evaluated in cohort studies using information 
from healthcare databases or registries. Disease 
registries are more suitable for evaluating risk 

minimization measures, as they may contain 
information on patients not exposed to the 
medicinal product, thus potentially providing a 
background rate of occurrence of the adverse 
events in the affected population in the absence 
of exposure to the medicine.

Some aspects of the risk management system, 
especially those that impose restrictions on the 
use of a medicine, may be burdensome on the 
healthcare system and may have unintended 
consequences. One potential unintended con
sequence is that the burdens imposed by the 
system will deter practitioners from prescribing 
a medicine to patients for whom the benefits 
outweigh the risks, and for whom that medicine 
would be the optimal treatment choice. There 
are few data at this time to address this potential 
limitation; however, methods to assess burden 
and ways to reduce the burden might include 
interviews with stakeholders or the use of focus 
groups, as well as assessing the workflows asso
ciated with implementing risk minimization 
strategies in various healthcare settings.

It is also important but challenging to identify 
potential barriers to patient access to the drug 
related to the implementation of risk minimiza
tion strategies. Patient access could be affected 
if providers choose not to prescribe the drug 
because they are unwilling to implement the risk 
minimization strategies. It may be difficult for a 
patient to find a participating prescriber in their 
geographic area, thus affecting the patient’s access 
to the drug. Obtaining such data continues to be 
challenging, because it consists of identifying 
patients who would be appropriate candidates for 
a particular medicine, a task that involves clinical 
judgment, and who did not receive it, a task for 
which most current pharmacoepidemiologic 
approaches are not well suited, since they rely 
heavily on databases of drug exposure.

Assessing the risks of a medicine, instituting 
risk mitigation measures, and evaluating the 
impact of those measures form an iterative 
process. As new risks are identified, new risk 
mitigation measures may have to be put into effect. 
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These new measures will then need to be eval
uated, and the risk mitigation measures may 
have to be modified. This iterative process 
occurs throughout the life cycle of the medici
nal product. Pharmaceutical manufacturers are 
held responsible for the safety of their medicinal 
products, so it is usually they who fund risk 
assessments and put in place risk mitigation 
strategies and evaluations of those strategies. 
Regulators review the results of manufacturers’ 
testing, proposed risk mitigation strategies, and 
evaluations of those risk mitigation strategies. 
In some instances, regulators may conduct 
independent assessments of drug safety.

As the academic field of pharmacoepidemiol
ogy has grown, university‐based researchers 
also conduct drug safety research, either inde
pendently of manufacturers and regulators or in 
collaboration with them. A particular form of 
collaboration between academic researchers, 
public health institutions, manufacturers, and 
sources of public funds that can finance safety 
research is the public–private partnership. An 
example in the EU is ADVANCE (Accelerated 
development of vaccine benefit–risk collabora
tion in Europe), a publicly (Innovative Medicines 
Initiative, IMI) and privately (European 
Federation of Pharmaceutical Industries and 
Associations, EFPIA) funded project. One of its 
objectives was to develop conceptual models for 
public–private interaction, as part of developing 
best practice and a code of conduct for benefit/
risk monitoring of vaccines.

 Methodologic Problems 
to Be Addressed by 
Pharmacoepidemiologic Research

Roles of Pharmacoepidemiology 
in Risk Management

Pharmacoepidemiology can play several roles in 
risk management. The first, and most funda
mental, role is to identify and quantify the risks 

of a medicine. Identification and quantification 
of risks can occur using a variety of pharma
coepidemiologic techniques, including clinical 
trials, spontaneous reports, case series, and 
observational pharmacoepidemiologic studies.

At the time of approval, clinical trials are the 
principal source of drug safety data. Clinical 
trials are well suited to characterizing and 
quantifying the common adverse effects of a 
medicine. For most prescription medicines, the 
majority of common side effects are not so seri
ous that they require risk mitigation measures 
beyond professional labeling, and/or risk assess
ment measures beyond routine collection of 
spontaneous adverse event data.

Though the preapproval testing of a drug is 
rigorous, and the review of the data is very 
thorough, there are still some uncertainties 
about the complete safety profile of a drug when 
it is brought to market. These uncertainties 
arise because clinical trials are not well suited to 
detecting adverse events that are very rare or 
that occur only after prolonged exposure to a 
medicine or after a long latency period. In addi
tion, real‐world patient populations include 
patients with a broader range of co‐morbidities, 
on a wider variety of concomitant medicines, 
and more severe underlying disease than those 
included in clinical trials. In practice, patients 
may be treated with dosing regimens, or may 
receive the medicines for uses that were not 
studied in clinical trials.

Despite these widely acknowledged limitations 
of clinical trials with regard to drug safety infor
mation, such trials can identify and characterize 
important drug safety issues that may require 
specialized risk management efforts. Vigabatrin, 
an irreversible inhibitor of gamma‐amino‐butyric 
acid, was approved in the US in 2009 for the 
treatment of infantile spasms and for refractory 
complex partial seizures in adults. It had been 
already approved in the UK. Several years after 
that approval, case reports emerged suggesting 
that vigabatrin was associated with peripheral 
visual field defects. Subsequent publications 
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described a slowly progressive, bilateral concen
tric visual field constriction. Prior to the medi
cine’s approval in the US, the manufacturer 
conducted, at the request of EMA, a study to 
characterize better the occurrence of peripheral 
visual field defects. The primary endpoint was 
formal visual field testing every 4–6 months for 
3 years. This measure allows for the detection of 
visual field defects that may otherwise not be 
detected in routine practice. Data from 524 
patients who had at least one conclusive visual 
field measure during the course of the study 
were analyzed. Among adult patients, 35.6% 
had at least one occurrence of bilateral concen
tric peripheral visual field constriction; 24.6% 
had at least two occurrences. The correspond
ing figures in children were 20.0% and 15.3%, 
respectively [18]. These data demonstrate that 
clinical trials can be used to characterize and 
quantify specialized drug safety questions. 
In  the US, the product was approved with a 
REMS to address this serious safety concern, as 
described later in this chapter.

An important use of pharmacoepidemiology 
is to measure how medicines are used in prac
tice, especially if that is under conditions that 
can lead to adverse outcomes. Examples of 
pharmacoepidemiologic findings that could sig
nal that a product is not being used appropri
ately include a finding that a medicine is being 
prescribed concomitantly with a contraindi
cated medicine, a finding that a drug is being 
used in a population of patients for whom the 
potential benefits do not outweigh the potential 
risks, and a finding that a medicine is frequently 
prescribed for a duration of treatment that is 
associated with an increased risk of serious 
adverse events. There are many other potential 
scenarios that can be examined. For these analy
ses, drug utilization databases, electronic medi
cal record systems, and other administrative 
healthcare data, especially those with longitudi
nal patient‐level data, are often useful.

Drug utilization data and medical records can 
also be used to identify medication errors. For 

example, the FDA utilized the Sentinel system 
to investigate whether name confusion errors 
could be identified by assessing the presence 
and absence of on‐ and off‐label indications in 
claims data. Sentinel is the FDA’s postmarket 
medical product safety surveillance system, 
which utilizes electronic claims and medical 
record data [19]. The FDA used one of Sentinel’s 
analytic tools to identify potential prescribing 
and dispensing errors resulting from confusion 
between two medicinal products with similar 
proprietary names, Brilinta® (ticagrelor), an anti
platelet medicine, and Brintellix® (vortioxetine), 
an antidepressant medicine. The study was con
ducted by assessing the presence and absence of 
on‐ and off‐label indications in the claims data 
for both products. Sentinel was used to identify 
new users of Brintellix, and separately new users 
of Brilinta, between September 30, 2013 and 
September 30, 2015. Members of all ages were 
included and had to be enrolled with medical 
and pharmacy coverage for ≥365 days prior to 
the dispensing date. Brintellix users overall were 
identified, including those who did not have an 
on‐ or off‐label indication for Brintellix and had 
an on‐ or off‐label indication for Brilinta. The 
reverse was done for Brilinta. The FDA identi
fied 18 793 new users of Brintellix, of which 71 
(0.4%) had no on‐ or off‐label indication for 
Brintellix but had an on‐ or off‐label indication 
for Brilinta in the 365 days prior to the dispens
ing. The claims profile review included 17 of these 
users, of whom 5 had no history of an on‐ or off‐
label indication for Brintellix and no dispensing of 
a drug in the same class as Brintellix, suggesting 
they may be true medication errors. The FDA 
identified 19 936 Brilinta users overall, of whom 
90 (0.5%) had no on‐ or off‐label indication for 
Brilinta but did have one for Brintellix; 21 of these 
were in the claims profile review; 8 may be true 
medication errors. Thus, this study indicated 
that a claims‐based algorithm can be developed 
to identify potential name confusion medication 
errors in Sentinel using a combination of routine 
tools and claims profile review [20].
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Examination of the prescribing patterns of 
long‐acting beta agonists has been informative 
in the management of the risks of these agents. 
Long‐acting beta agonists (LABAs) are indicated 
to treat, among other things, asthma. However, 
large clinical trials and meta‐analyses of clinical 
trials have demonstrated that patients treated 
with these agents have a higher risk of asthma‐
related death, intubations, and hospitalization. 
Some data suggest, but do not prove, that this 
risk is mitigated if the LABAs are used in 
conjunction with inhaled corticosteroids (ICS) 
or other asthma controller medications. The 
National Asthma Education and Prevention 
Program’s (NAEPP) Expert Panel Report 3 
(EPR‐3) recommends low‐dose inhaled corti
costeroids (ICS) as the preferred treatment for 
mild, persistent asthma, and that LABAs be 
reserved for patients whose asthma is uncon
trolled by ICS monotherapy [21]. Friedman and 
colleagues examined drug‐use patterns and 
clinical indicators of disease severity from a 
commercial insurance database to characterize 
use of LABA/ICS combination drugs (nearly all 
LABA use for asthma is in the form of a LABA/
ICS combination product) [22]. Among 87 459 
patients with a new prescription for a combi
nation LABA/ICS product, 69.1% had no prior 
prescription for an ICS and no indicator of 
disease severity other than mild disease in the 
365 days prior to the LABA/ICS prescription. 
These data suggested that LABAs were not being 
used in accordance with the national guidelines 
and that many patients were being exposed 
unnecessarily to the risks of LABAs [23].

A third application of pharmacoepidemiology 
is to provide population‐based assessments of 
the causes and contexts in which known harm 
from medications can occur. For these analyses, 
one or more public health databases may be 
especially helpful. These databases can be used 
to estimate the burden of a given drug‐related 
toxicity in the population. Because they are 
designed for the public health purposes of quan
tifying health and harm in society, projected 

national‐level estimates are often available. 
They are especially useful when considering risk 
from a class of medications, or from a specific 
ingredient when it is a component of multiple 
medications.

As noted earlier in this chapter, acetaminophen 
is one of the most widely used medicines in the 
US, available in several single‐ingredient and 
multi‐ingredient, OTC, and prescription prod
ucts. Although acetaminophen is generally safe 
when used as directed, misuse and overdose can 
cause acute liver failure, sometimes resulting in 
liver transplantation or death. Overdoses can be 
either intentional or unintentional. To provide 
context for risk mitigation activities, Nourjah 
and colleagues at the FDA examined several 
national databases to quantify this problem 
[24]. Using the National Hospital Ambulatory 
Medical Care Survey (NHAMCS), they deter
mined that an estimated 56 000 emergency 
department visits occurred annually between 
1993 and 1999 for acetaminophen overdoses; an 
estimated 12 650 of these overdoes were unin
tentional. Using data from the National Hospital 
Discharge Survey (NHDS), they estimated that 
for the years 1990 to 1999, there were 26 000 
hospitalizations annually for acetaminophen 
overdoses, with 2240 of these related to unin
tentional overdose annually. Using the National 
Multiple Cause of Death Files, they estimated 
that 458 deaths occurred annually from aceta
minophen overdose – 100 of which were due to 
unintentional overdose. These data provide 
quantitative information on the overall magni
tude of acetaminophen overdoses in the US, as 
well as on the proportion of the overdoses that 
occur unintentionally. Data such as these are 
critical, not only for targeting risk mitigation 
interventions, but also for monitoring their 
impact once interventions have been imple
mented. In the UK, regulators have undertaken 
specific risk mitigation measures related to the 
potential dangers of acetaminophen, such as 
labeling recommendations for all medicines 
containing acetaminophen (paracetamol) and 



Risk Management602

restricting the amount of paracetamol that can 
be sold without a prescription to a patient to a 
maximum of 8 g per sale [25,26]. In the US, a 
boxed warning was added to prescription drug 
products containing acetaminophen highlighting 
the potential for severe liver injury. The FDA also 
requested all drug manufacturers of oral pre
scription products to limit the maximum amount 
of acetaminophen to 325 mg per tablet [27].

A fourth, emerging role of pharmacoepide
miology in the field of risk management is the 
assessment of risk mitigation efforts. Of all 
the ways in which pharmacoepidemiology can 
be used in risk management, understanding 
the best ways to assess risk mitigation efforts is 
the least developed. There are many challenges. 
First, for an effective evaluation, the risk mitiga
tion activity must have a clearly defined goal that 
is relevant and measurable, even if prespecified 
criteria for success or failure are not established. 
Goals that are based on vague or imprecise 
metrics generally cannot be measured, and even 
if they are measurable, interpretations of the 
findings would be difficult.

Second, as already noted, assessing the effec
tiveness of a risk mitigation strategy can be con
ducted at several levels, including processes, 
behaviors, and health outcomes. While the tradi
tional methods of pharmacoepidemiology may be 
used to assess observed behavior and health out
comes, it is quite likely that additional methods, 
such as those used in social sciences and health 
policy and management fields, may be needed for 
the first two levels (process and behavior).

Third, it is important to understand the rela
tionship between each component of the risk 
mitigation strategy and the desired health 
outcomes. It is possible that practitioners and 
patients adhere to the processes and exhibit the 
behaviors desired by the risk mitigation strategy, 
but that the health outcome of interest is not 
improved or is difficult to measure. Alternatively, 
it is possible that practitioners and patients do 
not adhere to the processes or exhibit the 
desired behaviors, but the desired health out

come (e.g., a reduction in the specific risk) is 
achieved, perhaps because of other interven
tions or factors that were not part of the risk 
mitigation strategy. In either case, a critical 
examination of the risk mitigation strategy 
would be necessary.

The analysis of a risk mitigation strategy for 
isotretinoin illustrates how pharmacoepidemi
ology can be used to assess the impact of various 
program measures on program effectiveness. 
Approved in the US in 1982, isotretinoin is a 
medicine that is uniquely effective in the treat
ment of severe, recalcitrant nodular, cystic acne. 
It can cause severe birth defects and intrauterine 
fetal deaths and, to minimize the risk of fetal 
exposure, a series of risk management efforts 
have been implemented throughout the life 
cycle of this medicine. At the time of approval, 
risk messages for patients and prescribers were 
included in the approved labeling and initial 
marketing materials. In 1988, the manufacturer 
implemented the Accutane Pregnancy Preven
tion Program (PPP). The program included 
strengthened labeling, targeted education, 
reminder tools, patient informed consent forms, 
and patient and prescriber surveys to assess 
compliance with the program.

By 2000, the FDA had concluded that the PPP 
was not effective in minimizing exposure during 
pregnancy. The manufacturer then developed 
the System to Manage Accutane‐Related 
Teratogenicity (SMART). An essential feature of 
this program was a “qualification” sticker that 
was to be attached to a written prescription for 
isotretinoin, which was to indicate adherence to 
certain program‐mandated steps by prescribers 
and female patients. Prescribers were to read 
certain material about the teratogenic effects of 
isotretinoin and sign a letter attesting to their 
understanding of the measures to minimize fetal 
exposure to isotretinoin. Voluntary prescriber 
education was made available and encouraged.

Upon receipt of this letter by the manufac
turer, the prescriber was eligible to receive 
qualification stickers. Qualification of female 



Methodologic  roblems too eoAddressed by  harmacoepidemiologic Research 603

patients involved multiple steps. The first step 
consisted of education about the teratogenic 
effects of isotretinoin, signing a consent form 
indicating understanding of the risks associated 
with the use of isotretinoin during pregnancy, 
and documentation of an initial negative serum 
or urine pregnancy test. In the second step, 
prescribers counseled sexually active women to 
select and use simultaneously two forms of 
effective contraception control, from a list of 
acceptable primary and secondary methods 
outlined in the SMART program, for one month 
prior to initiation of isotretinoin treatment, 
during treatment, and for one month after dis
continuation of treatment. The third step was a 
confirmatory negative pregnancy test within 
seven days before the actual start of treatment. 
When each of these steps had been met, the 
patient was qualified, and was to present a written 
prescription with a qualification sticker to the 
pharmacist, who was to dispense isotretinoin 
only if the qualification sticker was present. The 
supply was limited to 30 days, and was to be 
accompanied by a Medication Guide. Before 
additional isotretinoin could be dispensed, 
women were again to qualify by having a negative 
serum or urine pregnancy test.

Prior to implementing SMART, the manufac
turer agreed to evaluate the program’s effective
ness during the first year [28]. A Pharmacy 
Compliance Survey found that, after the third 
month of the program, compliance with the 
requirement for a “qualification” sticker was 
generally high, above 99% for urban pharmacies 
and above 90% for rural pharmacies. The pro
portion of stickers that contained information 
on patient sex and qualification date was simi
larly high. A voluntary patient survey, which 
enrolled 21–26% of patients during the first four 
quarter‐years of SMART, revealed that 9% of 
women reported signing no consent form, 81% 
indicated they received a Medication Guide, and 
90% reported receiving a qualification sticker on 
their prescription. Among women aged 15–45 
of child‐bearing potential, 91% reported at least 

one pregnancy test and 66% reported two preg
nancy tests prior to the initiation of treatment.

In further analyses, FDA staff examined the 
relationship of a qualification sticker to preg
nancy testing and use of birth control measures. 
For the pregnancy test analysis, across 4400 pre
scriptions, a qualification sticker was present 
for 4300 and not present for 100. The frequency 
of pregnancy testing when a sticker was present 
was 91%; the corresponding frequency when a 
sticker was not present was 90%. For the birth 
control analysis, across 1788 prescriptions, a 
qualification sticker was present for 1715 and 
not present for 73. The frequency of reported 
birth control use testing when a sticker was 
present was 97%; the corresponding frequency 
when a sticker was not present was 96%.

The qualification sticker in the SMART program 
was, in some ways, designed to be a surrogate 
marker for important conditions of safe use of 
isotretinoin. The analysis shows that despite 
reasonably high compliance with the placement 
of a qualification sticker on a prescription, this 
measure yielded information no different from 
the lack of a sticker with regard to two important 
conditions of safe use: the undergoing of pre
treatment pregnancy tests and the use of accept
able methods of birth control.

These findings indicate that process measures 
that are a surrogate for clinical events need to 
be validated. The results of the evaluation of 
the SMART program led to the development of 
iPLEDGE®, a single, shared, restricted distribution 
program that includes all isotretinoin products. 
iPLEDGE requires the participation and enroll
ment of prescribers, patients, pharmacies, and 
wholesalers. Unlike SMART, iPLEDGE links 
the dispensing of isotretinoin to the documen
tation of negative pregnancy tests, prescriber 
confirmation that contraceptive counseling has 
occurred, prescriber and patient identification 
of contraceptive methods chosen, and demon
stration of patient comprehension of isotretinoin 
risk and measures intended to mitigate risk. 
When all elements have been confirmed, 
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iPLEDGE provides a “risk management authori
zation” to the pharmacist. While it is not known 
if the total number of fetal exposures to isotreti
noin has decreased under the iPLEDGE program, 
there is greater certainty that patient counseling 
and pregnancy testing are being conducted, and 
that patients are made aware of the risks and 
agree to appropriate measures to prevent preg
nancy during treatment [29].

Another role for pharmacoepidemiology is 
in the area of assessing risk communication. 
The assessment of communication is a broad 
endeavor, and can involve many disciplines and 
approaches. A survey of the evidence base for 
the factors that can contribute to improved con
tent and format of patient‐oriented prescription 
drug labeling identified randomized clinical 
trials, surveys, questionnaires, interviews, and 
other methods used to assess readability and 
understanding, though it noted that little evi
dence existed linking label design or content to 
measurable health outcomes [30].

To assess the relationship of various communi
cation strategies to health outcomes, Shrank and 
colleagues took advantage of a deliberate effort by 
one large pharmacy chain to improve its patient 
labeling [31]. They then used administrative 
claims data from one insurance carrier in two 
states in the US to look at various health outcomes 
for patients to whom outpatient medicines for 
one of nine chronic conditions were dispensed. 
Because these data contained detailed informa
tion on the specific pharmacy at which the medi
cines were dispensed, they could examine the 
impact of the new labeling strategy, which was 
linked to one specific pharmacy chain, on health 
outcomes. Health outcomes of interest included 
outpatient, emergency department, and inpatient 
health services use. The sample included 23 745 
users of the pharmacy which introduced the 
newly designed labeling, and 162 369 matched 
patients who used other pharmacies.

The study found that the introduction of the 
modified labeling was not associated with a 
significant change in the rates of outpatient 
health services use (event rate ratio: 0.53, 95% 

confidence interval [CI]: 0.15–1.86) or inpa
tient and emergency department care (event 
rate ratio: 0.88, 95% CI: 0.62–1.24) among users 
of pharmacies that incorporated the modified 
labeling compared to users of pharmacies that 
did not incorporate the new labeling. However, 
the 95% confidence intervals include clinically 
important event ratios, which suggest that 
insufficient power, and not failure of the inter
vention, may account for the lack of a statisti
cally significant finding. The authors noted 
the challenges in developing health literacy 
interventions that can have a measurable 
impact on health outcomes.

 Currently Available Solutions

Regulatory Framework in the US

It is important to distinguish the broad strate
gies used to manage the risks of medicines from 
the specific legislative initiatives that are often 
associated with risk management. Specifically, 
the latter are generally a subset of the former.

The Food and Drug Administration Amend
ments Act (FDAAA) of 2007 created sec
tion  505‐1 of the Federal Food, Drug, and 
Cosmetic Act (FDCA), which authorizes the FDA 
to require a risk evaluation and mitigation strat
egy or REMS for certain drugs if it determines 
that a REMS is necessary to ensure that the ben
efits of the drug outweigh its risks [32]. A REMS is 
a required risk management plan that utilizes 
tools beyond routine labeling to ensure that the 
benefits of a drug outweigh its risks. The FDA can 
require manufacturers to develop and comply 
with the REMS if specific statutory criteria are 
met. These provisions became effective in 2008. 
The REMS authorities apply to prescription prod
ucts approved under New Drug Applications 
(NDAs) and Abbreviated New Drug Applications 
(ANDAs), as well as products approved under 
Biologics License Applications (BLAs).

Prior to the initial approval of an application, 
the FDA offices responsible for review of the 
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medicinal product and for postapproval safety 
review determine whether a REMS is needed 
to ensure that the benefits of the drug out
weigh its risks. In the postapproval phase, the 
FDA may determine that a REMS is needed if it 
becomes aware of new safety information after 
the drug was approved, and determines that a 
REMS is necessary to ensure that the benefits 
of the drug outweigh its risks. New safety 
information may be derived from a clinical 
trial or study, adverse event reports, published 
literature, or other scientific data deemed 
appropriate by the FDA about a serious risk or 
unexpected serious risk associated with the 
use of the drug. This may include information 
based on a new analysis of existing data or an 
assessment of the effectiveness of an approved 
REMS. The FDA makes decisions about requir
ing a REMS as part of a benefit–risk determi
nation for a drug after an evaluation that 
includes consideration of certain statutory fac
tors (listed in Table 24.1) [33].

All REMS for NDAs and BLAs must include a 
timetable for assessment of the REMS and may 
include the following additional elements:

 ● A Medication Guide (MG) or a patient pack
age insert (PPI)

 ● A communication plan
 ● Certain packaging and safe disposal technolo

gies for drugs that pose a serious risk of abuse 
or overdose

 ● Elements to assure safe use (ETASU)
 ● An implementation system

A Medication Guide provides FDA‐approved 
patient‐focused labeling, and may be required 
as part of a REMS to inform patients about seri
ous risks associated with the product; it may 
also be used to provide patients with informa
tion necessary for the safe use of the product. 
A  communication plan consists of FDA‐
approved materials used to aid the implementa
tion of the REMS and/or inform healthcare 
providers about serious risks of a product. FDA 
may require certain packaging or safe disposal 
systems be made available for opioids and other 
drugs that pose a serious risk of abuse or over
dose if the FDA determines that such packaging 
may mitigate such risks [34]. Elements to assure 
safe use (listed in Table 24.2) are required if they 
are necessary to mitigate a specific serious risk 
listed in the labeling of a product, thus enabling 
access for patients to drugs that would other
wise not be approved. The FDA may also require 
an implementation system for REMS with cer
tain ETASU. An implementation system 
requires the application holder to take reasona
ble steps to monitor, evaluate, and improve 
implementation of ETASU by healthcare pro
viders and other participants.

The minimal timetable for assessment of a 
REMS includes assessments by 18 months, by 
3  years, and in the seventh‐year post‐REMS 

Table 24.1 Factors the US Food and Drug Administration must consider when determining the need for a risk 
evaluation and mitigation strategy.

Estimated size of the population likely to use the drug involved
Seriousness of the disease or condition that is to be treated with the drug
Expected benefit of the drug with respect to such disease or condition
Expected or actual duration of treatment with the drug
Seriousness of any known or potential adverse events that may be related to the drug and the background incidence 
of such events in the population likely to use the drug
Whether the drug is a new molecular entity

Source: Federal Food, Drug and Cosmetic Act, section 505‐1(a)(1).
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approval. The FDA may require more frequent 
assessments that may be specified in the REMS.

Regulatory Framework in the EU

The requirement for risk management in the EU 
is specifically included in legislation. The term 
“medicinal product” is also defined in the legis
lation and includes both chemical and biologic 
medicines.

Article 6 of Regulation (EC) No 726/2004 as 
amended and Article 8 of Directive 2001/83/EC 
as amended lay down the requirements for the 
documents to be included in an application for 
the authorization of a medicinal product for 
human use. A description of the pharmacovigi
lance system is developed by the manufacturer 
for a marketing authorization in the format of a 
pharmacovigilance system master file (PSMF); 
the legal requirement is to maintain and make 
available upon request the PSMF (Directive 
2010/84/EU). It is a requirement of the marketing 
authorization application that summary informa
tion about the pharmacovigilance system is sub
mitted to the competent authorities; this summary 
includes information on the location of the PSMF.

The manufacturer is also responsible for 
developing and maintaining product‐specific 
risk management systems. The terms “pharma
covigilance systems” and “risk management sys
tems” mentioned in the legislation may cause 
confusion. A pharmacovigilance system refers 
to the measures that a company puts in place to 
meet the requirements in the legislation for 
pharmacovigilance, designed to monitor the 

safety of authorized medicinal products and 
detect any change to their benefit/risk balance. 
These requirements include the need to have 
within the company an “appropriately qualified 
person responsible for pharmacovigilance.” This 
person must reside within the EU, Norway, 
Iceland, or Liechtenstein, and is known as the 
qualified person responsible for pharmacovigi
lance (EU QPPV). The pharmacovigilance 
activities that they and the company are respon
sible for can be summarized briefly as:

 ● Setting up a system to ensure that all reports 
of suspected adverse reactions are collected, 
collated, and accessible.

 ● Preparing and submitting reports to the 
authorities of both individual adverse reactions 
and periodic safety update reports, as specified 
in the legislation and guidance.

 ● Providing the authorities with any requested 
or any other information that relates to the 
benefits or risks of the medicinal product, 
including drug utilization data.

The means whereby this is achieved is known 
as the pharmacovigilance system. A pharma
covigilance system is therefore company spe
cific and would include the adverse reaction 
database, the EU QPPV, and the various pro
cesses, standard operating procedures (SOPs), 
and so on, by which an individual company 
ensures compliance with pharmacovigilance 
legislation. The requirements for the descrip
tion of the pharmacovigilance system are 
described in Module II  –  Pharmacovigilance 

Table 24.2 Risk evaluation and mitigation strategies in the US: elements to assure safe use.

A) Healthcare providers who prescribe the drug have particular training or experience or are specially certified
B) Pharmacies, practitioners, or healthcare settings that dispense the drug are specially certified
C) The drug be dispensed to patients only in certain healthcare settings, such as hospitals
D) The drug be dispensed to patients with evidence or other documentation of safe use conditions, such as 

laboratory test results
E) Each patient using the drug be subject to certain monitoring
F) Each patient using the drug be enrolled in a registry

Source: Federal Food, Drug and Cosmetic Act, section 505‐1(f )(3).
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system master file of the Guideline on good 
pharmacovigilance practices.

Whereas the pharmacovigilance system applies 
to the people and processes in a whole company, 
a risk management system is usually substance 
specific, or, if the manufacturer has authoriza
tions for more than one product containing the 
same active substance, the risk management 
system will be substance specific. It describes 
the important risks and missing safety informa
tion pertaining to a particular product; how 
they will be investigated and characterized 
further; how new risks will be identified; and 
the risk minimization activities which will be 
put in place to prevent or mitigate them.

All marketing authorization applications 
are required to include a description of the risk 
management system in the form of the Risk 
Management Plan, submitted for assessment. 
The guidance on the format and content of the 
EU RMP is provided in the Guideline on good 
pharmacovigilance practices Module V  –  Risk 
management systems, and the Guidance on the 
format of the risk management plan in the EU.

The aim of an RMP is to document the risk 
management system considered necessary to 
identify, characterize, and minimize a medicinal 
product’s important risks. As knowledge regard
ing a medicinal product’s safety profile increases 
over time, so will the RMP change.

The RMP structure requirements are described 
in EU legislation, Commission Implementing 
Regulation (EU) No 520/2012. The three main 
parts of the RMP mirror the essential activities in 
risk management:

 ● Part II  –  Safety specification, aimed at the 
identification of safety concerns for the prod
uct (i.e., important identified risks, important 
potential risks, and missing information).

 ● Part III – Pharmacovigilance plan (including 
postauthorization safety studies), describing 
the plan to further characterize the safety 
concerns of the product.

 ● Part V – Risk minimization measures (includ
ing evaluation of the effectiveness of risk 

 minimization activities), describing the plan 
to prevent, minimize, and manage the impor
tant risks of the product.

The content requirements for the RMP are risk 
proportionate. For example, the RMP Part 
II – Safety specification of a medicinal product 
containing a new active substance will include 
more information than one of a generic or 
hybrid product, as the uncertainty is greater at 
the approval of the first product containing a 
new active substance. However, the list of safety 
concerns is determined by the risks associated 
with the substance or the specifics of each prod
uct (e.g., particular formulation). Similarly, the 
postmarketing requirements for pharmacovigi
lance and risk minimization activities reflect the 
safety profile of products, and for common risks 
equal requirements apply.

Routine Risk Minimization
EU GVP Module V defines routine risk mini
mization as those activities which apply to 
every medicinal product and lists all the avail
able tools. These “routine” risk minimization 
activities are as follows:

 ● Product information:
 – Summary of Product Characteristics 

(SmPC), targeted at HCPs, including rou
tine risk communication messages and 
routine risk minimization activities recom
mending specific clinical measures to 
address the risk.

 – Patient Information Leaflet (PIL), targeted 
at patients/caregivers.

 ● Labeling (the immediate and outer packaging 
of the medicine) and pack design [35].

 ● Pack size, ensuring that patients see an HCP 
after the use of the doses in the pack.

 ● Legal status of a medicine (i.e., whether sub
ject to medical prescription or not subject to 
medical prescription).

Medicines subject to medical prescription may 
have a further limitation by being categorized as 
being on special or restricted prescription. 
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These further categories are defined in Article 
71 of Directive 2001/83/EC as amended. Some 
Member States have within their national legis
lation the ability to specify further the use of a 
medicine, but this is not common to all EU 
countries. For example, in the UK, a medicine 
that is not subject to medical prescription can 
be classified as being available only when a 
pharmacist is present or as suitable for sale 
without a pharmacist.

A medicine within the “restricted” medicine 
category will have the details of the restriction 
in the SmPC, and will be:

 ● reserved for treatments which can only be fol
lowed in a hospital environment, because of 
its pharmaceutical characteristics or novelty 
or in the interests of public health;

 ● used in the treatment of conditions which 
must be diagnosed in a hospital environment 
or in institutions with adequate diagnostic 
facilities, although administration and follow‐
up may be carried out elsewhere;

 ● intended for outpatients, but its use may pro
duce very serious adverse reactions, requiring 
a prescription to be drawn up as required by a 
specialist and special supervision throughout 
the treatment.

All these routine risk minimization activities are 
part of the authorization for a medicine and, for 
centrally authorized medicines, are contained 
within the Annexes to the Commission 
Decision, translated into all EU languages (all 
translations are at http://ec.europa.eu/health/
documents/communityregister/html/reg_
hum_act.htm?sort=a). They are thus legally 
binding on the manufacturer.

Additional risk minimization activities
Centrally authorized medicines may have addi
tional risk minimization measures specified as 
part of the marketing authorization. Article 9 
(4)(c) of Regulation (EC) No 726/2004 requires 
the CHMP to attach to the scientific opinion it 
gives to the European Commission “details of 

any recommended conditions or restrictions 
with regard to the safe and effective use of the 
medicinal product.” These recommendations 
will be adopted by the European Commission 
and form part of the legally binding conditions 
of the Marketing Authorization. In exceptional 
cases, the European Commission will also adopt 
a decision related to Article 127 (a) of Directive 
2001/83/EC, directed to the Member States, 
describing the responsibilities of national com
petent authorities in ensuring that the additional 
risk minimization measures are implemented in 
the Member States in accordance with defined 
key elements.

The legislation refers to recommended con
ditions or restrictions with regard to the safe 
and effective use of the medicinal product. This 
permits any measure deemed necessary by the 
PRAC and the CHMP (and the European 
Commission) to be a legally binding condition 
of the marketing authorization with which the 
manufacturer must comply.

Each condition will usually state what must 
be achieved, but how this will be done remains 
flexible. For example, the conditions of the 
Marketing Authorization may specify that the 
manufacturer should set up controlled distri
bution. Because of the differences in the way 
healthcare is delivered in each of the Member 
States, there are at least four different ways in 
practice in which distribution is controlled 
across the EU. Specifying the end rather than 
the means allows for this flexibility.

The conditions may stipulate that certain 
information is provided to physicians, patients, 
or both. Typically, they will state what the infor
mation must contain, but the format it is pre
sented in, how it is provided, and the particular 
phrasing of the information are usually left 
flexible. An exception to this was the risk mini
mization activities related to 5‐aminolevulinic 
acid hydrochloride. These required that the 
product only be used by “experienced neuro
surgeons conversant with surgery of malignant 
gliomas and in‐depth knowledge of functional 



Currently Available Solutions 609

brain anatomy who have completed a training 
course in fluorescence‐guided surgery.” The 
conditions of the Marketing Authorization 
required the manufacturer, in agreement with 
the competent authorities in the Member 
States, to implement training courses prior to 
launch of the product. The conditions included 
considerable details on exactly what should 
be included in the training course, the quali
fications and experience needed to become a 
trainer, and the minimum requirements for 
a  training center. Because the Commission 
Decision also required the Member States to 
ensure that these conditions were implemented 
in their territory, this meant that they had to 
put in place measures to restrict the use of 
the product to appropriately trained neurosur
geons. Since not all Member States had centers 
involved in clinical trials, training centers did 
not exist initially in all countries. Consequently, 
training of neurosurgeons from those countries 
in the particular techniques necessary to use 
the product safely would need to take place in 
another Member State. This external training 
would also need to be continued until sufficient 
expertise had been developed to enable the 
specific requirements for trainers and training 
centers to be met in each country. This case 
illustrates the fact that very stringent condi
tions can be set for risk minimization while 
still allowing flexibility in how it is achieved.

The ability to set conditions and restrictions 
does not apply to medicines only at the time of 
authorization. If during the life cycle of a medi
cine it becomes apparent that additional risk 
minimization activities are necessary, then 
these can be made conditions of the Marketing 
Authorization. In the same way, if it becomes 
apparent that the risks in real‐world usage are 
not as great as estimated at the time of authori
zation or when the additional minimization 
activities are incorporated in routine clinical 
practice and are well adhered to, it is possible to 
remove conditions or restrictions. A critical 
review milestone is the five‐year renewal, when 

an active review of the suitability of risk 
 minimization activities is performed by the 
manufacturer and PRAC, and changes to the 
conditions for the safe and effective use of 
the product are proposed as needed.

Risk Management Example in the US: 
Alemtuzumab

As mentioned previously in this chapter, the 
FDA can require a REMS at the initial approval 
of a medicinal product if it is determined that 
such a strategy is necessary to ensure that the 
benefits of a drug outweigh its risks, or postap
proval if the FDA becomes aware of new safety 
information following approval of the product 
and determines that a REMS is necessary to 
ensure the benefits outweigh the risks.

Alemtuzumab (with the brand name Lemtrada) 
is a CD52‐directed cytolytic monoclonal anti
body indicated for the treatment of patients 
with relapsing forms of multiple sclerosis (MS). 
It depletes T and B lymphocytes via binding to 
the cell surface antigen CD52, and it is believed 
that any effects in MS are mediated through this 
action. Alemtuzumab was originally approved 
(with the brand name Campath) in 2001 for the 
treatment of patients with B‐cell chronic lym
phocytic leukemia (B‐CLL) without a formal 
risk management plan. However, the manufac
turer removed alemtuzumab (as Campath) from 
the commercial market prior to its approval as 
Lemtrada for the treatment of  MS.

Alemtuzumab for the treatment of MS has a 
unique dosing and administration schedule of 
two treatment courses. The first treatment course 
is administered via intravenous infusion on five 
consecutive days, and the second course is admin
istered on three consecutive days, 12 months later. 
Subsequent treatment courses  may be adminis
tered, as needed, at least 12 months after the last 
dose of any prior treatment course [36]. Besides 
its more immediate effects, infusion‐associated 
reactions (IAR) occurring during the infusion and 
24  hours thereafter, alemtuzumab is associated 
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with longer‐term effects that can occur 1–5 years 
after administration. Secondary autoimmune dis
eases are the most important adverse events asso
ciated with alemtuzumab therapy, predominantly 
affecting the thyroid, kidneys, and thrombocytic 
function in approximately 30–40% of patients 
taking the product [37]. Serious and lifethreaten
ing stroke has been reported within 5 days of 
alemtuzumab administration.

Because of the risks associated with alemtu
zumab, its approved US label states that “the use 
of Lemtrada should generally be reserved for 
patients who have had an inadequate response to 
two or more drugs indicated for the treatment of 
MS.” It was also approved in the US with a REMS. 
The specific goals of the alemtuzumab REMS are 
provided in Table 24.3. This REMS includes sev
eral components to address the short‐ and long‐
term risks associated with its use [38].

Only healthcare providers certified in the 
REMS program are able to prescribe alemtu
zumab. Certification includes an educational 
component that instructs prescribers about the 
autoimmune risks associated with alemtuzumab, 
including the risk of idiopathic thrombocyto
penia purpura as well as other cytopenias, 

glomerular nephropathies, thyroid disorders, 
stroke, and malignancies; how to recognize the 
clinical presentation of these adverse events; 
and how to monitor for these events. Prescribers 
also agree to monitor patients periodically for at 
least 48 months following the final alemtu
zumab infusion.

Alemtuzmab can only be administered by cer
tified healthcare facilities that have on‐site access 
to equipment and personnel who are trained and 
capable of managing infusion‐related reactions, 
including anaphylaxis and cardiac and respira
tory emergencies. Patients are premedicated 
with high doses of corticosteroids, and possibly 
antihistamines and/or antipyretics. They are 
monitored during the entire infusion and for a 
minimum of two hours following the infusion, or 
longer if clinically indicated.

Patients who are considered candidates for 
treatment with alemtuzumab must be enrolled 
by their provider in the program and counseled 
about the risks associated with the drug. The 
initial enrollment form captures baseline patient 
information, including baseline laboratory data. 
Prescribers are required to complete a patient 
status form every 6 months for about 4 years 

Table 24.3 Goals of the Alemtuzumab risk evaluation and mitigation strategy (REMS).

The goal of the LEMTRADA REMS is to mitigate the risks of autoimmune conditions, infusion reactions, stroke, 
and malignancies associated with LEMTRADA by:
1) Helping to ensure informed decisions about the safe use of LEMTRADA by:

 ● Informing patients about the serious risks of autoimmune conditions, infusion reactions, and malignancies 
with LEMTRADA and the need for baseline and periodic monitoring; and

 ● Informing healthcare providers about the serious risks of autoimmune conditions, infusion reactions, stroke, 
and malignancies with LEMTRADA, the need to counsel patients, and the need for baseline and periodic 
monitoring.

2) Helping to ensure the safe use of LEMTRADA by:
 ● Ensuring that only certified prescribers prescribe LEMTRADA;
 ● Ensuring that LEMTRADA is dispensed only in certain healthcare settings, by certified pharmacies, and 

certified infusion sites, which have on‐site access to equipment and personnel trained to manage infusion 
reactions; and

 ● Ensuring that only enrolled and authorized patients receive LEMTRADA;
 ● Ensuring that certified prescribers submit documentation of periodic monitoring of patients who receive 

LEMTRADA to identify autoimmune conditions and malignancies.
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after the final dose for each patient to capture 
adverse events of interest. The purpose of this 
is to further characterize the long‐term safety 
of alemtuzmab.

The final component of the alemtuzumab 
REMS is an implementation system, which 
describes how operational elements and 
responsibilities specified in the REMS will be 
implemented by the manufacturer. The manu
facturer is also responsible for conducting an 
assessment of whether the alemtuzumab REMS 
is meeting its risk mitigation goals. Assessments 
are required every 6 months from the date of 
approval of the REMS for 1 year, and annually 
thereafter. The assessment plan includes pri
marily process indicators, including outreach 
efforts by the manufacturer; the numbers of 
certified prescribers and infusion centers; 
results of assessments of the knowledge of 
prescribers, other healthcare providers, and 
patients about the risks and required safe use 
conditions; deviations from program require
ments, for example administering alemtu
zumab to patients who have not been enrolled 
in the program; information regarding any 
unintended consequences such as unintended 
delays in treatment; and an evaluation of 
whether appropriate patient monitoring has 
occurred, including reports of adverse events 
of interest.

The alemtuzumab REMS includes features 
of a modern pharmaceutical risk management 
program. First, the goal of this risk mitigation 
strategy is not prevention of the serious 
adverse events associated with alemtuzumab, 
but rather the program was instituted to 
ensure that the benefits of the drug outweigh 
its risks. To accomplish this, the FDA 
required that a rigorous safety program be 
implemented to mitigate the severity of the 
adverse events (i.e., improving outcomes in 
patients who may experience an infusion‐
related reaction) and early detection of serious 
autoimmune disorders so that patients can be 
appropriately managed.

Risk Management Example in the EU: 
Bupropion/Naltrexone (Mysimba)

Bupropion/naltrexone (with the brand name 
Mysimba and referred to as Mysimba throughout) 
was authorized in the EU in March 2015. It is a 
medicine used together with diet and exercise 
to treat obesity, which is defined as a BMI 
(body‐mass index, a measure of weight relative 
to height) of 30 or above; it can also be given to 
very overweight patients who have weight‐
related complications.

The main safety and tolerability concerns 
identified with Mysimba were related to central 
nervous system and gastrointestinal adverse 
events, and uncertainties with regard to cardi
ovascular outcomes in the longer term. The 
manufacturer submitted an EU‐RMP which 
included a risk minimization plan.

The CHMP decided that there was a need for 
both additional pharmacovigilance activities 
and risk minimization activities.

Additional pharmacovigilance activities 
for Mysimba
Apart from routine pharmacovigilance (i.e., a 
spontaneous reporting system), the manufac
turer agreed to request the results of two 
Phase IV randomized clinical trials to evalu
ate the effect of Mysimba on the occurrence 
of major adverse cardiovascular events in 
overweight and obese subjects with high car
diovascular risk. Also, a drug utilization study 
and a physician survey were requested to 
evaluate how Mysimba is used in real‐world 
medical practice because of the potential for 
off‐label use.

Risk minimization activities: Mysimba
The most important safety concerns for 
Mysimba are seizures, suicidality in patients 
with depression, and off‐label use. The main 
risk minimization strategy was to prevent 
patients with an increased risk of these adverse 
drug reactions from being prescribed Mysimba. 
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This translates into risk minimization activities 
to ensure the following:

 ● Mysimba is used within the SmPC indication.
 ● Patients with contraindications are not pre

scribed Mysimba.
 ● Physicians understand which patients (without 

contraindications) are likely to have additional 
risk factors for safety concerns and may need 
additional monitoring/counseling.

 ● The benefit/risk balance is positive at the 
individual patient level.

To reinforce the indication and warning and pre
cautions in the SmPC and prevent off‐label use, 
a physician prescribing checklist was proposed 
to guide physicians in prescribing appropriately. 
The checklist reminded the physician not to 
prescribe Mysimba in the presence of:

 ● Uncontrolled hypertension
 ● Current seizure disorder or a history of sei

zures or known central nervous system tumor
 ● Current or previous diagnosis of bulimia or 

anorexia nervosa
 ● Currently dependent on chronic opioids or 

opiate agonists (e.g., methadone), or patients 
in acute opiate withdrawal

 ● Undergoing acute alcohol or benzodiazepine 
withdrawal

 ● Concomitant treatment containing bupropion 
or naltrexone

 ● History of bipolar disorder
 ● Receiving concomitant administration of 

monoamine oxidase inhibitors
 ● End‐stage renal failure or severe renal 

impairment

Also the checklist contained information to care
fully evaluate the benefits and risk of treatment in 
the presence of the following conditions:

 ● Mild or moderate renal impairment
 ● Controlled hypertension
 ● Angina or recent history of myocardial 

infarction
 ● History of mania

 ● Suicidal ideation
 ● Depression
 ● Risk factors for seizures

In postmarketing, based on a review of the 
clinical trials and postmarketing reports of 
serious and nonserious cases of hepatotoxicity, 
there was evidence to suggest a possible causal 
relationship between hepatotoxicity and the use 
of Mysimba. Nonserious cases were reported 
to result in an elevation of liver enzymes. In 
addition, drug‐induced liver injury (DILI) was 
described in clinical trials.

Therefore, in view of the data presented, it 
was considered that changes to the product 
information of all medicinal products containing 
the combination product naltrexone/bupropion 
were warranted, although there was no need to 
change the additional risk minimization in place 
until the results of the drug utilization and 
physician survey were provided.

 The Future

Managing the risk of medicinal products is an 
evolving area involving multiple stakeholders 
in the complex medication use system. In this 
section we describe possible areas for future 
refinements of the current risk mitigation systems 
that are in place.

One critical area for future development is to 
continue to improve the way risk mitigation 
activities are being implemented. Many of the 
risk mitigation tools have relied in whole or in 
part on communicating a risk associated with 
a medicinal product to increase stakeholders’ 
awareness and knowledge. The goal is that 
awareness of a particular risk will impart knowl
edge and influence prescribing practices of 
the medicinal product or how practitioners will 
monitor patients once treatment with the product 
has begun. The communication can be in the 
form of a one‐time letter or ongoing communica
tion to practitioners, a formal training program 
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that practitioners must undertake in order to 
prescribe the medicinal product, or an agree
ment by the practitioner that they will undertake 
certain conditions of safe use (e.g., to perform 
laboratory testing on a prespecified periodic 
basis). Communication is necessary, but delivery 
may be more effective if done in real time rather 
than weeks or months prior to prescribing the 
medicinal product.

Risk management plans are designed to work 
within a complex medication use system. The 
complex systems were developed before the 
advent of contemporary risk management 
planning efforts. A current challenge for risk 
management systems is that they be developed 
in ways that can integrate with minimal diffi
culty into the current medication use systems 
and in a manner that is least burdensome to 
healthcare providers. Risk mitigation strategies 
that require documentation of safe use condi
tions need refinement. A future challenge is to 
develop a quality systems approach to imple
menting this type of risk mitigation strategy in 
a manner that is seamless for practitioners and 
within the scope of their usual clinical practice. 
The design of this type of mitigation strategy 
can be challenging, because the medication 
use process is complex. Furthermore, the 
medication use process differs across various 
healthcare settings, which makes it additionally 
challenging to implement mitigation strategies 
with the same goals across the various settings. 
Evaluation of its impact will also be challeng
ing and difficult to answer, and will require the 
integration of many disciplines, including 
pharmacoepidemiology.

Another area for future refinement is to con
tinue to gather evidence of the impact of various 
risk mitigation strategies, particularly on safety 
or health outcomes. Measurement of the impact 
is important, because it allows policymakers 
and other stakeholders to determine if the 
goals of the strategy are being met. Much of 
the evidence collected to date has been on pro
cess indicators such as whether particular safety 

messages have reached the intended stake
holder, whether it imparted the knowledge 
necessary to use the medicinal product safely, 
and whether that knowledge resulted in a 
change in the clinical practice of the practitioner 
(i.e., whether it resulted in the desired behavior 
by the stakeholder). Disciplines including social 
science and health service research have made 
significant progress in advancing our under
standing of those types of outcomes. As noted 
earlier, the most important outcome measures 
to assess are the specific health outcomes of 
interest. If process outcomes and behavioral 
outcomes are met, but there is no impact on 
health outcomes or the impact on health out
comes is unknown, risk management strategies 
may need to be reconsidered. The optimal way 
to measure the impact of risk management 
strategies on safety or health outcomes remains 
a challenge, and is an area in which pharma
coepidemiology plays a crucial role.

Pharmacoepidemiology is integral to the 
measurement of specific health outcomes. The 
challenges for this field include developing 
models to relate risk management strategies to 
health outcomes, as well as ways to identify the 
contribution of individual components of the 
strategy to the overall outcome. Evaluations of 
the risk mitigation strategy should include an 
assessment of any negative consequences to 
implementing a risk management strategy. For 
example, if restricted distribution is put in place 
for a certain medicine that requires documenta
tion that a laboratory test was conducted prior to 
dispensing the medicine to the patient, does this 
strategy, because of the real or perceived burdens 
associated with its implementation, result in 
patients not receiving the medicine even if it is 
the most appropriate medicine for that patient? 
This assessment should be followed by an evalu
ation of the impact of the risk mitigation strategy 
on stakeholders, including prescribers, pharma
cists, and patients, to ensure the strategy 
improves the safe use of the product, but does 
so in the most efficient manner possible.
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As risk management planning is evolving in 
multiple countries and regions, there is consid
erable interest in international harmonization 
of these efforts. At this time, there are many 
challenges that must be overcome if harmoniza
tion is to become a reality. First, the diversity of 
healthcare systems and medication use systems 
from one country to the next limits the degree 
to which identical, or even similar, individual 
risk mitigation plans can be put in place across 

several countries. Second, because of the differ
ences in risk mitigation systems that can be put 
in place across countries, it would be challenging 
to develop a common risk management plan 
that manufacturers could submit to all regulatory 
authorities. The differences in risk management 
activities across countries and regions, however, 
create a natural opportunity for stakeholders 
to determine the relative impact of different 
approaches to risk management.
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It is now common to analyze large and complex 
electronic healthcare databases – created as part 
of regular business operations or routine clinical 
care  –  to assess the safety and effectiveness of 
medical products. Pharmacoepidemiologic stud-
ies have traditionally analyzed information availa-
ble in single databases. However, single‐database 
studies may not be sufficient to answer certain 
clinical questions, especially when the exposure or 
outcome is rare, when the goal is to study the 
treatment effect in specific subgroups, or when 
the objective is to identify a sufficiently large num-
ber of exposed patients within a relatively short 
time window (e.g., during the early months follow-
ing the approval of a new medical product).

Thanks to the increase in the number of data 
sources, and the improvement in the quality of 
and ease of access to these data sources, 
 multidatabase studies are now feasible and ubiq-
uitous in pharmacoepidemiologic research. 
There are several ways to conduct multidatabase 
studies. An intuitive approach is to pool the data-
bases or the derived analytic datasets  centrally 
for analysis. However, centralized pooling of 
databases that contain detailed individual‐level 

data is not always possible for several  reasons, 
including concerns about patient privacy, data 
security, unauthorized uses of data, and potential 
disclosures of sensitive institutional or business 
information. A distributed approach, in which 
databases are not combined centrally but rather 
stored in different physical locations under the 
direct control of the participating sites, is becom-
ing increasingly preferred.

In this chapter, we describe the design, devel-
opment, implementation, strengths, and chal-
lenges of distributed data networks (DDNs). We 
begin with a brief description of select DDNs in 
pharmacoepidemiology. We then discuss the 
types of research questions that DDNs are 
designed to address. We examine the methodo-
logic and data issues unique to DDNs, and pro-
gress that has been accomplished to address 
these issues. We conclude with a discussion 
about some of the future directions for DDNs.

Here we first define three key terms that are 
central to the chapter:

 ● Distributed data network: two or more data 
sources stored in different physical locations 

25

Distributed Networks of Databases Analyzed Using Common 
Protocols and/or Common Data Models
Sengwee Toh1, Nicole Pratt2, Olaf Klungel3, Joshua J. Gagne4, and Robert W. Platt5

1 Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
2 Quality Use of Medicines and Pharmacy Research Centre, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
3 Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
4 Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical 
School, Boston, MA, USA
5 Departments of Epidemiology, Biostatistics, and Occupational Health, and of Pediatrics, McGill University, Montreal, Quebec, Canada



Distributed Networks of Databases Analyzed Using Common Protocols and/or Common Data Models618

under the direct control of the participating 
data partners.

 ● Common data model (CDM): a data model 
that generally includes a set of standardized 
data files and variables, adopted by all data 
sources participating in a DDN.

 ● Common protocol: a study protocol that typi-
cally includes detailed description of key 
design and analytic parameters of the study, 
implemented by all data sources participating 
in a DDN study.

 Examples of Distributed 
Data Networks in 
Pharmacoepidemiology

DDNs have been in existence for more than 
20 years. Drawing on more than two decades of 
experience, the DDNs today are more sustaina-
ble, efficient, and diverse. This section briefly 
describes a number of DDNs designed to con-
duct pharmacoepidemiologic research, medical 
product safety surveillance, or comparative 
effectiveness research using electronic health 
data collected as part of routine healthcare 
delivery. Table 25.1 provides a summary of their 
key characteristics.

Asian Pharmacoepidemiology 
Network (AsPEN)

Established in 2008, AsPEN is a multinational 
research network formed to provide a mecha-
nism to support the conduct of pharmacoepi-
demiologic research and to facilitate more 
rapid identification and validation of emerging 
safety issues among the Asia‐Pacific countries 
[1,8]. AsPEN is a collaboration of 8 countries 
involving 12 databases formalized as a Special 
Interest Group of the International Society for 
Pharmacoepidemiology. It has piloted a num-
ber of approaches to conduct distributed stud-
ies including a common protocol, a standard 

analytic program [9–12], and translation to a 
CDM developed by the Observational Medical 
Outcomes Partnership (OMOP; see later) [13].

Canadian Network for Observational 
Drug Effect Studies (CNODES)

CNODES is a distributed network of Canadian 
research teams designed to provide evidence to 
Canadian stakeholders, in particular Health 
Canada, on drug safety in the Canadian context 
[2]. It is one of four collaborating centers sup-
ported by the Drug Safety and Effectiveness 
Network (DSEN) of the Canadian Institutes of 
Health Research. Queries from stakeholders 
are prioritized by DSEN head office and sent to 
the CNODES coordinating center. CNODES 
teams conduct analyses of a distributed net-
work of Canadian and international databases, 
and report both to stakeholders and via pub-
lished literature.

Health Care Systems Research 
Network (HCSRN)

Established in 1994, HCSRN (formerly known as 
the Health Maintenance Organization Research 
Network, HMORN) is a consortium of 18 inte-
grated delivery systems and health plans 
designed to facilitate multidatabase collabora-
tive research [3]. Compared to other DDNs, 
HCSRN is unique because it is not created to 
address specific clinical or research questions. 
Instead, it is “multipurpose” and supports a wide 
range of research and surveillance activities. 
HCSRN is the foundation on which several 
large‐scale collaborative projects are built and 
maintained, including the Vaccine Safety 
Datalink (VSD; more later) [14], the Cancer 
Research Network [15], the Mental Health 
Research Network [16], and the Cardiovascular 
Research Network [17]. HCSRN is often consid-
ered one of the best examples of a sustained 
DDN [3]. Its distributed network architecture 
and CDM (known as the Virtual Data 



Table 25.1 Select examples of distributed data networks in pharmacoepidemiology.

AsPEN [1] CNODES [2] HCSRN [3] PCORnet [4] PROTECT [5] Sentinel [6] VSD [7]

Number of data 
partners

12 9 18 >80 14 18 9

Total population 220 million 35 million 
(Canada)

16 million 100 million 100 million 293 million 9 million

Type of data Claims Claims, EHRs Claims, EHRs Claims, EHRs Claims, EHRs Claims, EHRs EHRs
Geography Asia‐Pacific Canada, US, 

and UK
US and Israel US European Union US US

Funding source None CIHR Various PCORI IMI FDA CDC
Primary mission Medication 

safety research
Medical product 
safety research

Multipurpose Patient‐centered 
outcomes research

Medication safety 
research

Medical product 
safety surveillance

Vaccine safety 
surveillance

Common data 
model

Yes Yes Yes Yes No Yes Yes

Common study 
protocol

No Yes Yes Yes Yes Yes Yes

Common statistical 
analysis plan

Yes Yes Yes Yes Yes Yes Yes

AsPEN, Asian Pharmacoepidemiology Network; CDC, Centers for Disease Control and Prevention; CIHR, Canadian Institutes of Health Research; CNODES, 
Canadian Network for Observational Drug Effect Studies; EHRs, electronic health records; FDA, Food and Drug Administration; HCSRN, Health Care Systems 
Research Network; IMI, Innovative Medicines Initiative; PCORI, Patient‐Centered Outcomes Research Institute; PCORnet, National Patient‐Centered Clinical 
Research Network; PROTECT, Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium; VSD, Vaccine Safety Datalink.
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Warehouse) [18] have been adopted by other 
DDNs, such as the Sentinel system (see later).

National Patient‐Centered Clinical 
Research Network (PCORnet)

Launched in 2013, PCORnet is a network of 
networks that includes 13 Clinical Data 
Research Networks, 20 People‐Powered 
Research Networks, 2 Health Plan Research 
Networks, and a coordinating center in the US 
[4]. The Clinical Data Research Networks are 
primarily comprised of healthcare delivery sys-
tems, the Health Plan Research Networks are 
shepherded by two national insurers, and the 
People‐Powered Research Networks are mainly 
led by patient and caregiver organizations. 
PCORnet is designed to support both rand-
omized trials and observational studies. It cur-
rently includes electronic health record (EHR) 
or administrative claims data from more than 
100 million individuals and has access to over 
40  million patients who could be recruited into 
pragmatic clinical trials.

Pharmacoepidemiologic Research 
on Outcomes of Therapeutics by 
a European Consortium (PROTECT)

Initiated in 2009 and ended in 2015, PROTECT 
was a joint undertaking by the European Union 
(EU) and pharmaceutical industry as part of the 
Innovative Medicines Initiative [5]. Its 35 
 partners, including academics, regulators, 
small and medium enterprises, and member 
companies of the European Federation of 
Pharmaceuticals Industries and Associations, 
were coordinated by the European Medicines 
Agency. The overall objective of PROTECT 
was to address limitations of current methods 
in the field of pharmacoepidemiology and 
pharmacovigilance. As part of this work, a net-
work of electronic healthcare databases was 
established to conduct  multicountry, multida-
tabase, drug safety studies. Currently, several 

 former public partners of PROTECT are 
 continuing their collaboration with  additional 
public partners in the European Research 
Network for Pharmacoepidemiology and 
Pharmacovigilance, allowing access to a broad 
variety of datasets (general practice, hospital 
pharmacy/laboratory, pharmacy, hospitaliza-
tion, claims, questionnaires, and biological 
samples) covering six EU countries (Spain, UK, 
Italy, the Netherlands, Denmark, and France) 
and records from approximately 100  million 
active patients to address various research 
questions.

Sentinel System

The Sentinel system is funded by the US Food 
and Drug Administration (FDA) as a national 
medical product surveillance system mandated 
by the US Congress in the FDA Amendments Act 
of 2007 [6,19,20]. Initiated as a pilot program 
called Mini‐Sentinel in 2009 [21], the system 
includes a distributed network of 18 data part-
ners that provide access to administrative claims 
and EHR information from over 290 million 
cumulative patient identifiers. A feature of 
Sentinel is its ability to conduct rapid descriptive 
and inferential analysis using preprogrammed, 
pretested, and customizable analytic tools  
[22–25]. These analytic tools and other Sentinel‐
related materials (e.g., protocols, reports, data 
model) are all available in the public domain.

Vaccine Safety Datalink (VSD)

Funded by the US Centers for Disease Control 
and Prevention since 1990, VSD monitors the 
safety of vaccines using EHR databases from a 
network of nine delivery systems and health 
plans [7,14,26,27]. While VSD initially used a 
centralized data model in which the data part-
ners submitted de‐identified analytic datasets 
for centralized analysis, it switched to a more 
sustainable DDN model in 2001 [28]. A unique 
feature of VSD is its ability to provide near 
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real‐time surveillance of vaccine safety. 
Researchers apply study design and statistical 
methods appropriate for sequential surveil-
lance to analyze weekly updated data. The 
analysis takes into account data lag and incom-
pleteness due to frequent refreshes of the data 
[29,30].

Others

OMOP was a partnership between the FDA and 
the Pharmaceutical Research and Manufacturers 
of America established to inform the appropri-
ate use of electronic healthcare databases for 
studying the effects of medical products [13]. In 
achieving that goal, OMOP initiated a series of 
experiments to investigate the feasibility and 
validity of conducting fully automated assess-
ments of medical product safety [31,32]. The 
initiative also created a CDM and a suite of 
CDM‐compatible analytic tools. The OMOP 
experiment was completed in 2013, but much 
of  its collaborative work continues within 
Observational Health Data Sciences and 
Informatics (OHDSI) [33].

The “Exploring and Understanding Adverse 
Drug Reactions by integrative mining of clinical 
records and biomedical knowledge” (EU‐ADR) 
project was launched in 2008 with the aim to 
leverage information from various EHR data-
bases in Europe to produce a computerized 
integrated system for the early detection of drug 
safety signals [34]. The same approach and some 
of the same databases were used in study‐ 
specific networks, including the Safety of Non‐ 
steroidal Anti‐inflammatory Drugs (SOS) [35], 
Arrhythmogenic Potential of Drugs (ARITMO) 
[26], Safety Evaluation of Adverse Reactions 
in  Diabetes (SAFEGUARD) [37], Global 
Research  in Paediatrics (GRIP) [38], and 
Accelerated Development of Vaccine Benefit‐
risk Collaboration in Europe (ADVANCE) [39] 
projects. Apart from EU‐ADR, these collabora-
tives have included several of the same EU data-
sets and developed study‐specific CDMs.

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

As with multidatabase studies that analyze 
 centrally pooled information, DDN studies sup-
port analyses that cannot typically be done with 
one data source. Examples include assessments 
of rare exposures, rare outcomes, treatment 
effect heterogeneity in specific subpopulations, 
and surveillance of newly approved medical 
products (Table 25.2).

Assessment of Rare Exposures

Examples of rare exposures include, but are not 
limited to, drugs used to treat orphan diseases, 
defined as conditions that affect fewer than 200 000 
individuals (US definition) or 5 in 10 000 individu-
als (EU definition). DDNs allow studies of drugs 
indicated for orphan diseases [59,60]. For example, 
several People‐Powered Research Networks 
within  PCORnet, such as the Phelan‐McDermid 
Syndrome Data Network [61], are leveraging 
patient‐generated information and the electronic 
health data within Clinical Data Research Networks 
to generate evidence about disease progression and 
treatments for these conditions.

Assessment of Rare Outcomes

An example of rare outcomes is Guillain‐Barré 
syndrome, which occurs in 1–2 per 100 000 
person‐years [62]. An adequately powered study 
to examine the association between a vaccine 
and Guillain‐Barré syndrome requires informa-
tion from millions of individuals from multiple 
 databases. For example, to assess the risk of 
Guillain‐Barré syndrome following receipt of a 
quadrivalent human papillomavirus vaccine, a 
VSD study used six databases to identify males 
and females aged 9–26 years who received the 
vaccine from 2006 to 2015 [58]. One confirmed 
case of Guillain‐Barré syndrome within 42 days 
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following vaccination was confirmed among 
over 2.7 million vaccinees.

Assessment of Treatment Effect 
Heterogeneity

Certain treatments may have different effective-
ness or safety profiles in patients with specific 
characteristics. Combining information from 
multiple databases allows researchers to have 
enough sample sizes in subsets of populations 
(e.g., children, the elderly, individuals with a 
 history of heart failure). Results from studies of 
databases that cover demographically and 

 geographically diverse populations also provide 
better generalizability. For example, AsPEN con-
ducted a study to determine whether the risk of 
edema or heart failure associated with thiazoli-
dinediones was different between Caucasian and 
Asian populations, potentially due to differences 
in the prevalence of metabolizing enzymes in 
these  ethnic groups [11]. In another example, a 
Sentinel study examined the associations between 
antihyperglycemic treatments and risk of hospi-
talized heart failure among diabetes patients with 
and  without a history of cardiovascular disease 
[63].  The European Research Network for 
Pharmacoepidemiology and Pharmacovigilance 

Table 25.2 Select examples of studies conducted within distributed data networks.

Network Select studies

AsPEN  ● Antipsychotic use and risk of acute hyperglycemia [9]
 ● Thiazolidinedione use and risk of heart failure across ethnic groups [11]
 ● Cardiac safety of methylphenidate among pediatric patients with ADHD [40]

CNODES  ● Statin use and risk of acute kidney injury [41]
 ● Incretin‐based drug use and risk of heart failure [42]
 ● Occurrence of pregnancy during isotretinoin therapy [43]

HCSRN  ● Lipid‐lowering drug use and risk of rhabdomyolysis [44]
 ● Prenatal antidepressant exposure and risks of congenital malformations [45]
 ● ADHD medication exposure and risk of serious cardiovascular events [46]

PCORnet  ● Aspirin dosing and secondary prevention of atherosclerotic cardiovascular disease [47]
 ● Antibiotic use and weight outcomes in children [48]
 ● Long‐term benefits and risks of bariatric procedures [49]

PROTECT  ● Antibiotic use and risk of acute liver injury [50]
 ● Antidepressant use and risk of hip fracture [51]
 ● Antiepileptic drug use and risk of suicidality [52]

Sentinel  ● Antihyperglycemic use and risk of acute myocardial infarction [53]
 ● Dabigatran use and risks of bleeding and cardiovascular events [54]
 ● Rotavirus vaccination and risk of intussusception [55]

VSD  ● Thimerosal exposure and risks of neuropsychological outcomes [56]
 ● Safety of H1N1 and seasonal influenza vaccines [57]
 ● Quadrivalent human papillomavirus vaccination and risk of Guillain‐Barré syndrome [58]

ADHD, Attention‐deficit hyperactivity disorder; AsPEN, Asian Pharmacoepidemiology Network; CNODES, Canadian 
Network for Observational Drug Effect Studies; HCSRN, Health Care Systems Research Network; PCORnet, National 
Patient‐Centered Clinical Research Network; PROTECT, Pharmacoepidemiological Research on Outcomes of Therapeutics 
by a European Consortium; VSD, Vaccine Safety Datalink.
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is currently investigating the risk of major bleed-
ing associated with direct oral anticoagulants in 
targeted clinical and demographic subgroups for 
which variations in plasma concentrations might 
affect the safety of the products [64].

Postmarket Surveillance of Newly 
Approved Medical Products

An increasingly common scenario that warrants 
the use of multiple databases is postmarket sur-
veillance of the safety of newly approved medical 
products. The goal is to monitor new medical 
products as postmarket experiences of their use 
accrue in routine clinical practice. The number 
of users in a single database is usually low in the 
early postapproval phase, so multiple databases 
are required to support an informative analysis. 
Prospective, sequential analysis of cumulating 
data can be addressed by appropriate statistical 
techniques [65–67]. For example, the Sentinel 
system has leveraged its DDN to complete pro-
spective postmarket surveillance of two newly 
approved medical products and select health 
outcomes. One assessed the association between 
saxagliptin (an oral antihyperglycemic agent) 
and acute myocardial infarction following the 
approval of the drug in 2009 [53]. The other 
examined the associations between rivaroxaban 
and ischemic stroke, intracranial hemorrhage, 
and major gastrointestinal bleeding after the oral 
anticoagulation drug was approved in 2011 [68].

 Methodologic Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

Pooling of individual‐level data, often in a 
 format that is stripped of direct identifiers, had 
traditionally been the default approach used in 
multidatabase analyses. Sharing of de‐identified 
individual‐level data is generally feasible in the 

presence of proper governance, appropriate data 
use or sharing agreements, and established col-
laborative relationships [69]. However, concerns 
about patient privacy and confidentiality, unau-
thorized uses of transferred data, and unintended 
disclosures of sensitive corporate or institutional 
information have made data sharing increasingly 
more challenging in practice, specifically in newly 
formed collaborations or projects that perform a 
large number of studies [70–72]. Contractual 
agreements between health plans and some of 
their members may further restrict sharing of 
individual‐level information with other entities 
for secondary purposes such as research.

A DDN architecture addresses some of the 
concerns associated with pooling of individual‐
level data [70–72]. A typical DDN generally has 
the following features:

 ● There is one or more coordinating center(s).
 ● Data partners maintain physical control of 

their data.
 ● Data partners have the ability to review and 

approve each data request.
 ● Data partners have the ability to review the 

output before sharing it with the requester.
 ● Data partners can opt out of any data request 

at any time.

These features offer data partners more auton-
omy in multidatabase studies. They allow data 
partners to evaluate their ability or willingness to 
share their data with the requester at various steps 
of the request. More importantly, a DDN 
approach keeps the data close to the individuals 
who know the data best. The data partners can 
advise on the appropriate use of the data and help 
investigate data anomalies and interpret findings.

 Challenges in Distributed 
Data Networks

DDNs also come with challenges, some of which 
are common across all multidatabase studies and 
others unique to the distributed environment. 
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There could be heterogeneity in data quality, 
data completeness, coding  system, and patient 
population. Neither a centralized nor a distrib-
uted system is immune to these issues, but they 
can be more difficult to identify or diagnose in a 
distributed environment. Compared to single‐
database studies, multidatabase studies often 
involve additional administrative and govern-
ance issues, such as the need for multicenter 
ethics review and data‐sharing agreements. 
These issues may sometimes (but not always) be 
more resource intensive in DDNs than a cen-
tralized system, depending on the type of analy-
sis and information shared. There may be a need 
for more frequent communications between the 
coordinating center and participating sites in 
DDNs, which can create delays. In multinational 
DDNs, the participating data sources may have 
different languages, different availability of 
medical products, wider variation in clinical 
practice and drug utilization, and different 
responses to medical products due to ethnic or 
genetic variations. The conduct of the statistical 
analysis is generally more complicated in DDNs, 
because individuals responsible for the analysis 
do not have full access to the source data from 
all the participating sites. Although DDNs 
increase overall sample size, the larger sample 
size does not necessarily help improve control 
for confounding, since confounding control 
typically occurs separately within each site.

 Currently Available Solutions

To facilitate the conduct of studies, existing 
DDNs organize themselves differently based on 
their resources, needs, expertise, and data infra-
structure. On one end of the spectrum are DDNs 
that employ a common protocol and a CDM 
approach. At the other end of the spectrum are 
DDNs that have neither a common protocol nor 
a CDM. There are also DDNs that adopt a com-
mon protocol approach without a CDM. These 
options lie on a continuum and do not represent 

all the possible scenarios. For example, a DDN 
can develop a CDM for some of its data partners 
but not the others. Each of these options has its 
unique strengths and limitations (Table  25.3). 
However, some offer clear advantages over the 
others in many scenarios. In particular, a DDN 
that has neither a CDM nor a common protocol 
approach is typically less efficient than the other 
systems. Table 25.1 summarizes the approaches 
employed by some of the DDNs.

Common Data Model, with or 
without a Common Protocol

Some DDNs have all participating data partners 
convert their source data into standardized data 
formats, often known as a CDM. The CDM 
specifies a uniform data file structure and data 
element naming conventions and definitions 
across all databases. There are several CDMs in 
use, including for Sentinel [72], PCORnet [73], 
HCSRN [18], and OMOP [74]. The first ver-
sions of the Sentinel and OMOP CDMs were 
modeled in part on the HCSRN CDM, and the 
Sentinel CDM served as the backbone of the 
PCORnet CDM. CNODES has implemented 
the Sentinel CDM in four databases, is working 
to implement it network-wide, and has initiated 
queries using the CDM.

There is a general misconception that a CDM is 
a “lowest common denominator” approach, which 
reduces the data elements in a DDN to only varia-
bles common across all databases. In reality, data 
partners with more information can populate addi-
tional tables or variables for use in specific studies. 
For example, both the HCSRN and Sentinel CDMs 
allow data partners with clinical information from 
EHRs to populate additional tables on vital signs 
and laboratory test results [18,72].

However, certain information may be lost 
during the standardization process. This may 
occur when the data elements are available in 
multiple coding systems and researchers 
attempt to map across these systems. For exam-
ple, US databases primarily use the International 



Table 25.3 Strengths and limitations of various structures of distributed data networks.

Common data model Yes Yes No No

Common protocol Yes No Yes No

Upfront data infrastructure investment Substantial Substantial Minimal Minimal
Site‐specific statistical programming effort Minimal to 

moderate
Minimal to 
moderate

Moderate to 
substantial

Moderate to 
substantial

Ability to develop preparameterized, reusable tools Yes Yes Limited Limited
Ability to assess database heterogeneity Yes Yes Yes Yes
Ability to perform analysis tailored to individual databases 3 or 4 (worst) 2 or 3 2 or 3 1 (best)
Ability to ensure consistent analysis across databases 1 (best) 2 or 3 2 or 3 4 (worst)
Study‐specific data management and cleaning Minimal to 

moderate
Minimal to 
moderate

Substantial Substantial

Speed of study‐specific analysis 1 (fastest) 2 or 3 2 or 3 4 (slowest)
Marginal cost per study 1 (lowest) 2 or 3 2 or 3 4 (highest)
Reproducibility/validation across sites 1 (best) 3 2 4 (worst)
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Classification of Diseases, 9th or 10th Revision, 
Clinical Modification (ICD‐9‐CM or ICD‐10‐
CM) coding systems to record diagnoses, while 
the general practice databases in the UK docu-
ment diagnoses using Read codes. It is possible 
to map and standardize these coding systems, 
but doing so may lead to some information loss 
or misclassification. In the presence of multiple 
coding systems, it is still possible to develop a 
CDM while preserving the fidelity or granular-
ity of the source information for use in actual 
studies. In the diagnosis example earlier, the 
CDM will have a variable that contains the spe-
cific diagnosis codes (G30z.00 or 410.00) and an 
additional variable that indicates the code type 
(Read or ICD‐9‐CM). DDN studies that analyze 
against the CDM can then use the two variables 
together to define the study parameters. In the 
presence of multiple coding systems, input from 
researchers and others familiar with the data is 
required, either during the mapping process or 
when conducting a study.

DDNs with a CDM almost always conduct 
their studies with a common protocol (more 
later). Analyzing CDM‐backed databases with a 
common protocol allows study‐specific data 
checking, management, and analysis to be done 
via identical computer programs that can be 
developed and beta‐tested by a smaller group of 
individuals. This helps reduce programming 
burden at sites, minimizes opportunities for 
errors across participating sites, and ensures 
consistent analysis across databases. However, 
the centrally developed computer programs 
have to accommodate differences in computing 
environments (e.g., different operating systems, 
software versions) to allow successful execution 
across all participating sites. In addition, a cod-
ing error that occurs in a centrally developed 
program will have an impact on all sites.

On the rare occasions that a common proto-
col is not developed in the presence of a CDM, 
the data partners presumably would have more 
flexibility in answering the study question. This 
would allow certain data partners that have 

more data elements in the CDM to include them 
in their analysis. However, it is worth noting 
that a common protocol can be developed in a 
way that also allows database‐specific analysis, 
for example through a semi data‐adaptive 
approach like high‐dimensional propensity 
score analysis, in which the propensity score is 
built individually in each database using availa-
ble information rather than using a common set 
of variables [23].

Common Protocol, with or without 
a Common Data Model

In a common protocol approach, a protocol is 
developed, often collaboratively among partici-
pating sites, for implementation across the 
DDN. As already discussed, employing a com-
mon protocol approach in the presence of a 
CDM generally allows the study to be con-
ducted more efficiently, as programming bur-
den is limited to one site rather than having 
each site develop de novo code. In the absence 
of a CDM, the common protocol is generally 
less prescriptive, to allow data partners to 
define the measurement of exposure, outcome, 
covariates, and other study parameters based 
on the information available in their databases. 
For example, in a study of rivaroxaban, the pro-
tocol will specify the exposure of interest, but 
each data source will identify rivaroxaban 
exposure based on its  coding system 
(e.g.,  National Drug Codes or  Anatomical 
Therapeutic Chemical Classification System).

As individuals who are most familiar with the 
data are actively involved in the implementation 
of the protocol, the study can accommodate the 
differences in coding practices, data quality and 
completeness, and other idiosyncratic issues 
associated with each database. The disadvan-
tage of this approach is that it can lead to varia-
tions in the interpretation of the protocol, which 
may artificially inflate the heterogeneity across 
sites or affect the robustness of results. In addi-
tion, each site is required to have adequate 
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 programming resources to conduct its own 
analysis. Coordination across the DDN during 
the study can be intensive in order to resolve 
any discrepancies and to ensure consistent 
interpretation of the analysis plan. However, 
this can be accomplished by using a detailed 
 statistical analysis plan and a phased analysis, in 
which, for example, analyses are reviewed at 
various stages in the process (e.g., after baseline 
tables are populated, after propensity scores are 
estimated). Protocol refinements and modifica-
tions, as well as site‐specific amendments 
(should initial analyses uncover differences in 
prescription patterns across sites), can help 
eliminate or explain discrepancies between 
sites. Some DDNs employ a blinding procedure 
to mask the results from participating data 
sources to facilitate more objective assessment 
of heterogeneity across sites. These processes to 
improve consistency require substantial time 
investment by analytic personnel. The common 
protocol approach can be particularly onerous 
for DDNs that do not share a common language 
or coding system across data partners.

The Necessity of Having a Common 
Data Model

Creating a CDM is a substantial undertaking. It 
requires considerable upfront investment on 
data infrastructure, in particular the extraction, 
transformation, and loading of the source data 
to a CDM. Additionally, the ongoing mainte-
nance of the CDM can be burdensome, particu-
larly as new versions of the CDM are needed, 
which can occur when there are new analytic 
requirements or changes in certain data ele-
ments. Each site must also routinely convert its 
new data into the CDM. It is generally easier to 
create a CDM for databases that contain the 
same type of information and coding system 
(e.g., claims data coded in the ICD‐10‐CM 
 system). Developing a CDM for disparate data 
sources (e.g., claims databases and EHR data-
bases) or databases with different coding 

 systems is more challenging, but is possible 
through the use of mapping algorithms. However, 
as discussed earlier, there may be information 
loss or misclassification if mapping is required.

In general, it will be worthwhile to develop a 
CDM if the DDN is designed to conduct multi-
ple studies. It may also be useful to convert the 
source data into a specific CDM to leverage 
available software or tools that are compatible 
with the CDM. For example, Sentinel, PCORnet, 
and OHDSI have developed a suite of analytic 
tools that can be executed within databases that 
use their CDMs. From the scientific validity per-
spective, the amount of data management, qual-
ity assurance, and harmonization for a given 
multidatabase study is similar regardless of the 
data network architecture. The CDM approach 
spends more resources upfront on data harmo-
nization and quality assurance, so that down-
stream studies can be done more efficiently. 
However, the cost of establishing and maintain-
ing the CDM is the same for 1 study as it is for 
100 studies. The CDM achieves an economy of 
scale when the number of studies supported by 
the CDM is sufficiently large. In principle, the 
marginal cost of conducting a study is lower in 
DDNs with a CDM than in DDNs without a 
CDM when the number of studies is large.

A key consideration in developing a CDM is 
how much, if any, preprocessing of the informa-
tion should be done upfront, and how much 
should be handled when conducting the study. 
Preserving the fidelity and granularity of the 
source information, as briefly discussed already, 
allows researchers of specific studies to deter-
mine the most appropriate study parameters. 
The extra time to execute the study, due to the 
additional deliberation, is generally worthwhile. 
Preprocessing the information upstream via 
mapping or creating specific constructs or 
 concepts helps expedite the implementation of 
specific studies downstream, but may restrict 
researchers’ ability to develop study parameters 
tailored to the studies. The approach taken by a 
given DDN depends on its missions, objectives, 
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and preferences. For example, the Sentinel 
 system does minimal preprocessing of the data 
upfront, which allows the system to tailor its 
analysis to the FDA’s regulatory questions. The 
OMOP CDM involves a significant amount of 
preprocessing, which allows researchers to 
streamline the conduct of their analysis using 
predefined variables and parameters. The pros 
and cons of these approaches, as well as their 
comparative performance, have been covered in 
the literature [75–78].

Methodological Advances

The defining feature of DDNs is that the data are 
stored locally under the direct control of partici-
pating data partners, and ideally only minimal 
necessary information is shared in each analysis. 
Traditionally, it had been necessary or preferred 
to share de‐identified individual‐level datasets 
for centralized analysis. With this approach, the 
participating sites send the analysis center an 
individual‐level analytic dataset with distinct 
covariate information necessary for the analysis, 
yielding what is essentially a single centralized 
dataset after pooling. The confounders can be 
incorporated into the analysis through match-
ing, stratification, restriction, regression, or 
weighting, and the data can be considered all 
together or stratified by contributing site [79,80]. 
Confounder summary scores (discussed shortly) 
can be estimated after centralizing the data. 
Although this approach offers the most analytic 
flexibility, it requires the most granular informa-
tion among all the analytic options.

Recent methodological advances have 
expanded the data‐sharing and analytic options, 
some of which require less granular information 
to perform the same type of analysis afforded by 
pooled individual‐level data [81–85]. As a 
result, these newer methods may be preferred 
because they are more privacy protecting. 
Another feature of these new methods is that 
most or all the analyses will need to be specified 
a priori, or additional data requests may be 

required to obtain the additional information 
needed for ad hoc analyses. Although these are 
often seen as the limitations of these newer 
methods, they can also be considered strengths, 
because there is better transparency in the 
 analysis. They help ensure clear delineation 
between prespecified and ad hoc analyses, and 
minimize opportunities for conducting unspec-
ified analyses and selective reporting of results.

Individual‐Level Confounder Summary 
Score‐Based Methods
Confounder summary scores, such as propen-
sity scores [86,87] and disease risk scores 
[88,89], are widely used in pharmacoepidemio-
logic research. If estimated correctly, these sum-
mary scores contain sufficient information to 
account for the confounding effects of the 
covariates used to estimate them. These data 
dimension reduction techniques have some 
appealing features useful for DDNs. Specifically, 
they obscure the information from a large num-
ber of covariates into scalar measures that are 
much less identifiable. Instead of requesting an 
individual‐level dataset with information on 
individual covariates, one can replace these 
covariates with the summary scores [82,90,91]. 
In its simplest form, the dataset will only include 
variables indicating the treatment, outcome, 
follow‐up (for time‐to‐event analysis), and con-
founder summary score. Other variables needed 
for the analysis, such as age or age categories if 
one wishes to perform age‐stratified analysis, 
can also be requested. Conventional approaches 
to handling confounders, including matching, 
stratification, restriction, regression, and 
weighting, can then be done with the pooled, 
less granular, individual‐level datasets.

This approach can perform essentially all the 
prespecified analyses afforded by the approach 
that shares individual confounder information, 
but it may not be able to accommodate all ad hoc 
analyses. For example, if sex is included in the 
estimation of the confounder summary score 
but is not requested separately, one will not be 
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able to perform a secondary, sex‐stratified analy-
sis without going back to the sites to request 
additional sex information.

The confounder summary scores should 
 ideally be estimated and adjusted within each 
database, not just for practical reasons but also 
to ensure validity. For example, propensity 
scores are a function of the prevalence of the 
exposure in the population in which the scores 
are estimated. The prevalence of the exposure 
may vary across databases due to differences in 
formulary, regional prescribing pattern, and 
patient characteristics. Having site‐specific pro-
pensity score models also allows the effect of a 
given covariate (e.g., age) on the probability of 
receiving the treatment of interest to vary by 
site. Researchers should account for site or data-
base in the analysis by either including it as a 
stratification variable or performing within‐site 
matching or stratification. As already dis-
cussed, data‐adaptive approaches like the high‐
dimensional propensity score method [23] 
readily allow the analysis to be more tailored to 
the data availability at each participating site.

In contrast, the influence of risk factors on the 
outcome is generally more stable across data-
bases, even if the outcome incidence varies by 
site. For example, the relation between age and 
heart failure, conditional on all other risk fac-
tors, should be similar across data sources. 
Therefore, it may be possible to combine disease 
risk scores, another commonly used confounder 
summary score that models and summarizes the 
associations between potential confounders and 
outcome risk, across sites. Additional research is 
needed to evaluate this issue.

Confounder Summary Score‐Based Methods
It is possible to combine confounder summary 
score‐based methods with other analytic tech-
niques to further reduce the granularity of 
information shared. One can perform matching 
and stratification at the sites, and then only 
request the aggregate‐level matched or strati-
fied data to return to the analysis center [82,91]. 

In a matched analysis, if each site matches in the 
same fixed ratio, the only information needed 
for the analysis will be the total exposed and 
unexposed persons or person‐times, and the 
number of exposed and unexposed outcomes. 
In a stratified analysis, participating sites send 
to the analysis center the total exposed and 
unexposed persons or person‐times, and the 
number of exposed and unexposed outcomes 
within each stratum. Alternatively, one can 
structure the datasets into a risk set format at 
the sites and request risk set‐based summary‐
level information for centralized analysis [82–
84,92]. Results from the risk set‐based approach 
have been shown to be statistically equivalent to 
results from the pooled individual‐level strati-
fied Cox regression model [83,92]. As with other 
methods, subgroup and sensitivity analyses will 
need to be prespecified so that appropriate 
summary‐level information can be generated at 
the sites and shared for centralized analysis. As 
before, care should be taken with subgroup 
analyses to avoid small cells and potential iden-
tification risks. These methods protect against 
patient identification to an extent, but are not 
foolproof. If, for example, a rare disease or 
 exposure is of interest, and prespecified analy-
ses involve substantial stratification, some cells 
of the summary tables may be small enough to 
violate data partners’ privacy regulations.

Meta‐analysis of Database‐Specific Results
An alternative to pooling individual‐level data in 
a central repository is the commonly used 
approach of pooling site‐specific effect estimates 
using meta‐analytic techniques. In this approach, 
each site performs its own analysis, and the 
effect estimates and their variances (or  other 
information needed to calculate database‐ 
specific weights) are provided to a central 
 location and combined via meta‐analysis 
[83,84,93–95]. The site‐specific estimates can be 
obtained from matching, stratification, restric-
tion, outcome modeling, or weighting, with or 
without confounder summary scores. This has 
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been shown to produce similar pooled effect esti-
mates when compared with individual‐level data 
analysis [90,96,97]. Although all data‐sharing 
methods, including those discussed in this sec-
tion, can in principle inspect treatment effect 
heterogeneity across databases, meta‐analysis 
does that in the most obvious way, because data-
base‐specific effect estimates are shared and used 
in the pooled analysis. Each subgroup or sensitiv-
ity analysis requires all sites to perform each 
analysis internally, and then transfer the effect 
estimates to the lead team. Smaller sites may not 
be able to perform certain analyses, although 
sometimes using confounder summary scores to 
obtain site‐specific effect estimate may help.

Distributed regression
The basic idea of distributed regression is for 
each data source to process its own individual‐
level data and share with the analysis center only 
summary statistics (e.g., sums of squares and 
cross‐products matrix), such that the analysis 
center can either calculate the effect estimates 
or, if an iterative process is needed, update the 
parameter estimates and send them back to each 
data source to further update the summary sta-
tistics [98–101]. The iterative process continues 
until either a specified convergence criterion is 
met and the final parameter estimates are calcu-
lated, or the maximum number of iterations is 
reached. In other words, distributed regression 
conducts the same numeric algorithm with only 
centrally combined summary statistics as stand-
ard regression with pooled individual‐level data. 
Although distributed regression is appealing in 
theory, it is relatively cumbersome to implement 
in practice, particularly for regression models 
that require multiple iterations. There are ongo-
ing efforts to improve the practicality of distrib-
uted regression in existing DDNs [102–105].

Encryption
When applied in pharmacoepidemiology, encryp-
tion or hashing techniques are generally used 
to  obscure potentially identifiable information 
while  allowing valid database linkages [106,107]. 

In principle, it is possible to use these techniques 
to process the de‐identified analytic dataset at the 
site before the encrypted data, along with the 
decryption method, are shared centrally for analy-
sis. There have been some efforts in combining 
homomorphic encryption techniques with dis-
tributed regression [103,108], but using encryp-
tion to obscure potentially identifiable 
individual‐level data is still quite theoretical and 
has not been widely implemented in practice.

 The Future

More Sustainable and Efficient

DDNs, regardless of their actual configuration, 
typically require significant upfront investment. 
An architecture with a CDM is costly and time 
consuming to set up and maintain; however, effi-
ciency benefits may be realized if the infrastruc-
ture is used for multiple studies. Some DDNs 
may achieve “economies of scale” and be able to 
conduct additional studies more efficiently and 
at a marginal cost compared to doing these stud-
ies as a series of “one‐offs” [3,109]. DDNs with-
out a CDM require infrastructure and initial 
investment to develop replicable and systematic 
processes. With more sustained funding support 
from regulatory agencies and other stakehold-
ers, existing and future DDNs will have the 
much‐needed stable foundation to grow, expand, 
and mature. This will be particularly important 
for some DDNs that are currently not supported 
by a single regulatory authority, such as AsPEN, 
and the various EU networks like PROTECT 
and EU‐ADR. Even for funded DDNs, it can be 
argued that the infrastructure should be made 
available to other stakeholders with proper gov-
ernance in place. The Sentinel system is an 
example of how this can be possible. Although 
the surveillance system was originally created by 
the FDA to meet its regulatory mandate, the 
agency envisioned the infrastructure eventually 
becoming a national resource for evidence gen-
eration [19]. Through the Innovation in Medical 
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Evidence Development and Surveillance initia-
tive, non‐FDA funders, including life science 
companies, can now access the same data 
sources and analytic tools used in Sentinel to 
conduct their own studies [110].

Broader Scope

With few exceptions, most DDNs were initially 
created for specific purposes (e.g., medical prod-
uct safety surveillance). However, the scientific 
and technical infrastructure of many DDNs has 
the potential to address a wider range of topics, 
including comparative effectiveness research, 
patient‐centered outcomes research, public 
health surveillance, and quality improvement. In 
addition to facilitating observational studies that 
analyze secondary data sources, some DDNs 
also support intervention studies. For example, 
PCORnet is conducting a pragmatic trial within 
participating health systems to examine aspirin 
dosing and secondary prevention of atheroscle-
rotic cardiovascular disease [47]. Another prag-
matic trial is underway in Sentinel to investigate 
the effect of direct mailings to patients and pro-
viders on initiation of anticoagulation therapy 
among  eligible, treatment‐naive patients [111]. 
These trials leverage the existing electronic 
healthcare databases of participating delivery 
systems or health plans to identify eligible 
patients and collect follow‐up data, which allow 
the trials to be conducted more efficiently in 
real‐world clinical settings compared to conven-
tional randomized controlled trials.

More Diverse and Complementary 
Data Sources

Most DDNs are “horizontally partitioned,” 
meaning that each database in the network 
 contains information from different patients. 
Information is increasingly and routinely 
 collected in various databases, for instance 
administrative claims databases, EHRs, disease 
or product registries, and data warehouses that 
contain information collected from wearables, 

mobile devices, or social media. In the future, 
we will likely see more DDNs that include 
 disparate databases that include various data 
elements from the same individuals. These 
methods will require continued methodologic 
development to account for variation in data 
quality and completeness across data sources. 
Missing data and potential selection bias that 
arises from restricting the analysis to only 
patients appearing in multiple databases will 
require special attention.

More Robust and Secure Analysis

Continued methodologic advancement, both 
in developing cutting‐edge analytic methods 
and in refining existing methods, will offer 
more analytic options that allow researchers 
to perform sophisticated statistical analysis 
while offering sufficient protection for patient 
confidentiality and data security. Existing 
methods already allow researchers to perform 
multivariable-adjusted outcome regression 
analysis and confounder summary‐based anal-
ysis without sharing individual‐level data for 
one‐time exposures and one‐time outcomes 
[82–84]. As DDNs mature, additional meth-
odologic developments are likely to become 
available, including analysis of time‐varying 
exposures, time‐varying or repeated  outcomes, 
missing data, and multilevel data.

Greater Transparency 
and Reproducibility

The DDN structure often requires researchers 
to prespecify the study design and analysis plan 
in advance, because they may not have direct 
access to all the data. For DDNs that employ a 
CDM, the analytic code will be pretested to 
ensure successful execution across the partici-
pating data partners. For DDNs that use a 
 common protocol approach, the protocol will 
also need to be developed in advance. These data 
models, protocols, analytic code, and results 
should be made publicly available whenever 
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 possible to improve transparency and encourage 
reproducibility [112]. Several DDNs, such as 
Sentinel and CNODES, are already adopting this 
policy, which has allowed other researchers to 
replicate the analyses [113,114]. OHDSI also 
makes its analytic tools publicly available.

Better Interoperability 
and Coordination across Networks

A possible future is one that has a national or 
international infrastructure that supports multiple 

DDNs. A healthcare delivery system or health plan 
can participate in multiple networks, each created 
for different purposes (e.g., medical product safety 
surveillance, comparative effectiveness research, 
pragmatic trials, public health surveillance). Each 
network will have its own governance and coordi-
nation. The networks can share the infrastructure, 
analytic tools, lessons learned, and software 
 development and improvement. Regulators and 
decision-makers may also choose to collaborate 
on questions or work with multiple networks on 
 specific queries.
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 Comparative Effectiveness 
Research in the US

Clinical and scientific communities have a long-
standing desire to use scientific evidence to opti-
mize clinical decisions for patients. While 
randomized controlled trials (RCTs) and meta‐
analyses of RCTs are generally considered to 
constitute the highest level of evidence, they 
have also been criticized for several aspects 
inherent to their design: comparison to placebo 
rather than alternative treatment; nonrepresent-
ativeness of patient populations that tend to 
exclude older and multimorbid adults and chil-
dren; controlled settings that differ from real‐
world care settings; relatively short follow‐up; 
frequent use of surrogate endpoints rather than 
hard endpoints such as clinical events or death; 
and insufficient sample size to assess subgroup 
effects. Efforts to produce evidence that over-
comes these limitations and is directly applica-
ble to real‐world patients as well as making 
clinical care more rational have been referred to 
at different times as outcomes research, effective-
ness research, evidence‐based research, health 
technology assessment, and, most recently, 

 comparative effectiveness research (CER) [1]. To 
reduce the perception that the main agenda 
behind the push for CER is cost containment for 
healthcare, at least one government agency has 
begun relabeling CER as patient‐centered health 
research [2].

CER is not a new concept, but has existed for 
the last several decades under various labels, 
and its popularity in the US had risen in 
response to several government initiatives. 
Earlier government initiatives for CER in the 
US were attempted first by the Congressional 
Office of Technology Assessment (established 
in 1972), then by the National Center for 
Health Care Technology (1978–1982), and 
then by the Agency for Health Care Policy and 
Research (established in 1989 and later 
renamed the Agency for Healthcare Research 
and Quality, AHRQ) [3]. The most recent 
impetus for CER came from the 2009 American 
Recovery and Reinvestment Act (ARRA 
Stimulus), with an appropriation of $1.1 billion 
“to study the comparative effectiveness of 
healthcare treatments” [4].

Furthermore, in 2010, the Patient Protection 
and Affordable Care Act (PPACA) authorized 

26

Comparative Effectiveness Research
Soko Setoguchi1 and Ian Chi Kei Wong2,3

1 Rutgers Robert Wood Johnson Medical School, Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ, USA
2 Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
3 UCL School of Pharmacy, London, UK



Comparative Effectiveness Research640

the establishment of the Patient‐Centered 
Outcomes Research Institute (PCORI) to carry 
out CER and improve its quality and relevance 
[5]. PPACA established new requirements for 
the Department of Health and Human Services 
(HHS) to disseminate findings from federally 
funded CER, including findings published by 
PCORI, and to coordinate with relevant federal 
health programs to build data capacity for this 
research. To fund CER activities, PPACA estab-
lished the Patient‐Centered Outcomes Research 
Trust Fund (PCORTF), from which PCORI and 
HHS are expected to receive an estimated $4 
billion from fiscal years 2010 through 2019. As 
of November 2017, PCORI had disbursed more 
than $2 billion for approximately 600 CER‐
related projects [6].

 CER in Europe and Other 
Countries

Europe

In recent years a number of European Union 
(EU) countries have introduced so‐called health 
technology assessments (HTA). HTA includes 
not only assessment of clinical effectiveness, but 
cost‐effectiveness as well [7]. Publicly funded 
healthcare systems are the main healthcare pro-
viders in a number of EU countries, and these 
systems are under substantial financial pressure 
to make the best use of available resources. 
Assessing cost‐effectiveness as part of HTA is 
therefore critical in the evaluation of health 
technology.

The National Institute for Health and Care 
Excellence (NICE) in England and Wales, cre-
ated in 1999, represents one model for using 
CER primarily to inform policy and practice, 
but also to develop research recommendations 
[8]. Since April 2013, NICE has gained new 
responsibilities for providing guidance to those 
working in social care. Accordingly, NICE guid-
ance documents are used by the National Health 

Service (NHS), local government, employers, 
volunteer groups, and others involved in deliv-
ering care or promoting wellbeing [9]. NICE 
guidance takes several forms, including NICE 
guidelines, technology appraisals guidance, 
medical technologies, and diagnostics guidance, 
as described shortly.

NICE guidelines make evidence‐based recom-
mendations on a wide range of topics, from pre-
venting and managing specific conditions, 
improving health, and managing medicines in 
different settings, to providing social care to 
adults and children and planning broader ser-
vices and interventions to improve the health of 
communities. These guidelines aim to promote 
integrated care where appropriate. NICE has 
provided a substantial number of evidence‐
based guidelines for clinical practice [10], though 
not without controversy and challenge [11].

Technology appraisals guidance assesses the 
clinical and cost‐effectiveness of health tech-
nologies, such as new pharmaceutical and biop-
harmaceutical products, but also procedures, 
devices, and diagnostic agents. For example, 
recent guidance recommends ixazomib with 
lenalidomide and dexamethasone for use within 
the Cancer Drugs Fund (a central funding 
source for cancer drugs in England) as an option 
for treating multiple myeloma in adults only if 
patients have already had two or three lines of 
therapy [12]. Technology appraisals guidance is 
intended to ensure that all NHS patients have 
equitable access to the most clinically and cost‐
effective treatments that are viable.

Medical technologies and diagnostics guid-
ance helps to ensure that the NHS is able to 
adopt clinically and cost‐effective technologies 
rapidly and consistently. For example, Neuropad 
is a technology that aims to detect preclinical 
diabetic peripheral neuropathy. However, its 
use is not supported by evidence [13]. 
Interventional procedures guidance provides 
recommendations on whether interventional 
procedures are effective and safe enough for 
use  in the NHS. For example, NICE recently 
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recommended that intravesical microwave 
hyperthermia and chemotherapy for non‐muscle‐
invasive bladder cancer be used only with 
special arrangements for clinical governance, 
consent, and audit or research [14].

For their evaluations, NICE’s advisory com-
mittees use objective evidence provided by aca-
demic institutions in the UK, such as the Royal 
College of Physicians, under contract with 
NICE to perform evidence syntheses and to 
conduct small‐scale studies entailing primary 
data collection [8]. The explicit use of cost‐
effectiveness data to evaluate and choose among 
medical interventions is viewed in the UK “as a 
tool to ensure fair shares for all in a resource‐
limited system,” according to Chalkidou and 
Walley [8].

A six‐country comparison by Sorenson [15] 
and a similar three‐country comparison by 
Evans [16] illustrate the considerable efforts 
extended by European governments to incorpo-
rate CER into health policy decisions and the 
different approaches used for organizing these 
efforts. In France (the National Authority for 
Health – Haute Autorité de Santé or HAS [17]), 
Germany (the Institute for Quality and 
Efficiency in Healthcare – Institut für Qualität 
und Wirtschaftlichkeit im Gesundheitswesen or 
IQWiG [18]), and the Netherlands (Commissie 
Farmaceutische Hulp or CHF, Committee for 
Pharmaceutical Aid), the entities responsible 
for CER, act in an advisory role to the govern-
ment, making recommendations on reimburse-
ments and pricing. This is in contrast with the 
UK (NICE), Denmark (Reimbursement 
Committee of the Danish Medicines Agency or 
DKMA), and Sweden (Dental and 
Pharmaceutical Benefits Board or TLV), where 
the CER entities have regulatory authority and 
are directly responsible for prioritizing reim-
bursements for drug and devices [15,16]. Cost‐
effectiveness data are formally incorporated in 
evaluations and recommendations about cover-
age and pricing by most CER entities (UK, 
Germany, the Netherlands, and Sweden) [15].

Another five‐country comparison by Levy 
et  al. [19] that also includes Canada and 
Australia (the Pharmaceutical Benefits Advisory 
Committee, or PBAS [20]) noted that in each of 
the countries surveyed, the health technology 
evaluation committees (conceptually compara-
ble to CER) retain their independence regarding 
decisions about which technologies are included 
in the formulary, despite receiving government 
funding. Members of these committees are pri-
marily health professionals, with only Canada, 
Australia, and Scotland also including public 
representatives, and only Scotland permitting 
industry representation as well [19].

Other Countries

Healthcare systems and their financing mecha-
nisms outside Western Europe and North 
America are very diverse, and it is impossible to 
comprehensively discuss the applications (or 
potential applications) of CER in all countries. 
According to Bloomberg Health Care Efficiency, 
Hong Kong was ranked the most efficient 
healthcare system in the world in 2017 and 2018 
[21]. Hong Kong has a universal, publicly funded 
healthcare system which does not formally 
apply CER in decision‐making. In parallel, Hong 
Kong also has a very well‐developed private 
healthcare system, funded by insurance and 
patient out‐of‐pocket payments. The two sec-
tors complement each other, in that the private 
sector is the major provider of primary health-
care, while the public sector is the predominant 
provider of secondary and tertiary healthcare 
services. About 70% of outpatient consultations 
are provided by the private sector, while over 
90% of inpatient services (in terms of the num-
ber of bed‐days) are provided by public hospi-
tals. This system presents substantial difficulties 
for effectiveness research, as the two sectors 
cannot use the same CER for evaluation. At 
 present, neither the public nor the private sec-
tor has adopted formal assessment of CER for 
evaluation of treatment. This raises important 
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questions regarding what factors beyond CER 
play significant roles in the efficiency of the 
healthcare system.

African countries in general are facing signifi-
cant issues in healthcare financing and are strug-
gling to provide sufficient publicly funded 
healthcare services. In South Africa, the National 
Department of Health includes a series of explicit 
references to HTA in a white paper setting out 
the government’s 10‐year vision for high‐quality 
universal healthcare coverage. A dedicated task-
force has been set up to consider HTA and other 
tools in order to design high‐quality, affordable 
packages of health services [22].

Patel et  al. describe the healthcare and gov-
ernment environment and the use (and poten-
tial use) of CER to control healthcare 
expenditures in China, India, and South Korea 
[23]. This report demonstrates the diversity of 
the healthcare systems and potential uses of 
CER in these three countries. CER will clearly 
be of increasing importance to aid government 
agencies in healthcare resource allocation. 
While the use of CER by government agencies 
has been well established for a substantial 
period outside the US, much of the recent activ-
ity is occurring within the US, and that will be 
the primary focus of this chapter.

 Efficacy vs. Effectiveness

A study of treatment efficacy investigates 
whether a drug has the ability to bring about a 
given intended effect in ideal (controlled) set-
tings. For example, a drug efficacy study would 
be centered on the question: “In an ideal world, 
with perfect adherence, no interactions with 
other drugs or other diseases, etc., could the 
drug achieve its intended effects?” In contrast, a 
study of treatment effectiveness investigates 
whether, in real‐world patients and settings, a 
treatment in fact achieves its desired effect. For 
example, a drug given in a controlled setting 
may be shown to reduce glucose levels in 

younger patients having no major co‐morbidi-
ties, but it might not achieve good glucose con-
trol in older patients with heart failure if it 
causes even mild water retention that leads to 
nonadherence or premature discontinuation. 
To answer questions about effectiveness, stud-
ies need to include representative real‐world 
patients and assess effectiveness in real‐world 
care settings.

 Definitions, Key Components, 
and Goals of CER

CER seeks to assist stakeholders, for example 
patients, clinicians, insurers, the medical prod-
ucts industry, and policymakers to make 
informed decisions to improve healthcare at 
both individual and population levels. Several 
definitions of CER have been proposed by US 
government and nongovernment organizations 
and are summarized in Table  26.1. In Europe, 
the term CER is not commonly used, but HTA 
describes similar though not identical research. 
Several definitions of HTA are also provided in 
Table 26.1. HTA as defined by the UK National 
Institute for Health Research (NIHR) is actually 
broader than CER, since it formally includes 
cost‐effectiveness evaluation, whereas CER 
generally does not.

For CER to assist in clinical decision‐making, 
it must include three key components: (i) evi-
dence synthesis (identifying and summarizing 
already existing data addressing a question); (ii) 
evidence generation (creating new data address-
ing a question); and (iii) evidence dissemination 
(distributing the available data with the goal of 
informing healthcare decision‐making). In 
other words, for some decisions, existing evi-
dence from individual studies may be contro-
versial or insufficient to support specific clinical 
decisions. In such cases, the evidence must be 
synthesized (evidence synthesis), which may 
then provide a sufficient basis to support the 
decision or identify knowledge gaps to guide 
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Table 26.1 Definitions of comparative effectiveness research and health technology assessment proposed by US 
and other government and nongovernment organizations.

Agency/report Definition

Comparative effectiveness research (CER)
US Congressional 
Budget Office report, 
December 2007 [24]

“A rigorous evaluation of the impact of different options that are available for 
treating a given medical condition for a particular set of patients. Such a study 
may compare similar treatments, such as competing drugs, or it may analyze very 
different approaches, such as surgery and drug therapy.”

Institute of Medicine 
report [25]

“The generation and synthesis of evidence that compares the benefits and harms 
of alternative methods to prevent, diagnose, treat, and monitor a clinical condition 
or to improve the delivery of care. The purpose of CER is to assist patients, 
clinicians, purchasers, policy makers, and the public to make informed decisions 
that will improve health care at both the individual and population levels.”

US Federal Coordinating 
Council [26]

“CER is the conduct and synthesis of research comparing the benefits and harms 
of different interventions and strategies to prevent, diagnose, treat and monitor 
health conditions in ‘real world’ settings. The purpose of this research is to 
improve health outcomes by developing and disseminating evidence‐based 
information to patients, clinicians, and other decision‐makers, responding to their 
expressed needs, about which interventions are most effective for which patients 
under specific circumstances.”

Patient‐Centered 
Outcomes Research 
Institute [27]

“CER is a field of research designed to compare the effectiveness of two or more 
interventions or approaches to health care, examining their risks and benefits. 
CER findings assist clinicians, patients and other stakeholders in making informed 
decisions that improve health care for both individuals and populations. The 
direct comparison of two or more interventions distinguishes CER from studies 
explor[ing] outcomes related to one intervention alone. CER can not only validate 
a particular intervention but also identify which of available treatments best meet 
the needs of a given population.”

Health technology assessment (HTA)
National Institute 
for Health Research, 
UK [7]

“HTA research is undertaken when evidence exists to show that a technology can 
be effective. The purpose of an HTA study is to establish the clinical and cost‐
effectiveness for the NHS in comparison with the current best alternative(s). A 
study may also investigate uncertainty around a technology’s place in the existing 
care pathway. ‘Technologies’ in this context mean any method used to promote 
health; prevent and treat disease; and improve rehabilitation or long‐term care. 
They are not confined to new drugs and include any intervention used in the 
treatment, prevention or diagnosis of disease.”

European Commission 
[28]

“HTA measures the added value of a new health technology compared to existing 
ones. Examples of health technologies include medicinal products, medical 
equipment, diagnostic and treatment methods, rehabilitation, and prevention 
methods.”

International Network 
of Agencies for Health 
Technology Assessment 
(INAHTA) [29]

“HTA is the systematic evaluation of the properties and effects of a health 
technology, addressing the direct and intended effects of this technology, as well as 
its indirect and unintended consequences, and aimed mainly at informing decision 
making regarding health technologies. HTA is conducted by interdisciplinary 
groups that use explicit analytical frameworks drawing on a variety of methods.”
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further evidence generation. For some deci-
sions faced by patients, clinicians, insurers, 
and policymakers, there may be insufficient 
evidence from individual studies to inform 
the decision. In these cases, new CER studies 
must be conducted to generate evidence (evi-
dence generation). Generated or synthesized 
evidence must be disseminated for decision‐
makers of healthcare and CER to make 
informed decisions. It is also important to 
note that CER may assess both benefit and 
harms. Therefore, traditional pharmacoepi-
demiologic studies assessing the safety 
(harms) of medications in postmarket set-
tings fall under the umbrella of CER.

The most important gaps in the current 
knowledge base about treatment interventions 
are lack of information about how a treatment 
works in actual clinical practice in contrast to 
the artificial settings of clinical trials, lack of 
information about the comparative effective-
ness of treatment options, and lack of informa-
tion about how variation in patient 
characteristics affects treatment effectiveness 
[30]. CER has the potential to fill important evi-
dence gaps associated with the limitations of a 
predominantly RCT‐driven drug and device 
approval pathway. The RCT pathway speaks to 
efficacy rather than effectiveness, because (i) 
placebo is often used rather than an active com-
parator agent; (ii) RCT study populations are 
not representative of the medication users post-
approval (i.e., RCTs tend to exclude older and 
multimorbid adults and children); and (iii) the 
controlled settings used in clinical development 
programs often differ substantially from real‐
world care settings (e.g., they use short follow‐
up and surrogate endpoints).

In summary, the goals of CER are (i) to inform 
decisions on interventions or approaches to 
health care in real‐world settings with regard to 
their intended and unintended outcomes that 
are relevant to patients; (ii) to put new technol-
ogy into proper perspective in relation to older 

technology; and (iii) to identify patients who are 
more or less likely to respond to some interven-
tions than others [31]. As a result, CER is 
expected to increase the use of more effective 
clinical options and decrease the use of less 
effective treatments [1,32–34]. Another conse-
quence of achieving these goals could be a 
reduction in healthcare costs through avoidance 
of treatments that do not work or are less 
 effective than alternatives.

 CER and Pharmacoepidemiology

The concept of CER is in fact very familiar to 
pharmacoepidemiologists. Classic pharma-
coepidemiologic studies that assess postmarket 
safety of medications constitute CER as defined 
earlier. Also, soon after the field of pharmacoep-
idemiology emerged in response to the need to 
study drug safety after marketing of medica-
tions, pharmacoepidemiologists recognized the 
need for postmarketing “efficacy” assessment 
(now defined as “effectiveness”) and debated the 
challenges of assessing “intended” effects or 
benefits [35–37]. Despite the concern that non-
experimental studies may not be useful in stud-
ying the intended effects of drugs, Strom et al. 
showed that of the 100 most recently approved 
drugs with 131 potential drug uses, only 28% 
would require experimental designs [38]. In the 
field of pharmacoepidemiology, we developed a 
research framework for experimental and non-
experimental studies, knowledge of study 
designs, data sources, and analytic strategies, 
and faced various new methodologic challenges 
when studying unintended and intended effects 
in real‐world patients. As described in the pre-
vious section, CER became a popular concept 
and a well‐funded field as a result of the most 
recent government initiative in 2008 and the 
subsequent establishment of PCORI. The 
majority of CER has dealt with the effectiveness 
of medications, surgical procedures, and 
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 medical devices, which is another reason why 
the field is of great relevance and interest to 
pharmacoepidemiologists.

In the context of pharmacoepidemiology 
and especially in the drug development pro-
cess, CER covers the tail end of the pathway 
that begins with bench research (character-
ized by preclinical research to qualify for 
Phase I regulatory approval), moving to bed-
side research (characterized by proof of con-
cept and efficacy research to qualify for Phase 
II regulatory approval), and ending with popu-
lation research (characterized by clinical effi-
cacy to qualify for Phase III regulatory 
approval and Phase IV  clinical safety and 
effectiveness in postmarket settings), and 
finally research on the effect of policies (char-
acterized by postmarketing  surveillance and 
pharmacoeconomic research). A schematic 

illustration of this process is presented in 
Figure 26.1. In one sense, the full scope of CER 
is much broader than pharmacoepidemiology, 
as CER covers a range of clinical modalities for 
prevention, diagnosis, and treatment (drugs, 
medical devices, procedures, behavioral and 
other complex social interventions, as well as 
health delivery systems and policies) [39]. It 
also covers strategies for implementation. In 
another sense, however, CER is narrower than 
pharmacoepidemiology, not only because it 
covers the tail end of the pharmacoepidemiol-
ogy spectrum (Figure 26.1), but also because it 
emphasizes “head‐to‐head” comparisons of 
the safety and benefits of treatments and diag-
nostic strategies to identify “best‐in‐class” 
treatments in the real world [40], whereas 
pharmacoepidemiology can compare users to 
nonusers or to alternative treatments.

Bench Population Implementation

Drugs

Medical Devices

Diagnostic modalities

Behavioral and social 
interventions

Healthcare delivery 
policy and system

Pharmacoepidemiology

Comparative
Effectiveness 

Research

Bedside

Figure 26.1 Schematic representation of overlap between pharmacoepidemiology and comparative 
effectiveness research.
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 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

Scope of CER

CER is broad in scope and addresses the con-
tinuum of medical and surgical interventions, 
including drugs, biologics, devices, medical 
procedures, technologies, behavioral interven-
tions, prevention strategies, talk therapies, diag-
nostics, complex social interventions, and 
health delivery systems [25,41]. In addition, as 
characterized by Lauer and Collins [42], CER 
should utilize an array of technologies that ena-
ble quality and efficient healthcare delivery, and 
should account for the wide range of infrastruc-
ture of integrated healthcare systems. CER also 
encompasses beneficial and adverse effects as 
well as economic implications. It focuses atten-
tion not only on knowledge creation, but also on 
strategies for implementation. This broad scope 
can only be addressed by a diverse research 
portfolio that employs multiple study designs 
and analytic techniques (randomized trials, 
observational studies, and meta‐analyses), as 
well as diverse data from primary data collec-
tion, preexisting data, and hybrid approaches 
linking different data sources [32,42].

Key Attributes of CER

The key attributes of CER that are embedded 
explicitly or implicitly in the aforementioned 
definitions and goals are as follows:

 ● It studies effectiveness in real‐world patients 
and settings.

 ● It directly compares alternative methods to 
prevent, diagnose, treat, and monitor clinical 
conditions (rarely comparing alternatives to 
placebo, as “doing nothing” is often not a real‐
world clinical decision).

 ● It involves stakeholders, including patients 
and caregivers, in the research process.

 ● It uses clinically relevant and patient‐centered 
outcomes.

 ● It assesses subgroups and different care set-
tings in which differential effects may be 
observed (so that the evidence is more appli-
cable to individual patients and is useful in 
various clinical settings).

Key attributes and related goals of CER studies 
are presented in Table 26.2.

The first attribute (inclusion of real‐world 
patients and settings) is necessary to increase 
the direct applicability of the evidence gener-
ated from CER. Traditional efficacy trials are 
typically conducted by investigators affiliated 
with tertiary care hospitals. In contrast, CER 
should include data from patients and physi-
cians from a wide range of care settings. The 
vision for CER is that it will provide opportuni-
ties for community hospitals and practices to 
become involved [43].

In real‐world clinical practice, clinicians and 
patients need information to understand the 
comparative benefit or safety of two or more 
alternative treatments and to choose the best 
option. Therefore, “doing nothing” (placebo) is 
infrequently a viable alternative to treatment. 
However, traditional efficacy trials compare an 
intervention to nonintervention, for example 
treatment A to placebo, and are thus not inform-
ative on the comparative effect of different 
treatments. The goal of CER, as already men-
tioned, is to inform clinical or policy decisions 
among alternative options. Therefore, head‐to‐
head comparison of alternative methods 
(including nonintervention if that is a legitimate 
option in clinical practice) is the second key 
attribute of CER. This attribute also addresses 
the goal of putting new technology into proper 
perspective in relation to older technology. The 
importance of comparing alternative healthcare 
options is highlighted by the 2007 Institute of 
Medicine (IOM) report [44], which points out 
that “the rate with which new interventions are 
introduced into the medical marketplace is 
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 currently outpacing the rate at which 
 information is generated on their effectiveness 
and circumstances of best use” [3], and that 
“less than half of all medical care is based on or 
supported by adequate evidence about its effec-
tiveness” [44]. In addition, wide variation in 
practice [45–49] as well as geographic varia-
tions in the utilization of certain treatments and 
procedures [50–55] suggest a lack of “sufficient 
evidence to determine which approach is most 
appropriate” [44].

The third key attribute invoked by the US 
CER initiatives is involving stakeholders, includ-
ing patients and caregivers, in the research 
 process [25,30,56]. As conceived in the IOM’s 
recommendations for “a robust national CER 
enterprise” [25], this should involve a continu-
ous process that considers and prioritizes topics 
for CER research and funding to address  current 
knowledge gaps about diseases and conditions, 
and that consistently includes participation of 
patients, caregivers, and consumers to provide 

input regarding issues of public concern [25]. 
According to Slutsky et  al. [30], priorities for 
CER must be based on input from all healthcare 
stakeholders, research and synthesis must apply 
to a wide range of healthcare services, and the 
results must be made accessible to multiple 
audiences. Stakeholders in healthcare are gener-
ally categorized as consumers (patients, car-
egivers, and the public), providers (clinicians), 
payers (health insurance programs and patients/
caregivers), policymakers, product makers 
(pharmaceutical industry), and researchers. A 
systematic review [57] assessing stakeholder 
engagement in CER and patient‐centered out-
comes research (PCOR) in published articles 
from 2003–2012 found that reports on stake-
holder engagement were highly variable in con-
tent and quality. In this review, the most 
frequent engagement was with patients, engage-
ment with clinicians was modestly frequent, 
and engagement with other groups was infre-
quent. Stakeholder engagement was more 

Table 26.2 Attributes and corresponding goals of comparative effectiveness research studies.

Desired/necessary attributes Corresponding CER goals

Real‐world patients and settings To inform decisions on interventions or approaches to healthcare in 
real‐world settings with regard to their intended and unintended 
outcomes that are relevant to patients.

Head‐to‐head comparison of 
various treatment/diagnostic/
implementation strategies

To inform decisions on interventions or approaches to healthcare in 
real‐world settings with regard to their intended and unintended 
outcomes that are relevant to patients.
To put new technology into proper perspective versus older 
technology.

Inclusion of all stakeholders of 
healthcare (including patients/
caregivers) in the research process

To inform decisions on interventions or approaches to healthcare in 
real‐world settings with regard to their intended and unintended 
outcomes that are relevant to patients.

Use clinically relevant and 
patient‐centered outcomes

To inform decisions on interventions or approaches to healthcare in 
real‐world settings with regard to their intended and unintended 
outcomes that are relevant to patients.

Assess heterogeneity of effects by 
patient variability, including 
phenotype and genotypes

To identify patients who are more or less likely to respond to some 
interventions than others.
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 common in the prioritization of CER than in its 
implementation and dissemination.

The fourth attribute of CER is that effective-
ness and safety should be addressed using out-
comes of interest and importance to patients 
and clinicians. This attribute also addresses the 
gap of traditional evidence based primarily on 
efficacy trials, many of which focused on surro-
gate outcomes instead of hard clinical outcomes 
or patient‐reported outcomes [58] of most 
interest to patients and clinicians, such as qual-
ity of life or functional status.

Traditional efficacy trials typically report aver-
age effects and are usually underpowered to 
detect variability in patient responses. However, 
clinicians must make decisions about choices for 
patients whose profiles are similar to the average 
of study participants in the trials. Therefore, the 
fifth attribute of CER is exploration of heteroge-
neity to identify subgroups of patients who ben-
efit more (or less) from a given intervention. 
While CER explores patient variability, it assesses 
treatment effects in subgroups that are not typi-
cally narrow enough to reflect differences in how 
individual patients respond to therapies [59]. 
Better practices are needed to evaluate treatment 
heterogeneity, accounting for more precise indi-
vidual‐level factors and preferences as well as 
genetic information, such as the conditional 
average treatment effect [59]. Developments in 
molecular biology and genomics will increasingly 
make it possible to assess genetic variation in 
individual responses to different treatment inter-
ventions, with the goal of individualized and pre-
dictive medicine [25] (see Chapter 30).

 Methodologic Problems to Be 
Solved by Pharmacoepidemiologic 
Research

All three components of CER (evidence 
 synthesis, evidence generation, and evidence 
 dissemination) are relevant in the field of 

 pharmacoepidemiology. This section will cover 
all three components but will focus most on 
 evidence generation, as it is the core field in 
pharmacoepidemiology and its methods are 
directly relevant to CER.

Issues for Evidence Synthesis

Systematic Reviews and Meta‐Analyses in CER
The synthesis of evidence features prominently 
in definitions of CER, and systematic reviews 
and meta‐analyses are the central approaches in 
evidence synthesis. To clarify common termi-
nology following the Cochrane Collaboration 
and Preferred Reporting Items for Systematic 
Reviews and Meta‐Analyses (PRISMA) [60,61], 
a systematic review refers a collection of all 
empirical evidence that fits prespecified eligibil-
ity criteria to answer a specific research ques-
tion. Meta‐analysis is the use of statistical 
methods to summarize and combine the results 
of independent studies (see Chapter  36). 
Therefore, many systematic reviews contain 
meta‐analyses, but not all. Systematic review 
and meta‐analyses can be used to discover pat-
terns among study results and to provide repro-
ducible summaries of study findings. In CER, 
systematic reviews may provide direct answers 
to CER questions, or may elucidate the need for 
more evidence generation when the results 
from individual studies are contradictory or 
when the magnitude of the underlying risk is 
small. Also, systematic reviews have been used 
in combination with clinical guidelines as a 
framework to identify knowledge gaps and to 
set research priorities [62].

The strengths of meta‐analyses are mitigated 
by several methodologic challenges. The meth-
odologic issues of systematic reviews and meta‐
analyses described in Chapter  36 are also 
relevant in evidence synthesis in CER. Briefly, 
the results of a meta‐analysis are often highly 
subject to decisions made by the investigator: 
which studies to include or exclude from a 
meta‐analysis, which outcome endpoints to 
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consider, and how to pool studies that differ in 
design and methods. Simmonds et al. [63] iden-
tified several sources of disagreement among 
experts that can affect the summary findings of 
meta‐analyses. In addition, any limitations of 
the original studies will influence conclusions 
from the analysis of the pooled studies. This can 
be problematic in meta‐analyses of observa-
tional studies. Consequently, some researchers 
have argued that only randomized trials should 
be meta‐analyzed [64–67] (further discussion 
about meta‐analyzing observational studies is 
found later in this chapter). It has also been 
argued that the outputs of meta‐analyses may 
not provide greater insights than the results of 
individual studies [63,68].

Another limitation is that reviewers of the 
same studies may reach different conclusions, 
because of varying expertise in the topic of the 
review or in the technical skill of performing 
meta‐analyses [69], or because of differences in 
values and orientations held by different investi-
gators. The value of meta‐analyses may also be 
seriously limited by publication bias, which can 
take several forms [70]. Studies with statistically 
nonsignificant or negative results are less likely to 
be published, and studies with statistically sig-
nificant results and with stronger treatment 
effects tend to be published with less delay than 
studies with nonsignificant results. In addition, 
findings in some areas of research, such as com-
plementary and alternative medicine, are less 
likely to be published. The summary conclusions 
from pooled published results will thus tend to 
be biased because of this preferential selectivity 
[70]. Problems stemming from publication bias 
may be amplified in meta‐analyses of observa-
tional data. In addition, meta‐analyses commonly 
combine the summary statistics from individual 
studies, whereas stronger results could be pro-
duced by obtaining and aggregating individual 
patient data from the separate studies analyzed 
[63,71,72]. However, issues of access, privacy, and 
ownership of original data make it difficult for 
investigators to obtain individual‐level data.

Meta‐Analyses of Observational CER
Generated evidence for CER can take the form 
of either observational studies or clinical trials. 
Therefore, longstanding debates about meta‐
analysis of observational studies are particularly 
relevant to CER. While some commentators 
have argued that meta‐analyses of randomized 
trials are preferred to meta‐analyses of observa-
tional studies [64–67], meta‐analyses of obser-
vational studies are as common as those of 
randomized trials [68,73]. Reviews and practice 
guidelines on meta‐analyzing observational 
data [68,73,74] show some disagreement with 
regard to this message. Some common opinions 
distilled include:

 ● Observational studies are more diverse in 
their designs and populations.

 ● Publication bias may be more problematic in 
observational studies [75,76].

 ● Biases are more problematic in observational 
studies.

 ● Therefore potential biases in the original 
studies make the calculation of a single sum-
mary estimate of effect of exposure poten-
tially misleading, creating more precise but 
equally spurious effect estimates.

 ● More is gained by carefully examining possi-
ble sources of heterogeneity between the 
results of different observational studies.

 ● Concerns related to methodology and inter-
pretation make the clear and thorough report-
ing of meta‐analyses of observational studies 
absolutely essential (one guide provides a 
draft checklist summarizing recommenda-
tions for reporting meta‐analyses of observa-
tional studies [73]).

From the point of view of pharmacoepidemiol-
ogy, a priori exclusion of observational studies 
from meta‐analyses would constitute a major 
loss. In fact, in some circumstances, meta‐anal-
ysis of observational studies may be the only 
option to quantitatively synthesize current evi-
dence. For example, Man et al. investigated the 
long‐term effectiveness of methylphenidate in 
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the reduction of physical injuries. Harm reduc-
tion is a very important clinical outcome for 
patients and the healthcare system due to the 
high personal and economic cost of injuries. No 
clinical trials for methylphenidate were suffi-
ciently long or even measured this outcome; 
hence, meta‐analysis of observational studies 
was the only available option [77]. A study by 
Kirtane et  al. [78] provides an example of a 
comprehensive meta‐analysis that included 
both RCTs and observational studies, but ana-
lyzed them separately because of the differ-
ences in these types of study designs. Regardless 
of which types of studies are included in a 
meta‐analysis, we agree with the need for a 
careful and systematic examination and report-
ing of observational studies, and for using epi-
demiologists’ and clinicians’ judgments to 
reach decisions about whether meta‐analyses 
should be performed, and, if so, what studies 
should be included.

The expertise and effort required to perform a 
well‐conceived and credible meta‐analysis are 
not trivial. The AHRQ and IOM have published 
recommended standards for performing and 
reporting systematic reviews [79,80]. 
Nevertheless, the conclusions obtained by a rig-
orous meta‐analysis cannot be deemed to pro-
vide a lasting answer to a clinical question, 
because new information may continuously 
become available. Therefore, the meta‐analysis 
will require regular updates to keep it relevant 
for clinical guidelines [81].

Issues for Evidence Generation

Observational (Nonexperimental) Studies in CER
Observational studies have an important place 
in CER. First, observational studies provide data 
on real‐world patients in usual clinical practice, 
which is one of the required attributes of CER 
evidence. Second, observational studies can 
provide larger samples and/or longer follow‐up 
more easily than experimental studies. These 
are features that will be needed, as CER 

 compares two options head to head, and this 
type of comparison will result in smaller effect 
sizes than comparing one treatment to placebo 
[42,82–84]. To date, the majority of CER studies 
have been conducted using observational study 
designs. Observational study designs and the 
methodologic issues they raise [85] are directly 
applicable to CER. In this section, we will sum-
marize methodologic issues of particular impor-
tance in observational CER.

Confounding by Indication
As mentioned earlier, observational CER stud-
ies of intended effects are more susceptible to 
confounding by indication than observational 
studies of unintended effects (e.g., studies eval-
uating adverse drug events). While confounding 
by indication is covered in greater detail in 
Chapter  43, this bias is especially prominent 
when studying beneficial effects of treatments. 
In clinical practice, if one assumes prescribers 
are rational, one would expect treated patients 
to differ from untreated patients, as the former 
have an indication for the treatment. To the 
extent that the indication is related to the out-
come variable as well, the indication can func-
tion as a confounding variable. On the other 
hand, confounding by indication for the treat-
ment is less of a problem when a study is focused 
on unintended drug effects (side effects), 
regardless of whether those effects are harmful 
or beneficial. In this situation, the indication for 
treatment is less likely to be related to the out-
come variable under study. However, this is 
sometimes not the case for studies of intended 
beneficial effects, which are the focus of many 
CER studies.

Confounding by indication (for the treat-
ment) may also appear to be less of a problem 
when making comparisons between therapeutic 
alternatives for the same condition, since both 
study groups have the indication for treatment. 
However, nonrandomized studies comparing 
therapeutic alternatives are not necessarily free 
from confounding by indication, because the 
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true indication for a given treatment is often 
more subtle than the regulator‐approved indi-
cation. For example, patients prescribed an 
angiotensin‐converting enzyme (ACE) inhibitor 
as initial treatment for hypertension are likely to 
be different from those prescribed a thiazide 
diuretic for the same condition, as the former 
are more likely to have diabetes with nephropa-
thy, myocardial infarction, and heart failure, 
whereas the latter being are more likely to have 
uncomplicated hypertension. As a second 
example, patients prescribed a combination of 
methotrexate and tumor necrosis factor alpha 
inhibitor as initial treatment for rheumatoid 
arthritis are likely to have more severe and 
active disease than those prescribed methotrex-
ate monotherapy. Unless the choice between 
treatment alternatives is effectively random 
given measured variables, confounding by indi-
cation remains an issue in comparative studies. 
Disease severity is often associated with the 
outcomes of interests in studies assessing 
intended effects of treatment (e.g., improve-
ments in rheumatoid arthritis symptoms or dis-
ease activity in the second example). Therefore, 
inability or limited ability to control for disease 
severity will results in bias (confounding by 
severity). The subtler examples of confounding 
by indication in the aforementioned scenarios 
are directly pertinent in CER, as these are 
exactly the types of questions CER addresses 
(comparing alternative options head to head). 
Furthermore, CER studies generally aim to 
detect differences that are likely to be smaller 
than in studies comparing exposed subjects to 
unexposed subjects. Accordingly, subtle 
instances of confounding by indication or con-
founding by severity can be especially problem-
atic in CER.

Considerable effort has been undertaken to 
develop more effective methods for control of 
confounding in studies based primarily on 
administrative data (see also Chapters 12 and 
43). Common approaches include propensity 
score‐based methods, disease risk score‐based 

methods, doubly robust methods, and instru-
mental variable analyses. These methods may, 
under certain conditions, provide better control 
of confounding than standard multivariable 
adjustment. However, it is important to keep in 
mind that most of these approaches (including 
propensity score but not instrumental variable 
analysis) are dependent on identifying and 
measuring those variables that are the true pre-
dictors of therapeutic choice in the databases.

For example, we conducted a study assessing 
the comparative effectiveness of carotid stent-
ing versus carotid endarterectomy in older 
patients with carotid stenosis. Substantial con-
founding by indication would be suspected in 
this study, as carotid stenting is indicated and 
reimbursed only for patients with high surgical 
risks due to age, anatomic characteristics of 
carotid stenosis, or other cardiovascular or non-
cardiovascular co‐morbidities (which are the 
predictors of worse prognosis). In this study, we 
demonstrated that propensity score‐based 
methods (including high‐dimensional propen-
sity score methods [86]) using only claims data 
are insufficient to control for confounding by 
indication, and additional clinical information 
from vascular registries was necessary to 
achieve adequate control of confounding [87]. 
While these approaches provide sufficient con-
founding control in certain situations, they are 
generally not sufficient unless important varia-
bles related to the indication for treatment are 
available in the data [88]. Instrumental variables 
are promising alternatives if a valid instrument 
can be found for the clinical question. However, 
finding valid instruments in pharmacoepidemi-
ology is extremely difficult  –  some would say 
impossible [89]. Design‐based approaches such 
as restriction [90,91] and use of active compara-
tors [92] may work in certain situations, and 
self‐controlled methods can sometimes help to 
control time‐invariant confounders [93], but it 
must be kept in mind that such approaches are 
directly linked to how the research question is 
defined. Accordingly, investigators must ensure 
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that the research question and the design are 
consistent and as intended. Much more work is 
needed in these areas to advance the field of 
CER.

Healthy User/Candidate Bias
Healthy user effect or bias has been observed 
among users of some medications, especially 
preventive medications such as hormone 
replacement therapies, statins, and certain anti-
hypertensive medications [94–99]. For example, 
cardiovascular event reduction is consistently 
smaller in clinical trials compared with observa-
tional studies of antihypertensive medications 
[100,101], which suggests healthy user bias plays 
a role in observational studies of these preven-
tive therapies. In CER comparing medical 
devices or interventions to a pharmacologic 
treatment, the healthy user effect (or more pre-
cisely for interventions, the healthy candidate 
effect) will be a major concern, as interventions 
typically pose short‐term risks in exchange for 
long‐term benefits, and patients at high risk of 
complications or deemed too sick to benefit are 
thus less likely to be selected for interventions. 
The healthy candidate effect is one of the big-
gest threats to validity in CER when comparing 
different treatment modalities. For example, we 
previously demonstrated the existence of 
healthy candidate bias in older heart failure 
patients who received implantable cardioverter‐
defibrillators (ICDs) versus those on medical 
therapies only by showing that patients with 
implanted ICDs had drastically better outcomes 
that were very unlikely to be attributed to the 
effects of ICDs (e.g., nursing home admissions, 
hip fracture, and short‐term mortality) [102]. 
This highlights the utility of including falsifica-
tion outcomes in observational studies.

Healthy user or candidate bias is thought of as 
a mix of confounding and selection bias. It arises 
when users of certain medications or candidates 
for invasive interventions have better outcomes 
due to factors other than effects of the treat-
ment. While the factors associated with healthy 

user/candidate bias are not fully understood, 
many factors suggested to be responsible for 
healthy user/candidate effects are typically 
unmeasured in most databases. These include 
healthier lifestyles (healthy diets, regular exer-
cise, and being less prone to using tobacco or 
alcohol) [99,103], higher socioeconomic status, 
better adherence to screenings and other pre-
ventive therapies [96], better physical [104] and 
cognitive function, less frailty [105], better 
social support, and stronger willingness to live. 
The effect size of healthy user/candidate bias 
can be quite substantial and is often as strong or 
stronger than the effect of the treatment itself 
[94–97,106]. Most importantly, healthy user 
bias may be refractory to analytic solutions 
unless prevented by thoughtful study design 
(e.g., self‐controlled) and/or availability of 
extensive data on lifestyle and behavioral fac-
tors, thus resulting in inflation of the apparent 
benefits of preventive and other medications or 
invasive interventions.

Data Sources, Record Linkage, 
and Multidatabase Studies
As noted by the IOM report [25], CER studies 
should rely on multiple types of data sources, 
including primary data sources (medical and 
pharmacy records, electronic medical records, 
and de novo data generated through clinical tri-
als or observational studies) and secondary data 
sources (administrative claims and clinical reg-
istries). Most CER studies to date have used the 
same data resources described in Chapters 12–
14 of this book. As in usual pharmacoepidemi-
ology practice, the data sources should be 
selected based on the study question and to 
maximize the internal and external validity of 
the results. To overcome the biases mentioned 
as well as others, including misclassification 
bias and selection bias, linking multiple data 
sources through record linkage can be a power-
ful tool, as it enriches the information for the 
given study subjects. Also, multidatabase stud-
ies within or across countries can potentially 
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enhance observational CER studies by enlarging 
the sample size for statistical power, assessment 
of effect heterogeneity, and improving general-
izability. The methods, applications, and chal-
lenges of record linkage and multidatabase 
studies are described in other chapters.

A distinction must be made between data or 
record linkage (linking multiple data sources to 
enrich information) and multidatabase studies 
(using multiple databases for mostly nonover-
lapping individuals). These two approaches are 
often confused, but each has a distinct goal. 
Data linkage is conducted in order to enrich 
information using a record linkage method, a 
computer‐based technique to identify and link 
records from different databases that refer to 
the same entity or individual [107]. The data 
required for impactful and valid CER studies 
may be spread across two or more databases. 
Linking records across databases can transform 
ordinary individual datasets into powerful new 
platforms from which to perform timely and 
valid CER. For example, linkages between 
administrative claims databases and clinical or 
device registries can add longitudinal follow‐up 
to registry data and add clinical details to 
administrative data. In addition to answering 
clinical questions, data linkage can also be used 
to address various methodologic issues in CER. 
For example, a linked database can be used to 
study data quality (e.g., by assessing agreement 
between two sources of the same data) and to 
validate claims‐based endpoint ascertainment 
algorithms (e.g., by comparing a claims‐based 
variable to a clinical gold standard) [108]. In 
addition to facilitating observational CER, 
record linkage can improve randomized trial 
evidence by linking patients in the trial to com-
plementary data. For example, linking patients 
in a trial to Medicare claims can be a relatively 
inexpensive and effective way to extend the fol-
low‐up period of a clinical research study. Data 
linkage combining two or more data sources has 
enabled the conduct of more observational CER 
and/or more valid observational CER that 

would not be possible using a single data source 
[106,109–111]. Recent development of data 
linkage in Scandinavian countries has provided 
exciting opportunities to evaluate effectiveness 
beyond medical care. For example, Lichtenstein 
et al. linked the use of attention deficit hyperac-
tivity disorder (ADHD) medication with crimi-
nal justice system records. They found that 
among patients with ADHD, rates of criminality 
were lower during periods when they were 
receiving ADHD medication. These findings 
raise the possibility that the use of medication 
reduces the risk of criminality among patients 
with ADHD [112].

The challenges of data linkage are both meth-
odologic and ethical. Methodologic challenges 
include unavailability of linkage variables to 
researchers, especially unique identifiers such 
as names or social security numbers, incom-
pleteness or inaccuracy of linkage variables due 
to poor data quality, nonoverlap or relatively 
small overlap of populations covered in each 
database, general misconceptions about linkage 
methods (especially probabilistic linkage meth-
ods), and understanding when to use what link-
age method [113,114]. When unique identifiers 
of subjects are not available, at least for certain 
databases and populations (e.g., linking inpa-
tient or outpatient claims data to clinical regis-
try data for patients with heart failure, device 
implantations or surgeries, rheumatoid arthri-
tis, and atrial fibrillation) [115,116], it is possible 
to conduct record linkage with high accuracy 
using multiple nonunique identifiers [115,116]. 
The primary ethical challenges of data linkage 
are ensuring patient privacy, which can be 
achieved by removing or limiting access to 
patient identifiers for research use including 
record linkage. However, this can make the link-
age more difficult and sometimes impossible.

In our recent study of patients in a US‐based 
online community, most reported that they 
were comfortable with researchers accessing 
their de‐identified data for research purposes. 
Our study indicated that patient comfort levels 
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may be improved by better communication and 
transparency around specific research goals and 
how they may be beneficial to patient commu-
nities. In addition to mitigating re‐identification 
risk, developing and improving methods to link 
databases through use of multiple nonunique 
identifiers may also improve patient comfort 
with secondary use of health data for research 
[117]. In a survey commissioned by the 
Wellcome Trust (a UK medical charity), 53% of 
respondents in the UK indicated that they 
would be happy for their data to be used by 
commercial organizations if it was for research 
purposes. Interestingly, over 60% of respond-
ents indicated they would prefer that commer-
cial research organizations have access to health 
data than that society miss out on the benefits 
these companies could potentially create. One 
of the most significant findings from the survey 
is that respondents considered academic 
researchers, charities, and organizations work-
ing in partnership with the public sector to be 
the most acceptable users of health data [118]. 
Patients’ understanding and perceptions of the 
use of health data are still evolving, and it is 
important to continue to maintain communica-
tion and transparency regarding the use of 
health data for research.

In the last 10–15 years, networks of national 
and multinational database studies relevant to 
CER have been established in the US, Canada, 
Europe, and Asia [119–124]. Multidatabase 
study networks have been used to conduct 
observational CER or to provide a platform for 
CER trials [125]. The advantages of multidata-
base studies in CER are that they capture diverse 
patient populations and/or increase the number 
of patients to detect relatively small effect sizes 
that can be expected in head‐to‐head compari-
sons and to assess the heterogeneity of effects. 
In multidatabase studies, data linkage methods 
are not necessary, as their intention is usually to 
bring databases together for nonoverlapping 
populations. However, structure, governance, 
and methods to manage and conduct a study 

using data from multiple sites and to synthesize 
results are needed. The structure, governance, 
and methods have to meet data management 
policies and data safety and privacy standards 
that may be unique to each database and can 
vary substantially, especially in international 
contexts [126,127].

Many networks employ a distributed network 
approach with a common data model (CDM), 
where the ownership and management of the 
database are left with individual data partners 
participating in the network. This approach is 
often preferred, as it mitigates most of the ethi-
cal and political issues with data privacy, gov-
ernance, and ownership. In this model, each 
database is converted using a CDM so that its 
structure and coding are fully standardized. 
Multiple CDMs have been developed and modi-
fied to date [122,128–130]. To conduct analyses, 
researchers create a single statistical program 
that can be run against any database in the net-
work with minimum or no modification. 
Another common approach is a distributed net-
work with a common protocol rather than a 
CDM. The Canadian Network for Observational 
Drug Effect Studies (CNODES) operates using 
this approach, which eliminates the need to 
convert data from each site to a CDM [123]. In 
a  distributed network with a CDM, a stand-
ardized coding language and format are needed 
to permit identical computerized queries to 
be  submitted and executed across data 
resources, as well as standardized formats for 
returning responses from different databases 
[128,131,132].

In any approach for conducting multidatabase 
studies, understanding and dealing with varia-
bility in results across databases are especially 
challenging, particularly when the data come 
from different countries or diverse geographic 
regions/populations with differing healthcare 
systems, policies, and patient and clinician 
behaviors [126]. When large or unexpected var-
iability in the results from each database is 
observed, researchers must first exclude the 



Methodologic Problems to Be Solved by Pharmacoepidemiologic Research 655

possibility that the observed variability is due to 
technical issues arising from mapping codes or 
converting to a CDM, and/or from biases that 
are unique to each database (e.g., poor data 
quality, existence of and/or lack of understand-
ing of unique features or idiosyncrasies in the 
data). When this possibility has been excluded, 
considerations must still be given as to when it 
is appropriate to combine results from different 
databases. This is especially important in CER, 
as understanding heterogeneity of effects is a 
major attribute of CER, and combining results 
that exhibit significant variability is not desired. 
The methodologic issues involved in combining 
results for meta‐analyses discussed earlier are 
directly applicable to multidatabase studies as 
well, since it is generally not possible to analyze 
patient‐level data to synthesize the results from 
each database, due to concerns about data secu-
rity and privacy and/or restrictions of policies 
for data access and use.

Common challenges for data linkage and 
multidatabase studies include (i) logistical prob-
lems in accessing data sources, including issues 
of ownership of data, infrastructure, govern-
ance, data security, and data privacy (see also 
Chapters 12–14); and (ii) the required familiar-
ity with the logical organization and content of 
disparate databases, including features or quirks 
in the data that are unique to each database. 
Needless to say, the aforementioned methodo-
logic issues in observational CER (e.g., con-
founding by indication) can also affect the 
conduct and validity of results in linked data-
base or multidatabase studies.

Experimental Studies
As already discussed, the goals of CER are to fill 
gaps in evidence that is traditionally and heavily 
based on premarketing RCTs. Observational 
studies leveraging existing data sources or pri-
mary data collection can be used as a valid and 
more cost‐efficient approach for CER when 
available data include the necessary fields, and/
or when researchers employ design‐based or 

analytic methods to overcome potential biases. 
However, there are situations where bias is 
intractable and randomized trial designs are 
needed to obtain valid results. Large simple tri-
als such as pragmatic trials or cluster rand-
omized trials can determine the effects of an 
intervention under the usual conditions in 
which it will be applied, and therefore can assess 
real‐world treatment effectiveness [133]. For 
clinical trials to be used in CER, researchers 
must focus on using trial designs that are flexi-
ble, adaptive, pragmatic, practical, and efficient, 
in contrast to traditional randomized, blinded, 
placebo‐controlled clinical trials [134–137] (see 
also Chapter 32 for a discussion of large simple 
trials).

Briefly, pragmatic clinical trials are intended 
to overcome the limitations of traditional RCTs 
in order to answer CER questions. Pragmatic 
trials include real‐world patients such as those 
with co‐morbid conditions and those from 
diverse demographic backgrounds [138], and 
providers from community settings instead of 
only tertiary settings. In pragmatic CER trials, 
comparator treatments should be those in use 
in clinical practice (rather than placebo con-
trols), outcomes should be those that matter to 
patients and clinicians rather than investigators 
or drug companies, and variations in patient 
responses to the treatment (treatment heteroge-
neity) should be explored [134,137,139].

One example of a pragmatic trial for CER is 
the Antihypertensive and Lipid‐Lowering 
Treatment to Prevent Heart Attack Trial 
(ALLHAT) [140], a $120 million NIH‐funded 
trial comparing three antihypertensive medica-
tions and evaluating more than 42 000 patients 
in 600 clinics and centers in the US, Canada, 
Puerto Rico, and the US Virgin Islands [141]. A 
more recent example of a pragmatic trial for 
CER is the Ziprasidone Observational Study of 
Cardiac Outcomes (ZODIAC) study, which 
compared ziprasidone and olanzapine for their 
risk of nonsuicide mortality [142,143]. This 
large randomized pragmatic trial included 
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approximately 18 000 patients in 18 countries 
and cost $85 million.

As in observational CER studies, using clinical 
trial designs for CER presents its own challenges. 
First, demonstrating clinically meaningful effect 
sizes is often challenging for several reasons: (i) 
the liberal inclusion criteria needed to assure 
generalizability of the study groups, although 
this increased heterogeneity can decrease the 
probability of detecting a given treatment effect 
as statistically significant, requiring an even 
larger sample size [134]; (ii) head‐to‐head com-
parison of commonly used clinical strategies; 
and (iii) modern medical interventions showing 
less dramatic benefits. The effect sizes seen even 
in placebo‐controlled trials have been decreas-
ing over time, and this pattern is considered to 
stem from the increasing rarity of discoveries of 
transformational medical interventions [144]. 
To detect a relatively small effect size and evalu-
ate long‐term and clinically relevant outcomes 
including hard endpoints, larger samples make 
CER trials more expensive [145]. The emphasis 
on usual care settings and the less‐controlled 
nature of the trials lead to problems that are well 
known in observational studies. For example, 
loss to follow‐up and/or nonadherence over 
time can introduce bias [135]. The lack of blind-
ing in pragmatic trials creates the potential for 
biased observations and a threat to internal 
validity [134]. Another similar limitation of this 
type of trial results from the flexible treatment 
protocols that are preferred, as they are closer to 
what happens in real‐world settings. Specifically, 
pragmatic trials involve the participation of 
community providers in their usual practice. 
Accordingly, providers can vary the treatment 
process, dose, and regimen given to different 
patients, depending on differing responses to 
therapy over time. This flexibility permits assess-
ment of the outcomes of the composite treat-
ment, but not of particular components within 
the treatment process [135].

As shown in the earlier examples of CER, the 
high cost of pragmatic trials is a major obstacle. 

However, conducting a simple randomized trial 
in usual clinical care conditions using routinely 
collected data, what are called “electronic point‐
of‐care trials,” could minimize the cost burden 
[146]. Attempts to conduct such trials with 
information technology (IT) tools to facilitate 
timely and efficient point of care (POC) recruit-
ment have been reported by UK researchers 
using the General Practice Research Database® 
(GPRD®) [146,147]. In the US, researchers at 
Veterans Affairs (VA) hospitals have a head start 
taking advantage of the VA’s sophisticated elec-
tronic health records (EHR) system [148]. The 
UK experience showed that the recruitment of 
clinicians and patients was a major challenge: 
the investigators observed that the number of 
interested clinicians/practices dropped sub-
stantially with each stage of the governance pro-
cess, including site contracts, local approval 
forms, web‐based good clinical practice, and 
protocol training [146]. A successful implemen-
tation of electronic POC trials will require three 
conditions at minimum: (i) a well‐connected 
community with a network of practices and 
patients; (ii) data and IT infrastructure that 
 enables patient recruitments at POC and cap-
tures clinically important outcomes; and (iii) 
readiness of clinicians and patients to accept 
“randomization” in routine clinical practice 
when there was equipoise among therapeutic 
options. A recent review article described 
attempts to conduct POC trials and integrate 
comparative effectiveness trials into patient 
care, illustrating challenges and limitations spe-
cific to POC trials [149]. Obviously, use of EHR 
poses limitations on the questions that can be 
addressed, processes that can be implemented, 
and outcomes that can be assessed.

Choosing the Right Methods: Experimental 
vs. Observational CER
There are inherent limitations in both experi-
mental and observational designs, as discussed 
in the previous sections. While an experimental 
design is generally accepted and considered to 
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yield higher internal validity than observational 
CER, one must carefully examine how either of 
these types of studies are conducted in order to 
assess validity (both internal and external), 
interpret results, and draw meaningful conclu-
sions. Several considerations can guide the 
decision of which study design to use for CER. 
First, some interventions cannot be investigated 
with clinical trials because of ethical considera-
tions, even though such trials may otherwise be 
preferred scientifically. Second, it is not practi-
cal to employ pragmatic trials for most CER 
research questions due to their prohibitively 
high cost. Thus, observational studies using the 
techniques of nonexperimental pharmacoepi-
demiology will continue to play a role in CER, 
because some questions cannot be answered in 
clinical trials or because observational studies 
provide a cost‐effective approach (when they 
can provide results with high internal validity).

Finally, there are some research questions 
that cannot be answered in observational CER 
due to intractable biases that severely compro-
mise the internal validity of the results. 
Questions related to bias are not binary (exist-
ence or nonexistence of bias) but rather quanti-
tative (degree of bias), and researchers must 
consider all potential biases and their quantita-
tive impacts on the results before conducting 
observational CER studies. As one of the goals 
of CER is to produce results that are applicable 
and generalizable to real‐world patients and 
practices, attempts to achieve higher generaliz-
ability may compromise features that are 
favorable to internal validity [84]. Nonetheless, 
results from CER studies that have significant 
bias and therefore have poor internal validity 
cannot be generalized. Once observational 
CER studies are completed, when intractable 
and significant biases are suspected in the 
results, researchers must provide a fair and 
honest assessment of study validity and must 
attempt to publish the results including this 
assessment in order for the research community 
to learn from their experiences.

Published Guides for CER Studies 
for Evidence Generation
Standards for performing and reporting 
observational studies have been provided by 
several professional associations [150–152]. 
While these guides are not specific to CER, 
they are relevant and directly applicable to 
observational CER. In addition, several other 
guides specifically targeting observational 
CER have been published through initiatives 
of AHRQ, PCORI, other governments, and 
professional societies (e.g., International 
Society of Pharmacoepidemiology [ISPE], 
International Society of Pharmacoeconomics 
and Outcomes Research [ISPOR], American 
Heart Association [AHA]) [151–160].

A recent systematic review of these CER‐
related guidance documents assessed shared 
expectations for quality CER [161]. The review 
identified nine documents with over 300 rec-
ommendations for designing and conducting 
CER. The most frequently shared recommenda-
tions included transparency and adaptation for 
relevant stakeholders in the interpretation and 
dissemination of results. Other frequently 
shared CER methods recommendations 
included developing an a priori study design 
and operational definitions that allow for repli-
cation (n=8 documents); focusing on areas with 
gaps in current clinical knowledge that are rele-
vant to decision‐makers (n=7); assessment and 
discussion of validity of measures, instruments, 
and data (n=7); and clinically meaningful and 
objectively measured outcomes, including ben-
efits and harms (n=7). Additional commonly 
shared recommendations included assessment 
for and strategies to minimize bias (n=6 docu-
ments), confounding (n=6), and heterogeneity 
(n=4). Pragmatism in the design of experimen-
tal CER trials has been widely discussed 
[139,162–177], and there are proposed tools to 
assess pragmatism in clinical trials that research-
ers and clinicians can use when designing or 
evaluating pragmatic trials, especially for CER 
[178–181].
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Issues for Evidence Dissemination

The ultimate goal of CER to improve clinical 
care will not be achieved without successful dis-
semination and adaptation of CER evidence. 
Evidence dissemination has several distinct 
goals. One goal involves identifying priority 
topics, comprehensively identifying available 
information on these topics, and developing 
objective interpretations of the information 
[182] (for example, as provided by Cochrane 
Collaboration reviews [183]). The output from 
this research then becomes the source informa-
tion for dissemination to clinicians, patients, 
and policymakers. This goal will be achieved 
through expanding efforts on systematic reviews 
and studies using novel research designs (see 
earlier discussion), focusing on the priority 
research areas that were identified by the IOM 
as having knowledge gaps.

Another goal involves knowledge translation; 
namely, using research findings as the basis for 
drafting clinical guidelines. Achieving this goal 
will require qualified review panels that have 
scientific and clinical expertise in the content 
areas of the topics for which guidelines are 
developed, and who can develop clinical prac-
tice guidelines. Ideally, clinical guidelines should 
also be both comprehensive for general patient 
care and specific for particular patient circum-
stances  –  a very demanding specification. 
Furthermore, to remain relevant, guidelines 
need to be updated periodically to incorporate 
new information about existing interventions 
and new treatments. The IOM recently pro-
posed standards for developing trustworthy 
clinical practice guidelines [184].

A third goal involves knowledge exchange and 
utilization, achieved by the actual distribution 
of information and the education of clinicians, 
patients, and policymakers about current 
knowledge and best practices. This goal may be 
attained by more intensive use of technology 
and/or social interventions. Examples of such 
tools include computerized physician order 

entry (CPOE) systems, supplemented by com-
puterized clinical decision support systems 
(CDSSs) that incorporate electronic reminders 
to comply with guidelines (e.g., reminders to 
perform screening tests or to order other tests 
or treatments, reminders to avoid co‐prescribing 
interacting drugs, etc.). Other strategies for 
achieving knowledge exchange and knowledge 
utilization will require educating clinicians and 
patients about what treatments work best 
[2,26,185]. These efforts should include moni-
toring to ensure that information is integrated 
into the normal workflow and decision pro-
cesses of clinicians and patients.

A final goal involves monitoring and assess-
ment of whether these efforts translate into 
actual good practice and, if not, to identify 
which means of dissemination have a greater 
chance to create an impact. However, recent 
history suggests that scientific evidence is often 
slow to change clinical practice. For example, 
despite harms associated with overdiagnosis of 
prostate cancer with prostate‐specific antigen 
screening [186], the test is widely utilized in 
general practice [187]. Also, after the aforemen-
tioned multimillion‐dollar ALLHAT pragmatic 
trial showed that thiazide diuretics are more 
effective than ACE inhibitors or calcium chan-
nel blockers for patients with hypertension, no 
significant changes in practice were observed 
[188]. Timbie et al. [189] reviewed CER studies 
conducted in the 2000s, including the ALLHAT 
trial, and identified five root causes underlying 
the failure of many CE studies to alter patient 
care:

 ● Financial incentives, such as fee‐for‐service 
payment, that may go against the adoption of 
new CER evidence.

 ● Ambiguity or concerns about the validity of 
CER study results.

 ● Common cognitive biases, including confir-
mation bias [189], pro‐intervention bias [190], 
and pro‐technology bias [191] in the interpre-
tation of new CER information.
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 ● Failure of research to address the needs of end 
users of CER evidence (clinicians, patients, 
policymakers).

 ● Limited use of decision support tools by 
patients and clinicians.

The authors offered several suggestions that 
align with the four dissemination goals already 
described. In addition, they suggested that in 
developing guidelines based on CER evidence, 
adapting the standards proposed by IOM (one 
of which was that guideline development groups 
be “multidisciplinary and balanced” [192]) may 
overcome several of the root causes mentioned, 
such as ambiguity of CER results and cognitive 
bias in interpreting the evidence. Finally, the 
authors proposed that aligning the incentives of 
clinicians and patients by changing payment 
and insurance models may facilitate the adop-
tion of CER evidence in clinical practice. 
However, a recent systematic review found that 
pay‐for‐performance programs in healthcare 
were associated with improved processes, but 
not patient outcomes [193].

Dissemination of CER evidence is a legal 
mandate of PCORI [194,195]. The federal 
AHRQ works to disseminate findings from 
patient‐centered outcomes research funded by 
PCORI, as well as government agencies and 
other sources. PCORI’s release of new evidence 
from the funded studies begins with translating 
all research findings into understandable sum-
maries with the help of the Patient‐Centered 
Outcomes Research Translation Center. PCORI 
funds support not only engagement activities 
and infrastructure development, but also 
research to bring findings from completed studies 
into practice in real‐world settings, and to com-
pare approaches to communicating and dissem-
inating patient‐centered outcomes research 
findings, as well as research on shared decision‐
making [194]. PCORI recently announced a 
dissemination initiative (Eugene Washington 
PCORI Engagement Awards) through which it 
was planning to award $20.5 million in fiscal 

year 2018. Between fiscal years 2011 and 2017, 
AHRQ committed about $260 million for the 
dissemination and implementation of CER 
findings.

CER and Cost‐Effectiveness Analyses
The primary goal of CER is to inform decisions 
that lead to better care, not necessarily cheaper 
care [196]. This could result in abandoning 
expensive technologies that are no better than 
less expensive options. However, it could also 
result in paying for a more expensive technol-
ogy because the evidence shows it is superior 
[33,196,197]. The relevance of including cost‐
effectiveness analyses in CER investigations (see 
Chapter  34) is unquestionable. However, CER 
should not be used for cost‐containment deci-
sions [33,40,198], and the experts conducting 
CER studies should not be placed in the posi-
tion of using their findings about treatment 
effectiveness to make recommendations about 
reimbursement. Nevertheless, well‐performed 
CER inevitably should and will affect reim-
bursement decisions. In some cases, CER stud-
ies will find that the more expensive treatment 
is preferable. Yet, over time, CER should ulti-
mately save money by preventing wasteful 
spending on treatments that are less effective, 
especially if dissemination is successful and 
CER evidence is adapted into clinical practice 
[196]. Ultimately, CER alone will not solve the 
US’s healthcare spending problem ($3.3 trillion 
in 2016 – 17.9% of GDP – and $5.7 trillion pro-
jected in 2026 – 19.7% of GDP [199]).

 Currently Available Solutions

In a review of recently published studies of the 
comparative effectiveness of existing (rather 
than new) medications, Hochman and 
McCormick [200] compared active therapies to 
each other (rather than to placebo  comparators); 
compared medications to nonpharmacologic 
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interventions such as surgery or lifestyle inter-
ventions; compared different pharmacologic 
strategies for medication use; and compared 
different medication doses, durations, or for-
mulations. They found that only one‐third of 
studies evaluating medications qualified as 
comparative effectiveness research, and only a 
minority compared pharmacologic and non-
pharmacologic therapies, emphasizing the need 
to expand the scope of CER. Another study 
reviewed clinical trials conducted in the US 
between 2007 and 2010 addressing priority CER 
topics identified by the IOM [201]. Among 1035 
studies found on clinicaltrials.gov, 231 (22%) 
were comparative effectiveness (CE) studies. 
The most common interventions examined in 
CE studies were drugs (37%), behavioral inter-
ventions (29%), and procedures (16%).

These studies show what is observed in major 
medical journals or on clinicaltrials.gov during 
the period 2007–2010, but more recent data are 
not available. As described in the next section, 
the predominant source of funding for CER in 
the US thus far has been the federal govern-
ment. Since PCORI was established in 2010, it 
has funded 596 CER projects (approximately 
$1.7 billion) [5]. These include CER studies, 
projects to examine CER methods, and projects 
to build infrastructure for CER and PCOR. The 
most frequent disease conditions for funded 
studies include mental/behavioral health (115 
studies), cancer (84), neurologic disorders (74), 
cardiovascular diseases (69), and multiple 
chronic conditions (58). Most‐studied popula-
tions of interest include racial/ethnic minorities 
(290), individuals of low socioeconomic status 
(194), women (145), older adults (134), and 
patients with multiple chronic conditions (110). 
Most of PCORI’s research projects awarded 
through fiscal year 2017 are still underway; only 
53 projects had been completed at the end of 
fiscal year 2017, but many are projected to be 
completed between 2018 and 2020.

The initial wave of funding came from the 
President’s budget proposal for fiscal year 2011, 

with $286 million for patient‐centered health 
research (the rebranded term for CER) through 
AHRQ. Much more substantial funding contin-
ued to come from the nongovernmental, non-
profit PCORI and its Patient‐Centered 
Outcomes Research Trust Fund, established in 
2010. As of January 2018, PCORI had brought a 
total investment of over $2 billion in projects 
meeting its congressional mandates, including 
funding for nearly 400 CER studies ($1.7 bil-
lion), as well as projects to improve the methods 
($129 million) and infrastructure for CER, 
including the National Patient‐Centered 
Clinical Research Network (PCORnet; $374 
million). PCORI is projected to commit an addi-
tional $721 million for awards in fiscal years 
2018 through 2021 [5]. From fiscal years 2011 
through 2017, HHS including AHRQ commit-
ted approximately $448 million from the Trust 
Fund. Of this amount, HHS committed approxi-
mately $260 million (or 58%) to the dissemina-
tion and implementation of CER findings. HHS 
is projected to commit an additional $120 mil-
lion for these activities in fiscal years 2018 
through 2020 [5].

The EU does not have a central budget for 
healthcare expenditure. However, the European 
Commission has provided funding to conduct 
studies in European countries via its research 
budget (e.g., the CEPHOS‐LINK Project [202]). 
In individual countries such as England, the 
NIHR has also provided funding for CER, par-
ticularly via the HTA Programme [7]. Examples 
from Asia include the Hong Kong Government’s 
funding of CER via the Health and Medical 
Research Fund [203].

 The Future

Funding

Thus far, the predominant source of funding for 
CER in the US has been the federal government, 
whereas much of the funding for clinical  efficacy 
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research (i.e., RCTs) comes from industry 
sources. Recently, real‐world evidence (RWE) 
has been gaining in popularity in the US, since 
the FDA’s leadership published its opinion [204] 
and guidance document [205] on RWE, defin-
ing terminology and discussing its use in regula-
tory decision‐making. RWE is defined by the 
FDA as “the clinical evidence regarding the 
usage and potential benefits or risks of a medi-
cal product derived from analysis of Real‐World 
Data (RWD)” [206]. In the EU, according to the 
GetReal Glossary of Definitions of Common 
Terms [207], “RWE derives from the analysis 
and/or synthesis of RWD that can either be pri-
mary data collected in a manner which reflects 
how interventions would be used in routine 
clinical practice or secondary data derived from 
routinely collected data.” There is substantial 
overlap between RWE and “evidence generation 
in CER,” as RWE includes comparative evidence 
of the “potential benefits and risks of medical 
products.”

With the emphasis on RWE among regulatory 
bodies in the US and Europe, there has been 
increasing interest in RWE/CER among pro-
ducers of medical products. In this new CER/
RWE environment where the results of RWE or 
CER studies can be used in regulatory decision‐
making, companies may invest resources in 
RWE/CER, thus allowing them to compete on 
the utility (e.g., comparative effectiveness) of 
their products rather than just on their market-
ing ability [196]. For example, two global phar-
maceutical companies recently collaborated to 
invest in a set of RWD analyses, including CER 
studies, of direct oral anticoagulants [208,209]. 
As most head‐to‐head comparative randomized 
studies are already sponsored by industry [210], 
with the increasing demand for RWE in North 
America, Europe, and Asia, future comparative 
studies may be conducted using RWD to pro-
vide CER evidence for new medical products. In 
addition to the possibility of more funding from 
industry for CER, public funding agencies and 
charities in the US and Europe have supported 

and will continue to support nonpharmacologic 
trials and studies of off‐patent medications, 
such as through the Better Medicines for 
Children Initiative [211].

Human Capital Development

As noted by the Federal Coordinating Council 
[26], training will be required for new research-
ers to apply the specialized methods of CER and 
to develop new CER methods [212]. Specialized 
skills are needed to perform both traditional 
RCTs and novel pragmatic trials. It should be 
noted that these are not necessarily new but spe-
cialized skills, as CER is not a novel concept. 
Specialized expertise is also needed to perform 
formal meta‐analyses and nonexperimental 
studies, using either ad hoc data collection or 
existing databases, and to successfully access 
and link various databases and conduct multida-
tabase studies. Finally, the field needs individuals 
who are able to translate the findings into prac-
tice guidelines and for other dissemination chan-
nels. The emphasis of CER on community 
participation and inclusion will dictate that 
experts from many different fields and back-
grounds will be required to communicate with 
each other, finding and developing a common 
language to permit productive interactions. 
Therefore, the research teams participating in 
CER will be composed of professionals from dif-
ferent disciplines and different settings, includ-
ing pharmacoepidemiologists and practicing 
clinicians from specialties relevant to the given 
studies [40]. These teams will need to have the 
capacity to develop a shared understanding of 
basic scientific terminology and methods.

Accordingly, it is necessary to create and sup-
port training programs for researchers seeking 
careers in CER in order to develop capacity in 
the research community to conduct CER. In 
addition to preparing a cadre of researchers 
with expertise in CER methods, a critical mass 
of such researchers is required in order to 
undertake the large number of studies needed 
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to fill current knowledge gaps and to continu-
ously update the knowledge inventory with sys-
tematic reviews. So far, PCORI has committed 
$30 million to workforce training awards for cli-
nicians and researchers. For example, one of its 
career development programs, conducted in 
partnership with AHRQ, is designed to train cli-
nician and research scientists to conduct 
patient‐centered outcomes research and to 
actively engage stakeholders in efforts to 
improve the quality and safety of care [5]. AHRQ 
committed $94 million for efforts to train 
researchers on the conduct of CER [5] and plans 
to commit an additional $14 million by fiscal 
year 2020 for CER training. In Europe, the 
European Commission has provided funding 
for training in health and medical research 
including CER and pharmacoepidemiology in 
European countries (e.g., the Marie Skłodowska‐
Curie Fellowship [213]). In England, the NIHR 
has also provided funding for fellowships in 
health research including CER research, par-
ticularly through the NIHR Fellowship 
Programme [214]. In Asia, the Hong Kong 
Government funds health fellowships via the 
Health and Medical Research Fund [203].

CER and Clinical Practice

Though the research community continues to 
appear excited and energized, expectations 
must be tempered by several limits on what 
CER can realistically solve. It is unrealistic to 
expect that CER will address all therapeutic 
questions; healthcare is simply too complex. Sir 
William Osler, the Father of modern medicine, 
wrote, “The practice of medicine is an art, based 
on science” [215]. Even in the era of evidence‐
based medicine and CER, the practice of medi-
cine is as much the application of art as the 
application of evidence. To reach an optimal 
decision in any given clinical situation, evidence 
must be applied to an individual patient who 
has her or his own values, preferences, life 
 situations, and goals. Treating not only the disease 

but also the patient as a whole requires both 
understanding and application of the best 
evidence, as well as the skills and behaviors phy-
sicians bring to their own practice of the art of 
medicine [216]. Alternatively, if it were possible 
to base medical practice entirely on evidence, 
such evidence would consider not only complex 
pathophysiology, but also personal factors such 
as values, preferences, perceptions, and atti-
tudes about risks, quality‐of‐life preferences, 
cost tradeoffs, as well as clinician–patient inter-
actions. However, as the evidence underlying 
current medical practice consists of estimated 
averages from studied populations and is also 
not sufficiently complete, art comes into prac-
tice when subjective judgment is required. 
Therefore, even in situations where complete 
evidence‐based information is available to guide 
clinical decisions, providers or patients may still 
opt for a decision based on personal choices 
that they value irrespective of the scientific evi-
dence. As stated by Kerridge et al. [217]:

Medical decision making draws upon a broad 
spectrum of knowledge – including scientific 
evidence, personal experience, personal 
biases and values, economic and political 
considerations, and philosophical principles 
(such as concern for justice). It is not always 
clear how practitioners integrate these fac-
tors into a final decision, but it seems unlikely 
that medicine can ever be entirely free of 
value judgments.

Overemphasis on scientific evidence can lead to 
therapeutic nihilism; that is, paralysis when 
such evidence is unavailable. Also, an overreli-
ance on evidence‐based guidelines can result in 
algorithmic care [218]. Ironically, this in turn 
may devalue individualized care, which is 
another goal and feature of CER. Subgroup 
analysis is the most commonly used approach 
for assessing heterogeneity in CER, but it has 
obvious limitations in providing sufficient 
 evidence to “individualize” the care of each 
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patient. In the face of uncertainty, variation 
among reasonable but unproven options should 
be tolerated and even encouraged, as it will 
facilitate later evaluation. This runs contrary to 
the vision of a knowledge state that is sufficiently 
complete to guide all decisions about effective 
interventions at the individual patient level. We 
also need to be sure that the desire for scientific 
evidence does not paralyze medical practice when 
such evidence is absent. In such circumstances, 
the resulting variability in practice can provide 
the data that will underlie future CER studies.

As healthcare communities continue to 
embrace CER and demand better evidence to 

inform clinical decisions, CER will play an 
expanding role in healthcare research. It contin-
ues to establish its position as a central compo-
nent of clinical research that is directly relevant 
to clinical practice and health policy; that is, 
CER is needed in order to practice the best evi-
dence‐based medicine and evidence‐based poli-
cymaking. Nonetheless, creating sustainable 
funding sources, improving the quality of evi-
dence generation and evidence dissemination 
through development of methods and better 
use of these methods, educating consumers 
about CER, and managing their expectation are 
ongoing challenges.
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Recently our capability to harness computational 
power to collect, share, and analyze data has 
increased dramatically year on year. This has led 
to vast data sources potentially able to provide 
answers to questions relevant to pharmacoepi-
demiology. At the same time, there remains a 
need for method and tool development to 
extract reliable insights, rather than simply 
more information, distinguishing signals from 
the noise inherent in large volumes of data that 
are not collected with research as their pri-
mary purpose. Effective and reliable drug‐ and 
vaccine‐related evidence generation is the goal 
in order to improve the public’s health. 
Informatics and data‐mining approaches are 
not intended to replace traditional pharma-
coepidemiologic approaches, but rather to 
enhance the field by addressing questions of 
interest more efficiently, and being able to 
answer additional ones. This chapter sets out 
to provide an overview of how data mining and 
other informatics approaches are applied to 
the field of pharmacoepidemiology.

Data mining should be seen as exploratory 
data analysis for hypothesis generation, and as 
part of a knowledge discovery process [1]. It 
looks to uncover patterns or correlations in 
the dataset with no or limited presupposition, 
but almost invariably requires more rigorous 
testing of any emerging hypothesis, tailoring 
the subsequent testing to the issue at hand. As 
some researchers have put it, “data mining is 
asking a processing engine to show answers to 
questions we do not know how to ask” [2]. 
Often in pharmacoepidemiology “data min-
ing” is used synonymously with quantitative 
signal detection, although naturally other 
forms of hypothesis generation of relevance to 
pharmacoepidemiology would also be in 
scope. As the sources of existing healthcare 
data and our capability to access and poten-
tially analyze them increase, we strive to maxi-
mize the value of the data through developing 
more effective data mining and processes 
associated with it. Hence the recent emphasis 
on “Big Data” and “real‐world evidence” and 
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the supposed capability to generate more rapid 
insights from the increasing amount of diverse 
data available (see, for example, [3–6]). 
However, the wide range of different terminol-
ogies, dictionaries, and controlled vocabular-
ies that are used as well as nonrandom 
variability in data capture due to different 
healthcare systems make  linkage and analysis 
of multiple data sources challenging. In addi-
tion, there is an increasing amount of unstruc-
tured free‐text/narrative data recorded, as well 
as repositories with biologic data, chemical 
structure, and pharmacogenomics informa-
tion. However, data protection laws may make 
access to text and linkage between data sources 
more difficult in many regions. Informatics 
approaches, defined as “the study of the struc-
ture, algorithms, behaviour, and interactions of 
natural and artificial computational systems” 
[7], have obvious value for data mining, while 

they are also of relevance in the wider applica-
tion of pharmacoepidemiologic approaches.

Signal detection, refinement, and evaluation 
describe three distinct secondary uses of data [8] 
that together form a signal management contin-
uum (Figure 27.1). There is much discussion of 
definitions of signal‐related terms and their rela-
tions as components of safety surveillance [9]. 
Other terms that are used include “ signal 
strengthening” in place of “signal refinement,” 
“signal validation” in place of “signal evaluation,” 
and “signal substantiation,” which incorporates 
an element of both refinement and evaluation, 
but has been applied using external data, such as 
protein information, to provide a pharmacologic 
mechanism for detected signals, often through 
semi‐automated data linkage and analysis 
[6,10,11]. There is some inconsistency in the use 
of signal‐related terms and further terminologic 
harmonization would be beneficial.

Signal Detection
•  Any Medical Event
•  Designated Medical
   Events

Signal
Refinement

Signal
Evaluation

Rapid
Detect the unexpected
Less persuasive

Time consuming
Test the anticipated
Convincing

Figure 27.1 Signal stages after product approval and launch.
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 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

Signal Detection and Data Mining: 
Realistic Expectations

All medicines are licensed on the basis of a 
favorable benefit/risk balance. Routine activities 
are aimed at supporting the continual evalua-
tion of the benefit/risk profile of medicines in 
the postmarketing setting. Specific aims include 
primarily detection of drug safety signals, and 
then quantification, characterization, and iden-
tification of predictors of known adverse drug 
reactions (ADRs).

The concept of a signal, from a drug or vac-
cine surveillance point of view, has evolved from 
its definition by the World Health Organization 
(WHO) as “reported information on a possible 
causal relationship between an adverse event 
(AE) and a drug, the relationship being unknown 
or incompletely documented previously. Usually 
more than a single report is required to generate 
a signal, depending upon the seriousness of the 
event and the quality of the information” [12], 
to  a more comprehensive definition according 
to the Council for International Organizations 
of Medical Sciences (CIOMS): “information 
arising from one or multiple sources (including 
observations or experiments), which suggests a 
somehow new, potentially causal association 
between administration of a medicine and 
adverse event(s) that is of sufficient likelihood 
to justify verificatory action” [13].

In particular, this new definition highlights 
that a signal can be detected from multiple data 
sources. In a review of 25 drugs withdrawn from 
the market for safety reasons from 2000 to 2010 
in the US or European Union (EU), the type of 
data that provided the basis for each withdrawal 
was examined [14]. The majority of safety‐based 
withdrawals were rare events such as progres-
sive multifocal leukoencephalopathy, Stevens–
Johnson syndrome and cardiac arrhythmias, or 

AEs with delayed onset, such as myocardial 
infarction and liver toxicity. In almost 50% of 
the drug withdrawals, the authors’ review [14] 
suggested that spontaneous reporting systems 
(SRSs, see Chapter 10) were the primary source 
of data in triggering regulatory action, thus 
 confirming that SRSs remain the cornerstone of 
pharmacovigilance. In contrast, in two instances 
(8%) for two outcomes – cardiovascular events 
(including myocardial infarction and stroke) 
and liver toxicity/veno‐occlusive disease  – 
 randomized clinical trials (RCTs) were the sole 
source of the safety information. For the remain-
ing 48% of withdrawals, a combination of data 
from SRS, clinical trials, and/or observational 
studies contributed to the regulatory action.

Safety signal detection is both an iterative and 
a dynamic process, since emerging safety issues 
can be encountered over time after approval 
(e.g., progressive multifocal leukoencephalopa-
thy associated with natalizumab). ADRs may 
have many different types of manifestation, 
underlying mechanisms, frequencies, latency, 
and predictors (see Chapter  3), which may 
require integrating and understanding evidence 
from all possibly relevant information sources 
on drug safety. Continued development of 
 multimodal signal detection requires a deeper 
understanding of the data sources used and 
 further research on methods to generate and 
synthesize signals [15].

Although RCTs are considered to be the most 
rigorous approach to determining a cause‐and‐
effect relationship between an intervention 
(e.g., medication exposure) and an outcome, 
these trials are generally designed and powered 
to assess efficacy rather than safety end‐points. 
The controlled nature of such trials, however, 
calls for a limited number of patients who may 
be at a lower baseline risk of ADRs than the 
population of all potential users of the drug, so 
the statistical power to detect ADRs will be low 
(see Chapter  4). In addition to limited study 
sample size, a relatively short observation period 
makes it difficult to detect ADRs that have long 



Data Mining and Other Informatics Approaches to Pharmacoepidemiology678

latency [16,17]. Similar ADRs that occur in 
 vulnerable subpopulations or when medications 
are in practice used suboptimally or in unusual 
combinations are also particularly important to 
detect once medicinal products are utilized in 
routine healthcare. While RCTs in the premar-
keting phase and SRSs in the postmarketing 
 setting remain essential for drug safety surveil-
lance, there are still gaps that may be filled by 
observational data derived from different 
sources. In particular, the role of mining data 
from healthcare databases for signal detection 
has been more extensively investigated in recent 
years [6]. Compared to clinical trial data, popu-
lation‐based healthcare databases such as elec-
tronic health records and claims databases (see 
Chapters 11–14) contain data from clinical 
practice about larger populations with longer 
follow‐up periods, which may help in the detec-
tion of adverse reactions occurring after long‐
term exposure to medicines (e.g., cardiac valve 
disorders). Preliminary results [18,19] showed 
that these data sources might complement SRSs 
in routine pharmacovigilance in the postmar-
keting setting for detecting specifically signals 
concerning events occurring at relatively high 
frequency in the general population, as well as 
those that are multifactorial (e.g., myocardial 
infarction) and as such not commonly consid-
ered as a potentially drug‐induced event, so 
unlikely to be reported to any SRS.

Ideal pharmacovigilance systems for signal 
detection should allow timely and accurate 
identification of new, potentially causal associa-
tions of drug(s) and AE(s) requiring further 
 signal management, while minimizing false 
 positive signals and optimizing use of human 
resources. Once detected, in general, a sus-
pected signal has to be strengthened (or weak-
ened) by adding other evidence on biologic 
substantiation and other key information on 
causality assessment, as done experimentally in 
the EU‐ADR project (Figure  27.2) [10], and 
finally validated and fully characterized through 
formal pharmacoepidemiology studies. Because 

of the substantial effort required to evaluate 
 signals, detecting these in systems with low 
precision (high false positive rates) would 
not  be  sustainable routinely. Ongoing efforts 
to  develop quantitative methods, or other 
approaches that can provide at least some semi‐
automated triage, all with strong performance 
characteristics (positive and negative predictive 
values) in highlighting potential signals, remain 
critical. While improving signal detection is 
important, and is the focus of much of this 
chapter, our capability to effectively rule out 
spurious signals, and rapidly and effectively 
further analyse and better understand true 
emerging risks, through signal refinement and 
evaluation activities is equally critical, and is 
addressed in other chapters.

Disaster‐Driven Pharmacovigilance

The traditional pharmacovigilance system 
mostly based on SRSs has been in place since 
the end of the 1960s as a reaction to the tragedy 
of thalidomide‐induced limb defects. This 
 system, despite its great potential, is far from 
optimal as a consequence of well‐known SRS 
limitations such as underreporting, notoriety 
bias, and lack of denominators. It is therefore 
not surprising that serious ADRs leading ulti-
mately to drug withdrawal are sometimes 
detected only with significant delay.

Electronic health record (EHR) data may be 
able to identify new risks for drugs associated 
with AEs that have high background incidence 
rates (such as acute myocardial infarction), as 
well as events that are not pharmacologically 
predictable and are less likely to be suspected as 
drug induced, thus less likely to be reported and 
therefore in spontaneous reporting systems. 
Historically, spontaneous reporting systems 
have been good at highlighting the unpredicta-
ble (at the time), for instance coughing with 
angiotensin‐converting enzyme (ACE) inhibi-
tors, heart rhythm disorders with terfenadine, 
or progressive multifocal leukoencephalopathy 
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(PML) and natalizumab and heart valve disor-
ders with fenphen (the combination product of 
fenfluramine and phentermine). Data from 
EHRs provide denominators for the rate of 

occurrence as well as greater detail regarding 
possible confounding factors such as patient 
demographics, drug use, and utilization of 
healthcare services. These data may permit 

A. Signal substantiation through proteins

B. Signal substantiation through pathways
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Figure 27.2 Example of a process for signal substantiation through proteins. Source: Bauer‐Mehren A, van Mullingen 
EM, Avillach P, et al. Automatic filtering and substantiation of drug safety signals. PLoS omput Biol 2012; 8(4): e1002457.
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 epidemiologic evaluation of the benefit/risk 
 profile of drugs (see Chapter  35). This process 
then puts safety issues in a broader perspective 
and fosters sound regulatory decisions, there-
fore providing a data source for moving from 
signal detection across signal refinement toward 
signal evaluation. This can lead to a more com-
pelling rationale for further investigation than 
might sometimes be the case with signals from 
SRSs with limited clinical plausibility at the time.

The Example of Rofecoxib’s Withdrawal 
from the Market and the Potential Role 
of Healthcare Databases

Several initiatives have been exploring the role of 
healthcare databases for drug safety signal detec-
tion and signal management. An example that has 
been studied in depth is the case of withdrawal 
from the market of rofecoxib due to increased risk 
of cardiovascular thrombotic events. Rofecoxib is 
a prescription cyclooxygenase (COX)‐2 selective 
nonsteroidal anti‐inflammatory drug (NSAID) 
previously indicated for relief of osteoarthritis 
signs and symptoms, management of acute pain 
in adults, and treatment of menstrual pain. The 
European Medicines Agency (EMA) and the 
United States Food and Drug Administration 
(FDA) provided approval for rofecoxib in 1999. In 
June 2000, the results of the Vioxx Gastrointestinal 
Outcome studies (VIGOR) trial were submitted 
to the FDA and demonstrated an increased risk of 
cardiovascular thrombotic events. This trial 
showed that patients who were given rofecoxib 
had four times as many myocardial infarctions as 
those who were given naproxen, which was attrib-
uted by the authors of the VIGOR trial at that 
time as due solely to the cardioprotective effect of 
 naproxen. Subsequently, in September 2004, the 
Adenomatous Polyp Prevention on Vioxx 
(APPROVe) study showed increased risk of myo-
cardial infarction and stroke with rofecoxib as 
compared to placebo after 18 months of  treatment. 
The same month, the manufacturer withdrew 
rofecoxib from the market because of concerns 

about increased risk of heart attack and stroke 
associated with long‐term, high‐ dosage use [20]. 
Thus, it took almost five years for rofecoxib to be 
withdrawn from the market after the first evi-
dence of increased myocardial infarction risk was 
documented [21]. By the time of rofecoxib’s with-
drawal, more than 100 million prescriptions had 
been filled in the US, with tens of millions of these 
prescriptions being written for persons who had a 
low or very low risk of gastrointestinal complica-
tions of nonselective NSAIDs [20], which was the 
rationale for developing COX‐2 selective NSAIDs. 
Using actual penetration of rofecoxib in the mar-
ket, it was calculated that if the medical records of 
100  million patients had been available for safety 
monitoring, the adverse cardiovascular effect 
would have been discovered in just three months 
[22]. In the context of the FDA’s Sentinel initiative, 
a modular program was built that semi‐automati-
cally performs cohort identification, confounding 
adjustment, aggregation, and effect estimation 
across multiple databases, and application of a 
sequential alerting algorithm (see Chapter 25). In 
retrospective assessments, the system identified 
an increased risk of myocardial infarction with 
rofecoxib and an increased risk of rhabdomyoly-
sis with cerivastatin years before these drugs were 
withdrawn from the market [23]. Similarly, the 
Exploring and Understanding Adverse Drug 
Reactions by integrative mining of clinical records 
and biomedical knowledge (EU‐ADR) project, 
which built a European multidatabase network 
covering more than 30 million citizens, has shown 
that, had this data source been available at the 
time rofecoxib was still marketed, there could 
have been a faster withdrawal [18]. Although 
international SRSs did not play a significant role 
in detection and prioritization of this emerging 
signal, it is worth noting that the Dutch SRS did 
identify this as a potential signal [24].

What are the lessons to be learned from this 
story? First, suggestions to replace spontaneous 
reporting by other systems are illogical and not 
supported by the evidence provided by the 
rofecoxib case, as signals of rofecoxib‐associated 
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cardiotoxicity from both clinical trial and Dutch 
SRS were detected; secondly, it is what happens 
after the first signal of an ADR has been found 
that should be the major focus of concern. In this 
case there was a considerable delay from the ini-
tial signal to regulatory action [24]. Availability 
of a large amount of EHR data represents an 
additional data source for signal refinement, as 
well as for signal evaluation, thus potentially 
contributing to accelerating the process of signal 
management. Nevertheless, as discussed shortly, 
while healthcare databases on their own or com-
bined in networks are used for signal refinement, 
as discussed in Chapter 25, they may also help 
enhance signal detection capability.

As another example, in recent years safety 
data from the US Vaccine Adverse Event 
Reporting System (VAERS) and the Vaccine 
Safety Datalink suggested that more venous 
thromboembolism (VTE) cases were observed 
than expected after vaccination with quadriva-
lent human papillomavirus vaccine (HPV4; 
Gardasil®), but data were inconclusive [25,26]. 
The Sentinel initiative rapidly evaluated the risk 
of VTE in more than 650 000 females aged 9 
through 26 years of age, totalling more than 1.4 
million doses of Gardasil evaluated, and found 
no evidence of an increased risk for VTE after 
Gardasil vaccination, reporting a relative risk 
estimate (95% confidence interval) from both 
unrestricted analyses, for all doses, with a  
28‐day risk interval of 0.7 (0.3−1.4) [27].

 Methodologic Problems to Be 
Solved by Pharmacoepidemiologic 
Research

Data Mining and Causality

The fundamental problem for much of pharma-
coepidemiology is that of inferring causality. For 
much data mining outside of pharmacovigi-
lance, there is no need to assess causality: 
 association is enough. This can be true even for 

public health purposes in some circumstances. 
For example, let us assume that there is no 
 biologic or pharmacologic effect of isotretinoin 
on the likelihood of a patient’s taking a suicidal 
action. However, there may well be an associa-
tion resulting from other conditions the patient 
has, which result in their being prescribed 
isotretinoin. From a public health perspective, it 
would be good for the prescribing health profes-
sional to be aware of the isotretinoin–suicide 
association, even if it is not causal. That is, when 
prescribing isotretinoin, the characteristics of 
the patient and the circumstances in which it is 
prescribed are associated with suicidal events, 
and attention should be paid to caring for the 
patient with this in mind. With data mining in 
the sphere of economics or politics, the associa-
tion between previous purchases and other 
 factors like age would be enough to make the 
targeting of an advertisement to an individual 
very productive, in that the individual is more 
likely than others to respond to that particular 
advertisement, without any requirement to take 
other factors into account that may be the causal 
elements. A similar effect is seen in response to 
encouraging donations or going out to vote for a 
particular candidate; no inferences about what 
is causal are necessary.

Finding associations is a reasonable first step 
toward the assessment of causality. Associations 
that are stronger may be believed to be good 
candidates for both being causal and of public 
health importance. However, Ioannidis has 
argued, persuasively, that almost all of Bradford 
Hill’s considerations (not “criteria,” as Ioannidis 
and others have misquoted) for causality have 
limitations, and maintains that strength of asso-
ciation is almost the exact opposite of a good 
indicator – “when large effects are seen, they are 
mostly transient and almost always represent 
biases and errors” [28]. Ioannidis’s assessment is 
largely based on randomized trials, but those 
are where evidence for causality is likely to be 
good. He notes that this applies to adverse 
effects as well as benefits, but has not assessed it 
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in relation to data mining. That said, it seems 
likely the same arguments could apply.

Many of the large associations, whether seen 
in pharmacovigilance, randomized trials, or 
genome studies, are based on small numbers of 
exposed cases. Therefore, careful attention to 
lower limits of confidence intervals may help 
with considering the magnitude of association. 
In data mining for pharmacovigilance, it is often 
the case that cut‐offs for signals are based on 
lower limits of confidence Intervals, and this 
should probably be a principle in data mining 
more generally. It may even be argued that it is 
sensible to use 99%, 99.5%, or even more 
extreme confidence limits to account for multi-
plicity [29]. This may lead to too many type II 
statistical errors, but the problem with method 
validation in pharmacovigilance is that many of 
the labeled “true positive” associations could 
well be false positives themselves, so what is 
assumed to be a “gold standard” is in fact an 
“iron pyrites standard” (iron pyrites is known as 
“fool’s gold”!). In addition, Bayesian shrinkage 
estimates also reduce the large effects seen with 
small sample sizes. The “shrinkage” can be illus-
trated using a comparison of an observed count 
of the numbers of an AE compared with the 
expected count for that event. The expected 
count in pharmacovigilance may be derived 
from a database of spontaneous reports, or from 
a comparison group in a trial or a pharmacoepi-
demiologic study. Most measures of association 
are based on the ratio of the observed (o) with 
the expected (e) count. A shrinkage estimate 
will add a constant, usually 0.5, to both the 
observed and the expected count, and recom-
pute their ratio. If the observed count is, say, 
2 and the expected is only 0.1, then o/e = 2/0.1 = 
20. This ratio (close to a risk ratio or an odds 
ratio) is quite extreme, but using (o+0.5)/(e+0.5) 
gives 2.5/0.6 = 4.2. This is a much less extreme 
value and the appropriate lower confidence 
interval will also be much lower. Values are 
“shrunk” toward the null value of 1. For a more 
extensive treatment of shrinkage for signal 

detection, see [30]. The ranking of potential 
 signals must take these considerations into 
account, so that large (relative) effects with very 
small observed numbers of cases do not domi-
nate. At the very least, the usual cut‐off criteria 
utilize lower bounds of confidence (or in 
Bayesian systems, credible) intervals.

There is an extensive literature on how poten-
tial signals are highlighted and investigated as 
part of sophisticated auditable systems for sig-
nal management [31–33]. Such management 
systems include alternative approaches for 
highlighting emerging signals from spontane-
ous reports and other sources; this is beyond the 
scope of this chapter, but suffice it to say that 
quantitative signal detection plays a core role as 
the spontaneous reporting repositories increase 
in size. The whole process is in contrast to data 
dredging, where a search is made for one or a 
few statistically significant findings, without 
reporting that such a search has been made and 
without taking into account the problems of 
multiple testing. With data mining, it is explicit 
that many possible associations are found, and 
further processes will be carried out to find 
those that are likely to be causal. The wider 
knowledge discovery process for using data 
mining as a component of a signal management 
system has been treated extensively in the phar-
macovigilance literature, for example [34, 35].

The “COMPARE” project of Ben Goldacre and 
colleagues [36] has established that many inves-
tigators change the outcome variable  specified 
in the protocol (presumably to get a desirable 
answer), and this has been found by many oth-
ers, in the context of both trials [37] and system-
atic reviews [38]. With transparent methods of 
data mining, the output should not be treated as 
if it were a confirmed hypothesis. This is at least 
partly because bias and confounding are espe-
cially challenging for data mining and signal 
detection. In epidemiologic studies where spe-
cific hypotheses are tested, it is possible to con-
sider biases and confounding relating to a 
specific drug/AE combination. In data mining it 
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is much more difficult to deal with biases or 
 confounding in a general way. At the very least it 
can require massive computing power to be able 
to carry out, for example, high‐dimensional pro-
pensity score methods, calculating a new score 
for every one of possibly many thousands of 
drug/event pairs, and then using a regression 
method to look at each association.

Hence data mining, which finds associations 
that may or may not be causal, can nevertheless 
be useful in some contexts, provided the asso-
ciations are not taken as providing sufficient 
evidence on their own of causal effects [39]. 
Also, methods for association detection can be 
used to provide ranking for further triage, as 
well as more granular hypotheses that can be 
prioritized for future hypothesis‐testing studies 
and helping to refine hypothesis definitions. 
There is a necessarily iterative element, in that 
generated or tested hypotheses may stimulate 
the need for further exploratory analysis, and 
the process will continue. This broad concep-
tual use of data mining/signal detection makes 
rigorous assessment of performance and value 
challenging. Despite this openness, the credibil-
ity and value of data mining and exploratory 
data analysis (EDA) are supported by clear pro-
cess and audit trails for the use of such tech-
niques, as exhibited for example in signal 
detection in SRS as part of overall signal man-
agement plans [31].

Using Replication and Transparency 
to Improve Reliability

Ioannidis has argued that replication is an 
important component of improving the quality 
of published findings [40]. This also applies 
when data mining. In this case, the combining 
of results across different settings and databases 
helps to distinguish genuine causal effects from 
spurious associations. Replication can occur 
both between different independent groups 
studying the same question(s) and also within a 
single group or collaboration. If data mining is 

to be done across different groups, then a great 
deal more transparency is required. The Sentinel 
initiative has an excellent record of doing this, 
making code lists and software readily available, 
as does the group called Observational Health 
Data Sciences and Informatics (OHDSI, pro-
nounced “Odyssey”) and its predecessor, the 
Observational Medical Outcomes Partnership 
(OMOP). OHDSI includes among its objectives 
“Reproducibility: Accurate, reproducible, and 
well‐calibrated evidence is necessary for health 
improvement.” This can be a deliberate choice 
and is open to other investigators to follow its 
example, although there are many challenges 
with trying to ensure reproducibility and 
transparency.

However, the transparency did allow Gruber 
et al. [41] to examine a particular result from the 
OMOP analyses that they felt was anomalous. 
The resources required to reexamine more than 
one such result were noted to be considerable. 
This anomalous result, a finding of upper gastro-
intestinal bleeding associated with benzodiaz-
epines, was studied in detail. The conclusion was 
that the association was largely restricted to the 
first day of a prescription and unlikely to be a 
causal finding  –  “driven by an excess of proce-
dures on the first day of treatment.” This seems 
entirely sensible as an explanation, since benzo-
diazepines are given prior to endoscopy. Gruber 
et  al. conclude: “It is likely that all surveillance 
programs will need tailored designs that reflect 
pharmacologic and clinical knowledge.” To some 
degree, this misses the point: if each possible 
association requires an individual design, it sug-
gests that surveillance is impossible across more 
than a limited range of issues. What is clear is 
that, as stated earlier, taking an association that is 
flagged up by a system as if it were a confirmatory 
study is a mistake. Further work is required, as in 
the processes of signal detection leading to con-
firmation (or not) through signal evaluation. It 
may be more sensible to ensure that the window 
during which a possible risk may appear should 
not generally include the day of a prescription.
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Guidelines like the International Society for 
Pharmacoepidemiology–International Society for 
Pharmacoeconomics and Outcomes Research 
(ISPE‐ISPOR) guidance on reporting of health-
care database studies [42] and the guide-
line  for  the REporting of studies Conducted 
using  Observational Routinely collected Data 
(RECORD) statement [43] from the “Enhancing 
the QUAlity and Transparency Of health 
Research” (EQUATOR) network (http://www.
equator‐network.org), which includes the 
CONsolidated Standards Of Reporting Trials 
(CONSORT) guidelines, may help with this.

Problems of Exploratory 
and Confirmatory Analyses

Data mining in surveillance of medicines and 
similar fields is exploratory in nature, as already 
noted, and generally takes place in one or a few 
databases. When confirmation of “signals” or 
other hypotheses that are generated is sought, 
then it is not generally sensible to carry this out 
in the same dataset. It is not good enough  simply 
to divide a single dataset (randomly) into train-
ing and test sets. A random split will nearly 
always ensure that the test set will replicate the 
biases in the training set. It only deals with 
 sampling variability, and provides some limited 
protection when the model used in the data 
mining has included factors that are there just 
because of chance variation. The test set will not 
reflect the chance factors, but will reproduce 
the biases. This is why many predictive models 
developed in one context do not function as 
well as expected when they are applied in differ-
ent data. Nonrandom splitting (e.g., by region) 
may be possible, but totally independent data 
are required for proper validation.

In practice, however, with the finite, even if 
large, number of observational databases in 
total, many will be unsuitable (in terms of vari-
ables recorded, data access, and power) to 
answer some questions. For example, for some 
questions smoking and lifestyle factors may be 

vital to address confounding and the number of 
appropriate independent databases available 
may be very limited. Frequently there are differ-
ent studies including both exploratory and 
confirmatory analyses, which are commonly 
conducted in the same or overlapping data-
bases. It is not clear that totally independent 
analyses can be carried out in the same data-
bases, but reanalysis by independent groups 
may come to different conclusions, showing 
that there is more than sampling uncertainty 
(captured in a confidence interval) in the find-
ings. Walker [44] has suggested that it is possi-
ble to use the same database and employs the 
term “orthogonality” to describe assessing other 
hypotheses related to a primary discovery, 
which nevertheless add to or subtract from the 
evidence for causality of the primary discovery. 
He uses an example of intussusception follow-
ing a rotavirus vaccine (the primary hypothesis, 
found by “data mining”) and utilizing the same 
data to see if the vaccine is associated with 
reports of other conditions that have the same 
pathology. While Walker argues that this is evi-
dence for causality, Gould [45] disagrees, stating 
that “hypothesis‐generating and test data from 
the same data source generally cannot be 
 considered ‘independent,’” and arguing that the 
evidence for causality may not be strengthened 
at all by this approach if there is unmeasured or 
unanalyzed confounding. Confounding by indi-
cation can also apply across related pathologies. 
Whatever the view, it is important to be clear 
that overinterpreting concordance with previ-
ous findings as if it were as convincing as two 
completely independent studies is likely to be 
mistaken. Using the “orthogonal” hypothesis 
may serve to strengthen evidence, but will rarely 
be sufficient to confirm a causal relationship.

Fortunately, databases themselves often have 
a relatively rapid turnover of included patients 
(e.g., US claims databases), so there can be a 
reduction in some of the dependence when 
 conducting studies in the same datasets with 
different time periods. Clear transparency of 
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exactly how outcomes, exposures, and con-
founding variables are measured, classified, and 
utilized in a statistical model is necessary. As 
always in science, findings need to be related to 
previous relevant findings to ensure appropriate 
interpretation by the reader of a single study 
publication. When exploratory and confirma-
tory analyses are executed on the same drug 
safety issue in the same database, it will be 
important to know what data influenced the 
design of the confirmatory study and how, and 
the extent to which the authors (or readers) 
believe this influenced the results.

The phrase “signal refinement” may be 
applied to a process akin to Walker’s orthogo-
nal approach, in that outcomes related to the 
primary hypothesis will also be examined. 
Similarly, looking at whether other related 
exposures (perhaps the same drug class) have 
the same effect and whether the pattern with 
time is consistent contribute importantly to 
the evaluation. This process of signal refine-
ment or rapid cycle analyses [46] looks more 
like full studies, and often leads to a full 
hypothesis testing confirmatory study. In 
Walker’s example  [44], having found an asso-
ciation with intussusception, the search for 
similar associations with gastrointestinal hem-
orrhage, intestinal obstruction, gastroenteritis, 
and abdominal pain makes such an exploratory 
search begin to look like a more formal study. 
They are exploratory in mindset but with a 
clear hypothesis on the table. Although the 
approach is more common now, it has been 
used previously in the literature, for example 
by Behrens [47] as a “rough confirmatory anal-
ysis.” As the boundary between EDA and 
 confirmatory data analysis (CDA) becomes 
blurred, it will be important that transparent 
processes are in place to ensure appropriate 
credible inferences are made from analyses.

A challenge of particular importance in data 
mining and hypothesis generation is the neces-
sity of rapidity – and the delays in data capture in 
data sources and their availability for secondary 

data analysis for pharmacoepidemiology can be 
a key rate limiter. Developing capabilities for 
analysis as data, and confidence in its accuracy, 
accrue will be very important, and clearly the 
balance between availability and ensuring robust 
quality is a natural tension. Transparency around 
process and near real‐time quality control of the 
raw data to the extent possible is required, 
together with the capability to update analyses 
over time as needed.

 Currently Available Solutions

Data Mining in Spontaneous Reports

The history of routine data mining in pharma-
coepidemiology began with the analysis of 
spontaneous reports of suspected adverse drug 
reactions [48–51]. It was initially very simple, 
based only on knowledge from a database of 
suspected drugs and AEs reported with them. 
For every combination of drug (classified as 
drug substance) and AE (classified at, usually, 
preferred term level according to a hierarchical 
terminology), it produced a measure of associa-
tion (disproportionality), then used a cut‐off 
for that measure to classify whether this combi-
nation results in a “signal of disproportionality” 
or not (and subsequent clinical review, leading 
some of these to be “signals of suspected cau-
sality”). The core concepts had been proposed 
in fact many years previously, though the com-
puting technology had not been applied to 
every possible combination in a database [52]. 
Specifically, measures of disproportionality use 
a two‐by‐two contingency table for each drug–
event pair and look for unexpectedly frequent 
reporting of the combination compared to the 
count expected based on general reporting of 
the drug and the AE if they were independent. 
The four most commonly used metrics – that 
is, information component (IC), empirical 
Bayes geometric mean (EBGM), proportional 
reporting ratio (PRR), and reporting odds ratio 
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(ROR) – are all based on this core contingency 
table [35]. Despite the inherent limitations and 
oversimplification of the complexities of spon-
taneous reporting, these metrics have been 
found to have robust performance characteris-
tics in practice, in the sense that the precision 
and recall estimates from many independent 
method evaluations are concordant in suggest-
ing they provide helpful assessments of the data 
(see, e.g., [53,54]). Thus, they are now widely 
considered sufficiently strong to justify the 
 usefulness of such approaches as routine sur-
veillance tools for signal detection by regulators 
and industry [35].

Data mining has looked to include other 
 factors available for individual reports  –  age, 
gender of patients, year of reporting, and coun-
try in which it was reported [55] – which would 
modify the metric used. Approaches such as 
lasso shrinkage regression, a Bayesian approach 
applicable for regression across the often huge 
numbers of explanatory variables needed for 
hypothesis generation, can be used to analyze 
all possible medicinal products and combina-
tions thereof with a given AE as predictor 
 variable [56]. In contrast to traditional regres-
sion approaches, lasso shrinkage regression 
addresses problems with lack of convergence, 
prohibitive computational complexity, and 
unstable parameter estimates that can occur 
with large numbers of predictor variables. This 
regression approach does not simply look at a 
single drug–AE combination, but considers 
what concomitant medication appears on an 
individual report. So, if two drugs are reported 
together, it attempts to obtain the separate effect 
of each. In practice, this added complexity of 
algorithm and its implementation do not neces-
sarily lead to more effective signal detection, 
and care is required with implementation [57]. 
There are other features on such reports that 
might be utilized in quantitative analysis, for 
instance previous medical history, concomitant 
drugs, weight and height, and time since drug 
initiation. Usually adding features can improve 

causality assessment in individual cases, as there 
is more information to consider in the clinical 
review; however, where the data are frequently 
missing (and this is nonrandom), it is not guar-
anteed that consideration of such features in the 
quantitative screening leads to gains [55,57].

What has been clear in the past is that there 
are other issues than simply the counts of 
reports that should determine whether a signal 
exists or not [35,58]. It has also been shown that 
each of the systems basically behaves very simi-
larly (that is hardly surprising when they are 
based on the same fundamental data), and by 
choice of the cut‐off point for a metric can pro-
duce very similar results [50]. What is relatively 
unusual in terms of pharmacoepidemiologic 
applications is that all the methods applied to 
spontaneous reports have considered all possi-
ble drugs (with thousands of drug substances) 
and all possible medical terms (again, many 
thousands of terms). Some methods were ini-
tially applied to a narrow selections of drugs or 
terms, such as two early publications that con-
ducted disproportionality analyses of specific 
drug–event issues in cefaclor and serum sick-
ness‐like symptoms, and hypoglycemia and 
ACE inhibitors [59,60]. However, to be useful to 
regulators and those who use the databases of 
reports, having a system that can consider every 
possible combination of drug and AE has been 
important. Research continues to further opti-
mize, from a statistical point of view, quantita-
tive screening approaches in SRS, combined 
with more work to integrate the medical aspects 
into signal management systems [61–72].

Data Mining in Healthcare Databases 
and Distributed Database Networks

A new strand of research looks to use a different 
source for signal detection: the utilization of 
healthcare databases, either medical claims data 
or electronic health records. These databases 
have been employed for formal pharmacoepide-
miologic studies for many years, but using them 
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for scanning for a huge number of possible asso-
ciations is more recent. In these databases the 
variety of data items is several orders of magni-
tude greater than with spontaneous reports, 
and data are clearly collected for a very different 
purpose than signal detection, so there is very 
rarely any recorded clinical suspicion of adverse 
drug reactions. Systematic collection on diag-
nostic and procedural events prior to exposure, 
in contrast to spontaneous report, presents a 
significant potential benefit for signal detection. 
Signal detection and data mining have been 
tested in both individual databases and also 
across networks of multiple healthcare data-
bases. The performance of the whole systems 
for detecting signals of ADRs have not as yet 
been as great a step forward as many of us antic-
ipated they would be, in that there is no clear 
emergence of signals that are being detected 
earlier in healthcare databases than spontane-
ous reports, and high false positive rates can still 
occur [19,73,74].

No single observational data source provides 
a comprehensive view of all encounters a patient 
accumulates while receiving healthcare, and 
therefore none can be sufficient to meet all 
expected outcome analysis needs. This explains 
the need for assessing and analyzing multiple 
data sources concurrently. For some research in 
pharmacoepidemiology, a common data model 
(CDM) has been used, which is a standardized 
database model that aims to standardize termi-
nologies of medical events and procedures, and 
data structures, to facilitate analyses across data 
sources. This can help with analyzing data 
across databases and even across countries, but 
has the disadvantage of necessarily not making 
full use of all original data and therefore poten-
tially relevant covariates available in some, but 
not all, databases. The rapidity at which CDM‐
based analyses can be conducted is particularly 
advantageous for signal detection/data‐mining 
activities. The alternative is to have optimal 
designs in a series of studies in different 
 databases, but with enough commonality in the 

outcome being studied to allow for meta‐analysis 
to provide greater understanding and precision 
in the answers. Causality may still be difficult to 
assess [75], but taking a wide picture may still 
allow for causal conclusions to be reached in 
some circumstances.

The (in)famous example of hormone therapy 
(HRT) is instructive. In spite of observational 
studies suggesting prevention of coronary heart 
disease (CHD), regulators generally did not 
allow prevention of CHD as a labeled indication, 
but did have sufficient belief in the observational 
studies to include in product information the 
harms of breast cancer (BC) and VTE. The later 
randomized trials did not find benefit for CHD, 
but instead possible harm and did find harms of 
BC (for combined HRT) and VTE [76]. The 
 lessons of this should be borne in mind when 
using data mining in observational data [77]. If 
data mining is seen as a signal detection process, 
then the failure to eliminate noncausal associa-
tions may not be a major problem, provided that 
the false positive rate is not so high as to over-
whelm the systems for evaluation. However, 
there can be a temptation for regulators to rely 
on the associations to amend product informa-
tion, and it clearly would result in better perfor-
mance for detecting real effects if noncausal 
associations can be reduced as far as possible.

One issue that has not been well discussed is 
whether answers from different data sources 
should automatically be analyzed simply by 
adding up the numbers across all studies, ignor-
ing the study source (“crude pooling”), or 
reported separately and combined using formal 
meta‐analysis techniques. It is well known that, 
even with randomized trials, crude pooling of 
data can lead to misleading estimates [78]. Since 
it is misleading with randomized data, it cer-
tainly suggests that crude pooling of results 
should be avoided. Even if there is no difference 
between the crude pooling and a meta‐analysis, 
the opportunity to test whether results are simi-
lar across data sources is important. Whether 
there is consistency or not in the estimates of 
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the effect of the drug from different sources can 
help decide whether an effect is real or not. The 
consequence is that it is possible that, even with 
a CDM, using data mining across multiple data-
bases could lead to spurious associations or a 
failure to find real associations, as occurred in 
Xu et al.’s study, where discordant results were 
obtained across the OMOP CDM and Mini‐
Sentinel CDMs and their associated CDM 
 specific analytics tool implementations, all run 
on the same database [79].

Much of the work done in health records has 
not attempted to screen for every possible drug 
and every possible AE, but has focused on a 
single or a limited number of drug(s) and AE(s), 
although this is changing. Scaling up the num-
bers to consider all possible drugs and AEs is 
not simply computationally challenging, but 
even with a low false positive rate can mean an 
unacceptably high absolute number of signals 
to examine.

As well as initiatives in Europe and the US, 
testing of methods of signal detection or data 
mining is occurring internationally, including, 
for example, in the Korean national insurance 
claims database, HIRA [80]. A range of methods 
for signal detection in healthcare databases have 
been examined or implemented, including 
measures of disproportionality as used for spon-
taneous reports [81], but also several other 
methods [82–84]. Two methods have received 
considerable attention, because rather than 
focusing on trying to generate an individual 
point estimate for cut‐off/filtering/ranking 
drug–event pairs as potential emerging signals, 
they concentrate on visualizing how events have 
occurred relative to the date of a given exposure 
across an entire database, and therefore leverage 
more of the data in the record. These two meth-
ods are the chronograph, which plots IC values 
for each drug–outcome event stratified by the 
month of recording of the outcome/diagnosis 
before/after a given exposure, and secondly the 
Longitudinal Evaluation of Observational 
Profiles of Adverse events Related to Drugs 

(LEOPARD). For the chronograph, the visualiza-
tion allows one to find interesting patterns at any 
time relative to exposure [85,86], and heuristics 
based on comparison of multiple potential 
exposed and nonexposed windows have been 
developed [87]. Similarly, LEOPARD is a method 
that can be used to attempt to automatically 
 discard false drug–event associations caused 
when a drug was initiated in response to the 
underlying disease under investigation or mis-
classification of the dates of the AEs, by compar-
ing prior event prescription rates to postevent 
prescription rates [88]. Similar to the chrono-
graph, LEOPARD can generate a single test sta-
tistic, or a visualization that can be used for more 
qualitative information on the relationship 
between drug and event. Initiatives exploring 
EHR‐based signal detection systems are intended 
to complement, not replace, existing drug safety 
surveillance systems.

Data Mining in Other Emerging 
Data Sources

Social Media
One of the more recent data streams that has 
become available for interrogation for postmar-
keting drug evaluation is “social media” or 
“ digital media” – both terms used interchange-
ably as  umbrella terms for many distinct data 
types [89], such as social media blogging‐type 
sites (e.g., Facebook, Twitter), disease/product‐
specific discussion forums, patient engagement 
program data, web search logs (e.g., Google, 
Bing), and consumer reporting of AEs. The data 
on the internet are available for analysis through 
a variety of means. Companies and academic 
groups “web scrape” the internet to generate 
anonymized datasets for analysis; secondly, 
some algorithms and software solutions look to 
analyze data on the internet directly; and lastly 
social media companies that host content that 
users upload to the social media platforms often 
provide de‐identified datasets for analysis, and 
are welcoming collaborations with external 
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partners to analyze the large datasets that are 
produced. All of these diverse data sources may 
be anticipated to bring different strengths and 
limitations in the context of signal detection.

Much research is emerging on the potential 
application of surveillance to social media data, 
but it is nascent. Examples of analyses of social 
media data include efforts to compare concord-
ance to quantitative outputs from spontaneous 
reporting systems, such as the paper by Freifeld 
et  al. [90]. They looked at the concordance 
between AEs suspected based on Twitter posts 
and US spontaneous reporting, and found a 
strong Spearman rank correlation. The authors 
concluded: “Despite the public availability of 
these data, their appropriate role in pharma-
covigilance has not been established.” They also 
suggested that denominator‐based pharma-
coepidemiologic methods needed to establish 
baselines and thresholds for “proto AE output” 
gleaned from social media. Another example is 
White et al. [91], who conducted a comparison 
of search log outputs and an external reference 
set of established drug–AE pairs. The authors 
reported higher accuracy in identifying the 
OMOP “gold‐standard” reference set of known 
drug–event pairs, compared to that achieved 
using the US spontaneous reports.

Another example of analysis of social media 
data is Pierce et al. [92]. In this study, 935 246 
posts were harvested from Facebook and 
Twitter over 5 years, and an automated classifier 
identified 98 252 proto‐AEs. The authors 
focused on searching for proto‐AEs that resem-
bled 10 preselected drug–event pairs consid-
ered “positive controls” as they were recent FDA 
postmarketing safety signals, and 6 “negative 
controls” by randomly pairing each product that 
appeared in the set of positive controls with one 
event that appeared in the set of positive 
 controls. A mere 13 posts mapped to the true 
positive controls across the entire set of posts A, 
and these were selected for causality assessment 
of product–event pairs, the clinical assessment 
revealing that the 13 posts had sufficient 

 information to warrant further investigation 
for 2 of the 10 possible product–event associa-
tions: dronedarone–vasculitis and Banana Boat 
sunscreen–skin burns. In further analysis, for 
one of the two product–event pairs judged by 
the authors as worthy of further investigation, 
the first report occurred in social media prior to 
signal detection from the US spontaneous 
report database, whereas the other case 
occurred earlier in the spontaneous reporting 
system. By contrast, no product–event associa-
tion posts were found among the negative con-
trols. Overall, the literature clearly does not, at 
this time, articulate a case for replacing tradi-
tional spontaneous reporting with social media 
screening, and in fact remains inconclusive 
regarding the supplementary value of such 
activity for signal detection compared to more 
traditional approaches.

In social media analysis one talks about 
“annotation”; that is, social media observations 
with reliable explanatory or commentary notes, 
which in the case of pharmacovigilance would 
look to articulate explicitly the chance that a 
social media observation represented a sus-
pected ADR. Sarker et  al. in their review [93] 
made clear that publicly available social media 
(annotated with relevant medical or drug iden-
tification) data were scarce, making study/
methods comparisons particularly difficult. 
This then limits determination of the perfor-
mance characteristics of social media data anal-
ysis. Hence, the extent to which social media are 
able to accurately highlight emerging safety 
issues, while minimizing both false positive and 
false negative findings, is unclear. Many studies 
on social media have focused on data extraction 
rather than the novel contribution of such data. 
Much of the performance evaluation has con-
centrated on correlation of social media analysis 
outputs with spontaneous reports, where of 
course a key question is what the novel contri-
bution of such data stream analysis might be.

Another example of ongoing research is that 
coming out of the EU Innovative Medicines 



Data Mining and Other Informatics Approaches to Pharmacoepidemiology690

Initiative (IMI) “WEB‐RADR” project. The pro-
ject is developing a mobile app for patients and 
healthcare professionals to report suspected 
ADRs to national EU regulators, and investigat-
ing the potential for publicly available social 
media data for identifying drug safety issues. 
Although this project has seemingly made pro-
gress in showing the effectiveness of using 
mobile phones for reporting suspected ADRs 
[94], the ability so far for identifying any new AE 
signals more effectively than spontaneous 
reports and other traditional data sources seems 
more questionable [95]. Thus, the promise of 
this new data source for safety surveillance has 
not yet been fully realized.

Medical literature
While considerable attention has been given to 
mining social media records, one area possibly 
unique to drug safety is mining the medical lit-
erature for possible identification of ADRs. 
Manually searching the literature to find reports 
or other information on possible ADRs or 
adverse events following immunization (AEFI) 
is generally time and resource consuming. To 
overcome this limitation, an interesting semi‐
automatic approach has been described by 
Botsis et  al. [96], who searched for reports of 
rotavirus vaccines and intussusception. They 
used text‐mining approaches to extract medical 
terms for primary and secondary diagnoses, 
cause of death, and plain symptoms from the 
free text in published abstracts, and then linked 
them to standard MedDRA codes for further 
analysis. Various techniques have been devel-
oped to automate knowledge extraction for 
 providing appropriate information [97]. The 
MEDLINE database from the National Library 
of Medicine (NLM) is a leading source of scien-
tific information. Extracting articles related to 
ADRs from MEDLINE using a medical subject 
headings (MeSH) approach has been success-
fully applied in several projects [32,98,99]. Most 
success so far has been for signal refinement 
of  signals detected by other methods. As an 

example, one study [100] aimed to automate the 
search of publications concerning ADRs by 
defining the queries used to search MEDLINE 
and determining the required threshold for the 
number of extracted publications to confirm the 
drug–event association in the literature. The 
MeSH “descriptor records” and “supplementary 
concept records” thesaurus was used, utilizing 
the subheadings “chemically induced” and 
“adverse effects” with the “pharmacological 
action” knowledge. Employing a threshold of 
three or more extracted publications, the auto-
mated search method had a sensitivity of 90% 
and a specificity of 100% [100].

Longstanding Biomedical Computing 
Methods Emerging 
in Pharmacoepidemiology

Biomedical ontologies with logical classification 
hierarchies have emerged and played important 
roles in biomedical knowledge management 
and data integration, as compared to controlled 
vocabulary resources. Specifically, a biomedical 
ontology is a human‐ and computer‐interpreta-
ble set of terms and semantic relations that 
 represent all entities in a specific biomedical 
domain and how these terms relate to each 
other. A biomedical ontology is automatically 
computer interpretable, since the ontology is 
generated using a standard computer‐under-
standable language such as the Web Ontology 
Language (OWL; https://www.w3.org/OWL/) 
[101]. As an example, the Ontology of Adverse 
Events (OAE) is a recent biomedical ontology 
designed to represent without ambiguity vari-
ous AEs observed after medical interventions, 
including drug administration [102]. Compared 
to controlled vocabulary terminologies such as 
the Medical Dictionary for Regulatory Activities 
(MedDRA) and the WHO’s Adverse Reaction 
Terminology (WHO‐ART), OAE has many 
advantages, such as the inclusion of textual 
 definitions for terms and references, logical axi-
oms, and a clearly defined and widely accepted 
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hierarchical structure  [101,102]. Instead of 
defining an adverse event as shown in MedDRA 
and WHO‐ART, OAE defines an AE as a patho-
logic process that occurs after a medical inter-
vention and has an unintended outcome of a 
symptom, a sign, or a further pathologic process 
(e.g., acute infection). Such an OAE definition 
semantically links the AE with the medical 
intervention (e.g., drug administration), patient 
records, adverse health outcome, and temporal 
relation between the medical intervention 
and  health outcome [101]. Emerging studies 
[103–105] suggest that OAE may provide more 
robust hierarchical structure definitions than 
MedDRA in terms of AE classification.

Natural language processing (NLP) of 
unstructured data is a field of computer science, 
artificial intelligence, and computational lin-
guistics concerned with the interactions 
between computers and human (natural) lan-
guages, and, in particular, with programming 
computers to fruitfully process large sections of 
natural‐language text to extract information. It 
is emerging as a tool to leverage underutilized 
data sources that can improve pharmacovigi-
lance, including the objective of adverse drug 
event detection and assessment by automati-
cally extracting both the drugs and the potential 
adverse effects [106]. Research has also looked 
to uncover information stored in electronic 
medical record clinical narratives, from which 
summary information can be shared for 
research, but not the full narrative. Such an 
approach was, for example, used in a proof‐of‐
concept study to provide knowledge that acute 
liver disease (ALD) detection could be identi-
fied earlier when an NLP‐uncovered clinical 
narrative was combined with the structured 
information on ALD [107].

Chemical structure activity and wider sys-
tems biology thinking also hold potential. ADRs 
vary widely in mechanism, severity, and popula-
tions affected, making ADR prediction and 
identification important public health concerns. 
Systems pharmacology [108], an emerging 

interdisciplinary field combining network and 
chemical biology, provides important tools to 
uncover and understand ADRs and may mitigate 
some of the drawbacks of traditional data sys-
tems such as spontaneous reporting systems. In 
particular, network analysis allows researchers to 
integrate heterogeneous data sources and quan-
tify the interactions between biologic and chemi-
cal entities. Recent work in this area has combined 
chemical, biologic, and large‐scale observational 
health data to predict ADRs in both individual 
patients and global populations [108]. Drugs can 
act on multiple protein targets, some of which 
can be unrelated by traditional molecular met-
rics, and thousands of proteins have been impli-
cated in adverse side effects. Some ADRs are 
caused by modulation of a drug’s primary target, 
and others result from nonspecific interactions 
of multiple reactive metabolites. In many cases, 
however, ADRs are caused by unintended activ-
ity at off‐targets. Recent informatics methods 
have been tested to systematically evaluate – on a 
large scale  –  new targets to the ADRs of those 
drugs for which they are the primary or well‐
known off‐targets, creating a drug–target–ADR 
network [109]. Examples of attempts to include 
chemical structure and receptor activity relation-
ships in pharmacovigilance have been published 
[110–112]. In a recently published study [11], the 
authors investigated the mechanisms underlying 
the known association of antipsychotic drugs 
and pneumonia. First, hypothesized mechanisms 
underlying antipsychotic‐related pneumonia 
were identified through a systematic literature 
review; thereafter, by mining public repositories 
of drug targets and drug safety data these 
 mechanisms were confirmed, and other novel 
antipsychotic drug targets were identified though 
mapping biologic pathways that could link 
 antipsychotic drug targets and off‐targets to 
pneumonia. In general, innovative approaches 
for biologic substantiation of drug–AE associa-
tions may strengthen evidence on drug safety 
profiles and help to tailor pharmacologic thera-
pies to patient risk factors.
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 The Future

Signal detection is a critical component of 
 pharmacoepidemiology. Historically, there has 
been a near complete reliance on spontaneous 
reporting systems for signal detection [35]. 
While these systems have evolved, quantitative 
signal detection now plays an essential role in 
signal detection. One wonders if we are a reach-
ing a tipping point, where signal detection in 
other data streams will be an important routine 
complement to spontaneous reporting. If this 
occurs, how will spontaneous reporting evolve?

As part of postmarketing surveillance, regula-
tory agencies and other institutions have cre-
ated and maintain large collections of suspected 
ADR reports. However, confounding factors 
such as concomitant medications, patient 
demographics, patient medical histories, and 
reasons for prescribing a drug often are unchar-
acterized in spontaneous reporting systems. 
These omissions can limit the use of quantita-
tive signal detection methods, not to mention 
the lack of a denominator to allow routine 
accurate estimation of reporting rates [113]. 
Improving mechanisms to detect ADRs is a key 
element in strengthening postmarketing drug 
safety surveillance. Most signal detection relies 
on a single information source; methods based 
on jointly analyzing multiple information 
sources are an interesting line of research [15].

Indeed, in the future, in the same way as there 
will be potential consideration of new mobile 
data (mdata) and device data streams in pharma-
coepidemiology, more work will be needed to 
better consider how to conduct analyses and 
inferential implications of analyses across multi-
ple data streams. The dangers of getting wrong 
answers when pooling data across trials or data-
bases seem to be even greater when trying to 
 utilize data from social media with spontaneous 
reports. It would seem sensible to report them 
separately, rather than to treat them as a single 
source of data. When they are concordant, this 
strengthens the evidence for (but does not prove) 

a causal association. When they are discordant, 
this weakens the argument, and investigation of 
possible reasons for discordance, if evident, may 
provide additional insight. With these two 
streams (social media and spontaneous reports), 
concordance is likely to be greater between them 
in comparison to EHRs, as there is at least a 
 suspicion of a linkage between drug and AE.

The growth in approaches to developing and 
implementing common data models portends 
an increasing availability of high‐quality real‐
world clinical data in support of research. 
Building on these efforts will allow a future 
whereby significant portions of the world popu-
lation may be able to share their data for research.

Spontaneous reporting systems and clinical 
observations will remain essential for postmar-
keting drug safety evaluation and in particular 
signal detection, despite the known limitations. 
On the other hand, vast amounts of observa-
tional data, mostly healthcare databases as part 
of distributed networks, offer opportunities for 
better pharmacovigilance surveillance in the 
future. Use of distributed database networks for 
rapid drug safety signal substantiation has been 
consolidating thanks to the relevant contribu-
tion of Sentinel and other worldwide initiatives. 
In Europe, several initiatives through multiple 
database networks have been conducted with 
the aim of exploring drug safety issues, despite 
the substantial efforts that are required to 
integrate information coming from different 
European healthcare databases with different 
underlying healthcare systems, languages, cod-
ing systems, and types of collected information 
(Table 27.1). Use of this source to complement 
SRSs for signal detection concerning events 
which are unlikely to be reported is promising, 
while optimal methods which may minimize 
substantially the risk of spurious signal detection 
have not yet been developed. SRSs currently 
remain the best source for looking at all possible 
drug–AE combinations, and we do not yet see 
such a universal approach being implemented 
effectively using EHR or similar systems. Their 



Table 27.1 Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU‐ADR project.

Table Fields Aarhus ARS HSD IPCI PEDIANET PHARMO QRESEARCH UNIMIB

HOSP Main 
diagnosis

ICD10 ICD9CM IC09CM ICD9C
M

Secondary 
diagnosis

ICD10 ICD9CM ICD9CM ICD9C
M

Procedures ICD10 ICD9CM ICD9CM ICD9C
M

DEATH Cause of 
death

ICD10 ICD9CM

GP Ddiagnosis ICD9CM and 
free text

ICPC and free 
text NL

IC09CM and 
free text ITA

READ

Specialist Free text ITA Free text NL Free text ITA
Lab Free text ITA READ

LAB Classification NPU WCIA WCIA
Result NPU Numbers Numbers

Table information: DEATH, registry of death and causes of death; GP, information recorded by general practitioners during their clinical practice; HOSP, 
discharge summary from hospitalizations recorded by hospitals; LAB, information obtained from laboratories.
ARS, Tuscany Regional Database (Agenzia Regionale di Sanità); HSD, Health Search Database; ICD10, International Classification of Diseases, 10th edition; 
ICD9CM, International Classification of Diseases, 9th edition, with clinical modification; ICPC, International Classification of Primary Care; IPCI, Integrated 
Primary Information Database; ITA, Italy; Lab, Laboratory; NL, The Netherlands; NPU, nomenclature, properties and units; WCIA, Werkgroep Coördinatie 
Informatisering en Automatisering reference model for GP information systems; UNIMIB, Universita’ di Milano Bicocca.
Source: Avillach P, Coloma PM, Gini R, et al. Harmonization process for the identification of medical events in eight European healthcare databases: the 
experience from the EU‐ADR project. J Am Med Inform Assoc 2013; 20(1): 184–92. Reproduced by permission of Oxford University Press.
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role is going to be in the second and subsequent 
stages of evaluation of signals, or in looking at a 
range of possible signals in a limited area.

In general, we need to consider healthcare 
databases for providing postmarketing evidence 
in situations where the RCT‐premarketing 
 evidence is limited. Such is the case for high‐
cost, innovative medicines with fast‐track 
approval due to a lack of alternative, orphan 
drugs, or drugs in pediatrics and pregnancy. For 
example, a healthcare database may provide a 
substantial contribution in the context of 
emerging signal detection issues related to bio-
similars and biologic reference products, which 
are expected to be an increasingly discussed 
topic due to a growing number of biosimilars 
being marketed worldwide [114].

We live in an increasingly connected world 
where there is more data accumulated that may 
have direct or indirect impacts on pharmacoepi-
demiology. Informatics approaches to help us 
access, structure, and link data sources to 
enhance pharmacoepidemiology strategies will 
become ever more important. There is clearly 
more work to do in the future that might help in 

the next generation of new, robust pharmacoepi-
demiologic strategies. Near real‐time clinical 
help systems allowing interactive healthcare 
patient support through trusted third parties 
would be valuable for enriched data collection, 
assuming privacy and trust concerns can be 
appropriately addressed. Furthermore, it will be 
important and interesting to increasingly exam-
ine how to leverage such data for pharmacoepi-
demiology and support their development. More 
signal substantiation using informatics across 
other datasets will also be important to examine. 
Ensuring appropriate, robust generation of evi-
dence and its communication (including explicit 
communication assumptions and anticipated 
uncertainty) through transparent approaches 
will be critical as more and more evidence gen-
eration occurs increasingly rapidly. To conclude, 
we anticipate great advances  internationally 
in  the use of data‐mining and informatics 
approaches to inform pharmacoepidemiology, 
which will act as a complement and serve only to 
enforce the vital role of more traditional phar-
macoepidemiologic approaches in ensuring the 
safe and appropriate use of medicines.
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Although pharmaceutical drug abuse is not a 
new phenomenon, there has been an explosion 
of interest and research in this area in recent 
years, largely due to the unprecedented crisis of 
opioid abuse, addiction, and overdose in the US 
[1], and to a lesser extent in other developed 
countries. Beginning in the 1990s, a dramatic 
rise in prescription opioid overdoses paralleled 
increases in the prescribing of these drugs in the 
US, particularly for chronic noncancer pain [2]. 
The urgency around the opioid epidemic has 
generated a need to identify and understand 
emerging trends, identify populations and 
 geographic areas at greatest risk, develop evi-
dence‐based interventions, and evaluate the 
impact of those interventions. There is a need to 
understand not only the scope and patterns of 
the problem at the population level, but also 
individual‐level risk factors and the role of phar-
maceutical products in substance use disorders 
and drug overdoses.

From a regulatory standpoint, there is a need 
to understand misuse, abuse, and related 
risks  associated with specific pharmaceutical 
products. Related adverse clinical outcomes  – 
including addiction, overdose, and death – may 
involve not only the pharmaceutical drug of 
interest, but also other drugs, including illicit 

street drugs and counterfeit drugs. The US Food 
and Drug Administration (FDA) has identified 
five outcomes – misuse, abuse, addiction, over-
dose, and death  –  as issues necessitating both 
postmarketing safety studies and risk evaluation 
and mitigation strategies (REMS) for opioid 
analgesics. Although terminology and outcome 
definitions vary, the FDA has used the following 
definitions for “abuse” and “misuse”:

Abuse is defined as the intentional, non‐ 
therapeutic use of a drug product or sub-
stance, even once, to achieve a desirable 
psychological or physiological effect. Abuse 
is not the same as misuse, which refers to 
the  intentional therapeutic use of a drug 
product in an inappropriate way and specifi-
cally excludes the definition of abuse. [3]

In some other contexts, for example in the 
National Survey on Drug Use and Health [4], 
the terms “misuse” and “nonmedical use” are 
used more broadly to refer to any use of a drug 
other than as directed by a healthcare provider. 
Terminology around drug addiction also varies, 
and has evolved, particularly with the release of 
the Diagnostic and Statistical Manual of Mental 
Disorders, 5th edition (DSM‐V). The DSM‐V 
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contains revised diagnostic categories and crite-
ria for substance use disorders [5]. Currently 
approved opioid analgesic labeling describes 
“addiction” as:

A cluster of behavioral, cognitive, and physi-
ological phenomena that develop after 
repeated substance use and include: a strong 
desire to take the drug, difficulties in control-
ling its use, persisting in its use despite harm-
ful consequences, a higher priority given to 
drug use than to other activities and obliga-
tions, increased tolerance, and sometimes a 
physical withdrawal … Abuse and addiction 
are separate and distinct from physical 
dependence and tolerance. [6]

Pharmaceutical drug overdose may be broadly 
defined as the accidental or intentional use of a 
drug in an amount higher than is indicated; 
however, in practice, overdose is often used syn-
onymously with the constellation of adverse 
effects associated with supratherapeutic use for 
a particular drug class. These include, for exam-
ple, severe respiratory and central nervous 

 system (CNS) depression, and, in the case of 
opioid overdose, possibly death. For simplicity, 
throughout this chapter we will sometimes use 
the general term “abuse” to refer to abuse and 
these related outcomes.

Although many fundamental principles of 
pharmacoepidemiology apply to the study of 
pharmaceutical drug abuse, there are also unique 
challenges and approaches, which are outlined 
in this chapter. Some of these challenges arise 
due to the diversion of drugs with abuse poten-
tial from the intended patient to others, making 
complete exposure difficult to ascertain; these 
individuals are then also at risk for adverse out-
comes (Figure 28.1). Outcomes in this area can 
be difficult to measure, as they often relate to 
covert behaviors, lack clear definitions, and are 
not fully captured in traditional healthcare data 
systems. Therefore, a “mosaic” approach is fre-
quently employed, where multiple studies using 
a variety of data sources and methods are quali-
tatively synthesized to answer an abuse‐related 
research or regulatory question.

Finally, the landscape of controlled substance 
prescribing and substance abuse is ever‐changing, 
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Figure 28.1 Ascertaining exposure and outcomes in studies of pharmaceutical drug abuse. ED, emergency 
department; FAERS, Food and Drug Administration Adverse Event Reporting System; NDI, National Death Index.
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with myriad interventions being implemented at 
federal, state, and local levels, and with pharma-
ceutical and illicit drug abuse patterns intersect-
ing in complicated ways that are often difficult to 
fully characterize. Opioids represent the focus of 
much of the current research in this rapidly 
evolving field and are the focus of most of this 
chapter. Many of the methodologic questions 
around studying opioid abuse apply to other 
drugs with abuse potential as well. Prescription 
stimulants, anxiolytics, sedative/hypnotics, and 
other drugs with CNS activity have safety con-
cerns related to misuse, abuse, and addiction.

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

The types of clinical problems that need to be 
addressed by pharmacoepidemiologic research 
in this area can be grouped into three broad 
categories:

 ● Signal detection: to determine whether a drug is 
being abused in the community, and to under-
stand the associated clinical consequences.

 ● Descriptive quantitative assessment: to deter-
mine the scope, demographic and geographic 
patterns, and trends in use, abuse, and related 
morbidity and mortality for a drug, class, or 
drug combination, or to quantify the risk of 
abuse and related outcomes associated with a 
drug or class, among those dispensed the 
drug(s).

 ● Analytic studies: to determine the relative risk 
of abuse and related outcomes using analytic 
epidemiologic study designs with comparator 
groups; for example, to evaluate risk factors 
for abuse and related adverse outcomes, or 
the effectiveness of an intervention designed 
to reduce abuse.

One pharmacologic concept that may take on 
different connotations when studying drugs of 

abuse is that of type A and type B reactions. 
Type A reactions refer to adverse reactions that 
are the result of an exaggerated but otherwise 
usual pharmacologic effect of the drug. Type A 
reactions tend to be common, dose related, 
predictable, and historically considered to be 
less serious. Type B reactions refer to aberrant 
effects, which tend to be uncommon, not 
related to dose, unpredictable, and potentially 
more serious. For example, opioid‐associated 
respiratory depression could be categorized as 
a type A reaction, as it is a predictable dose‐
related effect that can be managed by reducing 
the opioid dose. However, in contrast to many 
type A reactions with other drugs, opioid‐ 
associated respiratory depression is frequently 
life threatening or fatal, and often occurs in 
association with abuse. The more idiosyncratic 
type B reactions can also arise in cases of abuse, 
for example due to the intravenous injection of 
excipients contained in a product formulation 
indicated only for oral use. Whereas detecting 
previously unknown type B reactions repre-
sents the major focus of many pharmacoepide-
miologic studies, type A reactions  –  such as 
opioid overdose – are a primary public health 
concern and a target of research for drugs with 
abuse potential.

Signal Detection

The abuse potential of a new drug product with 
CNS activity is evaluated prior to approval and 
market introduction based on established crite-
ria that determine scheduling per the Controlled 
Substance Act (CSA) [7,8]. However, premarket 
assessments cannot always accurately predict 
abuse in the community, where sociocultural 
and economic forces become manifest. Therefore, 
epidemiologic data are sometimes used to 
examine whether a drug is being abused in the 
postapproval setting, and to identify associated 
adverse clinical consequences. Abuse  signals 
can also help identify potential risk factors or 
high‐risk populations.
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Quantitative Descriptive Assessment

As in other areas of drug safety evaluation, quan-
titative assessment of an established signal may be 
needed. Such an assessment may seek to quantify 
the risk of abuse and related outcomes among 
those exposed to a drug, to better understand the 
progression from therapeutic use to addiction, or 
to conduct ongoing surveillance to understand 
the scope, patterns, and trends in abuse of a drug 
product in the population. Measuring and track-
ing drug‐involved mortality form one of the cen-
tral responsibilities of public health, particularly 
amid the national opioid crisis; however, the com-
plexity of attributing deaths to specific drugs and 
the variability in death certificate documentation 
present  significant challenges [9].

Some of the assumptions of classic pharma-
coepidemiologic studies may not be met when 
studying abuse and related adverse effects of 
pharmaceutical products, and modifications to 
study approaches and designs are often needed. 
For example, one of the basic principles of stud-
ying drug safety issues associated with prescrip-
tion drugs is that patients use the drugs 
prescribed to them, and that the date of a dis-
pensed medication approximates the start of 
the exposure period. However, in the case of 
drugs with abuse potential, the individual pre-
scribed the drug may give or sell it to others, and 
may use additional drugs obtained from sources 
other than their own prescribed medication 
(i.e., diversion). Therefore, adverse outcomes 
associated with exposure to a drug can occur in 
individuals other than those to whom the drugs 
were prescribed and dispensed. In addition, 
because drug abuse is generally a covert activity, 
abuse‐related outcomes may not come to medi-
cal attention, and can be difficult to measure 
using traditional pharmacoepidemiologic 
sources such as administrative insurance claims 
and electronic medical record data. Many 
 serious social, legal, psychiatric, and physical 
adverse effects can also occur and yet not be 
documented in medical records or claims.

Analytic Studies

Finally, there are questions that require analytic 
study designs, including comparator groups and 
formal hypothesis testing. Clinical and policy 
questions often arise regarding risk factors for 
adverse outcomes such as addiction and over-
dose. For example, risk factors may include 
patient characteristics or co‐morbidities, drug 
dose, or concomitant use of other drugs. Another 
common study question is whether specific 
interventions  –  for example, mandatory use of 
state prescription drug monitoring programs 
(PDMPs), prescribing guidelines, REMS (see 
Chapter 24), and opioid formulations with prop-
erties designed to deter abuse – are effective in 
mitigating abuse and related adverse outcomes. 
To answer these questions, studies may formally 
compare rates of abuse and related outcomes 
across drug products or classes,  geographic sub-
groups, or time periods. A wide variety of 
data – including data not routinely used in phar-
macoepidemiology – are used for these types of 
investigations; however, all have substantial limi-
tations and challenges, as discussed in the next 
section. The design and interpretation of ana-
lytic studies in this area require a thorough 
understanding of the strengths and limitations 
of the underlying data and methods, particularly 
when attempting to make causal inferences.

 Methodologic Problems to Be 
Solved by Pharmacoepidemiologic 
Research

Despite some overlap, the areas of inquiry 
described – signal detection, descriptive quan-
titative assessment, and epidemiologic studies 
involving comparator groups and formal 
hypothesis testing – generally require different 
types of data and methods. As the study ques-
tions become more quantitative and analytic, 
investigations require more systematic and 
 rigorous data collection and statistical methods. 
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Again, many of the methodologic problems 
encountered in this subject area are not unique, 
but some challenges are relatively specific to the 
study of pharmaceutical drug abuse and related 
safety outcomes. Both drug abuse patterns and 
the data systems available to study them vary 
widely across countries. This chapter will pri-
marily discuss US examples; however, the types 
of data and methods covered may be relevant 
for studies in other countries as well.

Data Sources

Signal Detection
Several data sources may be of value for identi-
fying and characterizing postmarket abuse 
 signals for pharmaceutical products. The FDA’s 
Adverse Event Reporting System (FAERS, 
see  Chapter  10) regularly receives reports 
describing abuse of approved drug products, 
intentional use via unintended routes of admin-
istration, manipulation of the product for the 
purposes of abuse, and adverse effects associ-
ated with these behaviors. Published case 
reports, case series, and media reports may also 
play a role in abuse signal detection for mar-
keted drugs. Spontaneous reporting data in this 
area share many limitations common to evalua-
tion of other safety signals. For example, reports 
do not always contain enough detail to properly 
evaluate an event as being abuse related, and 
many factors can influence whether an event 
will be reported. Because misuse and abuse are 
typically covert behaviors, adverse events asso-
ciated with these behaviors may be even less 
likely to be reported or brought to medical 
attention, exacerbating underascertainment of 
these events in spontaneous reporting systems. 
Medical toxicology case registries, such as the 
Toxicology Investigators Consortium (ToxIC) 
[10], may provide more detailed clinical infor-
mation and have value for abuse‐related signal 
detection as well.

An emerging source of abuse signal detection 
is internet‐based recreational drug use message 

boards, discussion forums, social media, and 
other web‐based portals, where individuals 
 discuss their experiences with abusing various 
pharmaceutical products and other drugs, often 
comparing preferred routes of abuse and meth-
ods for product tampering to increase availabil-
ity of the active pharmaceutical ingredient. 
Several proprietary web monitoring programs 
collect and analyze these types of data [11,12]. 
In another online data source, individuals anon-
ymously report prices they paid or heard were 
paid for various drugs [13]. Reports from law 
enforcement that a drug is being diverted or 
sold on the street may also serve as a signal that 
a drug is being abused [14]. Anecdotal reports 
from sentinel cohorts of known substance abus-
ers (e.g., those using syringe exchange services) 
may also be useful in elucidating emerging 
trends in pharmaceutical abuse. As with 
 traditional spontaneous reporting data, these 
data generally do not support quantitative esti-
mation of abuse or comparison of abuse liability 
across products or time periods.

Quantitative Descriptive Assessment 
and Analytic Studies
Quantitative assessments of abuse‐related risk, 
and the scope, pattern, and trends in abuse‐
related adverse outcomes, require more robust 
data collection systems, ideally using validated 
measures and probability sampling methods. 
Hypothesis testing studies use many of the same 
data sources, but require even greater attention 
to data limitations, potential bias, and measured 
and unmeasured confounding to facilitate 
causal inferences. Some of the data described in 
the previous section may provide contextual 
or  supporting information for these types of 
investigations.

Nationally representative surveys, for example 
the National Survey on Drug Use and Health 
(NSDUH) [4] and Monitoring the Future (MTF) 
[15], can play an important role in both descrip-
tive and analytic (i.e., hypothesis‐testing) studies. 
NSDUH captures information on self‐reported 
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drug‐taking behaviors, including the nonmedical 
use of pharmaceuticals, in the general US popu-
lation, while MTF focuses on drug‐taking behav-
iors in secondary school students and young 
adults. National surveys are valuable for studying 
broad trends in the misuse of pharmaceutical 
products with known abuse potential; however, 
the lack of product‐ and formulation‐specific 
information presents a substantial limitation in 
the utility of these data for estimating the misuse 
and abuse of specific drug products. Smaller sur-
veys may target specific populations and drug 
classes – for example, surveys of college students 
to study misuse and abuse of stimulant drugs 
used to treat attention deficit disorder [16] – but 
the generalizability of these findings is limited. 
An emerging approach to substance abuse 
research is the use of “opt‐in” internet survey 
panels, where a survey administration company 
recruits individuals to join an online panel from 
which participants may opt to complete various 
surveys. Internet panel surveys have cost advan-
tages over traditional in‐person, school‐based, 
and telephone‐based surveys, and they can be 
more easily tailored to examine specific products 
or questions [17,18]. However, these surveys do 
not use probability sampling techniques, and fur-
ther work is needed to understand the underly-
ing population represented, the selection forces 
operating, and how these might be changing over 
time given the rapid evolution of internet and 
social media use. Another method is to recruit 
enriched populations through web‐based drug 
abuse discussion forums, by inviting visitors to 
these websites to complete online surveys explor-
ing specific drug abuse‐related questions. The 
relative ease of modifying these internet‐based 
questionnaires is an obvious advantage, but rig-
orous questionnaire development and validation 
are still needed to ensure high‐quality data.

Several existing surveillance systems collect 
information from individuals being assessed for, 
or who are entering, substance use disorder 
treatment. One of these is the Treatment Episode 
Data Set (TEDS). TEDS is an admission‐based 

system that collects and aggregates information 
on demographic and substance use disorder 
characteristics among those admitted to sub-
stance use disorder treatment facilities that 
report to state administrative data systems [19]. 
Similar to national surveys of the general popu-
lation, however, product‐ and formulation‐ 
specific information is generally not available. 
Several proprietary surveillance programs in the 
US collect more detailed data from people enter-
ing or being assessed for treatment, including 
self‐reported recent abuse of specific pharma-
ceutical products and illicit drugs [20,21]. The 
primary strengths of these proprietary surveil-
lance programs are their comprehensiveness 
with respect to specific products and behaviors, 
including route of abuse. The enriched nature of 
these study populations also improves the preci-
sion of abuse estimates for products with lower 
utilization. However, all of these data systems 
are limited, in that participant selection and out-
come ascertainment depend on an individual 
seeking or being referred to treatment, and 
numerous factors (e.g., judicial referral policies 
and availability of and funding for treatment) 
affect the probability that an individual who is 
abusing is included in the sample. Furthermore, 
the nonrepresentative and dynamic nature of 
these samples can bias between‐drug compari-
sons, and changes in the distribution of partici-
pating assessment and treatment sites over time 
can bias time‐dependent analyses, such as pre–
post comparisons and trends, as sites drop in 
and out of the surveillance networks [22,23]. 
Finally, all surveys are subject to the misclassifi-
cation inherent to self‐reported data, particu-
larly with respect to respondents’ ability to 
correctly identify specific products and formula-
tions that they have abused. The extent of such 
misclassification and the degree to which it may 
be differential – for example, depending on how 
long a product has been on the market or the 
manner or order in which it is presented in a 
 survey  –  are largely unknown and represent 
important areas for further research.
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Call data from poison control centers (PCCs) 
and data extracted from emergency department 
(ED) visit records can play a role in understand-
ing the scope, trends, and patterns of pharma-
ceutical drug abuse and related adverse 
outcomes, and these data are often used in com-
parative analytic evaluations as well. PCC data 
include reports of drug and other substance 
exposures and consequent adverse effects, based 
on calls from exposed individuals or someone 
caring for them, including health professionals 
[24]. PCC data have several strengths for study-
ing the abuse of pharmaceutical products, 
including the capture of meaningful abuse‐
related outcomes, recording of drug exposure at 
the most detailed level possible based on the 
information provided, national or near‐national 
geographic  coverage, and ability to analyze in 
near real time. An important limitation of these 
data is that an unknown proportion of abuse‐
related events result in a call to a PCC, and it is 
unclear which factors might influence whether a 
call is made. Furthermore, these factors might 
vary over time or across drugs, making interpre-
tation of direct drug–drug comparisons and 
time trends difficult. In addition, the ability to 
distinguish specific product brands and formu-
lations (e.g., immediate versus extended release) 
is limited. Finally, out‐of‐hospital deaths are 
unlikely to be captured in PCC data, a critical 
limitation for potent opioids and other drugs 
with the potential for rapidly fatal overdose. 
Some research suggests that trends in the num-
ber of opioid‐related deaths in PCC data corre-
late with trends in national mortality data [25,26], 
but more work is needed in this area to better 
understand the fraction of poisoning and over-
dose deaths likely to be captured in PCC data, 
and whether this varies across drugs or drug 
classes, with other case characteristics, or over 
calendar time.

As with PCC call data, data captured in ED 
visit records provide information not only about 
abuse behaviors, but also about morbidity and 
burden to the healthcare system. Again, the 

completeness and accuracy of these data depend 
on the completeness and accuracy of the 
 medical records themselves. Currently available 
national ED surveillance systems are limited in 
the US. Data collection ended in 2011 for the 
Drug Abuse Warning Network (DAWN), in 
which data on drug‐involved ED visits were 
manually abstracted from a probability sample 
of hospitals [27]. The National Electronic Injury 
Surveillance System: Cooperative Adverse Drug 
Events Surveillance System (NEISS‐CADES) 
surveillance network, operated by the Centers 
for Disease Control and Prevention in collabo-
ration with the Consumer Product Safety 
Commission, uses similar methods to capture 
ED cases and generate national estimates for ED 
visits related to adverse drug events. In 2016, 
NEISS‐CADES began including cases related to 
drug abuse, withdrawal, or attempted self‐harm. 
The Nationwide Emergency Department Sample 
(NEDS) is a surveillance system managed by the 
Agency for Healthcare Research and Quality 
(AHRQ) [28]. NEDS can be used to generate 
national estimates of hospital‐based ED visits 
based on ICD‐9‐CM and ICD-10-CM diagnosis 
and external cause‐of‐injury codes; however, 
information on the involvement of specific drug 
products is generally not available, and drug 
molecule/class involvement information is lim-
ited by the International Classification of 
Diseases (ICD) coding system.

Electronic health records and administrative 
claims data have been used to assess the 
 prevalence of misuse and abuse  –  or aberrant 
behaviors suggestive of misuse or abuse – among 
patients using opioids [29]. Various efforts have 
been made to create algorithms identifying 
 opioid misuse and abuse using electronic 
healthcare data; however, both conceptual and 
operational outcome definitions vary widely 
[30], and the lack of a true gold standard com-
plicates the evaluation of algorithm perfor-
mance [31]. Administrative insurance claims 
may include diagnosis codes and treatment 
claims for substance use disorder (SUD); 
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 however, identifying these outcomes in claims 
requires (i) a patient’s interaction with the 
 medical system; (ii) a practitioner’s recognition 
and documentation; and (iii) submission of a 
claim for insurance reimbursement. One or more 
of these requirements is likely lacking in a high 
proportion of substance use disorder cases. Drug 
overdose may be ascertained in claims if medical 
treatment is sought; however, algorithms need to 
be sufficiently validated in the data source being 
used, particularly if they are being used in formal 
hypothesis‐testing studies. Also, due to the high 
potential for out‐of‐hospital death, data must 
include or be linked to a reliable source of mor-
tality data, such as the National Death Index 
(NDI) [32]. Despite their limitations, if linked to 
death data claims data may be useful in evaluat-
ing patient‐ and drug‐related risk factors for 
overdose, for example demographic characteris-
tics, co‐morbidities, and concomitant use of 
other drugs. However, socioeconomic, psycho-
logical, and legal factors may play particularly 
strong roles as confounders of associations 
between drug exposure and abuse‐related 
adverse outcomes, factors not typically captured 
well in claims data. Claims‐based studies are fur-
ther limited in this area, since pharmaceutical 
drug abuse and associated adverse outcomes 
often occur in those who obtain the drugs from a 
source (e.g., friend, family member, dealer) other 
than their own prescription, and, as is the case 
with other pharmaceuticals, self‐paid dispens-
ings and over‐the‐counter (OTC) products are 
generally not captured.

Vital statistics systems provide information on 
drug‐involved mortality, including deaths that 
involve pharmaceutical products. These are pri-
marily employed in descriptive analyses, but are 
sometimes used to evaluate interventions [33] or 
compare overdose risk across drugs [34]. In the 
US, the National Vital Statistics System (NVSS) 
Multiple Cause of Death data files contain 
national mortality and population data based on 
death certificates for US residents. Each death 
certificate contains a single underlying cause of 

death, up to 20 multiple causes, and demo-
graphic data. These data have several important 
limitations. First, involved drugs are grouped 
into broader categories based on the ICD‐10 
Injury Mortality Diagnosis Matrix [35]. Second, 
documentation of specific drugs on death cer-
tificates is entirely dependent on the certifier 
(e.g., medical examiner or coroner), and death 
investigation practices and documentation of 
involved drugs vary widely based on resources, 
training, location, workload, and other factors. A 
newly available mortality data resource is the 
Drug‐Induced Mortality database, which links 
NVSS files to literal text information from death 
certificates to identify mentions of specific drugs 
[36], allowing for a more granular analysis of 
specific drugs involved in deaths, if they are 
noted [37]. Finally, medical examiner and coro-
ner records, in comparison with death certifi-
cates, may be more timely and contain more 
detail on drug overdose deaths. These data are 
sometimes made available to researchers 
through agreements with individual state health 
departments, and efforts are underway to make 
these data more available nationally [38].

Data gathered from law enforcement and 
other agencies on drug diversion cases can be 
used to identify pharmaceutical products found 
outside of controlled distribution channels [14], 
and databases containing information on chem-
ical analyses of drugs seized by law enforcement 
are another source for monitoring drug traffick-
ing [39]. Diversion information is important for 
monitoring emerging trends to guide policy, 
public health, and enforcement activities. It can 
also provide context and aid in interpreting 
results of other studies in this area. However, 
drug diversion data are not direct measures of 
abuse or related clinical outcomes, but rather 
measures of law enforcement activity. It is 
unclear how funding or local law enforcement 
priorities may influence the number of identi-
fied drug diversion cases, the drugs on which 
investigators focus their efforts, and how these 
factors may vary over time.
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Drug utilization data – from state PDMPs and 
other retail dispensing and administrative claims 
databases  –  are widely available and often 
 analyzed to understand controlled substance 
prescribing and use patterns, including use in 
different age groups and geographic regions, 
changes over time, and concomitant use of 
 multiple classes of controlled substances (e.g., 
opioids and benzodiazepines). These data are 
sometimes employed, either with or without 
linkage to additional data, to try to identify mis-
use, abuse, or diversion by identifying dispens-
ing patterns suggestive of “doctor/pharmacy 
shopping,” discussed further in the analytic 
methods section. While these analyses may 
identify some patients at elevated risk of misuse, 
abuse, addiction, and/or diversion, their ability 
to discriminate therapeutic from nontherapeu-
tic use is a subject of ongoing research. Therefore, 
while “doctor/pharmacy shopping” data may 
have some value, they should not be interpreted 
as a proxy outcome measure for abuse.

Analytic Methods

Signal Detection
Methods for abuse signal detection are similar 
to those used to examine other safety signals, 
with the case series being the predominant 
study design. Quantitative approaches, such 
as  Bayesian data‐mining algorithms and dis-
proportionate reporting rate analyses (see 
Chapter 27), can also be used for abuse‐related 
adverse events in spontaneous adverse event 
reporting systems. These types of analyses have 
recently been conducted for gabapentinoid 
abuse in European data systems [40–42]. 
Calculating more traditional reporting rates for 
an abuse‐related adverse event – using a popu-
lation‐based utilization estimate as the denomi-
nator  –  is also possible, but relies heavily on 
untestable assumptions.

Web monitoring programs typically employ a 
mixed quantitative and qualitative approach to 
studying the abuse of specific products, for 

example categorizing and quantifying discus-
sion forum postings as positive, negative, or 
neutral experiences, or identifying posts that 
discuss recipes for tampering with a product for 
abuse purposes [43,44]. These types of analyses 
can be valuable for signal detection and generat-
ing hypotheses for formal studies, but they have 
limited utility for quantifying abuse or making 
comparisons across drugs or time periods. The 
use of websites is constantly evolving and the 
quality of information is highly variable.

Quantitative Descriptive Assessment
Quantitative assessment requires careful con-
sideration of sample representativeness and 
appropriate denominators. Data from PCCs, 
ED records, surveys, vital statistics mortality 
databases, and other types of population data 
are generally normalized using one or more 
 different denominators, depending on the 
study question. The first type of denominator is 
derived from the total study population (e.g., 
the number surveyed within a given time 
period) or the population of the study coverage 
area (e.g., a population covered by participating 
PCCs or treatment program sites). Estimates 
using population‐based denominators are use-
ful for understanding the scope and public 
health burden of abuse for different drugs in a 
population. The large, nationally representative 
surveys use survey weights to generate national 
prevalence estimates. Therefore, repeat cross‐
sectional estimates can be employed to conduct 
ecologic time‐series assessments, often employ-
ing trend analysis methods such as time‐series 
regression analysis or Joinpoint regression [45]. 
Surveys using convenience samples generally 
cannot be utilized to generate national abuse 
prevalence estimates, and they present chal-
lenges in evaluating trends over time due to 
nonrandom changes in the study population 
distribution.

Like other safety outcomes, the frequency of 
abuse and related outcomes depends in part on 
the extent to which a drug is prescribed. 
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Therefore, the second type of denominator 
incorporates some measure of drug utilization 
to account for dissimilar or changing levels of 
prescribed availability. The measure of pre-
scribed availability used (e.g., unique recipients 
of drug, prescriptions dispensed, tablets dis-
pensed, total morphine milligram equivalents 
dispensed) can dramatically affect the relative 
magnitude of the abuse estimates for different 
drugs [46,47]. Again, the most appropriate met-
ric depends on the question being asked. For 
example, when comparing abuse rates for drugs 
with widely varying numbers of tablets per 
 prescription (e.g., immediate‐release opioids), 
the total number of tablets dispensed may be 
the best denominator, as each tablet can be 
viewed as an opportunity for diversion and 
abuse. One might also wish to examine differen-
tial abuse rates of different opioid active moie-
ties (e.g.,  hydrocodone, oxycodone, tramadol), 
accounting for the different analgesic potencies 
and dosage strengths available. In this case, the 
most useful denominator might be total mor-
phine milligram equivalents dispensed. As 
with population denominators, the appropriate 
 coverage area for utilization denominators can 
be difficult to define in studies using nonrepre-
sentative convenience samples.

Finally, using some subset of the study popu-
lation as the denominator can also generate 
meaningful measures of abuse behaviors. For 
example, the number of individuals surveyed 
who report any use of a drug (therapeutic or 
nontherapeutic) may serve as a denominator, 
allowing estimation of the proportion of those 
who have used a particular drug who also have 
abused it in a given time period. Or, one might 
estimate the proportion of individuals abusing a 
particular drug who report doing so through 
specific routes such as chewing, snorting, or 
injecting. This type of analysis is sometimes 
referred to as a drug’s “route‐of‐abuse profile.”

Cohort studies can provide valuable descrip-
tive data as well, for example linking electronic 
healthcare data to death certificate data in a 

 retrospective cohort design to study rates of 
fatal and nonfatal overdose among patients 
receiving chronic opioid therapy [48]. Event 
rates associated with exposure time can be 
 calculated for the overall cohort and in patient 
subgroups. Defining exposure periods can be 
challenging due to the poorly understood 
assumptions regarding the amount of dispensed 
opioid, the intended and recorded days’ supply, 
and actual patient use. As in other pharmacoep-
idemiologic studies, these analyses are ideally 
conducted in incident user cohorts. If available, 
validated codes or code‐based claims algo-
rithms should be used (e.g., for overdose), with 
portability assessment in the database being 
used for the study, and linkage to a source of 
data that captures out‐of‐hospital overdose 
deaths. Otherwise, validation should be con-
ducted using medical records, although the lack 
of a true gold standard for some abuse‐related 
outcomes can complicate these efforts. When 
evaluating trends over time, the effect of the 
transition from ICD‐9 to ICD‐10 must also be 
carefully considered [49]. Prospective cohort 
studies using a mix of administrative claims and 
in‐person assessments are also possible, where 
dispensing claims data can be used to identify 
eligible patients. In these mixed‐methods stud-
ies, baseline and follow‐up evaluations of mis-
use, abuse, and addiction can be conducted 
using validated self‐ or clinician‐administered 
instruments [50]. A limitation of these studies is 
that they are designed to evaluate the risk of, 
and risk factors for, abuse‐related adverse out-
comes among persons dispensed these drugs, 
and not in those who obtain the drugs from 
another source.

As noted in the previous section, drug utiliza-
tion data alone are sometimes used to try to 
understand and compare abuse of prescription 
drugs in the postmarket setting. When concur-
rent use of two or more drug classes raises con-
cerns about increased risks of abuse, addiction, 
or overdose (e.g., opioid analgesic combined 
with benzodiazepines), concomitancy analyses 
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can be conducted in drug utilization databases 
to understand the extent and characteristics of 
this potentially problematic concomitant use. 
“Doctor/pharmacy shopping” analyses typically 
use a large retail dispensing database or PDMP 
to create classification schemes that incorporate 
the number of different prescribers and pharma-
cies identified in overlapping or nonoverlapping 
controlled substance prescription dispensings 
[51,52]. However, these metrics have not been 
validated sufficiently to determine how well they 
distinguish between abuse‐related behaviors 
and other drivers for these dispensing patterns 
that are unrelated to abuse. Research is ongoing 
to better understand these  “doctor/pharmacy 
shopping” measures and the degree to which 
they might be useful in discriminating between 
therapeutic use and abuse‐ or addiction‐related 
behavior [53]. Although these types of analyses 
can be useful descriptive and hypothesis‐gener-
ating exercises, drug utilization analyses with-
out linked outcome data are generally not 
appropriate for the formal assessment of abuse, 
as many factors unrelated to abuse may contrib-
ute to aberrant‐looking drug prescribing or 
 dispensing patterns.

Analytic Studies
More complex pharmacoepidemiologic meth-
ods are generally necessary when the objective 
of a study is to formally assess risk factors for 
abuse‐related outcomes [54], or to compare 
abuse risk across products or time periods, for 
example to understand the effect of an interven-
tion designed to reduce the risk of abuse and 
related adverse outcomes. As risk is a longitudi-
nal concept, cohort studies are, in theory, ideally 
suited to answering these types of questions. 
For relatively rarer outcomes, such as fatal over-
dose, case–control designs may have some util-
ity as well. Prospective cohort studies may 
improve ascertainment of behavioral outcomes, 
such as misuse and abuse, that are not captured 
well in claims or other electronic healthcare 
data. However, these may often be infeasible 

due to the challenges in recruiting and retaining 
appropriate study populations and the long 
 follow‐up that may be necessary to observe out-
comes such as addiction. Designing longitudinal 
studies is complicated by the aforementioned 
challenges related to both exposure and out-
come ascertainment. In addition, confounders 
and effect modifiers of the drug exposure–
abuse–overdose causal pathway for opioids and 
other drugs have not been fully characterized, 
and are topics in need of empiric research. 
Selection of comparators and use of statistical 
applications such as propensity score matching, 
as well as inverse probability of treatment 
weighting, are all topics for further methodo-
logic work in this area. The use of historical 
time periods as comparison groups (e.g., com-
paring the risk of overdose associated with a 
product before and after an intervention) is 
complicated by the evolving landscape of 
abuse  trends in general, as well as insurance 
access and inclusion of higher‐ and lower‐risk 
individuals.

When cohort studies are not feasible or war-
ranted for a given study question, other study 
designs and types of data (e.g., from PCCs, ED 
records, and surveys) are often employed for 
comparative evaluation of the risk of abuse and 
related outcomes across multiple products. The 
limitations of each of these types of data must 
be carefully considered in the design, analysis, 
and interpretation of studies. Sensitivity analy-
ses are often necessary to explore the potential 
effect of untestable assumptions, particularly 
around missing data, differential and nondiffer-
ential misclassification, and sampling bias, par-
ticularly in nonprobability samples. When 
appropriate for the question being posed, the 
prescribed availability of the drugs under study 
(e.g., prescriptions or tablets dispensed) may be 
accounted for either as an offset or as a predic-
tor variable in statistical models. Evaluation of 
new market entrants and drugs with persis-
tently small prescription volume is particularly 
challenging, due to low levels of population 
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exposure and small event counts in most abuse 
surveillance systems [55].

When evaluating interventions, isolating 
the effect of a specific intervention from the 
effects of other interventions and secular trends – 
confounders by calendar time – is a particularly 
challenging endeavor, especially in the case of 
opioid analgesics, and it is important to consider 
other factors that can affect prescribing and 
abuse trends. Examples include changes in 
 formularies and insurance coverage policies, 
 provider education initiatives and practice 
guidelines, increasing use of PDMPs, law 
enforcement operations to reduce inappropriate 
prescribing and dispensing (e.g., “pill mill” crack-
downs), and the availability and cost of alterna-
tive drugs of abuse, including illicit drugs. In 
some instances, comparator products expected 
to be similarly affected by these external forces 
are used to control for the effects of these con-
founders; however, additional strategies may 
sometimes be warranted, for example adjusting 
for geographic differences in the implementa-
tion of important concurrent interventions. In 
most cases, one or more comparators are 
selected to approximate the counterfactual [56], 
using them to approximate the expected abuse 
trends and patterns in the absence of an inter-
vention (e.g., formulation of an opioid product 
with abuse‐deterrent properties).

When studying changes in outcomes before 
and after a reformulation of a drug or other 
intervention using a pre–post design, compara-
tors are often incorporated into models using a 
drug‐by‐time interaction to conduct difference‐
in‐difference analyses. One approach is to 
 compare the mean rate or prevalence of abuse 
between a specified pre‐period and post‐period, 
and then to compare the magnitude of any 
observed change to that of a comparator; how-
ever, these analyses do not fully take into con-
sideration preexisting secular trends, either for 
the drug of interest or for the comparator. 
Particularly in situations where baseline use 
and  abuse rates are not stable, interrupted  

time‐series analyses (e.g., segmented or piece-
wise linear regression) can be used. The latter 
approach is generally preferable, but is not 
 feasible without an adequate sample size and a 
sufficient number of data points in each time 
period. These analyses also have their own set of 
assumptions, for example about linearity and 
the lack of concurrent interventions. Multiple 
comparators are often used because no single 
comparator is ideal, given inherent differences 
in baseline characteristics such as abuse rates 
and patterns. The use of multiple comparators 
complicates hypothesis testing and overall 
interpretation of findings, however. Composite 
comparators (multiple drugs grouped together) 
are sometimes used, but these may include 
drugs that vary widely in market share and utili-
zation and abuse trends, further complicating 
interpretation. In some instances, it may be use-
ful to include both “positive” and “negative” 
controls; for example, a drug known to have a 
high risk of abuse or expected to be greatly 
affected by an intervention, and another with no 
or low abuse potential or not expected to be 
affected by an intervention.

Interpretation

The interpretation of abuse‐related findings 
depends on the study question, the source of 
data, and the methods used to analyze them. 
A review of spontaneous or anecdotal reports of 
abuse or abuse‐related adverse outcomes may 
be adequate to establish a safety signal, but 
would not be an appropriate basis for quantify-
ing differential risk between one product and 
another. Descriptive analyses of population 
data  –  for example from national surveys, ED 
visit data, or death certificates – are important 
for guiding public health and law enforcement 
policy, resource allocation, drug regulation, and 
design of interventions. Understanding the data 
and their limitations is critical to proper inter-
pretation of study findings, for instance  avoiding 
conflation of utilization and abuse trends, and 
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accounting for jurisdictional variation in the 
documentation of specific drugs in fatal drug 
overdoses [57].

When interpreting the results of hypothesis‐
testing studies, the goal is generally causal infer-
ence, determining, for example, the causal role 
of opioid analgesic dose in overdose risk, or the 
effect of an abuse‐deterrent formulation on 
the  likelihood of a drug being insufflated or 
injected. Often, a mosaic of different types of 
data and study populations must be qualita-
tively synthesized to make a causal inference. 
Fundamental epidemiologic principles such as 
the Bradford Hill causality criteria [58] can be 
helpful in this endeavor. Particularly important 
elements in this area are temporality, strength of 
association, consistency of findings across 
 multiple populations and study designs, coher-
ence with experimental data, specificity of 
effect, and consideration of alternative explana-
tions. Ultimately, the interpretation may be a 
largely qualitative determination, or include a 
range of possible effect estimates that take into 
consideration both random and systematic 
errors and effect modifiers.

Finally, the unit of analysis and the potential 
for ecological fallacy must be considered. In par-
ticular, one must exercise great caution when 
drawing inferences about individual‐level risk 
from ecologic analyses. For example, a study 
may show a decline in the prevalence of nonoral 
abuse of a product within a given population 
after that product was reformulated with prop-
erties designed to deter intranasal and injection 
abuse. Although a change in the prevalence of a 
specific drug’s abuse by more dangerous routes 
in the community may be an important finding, 
one cannot directly infer that individuals 
exposed to the drug have a reduced risk of 
 abusing the drug through these routes. Similarly, 
correlations in trends for different drug 
classes – for example, prescription opioid over-
dose deaths plateauing as heroin death rates rise 
[59–61] – are important for generating hypoth-
eses, but do  not provide direct evidence of 

 individuals transitioning from one drug to 
another. Addressing this issue directly would 
require a longitudinal study analyzed at the 
individual level.

 Currently Available Solutions

Despite their many challenges, pharmacoepide-
miologic investigations and advances in meth-
odology have contributed to answering many 
important clinical, public health, and regulatory 
questions involving pharmaceutical drug abuse 
and related adverse outcomes. Some examples 
include the three major types of questions 
addressed by research in this area.

Signal Detection

Pharmacoepidemiologic data have been used to 
determine whether a currently marketed drug is 
being abused in the community, and to identify 
important clinical adverse consequences of this 
behavior. A recent example was the regulatory 
action involving the OTC antidiarrheal drug 
loperamide. Loperamide is a peripherally acting 
opioid agonist that does not have significant 
CNS effects when used at recommended doses, 
and has been available without a prescription in 
the US for about 30 years. However, FAERS 
reports and multiple published case reports 
began to emerge in recent years, identifying 
serious cardiac arrhythmias associated with 
loperamide ingestion at many times the maxi-
mum recommended dose, typically among 
individuals attempting to self‐treat opioid 
withdrawal symptoms or attain a euphoric 
effect [62]. These reports were accompanied by 
a published analysis of an internet discussion 
forum describing misuse and abuse of high 
doses of loperamide, as well as the reasons and 
subjective experiences that individuals reported 
[63]. This analysis noted a recent sharp increase 
in internet postings related to the misuse 
and abuse of loperamide, as well as mentions of 
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concomitant use of other medications in an 
attempt to facilitate the CNS penetration. 
Finally, rates of loperamide intentional exposure 
calls to PCCs in the US also increased mark-
edly  [64]. Based on this body of evidence, in 
June  2016 the FDA issued a Drug Safety 
Communication warning that taking higher 
than recommended doses of loperamide in the 
context of abuse or misuse of the product, or 
otherwise, can cause serious cardiac problems 
that can lead to death. In addition, the FDA 
required labeling changes for loperamide 
 products to alert healthcare providers and 
 consumers to these risks [65].

Descriptive Quantitative Assessment

Descriptive analyses of population data on 
drug misuse, abuse, addiction, and overdose 
are widely used for public health surveillance 
[2]. They are also used to inform decisions on 
drug scheduling and other regulations intended 
to minimize these risks. In October 2014, 
based on the FDA’s review of the available epi-
demiologic and other scientific data, the 
Drug  Enforcement Administration resched-
uled hydrocodone  combination products from 
Schedule III to the more restrictive Schedule II 
of the CSA. The FDA’s review of the available 
epidemiologic data included analyses of ED 
visit data from the now defunct DAWN sys-
tem, survey data from NSDUH and MTF, and 
selected state medical examiner data on drug‐
involved mortality. The review found that, 
after adjustment for prescription volume, the 
abuse prevalence of hydrocodone combination 
products appeared to be lower than that of 
Schedule II comparator products. However, 
both use and abuse were found to be wide-
spread, and, from a public health standpoint, 
the products were determined to pose a sig-
nificant absolute risk to the community [66]. 
Therefore, the decision to  recommend the 
more restrictive scheduling was based largely 
on analyses using population‐based (rather 

than utilization‐based) denominators, which 
suggested a large public health burden associ-
ated with these products.

Descriptive Quantitative Assessment 
and Analytic Studies

Sometimes, descriptive and analytic phar-
macoepidemiologic investigations are used 
together to guide public health or regulatory 
actions. A recent example is the issuance of a 
boxed warning – also commonly referred to as a 
“black box warning,” which appears on a pre-
scription drug’s label and is designed to call 
attention to serious or life‐threatening risks  – 
describing the serious risks and death associ-
ated with concomitant use of opioids and 
benzodiazepines and other CNS depressants 
[67]. This regulatory decision relied on studies 
suggesting both increasing trends in concomi-
tant prescribing, misuse, and overdoses involv-
ing opioids and benzodiazepines together, as 
well as an elevated risk of fatal overdose associ-
ated with concomitant use of these two drug 
classes. One descriptive study examined con-
comitant use patterns of opioid analgesics and 
benzodiazepines using a proprietary source of 
retail pharmacy dispensing data (IMS Health®). 
Investigators observed that despite multiple 
published clinical guidelines advising against 
co‐prescribing of opioid analgesics and benzo-
diazepines, the proportion of opioid analgesic 
recipients receiving an overlapping benzodiaz-
epine prescription increased by 41% between 
2002 and 2014. They also found that a majority 
of these overlapping prescriptions were written 
by the same prescriber [68]. Another descrip-
tive study used DAWN to analyze ED visits due 
to nonmedical use of both prescription opioid 
analgesics and benzodiazepines, and the NVSS 
Multiple Cause of Death file to analyze overdose 
deaths involving both opioid analgesics and 
benzodiazepines. Between 2004 and 2011, rates 
of both nonmedical use‐related ED visits and 
fatal overdoses involving both drug classes 
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increased sharply, and the proportion of over-
dose deaths due to prescription opioid analge-
sics that also involved benzodiazepines rose 
from 18% to 31% [69]. Two analytic epidemio-
logic studies published in the medical literature 
suggested an increased risk of fatal overdose in 
patients dispensed both opioid analgesics and 
benzodiazepines. First, a cohort study linking 
North Carolina medical examiner data and state 
prescription drug monitoring program dispens-
ing data found that rates of overdose death 
among patients co‐dispensed opioid analgesics 
and benzodiazepines were 10 times higher than 
those among patients dispensed opioid analge-
sics alone [70]. Although the ability to control 
for confounding is limited in this type of study, 
the magnitude of effect suggested an elevated 
risk of death with this drug combination. 
Second, a case–cohort study examined Veterans 
Health Administration data from 2004 to 2009 
and found that the risk of death from drug over-
dose significantly increased among patients 
with concomitant opioid analgesic and benzodi-
azepine prescriptions compared to patients 
taking opioid analgesics without receipt of a 
benzodiazepine, after controlling for both 
baseline and time‐varying confounders [71]. In 
 summary, a variety of pharmacoepidemiologic 
studies, both descriptive and analytic, were used 
to characterize a growing public health problem 
in this area and support new warnings on prod-
uct labels.

Researchers, public health practitioners, policy-
makers, and regulators frequently use epidemio-
logic data to evaluate the impact of interventions 
intended to increase the safety of controlled 
substances. Much of this work in recent years has 
focused on opioid analgesics, for example evalu-
ating the impact of interventions such as PDMPs 
[72], implementation of opioid analgesic pre-
scribing guidelines [73], and  pain clinic regula-
tion [33]. Other subjects of interest are the 
assessment of opioid  analgesic REMS and the 
effectiveness of abuse‐deterrent opioid analgesic 
formulations. As already described, this is one of 

the most challenging areas of pharmaceutical 
drug abuse pharmacoepidemiology. The use of 
multiple different study designs, data sources, 
denominators, and comparators, as well as sensi-
tivity analyses, can help to evaluate assumptions 
that are difficult to test empirically; for example, 
misclassification of products in self‐reported 
data, sampling bias, the best approximation of 
the counterfactual, or the relationship between 
the prescribed availability of a drug and the 
 likelihood of abuse in a population.

A recent example where this approach was 
useful was the evaluation of postmarketing data 
for reformulated Opana® ER (oxymorphone 
extended‐release) [74], which ultimately 
resulted in removal of this product from the 
market [75]. Opana ER was an opioid product 
initially approved by the FDA in 2006. In 2012, 
a reformulated version was introduced with a 
proprietary polyethylene oxide–containing 
matrix designed to make the drug more diffi-
cult to crush into a powder or dissolve in solu-
tion for abuse via nonoral routes. In 2017, the 
FDA convened an advisory committee meeting 
to discuss the postmarketing safety data on the 
reformulated product. Key to this evaluation 
were epidemiologic data collected from 
 individuals entering or being assessed for sub-
stance use disorder treatment within the 
National Addictions Vigilance Intervention and 
Prevention Program (NAVIPPRO®) Addiction 
Severity Index‐Multimedia Version (ASI‐MV®) 
surveillance network. These data suggested 
that after Opana ER was reformulated, the pre-
dominant route of abuse shifted from the intra-
nasal to the more dangerous injection route. 
However, substantial changes also occurred in 
the geographic distribution of the sites partici-
pating in the NAVIPPRO network and in the 
distribution of treatment settings in which 
individuals were being assessed. These changes 
resulted in a shift in the study population 
toward sites, specifically in Tennessee, where 
both Opana ER abuse and more severe sub-
stance use disorders and injection drug use 
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were highly prevalent. Sensitivity analyses were 
used to explore this potential bias, restricting 
the sample to sites contributing data in every 
quarter of the study period, as well as stratify-
ing analyses by site location within and outside 
Tennessee. The shift in the route of abuse 
 profile for Opana ER was consistently observed 
in all of these analyses. PCC call data also indi-
cated a shift in the route of abuse profile of 
Opana ER, although both the PCC and treat-
ment center survey data were limited by diffi-
culties distinguishing between brand and 
generic versions and original and reformulated 
versions of a product, a critical distinction 
because only the branded product was refor-
mulated. The potential for differential misclas-
sification across these products limited the 
ability to make inferences about changes in 
population‐ and utilization‐based abuse rates 
over time. Therefore, changes in route of abuse 
patterns over time in the subgroup reporting 
abuse of Opana ER became a critical piece of 
information, as product misclassification is less 
likely to bias change estimates away from the 
null for these conditional probabilities.

The Opana ER example also illustrates how 
multiple studies, each with limitations, can be 
qualitatively synthesized using fundamental 
epidemiologic principles, including Hill’s cri-
teria, to make a determination regarding the 
effect of an intervention. The marked shift 
from intranasal to injection abuse of Opana 
ER corresponded temporally with initial mar-
keting of the reformulated product, and a shift 
of similar magnitude was not observed for any 
other opioid comparator analyzed. The shift in 
the route of abuse was observed in multiple 
epidemiologic data sources and populations, 
and was coherent with other types of data, 
including premarket experimental abuse 
 liability data. The patterns seen in the epide-
miologic data were also consistent with spon-
taneous and anecdotal reports. A FAERS case 
series indicated that prior to Opana ER’s refor-
mulation, the vast majority of reported cases 

of nonoral abuse described the intranasal 
route, whereas after the reformulation, cases 
of intravenous abuse began to emerge. The 
review of FAERS reports also identified an 
association between intravenous use of 
reformulated Opana ER and a rare hemolytic 
microangiopathy. Finally, investigation of an 
unprecedented HIV outbreak in rural Indiana 
indicated that Opana ER abuse via injection 
was virtually universal among those newly 
infected with HIV, and that users reported 
switching from the intranasal to the injection 
route after the drug was reformulated. Inter-
views with drug users in the community indi-
cated that the hardening and gelling properties 
of reformulated Opana ER were driving users 
to increase the volume of solvent and to share 
pills and “cooking” equipment, resulting in 
increased injections and opportunities for 
transmission of blood‐borne infections [76]. 
In summary, although each individual study 
and source of postmarketing data had limita-
tions, synthesis of all the information using 
fundamental principles of causal inference led 
to a determination that the benefits of refor-
mulated Opana ER as an opioid analgesic 
option no longer outweighed the risks associ-
ated with abuse of this product.

 The Future

The opioid crisis has elevated the urgency of 
pharmacoepidemiologic research on drugs of 
abuse; however, data and methods developed to 
improve research on opioid analgesics are valu-
able for studying abuse of other pharmaceuti-
cals as well. Robust surveillance systems and 
systematic data linkages are needed to support 
these investigations, and efforts are underway 
to develop such data systems at the national and 
state levels. Although no single data source or 
method is ever expected to be sufficient to 
address all questions about drug abuse, the most 
useful data systems and methods to support 
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future pharmacoepidemiologic research in this 
area would feature several characteristics:

 ● Identification of specific products, formula-
tions, and routes of abuse, with the ability to 
evolve in response to changes in the pharma-
ceutical market.

 ● Rigorous development and validation of survey 
instruments and coded algorithms, using inno-
vative methods to minimize misclassification.

 ● Use of probability sampling methods when 
feasible. Where infeasible (e.g., when using 
emerging approaches such as internet/mobile 
phone surveys), conducting external valida-
tion studies to ensure that results can be 
applied to a well‐defined target population 
that is stable over time.

Further empiric research is needed to identify 
and appropriately adjust for individual‐ and 
community‐level confounding and to better 
characterize the relationship between prescrip-

tion volume and abuse rates, in order to under-
stand the degree to which prescribing is driven 
by the demand of those intending to abuse or 
divert the drug. More studies using longitudinal 
designs are also needed to understand the 
 progression from therapeutic use of pharma-
ceutical products to abuse, addiction, and 
related harms, and where we can intervene to 
prevent these outcomes.

Finally, the opioid crisis has highlighted the 
intertwined nature of pharmaceutical and illicit 
drug abuse. This interconnection emphasizes 
the sociocultural and economic forces driving 
drug abuse, and has spurred interest in meth-
ods that fall outside of traditional pharmacoep-
idemiology but are well established in the 
broader field of substance abuse research. 
These often include more qualitative and 
mixed‐methods approaches that may enhance 
our understanding of patterns observed in the 
epidemiologic data.

 References

 1 Centers for Disease Control and Prevention. 
Opioid overdose: understanding the 
epidemic. 2018. https://www.cdc.gov/
drugoverdose/epidemic/index.html (accessed 
November 2017).

 2 Centers for Disease Control and Prevention, 
National Center for Injury Prevention and 
Control. Annual surveillance report of drug‐
related risks and outcomes: United States, 
2017. https://www.cdc.gov/drugoverdose/pdf/
pubs/2017‐cdc‐drug‐surveillance‐report.pdf 
(accessed November 2017).

 3 U.S. Department of Health and Human 
Services, Food and Drug Administration, 
Center for Drug Evaluation and Research. 
Abuse‐deterrent opioids – evaluation and 
labeling: guidance for industry. April 2015. 
https://www.fda.gov/downloads/Drugs/
Guidances/UCM334743.pdf (accessed 
November 2017).

 4 Substance Abuse and Mental Health Services 
Administration. Reports and detailed tables from 
the 2016 National Survey on Drug Use and 
Health (NSDUH). https://www.samhsa.gov/data/
sites/default/files/NSDUH‐DetTabs‐2016/
NSDUH‐DetTabs‐2016.pdf (accessed May 2019).

 5 American Psychiatric Association. Diagnostic 
and Statistical Manual of Mental Disorders, 
5th edn. Washington, DC: American 
Psychiatric Association, 2013.

 6 Embeda (morphine sulfate and naltrexone 
hydrochloride extended‐release capsules) 
approved package insert, Section 9.2: Abuse. 
https://www.accessdata.fda.gov/drugsatfda_
docs/label/2016/022321s022lbl.pdf (accessed 
November 2017).

 7 US Drug Enforcement Administration. 
Chapter 1: The Controlled Substances Act. 
https://www.dea.gov/controlled‐substances‐act 
(accessed November 2017).



Pharmacoepidemiologic Research on Drugs of Abuse718

 8 US Department of Health and Human 
Services, Food and Drug Administration, 
Center for Drug Evaluation and Research. 
Assessment of abuse potential of drugs: 
guidance for industry. January 2017. https://
www.fda.gov/downloads/drugs/guidances/
ucm198650.pdf (accessed November 2017).

 9 Warner M, Paulozzi LJ, Nolte KB, Davis GG, 
Nelson LS. State variation in certifying 
manner of death and drugs involved in drug 
intoxication deaths. Acad Forensic Pathol 
2013; 3: 231–7.

 10 Toxicology Investigators Consortium (ToxIC). 
About ToxIC. http://www.toxicregistry.org 
(accessed November 2017).

 11 Researched Abuse, Diversion and Addiction‐
Related Surveillance (RADARS) System. Web 
monitoring. 2019. https://www.radars.org/
radars‐system‐programs/web‐monitoring.
html (accessed May 2019).

 12 Inflexxion. Health research and analysis. 2017. 
https://www.inflexxion.com/health‐research‐
analysis (accessed November 2017).

 13 Researched Abuse, Diversion and Addiction‐
Related Surveillance (RADARS) System. 
StreetRx. 2019. https://www.radars.org/
radars‐system‐programs/streetrx.html 
(accessed May 2019).

 14 Researched Abuse, Diversion and Addiction‐
Related Surveillance (RADARS) System. Drug 
Diversion. 2019. https://www.radars.org/
radars‐system‐programs/drug‐diversion.html 
(accessed May 2019).

 15 Johnston LD, O’Malley PM, Miech RA, 
Bachman JG, Schulenberg JE. Monitoring the 
future: national survey results on drug use 
1975–2016. 2016 overview: key findings on 
adolescent drug use. Monitoring the Future 
Project. 2016. http://www.monitoringthefuture.
org/pubs/monographs/mtf‐overview2016.pdf 
(accessed November 2017).

 16 Arria AM, Caldeira KM, O’Grady KE, Vincent 
KB, Johnson EP, Wish ED. Nonmedical use of 
prescription stimulants among college 
students: associations with attention‐deficit‐

hyperactivity disorder and polydrug use. 
Pharmacotherapy 2008; 28:156–69.

 17 Cassidy TA, Varughese S, Russo L, Budman 
SH, Eaton TA, Butler SF. Nonmedical use and 
diversion of ADHD stimulants among U.S. 
adults ages 18–49: a national internet survey. 
J Atten Disord 2015; 19: 630–40.

 18 RADARS System. Prevalence of illicit drug 
use: survey of non‐medical use of prescription 
drugs program compared to NSDUH 
[abstract]. College on Problems of Drug 
Dependence Annual Meeting, June 2017. 
https://www.radars.org/system/publications/ 
CPDD%202017%20NMURX%20US%20vs%20 
NSDUH%20poster.pdf (accessed May 2019).

 19 Substance Abuse and Mental Health Services 
Administration. Treatment Episode Data Set 
(TEDS). 2017. https://www.samhsa.gov/
data/client‐level‐data‐teds (accessed 
November 2017).

 20 Butler SF, Budman SH, Licari A, et al. 
National addictions vigilance intervention and 
prevention program (NAVIPPRO): a real‐
time, product‐specific, public health 
surveillance system for monitoring 
prescription drug abuse. Pharmacoepidemiol 
Drug Saf 2008; 17: 1142–54.

 21 Researched Abuse, Diversion and Addiction‐
Related Surveillance (RADARS) System. 
Opioid Treatment and Survey of Key 
Informants’ Patients. 2019. https://www.
radars.org/radars‐system‐programs/opioid‐
treatment.html and https://www.radars.org/
radars‐system‐programs/survey‐of‐key‐
informants‐patients.html (accessed May 2019).

 22 Cassidy TA, DasMahapatra P, Black RA, 
Wieman MS, Butler SF. Changes in prevalence 
of prescription opioid abuse after introduction 
of an abuse‐deterrent opioid formulation. Pain 
Med 2014; 15: 440–51 (Table 4).

 23 By K, McAninch JK, Keeton SL, et al. 
Important statistical considerations in the 
evaluation of post‐market studies to assess 
whether opioids with abuse‐deterrent 
properties result in reduced abuse in the 



719 References

community. Pharmacoepidemiol Drug Saf 
2017; 27(5). doi:10.1002/pds.4287

 24 American Association of Poison Control 
Centers. National Poison Data System 
(NPDS). 2017. http://www.aapcc.org/data‐
system/ (accessed November 2017).

 25 Dasgupta N, Davis J, Jonsson Funk M, Dart R. 
Using poison center exposure calls to predict 
methadone poisoning deaths. PLoS One 2012; 
7: e41181.

 26 Iwanicki JL, Severtson SG, Margolin Z, 
Dasgupta N, Green JL, Dart RC. Consistency 
between opioid‐related mortality trends 
derived from Poison Center and National Vital 
Statistics System, United States, 2006–2016. 
Am J Public Health 2018; 108(12): 1639–45.

 27 Substance Abuse and Mental Health Services 
Administration. Emergency department data. 
2017. https://datafiles.samhsa.gov/study/
drug‐abuse‐warning‐network‐dawn‐2011‐
nid13586 (accessed May 2019).

 28 Agency for Healthcare Research and Quality. 
Healthcare Cost and Utilization Project (HCUP). 
2016. https://www.ahrq.gov/research/data/hcup/
index.html (accessed November 2017)

 29 Chou R, Turner JA, Devine EB, et al. The 
effectiveness and risks of long‐term opioid 
therapy for chronic pain: a systematic review 
for a National Institutes of Health Pathways to 
Prevention Workshop. Ann Int Med 2015; 
162: 276–86.

 30 Cochran G, Woo B, Lo‐Ciganic W‐H, Gordon 
AJ, Donohue JM, Gellad WF. Defining 
non‐medical use of prescription opioids 
within health care claims: a systematic review. 
Subst Abus 2015; 36: 192–202.

 31 Canan C, Polinski JM, Alexander GC, Kowal 
MK, Brennan TA, Shrank WH. Automatable 
algorithms to identify nonmedical opioid use 
using electronic data: a systematic review. 
J Am Medical Inform Assoc 2017; 24:1204–10.

 32 Centers for Disease Control and Prevention, 
National Center for Health Statistics. National 
Death Index. 2017. https://www.cdc.gov/nchs/
ndi/index.htm (accessed November 2017).

 33 Johnson H, Paulozzi L, Porucznik C, Mack K, 
Herter B. Decline in drug overdose deaths after 
state policy changes—Florida, 2010–2012. 
Morb Mortal Wkly Rep 2014; 63: 569–74.

 34 Marteau D, McDonald R, Patel K. The relative 
risk of fatal poisoning by methadone or 
buprenorphine within the wider population of 
England and Wales. BMJ Open 2015; 5: e007629.

 35 Centers for Disease Control and Prevention. 
ICD injury matrices. 2017. https://www.cdc.
gov/nchs/injury/injury_matrices.htm 
(accessed November 2017).

 36 Centers for Disease Control and Prevention. 
Drug Induced Mortality (DIM) restricted 
variable. 2017. https://www.cdc.gov/rdc/
b1datatype/dt1229.html (accessed 
November 2017).

 37 Trinidad JP, Warner M, Bastian BA, Minino 
AM, Hedegaard H. Using literal text from the 
death certificate to enhance mortality 
statistics: characterizing drug involvement in 
deaths. Natl Vital Stat Rep 2016; 65: 1–15.

 38 Centers for Disease Control and Prevention. 
Enhanced state opioid overdose surveillance. 
2017. https://www.cdc.gov/drugoverdose/
foa/state‐opioid‐mm.html (accessed 
November 2017).

 39 US Department of Justice, Drug Enforcement 
Administration Diversion Control Division. 
National Forensic Laboratory Information 
System (NFLIS). 2017. https://www.
deadiversion.usdoj.gov/nflis (accessed 
November 2017).

 40 Fuzier R, Serres I, Guitton E, Lapeyre‐Mestre 
M, Montastruc JL; French Network of 
Pharmacovigilance Centres. Adverse drug 
reactions to gabapentin and pregabalin: a 
review of the French pharmacovigilance 
database. Drug Safety 2013; 36: 55–62.

 41 Schwan S, Sundström A, Stjernberg E, 
Hallberg E, Hallberg P. A signal for an abuse 
liability for pregabalin: results from the 
Swedish spontaneous adverse drug reaction 
reporting system. Eur J Clin Pharmacol 2010; 
66: 947–53.



Pharmacoepidemiologic Research on Drugs of Abuse720

 42 Bossard JB, Ponté C, Dupouy J, Lapeyre‐
Mestre M, Jouanjus E. Disproportionality 
analysis for the assessment of abuse and 
dependence potential of pregabalin in the 
French pharmacovigilance database. Clin 
Drug Investig 2016; 36: 735–42.

 43 McNaughton EC, Black RA, Zulueta MG, 
Budman SH, Butler SF. Measuring online 
endorsement of prescription opioids abuse: an 
integrative methodology. Pharmacoepidemiol 
Drug Saf 2012; 21:1081–92.

 44 McNaughton EC, Coplan PM, Black R, Weber 
SE, Chilcoat HD, Butler, SF. Monitoring of 
internet forums to evaluate reactions to the 
introduction of reformulated OxyContin to 
deter abuse. J Med Internet Res 2014; 16: e119.

 45 National Cancer Institute. Joinpoint 
Regression Program: average annual percent 
change. 2014. https://surveillance.cancer.gov/
joinpoint (accessed May 2019).

 46 Secora A, Trinidad JP, Zhang R, Gill R, Dal 
Pan G. Drug availability adjustments in 
population‐based studies of prescription 
opioid abuse. Pharmacoepidemiol Drug Saf 
2017; 26: 180–91.

 47 Cassidy TA, Oyedele N, Mickle TC, Guenther 
S, Budman SH. Patterns of abuse and routes of 
administration for immediate‐release 
hydrocodone combination products. 
Pharmacoepidemiol Drug Saf 2017; 26: 
1071–82.

 48 FDA Letter to Application Holders—ER/LA 
Opioid Analgesic Class. Postmarketing 
Requirement #2065 to #3033 Release and 
Reissue. Page 4: PMR 3033‐2. 2017. https://
www.fda.gov/downloads/Drugs/DrugSafety/
InformationbyDrugClass/UCM484415.pdf 
(accessed November 2017).

 49 Heslin KC. Owens PL, Karaca Z, Barrett 
ML, Moore BJ, Elixhauser Z. Trends in 
opioid‐related inpatient stays shifted after 
the US transitioned to ICD‐10‐CM 
diagnosis coding in 2015. Med Care 2017; 
55: 918–23.

 50 FDA Letter to Application Holders—ER/LA 
Opioid Analgesic Class. Postmarketing 
Requirement #2065 to #3033 Release and 
Reissue. Page 4: PMR 3033‐1. 2017. https://
www.fda.gov/downloads/Drugs/DrugSafety/
InformationbyDrugClass/UCM484415.pdf 
(accessed November 2017).

 51 Cepeda MS, Fife D, Chow W, Mastrogiovanni 
G, Henderson SC. Assessing opioid shopping 
behaviour: a large cohort study from a 
medication dispensing database in the US. 
Drug Saf 2012; 35: 325–34.

 52 Han H, Kass PH, Wilsey BL, Li C‐S. Increasing 
trends in Schedule II opioid use and doctor 
shopping during 1999–2007 in California. 
Pharmacoepidemiol Drug Saf 2014; 23: 26–35.

 53 FDA Letter to Application Holders—ER/LA 
Opioid Analgesic Class. Postmarketing 
Requirement #2065 to #3033 Release and 
Reissue. Page 6‐7: PMR 3033‐8, 3033‐9, and 
3033‐10. 2017. https://www.fda.gov/
downloads/Drugs/DrugSafety/
InformationbyDrugClass/UCM484415.pdf 
(accessed November 2017).

 54 Bohnert AS, Valenstein M, Bair MJ, et al. 
Association between opioid prescribing 
patterns and opioid overdose‐related deaths. 
JAMA 2011; 305: 1315–21.

 55 Roland CL, Wetnick B, Brown DA. Assessing 
the impact of abuse‐deterrent opioids (ADOs): 
identifying epidemiologic factors related to 
new entrants with low population exposure. 
Postgrad Med 2017; 129: 12–21.

 56 Greenland S, Morgenstern H. Confounding in 
health research. Annu Rev Public Health 2001; 
22: 189–212.

 57 Ruhm CJ. Geographic variation in opioid and 
heroin involved drug poisoning mortality 
rates. Am J Prev Med 2017; 53: 745–53.

 58 Hill AB. The environment and disease: 
association or causation? J Royal Society Med 
1965; 8: 295–300.

 59 Rudd RA, Seth P, David F, Scholl L. Increases 
in drug and opioid‐involved overdose  



721 References

deaths ‐ United States, 2010–2015. Morb 
Mortal Wkly Rep 2016; 65: 1445–52.

 60 Unick GJ, Ciccarone D. US regional and 
demographic differences in prescription 
opioid and heroin‐related overdose 
hospitalizations. Int J Drug Policy 2017; 46: 
112–19.

 61 Compton WM, Jones CM, Baldwin GT. 
Relationship between nonmedical 
prescription opioid use and heroin use. N Engl 
J Med 2016; 374: 154–63.

 62 Swank KA, Wu E, Kortepeter C, McAninch J, 
Levin RL. Adverse event detection using the 
FDA post‐marketing drug safety surveillance 
system: cardiotoxicity associated with 
loperamide abuse and misuse. J Am Pharm 
Assoc 2017; 57: S63–S67.

 63 Daniulaitye R, Carlson R, Falck R, et al. “I just 
wanted to tell you that loperamide will work”: 
a web‐based study of extra‐medical uses of 
loperamide. Drug Alcohol Depend 2013; 130: 
241–4.

 64 American Association of Poison Control 
Centers. Annual reports of the American 
Association of Poison Control Centers’ 
(AAPCC) National Poison Data System 
(NPDS), years 2006–2014. http://www.aapcc.
org/annual‐reports (accessed November 
2017).

 65 FDA Drug Safety Communication: FDA 
warns about serious heart problems with high 
doses of the antidiarrheal medicine 
loperamide (Imodium), including from abuse 
and misuse. https://www.fda.gov/Drugs/
DrugSafety/ucm504617.htm (accessed 
November 2017).

 66 U.S. Department of Justice, Drug Enforcement 
Administration. 21 CFR Part 1308 [Docket 
No. DEA‐389] Schedules of Controlled 
Substances: Rescheduling of Hydrocodone 
Combination Products from Schedule III to 
Schedule II. 2014. https://www.deadiversion.
usdoj.gov/fed_regs/rules/2014/fr0822.htm 
(accessed November 2017).

 67 FDA Drug Safety Communication: FDA warns 
about serious risks and death when combining 
opioid pain or cough medicines with 
benzodiazepines; requires its strongest 
warning. 2017. https://www.fda.gov/Drugs/
DrugSafety/ucm518473.htm (accessed 
November 2017).

 68 Hwang CS, Kang EM, Kornegay CJ, Staffa JA, 
Jones CM, McAninch JK. Trends in the 
concomitant prescribing of opioids and 
benzodiazepines, 2002–2014. Am J Prev Med 
2016; 51: 151–60.

 69 Jones CM, McAninch JK. Emergency 
department visits and overdose deaths from 
combined use of opioids and benzodiazepines. 
Am J Prev Med 2015; 49: 493–501.

 70 Dasgupta N, Funk MJ, Proescholdbell S, 
Hirsch A, Ribisl KM, Marshall S. Cohort study 
of the impact of high‐dose opioid analgesics 
on overdose mortality. Pain Med 2016; 17: 
85–98.

 71 Park TW, Saitz R, Ganoczy D, Ilgen MA, 
Bohnert AS. Benzodiazepine prescribing 
patterns and deaths from drug overdose 
among US veterans receiving opioid 
analgesics: case–cohort study. BMJ 2015; 
350: h2698.

 72 Prescription Drug Monitoring Program 
Center of Excellence at Brandeis. Briefing on 
PDMP effectiveness. September 2014. http:// 
www.pdmpassist.org/pdf/COE_documents/ 
Add_to_TTAC/Briefing%20on%20PDMP%20 
Effectiveness%203rd%20revision.pdf

 73 Von Korff M, Walker RL, Saunders K, et al. 
Prevalence of prescription opioid use disorder 
among chronic opioid therapy after health 
plan opioid dose and risk reduction initiative. 
Int J Drug Policy 2017; 46: 90–98.

 74 FDA Advisory Committee Briefing Document. 
Joint Meeting of the Drug Safety and Risk 
Management (DSaRM) Advisory Committee 
and the Anesthetic and Analgesic Drug 
Products Advisory Committee (AADPAC). 
March 13‐14, 2017. Postmarketing safety issues 



Pharmacoepidemiologic Research on Drugs of Abuse722

related to reformulated Opana® ER. https:// 
www.fda.gov/downloads/AdvisoryCommittees/ 
CommitteesMeetingMaterials/Drugs/Anesthet 
icAndAnalgesicDrugProductsAdvisoryCommit 
tee/UCM545760.pdf (accessed November 
2017).

 75 FDA News Release: FDA requests removal of 
Opana® ER for risks related to abuse. 2017. 
https://www.fda.gov/NewsEvents/Newsroom/
PressAnnouncements/ucm562401.htm 
(accessed November 2017).

 76 Brooks JT. CDC outbreak investigations 
involving Opana® ER. Slide presentation for 
the Joint Meeting of the Drug Safety and 
Risk Management Advisory Committee and 
the Anesthetic and Analgesic Drug Products 
Advisory Committee. March 13‐14, 2017. 
https://www.fda.gov/downloads/
AdvisoryCommittees/CommitteesMeeting 
Materials/Drugs/AnestheticAndAnalgesicDr 
ugProductsAdvisoryCommittee/
UCM547237.pdf



723

Part V

Selected Special Methodologic Issues in Pharmacoepidemiology



725

Pharmacoepidemiology, Sixth Edition. Edited by Brian L. Strom, Stephen E. Kimmel and Sean Hennessy. 
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

The evaluation of reports of suspected adverse 
drug reactions in the clinical setting or in a clini
cal trial is a judgment about whether – and the 
degree to which – any reported event is, in fact, 
causally associated with one or more suspected 
drug(s). In reality, a particular event either is or 
is not associated with a particular product. 
However, our current tools almost never allow a 
definitive determination. Accordingly, a num
ber of approaches to the assessment of the prob
ability of a causal drug–event association have 
evolved and are utilized in determining the pos
sibility that a drug contributed to an event. This 
chapter will discuss the evolution of these 
efforts and several of the current approaches 
and uses. It will then review the evolving regula
tory changes on this topic, including a brief con
sideration of the evaluation of single events in 
the clinical trial setting. The focus of this chap
ter is on causal assessment of individual events 
and differs from the approach to assessing gen
eral causality as discussed in Chapter 3.

 Understanding Potential Causal 
Relationships Supports Clinical 
and Regulatory Evaluations 
and Actions

Figure 29.1 illustrates the basic clinical problem 
to be addressed: An adverse event occurs within 
the milieu of a number of possible causal fac
tors. That event either occurred independently 
or was partially or totally linked to one or more 
of the potential causative agents. The assessor’s 
task is to determine the degree to which the 
occurrence of the event is linked to one particu
lar suspected causal agent  –  a drug or other 
medical product.

This task is similar to evaluating causality in 
chronic disease epidemiology, as discussed 
below. However, in disease epidemiology, 
causality relates to events in populations and 
to  the assessments of those events in one or 
more  population studies. In medical products 
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 epidemiology, assessing causality from individ
ual case reports of suspected adverse reactions to 
a medical product represents a different, equally 
complex challenge due to multiple factors.

Observations of medical events and resulting 
reports are often biased: A reporter reports 
because he/she suspects a causal relationship 
between the product and the event. Thus, alter
native causes can be overlooked or ignored and 
few or no data are collected that might support 
the alternative(s).

Data are frequently incomplete, often omit
ting details on:

 ● reason for use
 ● age, gender
 ● product exposure including dose, actual dose 

ingested, duration of use, prior exposure
 ● route of administration
 ● concomitant medical products
 ● patient medical history
 ● details of the adverse event including onset, 

characteristics, time course, and outcome
 ● baseline laboratory data and other important 

clinical factors (because the suspicion is usu
ally retrospective and the desired data are 
often not available when the report is made)

 ● whether the event stopped when the product 
was withdrawn (dechallenge)

 ● whether the event returned when the product 
was resumed (rechallenge)

 ● outcome of the event
 ● follow‐up information.

Case reports from clinical trials and hospital 
settings tend to be more complete than reports 
submitted in the postmarketing setting.

Adverse reactions can be acute, subacute, or 
chronic, can be reversible or not (e.g., death and 
birth defects), can be rare or common, and can 
be pathologically unique or identical to known 
common diseases. Therefore, the challenge has 
been to define general data elements and crite
ria for assessing causality that will apply to most 
types of suspected adverse reactions. For exam
ple, for irreversible events such as birth defects 
or death, data on dechallenge (what occurs 
when a drug is discontinued) and rechallenge 
(what occurs when a drug is reintroduced) are 
irrelevant.

Since the assessor must make, at the very 
least, an implicit judgment of causality, and 
since evaluations of case reports are an impor
tant part of postmarketing surveillance,  methods 

Potential
causal factors

Diet

Drug 1

Drug 2

Over-the-counter drug

Disease 1

Disease 2

Occupational 
exposure

Other factors

Time

EVENT

Figure 29.1 Diagram depicting the 
dilemma for determining causation 
of an event in a clinical setting. In 
reality, a drug either did or did not 
cause or contribute to an event. 
However, given the multiple factors 
associated with the event, the 
actual truth can seldom be 
ascertained. Instead, some 
expression of probability that the 
drug was associated with the event 
is made. The method by which this 
expression is determined is the 
primary concern of those in adverse 
reaction causality research.
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were devised in an attempt to develop a coher
ent, consistent, and reliable way to assess the 
degree, if any, of a causal relationship between 
exposures and events.

Assessment of a potential causal relationship 
is closely linked to the reason for making that 
particular causality assessment, and the impact 
of that judgment. If the causality assessment is 
perceived to have little impact on future actions 
relating to either a patient in a clinical setting or 
to product labeling in the regulatory environ
ment, it might logically be less rigorous. 
Conversely, if continuation of a clinical trial or 
continued approval of a drug hinges upon 
the  assessment, the reliability of the method 
becomes more critical. The need for consistent 
and reliable methods of causality determination 
[1] has become more important with greater 
focus on the entire subject of adverse drug reac
tions, the introduction of concepts of causality 
assessment into more drug regulatory language, 
and product liability.

Moreover, worldwide and country/region‐
specific regulations all require reporting of 
events in clinical trials and in the postmarketing 
period. This chapter will discuss the US and 
European requirements briefly as well as the 
French method.

 Historical Perspectives

Development of Concepts 
of Causality for Adverse Reactions

The development of thinking about the causal
ity of adverse drug reactions evolved in two 
disciplines: epidemiology and the study of indi
vidual case reports of adverse reactions. 
Consideration of both is important.

In the 1950s, epidemiologists grappled with 
the issue of disease causality. Yerushalmy and 
Palmer [2] developed a set of proposed criteria 
for causality related to the association of expo
sures with events. They drew upon the Bradford 

Hill causality criteria (described in more detail 
in Chapter 3) as well as the Koch–Henle postu
lates for establishing causation for infectious 
diseases. After considerable deliberation with 
other epidemiologists, Yerushalmy and Palmer’s 
method was refined into the following five 
criteria to determine the causal nature of an 
association.

1) Consistency
2) Strength
3) Specificity
4) Temporal relationship
5) Coherence, or biological plausibility [3]

While actively discussed and criticized [4], 
these criteria continue to be generally used in 
chronic disease epidemiology. They are most 
appropriately applied to population‐based data 
rather than in evaluating individual cases or 
groups of cases from poorly defined popula
tions. However, sometimes when large numbers 
of cases are considered, possibly along with 
population‐based data on an adverse event, 
Yerushalmy and Palmer’s criteria are invoked. 
For example, they form the basis for the World 
Health Organization’s (WHO) evaluation of 
collective data on vaccine adverse effects by the 
Global Advisory Committee on Vaccine Safety 
of the Immunization Safety Priority Project [4]. 
Shakir and Layton cited these criteria as useful 
for considering the overall data, including spon
taneous reports, on an adverse event [5]. 
Although seldom explicitly noted, the reasoning 
behind Yerushalmy and Palmer’s criteria 
appeared at about the same time as thinking 
about the causal assessment of individual 
reports of suspected adverse drug reactions.

In the past, and occasionally currently, asso
ciation between a drug and a reported adverse 
event was typically assumed if there were a 
number of similar reports [6]. Considerations of 
pharmacologic plausibility, dose–response, and 
timing factors were sometimes implicit but sel
dom explicit. More recently, this tendency has 
been supplanted by more specific methods, 
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proposed and in use since the 1980s, which will 
be detailed later in this chapter.

One of the most widely used tools is known as 
either “global introspection” or “unstructured 
clinical judgment.” In it, more perplexing single 
or multiple suspected drug–event associations 
get referred to one or more experts. The experts 
collect all the facts relevant to the problem, 
compile them, and make unstructured judg-
ments to assess the potential relationship. The 
answer is usually expressed in terms of a quali
tative probability scale: “definite”; “probable”; 
“possible”; “doubtful”; or “unrelated” [7].

The recognized subjective nature of global 
introspection as an approach prompted the 
development of more structured methods of 
causality assessment. Irey, in examining the 
details of cases of suspected adverse reactions at 
the US Armed Forces Institute of Pathology in 
the 1960s, clearly demonstrated the discrepancy 
between cases initially reported as drug associ
ated and those smaller number of cases found 
by careful detailed examination to likely be drug 
associated [8,9]. Shortly thereafter, clinical 
pharmacologists Karch and Lasagna also recog
nized the inadequacy of expert “global” evalua
tions of adverse reactions and developed an 
algorithm to segment the evaluation of a case 
into several components [10]. These two groups 
of investigators identified very similar basic data 
elements that they felt were necessary for a 
more standardized assessment.

 ● The timing of the event relative to the 
exposure.

 ● The presence or absence of other factors 
which might also cause the event.

 ● Dechallenge.
 ● Rechallenge.
 ● Other data supporting an association, for 

example, previous cases.

These criteria are specifically related to the spe
cial characteristics of suspected adverse drug 
reactions. They apply to causality assessments 
using either a single case or a group of cases 

from an ill‐defined exposed population. Thus, it 
was thought that there was only a partial corre
spondence to the Bradford Hill criteria for 
chronic disease epidemiology; but in fact, the 
temporal relationship does also apply. 
Furthermore, in assessing the causality of either 
a single report or a series of cases outside an 
epidemiological context, there is no way to eval
uate the consistency, strength or specificity of 
the association. The exception would be some 
rare, drug‐associated disorders where the event 
in fact was uniquely and specifically (due to a 
defined pharmacologic or biologic mechanism) 
associated with a drug. For example, some 
patients treated with sulindac developed renal 
stones containing sulindac crystals.

Further, Aronson and Hauben proposed four 
types of adverse reactions reports where “attri
bution to the drug is either irrefutable or 
demonstrable to a high level of confidence” [11].

1) Deposition of the drug or metabolite in 
extracellular or intracellular tissue.

2) A very specific anatomic location or pattern 
of injury, such as injection site edema or 
inflammation.

3) Direct tissue injury or physiologic dysfunc
tion that can be proven by physicochemical 
testing, such as esophageal injury with 
bisphosphonates.

4) Infection resulting from administration of an 
infectious agent, such as in bacterially con
taminated injections.

Following the introduction of these assessment 
methods, several other approaches were devel
oped [12–20], either as algorithms, decision 
tables or, in at least one case, as a diagrammatic 
method [19,20]. Many of these were reviewed 
and summarized in monographs from confer
ences held in the early 1980s on the causality of 
adverse drug reactions  –  two in Morges, 
Switzerland [21], and another in Crystal City, 
Virginia [22]. Most of these methods shared the 
basic elements originally suggested by Irey and 
Karch and Lasagna, but some added numerous 
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other details useful for the evaluation of special 
cases, such as injection site reactions or in vitro 
verification [18]. Some included extensive scor
ing systems linked to relatively extensive algo
rithms, such as the approach published by 
Kramer et  al. [12]. Selected methods from 
Kramer et al. are discussed in detail in the next 
section of this chapter.

The Morges conferences [21], the 1983 
Crystal City conference [22], and a 1983 Paris 
meeting [23] were all convened to compare a 
number of these approaches and to consider 
whether a single “gold standard” method might 
be developed that could represent an interna
tional consensus to be used by regulators and 
pharmaceutical sponsors alike. An international 
study group, the Active Permanent Workshop 
of Imputologists (APWI) (“imputology” is the 
French term for causality assessment), was initi
ated at Morges and continued into the 1990s 
[24–26]. Although a consensus method was not 
developed, a theoretical statistician, Dr David 
Lane, an invited outside observer at the Crystal 
City conference, provided an appraisal of the 
deliberations [27]. His critique and subsequent 
participation in the Paris conference and APWI 
resulted in the development of a new approach 
for assessing causality based on the Bayes prob
ability theorem [28]. This approach considered 
the probability of an event occurring in the 
presence of a drug relative to its probability of 
occurring in the absence of the drug, consider
ing all details of the case [29–32]. Although 
applied elsewhere in medicine, the Bayesian 
method had not been applied to suspected 
adverse effects analyses. A discussion of its 
application follows in the next section.

After this flurry of activity in the mid‐1980s, 
there was more limited activity in adverse event 
causality, primarily marked by efforts in France 
in the mid‐1990s. Causality assessment is a reg
ulatory requirement in French reporting. This 
resulted in further elaboration of the Bayesian 
method by Bégaud and colleagues in Bordeaux 
[33] and development of a further scoring 

method, RUCAM, by Bénichou and Danan 
[34–36].

Although a standard method has not been 
adopted since this time, causality assessment by 
varying methods has diffused into other regula
tory requirements in the European Union (EU), 
Canada, and the US, into the requirement for 
publication of reports in at least one journal 
(Annals of Pharmacotherapy), and, sporadically, 
into analyses of both clinical trial data and spon
taneous reports, as described below.

Actual and Potential Uses of Causality 
Assessment

Despite the proliferation of methods and the 
great interest in adverse effects of drugs, the 
actual use of causality assessment methods for 
decision making has been infrequent; it may 
increase as interest in various methods of analy
sis of adverse events burgeons, and as old tools 
are adapted to new technology [37]. However, 
causality assessment has been required in 
France for many years [38] and has been for
mally considered in a European Community 
Directive [39]. This has resulted in a general 
consensus on the causality terms used by the 
EU  member states [440–42]. Further, in 1994, a 
formal method of causality assessment for 
reports of vaccine‐associated adverse events 
was instituted by Health Canada’s Vaccine 
Safety Surveillance Section, Division of Immuni
zation, Laboratory Center for Disease Control, 
conducted by the Advisory Committee on 
Causality Assessment [43,44].

In fact, standard assessments of causality 
could be useful in a variety of settings, from the 
clinical trials activities in drug development by 
the pharmaceutical manufacturer, to evaluation 
and monitoring of postmarketing spontaneous 
reports by both sponsors and regulators, to the 
clinical setting, where suspected adverse reac
tions should be a common component of the 
differential diagnosis, and even possibly to the 
courtroom and the newsroom [1].
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Pharmaceutical Manufacturers

Manufacturers of biopharmaceuticals must 
view causality assessment for events associated 
with their products from the standpoints of 
both regulatory requirements and product 
liability.

The appearance of US Food and Drug 
Administration (FDA) regulations and draft 
guidances for reporting adverse events in clini
cal trials that are “reasonably” associated with a 
drug [45,46] indicates a growing need to 
describe the basis for defining an association 
that began within this setting. In September 
2010, the FDA published a Draft Guidance for 
safety reporting in clinical trials that updated 
the current requirements in some respects [47]. 
In March 2003, the FDA proposed broadening 
the definition of causality to “a causal associa
tion cannot be ruled out.” However, after careful 
consideration of the many public comments 
that expressed concern over what was deemed a 
very broad definition, in the final regulation the 
FDA agreed to maintain the former require
ment that an event must be “reasonably associ
ated” for it to warrant reporting [47].

Until these regulations took effect in 2011, US 
biopharmaceutical manufacturers did not need 
to consider causality assessments of adverse 
events in clinical trials for regulatory purposes. 
Regulations covering postmarketing event 
monitoring in the US required reporting of all 
events associated with the drug “whether or not 
thought to be associated with the drug” [47]. 
Current US FDA regulations require causality 
assessment for determination of reporting cer
tain types of clinical events in clinical trials and 
in the Investigational New Drug (IND) regula
tions (21 CFR §312.22) [47], reporting of seri
ous, unexpected events associated with use of a 
drug where there is a “reasonable possibility” 
that the events may have been caused by the 
drug is required. The regulations also include a 
disclaimer that such a report does not consti
tute an admission that the drug caused the 

event. No causality criteria or a suggested 
method of assessment are provided; however, 
they do imply that such methods might be 
useful.

In postmarketing regulations that became 
effective on June 30, 2006, the FDA modified its 
standard for including postmarketing safety 
information on the labeling [48]. The current 
regulatory standard for addition of an event to 
the product label Warnings section currently 
states: “The labeling must be revised to include 
a warning about a clinically significant hazard as 
soon as there is reasonable evidence of a causal 
association with a drug; a causal relationship 
need not have been definitely established” (21 
CFR 201.57(c)(6)).

Outside the US, the requirements for man
ufacturers to consider causality varied from 
country to country. With promulgation of EU 
directives on pharmacovigilance and related EU 
activities, an increase in regulatory harmoniza
tion activities, and the expanded globalization of 
biopharmaceuticals, there are more similarities 
in regulatory approaches than differences. Many 
regulatory agencies have requested or implied 
some type of evaluation to minimize the number 
of nonspecific events reported [36]. Given this 
environment, particularly in a growing interna
tional milieu, manufacturers have been actively 
interested in this area. In fact, several of the spe
cific methods for causality assessment have been 
published by investigators based in the biophar
maceutical industry [49–52].

The impact of the United Kingdom’s exit from 
the EU in 2019 is as yet unknown. It is comfort
ing to know that in September 2017, the UK 
government published a paper setting its objec
tives for continued scientific cooperation and 
collaboration with the EU, and the field of bio
pharmaceuticals is considered particularly 
important. The EMA announced in November 
2017 that the new location of the organization 
will be in Amsterdam.

Causality definitely is an issue for pharmaceu
tical manufacturers in the arena of product 
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 liability, especially in the US (see Chapter 9). In 
1984, Freilich considered many aspects of this 
[53], concluding that a company must have a 
rigorous process for the review of any adverse 
event reports and “make causality assessments 
on an ongoing basis” for product liability pur
poses. This is necessary to comply with the duty 
to warn, which he summarized as follows: 
“Information must be given of any risks of death 
or serious harm, no matter how rare, as well as 
information concerning side effects where there 
is a substantial probability of their occurrence, 
no matter how mild.” Others in the legal arena 
dealing in product liability have considered cau
sality issues and the notion of the “substantial 
factor” test for contributing to causation [54,55]. 
A substantial factor is one that by itself may pos
sibly have caused a plaintiff ’s injury, but that 
may not be the only factor involved in the injury.

Drug Regulator

Causality assessment of spontaneously reported 
postmarketing adverse reactions by drug regu
lators has varied considerably. Most countries’ 
drug regulators have some method of approach
ing causality, but this has been most well defined 
in France, Australia, and certain other countries 
[49,56,57].

In France, owing in part to the considerable 
original work on and interest in adverse reac
tion causality by a regulator, J. Dangoumau, and 
his colleagues, all reports of suspected reactions 
must be evaluated by the “French method” [58]. 
This combines symptom and chronologic crite
ria relating to the individual case to give a 
“Global Intrinsic Score” and then adds biblio
graphic data relating to information on other 
cases and the known pharmacology and adverse 
effects of the drug from standardized sources to 
give an “Extrinsic Score” [14,58]. This method, 
still mandatory in France, was updated in 2011 
by an ad hoc working group including regula
tors and members of pharmaceutical compa
nies. It now provides a seven‐degree score, 

considers the degree of completeness of data in 
the case, and differentiates between expected 
and unexpected adverse reactions [59,60].

In the US, no formal method for evaluating all 
reports was used until a simple algorithm was 
developed in the early 1980s, based on the Irey 
and Karch and Lasagna work [16,17]. This sim
ple, basic method considered the timing, de‐ 
and rechallenge, and confounding factors 
criteria. It specifically excluded examining liter
ature reports when considering the strength of 
the association. It was reasoned that, in many 
cases, the FDA would be in the position of 
receiving the first reports of an association. The 
primary use of the assessment by the FDA was 
administrative, as the causality assessment was 
a mechanism for identifying the best docu
mented cases  –  those with a “probable” or 
“highly probable” association. The causality 
judgment was specifically deleted from publicly 
available files, which consistently carry the 
caveat “a causal relationship need not have been 
definitely established.”

Use of the FDA algorithm ended in 1986, but 
the caveat stating that no cause–effect relation
ship could be derived on all released adverse 
event information remains. The FDA does not 
now use formal causality assessment on a rou
tine basis (see Chapters 8 and 10). Instead, it 
posts quarterly reports of “Potential Signals of 
Serious Risks/New Safety Information Identified 
from the FDA Adverse Event Reporting System 
(FAERS),” which continues to state that inclu
sion on this list “does not mean that FDA has 
determined that the drug has the risk” [61].

In 2016, Bailey et  al. reviewed the different 
reporting systems in use worldwide for drug 
regulatory purposes [62]. They identified 11 
international and 97 national‐level reporting 
systems. They found “substantial variability” in 
the data fields reported, limiting data compara
bility between systems. However, they were 
concerned that existing forms focused more on 
regulatory needs (e.g., drug lot numbers) and 
recommended developing a form that would 
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better support clinical care needs. Notably, they 
identified which countries requested data on 
such items as rechallenge and dechallenge to 
allow causality assessment, and called for con
sensus on data elements used.

Publishers of Reports of Adverse 
Reactions

The medical literature containing case reports 
of suspected adverse reactions has largely 
avoided the issue of causality, although there are 
many published series of cases reports that 
apply the Naranjo scoring method [13]. In fact, 
the Annals of Pharmacotherapy now requires 
that this method (or another validated and 
appropriate scale) be applied and reported in all 
case reports published. The majority of single 
case reports, letters to the editor, or short publi
cations do not provide an explicit judgment 
using any of the published algorithms. More 
importantly, despite several meetings and publi
cations, many published reports do not provide 
information on confounding drug therapy or 
medical conditions – data elements considered 
essential for considering causality by experts. 
This issue was recognized as one of several 
problems relating to the publication of adverse 
reactions in the literature and was discussed 
extensively in 1981 and 1983 at the conferences 
in Morges, Switzerland. Editors of several medi
cal publications were present and discussed the 
quality of information in reported cases. The 
participants developed a list of the types of 
information desirable for published reports, 
including data permitting the reader to assess 
independently the likelihood of the association 
[63,64]. They concluded that publication of case 
reports should require the five elements of cau
sality: timing, the nature of the reaction, discon
tinuation, reintroduction, and alternate causes 
based on prior history.

The need for publication requirements was 
underscored in 1990 when Haramburu and her 
colleagues compared the value of 500 published 

reports with 500 spontaneous reports with 
respect to the availability of information needed 
in most standard causality assessments [65]. 
Although analysis suggested that the published 
reports contained significantly more informa
tion, the tabulation of these reports indicated 
very sparse data on both alternate causes/other 
diseases and other drugs in both types of reports. 
Nonetheless, even years later, few journals 
appear to require specific types of information 
for publication of spontaneous reports. This 
prompted another formal effort in 2004 by the 
International Society of Pharmacoepidemiology 
to address this issue. An international working 
group, looking at the broader need for higher 
quality publications of suspected adverse 
 reactions to biopharmaceuticals, published rec
ommendations for publications of suspected 
adverse reactions that were published simulta
neously in two major journals focusing on drug 
safety, Pharmacoepidemiology & Drug Safety and 
Drug Safety [66–68]. Subsequently, the recom
mendations have been adopted by some other 
journals, including Annals of Pharmacotherapy 
and Thérapie.

Methodologic Problems 
to be Addressed by 
Pharmacoepidemiologic Research

The goal is to find one or more methods that are 
reliable, consistent, accurate, and useful for 
assessing the likelihood of association between 
an adverse event and a medical product. This 
problem is compounded by the nature of biop
harmaceutical‐associated adverse events. They 
vary in frequency, manifestation, timing relative 
to exposure, and mechanism. They mimic 
almost the entire range of human pathology, as 
well as adding unique new pathologies (e.g., kid
ney stones consisting of sulindac drug crystals 
and the oculomucocutaneous syndrome caused 
by practolol). In addition, biopharmaceutical‐
associated events are always nested within other 
pathologies associated with the indication for 
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the drug. Since drugs are used to produce a 
beneficial effect, known or expected adverse 
events are sometimes reluctantly accepted 
within the clinical risk/benefit equation. 
However, unknown or unexpected events are 
inconsistently recognized and/or described. 
Seldom are the desired baseline and other 
detailed laboratory measurements or past med
ical history obtained.

The nature of this task, and its context, has 
generated two divergent philosophies. One dis
counts the value or importance of causality 
assessment of individual reactions, deferring 
judgment to the results of formal epidemiologic 
studies or clinical trials [69]. The other contends 
that evaluation of single reports can help deter
mine at least some degree of association – use
ful or even critical information when considering 
ending drug development or a clinical trial or a 
drug withdrawal [70]. The latter view spurred 
the evolution of causal evaluation from expert 
global introspection to structured algorithms 
and to elaborate probabilistic approaches, as 
described previously. Further, because of the 
nature of drug and biologic‐associated effects, 
particularly rare and serious effects, the ques
tion has been raised whether epidemiologists 
need to consider using algorithms or probabilis
tic methods for case evaluations in formal stud
ies and in clinical trials, since the small numbers 
available may not be amenable to standard sta
tistical analysis [71].

Currently Available Solutions

There are now a variety of methods for causality 
assessment of spontaneous reports. Four basic 
types will be described, chosen as illustrative 
examples and because they have been widely 
described in various publications. Agbabiaka 
and colleagues in a 2008 review concluded that 
“there is still no method universally accepted for 
causality assessment of ADRs” [72], as pointed 
out much earlier by Koch‐Weser et  al. [73]. 
Khan et al. agreed in 2016 [74].

 Unstructured Clinical 
Judgment/Global 
Introspection

Probably the most common approach to causal
ity assessment is unstructured clinical judg
ment. An expert is asked to review the clinical 
information available and to make a judgment 
as to the likelihood that the adverse event 
resulted from drug exposure. However, it has 
been amply demonstrated that global introspec
tion does not work well, for several reasons 
[7,74].

First, cognitive psychologists have shown 
that the ability of the human brain to make 
unaided assessments of uncertainty in compli
cated situations is poor, especially when assess
ing the probability of cause and effect, precisely 
the task of causality assessment [72]. This has 
been clearly demonstrated for the evaluation of 
suspected adverse reactions. Several studies 
have used “expert” clinical pharmacologists to 
review suspected reactions. Comparing their 
individual evaluations, these studies docu
mented the extent of their disagreement and 
illustrated thereby how unreliable global intro
spection is as a causality assessment method 
[14–16,69,70,72,73].

Second, global introspection is uncalibrated. 
One assessor’s “possible” might mean the same 
as another assessor’s “probable.” This has been 
well demonstrated in a study of one pharmaceu
tical company’s spontaneous report reviewers, 
who used both verbal and numerical scales [19]. 
These and other shortcomings of global intro
spection as a causality assessment method for 
adverse reactions are discussed in detail by 
Lane, Hutchinson, and Kramer, among many 
others [7,27,72,75–79].

Despite these concerns, global introspection 
for evaluation of adverse events continues to be 
used. Most notably, the Uppsala Sweden WHO 
Centre for Drug Monitoring, which collects the 
spontaneous reports from national centers 
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worldwide, has published causality criteria 
ranging from “certain” to “unassessable/unclas
sifiable” that essentially represent six levels of 
global introspection, though they generally 
incorporate consideration of the more standard 
criteria for causality [80]. The Portuguese 
central pharmacovigilance unit (Nucleo de 
Farmacovigilancia do Centro) utilizes this 
WHO global introspection (GI) method, in part 
based upon a comparison of results from evalu
ation of 200 cases by algorithm methods and 
the WHO GI method. They found a relatively 
moderate to high degree of correspondence 
of  judgments for the reactions more likely 
 associated [81].

 Algorithm/Criterial Method 
with Verbal Judgments

The subsequent attempts to address the limita
tions of global introspection have resulted in 
the  proliferation of methodologic approaches 
[72,73]. Methods range from simple flowcharts 
posing 10 or fewer questions to lengthy ques
tionnaires containing up to 84 items. They share 
a common basic structure essentially based on 
the original work by Karch and Lasagna [10] 
and Irey [8,9]– the timing of the adverse event 
in relation to administration of the drug, alter
native etiological candidates, previous recogni
tion of the event as a possible adverse reaction 
to the drug, the response when dechallenged, 
and rechallenged. Information relevant to each 
factor is elicited by a series of questions, the 
answers to which are restricted to “yes/no” (and 
for some methods, “don’t know”).

The advantage of algorithms compared to 
global introspection [70,76] is improvement in 
the consistency of ratings among reviewers. 
Since the consideration of each case is seg
mented into its components (e.g., timing, con
founding diseases, etc.), it allows for a better 
understanding of areas of disagreement. 
However, global introspection is still required 

on the separate elements of the algorithms or 
decision tables. In some cases, “yes or no” 
answers are required where a more quantitative 
estimate of uncertainty would be more appro
priate. For example, the reviewer might have to 
consider whether the appearance of jaundice 
within one week represented a sufficient dura
tion of drug exposure to be consistent with a 
drug–event association. Even adherents of some 
of the methods agree that their procedures for 
converting answers into probability ratings are 
arbitrary.

Previously, the FDA used an algorithm based 
on the Irey and Karch and Lasagna concepts 
[16]. It inquired sequentially about temporal 
sequence, dechallenge, rechallenge, and con
comitant diseases which might have caused the 
event. It was tailored for rapid use by profes
sionals with varied backgrounds for the admin
istrative purpose of finding well‐documented 
cases for regulatory signal evaluation. It was 
also considered useful and easily remembered 
by clinicians in initial differential diagnosis of a 
clinical event. However, this very simple 
approach is less useful for irreversible drug 
effects (e.g., death, birth defects), since dechal
lenge and rechallenge are impossible. To address 
this, an alternate algorithm for fatal outcome 
events was developed by Turner in the after
math of the FDA algorithm [17]. Algorithms/
decision trees are used by some drug regulatory 
agencies, such as that of Australia [56].

 Algorithms Requiring 
Scoring of Individual 
Judgments

Many algorithms permit quantitative judg
ments by requiring scoring. The answers to the 
algorithms’ questions are converted into a score 
for each factor, the factor scores are summed, 
and this overall score is converted into a value 
on a quantitative probability scale. These 
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 judgments range from the extensive, multiple 
question method of Venulet [18], which has 
now been translated for computer use, to the 
relatively simpler French method [14,60]. The 
method developed by Kramer et al. [12] received 
considerable review and is representative of the 
scored methods. Although it was presented in 
algorithm format with multiple steps, it can also 
be represented in tabular format.

One of the more practical methods of this 
type was developed by Naranjo et al. [13]. This 
method has been adopted in a number of clini
cal settings and by at least one publisher (Annals 
of Pharmacotherapy) and is shown in Figure 29.2 
[13]. The RUCAM method was developed in 
1994 by Bénichou and Danan [36]. Like the 
Naranjo method, this has six criteria with three 
or four levels of scoring for each criterion to 
derive an overall score. RUCAM has been 
applied in evaluation of adverse events in HIV 
clinical trials [82].

These quantitative methods have found appli
cations in a number of settings, ranging from 
evaluations of suspected adverse reactions 
by  hospital committees (US hospitals are 
now required by the Joint Commission on 
Accreditation of Health Care Organizations 
(JCAHO) to have programs of adverse reaction 
surveillance) to use by some regulatory authori
ties, as in France. They are also used, although 
sometimes only in a research context, by some 
pharmaceutical manufacturers [21,49]. The 
specific manner in which they are used has not 
been well described in the literature.

A newer tool is the Liverpool Adverse Drug 
Reaction Causality Assessment Tool [83]. The 
Liverpool tool is a flowchart developed by a 
team of seven researchers involved in the 
Adverse Drug Reactions in Children project 
[84]. They assessed 40 pediatric suspected 
ADRs with their own methodology (ADRIC 
Study 1 [85]) and using Naranjo. They then 
compared the results obtained and carefully 
examined cases for which assessments differed 
by more than one degree. This comparison led 
them to develop a modified version of Naranjo, 
called the Liverpool ADR Causality Assessment 
Tool (LCAT), in 2011.

The authors believe that this method may be 
somewhat cumbersome for practitioners [86]. 
In 2015, the developers adapted a mobile app 
for the LCAT and its easy availability may make 
the Liverpool tool a widely used causality assess
ment tool [37].

 Probabilistic Methods

Recognition of the various methodologic 
challenges set the stage for the development of 
an alternative approach: The Bayesian probabil
ity approach to assessment of causality 
(Figure 29.3). This method provided an oppor
tunity for a different perspective on causality 
assessment, but its difficulty (due to the require
ment to use all available information) raised 

CAUSALITY ASSESSMENT
NARANJO SCORED ALGORITHM

QUESTION ANSWER SCORE
Yes No Unknown

Previous reports?
Event after drug?
Event abates on drug
  removal?
+ Rechallenge?
Alternative causes?
Reaction with placebo?
Drug blood level toxic?
Reaction dose-related?
Past history of similar
  event?
ADR confirmed
  objectively?

Total Score

+1
+2

+1
+2
–1
–1
+1
+1

+1

+1

0
–1

0
–1
+2
+1

0
0

0

0

0
0

0
0
0
0
0
0

0

0

Figure 29.2 A critical scored algorithm illustrated by 
the method of Naranjo et al. in wide use. This particular 
method uses some of the basic data elements as well as 
more details of the history and characteristics of the 
case, and a score is designated for the response to each 
question. Source: Reproduced from Naranjo et al. [13] 
with permission of John Wiley & Sons.
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some new issues about causality assessment of 
adverse reactions. It also brought adverse reac
tion evaluation into a larger discussion of the 
value of applying Bayesian and probabilistic 
approaches to the analysis of medical and scien
tific data [3].

First published as a method for adverse reac
tion assessment by Auriche [52], who partici
pated with Lane and others in a working group 
within the APWI organization, the Bayesian 
method was first presented in extensive form in 
a workshop in 1985 [28]. Several examples were 
published in a monograph and subsequently in 
early papers [31,32]. The methods were incor
porated into automated versions by both 
Naranjo and Hutchinson, the latter developing 
a  model using an expert system [87,88]. 
Naranjo and colleagues implemented a practi
cal spreadsheet/automated version called BARDI 
(Bayesian Adverse Reaction Diagnostic Instru
ment) and applied it to a number of practical 
adverse event problems [70,87,89].

The Bayesian method assesses the probability 
of an event occurring in the presence of a drug, 

relative to the probability of that event occur
ring in the absence of the drug, as illustrated in 
Figure 29.3. Estimation of this overall probabil
ity, the “posterior probability,” is based on two 
components.

 ● What is known prior to the event, the “prior 
probability” which is based on clinical trial 
and epidemiologic data.

 ● What the likelihoods are, or are not, for the 
drug to cause the components of the specific 
case, including its history, timing, character
istics, dechallenge and its timing components, 
rechallenge, and any other relevant factors.

Application of the Bayesian method requires 
knowledge of the clinical event, its epidemiol
ogy, and relatively specific information about 
the event’s characteristics and kinetics over 
time. Examples have been published for several 
types of events, including Stevens–Johnson 
syndrome, renal toxicity, lithium dermatitis, 
ampicillin‐associated colitis, agranulocytosis, 
Guillain‐Barré syndrome, and pancreatitis 
[29,78,89,90].

POSTERIOR ODDS = PRIOR ODDS × LIKELIHOOD
RATIO

P(D->e) I B, C P (D->E) I B P C I (D->E)
= ×

P(D-/->E) I B, C P(D-/->E) I B P C I (D-/-> E)

Overall
probability

Epidemiology
and

clinical trial data

Individual
case data
(history, timing,
case character,
dechallenge, etc.)

P Probability B Baseline information
D->E Drug caused event C Case c event
D-/->E Drug did not cause event

Figure 29.3 The basic equations for the Bayesian analysis of suspected drug‐associated events. These provide a 
structured yet flexible and explicit approach to estimating the probability that an event is associated with one, or 
more, drugs, as described in the text and extensive literature dating from Auriche [52], Lane et al. [28] and others. 
Since the prior probability estimate is dependent on explicit data from clinical trials and epidemiologic studies, this 
approach can provide a framework for specific event‐related questions in these studies [29].
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Thus far, this approach appears to be useful 
for analysis of the perplexing first events in new 
drug clinical trials, serious spontaneous adverse 
reaction reports, and possibly rare events dis
covered in both case–control and cohort phar
macoepidemiologic studies, when standard 
methods of statistical analysis will not provide 
sufficient clues as to causality because of inade
quate sample size.

Due to automation, the Bayesian method can 
now be performed rapidly, but the major impedi
ment to is more general application is the fre
quent lack of information required for robust 
analyses of events. There are often limited data 
on the incidence of most events and their occur
rence in the presence and absence of most drugs 
(the required information for the prior probabil
ity). There are even fewer data available on the 
historical risk factors, time course, and specific 
characteristics of the drug‐associated conditions, 
as opposed to the naturally occurring conditions. 
However, with the current proliferation of epide
miologic studies, particularly in the areas of natu
ral history of disease as well as of drug‐associated 
diseases such as Stevens–Johnson syndrome, this 
information is becoming more readily available. 
So, although this lack of information is some
times a limitation, it represents both an impor
tant challenge and a framework for structuring 
further understanding.

Bénichou and collaborators have delved fur
ther into a mapping process of reactions by type 
in an attempt to begin classifications of specific 
drug‐associated disease, using acute liver dis
ease as one model that incorporates qualitative 
clinical definitions of the disease into the judg
ment [91,92].

For this reason, and with the increasing avail
ability of more epidemiologic data, there are 
several advantages of using the Bayesian method 
for analysis of suspected drug‐associated events.

 ● All judgments must be explicit and quanti
fied, permitting better explanations of the 
degree of uncertainty about each component 

of information. Further, this approach makes 
maximum use of the available information 
and follows the basic rule of not discarding 
information.

 ● Since each component is analyzed separately, 
a sensitivity analysis of each information 
component can estimate its overall contribu
tion to the final posterior odds or probability 
estimate. This, in turn, can be used to deter
mine which information is pivotal. For exam
ple, if a 10‐fold difference in the estimate of 
the timing does not materially modify the 
overall posterior odds estimate, further efforts 
to determine the “best” estimate would not be 
worthwhile.

 ● Because of the multistep approach to a judg
ment, combined with lack of the prejudged 
weighting present in most other methods, 
this approach resists the tendency to achieve 
a result expected on an a priori global judg
ment. This is quite important in evaluating 
events with multiple possible causes.

 ● This approach can provide an extensive 
summary of the information needed and 
areas needing further research and data 
compilation.

Thus, the Bayesian approach ultimately pro
vides a “map” to define the information most 
critical for understanding drug‐induced disease 
and will help formulate the most critical ques
tions to be researched. As disease natural histo
ries and drug‐induced diseases are now being 
described in large population databases, it is 
essential to link these two types of analyses.

Another useful application of the Bayesian 
method, combined with the Poisson method for 
estimating the probability of rare events in pop
ulations [33] developed by Bégaud and col
leagues, was described by Zapater et  al. [93]. 
They demonstrated the feasibility of utilizing 
both clinical trial and population data to esti
mate the posterior probabilities of association 
in complex cases of ticlopidine‐associated 
hepatitis.
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More recently, a method based upon the 
logistic model and directly providing a proba
bility for drug causation ranging between 0 
and 1 has been proposed [94]. This method, 
also proposed in an automated version, pre
serves some of the basic principles of condi
tional probabilities; it notably provides a 
neutral assessment of 0.5 when no informa
tion is usable, while conserving the ease of use 
of classic algorithms. The assessments of 
seven criteria are combined, the relative 
weight of each criterion having been cali
brated by taking consensual judgment of five 
experts on a random sample of case reports as 
gold standard. An improved version was pub
lished in 2012 [95].

 Comparison Among the 
Different Methods for 
Causality Assessment

Several efforts have been made to evaluate and 
compare methods. The 1983 conference in 
Crystal City involved the application of several 
of them to a standardized case, illustrating a 
considerable lack of concordance for some 
methods [23].

A much more elegant and detailed evaluation 
of six representative algorithmic methods was 
carried out in 1986 by Péré et al. [96], who iden
tified standard evaluation criteria and carried 
out an evaluation of 1134 adverse reactions 
using the various methods. Significantly, they 
found only moderate agreement between all 
pairs, and considerable disagreements on 
weightings of three of the major criteria  – 
timing, dechallenge, and alternate etiolo
gies  –  which tends to underline the lack of 
complete information on the events and their 
characteristics. More recent attempts to quan
tify agreements on different methods, including 
global introspection, have been published by 
Kramer and Macedo et al. [77–79,81].

Given the current state of affairs, where a 
number of published methods exist, the choice 
of a method for use in evaluating individual 
adverse effects will likely be determined by a 
number of practical factors.

 ● How the evaluation will be used. This refers to 
both its short‐term use (e.g., a rating suggest
ing more than possible association may be 
needed to result in a “signal”) and long‐term 
use (e.g., will a single highly probable case in a 
file, not otherwise acted upon, be a source of 
liability for the evaluator?).

 ● The importance of the accuracy of the judg-
ment. If this evaluation will affect a specific 
clinical outcome, the continuation of a clini
cal trial, or the continued marketing of a drug, 
the accuracy of the judgment may be critical. 
Conversely, if little hinges upon the judgment, 
cruder estimates and methods, recognized as 
such, may suffice.

 ● The number of causality evaluations to be 
made. The decision on method to use must 
also be weighed against the time required to 
make judgments  –  a concern especially for 
regulatory agencies and manufacturers where 
the need for accurate judgments is pitted 
against the volume of reports. One approach 
is suggested by the FDA’s method of identify
ing high‐priority problems according to their 
newness and seriousness (see Chapter 8).

 ● The accrued value of thorough evaluations. In 
some circumstances, the careful, rigorous 
evaluation of certain categories of drug‐asso
ciated events will facilitate the more accurate 
evaluation of subsequent, related events. For 
example, if a drug under development is 
anticipated to cause hepatic events, detailed 
evaluations of hepatic events induced by 
other drugs may allow more satisfactory cau
sality evaluation of reports received on the 
new drug [91]. In some cases this results from 
data collection being focused to a much 
greater degree, as was initiated in France by 
Bénichou et al., where special reporting forms 
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using disease‐specific criteria for events were 
developed [91,92]. Zapater et  al. demon
strated the advantages of these forms in 
assessing ticlopidine‐associated hepatic tox
icity, where the evaluation and sensitivity 
analysis not only clarified the estimated prob
abilities for the cases, but also suggested that 
more careful examinations of relative values 
of hepatic enzymes might further understand
ing of drug‐associated hepatotoxicity [93].

 ● Who will perform the evaluation? Although 
no specific studies have been carried out to 
evaluate the interrater differences among dif
ferently trained professionals, it is likely that 
the body of information held by each reviewer 
will have considerable impact on any of the 
methods used, including the Bayesian 
method.

 The Future

The field of adverse reaction causality assess
ment has many unresolved issues, both meth
odologic and practical, described in the 
preceding sections. Early on, there was hope for 
a consensus assessment method [21]. Despite 
repeated published expressions of need, no 
standard method has emerged. Several reasons 
can be suggested.

First, some individuals and institutions have 
committed to one or a few methods, often 
through choice of data collecting systems or 
software [18]. Second, usability appears to play 
a very real role in that choice. Although the 
Bayesian method was welcomed as the possible 
gold standard for adverse reaction causality, it 
was not embraced. Early on, it was difficult to 
use without automation but even since that bar
rier was lifted, the Bayesian is often too complex 
and time‐consuming for practical application. 
The complex Kramer et al. algorithm [12] like
wise discourages its use in some sectors in spite 
of improvements from automation, although 
this has not been documented. Third, concern 

about possible disagreement with global intro
spection determinations or algorithm scores 
has generated concern about potential legal lia
bility [49], since there is no gold standard 
method.

All these factors suggest the need for consid
erable further work in several areas.

 ● Identify the purpose of the causality assess
ment to better determine the desired rigor, 
accuracy, and usability of the methods. There 
will probably always be needs for simpler and 
rougher methods when large quantities of 
reports are involved, as well as more complete 
and rigorous methods when the findings 
impact the regulatory future of the medical 
product or its development.

 ● Identify the critical elements needed for the 
evaluation of causality for different types of 
adverse reactions (e.g., hepatic, hematologic, 
skin etc.) so that this information may be col
lected at the time of reporting or publishing a 
spontaneous event. This need has long been 
recognized [14,23,96] and is being imple
mented in some centers (e.g., Bordeaux, 
France; University of Toronto; as well as many 
pharmaceutical companies) that collect 
adverse events. Further work in this area can 
have a major impact on the:

 – collection of better information on the dif
ferent drug‐associated events, using data 
collection instruments tailored to the event 
of interest

 – better definition of the dynamics and, ulti
mately, the pathophysiology and mecha
nisms of certain types of drug‐induced 
conditions.

At present, with pursuit of the epidemiol
ogy and pathophysiology of drug‐associated 
diseases by both individual centers (e.g., the 
efforts in drug‐associated hepatic disease, 
including liver failure by Lee [97] and the US 
NIH) and the regulatory agencies, in particu
lar the FDA (pursuing hepatic injury and 
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other drug‐associated disorders such as 
Stevens–Johnson syndrome), it is likely that 
such research will support development of 
much more event‐specific methods, such as 
the ALDEN method for Stevens–Johnson 
syndrome developed by the European SCAR 
registry [98].

 ● Gathering of data on critical elements of the 
specific adverse events in the course of both 
clinical trials and epidemiologic studies. Risk 
factor, history, timing, characteristics, and 
resolution patterns of adverse events should 
be described in these studies and incorpo
rated into general data resources on the char
acteristics of medical events and diseases.

 ● Further work on automation of the causality 
evaluation process. Global introspection is 
still widely used because of the cumbersome 
nature of many of the more complete meth
ods. Fortunately, several methods are now 
automated, including the French [96], the 
Venulet (J. Venulet, personal communica
tion), the Bayesian BARDI [87], the Liverpool 
tool [20], and the logistic method [94]. 
Convenient access to the proper questions, 
arrayed in logical order, as well as background 
data on the state of information to date, has 
the potential for radically changing the state 
of adverse reaction causality evaluation.

 ● Consideration of new and different methods 
for assessment. Although future work will 

likely flow from currently available methods, 
other approaches have emerged. For example, 
as part of work on patient safety in the US (see 
also Chapter 41), “root cause analysis” has 
emerged to identify the important contribu
tors to adverse events in clinical settings. It 
examines functional maps of possible contrib
uting factors to identify a cause and determine 
methods of preventing it. Spath provided one 
illustration of this approach [99]. Another less 
generalizable approach described by investi
gators at the University of Toronto is the N‐
of‐1 trial that evaluates the causality of adverse 
events in individuals, particularly those with 
multiple reactions to drugs [100]. Use of an 
assessment method that can lend itself to 
modern technology (mobile applications), 
such as the Liverpool tool, may supersede oth
ers simply because of its ease of access [20,37].

In conclusion, how best to assess causality of 
adverse reactions continues to represent a chal
lenge. With increased understanding that causal
ity assessment is necessary in the regulatory and 
drug development and testing processes, the need 
for consensus on one or more methods, depend
ing on use, continues. Application of detailed cau
sality assessment, particularly when viewed 
prospectively with collection of data in both phar
macovigilance centers and clinical studies, can 
ultimately contribute to the overall understanding 
of many drug‐associated diseases.
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Precision medicine has been defined by the 
National Institutes of Health (NIH) in the 
United States as an “approach to disease 
 prevention and treatment based on people’s 
individual differences in environment, genes 
and lifestyle.” Genomic technologies are 
increasingly available and their use in clinical 
care has grown substantially over the last dec
ade. As of July 10, 2018, there are over 54 852 
tests for 11 233 conditions, 16 433 genes, and 
507 laboratories according to the NIH’s Genetic 
Testing Registry. There are different types and 
applications of genomic technologies. These 
include disease screening (in asymptomatic 
individuals, e.g., newborn screening and carrier 
screening), diagnosis (in symptomatic individ
uals, e.g., identifying genetic variants in 
 children with suspected genetic disorders), 
prognostic (e.g., Lynch syndrome for increased 
risk for colorectal, endometrial, ovarian, and 
other cancers associated with mutations in 
mismatch‐repair genes), risk assessment or 
susceptibility (e.g., BRCA1/BRCA2 testing for 
hereditary breast and ovarian cancer), inform 
reproductive choices (prenatal and preimplan
tation testing), and pharmacogenetic (predict 
treatment response or adverse events, e.g., 

HLAB*1502 for risk of Stevens–Johnson 
 syndrome and toxic epidermal necrolysis and 
to guide use of carbamazepine).

One of the most challenging aspects of preci
sion medicine that involves pharmaceuticals is 
to understand why individuals and groups of 
individuals respond differently to a specific drug 
therapy, in terms of both beneficial and adverse 
effects. Reidenberg observes that, while the pre
scriber has basically two decisions to make 
while treating patients (i.e., choosing the right 
drug and choosing the right dose), interpreting 
the interindividual variability in outcomes of 
drug therapy includes a much wider spectrum 
of variables, including the patient’s health pro
file, prognosis, disease severity, quality of drug 
prescribing and dispensing, adherence with 
prescribed drug regimen (see Chapter 38), and 
last but not least, the genetic profile of the 
patient [1].

The effects of genes and other biomarkers on 
drug response can be studied using molecular 
pharmacoepidemiology. This is the study of 
the manner in which molecular biomarkers 
alter the clinical effects of medications in pop
ulations. Just as the basic science of pharma
coepidemiology is epidemiology, applied to the 
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content area of clinical pharmacology, the 
basic science of molecular pharmacoepidemi
ology is epidemiology in general and molecular 
epidemiology specifically, also applied to the 
content area of clinical pharmacology. Thus, 
many of the methods and techniques of epide
miology apply to molecular pharmacoepidemi
ologic studies. However, there are several 
features of molecular pharmacoepidemiology 
that are somewhat unique to the field, as 
 discussed later in this chapter. Most of the dis
cussion will focus on studies related to genes, 
but the methodologic considerations apply 
equally to studies of proteins (e.g., proteomics) 
and other biomarkers, such as the microbiome 
(the genes within the microbial cells, primarily 
 bacteria in the gut, harbored within each per
son) and mRNA (messenger RNA that results 
from DNA transcription).

It has been suggested that, on average for each 
medication, about one out of three treated 
patients experiences beneficial effects, one out 
of three does not show the intended beneficial 
effects, 10% experience only side effects, and the 
rest of the patient population is nonadherent so 
that the response to the drug is difficult to assess 
[2]. Although this is just a crude estimate, it 
highlights the challenge of individualizing ther
apy in order to produce a maximal beneficial 
response and minimize adverse effects. 
Although it is clear that many factors can influ
ence medication efficacy and adverse effects, 
including age, drug interactions, and medica
tion adherence (see Chapter  2), genetics can 
clearly be an important contributor in the 
response of an individual to a medication. 
Genetic variability can account for a large 
 proportion (e.g., some estimates range from 
20% to 95% [3]) of variability in drug disposition 
and medication effects [3–7].

In addition to altering dosing requirements, 
genetics can influence response to therapy by 
altering drug targets or the pathophysiology 
of the disease states that drugs are used to 
treat [8–13].

 Genetic Variability in Drug 
Response: Historical 
Perspective

Although molecular pharmacoepidemiology is 
a relatively new area of research, the idea that 
different individuals have different susceptibil
ity to the effects of medications is not new. 
Since the advent of modern drugs soon after 
the Second World War, physicians, pharma
cists, and patients have been confronted with 
interindividual variability in the effects of drug 
therapy. Some patients need higher than nor
mal doses to achieve an optimum effect. In 
other patients, unwanted and adverse effects 
occur even in low doses, while some patients 
receive no apparent effect of the medication at 
all. History shows a number of cases where 
genetics or factors that may be correlated with 
genetic variability played a role in interpreting 
and predicting drug effects (Box 30.1).

One of the best‐known “classic” examples of 
genetic variance in drug response is the meta
bolic defect caused by glucose‐6‐phosphate 
dehydrogenase (G6PD) deficiency [14]. This X‐
linked chromosome disorder is present in about 
10% of African men, and occurs at low expressed 
frequencies in some Mediterranean peoples. In 
carriers of this deficiency, hemolytic reaction 
occurs after exposure to oxidant drugs such as 
antimalarials (e.g., chloroquine), but is also seen 

Box 30.1 Some examples of “old” clinically 
relevant gene–drug interactions

Hemolysis in patients exposed to antimalarial 
therapy and G6PD deficiency [14]

Prolonged action of suxamethonium due to 
plasma cholinesterase polymorphism [15]

Neuropathy in patients exposed to isoniazid  
N‐acetyltransferase polymorphism [16]

Inefficacy of codeine as analgesic in poor 
metabolizers (CYP2D6) [17]
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in patients using drugs such as aspirin, probene
cid, or vitamin K.

Another early stimulus for pharmacogenetic 
thinking was the observation that, in the 1 in 
3500 white subjects who are homozygous for 
the gene encoding an atypical form of butyryl
cholinesterase, the inability to sufficiently 
hydrolyze the muscle relaxant drug succinyl
choline could lead to prolonged, drug‐induced 
muscle paralysis resulting in severe, frequently 
fatal, apnea [15].

A third pharmacogenetic antecedent is the 
example of drug‐induced neuropathy in patients 
with low activity levels of the metabolic enzyme 
N‐acetyltransferase [16]. This enzyme plays an 
important role in Phase II pathways of drug 
metabolism, and variance of the activity of this 
enzyme may lead to dramatic and clinically rel
evant differences in the plasma concentrations 
of drugs such as isoniazid, hydralazine, and 
procainamide.

A final example is the metabolic variance 
caused by one of the many cytochrome P450 
enzymes (CYP). Doctors treating patients with 
codeine as an analgesic have observed for dec
ades that some patients do not respond at all to 
normal doses. These clinical observations were 
not well understood until it was discovered that 
a polymorphism of CYP2D6 (a subfamily of 
cytochrome P450) could result in suboptimal 
transformation of the inactive prodrug codeine 
into the active form, morphine [17]. The exam
ple of codeine points to inherited lack of effi
cacy. However, genetic polymorphisms of 
CYP2D6 also have consequences for drug safety, 
as discussed later in this chapter.

 Definitions and Concepts

Genetic Variability

Building on the success of the various human 
genome initiatives, it is now estimated that 
there are approximately 25 000 regions of the 

human genome that are recognized as genes 
because they contain deoxyribonucleic acid 
(DNA) sequence elements including exons 
(sequences that encode proteins), introns 
(sequences between exons that do not directly 
encode amino acids), and regulatory regions 
(sequences that determine gene expression by 
regulating the transcription of DNA to RNA, 
and then the translation of RNA to protein). 
Some of these sequences have the ability to 
encode RNA (ribonucleic acid, the encoded 
messenger of a DNA sequence that mediates 
protein translation) and proteins (the amino 
acid sequence produced by the translation of 
RNA). In addition, we are learning a great deal 
about genomic regions that do not encode RNA 
or protein, but play important roles in gene 
expression and regulation such as epigenetics 
(changes in DNA expression that occur but are 
not related to the base order, such as DNA 
methylation). Moreover, changes in the DNA of 
microbial cells (the microbiome) can influence 
human response to medications.

Thanks to numerous human genome initia
tives, we also have substantial information 
about interindividual variability in the human 
genome. The most common form of genomic 
variability is a single nucleotide polymorphism 
(SNP), which represents a substitution of one 
nucleotide (i.e., the basic building block of DNA, 
also referred to as a “base”) for another, which is 
present in at least 1% of the population. Each 
person has inherited two copies of each allele 
(one from the paternal chromosome and one 
from the maternal chromosome). The term 
allele refers to the specific nucleotide at one 
point in the genome inherited from either the 
father or mother, and the combination of alleles 
in an individual is called a genotype. When the 
two alleles are identical (i.e., the same  nucleotide 
sequence on both chromosomes), the genotype 
is referred to as “homozygous” and when the 
two alleles are different (i.e., different nucleo
tide  sequences on each chromosome), the 
 genotype  is referred to as “heterozygous.” 
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Approximately 10 million SNPs are thought to 
exist in the human genome, with an estimated 
two common missense (i.e., amino acid chang
ing) variants per gene [18].

However, SNPs are not the only form of 
genetic variation that may be relevant to human 
traits and diseases. For example, copy number 
variants (CNV), sections of the genome that 
have repeats of base pairs, may also have a role in 
disease etiology [19]. DNA methylation, where 
methyl groups are added to DNA, thus changing 
the activity of DNA (which itself is regulated by 
genetics), and variability in the gut microbiome 
can also alter drug response [20–22].

Finally, we also recognize that the genome is 
not simply a linear nucleotide sequence, but 
that population genomic structure exists in 
which regions as large as 100 kilobases (a kilo
base being a thousand nucleotides, or bases) in 
length‐defined units remain intact over evolu
tionary time [23]. These regions define genomic 
block structures that may define haplotypes, 
which are sets of genetic variants that are trans
mitted as a unit across generations.

Thus, the complexity of genome structure 
and genetic variability that influences responses 
to medications provides unique challenges to 
molecular pharmacoepidemiology.

Pharmacogenetics 
and Pharmacogenomics

While the term pharmacogenetics is predomi
nantly applied to the study of how genetic vari
ability is responsible for differences in patients’ 
responses to drug exposure, the term pharma-
cogenomics, as well as including studies of 
genetic variability on drug response, also 
encompasses approaches simultaneously con
sidering data about thousands of genotypes, as 
well as responses in gene expression to existing 
medications [24,25]. Although the term phar-
macogenetics is sometimes used synonymously 
with pharmacogenomics, the former usually 
refers to a candidate‐gene approach as opposed 

to a genome‐wide approach in pharmacog
enomics (both discussed later in this chapter).

 The Interface of Pharmacogenetics 
and Pharmacogenomics with 
Molecular Pharmacoepidemiology

Pharmacogenetic and pharmacogenomic stud
ies usually are designed to examine intermedi
ate endpoints between drugs and outcomes 
(such as drug levels, pharmacodynamic prop
erties, or surrogate markers of drug effects) 
and often rely on detailed measurements of 
these surrogates in small groups of patients in 
highly controlled settings. Molecular pharma
coepidemiology focuses on the effects of 
genetics on clinical outcomes and uses larger 
observational and experimental methods to 
evaluate the effectiveness and safety of drug 
treatment in the population. Molecular phar
macoepidemiology uses similar methods to 
pharmacoepidemiology to answer questions 
related to the effects of genes on drug 
response. Thus, molecular pharmacoepidemi
ology answers questions related to:

 ● the population prevalence of SNPs and other 
genetic variants

 ● evaluating how these genetic variants alter 
disease outcomes

 ● assessing the impact of gene–drug and gene–
gene interactions on drug response and dis
ease risk

 ● evaluating the usefulness and impact of 
genetic tests in populations exposed, or to be 
exposed, to drugs (i.e., comparative effective
ness, see Chapter 26).

There are, however, some aspects of molecular 
pharmacoepidemiology that differ from the rest 
of pharmacoepidemiology. These include the 
need to understand the complex relationship 
between medication response and the vast 
number of potential molecular and genetic 
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influences on this response; a focus on interac
tions among these factors and interactions 
between genes and environment (including 
other medications) that raises issues of sample 
size and has led to interest in novel designs; and 
the need to parse out the most likely associa
tions between genes and drug response from 
among the massive number of potentially 
important genes identified through bioinfor
matics (the science of developing and utilizing 
computer databases and algorithms to acceler
ate and enhance biological research).

As stated previously, the basic science of 
 epidemiology underlies molecular pharmacoepi
demiology just as it underlies all pharmacoepide
miology. What is different is the need for 
approaches that can deal with the vast number 
of potential genetic influences on outcomes; the 
possibility that “putative” genes associated with 
drug response may not be the actual causal 
genes, but rather a gene near or otherwise asso
ciated with the causal gene on the chromosome 
in the population studied (and that may not be 
similarly linked in other populations); the poten
tial that multiple genes, each with a relatively 
small effect, work together to alter drug response; 
and the focus on complex interactions between 
and among genes, drugs, and environment. By 
discussing the potential approaches to these 
challenges in this chapter, it is hoped that both 
the similarities and differences between phar
macoepidemiology and molecular pharmacoep
idemiology will be made clear.

 Clinical Problems to be Addressed 
by Pharmacoepidemiologic 
Research

It is useful to conceptualize clinical problems in 
molecular pharmacoepidemiology by thinking 
about the mechanism by which genes can affect 
drug response.

The effect that a medication has on an indi
vidual can be affected at many points along the 

pathway of drug distribution and action. This 
includes absorption and distribution of medica
tions to the site of action, interaction of the 
medication with its targets, metabolism of 
the  drug, and drug excretion (see Chapter  2) 
[5,24–26]. These mechanisms can be catego
rized into three general routes by which genes 
can affect a drug response: pharmacokinetic, 
pharmacodynamic, and gene–drug interactions 
in the causal pathway of disease. These will be 
discussed in turn below.

Pharmacokinetic Gene–Drug Interactions

Genes may influence the pharmacokinetics of a 
drug by altering its metabolism, absorption, or 
distribution. As discussed previously, the fact 
that different individuals might metabolize 
medications differently has been well known for 
decades (see also Chapter  2). Metabolism of 
medications can either inactivate their effect or 
convert an inactive prodrug into a therapeuti
cally active compound. Drugs can be metabo
lized either through Phase I reactions (oxidation, 
reduction, and hydrolysis) or Phase II (conjuga
tion) reactions (e.g., methylation) [27]. The 
genes that are responsible for variable metabo
lism of medications are those that code for 
 various enzyme systems, especially the 
cytochrome P450 enzymes.

The gene encoding CYP2D6 represents a 
good example of the various ways in which poly
morphisms can alter drug response. Some of the 
genetic variants lead to low or no activity of the 
CYP2D6 enzyme whereas some individuals 
have multiple copies of the gene, leading to 
increased metabolism of drugs. A specific 
example is the clinically relevant association 
between polymorphism of CYP2D6 and the risk 
of antipsychotic‐induced extrapyramidal syn
dromes, as measured by the need for anti
parkinsonian medication. In a case–control 
study by Schillevoort et  al., patients using the 
CYP2D6‐dependent antipsychotic drugs (e.g., 
haloperidol) who were poor metabolizers were 
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more than four times more likely to need anti
parkinsonian medication than the extensive 
metabolizers (odds ratio 4.4; 95% confidence 
interval [CI] 1.1–17.7) [28]. An increased risk 
was not observed for patients using non‐
CYP2D6‐dependent antipsychotic drugs (odds 
ratio 1.2; 95% CI 0.2–6.8). The decreased meta
bolic activity of CYP2D6 may also lead to lower 
drug efficacy, as illustrated previously for 
codeine, which is a prodrug that is metabolized 
to the active metabolite, morphine, by CYP2D6 
[17,29]. It has been estimated that approxi
mately 6–10% of Caucasians have variants that 
result in CYP2D6 genotypes that encode dys
functional or inactive CYP2D6 enzyme, in 
whom codeine is an ineffective analgesic [9].

There is important interethnic variability of 
CYP2D6 alleles and phenotypes. An analysis of 
CYP2D6 allele‐frequency data from >60 000 
individuals suggests that diplotype frequencies 
predicting poor metabolism are highest among 
Europeans and the Ashkenazi Jewish popula
tion (about 5–6%) and lowest among East and 
South Central Asians, Oceanians, and Middle 
Easterns (<1% in each of these populations) 
[30]. In contrast, diplotype frequencies predict
ing ultrarapid metabolism were highest in 
Oceanians (21.2%), followed by Ashkenazi Jews 
and Middle Easterns (about 11% in each of these 
populations) and lowest in East Asians (1.4%).

Many drug–CYP2D6 genetic variant interac
tions have been reported based on experimental 
or epidemiologic associations. CYP2D6 is one 
of the most common pharmacogenomic mark
ers included in drug labeling by the US Food 
and Drug Administration (FDA) and the 
European Medicines Agency (EMA). However, 
predicting clinical outcomes in daily practice 
based on CYP2D6 genetic data in a valid fashion 
remains complex, with probably an exception 
for optimizing breast cancer treatment with 
tamoxifen by assessing CYP2D6‐metabolizing 
state before initiating therapy [31–33]. Drug–
gene associations shown in one study cannot 
always be replicated in another [34]. Obviously, 

variance in drug response has many determi
nants and singling out only one genetic factor 
fails to account for the co‐occurrence, interplay, 
and interactions of several other factors 
(e.g., disease severity, exposure variability over 
time, physiologic feedback mechanisms, testing 
bias), that are also of critical importance for 
molecular pharmacoepidemiology [35].

The genetic polymorphism of thiopurine 
methyltransferase (TPMT) in treating cancer 
patients is another example [10,36,37]. In its 
usual state, TPMT metabolizes thiopurine 
drugs, which would otherwise be toxic if not 
excreted. In approximately 86–97% of individu
als, TPMT activity is high and allows normal 
drug excretion. In 3–14% activity is intermedi
ate due to the presence of a heterozygous 
 variant in the TPMT gene. In 0.03–0.56%, 
activity is so low (due to a homozygous variant 
in the TPMT gene) that patients using drugs 
such as azathioprine, mercaptopurine, or thio
guanine accumulate excessive concentrations 
of the active thioguanine nucleotides, leading 
to severe hematologic toxicity. Thus, TPMT 
genotyping prior to treatment with these agents 
can be useful to avoid potential toxicities 
[38,39]. Alternatively, given the rarity of the 
homozygous variants, individuals who experi
ence treatment‐related toxicities may be geno
typed for TPMT, and this may influence the 
course of further treatments.

In addition to metabolism, genes that alter the 
absorption and distribution of medications may 
also alter drug levels at tissue targets. These 
include, for example, genes that code for trans
porter proteins such as the ATP‐binding cas
sette transporter proteins (ABCB, also known 
as the multidrug‐resistance [MDR]‐1 gene) [40], 
which has polymorphisms that have been asso
ciated with, for example, resistance to antiepi
leptic drugs [41]. It has been found that patients 
with drug‐resistant epilepsy (approximately one 
of three patients with epilepsy is a  nonresponder) 
are more likely to have the CC polymorphism of 
ABCB1, which is associated with increased 
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expression of this transporter drug‐efflux pro
tein (odds ratio 2.66; 95% CI 1.32–5.38) [41]. Of 
note, and consistent with the complexities of 
molecular pharmacoepidemiologic research 
noted later, the ABCB1 polymorphism falls 
within an extensive block of linkage disequilib
rium (LD). LD is defined by a region in which 
multiple genetic variants (e.g., SNPs) are corre
lated with one another due to population and 
evolutionary genetic history. As a result, an SNP 
may be statistically associated with disease risk, 
but is also in LD with the true causative SNP. 
Therefore, the SNP under study may not itself 
be causal but simply linked to a true causal vari
ant [41]. One of the major challenges in genetics 
research at this time is developing methods that 
can identify the true causal variant(s) that may 
reside in an LD block.

Pharmacodynamic Gene–Drug 
Interactions

Once a drug is absorbed and transported to its 
target site, its effect may be altered by differ
ences in the response of drug targets. Therefore, 
polymorphisms in genes that code for drug tar
gets may alter the response of an individual to a 
medication.

For example, polymorphisms of the beta‐2‐
adrenergic receptor (beta‐2‐AR) might affect 
response to beta‐agonists (e.g., albuterol) in 
asthma patients. In particular, the coding vari
ants at position 16 within the beta‐2‐AR gene 
(beta‐2‐AR‐16) have been suggested to deter
mine patient response to albuterol treatment 
[11]. Israel et al. showed that the Arg‐Arg geno
type at beta‐2‐AR‐16 was positively associated 
with clinical response to albuterol in patients 
who used this drug in an as‐needed fashion [11]. 
However, patients with the same genotype 
showed a decrease in response after regular use 
of albuterol. The Gly‐Gly genotype at beta‐2‐
AR‐16 was unaffected by regular use. This 
example shows that the clinical effects of genetic 
variants should be interpreted in the context of 

patterns of use of the drug regimen over time, in 
particular in cases where receptor kinetics 
(e.g.,  up‐ and downregulation of the receptor) 
play a critical role. However, later clinical and 
epidemiologic studies, directed at optimizing 
asthma treatment through beta‐2‐AR gene 
information, were not able to reconfirm the 
clinical relevance of the earlier findings, an 
example of type I error (discussed later in this 
chapter) frequently observed in common 
 diseases [42].

Pharmacodynamic gene–drug interactions 
may also result in mixed responses in terms of 
intended and nonintended effects. For example, 
the treatment of patients with schizophrenia is 
still unsatisfactory because of the highly varia
ble and frequently poor response profiles of 
antipsychotic drugs [43]. It is thought that dopa
mine receptors play an important role in both 
achieving the wanted therapeutic benefits and 
the occurrence of side effects (e.g., drug‐induced 
tardive dyskinesia and parkinsonism) with these 
drugs. It appears as though there is a complex 
interplay between available antipsychotics and 
an array of dopamine D2, D3, and D4 receptor 
actions. This example of pharmacodynamic 
drug–gene interactions illustrates that thera
peutic responses are unlikely to be associated 
with a single polymorphism, in particular when 
the same receptor panel is responsible for both 
therapeutic and adverse responses.

Thus, pharmacodynamic gene–drug interac
tions may also affect the risk of adverse reac
tions. Another example is a polymorphism in 
the gene coding for the bradykinin B2 receptor 
that has been associated with an increased risk 
of angiotensin converting enzyme (ACE) inhibi
tor‐induced cough [44]. Cough is one of the 
most frequently seen adverse drug reactions 
(ADRs) in ACE therapy and very often a reason 
for discontinuation of therapy. The TT geno
type and T allele of the human bradykinin B2 
receptor gene were found to be significantly 
higher in subjects with cough [44]. However, 
similar to many other studies, replication of 
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these findings has been limited. Further research 
using genome‐wide association studies (GWAS) 
has suggested that other SNPs are related 
to  intolerance to ACE inhibitors, but again 
require replication [45].

Gene–Drug Interactions 
and the Causal Pathway of Disease

Along with altering the pharmacokinetic and 
pharmacodynamic properties of medications, 
genetic polymorphisms may also alter the dis
ease state that is the target of drug therapy. As 
an example, hypertension is widely acknowl
edged to be a complex phenotype that involves 
many regulatory systems. These regulatory 
 systems are associated with the responsiveness 
to different drug therapies. Medications that 
work by a particular mechanism, such as the 
increased sodium excretion of some antihyper
tensive medications, may have different effects 
depending on the susceptibility of the patient to 
the effects of the drug. One key polymorphism 
is in the alpha‐adducin gene and its relation to 
treatment for hypertension. Cusi et al. found a 
significant association between the alpha‐
adducin locus (the site of the gene) and essen
tial hypertension and greater sensitivity to 
changes in sodium balance among patients 
with the polymorphism of the gene [46]. These 
findings fueled various pharmacoepidemio
logic studies to evaluate whether the alpha‐
adducin polymorphism may also be useful to 
identify hypertensive patients who can opti
mally benefit from diuretic treatment, but with 
rather inconsistent results regarding the impact 
of the drug–gene interaction on clinical 
 outcomes [8,47].

Genetic variability in disease states also can 
be critical for tailoring drug therapy to patients 
with a specific genotype related to both the 
 disease and drug response. One example is the 
humanized monoclonal antibody trastuzumab 
(Herceptin®), which is used for the treatment of 
metastatic breast cancer patients with overex

pression of the HER2 oncogene. The HER2 
 protein is thought to be a unique target for 
trastuzumab therapy in patients with this 
genetically associated overexpression, occur
ring in 10–34% of females with breast cancer 
[12]. The case of trastuzumab, together with 
another anticancer drug, imatinib, which is 
especially effective in patients with Philadelphia 
chromosome‐positive leukemias, has pio
neered successful genetically targeted therapy 
[48]. The association of somatic mutations to 
drug response has received substantial inter
est. There are many targeted therapies now 
available that block the growth and spread of 
cancer by interfering with specific molecules 
involved in the growth, progression, and spread 
of cancer.

Genetic polymorphisms that alter disease 
states can also play a role in drug safety. For 
example, factor V Leiden mutation, present in 
about one out of 20 Caucasians, is considered 
an important genetic risk factor for deep vein 
thrombosis and embolism [49]. A relative risk of 
about 30 in factor V carriers and users of oral 
contraceptives compared to noncarriers and 
non‐oral contraceptive users has been reported. 
This gene–drug interaction has also been linked 
to the differential thrombotic risk associated 
with third‐generation oral contraceptives com
pared with second‐generation oral contracep
tives [13]. Despite this strong association, 
Vandenbroucke et al. have calculated that mass 
screening for factor V would result in denial of 
oral contraceptives for about 20 000 women 
positive for this mutation in order to prevent 
one death [50]. Therefore, these authors con
cluded that reviewing personal and family 
thrombosis history and, only if suitable, factor V 
testing before prescribing oral contraceptives is 
the recommended approach to avoid this 
adverse gene–drug interaction [50]. This high
lights another important role of molecular 
pharmacoepidemiology: determining the utility 
and cost‐effectiveness (see also Chapter 34) of 
genetic screening to guide drug therapy [51].
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The Interplay of Various Mechanisms

It is useful to conceptualize how the effects of 
genetic polymorphisms at different stages of 
drug disposition and response might influence 
an individual’s response to a medication. As an 
example, an individual may have a genotype 
that alters the metabolism of the drug, the 
receptor for the drug, or both [25]. Depending 
on the combination of these genotypes, the 
individual might have a different response in 
terms of both efficacy and toxicity (Table 30.1). 
In the simplified example in Table 30.1, there is 
one genetic variant that alters drug metabolism 
and one genetic variant that alters receptor 
response to a medication of interest. In this 
example, among those who are homozygous for 
the alleles that encode normal drug metabolism 
and normal receptor response, there is rela
tively high efficacy and low toxicity. However, 
among those who have a variant that reduces 
drug metabolism, efficacy at a standard dose 
could actually be greater (assuming a linear 
dose–response relationship within the possible 
drug levels of the medication) but toxicity could 
be increased (if dose related). Among those 
who have a variant that reduces receptor 
response, drug efficacy will be reduced while 
toxicity may not be different from those who 
carry genotypes that are not associated with 
impaired receptor response (assuming that 

 toxicity is not related to the receptor responsi
ble for efficacy). Among those who have vari
ants for both genes, efficacy could be reduced 
because of the receptor variant (perhaps not as 
substantially as those with an isolated variant of 
the receptor gene because of the higher effec
tive dose resulting from the metabolism gene 
variant), while toxicity could be increased 
because of the metabolism variant.

 Some Examples of the 
Progression and Clinical 
Application of Molecular 
Pharmacoepidemiology

Medications with a narrow therapeutic ratio are 
good targets for the use of molecular pharma
coepidemiology to improve the use and applica
tion of medications. One example is warfarin. This 
example illustrates both the logical progression of 
pharmacogenetics through molecular pharma
coepidemiology and the complexity of moving 
pharmacogenetic data into practice. The enzyme 
primarily responsible for the metabolism of warfa
rin to its inactive form is the cytochrome P450 
2C9 variant (CYP2C9) [52–54]. Pharmacogenetic 
studies identified polymorphisms in CYP2C9 that 
led to altered metabolism of warfarin [55,56].

Table 30.1 Hypothetical response to medications by genetic variants in metabolism and receptor genes.

Drug response

Gene affecting metabolism* Gene affecting receptor response* Efficacy Toxicity

Wild type Wild type 70%  2%
Variant Wild type 85% 20%
Wild type Variant 20%  2%
Variant Variant 35% 20%

Modified from Evans and McLeod [25].
*Wild type associated with normal metabolism or receptor response and variants associated with reduced metabolism or 
receptor response.
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One of the first molecular pharmacoepide
miologic studies examining the clinical rele
vance of the CYP2C9 variants was a case–control 
study that reported that the odds ratio (OR) for 
a low warfarin dose requirement was 6.2 
(95% CI 2.5, 15.6) among those having one or 
more CYP2C9 variant alleles compared with a 
control population with normal warfarin dose 
requirements [57]. The OR was elevated both 
in those with only one variant allele (i.e., hete
rozygotes: OR 2.7; 95% CI 1.2, 5.9) and in those 
with two variant alleles to an even greater 
extent (i.e., homozygotes: OR 7.8; 95% CI 1.9, 
32.1). Patients on low doses of warfarin also 
were more likely to have difficulty with antico
agulation control during the first week of 
 therapy and more likely to have bleeding com
plications, based on unadjusted analyses. 
A  subsequent retrospective cohort study con
firmed the lower dose requirement of patients 
with the genetic variant of CYP2C9, but did not 
examine clinical outcomes [58].

In order to address the clinically relevant 
question of bleeding, another retrospective 
cohort study was performed that demonstrated 
an increased risk of bleeding among patients 
followed in an anticoagulation clinic who had at 
least one variant of the CYP2C9 genotype [59]. 
The relatively small size of the study, retrospec
tive nature, and selected population left unan
swered the question of whether there is an 
independent effect of CYP2C9 variants on the 
risk of clinical outcomes throughout the course 
of anticoagulation therapy, whether specific 
variants or combinations of variants (e.g., hete
rozygotes with only one variant allele versus 
homozygotes with two variant alleles) have dif
ferent effects, and whether knowing that a 
patient carries a variant can alter therapy in a 
way that can reduce risk.

A metaanalysis of studies examining the 
role  of CYP2C9 in warfarin‐treated patients 
demonstrated a significant association between 
CYP2C9 variants and bleeding risk [60]. 
Additional research clearly demonstrated that 

the vitamin K epoxide reductase complex 1 
(VKORC‐1) gene carries several variants that 
alter response to warfarin. Of note, most of the 
strongest associations with warfarin dose are 
among variants that are all in strong linkage 
 disequilibrium with each other, particular in 
non‐African American populations; thus, there 
is no benefit to dose prediction in these patients 
in genotyping more than just one SNP. Despite 
the presence of two genes with relatively strong 
associations with warfarin dosing, there is still 
about 50% of variability in warfarin dosing that is 
not explained by genetics or clinical factors, sug
gesting that other genetic factors may also influ
ence the response to the medication [61]. 
However, despite much research, very few other 
SNPs have been identified that have a substantial 
effect on warfarin dosing, suggesting that per
haps many variants, including other variants in 
CYP2C9 and VKORC1 that may be more impor
tant in African‐Americans, each with only a 
 relatively small effect on dose, may be needed to 
add to our ability to predict warfarin response.

Eventually, clinical trials were performed to 
answer the important question of clinical utility: 
does altering warfarin dosing based on geno
type affect outcomes? Following smaller, nonde
finitive trials, three large‐scale clinical trials of 
warfarin have been conducted. The first two 
had very different designs. The Clarification of 
Optimal Anticoagulation through Genetics 
(COAG) trial had greater control of dose titra
tion in both study arms and used a comparison 
group that differed from the intervention group 
only in the absence of the use of genetics [62]. 
The EU‐PACT UK trial used a formal dosing 
algorithm but left dose titration up to the dis
cretion of practitioners who were not blinded to 
dose [63]. Perhaps most importantly, the com
parison group was a usual care group and there
fore did not incorporate a formal clinical‐only 
(i.e., without genetics) initial dosing algorithm. 
In addition, while COAG enrolled about 27% 
African‐Americans, EU‐PACT UK enrolled 
only 1%. The two trials thus answered different 
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questions. COAG addressed whether adding 
genetics to clinical factors in a formal dosing 
algorithm can improve anticoagulation control 
relative to using a clinical‐only algorithm under 
uniform dose titration methods and blinding of 
study subjects and practitioners. EU‐PACT UK 
addressed whether a formal algorithm that used 
both genetic and clinical information improves 
anticoagulation relative to fixed‐dose initiation 
where the dose titration method was left up to 
unblended clinicians. The COAG trial demon
strated no benefit of pharmacogenetic dosing 
on anticoagulation control overall, and worsen
ing of anticoagulation control with pharmaco
genetic dosing in African‐Americans. The 
EU‐PACT UK trial demonstrated improvement 
in anticoagulation control.

A third trial, the GIFT trial, examined phar
macogenetic dosing in orthopedic patients, 
compared with a clinical algorithm dosing arm 
[64]. This trial demonstrated benefit from 
 pharmacogenetic dosing, but could not address 
the question of the effects of pharmacogenetics 
in African‐Americans due to the enrollment of 
very few African‐American patients.

Together, these trials demonstrate the need 
for, and benefit of, pharmacogenetic clinical 
 trials testing different strategies in different 
patient populations.

Another pertinent example is in oncology. 
Cancer is an extremely heterogeneous disease 
with differences not only between cancer cells 
from different patients but also between cancer 
cells within a single patient. Every cancer patient 
exhibits a different genetic profile and the 
 profile can change over time; thus, more patients 
will benefit if therapeutic options can be  tailored 
to each individual, thus avoiding the “one size 
fits all” cancer treatment. Markers predicting 
response to anticancer drugs are mostly related 
to the fact that drug efficacy can be greatly 
influenced by alterations in drug targets and in 
related proteins present in tumor cells. 
Therefore, cancer‐targeted therapies, directed 
to a specific cancer alteration, may only be 

 indicated for the subgroup of patients with 
tumors carrying that molecular target. Examples 
include trastuzumab and imatinib mentioned 
earlier in the chapter.

To date, there is information about predictive 
biomarkers for many of the approved oncology 
drugs; the number of predictive biomarkers in 
cancer exceeds that in any other medical field. 
The US FDA currently includes over 300 phar
macogenetic labels, and a third of these are 
related to oncology. Most oncology‐related 
markers indicate that drug use should be tai
lored to a subgroup of patients who have the tar
geted molecular alteration that predict drug 
efficacy (e.g., crizotinib for ALK rearrange
ments; bosutinib, omacetaxine, and ponatinib 
for BCR–ABL fusion protein; and dabrafenib, 
trametinib, and vemurafenib for mutated BRAF). 
The EMA also provides information regarding 
pharmacogenomic biomarkers in drug labels. In 
addition, several working groups, such as the 
PharmGKB (www.pharmgkb.org/view/drug‐
labels.do) and the National Comprehensive 
Cancer Centre (NCCN) Task Force, have pub
lished guidelines for the implementation of 
 biomarkers in clinical practice to guide selection 
of drug treatments. Recommendations by sev
eral groups regarding the validity and utility of 
genetic tests for clinical practice are also availa
ble, for example by the Centers for Disease 
Control and Prevention (CDC) Office of 
Public  Health Genomics (https://phgkb.cdc.
gov/PHGKB/topicStartPage.action), which 
ranks genomic tests according to evidence level, 
and the Clinical Utility Gene Cards (CUGCs), 
which are disease‐specific guidelines regarding 
the clinical utility of genetic testing authored 
by  international experts (www.eurogentest.org/
index.php?id=668).

It is now recognized that tumors have unique 
molecular compositions and can be subdivided 
accordingly. Each unique tumor type might be 
most sensitive to a specific drug combination. 
By identifying key driver mutations, specific 
drugs can be matched to the molecular targets 
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in the tumor and provide a “personalized” cancer 
treatment. While therapies for single targets are 
still common (e.g., trastuzumab targeting HER2 in 
treatment of breast cancer), use of therapies 
directed to multiple targets (e.g., sorafenib and 
sunitinib targeting the vascular endothelial growth 
factor receptor family [VEGF], platelet‐derived 
growth factor receptor family [PDGFR], fms‐like 
tyrosine kinase 3 [FLT‐3] and stem cell factor 
receptor c‐Kit in treatment of nonsmall cell lung 
cancer) are likely to increase to avoid relapses 
that  occur frequently with targeted therapies. 
Precision  oncology is enabled by technological 
advances. Next‐generation sequencing technolo
gies (described later in the chapter) can be applied 
to formalin‐fixed paraffin‐embedded tumor tis
sues (the samples routinely available in the clinic) 
to identify a large number of clinically relevant 
alterations in a timely and cost‐ effective manner 
and prospectively select cancer treatment.

It is important to note that novel treatment 
strategies can be based on a specific genetic 
characteristic regardless of the type or subtype 
of cancer. For instance, in 2017 the US FDA 
approved pembrolizumab for treatment of 
unresectable or metastatic solid tumors that 
have a biomarker, microsatellite instability‐high 
(MSI‐H) or mismatch repair deficient (dMMR), 
in adult and pediatric patients. This is the first 
drug approval based on a tumor’s biomarker 
without regard to the tumor’s original location.

 Methodologic Problems 
to be Addressed by 
Pharmacoepidemiologic 
Research

As previously discussed, the basic science of 
molecular pharmacoepidemiology is the same 
basic science underlying pharmacoepidemiol
ogy. Therefore, the same methodologic 
 problems of pharmacoepidemiology must be 
addressed in molecular pharmacoepidemiology. 

These problems include those of chance and 
statistical power, confounding, bias, and gener
alizability (see Chapters 3, 4, and 43).

However, the complex relationship between 
medication response and molecular and genetic 
factors generates some unique challenges in 
molecular pharmacoepidemiology. Many of 
these challenges derive from the large number 
of potential genetic variants that can modify the 
response to a single drug, the possibility that 
there is a small individual effect of any one of 
these genes, the low prevalence of many genetic 
variants, and the possibility that a presumptive 
gene–drug response relationship may be 
 confounded by the racial and ethnic mixture of 
the population studied [65,66]. Thus, the 
 methodologic challenges of molecular pharma
coepidemiology are closely related to issues of 
statistical interactions, type I and type II errors, 
and confounding.

First and foremost, however, molecular 
 pharmacoepidemiologic studies rely on proper 
identification of putative genes. In addition, in 
all research of this type, use of appropriate 
 laboratory methods, including the use of  
high‐throughput genotyping technologies, is 
necessary. Similarly, appropriate quality control 
procedures must be considered to obtain mean
ingful data for research and clinical applications. 
Recent next‐generation sequencing techniques 
have only highlighted further the need for, and 
complexity of, obtaining valid genotyping 
results. This section will focus on the methodo
logic challenges of studying interactions, mini
mizing type I and type II errors, and accounting 
for confounding, particularly by population 
admixture (defined below).

Interactions

Along with examining the direct effect of genes 
and other biomarkers on outcomes, molecular 
pharmacoepidemiologic studies must often be 
designed to examine effect modification 
between medication use and the genes or 
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 biomarkers of interest. That is, the primary 
measure of interest is often the role of bio
marker information on the effect of a medica
tion. For purposes of simplicity, this discussion 
will use genetic variability as the measure 
of interest.

Effect modification is present if there is a 
 difference in the effect of the medication 
depending on the presence or absence of the 
genetic variant. This difference can be either on 
the multiplicative or additive scale. On the mul
tiplicative scale, interaction is present if the 
effect of the combination of the genotype and 
medication exposure relative to neither is 
greater than the product of the measure of effect 
of each (genotype alone or medication alone) 
relative to neither. On the additive scale, inter
action is present if the effect of the combination 
of the genotype and medication exposure is 
greater than the sum of the measures of effect of 
each alone, again all relative to neither [67].

For studies examining a dichotomous medica
tion exposure (e.g., medication use versus 
 nonuse), a dichotomous genetic exposure (e.g., 
presence versus absence of a genetic variant), 

and a dichotomous outcome (e.g., myocardial 
infarction occurrence versus none), there are 
two ways to consider presenting and analyzing 
interactions [68]. The first is as a stratified anal
ysis, comparing the effect of medication expo
sure versus nonexposure on the outcome in two 
strata: those with the genetic variant and those 
without (for example, see Table 30.2). The sec
ond is to present a 2  ×  4 table (also shown in 
Table 30.2). In the first example (stratified anal
ysis), one compares the effect of the medication 
among those with the genetic variant to the 
effect of the medication among those without 
the genetic variant. In the second example (the 
2  ×  4 table), the effect of each combination of 
exposure (i.e., with both genetic variant and 
medication; with genetic variant but without 
medication; with medication but without 
genetic variant) is determined relative to the 
lack of exposure to either. The advantage of 
the 2  ×  4 table is that it presents separately the 
effect of the drug, the gene, and both relative to 
those without the genetic variant and without 
medication exposure. In addition, presentation 
of the data as a 2  ×  4 table allows one to directly 

Table 30.2 Two ways to present effect modification in molecular pharmacoepidemiologic studies using case–control 
study as a model.

Genotype Medication Cases Controls Odds ratio Information provided

Stratified 
analysis
+ + a b ad/bc Effect of medication vs no medication 

among those with the genotype‐ c d
‐ + e f eh/fg Effect of medication vs no medication 

among those without the genotype‐ g h
2 × 4 table
+ + a b ah/bg = A Joint genotype and medication vs neither
+ ‐ c d ch/dg = B Genotype alone vs neither
‐ + e f eh/fg = C Medication alone vs neither
‐ ‐ g h Reference Reference group

Modified from Khoury MJ, Little J, Burke W, eds. Human Genome Epidemiology. New York: Oxford University Press, 2004.
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compute both multiplicative and additive inter
actions [68].

In the example given in Table 30.2, multiplica
tive interaction would be assessed by comparing 
the odds ratio for the combination of genotype 
and medication exposure to the product of the 
odds ratios for medication alone and genotype 
alone. Multiplicative interaction would be 
 considered present if the odds ratios for the 
combination of medication and genotype (A in 
Table 30.2) was greater than the product of the 
odds ratios for either alone (B  ×  C). Additive 
interaction would be considered present if 
the odds ratio for the combination of genotype 
and medication use (A) was greater than the 
sum of the odds ratios for medication use alone 
and genotype alone (B  +  C). The 2  ×  4 table 
also allows the direct assessment of the number 
of subjects in each group along with the respec
tive confidence interval for the measured effect 
in each of the groups, making it possible to 
directly observe the precision of the estimates in 
each of the groups and therefore better under
stand the power of the study. Furthermore, 
attributable fractions can be computed sepa
rately for each of the exposures alone and for the 
combination of exposures.

In general, we believe that presenting the data 
in both manners is optimal because it allows 
the  reader to understand the effect of each of 
the exposures (2  ×  4 table) as well as the effect 
of the medication in the presence or absence of 
the genotypic variant (stratified table).

Type I Error

The chance of type I error (concluding there is 
an association when in fact one does not exist) 
increases with the number of statistical tests 
performed on any one data set (see also 
Chapter  4) [69]. It is easy to appreciate the 
potential for type I error in a molecular pharma
coepidemiologic study that examines, simulta
neously, the effects of multiple genetic factors, 
the effects of multiple nongenetic factors, and 

the interaction between and among these 
 factors [69–71]. One of the reasons cited for 
nonreplication of study findings in molecular 
pharmacoepidemiology is type I error [42]. 
Limiting the number of associations examined 
to those of specific candidate genetic variants 
that are suspected of being associated with the 
outcome is one method to limit type I error in 
pharmacoepidemiology [72]. However, with 
increasing emphasis in molecular pharmacoepi
demiologic studies on identifying all variants 
within a gene (and all variants within the 
genome) and examining multiple interactions, 
this method of limiting type I error is often not 
tenable [73]. Some other currently available 
solutions are discussed in the next section.

Type II Error

Because it has been hypothesized that much of 
the genetic variability leading to phenotypic 
expression of complex diseases results from 
the relatively small effects of many relatively 
low‐prevalence genetic variants [74], the abil
ity to detect a gene–response relationship is 
likely to require relatively large sample sizes to 
avoid type II error (concluding there is no 
association when in fact one does exist) (see 
also Chapter 4) [75]. The sample size require
ments for studies that examine the direct effect 
of genes on medication response will be the 
same as the requirements for examining direct 
effects of individual risk factors on outcomes. 
With relatively low prevalences of polymor
phisms and often low incidence of outcomes 
(particularly in studies of adverse drug reac
tions), large sample sizes are typically required 
to detect even modest associations. For such 
studies, the case–control design (see Chapter 3) 
has become a particularly favored approach for 
molecular pharmacoepidemiologic studies 
because of its ability to select participants 
based on the outcome of interest (and its abil
ity to study the effects of multiple potential 
genotypes in the same study).
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Studies designed to examine the interaction 
between a genetic polymorphism and a medica
tion will require even larger sample sizes [76]. 
This is because such studies need to be powered 
to compare those with both the genetic poly
morphism and the medication exposure with 
those who have neither. As an example, the 
 previously mentioned case–control study of the 
alpha‐adducin gene and diuretic therapy in 
patients with treated hypertension examined 
the effects of the genetic polymorphism, the 
diuretic therapy, and both in combination [8]. 
There were a total of 1038 participants in the 
study. When comparing the effect of diuretic 
use with no use and comparing the effect of the 
genetic variant with the nonvariant allele, all 
1038 participants were available for comparison 
(Table  30.3). However, when examining the 
effect of diuretic therapy versus nonuse among 
those with the genetic variant, only 385 partici
pants contributed to the analyses. Of note, this 
study presented the data for interaction in the 
two ways presented in Table 30.2.

In order to minimize false‐negative findings, 
further efforts must be made to ensure adequate 
sample sizes for molecular pharmacoepidemio
logic studies. Because of the complex nature of 

medication response, and the likelihood that at 
least several genes are responsible for the varia
bility in drug response, studies designed to test 
for multiple gene–gene and gene–environment 
interactions (including other medications, envi
ronmental factors, adherence to medications, 
and clinical factors) will, similarly, require 
large sample sizes.

Confounding by Population 
Admixture

When there is evidence that baseline disease 
risks and genotype frequencies differ among 
ethnicities, the conditions for population 
stratification (i.e., population admixture or 
confounding by ethnicity) may be met [77]. 
Population admixture is simply a manifestation 
of confounding by ethnicity, which can occur if 
both baseline disease risks and genotype 
 frequency vary across ethnicity.

For example, the African‐American popula
tion represents admixture of at least three major 
continental ancestries (African, European, and 
Native American). Wacholder et al. demon
strated that the larger the number of ethnicities 
involved in an admixed population, the less 

Table 30.3 Gene–exposure interaction analysis in a case–control study.

Diuretic use Adducin variant Cases Controls
Odds ratio (OR) for stroke 
or myocardial infarction

0 0 A00
103

B00
248

1.0

0 1 A01
85

B01
131

1.56

1 0 A10
94

B10
208

1.09

1 1 A11
41

B11
128

0.77

Case control OR in variant carriers: ORvariant = A11B01/A01B11 = 41 × 131/85x128 = 0.49
Case control OR in wild‐type carriers: ORwild‐type = A10B00/A00B10 = 94 × 248/103 × 208 = 1.09
Synergy index = ORvariant/ORwild‐type = 0.45
Case‐only OR = A11A00/A10A01 = 41 × 103/94 × 85 = 0.53
Adapted from Psaty et al. [8].
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likely that population stratification can be 
the  explanation for biased associations [77]. 
Millikan [78] and Wang et al. [79] also reported 
that a minimal bias in point estimates is likely in 
African‐American populations, suggesting that 
point estimates of association will not usually be 
influenced by population stratification in stud
ies that involve African‐American populations 
under most usual circumstances. Ardlie et al. 
used empirical data to show that carefully 
matched, moderate‐sized case–control samples 
in African‐American populations are unlikely to 
contain levels of population admixture that 
would result in significantly inflated numbers of 
false‐positive associations [80]. They did 
observe the potential for population structure 
to exist in African‐American populations, but 
this structure was eliminated by removing 
recent African or Caribbean immigrants, and 
limiting study samples to resident African‐
Americans. Furthermore, Cardon and Palmer 
argued that poor study design may be more 
important than population stratification in 
 conferring bias to association studies [81].

Based on the literature evaluating the effects 
of confounding by ethnicity overall, and specifi
cally in African‐Americans, there is little empir
ical evidence that population stratification is a 
likely explanation for bias in point estimates or 
incorrect inferences [77]. Nonetheless, popula
tion admixture must be considered in designing 
and analyzing molecular pharmacoepidemio
logic studies to ensure that adequate adjustment 
can be made for this potential confounder. New 
approaches to addressing population admixture 
are presented in the following section.

 Currently Available Solutions

Identifying Additional Genetic 
Contributors to Drug Response

A great concern of the identification of low‐
penetrance alleles is that they have not yet been 
able to explain the majority of the estimated 

genetic contribution to disease etiology. Based 
on studies of families or phenotypic variability, 
most loci have been found to explain less than 
half (and at times as little as 1%) of the predicted 
heritability of many common traits [82]. This 
“missing heritability” of complex disease sug
gests that other classes of genetic variation may 
explain much of the genetic contribution to 
common disease.

There currently are two primary approaches 
for gene discovery: candidate gene association 
studies and genome‐wide studies. In the former, 
genes are selected for study on the basis of their 
plausible biological relevance to drug response. 
While this allows for identification of variants 
with a priori biological plausibility, it is limited 
by our partial knowledge of which genetic 
 variants may actually be responsible for variable 
drug effects. In the latter, DNA sequences are 
examined for associations with outcomes, 
 initially irrespective of biological plausibility. 
The benefit of this approach is that it does not 
rely on our limited knowledge of genetics; the 
disadvantage is that the biological plausibility of 
the findings may then need to be confirmed.

One example is GWAS which rely on LD, 
defined above as the correlation between alleles 
at two loci. This approach uses DNA sequence 
variation (e.g., SNPs) found throughout the 
genome, and does not rely on a priori functional 
knowledge of gene function. Therefore, GWAS 
can be used to identify new candidate genes or 
regions, but relies on the potential for truly 
causative gene effects to be detected using 
genetic variants that may not have a functional 
effect. A number of factors influence the suc
cess of these studies. Appropriate epidemiologic 
study designs and adequate statistical power 
remain essential. Thorough characterization of 
LD is essential for replication of GWAS: the 
haplotype mapping (HapMap) consortium and 
other groups have shown that the extent of LD 
varies by ethnicity, which may affect the ability 
to replicate findings in subsequent studies 
[74]. Particularly informative SNPs that best 
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characterize a genomic region can be used to 
limit the amount of laboratory and analytical 
work in haplotype‐based studies [83]. It has 
been hypothesized that studies that consider 
LD involving multiple SNPs in a genomic 
region (i.e., a haplotype) can increase power 
to detect associations by 15–50% compared 
with analyses involving only individual SNPs 
[84]. Finally, even if genome‐wide scans may 
identify markers associated with the trait of 
interest, a  challenge will be to identify the 
causative SNPs.

Newer, sequencing technologies have made it 
possible to study rarer genetic variants. While 
Sanger sequencing is still considered the gold 
standard in clinical testing, its limitations 
include low throughput and high cost. Broadly, 
next‐generation sequencing (NGS) describes 
technologies that utilize clonally amplified or 
single‐molecular templates that are then 
sequenced in a massively parallel fashion. The 
advance of NGS technologies has been enabled 
by innovation in sequencing chemistries, better 
imaging, microfabrication and information 
technology. In addition, bioinformatics tools for 
data analysis and management and sample 
preparation methods have rapidly evolved along 
with the sequencing technologies, translating to 
reductions in the amount of input materials 
required. In 2013, the US FDA approved mar
keting for the first time for a next‐generation 
sequencer, Illumina’s MiSeqDx, which allows 
the development and use of innumerable new 
genome‐based tests.

Clearly, candidate gene and genome‐wide 
approaches are not mutually exclusive. Both 
have the potential to identify important variants 
that may be clinically useful.

Interactions

Along with traditional case–control and cohort 
studies, the case‐only study can be used for 
molecular pharmacoepidemiologic studies 
designed to examine interactions between 

genes and medications [85,86]. In this design, 
cases, representing those with the outcome or 
phenotype of interest, are selected for study, 
and the association between genetic variants 
and medication use is determined among these 
cases. Under the assumption that there is no 
association between the gene and medication 
exposure among those without the disease (i.e., 
controls), the odds ratio for the association 
between genetic variants and medication use 
in the cases is equivalent to the synergy index 
on a multiplicative scale for a case–control 
study [68]. (The synergy index is the odds ratio 
for medication use versus the outcome of inter
est in those with the variant alleles divided by 
the odds ratio for medication use versus the 
outcome in those without the variant 
alleles  –  see Table  30.3 footnote.) In other 
words, assuming that the use of the medication 
is unrelated to the genotype, the case‐only 
study provides a valid measure of the interac
tion of the genotype and the medication on the 
risk of the outcome.

One strength of the case‐only study design is 
that it eliminates the need to identify controls, 
which is often a major methodologic and logis
tical challenge in case–control studies. In addi
tion, the case‐only study can result in greater 
precision in estimating interactions compared 
with case–control analyses [85,86]. It also is 
possible to use the case‐only approach to 
 estimate interactions between genes and medi
cations in large‐scale registries of people with 
diseases or disease outcomes (e.g., cancer regis
tries with genotypes and medication informa
tion available) [68].

One example of a case‐only study is a study 
examining antihypertensive medication phar
macogenetics [87]. By using a large‐scale clinical 
trial database derived from the Antihypertensive 
and Lipid‐Lowering Treatment to Prevent Heart 
Attack Trial (ALLHAT), the authors examined 
cases of coronary heart disease and cases of 
heart  failure outcomes and tested for gene‐ 
by‐ treatment effects among the cases. They 



Currently Availaale Solutions 763

 identified a potential interaction of a polymor
phism within the ryanodine receptor 3 gene and 
heart failure outcomes.

There are several limitations of the case‐only 
design [85]. As stated above, the design relies 
on the assumption of independence between 
exposure (medication use) and genotype. 
Although this assumption may be valid (in the 
absence of knowing genotype clinically, it may 
be reasonable to assume that the use of the 
medication is not related to patients’ geno
types), it is certainly possible that, within obser
vational studies, the genotype, by altering 
response to medications targeted at a specific 
disease or by altering the disease, could affect 
the medications being prescribed to patients. 
For example, the use of a particular antihyper
tensive medication may be related to prior suc
cess with other medications. Patients carrying 
genotypic variants that diminish the response 
to one class of antihypertensive medication 
may be more likely to be on other classes of 
antihypertensive medications. Thus, there 
would be an association between the  genotype 
and the medication exposure. One  way to 
 minimize this possibility is to include only first‐
time prescriptions for hypertensive medica
tions. Another method is to perform the 
case‐only study within a randomized trial, 
where drug use is randomly assigned, as in the 
ALLHAT example provided above.

Another limitation of the case‐only design is 
that it does not allow assessment of the inde
pendent effects of medication use or genotype 
on outcome. Further, the assessment of inter
action can only be interpreted on a multiplica
tive scale.

Type I Error and Replication

Given concerns of type I error (along with 
other methodologic concerns such as uncon
trolled confounding, publication bias, and 
linkage  disequilibrium), a key issue in molecu
lar epidemiology is the ability to replicate 

 association study findings. Replication of 
 association studies is required not only to iden
tify biologically plausible causative associations, 
but also to conclude that a candidate gene has a 
meaningful etiologic effect. Lohmueller et al. 
observed that many associations are not repli
cated [42]. This lack of replication can be 
explained by false‐positive reports (e.g., spuri
ous associations), false‐ negative reports (e.g., 
studies that are insufficiently  powerful to iden
tify the association), or actual population dif
ferences (e.g., the true associations are different 
because of differences in genetic background, 
exposures, etc.). Given the perceived lack of 
consistency in association studies, what level of 
confidence can we have in associations reported 
to date?

Lohmueller et al. addressed these issues by 
undertaking a metaanalysis of 25 inconsistent 
associations and 301 “replication” studies (i.e., 
by ignoring the initial positive report) [42]. 
Most initial associations were not replicated, 
but an excess (20%) of replicated associations 
was seen, while only 5% were expected under 
the null hypothesis. This replication is not 
solely due to publication bias, since one would 
have to hypothesize that 40–80 negative studies 
were not reported rather than the average of 12 
reported studies per association. Lohmueller 
et al. also concluded that it was unlikely that 
these replications represented false positives 
due to ethnic stratification. Different linkage 
disequilibrium patterns or other population 
patterns or population‐specific modifiers 
(genes and/or environments) could also explain 
lack of replication, but this was unlikely to be a 
significant source of study inconsistency. The 
first positive reports also tended to be unrelia
ble estimates for subsequently reported ORs 
[88], perhaps due to the “winner’s curse” phe
nomenon which predicts that the initial posi
tive report overestimates the “true” value 
[89].  Indeed, 23 of 25 associations studied 
showed  evidence for a “ winner’s curse.” An 
additional consequence of this phenomenon is 
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that  replication studies may therefore require 
larger sample sizes since the actual effects being 
replicated may be smaller than suggested by the 
initial report.

Despite these limitations, these data indicate 
that associations are replicable more often than 
expected by chance, and may therefore repre
sent truly causative effects on disease. 
Nonetheless, as illustrated by several examples 
in this chapter, replication is not guaranteed, 
and one cannot assume that an association from 
a single association is real.

In order to achieve believable, replicable 
association results, investigators must con
sider factors that influence the design, analy
sis, and interpretation of these studies. These 
include, as discussed above, adequate sample 
size, proper study design, and characterization 
of the study population, particularly when 
replication studies themselves are not compa
rable in terms of ethnicity or other confounding 
factors.

Data analytical methods can complement 
replication studies to address multiple testing 
and type I error, which are common problems in 
pharmacogenetics studies evaluating multiple 
SNPs, multiple exposures, and multiple interac
tions. Bonferroni correction is the most basic 
approach for adjusting multiple testing but is 
considered too conservative for tightly linked 
SNPs and may wipe out many small effects that 
one may actually expect (increased risk of type 
II errors). The false discovery rate (FDR) 
approach is less conservative for controlling for 
multiple analyses of the data. The FDR method 
estimates the expected proportion of false 
 positives among associations that are declared 
significant, which is expressed as a q‐value [90]. 
Under a Bayesian approach, there is no penalty 
for multiple testing because the prior probabil
ity of an association should not be affected by 
the tests that the investigator chooses to 
 conduct. However, without strict standards, 
investigators might be tempted to cut corners or 

exaggerate the prior plausibility of a model that 
is supported a posteriori [91].

Type II Error

Reducing type II error essentially involves a 
logistical need to ensure adequate sample size 
(see also Chapter 4). One approach to increas
ing the sample size of molecular pharma
coepidemiologic studies is to perform large, 
multicenter collaborative studies. Another is 
to  combine multiple, separately performed 
cohorts, sometimes referred to as metaepi
demiologic studies. One example was the 
International Warfarin Pharmacogenetics 
Consortium (IWPC). This consortium of over 
21 centers across nine countries combined 
data from multiple cohort studies in order 
to   develop multiethnic dosing algorithms, 
attempt to identify uncommon SNPs associ
ated with warfarin response, and perform 
GWAS [92]. By combining cohorts, the IWPC 
became the largest sample size of any warfarin 
pharmacogenetics studies.

Another potential solution to minimizing type 
II error is through metaanalysis, whereby 
smaller studies, which are individually not 
powered to detect specific associations (such as 
interactions), are combined in order to improve 
the ability to detect such associations (see 
Chapter  36). One particularly intriguing 
approach is the concept of prospective meta
analysis in which studies are planned or identi
fied in advance of performing a meta analysis so 
that important elements of study design comple
ment each other across studies and important 
potential sources of bias that hamper the inter
pretation of retrospective metaanalyses can be 
avoided (see Chapter 36).

Adequate reporting of genetic association 
studies is important to allow assessment of their 
strengths and weaknesses. The STREGA state
ment (Strengthening the Reporting of Genetic 
Association studies) is an extension of the 
STROBE statement (Strengthening the Reporting 
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of Observational Studies in Epidemiology) that 
provides a checklist to help researchers and 
 journals [93].

Population Admixture

As presented above, although population strat
ification is unlikely to be a significant source 
of bias in epidemiologic association studies, 
this assumes adequate adjustment for race. 
A  number of analytical approaches exist to 
either  circumvent problems imposed by popu
lation genetic structure or use this structure in 
gene identification [94,95]. The “structured 
association” approach identifies a set of indi
viduals who are drawing their alleles from 
 different background populations or ethnici
ties. This approach uses information about 
genotypes at loci that lie in regions other than 
the location of the gene of interest (i.e., 
“unlinked markers”) to infer their ancestry 
(often referred to as ancestry informative 
markers) and learn about population struc
ture. It further uses the data derived from these 
unlinked markers to adjust the  association test 
statistic. By adjusting for  these ancestry 
informative markers, one can adjust for differ
ences in ancestry. The  ALLHAT study, 
described above, performed  such an adjust
ment using ancestry informative markers.

 The Future

Without any doubt, scientific and clinical devel
opments in biology and (bio)chemistry, particu
larly in the field of genomics and other 
biomarkers, have affected and will continue to 
affect the field of pharmacoepidemiology in a 
significant way. As discussed earlier in this 
chapter, translating biomarkers from the lab and 
experimental studies to clinical practice, and 
thereby to the study field of molecular pharma
coepidemiology, has been a difficult path.

We have addressed in this chapter several 
examples where the initial promising findings on 
drug–gene interactions to predict clinical drug 
responses could not be replicated in subsequent 
studies. For sure, the ability of genes and other 
biomarkers to improve patient care and outcomes 
will need to be tested in properly  controlled stud
ies, including randomized  controlled trials. The 
positive and negative predictive value of carrying 
a genetic variant will be important determinants 
of the ability of the variant to improve outcomes. 
Those genetic variants with good test characteris
tics may still need to be evaluated in properly con
trolled  trials. Such studies could examine several 
ways to incorporate genetic testing into clinical 
practice, including the use of genetic variants in 
dosing algorithms [96,97], in selection of a spe
cific therapeutic class of drug to treat a disease [8], 
and in avoidance of using specific medications in 
those at high risk for adverse drug reactions [44]. 
These scientific advances are also finding their 
way into drug discovery and development in 
order to rationalize drug innovation and to iden
tify good and poor responders, both in terms of 
efficacy and safety, to drug therapy in an earlier 
phase [98].

The cost‐effectiveness of such approaches is 
also of great interest because the addition of 
genetic testing adds cost to clinical care (see 
also Chapter 34). Veenstra and colleagues have 
developed a set of criteria for evaluating the 
potential clinical and economic benefits of 
pharmacogenetic testing [99]. These criteria 
include the severity of the outcome avoided, the 
availability of other means to monitor drug 
response without the need for additional phar
macogenetics testing, the strength of the asso
ciation between the genetic variants and 
clinically relevant outcomes, the availability of a 
rapid and relatively inexpensive assay, and the 
frequency of the variant alleles. In essence, these 
criteria could be applied to any new diagnostic 
test. Clearly, additional research will be needed 
to determine the cost‐effectiveness of new bio
marker and genetic tests as they are developed.
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Next‐generation sequencing will also 
require the development of novel approaches 
to data analyses. There are three levels of anal
ysis that are conducted by NGS technologies: 
(i) targeted gene panels focus on a limited set 
of genes allowing for greater depth of cover
age. The advantages include higher analytical 
sensitivity and specificity, and improved abil
ity to interpret the results in a clinical context 
because only genes with an established role in 
the disease are sequenced; (ii) exome sequenc
ing tests all coding regions of the human 
genome; and (iii)  whole‐genome sequencing 
analyzes the entire 3 billion bases of the 
genome. The targeted approach to genome 
sequencing is the more widespread clinical 
implementation of NGS technologies. This is 
because only some of the enormous amount of 
genetic information generated by exome or 
whole‐genome sequencing can be interpreted 
and is actionable. Along with the bioinformat
ics challenges of managing and validating such 
large datasets, a significant amount of infor
mation will be novel and/or of unknown clini
cal importance.

A major area that requires further develop
ment is establishing the clinical utility of the 
identified markers/strategies for patients and 
healthcare systems. The level of evidence 
required to establish that a marker is clinically 
useful and should be introduced for routine use 
has been discussed extensively but consensus 
has not been reached.

Nevertheless, genetic and molecular studies are 
increasingly being incorporated in large clinical 
trials, which can lead to the identification of sub
groups of patients with clear benefit from drugs, 
accelerating the discovery of effective therapies 
for selected populations. Another challenge to the 
implementation of genetic testing is the fact that 
pharmacogenetics knowledge is constantly being 
updated. Clinicians need to interpret the results 
of these tests in accordance with current under
standing of the association between pharmacoge
netic variation and drug effects.

What this all means for the future of pharma
coepidemiology is a challenging question. 
Genotype data will increasingly become available 
and will enrich pharmacoepidemiologic analysis. 
New methods (e.g., sequencing) will provide new 
opportunities, but also new challenges to analyz
ing pharmacoepidemiologic data. Further, 
although it is useful to characterize the three dif
ferent pathways of how drug–gene interactions 
may occur, as was done in this chapter, this strati
fication is most likely an oversimplification of the 
large plethora of possible mechanisms of how 
drugs, genes, and patient outcomes are interre
lated. All these may have consequences for how 
molecular pharmacoepidemiologic studies are 
designed, conducted, and analyzed. In addition, 
the more genotype testing is applied in clinical 
practice, the more drug exposure will be influ
enced by such tests, making genotype and drug 
exposure nonindependent factors.

Finally, just as for all research, the ethical, 
legal, and social implications of genetic testing 
must be considered and addressed [5,100–
102] (see also Chapter  31). Pharmacogenetic 
testing raises issues of privacy concerns, 
access to healthcare services, and informed 
consent. For example, concern has been raised 
that the use of genetic testing could lead to 
targeting of therapies to only specific groups 
(ethnic or racial) of patients, ignoring others, 
and to loss of insurance coverage for certain 
groups of individuals [102]. There also is a 
concern that medicines will be developed only 
for the most common, commercially attrac
tive, genotypes, leading to “orphan genotypes” 
[103,104]. Equally importantly, as more and 
more genetic data are collected on individuals 
as part of routine clinical care, the require
ments and methods for returning unantici
pated genetic results must be carefully 
determined and implemented.

All of these issues are challenges to overcome 
as we continue to reap the benefits of the tre
mendous strides made in determining the 
molecular basis of disease and drug response.
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Because the bioethical issues involved in 
 pharmacoepidemiologic research are closely 
related to changing patterns of drug usage and 
changing technologies of surveillance and 
data analysis, it is impossible to understand 
them without attention to historical and soci
ological perspectives. The field of pharma
coepidemiology emerged as a result of broader 
recent developments in medical therapeutics, 
concomitant with the expansion and refine
ment of the field of bioethics. Some key 
bioethical principles  relevant to pharmacoepi
demiologic research have remained significant 
over time; others have only gained attention in 
recent years. This chapter briefly introduces 
historical and sociological dimensions of 
pharmacoepidemiology from an international 
perspective, with an eye to  commonalities and 
differences in national variations in ethical 
approaches to the field.

On the most common level, it is widely 
believed that pharmacoepidemiologic studies 

should create data that benefit public health, 
improve drug safety, and ensure efficacy. The 
protection of research subjects’ rights and 
safety, their wellbeing, dignity, autonomy and 
privacy, as well as the reliability and robustness 
of generated data are relatively universal nor
mative cornerstones of pharmacoepidemiol
ogy ethics. The same goes for the injunction 
that objectives and results of pharmacoepide
miologic research should be independent from 
economic and promotional interests of phar
maceutical companies or device manufactur
ers. Yet these principles are not simple to 
implement systematically at an international 
level. In this chapter, we explore the emergence 
and conduct of pharmacoepidemiologic 
research in three major global settings in which 
the field developed (North America, Europe, 
and East Asia) and some of the key challenges, 
tensions, and trends in historic and current 
international ethical policies relating to 
pharmacoepidemiology.
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 Clinical Problems to be Addressed 
by Pharmacoepidemiologic 
Research

Emergence, Changing Methods, and 
Moral Stakes of Pharmacoepidemiology  
in 20th Century North America

In 1962, a series of epidemiological reports ini
tiated by the German physician Widukind Lenz 
connected a recent increase in phocomelia, a 
birth defect which resulted in grossly visible 
limb deformities, with maternal use of the 
popular new antinausea medicine Contergan® 
(thalidomide) [1–4]. Images of thalidomide 
children became an international symbol of the 
ethical failure of the medical profession and 
the regulatory state to protect vulnerable popu
lations from the harmful effects of widely 
 marketed new drugs. Contergan had been 
extensively marketed to physicians and con
sumers alike, and its premarket testing and 
postmarket promotion had emphasized its 
remarkably nontoxic safety profile by available 
standards of clinical pharmacology [5,6]. As 
Lenz’s work was read internationally, his careful 
use of the correlative techniques of infectious 
disease epidemiology within the terrain of pre
scription drug use documented not only 
the  unseen dangers of newly marketed drugs 
but also the need for a new discipline of phar
maceutical epidemiology to scour observational 
data for therapeutic effects and adverse reac
tions that could clearly be associated with drug 
use in clinical practice [7,8].

The recognition that the risks of new drugs 
could be better understood when they were 
consumed by broad numbers of patients had 
been evident long before Lenz’s epidemiology of 
thalidomide‐associated phocomelia. Indeed, 
the history of federal drug regulation in the 
United States can be recounted as a succession 
of measures taken in response to dangers of 
drugs that became apparent after widespread 
consumption by the general public [9–11]. 

However, until the 1960s the Food and Drug 
Administration (FDA) had very limited 
authority in the postmarket regulation of drugs. 
The agency had neither direct means to control 
physician prescriptions nor resources to gather 
data on prescribing of newly marketed drugs. 
While the Committee on Pharmacy and 
Chemistry of the American Medical Association 
(AMA) nominally maintained more influence 
in both arenas, it depended entirely upon 
voluntary physician reports, and Committee 
members complained loudly that the system 
itself was doomed to failure; as one report 
noted, “physicians reported only a small fraction 
of all cases and the total number of patients 
receiving a drug was unknown” [12].

The 1962 Kefauver–Harris Amendments, 
passed largely on the strength of popular moral 
outrage over thalidomide, demanded that 
pharmaceutical manufacturers establish records 
and make reports to the FDA of “data relating to 
clinical experience and other data or 
information, received or otherwise obtained” 
[13] for all new drugs. By 1967, the agency had 
developed a protocol requiring manufacturers 
to seek and report any reported or published 
case reports related to putative side effects of 
their products. Any novel or unexpected adverse 
effect was to be reported to the agency within 
15 days; other information “pertinent to the 
safety or effectiveness of the drug” was to be 
reported quarterly for the first year after 
approval, twice in the second year, and annually 
thereafter. Yet this kind of information could 
become actionable only after years of case 
reports, and then only if one of the relatively few 
FDA staffers took an active interest in pursuit of 
a specific question of drug harm.

The hospital became the center of early pro
grams of pharmacoepidemiologic surveillance. 
By 1964, the FDA and AMA had built a surveil
lance program involving more than 600 hospitals, 
which became the focus of early pharmacoepide
miologic research by Johns Hopkins University’s 
Leighton Cluff, Harvard University’s Thomas 
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Chalmers, and Tufts University’s Hershel Jick 
[14–18]. Yet the data were still only as good as 
the reporting physicians’ records [19]. As 
Leighton Cluff noted, an early validation system 
of reporting efforts at the Johns Hopkins 
Hospital “proved completely unsatisfactory for 
detecting drug reactions …during recent daily 
intensive surveillance of one hospital service, 
four times as many reactions were detected than 
had been reported on the cards from the entire 
hospital” [19]. Would‐be epidemiologists of 
adverse drug effects needed a way to circumvent 
the physician as reporting device and the digiti
zation of data provided an appealing solution. 
Cluff ’s attempts at computerized drug monitor
ing involved the creation of three linked datasets 
for every drug received by every patient in a 
dedicated hospital ward [20]. D.J. Finney, another 
early theorist of computerized drug monitoring, 
expressed these data sets as a linked “P‐D‐E sys
tem,” in which P(atient) population data would 
be systematically gathered within a set geo
graphic or hospital catchment area, the D(rug) 
data would include records of all relevant pre
scriptions, and E(vent) collection would record 
all untoward reactions potentially attributable to 
the drugs prescribed [20].

Proponents of drug monitoring imagined a 
linked system of inpatient surveillance wards 
circling the globe, which could act as 
pharmacovigilance sensors, detecting early 
signals of possible drug harms and providing 
descriptive data regarding their frequency, 
severity, and relative strength of association. 
Finney predicted that surveillance would change 
pharmacoepidemiology from a reactive into a 
proactive field. Allowing that “much is due to 
Lenz for his discovery in 1961 [that thalidomide 
was associated with phocomelia],” he also 
boasted that “a monitor could have signaled a 
warning 1½–2 years earlier” [20]. Automated 
inpatient surveillance systems liberated 
pharmacoepidemiology from the “weak link” of 
the reporting physician [20]. With public and 
private support from the United States Public 

Health Service and the Pharmaceutical 
Manufacturers Association, Dennis Slone, 
Hershel Jick, and Ivan Borda demonstrated the 
feasibility of implementing an automated 
hospital‐based drug monitor system in 1966 
[21]. Based at the Lemuel Shattuck Hospital, the 
Boston Collaborative Drug Surveillance 
Program bypassed the physician by hiring a 
drug surveillance nurse “whose primary role is 
the acquisition of accurate data” [21,22]. The 
Boston team became a model for an automated 
drug surveillance program that functioned 
“largely independent of clinical judgment in 
establishing a connection between a drug and 
an adverse event” [23].

Early results showed that drug‐related events 
were both more frequent and less severe than 
had previously been anticipated. More than 
one‐third of patients on the Shattuck wards 
experienced at least one drug‐associated 
adverse reaction during the first year of study 
[24]. By 1967, the Boston group had established 
a numerator/denominator approach for 
comparing drug usage between long‐term and 
acute hospitals through a network of five 
hospitals in Boston [25]. By 1968, over 2500 
patients had been entered and discharged from 
the surveillance system, with over 26 000 
monitored drug exposures, representing more 
than 700 individual drugs [22]. Commonly 
prescribed drugs, such as digoxin and heparin, 
could be reported in detail, yielding novel 
information related to their clinical 
pharmacology and their interactions with other 
drugs [26–28]. The system enabled the 
observation of not only obvious drug reactions 
(such as a rash) but also other clinical events 
(such as heart attacks or kidney failure) that 
could only be associated with drugs by careful 
epidemiologic surveillance.

As the Boston Collaborative Drug Surveillance 
Program escalated its activities and exported 
its methods to other sites, these new data pro
voked a series of drug scandals that empha
sized both the utility and the limitations of 
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the  new forms of pharmacovigilance. 
Clioquinol, an antiinfective that had been in 
use since the 1930s, was found to be associ
ated with subacute myelooptic  neuropathy in 
1970, over three decades after its initial intro
duction. An association between the synthetic 
estrogen diethylstilbestrol (DES) and a rare 
form of cervical clear cell adenoma was 
reported in 1971, with evidence of a 20‐year 
latency period between use of the drug and 
detection of the cancer [29]. The beta‐blocker 
practolol became the focus of a scandal after it 
was associated with a potentially fatal inflam
mation of the skin and soft tissues (oculomu
cocutaneous syndrome) some five years after 
its broad release on the British market. These 
examples simultaneously elucidated the scien
tific and  ethical necessity for drug surveillance 
units and underscored the impossibility of 
inpatient surveillance systems to capture 
drug–disease associations in which three dec
ades or more might pass between drug expo
sure and adverse events. As Jick warned, in a 
systematic proposal for the theory and design 
of the emerging field of  pharmacoepidemiology, 
the ability to study “drug–illness relations” 
required distinct methods depending on the 
time course and prevalence of prescription‐
related adverse events. High‐frequency 
events  in high‐ prevalence diseases could be 
detected swiftly by case report, low‐frequency 
events in  high‐ prevalence diseases required 
careful active ongoing surveillance, and low‐
frequency events in low‐prevalence diseases 
might simply never be adequately described 
[23]. Many early pharmacoepidemiologic 
researchers viewed scientific quality and eth
ics as complementary: more rigorous data 
 collection of drug‐related events carried ethi
cal benefits by enhancing medical practition
ers’ capacity to “do no harm” to patients. As 
early pharmacoepidemiologic work also coin
cided with the development of bioethics as a 
field,  critical principles of informed consent, 
external review of research protocols, and 

protection of patient privacy began to influence 
pharmacoepidemiologic investigators’ thinking 
in the US and internationally.

To address the growing problems of drug 
safety, prescription surveillance needed to 
extend outwards: spatially, from the monitored 
wards of the hospital to the messier universe of 
outpatient care; temporally, from links visible 
in days or weeks of measurable hospital time to 
the longer stretches of months and years 
required to understand the impacts of chronic 
medication use; and thematically, from the iso
lated connection of drug and disease to the 
study of all steps of diagnosis, prescription, 
adherence, consumption, and presentation that 
might extend in between. In the United States, 
this project would find its boldest form in the 
Joint Commission on Prescription Drug Use, 
formed in response to a press conference held 
by Senator Edward Kennedy in November 
1976, at which he announced that the new sci
ence of drug utilization studies had provided 
irrefutable evidence that prescription drugs 
were ill‐used in American society [30]. Kennedy 
called for Congress to work with the medical 
profession and the pharmaceutical industry to 
sponsor a public–private body of expertise 
whose explicit purpose would be to establish a 
postmarket surveillance system for prescrip
tion drugs [31]. As the Commission would note 
in its final report, the purpose of systematic 
prescription surveillance was “not merely to 
learn ‘something’ about a drug but to glean 
information that is useful in improving the 
rational use of drugs” [31].

Conceived as a public–private venture, the 
Commission ran from 1976 until 1979 and 
issued its final report in the first month of 1980. 
The Commission worked to integrate the social, 
epidemiological, marketing, and policy interests 
in prescriptions as a source of data. Initially, the 
prospects for a harmonization of these four 
 perspectives seemed auspicious. At the first 
meeting, Howard L. Binkley, Vice President for 
Research and Planning of the Pharmaceutical 
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Manufacturers Association, provided a descrip
tion and critique of presently available sources 
of data on trends in the prescribing and dispens
ing of prescription drugs, with an emphasis on 
how market research data could be linked to 
broader systems of private and public claims 
and outcomes data [31]. Yet as the Commission 
assessed its findings by 1979, it became clear 
that although several datasets existed, no indi
vidual dataset contained enough information to 
deliver sufficient granularity to allow the full 
assessment of drug use in outpatient practice.

The Commission began to interview hybrid 
data sources that illustrated new links between 
the public and private nature of prescriber data 
sets. Fledgling HMOs such as Kaiser Permanente 
and the Group Health Cooperative of Puget 
Sound developed in‐house proprietary data
bases that linked both prescription claims and 
outcomes data in the same place [31]. Exploratory 
work by Hershel Jick following the use of the 
blockbuster antiulcer drug Tagamet® (cimeti
dine) in Puget Sound pharmacies suggested that 
this approach could be quite promising [32]. 
Another hybrid form was introduced by Noel 
Munson, a spokesman from Prescription Card 
Services (PCS), a private prescription data 
 company that acted as a “fiscal intermediary” for 
public payment groups like Medicare and 
Medicaid and other groups that paid for pre
scription drugs. But these individual companies 
(e.g., PCS) appeared to code their data according 
to their own proprietary software [31]. Even 
within the Medicaid system, the promise of 
effortless data linkage remained a dream in the 
late 1970s, complicated by wide state‐by‐state 
discrepancies in patterns of coding, storing, and 
retrieving prescription data [31].

If the 1980 publication of the Joint Commis sion 
report represented a high point of collaboration 
between market researchers, epidemiolo gists, 
policy reformers, and sociologists in imagining 
an early “big data” universe for therapeutic sur
veillance, it also represented a dream of collabo
rative work that would soon dissipate. Like many 

other grand designs for federally sponsored 
health programs conceived in the later 1970s 
and proposed in the early 1980s, its speculative 
structures would never materialize, its measures 
would be left unfunded, and subsequent calls for 
a center for postmarketing surveillance would be 
repeated, and unfunded, every few years for sev
eral decades. Only in the past decade, with the 
passage of the Food and Drug Administration 
Amendments Act of 2007 (FDAAA), would a 
substantial US public investment be made in the 
construction of a linked public prescription 
database for pharmacoepidemiologic research, 
with the creation of the FDA’s new automated 
pharmacovigilance program, the Sentinel 
Initiative, which officially launched in 2016 (see 
Chapter 25).

European Pharmacoepidemiologic 
Trends and Ethics

In Europe, several nations with centralized 
national health systems like England and 
Sweden created prescription surveillance 
systems by the second half of the 20th century. 
Scandinavian countries in particular had long 
histories of centrally organized pharmacy 
records and more tightly controlled national 
formularies of allowable drugs [33]. Moreover, 
the World Health Organization had set up a 
regional European Drug Utilization Group in 
Oslo which held a prominent conference on the 
overprescribing of prescription drugs in 1969 
[34] and then proceeded to develop methods of 
comparing utilization across drug classes and 
across national pharmacy standards [35]. 
Ironically, even in countries such as Sweden, 
much of the prescription data came from the 
private sector [33,36,37]. Still, pharmacoepide
miologic research in Europe continued to 
receive substantial public support throughout 
the 1970s, 1980s, and 1990s.

The founding of the European Medicines 
Agency (EMA) in 1995 was a crucial step toward 
a pan‐European supervision of medicines. The 
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decentralized agency is critical to the European 
Medicines Regulatory Network (EMRN), part
nering with the European Commission (EC) and 
national authorities of European Economic Area 
(EEA) member states (the Heads of Medicines 
Agencies [HMA] network). The EMRN’s main 
objective is to achieve a consistent approach to 
medicines regulation across the EU. In collabo
ration with network partners, the EMA oversees 
the scientific evaluation, safety and efficacy 
monitoring of human (and veterinary) medi
cines in the EU. For most innovative medicines, 
including those for rare diseases, a central 
assessment and marketing authorization coordi
nated by the EMA is compulsory. In cases of 
human medicines, the EMA’s Committee for 
Medicinal Products for Human Use (CHMP) 
carries out a scientific assessment, based on 
which the EC decides whether to grant market
ing authorization. Once granted, such a central
ized marketing authorization is valid across the 
EU. Predominantly, though, medicines in the 
EU  are authorized by member states’ national 
authorities.

Shared, key ethical requirements in European 
pharmacoepidemiologic research came to 
include beneficence, transparency, scientific 
independence, and integrity. Yet, inconsistent 
application and authorization procedures for 
clinical studies in European Union (EU) and 
European Economic Area (EEA) member states 
have long been criticized. This also applies to 
pharmacoepidemiology and pharmacovigilance. 
Especially for multinational, noninterventional 
studies (NIS), it has been lamented that “… a 
patchwork of regulations and codes of conduct 
have to be followed” [38].

Partly in response to some of these issues, since 
the early 2000s new EU regulations, directives, 
and guidelines have been introduced. These aim 
to facilitate ethical, effective pharmacoepidemio
logic practices in and across different member 
states. Currently, crucial regulatory changes are 
under way that will affect pharmacoepidemiol
ogy and pharmacovigilance in the EU.

The EU pharmacovigilance legislation aims to 
minimize risks and harms posed by adverse drug 
reactions (ADRs). Its implementation is over
seen by the EMA, EU member state authorities, 
and the European Commission (EC). Key legal 
documents for the pharmacovigilance legisla
tion and pharmacoepidemiologic studies are EU 
Regulation No 1235/2010 and Directive 2010/84/
EC [39]. In effect, the regulation outlines 
 measures for safeguarding patients’ safety and 
rights and asserts the crucial role of healthcare 
professionals in reporting ADRs. It moreover 
acknowledges the necessity to develop EU/EEA‐
wide “… harmonized guiding principles for, and 
regulatory supervision of, postauthorization 
safety studies that are requested by competent 
authorities and that are noninterventional, that 
are initiated, managed or financed by the mar
keting authorization holder” [39]. Among other 
deliverables, the regulation established the 
EudraVigilance database as a main platform for 
the obligatory reporting of ADRs by marketing 
authorization holders and respective national 
authorities.

In response to the benfluorex scandal, the 
 legislation was amended in 2012. Servier 
Pharmaceuticals’ Mediator® (benfluorex), mar
keted as an add‐on for diabetes and hyperlipi
demia, was under pharmacovigilance 
investigation in France since 1998. It was found 
that the drug caused cardiovascular complica
tions in 2003. In response, Servier did not reap
ply for marketing authorization in Spain and 
Italy, effectively withdrawing the product from 
the market in those countries. However, benflu
orex continued to be available and approved for 
diabetes treatment in France and other countries 
until 2009, when its authorization was fully 
revoked; its efficacy was found to be limited and 
it risked causing cardiac valvulopathy [40]. 
Subsequently, EU Regulation No 1027/2012 and 
Directive 2012/26/EC were published, amend
ing the 2010 EU pharmacovigilance legislation. 
The amendments especially addressed the issue 
that safety measures for medicinal products 
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need to be implemented consistently and in a 
timely fashion in all member states where 
respective products were authorized.

The benfluorex scandal points to broader 
challenges regarding pharmacovigilance and 
pharmacoepidemiologic research in the EU: 
 regulations and guidelines need to be applied 
across multiple states and to different actors, 
including national marketing authorization 
holders and applicants. While the legislation 
outlines fairly broad objectives, responsibilities, 
and issues, these are specified in concrete deliv
erables. One of these deliverables was the 
 founding of the EMA Pharmacovigilance Risk 
Assessment Committee (PRAC) which moni
tors and assesses drug safety in the EU. Moreover, 
it initiated the development of the EMA’s Good 
Pharmacovigilance Practices (GVP) guideline 
(described later in this chapter).

The European Network of Centres for 
Pharmacoepidemiology and Pharmacovigilance 
(ENCePP) was established in 2006 and is coordi
nated by the EMA. It is an expertise and resource 
network focused on pharmacoepidemiology and 
pharmacovigilance in Europe. It consists of part
ners that are public and not‐for‐profit organiza
tions, including research and pharmacovigilance 
centers, university hospitals, healthcare data
base hosts, and electronic registry sponsors. 
For‐profit organizations, such as contract 
research institutions, may only participate if 
they conduct pharmacoepidemiologic and/or 
pharmacovigilance studies commissioned by 
third parties. While pharmaceutical companies 
are not eligible for becoming ENCePP partners, 
the network provides relevant resources and 
allows for these companies to be involved in 
public document reviews.

The ENCePP offers crucial guideline docu
ments for pharmacoepidemiology and pharma
covigilance: a Code of Conduct; the ENCePP 
Checklist for Study Protocols; and the 
ENCePP  Guide on Methodological Standards 
in Pharmacoepidemiology. The Code lays 
down  rules and principles aimed at ensuring 

transparency and scientific independence. 
While adherence to the Code is voluntary, it is 
required to receive the ENCePP Seal. 
Conditions for receiving the Seal are, among 
others, that a study is entered in the EU PAS 
Register and that it is of scientific and public 
health relevance, rather than mainly pursuing 
results which may promote certain medicinal 
products. The Checklist is meant to ensure that 
studies adhere to epidemiological principles, 
while also considering methodological trans
parency and the need for public outreach.

East Asian Pharmacoepidemiologic 
Trends and Ethics

East Asia has made major contributions as the 
field of pharmacoepidemiology has grown, 
producing a very robust body of 
pharmacoepidemiologic research that has 
expanded in recent decades. Researchers in 
South Korea, Japan, and Taiwan have linked 
into comprehensive data systems on insurance 
claims created through universal insurance 
coverage of these entire national populations. 
To help protect patient privacy, these databases 
have been made available for drug safety 
research only to researchers in nonprofit 
organizations who must apply and undergo 
ethical review [41].

The Korea Food and Drug Administration 
(KFDA) launched an adverse drug reaction 
(ADR) reporting system in 1988, although the 
reporting rate was initially very low. In 2004, the 
KFDA mandated that pharmacists and pharma
ceutical companies report adverse drug reac
tions. The KFDA also established regional 
pharmacovigilance centers in university hospi
tals that now provide nearly complete coverage 
of the country. The KFDA funded a pharma
covigilance research network (PVNet) among 
these centers, and researchers in the network 
use their data for studying adverse events. The 
Korean national health insurance database also 
contains all information on insurance claims 
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made and prescriptions for approximately 
50 million Koreans, and this has been used for 
pharmacovigilance [41].

In Japan, drug manufacturers are required 
to  report adverse drug reactions to the 
Pharmaceuticals and Medical Devices Agency 
(PMDA). A partial adverse drug reaction data
set is available to researchers through the 
PMDA website. Healthcare professionals report 
adverse drug events to the Ministry of Health, 
Labor and Welfare. Japan made its national 
insurance claims database available for drug 
safety researchers in 2011. The database covers 
the entire population of 128 million and 
includes basic patient characteristics, drug pre
scription and dispensing, medical procedures, 
hospital admission, and annual health check 
data (for some patients) [41]. To protect patient 
privacy, Japan’s national database is usually not 
available for purchase and may only be shared 
in some cooperative research projects [42]. The 
Japanese government has also created the 
Medical Information for Risk Assessment 
Initiative (MIHARI) to access data from differ
ent sources and create a central database with a 
common data format [43].

Taiwan requires mandatory reporting of seri
ous adverse reactions by medical institutions, 
pharmacies, and drug and device companies, as 
well as obligatory safety reports for newly 
marketed drugs over a five‐year surveillance 
period. In Taiwan, the National Adverse Drug 
Reactions Reporting System has been the 
primary source for postmarketing surveillance 
of adverse drug events. Taiwan’s single‐payer 
National Health Insurance (NHI) program was 
created in 1995 and covers more than 99% of the 
population. The NHI Research Database is thus 
a highly comprehensive dataset including basic 
patient data, care record and expenditure 
claims, and pharmaceutical reimbursements. 
There are also subject datasets available to 
researchers on topics such as traditional Chinese 
medicine, cancer, diabetes, dental, catastrophic 
illness, and psychiatric care. Patients and 

 medical facilities are deidentified for pharma
coepidemiologic research use of the NHI 
Research Database [41]. To protect patient 
 privacy, researchers using Taiwan’s NHI 
Research Database also receive data for 10% or 
less of the population. Ethical policies for data 
privacy stipulate that no individual‐level data 
can be shared with researchers from other 
countries [42].

China and other East Asian countries also 
have been creating national healthcare claims 
databases [44]. In China, the Shanghai Center 
for Adverse Drug Reaction Monitoring has 
 operated a drug surveillance and evaluation 
 system since 2001 that works with patient infor
mation from 10 Shanghai hospitals [43]. 
The  Asian Pharmacoepidemiology Network 
(AsPEN) was recently established as a multina
tional research network for pharmacoepidemio
logical research that promotes international 
communication among academia, government, 
industry, and consumers. The network functions 
to promptly identify drug safety issues [44].

Pharmacoepidemiology ethics in East Asia 
are similar in many ways to those of Western 
countries, including features such as institutional 
ethical review and guiding principles such as 
beneficence, justice, autonomy, and data 
privacy. However, experts on East Asian 
bioethics also have recognized some distinc
tions. For example, scholars have contended 
that much East Asian bioethical thinking 
reflects value systems that emphasize the family 
and public interest ahead of the individual rights 
of the liberal subject that characterize much of 
Western bioethics. The family is often depicted 
as responsible for taking care of members who 
become sick, and medical decision making has 
often been family based. Some also have noted a 
plurality of ethical perspectives within East 
Asia, contending that a simple Eastern and 
Western bioethical dichotomy of communitar
ian versus individualistic values would be overly 
simplistic. Others have viewed bioethics as a 
Western entity, promoting the development of 
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Asian bioethics based more on the traditions, 
philosophies, religions, and perspectives of the 
region’s cultures [45]. Future policies should con
sider these issues as core principles for pharma
coepidemiologic research ethics are discussed.

 Methodologic Problems to be 
Solved by Pharmacoepidemiologic 
Research

More work remains to establish international 
ethical policy harmonization while also promot
ing practices that support cultural variation in 
ethical values. Yet, as pharmacoepidemiological 
practices developed in different national con
texts that have been incorporated into increas
ingly globalized flows of pharmaceuticals and 
pharmaceutical‐related information, a number 
of ethical principles and practices have been 
adopted widely across international settings in 
efforts to establish consistent pharmacoepide
miologic methodology.

The expansion of the field of pharmacoepide
miology has coincided with the establishment 
and institutionalization of the discipline of bio
ethics. Numerous critical ethical concepts took 
hold early in pharmacoepidemiology and have 
remained significant over time. For example, pri
vacy of medical data is a historically consistent 
value guiding the ethics of global pharmacoepi
demiologic research. Pharmacoepidemiologic 
research protocols and/or database designs also 
often have been subjected to review by institu
tional review boards as external review has 
become increasingly widespread for biomedical 
research since the second half of the 20th cen
tury, although there is variation in the nature of 
this review. For example, some pharmacoepide
miologic research has been reviewed by institu
tional or national ethics boards, as well as by 
privacy boards [46]. Some countries also do 
not  require ethical review for deidentified 
datasets [47].

Informed Consent

Informed consent became increasingly valued 
as a critical standard of international research 
ethics following its establishment as a corner
stone of the 1964 Declaration of Helsinki, a 
ground‐breaking statement of international 
human experimentation ethics [48]. However, 
the role of informed consent has been per
ceived differently in interventional versus non
interventional research studies. Many ethicists 
of international human subject research have 
argued that since pharmacoepidemiologic 
research involves relatively low risks to partici
pants, patient consent is necessary only for 
studies that involve contact with patients/
research subjects, such as for direct interven
tion or prospective gathering of information. 
There has been a broad acceptance among ethi
cists allowing researcher access to identifiable 
medical records for pharmacoepidemiologic 
research without explicit individual subject 
authorization [46]. Research has also found 
that public opinion has echoed the views of 
professional ethicists that pharmacoepidemi
ologists should be permitted to use identifiable 
patient records, without patient consent, to 
study drug safety as long as existing ethical 
guidelines and relevant laws are followed [49].

A number of nations, however, require explicit 
informed consent from each study participant, 
and there are also international variations in 
requirements for electronic consent versus hard 
copy written consent. Ethical regulatory dishar
mony causes differences in study conduct 
between countries and increases the cost of 
assembling multinational data. This poses 
 challenges for conducting large international 
studies capable of detecting rare events. 
Additionally, requirements of explicit individual 
informed consent are problematic in that they 
can corrupt data by preventing a postmarketing 
pharmacoepidemiologic study from detecting 
fatal or serious events since people who have died 
are unable to provide informed consent [47]. 
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Thus, it is unsurprising that ethicists weighing 
risks and benefits have tended to contend that 
individual consent is not essential for use of patient 
records in pharmacoepidemiologic research.

However, over time it has become normative 
that pharmacoepidemiologists also must meet 
certain requirements when conducting research 
in which participant consent is waived. These 
requirements often include that the use of pro
tected health information involves no more 
than minimal risk to patients, the research could 
not be effectively conducted without access to 
the protected health information and/or the 
waiver of individual consent, the privacy risks to 
individuals are reasonable in relation to any 
value to the individuals of the knowledge 
expected to result from the study, there is a 
sound plan to protect patients from improper 
use or disclosure of their information, there is a 
plan to destroy identifiers at the earliest oppor
tunity consistent with the research, and the data 
will not be shared with external parties to the 
research [46].

Recent attention has been given to waiver of 
patient informed consent to use data on sub
stances of abuse or drugs that carry social stigma. 
Patient privacy is essential in these areas of 
research; however, requiring informed consent 
for each patient or allowing retraction of sensi
tive drug information from patient records leads 
to partial datasets that impede the ability of 
researchers to study the impact of these sub
stances on patient health outcomes. The negative 
consequences of failing to collect sound pharma
coepidemiologic data on the health effects of 
these substances are likely worse than the rela
tively minimal risk associated with waiver of 
patient consent. However, in such circumstances, 
the highest precautions should be taken to pro
tect patient privacy, such as deidentifying data 
through secure codes or potentially having extra 
ethics training requirements for all researchers 
using data on stigmatized or abused substances. 
(See Chapter 28 for further discussion of phar
macoepidemiology research on drugs of abuse.)

Ethics of Surveillance

Surveillance has long provoked public concern 
regarding privacy, confidentiality, and autonomy. 
This is relevant to postmarketing surveillance, 
since health information is seen as highly sensitive 
and personal. Thus, pharmacoepidemiologic 
researchers need to balance possible risks to a 
larger population against the harms concerning 
individuals, such as a possible infringement of pri
vacy. While privacy is highly important to the eth
ics of pharmacoepidemiologic research, privacy is 
not an absolute value, nor does it seem to have 
been perceived as such in public health surveil
lance history. Rather, privacy is one of multiple 
values that are balanced in public health surveil
lance [50]. It has been argued that ensuring  privacy 
is part of the broader value of protecting auton
omy. Yet other key principles to be balanced in 
pharmacoepidemiologic research include benefi
cence to promote research that adds to the exist
ing knowledge base of medicine to improve patient 
health and prevent mortality; nonmaleficence, or 
the prevention of patient harm; and justice, which 
manifests as the fair distribution of research bur
dens and benefits among people [51].

Risks of surveillance can be minimized through 
confidentiality and data anonymization. Such 
strategies are ethically imperative, since they safe
guard individuals’ rights, privacy, autonomy, and 
dignity. Applying the highest ethical standards 
and communicating with the public about poten
tial criticism are also important for a positive pub
lic perception of pharmacoepidemiology.

While there have been some disagreements, 
international ethics policies have developed 
some common stances toward ethical review of 
drug surveillance. Certain pharmacoepidemio
logic research tends to qualify as exempt from 
ethics board review or qualifies for expedited 
review by an ethics board chair or a designated 
member. For studies in which it is not possible for 
investigators to identify individual patients, eth
ics board review is often not required. For exam
ple, the US 45 Code of Federal Regulations 46.101 
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exempts from institutional review “research 
involving the collection or study of existing data, 
documents, records, pathological specimens, or 
diagnostic specimens, if these sources are pub
licly available or if the information is recorded by 
the investigator in such a manner that subjects 
cannot be identified, directly or through identifi
ers linked to the subjects” [52]. In many coun
tries, research is also often eligible for expedited 
review if it poses no more than minimal risk to 
patients and involves a retrospective analysis of 
existing records. Still, ethics review policies vary 
internationally and by institutional practice, 
depending inter alia on respective national/state 
regulations, posing challenges for global collabo
rative studies [53]. This may lead to inconsistent 
risk–benefit assessments and variations in bal
ancing subjects’ protection (e.g., regarding safety 
and privacy) against public health interests.

The European Medicines Agency’s guideline 
on Good Pharmacovigilance Practices (GVP) 
provides a useful differentiation between “active 
surveillance” and “passive surveillance.” Active 
surveillance is defined as a continuous, 
systematic process of monitoring adverse events 
in a population. For example, a risk management 
system may be put in place which allows for the 
active surveillance of patients receiving a 
medicinal product. Another active surveillance 
option would be the monitoring of laboratory 
reports to detect adverse events. Active 
surveillance may be part of interventional or 
noninterventional studies (NIS). Passive 
surveillance, based on patients’ spontaneous 
reporting, for example, is commonly seen as less 
effective, because it runs the risk of delivering 
less comprehensive data [54].

Ethical Benefits of Pharmacoepidemiologic 
Research for Data Integrity

From a broader ethical perspective, it is increas
ingly clear that the expansion of pharmacoepide
miological research can provide added benefits to 
drug research by detecting groups at risk for 

adverse events. Thus, the field can play an impor
tant role in reducing drug safety data inequalities. 
For example, expanding drug outcomes data for 
groups such as minorities or small/rare genetic 
subpopulations who may have treatment out
come variations that can only be identified and/or 
adequately quantified and measured through 
large postmarketing pharmacoepidemiologic 
studies may provide substantial benefits for mem
bers of these populations. There are also limited 
data on the efficacy and safety of drugs in children 
due to the fact that historically, children have 
often not been included in randomized controlled 
trials (RCTs). Pharmacoepidemiologic research 
helps to fill these research gaps [55]. However, it 
would be ethically problematic for pharmacoepi
demiology to be relied on solely to provide miss
ing data on children, minorities, or other 
subgroups in lieu of RCTs, particularly in cases 
when RCTs could produce more robust data.

Further, pharmacoepidemiologic studies are 
usually conducted after drug approval, and there 
is high variability in the frequency and design of 
postmarketing pharmacoepidemiologic research 
[56]. Such studies are not necessarily required, 
and so are not a consistently reliable source of 
information on drug outcomes among diverse 
demographic groups. Clinical trials are usually 
required for drug approval and are thus a mecha
nism for ensuring broader implementation of 
policies requiring the inclusion of diverse research 
subjects [48]. Ultimately, consistent with recur
ring concerns over ethical practices in pharma
coepidemiologic research in general, ethicists 
have noted that pharmacoepidemiology related 
to subpopulations would benefit from a more 
explicit legal ethical framework, particularly to 
clarify ethical requirements for data sharing [57].

Problems of Conflicts of Interest 
for Drug Industry Research

Academia–industry collaborations have become 
a critical area of concern for the ethics of 
 pharmacoepidemiologic research, particularly in 
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recent decades as pharmaceutical profits have 
soared and the stakes have been raised for the 
outcomes of research on drug safety and efficacy. 
There is an inherent conflict of interest in 
research that is funded by drug companies to 
assess their own products. Academic settings in 
which researcher success and advancement 
depend on obtaining external funding also can 
exacerbate the ethical problems resulting from 
direct relationships between drug companies and 
the pharmacoepidemiologists evaluating their 
products. Investigators in such environments are 
under professional pressure to secure funding, 
and in a climate of heightened competition for 
public funding sources, an academician who 
establishes a positive working relationship with a 
pharmaceutical research sponsor may increase 
his/her chances of obtaining future funding from 
that sponsor.

This creates an incentive, whether subcon
scious or acknowledged, for researchers to con
duct studies that sponsoring drug companies 
will find favorable. Indeed, studies have shown a 
trend toward more favorable efficacy results 
and conclusions for industry‐sponsored drug 
research than research sponsored by other 
sources, finding a bias in industry‐funded 
research that cannot be otherwise explained by 
standard assessments of risk of bias [58,59]. 
There are a number of feasible solutions to 
address the ethical conflicts of interest in indus
try‐funded research.

 Currently Available Solutions

Good Pharmacoepidemiology 
and Pharmacovigilance Practices

The International Society for Pharmacoepide
miology (ISPE) has created Guidelines for Good 
Pharmacoepidemiology Practice (GPP), which 
provide a model for key pharmacoepidemiologic 
research ethics policies. The guidelines recom
mend that researchers include a description of 

quality control procedures; plans for protecting 
human subjects; confidentiality provisions; ethi
cal conditions under which a study would termi
nate; the use of Data Safety Monitoring Boards 
where appropriate; institutional review board 
and informed consent considerations in accord
ance with local laws; research study registration; 
and plans for disseminating study results [60]. 
However, ISPE GPP policies are nonbinding and 
therefore do not resolve concerns regarding 
national variations in ethical oversight and 
requirements by regulatory agencies for post
marketing pharmacoepidemiologic work [47].

European Union policies provide a useful 
example of transnational efforts at regulatory 
standardization of good pharmacovigilance 
practices. EU documents concerning biomedi
cal research in general and pharmacoepidemio
logic research commonly speak of two types of 
clinical studies, broadly speaking: interven
tional, that is, experimental, and noninterven
tional, sometimes called observational research. 
On the one hand, pharmacoepidemiologic 
research relies on noninterventional study 
designs such as case–control or cohort studies. 
On the other hand, interventional RCTs are an 
important element of postmarketing pharma
coepidemiology studies (see Chapter 32).

The EMA defines Good Pharmacovigilance 
Practices (GVP) as “a set of measures drawn up 
to facilitate the performance of the safety moni
toring of medicines in the European Union” 
[54]. It includes chapters on pharmacovigilance 
processes as well as product‐ and population‐
specific considerations. For EU pharmacoepide
miologic postauthorization safety studies 
(PASS), module VIII is particularly relevant. 
PASS may be interventional or noninterven
tional. Although the module touches upon 
interventional studies too, emphasis is put on 
noninterventional PASS.

In accordance with the EU pharmacovigilance 
legislation, the GVP stipulates that the EMA 
needs to ensure that protocols and abstracts of 
PASS results are published. While the primary/
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lead investigator is responsible for the informa
tion provided, the registration may be made by, 
for example, research center staff or representa
tives of pharmaceutical companies funding a 
study. Where possible, this should be done 
before the study commences. Practically, regis
tration and publication are processed through 
the EU postauthorization study (PAS) register, 
hosted by the ENCePP [61]. As the ethics review 
procedure and requirements for respective com
mittees depend on national legislation, informa
tion on individual application procedures is not 
included in the GVP. While there is no EU regu
lation or directive for NIS, interventional studies 
are covered in the Clinical Trials Regulation.

In the European Union, methodological, ethi
cal, and legal requirements for pharmacoepide
miologic research hinge significantly on whether 
a study is categorized as a “clinical trial” or as 
“noninterventional/nonexperimental.” Both cat
egories are defined as “clinical studies” aimed at 
discovering or confirming the (adverse) effects 
of medicinal products [62]. For pharmacoepide
miologic studies involving clinical trials, the 
introduction of the EU Clinical Trials Regulation 
(CTR) No 536/2014 will be decisive [63].

The CTR was adopted on 16 April 2014 and 
entered into force on 16 June 2014. According to 
the EMA, it will come into application in late 
2019, starting a transition period of three years 
[64]. It is meant to harmonize research practices 
and to ensure the highest methodological and 
ethical standards across all EU as well as EEA 
EFTA member states. To what extent it will 
deliver on these promises is under discussion 
[65,66]. The regulation replaces the Clinical 
Trials Directive 2001/20/EC which is said to 
have “… failed to achieve its goal of simplifying 
the scientific and ethical review of clinical trials 
in the EU” [67].

Moreover, the ENCePP had problematized 
the NIS definition given in the 2001 directive. 
The ENCePP raised the issue that the definition 
was not sufficiently specific and created 
uncertainty as to what counts as NIS or RCT. 

Pharmacoepidemiologic prospective case–
control studies − like the IPPHS investigation of 
primary pulmonary hypertension (PPH) occur
rence in association with anorectic agents − 
would classify as a clinical trial according to the 
2001 directive. Its ambiguous NIS definition 
was thus criticized for impeding the conduct of 
pharmacoepidemiologic studies [68].

The ENCePP Guide on Methodological 
Standards in Pharmacoepidemiology (Revision 
6, July 2017) lays down rules and principles for 
transparency and scientific independence. 
Chapter 9 of the Guide deals with ethical aspects 
of pharmacoepidemiology, focusing on patient 
and data protection (9.1) and scientific integrity 
and ethical conduct (9.2). It identifies key values 
based on documents such as the ADVANCE 
Code of Conduct for Collaborative Vaccine 
Studies, the GPP of the International Society 
for  Pharmacoepidemiology, and the Good 
Epidemiology Practice (GEP) guidelines of the 
International Epidemiological Association. The 
Guide highlights that “principles of scientific 
integrity and ethical conduct are paramount in 
any medical research” and points out that the 
above‐mentioned ENCePP code of conduct “… 
offers standards for scientific independence and 
transparency of research in pharmacoepidemi
ology and pharmacovigilance” [69]. In addition, 
it highlights core values, such as best science, 
strengthening public health, and improving 
transparency, as stressed by the ADVANCE 
Code of Conduct. It also emphasizes the need 
for ensuring scientific autonomy, beneficence, 
nonmaleficence and justice, according to the 
four general ethical principles defined in 
the GEP guidelines.

Protections Against Conflicts of Interest 
for Drug Industry‐Sponsored Research

While industry‐sponsored research creates real 
challenges for conflicts of interest, industry also 
has an interest in maintaining public trust in 
product integrity, as well as in compliance with 
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regulatory ethical and methodological require
ments to obtain drug approval. Thus, there is 
some incentive for industry to address concerns 
about conflicts of interest. The Board of 
Directors of the International Society for 
Pharmacoepidemiology has published a set of 
principles for academia–industry collaboration 
that can be helpful in managing industry con
flicts of interest. It includes the importance of 
transparent research agreements, open and 
complete disclosure of conflicts of interest, reg
istration of research protocols in public sites 
such as the ENCePP registry or ClinicalTrials.
gov, compliance with local laws, clarity on confi
dentiality of proprietary information while also 
ensuring reporting of all relevant and important 
information to regulators, the potential value of 
having a steering committee and/or an inde
pendent advisory committee to the research, 
and an obligation to disseminate and publish 
research findings of potential scientific or public 
health importance irrespective of results [70].

While all these principles are helpful in man
aging financial conflicts of interest, they do not 
eliminate the inherent problem of drug compa
nies having a stake in the outcomes of research 
that they sponsor or the ethical concerns associ
ated with the power dynamics of industry 
directly funding investigators as described 
above. To eliminate these underlying ethical 
problems, the direct relationships in which 
companies fund individual investigators to 
assess specific products would need to be sev
ered. Alternative models that eliminate these 
ethical conflicts can be easily envisaged. For 
example, the British Drug Safety Research Unit 
(DSRU), an independent charity supported by 
the National Health Service, conducts publicly 
funded pharmacoepidemiologic research [43]. 
Still, the organization conducts a large amount 
of research funded by unconditional donations 
from pharmaceutical companies. However, the 
companies have no control on the conduct or 
the publication of studies conducted by the 
DSRU [71] which helps to mitigate the pressure 

of inherent conflicts of interest in industry‐
funded research.

Given that industry funding may lead to biased 
study results, a comprehensive solution could 
build from the DSRU model, for example by 
requiring sponsors of new drugs to contribute an 
unconditional fee to drug regulators that would 
fund pharmacoepidemiologic research. By mak
ing such contributions mandatory rather than 
voluntary, investigators could conduct studies 
without concern as to whether results may influ
ence future industry donation decisions. In the 
US, for example, the expansion of the FDA’s 
Prescription Drug User Fee could easily establish 
a fund for pharmacoepidemiologic research.

 The Future

The ethical conduct of pharmacoepidemiologic 
studies is of crucial importance for subjects’ 
safety, health, and wellbeing. Moreover, it is 
decisive for the public perception of pharma
coepidemiology. Research in this field is rooted 
in the moral obligation to preempt or at least 
minimize medicine‐related harms and health 
hazards. Implementing highest ethical stand
ards helps to avoid potential damage to the 
public image of the field and public trust in 
claims of pharmacoepidemiological research as 
a disinterested form of expert knowledge. Such 
damage may be related to research practices 
compromised by economic interests or mis
conduct of the pharmaceutical industry. Thus, 
scientific integrity, independence, and trans
parency will continue to be crucial for the 
 ethics of pharmacoepidemiologic research.

Even in the recent past, regulatory amend
ments relevant to pharmacoepidemiology and 
pharmacovigilance were often triggered by 
scandals, although a dream to make pharma
coepidemiology a proactive rather than a reac
tive field can be traced back to the 1960s if 
not earlier. Adjusted, new, and emerging regula
tions and guidelines aim at promoting ethical 
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pharmacoepidemiologic research that effectively 
identifies and reports ADRs, thus allowing for 
timely responses. New policies must also be 
more thoroughly transnational and attentive to 
global variations in ethical beliefs. A main chal
lenge is and will continue to be to translate inev
itably general documents into practical 
instructions and relevant local practices.

In the future, national regulatory authorities, 
universities, and research centers will continue 
working to align requirements towards coherent 
pharmacoepidemiologic research ethics. It is to 
be expected that further regulatory efforts will 
be invested in streamlining requirements for 
ethics review boards and ethical guidelines for 
noninterventional studies, especially across the 
EU. Although recent regulations and directives 
in the EU hope to address several pressing 
issues, many of these are complicated anew by 
the UK’s announced withdrawal from the EU. 
This has already triggered practical changes, 
such as the relocation of the European Medicines 
Agency from London to Amsterdam in March 
2019. Moreover, legal uncertainties are 
increasing [72], as it has been disclosed by the 
UK Department for Exiting the European Union 
that the post‐Brexit guidelines for clinical 
studies in the UK may deviate from EU 
legislation [73].

Transparency has been stressed as a key ele
ment for ensuring ethical pharmacoepidemio
logic practices. Moreover, data sharing is 
pivotal for effective pharmacoepidemiology 
and pharmacovigilance. At the same time, 
researchers are required to safeguard subjects’ 
privacy and dignity. Developments such as the 
open data movement on the one hand and 
 regulations aimed at protecting individuals’ 
privacy on the other hand put researchers in a 
difficult position. At an increasing rate, there is 
a tendency to require public accessibility of sci
entific results and even data. Simultaneously, 
privacy concerns and potential regulations may 
pose challenges for data (re‐)use in pharma
coepidemiologic studies [74].

Heightened attention has already been paid to 
the environmental, polluting effects of pharma
ceutical residues. Regulatory documents, such 
as the EU pharmacovigilance legislation, 
acknowledge that “the pollution of waters and 
soils with pharmaceutical residues is an emerg
ing environmental problem” [39]. Research 
examining the adverse effects of pharmaceuti
cals on the environment has been labeled phar-
macoenvironmentology. With its focus on the 
environmental impact of drugs given at thera
peutic doses, it is considered part of pharma
covigilance [75]. Assuming that environmental 
issues will continue to be high on the political 
and scientific agendas, pharmacoepidemiologic 
expertise will be increasingly needed to assess 
medicines as pollutants. In this context, phar
macoepidemiologists will need to employ and 
expand their methodological repertoire for 
studies investigating medicines’ adverse effects 
on the environment. This development might 
also imply an amplified need for novel, interdis
ciplinary research collaboration involving 
pharmacoepidemiologists.

Such collaboration is also characteristic for 
another emerging intersection, between phar
macoepidemiology, computer, and data sci
ence. Research at the intersection of digital 
services, big data, and public health is a poten
tially promising but precarious field. It has been 
demonstrated that emerging digital data 
sources like social networking sites can func
tion as complementary resources for pharma
coepidemiology. The use of such data sources, 
often referred to as a type of big data, is atypical 
for pharmacoepidemiologic studies but may 
become more common in the future. Research 
drawing on big data may take place outside 
medical departments or hospitals, for example 
being conducted by data scientists. Big data and 
emerging data science approaches have created 
new possibilities for pharmacoepidemiologic 
research. For example, Freifeld et al. used data 
from the social networking site and microblog
ging service Twitter to monitor ADRs [76].
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The term big data has become associated with 
various leaks and scandals. The UK Science and 
Technology Committee concluded in a 2015 
report that data misuses and leaks have led to 
public skepticism concerning the use of big 
data [77]. Not only such negative connotations, 
but also scientific concerns regarding users’ 
 consent, autonomy, and privacy raise ethi
cal  questions about big data research. 
Pharmacoepidemiologic research involving big 
data requires careful ethical considerations for 
the individuals generating such data, for example 
users of social networking sites. Moreover, phar
macoepidemiologists need to consider the biases 
inherent to digital data sources: such bias can be 
caused by big data retrieved from populations 
that do not allow for generalizations. For instance, 
since individuals included in a digital data sample 
may represent only those using an expensive/
innovative technical device or service, these users 
could be on average younger or above average in 
access to health‐promoting resources [78]. In 
addition, the quality of such data may differ from 
other sources of data (e.g., medical records).

Research involving these alternative sources 
of data is subject to different laws and regula
tory frameworks when conducted in different 
global settings. For the US, access to health‐rel
evant information via social networking sites 
such as Facebook is at present legally possible, 
due to the lack of protection for health‐relevant 
data retrieved outside the traditional healthcare 
and research system. With regard to medical 
privacy, the Electronic Frontier Foundation 
(EFF) points out that social networking sites 
and other online services compromise US citi
zens’ control over their health data:

The baseline law for health information is 
the  Health Insurance Portability and 
Accountability Act (HIPAA). HIPAA offers 
some rights to patients, but it is severely 
 limited because it only applies to an entity if it 
is what the law considers to be either a “cov
ered entity” − namely: a health care provider, 
health plan, or health care clearinghouse − or 
a relevant business associate (BA). [79]

This also implies that content such as 
Facebook or Twitter data, despite their actual 
use as health indicators, are currently not pro
tected under the HIPAA. Yet, although arguably 
unlikely, this may change in the future. In addi
tion, scientists should not conflate legal with 
ethical requirements.

With regard to biomedical research, it has been 
pointed out that the ethical implications of big 
data research are, at least partly, uncharted terri
tory. Additional ethical considerations for phar
macoepidemiologic research involving big data 
are thus needed. This applies to the autonomy of 
data subjects but also to new corporate stakehold
ers and public–private partnerships. The latter 
may not merely involve pharmaceutical compa
nies or device manufacturers. Internet and tech
nology corporations may also play a role and 
require ethical as well as legal oversight, since they 
control access to digital data that could further 
complement pharmacoepidemiology in the future.
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When properly conducted, randomized con-
trolled trials (RCTs) are considered the gold 
standard for demonstrating the efficacy and 
safety of a medicine for regulatory approval. 
During the premarketing phases of drug devel-
opment, RCTs typically involve highly selected 
subjects and in the aggregate include at most a 
few thousand patients. These studies are 
designed to be sufficiently large to provide evi-
dence of a beneficial clinical effect and to 
exclude large increases in risk of common 
adverse clinical events. Premarketing trials are 
rarely large enough to detect small differences 
in the risk of common adverse events or to esti-
mate reliably the risk of rare events, whether 
serious or trivial (see Chapters 1 and 4). 
Quantification of these potentially important 
rare risks requires large studies, which typically 
are conducted after a drug is marketed. Because 
of design complexity and costs, large controlled 
trials are not generally considered for the post-
marketing safety evaluation of drugs.

Rather, observational designs are commonly 
used to evaluate the safety of medicines post 
approval. They may be the only means to study 

large populations under routine clinical condi-
tions or to evaluate a medicine’s association 
with rare events or long‐latency outcomes. 
Observational studies are therefore a logical 
complement to preapproval safety data  collected 
from RCTs, expanding the knowledge about a 
medicine’s safety profile as it is used in larger 
and more diverse patient populations. It is now 
generally accepted that data on a drug’s use 
among real‐world populations strengthen its 
evaluation, whether through organized research 
efforts or voluntary reporting systems [1–4], 
and pharmacoepidemiologic studies as a condi-
tion of regulatory approval for new medicines 
have increased over the past 15 years [5,6].

Despite notable advances in observational 
methods for assessing medicine safety, findings 
from observational studies are frequently 
 contested as the basis for regulatory and clinical 
decisions. One important reason is that epide-
miologic studies of medication exposures and 
their effects have difficulty measuring and 
 controlling for confounding in general, and con-
founding by indication for drug use (and/or 
severity of disease) specifically (see Chapter 33) 
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[7–9]. Concerns about uncontrolled confound-
ing are central to debates about the interpreta-
tion of observational study findings and have 
complicated the assessment of many potential 
medicine–adverse outcome associations [9–21].

Nonetheless, the options for investigating 
real‐world safety, or the safety of a medicine as 
it is actually prescribed by physicians and used 
by patients once on the market, are limited [21]. 
Postapproval RCTs are ethically and logistically 
difficult to conduct, are not appropriate to 
address many safety issues (e.g., rare or longer‐
term outcomes), and are unlikely to provide 
information on the safety of medicines in real‐
world populations. Thus, studies that are 
 observational and follow patients with minimal 
interference are often the only means by which 
to answer clinically meaningful questions about 
a marketed medicine’s safety and to study 
patients in settings that generalize to real‐world 
medicine use.

The ideal design for a postapproval safety study 
is one that minimizes the potential for bias yet is 
still relevant to real‐world clinical practice. 
A design that in principle merges the ideal char-
acteristics of the randomized controlled trial 
(randomization) with those of an observational 
epidemiology study (follow‐up with minimal 
intervention) is the large simple trial (LST) [22–
24]. LSTs are characterized by large sample sizes, 
often in the thousands; broad entry criteria con-
sistent with the approved medication label; rand-
omization based on  equipoise, that is, neither 
physician or patient believes that one treatment 
option is superior; minimal data requirements 
such as a questionnaire or case report form usu-
ally collecting data in only a few pages with 
 questions limited to key variables that are typi-
cally collected at routine clinical care visits; 
objectively measured endpoints (e.g., death, hos-
pitalization); follow‐up that minimizes interven-
tions or interference with normal clinical practice; 
 follow‐up of all patients regardless of whether 
they discontinue randomized medication; and 
intent‐to‐treat (ITT) analysis examining the 

entire  population of randomized subjects accord-
ing to the treatment group to which they were 
initially randomized.

Although the LST design shares a key design 
component, randomization, with an RCT, it is 
distinguished by its intent to minimize interfer-
ence with usual medical care. In the typical 
RCT, the intent is restriction and control to cre-
ate experimental conditions at baseline and over 
the course of the study. In contrast, in the LST 
the intent is to create balance of baseline char-
acteristics but to then follow patient outcomes 
using observational methods. Practically, this 
means that endpoint definition, physician and 
patient recruitment, drug delivery, data collec-
tion, allowance for treatment discontinuation, 
concomitant drug use, and patient and site 
monitoring in a LST are operationally different 
from that of a RCT. Recent studies referred to as 
pragmatic clinical trials (PCTs) typically fall 
somewhere in between these approaches, where 
the goal is to introduce one or more pragmatic 
elements into the design but with substantial 
protocol‐required follow‐up and testing outside 
usual care practice. We view the LST as a type of 
PCT, at the far end of a continuum of pragmatic 
randomized designs, where the goal of the LST 
is to adopt as many pragmatic elements as 
 possible to mimic usual care practice while 
 protecting study validity.

Most calls for the use of the LST design have, 
until recently, primarily focused on the need for 
studies of clinically important therapeutic or 
preventive effects of interventions to inform 
clinical and health policy decisions [23,24]. 
LSTs have been employed to study a range of 
real‐world benefits, from interventions for the 
treatment and prevention of cardiovascular 
outcomes [25–29] to a comparison of antiretro-
viral treatment strategies for HIV‐positive 
patients [30]. In the 1990s, two research groups 
(one of which included SL and AM) described 
its use for safety, each using a single LST they 
had completed as a case study to infer general 
lessons for future studies [31,32]. More recently, 
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the US Food and Drug Administration (FDA) 
[33] and the European Medicines Agency 
(EMA) [34] acknowledged the potential advan-
tages for postmarketing safety evaluation due to 
its unique design characteristics.

 Clinical Problems 
to be Addressed by 
Pharmacoepidemiologic 
Research

Pharmacoepidemiologic methods are classically 
used to quantify risks and benefits of medicines 
that could not be adequately evaluated in stud-
ies performed during the premarketing phase of 
drug testing. In this chapter, we focus on 
the role of LSTs for assessing the risks of medi-
cations; the same principles, however, are appli-
cable to the postmarketing study of benefits.

As noted in the introduction, if there are 
questions about the safety of a drug after it has 
been licensed, large observational studies are 
typically used to satisfy the sample sizes needed 
to identify (or rule out) the relevant risks. The 
respective strengths and weaknesses of these 
designs are discussed elsewhere in this volume 
(see Chapter  3). Potential confounding is a 
major concern for virtually every observational 
study, and uncontrolled or incompletely 
 controlled confounding can easily account for 
modest associations between a drug and an 
adverse clinical event. For example, in the rela-
tion between phenylpropanolamine and cere-
brovascular disease, obesity increases both the 
likelihood of exposure to the drug and the risk 
of a cerebrovascular accident; thus, body weight 
must be controlled in any analysis of this asso-
ciation. The challenge to the pharmacoepidemi-
ologist is to recognize those factors that 
represent potential confounders, validly meas-
ure them and then control for their effects. To 
do so requires that the relevant information 
be  included in the data to be analyzed, but 

 information on important confounding fac-
tors  is frequently incomplete or unavailable. 
Surrogate variables are often used (e.g., years of 
education to reflect socioeconomic status) but 
these may be poor measures of the underlying 
confounding factor and their control therefore 
may not eliminate confounding.

In observational studies, weak associations 
deserve particular attention. Although there are 
important exceptions, the general view is that 
the stronger the association, the more likely it is 
that the observed relationship is causal. This is 
not to say that a weak association (e.g., a relative 
risk ≤1.5) can never be causal; rather, it is more 
difficult to be certain of it because such associa-
tions, even if statistically significant, can easily 
be an artifact of confounding. As an example, 
consider an analysis where socioeconomic sta-
tus is a potential confounder and education is 
used as a surrogate for this factor. Because the 
relation between years of education completed 
(the surrogate) and socioeconomic status (the 
potential confounder) is, at best, imperfect, 
analyses controlling for years of education can 
only partially control for confounding. This 
leads to the familiar caveat in reports of obser-
vational studies, “…residual confounding may 
account for the observed association.”

In pharmacoepidemiologic research, the phe-
nomenon known as confounding by indication 
(also referred to as indication bias, channeling, 
confounding by severity, or contraindication 
bias) is a common methodologic problem (see 
also Chapters 33 and 43). According to Slone 
et  al., confounding by indication exists when 
“patients who receive different treatments … 
differ in their risk of adverse outcomes, inde-
pendent of the treatment received” [35]. In gen-
eral, confounding by indication occurs when an 
observed association between a drug and an 
outcome is due to the underlying illness (or its 
severity) and not to any effect of the drug. Put 
another way, confounding by indication occurs 
when the risk of an adverse event is related to 
the indication for medication use but not the 
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use of medication itself. As with any other form 
of confounding, one can, in theory, control for 
its effects if one can reliably measure the sever-
ity of the underlying illness. In practice, this is 
not easily done (see Chapters 33 and 43).

When confronted with the task of assessing 
the safety of a marketed drug product, the 
pharmacoepidemiologist must evaluate the 
specific hypothesis to be tested, estimate 
the  magnitude of the hypothesized associa-
tion, and determine whether confounding by 
indication is possible. If incomplete control of 
confounding is likely, it is important to recog-
nize the limitations of observational research 
designs and consider conducting a rand-
omized study design such as the LST. There is 
nothing inherent about a randomized design 
that precludes a pharmacoepidemiologist 
from designing and carrying it out. On the 
contrary, the special skills of a pharmacoepi-
demiologist can be very useful in performing 
large‐scale randomized trials that use epide-
miologic follow‐up methods.

 Methodologic Problems 
to be Solved by 
Pharmacoepidemiologic 
Research

Large simple trials may be the best solution 
when it is not possible to completely control 
confounding by means other than randomiza-
tion. LSTs are really just very large randomized 
trials made simple by reducing data collection 
to the minimum needed to test only a single 
hypothesis (or at most a few hypotheses). 
Randomization of treatment assignment is the 
key feature of the design, which controls for 
confounding by known and unknown factors. 
The large study size provides the power needed 
to evaluate small risks, either absolute or rela-
tive. Table  32.1 highlights the design aspects 
that differentiate LSTs from RCTs.

How Simple is Simple?

Yusuf et al. have suggested that very large rand-
omized studies of treatment‐related mortality 
need collect only data concerning the vital 
 status of participants at the conclusion of the 
study [22]. Because the question of drug safety 
frequently concerns outcomes less severe than 
mortality, these ultra‐simple trials may not be 
sufficient. Hasford has suggested a somewhat 
less restrictive approach to data collection, in 
which “large trials with lean protocols” include 
only relevant baseline, follow‐up, and outcome 
data [31]. Collecting far less data than is com-
mon in the usual RCT is the key feature of both 
approaches. With simplified protocols that take 
advantage of epidemiologic follow‐up methods, 
very large trials can be conducted to test hypoth-
eses that are relevant to clinical practice.

Concealed (Masking) Versus Known 
Treatment Assignment

Randomized controlled trials conceal treatment 
assignment to minimize detection bias and, in 
most cases, are only considered to be unbiased 
if all parties (patients, healthcare providers, and 
investigators) are unaware of the treatment 
assigned. Masking is particularly important 
when the outcome is subjective and/or investi-
gators have views about the medications under 
study that may lead to differential testing, detec-
tion, and reporting of outcomes. Even in RCTs, 
however, concealing medications is not a pana-
cea for unbiased outcome assessment. Masking 
has methodological limitations, ranging from 
investigators or patients guessing treatment 
allocation due to differential improvement in 
symptoms or outcomes to failures in the taste, 
texture or color of the random treatment assign-
ments. In addition to the bias this may intro-
duce for outcome assessment, it may also create 
selection bias if investigators are able to predict 
the likelihood of an upcoming treatment alloca-
tion. For this reason, RCT investigators use 
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methods for assessing the success of conceal-
ment and real‐time central randomization to 
address the potential for selection bias.

The value of concealing medications to 
improve the validity of randomized study 
designs has been established in countless RCTs. 
Masking treatment allocation is possible and 
has been proven to be successful in LSTs 
(as described later). Therefore, pharmacoepide-
miologists should start by evaluating whether 
concealment is feasible for their trial design. 
Given practical considerations, many LSTs will 
not be able to implement masking due to the 
costs and infrastructure complexity or other 
factors such as study duration. Regulators 
and  policy makers may also find concealment 

undesirable, particularly when balancing the 
need for evidence that reflects real‐world clini-
cal practice. In fact, for some LSTs, the primary 
goal is to only compare treatment strategies in 
usual care. This requires minimal intervention 
so that physicians and patients behave as they 
normally would when taking a particular medi-
cine. In these LSTs, investigators are less con-
cerned with the causal effects of a medicine 
(as would be measured in a controlled clinical 
trial) and more concerned with the safety 
 outcomes that occur due to the awareness of 
treatment allocation and the associated, and 
potentially differential, practices employed by 
physicians and patients as a result. LSTs that do 
not use concealment must address the potential 

Table 32.1 Typical design characteristics of a large simple trial (LST) compared to those of a randomized controlled 
trial (RCT).

Design characteristic LST RCT

Randomization Yes Yes
Medicine assignment Concealed if feasible, 

assignment may be known, 
dose adjustment permitted

Concealed

Sample size Larger (thousands) Smaller (hundreds)
Inclusion criteria Broad (e.g., per approved 

medicine label)
Narrow (e.g., excludes patients with 
co‐morbid conditions, using multiple 
medications, pregnant women, elderly)

Questionnaire/case report 
form (CRF)/interview

Minimal, brief Complex, lengthy

Endpoints Hard endpoints (mortality, 
hospitalization or  
life‐threatening events)

Virtually any

Required patient visits and 
procedures

Few, if any; follows normal 
practice schedule and 
assessments

Yes, frequent; visits and tests far greater 
than expected in clinical practice

Primary source of 
investigators or enrolling 
physicians

Primary care provider/ 
community based

Clinical research/academic centers

Site monitoring Minimal Frequent
Followed after randomized 
treatment discontinued

Yes No, or for limited duration post 
discontinuation (e.g., 30 days)

Primary analytic method Intention to treat (ITT) ITT



hen is a LST Appropriatee 797

for bias and will be strengthened by comparing 
hard clinical outcomes or requiring similar 
medical work‐up/testing across treatment arms 
for study outcomes.

Ultimately, whether to conceal medicine 
assignment is a critical design decision for 
the  pharmacoepidemiologist that depends on 
numerous factors, including the research ques-
tion, outcomes under study, patient population, 
preferences of patients, and the preferred bal-
ance between validity and reflecting real‐world 
clinical practice.

Power/Sample Size

Study power is related to the number of events 
observed during the course of the study, which 
in turn is a function of the incidence rate for the 
event, sample size, persistence to the study 
treatment, and duration of observation (or fol-
low‐up). Power requirements can be satisfied by 
studying a population at high risk, enrolling a 
large sample size, and/or conducting follow‐up 
for a prolonged period. The appropriate 
approach will be determined by considering the 
goal of the study and the hypothesis to be tested. 
Allergic or idiosyncratic events may require a 
very large study population, and events with 
latency periods must include duration of follow‐
up consistent with the hypothesized timing of 
symptom onset. The decision to study high‐risk 
populations must be balanced with the need for 
generalizability. For example, while an elderly 
population may meet criteria for high risk of 
cardiovascular events, a study limited to this 
group would be inappropriate to assess the risk 
of these events in younger adults or children.

Data Elements

The data collection process can be kept simple by 
restricting the study to a few primary endpoints 
that satisfy the study hypothesis, are objective, 
are easily identified, and are verifiable. Some 
researchers may need to overcome their predis-

position to comprehensive data collection when 
it comes to secondary outcomes (i.e., those that 
do not directly relate to the study hypothesis), as 
these must be ignored to eliminate unnecessary 
effort and complexity. Of critical importance, 
because confounding is controlled by randomi-
zation, data on all potential confounders need 
not be collected. Rather, a few basic demographic 
variables can be collected at enrollment in order 
to characterize the population studied and allow 
the investigators to confirm that effective rand-
omization was achieved.

Data Collection

The data collection process itself can be stream-
lined. Follow‐up data can be collected directly 
from participants via, for example, mailed ques-
tionnaires, telephone interviews, online using a 
secure website, or through mobile devices. 
Because the study will be limited to clear and 
objective outcomes which can be confirmed by 
medical record review or other means, reports 
from study participants, family care providers or, 
for some patient populations, healthcare providers 
can be an appropriate source of follow‐up data. 
Other sources of follow‐up data could include 
electronic medical records (e.g., for studies among 
subscribers of a large health care organization 
where it is likely that important outcomes will be 
recorded) or vital status records for fatal outcomes 
(e.g., the US National Death Index).

The primary advantage of this simplicity is that 
it allows very large groups of study participants to 
be followed at reasonable cost. The trade‐off is 
that a simple trial cannot answer all possible ques-
tions about the safety of a drug but must be lim-
ited to testing, at most, a few related hypotheses.

 When is a LST Appropriate?

Large simple trials are appropriate when all the 
conditions in Box 32.1 apply.
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Important Research Question

Although a simple trial will likely cost consider-
ably less per subject than a typical premarketing 
clinical trial, the total cost of a large study 
(in  money and human resources) will still be 
substantial. The cost will usually be justified 
only when there is a clear need for a reliable 
answer to a question concerning the risk of a 
serious outcome.

Uncertainty Must Exist

An additional condition has been referred to as 
the “uncertainty principle.” This was originally 
described by Gray et al. as a simple criterion to 
assess subject eligibility in LSTs [36]. It states 
that “… both patient and doctor should be sub-
stantially uncertain about the appropriateness, 
for this particular patient, of each of the trial 
treatments. If the patient and doctor are reason-
ably certain that one or other treatment is inap-
propriate then it would not be ethical for the 
patient’s treatment to be chosen at random” 
(italic in the original). Very large randomized 
safety trials are justified only when there is true 
uncertainty about the risk of the treatment in 
the population. Apart from considerations of 
benefit, it would not be ethical to subject large 
numbers of patients to a treatment that was 
 reasonably believed to place them at increased 
risk, however small, of a potentially serious or 
 permanent adverse clinical event. The concept 

of uncertainty can thus be extended to include a 
global assessment of the combined risks and ben-
efits of the treatments being compared. One 
treatment may be known to provide therapeutic 
benefits that are superior to an alternative, but it 
may be unknown whether the risks of important 
side effects outweigh the therapeutic advantage.

Power and Confounding

Large simple trials will only be needed if (a) the 
absolute risk of the study outcome is small and 
there are concerns about confounding by indi-
cation, or (b) the relative risk is small (in which 
case, there are inherent concerns about residual 
confounding) [37]. By contrast, LSTs would not 
be necessary if the absolute risk were large, 
because premarket or other conventional RCTs 
should be adequate, or where confounding by 
indication is not an issue, because observational 
studies would suffice. Also, if the relative risk 
were large (and confounding by indication is 
not a concern), observational study designs are 
likely appropriate.

 When is an LST Feasible?

Large simple trials are feasible when all the con-
ditions in Box 32.2 are met.

Box 32.1 Conditions appropriate 
for the conduct of a large simple trial

1) The research question is important
2)  Genuine uncertainty exists about the likely 

results
3) Confounding by indication is likely
4a) The absolute risk is small
 or
4b)  The relative risk is small, regardless of the 

absolute risk

Box 32.2 Conditions which make a large 
simple trial most feasible

1) The study question can be expressed as a 
simple testable hypothesis

2) The treatment to be tested is simple 
(uncomplicated)

3) The outcome is objectively defined (e.g., 
hospitalization, death)

4) Epidemiologic follow‐up methods are 
appropriate

5) A cooperative and motivated population 
is available for study
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Simple Hypothesis

Large simple trials are best suited to answer 
focused and relatively uncomplicated questions. 
For example, an LST can be designed to test the 
hypothesis that the risk of hospitalization for 
any reason, or for acute gastrointestinal bleed-
ing, is increased in children treated with ibupro-
fen. However, it may not be possible for a single 
LST to answer the much more general question, 
“Is ibuprofen safe with respect to all possible 
outcomes in children, whether or not they 
require medical attention?” Similarly, in a study 
of the clinical relevance of QTc prolongation, a 
LST can test the hypothesis that the risk of mor-
tality is increased from this effect, but will not 
be able to evaluate the increased risk of ventric-
ular arrhythmias or its specific forms, such as 
torsade de pointes.

Simple Treatments

Simple therapies (e.g., a single drug at a fixed 
dose for a short duration) are most amenable to 
study with LSTs. They are likely to be commonly 
used, so that it will be easy to enroll large num-
bers of patients, and the results will be applica-
ble to a large segment of the population. 
Complex therapeutic protocols are difficult to 
manage, reduce patient adherence, and by their 
very nature may not be compatible with the 
simple trial design.

Objective and Easily Measured 
Outcomes

The outcomes to be studied should be objective, 
easy to define (“simple”), and easy to recall. An 
example might include hospitalization for acute 
gastrointestinal bleeding. Study participants 
may not recall the details of a hospital admis-
sion, but they likely will recall the fact that they 
were admitted, the name of the hospital, and at 
least the approximate date of admission. 
Medical records can be obtained to document 

the details of the clinical events that occurred. 
Events of this type can be reliably recorded 
using epidemiologic follow‐up methods (e.g., 
questionnaires, telephone interviews, online 
surveys, mobile device applications, hospital 
discharge diagnosis codes, or linkage with 
 public vital status records). On the other hand, 
clinical outcomes which can be reliably detected 
only by detailed in‐person interviews, physical 
examinations, or extensive physiologic testing 
are not as amenable for study in simple trials. 
For example, an LST concerned about the QTc 
prolonging potential of a medicine will focus on 
the clinically relevant and measurable sequelae 
rather than on performing routine ECGs for 
study participants.

Cooperative Population

Particularly in LSTs, a cooperative and moti-
vated study population greatly increases the 
probability of success. Striking examples are the 
large populations in the Physicians’ and 
Women’s Health Studies; the success of these 
studies is at least partly due to the willingness of 
large numbers of knowledgeable health profes-
sionals to participate [38,39]. Because of the 
participants’ knowledge of medical conditions 
and symptoms and participation in the US 
healthcare system, relatively sophisticated 
information could be obtained using mailed 
questionnaires, and even biologic samples could 
be collected. In another example, success of the 
Boston University Fever Study (described later) 
was also largely due to parents whose motiva-
tion and cooperation were encouraged by their 
private physicians who had invited them to par-
ticipate in the study [40]. Similarly, in the 
ZODIAC LST (also described later) among 
patients with schizophrenia, the motivation 
of psychiatrists and family caregivers around a 
clinically important question led to robust 
one‐year follow‐up despite a patient population 
difficult to follow, even short term (e.g., in 
12–16‐week RCTs) [41,42].
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 Logistics of Conducting a LST

An LST may be appropriate and feasible, but it 
will only succeed if all logistical aspects of the 
study are kept simple as well. In general, LSTs 
will involve an oversight body, sometimes 
organized as a scientific steering committee 
composed of epidemiologic, statistical, and 
clinical experts who are responsible for the sci-
entific conduct of the study, as well as a central 
data coordinating facility, and a network of 
enrollment sites (e.g., offices of collaborating 
physicians or other healthcare providers). 
Healthcare professionals (e.g., physicians, nurse 
practitioners, and pharmacists in private prac-
tice or members of large healthcare organiza-
tions) can participate by recruiting eligible 
patients. Alternative methods to identify and 
enroll eligible subjects (e.g., direct mailings to 
professional groups, print or online ads, emails 
and mobile phone text messages) may be appro-
priate for some studies.

Because success depends on the cooperation 
of multiple healthcare providers and a large 
number of patients, it is best to limit the 
demands placed on each practitioner (or his/her 
clinical practice). One approach is to have the 
practitioner identify eligible subjects, obtain 
permission to pass their names to a central 
study staff, and leave to the study staff the task 
of explaining study details, enrollment, and 
obtaining informed consent. Another approach 
is to provide comprehensive training prior to 
site initiation followed by support to local 
administrative staff throughout the course of 
the study, particularly for research‐naive and 
inexperienced sites. Obtaining informed con-
sent, baseline data, and the medicine assign-
ment is best handled during the course of a 
single visit.

To facilitate patient recruitment and to maxi-
mize generalizability of the results, minimal 
restrictions should be placed on patient eligibil-
ity. As Gray et  al. have said, “Any obstacle to 
simplicity is an obstacle to large size, and the 

wider the range of the patients studied, the 
wider the generalizability of the results will be” 
[36]. Patients with a medical contraindication or 
known sensitivity to either the study or control 
drug should not, of course, be enrolled, but 
other restrictions should be kept to a minimum. 
Ideally, the restrictions are only those that apply 
in a usual care clinical setting, that is, those 
described in the approved medicine label.

Simple informed consent and registration 
documents should be completed. Registration 
of study subjects can also be accomplished 
online using a secure internet connection (or 
potentially through secure mobile phone appli-
cations) to the coordinating center, which allows 
for immediate confirmation of eligibility and 
randomization. Substantial bias can be intro-
duced if either physician or patient can choose 
not to participate after learning (or guessing) 
which treatment the patient has been assigned.

Particularly in studies requiring a long dura-
tion of medication use, validity may be seriously 
compromised by poor adherence with the treat-
ment regimen. A run‐in period prior to rand-
omization can be used to identify patients who 
are unable or unwilling to adhere to a chronic 
treatment regimen and are likely to drop out of 
the study. During the run‐in period, eligible 
subjects are given a “test” medication and their 
compliance with the protocol is assessed. 
Patients who cannot comply with the protocol 
are withdrawn. Patients who remain in the study 
are likely to be highly adherent, so that relatively 
few will drop out after randomization. 
Depending on the characteristics of drugs under 
study, either the active drug or the control may 
be preferable for the run‐in period. In the 
Physicians’ Health Study, for example, the study 
drug aspirin was used for the run‐in period to 
identify subjects who could not tolerate the gas-
trointestinal side effects of the drug [38]. A run‐
in period may lead to a study population that no 
longer reflects the real‐world users of a medi-
cine. This approach should therefore be used 
sparingly and only when the conditions justify it.
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Importance of Complete Follow‐Up

Because dropouts and losses to follow‐up may not 
be random but rather may be related to adverse 
treatment effects, it is important to make every 
effort to obtain follow‐up data on all enrolled sub-
jects. For example, a study that has follow‐up data 
on even tens of thousands of patients may not be 
able to provide a valid answer to the primary study 
question if this number  represents only half of 
those randomized. The duration of the follow‐up 
period can affect the  completeness of follow‐up 
data collection. If the duration of follow‐up is too 
short, important  outcomes may be missed (i.e., 
they may not be diagnosed until after the end of 
the follow‐up period). On the other hand, as the 
length of the follow‐up period increases, the num-
ber lost to follow‐up or exposed to the alternate 
treatment (contaminated exposure) increases. In 
the extreme, a randomized trial becomes a cohort 
study because of selective dropouts in either or 
both of the treatment arms.

Beyond choosing a motivated and interested 
study population, investigators can minimize 
losses to follow‐up by maintaining regular con-
tact with study participants. Regular mailings of 
medication supplies or prescriptions filled at a 
local pharmacy that are reimbursed by the 
study, a study newsletter, or email and mobile 
phone text reminders can be helpful, and mem-
ory aids such as medication calendar packs or 
other devices may help maintain compliance 
with chronic treatment schedules. In addition, 
follow‐up data collection itself can help main-
tain contact with study participants.

Follow‐Up Data Collection

An important element of a successful LST is that 
the burden to healthcare providers for follow‐up 
data collection is minimized. Healthcare provid-
ers cannot be expected to consistently obtain 
substantial amounts of follow‐up data from large 
numbers of subjects. However, the subject’s 
 clinician may, with subject permission, provide 
limited follow‐up data (e.g., vital status, occur-

rence of a primary outcome) or current contact 
information for the occasional patient who 
would otherwise be lost to follow‐up. A mailed 
or electronically administered questionnaire, 
supplemented by telephone follow‐up when 
needed, may work well, although the best means 
of communication will likely vary by physician 
specialty and practice size. The response rate 
will likely be greatest if the questions are simple 
and direct and the time required to complete the 
questionnaire is limited. With appropriate per-
missions, medical records can be reviewed to 
verify important outcomes, such as rare adverse 
events; the work needed to obtain and abstract 
the relevant records should be manageable. In 
addition, a search of public records (e.g., the 
National Death Index in the US) can identify 
study subjects who have died during follow‐up.

 Analysis

Primary Analysis

Analyses of the primary outcomes are usually 
straightforward and involve a comparison of 
incidence rates between the treatment and 
 control groups. Under the assumption that 
 confounding has been controlled by the rand-
omization procedure, complex multivariate anal-
yses are not necessary (and may not be possible 
because only limited data on potential confound-
ers are available). Descriptive data collected at 
enrollment should be analyzed by treatment 
group to verify balance of potential confounders; 
any material differences between treatment 
groups suggest a failure of randomization.

Subgroup Analyses

It is important to remember that confounding 
factors will be distributed evenly only among 
groups that were randomized; subgroups 
which are not random samples of the original 
randomization groups may not have similar 
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 distributions of confounding factors. For exam-
ple, participants who have remained in the study 
(i.e., have not dropped out or been lost to follow‐
up) may not be fully representative of the original 
randomization groups and may not be compara-
ble with respect to confounders. Despite all 
efforts, complete follow‐up is rarely achieved, 
and because only the original randomization 
groups can be assumed to be free of confound-
ing, at least one analysis involving all enrolled 
study subjects (i.e., an intention‐to‐treat analysis) 
should be performed. Also, unless a stratified 
randomization scheme was used, one cannot be 
certain that unmeasured confounding variables 
will be evenly distributed in subgroups of partici-
pants, and the smaller the subgroup, the greater 
the potential for imbalance. Therefore, subgroup 
analyses can be subject to the same limitations as 
observational studies (i.e., the potential for 
uncontrolled confounding).

Data Monitoring/Interim Analyses

Because of the substantial commitment of 
resources and large number of patients at risk 
for adverse outcomes, and the interventional 
nature of the study, it is appropriate for a data 
monitoring committee (DMC), independent of 
other scientific and operational study commit-
tees and infrastructure, to monitor the accumu-
lating data over the course of the study. The 
study may be ended prematurely if participants 
experience unacceptable risks, if the hypothesis 
can be satisfactorily tested earlier than antici-
pated, or if it becomes clear that a statistically 
meaningful result cannot be achieved, even if 
the study were to be completed as planned.

 LSTs in Practice: Two Case Studies

To illustrate these design principles, as well as 
how they are operationalized, the rationale, 
design, and results from two completed LSTs 
are described below.

Boston University Fever Study (BUFS)

Ibuprofen is a nonsteroidal antiinflammatory 
drug (NSAID) that is widely used among adults 
in the US, first by prescription and then as an 
over‐the‐counter (OTC) drug. In 1989, ibupro-
fen suspension was licensed as a prescription 
product for fever control in children, since pre-
marketing studies in children established that it 
was appropriate for use under a physician’s 
supervision. However, events known to occur in 
adults using ibuprofen, such as acute gastroin-
testinal bleeding, acute renal failure, and ana-
phylaxis, were either not observed at all during 
the relatively small premarketing trials in chil-
dren or occurred so infrequently that it was not 
possible to obtain reliable estimates of the risk. 
Thus, whether these events, which affect adults, 
might rarely be caused by ibuprofen in children 
was unknown. In addition, it was at least theo-
retically possible that Reye syndrome (a toxic 
encephalopathy in children associated with 
another NSAID, aspirin) might be associated 
with ibuprofen use in children. Other events, 
possibly unique to children, might also be asso-
ciated with this drug. Thus, premarketing stud-
ies were unable to exclude even a substantially 
increased risk of rare but important and serious 
adverse reactions.

Once available OTC, pediatric ibuprofen was 
likely to be widely used for the treatment of fever, 
which is typically a minor and self‐limited condi-
tion. Given the generally benign nature of this 
indication, it was reasonable to require greater 
assurance of safety than might be expected for a 
drug used to treat a life‐threatening illness. 
Further, an effective antipyretic with an excellent 
record of safety in children, acetaminophen, had 
been available OTC in the US for more than 
20 years. For these reasons, the US FDA required 
additional data concerning the risk of rare but 
serious adverse events before it would approve 
pediatric ibuprofen for OTC sale.

The circumstances surrounding ibuprofen 
use in 1989–90 raised serious concern that 
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observational studies could not adequately 
 control confounding. Specifically, prior to the 
availability of pediatric ibuprofen, febrile chil-
dren in the US received no antipyretic or were 
given acetaminophen, which was generally con-
sidered safe by both physicians and parents. On 
the other hand, because ibuprofen was available 
only by prescription, treatment with this drug 
required contact with a physician. In addition, 
for fever less than 102.5 °F, the recommended 
dose of prescription ibuprofen was 5 mg/kg, 
whereas for fever of 102.5 °F or greater, the dose 
was 10 mg/kg.

Both its status as a prescription medication 
and the two‐tier dosing schedule predicted that 
ibuprofen would be used for more severe illness 
than acetaminophen. This prediction was sup-
ported by a survey of 108 physicians (61 pedia-
tricians, 47 family practitioners) conducted in 
1992 [32]. More than half of the physicians in 
the study reported that they treated children 
with ibuprofen after acetaminophen failed, but 
none reported using acetaminophen only when 
ibuprofen was not effective. Further, both the 
minimum age and temperature at which the 
physicians recommended using these drugs 
were higher for ibuprofen than acetaminophen. 
It seemed clear that pediatric ibuprofen would 
be most commonly used among children whose 
illness was relatively severe or whose fever was 
particularly high or unresponsive to acetami-
nophen. Because of the greater severity of ill-
ness (and potential exposure to antibiotics or 
other medications), there was a reasonable basis 
to believe that ibuprofen users would experi-
ence relatively high rates of adverse clinical 
events, unrelated to the ibuprofen itself. Thus, to 
provide a valid assessment of the risks of pediat-
ric ibuprofen, the study must be able to distin-
guish the risks of the drug from the risks 
associated with the illness for which ibuprofen 
was given.

To address this question, an LST design was 
used to conduct the Boston University Fever 
Study, an office‐based study of the safety of 

 ibuprofen use in children. The methods and 
results have been described in detail but are 
briefly summarized here [32,40]. The study was 
a practitioner‐based trial designed to compare 
the risk of rare but serious adverse events among 
children treated for fever with ibuprofen or 
acetaminophen. Study participants were chil-
dren between 6 months and 12 years of age with 
a febrile illness, which in the opinion of the 
managing physician warranted treatment with 
an antipyretic. Eligible children weighed at least 
7 kg, had no contraindication to receiving either 
ibuprofen or acetaminophen suspension, and 
were in the care of a parent who could read and 
follow instructions written in English. 
Participants were identified by community‐
based pediatricians and family physicians and 
were randomized to one of three treatment 
groups: acetaminophen (12 mg/kg per dose), 
ibuprofen (5 mg/kg per dose) or ibuprofen 
(10 mg/kg per dose). Both the healthcare pro-
viders and parents were blind with respect to 
the drug/dose administered. The primary study 
endpoints were hospitalization for GI bleeding, 
acute renal failure, anaphylaxis, or Reye syn-
drome occurring within four weeks of enroll-
ment. Follow‐up data collection was conducted 
by mailed questionnaire, supplemented with 
telephone interviews and review of medical 
records for hospital admissions.

A total of 84 142 children were enrolled by 
1735 practitioners. Approximately 28 000 chil-
dren were randomized to each of the three 
treatment arms; demographic and clinical char-
acteristics of the participants were balanced in 
the three groups. Overall, 795 children were 
hospitalized for any reason during follow‐up; 
the risk of hospitalization did not vary signifi-
cantly by treatment group (range 0.89–0.99%). 
Four children were hospitalized for GI bleeds, 
all of whom had been assigned to receive ibu-
profen  –  two in each dose group. The risk of 
hospitalization for GI bleeding among all ibu-
profen‐treated children, 7.2 per 100 000 (95% 
confidence interval [CI] 2–18 per 100 000), was 
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not significantly greater than the risk among 
children randomized to acetaminophen, 0 per 
100 000 (95% CI 0–11 per 100 000). No children 
were hospitalized for any of the other primary 
study endpoints, and the risk of each was no 
more than 5.4 per 100 000 (based on the upper 
bound of the 95% CI). The study provided 
 substantial evidence of the safety of short‐term 
use of ibuprofen in children and was used to 
support an application for OTC sales of pediat-
ric ibuprofen suspension in the US.

Ziprasidone Observational Study 
of Cardiac Outcomes (ZODIAC) LST

Ziprasidone is an atypical antipsychotic for the 
treatment of patients with schizophrenia. Early 
evidence from premarketing clinical trials 
indicated that ziprasidone might be associated 
with improved lipids and lower incidence of 
weight gain. Despite the need for additional 
effective treatments for schizophrenia and 
these potential benefits, concerns about its 
safety, specifically whether the modest QTc 
prolongation associated with the drug would 
translate into increased mortality in patients 
using it in the real world, were voiced at the 
time of ziprasidone’s review and approval by 
regulatory authorities in the US and Europe. 
QTc prolongation is of clinical concern because 
of its potential to induce torsade de pointes 
and other serious ventricular arrhythmias 
resulting in sudden death.

Prior to approval, the Sponsor (Pfizer, Inc.) 
completed a clinical study comparing six antip-
sychotics. The study found that the mean QTc 
prolongation was approximately 9–14 millisec-
onds greater for ziprasidone than for several 
others tested but approximately 14 milliseconds 
lower than thioridazine (a drug associated with 
reports of sudden death that resulted in a black 
box warning in the US). The study found similar 
results when the drugs were administered in the 
presence of a metabolic inhibitor. Although 
drugs associated with the risk of a greater degree 

of QTc prolongation than ziprasidone had been 
shown to increase the risk of sudden death, the 
precise relationship between QTc prolongation 
and the risk of serious adverse cardiac events 
was unknown at the time of ziprasidone’s 
approval [41,42].

It is in this context that an LST was selected as 
the most appropriate study design for postmar-
keting safety evaluation. In typical psychiatric 
practice, patients treated with a new medication 
may be systematically different from those 
treated with other drugs, due to prescribers’ 
channeling of the drug to patients with more 
severe schizophrenia and/or co‐morbidities and 
risk factors. This possibility existed because 
ziprasidone was the newest antipsychotic at 
that time, and most likely to be used in patients 
who had failed prior therapies. In addition, 
despite the potential risk associated with QTc 
prolongation, it was possible that patients 
treated with ziprasidone might differ from those 
treated with other antipsychotic drugs, due to 
prescribers’ channeling of the drug to patients 
with underlying cardiovascular disease or meta-
bolic illnesses, especially given the low propen-
sity for weight gain associated with ziprasidone. 
Given these likely selection phenomena, ran-
dom allocation of patients was the only approach 
providing the certainty of an unbiased compari-
son between groups.

ZODIAC, a regulatory requirement for Pfizer 
from both the US FDA and the Swedish 
Medicinal Products Agency (MPA), compared 
the safety of ziprasidone and olanzapine. The 
methods and results have been described in 
detail but are briefly summarized here [41–44]. 
Olanzapine was chosen as the medication for 
the comparison group since it is also an atypical 
antipsychotic medication without the same 
effect as ziprasidone on the QTc prolongation. 
The study, which intended to randomize 18 000 
patients, was unprecedented in psychiatric 
research, both in size and design. The primary 
objectives of the study were to estimate relative 
all‐cause, nonsuicide, suicide, cardiovascular 
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and sudden death mortality among users of 
ziprasidone and olanzapine. The secondary 
objectives were to estimate the relative inci-
dence of all‐cause hospitalization and hospitali-
zation for arrhythmia, myocardial infarction, or 
diabetic ketoacidosis, and to determine the rate 
of treatment discontinuation. The study design 
was not expected to permit a statistically pow-
ered evaluation of the differences in the inci-
dence of uncommon but important adverse 
effects, such as torsade de pointes and sudden 
death. Instead, nonsuicide mortality was chosen 
as the primary endpoint for which the study was 
powered since even a larger increase in an 
uncommon cause of death like torsade de 
pointes or sudden death could be counterbal-
anced by a small decrease in a more common 
cause of death, like atherosclerotic events. In 
addition, torsade de points would not be reliably 
detected as part of normal medical or psychiat-
ric care because of its rarity and the absence of 
frequent (or any) ECG testing in the routine 
clinical settings in which the study was carried 
out. The all‐cause nonsuicide mortality aggre-
gate measure was therefore deemed to be the 
most important and appropriate primary out-
come measure.

After the enrolling physician determined a 
patient’s eligibility and obtained informed con-
sent, brief information, including demographics, 
disease severity, cardiac risk factors, and prior 
antipsychotic medication use, was collected on a 
baseline questionnaire. Social security numbers 
and information on up to two alternate contact/
family caregivers were also collected. Following 
random assignment of medication, no further 
study‐related interventions, tests, or visits were 
required. Physicians and patients were allowed 
to change regimens and dosing of the assigned 
study medication, and concomitant medications 
were permitted. In the US, patients were pre-
scribed their assigned medicine and provided a 
pharmacy card to cover the costs of the medi-
cine at a local pharmacy. Patients were followed 
as clinically appropriate and outcomes assessed 

for up to one year, regardless of how long they 
used the assigned medication. Information on 
the patients’ vital status and whether or not they 
were hospitalized was obtained through follow‐
up with the treating physician or other desig-
nated member of the medical care team, family 
caregiver or through national death indices. 
A scientific steering committee was responsible 
for oversight of the study, a data safety monitor-
ing board for safeguarding study participants, 
and an endpoint committee for assessing 
whether reported events met study endpoint 
 criteria without knowledge of the assigned 
treatment.

ZODIAC enrolled 18 154 patients between 
February 2002 and February 2006 from 18 coun-
tries, including Argentina, Brazil, Chile, Hong 
Kong, Hungary, Korea, Malaysia, Mexico, Peru, 
Poland, Romania, Singapore, Slovakia, Sweden, 
Taiwan, Thailand, Uruguay, and the US. The 
primary analyses found no difference between 
the ziprasidone and olanzapine treatment arms 
with respect to nonsuicide mortality (relative 
risk (RR) 1.02, 95% CI 0.79–1.39). The incidence 
of nonsuicide mortality within one year of initi-
ating medication was 0.91 for ziprasidone 
(n = 9077) and 0.90 for olanzapine (n = 9077). 
This finding was confirmed in numerous 
 sensitivity analyses. The risk of all‐cause 
 hospitalization was 39% higher among persons 
randomized to ziprasidone versus olanzapine 
(RR 1.39, 95% CI 1.29–1.50). Analyses of the 
remaining secondary outcomes indicated no 
difference between the ziprasidone group and 
the olanzapine group. These findings were also 
supported in numerous post hoc analyses 
requested by the FDA [43].

In summary, despite the known risk of QTc 
prolongation with ziprasidone treatment, the 
findings of this study failed to show that ziprasi-
done is associated with an elevated risk of non-
suicidal mortality relative to olanzapine in 
real‐world use and were incorporated into the 
approved medicine label in the United States 
and Europe.
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 Large Simple Trials Using Routine, 
Electronic Data Capture in 
Healthcare Systems

Data routinely collected within the healthcare 
system can sometimes be used to improve 
 efficiency of LSTs. This can include data from 
electronic health records (EHRs) with informa-
tion recorded by clinical staff at the point of 
care (e.g., in hospitals or outpatient clinics), 
administrative claims data (e.g., the Veterans 
Affairs database in the US), national/regional 
registries (e.g., population‐wide databases in 
Sweden and Denmark), and patient disease/
condition/drug registries (e.g., CORONNA 
rheumatoid arthritis registry).

Electronic health records and registries have 
been used in conventional RCTs to collect long‐
term follow‐up data. An example is the West of 
Scotland Coronary Prevention Study which was 
a primary prevention trial in 45–64‐year‐old 
men with high low‐density lipoprotein choles-
terol. Over 6000 men were randomized to 
receive pravastatin once daily or placebo for an 
average of 4.9 years. Subsequent linkage to EHRs 
and registries allowed follow‐up of major cardi-
ovascular events for over 20 years [45]. Another 
example is the Scandinavian Simvastatin 
Survival Study that used national cancer regis-
tries to determine cancer endpoints five years 
after closure of the trial [46].

The use of EHRs and registries for the identi-
fication of potential trial participants has been 
increasing in recent years (see Chapter 13). As 
an example, the EHR4CR project has developed 
a platform that utilizes data from hospital EHR 
systems for clinical trials feasibility assessment 
and patient recruitment. The platform can con-
nect securely to the data within multiple hospi-
tal EHR systems to assess the feasibility of a trial 
and locate the most relevant hospital sites [47].

The most recent development is the use of 
EHRs and registries for identification and 
recruitment as well as follow‐up for trials, 

 providing an efficient and reusable infrastruc-
ture for LSTs [48,49]. An example of this type of 
trial is the Retropro trial which recruited 
patients with high cardiovascular risk in routine 
clinical care and randomized them between two 
licensed medications (simvastatin and atorvas-
tatin) [50]. The UK Clinical Practice Research 
Datalink® (CPRD®) EHR database was used to 
preselect potentially eligible patients (i.e., high 
cardiovascular risk estimated by a risk score). 
The CPRD includes anonymized EHRs for over 
5 million patients currently registered at a par-
ticipating general practice and can be linked to 
other datasets such as the national registry of 
hospital admissions, death certificates, and dis-
ease registries (see Chapter  13) [51]. As infra-
structure for large simple trials, the CPRD can 
be used to identify eligible subjects who then 
can be consented and enrolled by their general 
practitioners. CPRD data are anonymized prior 
to being made available to the study research 
team (which uses coded patient IDs). In the 
Retropro trial, for example, clinicians were able 
to recruit preselected patients during consul-
tation or during dedicated appointments. 
Software within the EHR system reminded cli-
nicians through a system alert when a patient 
eligible for inclusion in the trial consulted the 
clinician. The flagging software also triggered a 
link to the study website, which randomized 
trial participants after guiding the clinician to 
confirm eligibility and obtain informed consent. 
The data from the EHRs and linked registries 
were used to collect follow‐up outcomes 
(including persistence to treatment and major 
clinical outcomes). Suspected adverse drug 
reactions were also reviewed by searching the 
side effect fields or main clinical fields of the 
EHR. The quality of outcome assessment was 
strengthened by implementing the prospective 
randomized open blinded endpoint (PROBE) 
assessment with case adjudication by clinicians 
masked to treatment allocation [52].

Another example of an embedded LST is the 
insulin trial within the US Veteran Affairs 
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Healthcare System (VA). This trial compared 
two methods (a sliding scale versus a weight‐
based regimen) for determining the dose of sub-
cutaneously administered insulin to be used in 
hospitalized patients, and was carried out to test 
the feasibility of conducting what the investiga-
tors refer to as a point‐of‐care clinical trial 
(POCCT). To accommodate this pilot trial, the 
VA data collection system was modified to sup-
port enrollment, randomization component, 
and better capture of study endpoints [53]. 
Order‐entry screens at three VA hospitals were 
modified to include an option to enroll partici-
pants into the trial comparing these two regi-
mens. Election of the menu choice “no preference 
for insulin regimen” triggered the EHR workflow 
to notify the research nurse to obtain informed 
consent, automatically place a note of participa-
tion in research in the medical record, and ran-
domly assign treatment. The primary outcome 
of this ongoing trial was the length of hospital 
stay, and secondary outcomes included meas-
ures of glycemic control, all of which were 
 ascertained from the EHR database.

The ADAPTABLE Aspirin Study is an ongo-
ing three‐year pragmatic trial comparing the 
effectiveness of low‐ and high‐dose aspirin to 
prevent myocardial infarction and stroke in 
patients with cardiovascular disease. This 
study is embedded in PCORnet, the National 
Patient Centered Clinical Research Network, 
which is a distributed health data research net-
work with EHRs and administrative data [54] 
(see Chapter 25).

Large simple trials embedded in health 
 systems or registries may use cluster randomi-
zation, an alternative to trials that randomize 
individual patients. In cluster trials, entire 
areas or health service organizational units are 
randomly allocated to intervention or control 
groups with outcomes evaluated for individu-
als within each cluster. Cluster trials are 
increasingly used in public health and health 
services research and are especially important 
in the evaluation of health service and public 

health interventions [55]. An example is a 
cluster trial that evaluated whether antibiotic 
prescribing for respiratory tract infections 
can be reduced by reminding clinicians of the 
recommended clinical practice guidelines by 
providing an alert in the EHR during consul-
tation [56].

Embedded LSTs with randomization to medi-
cines are still relatively uncommon; however, 
healthcare systems and research groups are 
developing these capabilities, as noted above. 
The greatest opportunities are currently for 
research questions that help drive a learning 
healthcare system [57] such as the examples 
above in which the study results are directly rel-
evant to patient care; the results help providers 
and payers identify regimens that maximize 
patient benefit and safety. As more of these 
studies reach the peer‐reviewed literature, we 
suspect more healthcare systems will recognize 
the potential benefits and efficiencies, and will 
develop the capability to conduct embedded 
point‐of‐care LSTs.

 The Future

With accelerated approval of new medications 
and rapid increases in their use, there may be a 
greater need for large postmarketing studies 
capable of randomizing exposures in order to 
assess small differences in risk. In the absence 
of techniques that reliably control for con-
founding by indication in observational studies, 
there may be a growing need for LSTs to evalu-
ate larger relative risks. By virtue of minimal 
restrictions on participant eligibility, LSTs are 
more likely than classic randomized clinical tri-
als to reflect the true benefits and safety of 
medications when used in actual clinical prac-
tice. The generalizability of the results of LSTs 
and other pragmatic clinical trials makes these 
studies particularly valuable to regulators and 
policy makers and may lead to increased use of 
these studies.
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It is clear that safety LSTs can be conducted. 
It remains less clear, however, how frequently 
the factors that support the need for a very 
large trial (see Box  32.1) will converge with 
those that permit such a trial to be carried out 
(see Box 32.2). A review published in 2011 [58] 
discovered that only 13 LSTs evaluating safety 
outcomes as a primary endpoint had been com-
pleted or were ongoing prior to 2010. Among 
those identified, earlier studies tended to use 
more elements associated with a controlled 
clinical trial (e.g., double‐blinds) whereas more 
recent studies had the most characteristics 
associated with observational epidemiology. 
Nonetheless, all the LSTs identified utilized 
observational methods of follow‐up, but did so 
with varying degrees of intervention to meet 
the study objectives, primarily in the form of 
scheduled visits or required laboratory and 
diagnostic tests.

Although the LST design may be most appro-
priate when studying “hard” outcomes such as 
death or hospitalization, the same review found 
that researchers used the design to compare 
“soft” outcomes (e.g., incidence of physician‐
reported symptomatic hypotension and patient‐
reported complaints) or outcomes that require 
regular measurement (e.g., pulmonary func-
tion). This finding was unexpected since much 
of the literature on the use of LSTs for examin-
ing the therapeutic or preventive effects of an 
intervention suggest they are best suited to 
studying “hard” outcomes to avoid assessment 
and reporting bias. This may also be indicative 
of researchers’ need to measure softer outcomes 
that are associated with and predictive of hard 
outcomes that occur later (e.g., death, cancer). 
Other unexpected differences noted were the 
use of person‐time on treatment as a secondary 
analysis, which results in potentially biased 
comparisons between treatment groups (i.e., 
because participants discontinue their medica-
tions for reasons that may be related to potential 
outcomes), and sample sizes that were smaller 
than thousands of patients.

Large simple trials are likely rare as a result of 
the operational, financial, and scientific hurdles 
of implementing the design. Substantial 
resources are required to accrue large sample 
sizes; collect multiple forms of outcome data; 
manage hundreds of participating investigators 
and sites; and ensure appropriate scientific and 
ethical oversight. The lack of research infra-
structure for conducting research at sites or 
with physicians inexperienced with randomized 
trials, including the complex regulations gov-
erning interventional study implementation and 
prohibitive financial costs, are barriers to con-
ducting LSTs. This complexity illustrates that 
while the design is intended to be “simple” for 
participating healthcare providers and patients, 
it might be more accurately described as a “sim-
plified” trial. Financial considerations are also 
important. Twelve of the 13 LSTs identified in 
the review described earlier were funded by the 
pharmaceutical or consumer products industry, 
six of which were postapproval commitments to 
the FDA or an EU regulatory agency [58].

A simple testable safety hypothesis, a moti-
vated patient and physician population, and the 
ability to follow up patients to assess outcomes 
are important for the feasibility of a safety LST. 
Clearly, evaluating differences in very rare (e.g., 
Stevens–Johnson syndrome) or long‐latency 
(e.g., cancer induction) outcomes is generally 
not practical with the LST design. Even hard 
outcomes such as death are difficult to study in 
a randomized study if the incidence of the out-
come is low or the observed rate in the study is 
lower than expected when initial sample size 
calculations are performed. Because the design 
uses randomization, an appropriate comparator 
acceptable to physicians and patients is also a 
critical factor in the success of an LST. Equipoise 
must exist, and if a new medication or vaccine 
has a real or perceived benefit over available 
treatments, the LST design will not be feasible. 
The lack of equipoise may also become a chal-
lenge in situations where the study enrollment 
period is very lengthy. As knowledge of the 
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 benefits and risks of treatments evolves, leading 
to less clinical uncertainty about the type of 
patients that might benefit from a particular study 
medication, investigators may find it increasingly 
difficult to enroll study participants.

Large simple trials should be considered as a 
potential design to understand the safety of any 
health intervention. However, the design’s use 
with novel medicines, vaccines, diagnostics, 
and biologics is likely to be limited. The feature 
of randomization alone limits its application, 
since in some disease areas there may be no log-
ical or ethical comparator (i.e., first‐in‐class 
medicine or vaccine, rare diseases, oncology). 
Biopharmaceutical development is increasingly 
focused on smaller indicated patient popula-
tions. This will result in insufficient exposure to 
reach the required event rate or, when feasible, 
it may take too long to accrue exposure to be 
acceptable to decision makers. Even in situa-
tions where the prevalence of a condition is 
much greater (e.g., schizophrenia or asthma), it 
may take many years to accrue the necessary 
patient population, which to some may be too 
long to address important safety questions. In 
settings where there is no appropriate control 
treatment and it is not ethical to randomize 
between active drug and placebo, an alternative 
to randomizing to comparator medicines may 

be to randomize to different doses, when possi-
ble, and search for a dose–response relation-
ship. Another option may be usual care as a 
comparator or to randomize to treatment strat-
egies rather than specific medications.

Despite these challenges to using the LST for 
comparative safety evaluation, the design is par-
ticularly suited to research questions in which 
confounding by indication or severity is likely to 
be pronounced and difficult to measure or con-
trol, but where assessment under routine care is 
important for decision making. LST designs are 
similar to observational studies in that they can, 
in principle, be effectively used to study the safety 
of health interventions in patient populations not 
typically exposed in clinical trials, such as the 
elderly, very young, or those with multiple co‐
morbidities, and understand the safety of a health 
intervention as it is used with multiple concomi-
tant prescriptions or OTC medications under 
routine medical care. With the increasing demand 
for real‐world evidence to guide public health, 
regulatory, and clinical decisions, pharmacoepi-
demiologists are well suited to design and con-
duct LSTs and, most importantly, to develop more 
efficient methods of participant selection and 
 follow‐up data collection that can make these 
studies a more common option for the evaluation 
of small but important risks of medication use.
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In order to be approved for marketing in the 
United States, drugs must be proven to be 
safe  and effective using “adequate and well‐ 
controlled investigations.” Earlier chapters in 
this book have shown that this premarketing 
information often is insufficient to provide 
some of the information about drug toxicity 
which is clinically most important. The same 
applies to information about drug efficacy.

In this chapter we will begin by clarifying the 
different definitions of various types of benefi-
cial drug effects. Then we will discuss the need 
for postmarketing studies of drug effectiveness. 
Next, we will present the unique methodologic 
problems raised by studies of beneficial drug 
effects, as well as potential solutions to these 
problems. Finally, we will evaluate the frequency 
with which these proposed solutions might be 
successful. Specific examples of approaches to 
the study of efficacy also will be presented.

 Definitions

There are at least four different types of measur-
able drug effects of interest to a prescriber. 
Unanticipated harmful effects are the unwanted 
effects of drugs that could not have been 

 predicted on the basis of their preclinical 
 pharmacologic profile or the results of premar-
keting clinical studies. These effects are most 
often type B adverse reactions, as defined in 
Chapter  1. For example, chloramphenicol was 
not known to cause aplastic anemia at the time 
it was marketed [1], nor was the skeletal muscle 
pain associated with use of HMG‐CoA reduc-
tase inhibitors. A major research challenge is to 
discover medically important unanticipated 
harmful effects as soon as possible after drug 
marketing. Quantitation of the incidence of 
these effects is medically useful as well.

Anticipated harmful effects are unwanted 
effects of drugs that could have been predicted 
on the basis of preclinical and premarketing 
studies. They can be either type A reactions or 
type B reactions (see Chapter 1). One example is 
the syncope that sometimes occurs after 
patients take their first dose of prazosin [2]. 
Although this effect was known to occur at the 
time of marketing, a major question remaining 
to be answered was how often the event 
occurred. The dominant research challenge that 
this type of drug effect presents is establishing 
its incidence.

Unanticipated beneficial effects are desirable 
effects of drugs that were not anticipated at the 
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time of drug marketing. Although these effects 
may be medically useful, they are nevertheless 
side effects, if they are not the purpose for which 
the drug was given. An example of an unantici-
pated beneficial effect is aspirin’s ability to 
decrease the probability of a subsequent myo-
cardial infarction in patients who were given the 
drug for its analgesic or antiinflammatory action 
[3]. This effect was confirmed only after aspirin 
had been used as an analgesic for many years. 
A  major research challenge is to discover this 
type of drug effect. For example, given the simi-
lar (although not exactly the same) mechanism 
of nonaspirin nonsteroidal antiinflammatory 
drugs, these drugs may have the same beneficial 
effects as aspirin [4]. However, recent data sug-
gest that, in contrast, these medications might 
increase the risk of cardiovascular events.

Anticipated beneficial effects are the desirable 
effects that are known to be caused by the drug. 
They represent the reason for prescribing the 
drug. The study of anticipated beneficial effects 
has three aspects.

A study of drug efficacy investigates whether a 
drug has the ability to bring about the intended 
effect. In an ideal world, with perfect compli-
ance, no interactions with other drugs or other 
diseases, etc., could the drug achieve its intended 
effects? Drug efficacy usually is studied using a 
randomized clinical trial.

In contrast, a study of drug effectiveness inves-
tigates whether, in the real world, a drug in fact 
achieves its desired effect. For example, a drug 
given in experimental conditions might be able 
to lower blood pressure but if it causes such 
severe sedation that patients refuse to take it, it 
will not be effective. Thus, an efficacious drug 
may lack effectiveness. Studies of drug effective-
ness usually are performed after a drug’s  efficacy 
has been established. In contrast, if a drug is 
demonstrated to be effective, it also is obviously 
efficacious. Studies of drug effectiveness gener-
ally would best be conducted using nonexperi-
mental study designs, although clinical trials 
using pragmatic designs may also be utilized 

(see  Chapter  32). However, these raise special 
methodologic problems, which are discussed later.

Lastly, a study of efficiency investigates 
whether a drug can bring about a desired effect 
at an acceptable cost. This type of assessment 
falls in the province of health economics, which 
is discussed in Chapter 34.

Note that the outcome variable for any of these 
studies can be of multiple different types. They 
can be clinical outcomes (diseased/undiseased) 
(see Chapter 37 for a discussion of the validity 
issues involved in measuring such outcomes); 
measures of patient‐reported outcomes (see 
Chapter 42), measures of utility, such as global 
measures of the desirability of certain clinical 
outcomes (see Chapters 37 and 42); economic 
outcomes (see Chapter 34); etc. Regardless, the 
same methodologic issues apply to each.

 Clinical Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

In order to make optimal clinical decisions about 
whether to use a drug, a prescriber needs to know 
whether, and to what degree, the drug actually is 
able to produce the intended effect (Box 33.1) [5]. 
Premarketing randomized clinical trials gener-
ally provide information on whether a drug can 
produce at least one beneficial effect. Specifically, 
premarketing studies generally investigate the 
efficacy of a drug relative to a placebo, where 
both are used to treat a particular illness. These 
premarketing studies of efficacy tend to be con-
ducted in very atypical clinical settings, com-
pared to those in which the drug ultimately will 
be used. Patient adherence (see Chapter 38) dur-
ing these studies is typically higher than in actual 
practice, and the patients included are similar to 
each other in age and sex, do not have other dis-
eases, and are not  taking potentially interacting 
drugs (see Chapter  40). Such restrictions 
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 maximize the ability of premarketing studies to 
demonstrate a drug’s efficacy, if the drug actually 
is efficacious.

Additional information may then be needed 
on whether, in the world of daily medical prac-
tice, the drug actually achieves the same benefi-
cial effects and whether it can and does have 
other beneficial effects. In addition, at the time 
of marketing there may be few data on a drug’s 
efficacy relative to other medical or surgical 
alternatives available for the same indication.

Finally, a number of factors that are encoun-
tered in the practice of medicine can modify a 
drug’s ability to achieve its beneficial effects. 
Included are variations in drug regimen, charac-
teristics of the indication for the drug, and 
 characteristics of the patient receiving the drug, 
including demographic factors, nutritional 
 status, the presence of concomitant illnesses, 
the ingestion of drugs, and so on. Many, if not 
most, of these factors that can influence the 
effects of drugs are not fully explored prior to 
marketing.

In order to quantitate the need for postmar-
keting studies of the beneficial effects of drugs, a 
comparison was made of the 100 most common 
drug uses in 1978 (drug–indication pairs) to the 
information available to the FDA at the time of 
its regulatory decisions about the marketing and 
labeling of the drugs involved in these uses [5]. 
The comparison was restricted to drugs 
approved after 1962, when the Kefauver–Harris 
Amendments first introduced a requirement for 
the submission of data about drug efficacy prior 
to approval of a drug for marketing.

Of the 100 common drug uses, 31 had not 
been approved by the FDA at the time of initial 
marketing, and 18 still had not been approved at 
the time of the comparison. Eight of the 18 
unapproved uses were probably medically and 
therapeutically inappropriate. For example, the 
use of antibiotics is not justified for the treat-
ment of viral infections, but such use was 
 common. Other unapproved drug–indication 
pairs could well have been quite appropriate, 
but the regulatory process does not need to and 
did not reflect the current medical practice.

Of the 100 common drug uses, eight were 
based on the assumption that a drug had a par-
ticular long‐term effect, but only an intermedi-
ate effect had been studied prior to marketing. 
For example, antihypertensive drugs are used for 
their presumed ability to prevent long‐term 
 cardiovascular complications, but are approved 
for marketing on the basis of their ability to 
lower blood pressure. Five of the 100 common 

Box 33.1 Clinically important information 
about intended beneficial effects of drugs

1) Can the drug have the desired effect?
2) Does the drug actually achieve the desired 

effects when used in practice?
3) Can and does the drug have other beneficial 

effects, including long‐term effects for the 
same indication?

4) Can the drug achieve these desired effects 
better than other alternative drugs available 
for the same indication?

5) For each of the above, what is the magni-
tude of the effect in light of the many differ-
ent factors in medical practice that might 
modify the effect, including:

 ● variations in drug regimen: dose per unit 
time, distribution of dose over time, dura-
tion of regimen?

 ● characteristics of the indication: sever-
ity, subcategories of the illness, changes 
over time?

 ● characteristics of the patient: age, sex, 
race, genetics, geographic location, diet, 
nutritional status, adherence, other ill-
nesses, drugs taken for this or other illness 
(including tobacco and alcohol), etc.?

Modified from Strom BL, Melmon KL, Miettinen OS. Post‐
marketing studies of drug efficacy: Why? Am J Med 1985; 
78: 475–80. Reproduced with permission of Elsevier.
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drug uses may have been for either the interme-
diate effect or the long‐term effect of the drugs, 
but only the intermediate effect was studied 
prior to marketing. For example, hypoglycemic 
agents may be used to control the symptoms of 
diabetes or to prevent the vascular complica-
tions of diabetes, but only the former were 
 studied before drug marketing.

Drugs other than those in the list of 100 
 common uses were sometimes prescribed as 
treatment for each of the 52 indications included 
in those 100 uses. Yet, eight of the uses involved 
drugs whose effects relative to alternative drugs 
had not been studied prior to marketing.

The 100 common drug uses also included 
examples of clinical factors that are able to mod-
ify the effects of the drug, but these were not 
discovered until after drug marketing. Some are 
listed in Table  33.1 [6–19]. In addition, addi-
tional prescriptions accompanied 62% of the 
prescriptions studied, and 41% of the prescrip-
tions were for patients who had illnesses other 
than just the one that the drug was being used to 
treat. Of the 100 common drug uses, the mean 
number of concomitantly administered drugs 
ranged from 0.04 to 2.1. The mean number of 
concomitant diagnoses ranged from 0.1 to 1.2. 
Yet, for none of the uses was the potential for 
modification of the drug effect by concomitant 
drugs or concomitant diagnoses fully explored 
before marketing.

The proportion of prescriptions which were 
for patients less than age 20 ranged from 0.0%, 
for 43 of the uses, to 97%. Yet many of these uses 
had not been tested in children prior to market-
ing. Analogously, only three of the drugs were 
approved for use in pregnant patients, yet we 
know that drug use in pregnancy was common, 
even then [20–22].

Thus, this study revealed considerable gaps in 
the information about beneficial drug effects at 
the time of drug marketing. These deficiencies 
in the available information should not be sur-
prising, nor should they be considered inade-
quacies that ought to prevent the release of the 

drug to the marketplace. The data needed for 
clinical decisions are frequently and under-
standably different from those needed for regu-
latory decisions. Studies performed prior to 
marketing perforce are focused predominantly 
on meeting appropriate regulatory require-
ments, and only secondarily on providing a 
basis for optimal therapeutic decisions. This 
regulation is not aimed at telling a physician 
precisely how an agent should be used. The 
FDA is not allowed to regulate physicians but, 
rather, pharmaceutical manufacturers. In addi-
tion, the FDA does not initiate its own studies of 
drug effects, but generally evaluates those sub-
mitted to it by manufacturers.

Finally, there are reasonable logistical limita-
tions on what can be expected prior to market-
ing, without undue cost in time and resources, 
as well as delaying the availability of a chemical 
entity with a proven potential for efficacy. Thus, 
it seems that more studies of beneficial drug 
effects are needed, perhaps as a routine part of 
postmarketing drug surveillance.

 Methodologic Problems 
To Be Addressed by 
Pharmacoepidemiologic 
Research

Chapter 3 introduced the concept of a confound-
ing variable, which is a variable other than the 
risk factor and outcome variable under study 
which is related independently to each of the 
other two and, thereby, can create an apparent 
association or mask a real one. This is  discussed 
in more depth in Chapter 43. Studies of intended 
drug effects present a special  methodologic 
problem of confounding by the indication for 
therapy [23,24]. In this case, the risk factor under 
study is the drug being evaluated and the out-
come variable is the clinical  condition that the 
drug is supposed to change (cure, ameliorate, or 
prevent). In clinical practice, one would expect 



Table 33.1 Examples of factors determining drug efficacy that were demonstrated after marketing, selected from the 100 most common drug uses of 1978.

Factors Drug Indication Comments Reference

Regimen
Dose per unit 
time

Ibuprofen Rheumatoid 
arthritis, 
osteoarthritis

Daily dosage initially approved proved to be suboptimal 5

Distribution of 
dose over time

Furosemide Congestive heart 
failure

Efficacy improved by more frequent, smaller doses 6

Duration Clonidine Hypertension Tolerance develops in the absence of a diuretic 7
Hypoglycemics (e.g., 
acetohexamide and 
tolazamide)

Diabetes mellitus Tolerance develops in many patients 8

Indication
Severity Metaproterenol Asthma Patients with severe illness do not have a response without 

additional, supplementary therapy
9

Subcategories Desipramine Depression May vary with endogenous versus exogenous depression 10
Changes over 
time

Ampicillin Otitis media No longer the drug of choice in some geographic areas due to 
bacterial resistance

11, 12

Patient
Age Diazepam Anxiety A given regimen is more effective in the aged than in the young 13

Metabolism varies markedly from premature infants (half‐life 
54 hours), to full‐term infants, to older children (half‐life 
18 hours); young children can have paradoxic reactions

14

Other illness Gentamicin Infection Lower doses required in renal failure 15
Other
Drugs Lithium Manic‐depressive 

illness
Clearance impaired by diuretics, e.g., furosemide 16

Acetohexamide Diabetes mellitus Many drugs interfere, by causing hyperglycemia (e.g., 
diuretics), displacing drug from binding sites (e.g., nonsteroidal 
anti inflammatory drugs), etc.

17

Diet Diuretics (e.g., 
metolazone, furosemide)

Hypertension A decrease in sodium intake can improve efficacy 18

Lithium Manic‐depressive 
illness

Significant sodium depletion or excess can modify renal 
excretion

16

Source: Strom BL, Melmon KL, Miettinen OS. Post‐marketing studies of drug efficacy: Why? Am J Med 1985; 78: 475–80 (5).
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treated patients to differ from untreated patients, 
as the former have an indication for the treat-
ment. To the extent that the indication is related 
to the outcome variable as well, the indication 
can function as a confounding variable.

For example, if one wanted to evaluate the 
effectiveness of a beta‐blocker used after a myo-
cardial infarction in preventing a recurrent 
myocardial infarction, one might conduct a 
cohort study comparing patients who were 
treated with the beta‐blocker as part of their 
usual postmyocardial infarction medical care to 
patients who were not treated, measuring the 
incidence of subsequent myocardial infarction 
in both groups. However, patients with angina, 
arrhythmias, and hypertension, all indications 
for beta‐blocker therapy, are at increased risk of 
subsequent myocardial infarction. As such, one 
might well observe an increase in the risk of 
myocardial infarction, rather than the expected 
decrease. Thus, even if use of the drug was ben-
eficial, it might appear to be harmful!

Confounding by the indication for the treat-
ment generally is not a problem if a study is 
focusing on unexpected drug effects, or side 
effects, unrelated to the indication for the drug, 
whether they are harmful or beneficial effects. 
In this situation, the indication for treatment is 
not usually related to the outcome variable 
under study. For example, in a study of gastroin-
testinal bleeding from nonsteroidal antiinflam-
matory drugs (NSAIDs), the possible indications 
for treatment, such as arthritis, dysmenorrhea, 
and acute pain, have little or no relationship in 
and of themselves to the risk of gastrointestinal 
bleeding [25]. Nevertheless, sometimes the 
problem of confounding by indication can 
emerge even in studies of unexpected drug 
effects (beneficial or harmful). For instance, in a 
study of hypersensitivity reactions associated 
with the use of NSAIDs, the increased risk of 
hypersensitivity reactions evident in patients 
taking NSAIDs was higher in those using the 
drugs for acute pain than in those using the 
drugs for osteoarthritis and other chronic 

 conditions. This probably was because of the 
intermittent ingestion of the drug by those 
receiving it for acute pain [26].

Although confounding by the indication is a 
less common problem for studies of side effects, 
this is not the case for studies of anticipated 
beneficial effects. In these studies, one would 
expect the indication to be more closely related 
to the outcome variable. In fact, the problem 
presented by confounding by the indication has 
been thought by some to invalidate nonexperi-
mental approaches to studies of the beneficial 
effects of drugs. Some have felt that questions of 
beneficial drug effects can be addressed only by 
using randomized clinical trials [27]. Yet, 
although postmarketing randomized clinical 
trials certainly can be very useful, they are vexed 
by many of the same logistical problems, ethical 
restrictions, and artificial medical settings 
found in premarketing clinical trials.

 Currently Available Solutions

Not all studies of beneficial drug effects need 
be randomized clinical trials (Table 33.2) [23]. 
First, some questions do not require any com-
parative (analytic) research for their answer. 
For these, simple clinical observations, as 
reported in a case report or case series, can be 
sufficient. For example, the efficacy and effec-
tiveness of naloxone, used as a narcotic antago-
nist, is demonstrable simply through the 
observation of a single patient. Consider a 
patient comatose from an overdose of metha-
done. An injection of naloxone results in his 
prompt awakening. However, 30 minutes later, 
as the effects of the narcotic antagonist wear 
off, the patient returns to coma. Another injec-
tion of the naloxone results in awakening once 
more, and then later the coma returns again. 
This sequence of events represents a convinc-
ing demonstration of the drug’s ability to have 
its desired effect. No elaborate studies are 
needed to make this point. The same would be 
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true for a case series of patients treated with 
penicillin to treat pneumococcal pneumonia.

However, in applying this simple approach of 
clinical observations based on a case report or 
case series, the course of a patient’s disease must 
be sufficiently predictable that one can differen-
tiate a true drug effect from spontaneous 
improvement. In particular, one must be able to 

exclude regression to the mean as the mecha-
nism of the observed change: individuals 
selected to participate in a study based upon the 
severity of their disease spontaneously and usu-
ally will tend to improve. One example would be 
a patient with recurrent headaches. The patient 
would most likely seek medical attention when 
the headaches are most severe or most frequent. 

Table 33.2 Classification of research questions according to their problems of confounding by the indication 
for therapy.

Situation Example

1. Comparative studies unnecessary
(a)  Drug effect obvious in the individual patient, or Naloxone used for methadone overdose
(b)  Drug effect obvious in a series of patients Penicillin used for pneumococcal pneumonia

2. Confounding by the indication nonexistent: there is 
no indication

Measles vaccine given routinely to healthy infants

3. Confounding by the indication exists but is 
controllable
(a)  The indication is dichotomous
   (i)  Gradations in the indication do not exist, or Anti‐Rh (D) immune globulin given to Rh (D)‐

negative mothers who deliver Rh (D)‐positive 
newborns to prevent future erythroblastosis fetalis

  (ii)  Gradations in the indication are unrelated to 
the choice of treatment, or

Penicillin used for endocarditis prophylaxis in 
patients with congenital aortic stenosis who are 
undergoing tooth extraction

 (iii)  Gradations in the indication are unrelated to 
expected outcome, or

Penicillin used to prevent tertiary syphilis, given to 
patients with an asymptomatic positive serologic 
test for syphilis

 (iv)  Special clinical settings Anticoagulants used after myocardial infarctions to 
prevent death

(b)  The indication is sufficiently characterizable Isoniazid used for tuberculosis prophylaxis in a 
patient with an asymptomatic positive purified 
protein derivative

   (i)  Complete characterization of the indication 
as it relates to choice of therapy or as it 
relates to expected outcome, and

  (ii)  Characterization must continue after 
initiation of therapy

4. Confounding by the indication exists and is not 
controllable

Ampicillin used to treat urinary tract infection

Source: Strom BL, Miettinen OS, Melmon KL. Postmarketing studies of drug efficacy: when must they be randomized? Clin 
Pharmacol Ther 1983; 34: 1–7. Reproduced with permission of John Wiley & Sons.
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A spontaneous return to the baseline pattern of 
headaches generally could be expected. However, 
if the patient were treated in the interim, then 
the treating physician likely would view the 
return to normality as evidence of successful 
therapy, no matter what treatment was used or 
whether it contributed anything to the recovery.

Second, some questions about beneficial drug 
effects can be answered using formal nonexperi-
mental studies, because there is no confounding 
by the indication. If the decision about whether 
to treat is not based on a formal indication, but 
on some other factor that may not be related to 
the outcome variable under study, such as the 
limited availability of the drug in question, then 
there is no opportunity for confounding by the 
indication. This situation occurs most com-
monly in studies of primary prevention. The use 
of measles vaccine, routinely administered to 
healthy infants, is one example.

Third, there are several settings in which 
confounding by the indication may exist but 
theoretically can be controlled. When the indi-
cation can be measured sufficiently well, then 
traditional epidemiologic techniques of exclu-
sion, matching, stratification, and mathemati-
cal modeling can be applied. The indication 
clearly can be sufficiently measured if it is 
dichotomous or binary. In this situation, the 
indication either is present or absent, but has 
no gradations in severity. The indication also 
can be sufficiently measured if any gradations 
in severity either are unrelated to the choice of 
whether or not to treat or are unrelated to the 
expected outcome. Alternatively, sometimes 
one can find special clinical settings in which 
the gradations are not related to the choice of 
therapy. For example, if the availability of drugs 
is limited or there are consistent philosophical 
differences among prescribers for using or not 
using the drug, then gradations in the indica-
tion will not be related to the choice of therapy 
(although, even then, confounding could occur 
due to, for example, differences in patients 
treated among prescribers).

Finally, if an indication is graded but can be suf-
ficiently precisely measured, it can be controlled 
by mathematical modeling using, for example, 
multiple regression. Then confounding by the 
indication can be controlled and ruled out as the 
cause for an observed beneficial effect of the drug.

More recently, researchers have used propen-
sity scores towards this end [28,29]. This 
approach uses mathematical modeling to pre-
dict exposure, rather than the traditional 
approach of predicting outcome [30]. This is, 
essentially, a direct measure of indication. One 
can then use the propensity score to create cat-
egories of probability of exposure, and control 
for those categories in the analysis. While this 
approach has many attractive features, espe-
cially as a direct way to control for confounding 
by indication, it is important to point out that it 
is still dependent on identifying and measuring 
those variables which are the true predictors of 
therapeutic choice. Further, propensity scores 
only have advantages when there are seven or 
fewer outcome events per confounder [31]. 
When there are at least eight outcome events 
per confounder, logistic regression represents a 
preferable approach [31]. (See Chapter 43 for a 
more detailed discussion.)

Another relatively new approach increasingly 
being applied is the use of instrumental varia-
bles. An instrument is a variable that is causally 
related to the exposure of interest, only weakly 
related to the uncontrolled risk factors of con-
cern, and is not itself in the causal chain. Thus, 
an instrument is an external factor that influ-
ences an outcome only through its effect on 
treatment. By controlling for the instrument, it 
is thought that one can control for the indica-
tion for treatment. However, finding good 
instruments in pharmacoepidemiology is 
extremely difficult. This is discussed further in 
Chapter 43.

When questions of intended drug effects do 
not fall into any of the preceding categories, con-
founding by the indication cannot be controlled. 
Nonexperimental study designs cannot then be 



Currently Availaole Solutions 821

used, or they can only be used to  demonstrate 
qualitatively some degree of beneficial effect. 
Specifically, if confounding by the indication is 
such that treated patients would have a worse 
clinical outcome than untreated patients, yet the 
outcome observed in treated patients is better 
than that observed in untreated patients, some 
degree of confidence that the drug has a benefi-
cial effect can be built. As an example, patients 
treated with corticosteroids for status asthmati-
cus would be expected to be sicker than those 
not so treated. If patients receiving corticoster-
oids stop wheezing sooner than those not 
 receiving corticosteroids, corticosteroids would 
indeed seem to have a beneficial effect. However, 
if the patients receiving corticosteroids do not 
stop wheezing sooner than those not receiving 
corticosteroids, the results of the study are unin-
terpretable. It is possible that the corticosteroids 
in fact have no beneficial effect but it is also pos-
sible that a beneficial effect was present but was 
being masked by the difference in severity 
between the two treatment groups.

The qualitative approach illustrated above 
must be used with caution. First, the effect of 
the confounding by indication must be opposite 
in direction to the expected effect of the drug. 
Second, the effect of the confounding by indica-
tion must be absolutely predictable in its direc-
tion. Third, the effect of the confounding by 
indication must be sufficiently large so as to 
exclude regression to the mean as an explana-
tion for the results. Even if all of these condi-
tions are met, the results must be interpreted 
only qualitatively, not quantitatively.

Examples of each of these situations are pre-
sented in Table  33.2 and discussed further in 
Strom et al. [23].

Applicability of the Proposed 
Approaches

How commonly are the nonexperimental 
approaches we have described applicable for the 
study of beneficial drug effects? A list of the 100 

most recently approved new molecular entities 
as of December 1978 was studied to determine 
what types of nonexperimental study designs, if 
any, could be used to evaluate drug effectiveness 
[32]. After excluding from this list seven entities 
that were used in contact lenses, the remaining 
93 drugs were examined for all potential indica-
tions and clinical outcomes that could be used 
to evaluate intended drug effects. Ultimately, 
we  assessed 131 drug uses, that is 131 drug–
indication pairs. Each drug use was categorized 
as to whether a study evaluating the effective-
ness of that drug for that indication would present 
the problem of confounding by the indication 
and, if so, whether one of the approaches 
described above would be adequate to address 
it. Eighty‐nine (67.9%) of the drug uses could 
have been evaluated using simple clinical obser-
vations, without formal comparative research. 
A very few of these drugs were, in fact, approved 
by FDA on the basis of such studies, such as 
nitroprusside (approved for malignant hyper-
tension) and bretylium (approved for life‐threat-
ening arrhythmias, in patients refractory to all 
other antiarrhythmics). The remaining 42 drug 
uses required comparative research for their 
evaluation, because they all presented the prob-
lem of confounding by the indication. In seven 
of the 42 (5.3% of the total), this confounding 
was not an obstacle to valid nonexperimental 
research. Most often, the validity of the approach 
rested on the observation that any given physi-
cian usually used the drug to treat either all or 
none of his/her patients with the indication.

In the remaining 35 of the 42 uses (26.7% of 
the total), confounding by the indication was 
judged to be uncontrollable using currently 
available nonexperimental techniques.

To place these findings in perspective, of the 
42 drug uses that required comparative research 
to evaluate their effectiveness, 30 could not eth-
ically be addressed using a randomized clinical 
trial and a placebo control. Most of these 30 
involved the use of drugs to treat infections or 
malignancies. In these situations, patients could 
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not ethically be left “untreated,” that is, assigned 
to the placebo group.

Studies of the effects of one drug relative to 
another active drug, of course, gave different 
results. Formal comparative research was nec-
essary for all 131 drug uses. Nonexperimental 
studies theoretically could be conducted validly 
for 94 of the 131 drug uses (71.8%). Experimental 
studies would be ethical for all of them.

Of course, judging theoretically that a ques-
tion of effectiveness is “studiable” by a given 
technique is not the same as proving that a valid 
outcome would emerge from such a study. There 
are many particular details in the actual conduct 
of such studies that must be addressed on a case‐
by‐case basis. It is, therefore, instructive to 
examine some specific examples of nonexperi-
mental research into beneficial drug effects.

Specific Examples

Estrogens for Prevention of Osteoporotic 
Fractures
One of the first series of studies of drug effective-
ness using rigorous nonexperimental study 
designs examined whether exogenous estrogens 
could prevent fractures in postmenopausal 
women with osteoporosis [33]. Biochemical stud-
ies had documented that the menopause resulted 
in a negative calcium and phosphorus balance, 
and that the balance returned toward normal 
with the ingestion of exogenous estrogens [34]. 
Studies of bone density documented that exoge-
nous estrogens prevented the loss of bone density 
that was associated with the menopause [35], for 
as long as the estrogens were continued [36]. It 
seemed plausible that the use of estrogens might 
prevent fractures from osteoporosis, but no data 
directly addressed that question. On the other 
hand, postmenopausal estrogens had been shown 
to cause endometrial cancer [37,38].

A randomized clinical trial would have been 
the ideal way to address the effect of estrogen on 
fractures. However, such a study, of this prophy-
lactic therapy, was impractical for many  reasons. 

Although postmenopausal fractures are com-
mon, they are experienced by a sufficiently small 
proportion of the population during any defined 
time period that an extremely large sample size 
would be needed. Also, the study would need to 
be carried on for many years before a beneficial 
effect could begin to be seen.

Instead of a randomized clinical trial, a series 
of nonexperimental studies were performed. 
Both case–control and cohort designs were 
used [39–56]. In general, these studies were rig-
orous and well done but the question of con-
founding by the indication was not addressed in 
most of the studies [33]. In particular, most of 
them failed to address why some of the women 
received the postmenopausal exogenous estro-
gens and others did not. Given the data already 
available on the effects of estrogens on bone 
density [57,58] and endometrial cancer [59–62], 
it is reasonable to assume that some physicians 
might preferentially and routinely use the drugs 
and others might routinely avoid them [63–65]. 
In such a setting, nonexperimental techniques 
could yield valid results, unaffected by con-
founding by the indication (category 3.a.iv in 
Table  33.2). However, many physicians might 
try to selectively prescribe the drugs for patients 
who have undergone hysterectomy, because 
these patients are at no risk of endometrial can-
cer. Alternatively, some physicians may try to 
use the drugs only on patients who they feel are 
at high risk of fractures or at high risk of compli-
cations from fractures. These situations would 
represent uncontrollable confounding by the 
indication – category 4 in Table 33.2.

Finally, one might expect that the direction of 
the confounding by indication might be oppo-
site to that of the drug effect, allowing one to 
use these data to make at least qualitative con-
clusions. This assumes, however, that physi-
cians can accurately predict who is at high risk 
of fracture. Such a presumption was not borne 
out by the available data [50].

In fact, the three studies that closely examined 
the comparability of the study groups were able 
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to document that they were not comparable 
[39,50,52]. Specifically, one study was a case–
control study within an orthopedic service, and 
documented that cases with fractures of the hip 
or radius weighed less than controls matched 
for age and race, had a later menopause, and 
more frequently were alcoholics [39]. A second 
was a cohort study of patients with known 
estrogen deficiency. In this study, those who 
were treated with estrogens differed from those 
who were not in age, age of menopause, dura-
tion of follow‐up, height, weight, blood pres-
sure, marital status, race, economic status, and 
gravidity, as well as in the frequency of the fol-
lowing diagnoses: atrophic vaginitis, bilateral 
oophorectomy, premature ovarian failure, 
hypopituitarism, gonadal dysgenesis, endocrine 
disease, hypertension, and osteoporosis [50].

A third study used a case–control design to 
investigate patients admitted to surgical services 
[52]. It compared cases with hip fractures to a 
control group of surgical patients, divided into 
those with and those without trauma. Cases were 
noted to be older, taller, and to have a lower body 
weight than the controls. The cases more fre-
quently had undergone ovariectomy, breastfed 
fewer times and for fewer months, and were 
hypothyroid less frequently than the controls. 
When these factors were controlled for as con-
founding variables, the effect of estrogens was still 
apparent. However, as in the other studies, there 
was no information on how or why the decision 
was made to treat with or withhold estrogens.

A number of other nonexperimental studies 
published since then showed similar results 
[59,61,62,66–71]. Since then, the finding that 
estrogens have a beneficial effect on hip frac-
tures has been confirmed in a large clinical trial, 
the Women’s Health Initiative [72].

Anticoagulants for Prevention of Recurrent 
Venous Thromboembolism
The use of intravenous anticoagulants reduces 
the risk of recurrent venous thromboembolism 
[73], and the addition of oral anticoagulants to 

intravenous anticoagulants probably reduces 
the risk even further [74]. However, how long 
oral anticoagulant treatment should be contin-
ued had not been well studied. Most explicit 
advice from experts on the optimal duration of 
anticoagulation therapy was based on anecdotal 
experience [75,76]. Most of the data that were 
used to suggest the appropriate duration of 
therapy are derived from clinical observations 
in a single medical center [77–80]. They repre-
sent an accumulating case series. Over time, 
gradually patients’ treatment has been pro-
longed. Thus, changes in the duration of treat-
ment are intermingled with other changes in 
medical care over decades. In addition, the 
studies do not compare patients receiving treat-
ments of different lengths but simply observe 
when most recurrences tend to occur. The 
investigators have assumed that treatment 
should be prolonged sufficiently to include that 
time when recurrences can be expected. 
Problems with these studies have been detailed 
[75,76].

As with the question of the effect of estrogens 
on bone fractures from osteoporosis, a rand-
omized clinical trial would be the ideal design to 
address the question of the optimal duration of 
anticoagulation after venous thromboembo-
lism, but such a study is difficult. After patients 
have been anticoagulated in the hospital and 
followed for a short time as outpatients, the risk 
of recurrence is sufficiently small that an enor-
mous population would be needed to detect a 
difference in outcome due to differences in ther-
apy. For years, the only randomized clinical trial 
in the literature that addressed this question 
compared six weeks of outpatient treatment to 
six months of treatment. No difference in recur-
rence rate between these two groups of patients 
was observed [81]. However, only 186 subjects 
were included, yielding a total of only seven 
recurrences. In addition, over half the study 
subjects had some known short‐term risk fac-
tors for venous thromboembolism. These 
included pregnancy, use of oral contraceptives, 
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and recent surgery. Patients with these transient 
underlying risk factors might be expected 
to  be  less likely to benefit from longer‐term 
 anticoagulant therapy than patients with idio-
pathic disease.

The question of the optimal duration of anti-
coagulation was addressed in a retrospective 
cohort study performed using medical records 
review in the Northern California Kaiser 
Permanente Medical Program [82]. The study 
required the use of 10 years of data from this 
population of 1.6 million, or a total of 16 million 
patient‐years of experience. A total of 3384 indi-
viduals were identified as being hospitalized for 
venous thromboembolism. Of these, 2473 suf-
fered from idiopathic venous thromboembo-
lism. Their clinical outcomes were evaluated 
according to how long they had been treated 
with oral anticoagulants. Using those treated 
with six weeks of therapy or less as a control 
group, prolongation of therapy beyond that 
point was found to increase the risk of major 
bleeding dramatically but to have no effect on 
recurrence rates. Unfortunately, very few of 
these episodes of venous thromboembolism 
were objectively confirmed, that is, they were 
clinical diagnoses only, as that was not the prac-
tice at Kaiser.

The feature of this study that allowed the 
investigators to overcome the problem of con-
founding by indication was that physician behav-
ior regarding how long therapy was continued 
was essentially random (category 3.a.ii in 
Table  33.2). The choice of how long to treat 
became random, because there was no prior 
information on how long one should treat. In 
fact, the duration of treatment was relatively 
uniformly distributed across the years of follow‐
up, and the results were no different when one 
restricted the analysis to those who had their 
anticoagulation stopped because of hemorrhage, 
rather than at the option of their physician.

However, these results were not necessarily 
confirmed in subsequent randomized trials. A 
decade later, a multicenter trial in Sweden, with 

897 patients with first episode of venous throm-
boembolism treated with oral anticoagulants 
and followed up for two years, found a signifi-
cant difference in the incidence of recurrent 
venous thromboembolism between the six‐
week and six‐month groups (18.1% vs 9.5%, 
respectively), and no significant difference in 
mortality or the incidence of major hemorrhage 
between the two treatment groups [83].

Several other recent studies also showed the 
benefit of longer duration of warfarin anticoag-
ulant therapy. One randomized trial also showed 
that long‐term low‐dose warfarin therapy was 
effective in decreasing the subsequent risk of 
recurrence of idiopathic venous thromboembo-
lism, in patients who had already received full‐
dose warfarin for a median of 6.5 months [84].

Lidocaine for Prevention of Death 
from Myocardial Infarction
In another study, the efficacy of lidocaine in 
preventing death from myocardial infarction 
was studied using a case–control design [85]. 
Among patients admitted to a coronary or 
intensive care unit for acute myocardial infarc-
tion, those who died were compared to an equal 
number of patients who survived. The controls 
were matched to the cases for age, gender, race, 
and date of hospitalization. Overall, lidocaine 
did not protect against death. Lidocaine was 
effective only when deaths attributable to ven-
tricular arrhythmia were analyzed separately.

In this careful study, the investigators obvi-
ously were well aware of the risk of confounding 
by indication. They attempted to control for this 
by using the epidemiologic technique of stratifi-
cation, that is, classifying patients according to 
their risk of dying from myocardial infarction, 
in order to control for this inequality of risk as a 
confounding variable. Thus, they treated the 
study as a category 3.b question in Table 33.2. 
Unfortunately, however, it is doubtful whether 
one can accurately and fully measure the basis 
for physicians’ judgments about who they 
think  is at high risk of death from myocardial 
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infarction. Similarly, it is unlikely that each 
 individual’s risk of dying from a myocardial 
infarction can be predicted, especially death by 
ventricular arrhythmia. Certainly, a classification 
according to just the presence or absence of con-
gestive heart failure, as was used, is overly sim-
plistic. In fact, the rates of death attributed to 
ventricular arrhythmia were virtually identical in 
those patients with and without congestive heart 
failure. Nevertheless, the results do coincide with 
those of a randomized clinical trial evaluating the 
efficacy of lidocaine in preventing primary ven-
tricular fibrillation [86]. However, while the drug 
prevented the arrhythmia in that randomized 
clinical trial, it did not alter mortality.

Since then, there have been more than 20 ran-
domized trials and four metaanalyses, indicat-
ing that lidocaine reduces ventricular fibrillation 
but, contrary to the results of the nonrand-
omized trials, increases mortality in acute 
 myocardial infarction [87]. This was not con-
firmed in a subsequent paper, which reanalyzed 
the data from the 43 704 patients enrolled in 
GUSTO‐I or GUSTO‐IIb [88].

Anticoagulants for Prevention of Death 
from Myocardial Infarction
Whether anticoagulants can prevent death from 
myocardial infarction was addressed using ran-
domized clinical trials [89]. However, the results 
were inconsistent and inconclusive, possibly 
because of problems of sample size. Thus, this 
question would appear to be a good candidate 
for a case–control study. Such a study was done 
[90], with the investigators treating this research 
question as if it were a category 3.b question in 
Table  33.2. However, as with the study of the 
effects of lidocaine on myocardial infarction, it 
is doubtful whether one can measure and quan-
titate precisely the risk of dying from a myocar-
dial infarction at the time of the acute episode.

This study might have been more convincing 
if the investigators had identified the patients of 
practitioners who always used anticoagulants 
for their patients with myocardial infarctions, 

and then compared them to a control group of 
patients of practitioners who never used antico-
agulants for their patients with myocardial 
infarctions. Inasmuch as the choice of therapy 
in these patients would not have been made on 
the basis of any perceived difference among the 
patients in their risk of dying from myocardial 
infarction, confounding by the indication would 
not be a problem. Of course, if the investigators 
had designed the study as we suggest, they then 
would have had to consider whether the physi-
cians themselves were somehow a predictor of 
outcome, and whether this was consistently 
related to their philosophy of using anticoagu-
lants, across multiple physicians. Thus, rand-
omized trials are really needed to provide the 
answer to this question, and of course in recent 
years, with the advent of low molecular weight 
heparin and thrombolytic therapy, many have 
been forthcoming [91–96].

Generic versus Brand Name Drugs
Another potential use of nonexperimental 
designs to study the beneficial effects of drugs 
arose with the passage of the 1984 Waxman–
Hatch Act in the US. Generic drugs can now be 
marketed after simple demonstration of bio-
equivalence, that is, equivalent bioavailability, in 
18–24 normal adults [97]. However, it is not 
clear whether bioequivalence assures clinical 
equivalence, that is, equivalent efficacy and 
 toxicity [98]. Clinical inequivalence is more 
likely to be evident as a difference in beneficial 
effects than as a difference in adverse effects. In 
developing a drug, dosages are sought which 
optimize drug efficacy. Toxicity, other than idi-
osyncratic or allergic reactions, usually occurs 
at higher doses and concentrations than needed 
for efficacy. Modest variations in the plasma 
concentration of the active drug, created by 
receiving the same dose in different prepara-
tions, are most likely, therefore, to be a problem 
for drug efficacy than for drug toxicity. Variations 
in plasma concentration are even more likely 
to  be a problem for drug effectiveness and   
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cost‐effectiveness. Even a simple change in the 
physical appearance of the drug could conceiv-
ably lead to a decrease in adherence and, thereby, 
effectiveness.

Studies designed to evaluate differences in 
efficacy among different preparations of the 
same drug require enormous sample sizes, as 
one would be searching for relatively small dif-
ferences. However, such sample sizes can be 
achieved relatively easily and efficiently as part 
of nonexperimental pharmacoepidemiologic 
studies. Thus, the suggestion has been made 
that studies of clinical equivalence could possi-
bly be carried out as postmarketing surveillance 
studies [98]. Confounding by the indication 
might be unlikely to be a problem because, as 
far as the physician is concerned, he or she is 
dealing with different products of the same 
drug, products that are theoretically inter-
changeable. The choice among the alternative 
therapies might be expected to be made 
 irrespective of patient characteristics, but rather 
by the pharmacist on the basis of product 
 availability – category 3.a.ii in Table 33.2.

A few pharmacoepidemiologic studies 
(unpublished) on the relative effectiveness of 
different preparations used for the same pur-
pose were performed by Strom, using the 
COMPASS[R] database. These studies com-
pared patients who were started on a brand 
name product and were switched to a generic 
product when it became available with patients 
who remained on the brand name product. The 
drugs studied were thioridazine, chlorpropa-
mide, and slow‐absorption theophylline. These 
studies naturally raise concerns about the ability 
to identify the actual product dispensed. Very 
few of the pharmacoepidemiologic approaches 
described in Part III of the book are able to iden-
tify the specific product dispensed. Often the 
approach does not even distinguish whether it is 
a brand name product or a generic product that 
is being used. Even when the distinction is 
made (for example, most Medicaid datasets use 
the National Drug Code to identify specifically 

the drug, the manufacturer, the dosage form, 
and the dose), one is inevitably left with ques-
tions about whether a brand name is being 
billed for while a generic drug is dispensed. In 
addition, such studies raise concerns about how 
to define the clinical outcome variable. For 
example, how is drug efficacy reflected in a 
claims database? The studies described above 
used proxy outcomes such as number of physi-
cian visits, number of hospitalizations, and use 
of adjunctive therapy to obtain an estimate of 
drug efficacy.

Using these outcomes, the investigators first 
analyzed the baseline data, comparing the 
 experience, prior to switching, of those who 
ultimately switched to generic products to the 
experience of those who did not switch. In each 
of the three studies, the future switchers were 
different from the future nonswitchers, prior to 
the switch. Thus, it appears that patients who 
were to be switched to generic products were 
different from patients who stayed on the brand 
name products: confounding by indication was 
indeed operating. Because of this, no analyses of 
efficacy after the switch were performed. 
Parenthetically, because of this, and questions 
about the uncertain interpretability of the clini-
cal outcomes, it was elected not to publish the 
results of these papers.

Cost‐effectiveness Studies
An important category of studies of beneficial 
drug effects includes studies of their cost‐effec-
tiveness. These measure the resources neces-
sary to achieve a particular beneficial outcome, 
and thus have two main study variables – one 
that is clinical and one that is economic [99–
102]. For example, one could perform a cohort 
study comparing treated patients to untreated 
patients, and determine whether the clinical 
outcomes they experience and the cost of the 
medical care they subsequently receive is differ-
ent. In such a study, one would need to consider 
the possibility of confounding by the indication 
for both the clinical outcome and the cost 
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 variables. It should be noted that the indication 
may have different effects on the clinical out-
comes and the costs. Thus, while performing 
the clinical outcome assessment, one needs to 
consider and, potentially, quantify the implica-
tions of the indication for the treatment on the 
clinical outcome variable. In contrast, while 
performing the cost assessment, one needs to 
consider and, potentially, quantify the cost 
implications of the indication on both the clini-
cal outcomes and the costs. The subject of 
health economics as applied to drug use is dis-
cussed in more detail in Chapter 34.

Vaccines
Nonexperimental study designs have been 
widely used to evaluate the efficacy of vaccines. 
Specifically, case–control studies have been used 
to explore the efficacy of pneumococcal vaccine 
[83,84,103–106], rubella vaccine [107,108], mea-
sles vaccine [109–113], Haemophilus influenzae 
type b polysaccharide vaccine [114–125], oral 
poliovirus vaccine [126,127], meningococcus 
vaccine [128–130], Japanese encephalitis vac-
cine [131,132], BCG vaccine in protecting 
against tuberculosis [133–140], diphtheria tox-
oid vaccine [141], mumps vaccine [142], and lep-
rosy [143,144]. Cohort studies have been used to 
explore the efficacy of Haemophilus influenzae 
type b polysaccharide vaccine [116], measles 
vaccine [117,145], and pertussis vaccine 
[146,147].

Again, studies like these should ideally be 
conducted as randomized clinical trials. 
However, the relative infrequency of the dis-
eases that the above vaccines are designed to 
prevent, particularly in populations which are 
partly vaccinated, make use of this design 
 difficult, although not impossible. In fact, in one 
situation, a new Japanese encephalitis vaccine 
manufactured in China was studied for efficacy 
using a case–control design [131], while a study 
of its safety, conducted by the same authors, 
used a randomized clinical trial design [132]. In 
considering the applicability of nonexperimental 

study designs, the relatively indiscriminate use 
of such vaccines places the study in category 2 
of Table  33.2. Patients who receive these vac-
cines differ from those who do not in their soci-
oeconomic status, access to medical care, and 
physicians’ attitudes towards vaccines. However, 
for most vaccines, an individual physician is not 
likely to give only some of his/her eligible 
patients the vaccine, withholding it from other 
eligible patients. Thus, patients receiving vac-
cines are not likely to differ from those who do 
not get the vaccine, at least in their physicians’ 
perceptions about the patients’ risk of contract-
ing these diseases. Nonexperimental studies of 
such questions should produce valid results, 
therefore. Indeed, as is evident from the large 
number of examples, this is becoming a stand-
ard and accepted approach. We refer the inter-
ested reader to some methodologic papers on 
the subtleties of designing nonexperimental 
studies of vaccine efficacy [148–154].

Other Examples
Other analogous work using case–control study 
designs has explored the effectiveness of bicycle 
safety helmets in preventing face injuries 
[155,156], antibiotic prophylaxis in preventing 
postdental infective endocarditis [157,158], 
beta‐blockers in preventing mortality in patients 
with acute myocardial infarction [159], beta‐
blockers and incident coronary artery events 
[160], etc.

 The Future

Clinicians have long recognized the value of clin-
ical observations and nonexperimental research. 
Much of our current knowledge about the useful-
ness of medical interventions is based on infor-
mation that is nonexperimental. However, the 
information that observational techniques gen-
erate cannot be accepted uncritically. Perhaps in 
reaction to the limitations of nonexperimental 
studies, some scientists have insisted that “the 
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randomized clinical trial (RCT) is the only scien-
tifically reliable method for assessment of the 
efficacy (and risks) of most clinical treatments” 
[27]. Sackett et al. argued “… to keep up with the 
clinical literature … discard at once all articles on 
therapy that are not randomized trials” [161]. In 
light of the analysis presented above, this posi-
tion seems too simplistic and far reaching. If 
overbearing, it results in clinically necessary and 
potentially available information being uncol-
lected and unused. The proper balance in atti-
tude about the value of these approaches probably 
lies somewhere between the two extremes. To 
quote Sir Austin Bradford Hill, one of the devel-
opers of the randomized trial: “Any belief that the 
controlled trial is the only way (to study thera-
peutic efficacy) would mean not only that the 
pendulum had swung too far but that it had come 
right off its hook [162].”

Many investigators are now applying nonex-
perimental designs to studies of beneficial drug 
effects, including comparing active treatments 

with each other (see Chapter  26). With the 
 passage of the 21st Century Cures Act, the US 
Congress embraced the use of “real‐life evi-
dence” and the fact that it might provide data 
on drug effects, including benefit. However, 
careful attention needs to be paid to the possi-
bility of confounding by the indication. Some 
approaches to this problem are now available 
(see Chapter  43), and hopefully more will be 
available in the future. However, when con-
founding by indication can be addressed, clini-
cal observations and nonexperimental research 
can be used. The results of nonexperimental 
research are unlikely to be as powerful or as 
convincing as those of experimental research. 
We are not suggesting that nonexperimental 
studies be used as replacements for experimen-
tal studies. However, when an experimental 
study is deemed to be unnecessary, unethical, 
infeasible, or too costly relative to the expected 
knowledge to be gained, there might be reason-
able alternatives.
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Modern medicine is defined by the use of phar
maceutical products. The treatment of many 
conditions would be unthinkable without these 
essential products. Yet, the price of pharmaceu
tical products and their economic impact on the 
healthcare system remain controversial. In this 
chapter, we explore the economics of pharma
ceutical products.

 Clinical Problems to Be Solved 
by Pharmacoepidemiologic 
Research

A patient walks into a pharmacy with a pre
scription written by their physician for a new 
medication. The patient has health insurance 
from their employer that includes a specific pre
scription drug benefit. The pharmacist dis
penses the medication and asks the patient to 
pay for their portion of the cost. The pharmacy 
then bills the insurer for the balance of the cost. 
These types of transactions are typical, and they 
occur daily at every pharmacy in the United 
States (and similar transactions occur in other 
countries). Yet behind this simple occurrence is 
the complex economics of healthcare and the 
pharmaceutical market. This chapter reviews 

the economics of the pharmaceutical market 
and provides some insights into potential ways 
in which this market may evolve in the future.

 The Economics of 
Pharmaceutical Products

The science of drug development and assess
ment has been well described in the literature 
and throughout this book. Drug development 
proceeds through stages of discovery, optimiza
tion, clinical development, regulatory review, 
and launch with postmarket assessment. The 
economics of this process brings together con
cepts of finance, health economics, and behav
ioral economics in a manner that is truly unique.

Drug development starts with an investment 
in science. Historically, public grant funds 
through the National Institutes of Health or the 
National Science Foundation, or private funds 
through programs like the Howard Hughes 
Medical Institute, would support fundamental 
science that might be years or even generations 
away from translation into medical products. 
Academic researchers and the pharmaceutical 
industry would use the insights from this work 
to begin an effort at translation, moving from 
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fundamental science to specific interventions 
for specific diseases. This work could still be 
publicly funded, but might be more likely to be 
funded through private resources such as phar
maceutical firms, or even applied science efforts 
such as the Bill and Melinda Gates Foundation. 
These efforts serve to translate biology into drug 
targets, identifying potential pathways to alter 
the target through the identification of small 
molecules or biologics that have (hopefully) 
unique effects on the target. The discovery of a 
candidate drug would lead to the filing of a pat
ent, an opportunity for the inventor to own the 
rights to the discovery and to preclude others 
from practicing the invention (under a provision 
called the Bayh–Dole Act, universities own the 
patent rights to discoveries even if the work was 
funded using federal grants).

The patent rights are critical in the next stage 
of drug development. This is when the process 
moves from the laboratory to human testing. 
This is the most expensive step in drug develop
ment, and for the most part the work is privately 
funded. Investors justify their investment in a 
molecule with the opportunity for financial 
returns resulting from their ownership of the 
molecule through the patent. This transition 
from public to private support is challenging for 
many discoveries. The “Valley of Death” is 
deemed the gap between science that is funded 
by public grants and the ability to attract private 
investment to the development of a molecule.

Clinical testing of pharmaceuticals is carefully 
regulated by the Food and Drug Administration 
(FDA) and other global regulatory bodies. For 
most products, regulatory authorities require 
proof of safety and efficacy of products before 
they are approved for sale. Clinical testing can 
require up to a decade to complete and can 
require more than $1 billion in direct outlays [1].

At the end of drug development, with product 
approval by the FDA, the manufacturer can set a 
price and market the product. Prices set by man
ufacturers reflect their significant investment in 
clinical development, and the inherent risk they 

were required to assume, but also considerations 
of market access or barriers to full reimburse
ment for patients. The price can reflect the mar
ginal cost of producing a product, but often this 
is a relatively minor consideration. The prices 
of  specialty pharmaceutical products can be 
extraordinary, reaching $475 000 per patient for 
Novartis’s CAR‐T therapy [2]. Prices also vary 
across markets, with a 30‐day supply of Janssen’s 
Xarelto® priced at $48 in South Africa, $102 in 
Switzerland, and $292 in the United States, or 
400 mg of Genentech’s Avastin® priced at $956 in 
South Africa, $1752 in Switzerland, and $3930 in 
the United States [3]. Not only are drug prices 
high, but cancer therapies have experienced 
 significant price growth. In one analysis, the 
monthly cost of oncology products has increased 
from approximately $100 as recently as 1980 to 
$10 000 by 2010 [4].

A lot of attention has been focused on the 
impact of health insurance on the prices of 
pharmaceutical products. Historically, pre
scription drugs were relatively affordable, and 
so were paid for by patients. As medications 
became more effective, the concept of prescrip
tion drug insurance began to develop. In 1960 
in the United States, 96% of prescription drug 
spending was out of pocket by individuals. By 
1980, out‐of‐pocket spending was still 71% of 
total spending. By 1990, it was down to 57%, 
2000 to 28%, 2010 to 18%, and 2015 to 14% [5]. 
Prescription drug coverage has led to a trans
formation of the pharmaceutical market. Over 
this same period, the prescription drug market 
has grown from $2.7 billion in 1960 to $462 bil
lion in gross sales in 2016 (resulting in net 
pharmaceutical sales to manufacturers of $318 
billion) [6].

Insurance is a mechanism for sharing risk 
across individuals. Generally, insurance works 
best when the occurrence being insured is infre
quent, can be catastrophic to the individual, and 
is not influenced by the individual or organiza
tion being insured. In insurance markets charac
terized by these conditions, insurance can be a 
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relatively inexpensive proposition. Health insur
ance has different characteristics. We use health
care services frequently, and with medications 
even more frequently. While some healthcare 
costs can be catastrophic, not all are. While pay
ing for a monthly medication is not enjoyable, for 
most people it is not financially catastrophic. 
Finally, consumption of healthcare services is 
inherently influenced not only by individuals (do 
you want to go to the clinician for that bad cold or 
sprained ankle?), but also by pharmaceutical 
manufacturers and healthcare systems com
mercializing medicinal drugs and services. 
Consequently, health insurance has become a 
very expensive insurance product. In truth, 
most health insurance combines the idea of 
 prepayment for usual healthcare services with 
a  catastrophic medical benefit (to some extent, 
high‐deductible health plans try to separate 
out  these two different elements of healthcare 
financing).

The idea of making a risky financial invest
ment in order to garner a financial return is not 
unique to the pharmaceutical industry. The oil 
and gas industry faces a similar economic prop
osition in oil exploration, with risky new leases 
requiring years of development and the outlay 
of billions of dollars before realizing any return. 
One fundamental difference between pharma
ceuticals and the petroleum industry is that the 
market sets the price for the products in the oil 
industry, not the oil producer. Also, consumers 
pay directly for the products in the oil industry 
while they often have insurance to help pay for 
pharmaceutical products. The final difference 
with the petroleum industry is that consumers 
may make very different purchase decisions in 
healthcare settings than they make in other 
aspects of their life.

In the next section, we explore the impact of 
health insurance on pricing decisions by manu
facturers. We then explore an emerging area of 
economics, behavioral economics, and its ability 
to help us understand the unique price‐inelastic 
behavior of segments of the healthcare market.

 Health Economics

Moral Hazard

Health economists have long been worried 
about the economic impact of health insurance 
on the patterns of consumption of healthcare 
due to a concept called “moral hazard.” Moral 
hazard describes the change in individual 
behavior between conditions of self‐pay and 
conditions of third‐party payment. Kenneth 
Arrow was awarded the Nobel Prize in eco
nomics for developing this framework [7], and 
Mark Pauly further developed the theory to 
focus on demand [8].

The basic framework is easy to understand. 
We all make purchases based on our concept of 
value. We generally make purchases of goods or 
products for $1.00 when we perceive that they 
offer $1.00 worth of value. This concept of value 
is an individual determination: we all have our 
own tastes, preferences, and needs which form 
our assessment of value.

Third‐party payment alters this fundamental 
calculus. Consider going out to dinner with a 
group of friends. After the menu is passed 
around, you notice items of lower and higher 
price, say salad and steak. You can approach 
payment in one of two ways: individual checks 
or splitting the check. If you all decide on indi
vidual checks before you order, you may decide 
to purchase the lower‐cost salad since you are 
on a budget. However, what happens if you 
decide to split the check before you order? You 
may be worried that everyone else at the table is 
likely to order the higher‐priced steak, and you 
will have to pay your share of their higher‐priced 
meals. Since you are paying for their steak, why 
not order your own steak so at least you get the 
benefit of the higher price you will pay for din
ner? In this simple illustration, your behavior 
changes between self‐payment and third‐party 
payment models.

Health insurance is one form of third‐party 
payment. Under health insurance, rather than 
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paying the full cost of medical products, you 
pay only a co‐payment (fixed amount), or co‐
insurance (a percentage payment) for medical 
products. As illustrated in Table 34.1, products 
1 through 3 offer at least $1.00 of value for 
$1.00 of cost. In a self‐payment model, you 
would be expected to purchase only products 1 
through 3 since only these products have a 
value of $1.00. In an insurance model, however, 
you only pay the co‐payment of $0.20. Now, 
products 1 through 6 offer value equal to or 
greater than the $0.20 copayment, so using the 
same rule (only buying products that offer 
value greater than or equal to the price you 
pay), you would purchase products 1 through 
6. Again, behavior changes under conditions of 
third‐party payment. While many economists 
have argued that health insurance increases 
the overall cost of healthcare due to these 
changes in demand [9], there is also the con
cept of good moral hazard where people can 
purchase goods or products through insurance 
that would otherwise be unaffordable [10]. It is 
possible to develop a direct estimate of the 
increase in prescription drug costs between 
those with and without insurance [11].

To this point, the discussion has focused on 
the impact of moral hazard on the demand for 
healthcare products. However, the impact of 
moral hazard also extends to the supply side of 
healthcare [12–14]. While much of the litera
ture examines the impact of moral hazard on 
the provision of services, there is also an impact 

on the price of products. Given insurance, the 
suppliers of high‐value products can realize that 
products are perceived as significantly under
priced since insured patients only consider the 
out‐of‐pocket costs. Applying a value frame
work to pricing can lead manufacturers to raise 
their prices to meet the value threshold rather 
than simply developing a price to meet their 
internal financial expectations. This supply‐side 
moral hazard effect on the price of pharmaceu
tical products has been much less discussed in 
the literature [15–17].

Again, going back to the basic example of 
product 1 in Table 34.1, this product provides 
great value to patients under conditions of self‐
payment and even more under conditions of 
third‐party payment. Sophisticated suppliers 
will notice these conditions. In a competitive 
market, suppliers will have little ability to influ
ence the welfare surplus enjoyed by patients in 
this example since the price is determined by 
the market and is driven by entry and exit of 
firms. However, there are circumstances when 
suppliers have power to influence prices, espe
cially in healthcare. Suppliers can have market 
power when they have a barrier to market entry 
such as a patent awarded to a pharmaceutical 
manufacturer or a product developed for a 
niche category, such as an orphan drug, which 
is too small to attract competition. In these 
cases, suppliers can increase the price of prod
uct 1 based on value. If they decide to price at 
the total value of the product, they could raise 

Table 34.1 Perception of value to the patient.

Product 
1

Product 
2

Product 
3

Product 
4

Product 
5

Product 
6

Product 
7

Value 1.50 1.25 1.0 .75 .50 .25 .10
Cost (No Insurance) $1.00 $1.00 $1.00 $1.00 $1.00 $1.00 $1.00
Cost (Insurance) $0.20 $0.20 $0.20 $0.20 $0.20 $0.20 $0.20

Note: Cost (no insurance) assumes only cash payments for the product. Cost (insurance) assumes the product is covered by 
an insurance policy with a 20% co‐insurance requirement.
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the price from $1.00 to $1.50 to capture the full 
value to patients. Under our conceptual model, 
this pricing strategy would be attractive to 
patients even in a cash pay market. However, 
under conditions of third‐party payment, sup
pliers can consider an even more aggressive 
pricing strategy by considering that patients 
measure value against their co‐insurance, not 
the full cost of the product. Under these condi
tions, suppliers can raise the price to $7.50 
while consumers would have a cost‐share of 
$1.50, or an amount equal to the value they 
expect to receive from the therapy. As a result 
of supply‐side moral hazard, the cost increased 
from $1.00 to $7.50 in this simple example. Co‐
payment coupons or patient assistance pro
grams can exacerbate this effect by artificially 

decreasing the amount individuals have to pay. 
This “discount” on out‐of‐pocket payments can 
allow suppliers even more latitude to raise 
prices under this framework.

The supply‐side implications of moral hazard 
are potentially significant. Beyond the short‐
term impacts on patients, this effect can have 
longer‐term effects by distorting the drug devel
opment portfolio. In Table  34.2, we imagine a 
manufacturer with a simple two‐product port
folio, with each product having equal develop
ment costs and market price. In analyzing their 
options, the firm invests in the opportunity with 
the largest market size [18].

However, in Table  34.3, under conditions of 
market power, manufacturers can consider the 
question of value of the therapy to patients in 
setting a price. In this case, they chose to under
take development of product B despite its 
smaller market size.

Thus, the supply‐side effects of moral hazard 
can be seen in both the prices of products in the 
marketplace and the portfolio of drug products 
available on the market.

Behavioral Economics

This concept of patients being risk averse is 
consistent with the idea of buying health insur
ance in the first place. Buying health insurance 
is seen as a risk‐averse financial decision. People 
pay some money annually for health insurance 
to avoid the potential financial consequences 

Table 34.2 Pharmaceutical market under conditions 
of supply‐side moral hazard.

Product
Cost of 
development

Size of 
target 
market Price Revenue

A $50 000 000 20 000 $10 000 $200 M
B $50 000 000 10 000 $10 000 $100 M

Note: Cost of development – out‐of‐pocket dollar costs of 
development (assumption). Size of target market – number 
of accessible candidates for therapy considering incidence 
and prevalence of underlying condition. Price – market 
price for the product (net price to manufacturer). 
Revenue – net revenue from the product (price times 
market size).

Table 34.3 Pharmaceutical market under conditions of market power.

Product
Cost of 
development

Size of target 
market

Value of 
therapy Price Revenue

A $50 000 000 20 000 1 $10 000 $200 M
B $50 000 000 10 000 5 $50 000 $500 M

Note: Cost of development – out‐of‐pocket dollar costs of development (assumption). Size of target 
market – number of accessible candidates for therapy considering incidence and prevalence of underlying 
condition. Value of therapy – perception of value to the patient (in dollar equivalents). Price – value price for 
the product (net price to manufacturer). Revenue – net revenue from the product (price times market size).



Pharmacoeconomics: The Economics of Pharmaceuticals842

associated with the rare risk of becoming 
severely ill. Consumers may even buy certain 
policies with limits on things that are not impor
tant to them when they are healthy  –  narrow 
networks of providers, for example, or limits on 
the drug formulary for specialty pharmaceutical 
products. However, buying health insurance is 
not the same as buying healthcare. Whether the 
risk‐averse decision‐making approach to buying 
insurance carries over to making treatment 
decisions for healthcare products or services is 
an open question.

Let’s consider a clinical scenario. Assume an 
otherwise healthy patient comes into a physi
cian’s office. They feel great, have a full social 
and work life, exercise regularly, and have a lot 
to look forward to. Given a history of smoking 
in the past, the physician had ordered a chest 
X‐ray. Unfortunately, the chest X‐ray shows that 
the patient has a spot on their lung. After fur
ther work‐up, it is found to be lung cancer that 
has spread. This otherwise healthy person now 
has a life‐threatening condition. Obviously, this 
is a significant loss in life expectancy for the 
patient. How do they react to the shock of their 
diagnosis? They seek treatment for their condi
tion. In this case, the patient will accept a treat
ment which has any chance of restoring their 
health, irrespective of the side effects of the 
therapy. They definitely don’t ask about the cost 
of treatment. Under conditions of loss, the way 
that patients make decisions changes from how 
they felt about future potential treatment 
choices when they bought their health insur
ance policy [1].

This idea that people make different deci
sions under conditions of gains and losses 
earned Daniel Kahneman the Nobel Prize in 
Economics in 2002 “for having integrated 
insights from psychological research into eco
nomic science, especially concerning human 
judgment and decision‐making under uncer
tainty” [19]. (He collaborated with Amos 
Tversky in developing prospect theory, but 

Amos passed away before the prize was 
awarded.) Under conditions of gains, we are 
risk averse, and under conditions of loss we 
are  risk seeking. When a 70‐year‐old patient 
refuses a flu shot because of her concerns that 
she may get sick from the shot, she is under a 
condition of gain (full health) and is being risk 
averse. The unfortunate patient with lung 
 cancer is an example of decision making 
under  conditions of loss. The application of 
this framework to treatment choices by patients 
with life‐threatening diseases helps to explain 
the apparently risk‐seeking behavior of patients 
[20,21]. This study of the psychology of deci
sion making in real‐world settings has been 
called behavioral economics.

More recently, Kahneman and others have 
focused on the role of emotion in decision 
making [22]. They have developed a frame
work which considers two different ways of 
making decisions, System 1 and System 2. 
System 1 decision processes are autonomous 
decision‐making efforts that represent our 
“gut” or emotional response to an uncertain 
situation. System 1 processes easily incorpo
rate societal attitudes and are subject to many 
systematic flaws [23]. System 2 decision pro
cesses are more data driven and analytical, but 
have a high cognitive burden. In the normal 
course of events, we make most decisions using 
the System 1 framework, despite its limita
tions, so that we minimize our cognitive bur
den in making simple choices or completing 
simple job tasks. However, we have System 2 
processes available for more complex decision 
making. Importantly, in a heightened  emotional 
state, we generally rely on System 1 processes 
for decision making. This can be critically 
important in understanding medical decision 
making, where patients (or their loved ones) 
can experience significant anxiety arising from 
the care process or the diagnosis itself, or can 
be in a heightened emotional state from the 
experience of the symptoms of the illness, 
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especially when suffering from a disease with 
an acute presentation.

While the role of loss can make patients 
appear to be risk seeking in making treatment 
choices, we have suggested that the role of emo
tion can also lead to the same type of decision 
making by patients [24].

Public perceptions and communication 
around a diagnosis such as cancer can have sig
nificant emotional overtones. Patients “fight a 
cancer diagnosis” and society is in the midst of 
a “war” on cancer [25]. In light of this, heart 
disease was responsible for almost 300 000 
deaths in women in 2013 [26] while only 40 000 
women died of breast cancer that same year 
[27]. This is not to say that breast cancer is not 
a terrible disease, but why do we spend so 
much time talking about an illness that has 
one‐tenth the mortality of another, more prev
alent disease?

It is interesting to think that this was not 
always the case. In his fascinating book 
The  Emperor of All Maladies, Siddhartha 
Mukkherjee profiles the career of Dr Sidney 
Farber [28]. Farber was very interested in try
ing to develop treatments for childhood leuke
mia which was almost uniformly fatal. 
However, there was little funding for cancer 
research at the time. He started the Jimmy 
Fund in 1948, highlighting the plight of his 
young patients to raise money for cancer 
research [29]. The success of this strategy of 
creating cancer as an emotional disease to 
attract research support continues to this day. 
Most recently, the Cancer Moonshot concept 
was used to develop support for the Precision 
Medicine Initiative at NIH [30].

While these efforts have been successful in 
raising support for cancer research (and genomic 
medicine), they shape the perceptions of patients 
with one of these diseases. Receiving a diagnosis 
of a disease with a higher emotional tone may 
lead to patients finding it difficult to engage 
in  System 2 thinking when making treatment 

choices. Both emotion and loss can help explain 
treatment choices for patients with life‐threaten
ing conditions. The result is that there is demand 
for therapies where the risks can seemingly out
weigh the benefits of therapy, or for therapies 
where the benefits seem especially modest given 
the high cost. These frameworks can help to 
explain the decision‐making process used by 
those such as cancer patients who have signifi
cant demand for therapies despite the tremen
dous cost and limited benefit of many agents.

An important aspect of this discussion is that 
under either of these decision‐making frame
works, loss or emotion, patients are not actively 
required to consider cost in their decision‐ 
making process, nor might the cost of therapies 
negatively affect the decision‐making processes 
of patients with life‐threatening conditions. 
This suggests that under these conditions, 
demand for products could appear to be price 
inelastic. This lack of an impact of cost on deci
sion making contrasts this type of decision mak
ing with moral hazard. It also suggests that 
mechanisms to address moral hazard (cost shar
ing, for example) would not be expected to 
influence demand for therapies by patients 
experiencing emotion or loss. In fact, knowing 
this, excessive cost sharing for these patients 
might even be considered unethical. The price 
of products for these patients would still be 
affected by the impact of moral hazard on sup
plier pricing decisions (price‐inelastic demand 
might even exacerbate this effect).

At this juncture, it is too soon to know if the 
Precision Medicine Initiative will extend our 
emotional characterization of disease to condi
tions which were not previously considered a 
separate disease or extend conditions experi
enced in emotional terms such as cancer. It is 
unclear if the efforts to establish genetic causes 
of common conditions or to develop new labels 
for subsets of common diseases will increase the 
emotional tone associated with these conditions 
in the mind of the public [31].
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Clinical Example: Treatment of 
Hepatitis C

The development of a new generation of phar
maceutical therapies for the treatment of chronic 
infection with hepatitis C was greeted as a sig
nificant scientific advance [32,33]. However, the 
payer community was in shock over the original 
price of $84 000 per patient for a 12‐week course 
of therapy (or double that amount for 24 weeks) 
[34]. This set off a debate around the price of the 
therapy and led to significant challenges for 
many public and private payers [35]. With the 
high prevalence of chronic hepatitis C infection 
in the population, providing therapy for the 
entire population could have doubled health 
insurance premiums in the United States for a 
year [23].

Quickly, the debate around sofosbuvir turned 
to pharmacoeconomics as an attempt to under
stand the price. The pharmaceutical manufac
turer, Gilead, argued that the high price was 
justified by the significant clinical benefit expe
rienced by patients (although this argument was 
absent in a Senate investigation of internal 
Gilead discussions in setting the price for sofos
buvir [36]). Progression of hepatitis C infection 
led to the development of cirrhosis, or liver fail
ure, and hepatocellular carcinoma, a fatal form 
of liver cancer, leading to requirements for hos
pitalization, liver transplant if a donor organ 
was available, or to death. Yet, the clinical data 
were early. There were no long‐term outcomes 
studies showing effectiveness of treatment on 
reducing these complications of hepatitis C 
infection, just on sustained virologic response 
in short‐term clinical trials.

In the United Kingdom, there is a requirement 
for a formal economic evaluation of the impact of 
a new therapy on healthcare costs and outcomes 
to better understand the value of therapy as part 
of the consideration of whether it should be 
included in the national formulary. The determi
nation of value is achieved by assessing the incre
mental cost of the new therapy in comparison 

with the incremental clinical benefit resulting 
from treatment, as discussed in detail in the sec
tion on Methodologic Issues in the Pharmaco
economic Assessment of Therapies. The result of 
this analysis is a cost‐effectiveness ratio, or an 
assessment of the additional cost of achieving an 
additional quality‐adjusted life‐year (QALY) for 
patients. In the UK, £20 000 per QALY is consid
ered a benchmark of good value, but this means 
that spending will increase since the drug requires 
an additional expenditure to receive the addi
tional benefit.

A detailed evaluation by the UK National 
Institute for Health and Care Excellence 
(NICE) [37], considering an independent tech
nology review and a price of £34 504 per stand
ard course of therapy [38], concluded that for 
some indications sofosbuvir had a high likeli
hood of meeting a cost‐effectiveness ratio of 
£20 000 per QALY (and an even higher likeli
hood of meeting a ratio of £30 000 per QALY). 
They recommended that NHS England try to 
find the resources required to implement this 
therapy.

In the United States, Gilead’s first‐year reve
nue for sofosbuvir was $10 billion, making it one 
of the top‐grossing pharmaceutical products in 
the world [39]. However, the entry of additional 
novel therapies for hepatitis C led to price com
petition in the marketplace, with prices ranging 
from $26 400 to $62 500 per treatment course 
by 2017 [40]. Still, Gilead reported sales of hepa
titis C products of $19.1 billion in 2015 and 
$14.8 billion in 2016 [41].

The pricing of sofosbuvir represents an inter
esting dilemma in modern health economics. 
Clearly, the company could not have set such 
a high price for their product in the absence of 
health insurance coverage. In fact, the high price 
actually helped patients receive better coverage 
as a catastrophic medical expense than  they 
would have received under standard insurance 
coverage. The company, and physicians, per
ceive hepatitis C as a potentially life‐threatening 
condition, leading to demand for the treatment. 
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How should patients, physicians, and payers make 
a choice about the value of this therapy?

 Currently Available Solutions

Pharmacoeconomics

Pharmacoeconomic studies have been designed 
to meet the different information needs of 
healthcare purchasers and regulatory authori
ties [42–55]. Economic data from Phase III 
studies are used to support initial pricing of new 
therapies and are used in professional educa
tional activities by pharmaceutical firms. 
Postmarketing economic studies are used to 
compare new therapies with existing therapies 
and increasingly to confirm the initial Phase III 
economic assessments of the product [56].

No single study can possibly provide all inter
ested audiences with complete economic infor
mation about a new therapy. Thus, specific 
studies are undertaken to address economic 
concerns from specific perspectives, such as a 
postmarketing study of a new therapy from the 
perspective of a health maintenance organiza
tion (HMO). They may also be undertaken to 
assess the effect of therapy on specific cost cat
egories, such as an assessment of the productiv
ity costs of treatment, to provide data to federal 
governments in Europe, since these govern
ments fund both the health insurance system 
and the disability system.

Across the globe, technology assessment 
agencies have been established to help provide 
or evaluate economic data as part of the reim
bursement process [57–60]. In the UK, NICE 
provides guidance to the National Health 
Service [61]. In Germany, the Institute for 
Quality and Efficiency in Health Care (IQWiG) 
evaluates the effectiveness of drugs [62]. In the 
US, the Institute for Clinical and Economic 
Review (ICER) is a private organization publish
ing independent economic analyses of new 
pharmaceutical products [63].

Economic Evaluation and the Drug 
Development Process

The drug development process allows for timely 
collection of data that can be used to evaluate 
the costs and effects of pharmaceuticals early in 
their product life, with an opportunity for fur
ther data collection and evaluation once the 
product has been approved and marketed.

Clinical economics has been integrated 
throughout the development process, with goals 
that parallel the clinical development stages. 
Phase I and II studies are used to develop pilot 
economic data, such as estimates of the mean 
and variance estimates for costs, quality of life, 
and utilities for patients with a specific clinical 
syndrome. These studies are also used to per
form pilot tests of data collection tools, includ
ing items in case report forms to prospectively 
capture resources used by patients who will be 
entered into the Phase III and postmarketing 
clinical trials. From these data, issues such as 
sample size and power for pharmacoeconomic 
studies can be assessed.

Incorporation of economic analyses as part of 
Phase III clinical trials is well established [64]. 
Phase III studies can include economic assess
ments of new therapies as a primary or second
ary endpoint (i.e., an assessment of changes in 
the use of specific resource categories resulting 
from treatment, such as changes in length of 
hospital stay or hospitalization rates) [65–71].

Lastly, a wide variety of postmarketing eco
nomic studies can be performed. These include 
comparative effectiveness/efficiency trials (also 
known as “pragmatic” or “practical” trials) in 
which comparisons between products are made 
in more realistic settings with less restrictive 
protocols than those designed for Phase III 
safety and efficacy trials (see Chapter 32) [72]. 
These postmarketing studies may include 
assessments of the new therapy compared with 
“usual care” or with specific therapeutic agents. 
Again, the economic analysis can serve as a pri
mary or secondary endpoint of the study.
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Developing economic data as an endpoint in a 
clinical trial requires integrating pharmacoeco
nomics into the clinical development process. 
While there has been an increase in the number 
of trials that collect economic data, the chal
lenge remains to ensure that pharmacoeco
nomic endpoints are considered sufficiently 
early in the clinical development process so that 
designing the economic protocol does not 
impede the process of designing the clinical 
trial. Economic analysis requires the establish
ment of a set of economic endpoints for study 
(e.g., direct costs, productivity, intangible costs 
to patients and caregivers, quality‐of‐life or 
preference measures for patients and caregiv
ers), review of the clinical protocol to ensure 
that there are no economic biases in the design 
of the clinical trial –  such as requirements for 
differential resource use between the treatment 
arms of the study – and development of the eco
nomic protocol. Ideally, the economic study will 
be integrated into the clinical protocol, and the 
economic data will be collected as part of a uni
fied case report form for both clinical and eco
nomic variables.

Economic analysis faces further challenges 
depending on the indication for the product and 
the size of the clinical trial. For primary care 
products, such as hypertension or diabetes, 
clinical trials are global undertakings, raising 
questions about the generalizability of the eco
nomic results for individual payers. For spe
cialty pharmaceutical products, the issue is the 
potential small size of the clinical trials affecting 
the ability to make a reasonable assessment of 
the economic impact of a therapy. For example, 
a novel exon‐skipping treatment for Duchenne 
muscular dystrophy, eteplirsen, was an orphan 
drug tested in a dozen patients in a clinical trial 
with an endpoint of dystrophin production and 
performance on a six‐minute walk test. There 
were no long‐term data for clinical outcomes 
available from the trial [73].

In the following sections, we briefly review 
the research methods of pharmacoeconomics, 
discuss some methodologic issues that have 

confronted researchers investigating the eco
nomics of pharmaceuticals, and illustrate the 
usefulness of pharmacoeconomic research.

 Methodologic Issues 
in the Pharmacoeconomic 
Assessment of Therapies

Techniques of Clinical Economics

Economists emphasize that costs are more than 
just transactions of currency. Cost represents 
the consumption of a resource that could other
wise be used for another purpose. The value of 
the resource is that of its next best use, which no 
longer is possible once the resource has been 
used. This value is called the resource’s “oppor
tunity cost.” For example, the time it takes to 
read this chapter is a cost for the reader, because 
it is time that cannot be used again; the oppor
tunity to use it for another purpose has been 
foregone. Good investments are made when the 
benefits of the investment (e.g., what you learn) 
are greater than or equal to the value of the 
opportunities you have foregone (e.g., what you 
would be doing if you were not reading this 
chapter).

In addition to the fact that not all costs involve 
a transaction of money, it is important to 
remember that, at least from the perspective of 
society as a whole, not all transactions of money 
should be considered costs. For example, mon
etary transactions that do not represent the 
consumption of resources (e.g., social security 
payments, disability payments, or other retire
ment benefits) are not costs by this definition. 
They simply transfer the right to consume the 
resources represented by the money from one 
individual to another.

In considering economic analysis of medical 
care, there are three dimensions of analysis, 
 represented by the three axes of the cube in 
Figure  34.1 with which readers should 
become familiar. Along the X‐axis are three 
types of  economic analysis—cost identification, 
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cost‐effectiveness, and cost–benefit. Along the 
Y‐axis are four points of view, or perspectives, 
that one may take in carrying out an analysis. 
One may take the point of view of society in 
assessing the costs and benefits of a new medi
cal therapy. Alternatively, one may take the 
point of view of the patient, the payer, or the 
provider. Along the third axis, the Z‐axis, are 
the types of costs and benefits that can be 
included in economic analysis of medical care. 
These costs and benefits, which will be defined 
below, include direct costs and benefits, pro
ductivity costs and benefits, and intangible costs 
and benefits.

Types of Analysis

Cost–Benefit Analysis
Cost–benefit analysis of medical care compares 
the cost of a medical intervention to its benefit. 
Both costs and benefits are measured in the 

same (usually monetary) units (e.g., dollars). 
These measurements are used to determine 
either the ratio of dollars spent to dollars saved 
or the net saving (if benefits are greater than 
costs) or net cost. All else being equal, an invest
ment should be undertaken when its benefits 
exceed its costs.

The methods of cost–benefit analysis may be 
applied to evaluate the total costs and benefits 
of the interventions that are being compared by 
analyzing their cost–benefit ratios or their net 
benefits. Furthermore, the additional or “incre
mental” cost of an intervention (i.e., the differ
ence in cost between a new therapy and 
conventional medical care) may be compared 
with its additional or “incremental” benefit. 
Incremental analysis is generally preferred to 
comparisons of totals because it allows the ana
lyst to focus on the differences between any two 
treatment modalities. A zero‐based budgeting 
approach would start from the base case. An 
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Figure 34.1 The three dimensions of economic evaluation of clinical care. Source: Bombardier C, Eisenberg J. 
Looking into the crystal ball: can we estimate the lifetime cost of rheumatoid arthritis? J Rheumatol 1985; 12: 201–4. 
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incremental analysis could overstate the value 
of a therapy if it compares a new therapy to an 
expensive but less effective therapy, while a 
zero‐based budgeting approach would make the 
incremental costs and benefits of the new ther
apy more transparent.

One potential difficulty of cost–benefit analy
sis is that it requires researchers to express an 
intervention’s costs and outcomes in the same 
units. Thus, monetary values must be associated 
with years of life lost and morbidity due to dis
ease and with years of life gained and morbidity 
avoided due to intervention. Expressing costs in 
this way is difficult in healthcare analyses. 
Outcomes (treatment benefits) may be difficult 
to measure in units of currency. Such an exercise 
also raises methodologic and ethical questions 
of valuing human life differently across patients 
with different medical conditions, gender, occu
pations, or by age. Translating disease and treat
ment outcomes into monetary measures may be 
more difficult than translating them into clinical 
outcome measures, such as years of life saved or 
years of life saved adjusted for quality.

Cost‐Effectiveness Analysis
Cost‐effectiveness analysis provides an alterna
tive approach that avoids the dilemma of assess
ing the monetary value of health outcomes as 
part of the evaluation. While cost generally is still 
calculated only in monetary terms (e.g., dollars 
spent), effectiveness is determined indepen
dently and may be measured only in clinical 
terms, using any meaningful clinical unit. For 
example, one might measure clinical outcomes in 
terms of number of lives saved, complications 
prevented, or diseases cured. Alternatively, 
health outcomes can be reported in terms of a 
change in an intermediate clinical outcome, such 
as cost per percent change in blood cholesterol 
level. These results generally are reported as a 
ratio of costs to clinical benefits, with costs meas
ured in monetary terms but with benefits meas
ured in the units of the relevant outcome measure 
(for example, dollars per year of life saved).

When several outcomes result from a medical 
intervention (e.g., the prevention of both death 
and disability), cost‐effectiveness analysis may 
consider these two outcomes together only if a 
common measure of outcome can be devel
oped. Frequently, analysts combine different 
categories of clinical outcomes according to 
their desirability, assigning a weighted utility, or 
value, to the overall treatment outcome [3]. A 
utility weight is a measure of the patient’s pref
erences for his/her health state or for the out
come of an intervention. The comparison of 
costs and utilities sometimes is referred to as 
cost–utility analysis, with the denominator 
expressed as QALYs.

In cost‐effectiveness analysis, determination 
of value is based on the treatment’s incremental 
costs and incremental effectiveness. In this 
approach, the analyst calculates the additional 
effect of one therapy compared with another 
(e.g., lives saved) per additional treatment dollar 
spent. Programs that cost less and demonstrate 
improved or equivalent treatment outcomes are 
said to be cost‐saving or dominant and should 
always be adopted (Figure 34.2). Programs that 
cost more and are more effective are assessed by 
their cost‐effectiveness ratio. Programs that 
cost more and have worse clinical outcomes are 
said to be dominated and should never be 
adopted. Programs that cost less and have 
reduced clinical outcomes may be adopted 
depending upon the magnitude of the changes 
in cost and outcome (the cost‐effectiveness 
ratio assessing how much money would be 
saved in comparison with how little clinical out
comes were reduced).

As with the translation of clinical outcomes 
into monetary measures for cost–benefit analy
ses, there also are difficulties associated with 
combining different outcomes into a common 
measure in cost‐effectiveness analysis. However, 
it is generally considered more difficult to trans
late all health benefits into monetary units for 
the purposes of cost–benefit analysis than to 
combine clinical outcomes measures. Thus, 
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cost‐effectiveness analysis is used more fre
quently than cost–benefit analysis in the medi
cal care literature.

Net benefit, measured as a net monetary 
benefit or net health benefit, is a measure that 
combines estimates of incremental costs and 
incremental effectiveness (the components of 
an incremental cost‐effectiveness ratio) with 
an estimate of the willingness‐to‐pay thresh
old. The willingness‐to‐pay threshold repre
sents the maximum monetary outlay that 
would be acceptable for a one‐unit gain in 
health benefit (e.g., $100 000 per QALY 
gained). Specifically, net monetary benefits are 
calculated by multiplying the willingness‐to‐
pay threshold by the incremental effect 
(e.g.,  QALYs) and then subtracting the incre
mental  cost. When net benefits are positive, 
the program should be adopted from a cost‐ 
effectiveness perspective. When net benefits 
are negative, the program is considered cost‐
inefficient and should not be adopted. An eval
uation of net benefits differs from cost–benefit 
analysis because we do not directly assign 
monetary values to specific health outcomes, 
but instead use administratively determined 
valuations (e.g., $100 000 per QALY) [58,74,75]. 

Net benefit is particularly important for statis
tical evaluation of cost‐effectiveness analysis 
(including sample size calculation and direct 
testing of economic value by use of patient‐
level data).

Cost Identification Analysis
An even less complex approach than cost– 
benefit or cost‐effectiveness analysis would be 
simply to enumerate the costs involved in med
ical care and to ignore the outcomes that result 
from that care. This approach is known as cost 
identification analysis, by which the researcher 
can determine alternative ways of providing a 
service. The analysis might be expressed in 
terms of the cost per unit of service provided. 
For example, a cost identification study might 
measure the cost of a course of antibiotic 
 treatment, but it would not calculate the clini
cal outcomes (cost‐effectiveness analysis) or 
the value of the outcomes in units of currency 
(cost–benefit analysis). Cost identification 
studies, which include comparisons among dif
ferent treatments based upon their costs alone, 
are appropriate only if treatment outcomes or 
benefits are equivalent among the therapies 
being evaluated.
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Sensitivity Analysis
Most cost–benefit and cost‐effectiveness stud
ies require large amounts of data that may vary 
in reliability and validity, and could affect the 
overall results of the study. This is especially the 
case when models are developed for the eco
nomic analysis using secondary data sources, 
when data collection is performed retrospec
tively, or when critical data elements are 
unmeasured or unknown. Sensitivity analysis is 
a set of procedures in which the results of a 
study are recalculated using alternate values for 
some of the study’s variables in order to test the 
sensitivity of the conclusions to these altered 
specifications. Such an analysis can yield several 
important results by demonstrating the inde
pendence or dependence of a result on particu
lar assumptions, establishing the minimum or 
maximum values of a variable that would be 
required to affect a recommendation to adopt 
or reject a program, and identifying clinical or 
economic uncertainties that require additional 
research. In general, sensitivity analyses are per
formed on variables that have a significant effect 
on the study’s conclusions but for which values 
are uncertain.

Types of Costs

Another dimension of economic analysis of 
clinical practice illustrated by Figure 34.1 is the 
evaluation of costs of a therapy. Economists 
consider three types of costs: direct, productiv
ity, and intangible.

Direct Medical Costs
The direct medical costs of care usually are asso
ciated with monetary transactions and represent 
costs incurred during the provision of care. 
Examples of direct medical costs include pay
ments for purchasing a pharmaceutical product, 
payments for physicians’ fees, salaries of allied 
health professionals, or purchases of diagnostic 
tests. Because the charge for medical care may 

not accurately reflect the resources consumed, 
accounting or statistical techniques may be 
needed to determine direct costs [50,76–80].

Direct Nonmedical Costs
Monetary transactions undertaken as a result of 
illness or healthcare to detect, prevent, or treat 
disease are not limited to direct medical costs. 
There is another type of cost that is often over
looked: direct nonmedical costs. These costs 
are incurred because of illness or the need to 
seek medical care. They include the cost of 
transportation to the hospital or physician’s 
office, the cost of special clothing needed 
because of the illness, the cost of hotel stays for 
receiving medical treatment at a distant medical 
facility, and the cost of special housing (e.g., 
modification of a home to accommodate an ill 
individual). Direct nonmedical costs, which are 
generally paid out of pocket by patients and 
their families, are just as much direct costs as 
are expenses that are more usually covered by 
third‐party insurance plans.

Productivity Costs
In contrast to direct costs, productivity costs, 
sometimes referred to as indirect costs, do not 
stem from transactions for goods or services. 
Instead, they represent the cost of morbidity 
(e.g., time lost from work) or mortality (e.g., pre
mature death leading to removal from the work
force). They are costs because they represent the 
loss of opportunities to use a valuable resource, a 
life, in alternative ways. A variety of techniques 
are used to estimate productivity costs of illness 
or healthcare [81–85]. Sometimes, as with vari
cella vaccination [86], the productivity costs of 
an illness are substantially greater than the direct 
costs of the illness [87,88].

Intangible Costs
Intangible costs are those of pain, suffering, 
and grief. These costs result from medical ill
ness itself and from the services used to treat 
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the illness. They are difficult to measure as part 
of a pharmacoeconomic study, though they are 
clearly considered by clinicians and patients in 
considering potential alternative treatments. 
Although investigators are developing ways to 
measure intangible costs – such as willingness‐
to‐pay analysis whereby patients are asked to 
place monetary values on intangible costs 
[46] – at present these costs are often omitted 
in clinical economics research.

Perspective of Analysis

The third axis in Figure 34.1 is the perspective 
of an economic analysis of medical care. Costs 
and benefits can be calculated with respect to 
society’s, the patient’s, the payer’s, and the pro
vider’s points of view. A study’s perspective 
determines how costs and benefits are meas
ured, and the economist’s strict definition of 
costs (the consumption of a resource that could 
otherwise be used for another purpose) no 
longer may be appropriate when perspectives 
different from that of society as a whole are 
used. For example, a hospital’s cost of providing 
a service may be less than its charge. From the 
hospital’s perspective, then, the charge could be 
an overstatement of the resources consumed for 
some services. However, if the patient has to pay 
the full charge, it is an accurate reflection of the 
cost of the service to the patient. Alternatively, if 
the hospital decreases its costs by discharging 
patients early, the hospital’s costs may decrease 
but patients’ costs may increase because of the 
need for increased outpatient expenses that are 
not covered by their health insurance plan.

Because costs will differ depending on the per
spective, the economic impact of an intervention 
will be different from different perspectives. To 
make comparisons of the economic impact 
across different interventions, it is important for 
all economic analyses to adopt a similar perspec
tive. It has been recommended that, as a base case, 
all analyses adopt a societal perspective [89]. 

The cost to society is the opportunity cost, the 
value of the opportunities foregone because the 
resource has consumed. Society’s perspective 
usually is taken by measuring the consumption of 
real resources, including the loss of potentially 
productive human lives. As already noted, this 
cost does not count transfer payments, such as 
social security benefits. (From the point of view 
of the Social Security Administration, however, 
these payments would be a cost, because the per
spective of the Social Security Administration is 
not the perspective of society.) If an intervention 
is not good value for money from the societal 
perspective, it would not be a worthwhile inter
vention for society, even if the intervention has 
economic advantages for other stakeholders.

Nevertheless, conducting the economic anal
ysis from other perspectives, in addition to the 
societal perspective, is important. This is 
because the costs of medical care may not be 
borne solely by the same parties who stand to 
benefit from it. Economic analysis of medical 
care often raises vexing ethical problems related 
to equity, distribution of resources, and respon
sibility for the health of society’s members 
[90,91]. Economic analyses from multiple per
spectives shed light on the equity issues associ
ated with new interventions.

In summary, economic analysis of medical 
technology or medical care evaluates a medical 
service by comparing its dollar cost with its dol
lar benefit (cost–benefit), by measuring its dollar 
cost in relation to its outcomes (cost‐effective
ness), or simply by tabulating the costs involved 
(cost identification). Direct costs are generated 
as services are provided. In addition, productiv
ity costs should be considered, especially in 
determining the benefit of a service that 
decreases morbidity or mortality. Finally, the 
perspective of the study determines the costs 
and benefits that will be quantified in the analy
sis, and sensitivity analyses test the effects of 
changes in variable specifications for estimated 
measures on the results of the study.
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 Currently Available Solutions: 
Imatinib Case Study

The previous sections of this chapter dealt 
with the principles of clinical economics and 
methodologic issues surrounding the eco
nomic analysis of pharmaceutical products. 
This section presents a case study that illus
trates the practical application of these meth
ods to the evaluation of pharmaceuticals. 
The following case demonstrates an approach 
to the economic evaluation of a new cancer 
therapy, imatinib (marketed as Gleevec® by 
Novartis).

Chronic myeloid leukemia (CML) is a malig
nant disorder of hematopoietic stem cells 
reported to account for 15–20% of adult leuke
mia cases. The disease presents with a relatively 
asymptomatic chronic phase but can be fol
lowed by accelerated and blast phases. While 
the disease has a median life expectancy of eight 
years, the life expectancy in advanced phases 
drops to months without treatment.

Chronic myeloid leukemia is an interesting 
disease. From a biological perspective, it 
results from a translocation between chromo
somes 9 and 22, leading to the “Philadelphia 
chromosome” that is found in most of these 
patients. This translocation leads to the for
mation of a new gene, BCR‐ABL, which pro
duces a unique fusion protein, a tyrosine 
kinase. This protein includes effects such as 
activation of mitogenic signaling and inhibi
tion of apoptosis leading to uncontrolled 
growth of white blood cells [92].

A unique collaboration between industry and 
academia searched for a kinase inhibitor that 
would be effective at targeting the BCR‐ABL 
product. This eventually led to the discovery of 
the molecule that became imatinib [93].

Economic evaluation was an early considera
tion with this therapy. From the sponsor’s per
spective, CML was a limited market of 
approximately 5000 patients in the US [94]. 

However, if the drug was as effective as was 
hoped, the clinical benefit might help support 
internal expectations for a high target price for 
the therapy.

The International Randomized Interferon 
versus STI571 Study (IRIS) was an open‐label 
trial that compared the efficacy of imatinib (the 
molecule was originally called signal transduc
tion inhibitor [STI] 571) versus interferon (IFN‐
alpha) plus low‐dose cytarabine (IFN+LDAC) 
in 1106 patients from 16 countries who were 
newly diagnosed with chronic‐phase CML [95]. 
INF+LDAC had been the standard of care 
before imatinib was discovered but the regimen 
was not well tolerated and had limited clinical 
effectiveness. Thus, oncologists were excited 
about the potential for a novel therapy. However, 
given that the trial was open‐label, the study 
suffered from significant patient cross‐over. The 
study had a median follow‐up of 19 months. 
While imatinib was generally well tolerated, 
12.3% of patients in the imatinib group discon
tinued study medication while receiving first‐
line therapy (compared with 31.6% of patients in 
the IFN+LDAC group). However, the drug 
looked to perform as anticipated. At 18 months, 
the rate of complete cytogenetic response 
(CCyR) to first‐line therapy was estimated at 
76.2% for imatinib, compared with 14.5% for 
IFN+LDAC. Estimated rates of progression to 
accelerated phase or blast crisis were 3.3% in the 
imatinib group and 8.5% in the IFN+LDAC 
group. Overall, 2.0% of the patients randomized 
to receive imatinib and 57.5% randomized to 
receive IFN+LDAC crossed over to the alternate 
treatment after failing first‐line therapy. This 
pattern of cross‐over between study arms actu
ally diminished the ability to detect an effect of 
imatinib in intention‐to‐treat analyses (see 
Chapter 32).

The economic investigators sought to esti
mate the incremental cost‐effectiveness of 
imatinib compared with IFN+LDAC as the 
first‐line treatment for patients with newly 
diagnosed chronic‐phase CML [67].
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Study Methods

The economic analysis of the IRIS study 
required construction of a model to assess the 
costs and benefits of therapies in both study 
arms. Data sources for this economic evaluation 
included data collected in IRIS and supplemen
tal data from the literature. Given the significant 
cross‐over in the clinical study, this usually chal
lenging activity was even more complicated.

The economic analysis had to consider the use 
of imatinib as first‐line therapy. The researchers 
therefore set up two treatment pathways. For 
patients on imatinib, they assumed that patients 
receiving imatinib as first‐line therapy could 
switch to IFN+LDAC and then to hydroxyurea 
until disease progression. For the comparison 
group, patients receiving IFN+LDAC as first‐
line therapy, they assumed that the patients 
started therapy with INF+LDAC and then 
switched to hydroxyurea on discontinuation of 
IFN+LDAC until progression.

Since disease generally progressed from 
chronic phase to an advanced phase, the 
researchers developed separate estimates of 
resource use and quality of life for patients in 
each phase of their illness. For patients in the 
chronic phase, they developed different esti
mates of resource use and quality of life for each 
treatment arm, but assumed that both groups 
received the same therapies and had the same 
outcomes upon disease progression.

Since this was a model, best practice is to 
develop a framework for a broad sensitivity 
analysis to test critical assumptions in the 
model. In this case, the analysis explicitly incor
porated the uncertainty associated with each 
parameter and provided the capability to test 
assumptions regarding efficacy, survival, dura
tion of treatment, resource use, costs, quality‐
of‐life weights, and discount rates. The analysis 
was conducted from the perspective of the 
healthcare system and considered only direct 
medical costs. In the base‐case analysis, cost 
and survival estimates were discounted at 3% 

per year; discounting is an approach to under
standing that we generally express more value 
for wealth or health today than at some point in 
the future. Thus, benefits today are perceived 
to be “worth more” than benefits in the future. 
To make current and future values equivalent, 
we can discount future values to show how 
nominal “future” values relate to “present” val
ues today [2].

Survival Estimates

Given the high rates of treatment cross‐over in 
the IRIS study, estimation of treatment benefit 
was a significant challenge. Survival for the two 
years after the initiation of treatment for 
chronic‐phase CML was based on data from 
IRIS for patients receiving imatinib as first‐line 
therapy. However, given the high rates of cross‐
over, the two‐year survival rate for the 
IFN+LDAC arm could not be estimated from 
the IRIS trial. Instead, a historical control was 
used  –  a randomized trial conducted by the 
Italian Cooperative Study Group on CML for 
patients receiving IFN+LDAC [96].

While these analyses provided estimates of 
survival for the first two years of therapy, there 
was little observed progression during this time 
period since the chronic phase of CML can last 
up to eight years. However, there was an impor
tant biomarker of treatment effectiveness given 
the unique biology of CML. A complete cytoge
netic response (CCyR) was reported to occur 
when there were no Philadelphia chromosomes 
found in white blood cells on a bone marrow 
biopsy. This was an important biomarker of 
treatment effect since the chromosome abnor
mality was felt to be the underlying cause of 
CML by producing the BCR‐ABL protein.

Fortunately, there were survival data on a 
cohort of 322 patients who had achieved a CCyR 
by the European Study Group on Interferon in 
CML [97]. So, in the analysis of long‐term sur
vival, patients in either IRIS treatment arm could 
be considered as CCyR or nonresponders. For 
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responders, survival was modeled based on the 
survival distribution from the European Study 
Group. For nonresponders, survival data were 
available from the Italian Study Group trial.

Modeling survival over time usually requires 
some type of extrapolation method, such as a 
Markov chain model, where each year the sur
viving cohort is assumed to have an additional 
year of survival or to have expired during the 
year (death is an absorbing state in these mod
els). This approach has some unusual character
istics, including generating a distributional tail 
of patients who survive out to very advanced 
age. Instead of using this approach, this study 
used a unique approach of modeling disease and 
treatment response as a function of increased 
risk of mortality on standard population sur
vival models. Specifically, the researchers esti
mated log hazard ratios of the increased risk of 
death among patients with and without CCyRs 
compared with an age‐matched and gender‐
matched cohort from the general population. 
They used the log hazard ratios and their stand
ard errors to simulate survival curves for 
patients achieving and not achieving a CCyR at 
two years of follow‐up, conditional on the 
patients being alive at two years. This approach 
was so unique that the survival estimation 
methods were published in a separate article 
concurrently with the economic analysis [98].

Advanced Phases of CML

During advanced phases of CML, the researchers 
assigned simulated patients in both treatment 
groups the same distributions for time in acceler
ated phase and blast crisis and the same distribu
tions of utility weights and estimates of resource 
use using the published literature. Thus, there 
was assumed to be no additional benefit from the 
study therapy once disease had progressed.

Resource Use

Estimates of monthly counts of resource use, 
including medication use, physician visits, and 

hospital utilization, were based on data col
lected in the case report forms for patients in 
the IRIS study for patients receiving first‐line 
therapy. The analysts assumed conservatively 
that patients receiving hydroxyurea experienced 
the same level of resource use as patients receiv
ing imatinib. In the advanced phases of CML, 
estimates of resource use were based on pooled 
data from patients in both treatment groups in 
either the accelerated phase or blast crisis 
(again, all patients who progressed to this stage 
of disease were assumed to have the same costs). 
Resources were assigned the costs reported in 
Table 34.4 for the economic analysis.

Utility Weights

As previously discussed, quality of life in an eco
nomic evaluation is based on an assessment of 
health utility. For the IRIS study, the EuroQol‐5D 
(EQ‐5D), a preference‐based measure of health‐
related quality of life, was administered every 
three months to study patients. The EQ‐5D 
has  two components: a visual‐analogue scale 

Table 34.4 Resource costs for the economic analysis.

Unit Cost

Medication costs
Imatinib Cost per 100 mg $19.68
Interferon‐alpha Cost per 1 MU $12.24
Cytarabine Cost per 100 mg $ 5.74
Hydroxurea Cost per 500 mg $ 1.28
Chemotherapy $6733

Outpatient visits
Specialists $78.93
Generalists $78.93
Nurses $34.73
Inpatient cost per day
Chronic phase $988.36
Accelerated phase $1400.39
Blast phase $1432.99
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(a health thermometer) and a set of five descrip
tive questions about health status that have cat
egorical response scales. EQ‐5D responses to 
the descriptive questions can be converted into 
standard community‐weighted utility scores. In 
other words, patients on either treatment arm 
with the same response to the categorical ques
tions would have the same utility weight 
assigned to their health status (there was no 
interaction of treatment arm and weighting).

Simulations

Once the model was developed, the analysts 
could calculate the costs and benefits of ther
apy for patients in either treatment group. Since 
all the inputs into the analysis had estimates of 
uncertainty, the modeling effect integrated this 
uncertainty into the analysis. For each popula
tion‐level simulation run, the analysts simu
lated the outcomes for 1000 patients and 
computed mean estimates of costs, survival, 
and quality‐adjusted survival for each treat
ment strategy. They varied the estimates for the 
parameters simultaneously according to their 
assigned distributions (each variable had a dif
ferent distribution assigned to the data as 
appropriate), using means and standard errors. 
The results were reported as 95% confi
dence  intervals (CIs) for the incremental cost‐ 
effectiveness ratios (ICERs), estimated using 
the percentile method, whereby the 26th and 
975th rankings of the 1000 simulated ICERs 
were used as the 95% CI limits.

Sensitivity Analyses

While the analysts modeled uncertainty directly 
in the analysis, they had still made several criti
cal assumptions that extended beyond the meas
urements of error in the model. Sensitivity 
analysis is an approach to addressing this issue, 
by questioning critical assumptions directly. The 
analysts conducted several sensitivity analyses to 
evaluate the impact of varying baseline estimates 
and assumptions. These included analyses which 

tested assumptions surrounding resource use, 
costs of medications, and outcomes.

Results

The model provided estimates of survival and 
costs for patients in each treatment arm. In the 
base‐case analysis, patients receiving first‐line 
therapy with imatinib were estimated to survive 
an average of 15.30 years compared to only 9.07 
years for patients receiving first‐line therapy 
with IFN+LDAC, an incremental gain of 6.23 
years for imatinib. This is a very large treatment 
effect relative to other analyses of new pharma
ceutical therapies. After adjusting for quality of 
life, the incremental gain was maintained at 5.85 
QALYs (since having a disease like CML might 
impact your quality of life even if you are on 
effective therapy, the QALY estimates of bene
fits were less than the estimates of overall 
survival).

In terms of resource use, undiscounted 
 lifetime costs were estimated to be $424 600 
for  patients receiving imatinib compared with 
$182 800 for patients receiving IFN+LDAC, a 
difference of $241 800. This cost difference 
included the difference in the cost of medica
tions and the incremental additional years of 
treatment resulting from the additional survival 
of patients on imatinib.

After applying a 3% discount rate, the incre
mental gain in survival was 3.93 years and 3.89 
QALYs. Discounted lifetime costs were $168 100 
higher, on average, among patients receiving first‐
line therapy with imatinib. The net effect of dis
counting is to reduce the value of events occurring 
in the future, both on costs and survival.

Combining these estimates resulted in ICERs 
equal to $43 100 per life‐year saved and $43 300 
per QALY saved. Scatter plots of the ICERs from 
the 1000‐patient analysis reveal a relatively low 
level of variability in the results and a high degree 
of correlation between incremental differences 
with regard to costs and survival. The results 
were remarkably consistent, with the upper lim
its of the 95% CIs for both cost‐effectiveness 
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ratios (survival and QALY) less than $51 100 
(Figure 34.3).

While the variability in individual parameters 
were considered in the scatter plot of Figure 34.3, 
there was still an analysis of variability of the 
different dimensions of the sensitivity analysis. 
Here, the results are presented as a tornado 

 diagram, estimating the impact of each of the 
parameters of the sensitivity analysis on the 
overall study results (Figure 34.4).

This case study demonstrates an application 
of economic analysis to a new drug using data 
from the pivotal clinical trial to help justify the 
price for the therapy.
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Figure 34.3 Bootstrap scatter plot of 1000 population‐level simulations on an incremental cost‐effectiveness plane [67].
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Figure 34.4 Tornado plot of the effects of multiple one‐way sensitivity analyses [67].
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This analysis was very controversial. First, 
the survival benefit in the analysis was entirely 
a modeling exercise, as a survival benefit had 
not been seen in the original IRIS study. 
Fortunately, this assumption of the relationship 
between CCyR and survival was later con
firmed in a five‐year follow‐up of the original 
study [99]. Second, the economic analysis was 
based on the initial launch price of the therapy. 
However, the sponsor aggressively raised the 
price of therapy above the launch price over 
time, from $26 400 to over $120 000 [100]. 
Further, that price differs substantially by mar
ket, with costs in Canada less than 20% of the 
US costs in 2013 [101], down to a low of $2500 
per year in India [102]. Patent expiry was 
expected to reduce the cost of imatinib signifi
cantly in the US [103], with a significant oppor
tunity to reduce costs to a nominal level if the 
price comes down to the actual cost of active 
pharmaceutical ingredients [104].

 The Future

Health economics helps to understand both the 
supply and demand for pharmaceutical prod
ucts, while pharmacoeconomics provides 
insight into the value of products to patient, 
payers, and the marketplace. With all these ele
gant data, the next challenge for analysts and 
policy makers is to relate the results of the eco
nomic analysis to purchase decisions for phar
maceutical products. Should a patient, hospital, 
or payer (public or private) make a decision to 
approve payments for a therapy (for example, by 
adding the product to an approved drug list or 
formulary)?

Generally, if a product is thought to add clini
cal benefit and save money, it is an easy decision 
to add the therapy. These types of products are 
described as cost‐saving or dominant (see 
Figure 34.2). For example, vaccines sometimes 
fall into this category, as do generic drugs (in 
comparison with brand‐name products). If a 

product worsens clinical outcomes but raises 
cost, this is also usually an easy decision to not 
add the therapy. These types of products are 
described as dominated but are much less com
mon. The major challenges in making formu
lary decisions generally relate to therapies that 
add clinical benefit at additional cost. This anal
ysis requires further discussion on how this 
decision can be approached.

Outside healthcare environments, we make 
these types of decisions frequently. The new 
product on the shelf tastes better but costs 
more. Should we buy this product? The first 
question is a budget question – do we have the 
money to make this purchase? We have not said 
anything about prices but obviously, this is an 
important part of our consideration. If the new 
product is enormously more expensive (it is 
hand crafted in small batches and infused with 
gold and sold in a crystal decanter), we may not 
have the money to afford the new product and 
so the question becomes moot. This is a budget 
constraint. This constraint does not have to be 
so extreme; we can make a budget of $100 for a 
grocery list, and hold ourselves to meeting our 
budget in our shopping trip. With this budget, 
even a modestly priced new item may not meet 
our budget constraint.

Of course, we may decide we have some room 
in our budget to increase spending at the super
market. For simplicity, let’s assume we have two 
choices to consider for our increased spending: 
products A and B. Product A is the tastier ver
sion of one of our shopping staples, while prod
uct B is a new item that a friend recommended. 
Product A costs $5.00 more than our usual item, 
and product B costs $5.00, so our budget would 
now be $105 if either is added to the shop
ping list (a 5% increase in cost). How would 
you choose between these two? This is a cost‐ 
effectiveness question. Given the increase in 
cost, which product would provide more value 
to you as a consumer‐enhanced flavor from A or 
the novelty of B? We make these types of deci
sions all the time, and the answer greatly depends 
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on individual taste preferences. So, in this sim
ple case, cost is transparent and value is based 
on individual preferences.

Now, back to the pharmaceutical market. 
Budget constraints are built into healthcare 
spending. National health insurance programs 
often have a fixed allocation from government 
for annual spending. In private health insurance 
markets, health insurers estimate premiums for 
the coming year before selling policies during 
open‐enrollment season, or as much as 18 
months in advance of actual spending. So, the 
introduction of a new product that adds cost 
can face real budget constraints depending on 
the potential magnitude of the spending 
increase. Sofosbuvir had a list price of $84 000 
in the US and a potential market size of 3.2 mil
lion people when it was first launched [105]. 
This would require a staggering budget of $269 
billion to treat everyone with the infection. So, 
while the clinical potential of this therapy was 
tremendous, the budget constraint resulted in 
policies to limit its adoption.

As with the shopping example, budget con
straints can be absolute. For example, the 
Medicaid program is jointly funded by federal 
and state governments, and states are not 
allowed to run budget deficits by law. Thus, if 
increased spending on a new therapy would 
require an increase in outlay by the Medicaid 
program, states may be forced to not offer the 
therapy, or to cut back in other areas of spend
ing to stay within their budget. Going forward, if 
states wanted to add to their Medicaid spend
ing, they would need to raise revenues (taxes) to 
support this increased spending, or find other 
parts of the budget to cut (education, for 
example).

Again, as with the shopping example, budget 
constraints may not be absolute. Imagine that a 
health insurance company calculated its premi
ums to incorporate new spending on drugs to 
be introduced in the coming year. Thinking 
about the budget from the perspective of premi
ums is interesting. We have called this approach 

the “benefit pool” perspective [106]. It suggests 
that we can calculate how much additional pre
mium we would all have to contribute for us to 
have an increase in our pharmaceutical budget. 
The budget model looks at the issue from the 
insurer perspective, while the benefit pool per
spective looks at the same issue from the per
spective of everyone buying insurance (or 
paying taxes). With an increase in premium, we 
would still have a budget constraint, but one 
that allows for growth in pharmacy spending.

With the additional resources, we would need 
to develop a process for increasing our phar
macy spending. In our cash payment shopping 
model, the willingness to allocate additional 
resources to our budget was based on consum
ers’ individual perceptions of value. In health
care, we do not pay for our medicines directly, 
so the organization administering the benefit 
pool (which could be a public or private payer) 
needs to make this determination. Here, cost‐
effectiveness analysis can be used to assess the 
relative value of additional investments in dif
ferent therapies. From here, one can consider 
the relative value across products and fund the 
product that is the most economically attractive 
(the lowest cost‐effectiveness ratio) first. In this 
way, we will insure that incremental spending is 
for the product delivering the most value. You 
can continue adding therapies in this way until 
all of your resources are allocated [107].

Another way to use a cost‐effectiveness ratio 
is to set a criterion of what represents good 
value for money, or what is “economically 
attractive.” In the US, dialysis care has long been 
used to provide a benchmark of good value for 
money. Dialysis was added to the Medicare pro
gram in 1972, after consideration of the cost of 
care for patients with end‐stage renal disease 
[108]. As a result, we have an example of a clini
cal program where Congress made an explicit 
decision to add a benefit to Medicare, one that 
added cost but that also extended life expec
tancy for beneficiaries who need the service. 
Since patients on dialysis can cost $50 000 per 
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annum, the benchmark for value as reflected in 
Congressional approval of this service was seen 
to be $50 000 per year of life gained. Since dialy
sis requires treatment three times a week for 
several hours at a time, the benchmark was 
thought to be even higher when considering 
quality‐adjusted survival.

Does that mean that we can add therapies to 
the formulary that offer good value? The answer 
is, “it depends.” Again, while cost‐effectiveness 
analysis does a good job assessing the relative 
value of different therapies, the ratio itself is not 
tied to a budget impact or premium. In other 
words, a product that is not good value for 
money for a rare condition would have a rela
tively modest budget impact, while a drug that 
is good value for money for a common condi
tion could have a significant impact on budgets. 
The value of a product can also change by indi
cation. For example, since patients with known 
heart disease have higher risk for cardiovascular 
events than patients without heart disease, sec
ondary prevention can provide more value for 
money than primary prevention [109]. To date, 
efforts such as pricing by indication have been 
challenging to implement.

Rather than providing an absolute recom
mendation, the UK has an implicit relative 
framework for value, with products that have a 

lower cost‐effectiveness ratio more likely to be 
recommended by NICE [110].

Returning to the benefit pool perspective can 
be another way of looking at this question. This 
analysis looks at the impact on the health insur
ance premium resulting from the addition of a 
new product to the formulary. For example, the 
addition of PCSK‐9 inhibitors (used to lower 
cholesterol) priced at more than $14 000 annu
ally per patient was calculated to add $140 to 
the premium for everyone in the insurance pool 
under modest adoption assumptions [106]. This 
perspective can be generalized to the considera
tion of specialty pharmaceutical products more 
broadly (Figure  34.5). Here, we can see that 
health insurance premiums increase $250 for 
every 0.25% of the population that receives a 
$100 000 drug for any indication [23]. The rela
tionship of access to innovation and affordabil
ity is an area of ongoing debate [111].

Finally, we have the quadrant where the prod
ucts save money but at the expense of worse clin
ical outcomes. Actually, the use of therapies that 
meet this criterion is relatively common, as long 
as the amount of money saved is large relative to 
the loss of health benefits (a cost‐effectiveness 
ratio of savings related to benefits lost where a 
higher number is the most economically attrac
tive). For example, amoxicillin is recommended 
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for first‐line therapy for otitis media, despite the 
high level of resistance to this antibiotic [112]. 
This is because of the low cost of the therapy, and 
the low likelihood of significant complications of 
failure of this initial treatment.

 Conclusion

The cost of pharmaceutical products is an 
important challenge for everyone involved in 
the healthcare value chain, including patients, 
physicians, payers, and government. While we 
all desire innovation in healthcare, it is not clear 
if it is possible to afford innovation at any price. 
We have outlined an expanded version of the 
study of the economics of pharmaceuticals to 
begin to flesh out a fuller discussion of this fas
cinating and complex subject.

As physicians are asked simultaneously to 
represent their patients’ interests while deliv
ering clinical services with parsimony, and as 

reimbursement for medical services becomes 
more centralized in the United States and 
other countries, decision makers must turn 
for assistance to collaborative efforts of epi
demiologists and economists in the assess
ment of new therapeutic agents. Through a 
merger of epidemiology and economics, bet
ter information can be provided to the great
est number of decision makers, and limited 
resources can be used most effectively for the 
health of the public.
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Consider the challenges faced by a health 
authority reviewing a novel anticoagulant for 
people with atrial fibrillation. The drug reduces 
ischemic strokes and myocardial infarctions, 
but also causes intracranial hemorrhage, gastric 
bleeding, and increased propensity for hemato
mas. What chance of each type of bleed is too 
much for a given degree of ischemic benefit? 
Does this trade‐off differ for different groups of 
patients? Does the nature of this trade‐off differ 
between physicians and patients? How much 
uncertainty in the rates of these outcomes is 
acceptable? How can these trade‐offs be 
assessed in observational databases where the 
outcome definitions vary and detailed informa
tion on transfusions and hemoglobin changes is 
not always available? Addressing these ques
tions falls under the domain of benefit–risk 
(B–R) assessment.

Assessing the B–R balance of medical treat
ments has always been an integral part of drug 
development, regulatory, and public health deci
sions. However, methodology for B–R has 
advanced considerably in the last decade, and 
health authorities worldwide have seen growth 
and maturation of B–R policies relating to regu
latory approval and postapproval decisions. 

Starting from a report on a 2006 Institute of 
Medicine public workshop which noted the 
need for improved consistency, methodology 
and communication of B–R assessment [1], the 
convergence of regulatory science and policy, 
patient engagement, decision analysis, and 
health economics has transformed the B–R field. 
For example, the Food and Drug Administration 
(FDA) has implemented a B–R framework to 
facilitate B–R assessment and communication in 
its reviews [2] and is developing means to include 
the patient perspective into B–R [3–7]. The 
European Medicines Agency revised its 80‐day 
assessment reports to require rapporteurs to 
document the value judgments behind their B–R 
assessments and incorporate a detailed tabular 
summary of benefit and risk data [8,9]. The 
International Conference on Harmonization 
(ICH) revised guidance documents that now 
require pharmaceutical companies to use a 
structured approach to B–R in new drug appli
cations/marketing authorization applications 
and in postapproval periodic benefit–risk evalu
ation reports (PBRERs) [10,11]. In parallel with 
these regulatory changes, numerous initiatives 
have been led by pharmaceutical and device 
trade  organizations, patient advocacy groups, 
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public–private partnerships, and academic 
groups. Their efforts have resulted in new quali
tative and quantitative approaches to B–R, 
means to assess patient B–R preferences and 
incorporate them in B–R assessments, and com
pendia of approaches and recommendations 
[12–18,29]. These advances have driven the 
addition of this inaugural chapter in B–R 
assessment.

While definitions vary, benefit–risk is gen
erally defined as weighing the key benefits of a 
treatment against its key harms. The term 
“risk” is ambiguous in the field of benefit–risk, 
and may refer to the general nature of the 
harmful effect, its frequency, its severity or a 
vague combination of these concepts [19,20]. 
To lessen this ambiguity, we will generally use 
the term “harm” or “unfavorable effect” as the 
analogs for “benefit” or “favorable effect,” 
though we retain the phrase “benefit–risk” 
due to its ubiquity. The goals for B–R assess
ments vary  –  go/no‐go decisions by a com
pany, reviews by institutional review boards 
and data monitoring committees, patient 
group advocacy decisions, regulatory reviews 
by a health authority, and reconsideration of a 
treatment after gaining new information post 
approval. Benefit–risk is also a critical compo
nent of point‐of‐care decision making by a 
patient and physician.

The goals for this chapter are to introduce 
the key clinical and methodological chal
lenges in B–R assessment, then summarize 
current and promising approaches to address
ing these challenges. The focus of this book is 
pharmacoepidemiology, but because medical 
treatment B–R as a science has much of its 
origin and current applications in develop
ment and regulatory approval, this chapter 
touches on both regulatory development 
and  postapproval settings. Our examples 
will  primarily be in the cardiovascular 
domain – for the treatment of atrial fibrillation 
or acute coronary syndrome (i.e., myocardial 
infarction or unstable angina).

 Clinical Problems to be 
Addressed by 
Pharmacoepidemiologic 
Research

Systematic Approach to B–R 
Assessment

While many B–R assessments are ultimately 
based on a qualitative interpretation of quanti
tative data [2,18], reaching the point where this 
qualitative interpretation is possible can be sur
prisingly challenging. Benefit–risk assessment 
can involve many outcomes, multiple condi
tions under which these outcomes are assessed, 
many data sources, multiple regimens, numer
ous comparators, different treatment para
digms, and numerous other considerations. 
There are also often several stakeholders whose 
perspectives on the importance of benefits and 
harms outcomes may need to be considered. All 
this information needs to be integrated into a 
transparent and defensible B–R assessment. 
There are also numerous quantitative models 
available for assessing B–R [16,21,22]. Because 
of all these complexities, different stakeholders 
use widely varying approaches to B–R assess
ment, with considerable differences in the 
depth, transparency, and clarity of the assess
ment. This has resulted in considerable incon
sistency in how, for example, drug or device 
companies and regulators conduct and commu
nicate a B–R assessment. What has emerged in 
recent years is the need for structured, frame
work approaches to rationally and defensibly 
frame, conduct, and communicate a B–R assess
ment [2,7,10,11,18,23]. We describe several of 
these frameworks and how they can be used.

Incorporating the Patient Perspective

Traditionally, the judgment calls required in 
design and conduct of clinical trials, registries, 
long‐term extension studies, and the B–R assess
ments on their results have been the province of 
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physicians and regulators. Regulatory agencies, 
patient advocacy groups, and industry have 
increasingly been advocating for patient engage
ment: patients partnering with the drug/device 
development company, researchers, health 
authorities and payers in the development, review, 
reimbursement and public health (e.g., vaccines) 
decisions for their treatments [5,24–28]. 
Chapter 42 addresses the topic of patient engage
ment in detail. Here, we consider patient‐focused 
benefit–risk, which can be regarded as the com
ponents of patient engagement involving the 
incorporation of the patient perspective on the 
nature of the illness, medical need, outcomes and 
trade‐offs into a B–R assessment. While the idea 
of patient‐focused B–R is well accepted, the chal
lenge is to determine what information should be 
obtained from patients, how it should be obtained, 
and how it can be used.

There are numerous techniques for assessing the 
patient perspective, ranging from qualitative focus 
groups and structured interviews through rigor
ously quantitative conjoint analysis or discrete 
choice analysis preference surveys [16,19,29,30]. 
Patient preference studies and surveys have 
become particularly important [3,4,15,19,31–33]. 
Identifying the appropriate patient sample and 
methodology, establishing trust between the stake
holders involved in these surveys, and the applica
tion of the results to clinical trials or observational 
studies are part art and part science. We review key 
elements of patient preference studies and discuss 
several means by which the results can be incorpo
rated into a B–R assessment.

 Methodologic Problems 
to be Addressed by 
Pharmacoepidemiologic 
Research

Regulators, patients, and physicians need to 
understand the evidence regarding the benefits 
and harms of available therapies to make optimal 

therapeutic decisions. Methodologies for gathering, 
synthesizing, and communicating the B–R 
assessment based on available data are the key 
tools for optimal decision making, in both the 
regulatory and clinical realms.

Identifying Appropriate Data 
for Benefit–Risk Assessment

Data for B–R assessment come from a variety of 
sources including randomized controlled trials, 
spontaneous reports, and observational data 
sources (see Part III Sources of Data for 
Pharmacoepidemiologic Studies). These sources 
often define outcomes differently, measure effects 
over different time periods, have important dif
ferences between populations, and use different 
comparators. Even with similar data sources, 
studies can demonstrate dissimilar results. Some 
studies might find an association between a treat
ment and adverse event, while others may find a 
protective effect or no effect. There has been 
much discussion about discordant results 
between observational studies and randomized 
controlled trials and potential explanations [34–
36]. A well‐known discrepancy is the difference 
between the Nurses’ Health Study, an observa
tional cohort, and the Women’s Health Initiative, 
a large randomized trial, on the relationship 
between hormone replacement therapy and car
diovascular and breast cancer outcomes. The 
populations studied differed on important con
founders and effect modifiers [37–39].

The reliability in identifying and characteriz
ing the important benefits and harms must be 
carefully evaluated through assessment of con
founding, bias, study design, generalizability and 
ability to pool the data. The principles for choos
ing among the available data sources in pharma
coepidemiology are discussed in Chapter  17. 
The validity of exposure and diagnostic data is 
further discussed in Chapter  37. Design‐based 
and analytic approaches to adjust for confound
ing and bias in observational studies are dis
cussed in Chapter  43. The considerations in 
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these chapters for pharmacoepidemiology also 
apply to B–R assessment.

Integrating Benefits and Risks

Even with high‐quality data, synthesizing the 
evidence in a structured manner can be chal
lenging. For example, a typical psoriasis indica
tion can easily have over 10 efficacy outcomes 
and 15 important safety outcomes. Some of 
these outcomes may favor one treatment, while 
others may favor the other. Even some “benefits” 
may favor the comparator, and some “harms” 
may favor the study treatment. Although com
parisons may reach statistical significance, in 
benefit–risk, there are often several important 
outcomes for which formal statistical testing is 
not conducted, for the most part due to small 
numbers of events and insufficient power to 
detect differences. In cases like this, rendering a 
B–R assessment is not trivial. Approaches that 
integrate benefits and harms should be suffi
ciently comprehensive to account for the fre
quency, clinical impact, and uncertainty of 
potentially many benefits and harms considered 
under multiple conditions. Further, they should 
account for the context of the overall disease 
state, currently available treatments, and unmet 
needs of the population of interest. This chal
lenge of integrating available evidence is compli
cated by the need to evaluate the effects upon 
important subgroups of patients, for example, 
children, the elderly or immune‐compromised 
individuals, where the B–R may be more or less 
favorable. Different subgroups may also have 
differences in preferences and value judgments 
that impact the B–R balance.

Communicating B–R Assessment

Given the many outcomes, complex statistics or 
epidemiology, and clinical judgments or formal 
preference studies, communicating a B–R 
assessment in a clear and cogent manner can be 
a formidable challenge (see also Chapter 39 on 

risk communication). This challenge is com
pounded by the typically very heterogeneous 
background of the audience (regulatory review
ers, patient groups, clinicians) that might uti
lize this information in a B–R assessment.

 Currently Available Solutions

Structured Approaches to B–R: B–R 
Frameworks

Perhaps the most significant advance in regu
latory and industry approaches to B–R in the 
last decade has been the introduction of B–R 
frameworks, a set of principles, processes, and 
tools to guide decision makers in selecting, 
organizing, analyzing, and communicating 
evidence relevant to B–R decisions [18]. B–R 
frameworks lead to far greater transparency, 
consistency, and discipline in B–R decision 
making. They encourage discussions that 
force decision makers to be explicit about 
their assumptions and requirements and, as 
will be discussed later, they assist not only in 
the act of decision making, but in the act of 
communicating the decision.

There are several well‐known B–R frame
works: the FDA B–R framework [2], the 
Pharmaceutical Research and Manufacturers of 
America Benefit‐Risk Action Team (PhRMA 
BRAT) framework [13,14], the Multicriteria 
Decision Analysis (MCDA) framework sug
gested by the European Medicines Agency 
(EMA) for complex B–R decisions [40–42], and 
the framework embedded in the International 
Council for Harmonisation’s (ICH) PBRER tem
plate and recent update to the ICH Clinical 
Overview template’s B–R section [10,11]. There 
are also applications of the BRAT framework for 
nonprescription drugs [43] and a documenta
tion system for regulatory agencies based on 
both BRAT and the ICH Clinical Overview 
update [17]. While the frameworks differ in 
focus and methodology, they share many steps 
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similar to those in the BRAT framework pre
sented in Table 35.1.

Given the ubiquity of B–R frameworks and 
their incorporation into the regulatory guidance 
for submissions and PBRERs, we structure this 
section based on these framework steps.

Define Decision Context

The main role of the decision context is to 
ensure all decision makers are aligned on key 
background elements of the assessment. 
Characterizing the severity of the disease and 
the medical need is particularly important, as 
the greater the severity or medical need, the 
more allowances regulators and other deci
sion makers typically make for treatment‐
related harms [7]. The severity of the illness 
can reflect severity either untreated or with 
current standard of care therapy, whichever 

is most appropriate for the condition. Medical 
need typically reflects the B–R profiles or 
limitations of existing treatments. These 
background elements are also an important 
avenue for incorporating the patient perspec
tive into B–R [6]. In observational B–R 
assessments, the context forces upfront 
agreement on an appropriate comparator, 
dose and population, the choice of which is 
often not straightforward in postapproval 
contexts. For example, for a recently approved 
drug, the most appropriate comparator may 
be the one used in recent clinical trials, the 
standard of care, or comparators available in 
the extant datasets.

Examples of decision contexts for numerous 
disease can be found in the FDA’s “Voice of 
the  Patient” reports [25] and in recent drug 
approvals, searchable at www.accessdata.fda.
gov/scripts/cder/daf/.

Table 35.1 Steps in the BRAT benefit–risk framework.

Step Definition

Define decision context Summarize the nature of disease, medical need for treatment, disease and 
treatment epidemiology, study treatment, dose/formulation, 
indication(s), patient population, critical subgroups, comparator(s), time 
horizon for outcomes, relevant decision‐making bodies

Identify and define outcomes Identify and define all important outcomes, define a preliminary set of 
measures for each outcome, document rationale for outcomes to be 
included and excluded

Identify and summarize 
source data

Determine and document all data sources, extract raw data, summarize 
over data sources, assemble effects table

Customize the framework Modify the outcome list and their definitions based on review of the data 
and clinical expertise. May include tuning of outcomes not considered 
relevant to a particular B–R assessment or stakeholder group

Assess importance of 
outcomes – value judgments 
and patient preferences

If applicable, assess outcome clinical impact or weight from the 
perspective of patients, decision makers or other stakeholders

Integrated B–R assessment: 
analysis and visualization

Summarize data into tabular and graphical displays (e.g., effects table) to aid 
interpretation, identify and fill any information gaps, interpret summary 
information, potentially conduct quantitative B–R analyses and sensitivity 
analyses to assess the impact of uncertainty on clinical or preference data

Expert judgment and 
communication

Render and communicate a decision
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Identify and Define Outcomes

The second step of the BRAT B–R framework 
(see Table  35.1) is to identify and define 
the  important outcomes: benefits, harms, and 
potentially other treatment properties of inter
est. While studies often measure many  outcomes, 
many of these are highly correlated with each 
other or are causally dependent, some double‐
count events, and they may vary considerably in 
their clinical impact. Generally, B–R requires 
identifying a smaller set of key outcomes that 
drive the B–R assessment [11]. A tool often used 
to select and depict the outcomes used in B–R 
is  a value tree, a hierarchic graph in which 
 outcomes are grouped by anatomic, functional 
or clinical impact (Figure  35.1A). Identifying 
outcomes in the value tree also serves as a 
 discussion tool in determining which outcomes 
are most important from patient and physician 
perspectives.

The value tree can also be utilized to under
stand problems caused by the interrelationships 
between outcomes. Outcomes that are easily 
interpreted individually can be problematic 
when considered collectively for B–R. For 
example, in the Randomized Evaluation of 
Long‐Term Anticoagulation Therapy (RE‐LY) 
study, the pivotal trial of dabigatran for atrial 
fibrillation, the primary efficacy outcome was 
stroke or systemic embolism, and the primary 
safety outcome was major bleeding [45]. Major 
bleeding is defined as the composite of fatal 
bleeding, critical organ bleeding (e.g., hemor
rhagic stroke, intracerebral hemorrhage), trans
fusions ≥2 units packed red blood cells or whole 
blood, or hemoglobin drops ≥2 g/dL) [44]. Fatal 
and nonfatal hemorrhagic stroke events are 
included in both the primary efficacy and safety 
outcomes. This double‐counting can lead to 
considerable confusion, as some events will 
count as both a benefit and a harm. Double‐
counting also occurs between all‐cause death 
and other efficacy outcomes, as strokes, myo
cardial infarctions, and systemic emboli may be 

fatal. Counting these deaths twice can poten
tially distort the findings. Finally, major bleed
ing includes a mix of events that are fatal, cause 
irreversible harm or are transient without 
sequelae, yet each event is weighted equally in 
the composite outcome [44]. This large range of 
clinical impact under one outcome complicates 
the comparison between benefits and harms 
[46,47].

The value trees in Figure 35.1 show one way to 
resolve these issues [48,49,65]. Figure  35.1A 
shows a value tree using the key outcomes of a 
typical atrial fibrillation trial. Figure  35.1B’s 
value tree includes the same events but with 
ischemic events classified only as benefits and 
hemorrhagic events classified only as risks. This 
provides a separation that mostly aligns with the 
treatment’s mechanism of action and avoids any 
double‐counting between benefits and harms 
(strokes with both ischemic and hemorrhagic 
components would need special consideration). 
Additionally, efficacy outcomes are defined to 
avoid double‐counting. Finally, benefits and 
harms are classified by whether they are fatal or 
generally result in irreversible harm; fatal and 
critical organ bleeds are classified as fatal/irre
versible, transfusions and hemoglobin drops are 
classified as reversible. This last classification is 
based on the FDA’s approach to the approval of 
dabigatran and prasugrel, in which the FDA 
focused primarily on outcomes that were fatal 
or caused irreversible harm [50,51]. By separat
ing the fatal and irreversible efficacy and safety 
events from less impactful ones, a first pass at 
the B–R assessment can be made with clinically 
comparable benefits and harms, then less 
impactful events can be included for additional 
detail in the assessment (see Figure 35.1B).

In some cases, having two or three value trees 
can be helpful. When there are different decision 
makers with different views on which events are 
most important, different value trees can be 
developed that reflect these different viewpoints, 
and the analyses conducted with each. For exam
ple, some decision makers may want to include 
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Figure 35.1 Example value trees for treatment of atrial fibrillation. (A) Endpoints from a typical atrial fibrillation 
statistical analysis plan. (B) Modified value tree with one approach for benefit–risk assessment. Major bleeding is 
defined as the composite of fatal bleeding, critical organ bleeding (e.g., hemorrhagic stroke, intracerebral 
hemorrhage), transfusions ≥2 units packed red blood cells or whole blood, or hemoglobin drops ≥2 g/dL) [44]. 
Nonmajor clinically relevant bleeding is defined as overt bleeding not meeting the definition of major bleeding but 
requiring medical intervention, contact with a health professional, a change in dosing of study drug/treatment or 
associated with discomfort or which impaired activities of daily living. MI, myocardial infarction.
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some types of bleeding events besides critical 
organ bleeds under the irreversible harm cate
gory. In the Advanced Methods on the Horizon 
section, we outline a few approaches that side
step some of these concerns of double‐counting 
and multiple perspectives on which events are 
most important.

Identify and Summarize Source Data

The third step of the B–R framework differs 
considerably in preapproval (development) and 
postapproval contexts. In the preapproval 
phase, the choice of datasets for B–R is self‐ 
evident. The pivotal clinical trials must be used, 
and while the generally post hoc nature of B–R 
provides some flexibility, the protocol and sta
tistical analysis plan prespecifies the popula
tions and means for pooling data from multiple 
studies. Post approval, however, identifying 
and summarizing data for B–R has many more 
options and complexities.

Approaches for handling the choice of data
base, study design, and analysis approach that 
apply to pharmacoepidemiology in general also 
apply to B–R assessment. These topics are 
addressed in other chapters in this book, so we 
only briefly introduce important points regard
ing data sources more specific for B–R assess
ment, particularly as more data accumulate 
across the life cycle of a treatment.

The availability of electronic data sources, in 
particular claims data, registries, and electronic 
health records, has created new opportunities to 
conduct postapproval B–R assessments. This has 
also resulted in the increased discussion and utili
zation of pragmatic randomized trials and EHR‐
enabled prospective studies for the evaluation of 
effectiveness and safety, such as the Phase III 
pragmatic randomized Salford lung study in 
COPD [52,53]. With these electronic data sources, 
new challenges arise regarding evaluation of data 
quality and utility, and how to synthesize the data.

At the time of regulatory approval of a new 
medical treatment, B–R assessment is largely 

based on data from controlled clinical trials and 
preclinical studies. A necessary condition for 
the rigorous assessment of benefits and harms is 
the foresight to anticipate and accurately meas
ure them. These studies often have a focus on 
well‐characterized efficacy data. Specific safety 
outcomes may be collected based on anticipated 
harms due to the mechanism of action (for 
example, bleeding events in an anticoagulant 
trial). Otherwise, there is passive collection and 
reporting of adverse events by investigators if 
something appears to be abnormal.

With passive collection, it is therefore some
times hard to distinguish between nonoccur
rence of an event and underreporting of safety 
events due to informative censoring, early dis
continuation, or inconsistent reporting. There 
are also harms that might not always be recorded 
in data sources, including “silent harms” that 
would be revealed with laboratory tests (for 
example, asymptomatic elevated liver enzymes 
that may be surrogates for future liver disease). 
Finally, analyses of serious, rare adverse events 
may not be adequately powered to detect differ
ences between treatments. Thus, the absence of 
observed safety events or harms or their lack of 
statistical significance does not necessarily 
imply an absence of harm in a clinical trial or 
other setting.

There are analysis principles that can account 
for some of these limitations in the passive 
recording of safety events in clinical trials. For 
example, the intent‐to‐treat principle is used to 
capture important safety events resulting after 
early discontinuation or the end of the treat
ment period by following patients during these 
periods [54]. Sensitivity analyses of adverse 
event definitions may also be considered when 
it is suspected that a safety event may have been 
reported using different terminology. For exam
ple, community‐acquired pneumonia in a trial 
in children might be recorded as community‐
acquired pneumonia, lower respiratory tract 
infection, and/or asthma exacerbation in the 
absence of a special adverse event collection 
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page, depending on the physician’s judgment 
and accuracy of diagnosis. Further, the diagno
sis of pneumonia might not be accurate, as there 
may be poor agreement on pneumonia diagno
sis even when a chest X‐ray is present [55–57]. 
In this example, the sensitivity and specificity of 
the pneumonia or lower respiratory infection 
event rates could be considered in the B–R 
assessment. However, additional studies may be 
required to investigate unexpected, rare but 
serious safety events noted in clinical trials to 
ensure adequate power and ascertainment, 
including subsequent trials or observational 
studies.

Following a medical treatment’s approval, 
data informing B–R accumulate in a broader, 
larger sample of subjects in clinical practice and 
postapproval studies mainly through observa
tional sources. B–R assessment is therefore 
often conducted by considering multiple studies 
conducted in a variety of settings, including 
randomized trials and observational studies. An 
understanding of strengths and weaknesses of 
study designs is important in weighing the B–R 
evidence across existing studies as well as in 
designing de novo observational or randomized 
studies.

We briefly describe important differences 
between randomized trials and observational 
studies that are important considerations for 
B–R assessment. Postapproval observational 
studies are more likely to compare two or more 
active treatments and observational studies 
generally do not contain a placebo arm, unlike 
many randomized controlled trials for registra
tion. Some data limitations present in clinical 
trials also persist in the postapproval setting, 
including the passive reporting of safety data. 
Definitions of exposure and efficacy and safety 
outcomes in the observational settings are 
dependent upon the means of collection in the 
source data and generally vary from setting to 
setting. Medical diagnoses are typically recorded 
as a numeric medical code in the case of elec
tronic sources as part of documenting health

care encounters and/or processing medical 
insurance claims. Some diagnoses and symp
toms might not be readily recorded in a claims 
or medical record, as they may not result in a 
healthcare visit (for example, stomach ache). 
Further, patient characteristics that may be 
important confounders or prognostic factors 
may not be available, particularly in healthcare 
claims data. For example, weight, smoking sta
tus, body mass index, and lung function tests 
may be available in an electronic medical 
record or patient registry but would not be 
reported in claims data as these data are not 
generally required to process healthcare 
claims. Efficacy or safety outcomes of interest 
may not be available or reported with the same 
granularity as required for a clinical trial. For 
example, specific types and severity levels of 
bleeding events that may be associated with an 
anticoagulant in observational sources are 
identified on the basis of medical codes [58] 
whereas more detail would typically be ascer
tained for bleeding events in randomized con
trolled trials [45]. More extensive discussion 
about validity of pharmacoepidemiologic data 
appears in Chapter 41.

The most robust data for B–R assessment are 
from randomized controlled trials and observa
tional data sources where the important out
comes from the value tree have been rigorously 
captured and where confounding and selection 
bias have been rigorously accounted for (e.g., 
through randomization or statistical adjust
ment). A particularly important concern in 
observational data analysis is addressing con
founding by indication or channeling bias, in 
which treatments are used differently depending 
on the degree of severity of the illness. For exam
ple, if a particular treatment is generally reserved 
for sicker patients, that treatment may appear to 
be associated with worse side effects than other 
treatments, simply because the sicker patients 
are more likely to have such side effects (see 
Chapter  43). Similarly, confounding by indica
tion may mask the true benefit of a treatment 
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and even make the treatment look less efficacious 
than the comparator (see Chapter 33).

Merging the data quantitatively from many 
disparate sources and across different study 
designs is not always possible, desirable, or 
realistic. If comparisons are made between 
effect estimates across studies, the extent to 
which study populations, definitions, study 
designs, and analysis approaches are compara
ble should be described, including the potential 
for bias and confounding. Metaanalysis can be 
considered as a means to tabulate and combine 
effect estimates for benefits and harms when 
appropriate, using a transparent and systematic 
approach (see Chapter 36). Completed studies 
may sometimes be excluded from a metaanaly
sis on the basis of low methodological rigor. 
Metaanalyses can include direct or indirect 
comparisons between treatments depending 
on the availability of the data. A traditional 
metaanalysis approach would be applied when 
head‐to‐head studies have been conducted. For 
example, a metaanalysis of Phase III clinical 
trial data was conducted to compare oral anti
coagulants to vitamin K antagonists in atrial 
fibrillation [59].

When head‐to‐head studies are not available, 
however, a network metaanalysis approach may 
be considered. For example, a network metaanal
ysis was conducted to compare oral anticoagu
lants relative to one another in atrial fibrillation 
[60]. The appropriateness of a metaanalytic 
summary might be questioned when results vary 
so much across studies that a single estimate 
loses interpretability. Methodological considera
tions for metaanalysis are further described in 
Chapter 36.

Customize the Framework

After identifying and summarizing source data, 
there may be a need to revisit the outcomes for 
B–R as described in Step 4 of the BRAT frame
work (see Table 35.1). Two common reasons for 
this revisiting are the emergence of new adverse 

events (AEs) not considered at the time the 
value tree was developed and differences 
between the B–R outcomes of interest and those 
available in the source data. New AEs may occur 
both during development and post approval, in 
which case additional harms can be added to 
the value tree. The available data do not always 
have the measurements desired or the granular
ity of outcomes to support the originally planned 
approach to B–R, particularly in claims and 
EHR data. In this case, the B–R assessment may 
require a revised set of outcomes. While con
structing a formal value tree is simply a graphi
cal exercise to facilitate selecting and 
communicating outcomes for B–R, customizing 
the outcomes to accommodate the limitations 
of the data sources may be necessary.

Consider the atrial fibrillation value tree in 
Figure 35.1B. The outcomes in this tree require 
distinctions such as fatal versus nonfatal myo
cardial infarctions and disabling versus tran
sient major bleeds. If the available observational 
data sources cannot adequately measure these 
endpoints, the tree will need to be customized 
with proxy or less granular outcomes that are 
available. In some cases, an algorithm can be 
used to approximate a desired outcome. For 
example, primary hospital discharge diagnosis 
codes can be used to identify bleeding‐related 
hospitalization and to differentiate upper and 
lower gastrointestinal bleeding [61]. The bleed
ing events in these algorithms may not fully 
align with the intended definition of major 
bleeding but may be sufficient, although differ
ent definitions make comparisons with RCT 
results potentially problematic.

Another approach used for atrial fibrillation is 
to simplify the value tree to two composite out
comes, potential thromboembolic events and 
intracranial hemorrhage, both defined by 
ICD‐9‐CM codes [62]. The risk differences for 
these outcomes can then be summed, poten
tially with a weight to reflect their relative 
importance, into what is typically called a “net 
clinical benefit” (NCB) outcome. There are 
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many variants of this approach, using different 
combinations of ischemic events and hemor
rhagic events for the two composite outcomes, 
or some versions where both ischemic and hem
orrhagic events are combined into a single com
posite endpoint [63–67]. An advantage of this 
approach is a more intuitive interpretation of 
the study outcomes compared to considering a 
large value tree. Using this approach, the weight
ing of two outcomes can be reduced to a single 
weight that is reflective of their relative clinical 
impact. This approach can also be implemented 
in nearly any clinical trial or observational 
dataset.

Disadvantages of using composite endpoints 
in this manner include that they are mixtures of 
disparate events that span the range of fatal or 
permanently disabling to transient with no 
sequelae. Comparing them without considering 
their components may fail to identify potentially 
important specific differences between treat
ments. Even with weights or patient preferences 
as described below, the comparison between 
outcomes with such a broad range of clinical 
impact can be difficult.

Assess Importance of Outcomes ‐ Value 
Judgments and Patient Preferences

Step 5 of the BRAT framework (see Table 35.1) 
is to assess the relative importance of the 
 outcomes. Consider an anticoagulant that 
reduces the chance of a cardiovascular death 
from 3% to 2% but increases the chance of a 
disabling hemorrhagic stroke from 1% to 5%. Is 
this B–R trade‐off acceptable? The decision on 
whether the mortality benefit outweighs the 
hemorrhagic stroke depends not only on the 
changes in their chance of occurrence, but also 
on the importance one assigns to each event. 
These types of value judgments are a critical 
component of B–R.

Benefit–risk assessment is a combination of 
data‐based probability assessment and value 
judgments [2–4,7,9,19,21,23]. Statistical analyses 

can provide the probability of different types of 
events prevented and caused, but they do not 
indicate how important those events are to 
decision makers [31]. In B–R, these value judg
ments are typically referred to as “weights” or 
“preferences.” The preferences are most often 
for the different benefits and harms and other 
treatment characteristics, though they may also 
be assessed for treatments as a whole [68]. The 
measurement and application of preference is a 
growing field, with applications far beyond 
medical treatment B–R.

In many cases, these value judgments are 
based on clinical judgment. FDA and EMA B–R 
assessments reflect this approach [2,9]. For 
example, the FDA’s anticoagulant B–R assess
ments described earlier use clinical judgment to 
partition events into two categories: events that 
are fatal or cause irreversible harm, and events 
that cause reversible harm [50,51]. This parti
tioning gives two effective “weights”: clinically 
very impactful (very high weight) events and 
clinically much less impactful (much lower 
weight) events, and the B–R assessment is 
focused primarily on the very impactful events. 
Similarly, the EMA’s guidance on review of drug 
applications (the rapporteur’s day 80 critical 
assessment report) stresses the need to describe 
the value judgments used and notes that “a 
‘descriptive’ approach with explicit considera
tions about the importance of the different 
effects and how trade‐offs are weighed will 
 generally be appropriate” [9].

Clinical judgment can be used to (i) rank end
points in order of decreasing clinical impact, (ii) 
group them into categories such as the Common 
Terminology Criteria for Adverse Events 
(CTCAE) scale [69] or (iii) give rough decisions 
of what trade‐offs are acceptable. These types of 
approaches are common not just in regulatory 
B–R, but in clinical practice. For example, physi
cians make similar judgment calls in determin
ing which treatment might be best for an 
individual patient. Experts write treatment 
guidelines based on available scientific evidence, 
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clinical judgment, and, increasingly, patient 
preferences [70,71]. In a shared decision‐making 
paradigm, physicians and patients discuss their 
B–R preferences for treatment, which may dem
onstrate that physicians and patients do not 
place the same weight on different outcomes 
[72,73].

While most B–R problems can be assessed 
with clinical judgment, there are many that are 
well served by formal, rigorous studies to 
assess how patients weigh benefits and harms 
[3,15,19,31,32,41]. Called “patient preference 
studies,” these measure what attributes of a 
treatment are important to patients, the rela
tive importance of these attributes, what 
trade‐offs between them patients would 
accept, and the heterogeneity of these results 
among patients. Patient preference studies are 
taking on an increasing role in B–R and the lit
erature in this discipline is growing [74–76]. 
Patient groups and pharmaceutical or medical 
device companies use them to incorporate the 
patient perspective into B–R. The FDA and 
the EMA are starting to consider preferences 
in decision making as complementary mate
rial along with efficacy and safety data. The 
Center for Devices and Radiological Health 
(CDRH) at the FDA has published a guidance 
document on the inclusion of patient prefer
ence information [4]. It has also conducted a 
patient preference study in surgical weight 
loss devices and approved a device in part 
based on results showing that a substantial 
proportion of the target population was will
ing to accept the risks associated with the 
device in exchange for the weight loss benefit 
[3]. In the FDA’s recent approval of rituximab 
for the treatment of lymphoma and chronic 
leukemia, patient preference information 
assessed within the trial was included in a new 
Patient Experience section in the label [68]. 
The EMA has also piloted a preference study 
in patients with multiple myeloma [77], and 
both the FDA and EMA are conducting addi
tional preference studies.

There are many different methodological 
approaches to elicit patient preferences, ranging 
from qualitative interviews through quantita
tive techniques, though in practice, a much 
smaller number is used in B–R assessment 
[16,19,29,30]. One of the most common quanti
tative methods is conjoint analysis, in which 
patients choose between sets of hypothetical 
treatments that have different combinations of 
benefit and harm attributes, and a regression 
analysis of the choices determines the relative 
importance of the attributes. Additional over
views of patient preference methods have been 
published [19,31,33,78].

There have been numerous preference studies 
for anticoagulants, in both patients and other 
stakeholders [75]. In general, atrial fibrillation 
patients are willing to accept certain bleeding 
risks for a decrease in the probability of experi
encing a stroke. However, there is substantial 
variability in the threshold number of bleeds 
observed for the acceptance of an oral antico
agulant. Figure 35.2 shows the results of a pref
erence survey for acute coronary syndrome 
[72]. The bars in the figure show the relative 
importance US patients place on death, differ
ent severities of stroke, myocardial infarction, 
different degrees of bleeding, and angina. US 
patients regarded nonfatal disabling stroke as 
equal in importance to death. The low height of 
the bars on the right indicates that patients are 
willing to accept considerable probability of 
bleeding, angina or even nonfatal heart attack in 
exchange for treatments that reduce the chance 
of death or disabling stroke. In a different pref
erence study for atrial fibrillation, in exchange 
for reducing the chance of nonfatal disabling 
stroke by one percentage point, US patients 
would accept up to a 6.3% chance of nonmajor 
clinically relevant bleeding and up to a 2.0% 
chance of extracranial major bleeding [79].

In addition to population averages of prefer
ence as show in Figure 35.2, preference studies 
can measure heterogeneity in preferences. 
Some patients will be very tolerant of risks 
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while others will be very risk averse. Preference 
studies can measure how widely patients’ pref
erences vary and whether there are distinct 
subgroups of patients with important differ
ences in preferences. While often referred to as 
patient preferences, the preferences of physi
cians, caregivers, and others can be ascertained 
and compared with these methods. For exam
ple, a preference study of patients and physi
cians was conducted in the US and Japan on the 
relative importance of benefits and harms of 
anticoagulant therapy using a conjoint analysis 
experiment. Japanese physicians and patients 
exhibited different preferences from each other, 
with physicians being less likely to tolerate the 
risk of bleeding in exchange for the reduction in 
the risk of stroke [79]. These results may in part 
explain lower prescribing rates of anticoagu
lants for atrial fibrillation patients in Japan 
compared with the US [80].

As popular as patient preference studies are 
becoming for B–R applications, there are many 
unanswered questions in terms of requirements 
in the design, conduct, and analysis of these 
studies for regulatory and health technology 

assessment purposes. We describe ongoing 
 initiatives to address these questions at the end 
of the chapter.

Putting It All Together: Integrated 
B–R Assessment

Because synthesizing the evidence in a structured 
manner is often tightly linked with visualizing the 
data or analyses, we discuss integrated B–R 
assessment and communicating the assessment, 
Steps 6 and 7 of the BRAT B–R framework (see 
Table 35.1), together.

There are numerous approaches to combining 
data on medical need, outcome data, uncertainty, 
clinical judgment, preferences, heterogeneity, etc. 
into a B–R assessment [18,21,23,81–85]. Benefit–
risk approaches are often categorized as quali
tative, semiquantitative or quantitative. 
Qualitative approaches use textual descriptive 
summaries to make a B–R argument. They are 
most applicable when the assessment is self‐
evident from the data, such as statistically 
 significant benefit and no appreciable AEs. Semi
quantitative approaches use a combination of 
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tabular and graphical displays, potentially cou
pled with preference or weight information. Most 
B–R in regulatory and practical applications is 
descriptive or semiquantitative, and we focus 
on  these approaches here [2,7,9]. Quantitative 
approaches compute summary metrics by com
bining the data and potentially preferences from 
multiple outcomes. We touch upon quantitative 
methods here but address them more fully in the 
Future section.

An increasingly common means to display 
B–R data is an effects table  [9,81] which sum
marizes information on all key benefits and 
harms (Table  35.2). In most versions, there is 
one row for each benefit or harm. The columns 
vary but may include the outcome name, a brief 
outcome definition and units, the outcome 
value for each treatment, estimates of between 
treatment differences (e.g., risk difference) with 

associated uncertainty (e.g., 95% confidence 
intervals), brief notes on strength of evidence 
and a link to data sources. While relative meas
ures such as relative risk, odds ratio or hazards 
ratio can also be included, these measures are 
generally less useful for B–R. Because the base
line rates for outcomes may be disparate, a large 
relative risk may correspond to a very small 
absolute difference in the number of events 
when the baseline rate is low, while small rela
tive risks may correspond to large absolute dif
ferences when the baseline rate is high.

Table 35.2 shows an effects table for the atrial 
fibrillation value tree in Figure 35.1B. The data are 
simulated but realistic, and the term “study drug” 
is a proxy for any medical intervention. All out
comes in the example presented are in  person‐
year rates, though effects tables in general can 
include any type of risk or rate calculation and can 

Table 35.2 Effects table for atrial fibrillation (simulated data). All outcomes are measured per 10 000 person‐years.

Outcome

Event rate 
(/10 000 person‐years) Rate difference 

/10 000 person‐years 
(95% Cl)

NNT or 
NNHStudy drug Comparator

Efficacy
Ischemic death, ischemic stroke, MI 
or systemic embolism

430 512 −87 (−143, −30) −115

Ischemic death 189 221 −34 (−72, 3) −294
Nonfatal ischemic stroke 154 172 −19 (−51, 13) −526
Nonfatal myocardial infarction 83 100 −17 (−43,8) −588
Nonfatal systemic embolism 4 20 −16 (−26, −7) −625

Safety
Major bleeding 398 345 49 (0, 99) 204

Fatal and critical organ bleeding 119 125 −6 (−33, 20) −1667
Fatal bleeding 37 38 −1 (−15, 13) −10000
Nonfatal critical site bleeding 82 87 −5 (−31, 21) −2000

Transfusions > =2 units or Hbg 
drop > − 2 g/dL

308 245 60 (17,103) 167

Clinically relevant nonmajor bleeding 1192 1137 44 (−50. 138) 227

CI, confidence interval; MI, myocardial infarction; NNT, number needed to treat; NNH, number needed to harm. Positive 
NNTs or NNHs indicate more events on the study drug. Negative NNTs or NNHs indicate more events on the comparator.
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show categorical or continuous outcomes. 
Because the incidence rate of most outcomes is 
low, the data are scaled to a hypothetical popula
tion (10 000 person‐years) to simplify represen
tation and comprehension of these data [86]. 
The rate differences represent the additional 
number of events caused or prevented by using 
one treatment compared to another treatment 
after 10 000 person‐years exposure. With many 
outcomes considered in B–R, we generally show 
the 95% confidence interval (CI) as a measure of 
uncertainty but not for statistical hypothesis 
testing, with the exception of those endpoints 
for which a study was powered. Number need to 
treat (NNT) and number need to harm (NNH) 
are also included in the table. NNT is the num
ber of person‐years exposure with a treatment 
versus comparator to prevent one additional 
harmful event. NNH is the  number of person‐
years exposure with a treatment versus compar
ator to cause one additional harmful event. NNT 
and NNH are calculated as the reciprocal of the 
corresponding rate differences [87,88].

Focusing first on events that are fatal or 
cause irreversible harm, per 10 000 person‐
years, there are 87 (95% CI 30, 143) fewer 
events per 10 000 person‐years in the efficacy 
composite of ischemic death, ischemic stroke, 
MI or systemic embolism, and there are six 
(95% CI ‐20, 33) fewer fatal and critical organ 
bleeding events on the study drug. Note that 
the sign of the rate difference and confidence 
interval of the safety outcome is reversed 
when referring to fewer events on the study 
drug. The composite efficacy outcome is sta
tistically significant favoring the study drug, 
while the fatal and critical organ bleeding 
shows no meaningful difference, suggesting 
benefits outweigh harms.

When considering the full set of outcomes, a 
forest plot of the rate differences in Table 35.2 
is very helpful, particularly when communi
cating a B–R assessment (Figure  35.3). At a 
glance, the plot makes clear that death, 
ischemic stroke, myocardial infarction, and 
non‐CNS systemic embolism each contribute 

meaningfully to efficacy. Major bleeding 
favors the comparator, but the forest plot 
makes it clear that this difference is driven pri
marily by less impactful bleeds. There is no 
difference in fatal and critical organ bleeding, 
while the comparator is superior in the less 
impactful transfusions, hemoglobin reduc
tions as well as nonmajor clinically relevant 
bleeding (see Figure  35.3). The trade‐off is 
preventing 87 (95% CI 30, 143) fatal/irreversi
ble harm ischemic events versus causing 60 
(95% CI 17, 108) reversible bleeding events, 
both per 10 000 person‐years. Without taking 
patient preferences into account, in this simu
lated example, the benefits appear to outweigh 
the harms.

This B–R analysis can also be performed 
with NNT and NNH. Comparing the broadest 
efficacy and safety outcomes, one harmful 
ischemic event is prevented for every 115 
 person‐years of exposure to the study drug 
versus comparator (NNT), while 204 person‐
years exposure is needed to see an excess 
major bleeding event (NNH) on study drug. 
That is, less study drug exposure is needed to 
achieve a beneficial effect than a harmful 
effect. Additionally, each beneficial event is far 
more clinically impactful than each harmful 
event, since there were few fatal bleeds or 
 critical organ bleeds. Taken together, these 
points strongly suggest benefit exceeds harm. 
Additionally, the NNH for fatal and critical 
organ bleeding is ‐1667. The large absolute 
value indicates that the between‐treatment 
difference is small. The negative value indi
cates that the difference favors the study drug 
despite the bleeding being classified as a harm. 
In this case, these three outcomes are suffi
cient to assess B–R. However, when consider
ing many outcomes at once, NNT and NNH 
are less helpful. The techniques for comparing 
many NNTs and NNHs simultaneously are 
mathematically complex and require weights 
or preferences for each outcome [84,89]. 
Additionally, confidence intervals for NNT 
and NNH can be difficult to interpret when 
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outcomes are not statistically significant 
[87,90,91]. For these reasons, NNT and NNH 
have limited application in B–R assessment.

Weighting and the Patient 
Perspective

The integrated B–R approaches reviewed above 
used clinical judgment to make a defensible B–R 
decision. The example in Table 35.2 and Figure 35.3 
lends itself to such approaches. However, when 
the B–R trade‐off is more complex, such as when 
some key outcomes favor the study drug and other 
key outcomes favor the comparator, weighting and 
preference assessments can be critical, both to 
incorporate the patient perspective and to make a 
B–R assessment.

There are numerous approaches by which the 
weighting or patient preferences can be incor
porated into B–R. Figure  35.4 shows a forest 
plot with outcomes placed in order of decreas

ing clinical impact for patients, where clinical 
impact is based on standard gamble and time 
trade‐off utilities (a type of weight) obtained 
from the Tufts Cost‐Effectiveness Analysis 
Registry. In this approach, composite outcomes 
are not included when their components are 
displayed. The most severe outcomes all favor 
the study drug, while the least severe favor the 
comparator. Again, these data suggest that the 
benefits outweigh harms. An advantage of using 
the rank rather than actual weight or preference 
values for outcomes is that there is less opportu
nity for disagreement among decision makers 
about the values of the weights or their exact 
order. For example, in Figure 35.4, the five out
comes associated with the most severe clinical 
impact all favor the study drug. The B–R assess
ment is the same regardless of the ranking 
within the most severe outcomes.

Another class of approaches that incorporate 
weights or the patient perspective in B–R are 
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net clinical benefit (NCB) measures. While the 
terminology is not standard, we define NCB 
approaches as those that use a weighted sum of 
risk (or rate) differences between study drug 
and comparator to summarize the difference 
between treatments:

NCB w RDii
N

i1  

where N is the number of outcomes, wi is the 
weight associated with outcome i, and RDi is 
the between‐treatment rate difference or risk 
difference for outcome i. Weights can be 
obtained from clinical judgment, clinical 
sequelae or any of the wide variety of patient 
or physician preference studies described 
above. Typically, beneficial events have posi
tive weights and harmful events have nega
tive weights. The larger the absolute value of 
the weight or the larger the risk difference for 
an outcome, the more that outcome contrib
utes to NCB.

As a simple example, the NCB approach 
described above for atrial fibrillation uses two 
composite outcomes: potential thromboem
bolic events and intracranial hemorrhage [62]. 
In this case, net clinical benefit is defined as:

NCB w RD w RDTE TE ICH ICH  

where RDTE and wTE are the risk difference and 
weights for thromboembolism, and RDICH and 
wICH are the risk difference and weight for intrac
ranial hemorrhage. Risk difference here is defined 
as the probability of events on study drug minus 
that on comparator. Weights of 1.0 for potential 
thromboembolic events and 1.5 for intracranial 
hemorrhage were based on mortality and disabil
ity data from a large observational atrial fibrilla
tion study [92], indicating that the clinical impact 
of a typical ICH is weighted 1.5 times that of a 
typical thromboembolic event. Since wTE = 1, a 
unit change in NCB is equivalent to a unit change 
in the probability of thromboembolism. Hence, 
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Figure 35.4 Forest plot for key benefits and harms in atrial fibrillation treatment ranked in order of decreasing clinical 
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this net clinical benefit is also in units of throm
boembolic events. For example, if RDTE = −80 
(95% CI −85, −75) per 10 000 patient‐years and 
RDICH = 30 (95% CI 25, 35) per 10 000 patient‐
years, the study drug is better than the compara
tor on thromboembolic events and worse on ICH 
events. Net clinical benefit is −80 + 1.5 × 30 = −35 
(95% CI −49, −21) thromboembolic event equiva
lents per 10 000 patient‐years. Thus, the differ
ence between treatments is the equivalent of 35 
fewer thromboembolic events per 10 000 patient‐
years, favoring the study drug.

There are many other ways in which a net 
clinical benefit measure can be defined. For 
example, an NCB measure can be based on a 
weighted sum of the seven outcomes’ rate dif
ferences from Figure 35.4, with weights obtained 
from the utility scores used to sort the outcomes 
in the figure or from a preference study such as 
in Figure 35.2. Sensitivity analyses can be con
ducted on NCB measures, where distributions 
for the weights are propagated into uncertainty 
in the NCB result. The distribution of NCB, 
whether the uncertainty is based on clinical data 
uncertainty, weight uncertainty or both, can 
give more complex metrics such as the proba
bility that benefit exceeds risk (example in 
appendix 3 of [93]).

A more general approach to B–R assessment 
is multicriteria decision analysis (MCDA) [40–
42,94]. MCDA is a general and flexible quanti
tative approach to decision making that can 
accommodate not just the dichotomous out
comes described earlier for NCB but any type 
of input, including continuous outcomes, cat
egorical outcomes, and properties that may 
need specialized scales such as ease of use and 
drug–drug interactions. This flexibility comes 
at the cost of greater complexity, and MCDAs 
are generally reserved for more complex B–R 
problems.

Multicriteria decision analysis models have 
been applied to many B–R problems, including 
atrial fibrillation [95–98]. The EMA has started 
considering their use for complex B–R problems 

[41,77]. Figure 35.5 shows the results of an MCDA 
model for natalizumab, a treatment for multiple 
sclerosis [97]. Despite the very high weight (left 
column in Figure  35.5) given the treatment‐
related adverse event of progressive multifocal 
leukoencephalopathy (PML), the very small dif
ference in between‐treatment rates (middle col
umn) causes PML to have negligible impact on 
the B–R analysis (right column). In contrast, 
despite its much smaller weight, relapse’s large 
between‐treatment difference causes it to be the 
main driver of the B–R balance. In this manner, 
MCDA models can help show the relative contri
butions of rates and weights for many outcomes. 
As for NCB approaches, MCDA models can also 
be extended with distributions for both weights 
on clinical inputs, often called stochastic multicri
teria acceptability analysis, providing probabilis
tic assessments and sensitivity analyses for B–R 
results [99,100].

Preference studies can also be used to address 
the questions raised at the outset of  this chap
ter  –  what probability of harm is acceptable in 
exchange for a given degree of benefit? A prefer
ence study can provide the maximum acceptable 
risk, that is, the maximum probability or level of 
severity of a harm that a patient will accept in 
exchange for a given benefit. Similarly, preference 
studies can provide the minimum acceptable ben
efit, that is, the minimum benefit that a patient 
will require in exchange for a given probability or 
severity of a harm. For example, on average, 
patients with mild cognitive impairment are will
ing to accept up to about a 5% chance of death or 
disabling stroke in exchange for reducing moder
ate dementia symptoms to mild symptoms for 
one year [101]. In atrial fibrillation, in exchange 
for reducing the chance of nonfatal disabling 
stroke by one percentage point, US patients on 
average would accept over a 6.0% chance of non
major clinically relevant bleeding and up to about 
a 2.0% chance of extracranial major bleeding [79].

Patient preferences are heterogeneous – dif
ferent patients would accept different trade‐
offs in exchange for the same benefit [4]. 
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Preference studies can measure this heteroge
neity and identify subgroups of patients with 
different preferences. The balance of benefits 
and harms will differ in these subgroups, and 
preference studies can be used to assess the 
proportion of patients that would choose to 
use a given treatment – an assessment that was 
in part the basis for approval of a medical 
device to treat obesity [3]. Finally, preference 
studies can be used to understand the different 
perspective on acceptable B–R trade‐offs in 
different stakeholder groups. For example, a 
preference study in patients with schizophre
nia and psychiatrists who treat such patients 
showed that patients regarded improving the 
positive symptoms of schizophrenia as the 
most important benefit to a far greater degree 
than did their psychiatrists [102].

This section has covered the more common 
approaches to integrated B–R assessment. 
There are many ongoing initiatives advancing 
these methodologies and developing policy 
for their use in regulatory and other applica
tions. An important role for these initiatives 
is addressing limitations in these methods. 
For example, there is a growing set of 
approaches for B–R that account for depend
ency between benefits and harms, consider 
competing risks, and combine patient‐
reported outcomes and patient prefer
ence  studies. There are also numerous 
other  approaches to communicating B–R 
[2,81,103,104]. In the final section, we address 
the ongoing initiatives to improve methodol
ogy and policy as well as some of the newer 
approaches for B–R.
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 The Future

Maturation of the Field: Initiatives, 
Guidances, and Partnerships

The many advances in structured approaches to 
B–R assessment and patient preference studies 
have also opened many lines of inquiry on 
methodology and policy. There are numerous 
ongoing research groups and public–private 
partnerships seeking to address these open 
questions.

As described at the start of the chapter, both 
the FDA and EMA have implemented a struc
tured approach to communicating their B–R 
assessment. By 2020, the FDA is expected to 
publish guidance on B–R assessment for new 
drugs and biologics, focusing on its B–R frame
work [5,28]. Additional FDA guidance will focus 
on systematic approaches to collecting and uti
lizing patient and caregiver input for regulatory 
decision making, including patient preference 
studies [5,105,106]. Along with the updated 
approach to B–R in the ICH Clinical Overview 
template, this guidance will provide a founda
tion for FDA expectations in B–R assessment 
and reporting.

Public–private partnerships have an important 
role in aligning industry, regulatory agencies, 
patient groups, and academia on methodology 
and policy. The Innovative Medicines Initiative 
(IMI), Europe’s largest public–private partner
ship, conducted IMI PROTECT, a large project 
that developed recommendations for B–R meth
odology and communication [16,81,97,103]. The 
Medical Device Innovation Consortium (MDIC) 
developed a framework on the assessment and 
use of patient preference studies in medical device 
development and regulatory review [19]. This 
framework is one of the key background docu
ments supporting the FDA’s guidance on patient 
preference studies [4]. The IMI is currently fund
ing the IMI PREFER project that continues the 
MDIC work and will generate expert and 
 evidencebased recommendations for industry, 

regulators, and health technology assessment 
groups on the assessment and use of patient pref
erence studies for decisions in the medical treat
ment life cycle [15]. The Quantitative Sciences in 
the Pharmaceutical Industry (QSPI) Benefit–Risk 
Working Group has developed several novel sta
tistical approaches to B–R [107]. These are just 
some of the key recent or ongoing initiatives.

Academic organizations such as the Inter
national Society for Pharmacoeconomics and 
Outcomes Research (ISPOR), the Society for 
Medical Decision Making (SMDM), and the 
International Academy of Health Preference 
Research (IAHPR) continue to develop stand
ards for B–R decision making and the proper 
conduct and use of patient preference studies.

Finally, more and more patient advocacy 
groups are taking on a role in B–R. For example, 
Parent Project Muscular Dystrophy collabo
rated with a scientist from Johns Hopkins 
University to conduct preference studies in 
muscular dystrophy and developed a mono
graph on B–R in rare diseases [108]. Other 
patient groups in Parkinson disease, diabetes, 
lung cancer or other disease areas are doing 
similar work. These groups are potential col
laborators for academic, industry or regulatory 
patient preference and B–R work.

Advanced Methods on the Horizon

Benefit–risk assessment is an evolving field that is 
critical to optimal medical and public health deci
sion making. In the future, there will be increasing 
demand for and reporting of B–R assessment. 
Assessment will become increasingly more struc
tured, systematic, and quantitative as methodolo
gies improve and become widely accepted. Areas 
of emphasis will include (i) the refinement of B–R 
assessment tools and application techniques, (ii) 
development of methodologies with greater prag
matism and applicability to clinical practice, and 
(iii) transitioning B–R assessment from a post hoc 
exercise to one that has a prespecified methodol
ogy or, potentially, a testable hypothesis.
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The evolution of improved means to 
 communicate B–R must continue to progress. 
Greater emphasis will be placed on risk differ
ence summaries rather than relative risks or 
hazard ratios for greater interpretability. For 
example, risk differences as measured by dif
ferences in Kaplan–Meier estimates are more 
appropriate B–R assessment summaries than 
hazard ratios obtained from proportional haz
ards regression [109,110]. Graphical summary 
displays will be used with greater frequency to 
more effectively communicate complex 
and  multidimensional effects of treatments 
[103,104]. And B–R frameworks will provide 
the succinct textual summary that accompa
nies these displays.

Despite being the gold standard for evaluating 
the safety and effectiveness of treatments, clinical 
trials may have shortcomings in informing medi
cal decision making [111]. A key goal of B–R 
assessment is to contrast the benefits and harms 
of therapeutic alternatives as they are experienced 
by patients to help inform medical decision mak
ing. However, typical summaries of the study data 
for B–R assessment treat benefits and harms 
independently, then compare outcomes using 
either clinical judgment or integrating them using 
NCB or MCDA types of approaches. B–R assess
ment based on combining the separate marginal 
effects of each outcome in this fashion has limita
tions, as it fails to (i) account for any associations 
between outcomes (e.g., patients who benefit 
from the treatment may not experience any treat

ment‐related harms, while those who do not 
 benefit may experience the harms), (ii) systemati
cally incorporate the relative importance of com
binations of outcomes (e.g., the weight associated 
with a rash and pain experienced simultaneously 
may not be the same as the sum of the weights for 
rash and pain independently), or (iii) effectively 
deal with competing risks (e.g., trials that censor 
patients once they experience certain adverse 
events may not track subsequent benefits or 
harms that patient may experience).

As an example, suppose 100 patients are treated 
with a new treatment versus placebo, and one effi
cacy outcome and one safety outcome are meas
ured and considered of equal importance (weight). 
Further suppose the efficacy and adverse event 
rates for the new treatment are both 50%, while 
the rates for both are zero for placebo. If the 50 
patients who experience a treatment benefit (i.e., 
the efficacy event) are the same patients who expe
rienced harm (i.e., the safety event), then the net 
clinical benefit is zero for all patients and the drug 
is worthless (Figure  35.6A). However, if the 50 
patients with benefit are different from the patients 
who experienced the harm, then the net clinical 
benefit is positive for half the patients and negative 
for half the patients; that is, it is a good drug for 
half of the patients and a bad drug for the other 
half (Figure 35.6B), with the accompanying chal
lenge of being able to predict which individuals fall 
into each category. Marginal summaries on the 
benefit and harm separately cannot distinguish 
these two scenarios, emphasizing the information 

Benefit No Benefit Benefit No Benefit

Harm 50% … Harm … 50%

No Harm … 50% No Harm 50% …

(A) (B)

Figure 35.6 Demonstration of the impact of dependencies between outcomes. Both tables show risk differences for 
one benefit and one risk. The benefit and harm are assumed to be equally weighted. Part A shows the case where the 
treatment benefits no one (NCB=0 for all patients); Part B shows the case where the treatment benefits half of 
patients (NCB >0 for 50 patients and NCB <0 for 50 patients). However, the marginal distributions of benefit and harm 
of the two tables are identical.
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lost by considering the outcomes independently. 
Furthermore, in most clinical trials, efficacy and 
safety are typically evaluated in different analysis 
populations, challenging the ability to generalize 
results when aggregating them. New methodolo
gies for B–R assessment that have greater practi
cality in translating to clinical practice are needed. 
There are several on the horizon.

Earlier approaches to account for benefits and 
harms within a patient included a graphical rep
resentation of B–R over time. The status of a 
patient at any time during the trial is depicted 
using one of five health states: benefit without 
AE, benefit with AE, neither benefit nor AE, AE 
with no benefit, and withdrawal [112]. Using a 
different color for each health state, each 
patient’s B–R pattern is represented using 
colored bars. By stacking all patient B–R data 
over time, sorting by different health states and 
comparing the pattern for a treatment and com
parator, the B–R for the sample overall could be 
ascertained by visual inspection. This approach 
allows for dependency between two out
comes – sufficient for the example in Figure 35.6 
but not for much more complex problems. As 
acknowledged by the authors, this graphical 
representation of B–R over time offers a rela
tively limited view of the data but it can contrib
ute to B–R assessment. A Bayesian approach to 
longitudinal B–R assessment based on this rep
resentation allows for several net clinical benefit 
types of B–R endpoints [113]. The primary 
advantage of the Bayesian approach for longitu
dinal data is its ability to borrow information 
from prior assessments and recursively update 
posterior estimates of B–R measures. This 
approach can also be extended to any number of 
endpoints. Other Bayesian approaches to B–R 
are reviewed in Costa et al. [114].

The Desirability of Outcome Ranking 
(DOOR) is an evolving novel approach to B–R 
assessment that also accounts for benefits and 
harms within an individual patient. It is prag
matic from the perspective of informing medi
cal decision making [115] and addresses the 

limitations described above. Conceptually, 
DOOR uses outcomes to analyze the patients 
rather than the patients to analyze the out
comes. A key to utilizing DOOR is to determine 
how to analyze one patient before analyzing 
many. For example, consider the cardiovascular 
example discussed earlier where outcomes 
included mortality, stroke (disabling and non
disabling), MI, and bleeding events. Traditional 
B–R assessment in cardiovascular trials often 
use time‐to‐first‐event analyses without incor
porating the cumulative nature of multiple 
events, the association between events, the 
competing risk of death or the weight of multi
ple events in a patient. DOOR can address these 
issues. Consider the experience of each study 
participant in terms of the events that they may 
experience. Suppose that mortality is consid
ered the worst outcome and disabling stroke is 
considered the next worst outcome. 
Nondisabling strokes, MIs, and bleeds are 
harmful events but are generally somewhat 
transient and thus may have similar importance 
to each other but less than that of a disabling 
stroke. More of any of these events is worse than 
fewer events. Zero events is the best‐case sce
nario. Thus, DOOR for this setting may classify 
global patient outcomes into one of, for exam
ple. five mutually exclusive categories from 
most desirable to least (Table 35.3). The distri
bution of DOOR between competing treatment 
options can be compared.

Two distinct analyses of DOOR can be con
ducted. One approach consists of conducting all 
possible pairwise comparisons of patients 
between treatments. One can then estimate the 
DOOR probability, the probability that a ran
domly selected patient randomized to one treat
ment has a better DOOR than a randomly 
selected patient on the other treatment. This 
may have an intuitive appeal from a clinical per
spective given the connection to a common and 
important question that arises during clinical 
practice decision making: what is the probabil
ity that a patient will have a better overall 
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response on one treatment relative to another? 
The win ratio, the relative frequency with which 
a randomly selected patient randomized to one 
treatment has a more desirable versus less desir
able DOOR compared to the other treatment, 
can also be estimated. In the second type of 
analysis, “partial credit” levels of the ordinal 
outcome are scored similar to an academic test 
[116]. The most desirable outcome (survived 
with no events) is scored as 100 and the least 
desirable (death) is scored as 0. Middle catego
ries are given partial credit. The amount of par
tial credit may be obtained through patient 
preference studies or a survey of expert clini
cians. Sensitivity analyses to varying partial 
credit scoring permits personalized analyses. 
These analyses were used to compare colistin 
with ceftazidime‐avibactam in the treatment of 
infections due to carbapenem‐resistant entero
bacteriaceae [117].

The bond between B–R assessment and pre
cision medicine will also continue to grow (see 
Chapter  30) and better connect with shared 
decision making. After all, the goal in practice is 
not to identify who will benefit or who will be 
harmed but who has a positive B–R profile. 
Benefit–risk assessment should include sensi
tivity analyses to investigate and illustrate how 
the B–R profile varies across patient subgroups 
defined by demographics, genetics or baseline 

disease status, and a variant of DOOR called 
DOOR subgroup treatment effect pattern plot 
(DOOR STEPP) displays the distribution of 
DOOR as a function of baseline patient charac
teristics [118].

Incorporation of patient preferences and 
 values will be necessary for increasingly quanti
tative and systematic evaluation. Preference 
studies tied to specific trials and disease areas 
will become more prevalent. Sensitivity  analyses 
to patient preferences should become far more 
common, assessing the robustness of the results 
for regulatory assessment and to allow for 
 personalized assessment and decision making 
in practice.

As the science and practice improve, B–R 
assessment may begin transitioning from a 
post hoc exploratory nonsystematic evaluation 
to one that is prespecified, systematic, and a 
primary focus. For example, some studies have 
incorporated prespecified systematic formal 
B–R outcomes and analyses into clinical trial 
protocols. This can be challenging in trials 
developing novel treatments due to the poten
tial emergence of previously unknown adverse 
events. However, this has been addressed in 
some instances by focusing on how patients 
feel, function, and survive in a general sense 
rather than a focused evaluation of specific 
adverse events. Patient preference substudies 
and the collection of quality‐of‐life informa
tion will be included more frequently in clini
cal trials rather than being separate and 
distinct evaluations. When formal B–R 
hypotheses cannot be prespecified, the 
planned methodology for assessing B–R can 
be prespecified, such as the use of risk differ
ences rather than hazard ratios, the use of out
comes that avoid double‐counting, and the use 
of an NCB or DOOR approach once the key 
benefits and harms are known after unblind
ing study results.

Benefit–risk assessment is also critical for the 
evaluation and comparison of diagnostic tests. 
Different diagnostic errors carry different 

Table 35.3 Example desirability of outcome rankings 
(DOORs) for an anticoagulant study.

Rank Outcome

1 Survived with no events
2 Survived with one nondisabling stroke, 

myocardial infarction (MI) or bleed
3 Survived with more than one 

nondisabling stroke, MI or bleed
4 Survived with disabling stroke
5 Death
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 clinical consequences which should be care
fully evaluated and incorporated into B–R 
 evaluation of diagnostic application. To address 
this, Benefit‐Risk Evaluation of Diagnostics: A 
Framework (BED‐FRAME) was proposed as a 
strategy for pragmatic B–R evaluation of diag
nostics using weighted accuracy and plots of 
diagnostic yield [82,119]. The average weighted 
accuracy (AWA), a composite B–R summary 
measure, is being used as the primary measure 
in a clinical performance study evaluating the 
utility of a host response‐based diagnostic test 
categorizing acute respiratory tract illness into 
bacterial, viral, or neither etiology [120].

 Conclusion

Assessing the B–R balance of medical treat
ments has always been an integral part of drug 
development, regulatory, and public health deci
sions. Methodology for B–R has advanced con
siderably, and health authorities worldwide have 
developed much more rigorous B–R regulatory 
policies relating to regulatory approval and post
approval decisions. These advances have led to 
transparent and rigorous systematic approaches 
to B–R which incorporate the patient perspec
tive and can be communicated clearly and suc
cinctly to clinical and patient audiences.
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 Definitions and Rationale

Metaanalysis has been defined as “the statistical 
analysis of a collection of analytic results for the 
purpose of integrating the findings” [1]. Other 
definitions have included qualitative, as well as 
quantitative, analyses [2]. Metaanalysis is used to 
identify sources of variation among study findings 
and, when appropriate, to provide an overall meas-
ure of effect as a summary of those findings [3]. 
A  systematic review has been defined by the 
Cochrane Group (https://consumers.cochrane.
org/what‐systematic‐review) as a review that 
“summarizes the results of available carefully 
designed healthcare studies (controlled trials) and 
provides a high level of evidence on the effective-
ness of healthcare interventions.” This definition 
illustrates two features related to the Cochrane 
Collaboration; firstly, their emphasis on rand-
omized trials and secondly, their emphasis on 
effectiveness. All good science seeks to take into 
account all the evidence related to a question of 
interest, and pharmacoepidemiology seeks to be a 
good science. There are two main processes 
involved in taking into account all evidence: iden-
tifying all the evidence, and providing a useful 

summary. This chapter concentrates on summa-
rizing the evidence using statistical methods but 
the need to search the literature is usually also 
important. The term “metaanalysis” may be used 
synonymously with “systematic review” but here 
we employ the definition used in the report of the 
Council for International Organizations of 
Medical Sciences (CIOMS) Working Group X [4]:

The statistical combination of quantitative 
evidence from two or more studies to address 
common research questions, where the 
 analytical methods appropriately take into 
account that the data are derived from 
multiple individual studies.

Metaanalysis in medicine has been developed 
mainly for combination of data from randomized 
trials, but this chapter also includes evidence 
from observational studies. Metaanalyses them-
selves could be regarded as observational studies 
and should perhaps be simply seen as a tech-
nique for combining evidence rather than as 
possessing particular merit as studies in them-
selves. The Journal of the American Medical 
Association, in a statement by the Editors, goes 
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even further: “JAMA considers meta‐analysis to 
represent an observational design, such that out-
comes, inferences, and interpretations should be 
described as associations rather than reported 
using causal terms such as ‘size of effect’ …” [5].

While epidemiologists have been cautious 
about adopting metaanalysis, because of the 
inherent biases in the component studies and 
the great diversity in study designs and popu-
lations [6–8], the need to make the most effi-
cient and intelligent use of existing data prior 
to (or instead of ) embarking on a large, pri-
mary data collection effort has dictated a pro-
gressively more accepting approach [8–13]. 
Metaanalysis of randomized clinical trials has 
found such wide acceptance that the Cochrane 
Collaboration has been built around the per-
formance and updating of systematic reviews 
and metaanalyses of trials [14]. Cochrane 
reviews are maintained in a publicly available 
electronic library. More information is availa-
ble on the Cochrane website (www.cochrane.
org). A similar structure has developed in the 
social sciences, in the form of the Campbell 
Collaboration [15].

As the Cochrane Collaboration has increasingly 
looked at harms as well as benefits of health inter-
ventions, it has been realized that observational 
studies may make an important contribution, and 
that overall they are not as biased as some think 
[16]. The Cochrane Adverse Effects Method 
Group (AEMG) is focused on systematic reviews 
related to adverse effects (https://methods.
cochrane.org/adverseeffects/about‐caemg) [17] 
and this group notes that observational data are 
needed in some circumstances. The current ver-
sion of the Cochrane Handbook [18] has chapters 
on “Including nonrandomized studies” and 
“Adverse effects.” In the introduction on nonrand-
omized studies, they are now quite explicit:

For some Cochrane reviews, the question of 
interest cannot be answered by randomized 
trials, and review authors may be justified in 
including non‐randomized studies.

Several activities may be included under the 
above definition of metaanalysis. Perhaps the 
most popular conception of metaanalysis, for 
most clinically oriented researchers, is the sum-
mary of a group of randomized clinical trials 
dealing with a particular therapy for a particular 
disease. An example of this approach would 
be  a  metaanalysis that examined the effects of 
antiplatelet therapy in high‐risk patients [19]. 
Typically, this type of metaanalysis would present 
an overall measure of the efficacy of treatment, 
such as a summary odds ratio. Summary meas-
ures may be presented for different subsets of 
trials involving specific types of patients, such as 
studies restricted to those with a previous myo-
cardial infarction. More sophisticated metaanal-
yses also examine the variability of results among 
trials and, when results have been conflicting, 
attempt to uncover the sources of the disagree-
ments [20].

In many instances, major collaborations have 
been set up to reanalyze the data at an individ-
ual level rather than just relying on published 
summary data. This “individual‐patient‐data” 
(IPD) approach is useful with both randomized 
and nonrandomized studies.

Metaanalyses of nonexperimental epidemio-
logic studies have also been performed [21–24], 
and articles have been written describing the 
methodologic considerations specific to those 
metaanalyses [25–31]. In general, both the 
metaanalyses of nonexperimental studies and 
the associated methodologic articles tend to 
focus more on the exploration of reasons for 
disagreement among the results of prior studies, 
including the possibility of bias. Given the 
greater diversity of designs and heterogeneity of 
patients included in nonexperimental studies, it 
is logical to find more disagreement among 
nonexperimental studies than among rand-
omized trials.

Metaanalysis of randomized trials frequently 
has increased precision as the main motivation, 
especially in the context of safety of medicines 
where outcomes are rare. The sample sizes in 
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the original trials are often far too small to 
 provide convincing evidence of the presence or 
absence of harms. This is not the same motiva-
tion in observational studies in general. They 
will have been undertaken with, usually, 
 dramatically larger sample sizes so the issue of 
precision of estimation is often not at the fore-
front. The consequence is that the problems of 
uncontrolled bias can have a very much larger 
impact than the size of effect being studied. 
Sampling variation, in contrast to randomized 
trials, is not the main problem. Consequently, 
the danger is that such studies will have minimal 
sampling uncertainty but unknown bias.

This chapter summarizes many of the major 
conceptual and methodologic issues surround-
ing metaanalysis, especially for observational 
studies, and offers the views of the authors 
about possible avenues for future research in 
this field.

 Clinical Problems to be Addressed 
by Pharmacoepidemiologic 
Research

There are a number of reasons why a pharma-
coepidemiologist might be interested in con-
ducting a metaanalysis. If randomized data are 
available, although each study allows for com-
parisons relatively free from the confounding 
and bias of nonexperimental studies, individ-
ual studies will often have insufficient power to 
detect as significant uncommon adverse out-
comes of therapies that nevertheless can make 
a notable alteration in the risk/benefit balance. 
In addition, the exploration of reasons for 
inconsistencies of results across previous stud-
ies, the exploration of subgroups of patients in 
whom therapy may be more or less effective, 
and understanding whether risk factors affect 
the magnitude of treatment differences are all 
valid topics for study. The combination of 
studies involved in the approval process for 

new therapies or in the investigation of new 
indications for existing therapies, particularly 
when the outcomes being studied are uncom-
mon, is another area where metaanalysis can 
be useful.

With the investigation of adverse events 
using nonexperimental studies, a major chal-
lenge involves obtaining information on these 
events that is unconfounded by indication (see 
Chapter 37). These adverse events often occur 
only rarely and will not have standardized 
assessment or validation, which makes their 
evaluation still more difficult. The results of 
nonexperimental studies of whether such events 
are associated with a particular drug may be 
conflicting, leaving a confusing picture for prac-
ticing clinicians and policy makers to interpret. 
Metaanalysis, by combining results from many 
randomized studies, may be better than relying 
on nonexperimental studies with their potential 
confounding and bias. When reports of several 
investigations of a specific suspected adverse 
drug reaction disagree, whether randomized or 
nonexperimental in design, metaanalysis can 
also be used to help explain these disagree-
ments. These disagreements among studies 
may arise from differences in the choice of end-
points, the exact definition of exposure, the eli-
gibility criteria for study subjects, the methods 
of obtaining information, differences in proto-
cols, different methods to analyze the results or 
a host of other reasons possibly related to the 
susceptibility of the constituent studies to bias.

While it is not possible to produce a definitive 
answer to every research question, the explora-
tion of the reasons for heterogeneity among 
study results may at least provide valuable guid-
ance concerning the design of future studies. 
For example, separating those studies that had 
the possibility of recall bias in relation to drug 
exposure from those that did not, when examin-
ing associations of antihypertensive drugs used 
in mothers and congenital anomalies in their 
offspring [32], showed that cardiovascular 
anomalies were associated with drugs in studies 
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possibly subject to recall bias but not in those 
studies with ascertainment of exposure prior to 
birth.

Historically in drug development, it has been 
common practice to look at safety data from 
individual trials in isolation as they are com-
pleted. Subsequently, just prior to submission of 
a new product application, data from multiple 
studies are summarized in an “Integrated 
Summary of Safety” or “Summary of Clinical 
Safety” report. A possible consequence of these 
practices is that the opportunity to respond ear-
lier to the evolving safety and tolerability profile 
(by collecting additional data or adjusting the 
sample size of pivotal studies, for example) may 
be missed. The result might be a gap (that might 
have been avoided) in the knowledge of the 
safety profile at the time of submission, and this 
may generate further questions by regulatory 
agencies or prompt the need for additional 
postmarketing commitments. In addition, the 
practice of simply using “crude pooling” can be 
misleading. This is the simple adding up across 
all studies of the numbers of patients with an 
event in the treatment group and the total num-
ber of patients receiving that treatment, and 
doing the same for the control group to produce 
a single 2 × 2 table which is then analyzed ignor-
ing the fact that the data came from different 
trials (studies). This is often biased, unless the 
ratio of patients receiving the new drug to that 
receiving the comparator is approximately the 
same across all studies included in the inte-
grated analysis, or the incidence of the event is 
nearly the same across all studies in the com-
parator group [33].

In cases where the individual studies require 
methods that take time into account (such as 
studies where the follow‐up/exposure time 
among the treatment groups is substantially dif-
ferent), methods that take time into account are 
necessary. There may also be differences in 
length of follow‐up across studies (independent 
of any differences in follow‐up within studies). 
For a more in‐depth discussion of issues related 

to follow‐up time, we recommend Section 3.4 in 
the CIOMS X report [4].

Industry and regulatory agencies are placing 
increasing emphasis on identifying safety signals 
for new compounds early in the drug develop-
ment process. As a response, the Safety Planning, 
Evaluation and Reporting Team (SPERT) was 
formed in 2006 by the Pharmaceutical Research 
and Manufacturers of America (PhRMA). The 
goal of SPERT was to propose a standard across 
the pharmaceutical industry for safety planning, 
data collection, evaluation, and reporting, begin-
ning with planning first‐in‐human studies and 
continuing through the planning of postapproval 
activities [34].

Among the key recommendations from 
SPERT was that sponsors plan a series of 
repeated, cumulative metaanalyses of the safety 
data obtained from the studies conducted 
within the development program. Leading up to 
these metaanalyses, sponsors need to develop 
clear definitions of adverse events of special 
interest and standardize various aspects of data 
collection and study design, to facilitate com-
bining studies and the interpretation of the 
combined analyses. These ideas were extended 
in the CIOMS X Working Group report. It is 
important to ensure that true adverse reactions 
to medicines and vaccines are known about so 
that clinicians and patients can be aware and 
take appropriate action, but it is equally impor-
tant to show that the magnitude of any risks in 
absolute terms is such that the benefit/risk bal-
ance for a medicine in a particular situation 
remains positive. It is never possible to show 
with absolute certainty the absence of a possible 
harm since the confidence interval will always 
include such a possibility unless (assuming a 
well‐designed study) the confidence interval 
excludes zero risk (in the direction of a benefit), 
in which case the adverse effect is prevented 
and is no longer a harm for that medicine.

By following a proactive approach during 
development, including periodic updating of 
cumulative metaanalyses, potential harms may 
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be identified earlier in the development process. 
This may increase the chances that the Phase III 
program will be able to provide a satisfactory 
understanding of the safety profile. Risk man-
agement plans will take into account the knowl-
edge about the drug at the time of licensing (see 
Chapter  24) [35]. Furthermore, the needs for 
postmarketing commitments can be better 
defined.

The exploration of subgroups of patients in 
whom therapy may be more or less effective is a 
controversial question in individual randomized 
trials. Most trials are not designed with sample 
sizes adequate to address efficacy in subgroups. 
The finding of statistically significant differ-
ences between the effects of therapy in different 
subgroups, particularly when those groups were 
not defined a priori, raises the question of 
whether those are spurious findings. Conversely, 
the lack of statistical significance for clinically 
important differences between prospectively 
defined subgroups can often be attributed to a 
lack of statistical power. Such clinically mean-
ingful but statistically nonsignificant findings 
are difficult to interpret. Metaanalysis can be 
used to explore these questions with improved 
statistical power. A prespecified protocol is 
important, especially in this context, since the 
potential for adjusting methods to find or not 
find effects can be dependent on the interests of 
those doing the metaanalysis.

The use of metaanalysis in the approval pro-
cess for new drugs or devices represents 
another potential application, although experi-
ence in this area is as yet rather limited. 
However, many of the methodologic issues 
arising in the context of new drug approval also 
arise in the investigation of new indications for 
pharmaceutical products that have previously 
been approved for other purposes. For some 
therapies, such as streptokinase in the treat-
ment of myocardial infarction, metaanalysis 
could have been used to summarize evidence 
prior to embarking on a very large‐scale, multi-
center, randomized trial [36].

Evidence‐based medicine requires the use of 
the best evidence available in making decisions 
about the care of patients. Traditional metaanal-
yses, which have been one of the cornerstones 
of evidence‐based medicine, often focus on pla-
cebo‐controlled trials because head‐to‐head 
comparisons of medications are generally una-
vailable. But what healthcare providers, patients, 
and policy makers need to make better informed 
decisions is an analysis that provides compre-
hensive look at all available evidence  –  how a 
specific pharmacologic treatment compares 
with other available pharmacologic treatments 
in terms of safety and efficacy for the specific 
condition (see Chapter 32).

Extended metaanalytic techniques such as 
indirect comparisons [37] and multiple treat-
ment metaanalyses can combine all available 
evidence in a single analysis [38]. These tech-
niques provide estimates of the effect of each 
intervention relative to every other, whether or 
not they have been directly compared in trials, 
allowing ranking of treatments in terms of effi-
cacy and safety, and can potentially strengthen 
the inference regarding a treatment because 
the results are based on more data. The main 
drawback of these analyses is that the validity 
of the findings depends on whether homoge-
neity and consistency assumptions, which we 
describe later, are met [39]. There has been a 
growth in “network metaanalysis” (NMA, also 
known as mixed treatment comparisons), 
which is another phrase to describe combining 
studies of multiple treatments allowing for 
direct and indirect comparisons and assessing 
their consistency. A helpful website is www.
bristol.ac.uk/population‐health‐sciences/
centres/cresyda/mpes/mtc/. There is more dis-
cussion of this in the section “Indirect com-
parison and simultaneous comparison of 
treatments” later. This technique can address 
the clinical problem when it is desired to make 
comparisons between active treatments but 
there are no or very few trials that make the 
direct comparisons.
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 Methodologic Problems to 
be Solved by 
Pharmacoepidemiologic 
Research

As the skeptical reader might imagine, many 
methodologic issues can arise in the context of 
performing a metaanalysis. Many, but not all, of 
these problems relate to the process of combin-
ing studies that are often diverse with respect to 
specific aspects of design or protocol, some of 
which may be of questionable quality.

Susceptibility of the Original Studies 
to Bias

Early work in metaanalysis used the term 
“study quality.” More recent efforts (e.g., 
PRISMA [40]) have adopted language that 
refers to susceptibility to bias or likelihood of 
bias. We adopt that new terminology in the 
remainder of this chapter. The Cochrane 
Collaboration developed a “risk of bias tool” 
which is now used extensively (at least with 
many thousands of citations in the literature) 
in assessing the randomized trials to be 
included in a metaanalysis [41]. This paper 
describes some evaluation, and there is a 
chapter in the Cochrane Handbook that gives 
many more details [18].

The tool in use has been developed further 
and there are training materials available freely 
on the internet for their use (https://training.
cochrane.org/resource/rob‐20‐webinar). A fur-
ther development is the ROBIS tool which, 
rather than assessing the individual trials, 
assesses the risk of bias in a systematic review or 
metaanalysis itself [42]. The group that devel-
oped ROBIS has also developed a similar 
approach to risk of bias in observational studies, 
ROBINS‐I (Risk Of Bias In Nonrandomized 
Studies  –  of Interventions) [43] but this has 
been less heavily cited and newer versions are 
under development.

As might be expected, the Cochrane groups 
are not the only ones which have developed 
such tools, but they have published a systematic 
review of such tools [44]. They conclude:

There are several limitations of existing tools 
for assessing risk of reporting biases, in terms 
of their scope, guidance for reaching risk of 
bias judgments and measurement proper-
ties. Development and evaluation of a new, 
comprehensive tool could help overcome 
present limitations.

It is unrealistic to expect complete agreement 
on a single method of assessing bias but it is 
clearly an active area, and there is an obvious 
need for those doing metaanalysis in pharma-
coepidemiology to be aware and to ensure that 
at least some attempts are made to assess bias in 
more than a trivial way.

Metaanalysis seems particularly prone to the 
“garbage in  =  garbage out” phenomenon. 
Combining a group of poorly done studies can 
produce a precise summary result built on a 
very weak foundation. This apparent precision 
may lend undue credibility to a result that truly 
should not be used as a basis for formulating 
clinical or policy strategies [7]. However, if the 
judgment about susceptibility to bias in an indi-
vidual study is subtly influenced by the direc-
tion or magnitude of the findings of the study, 
excluding studies based on such a subjective 
judgment about their quality could open the 
metaanalytic process to a different, and poten-
tially serious, form of bias.

Combinability of Studies

Different studies will look at different outcomes, 
with different treatments in different patients. 
Some studies will look at multiple outcomes, 
treatments or groups of patients. Clearly, no one 
would suggest combining studies that are so 
diverse in either outcomes or treatments that a 
summary would be nonsensical. For example, 
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one would not combine studies of hormone 
replacement therapy in relation to risk of breast 
cancer with studies of hormone replacement 
therapy in relation to risk of coronary heart dis-
ease. The outcomes are not expected to show 
the same effect. Beyond obvious examples like 
this, however, the choices may not be so clear. 
Should studies with different patient popula-
tions be combined? How different can those 
populations be before it becomes unacceptable 
to combine the studies? Should different hor-
mone preparations be considered as being 
equivalent (those with estrogen only, those with 
estradiol, etc.)? It will require judgment; for 
some purposes it may be relevant to look at all 
hormone preparations as a single group, but for 
other purposes it will be important to distin-
guish products, or even different doses and 
durations of treatment for a single product. In 
pharmacoepidemiology, risks of adverse effects 
will vary notably with duration of treatment and 
length of follow‐up. Careful consideration needs 
to be applied before combining studies with 
diverse outcome definitions and methodology. 
At the very least, some exploration of the 
sources of variation of effect should be done.

As an example where combining studies may 
be appropriate, a recent metaanalysis, Sabatine 
et al. [45], combines across all statins but looks 
at a very restricted population of patients with 
low LDL levels at baseline. In this context, it 
may be reasonable to combine different statins 
used under different conditions in order to see if 
effects are present in a group with already low 
LDL levels.

Should nonrandomized studies be combined 
with randomized studies? Should nonrand-
omized studies ever be used in a metaanalysis? 
Should studies with active drugs as compara-
tors be combined with studies with placebos as 
comparators? These are questions that cannot 
be answered without generating some contro-
versy. The CIOMS Working Group X con-
cluded in regard to the first question: “A clear 
consequence of this is that the treatment of 

randomized and non‐randomized evidence as 
equivalent (exchangeable) in a single analysis is 
a mistake; combination of data must distin-
guish between them” [4]. However, they go on 
to note: “Some efforts have been made, particu-
larly in a Bayesian paradigm, to combine evi-
dence from both sources in a single analysis, 
but the methods for doing this are not yet 
widely agreed.” There would be little argument 
that they are not equivalent and reporting the 
results separately should be done, even if com-
bined at some point.

Publication Bias

Unpublished material cannot be retrieved by lit-
erature searches and is likely to be difficult to 
find referenced in published articles. Publication 
bias occurs when study results are not pub-
lished, or their publication is delayed, because 
of the results [46–56]. The usual pattern is that 
statistically significant results are more likely 
to  be published than nonsignificant results, 
although this bias may not be as severe for ran-
domized studies as it is for nonrandomized 
studies [48,57,58]. With the introduction of reg-
istration of randomized trials, publication bias 
in randomized studies should become less of a 
problem. As noted by the Office for Human 
Research Protections in the US Department of 
Health & Human Services, the International 
Committee of Medical Journal Editors 
announced a policy in 2004 that as a condition 
of publication, clinical trials would be required 
to be listed in a public registry [59]. Subsequently, 
regulatory authorities around the world began 
to require the posting of clinical trial informa-
tion and, in some cases, the submission of sum-
mary results to a publicly accessible registry. 
Likewise, some research funding agencies are 
now encouraging or requiring the registration 
and results reporting of the clinical trials they 
fund. They go on to list three separate interna-
tional registries as well as the best‐known 
Clinicaltrials.gov from the US, a Canadian one, 
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five in Europe, and 16 from elsewhere in the world 
(www.hhs.gov/ohrp/international/clinical‐trial‐
registries/index.html). Some of these registers also 
contain observational study protocols and 
results; notable is the register of Post‐authorization 
Studies (PAS) maintained at the European 
Medicines Agency by the European Network 
of Centres for Pharmacoepidemiology and 
Pharmacovigilance (ENCePP®) (www.encepp.eu/
encepp/studiesDatabase.jsp).

While one could simply decide not to 
include unpublished studies in a metaanalysis, 
since those data have often not been peer 
reviewed [60], unpublished data can represent 
a large proportion of all available data  [61]. 
Published results are a biased sample  –  as 
noted in the Cochrane Handbook (Section 10.1 
Introduction) [18]:

Statistically significant, “positive” results that 
indicate that an intervention works are more 
likely to be published, more likely to be pub-
lished rapidly, more likely to be published in 
English, more likely to be published more 
than once, more likely to be published in 
high impact journals and, related to the last 
point, more likely to be cited by others. The 
contribution made to the totality of the 
 evidence in systematic reviews by studies 
with non‐significant results is as important 
as that from studies with statistically signifi-
cant results.

If the results of unpublished studies are system-
atically different from those of published stud-
ies, particularly with respect to the magnitude 
and/or direction of the findings, their omission 
from a metaanalysis would yield a biased sum-
mary estimate (assuming that the quality of the 
unpublished studies is at least equal to the qual-
ity of the published studies). For example, 
Decullier et al. have shown that in France, the 
filtration process from protocol to publication 
leads to more positive results appearing in the 
literature [62]. Hopewell et al. reviewed several 

publications and demonstrated that positive 
results were more likely to be published [63].

Publication bias is a potentially serious limita-
tion to any metaanalysis. For example, Sutton 
and colleagues found that in four of 48 metaanal-
yses they examined, there was evidence that 
the  statistical inferences would have changed 
after the overall effect estimate was adjusted 
for  publication bias [64]. The retrospective 
 identification of completed unpublished trials is 
clearly possible [61] in some instances, but gen-
erally is not practical. One study used a survey 
of investigators to attempt to identify unpub-
lished  studies [65]. The authors surveyed 42 000 
obstetricians and pediatricians, asking whether 
they had participated in any unpublished trials 
completed more than two years previously, that 
is, during the period prior to the end of 1984. 
They identified only 18 such studies, despite an 
overall response rate of 94% to their survey.

Other forms of bias, related to publication 
bias, have also been identified [49]. These 
include reference bias, – preferential citation of 
significant findings [66]; language bias – exclu-
sion of studies in languages other than English 
[67,68]; and bias related to source of funding 
[69–71]. These related biases have been termed 
“dissemination bias” by Sutton and colleagues, 
who found that the threat of such biases is more 
severe in nonrandomized studies of an inter-
vention [64].

There is room to decrease publication bias 
even further: calls to simplify access to the US 
Food and Drug Administration (FDA) and other 
regulatory agency reviews, and to create links 
from such reviews to literature search engines 
such as MEDLINE, have been made [72]. Ladanie 
and colleagues have made practical suggestions 
regarding how to find FDA reviews [73].

Unfortunately, there is no guarantee that 
either the published trial or a published 
metaanalysis will follow the protocol. It seems 
that bias towards finding “interesting” results is 
pervasive. Hutton and Williamson showed that 
bias within a study in choosing outcomes to be 



Methodologic Proolems to oe Solved oy Pharmacoepidemiologic  esearch  905

reported, when many have been studied, could 
affect the reported results and hence affect a 
metaanalysis [74]. Marzouki and colleagues, 
using the registered trial protocols at The 
Lancet, showed that in 11 out of 37 trials, there 
were major discrepancies in the primary 
 outcome between those protocols and the sub-
sequent publication [75]. Dwan et  al. have 
reviewed the problem in a general way and find 
real causes for concern [76]. It is one thing to 
have the trial data biased, but then the system-
atic reviewers may add to the problem. Kirkham 
et al. studied protocols and subsequent publica-
tions from the Cochrane Library, which is 
thought by some to apply the highest standards 
of reviews, and reported “Over a fifth (64/288, 
22%) of protocol/review pairings were found to 
contain a discrepancy in at least one outcome 
measure, of which 48 (75%) were attributable to 
changes in the primary outcome measure” [77]. 
Saini et  al., from the same group, using the 
same data source, also found that harms were 
particularly unreliably reported in Cochrane 
reviews [78].

Rising et al. [79] suggested that the published 
literature gave a more favorable impression than 
the FDA reviews had found, while in the nar-
rower area of biologics, Amarilyo and Furst 
found discrepancies between FDA reviews and 
publications but there was no consistent differ-
ence in the direction [80]. It is clear that the 
published literature may not be as reliable as it 
should be and that regulatory review may be 
more reliable, and at the very least should also 
be searched for in any metaanalysis based on 
published data.

Bias in the Abstraction of Data

Metaanalysis, by virtue of being conducted after 
the data are available, is a form of retrospective 
research and is thus subject to the potential 
biases inherent in such research [81]. In a 
metaanalysis of gastrointestinal side effects of 
NSAIDs, Chalmers and colleagues examined 

over 500 randomized studies [82]. They meas-
ured the agreement of different reviewers when 
reading the “methods” sections of papers that 
had been masked as to their source and the 
results. There were disagreements on 10–20% 
of items, which had to be resolved in conference 
with a third person. These disagreements arose 
from errors on the part of the reader and from 
lack of clarity of the presentation of material in 
the original articles. Whatever its source, when 
such variability exists, the opportunity for 
observer bias may exist as well [81].

In a number of instances, more than one 
metaanalysis has been performed in the same 
general area of disease and treatment. A review 
of 20 of these instances showed that, for almost 
all disease/treatment areas, there were differ-
ences between two metaanalyses, of the same 
topic, in the acceptance and rejection of papers 
to be included [60]. While there was only one 
case (out of the 20) of extreme disagreement 
regarding efficacy, there were several cases in 
which one or more analyses showed a statisti-
cally significant result while the other(s) did not. 
These disagreements were not easily explaina-
ble. For example, differences between metaanal-
yses of the same topic in the acceptance and 
rejection of papers did not always lead to differ-
ences in conclusions.

More generally, the acceptance or rejection of 
different sets of studies can drastically change 
conclusions. Despite efforts to make metaanaly-
sis an objective, reproducible activity, there is 
evidently some judgment involved.

In a separate commentary, DerSimonian 
reanalyzed data from one metaanalysis and 
one clinical review of parenteral nutrition with 
branched chain amino acids in hepatic enceph-
alopathy [83]. She pointed to differences in the 
data extracted by the two sets of authors 
[84,85] for the same endpoints from the same 
original papers. When combined statistically, 
the data extracted by the two sets of authors 
led to substantively different conclusions about 
the efficacy of therapy.
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In some instances, attempts are made to 
extract numerical data from figures and soft-
ware exists to do this. There are suggestions that 
extracting data from figures with software was 
faster, with higher interrater reliability than 
manual extraction [86]. However, neither 
method will work for the type of large studies 
encountered in pharmacoepidemiology, and 
clearly it is better to obtain raw data from 
authors or repositories if possible.

There is the possibility of reducing reliance on 
abstraction of data by using the original data 
from trials or observational studies. As noted 
above, PRISMA has a guidance on utilizing IPD 
[87] and there have been a large number of 
metaanalyses both of randomized and nonrand-
omized IPD in the past. (e.g., on trials in breast 
cancer [88] and on hormonal factors in breast 
cancer [89]).

Metaanalyses based on IPD have several 
advantages (see, for example, Section 3.9 of the 
CIOMS report on metaanalysis [4] and Berlin 
et al. [90]). There are strong moves to make at 
least individual patient randomized trial data 
available, such as The Yale University Open 
Data Access (YODA) Project (http://yoda.yale.
edu/welcome‐yoda‐project). “Alltrials” is an 
international initiative of multiple stakeholders 
including journals, academics, and foundations 
(www.alltrials.net/). European regulators have 
promised to make data more available (www.
ema.europa .eu/docs/en_GB/document_
library/Other/2013/06/WC500144730.pdf) but 
there are privacy barriers in some instances, and 
there is controversy over whether reanalysis of 
published data needs to have some constraints 
[91] or not [92].

Most of the interest in this area is around ran-
domized trials, but there are also issues around 
the availability of observational data. Platt and 
Lieu have noted that there are challenges to 
overcome in spite of enthusiasm of the research 
community for wider availability of patient 
data  [93]. They identify three reasons for the 
challenges: (1) confidentiality and proprietary 

concerns, (2) the cost and work required to 
make raw data usable for analyses, and (3) the 
need to create incentives for data holders that 
outweigh the disadvantages. Concerns over 
 privacy led to the collapse of a major initiative in 
the UK to share patient data, known as “care.
data” [94].

While these challenges relate to overall 
availability, there are similar problems in mak-
ing individual records from observational 
studies available routinely. The major collabo-
rations that have used individual data have 
had to ensure that the data are only available 
to named team members under strict control 
for confidentiality.

 Currently Available Solutions

This section will first present the general 
principles of metaanalysis and a framework 
for the methods typically employed in a 
metaanalysis. Since much of the general 
framework for conducting systematic reviews 
and explanation of the methods typically 
employed in a metaanalysis have been pre-
sented in review articles in major clinical 
journals [10,11,95], freely accessible guide-
lines, and handbooks, only the most impor-
tant points will be highlighted here. In this 
chapter, we will provide succinct descriptions 
of the most recent guidelines and references.

The PRISMA statement (Preferred Reporting 
Items for Systematic reviews and Meta‐Analyses) 
was developed to increase the clarity and trans-
parency of published systematic reviews and 
metaanalyses. It consists of a 27‐item checklist 
and a flow diagram. It describes the rationale for 
including each of the items with supporting ref-
erences and provides examples of good report-
ing, and there is a short paper published 
simultaneously in six journals, e.g., Moher et al. 
[96], as well as a fuller “Explanation and 
Elaboration” paper published in three journals 
[40]. The flow diagram describes the number of 
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studies at each phase of the metaanalysis, 
 starting with the number of studies identified in 
database searching, moving to the number of 
studies screened, those determined to be poten-
tially eligible, and finally the number of studies 
included. A similar guideline for reporting 
metaanalysis of observational studies is available 
as well [25].

A very large range of guidelines has been brought 
together under the “EQUATOR” (Enhancing the 
QUAlity and Transparency Of health Research) 
umbrella (www.equator‐network.org/), including 
ones for trials (CONSORT) as well as systematic 
reviews (PRISMA), together with many extensions 
for specific topics such as harms. The PRISMA on 
harms is particularly relevant in pharmacoepide-
miology and is, like most of the EQUATOR guide-
lines, continually under review [97]. There are two 
further guidelines of special interest to pharma-
coepidemiology on network metaanalysis [98] and 
individual patient data [87]. An example evaluation 
of the use of the PRISMA guideline has been con-
ducted in the field of gastroenterology and hepatol-
ogy; Panic et al. claim that “The endorsement of 
PRISMA resulted in increase of both quality of 
reporting and methodological quality” [99]. 
However, Page and Moher, who examined all the 
published evaluations of the use of PRISMA in sys-
tematic reviews (SRs) they could find, concluded 
“Many studies have evaluated how well SRs adhere 
to the PRISMA Statement, and the pooled result of 
these suggest that reporting of many items is sub-
optimal. An update of the PRISMA Statement, 
along with a toolkit of strategies to help journals 
endorse and implement the updated guideline, 
may improve the transparency of SRs” [100].

We have cited another very useful source of 
information on how to conduct systematic 
reviews and metaanalysis, namely the Cochrane 
Handbook for Systematic Reviews [101]. The 
Handbook is a publicly available, comprehen-
sive, and easy‐to‐read document that describes 
in detail the process of preparing a systematic 
review, combining data, and maintaining 
Cochrane systematic reviews.

In the second part of this section, specific 
solutions to the methodologic issues raised in 
the previous section are presented. Finally, case 
studies of applications that should be of interest 
to pharmacoepidemiologists will be presented, 
illustrating approaches to some of the clinical 
and methodologic problems raised earlier.

Steps Involved in Performing 
a Metaanalysis (Box 36.1)

The CIOMS X report suggests a metaanalysis 
protocol should include, but is not limited to, 
content implied by a series of topic headings [4]. 
That report elaborates on the content in the 
context of planning the metaanalysis. The 
reader is referred to the CIOMS publication for 
more detail. We focus here on a subset of that 
content.

Define the Purpose
While this is an obvious component of any 
research, it is particularly important to define 
precisely the primary and secondary objectives 
of a metaanalysis. A well‐formulated question 
should have a clearly defined patient problem, 
intervention, comparator, and outcome of inter-
est. This framework is called PICO which stands 
for patient, intervention, comparison, and out-
come [102]. Some authors have expanded PICO 
to PICOS or PICOTS, with “T” standing for 
timing and “S” representing either “study design” 
or “setting”.

Box 36.1 General steps involved 
in conducting a metaanalysis

1) Define purpose
2) Perform literature search
3) Establish inclusion/exclusion criteria
4) Collect the data
5) Perform statistical analysis
6) Formulate conclusions and recommendations
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An example of an important primary question 
could be: “What is the magnitude of the 
increased risk of gastrointestinal side effects 
with NSAIDs used for the treatment of pain, 
compared with placebo?” Another might be: 
“Are corticosteroids effective in the treatment of 
alcoholic hepatitis, compared with placebo?” 
Secondary objectives might include the identi-
fication of subgroups in which a treatment 
appears to be uniquely more or less effective. 
For NSAIDs, estimating the absolute risk differ-
ence (and, thus, the public health implications) 
as well as the relative risk (and, thus, the etio-
logic implications) might be a secondary objec-
tive. We present more on the question of 
absolute risks, relative risks, and odds ratios 
later. It is important to consider that questions 
defined too broadly could lead to the criticism 
of “mixing apples and oranges” and that ques-
tions focused too narrowly could lead to finding 
no, or limited, data, or the inability to generalize 
the study results.

Perform the Literature Search (Included 
in “Sources of data” in CIOMS X)
While computerized searches of the literature 
can facilitate the retrieval of all relevant pub-
lished studies, these searches are not always 
reliable. Several studies have examined prob-
lems with the use of electronic searches [103–
105]. Use of search terms that are too nonspecific 
can result in large numbers of mostly irrelevant 
citations that need to be reviewed to determine 
relevance. Use of too many restrictions can 
result in missing a substantial number of rele-
vant publications.

Search strategies to identify specifically reports 
of all definite or possible randomized or quasir-
andomized trials have been developed. One of 
these strategies is the Cochrane search strategy. 
Although this strategy is highly sensitive (it iden-
tifies 92% of trials), the specificity is very low 
(3.7%) (i.e., it identifies a lot of nonrelevant stud-
ies) [106]. Nonetheless, one term “random*[tw]” 
is able to retrieve all randomized controlled trials 

(RCTs) and improves the  specificity of the search 
strategy to 29% [106]. This ability to fine tune 
searches is the result of the National Library of 
Medicine making improvements to MEDLINE 
indexing and of initiatives, such as the CONSORT 
statement, to improve reporting of RCTs.

Another way to decrease the number of 
 nonrelevant citations is to modify the highly 
sensitive search strategy by excluding publica-
tion types that are almost certain not to provide 
primary data, such as commentaries, editorials, 
metaanalyses, reviews, or practice guidelines. It 
has been shown that this approach reduces 
by  20% the number of nonrelevant citations, 
without losing any of the relevant trials [107]. 
The Cochrane strategies have been evaluated 
carefully and should be consulted (a whole 
chapter of the Handbook is devoted to searching 
for randomized trials). There is also a section in 
the Handbook on searching for nonrandomized 
studies and in practice this is more difficult. It is 
also not clear that finding all published studies 
leads to an unbiased review, since observational 
studies are not necessarily registered, may not 
require ethical review, and hence may be com-
pletely untraceable. As stated in the Handbook, 
“Exhaustive searching, which is recommended 
for randomized trials, may not be justified 
when  reviewing NRS (nonrandomized studies). 
However, there is no research at present to guide 
authors about this important issue.” It seems 
likely that searching on methods will be much 
less fruitful than searching for particular adverse 
event terms, for example.

Other methods of searching, such as review of 
the reference sections of retrieved publications 
found to be relevant, and manual searches of 
relevant journals, are also recommended.

Establish Inclusion/Exclusion Criteria 
(Included in “Study selection” in CIOMS X)
A set of rules for including and excluding  studies 
should be defined during the planning stage of 
the metaanalysis and should be based on the 
specific hypotheses being tested in the analysis. 
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One might, for example, wish to limit consid-
eration to randomized studies with more than 
some minimum number of patients. In a 
metaanalysis of epidemiologic studies, one 
might wish to include studies of incident cases 
only, excluding studies of prevalent cases, 
assuming that the relationship between expo-
sure and outcome could be different in the two 
types of study. Practical considerations may, of 
course, force changes in the inclusion criteria. 
For example, one might find no randomized 
studies of a particular new indication for an 
existing therapeutic agent, thus forcing consid-
eration of nonrandomized studies.

In establishing inclusion/exclusion criteria, 
one is also necessarily defining the question 
being addressed by the metaanalysis. If broad 
inclusion criteria are established, then a broad, 
and perhaps more generalizable, hypothesis 
may be tested. The use of broad entry criteria 
also permits examination of the effects of 
research design on outcome (e.g., do rand-
omized and nonrandomized studies tend to 
show different effects of therapy?) or the explo-
ration of subgroup effects. As an example, in a 
metaanalysis of aspirin administered following 
myocardial infarction, restriction of the 
metaanalysis to studies using more than a cer-
tain dose of aspirin would not permit an explor-
atory, cross‐study comparison of dose–response 
effects, which might prove illuminating.

A key point is that exclusion criteria should be 
based on a priori considerations of design of the 
original studies and completeness of the reports 
and, specifically, should not be based on the 
results of the studies. To exclude studies solely 
on the basis of results that contradict the major-
ity of the other studies will clearly introduce bias 
into the process [12]. While that may seem obvi-
ous, the temptation to try to justify such exclu-
sions on a post hoc basis may be strong, 
particularly when a clinically plausible basis for 
the exclusion can be found. Such exclusions 
made after having seen the data, and the effect 
of individual studies on the pooled result, may 

form the basis for legitimate sensitivity analyses 
(comparing pooled results with and without 
that particular study included), but should not 
be viewed as primary exclusion criteria.

The readers of systematic reviews and 
metaanalyses often cannot assess whether the 
exclusion criteria were defined after seeing 
study results; the registration of systematic 
reviews protocols will decrease this problem. 
For example, the Cochrane Collaboration pub-
lishes its approved protocols. Cochrane reviews 
must indicate reasons for deviations from the 
approved protocol. (Whether the initial ques-
tion defined in a metaanalysis is motivated, in 
part, by knowledge of the results of the compo-
nent studies is a more subtle, and perhaps more 
important, question.) The realization that 
reporting of both trials and systematic reviews 
is often altered by the authors even after a 
 protocol has been recorded shows that the 
potential for bias is considerable.

Prespecification of the protocol and adherence 
to it (or at least a clear justification for depar-
tures) provides some limited protection against 
bias. There are registries of protocols for obser-
vational studies and one that is specifically for 
systematic reviews is “PROSPERO” (International 
Prospective Register Of systematic reviews) 
(www.crd.york.ac.uk/prospero/). PROSPERO is 
an international database of prospectively regis-
tered systematic reviews in health and social 
care, welfare, public health, education, crime, 
justice, and international development, where 
there is a health‐related outcome. Key features 
from the review protocol are recorded and main-
tained as a permanent record. By August 2018, 
PROSPERO contained close to 40 000 recorded 
review protocols. There also is a registry of 
studies maintained by the European Medicines 
Agency, under the auspices of the European 
Network of Centres for Pharmacoepidemiology 
and Pharmacovigilance (ENCePP). There is a 
code of conduct set out by ENCePP, and studies 
following that code must be registered, but 
other studies may also register there. It is not 
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particularly intended for metaanalyses though 
there are a few included in the register.

Another important note is that studies may 
often generate more than one published paper. 
For example, later reports might update analy-
ses previously published, or might report on 
outcomes not addressed in earlier papers. It is 
essential, for two reasons, that only one report 
on the same patients be accepted into the 
metaanalysis. First, the validity of the statistical 
methods depends on the assumption that the 
different studies represent different groups of 
individuals. Second, the inclusion of a study 
more than once would assign undue weight to 
that study in the summary measure. A caution is 
that it is not always obvious that the same 
patients have been described in two different 
publications. Contacting the authors may be of 
some help in determining if there is duplication, 
although some authors may perceive the inquiry 
as questioning their academic integrity. It is also 
not always obvious what the right choice of 
report should be for a given study. Certain 
aspects of the methods may only be reported in 
earlier publications, which necessitates at least 
referring to those papers. Methods of analysis 
may change from paper to paper, or degree of 
control of confounding, or inclusion or exclu-
sion of certain subpopulations. Thus, there is no 
general rule we can recommend in such situa-
tions, other than trying to exercise good judg-
ment and reporting clearly the reasons for 
choosing one publication over others. The issue 
of multiple publications based on the same 
study has been addressed in more detail by 
Huston and Moher [108].

Collect the Data
When the relevant studies have been identified 
and retrieved, the important information regard-
ing study design and outcome needs to be 
extracted. Typically, data abstraction forms are 
developed, pilot tested on a few articles, and 
revised as needed. As in any research, it is neces-
sary to strike a balance between the completeness 

of the information abstracted and the amount of 
time needed to extract that information. Careful 
specification in the protocol for the metaanalysis 
of the design features and patient characteristics 
that will be of clinical or academic interest may 
help avoid over‐ or undercollecting information. 
For randomized trials, it is generally advisable, 
when possible, to collect raw data on outcome 
measures, such as numbers treated and number 
of events in each group, rather than derived meas-
ures such as odds ratios, which may not be the 
outcome measures of interest in the metaanalysis 
or may have been calculated incorrectly by the 
original authors. For observational studies, in 
contrast, it will most often be the estimates from 
each of the studies that are adjusted for confound-
ing that will be of interest. For these studies, 
the  derived measures will be more important 
to collect, along with information about what 
confounding factors were included in the 
adjustment.

Many articles on “how to do a metaanalysis” 
(e.g., Sacks et al. [10], L’Abbe et al. [11]), and the 
PRISMA guidelines) recommend that the 
metaanalyst assesses the quality of the studies 
being considered in a metaanalysis. Generally, 
“quality” is taken to mean freedom from bias, 
and that terminology has been adopted by 
PRISMA. Options that have been proposed for 
incorporating quality in metaanalyses include 
using a measure of study quality as part of the 
weight assigned to each study in the analysis, as 
an exclusion criterion (e.g., excluding studies 
with quality scores below some arbitrary thresh-
old), or as a stratification factor allowing the 
separate estimation of effects for good‐quality 
and poor‐quality studies [109,110]. Several 
examples of quality evaluation systems that 
have been proposed may be of interest [111,112]. 
Issues related to quality scoring have been dis-
cussed more generally by Moher and colleagues 
[113], and an annotated checklist of quality 
scoring systems is available [114].

The argument has been made, however, that 
general scoring systems are arbitrary in their 
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assignment of weights to particular aspects of 
study design, and that such systems risk losing 
information, and can even be misleading 
[115,116]. Jüni and colleagues, for example, 
examined studies comparing low molecular 
weight heparin with standard heparin with 
respect to prevention of postoperative throm-
bosis [116]. They used 25 different quality 
assessment scales to identify high‐quality trials. 
For six scales, the studies identified as being of 
high quality showed little to no benefit of low 
molecular weight heparin, while for seven 
scales, the “high‐quality” studies showed a sig-
nificant advantage of low molecular weight 
 heparin. This apparent contradiction raised 
questions about the validity of such scales as 
methods for stratifying studies. One reason why 
the contradiction arose, the authors argue, is 
that the quality scores tend to measure a combi-
nation of completeness of reporting and factors 
that might relate to the potential for bias. They 
recommended, instead, a focus on particular 
aspects of study design as potential predictors 
of study outcome, such as whether or not the 
assessment of outcome is blinded to treatment 
status.

Thus, in a given metaanalysis, one might wish 
to examine specific aspects of study design that 
are unique to that clinical or statistical situation 
[115–118]. For example, Schulz and colleagues 
found that trials in which the concealment of 
randomized allocation was inadequate, on aver-
age, produced larger estimates of treatment 
effects compared with trials in which allocation 
was adequately concealed [119]. This specific 
finding was not detected when the same authors 
looked for an overall association between 
 quality score and treatment effect. In the analy-
sis of low molecular weight heparin, Jüni and 
colleagues found that studies with unmasked 
outcome assessment showed larger, and pre-
sumably biased, benefits of low molecular 
weight heparin than studies using masked 
assessment of outcome [116]. Such explorations 
clearly need to be guided by common sense. As 

these authors point out, for studies with total 
mortality as an outcome, masking of outcome 
assessment would not be expected to impact 
directly on study findings.

Other authors have suggested essentially sim-
ilar approaches to that recommended by Jüni 
and colleagues. For example, Greenland and 
O’Rourke suggest the use of statistical models to 
investigate the association between specific 
design factors and study findings [120]. This 
approach, known as “response–surface estima-
tion,” can be used to derive the predicted out-
come for a study with specified (and presumably 
desirable) characteristics, while at the same 
time borrowing strength from all the available 
studies. Once again, caution is needed in per-
forming such analyses with respect to such 
issues as extrapolation beyond the range of the 
data. (What if there are no studies of sufficient 
quality on a given dimension included in the 
model? Is it valid to extrapolate to such studies 
based on trends observed for lower quality 
studies?)

The Cochrane Collaboration recommends, 
via use of the “risk of bias” tool cited above, that 
authors of systematic reviews assess six domains 
to determine whether bias in each of the studies 
included in the analysis is likely to affects their 
results and hence that of the metaanalysis [18]. 
These domains are: selection, performance, 
detection, attrition, reporting, and other biases. 
Aspects that affect the risk of bias then include 
the method used to generate the allocation 
sequence; whether allocation concealment was 
implemented; whether blinded assessment of 
outcomes was performed; the degree of com-
pleteness of outcome data; whether selective 
outcome reporting is likely; and “other” dimen-
sions when researchers identify problems that 
could put the study at a high risk of bias and are 
not part of the above framework.

Two procedural recommendations have been 
made regarding the actual techniques for data 
extraction. One is that studies should be read 
independently by two readers. The justification 



The Use of Metaanalysis in Pharmacoepidemiology912

for this comes from metaanalyses in which 
modest but important interreader variability 
has been demonstrated [81,82]. A second rec-
ommendation is that readers be masked to cer-
tain information in studies, such as the identity 
of the authors and the institutions at which a 
study was conducted, and masked to the spe-
cific treatment assignments or results (when 
assessing the methods) [60].

While masking has a high degree of intuitive 
appeal, the effectiveness of masking in avoiding 
bias has not been demonstrated. Only one rand-
omized trial examined the effect of masking on 
the results of metaanalyses [121]. This study 
compared the results of the same metaanalyses 
performed independently by separate teams of 
metaanalysts, with one team masked and the 
other unmasked. The masked and unmasked 
teams produced nearly identical results on a 
series of five metaanalyses, lending little sup-
port to the need for masking, though it is 
unclear whether this would be found in all cir-
cumstances. Given the propensity for selective 
analysis and reporting, it seems possible that 
such selection can take place but equally, it is 
not clear that masking will prevent this type of 
bias in practice.

Perform Statistical Analyses
O ,    or  D – Does It Matter?
There are three summary measures of effect 
size that can be used in metaanalysis when 
the outcome of interest is binary (e.g., pro-
portion of subjects with pain relief ): relative 
risk (RR), odds ratio (OR), and risk difference 
(RD). Although the summary measure used 
does not affect the statistical significance of 
the results [122], the choice of effect measure 
could affect the transferability of results of 
the metaanalysis into clinical practice. Which 
summary measure to select depends on the 
ease of interpretation, the mathematical 
properties, and the consistency of the 
results when the particular effect measure is 
used [123].

Relative risk and RD are easier to interpret 
than OR. In general, probabilities are more intu-
itive than odds. When the baseline (untreated) 
risk is constant across studies, the RD also 
allows calculation of relevant public health 
measures (e.g., a number of events prevented or 
caused by a given treatment). A disadvantage of 
using RDs in metaanalysis is that, in an empiri-
cal study of a large number of metaanalyses, 
RDs displayed more heterogeneity than ORs, 
that is, the results from study to study appeared 
more inconsistent with RDs [124]. Because of 
this heterogeneity, the extrapolation to a 
broader population will only be correct at the 
average baseline risk and extrapolation to other 
baseline risks will be unreliable. RR and OR are 
more consistent than RD [122,124] and there-
fore are preferred from this perspective. There 
was no difference in heterogeneity in this same 
sample of metaanalyses, on average, between 
RR and OR [124].

Odds ratios have better mathematical proper-
ties than RRs. For example, switching the roles 
of the event and nonevent in the analysis is of no 
consequence for ORs; the new OR is the recip-
rocal of the original OR (i.e., OR for “benefit” 
is  the reciprocal of the OR for “harm”). In 
 contrast, switching the outcome can make a 
substantial difference for RR, affecting the 
 treatment effect size and potentially introduc-
ing heterogeneity. In a metaanalysis the effect of 
this reversal cannot be predicted [124].

However, ORs are often incorrectly inter-
preted as RRs, and this can lead to apparent 
overestimation of the treatment effect when the 
outcome is common (when the interpretation is 
expressed in terms of probabilities, instead of 
odds). One solution is to discuss the results in 
terms of RR (or RD) by computing RR (or RD) 
and confidence intervals from ORs, using the 
methods described by Localio et al. [125].

Choice of Statistical Method
In most situations, the statistical methods for 
the actual combination of results across studies 
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are fairly straightforward, although a great deal 
of literature in recent years has focused on the 
use of increasingly sophisticated methods. If 
one is interested in combining odds ratios or 
other relative measures such as relative risks 
across studies, for example, some form of 
weighted average of within‐study results is 
appropriate, and several of these exist [126]. A 
popular example of this is the Mantel–Haenszel 
procedure, in which odds ratios are combined 
across studies with weights proportional to 
the  inverse of the variance of the within‐study 
odds ratio [28,127]. Other approaches include 
inverse‐variance weighted averages of study‐
specific estimates of covariate‐adjusted relative 
risks and exact stratified odds ratios [126].

Bias in statistical methods is discussed by 
Tang, who shows that inverse‐variance methods 
may introduce bias in metaanalyses of binary 
outcomes [128]. Essentially, the problem with 
those approaches is that the inverse‐variance 
weights depend not only on study size but on 
the event rates themselves. For example, con-
sider an analysis of 10 trials that all have sample 
sizes of 500 in both the treated and control 
groups. Suppose nine studies have event rates of 
28% in the treated groups compared with 30% in 
the control groups. In this same analysis, a sin-
gle study has event rates of 3% in the treated 
group versus 1% in controls. For an inverse‐var-
iance weighted analysis of risk differences, 
which are ‐2% in the nine studies and +2% in the 
single study, the single study with the low event 
rates would get 54% of the weight in the 
metaanalysis, compared with 5.1% of the weight 
for each of the other nine studies. For an analy-
sis of (log) relative risks, the single study would 
get 0.4% of the weight, compared with 11.1% of 
the weight for each of the other nine studies. 
Appropriate use of weights is also addressed by 
Chang and colleagues [129].

One basic principle in many analytic 
approaches is that the comparisons between 
treated (exposed) and untreated (unexposed) 
patients are typically made within a study prior 

to combination across studies. In the combination 
of randomized trial results, this amounts to 
preserving the randomization within each 
study prior to combination. In all the proce-
dures developed for stratified data, “study” 
plays the role of the stratifying variable. In gen-
eral, more weight is assigned to large studies 
than to small studies because of the increased 
precision of larger studies.

A second basic principle to note is that some 
of these methods assume that the studies are 
all estimating a single, common effect, such as 
a common odds ratio. In other words, the 
underlying treatment effect (whether benefi-
cial or harmful) that all studies are estimating 
is assumed to be the same for all studies. Any 
variability among study results is assumed to 
be random and is ignored in producing a sum-
mary estimate of the treatment effect [130,131]. 
One may wish to use methods for combining 
studies that do not make the assumption of a 
common treatment effect across all studies. 
These are the so‐called “random‐effects” mod-
els, which allow for the possibility that the 
underlying true treatment effect, which each 
study is estimating, may not be the same for all 
studies, even when examining studies with 
similar designs, protocols, and patient popula-
tions. Hidden or unmeasured sources of 
among‐study variability of results are taken 
into account by these random‐effects models 
through the incorporation of such variability 
into the weighting scheme when computing a 
weighted average summary estimate. Random 
effects models are described in much greater 
detail in several papers [132–135].

The practical consequence of the random‐
effects models is to produce wider confidence 
intervals than would otherwise be produced by 
the traditional methods [130,131].This approach 
is considered particularly useful when there is 
heterogeneity among study results, and explora-
tory analyses have failed to uncover any known 
sources of observed heterogeneity. However, 
random‐effects models should not be viewed as 
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a panacea for unexplained heterogeneity. One 
danger is that a summary measure of heteroge-
neous studies may not really apply to any 
 particular study population or study design; that 
is, they lose information by averaging over 
potentially important study and population 
characteristics [117].

A practical effect of random‐effects models, 
which is only apparent from examining the 
mathematics involved, is that they tend to assign 
relatively higher weights to small studies than 
the traditional methods would assign [130]. 
This equalization of weights may have unwanted 
consequences in some circumstances, and can 
lead to counterintuitive results, with very small 
studies making contributions to the summary 
equal to those of very large studies. A thorough 
discussion of the interpretation and application 
of fixed‐effect versus random‐effects models is 
presented by Hedges and Vevea [136]. Villar and 
colleagues compared results of fixed‐effect and 
random‐effects models on an empirical basis 
[137]. As expected, in the presence of heteroge-
neity, they found that the random‐effects mod-
els gave wider confidence intervals. Interestingly, 
these random‐effects models also showed larger 
treatment effects than the corresponding 
fixed‐effect models applied to the same data. 
Explanations for this phenomenon are consid-
ered in the section on publication bias.

In many metaanalysis packages (such as 
Review Manager (RevMan) [138] and compre-
hensive metaanalysis [139]), the random effects 
model is implemented with DerSimonian and 
Laird methodology [1]. However, this method-
ology is known to be suboptimal in several situ-
ations [132,140–145]. Another method that is 
worth considering is the Hartung–Knapp–
Sidik–Jonkman (HKSJ) method for random 
effects metaanalysis [140–142,145–147]. 
IntHout et  al. [147] suggested that the HKSJ 
method was straightforward and considerably 
outperforms the standard DerSimonian–Laird 
method, especially when the number of studies 
is small, though even with the HKSJ method, 

extra caution is needed when there are ≤5 
 studies of very unequal sizes [140–145]. 
Somewhat in contrast, Bender et  al. point out 
that, because heterogeneity is difficult to esti-
mate when there are only a few studies, the HKSJ 
method accounts appropriately for uncertainty 
but has very low power [148]. They note, for 
example, that it is possible for HKSJ to produce a 
statistically nonsignificant combined result when 
combining two statistically significant studies 
with effect estimates going in the same direction. 
Rover et al. proposed a modified Knapp–Hartung 
(mKH) method that performed well when only a 
few studies contribute to the metaanalysis and 
the involved studies’ precisions (standard errors) 
vary [149].

Recently, Stanley and Doucouliagos chal-
lenged the two core conventional metaanalysis 
methods (fixed and random effects) and pro-
posed a weighted least squares method that is 
neither fixed nor random [150]. They suggested 
that an unrestricted weighted least squares 
 estimator is superior to conventional random‐
effects metaanalysis when there is publication 
(or small‐sample) bias and better than a fixed‐
effect weighted average if there is heterogeneity. 
It should be noted that, unlike the Peto method, 
it is unable to deal with zero events in one of the 
comparison arms.

Another recent publication offers a variety of 
interpretations of fixed‐effect models, going 
beyond the often‐cited limitation that the meth-
ods assume a constant treatment effect across 
all studies [151]. The authors note that some 
statistical literature considers fixed‐effect mod-
els appropriate when inferences are to be drawn 
about the “average” association. They note that 
Hedges and Vevea [136] offer a rationale for 
using fixed‐effect models even in the presence 
of heterogeneity. Rice and colleagues go on to 
recommend exploration of potential sources of 
variability in treatment effects across studies, 
using methods described later in this chapter.

Bayesian statistical methods are also being 
proposed with increasing frequency in the 
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statistical literature [152–155].These meth-
ods can incorporate into the analysis the 
investigator’s prior beliefs about the size of an 
effect or the factors biasing the observed 
effects. Bayesian methods are particularly 
appealing in the metaanalysis setting as they 
offer the ability to synthesize evidence from 
multiple sources under a unified framework, 
to make direct probability statements about 
any hypotheses, and to handle complex prob-
lems [4]. There are a few good practical exam-
ples of Bayesian metaanalysis. Askling et  al. 
used the Bayesian hierarchical piecewise 
exponential survival model to investigate the 
cancer risk for the antitumor necrosis factor 
(TNF) drug class [156]. The Bayesian model 
was used to analyze the individual patient‐
level metadata, taking into account time‐
dependent covariates and model between 
study heterogeneity. Kaizar et  al. used the 
Bayesian hierarchical model to quantify the 
risk of suicidality for children who use antide-
pressants [157]. Ibrahim et  al. developed a 
Bayesian metaanalytical method to determine 
sample sizes for planning a Phase II/III anti-
diabetic drug development program [158].

Comoinaoility of  esults from Diverse Studies: 
Heterogeneity
The underlying question in any metaanalysis is 
whether it is clinically and statistically reasona-
ble to estimate an average effect of therapy, 
either positive or negative. If one errs on the 
side of being too inclusive, and the studies differ 
too greatly, there is the possibility that the aver-
age effect may not apply to any particular sub-
group of patients [159]. Conversely, diversity of 
designs and results may provide an opportunity 
to understand the factors that modify the effec-
tiveness (or toxicity) of a drug. Glasziou and 
Sanders nicely summarize issues related to 
potential sources of heterogeneity [160]. They 
highlight an important distinction between arti-
facts that might be related to either the choice of 
summary measure or to study design features, 

and real biological or clinical variation in 
 treatment effect. The former would include 
issues such as whether relative risk or risk dif-
ference is the more appropriate measure of 
treatment effect, and design issues mentioned 
above in the context of study quality, such as use 
of blinding in the evaluation of endpoints within 
a study. Such features are modifiable aspects of 
the conduct and analysis of studies. Variation 
due to clinical factors, in contrast, represents 
the potential to target therapy to the appropri-
ate patient populations.

With respect to how one should approach the 
search for sources of heterogeneity, a number of 
options are available. One might stratify the 
studies according to patient characteristics or 
study design features and investigate heteroge-
neity within and across strata. To the extent that 
the stratification explains the heterogeneity, the 
combined results would differ between strata 
and the heterogeneity within the strata would 
be reduced compared to the overall result. In 
addition to stratification, regression methods 
such as weighted least squares linear regression 
could be used to explore sources of heterogene-
ity [3,161–163]. These might be important 
when various components of study design are 
correlated with each other, acting as potential 
confounders. Graphical methods for metaanal-
ysis have also been proposed, that focus on 
issues related to heterogeneity [164,165].

The quantification of the among‐study varia-
bility assessment of the degree of variation 
involves statistical tests. An important word of 
caution is that statistical tests of heterogeneity 
suffer from a notorious lack of statistical power 
[166,167]. Thus, a finding of significant hetero-
geneity may safely be interpreted as meaning 
the studies are not all estimating the same 
parameter. A lack of statistical significance, 
however, may not mean that heterogeneity is 
not important in a dataset or that sources of 
variability should not be explored.

The I2 statistic seems to have been the 
most  widely adopted approach to statistical 
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quantification of the among‐study variability 
[168–170]. (Note: In many publications, this is 
called “between‐study variability,” based on the 
popular usage in the statistical literature.) It 
estimates the proportion of variability in point 
estimates due to heterogeneity rather than sam-
pling error. The authors recommend I2 because:

 ● it focuses attention on the effect of any 
 heterogeneity on the metaanalytic result

 ● its interpretation is intuitive, that is, the 
 percentage of total variation across studies 
due to heterogeneity

 ● it can be accompanied by an uncertainty 
interval

 ● it is simple to calculate and can usually be 
derived from published metaanalyses

 ● it does not inherently depend on the number 
of studies in the metaanalysis

 ● it may be interpreted similarly irrespective of 
the type of outcome data (e.g., time to event, 
quantitative, or dichotomous) and choice of 
effect measure (e.g., OR or hazard ratio).

Several approaches to the statistical modeling 
of heterogeneity have been proposed. Thompson 
and Sharp, for example, compared different 
forms of weighted normal errors regression and 
random effects logistic regression [171]. Hardy 
and Thompson reviewed regression methods to 
investigate heterogeneity [161].

It has been argued that because of the potential 
for bias in observational epidemiologic studies, 
exploring heterogeneity should be the main point 
of metaanalyses of such studies, rather than pro-
ducing a single summary measure [8,117,172]. 
(For further information on the metaanalysis 
of  observational studies we refer readers to 
Section 3.10 of the CIOMS report [4].)

As an example of the type of analysis that 
could be used to investigate study design 
issues, Hennessy and colleagues performed a 
metaanalysis of nonexperimental studies com-
paring third‐generation oral contraceptives 
(those containing gestodene and desogestrel) 
to second‐generation pills (those containing 

levonorgestrel) with respect to the risk of 
venous thromboembolic events [173]. A major 
issue in these studies has been the possibility of 
depletion of susceptibles. Specifically, the con-
cern is that users of the newer drugs might 
tend to be new users of any oral contracep-
tives, whereas users of the older, second‐gen-
eration drugs would tend to be established 
users. The risk of venous events tends to be 
highest for new users, who have events soon 
after beginning pill use. These susceptible indi-
viduals, the argument goes, would be depleted 
from the ranks of users of second‐generation 
pills, but not from among the third‐generation 
pill users, thereby leaving a more susceptible 
population of third‐generation pill users. The 
authors found several studies that had per-
formed subgroup analyses of new users in their 
first year of use. When combined, these sub-
groups still demonstrated an increased risk 
from third‐generation pills. The power to look 
within subgroups was only available within the 
context of the metaanalysis, not within any of 
the individual studies.

The example just presented was motivated 
by a specific concern about a hypothesized 
source of bias in studies. It is sometimes 
instructive to perform more exploratory analy-
ses of metaanalytic data as well. These may 
provide valuable insights into the biology of 
the problem and/or may generate hypotheses 
for future confirmation.

Analysis of  are Events
We have mentioned that by combining results of 
many trials, metaanalysis can address the prob-
lems of rare events. However, the analysis of rare 
events in metaanalysis is still challenging. Many 
of the methods used to combine data in metaanal-
ysis are based on large sample approximations 
and therefore may be unsuitable when events are 
uncommon. In addition, the results could vary 
substantially depending on the method used to 
combine the data. Recommendations as to what 
method to use under which circumstances are 
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based on studies that have used simulations in 
which the “truth” is generated by the investigators 
[174,175]. The results of these studies show that 
fixed‐effect models should be used over random‐
effect methods [175] and that the inverse‐variance‐
average should be avoided.

When dealing with rare events, many studies 
may have no events in any of the arms, and rela-
tive measures such as relative risk or odds ratios 
cannot be calculated. If relative measures are 
used, studies with no events in either treatment 
arm will be excluded by virtue of the mathemat-
ics, not because the metaanalyst chooses to 
exclude them. However, in these circumstances, 
risk differences can be estimated. The problem 
is that risk differences models in the presence of 
rare events produce biased results and have very 
limited power [174].

Relative measures in cases when there are no 
events in one arm can be calculated. Many of the 
methods require “continuity corrections,” that 
is, adding a small value to all cells in a 2 × 2 table. 
The Mantel–Haenszel method often uses this 
approach. Traditionally, 0.5 is added to each of 
the cells and some statistical packages do this 
automatically. However, such continuity correc-
tion leads to bias in the presence of rare events, 
and is not necessary, even for the Mantel–
Haenszel method [175,176]. Alternative conti-
nuity corrections such as the reciprocal of the 
sample size of the opposite treatment arm, in 
contrast with the traditional constant continuity 
correction, produce less biased results [175].

There are methods that do not require using 
any continuity correction, such as the Peto 
method and Bayesian methods. The Peto method, 
also known as the “one‐step” model, is a fixed‐
effect model that focuses on the observed num-
ber of events in the experimental intervention 
and compares it with the expected number of 
events. Since it uses the expected number of 
events, it can deal with individual groups in indi-
vidual trials with no observed events, as long as 
there is at least one event in at least one of the 
arms in the trial. The Peto method often produces 

less biased results provided there is no substantial 
imbalance between treatment and control group 
sizes within trials, and provided the treatment 
effects are not exceptionally large (less than an OR 
of 5) [175,176].

Bayesian methods can be appropriately applied 
to rare events metaanalysis. The use of Bayesian 
hierarchical models can modulate the extremes 
in the zero‐event setting, borrowing information 
from studies with events to derive posterior infer-
ences for the treatment effect estimates. A practi-
cal challenge of Bayesian metaanalysis for rare 
adverse event data is that noninformative priors 
may lead to convergence failure due to very sparse 
data. Weakly informative priors, which put 
weak restrictions on the size of the treatment 
effect, may be used to solve this issue [4].

Sensitivity analysis is especially important 
in  the rare AE setting, because results may be 
sensitive to the choice of statistical methods, 
scale of measurement, specification of the prior 
distribution if the Bayesian approach is utilized, 
and continuity correction factors selected for 
analyzing zero‐events studies, etc. Therefore, 
when a metaanalysis of rare events is contem-
plated, a thorough sensitivity analysis pertaining 
to the above considerations is recommended, and 
the results of such analyses should be reported so 
that the readers can assess the robustness of the 
results [177].

Other Considerations
A number of somewhat specialized statistical 
issues have been addressed in recent years. 
These include how to include both parallel and 
cross‐over trials in a single metaanalysis [178–
181], the inclusion of trials in which some form 
of group (e.g., medical practice or hospital) is 
the unit of randomization (so‐called “cluster 
randomized” trials) in metaanalyses [182], con-
verting odds ratios to effect sizes so that studies 
with dichotomous outcomes may be combined 
directly with studies having continuous out-
come measures [183], and the analysis of single 
patient (N‐of‐1) trials to estimate population 
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treatment effects and to evaluate individual 
responses to treatment [184]. Nam and colleagues 
discuss the analysis of studies with multiple, cor-
related outcomes [185]. Recently published work 
of particular interest to epidemiologists includes 
the analysis of dose–response data from epide-
miologic data [186,187], a method for combining 
disparate designs (case–control, comparative 
cohort, and uncontrolled cohort studies) [188], 
and exact methods for case–control and follow‐
up studies [189].

Formulate Conclusions and Recommendations
As with all research, the conclusions of a 
metaanalysis should be clearly summarized, 
with appropriate interpretation of the strengths 
and weaknesses of the metaanalysis. Authors 
should clearly state how generalizable the result 
is and how definitive it is and should outline the 
areas that need future research. Any hypotheses 
generated by the metaanalysis should be stated 
as such, and not as conclusions.

Publication Bias

As discussed earlier, when the primary source of 
data for a metaanalysis is published data, the 
possibility needs to be considered that the pub-
lished studies represent a biased subset of all the 
studies that have been done. In general, empiri-
cal studies have found that it is more likely that 
studies with statistically significant findings will 
be published than studies with nonsignificant 
findings.

A practical technique for determining the 
potential for publication bias is the “funnel plot,” 
first proposed by Light and Pillemer [190]. The 
method involves plotting the effect size (e.g., the 
risk difference) against a measure of study size, 
such as the sample size or the inverse of the var-
iance of the individual effect sizes. If there is no 
publication bias, the points should produce a 
kind of funnel shape, with a scatter of points 
centered around the true value of the effect size, 
and with the degree of scatter narrowing as the 

variances decrease. If publication bias is a 
 problem, the funnel would look as though a bite 
had been taken out, with very few (if any) points 
around the point indicating no effect (e.g., odds 
ratio of 1.0) for studies with large variances. 
This method requires a sufficient number of 
studies to permit the visualization of a funnel 
shape to the data. If the funnel plot does indi-
cate the existence of publication bias, then one 
or more of the correction methods described 
below should be considered. In the presence of 
publication bias, the responsible metaanalyst 
should also evaluate the ethics of presenting a 
summary result that is likely to represent an 
overestimate of the effect in question.

Two examples of funnel plots are given in 
Figures  36.1 and 36.2. These plots represent 
studies of psychoeducational programs for 
 surgical patients [190,191]. In the first plot, only 
the published studies are represented. The fun-
nel appears to have a “bite” taken out of it where 
the small studies showing no effect of these 
 programs should be. In the second plot, the 
unpublished studies, including doctoral disser-
tations, are included, and the former “bite” is 
now filled with these unpublished studies.

Sterne and Egger provide guidelines for the 
choice of axes in funnel plots of studies with 
dichotomous outcomes, recommending that 
the standard error of the treatment effect (e.g., 
the standard error of the log odds ratio) be used 
as the measure of study size and that relative 
measures (relative risk, as opposed to risk 
 difference) be used as the treatment effect 
measures [192]. These same authors and a 
 colleague point out that publication bias is only 
one possible explanation for funnel plot asym-
metry, so that the funnel plot should be seen as 
estimating “small study effects” rather than nec-
essarily publication bias [193]. A similar point is 
made by Terrin and colleagues [194].

Several mathematical approaches to the prob-
lem of publication bias have been proposed. An 
early method, first described by Rosenthal [195], 
is the calculation of a “fail‐safe N” when the 
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result of the metaanalysis is a statistically 
 significant rejection of the null hypothesis. This 
method, in a kind of sensitivity analysis, uses the 
Z‐statistics from the individual studies included 
in a metaanalysis to calculate the number of 
unpublished studies with a Z‐statistic of exactly 
0 that would be required to exist, in order for the 
combined Z‐score (published plus unpublished 
studies) to become nonsignificant. Because this 
method focuses only on Z‐statistics, and ignores 
the estimation of effects (e.g., odds ratios), it is of 
limited utility. That is, the fail‐safe N approach 
focuses only on the statistical significance of the 

combined result and does not help provide an 
overall estimate of the effect that is “adjusted” for 
publication bias.

A number of related methods to deal with 
potential unpublished studies have been devel-
oped in recent years. These include other meth-
ods for estimating the number of unpublished 
studies [196,197], formal methods to test for 
the presence of publication bias [198–200], and 
methods to adjust summary estimates to 
account for unpublished studies [136,196,201–
203], but several of those methods make some 
fairly strong assumptions about the specific 
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Figure 36.1 Funnel plot for published 
studies only: analysis of data from Devine 
and Cook’s review of psychoeducational 
programs for surgical patients [191]. 
Source: Reprinted by permission of the 
publishers from Summing Up: The Science 
of  eviewing  esearch, by Richard J. Light 
and David B. Pillemer, Cambridge, MA: 
Harvard University Press. ©1984 by the 
President and Fellows of Harvard College.
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Figure 36.2 Funnel plot for published 
studies (open ooxes) and unpublished 
(closed triangles): analysis of data from 
Devine and Cook’s review of 
psychoeducational programs for surgical 
patients [191]. Source: Reprinted by 
permission of the publishers from 
Summing Up: The Science of  eviewing 
 esearch, by Richard J. Light and David B. 
Pillemer, Cambridge, MA: Harvard 
University Press. ©1984 by the President 
and Fellows of Harvard College.
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mechanism producing the publication bias. A 
method called “trim‐and‐fill” has a fair amount 
of intuitive appeal [204], although it, too, relies 
on assumptions about the missing studies. It is 
based on the funnel plot, focusing on the stud-
ies that lead to the appearance of funnel plot 
asymmetry. Under this approach, a mirror 
image of the studies producing the asymmetry 
is imputed, using a carefully defined statistical 
algorithm to determine which studies to mir-
ror, and the impact of adding those mirror 
image studies to the pooled analysis is assessed.

An additional methodologic caution gener-
ated by publication bias relates to the use of ran-
dom‐effects models for combining results. 
When the results of the studies being analyzed 
are heterogeneous and a random‐effects model 
is being used to combine those results, one of the 
properties of the model, described earlier, is to 
assign relatively higher weights to small studies 
than would otherwise be assigned by more tradi-
tional methods of combining data. If publication 
bias is a problem in a particular dataset, one con-
sequence implied by the funnel plot is that small 
studies would tend to show larger effects than 
large studies. Thus, if publication bias is present, 
one of the reasons for heterogeneity of study 
results is that the small studies show systemati-
cally larger effects than the large studies. The 
assignment of higher relative weights to the 
small studies could, when publication bias is pre-
sent, lead to a biased summary result.

In fact, this appears to be exactly the situation 
presented by Poole and Greenland in an 
 examination of studies of water chlorination 
and cancer [31]. Random‐effects summary esti-
mates of the relative risk for various cancers 
were larger than corresponding fixed‐effect 
summaries. This was apparently due to the 
assignment of higher relative weights to small 
studies which, in this case, showed relatively 
larger effects, that may not be representative of 
the findings of all small studies. Data presented 
by Villar and colleagues found a similar phe-
nomenon in studies in perinatal medicine [137].

As noted earlier, one solution to the problem 
of publication bias is the use of prospective 
 registration of studies at their inception, prior to 
the availability of results [59]. Others have sug-
gested obtaining unpublished data from the 
FDA, an approach used by Turner et al. [205]. 
These authors obtained reviews from the 
FDA  for studies of 12 antidepressant agents, 
conducted a systematic literature search to 
identify  matching publications, and compared 
the results based on published studies with the 
results based on the FDA data. They found that 
among the 74 FDA‐registered studies, 31% were 
not published, and that there was an association 
between study results and whether or not the 
paper was published. Of the 38 studies viewed 
by the FDA as having positive results, 37 were 
published. Studies viewed by the FDA as having 
negative or questionable results were, with three 
exceptions, either not published (22 studies) or 
published in a way that, in the opinion of the 
authors of the review, conveyed a positive out-
come (11 studies). The analysis restricted to 
published literature showed that 94% of the tri-
als were positive. In contrast, the analysis of 
FDA data showed that only 51% were positive.

A further review in looking at other indica-
tions for antidepressants found a similar bias in 
the literature [206]. Although the estimate of 
effect size was only increased marginally, 
“Reporting biases led to significant increases in 
the number of positive findings in the litera-
ture.” The Open Trials project and the Yale pro-
ject (YODA) cited earlier are attempts to reduce 
the bias from using only published literature. 
There is a tool that allows FDA documents to be 
retrieved more easily [207].

Going one step further, prospective metaanal-
yses can be conducted [208–210]. These are 
metaanalyses that are planned, with complete 
protocols, including proposed tests of sub-
group effects, prior to having knowledge of the 
results of any of the component studies. More 
on the topic of prospective metaanalysis is 
 presented later.
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Indirect Comparison and Simultaneous 
Comparison of Treatments Available 
for Specific Conditions

What healthcare providers, patients, policy 
makers, and payers often need in order to 
make informed decisions is to understand 
how pharmacologic treatments compare to 
other pharmacologic treatments, even in the 
absence of direct evidence (head‐to‐head 
comparisons). When the treatments of inter-
est have been compared to a common com-
parator, for example placebo, it is possible to 
get comparative information via indirect evi-
dence. (See references [211–217] for a series 
of seven tutorial papers on evidence synthesis 
for decision making, which includes manu-
scripts on indirect comparisons – also known 
as network metaanalysis.)

Indirect evidence involves using data from tri-
als that have compared medication A with med-
ication B, and from trials that have compared 
medication A with medication C, to draw con-
clusions about the effect of medication B rela-
tive to medication C (Figure 36.3). It is crucial 
that when an indirect comparison is estimated, 
the analysis respect the randomization. This 
means that the analysis must be based on treat-
ment differences within each trial. Pooling the 
results from the various treatment arms of the 
clinical trials, by simply collapsing results for 
that treatment arm across studies, ignores the 
randomizations and produces biased and overly 
precise estimates [39]. To correctly assess how 

medication B compares with medication C, one 
needs to analyze all the trials that have com-
pared medication A with medication B and cal-
culate (in the case of dichotomous outcome) the 
appropriate metaanalytic OR and do the same 
for the trials that have compared medication A 
with medication C, and then divide these two 
ORs, that is, OR (B vs C) = OR (A vs B) / OR (A 
vs C). Section 3.11 of the CIOMS X report also 
has a high‐level summary of the use of indirect 
evidence [4].

Other advantages of these multiple‐treatment 
comparison techniques are that they can easily 
deal with trials that have multiple arms and 
account for the correlation due to multiple 
arms. In addition to being able to combine 
direct and indirect evidence, these techniques 
also permit the assessment of the inconsistency, 
that is, the disagreement between direct and 
indirect evidence [218]. These methods can also 
provide a probabilistic ranking of treatments.

Assumptions
The validity of the indirect comparisons and the 
extended methodologies we just described 
depend on meeting assumptions, which are 
similar to the assumptions of the traditional 
metaanalysis.

The first assumption is homogeneity. For 
example, if treatment A in our example is pla-
cebo, the results of the placebo‐controlled trials 
that evaluated treatment B should be homoge-
neous enough to be combined, and the results 
of the placebo‐controlled trials that evaluated 

Treatment A

Treatment B Treatment C

Figure 36.3 Indirect evidence involves using data from trials that have compared medication A with medication B, 
and from trials that have compared medication A with medication C, to draw conclusions about the effect of 
medication B relative to medication C (dotted line).
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treatment C should be homogeneous enough to 
be combined as well.

The second assumption is similarity. All factors 
that affect the response to a treatment, effect mod-
ifiers, must be similarly distributed across the 
entire set of trials. This requires that the trials in 
the network are clinically similar with respect to 
patient characteristics, settings, follow‐up, and 
outcomes evaluated, and that the trials are meth-
odologically similar, as well. For example, suppose 
B and C have identical effects, but the size of the 
treatment effect for both B and C is different in 
patients with severe disease from that in patients 
with mild disease. In this situation, variability 
between studies of B and C with respect to the 
proportion of patients with severe disease will lead 
to spurious variability in results between studies of 
B and studies of C. Similarly, if some trials used 
enrichment and the others did not, the results are 
likely to vary across type of study, making ques-
tionable the advisability of combining results.

The last assumption to assure validity of the 
results is consistency (agreement between 
direct and indirect evidence). It requires that 
before combining direct and indirect estimates, 
the consistency of these estimates needs to be 
checked [39].

Adjusting for Covariates
As we just described, the validity of indirect 
estimates relies on the balance of factors that 
affect the response to a treatment in the various 
treatment arms. When such effect modifiers 
were measured and reported in the trials, the 
extended metaanalytic techniques can adjust 
for possible imbalances of such effect modifiers 
by incorporating these variables into the statis-
tical mode [219,220]. This is a study‐level 
adjustment for a study‐level summary variable 
(e.g., the proportion of subjects with a particu-
lar effect‐modifying characteristic), which does 
not substitute for having access to patient‐level 
characteristics and performing appropriate 
subgroup analyses, as noted elsewhere in this 
chapter.

In addition to the study level adjustment for 
effect modifiers, a more recent approach by 
Signorovitch and colleagues has been proposed 
[221,222]. This method, “matching‐adjusted 
indirect comparisons,” uses IPD from trials of 
one treatment to match to baseline summary 
statistics reported from trials of another treat-
ment; that is, the matching is most often at the 
level of ensuring the two groups have the same 
mean and standard deviation. After matching, 
outcomes can be compared across balanced 
trial populations by using an approach similar 
to propensity score weighting. These methods 
are more frequently being used in health tech-
nology assessment submissions. However, 
more work needs to be done to understand how 
this new methodology behaves under various 
scenarios. Philippo et al. [223] provided guid-
ance on this methodology that is based on a 
Technical Support Document prepared for the 
UK National Institute for Health and Care 
Excellence Decision Support Unit, available 
from www.nicedsu.org.uk.

Case Studies of Applications 
of Metaanalysis

Investigation of Adverse Effects
As mentioned earlier, the investigation of 
adverse or unwanted effects of existing therapies 
is an important application of metaanalysis. As 
discussed in Chapters 1 and 4, adverse events 
associated with pharmaceutical products are 
often so uncommon as to be difficult to study. In 
particular, the usual premarketing randomized 
studies frequently have too few patients to pro-
vide any useful information on the incidence of 
uncommon adverse events. By the same token, 
individual studies may have low statistical power 
to address particular questions. Metaanalysis 
provides the benefit of increased statistical 
power to investigate adverse events. In fact, 
since 1982, the safety evaluation of drugs in the 
US has included pooled analyses from prospec-
tive metaanalysis [224].
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The assessment of the cardiovascular safety of 
rosiglitazone, a medication used to lower blood 
glucose, provides an excellent example of a situ-
ation in which metaanalysis has been both help-
ful and challenging. The original approval of 
rosiglitazone was based on its ability to reduce 
blood glucose levels and glycated hemoglobin 
levels, and the studies were not powered to 
determine the effect of this medication on 
micro‐ or macrovascular complications of dia-
betes. To evaluate the effect of rosiglitazone on 
cardiovascular morbidity and mortality, a 
metaanalysis was conducted [225].

The authors of this metaanalysis searched 
published literature, the FDA website, and a 
clinical trials registry maintained by the drug 
manufacturer. The authors included RCTs with 
duration of more than 24 weeks. To combine 
the data, they used the Peto method. Forty‐two 
trials met the inclusion criteria.

The authors concluded that rosiglitazone 
increased the risk of myocardial infarction and 
death from cardiovascular causes. The OR for 
myocardial infarction was 1.43 (95% CI 1.03–
1.98), and the OR for death from cardiovascular 
causes was 1.64 (95% CI 0.98–2.74).

Not surprisingly, the results of this study gen-
erated a great deal of interest. To determine the 
next course of action, the FDA has reviewed data 
from observational studies, clinical trials, and the 
most recently conducted trial called RECORD 
(Rosiglitazone Evaluated for Cardiovascular 
Outcomes and Regulation of Glycemia in 
Diabetes). The RECORD study was designed to 
evaluate the cardiovascular safety of rosiglita-
zone. The FDA presented the results of this 
review at an Advisory Committee meeting in July 
2010. Following this meeting, the FDA announced 
significant restrictions on the use of rosiglita-
zone, to patients who cannot control their diabe-
tes on other medications. Under the restricted 
access program, doctors will have to document 
their patients’ eligibility. Patients will have to 
review statements describing the cardiovascular 
safety concerns associated with this drug and 

acknowledge they understand the risks [226]. In 
2013, most of the restrictions on rosiglitazone 
were removed by the FDA, saying it does “not 
show an increased risk of heart attack compared 
to the standard type 2 diabetes medicines met-
formin and sulfonylurea” based on additional 
review of the final results of the dedicated CV 
outcome trial (www.fda.gov/Drugs/DrugSafety/
ucm376389.htm).

In 2015, the FDA went further and removed 
the need for the Risk Evaluation and Mitigation 
Strategy (REMS) for rosiglitazone‐containing 
medicines. “The REMS is no longer necessary 
to ensure that the benefits of rosiglitazone 
medicines outweigh their risks” (www.fda.
gov/Drugs/DrugSafety/ucm476466.htm). The 
license for rosiglitazone remains suspended in 
the EU in 2018.

This metaanalysis illustrates two of the chal-
lenges researchers face when performing 
metaanalysis: how to deal with rare outcomes 
and the impact of choosing a method to com-
bine the data.

In this case, the incidence of myocardial infarc-
tion in the trials was low. Specifically, observed 
risks in the rosiglitazone arm ranged from 0 to 1.8% 
so the authors employed the Peto model to com-
bine the data. As mentioned earlier, this method is 
recommended in the presence of rare events [174], 
but it is not recommended when there is substan-
tial imbalance in the number of subjects in the trial 
arms (unequal treatment allocation), as was the 
case in this study; some of the studies have an allo-
cation ratio of 4 to 1. When other methods to com-
bine data are used, however, the estimates do not 
change substantially, but the statistical significance 
disappears [227]. As we describe in the section on 
rare events, it is important to assess routinely how 
robust the results are to the methods used to com-
bine the data and report any discrepancies. We also 
note in that section (and reinforce here) that a pre-
specified protocol and careful sensitivity analysis 
can guard against overreliance on results that are 
strongly dependent on assumptions and the choice 
of method for analysis.
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New Indications for Existing Therapies
Metaanalysis has also been used to assess the 
effectiveness of existing therapies for new 
 indications. For example, antidepressants are 
medications used for the treatment of major 
depression and other depressive disorders, but 
they can also reduce pain even in the absence of 
depression. One of the painful conditions in 
which antidepressants can be used is fibromyal-
gia. This is a predominantly female chronic pain 
condition characterized by widespread pain and 
tenderness. It can affect up to 10% of women 
between 55 and 64 years of age [228].

To determine the efficacy of antidepressants in 
the treatment of fibromyalgia, a metaanalysis of 
randomized controlled  clinical trials was con-
ducted by Hauser and colleagues [229]. The 
authors searched MEDLINE, PsycINFO, Scopus, 
the Cochrane Library databases, and reference 
sections of original studies, metaanalyses, and 
reviews on  antidepressants in fibromyalgia. 
They included randomized placebo‐controlled 
trials with tricyclic and tetracyclic antidepres-
sants, selective serotonin reuptake inhibitors, 
serotonin noradrenaline reuptake inhibitors, 
and monoamine oxidase inhibitors. Two authors 
independently extracted data. Effects were sum-
marized using standardized mean differences 
(SMD), analyzed using a random‐effects model. 
The SMD is used to summarize results from 
studies that used different measurement instru-
ments to assess the same underlying psychiatric 
construct and are expressed in standard devia-
tion units.

Eighteen randomized controlled trials, with a 
median duration of eight weeks, involving 1427 
participants, were included. The authors found 
that antidepressants reduced pain intensity 
(SMD, –0.43; 95% CI –0.55 to –0.30), fatigue 
(SMD –0.13; 95% CI –0.26 to –0.01), depressed 
mood (SMD –0.26; 95% CI –0.39 to –0.12), and 
sleep disturbances (SMD –0.32; 95% CI –0.46 to 
–0.18). Antidepressants also improved health‐
related quality of life (SMD –0.31; 95% CI –0.42 
to –0.20).

The effect sizes for pain reduction for older 
antidepressants appeared to be larger than those 
for the newer drugs. The SMD for tricyclic anti-
depressants was –1.64 (95% CI –2.57 to –0.71), 
while the SMD for the newer drugs, such as 
selective serotonin reuptake inhibitors, was 
–0.39 (95% CI –0.77 to –0.01) and –0.36 for 
serotonin and noradrenaline reuptake inhibi-
tors (95% CI –0.46 to –0.25).

This metaanalysis illustrated the utility of 
metaanalysis for consolidating evidence for new 
indications for existing therapies. Antidepressants 
are efficacious for depression and provide short‐
term relief of fibromyalgia symptoms as well. 
Serotonin and norepinephrine reuptake inhibi-
tors antidepressants are now approved for the 
treatment of fibromyalgia. The metaanalysis 
described here suggests that older antidepres-
sants may be more effective than these drugs, 
although they also have a different tolerability 
and safety profile.

Differential Effects Among Subgroups 
of Patients
Antidepressants labels warn about an increased 
risk of suicidality in children and adolescents 
during treatment. To assess this risk in adults, the 
FDA performed an individual data metaanalysis 
[230]. Eight industry sponsors of 12 antidepres-
sant products were asked to provide individual 
data from all completed double blind RCTs of 
their products, for any indication in adults, with 
at least 20 participants per arm. Trials limited to 
known drug responders, such as those using ran-
domized withdrawal designs, were excluded.

Industry sponsors were asked to search their 
electronic databases for adverse events reported 
during the double blind phase of treatment, using 
text strings such as “accident‐,” “attempt,” “burn,” 
“cut,” “drown,” “gas,” “gun,” “hang,” “hung,” “immo-
lat‐,” “injur‐,” “jump,” “monoxide,” “mutilat‐,” 
“overdos‐,” “self damag‐,” “self harm,” “self inflict,” 
“self injur‐,” shoot,” “slash,” “suic‐,” “poison,” 
“asphyxiation,” “suffocation,” and “firearm.” All 
events  identified by this search were  considered 
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possibly related to suicidality, unless they were 
identified as false positive, that is, events that 
included any of these text strings but were not 
related to suicidality, such as “epigastric pain” 
that would be identified in the search for the text 
string “gas”. The sponsors adjudicated the events. 
Three individuals blinded to treatment assign-
ment independently rated events. If the three 
raters were not unanimous in their ratings, a 
discussion among the raters, led by a fourth rater, 
was conducted to achieve consensus. In absence 
of consensus, the event was rated as indetermi-
nate. The FDA staff reviewed the events the 
sponsors classified as false positives. Events were 
classified into seven mutually exclusive catego-
ries: 1. completed suicide, 2. suicide attempt, 3. 
preparatory acts towards imminent suicidal 
behavior, 4. suicidal ideation, 5. Self‐injurious 
behavior, intent unknown, 6. not enough infor-
mation (fatal), and 7. not enough information 
(nonfatal). The primary outcome was suicidal 
ideation or worse (categories 1, 2, 3, or 4). 
The  secondary outcome was suicidal behavior 
(categories 1, 2, or 3).

Antidepressants were classified a priori into five 
classes: selective serotonin reuptake inhibitors, 
serotonin‐norepinephrine reuptake inhibitors, 
other modern antidepressants, tricyclic antide-
pressants, and other antidepressants. Indication 
was classified into five groups: major depressive 
disorder, other depressive disorders, other psychi-
atric disorders, other behavioral disorders, and 
nonbehavioral disorders.

All the analyses were conditioned on (i.e., 
stratified by) study. The authors calculated ORs 
and RDs using conditional logistic regression 
and other methods, such as exact stratified 
methods, Mantel–Haenszel, Bayesian, and 
unconditional and random‐effects logistic 
regression. These multiple methods were used 
to test the robustness of the findings to the 
choice of statistical approach. To assess the effect 
of age on the risk of suicidality, the investigators 
included age and the interaction of treatment 
with age as both categorical and continuous 

 variables (in separate models). In addition, the 
authors performed subgroup analyses based on 
indication and drug class. To examine heteroge-
neity of treatment effects across studies, authors 
added treatment by trial interaction.

The analysis included a total of 99 231 partici-
pants in 372 trials, with about 75% of the patients 
from North America. It is worth noting that 
most of the studies included were unpublished 
and, for those that were published, the authors 
found that they seldom contained information 
concerning suicidality in the publication.

All the methods to combine the data pro-
vided similar results. For participants with 
nonpsychiatric indications, suicidal behavior 
and ideation were extremely rare. For those 
with psychiatric indications, the relative risk of 
suicidality, associated with treatment, was dif-
ferent for different age groups. The relative risk 
was higher in participants under 25, neither 
elevated nor reduced in those aged 25–64 and 
reduced in those aged 65 and older. For suicidal 
behavior or ideation, the ORs were 1.62 (95% 
CI 0.97 to 2.71) for participants aged <25, 0.79 
(95% CI 0.64 to 0.98) for those aged 25–64, and 
0.37 (95% CI 0.18 to 0.76) for those aged ≥65. 
For suicidal behavior only, for the same age 
groupings, the ORs were 2.30 (95% CI 1.04 to 
5.09), 0.87 (95% CI 0.58 to 1.29), and 0.06 (95% 
CI 0.01 to 0.58), respectively. The OR for sui-
cidal behavior or ideation declined 2.6% 
per year of age (–3.9% to –1.3%), and the OR 
for suicidal behavior declined 4.6% per year of 
age (–7.4% to –1.8%). Of note, the increased 
risk among those <25 years old was larger 
for  suicidal behavior than when ideation was 
also included, suggesting a stronger associa-
tion with the more specific definition of the 
endpoint.

No differences in effect among drugs and 
drug classes were noted, with the exception of a 
suggestion of some differences among selective 
serotonin reuptake inhibitors. Similarly, no dif-
ference between older and newer antidepres-
sants was found [230].
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This metaanalysis nicely illustrates the amount 
of effort and regulatory authority involvement 
necessary to coordinate and gather individual 
data from a great number of RCTs, involving 
many drugs and multiple industry sponsors, to 
assess whether or not a drug class increases the 
risk of a rare but serious outcome and whether or 
not the increase in risk varies with the character-
istic of the subjects exposed. This metaanalysis 
shows the power of individual data metaanalysis 
to identify subgroups of patients at higher risk of 
developing adverse events, and the process of 
adjudicating adverse events that needs to be fol-
lowed when the outcome of interest has not been 
prespecified in the trials or has not been reported 
in publications.

Saving Time and Resources If You Believe 
a Metaanalysis
One of the potential benefits of metaanalysis is 
the ability to shorten the time between a medi-
cal research finding and the implementation of 
regulatory or policy actions or change in clinical 
practice. This is a concern not only for the 
development of new drugs, but for the explora-
tion of new indications for existing therapies. As 
a simple but elegant example of the use of 
metaanalysis in the approval context, Webber 
and colleagues reported the use of metaanalysis 
of ECG data from several clinical pharmacology 
studies for two drug application submissions 
[231]. They calculated a pooled estimate for the 
difference between active doses and placebo on 
a continuous measure of QT prolongation. This 
approach allowed the sponsor to avoid having to 
perform a new safety study to address the ques-
tion of QT prolongation.

One prominent group has advocated the rou-
tine use of what they have termed “cumulative 
metaanalysis,” which is performing a new 
metaanalysis each time the results of a new clin-
ical trial are published [36,232]. Antman et al. 
applied this technique in combination with a 
classification scheme of the treatment recom-
mendations for myocardial infarction found in 

review articles and textbook chapters [36]. They 
found many discrepancies between the evidence 
contained in the published randomized trials 
and the timeliness of the recommendations.

As an example, Antman and colleagues ana-
lyzed data from 17 trials of beta‐blockers for the 
prevention of death in the years following a 
myocardial infarction [36]. In the left‐hand side 
of Figure 36.4, reproduced from their paper, the 
data are presented as a traditional metaanalysis, 
with individual study results presented along 
with the summary odds ratio arbitrarily esti-
mated after 17 trials had been completed. In the 
right‐hand side of Figure 36.4, the same data are 
presented as a cumulative metaanalysis, with an 
updated summary estimate calculated after the 
completion of each new trial. The cumulative 
metaanalysis clearly shows that the updated 
pooled estimate became statistically significant 
in 1977 and has remained so ever since.

Some caution may be advised in interpreting 
cumulative metaanalyses. The issue of multiple 
statistical tests, for example, generates con-
cerns about false‐positive findings (type I 
error). In the early papers presenting cumula-
tive metaanalysis, this problem of increased 
false‐positive rates was largely ignored [232–
234]. In an empirical study of published litera-
ture, Biester and Lange found that only 4% of 
the cumulative metaanalysis papers even men-
tioned multiplicity adjustment, and only 2% 
had made an adjustment [235].

There are several methods proposed to con-
trol the false‐positive rate. These include sequen-
tial approaches [236–238], such as that proposed 
by Pogue and Yusuf [237], who considered appli-
cation of conventional group sequential meth-
ods [239,240]. These approaches require 
knowing the number of trials or the sample sizes 
within the trials. Even when cumulative 
metaanalyses are planned, those plans can 
change. More recent discussions on sequential 
analysis have been published [241–247].

An alternative method was proposed by Lan 
et  al., based on the law of iterated logarithms 
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(LIL) [248]. That method penalizes the test sta-
tistic to account for multiple tests that accounts 
for estimation of heterogeneity in treatment 
effects across studies. The initial paper looked at 
continuous outcomes and was extended by Hu 
et al. for the analysis of relative risk, odds ratios, 
or risk differences [249]. A limitation of the 
approach is that there could be a loss of statisti-
cal power when the among‐study heterogeneity 
is reasonably small [249] but the extent of the 
power loss is not always clear. Hu and colleagues 
recommend using simulation to determine the 
specific adjustment factor to control the type I 
error rate but also maintain statistical power.

Another view of cumulative metaanalysis, 
offered by Lau et al. [250], is that the most nat-
ural interpretation is a Bayesian framework, in 
which the existing data form the basis for the 
prior distribution. When new studies are 
added, the analysis is updated to generate a 
posterior distribution, which then becomes the 
new prior distribution when more data arrive. 
The concept of multiplicity is handled using 
prior probabilities for models or hypotheses. 
Conclusions (usually in the form of “credible 
intervals”) are expressed as probabilistic state-
ments about findings, not as statements about 
hypotheses.

Individual RCT and overall meta-analysis results
Odds ratio (log scale)
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Figure 36.4 Results of 17 RCTs of the effect of oral beta‐blockers for secondary prevention of mortality in patients 
surviving a myocardial infarction presented as two types of metaanalyses. On the left is the traditional one, revealing 
many trials with nonsignificant results but a highly significant estimate of the pooled results on the bottom of the 
panel. On the right, the same data are presented as cumulative metaanalyses, illustrating that the updated pooled 
estimate became statistically significant in 1977 and has remained so up to the present. Note that the scale is 
changed on the right graph to improve clarity of the confidence intervals. Source: Reproduced from Antman et al. [36] 
with permission from the American Medical Association.
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There does not seem to be any consensus on a 
solution to the multiplicity problems generated 
by cumulative metaanalysis, so some use it 
mainly as an exploratory tool, providing caveats 
about the number of analyses performed with-
out a formal correction for multiplicity. This 
approach is analogous to that for many conven-
tional safety analyses, for which nominal P val-
ues from hypothesis tests are often provided 
without adjustment, when there are a limited 
number of prespecified outcomes.

Another consideration is that estimates of 
treatment effect may not be stable over time, 
perhaps due to changing clinical environments. 
In the beta‐blocker example, there is an appar-
ent “drift” of the effect estimate back toward the 
null in more recent years; that is, treatment 
appears to be less effective in the most recent 
studies. Thus, it may be important to reevaluate 
therapies as other treatment strategies evolve 
for the same conditions.

A final caution with regard to interpreting 
cumulative metaanalyses relates to the continu-
ing need for well‐designed randomized con-
trolled trials. New indications for existing 
therapies, for example, are often suggested by 
nonexperimental studies, including cohort and 
case–control studies and nonrandomized Phase 
II clinical trials. The results of these studies are 
not always confirmed by subsequent, properly 
designed randomized trials. For example, con-
sider the case of beta‐carotene in the prevention 
of cancer. A series of observational studies (see 
Ziegler et al. [251] for a review) examined the 
relation between dietary intake of foods rich in 
beta‐carotene and the risk of lung cancer. 
Overall, they showed a relatively consistent 
association between diets rich in beta‐carotene 
and reduced risk of lung cancer. Subsequent 
randomized trials of this specific nutrient as a 
supplement have failed to confirm a protective 
effect against lung cancer [252].

For the reasons just outlined, the role of 
cumulative metaanalysis to demonstrate effec-
tiveness of a therapy in a new indication has not 

been clarified in actual regulatory settings. 
Specifically, whether a metaanalysis could be 
used to support approval of a new indication 
has not been explicitly addressed. One concern 
relates to the possibility that the very choice of 
the question to be investigated may have been 
influenced by knowledge of the results of the 
individual studies. Thus, prospective planning 
of metaanalyses, prior to knowing the results of 
the component studies, may be useful.

Cumulative Metaanalysis as a Tool 
to Detect Harm Signals Earlier
Cumulative metaanalysis also could be used as a 
tool to detect safety signals earlier.

Rofecoxib, a cyclooxygenase‐2 inhibitor, was 
withdrawn from the market in September 2004 
because of cardiovascular adverse effects. A 
cumulative metaanalysis of RCTs was per-
formed to establish whether robust evidence 
on the adverse effects of rofecoxib was availa-
ble before its removal. The authors searched 
bibliographic databases and relevant files of 
the FDA and included all RCTs in patients with 
chronic musculoskeletal disorders that com-
pared rofecoxib with other NSAIDs or placebo. 
Myocardial infarction was the primary out-
come [253]. The authors identified 18 rand-
omized controlled trials and found that by the 
end of 2000 (four years before the withdrawal), 
the relative risk was 2.30 (95% CI 1.22–4.33), 
and one year later it was 2.24 (1.24–4.02). The 
authors found no evidence that the relative risk 
differed depending on the type of control 
group (placebo, nonnaproxen NSAID, or nap-
roxen) or trial duration. They concluded that 
the adverse cardiovascular effects of rofecoxib 
could have been identified several years earlier, 
and appropriate action taken.

Cumulative metaanalysis for the evaluation 
of safety signals brings to light potential meth-
odologic problems that are shared by tradi-
tional metaanalysis. First, one might question 
the validity of pooling of trials that are not clini-
cally homogeneous. For example, the authors 
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combined the results of trials with dissimilar 
control arms (placebo, naproxen and nonnap-
roxen NSAIDs).

Second, the validity of excluding trials that 
assessed the intervention of interest, but for other 
indications, can also be questioned. For example, 
the authors concentrated on trials that evaluated 
chronic musculoskeletal pain and excluded trials 
that evaluated Alzheimer’s disease. In this case, 
the inclusion of such a trial would have made the 
early signal disappear [254]. Clearly, one would 
not combine trials for different indications to 
assess efficacy. Although the risks, or relative 
risks, of potential harms could also vary by indica-
tion (population), an approach often used in the 
regulatory setting is for studies from all indica-
tions to be included in at least some safety analy-
ses (perhaps stratified by indication).

Third, one can ask whether efficacy and safety 
should be evaluated with the same methodo-
logic standards. For efficacy, there are concerns 
that multiple looks at the data will lead to false‐
positive results and that P values should be 
adjusted accordingly. When evaluating safety, it 
could be argued that adjustments to P values 
should not be as large as they are for efficacy 
analyses (or should not be done at all). A more 
extensive discussion of the multiplicity issue in 
safety assessments is presented by Crowe and 
colleagues in the context of drug development 
[34]. Additional references can be found in that 
paper, as well as the discussion earlier on cumu-
lative metaanalysis.

Fourth, it is uncertain whether cumulative 
metaanalysis (or any metaanalysis of RCTs) can 
systematically detect harm earlier. Rare adverse 
events, or the adverse events that occur late 
after exposure, will likely be absent in RCTs per-
formed during drug development, and therefore 
cumulative metaanalysis would not always be 
expected to detect harms earlier.

Ryan and colleagues conducted a metaanalysis 
of 22 RCTs studying the effects of anti‐IL‐12/23 
therapies [255]. These are antiinflammatory 
agents used to treat conditions such as psoriasis 

(the initial indication.) The studies included 
10 183 patients. The primary outcome measure 
was major adverse cardiac events (MACEs). 
MACE definitions can vary; in this analysis it 
was defined as a composite of myocardial infarc-
tion, cerebrovascular accident, or cardiovascular 
death during the placebo‐controlled portions of 
the included trials. The authors chose absolute 
risk differences as their effect measure, using the 
Mantel–Haenszel fixed‐effects method. They 
found that 10 of 3179 patients receiving anti‐
IL‐12/23 therapies experienced MACEs com-
pared with no events in 1474 patients receiving 
placebo (Mantel–Haenszel risk difference, 0.012 
events/person‐year; 95% CI −0.001 to 0.026; P = 
0.12). (NOTE: in the original paper, the authors 
use the term “risk difference” but report results 
in terms of person‐time, which would usually 
require use of rate differences.) They concluded 
that there was no significant difference in the 
rate of MACEs associated with anti‐IL‐12/23 
antibodies, but that even the metaanalysis may 
have been underpowered to identify a significant 
difference (because there were only 10 events).

In a second metaanalysis, Tzellos and col-
leagues also studied anti‐IL‐12/23 biologic 
agents (ustekinumab and briakinumab) with 
respect to risk of MACEs, specifically in the set-
ting of treatment of chronic plaque psoriasis 
[256]. Studies of psoriatic arthritis were 
excluded, as in the Ryan metaanalysis. These 
authors used the Peto fixed‐effect method to 
estimate odds ratios. They found a “possible 
higher risk of MACEs” in patients treated with 
anti‐IL‐12/23 antibodies compared with pla-
cebo‐treated patients (OR 4.23, 95% CI 1.07–
16.75, P = 0.04).

A lesson from these examples is that, particu-
larly in the setting of rare events, conclusions of 
the metaanalysis can depend on the inclusion 
and exclusion criteria for studies and on the 
choice of statistical methods. Those points have 
been made throughout this chapter but this is a 
particularly telling example, because of the 
potential for impact on the product label.
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Indirect Comparisons: Network 
Metaanalysis and Simultaneous Evaluation 
of Treatment Therapies for the Same 
Indication
The efficacy and acceptability of new‐generation 
antidepressants for the treatment of major 
depression were assessed using multiple treat-
ment metaanalyses. Authors of this metaanalysis 
included randomized controlled trials that com-
pared 12 new antidepressants and excluded pla-
cebo groups where present. Trials were identified 
in the Cochrane Collaboration Depression, 
Anxiety, and Neurosis Review Group controlled 
trials registers, and the authors asked pharmaceu-
tical companies, regulatory agencies, and study 
investigators to supply information.

Efficacy was evaluated as the proportion of 
patients who had a reduction of at least 50% 
from the baseline score on the Hamilton or 
Montgomery–Åsberg depression rating scales 
or the proportion of subjects who scored “much” 
or “very much” improvement on the clinical 
global impression at eight weeks, or between six 
and 12 weeks when data at eight weeks were not 
available. Acceptability of therapy was evaluated 
as the proportion of patients who terminated 
the study early for any reason during the first 
eight weeks of treatment.

The authors calculated the ORs for each of the 
drugs compared to fluoxetine, using a random‐
effects model within a Bayesian framework, using 
Markov chain Monte Carlo methods in WinBUGS 
[257] (a statistical program). In addition, they esti-
mated the probability that each antidepressant was 
the most efficacious, or the most acceptable, the 
second best, the third best, and so on. The Bayesian 
analysis uses an iterative process to estimate treat-
ment effects. For this analysis, the authors counted 
the proportion of iterations in which each antide-
pressant had the highest OR, the second highest, 
etc., in order to obtain the ranks of treatments in 
terms of efficacy and acceptability. To assess the 
consistency between direct and indirect evidence, 
the authors also calculated the ratio of odds ratios 
for indirect versus direct evidence.

Overall, 117 trials from 1991 to 2007 with 
25 928 individuals assigned to one of the 12 anti-
depressants were included in the analyses. 
Overall, there was consistency between direct 
and indirect evidence. Only three out of 70 
comparisons of direct with indirect evidence for 
efficacy and three out of 63 comparisons for 
acceptability were found to be inconsistent.

The authors concluded that not all the antide-
pressants were equally efficacious or equally well 
tolerated; they provided a matrix that simultane-
ously compared the 12 antidepressants for effi-
cacy and acceptability and reported the ranking 
of antidepressants for efficacy or acceptability.

It is not surprising that studies of this nature 
generate a lot of attention. This study generated 
many “Letters to the Editor,” whose content 
ranged from congratulations on how well the 
study helps healthcare providers identify the 
best treatments to severe criticism. One of the 
main criticisms was that excluding placebo‐
controlled data and including only one dose 
group when multiple doses were evaluated 
would lead to selection bias that could affect the 
rank‐order of antidepressants. In fact, the ranks 
were different from those calculated in other 
studies [258]. Another shortcoming is that pub-
lication bias could invalidate the study findings.

Another study compared the results of FDA‐
registered antidepressant trials with the results 
from published trials, and found that 95% of 
the trials in the published literature were “posi-
tive” compared to only 51% of FDA‐registered 
studies [205]. Therefore, a metaanalysis that 
relies primarily on published data, as this study 
did, will likely overestimate the effect size of 
treatments.

Food and Drug Administration’s Regulatory Role
In recent years, the FDA has used metaanaly-
sis to investigate adverse events associated 
with the use of certain drugs. The findings 
from those metaanalyses were used to sup-
port a regulatory decision to mandate a labe-
ling change.
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As an example, to review the possible associa-
tion of suicidality events with antiepileptic drugs, 
the FDA contacted all sponsors of antiepileptic 
drugs and requested that they submit placebo‐
controlled trial data from all of their studies. The 
FDA statistical review of 199 placebo‐controlled 
trials from 11 antiepileptic drugs found that there 
were 1.9 per 1000 (95% CI 0.6, 3.9) more antiepi-
leptic drug patients than placebo patients who 
experienced suicidal behavior or ideation com-
pared to the placebo patients (www.fda.gov/
downloads/Drugs/DrugSafety/PostmarketDrug 
SafetyInformationforPatientsandProviders/
UCM192556.pdf). Based on the findings, the 
FDA requested the sponsors of antiepileptic 
drugs, except for those indicated for short‐term 
use, to include new information in the “Warnings 
and Precautions” section of the product labeling 
about an increased risk of suicidal thoughts or 
actions and to develop a Medication Guide to 
help patients understand this risk.

Not only does metaanalysis sometimes sup-
port the decision to change or update the cur-
rent labeling of approved drugs, it can also 
provide evidence as to whether or not to keep a 
drug on the market. A decision may be made 
either to withdraw the drug completely or to 
withdraw its use for a particular indication. For 
example, metaanalysis was used to review the 
safety of cefepime, which is indicated for treat-
ment of a variety of infections by susceptible 
strains of microorganisms. Cefepime was sug-
gested to have potentially increased mortality in 
a study‐level metaanalysis published by Yahav 
et al., based on 38 clinical trials [259]. The FDA 
performed its own metaanalysis on the study 
level, as well as the patient level, with data from 
88 clinical trials. Based on the analysis results, 
the FDA concluded that cefepime remains an 
appropriate therapy for its approved indications, 
as neither metaanalysis showed a statistically 
significant difference in mortality with cefepime.

These examples highlight the point that, while 
publication bias is often a major concern in con-
ducting a metaanalysis, the FDA has the unique 

authority to request the sponsors to submit data 
from all studies performed, regardless of the pub-
lication status. An added advantage for this pur-
pose is the FDA’s ability to work with patient‐level 
data. As with the antiepileptic drug and the anti-
depressant cases, the FDA reanalyzed and pre-
sented the Nissen–Wolski study‐level metaanalysis 
of rosiglitazone on patient‐level data as well 
(Advisory Committee, July 30, 2007; https://
wayback.archive‐it.org/7993/20170405051827/
w w w. f d a . g o v / o h r m s / d o c k e t s / a c / 0 7 /
briefing/2007‐4308b1‐02‐fda‐backgrounder.pdf). 
For this metaanalysis, the database for the FDA 
reanalysis differed on 14 studies compared to the 
database used in the Nissen–Wolski study; the 
FDA excluded four open‐label trials, six trials that 
did not include myocardial infarctions or deaths in 
the analysis, and two long‐term trials that were 
considered not to be suitable for combining with 
the rest of the short‐term, small trials. By updating 
the database with additional available double‐
blind, randomized clinical trials, the FDA’s reanal-
ysis involved a total of 42 trials that used daily 
doses of 4 mg or 8 mg of rosiglitazone to treat 
patients with type 2 diabetes. The FDA’s patient‐
level metaanalysis showed that the overall OR for 
total ischemic events was 1.4 (95% CI 1.1, 1,8; P = 
0.02), and 1.4 for serious ischemic events (95% CI 
1.0, 2.1; P = 0.06). These findings were consistent 
with those of Nissen and Wolski in that about a 
40% increase in myocardial ischemia among dia-
betes patients taking insulin or those using nitrates 
is observed. However, the FDA reanalysis did not 
provide sufficient evidence to show an increased 
risk in the studies comparing rosiglitazone with 
metformin or a sulfonylurea.

 The Future

The examples above have raised several impor-
tant issues that will need to be addressed in the 
future. A set of issues not fully addressed above 
relates to the appropriate approach to evaluating 
safety during drug development. In particular, 
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how should the issue of multiplicity be addressed? 
The SPERT group outlined broad principles and 
pointed toward potential solutions, including the 
use of a tiered approach to defining adverse 
events [34]. During development, there is multi-
plicity with respect to the enormous number 
of  adverse events that are routinely collected. 
Literally hundreds of categories are routinely 
tabulated. If cumulative metaanalyses are 
updated each time a trial completes during devel-
opment, the repeated testing (even of events pre-
specified for formal testing) generates another 
level of multiplicity. In the safety setting, 
one would not necessarily want to be as strict in 
correcting for multiplicity as in the efficacy 
 setting, but at an alpha level of 0.05, the possibil-
ity of generating an excessive number of false‐pos-
itive  signals is a real one. Although “compromise” 
corrections have been proposed, these tend to 
focus mostly on P values, ignoring direct consid-
eration of the magnitude of effects and the clinical 
importance of the events in question.

We described earlier the current situation 
with respect to registration of clinical trial pro-
tocols and results. There is a wide array of 
mostly unconnected registries that make it 
impossible to find all the relevant studies in one 
place. What would be really useful is a dedicated 
search engine that, with low false‐positive and 
false‐negative rates, would be able to search all 
these registers to find all the trials with given 
characteristics, so that those doing a metaanaly-
sis might be able to track unpublished as well as 
the published trials. It certainly seems there is 
potential for better ascertainment of all the rel-
evant randomized evidence, but it is not clear 
whether this potential is being met.

When hundreds of categories of events are 
tabulated, it is likely that most specific events 
will have been experienced by a very small num-
ber of individuals. How broadly or narrowly to 
define collections of events (composite out-
comes) becomes a key question in this context. 
One might wish to err on the side of being inclu-
sive of all types of events that might be related to 

a drug. Doing so increases the actual counts of 
events, which can potentially increase statistical 
power. Conversely, choosing a narrower defini-
tion risks being too granular and losing statisti-
cal power by reducing the counts, but may also 
eliminate “noise” (events that are clinically less 
important or that may simply be associated 
with  the underlying indication). Work to date 
suggests that more targeted definitions can 
sometimes lead to stronger signals (larger rela-
tive risks) and may actually make it more likely 
that signals will be detected [260,261].

The question of how to respond, from a spon-
sor or regulatory perspective, in the presence of 
heterogeneous results is also an open one. 
When there is little or no heterogeneity of 
results among trials, one might be willing to 
accept metaanalytic evidence as helping to 
establish effectiveness or harm. It is less obvious 
what to do with the results of a metaanalysis 
when there is substantial heterogeneity. If the 
heterogeneity is adequately explained in the 
analysis in terms of subgroup effects or trial 
quality, metaanalysis might still be an accepta-
ble part of demonstrating effectiveness or harm, 
but such a conclusion might be conditional on 
the type of patient or other factors. How should 
results be interpreted when some trials show 
harm and others show no effect of a drug (rela-
tive risks or risk differences close to the null)? Is 
this an indication that treatment is harmful in 
some but not all situations? Does such a situa-
tion simply reflect random variability? The 
threshold for action in the face of heterogeneity 
of findings may well be different for safety end-
points than for efficacy endpoints, but work is 
needed to establish transparent criteria by 
which to evaluate such situations.

Earlier in this chapter we discussed the princi-
ples behind indirect comparisons. As the focus 
of policy and clinical decisions moves in the 
direction of comparative effectiveness (see 
Chapter  26), which also includes comparative 
safety, there are serious questions about how to 
define research agendas. In principle, one might 



The  uture  933

wish to make direct comparisons across all 
drugs (or therapies) for a given indication. Who 
will fund such studies, which will need to be 
large, is not at all clear. The principles defining 
validity of indirect comparisons have been 
described. Work is needed, however, to explore 
in practice the conditions under which indirect 
comparisons, or mixed treatment comparisons, 
may be both valid and useful. Are there particu-
lar types of questions that can be evaluated 
using these alternative approaches? One study 
showed that indirect comparisons often, but not 
always, agree with direct comparisons [262]. 
How and when to incorporate studies that are 
not head‐to‐head comparisons needs further 
empirical study.

The inclusion of nonexperimental observa-
tional studies in metaanalyses, particularly of 
serious but uncommon adverse events, will 
almost certainly be a necessity. To the extent 
that clinical trials performed in support of new 
drug approvals tend to include populations that 
are different from the population in which the 
drug will be used after approval, safety assess-
ments done during development will need to be 
supplemented with studies done in actual clini-
cal practice. Sample sizes during development 
also tend to be limited, making it necessary to 
study large populations to evaluate risks of 
uncommon but serious adverse events.

In the US, the FDA has established a network of 
observational databases, known as the Sentinel 
Network, aimed at exactly this type of assessment 
of drug safety in clinical practice (described in 
detail in Chapter 25). The legislative mandate was 
to provide access to claims or electronic medical 
records data from 100 million individuals by 2012 
[263,264]. Current information regarding Sentinel 
can be accessed at the Sentinel website (www.fda.
gov/Safety/FDAsSentinelInitiative/default.htm) 
[265]. Sentinel posts results of analyses conducted 
and provides open access to analytical tools used 
in those analyses.

Sentinel uses what is known as a distributed 
network (see Chapter 25). That is, providers of 

data house the data and provide analytical 
results, at the aggregate level only, to a central 
group that evaluates the appropriateness of 
combining results across data sources. A dis-
tributed network allows the data providers, who 
are most familiar with the idiosyncrasies of their 
respective databases, to be the ones manipulat-
ing the raw data. This approach also avoids 
issues related to privacy, as only the aggregate‐
level results are made public. Making such a 
 distributed approach work efficiently and effec-
tively requires the use of a common data model, 
that is, shared definitions of variables related to 
drug exposure and outcomes, across all data 
sources.

In a related effort, a public–private partner-
ship, known as the Observational Medical 
Outcomes Partnership (OMOP), was funded 
by the pharmaceutical industry and included 
representatives from industry, the FDA, and 
academic institutions. OMOP investigators 
conducted methodologic research to deter-
mine which approaches to analysis of such 
observational data provide the “best” (least 
biased, most consistent, most precise) results 
(see Chapter 27). OMOP also adopted a com-
mon data model, which differs from the 
Sentinel common data model.

OMOP no longer exists but gave rise to 
two  related efforts: Innovation in Medical 
Evidence Development and Surveillance 
(IMEDS: http://reaganudall.org/innovation‐
m e d i c a l ‐ e v i d e n c e ‐ d e v e l o p m e n t ‐ a n d ‐
surveillance) and the Observational Health 
Data Sciences and Informatics (OHDSI: 
www.ohdsi.org/) been established under the 
auspices of the Reagan–Udall Foundation. 
IMEDS is a public–private partnership that 
now provides access for private‐sector organ-
izations, such as the pharmaceutical indus-
try, academic institutions, and nonprofit 
organizations to a system based on Sentinel. 
Selected Sentinel data partners and the 
Harvard Pilgrim Healthcare Institute, which 
functions as the analytic or coordinating 
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center, with governance by IMEDS, facilitate 
the analyses of medical product safety evalu-
ations. The Reagan–Udall Foundation was 
established by the US Congress to advance 
regulatory science, for the purpose of helping 
the FDA advance its mission.

The OHDSI (pronounced Odyssey) program 
is a multi‐stakeholder collaborative established 
to bring out the value of health data through 
large‐scale analytics. All of its solutions are 
open‐source. OHDSI has established a global 
network of researchers and observational health 
databases with a coordinating center housed at 
Columbia University. All the data sources avail-
able to OHDSI are part of a distributed data net-
work and use the OMOP common data model.

Other distributed data networks have been 
established outside the US for similar purposes. 
For example, the Drug Safety and Effectiveness 
Network (DSEN) in Canada created a pan‐
Canadian collaboration of researchers, the 
Canadian Network for Observational Drug Effect 
Studies (CNODES: www.ices.on.ca/Research/
Research‐programs/Chronic‐Disease‐and‐
Pharmacotherapy/CNODES), to facilitate the 
study of specific drug safety and effectiveness 
questions using multiple (generally provincial) 
healthcare databases. The overarching aim of 
CNODES is to use collaborative approaches to 
provide rapid, population‐based answers to 
questions about drug safety and effectiveness. 

The Asian Pharmacoepidemiology Network 
(ASPEN: http://aspennet.asia/) has also been 
created as a multinational research network. 
Similar to the other networks, it was formed to 
support the conduct of drug safety research and 
help identify emerging safety issues among 
the  Asian countries. The European Network of 
Centres for Pharmacoepidemiology and 
Pharmacovigilance (ENCePP; www.ema.europa.
eu/ema/index.jsp?curl=pages/partners_and_
networks/general/general_content_000229.
jsp&mid=WC0b01ac05801df747) was estab-
lished in 2007 and also aims to strengthen the 
ongoing evaluation of benefits and risks of medi-
cines, principally by facilitating the conduct of 
multicenter, independent (of the sponsors) post-
authorization studies, almost all of which are 
observational research.

In conclusion, while there are no easy answers 
to many of the questions presented in this chap-
ter, it is clear that metaanalysis will play an 
increasingly important role in the formulation 
of treatment and policy recommendations. 
Thus, the qualities of the metaanalyses per-
formed, and of the included studies, are of the 
utmost importance and need to be reviewed by 
the scientific community in an open, published 
forum. If they are carefully interpreted in view 
of their strengths and weaknesses, metaanalyses 
should prove to be extremely helpful in pharma-
coepidemiologic research.
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To provide evidence‐based care, clinicians 
need to know the benefits and risks of the 
medications they are prescribing (see 
Chapter  35), and this information needs to 
come from robust research. For example, evi-
dence for medication efficacy typically comes 
from randomized controlled trials, whereas 
establishing the magnitude of a drug safety 
concern often comes from observational stud-
ies using self‐reported data or from electronic 
data such as administrative claims data or elec-
tronic health records (EHRs). Previous edi-
tions of this chapter focused primarily on 
self‐reported data or administrative claims, 
but with the growing availability of EHR data, 
pharmacoepidemiologists are increasingly 
using these data for research because they con-
tain more granular information such as the 
reason for medication prescription, laboratory 
test results, and patient vitals (e.g., blood pres-
sure and weight).

 Clinical Problems to be 
Addressed by 
Pharmacoepidemiologic 
Research

Of particular concern to the subject of this book is 
the validity of data on drug exposure and disease 
occurrence because the typical focus of pharma-
coepidemiologic research is often the association 
between a medication and an adverse drug 
event.  Further, many potential confounders of 
importance in pharmacoepidemiologic research 
(although certainly not all) are either drugs or dis-
eases. Clinicians recognize that patients very often 
do not know the names of the drugs they are taking 
currently. Thus, it is a given that patients have dif-
ficulty recalling past drug use accurately, at least in 
the absence of aids to enhance recall. Superficially 
at least, patients cannot be considered reliable 
sources of diagnosis information either; in some 
instances, they may not have even been told 
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the correct diagnosis, let alone recall it. Yet, these 
data elements are crucial to pharmacoepidemio-
logic studies that ascertain data using question-
naires. Special approaches have been developed by 
pharmacoepidemiologists to obtain such data 
more accurately when using self‐report for data 
collection, but the success of these approaches 
needs to be considered in detail.

Besides self‐reported data, pharmacoepide-
miologists have been using administrative 
claims data for more than 30 years to evaluate 
drug safety. We discuss validity issues with using 
these data for research. However, the changing 
landscape of healthcare requires reassessing the 
validity of the data pharmacoepidemiologists 
are now using for their research and how these 
data impact clinical practice.

More and more, pharmacoepidemiologists 
are turning to EHR data for their research.

Whereas the increased granularity of EHR data 
is a benefit for their use in pharmacoepidemiology, 
important limitations of these data include their 
potential incompleteness and lack of interoperabil-
ity across health systems. Unless EHR data arise 
from “closed” healthcare systems where patients 
receive all their outpatient and inpatient care, then 
the EHR data may represent only a portion of the 
patients’ health problems and care received. If EHR 
data from multiple health systems are used, even if 
the health systems use the same EHR vendor, the 
data may need to be restructured so that they are 
consistent across all data arising from all health 
systems. The clinician reviewing evidence for 
patient care that arises from studies using EHR 
data trusts that these data have been curated suffi-
ciently to produce robust and valid study findings.

 Methodologic Problems 
to be Solved by 
Pharmacoepidemiologic 
Research

There are five major methodologic problems 
 associated with validity of data for pharmacoepide-

miologic research: indices of measurement error, 
quantitative measurement of validity, quantitative 
measurement of reliability, measurement error in 
pharmacoepidemiologic research, and adjusting 
measures of association for measurement error.

Indices of Measurement Error

Two main comparisons may be drawn between 
two (or more) methods of data collection or 
sources of information on exposure or outcome: 
validity and reliability. Many different terms 
have been used to describe each, resulting in 
some confusion. Although the literature uses 
the term validation study or verification to 
describe the agreement between two sources of 
information, concordance or agreement might 
be a more appropriate term to describe the 
comparison between data sources because 
 validation requires a “gold standard.” In the 
 following discussion, we define and differentiate 
between validity and reliability. Validity is 
assessed using sensitivity and specificity, while 
reliability is typically measured using percent 
agreement and kappa [1].

Quantitative Measurement of Validity

Only when one of the methods or sources is 
clearly superior to the other can the comparison 
be said to measure validity. The superior method 
or source is often called a “gold standard.” In 
recognition that a method or source can be 
superior to another method or source without 
being perfect, the term alloyed (or tarnished) 
gold standard has been used [2].

For a binary exposure or outcome measure, 
such as “ever” versus “never” use of a particular 
drug, two measures are used to assess validity. 
Sensitivity measures the degree to which the 
potentially inferior source or method correctly 
identifies individuals who, according to the supe-
rior method or source, possess the characteristic 
of interest (i.e., ever used the drug). Specificity 
measures the degree to which the inferior source 
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or method correctly identifies individuals who, 
according to the superior method or source, lack 
the characteristic of interest (i.e., never used the 
drug). Figure  37.1 illustrates the calculation of 
sensitivity and specificity.

Sensitivity and specificity are the two sides of 
the validity coin for a dichotomous exposure or 
outcome variable. In general, sources or meth-
ods with higher sensitivity tend to have lower 
specificity, and methods with higher specificity 
tend to have lower sensitivity. In these very 
 common situations, neither of the two sources 
or methods compared can be said to have supe-
rior overall validity. Depending on particulars of 
the study setting in which the research question 
is addressed, either sensitivity or specificity 
may  be the more important validity measure. 
Moreover, absolute values of these measures can 
be deceiving. For instance, if the true prevalence 
of ever use of a drug is 5%, then an exposure 
 classification method or information source 
with 95% specificity (and perfect sensitivity) will 
incorrectly double the measured prevalence to 
10%. The ultimate criterion of importance of a 
given combination of sensitivity and specificity 
is the degree of bias exerted on a measure of 
effect such as an estimated relative risk due to 
measurement error.

As measures of validity, sensitivity and speci-
ficity have “truth” (i.e., the classification accord-
ing to a gold standard or an alloyed gold 
standard) in their denominators. Investigators 
should take care not to confuse these measures 

with the predictive values of positive and 
 negative classifications, which include the infe-
rior measure in their denominators. We distin-
guish here between the persons who actually do 
or do not have an exposure or outcome with 
those who are classified as having it or not hav-
ing it (using the potentially inferior or alterna-
tive data source). The proportion of persons 
classified as having the exposure or outcome 
who truly do have the exposure or outcome is 
the positive predictive value. The proportion of 
persons correctly classified as lacking the expo-
sure or outcome is the negative predictive value.

Assessment of the positive predictive value 
(as is performed in many validation studies in 
administrative claims and EHR data) of an out-
come does not directly measure the validity of 
the data source. Predictive values are measures 
of performance of a classification method or 
information source, not measures of validity. 
Predictive values depend not only on the sensi-
tivity and specificity (i.e., on validity) but also on 
the prevalence of the exposure or outcome. 
Thus, if a method or information source for 
classifying persons with respect to outcome or 
exposure has the same sensitivity and specificity 
in two populations but those populations differ 
in their outcome or exposure prevalence, the 
source or method will have different predictive 
values in the two populations. Nonetheless, all 
measures are useful and the most important one 
will depend on the question being answered. 
Ideally, one would design a validation study to 
calculate sensitivity and specificity as well as 
positive and negative predictive values.

In some validation studies, one method or 
source may be used as a gold standard or as an 
alloyed gold standard to assess another method 
or source with respect to only one side of the 
validity coin. Studies that focus on the com-
pleteness of one source, such as studies in which 
interview responses are compared with pre-
scription dispensing records to identify drug 
exposures that were forgotten or otherwise not 
reported by the respondents, may measure 
(more or less accurately) the sensitivity of the 
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Figure 37.1 Formulas for calculating sensitivity and 
specificity.
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interview data. However, such studies are silent 
on the specificity unless one acknowledges 
strong assumptions (e.g., that the respondent 
could not have obtained the drug in a way 
that would not be recorded in the prescription 
dispensing records). Similarly, in administrative 
claims data, prescriptions that are filled outside 
the insurance plan may not be captured in the 
database, especially for generic drugs that are 
less costly to purchase outright rather than 
using a co‐pay.

For a drug exposure, a true gold standard 
would be a list of all drugs the study participant 
has taken (i.e., ingested), including dose, dura-
tion, and dates of exposure. This drug list might 
be a diary of prescriptions the study participants 
kept or, perhaps more readily available, a com-
puterized database of filled prescriptions, 
although neither of these data sources is a genu-
ine gold standard. Prescription diaries cannot 
be assumed to be kept in perfect accuracy. For 
instance, participants may tend to record that 
drug use was more regular and complete than it 
actually was or that use adhered to the pre-
scribed regimen. Similarly, substantial gaps may 
exist between the point at which a prescription 
is filled and when it is ingested, if it is ingested at 
all. See Chapter  38 for further discussion of 
adherence.

Two methods are used to quantify the validity 
of continuously distributed variables, such as 
duration of drug usage. The mean and standard 
error of the differences between the data in 
question and the valid reference measurement 
are typically used when the measurement error 
is constant across the range of true values (i.e., 
when measurement error is independent of 
where an individual’s true exposure falls on the 
exposure distribution in the study population) 
[3]. With the caveat that it is generalizable only 
to populations with similar exposure distribu-
tions, the product–moment correlation coeffi-
cient may also be used.

High correlation between two measures 
does not necessarily mean high agreement. 
For instance, the correlation coefficient could 

be very high (i.e., close to 1), even though one 
of the variables systematically overestimates or 
underestimates values of the other variable. 
The high correlation means that the over‐ or 
underestimation is systematic and very con-
sistent. When the two measures being com-
pared are plotted against each other and they 
have the same scale, full agreement occurs only 
when the points fall on the line of equality, 
which is 45° from either axis [4]. However, per-
fect correlation occurs when the points lie 
along any straight line parallel to the line of 
equality. It is difficult to tell from the value of a 
correlation coefficient how much bias will be 
produced by using an inaccurate measure of 
disease or exposure.

Quantitative Measurement 
of Reliability

When the same data collection method or 
source of information is used more than once 
for the same information on the same individ-
ual, comparisons of the results measure the 
reliability of the method or information 
source. An example of a reliability study is a 
comparison of responses in repeat interviews 
using the same interview instrument. 
Reliability is not validity, although the term is 
sometimes used, inaccurately, as such. In gen-
eral, studies that measure mere agreement are 
all too commonly interpreted as though they 
measured validity or accuracy. The term reli-
ability tends to be used far too broadly to refer 
variously not only to reliability itself, but to 
agreement or validity as well. Researchers and 
others should take greater care with the way 
they use such terms.

When different data collection methods or 
different sources of information are compared 
(e.g., comparison of prescription dispensing 
records with interview responses), and neither 
of them can be considered distinctly superior to 
the other, the comparisons measure mere agree-
ment. Agreement between two sources or 
methods does not imply that either is valid.
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To evaluate reliability or agreement for 
 categorical variables, the percentage agreement 
between two or more sources and related 
(kappa) coefficient are used. They are used only 
when two imperfect classification schemes are 
being compared, not when one classification 
method may be considered a priori superior to 
the other [3,5]. The kappa statistic is the per-
centage agreement corrected for chance [3]. 
Agreement is conventionally considered poor for 
a kappa statistic less than zero, slight for a kappa 
between zero and 0.20, fair for a kappa of 0.21–
0.40, moderate for a kappa of 0.41–0.60, substan-
tial for a kappa of 0.61–0.80, and almost perfect 
for a kappa of 0.81–1.00 [1]. Figure 37.2 illustrates 
the percentage agreement and kappa calculations 
for a reliability assessment between question-
naire data and medical record information.

The intraclass correlation coefficient is used 
to evaluate the reliability of continuous varia-
bles [5]. It reflects both the average differences 
in mean values as well as the correlation between 
measurements. The intraclass correlation coef-
ficient indicates the degree to which the total 
measurement variation is due to the differences 
between the subjects being evaluated and to dif-
ferences in measurement for one individual. 
When the data from two sets of measurements 
are identical, the intraclass correlation coeffi-
cient equals 1.0. Under certain conditions, the 

intraclass correlation coefficient is exactly 
equivalent to Cohen’s weighted kappa [3]. It is 
impossible to translate values of measures of 
agreement, such as kappa, into expected degrees 
of bias in exposure or disease associations.

Measurement Error 
in Pharmacoepidemiologic Research

Epidemiologic assessments of the effects of a 
drug on disease incidence depend on an accu-
rate assessment of the study exposure, disease 
occurrence, and variables to be adjusted in the 
statistical analysis. Measurement error for any 
of these factors may incorrectly identify a risk 
factor in the study that does not exist in the 
population or, conversely, may fail to detect a 
risk factor when one truly exists.

In an epidemiologic study, the measure of asso-
ciation is often based on the number of subjects 
categorized by the cross‐classification of presence 
or absence of disease and exposure. For example, 
when questionnaire data are used to study the 
association between drug A and disease B, study 
participants who forget their past exposure to 
drug A would be incorrectly classified as nonex-
posed. Similarly, if a provider uses a diagnosis 
code to document the process of testing and rul-
ing out a disease and then a researcher uses the 
diagnosis code as a study outcome, then the per-
son would be incorrectly classified as having the 
outcome. This misclassification is a measurement 
error. Although the measurement process often 
involves some error, if this measurement error is 
of sufficient magnitude, the validity of the study’s 
findings is diminished.

Surprisingly, measurement error is often 
ignored in epidemiologic studies. Jurek et al. [6] 
reported the results of a random survey of 
 studies published in three major epidemiology 
journals; they concluded the following for 
 exposure‐measurement error (EME): “Overall, 
the potential impact of EME on error in epide-
miologic study results appears to be ignored 
 frequently in practice” (p. 871).
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Measurement error is a potentially serious 
cause for concern in epidemiologic studies, and 
therefore, for several reasons, this should not be 
ignored when analyzing and interpreting phar-
macoepidemiologic study results. First, small 
amounts of measurement error can cause large 
amounts of error in study results. For example, 
consider a pharmacoepidemiologic study of 
nonsteroidal antiinflammatory drug (NSAID) A 
versus NSAID B on gastrointestinal (GI) bleed 
(Figure 37.3). In a study with a total number of 
study subjects equal to more than 22 000, if only 
10 subjects are misclassified with respect to 
their exposure or disease (five who actually took 
NSAID B are incorrectly classified as having 

taken NSAID A, and five users of NSAID A 
without GI bleed are incorrectly classified as 
having GI bleed), the observed odds ratio (OR) 
would be 2.1 when the correct OR is in fact 1.0.

Second, measurement error can cause study 
results to overestimate or underestimate true 
effect sizes, and there is no simple rule for pre-
dicting the direction of the error in real‐life situ-
ations. We now understand that these old and 
often‐cited heuristics are not necessarily true, 
except under special conditions that are not likely 
to occur in practice: (1) nondifferential misclas-
sification always produces bias toward the null, 
and (2) bias toward the null always produces an 
observed relative risk that is an underestimate of 

Case-Control Study of NSAIDs and Myocardial Infarction (MI)
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Figure 37.3 Example of differential misclassification of exposure.
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the true relative risk. These heuristics are unlikely 
to be true in practice for the following reasons.

 ● Conditions beyond nondifferentiality are 
required to guarantee bias is toward the null 
[7–12] (e.g., when the degree of exposure 
measurement error systematically differs 
across levels of a polychotomous or continu-
ous exposure variable, or when errors in 
measuring the exposure and outcome are not 
independent).

 ● Even when the above conditions beyond non-
differentiality are met, exact nondifferential-
ity is required to guarantee bias is toward the 
null [13,14].

 ● Also required to guarantee bias is toward 
the null is either (1) the absence of other 
study biases (e.g., absence of confounding, 
absence of bias due to nonrandom subject 
selection/participation) or (2) the com-
bined effect of all other biases is also toward 
the null [13].

 ● Bias is a statistical term that is defined as the 
difference between the true value and the 
expected value of an estimator (i.e., the aver-
age of study results over hypothetical repeti-
tions of the study). Bias is not the difference 
between the observed estimate for one rep-
etition of the study and the true value. This 
important distinction was not appreciated 
in earlier writings on this topic, and even 
today we epidemiologists are not careful in 
our use of the term bias. Therefore, when 
bias is toward the null, the expected value of 
the estimator is shifted toward the null, but 
an observed estimate can be an overestimate 
of the true relative risk due to the influence 
of random error [13]. (Similarly, when there 
is no bias of any kind, one observed estimate 
can be an overestimate or an underestimate 
of the true relative risk simply due to ran-
dom error.)
Third, error in measuring variables to be 

adjusted in the analysis can result in only partial 
adjustment for the mismeasured variables [15].

Adjusting Measures of Association 
for Measurement Error

One can use sensitivity analysis methods (also 
known as uncertainty analysis and bias analysis) 
[16–24] to adjust measures of association for 
measurement error as well as for other study 
biases. (As used in this context, the meaning of 
the term sensitivity differs from its other epide-
miologic meaning as the counterpart to speci-
ficity as a measure of classification validity.) 
Sensitivity analysis is the last line of defense 
against biases after every effort has been made 
to eliminate, reduce, or control them in study 
design, data collection, and data analysis. In a 
sensitivity analysis, one alters key assumptions 
or methods reasonably to see how sensitive the 
results of a study are to those variations. (See 
Chapter 38 for discussion of sensitivity analyses 
in pharmacoeconomic studies.)

One key assumption, usually implicit, in any 
study that does not quantitatively account for 
the possibility of error in measuring the study 
exposure or study outcome is that the exposure 
and the outcome in a study have been measured 
accurately. With estimates of sensitivity and 
specificity from validation studies (from previ-
ous research or from a subsample within the 
study analyzed) or “guesstimates” from expert 
experience and judgment, one can modify this 
assumption and use sensitivity analysis meth-
ods to “back calculate” what the results might 
have looked like if more accurate methods had 
been used to classify participants with respect 
to outcome, exposure, or both [17,25].

For many years, a qualitative and informal ver-
sion of this kind of assessment has been con-
ducted. However, the net result is controversy, 
with investigators judging the bias small and crit-
ics judging it large. Further, in the absence of a 
formal bias analysis, intuitive judgments, even 
those of the most highly trained and widely expe-
rienced investigators, can be poorly calibrated in 
such matters. Formal sensitivity analysis makes 
the assessment of residual bias transparent and 
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quantitative and forces the investigator (and other 
critics) to defend criticisms that in earlier times 
would have remained qualitative and unsub-
stantiated. An important and well‐known his-
torical example is the bias from nondifferential 
misclassification of disease proposed by 
Horwitz and Feinstein [26] to explain associa-
tions between early exogenous estrogen prepa-
rations and endometrial cancer. When proper 
sensitivity analyses were conducted to assess 
this bias, only a negligible proportion of those 
associations were explained by bias [26–28].

Epidemiologic applications of quantitative 
methods with a long history in the decision sci-
ences have become accessible for quantifying 
uncertainties about multiple sources of system-
atic error in a probabilistic manner [24,29–31]. 
These methods permit the incorporation of avail-
able validation data as well as expert judgment 
about measurement error, uncontrolled con-
founding, and selection bias along with conven-
tional sampling error, and prior probability 
distributions for effect measures themselves, to 
form uncertainty distributions. These approaches 
have been used practically in pharmacoepidemi-
ology studies such as in assessing selection bias in 
a study of topical coal tar therapy and skin cancer 
among severe psoriasis patients [30]; exposure 
misclassification and selection bias in a study of 
phenylpropanolamine use and stroke [24]; and 
selection bias, confounder misclassification, and 
unmeasured confounding in a study of less than 
standard therapy and breast cancer mortality 
[29], as well as in other clinical and nonclinical 
applications [18,31–39].

Sometimes biases can be shown to be of more 
concern and sometimes of less concern than 
intuition or simple sensitivity analysis might 
suggest. Almost always, the probabilistic uncer-
tainty about these sources of systematic error 
dwarfs the uncertainty reflected by conven-
tional confidence intervals (CIs). By the use of 
these methods, the assessment of systematic 
error can move from a qualitative discussion of 
“study limitations,” beyond sensitivity analyses 

of one scenario at a time for one source of error 
at a time, to a comprehensive analysis of all 
sources of error simultaneously. The resulting 
uncertainty distributions can not only supple-
ment but also supplant conventional likelihood 
and P value functions, which reflect only random 
sampling error. As a result, much more realistic, 
probabilistic assessments of total uncertainty 
attending to effect measure estimates are in the 
offing [19].

 Currently Available Solutions

Conducting Validation Studies 
to Assess Self‐Reported Data

In 1979, Leon Gordis commented that epide-
miologists have become so enamored with 
analyzing their data that they have paid too lit-
tle attention to the validity of the raw data 
being analyzed with these sophisticated tech-
niques [40]. Gordis’ comment reflects a time 
when pharmacoepidemiologic research was 
typically conducted by using questionnaires to 
gather data. The field was only just beginning 
to use data that arose from the provision of 
healthcare, including health insurer data such 
as Medicaid claims.

This section of the chapter focuses on the col-
lection and validation of self‐reported data for 
pharmacoepidemiologic research. We begin 
this section with a brief discussion of how indi-
viduals store and retrieve information from 
memory, tasks that are required when respond-
ing to a questionnaire. We use an example of 
how a person might recall a depression episode 
to illustrate retrieval of specific information 
from memory. Recognizing the challenges of 
information retrieval, we discuss best practices 
for designing questions to elicit specific drug 
and diagnosis information. Separately for drugs 
and diagnoses, we discuss the influence of com-
parator selection when validating self‐reported 
data, the accuracy of recall, and the factors 
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influencing recall and provide examples for 
illustration.

Autobiographical Memory and the 
Response Process
Pharmacoepidemiologic research that relies on 
self‐reported data requires asking study 
respondents to recall events or exposures that 
occurred at some time in the past, with recall 
intervals spanning from days to years. The types 
of temporal questions study respondents are 
often asked and that require the memory pro-
cesses are as follows [41]:

 ● Time of occurrence, which requires respond-
ents to provide a date when an event occurred, 
such as when they were diagnosed with a par-
ticular condition.

 ● Duration questions such as, “How long did 
you take drug A?”

 ● Elapsed time, which asks how long it has been 
since an event occurred, including questions 
such as, “How many months has it been since 
you last took drug A?”

 ● Temporal frequency questions that ask 
respondents to report the number of events 
that occurred over a specific time period, 
such as “How many visits did you make to 
your primary care practitioner in the past six 
months?”

To appreciate the accuracy of data derived by 
respondent recall for addressing these types of 
questions, it is important to understand how we 
process, organize, and recall autobiographical 
information, which is key to the response pro-
cess. Creating and retrieving information from 
autobiographical memories is a three‐step pro-
cess. Information that comes in via sensory or 
emotional input (e.g., visual, hearing, semantic) 
is encoded into a construct that can be stored 
within the brain. The next step is storage, which 
refers to how the brain retains the information, 
typically in either short‐ or long‐term memory. 
Retrieval or recall of memories requires reac-
cessing information that was previously encoded 

and stored. Recall effectively returns a memory 
from long‐term storage to short‐term memory, 
where it can be accessed for retrieval purposes 
[42,43]. Current thinking is that retrieval of 
information from autobiographical memory is 
goal oriented, where the retrieval process 
requires bringing together spatial, temporal, 
and social information with information derived 
from the emotions and senses [42].

The recall of encoded or catalogued infor-
mation from memory is thought to be facili-
tated by using important personal milestones 
[41]. Thus, when respondents are asked to 
recall a visit to a doctor that may have occurred 
at a particular point in time, researchers believe 
that the respondents use scripts (a generic 
mental representation of the event) to help 
retrieval. For example, the respondent first 
contemplates a doctor visit in general and then 
supplements this script with details relevant to 
the particular visit that require contemplation 
for specific criteria (e.g., diagnosis) and timing 
(e.g., a particular year). In general, underre-
porting of medical conditions and health visits 
is more widespread as the interval since the 
event increases [44–46].

Recent evidence suggests that age affects 
memory details, with older individuals recalling 
slightly more details than younger individuals. 
Using an instrument focused on words used in 
everyday spoken and written language to meas-
ure autobiographical memory, Gardner and col-
leagues noted that recall of content and details 
for events and objects was slightly greater in 
adults 46–78 years old compared to those 26–45 
years of age for both recent and remote memo-
ries [47]. There was little difference between the 
two age groups for recalling individuals and 
temporal details of events.

Applying what we know about how autobio-
graphical memory is organized and the recall 
process in general helps us to understand survey 
response. A respondent undergoes four key 
tasks when asked to answer a questionnaire: (1) 
question comprehension and interpretation, (2) 
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search for and retrieval of information to 
 construct an answer to the question depending 
on whether appropriate cues are given, (3) judg-
ment to discern the completeness and relevance 
of memory for formulating a response, and (4) 
development of the response based on retrieved 
memories [41,48–50]. If survey instrument 
developers pay too little attention to the first 
two key tasks, their questions can be too vague 
or complex for respondents to marshal retrieval 
processes appropriately.

The following example best illustrates the 
response process [41] for recalling the date on 
which a respondent’s depression was diagnosed 
(January 2015). The recall process begins with 
the respondent being uncertain whether the 
depression was diagnosed in 2014 or 2015. To 
work towards identifying the correct year, the 
respondent recalls that the depression occurred 
after he lost his job. The job loss was particu-
larly traumatic because he and his wife just pur-
chased their first home a few months previously, 
and now, with the loss of his income, they were 
at risk of losing the house. The home purchase 

was a landmark event for this respondent, and 
he remembers that it occurred in mid‐2014, just 
as their children finished the school year. So, in 
2014 he lost his job, near the end of the year 
because the holiday season was particularly 
grim. He remembers that his depression was 
diagnosed after the holidays, but was it January 
or February of 2015? It was January 2015 
because he was already taking antidepressants 
by Valentine’s Day, when he went out to dinner 
with his wife and he could not drink wine with 
his meal. This chronology is illustrated in 
Figure 37.4. We describe below how to use the 
response process to design questions to elicit 
the self‐reported information requested.

As illustrated in Figure 37.4, landmark events 
probably serve as the primary organizational 
units of autobiographical memory and, as such, 
anchor information retrieval [51]. In particular, 
the example shows how the respondent used 
landmark and other notable events, relationships 
among datable events, and general knowledge 
(holiday period and children finishing the school 
year) to reconstruct when his major depression 

Jan Feb Mar Apr May Jun Jul Oct NovAug Sep Dec Jan Feb Mar Apr May Jun Jul

Moved into
new home

Kids finished
school

Lost Job
Valentine’s
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Grim
Holidays

Depression diagnosis
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When was your depression first diagnosed? The respondent knows it was in
either 2007 or 2008 but cannot remember when. The depression occurred

because he lost his job.

Figure 37.4 Recall schematic for showing how date of depression diagnosis was determined.
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was first diagnosed. An important caveat is that 
this respondent was willing to expend consider-
able effort to search his memory to determine 
when his depression was diagnosed  –  this may 
not be the situation for all respondents.

The next section takes what we know about 
autobiographical memory and the response 
process to develop questionnaires for pharma-
coepidemiologic research.

Best Practices for Questionnaire Design
Designing a questionnaire for collecting pharma-
coepidemiologic data requires consideration of 
the challenges and limitations of autobiographi-
cal memory as described above and careful plan-
ning and pretesting [52] before fielding the study. 
Survey researchers encourage use of several gen-
eral techniques to assist respondents in recalling 
information accurately, including use of refer-
ence periods (e.g., “in the past 12 months, that is, 
since December 1, 2017, how many times did 
you…”), event histories and calendars like the one 
in Figure  37.4, diaries, and photos of medica-
tions. We provide a more in‐depth discussion of 
questionnaire design for collecting medication 
and diagnosis data later. We recommend that, 
after collecting the self‐reported data using tech-
niques to maximize their accuracy, and prior to 
the analysis, researchers assess their accuracy for 
addressing the study hypothesis by comparing 
the data to another data source such as health 
insurer claims or EHRs [53].

We suggest the following steps be consid-
ered during the design and initial analysis 
stages of a study requiring data collection via 
questionnaire.

 ● Use validated instruments or validated ques-
tions whenever possible.

 ● Consider question banks if new questions are 
required, such as World Bank’s Living Standards 
Measurement Study [54] and Q‐Bank [55,56].

 ● Use question assessment tools to determine 
the likelihood of response error. These tools 
include the Question Appraisal System [57], 

the Survey Quality Predictor (SQP) [58], and 
the Question Understanding Aid (QUAID) 
[59,60].

 ● Strive for a fifth‐grade literacy level if you 
must develop new survey questions to be 
used for a general population [61].

 ● Pretest the questions using cognitive testing 
[62–64] to assess respondent comprehension 
of new questions.

The process of satisficing occurs when respond-
ents expend the least psychological and emotional 
effort possible to provide an acceptable answer to 
a survey question rather than an optimal answer 
[65,66]. To minimize satisficing, questionnaire 
developers should consider the length of the 
instrument and the number of response catego-
ries. When faced with a long list of choices and 
depending on the mode of questionnaire admin-
istration (i.e., telephone versus self‐administered), 
respondents may choose answers from either the 
top or the bottom of the list to minimize effort. 
For this reason, it is often recommended to rand-
omize response options. Respondents with lower 
cognitive skills and less education, when chal-
lenged with discerning the best possible response, 
are more apt to settle for a satisfactory rather than 
an optimal response. Because accuracy of 
response is critical for pharmacoepidemiologic 
research, questionnaire developers must consider 
methods to minimize response burden leading to 
satisficing.

With the increasing availability of broadband 
and the population’s access to the internet, more 
surveys are moving away from face‐to‐face and 
telephone interviewer administration to web‐
based surveys. This modality requires the same 
considerations for question design as described 
earlier, but because no interviewer is available, 
usability should be tested as well. Usability eval-
uates the survey–respondent interaction: essen-
tially, how efficiently and effectively respondents 
can answer the web‐based questions [67,68]. For 
example, usability evaluates screen size, button 
placement, and formatting issues specific to web 
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applications, especially for questionnaires using 
mobile technologies. Usability assessments can 
be combined with other pretesting modalities 
[52], including cognitive interviews, by embed-
ding probes that allow respondents to explain 
why they provided their answers [69], a parallel to 
face‐to‐face cognitive testing without requiring 
an interviewer [52].

The earlier discussion focused on measure-
ment error related to survey design and to 
respondent motivation. Measurement error can 
also be attributed to improper training of inter-
viewers and poor data entry quality. The degree 
to which one understands the measurement 
error associated with key variables critical to the 
analysis can be assessed by using several differ-
ent modelling approaches, which Biemer dis-
cusses in more detail [70].

Assessing the Accuracy of 
Self‐Reported Data
Despite researchers using the best methods 
for  designing questionnaires to elicit specific 
information on medications used previously 
and past diagnoses, self‐reported data still 
require evaluation for accuracy to ensure valid 
findings. Ideally, researchers will have access to 
a truly accurate comparison source (i.e., gold 
standard) so that sensitivity and specificity can 
be calculated for use in bias analyses. For exam-
ple, we can use pill counts, chemical markers 
inserted into the pills, electronic monitoring 
caps, or pharmacy dispensing databases to assess 
self‐reported medication use. As discussed ear-
lier, depending on the comparison data source, it 
may only be possible to calculate either sensitivity 
or specificity

Methodologic studies that use alternative 
data sources, such as prospectively collected 
drug data (e.g., from diaries), or databases of 
dispensed drugs can measure both sensitivity 
and specificity if one assumes that these data-
bases are true gold standards. In pharmacoepi-
demiology, lower sensitivity is often more of a 
concern than lower specificity. Questionnaires 

that underreport diseases or miss drug exposures 
because the medication was filled without using 
the pharmacy plan (e.g., when the co‐pay is 
higher than the cost of the medication) – that is, 
data sources with low sensitivity  –  cannot be 
used to rigorously evaluate drug–disease associa-
tions. Alternatively, low specificity is often less of 
a problem in pharmacoepidemiology unless the 
characteristic with low specificity also has very 
low prevalence in the population being studied. 
For example, because the incidence of Stevens–
Johnson syndrome is low, a small degree of mis-
classification when using administrative claims 
data in which the case definition uses the 
International Classification of Diseases, Ninth 
Edition, Clinical Modification (ICD‐9‐CM) code 
695.1 will include several skin problems other 
than Stevens–Johnson (i.e., the false‐positive rate 
would be high) [71].

Besides the need for completeness on the 
individual level, the comparator database must 
have information for all persons whose infor-
mation is to be assessed for accuracy. Systematic 
omissions of specific population groups, such as 
certain ethnic or racial groups, diminish the 
quality of the database.

In the next section of the chapter, we discuss 
issues in using the medical record as a compara-
tor data source to evaluate the accuracy and 
completeness of survey data on medication and 
diagnoses ascertained via self‐report. We dis-
cuss use of automated databases as a compara-
tor data source for assessing validity and 
reliability of self‐reported information in a later 
section.

Influence of Comparator Selection for 
Assessing Self‐Report Accuracy
The early work on evaluating the completeness 
of self‐reported diagnosis and medication data 
typically used paper medical records for compar-
ison [72–74]. In summary, several studies from 
the late 1980s through 2000 indicated that inpa-
tient medical records were often missing outpa-
tient medications [75–77]. Similarly, outpatient 



Validity ofoDrug andoDiagnosis Data inoPharmacoepidemiology960

medical records were also often incomplete, and 
completeness varied by the number and type of 
medication the patients were taking [78–82]. 
Diagnoses or other relevant inpatient informa-
tion were often omitted from patient records as 
well [83–86]. These studies indicate that the 
paper medical record may not be that useful for 
validation of diagnosis and medication data. 
With the greater availability of EHR software and 
policy levers incentivizing their use, providers 
and hospitals in the United States have been 
moving to EHRs, making paper medical records 
obsolete.

Nonetheless, regardless of whether the medi-
cal record is paper or electronic, one needs to 
understand its availability, completeness, and 
accuracy to determine whether it is adequate for 
evaluating the accuracy of self‐reported infor-
mation. Retrieval of medical records depends 
not only on a person’s ability to remember and 
report who prescribed the drug or diagnosed 
the condition in question, but on whether the 
healthcare provider recorded the information 
(and recorded it accurately) and on the availa-
bility of the medical record for review. If the 
medical record cannot be retrieved because 
the healthcare provider could not be identified, 
the provider had retired, or the record was 
destroyed or lost, the events cannot be verified.

While paper medical records are often incom-
plete, how complete are EHR data for assessing 
the accuracy of self‐reported diagnosis and medi-
cation data? This question requires reframing to 
consider EHR completeness at both the individ-
ual patient and the institution level. In the US, 
healthcare is fragmented. Patients see multiple 
providers, are treated in several different health 
settings (e.g., chiropractors, podiatrists), and may 
become inpatients at several different hospitals 
[87,88]. Thus, accessing patients’ outpatient and 
inpatient medical records does not guarantee that 
a researcher will have all medical care provided 
and drugs prescribed to the patient. For example, 
if a researcher is able to access only the patient’s 
primary care records, it is possible that the results 

of cardiology tests to confirm a diagnosis or 
medications for that diagnosis will not be 
available. However, when patients are seen by 
integrated delivery systems that include primary 
care, multiple specialties, and inpatient care, there 
is a greater likelihood that the EHR will contain 
most of the care provided and medications 
prescribed to the patient.

In addition, the EHR data themselves may be 
no more accurate than paper records if the 
EHR data simply substitute for paper records. 
For example, exposure information about 
medications or important confounders (e.g., 
smoking) may be incomplete if clinicians do 
not ascertain this information and correctly 
enter it into the EHR. Another problem intro-
duced by EHRs is the potential for errors 
inherent to electronic data entry, such as cop-
ying and pasting of incorrect data from other 
parts of the record, of expired or irrelevant 
clinical information, or of incorrect and/or 
unverified medication lists [89].

Self‐Reported Drug Data From De Novo 
Questionnaire Studies
This section summarizes what is known on how 
well respondents recall prescription and over‐
the‐counter medication use, factors that influ-
ence recall, such as the type of medications 
being queried, as well as questionnaire design 
features suggested to improve recall accuracy.

Accuracy andoRecall
Several studies have evaluated self‐reported 
recall accuracy for current or past medication 
use compared with prospectively collected 
cohort data or pharmacy, hospital, and outpa-
tient medical record documentation. Overall, 
published studies indicate that people accu-
rately remember ever using a medication and 
when they first began using some medications, 
although they do not remember brand names 
and duration of use as well [90–98]. Current use 
of chronically used medications, such as statins, 
beta‐blockers, and calcium channel blockers, 
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was recalled with ≥95% sensitivity and  specificity 
when a mailed medication inventory was 
 compared to pharmacy records [99]. In general, 
greater inaccuracies have been noted as more 
time elapsed between occurrence of exposure 
and its subsequent reporting [91,95,97]; this 
tendency was especially true for over‐the‐
counter NSAID use in contrast with prescrip-
tion NSAID use for recall over a two‐month 
period [100].

Accuracy of self‐reporting medication use 
varies by several factors. For example, chroni-
cally used medications (especially those with 
more refills) are recalled more often than acute 
exposures, as are the first and most recent brands 
in a class; a person recalls multiple medications 
in one class more frequently than single medica-
tion exposure; and salient exposures (those that 
prompted study initiation) are more accurately 
recalled than common and less disconcerting 
exposures [90,91,96,101–105]. For prescription 
drugs, recall between self‐reported use and 
medical records was moderately accurate, but 
for over‐the‐counter medications and vitamin 
supplements, accurate recall was poor [106]. 
Discrepancies are due to both underreporting 
(e.g., respondent forgot medication was taken) 
and underdocumenting (e.g., physician was una-
ware of medication use or did not record patient’s 
use in chart) [79–81 92,101,103,105–108] and 
differed by therapeutic class [106,107,109–116]. 
When self‐reported data were compared to mul-
tiple sources (e.g., medical records and phar-
macy dispensing), verification for self‐reported 
use was higher than that for a single source [117].

Influences onoAccuracy
Influence of Questionnaire Design
As reported in a systematic review, several fac-
tors affect the accuracy of medication exposure 
reported via questionnaire [118]. Researchers 
can facilitate recall and reporting of medication 
use by indication‐specific questions, memory 
prompts (such as drug photo), a list of drug 
names, or a calendar to record life events 

[70–74,93,119]. Medication‐specific or indica-
tion‐specific questions can identify most medi-
cations respondents are currently using, rather 
than a general medication question such as, 
“Have you taken any other medications?” [105]. 
Similarly, open‐ended questions such as, “Have 
you ever used any medications?” yielded less 
than half of the affirmative responses for use of 
three different medications [120]. Using the fil-
ter question “Did you use any medications in 
the three months before or during your preg-
nancy?”, van Gelder and colleagues noted that 
many women failed to report medications that 
they had been dispensed for pain or infections. 
These findings could be attributed to poor recall, 
but they may also be due to women having cho-
sen not to take the dispensed medications [121]. 
If researchers choose to use open‐ended medica-
tion questions, adding indication‐specific ques-
tions that facilitate recall of medication exposures 
may be useful. Finally, 20–35% of respondents 
reported drug exposure only when asked medi-
cation (name)‐specific questions [120].

Response order may affect recall, as noted 
with malaria medications when respondents 
had more than one episode of malaria [122]. 
Regardless of how frequently the medication is 
used for treating malaria in general, medica-
tions listed earlier in the response set tended to 
be selected more frequently than those listed 
later – a finding that may be related to satisfic-
ing, as discussed earlier [65].

A comparison of self‐report of current and 
recent medication use (within the past two 
years) to pharmacy records of dispensed pre-
scriptions for multiple drug classes found that 
the number of drug dispensings recalled was 
highest for cardiovascular medications (66%) 
and poorest for alimentary tract medications 
(48%) [123]. Recall was influenced by the num-
ber of chronically used medications: 71% for 
one drug, 64% for two drugs, and 59% for three 
or more drugs, although duration of use was not 
related to recall. However, the questionnaire did 
not allow sufficient space to record all medications 
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used in the time period of this study. Thus, if 
respondents were unable to record all medications 
due to space limitations, a misleading validation 
might have occurred: it appeared that respondents 
were unable to recall all the medications dispensed 
according to the database.

Another methodologic study evaluated whether 
question structure influences the recall of cur-
rently used medications in 372 subjects with 
hypertension who had at least 90 days of dispens-
ings in the PHARMO database [105]. The ques-
tionnaire had indication‐specific questions first 
(e.g., medications used for hypertension, diabe-
tes), followed by an open‐ended question that 
asked if the subjects used any other medications 
not already mentioned. For hypertension, the 
sensitivity was 91% for indication‐specific ques-
tions and 16.7% for open‐ended questions. About 
20% of subjects listed medications on the ques-
tionnaire that were not in the database, and a 
similar proportion failed to list medications on 
the questionnaire that were in use according to 
the pharmacy database. Based on these recall 
sensitivity results, indication‐specific questions 
appear to invoke better recall accuracy. However, 
to adequately address the issue of question struc-
ture, a questionnaire could be designed to ask 
open‐ended questions first, followed by indica-
tion‐specific questions. This sequencing would 
allow a comparison of the number of medications 
recalled by each question structure.

Influence of Patient Population
Few studies have evaluated whether demographic 
and behavioral characteristics influence the recall 
of past medication use, but results to date suggest 
that recall does vary by these factors as well as by 
therapeutic class and study design. For example, 
research suggests that education attainment 
[104,108,124] and race/ethnicity [91,95] may 
affect recall accuracy. Studies are inconsistent for 
age [77,91,95–97,101,103,107,116], socioeco-
nomic status [64,101,103,107,124], and smoking 
[95,97] as predictors of recall accuracy, and no 
study found that recall accuracy varies by gender 

[97,99,123]. The inconsistencies in the effect of 
age on recall accuracy might arise from differing 
study designs. The two studies that reported an 
age effect were methodologic studies evaluating 
recall accuracy [97,123], whereas the two that 
reported no age effects [91,95] were etiologic 
studies that reported verification of drug use as a 
measure of exposure misclassification for the 
association under study. Because of the paucity of 
information on predictors of recall, further 
research in this area is warranted.

Example
As indicated previously, accuracy of de novo 
questionnaire studies has been determined via 
comparison with pharmacy, general practitioner, 
and hospital records. To find an example of avail-
able study types, we conducted a literature scan 
of published studies, specifically searching for 
validation of NSAID use in questionnaire studies, 
and summarized our findings in Table 37.1.

Comparing use recalled during telephone inter-
views to a pharmacy database, West and col-
leagues found that 57% (95% CI 50–65%) of “any” 
NSAID use during the previous 12 years was 
accurately reported [97]. While a single dispens-
ing was reported only 41% (95% CI 32–50%) of the 
time, repeated use was reported 85% (95% CI 
76–94%) of the time, using the pharmacy records 
as the gold standard. Thirty percent of interview-
ees reported NSAID name and 15% reported both 
name and dose. Report was poorer with a shorter 
duration of use or over a longer recall period.

In summary, the methodologic literature on 
recall accuracy discussed above indicates that 
study participants have difficulty remembering 
drug use from the distant past, which contrib-
utes to misclassification of exposure in de novo 
studies. Researchers are using best practices in 
questionnaire design, including medication‐
specific and indication‐specific questions, along 
with recall enhancements, which have been 
shown to produce better data. Calendars and 
photos of drugs augment recall to a greater 
degree than listing only the brand names of the 
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drugs in question. These techniques – namely, 
photos, calendars, and the two different types of 
drug questions – have become the state of the 
art for collecting self‐reported drug data by per-
sonal or telephone interview.

The literature to date suggests that recall accu-
racy of self‐reported medication exposures is 
sometimes, but not always, influenced by type of 
medication, drug use patterns, design of the data 
collection materials, and respondent character-
istics. Given the current state of the literature, 
epidemiologists who plan to use questionnaire 
data to investigate drug–disease associations 

will need to consider which factors may influ-
ence recall accuracy in the design of their 
research protocols.

Self‐Reported Diagnosis and 
Hospitalizations from De Novo Studies
Accuracy andoRecall
Just as recall accuracy of past medication use var-
ies by the type of drug, the ability of respondents 
to remember disease conditions varies by disease, 
particularly when it is chronic, like hypertension, 
or is viewed as threatening, such as sexually trans-
mitted infections. The best reporting has been 

Table 37.1 Validation of NSAID exposure in studies using questionnaires.

Author
Recall 
period

Questionnaire 
and sample 
size Study question

Memory 
aids

Comparison 
data source Findings

West  
1995 [97]

2–3 years
7–11 years

Telephone 
interviews
n = 319

Nonsteroidal 
antiinflammatory 
drugs (NSAIDs)

Pictures of 
NSAIDs

Pharmacy 
database

Recall percentage 
for any NSAID use: 
57 (95% CI 50–64)
Single NSAID 
dispensed in 12 
year period: 41 
(95% CI 32–50)
Repeated NSAID 
use: 85 (95% CI 
76–94)

For those with 
repeated NSAID use, 
a single NSAID was 
selected as the target 
drug for assessing 
name, dose, and 
dates of use

NSAID name: 30 
(95% CI 24–36)
NSAID name and 
dose: 15 (95% CI 
10–20)
Agreement: 
(a) ±6 months,  
(b) ±1 year,  
(c) ±2 years
                 (a)  (b)  (c)
First use   20  28  51
Last use   17  24  42
Duration  67  71  80

Smith 
1999 [115]

Current 
use

Personal 
interview and 
medication 
inventory 
n = 55 users

Aspirin None Serum 
levels

0.16 (0.0–0.32)
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noted with conditions that are specific and 
familiar, such as diabetes mellitus [113,125–131], 
hypertension [113,126,128,129,132], asthma 
[125,127,128], and cancers such as breast, 
lung, large bowel, and prostate [129,132–134]. 
However, assessing reporting accuracy is likely 
more difficult for common, recurring symptom‐
based conditions, such as sinusitis, arthritis, low 
back pain, and migraine headaches, which many 
people may have, or believe they have, without 
having been diagnosed by a clinician. For recall of 
acute conditions such as fractures, there is typi-
cally good agreement between self‐report and the 
comparison data source, although the one meth-
odologic study of fracture incidence indicated a 
slight tendency for overreporting of hand, finger, 
rib, or facial fractures [135], which might be 
attributed to confusing a fracture with other simi-
lar orthopedic problems like sprains and strains. 
Recall of acute conditions is likely to depend on 
the length of the recall period: mild traumatic 
brain injury that occurred prior to age 10 years 
was poorly recalled 15 years later [136].

Three studies assessed the recall accuracy 
for  self‐reported mental illnesses, comparing 
respondent information to clinical evaluation 
[127,128,137]. The results indicated poor agree-
ment between the two data sources, with 
underreporting as the primary reason for poor 
agreement. It is unclear from these studies 
whether the reason for underreporting was the 
respondent’s unwillingness to admit to mental 
illness or whether the conditions were actually 
underdiagnosed.

Both underreporting and overreporting of 
diagnoses have been noted in studies comparing 
self‐reported diagnoses to clinical records 
[127,128], with overreporting occurring for con-
ditions in which the diagnostic criteria are less 
explicit [138]. For common ailments, underre-
porting was often the major cause of disagree-
ment [113,125,129,131]. Both overreporting and 
underreporting were noted for cardiovascular 
conditions, depending on the data source used for 
comparison [113,126,128,129,131,132,134,139–

141]. In most instances of recall error, many 
respondents who had incorrectly reported myo-
cardial infarctions (MIs) and stroke had other 
conditions that they may have mistakenly under-
stood as coronary heart disease, MI, or stroke, 
based upon communication with their physician 
during their diagnostic visits [134,139–141].

Influences onoAccuracy
Influence of Questionnaire Design
Questionnaire design also influences validity of 
disease and hospitalization data obtained by self‐
report. Simpler questions yield better responses 
than more complex questions, presumably 
because complex questions require the respond-
ent to first comprehend what is being asked and 
then provide an answer. Inherent redundancy in 
longer questions and allowing more time to 
develop an answer to the question may increase 
recall [142]. However, longer questions could 
increase the cost of the research and could need-
lessly tire the respondents, leading to satisficing. 
Facilitating recall by providing respondents with 
a checklist of reasons for visiting the doctor 
improves recall of all medical visits [143].

Although specific guidance on best practices 
for improving the ascertainment of diagnoses 
and hospitalizations is lacking, there are several 
general approaches to questionnaire design 
that are useful (see, for example, Sudman and 
Bradburn [144] and McColl and colleagues [145] 
for further details). Briefly, researchers develop-
ing questionnaires should be mindful of question 
wording and sequencing and response formats. 
With regard to question wording, to increase 
response accuracy, questionnaire designers 
should attend to the cognitive  processes involved 
in developing a response, especially those related 
to saliency for the respondent. Whether a 
respondent recalls having been diagnosed with a 
particular condition previously is likely to depend 
on the seriousness of the condition. Use of a filter 
question such as, “Have you had any side effects 
from use of drug X in the past year?” must be 
done with caution because respondents who 
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avoid the filter are not asked subsequent ques-
tions that may be important for the study. As 
noted for recall of medications, open‐ended 
questions are not recommended, particularly if 
the questionnaire is self‐administered. That said, 
all potential response categories must be listed 
when using closed‐ended questions or when an 
“other” category is provided. Questionnaire 
design experts suggest that demographic ques-
tions be placed at the end because they may be 
regarded as threatening.

The typical rule of thumb for question 
sequencing is to ask general questions before 
delving into specific topics and to group ques-
tions according to topic. When laying out the 
questions in a questionnaire, researchers should 
consider whether ordering effects are possible: 
for example, ask about heart disease in general 
before asking about a heart attack. Ordering 
might influence response rates to particular 
questions and may vary with the topic and 
make‐up of the respondent population. With 
regard to response formats, the response cate-
gories should be unambiguous, nonoverlapping, 
and exhaustive. When there is a possibility of 
biased response due to response ordering, it is 
best to randomize the response options to mini-
mize the bias. Finally, satisficing is also possible 
when respondents are asked to identify the 
diagnoses they have been given previously.

Influence of Patient Population
Factors influencing accuracy of past diagnoses 
and hospitalizations include the number of phy-
sician services for that condition and the recency 
of services [44–46,146–148]. For reporting of 
diagnoses, the longer the interval between the 
date of the last medical visit for the condition and 
the date of interview, the poorer the recall was for 
that condition [44–46]. These differences in 
recall may be explained in part by recall interval, 
patient age, a cohort (generational) effect, or 
some intertwining of all three factors. Diagnoses 
considered sensitive by one generation may not 
be considered as such by subsequent  generations. 

Further, terminology changes over time, with 
prior  generations using different nomenclature 
compared with recent generations.

Conditions with substantial impact on a per-
son’s life are more accurately reported than 
those with little or no impact. More patients 
with current restrictions on food or beverages 
due to medical problems reported chronic con-
ditions that were confirmed in medical records 
than did those without these restrictions [44]. 
Similarly, those who had restrictions on work or 
housework reported their chronic conditions 
more often than those who did not have these 
restrictions [44]. The major determinant of 
recall for spontaneous abortions was the length 
of the pregnancy at the time the event occurred: 
nearly all respondents who experienced sponta-
neous abortions occurring more than 13 weeks 
into the pregnancy remembered them com-
pared with just over half of respondents who 
experience such abortions occurring in the first 
six weeks of pregnancy.

Perhaps as a result of the emotional stress, 
lifestyle changes, and potential financial 
strain, hospitalizations tend to be reported 
accurately [147]. Further, underreporting of 
hospitalizations occurred in only 9% of 
patients who received surgery compared to 
16% of patients without a surgical procedure. 
Underreporting in those with only a one‐day 
hospital stay was 28% compared with 11% for 
2–4‐day stays and approximately 6% for stays 
lasting five or more days.

Surgical procedures are also more likely to be 
accurately recalled. General practitioner records 
confirmed 90% of the surgeries reported during 
one study interview. For the remaining 10%, the 
medical record may have lacked the needed infor-
mation [149]. Recall of surgery date (±1 year) 
was  correct for 87.5% of patients interviewed. 
Researchers also agree that respondents remem-
ber the type of surgery accurately [116,148–150]. 
Recall accuracy was very good for hysterectomy 
and appendectomy [110,125,129], most likely 
because these surgeries are both salient and 
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familiar to respondents. Cholecystectomy [129] 
and oophorectomy [110] were not as well recalled 
and were subject to some overreporting. However, 
overreporting may have been due to the potential 
incompleteness of the medical records used for 
comparison [110]. For induced abortions, mar-
ginal agreement occurred, as noted by records 
from a managed care organization: 19% of women 
underreported their abortion history, 35% over-
reported abortions, and 46% reported accurately 
according to their medical record [151].

The influence of demographic characteristics 
on reporting of chronic illnesses has been evalu-
ated in many studies, although the results are 
conflicting. The most consistent finding is that 
overall recall accuracy decreases with age 
[113,116,131,133,152], although this may be con-
founded by recall interval or cohort (genera-
tional) effects. Whether gender influences recall 
accuracy is uncertain. Men have been reported to 
recall more accurately than women, independent 
of age [125], whereas conflicting evidence found 
that women reported more accurately than men 
[127], especially in older age groups [44]. Further 
studies indicate that gender and age differences 
depended upon the disease under investigation 
[127], with women overreporting malignancies 
and men overreporting stroke [131]. No differ-
ences were found for reporting of hospitaliza-
tions by age or gender [147].

Reporting of illnesses, procedures, and hospi-
talizations tends to differ by race/ethnicity, but 
most studies had much larger proportions of 
whites than nonwhites [44,116,125,127,147,151]. 
Reporting by education level was equivocal; one 
study showed no difference [46] while another 
study indicated better recall for those with less 
education [44], and others suggested more 
accurate responses for those with a college edu-
cation [131,133,135,151]. Those with a poor or 
fair current health status reported conditions 
more completely than those with good to excel-
lent health status [44].

Although menarche and menopause are not 
medical conditions per se, the age at which they 

occur is often of interest in pharmacoepidemio-
logic studies. In the Menstrual and Reproductive 
Health Study, which had recall periods ranging 
from 17 to 53 years (mean 33.9 years), the exact 
age of menarche was recalled by 59%, and age 
within one year was recalled by 90% [153]. 
Similarly, for menopause, 45% of women were 
able to report their exact age at natural meno-
pause and 75.5% reported age within one year. 
The percentage agreements for surgical meno-
pause were 55.6% and 83.4%, respectively, for 
exact age and age within one year. The lower 
percentage agreement for age at which natural 
menopause occurred compared to that for sur-
gical menopause may be attributed to the grad-
ual occurrence of natural menopause compared 
to the definitive nature of hysterectomy [154].

Example
We conducted a literature scan of published stud-
ies searching for outcomes of MI and GI bleeding 
associated with use of NSAIDs to provide specific 
examples of validation and reliability studies for 
diagnoses (Table 37.2). Many of those identified 
were methodologic studies conducted specifically 
to determine the accuracy of the questionnaire; 
however, some of the accuracy assessments were 
embedded in empirical studies. Fourrier‐Reglat 
and colleagues compared reported medical data 
from patient and prescriber self‐administered 
questionnaires [155]. Myocardial infarction 
showed substantial agreement (kappa = 0.75; 95% 
CI 0.71–0.80), while upper GI bleeding had only 
slight agreement (kappa = 0.16; 95% CI 0.11–0.22) 
between the two reporting groups. When the pre-
scriber data were used as the gold standard, 
patient reports of MI provided moderately com-
plete data (sensitivity 77.7%; specificity 99.6%; 
positive predictive value [PPV] 77.1%; negative 
predictive value [NPV] 99.6%), and reports of 
upper GI bleeding by patients were not typically 
confirmed by the prescriber reports (sensitivity 
44.6%; PPV 10.4%).

Jarernsiripornkul and colleagues also used a 
multistage process to develop a questionnaire to 



Table 37.2 Validation of myocardial infarction (MI) or gastrointestinal (GI) outcomes in patients with nonsteroidal antiinflammatory drugs (NSAIDs) 
in questionnaire data.

Author
Questionnaire and 
sample size Study question

Comparison 
data source Conditions Findings

Ambegaonkar 
2004 [192]

Gastrointestinal 
Toxicity Survey 
(NSAID Induced) 
(GITS [NI]) – 11 
questions,
n = 400 patients

To test a new questionnaire 
designed to identify patients 
at high risk for NSAID‐
associated GI events

Stanford 
Calculator of 
Risk for Events 
(SCORE) – 6 
questions

56.0% 
rheumatoid 
arthritis

The overall correlation between results for GITS 
(NI) responses and the total score for the SCORE 
questionnaire was 0.96 (P<0.001)
Comparison:
ordinary least square R2 = 0.91
feasible generalized least squares (FGLS) R2 = 0.93
Use of the FGLS regression analysis and 
comparison of the risk levels predicted by the 
SCORE questionnaire and the GITS (NI) 
questionnaire demonstrated a 79.8% agreement 
for all four risk categories and an 88.8% agreement 
when the two highest risk categories were 
collapsed into a single category
The multinomial logistic regression (MNL) 
analysis showed agreement of 75.8% for four risk 
categories and an agreement of 86.8% for three 
risk categories
For both methods, disagreement was equally 
distributed among overprediction and 
underprediction of risk levels by the GITS (NI) 
questionnaire relative to the SCORE 
questionnaire. In the case of four risk categories, 
disagreement by two risk levels was limited to 
0.6% and 1.5% for the FGLS and MNL regression 
methods, respectively

(Continued)
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Author
Questionnaire and 
sample size Study question

Comparison 
data source Conditions Findings

Fourrier‐
Reglat 2010 
[155]

CADEUS cohort 
(French national 
cohort study of 
traditional NSAIDs 
and COX‐2 users 
conducted between 
September 2003 and 
August 2004 that 
employed self‐
administered 
questionnaires to 
obtain medical data 
from patients and 
their prescribers)
n = 18 530 pairs of 
patients and 
prescribers

To compare patients and 
prescribers reported 
medical data

Prescribers 
report as gold 
standard

Previous medical history:
MI:
kappa = 0.75 (95% CI 0.71–0.80)
Sensitivity: 77.7%
Specificity: 99.6%
PPV: 74.1%
NPV: 99.6%
Upper digestive hemorrhage:
kappa = 0.16 (95% CI 0.11–0.22)
Sensitivity: 44.6%
Specificity: 98.5%
PPV: 10.4%
NPV: 99.8%
NSAID indication:
For index NSAID indication, the proportion of 
agreement ranged from 84.3% to 99.4% and 
concordance was almost perfect (kappa = 0.81–1.00) 
for inflammatory rheumatism, flu‐like symptoms, 
dysmenorrhea and dental pain; substantial for arthritis, 
back pain and headache; moderate for osteoarticular 
pain.

Singh 1996 
[193]

Stanford Health 
Assessment
Questionnaire (HAQ)

To evaluate the event rates 
for all NSAID‐induced GI 
complications in patients 
with rheumatoid arthritis, 
describe the time course of 
these events, and
evaluate the role of 
prophylactic therapy with 
antacids and H2 receptor
antagonists

Face validity 
and hospital 
records (2.4% 
hospitalized)

Face validity has been studied by surveying patients 
to ensure their understanding of the symptoms that 
are listed in lay language on the questionnaire; 
appropriate modification of the confusing 
symptoms has been made.
Patient recall and accuracy in reporting side effects 
have been evaluated by repeat questionnaire 
administration, interview, and review of physician 
records.
To minimize underreporting by patients, those events 
that are severe enough to require hospitalization are 
also ascertained by record review of all hospitalizations.

CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

Table 37.2 (Continued)
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have patients self‐report potential adverse 
reactions to NSAIDs [156]. The question-
naire was designed to elicit adverse effects 
that would be reported to health profession-
als, to determine how well patient report 
compared with health professionals report-
ing to the  Adverse Product Reaction 
Monitoring (APRM) Centre of the Thai FDA. 
The questionnaire was cognitively tested to 
finalize the version sent to the test sample 
along with pictures to facilitate recall. Of the 
694 (42%) of questionnaires returned, 60% 
reported ≥1 symptom deemed as a possible 
or probably adverse drug reaction by a phar-
macist. By comparison, only 5% of the self‐
reported symptoms indicative of adverse 
events from the questionnaires were recorded 
in the outpatient medical records.

These examples demonstrate the variation in 
methods used to collect and determine accu-
racy of questionnaire data. Although many 
methods are available for use, researchers 
should remember the principles discussed ear-
lier in the chapter when they validate question-
naire data: not all validation is equivalent. Full 
disclosure of the process is important when 
reporting findings of any study.

In summary, the decision as to whether a per-
son reports an illness during an interview 
appears to be related to age and type of illness, 
when it occurred, and its saliency, but is less 
likely to be mediated by demographic character-
istics such as gender, race, and education. 
Illnesses that are considered embarrassing and 
that do not substantially alter the person’s life-
style are not reported completely, and these 
types of illnesses may change with each genera-
tion. Likewise, reporting accuracy depends on 
the consistency of documentation and the ter-
minology utilized  –  from the questionnaire to 
the medical records – and finally, what has been 
communicated to the individual. Although diffi-
cult to measure, respondent motivation appears 
to influence the completeness of reporting as 
well [44,127,147].

Conducting Validation Studies 
to Assess Data Collected During 
Provision of Healthcare

In addition to conducting de novo studies to evalu-
ate drug–disease associations, a variety of comput-
erized, administrative claims, and EHR databases 
are available for pharmacoepidemiologic research, 
the structure, strengths, and limitations of which 
are reviewed in Chapters 14–14. One major advan-
tage of using such databases for pharmacoepide-
miologic research is the comparative validity of the 
drug data in lieu of questionnaire data, where recall 
bias is always a concern, as previously described.

In general, the administrative claims and EHR 
differ widely on many factors, such as size (e.g., 
from several hundred thousand to several mil-
lion covered lives), number of health insurance 
plans and health systems included, the type of 
health services provided and therefore available 
for analysis (e.g., prescriptions, mental health 
benefits, general practice versus specialist visit 
data), inclusion of out‐of‐plan claims in the 
main database versus other databases, and the 
timeliness of the data (e.g., the lag for cleaning 
and obtaining data from a data vendor may be 
six or more months). The databases also differ 
on the number of available demographic varia-
bles: all have age (some may have date of birth) 
and sex, EHRs may have race (but administra-
tive claims typically do not), or a measure of 
health status [157]. Because the administrative 
claims data were developed primarily for reim-
bursement, they all have relatively complete 
data on health service use and charges that are 
covered by the plan (and relatively incomplete 
data for services not covered by the plan). EHRs 
provide in‐depth, granular data for a specific 
office or hospital visit but may not provide all 
health information for an individual in a longi-
tudinal fashion, especially if the patient sees 
more than one healthcare provider. Linkage of 
EHRs and administrative claims can be resource 
intensive but may elucidate whether the data 
sufficiently capture the patient experience.
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The drawbacks and limitations of these data 
systems are important to keep in mind. Their 
most critical limitation for pharmacoepidemio-
logic research is the manner in which health 
insurance is currently covered in the US, typi-
cally through the place of employment. If the 
employer changes plans, which may occur on an 
annual basis, or the employee changes among 
the plans offered by the employer, or the 
employee changes jobs, the plan no longer cov-
ers that employee or his or her family. In addi-
tion, the healthcare delivery system coverage for 
an employer may change over time. Thus, the 
continual enrolment and disenrolment of plan 
members hinder the opportunity for extended 
longitudinal analyses in both administrative 
claims and EHRs.

Best Practices for Validation Studies in 
Administrative Claims or EHR Databases
For the data in administrative claims or EHRs 
to be considered valid, people who appear in 
the computerized files as having a drug expo-
sure or disease should truly have that attribute 
and those without the exposure or disease 
should truly not have the attribute. Validity 
and completeness are determined by compar-
ing the database information with other data 
sources, such as comparison of paper medical 
records or EHRs, administrative claims, phar-
macy dispensings, or procedure logs. Choice of 
an appropriate comparator varies by study 
question, variables used for the research study, 
the comparator, and availability of other data 
sources.

The study investigator must be aware of the 
limitations of both the administrative claims 
database and the chosen comparison dataset. 
The chosen comparator should provide suffi-
cient data to validate both the exposure and out-
come used for the study. A variable that provides 
linkage between the files in a data source, such 
as a medical record number, should be available 
so that accuracy can be evaluated within a 
 subset of known study patients. For example, if 

a single claim contains six diagnosis codes and 
six months of claims were used to determine 
outcomes in patients, then all six diagnosis 
codes for all claims across the six‐month study 
should be available in a comparison dataset to 
establish the validity of the outcome. As 
described earlier in the chapter, a validation 
assessment should include evaluation of patients 
with and without the exposure or outcome. 
Positive predictive value, negative predictive 
value, sensitivity, and specificity combined pro-
vide a complete picture of the agreement 
between the two data sources.

The following is a broad overview of how to 
conduct a validation study in administrative 
claims or EHR data. First, choose a meaningful 
number of patients for validation. This sample 
size should be statistically grounded; however, 
considerations of data availability, cost, and 
labor are understandable. Next, extract the vari-
ables needed to determine cohort selection, 
exposure, outcome, and other variables for vali-
dation. Calculate measures of agreement and 
error rates (e.g., standard deviations) between 
the two datasets. Finally, consider strengths and 
limitations of the two datasets to ascertain 
validity and completeness of the data source to 
answer the study question.

Influence of Data System
Completeness and validity of data are the most 
critical elements in the selection of a database 
for research. Completeness is defined as the 
proportion of all exposures, events of interest or 
both that occurred in the population covered by 
the database that appear in the computerized 
data. Missing subjects, exposures, or events 
could introduce bias in the study results [158]. 
For example, completeness of the drug data 
might vary by income level if persons with 
higher incomes and drug co‐payments choose 
to obtain their medications at pharmacies not 
participating in a prescription plan, which is 
how pharmacy data are collected. Similarly, a 
bias may be introduced in the association 
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between a drug and a serious adverse drug reac-
tion if hospitalizations for that adverse reaction 
are missing, for example if the researcher only 
has access to the outpatient clinic EHR 
database.

Influence ofoClinical Coding Systems
Diagnoses, procedures, medications, and other 
therapeutics are included in administrative 
claims and EHR data through structured coding 
systems. Each coding system has its own ontol-
ogy and is separated into specific codes, based 
on an established hierarchy. Further, the coding 
systems are updated periodically to reflect 
changes in the practice of healthcare as well as 
to incorporate new therapies and processes. 
Both codes and the general structure and hier-
archy differ between coding systems. In many 
cases, a single code from a coding system is 
insufficient to define a variable and an algorithm 
needs to be developed. The algorithm may con-
tain multiple codes, a required timing for codes, 
and/or a sequential process for determining the 
level(s) of the variable. It is likely that an algo-
rithm developed in one coding system will 
require translation to be comparable to another 
coding system. Algorithms for each clinical con-
cept should be developed and validated 
separately

The International Classification of Diseases 
(ICD) is the standard for classification of dis-
eases for clinical and research purposes [159] 
and is used in many administrative claims sys-
tems, such as for billing purposes. The ICD is 
updated periodically, and adoption is asynchro-
nous by country. For example, through the fall of 
2015, most US administrative claims systems 
were using the clinical modification version of 
ICD‐9, while many European administrative 
claims systems began using ICD‐10 in the 1990s, 
and ICD‐11 was released in 2018. As with the 
transition to ICD‐10, we anticipate a staggered 
approach to implementation, with countries in 
Europe and Canada adopting the ICD‐11 system 
(long) before the US. The ontology differs 

between the ICD systems, and codes have been 
mapped between ICD‐9 and ICD‐10 [160]. 
However, there is not a one‐to‐one correlation 
between codes; there are approximately 14 000 
diagnosis codes in ICD‐9 compared with 
approximately 70 000 in ICD‐10 [161]. Mapping 
between codes can be used as a starting point to 
develop algorithms [162], but various techniques 
in mapping may yield different results [163]. As 
with other coding systems, any validation should 
be conducted separately between ICD systems.

Influence ofoStructured andoUnstructured Healthcare 
Data inoComputerized Databases Containing 
Administrative Claims or EHR data
In addition to the structured data in administra-
tive claims and EHR, many components of health-
care are captured within clinician notes, images 
and descriptions of procedure results, and 
other unstructured data. The performance of 
an algorithm can be enhanced through use of 
this unstructured information in addition to 
the  structured data from coding systems. 
Unstructured data can be converted into struc-
tured information (e.g., manually) for a specific 
project, or the algorithm can be modified to 
improve algorithm performance as cases are 
identified over time [164,165]. Liao and colleagues 
compared the performance of algorithms includ-
ing unstructured data to detect coronary artery 
disease to algorithms using only structured ele-
ments in the same data source to assess validity in 
three chronic disease patient cohorts [166]. They 
found that inclusion of unstructured data 
increased sensitivity in all three cohorts, with the 
most improvement seen in the cohort where 
 coronary artery disease prevalence was lowest. 
Note that while previous algorithms are some-
times used for comparison [165], patient charts 
(electronic or paper) are still often used as the 
 reference standard for assessing validation [167].

Influence ofoDistributed Data Systems
Multiple health data sources may be included 
within a single study or for ongoing surveillance. 
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Simultaneous assessment of multiple data 
sources allows for better understanding of a 
larger population while also observing a diverse 
set of patients [168]. These multidatabase studies 
or distributed data systems may have differences 
in information collected, coding systems, lan-
guage (e.g., across different countries), and even 
the underlying practice of medicine and over-
arching system of healthcare. Thus, even in the 
situation where distributed data systems use a 
common data model, careful consideration is 
warranted regarding how to assess validity of 
drugs, other therapeutics, diagnoses, procedures, 
and health‐related events within each adminis-
trative claims data source contributing to the 
 distributed data system. Whenever EHR data are 
utilized, differences across sites warrant assess-
ment of validity within each health system to 
improve overall accuracy [167].

Validity of Drug and Other Medical Intervention 
Data in Administrative Claims or EHR Databases
Accuracy
Drug data in administrative claims databases 
are often not validated. Administrative claims 
data contain billing of a prescription that is dis-
pensed (i.e., “filled”) but do not contain infor-
mation on the provider writing the prescription 
(or on the underlying condition the prescription 
is intended to treat). While prescriptions that 
are dispensed but unclaimed by patients should 
be removed from billing, they may remain 
within the administrative claims data. 
Furthermore, dispensing data cannot address 
drug ingestion or adherence, and over‐the‐
counter medications are not typically included 
in the database at all. Thus, despite the wide-
spread use of claims data to assess drug use, the 
data may not be accurate and validity should be 
tested, particularly when using a new drug 
exposure or database (e.g., some data sources 
may not contain a drug because it is not “on for-
mulary” and thus is unavailable within the 
health system or allowed by the health insurer). 
Similarly, sensitivity analyses should be performed 

to determine the susceptibility of the results 
to  possible misclassification, even within known 
data sources.

Unclaimed prescriptions, estimated to occur 
for approximately 2% of all prescriptions, present 
an adherence issue in administrative claims data 
[169]. For every 1000 new prescriptions, an aver-
age of 16.5 are unclaimed [170]. Antiinflammatory 
and antiinfective drugs tend to be the therapeutic 
class most often unclaimed [170–173]. Two‐
thirds of unclaimed prescriptions were for new 
prescriptions [171], and a similar proportion 
tended to be for nonessential medications [174]. 
Many unclaimed prescriptions were telephoned 
into the pharmacy [169,171], and the most fre-
quent reason patients cited for not picking up a 
prescription was that they determined that they 
did not need the medication or they forgot to 
pick it up [169,172]. However, cost and having a 
similar medication at home were also often cited 
[169,172,174].

Drug data in EHRs represent the actual 
 prescribing practice. EHR data account for the 
written prescription and may have sufficient 
detail to ascribe the prescription to the underly-
ing condition it is intended to treat. Prescriptions 
or other documentation may also be available in 
the EHR for over‐the‐counter medications. 
However, they may not present a valid picture of 
the patient experience with the medication. The 
dispensing, ingestion, adherence, and pattern of 
use are typically not included as structured fields. 
Some of this information may be available in 
unstructured text such as the clinician visit notes.

Influences onoAccuracy
Population and Representation in Data Source
One might ask how unclaimed prescriptions 
might affect the validity and completeness of 
pharmacy data. Many individuals have some 
type of pharmacy benefits plan in which reim-
bursement for medication costs is processed 
through a third‐party payer. Entry into the reim-
bursement software is predicated on dispensing 
of the drug. However, a drug that is dispensed 
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but not claimed should be returned to stock and 
the appropriate adjustment be made to the 
patient’s pharmacy benefits plan – failure to do 
this would be insurance fraud.

Unfortunately, when conducting research 
with pharmacy data, we do not know whether 
all such insurance adjustments have been made. 
So while we believe a substantial number of pre-
scriptions were dispensed, they may not have 
been used at all. To the extent that dispensings 
in the database were not picked up, there is no 
chance that the individual had the drug expo-
sure and our study would suffer from exposure 
misclassification. Exposure misclassification 
can occur even when dispensings were picked 
up but not actually used by patients. For these 
reasons, some researchers require a minimum 
of two dispensings for assessing patient expo-
sure to chronic medications. This rule of thumb 
is thought to improve to the likelihood that the 
drug was taken by the patient.

Example
A handful of studies to date have assessed dis-
pensing associated with prescriptions via linked 
administrative claims and EHR data. These 
studies indicated that 70–77% of initial pre-
scriptions are dispensed [175,176]. Prescribed 
analgesics (i.e., pain medications, including 
NSAIDs) and lifestyle drugs (e.g., phosphodies-
terase type 5 inhibitors) are least likely to be dis-
pensed, while antimicrobials are most likely to 
be dispensed for an initial prescription. 
Substantial variation in dispensing was seen 
across medications within a class. In addition, 
results from Rowan suggest that <20% of 
patients taking analgesics and NSAIDs pos-
sessed adequate medication to be adherent 
throughout a 12‐month period [176]; this find-
ing may be consistent with intermittent or “as 
needed” utilization.

In summary, drug and medical intervention 
data are often considered to be correct when 
using administrative claims data and EHRs for 
research. Although this is generally the case, 

researchers should be aware of whether and 
how prescribing, dispensing, and administra-
tion of drugs are captured within each database 
they are contemplating using. We will likely see 
greater emphasis on data linkage and incorpo-
ration of more unstructured data from clinical 
notes into pharmacoepidemiologic research, 
which may lead to increased need for validation 
of drug and medical intervention exposures in 
the future.

Validity of Diagnosis, Procedure, 
and Hospitalizations in Administrative 
Claims and EHR Databases
Accuracy
Unlike the drug data, where many researchers 
are comfortable with data accuracy and com-
pleteness, inpatient and outpatient diagnoses in 
these databases raise considerable concern for 
investigators. The accuracy of outpatient diagno-
ses is more uncertain than inpatient diagnoses 
for several reasons. Hospitals employ experi-
enced people to code diagnoses for reimburse-
ment, which may not occur in individual 
physicians’ offices where outpatient diagnoses 
are determined. Also, hospital personnel scruti-
nize inpatient diagnoses for errors [177], moni-
toring that does not typically occur in the 
outpatient setting.

Systematic errors as a result of diagnostic 
coding may influence the validity of both inpa-
tient and outpatient diagnostic data. For exam-
ple, diseases listed in administrative claims 
databases are often coded using the ICD coding 
system. Poorly defined diseases are difficult to 
code using the ICD system, and no way exists to 
indicate that an ICD code is coded for “rule‐out” 
purposes. How healthcare plans deal with “rule‐
out” diagnoses is unclear; for example, should 
they be included or excluded from the diagno-
ses in the physician claims files? In a study of 
transdermal scopolamine and seizure occur-
rence, many patients with ICD codes indicating 
seizures had this diagnosis as a “rule‐out” code 
when medical records were reviewed to confirm 
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the diagnosis, indicating that “rule‐out” codes 
do become part of administrative claims data 
[178]. In addition, reimbursement standards 
and patient insurance coverage limitations may 
influence the selection of ICD codes for billing 
purposes [179]. The potential for abuse of diag-
nostic codes, especially outpatient codes, may 
occur when physicians apply to either an insur-
ance carrier or the government for reimburse-
ment and may be less likely in staff or group 
model health maintenance organizations 
(HMOs) such as Kaiser Permanente.

Influences onoAccuracy
Validation Study Design
Abstraction of electronic data for validation stud-
ies is not subject to the issues of questionnaire 
design that are present with self‐reported de novo 
studies; however, manual abstraction is subject to 
human error. Algorithms that are complex require 
substantial understanding of the healthcare envi-
ronment in which the data were collected and 
necessitate review of lengthy portions of the 
patient chart, which may increase risk of error 
during record abstraction. Understanding of each 
specific healthcare system may be warranted to 
understand nuances of documentation practices. 
In one study, medical record documentation 
within a single multispecialty medical group 
showed that documentation varied across meas-
ures (e.g., medications documented 92% of the 
time, smoking history documented 38% of the 
time, and drug allergies documented in 62% of 
encounters) [180]. While no systematic patterns 
were noted across clinician and patient character-
istics, differences in documentation were found 
between internists and pediatricians as well as 
between male and female providers.

Population and Representation in Data Source
At an institutional level, informaticists in the US 
have been concerned about the completeness of 
EHR data for research use [181,182]. Patient 
information in an EHR may be considered 
 complete if  it has sufficient detail regarding 

clinical encounters, if ongoing encounters are 
included over calendar time, if multiple types of 
data (e.g., labs, medications, and diagnoses) are 
available, and/or if sufficient information is 
available across a patient record to predict the 
condition of interest. In 2013, Weiskopf et  al. 
reviewed all four of these definitions within a 
single healthcare system data warehouse in the 
United States and found that 26.9% of patients 
had complete records according to any one of 
the four definitions (8.4–18.5% of patient records 
were complete for each measure), and only 0.6% 
of patients had complete records according to all 
of these definitions of completeness [182].

Example
Continuing with the NSAID example, we con-
ducted a literature scan of published studies 
validating MI or GI bleeding outcomes with use 
of NSAIDs in administrative claims databases; 
these studies are summarized in Table  37.3. 
Administrative claims data are often compared 
with medical records in a validation study. Most 
of these studies provide only a PPV that indi-
cates whether the coding scheme is accurately 
classifying observed measures compared with 
another source. Validation measures such as 
sensitivity and specificity are not often calcu-
lated in these comparative studies.

In claims data, MI, denoted as ICD‐9‐CM code 
410.xx, has been assessed in computerized health 
databases of Quebec [183], Saskatchewan Health 
[184], and the HealthCore® Integrated Research 
Database [185]. In all of these databases, this 
ICD‐9‐CM code had substantial or nearly perfect 
ability to validate the diagnosis of MI, with the 
PPV ranging from 88.4% to 96% across studies. 
Other ICD‐9‐CM codes used for possible detec-
tion of MI have shown poor ability to classify MI.

Both the overall PPV for ICD‐9‐CM 410.xx to 
measure MI and the PPV for MI among patients 
taking NSAIDs were evaluated in the HealthCore® 
Integrated Research Database. Among all the 
patients with a code for MI, the PPV was 88.4% 
(95% CI 83.2–92.5%). Among patients taking 



Table 37.3 Validation of myocardial infarction (MI) and gastrointestinal (GI) bleeding events in studies using administrative claims data to evaluate harms 
of nonsteroidal antiinflammatory drug (NSAID) exposure.

Author Dataset Study aim and sample size
Comparison data 
source Conditions Findings

Abraham 
2006 [188]

VA To validate Veterans Affairs (VA) 
administrative claims data for the 
diagnosis of NSAID‐related upper 
gastrointestinal
events (UGIE) and to develop a 
diagnostic algorithm
n = 906
ICD‐9‐CM codes and CPT 
procedure codes in patient 
treatment and outpatient care 
databases indicating upper 
gastrointestinal events
(n = 606)
Controls (n = 300)

Medical records Case definition for UGIE was 
any of the following:
Gastric ulcer 531.0, 531.1, 
531.2, 531.3, 531.4, 531.5, 
531.6, 531.7, 531.9
Duodenal ulcer 532.0. 532.1, 
532.2, 532.3, 532.4, 532.5, 
532.6, 532.7, 532.9
Peptic ulcer 533.0, 533.1, 
533.2, 533.3, 533.4, 533.5, 
533.6, 533.7, 533.9
Gastrojejunal ulcer with 
perforation 534.0, 534.1, 534.2, 
534.3, 534.4, 534.5, 534.6, 
534.7, 534.9
Gastrointestinal hemorrhage
578.0, 578.1, 578.9

Only ICD‐9 codes for UGIE:
Sens: 100%
Spec: 96%
PPV: 27%
NPV: 100%
ICD‐9 and CPT for UGIE:
Sens: 82%
Spec: 100%
PPV: 51%
NPV: 99%
ICD‐9 and CPT algorithm for 
UGIE:
Sens: 66%
Spec: 88%
PPV: 67%
NPV: 88%
Algorithm validated in 
additional 44 patients, PPV 
among NSAID users: 80%

Brophy 2007 
[183]

Computerized 
health databases 
of Quebec, 
Canada

To determine whether a history of 
MI modified the risk of acute MI 
associated with the use of various 
NSAIDs
n = 234 MI survivors

Previous 
validation of MI 
claims [194]; no 
validation of 
NSAID use

MI: hospitalization with 
ICD‐9 code 410, considered 
fatal if person died within 
30 days of admission

PPV = 0.96 (95% CI 
0.94–0.98)

(Continued )

0004410292.INDD   975 9/16/2019   9:39:31 AM



Author Dataset Study aim and sample size
Comparison data 
source Conditions Findings

Castellsague 
2009 [195]

Saskatchewan 
Health

To estimate the risk of upper 
gastrointestinal complications
associated with use of 
cyclooxygenase‐2 (COX‐2) 
selective (celecoxib and
rofecoxib) and individual 
nonselective NSAIDs compared 
with nonuse of these drugs
Specific codes: n = 38 (10% 
sample)
Nonspecific codes: n = 742 (all 
potential cases)

Medical records Upper gastrointestinal 
complications: ICD‐9 codes 
531.0–531.2, 531.4–531.6, 
532.0–532.2, 532.4–532.6, 
533.0‐533.2,
533.4–533.6, 534.0–
534.2, 534.4–534.6, 569.3, 
569.4, 569.8, 578

Previous research:
PPV 
for site‐ and lesion‐specific
peptic ulcer disease codes in 
Saskatchewan = 91%
PPV for nonspecific codes = 
68%
This study:
Specific PPV = 92%
Nonspecific code PPV 
(ranged across codes) = 60% 
for unspecified hemorrhage, 
4% for hemorrhage of 
rectum/anus

Curtis 2008 
[196]

Medicare To evaluate the feasibility of 
adapting data mining methods 
using the empirical Bayes  
Multi‐item Gamma
Poisson Shrinkage (MGPS) 
algorithm to longitudinal 
administrative claims data
Number not specified

Public use data 
files 
supplemented 
with specific 
medication data 
from CMS for 
greater 
precision in 
defining current 
NSAID 
exposure

Linked survey information, 
medical claims, and 
medication use data from the 
Medicare Current Beneficiary 
Survey (MCBS) for the years 
1999–2003

“Identified current NSAID 
exposure using the MCBS 
medication data and all 
medical events using the 
linked Medicare claims”

van Staa 
2009 [197]

GPRD To evaluate the external validity of 
published cost‐effectiveness 
studies by comparing the data 
used in these studies to 
observational data from actual 
clinical practice and whether these 
studies should have been used to 
inform prescribing policies. 
Selective COX‐2 inhibitors 
(coxibs) and upper GI events were 
used as an example
n = 96

Medical records Upper GI events:
ICD‐10 codes K25–K29
NSAIDS: any prescription in 
GPRD

PPV = (95/96) = 99.0%

Table 37.3 (Continued)
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Author Dataset Study aim and sample size
Comparison data 
source Conditions Findings

Varas‐
Lorenzo 
2009 [184]

Saskatchewan 
Health

To evaluate risk of fatal and 
nonfatal acute MI with NSAID  
use
n = 200

Medical records ICD‐9 code 410–414, 427.5, 
798
ICD‐10 code I20–I22, I23.3, 
I24–I25, I46, R96.0, R96.1, R98
Abstraction items included 
available information on 
cardiac symptoms; copies of 
available electrocardiograms 
recorded during the first 72 
hours after hospital admission 
and the last one before 
hospital discharge; serum 
biomarkers levels: troponins, 
CPK‐MB, or CPK measured 
within first 72 hours and 
compared with later measures; 
necropsy and other cardiac 
diagnostic test findings. Based 
on abstracted information, 
two cardiologists classified 
events as definite or probable/ 
possible (either fatal or 
nonfatal) according to adapted 
standardized criteria recently 
adopted by American Heart 
Association/European Society 
of Cardiology.
Classification of exposure to 
NSAIDs was based on the 
days between the index date 
and the end of supply of the 
most recent dispensing before 
the index date

PPV for ICD‐9 code 410 = 
0.95 (95% CI 0.91–0.98)
PPV for ICD‐9 code 411 for 
intermediate coronary 
syndrome = 0.73 (95% CI 
0.70–0.77)
PPV for ICD‐9 code 411 for 
AMI = 0.09 (95% CI 
0.07–0.11)

(Continued )
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Author Dataset Study aim and sample size
Comparison data 
source Conditions Findings

Wahl 2010 
[185]

HealthCore® 
Integrated 
Research 
Database

To validate administrative claims 
codes with medical chart review 
for MI, ischemic stroke, and 
severe upper gastrointestinal 
(UGI) bleed events in a large, 
commercially insured US 
population
n = 200 charts per outcome

Medical charts MI:
ICD‐9 code 410.xx excluding 
410.x2 and a length of stay 
(LOS) between 3 and 180 
days, or death if LOS is <3 
days
Severe UGI bleed events were 
defined as a hospitalization for 
either UGI hemorrhage or 
peptic ulcer disease, including 
perforation. In the claims data, 
this was defined as ICD‐9 
codes 531.x, 532.x, 533.x, 
534.x, 578.0, 578.1, 578.9, or a 
physician service code for GI 
hemorrhage (CPT code 43255 
or ICD‐9 procedure code 
44.4x)

Overall:
PPV for MI = 88.4% (177/200; 
95% CI 83.2–92.5%)
PPV for ischemic stroke = 
87.4% (175/200; 95% CI 
82.0–91.7%)
PPV for severe UGI bleed = 
56.5% (109/193; 95% CI 
49.2–63.6%)
Among those taking NSAIDs:
PPV for MI = 92.3% (97/105; 
95% CI 85.4–96.6%)
PPV for ischemic stroke = 
78.9% (57/72; 95% CI 
67.6–87.7%)
PPV for severe UGI bleed = 
57.9% (70/121; 95% CI 
48.5–66.8%)

Table 37.3 (Continued)
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NSAIDs, the PPV for MI was 92.3% (95% CI 
85.4–96.6%). The difference between the overall 
PPV and PPV among patients taking NSAIDs 
could highlight the potential for differential 
coding by patient status. Further study of 
 differences in diagnosis coding by medication 
or disease status is needed to know whether 
validating the drug and disease pair is warranted 
or whether validation of the exposure and 
 outcome separately is sufficient to imply veracity 
of the results.

A substantial proportion of cases identified by 
algorithms for probable or definite MI within all 
databases are confirmed as probable or definite 
MI in medical records, with PPV ranging from 
55% to 97%. Validity for MI has been measured 
in the Group Health Cooperative (now Kaiser 
Permanente Washington) [186] (sensitivity 
86.5%; specificity 85.4%) and in the General 
Practice Research Database [187] (sensitivity 
89.3%), with substantial agreement between the 
administrative claims and medical records.

Measurement of GI bleeding is more varied 
across databases, and several algorithms using 
different combinations of ICD‐9‐CM and CPT 
(Current Procedural Terminology) codes have 
been used to determine event occurrence. The 
PPV for the studies range from 60% to 100%. In 
general, the PPV has been higher when both 
ICD‐9‐CM and CPT codes are used. However, in 
the US Department of Veterans Affairs (VA) 
administrative claims data, where sensitivity and 
specificity were also assessed, the higher PPVs 
with use of both coding systems resulted in a 
lower sensitivity and specificity [188]. Limiting 
further to only those patients using NSAIDs, the 
PPV increased to 80%. Both the overall PPV for 
severe GI bleeding and the PPV for GI bleeding 
among patients taking NSAIDs were determined 
in the HealthCore® Integrated Research Database 
[185]. Among all patients with an ICD‐9‐CM or 
CPT code indicative of GI bleeding, the PPV was 
56.5% (95% CI 49.2–63.6%). Among patients tak-
ing NSAIDs, the PPV for GI bleeding was 57.9% 
(95% CI 67.6–87.7%).

The variation seen in comparisons of GI 
bleeding in administrative claims and EHR may 
be due to the differences in algorithms used to 
determine GI bleeding. The variation may be 
due also to differences in GI bleeding in the 
underlying populations captured in each data-
base. Validation, including measures of sensitiv-
ity and specificity, of the same algorithm in 
multiple databases will aid in determining 
whether GI bleeding can be adequately assessed 
in administrative claims and/or EHRs.

In summary, validating the case definition 
developed for observational studies using 
administrative claims databases with original 
documents such as inpatient or outpatient med-
ical records is an important step to enhance the 
quality and credibility of the research. Although 
many studies in the past few years have reviewed 
original documents to validate the diagnoses 
under study or have referenced those validation 
studies, a need still exists for validation of drug 
exposures and disease diagnoses in databases in 
which no previous validation has been per-
formed. As medical practice changes over time, 
further validation of previously validated claims 
is also warranted. Evaluating the completeness 
of the databases is much more difficult, as it 
requires an external data source that is known 
to be complete [143,187,189,190]. Although 
administrative claims and EHR databases have 
greatly expanded our ability to undertake phar-
macoepidemiologic research, we need to ensure 
that our tools, including the databases used for 
our analyses, are complete and of the highest 
quality.

 The Future

Methods for conducting pharmacoepidemio-
logic studies have shifted over the past several 
decades from reliance on studies requiring de 
novo data collection from individuals, to exten-
sive use of electronic data from either adminis-
trative claims or EHRs, to linked data sources 
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and distributed data networks. Yet de novo data 
collection will continue to be required to ascertain 
information on quality of life, patient‐reported 
outcomes (see Chapter  42), and medications 
either not included in pharmacy dispensing files 
or not reliably entered into EHRs, such as herbal 
and over‐the‐counter medications. In fact, with 
the advent of wearables and the Internet of Things, 
we anticipate that de novo collection of health data 
may increase in the coming years.

The improved computer technology that 
resulted in faster processor speeds and increased 
storage capacity facilitated storage of healthcare 
data in an electronic format, such as EHRs, and 
allowed development of distributed data net-
works using data from multiple health plans. 
The availability of these data for research has 
improved our ability to conduct studies [168] 
and the increasing uptake of EHRs is leading to 
increased availability of more granular clinical 
data for pharmacoepidemiologic research (e.g., 
lab results, clinical notes). Initial evaluation of 

EHR data suggests great promise, but increased 
data quality and standardization of terminology 
and codes will be required to make these data, 
collected for clinical care, useful for research 
purposes [191]. Similar processes will be war-
ranted for use of data from wearables and prior 
to integration of new data from biobanks, 
mobile apps, social media, or other sources into 
a rigorous research framework.

As part of the standardization process, data 
holders will have to document that their data 
are valid for conducting research and surveil-
lance activities. This will require investigators to 
apply their knowledge and practices from use of 
administrative claims and EHR data to linked 
data and to these novel data sources. Both med-
ication exposure and outcome diagnosis data 
from these novel data sources do not carry the 
same level of comfort regarding validity as 
claims data and EHR data. As these data are 
considered for research, we hope and expect to 
see studies validating their use.
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In this chapter, we will describe the impor-
tance of adherence in pharmacoepidemiologic 
research, the methods for measuring adherence, 
methodologic issues that arise once adherence 
has been measured, and future directions. While 
we use many different drug–disease examples, 
we focus on examples from HIV and cardiovas-
cular diseases because these areas have been 
major focuses of adherence research.

The underuse of essential medications 
imposes significant clinical and financial bur-
dens on healthcare systems. Data show that as 
many as half of patients do not take their medi-
cations as prescribed, resulting in more than 
$100 billion in excess annual spending in the US 
[1]. Nonadherence is also thought to contribute 
to 11% of US hospitalizations each year [1]. 
Without accurate measurements of adherence 
incorporated into research and practice, the 
problem will remain underappreciated and 
poorly addressed.

Despite its importance, medication adherence 
is difficult to define. Earlier research has used the 
term compliance, or “the extent to which the 
patient’s dosing history conforms to the pre-
scribed regimen,” to describe this behavior [2]. 

However, this term implies that patients passively 
“conform” to the prescriber’s directions; there-
fore, the term adherence is now strongly pre-
ferred [3]. Adherence better conveys the idea of a 
patient–provider relationship where the patient 
implements the provider’s recommendations.

Another reason why adherence has been dif-
ficult to define is that it is not a single static 
behavior but instead encompasses a set of 
behaviors over time. One common taxonomy 
developed by a scientific consensus group clas-
sifies adherence along three phases: (1) initia-
tion, (2) implementation, and (3) persistence 
(Figure  38.1) [4]. Initiation describes initial 
engagement with the prescribed medication. 
Research suggests that as many as 30% of newly 
prescribed therapies are never actually filled 
by patients [5], which is often referred to 
as   primary nonadherence. Implementation 
 represents how well the patient follows the 
prescribed regimen while s/he is engaged 
with  treatment. While varying greatly across 
diseases, approximately 50% of patients are 
thought to not correctly follow prescribed 
 regimens. Persistence refers to how long the 
patient continues to follow the regimen [6]. 
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Poor treatment adherence can occur along any 
of these phases.

The actual behaviors involved in taking a pre-
scribed medication as directed become more 
complicated when considering each adherence 
phase. This taxonomy helps distinguish patients 
who never initially fill a prescription from 
patients who occasionally forget to take doses as 
well as patients who take a medication regularly 
at first but then later discontinue. Classifying all 
three types of patients simply as “nonadherent” 
ignores the fact that each of these patients may 
differ with respect to treatment outcomes and 
likely have different adherence barriers requir-
ing different interventions [3]. This taxonomy 
also highlights the multifactorial behaviors 
required for  sustained medication adherence 
and why measuring it, identifying the barriers, 
and then  improving adherence has been diffi-
cult. Regardless, practical approaches to meas-
uring and analyzing adherence have been 
successfully developed, and we will discuss the 
challenges and utility of various approaches to 
measuring adherence throughout the chapter.

 Clinical Problems Addressed 
by Pharmacoepidemiologic 
Research

Adherence research confronts the truism 
attributed to former US Surgeon General C. 
Everett Coop, MD that “drugs don’t work in 

patients who don’t take them” [7]. Measuring 
adherence is essential in order to address sev-
eral issues in the interpretation of studies of 
beneficial and adverse effects of medications. 
In randomized trials, treatment adherence can 
be an important factor that affects the esti-
mates of efficacy and safety of the tested medi-
cations (see Chapter  32). Poor adherence to 
the drug being tested can lead to underesti-
mates of drug efficacy [8]. Further, informa-
tion about adherence allows for a more 
accurate assessment of drug safety because 
those who do not take the drug cannot experi-
ence its toxicity. Because perfect adherence is 
not attainable, even in clinical trials, measure-
ments of adherence can elucidate whether a 
drug fails to exert an effect because it did not 
work or because it was not taken properly. 
Poor adherence may itself also be a marker of 
toxicity or adverse events.

Once a medication is marketed, information 
from clinical trials gives only a limited view of 
how drugs are used by patients. Patients who vol-
unteer for clinical trials are thought to be more 
motivated than those in usual care [8,9]. 
Therefore, measuring adherence in observational 
studies of drug effectiveness and safety may be 
even more important than in clinical trials. 
Furthermore, assessing adherence in observa-
tional studies provides a more “real‐world” esti-
mate of adherence in clinical populations. Finally, 
because adherence itself is a major determinant 
of treatment outcomes, it can also be the specific 
focus of pharmacoepidemiologic research.

Clinician 
writes 

prescription

Patient fills 
prescription

Patient 
adheres to 

therapy

Patient 
continues 

therapy

Phase (1) Initiation

Synonyms: Acceptance, 

Primary adherence

Phase (2) 

Implementation

Synonyms: Execution

Phase (3) Persistence

Synonym: Non-

discontinuation

Figure 38.1 Phases and taxonomy of adherence.
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Nonadherence can be intentional or uninten-
tional. Studies have identified many potential 
barriers to adherence, broadly categorized as 
patient‐, system‐, and medication‐specific fac-
tors. Common patient barriers consist of forget-
ting to take the medication, lack of knowledge 
or health literacy, and psychosocial factors such 
as depression and lack of social support [10–
12]. System barriers include logistical difficulty 
in obtaining the medication and, in some set-
tings, sporadic drug unavailability (“stock outs”) 
[13,14]. Key medication‐specific factors include 
regimen complexity and adverse effects [15,16]. 
Further, patients may decide on a dose‐by‐dose 
basis whether to take medicine as prescribed, 
perhaps to avoid side effects at inconvenient 
times (like avoiding increased urination at 
night). Finally, postmarketing studies have 
observed “pill fatigue” (in that adherence can 
decrease over time from being emotionally 
overwhelmed by taking medication), particu-
larly when patients are followed for longer than 
typically done in trials [17,18]. It is a well‐known 
phenomenon that the optimal adherence seen 
early in therapy often decreases over time [19]. 
Thus, observational adherence studies provide 
unique data not available from trials.

While missed doses are a more common 
adherence problem, taking extra doses can also 
be a problem. For example, extra doses of drugs 
with a narrow therapeutic window, such as war-
farin for anticoagulation, may result in toxicity 
[20]. Patients may also take extra doses of nar-
cotics prescribed for the treatment of pain 
because of inadequate pain relief or for poten-
tial abuse (see Chapter 28).

Measuring adherence can also be useful for 
determining the threshold of how much medi-
cation must be taken to obtain desired clinical 
outcomes; these dosing thresholds likely differ 
by drug and disease. In hypertension, taking at 
least 80% of prescribed medication has been an 
acceptable standard for blood pressure control 
[21]. However, in HIV, 80% adherence is often 
insufficient. For example, in a study of patients 

starting protease inhibitors for HIV, those who 
took 80–95% of doses were more likely than 
those with lower adherence to achieve com-
plete suppression of viral replication [22]. 
Unfortunately, such detailed information is not 
available for most drugs and diseases. Despite 
the likelihood that 80% of doses taken is not 
the optimal universal cut‐point for acceptable 
adherence, this threshold persists across 
research and quality measures [23]. Therefore, 
the default adherence goal should be to encour-
age the patient to take as many prescribed doses 
as possible, and future research is focusing on 
identifying more empiric and robust dose–
response thresholds for various diseases.

Finally, adherence can also impact public 
health, especially in infectious diseases. For 
example, in tuberculosis and HIV, nonadher-
ence can actually lead to resistance to medica-
tions. Because these resistant diseases are 
transmissible [24], the measurement of nonad-
herence and adherence interventions takes on 
greater public health importance.

 Methodologic Problems 
to be Solved by 
Pharmacoepidemiologic 
Research

Challenges in the Measurement 
of Adherence

The gold standard for measuring adherence to 
treatments is directly observed therapy [14]. 
However, this approach is only practical in lim-
ited settings, such as the administration of a 
novel agent in a controlled environment. While 
many approaches exist, as will be discussed later, 
whatever the approach, the discovery of nonad-
herence in clinical settings can be embarrassing 
for patients, because it can imply lack of respect 
for the provider’s advice or for one’s welfare. 
Thus, knowledge that one’s adherence is being 
monitored risks influencing the behavior it is 
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measuring (i.e., a Hawthorne effect). Moreover, 
tracking a daily activity can be burdensome 
regardless of whether individuals are aware of 
their own nonadherence. Therefore, measuring 
adherence requires creative approaches to accu-
rately capture a daily activity performed at dif-
ferent times per day for different individuals.

Challenges in the Analysis 
of Adherence Data

Once adherence is measured, there are various 
approaches to analyzing the data depending on 
the data sources used. In clinical trials, adjusting 
results for adherence is complicated by the fact 
that being adherent itself is associated with 
 better outcomes (i.e., placebo effect). For exam-
ple, in a randomized double‐blind placebo‐ 
controlled trial of propranolol after myocardial 
infarction, poor adherers had a 2.8 higher odds 
of mortality compared with good adherers in 
the same active arm, after adjustment. However, 
the adjusted odds ratio of mortality in those 
with poor adherence to placebo was, similarly, 
2.7 [25]. Presumably, adherence to either agent, 
whether propranolol or placebo, was strongly 
associated with other unmeasurable lifestyle 
factors associated with mortality. How to  control 
for this healthy adherer effect is an important 
analytic consideration.

Other analytic challenges include the dura-
tion and timing of adherence measurements. 
Because adherence behaviors vary over time, 
individuals may have substantial changes across 
the observational period. For example, individ-
uals are prescribed lifelong regimens for many 
chronic diseases. When initiating treatment, 
adherence over the first 12 weeks may not be 
the same as adherence over the final 12 weeks. 
Simply summing adherence over an entire 52‐
week interval will provide an average of adher-
ence, but short periods of nonadherence can 
substantially impact clinical outcomes [26]. 
Therefore, when conducting adherence analy-
ses, researchers need to carefully consider the 

appropriateness of the adherence “interval(s)”. 
Many adherence studies of chronic medications 
choose intervals that are at least 180 or 365 days 
long to capture enough variation in use; how-
ever, this choice must be balanced with the 
length of follow‐up available on patients to 
ensure external generalizability [27].

Whatever the interval, the summation of 
adherence data can also be accomplished in dif-
ferent ways. The simplest is the percent of 
doses taken, but this may not be the most clini-
cally relevant metric. Depending on drug phar-
macokinetics and pharmacodynamics, gaps 
and variability in adherence may be more 
important than the proportion of prescribed 
doses taken. However, a composite measure of 
percentage of doses taken over an entire time 
period is often still used as the sole adherence 
measurement in  research publications and 
measures of healthcare quality. There have 
been recent advancements in measuring adher-
ence, which are discussed later in this chapter.

Additionally, many diseases are treated with 
combination therapy (either multiple medica-
tions in the same formulation or multiple sepa-
rate formulations). When drugs are studied in 
combination to determine their effect (e.g., anti-
hypertensive or antituberculous therapies), it is 
challenging to determine how to weight differ-
ential adherence or switching among the drugs 
[27]. Many of these issues can be addressed with 
currently available solutions, although method-
ologic challenges remain to be solved.

 Currently Available Solutions

There are many different methods for measur-
ing medication adherence, and each method has 
strengths and weaknesses. Which method is 
most appropriate depends upon the situation 
in  which it will be used and how precise the 
measurement needs to be. Some measurements 
require more intensive patient‐level contact 
than others, and some provide more granular 
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data with respect to timing of dose taking. For 
example, in prospective clinical trials, because of 
the direct patient contact, many of these tech-
niques can be used. In other settings like retro-
spective studies using databases, options are 
more limited. Therefore, the use of multiple 
measures or sources of data may be helpful to 
confirm findings. For all approaches, the inter-
pretation of adherence findings may also change 
depending on whether incident users or preva-
lent users of medication are examined, as adher-
ence tends to be higher among prevalent users, 
in part because discontinuation is highest in the 
first few months after initiation. Therefore, 
many studies focus on incident users, but there 
are situations in which studying prevalent users 
may be more relevant, especially because new 
initiators are only a small proportion of all 
patients using a therapy at a given time [28–30].

We will describe each of the strategies, their 
strengths and weaknesses, and discuss consid-
erations for the timing of assessing adherence.

Specific Techniques for Measuring 
Adherence

Self‐reports
Among many approaches to assessing adher-
ence, patient self‐reported measures asking 
respondents about their adherence behaviors 
have been the most common method. They are 
simple, relatively inexpensive, quick and feasi-
ble, and can be obtained over the telephone, in 
person, or with paper or electronic surveys. 
Self‐reported measures vary greatly in the 
phrasing of their questions, recall periods, and 
response items. Several different validated 
methods for assessing self‐reported adherence 
are described here.

Self‐reported adherence measures range from 
one‐item questions inquiring about the fre-
quency of missed doses to longer multi‐item 
assessments evaluating beliefs associated with 
adherence and identifying barriers to adherence 
[31]. Most self‐reported measures involve count 

or estimation‐based recall focused on the imple-
mentation phase, in which respondents report 
the number of doses missed or taken within an 
interval or to estimate their overall execution of 
adherence. Some scales use a recommended 
adherence cutpoint while other scales identify a 
continuous measure of the degree of adherence.

In a systematic review, Nguyen et  al. identi-
fied 43 validated self‐reported adherence scales 
in the English language [32]. Perhaps the most 
common self‐reported adherence tool histori-
cally used is the eight‐item Morisky Medication 
Adherence Questionnaire (MMAS‐8) [33,34]. 
However, the use of this scale requires licensing 
fees. The adult AIDS Clinical Trials Group 
(ACTG) adherence questionnaire [12] and Brief 
Medication Questionnaire [35] are other exam-
ples of common, publicly available tools that 
explore both behaviors and barriers to adher-
ence. A recent three‐item tool by Wilson et al. 
queries patients about how many days they 
missed medications over the last 30 days [36]. 
Other studies have used a single measure such 
as a visual analog scale, which asks participants 
to mark a point on a line from 0% to 100% to 
indicate the amount of medication taken over a 
specified recent time period [37]. Overall, the 
choice of measure may depend on the context of 
its use (e.g., clinical use or research), the burden 
to patients, and the disease states in which it has 
been validated. In addition, self‐report may be 
the easiest method for clinicians to administer 
and more easily used to isolate the reasons for 
poor adherence for targeting interventions.

Self‐reported adherence measures are mod-
erately correlated with methods using elec-
tronic drug monitoring (EDM) or pharmacy 
dispensing data (described later in the chapter), 
though concordance can vary depending on the 
patient’s level of adherence or the measure-
ment window [31,38–40]. For example, in a 
study comparing three‐day, seven‐day, and one‐
month self‐reports, the one‐month window best 
approximated adherence obtained using EDM 
[41,42]. On the other hand, because of potential 
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 overreporting, self‐reported measures are 
thought to have high specificity and low sensi-
tivity (i.e., self‐reported nonadherence is gener-
ally accurate, while high self‐reported adherence 
may not be accurate) [31]. Either way, self‐
reported measures have shown weaker associa-
tions with clinical outcomes than EDM or 
dispensing data [31,42].

There are some additional limitations to self‐
reported adherence measurements. Though 
they can be self‐administered in high‐literate 
patients or conducted by an interviewer, they are 
all limited by a patient’s ability to recall missed 
doses and may be subject to social desirability 
bias (i.e., overreporting adherence to please pro-
viders or researchers). Social desirability can be 
mitigated by acknowledging the difficulty of 
always taking all medications. Interviews are 
also potentially limited by language barriers, 
poor literacy, time burden, and difficulty with 
medication names. Using computer‐assisted 
self‐administered interview can reduce these 
barriers by reading instructions and questions 
aloud and including high‐resolution photo-
graphs of the medicines. These questions can be 
administered at a kiosk or computer in a waiting 
room. Empirical data suggest that computer‐
aided self‐reports are less likely to overestimate 
adherence [43]. However, poor patient recall is 
still a problem, and self‐reported measures are 
also limited by their ability to precisely describe 
the timing or patterns of dose taking.

Pharmacy Dispensing Data
Pharmacy dispening measurement was pio-
neered in the late 1980s and has been widely 
used in various chronic diseases [44]. These 
measures typically derive from secondary data 
from health insurers and are some of the most 
common ways of measuring adherence in 
pharmacoepidemiology.

Pharmacy dispensing data are generally con-
sidered to be accurate because the dispenser 
(e.g., a pharmacy) would not get reimbursed by 
insurance if the medication fills are not recorded. 

Compared with self‐reported data, pharmacy 
dispensing data are not biased by poor recall, 
can be obtained from computerized records, 
and can be assessed retrospectively [38]. 
Another advantage is that the data can be easily 
processed by software and are available on large 
numbers of patients (often millions in the same 
database). However, the data quality may be less 
assured in settings where such tracking is less 
crucial for reimbursement or if prescriptions 
are obtained outside insurance plans [45]. Some 
approaches use data from pharmacies directly 
to capture all medications dispensed to patients 
and not just those paid by insurers. Also, in the 
US, these pharmacy dispensing data are gener-
ally only accurate for medications dispensed in 
the outpatient setting, because medications are 
not specifically paid for separately during hospi-
talization [46]. For questions related to adher-
ence to one‐time prescriptions (e.g., short 
courses of antibiotics), these data may not be 
useful beyond studying primary nonadherence 
because repeat dispensings are required to cal-
culate an amount of medication consumed.

There are several different methods for meas-
uring adherence using pharmacy dispensing 
data. In all approaches, adherence is measured 
indirectly based on patterns of medication dis-
pensings (using the dispensing date and days 
supplied) by generating a “drug supply diary” 
that strings together consecutive medication 
dispensings based on the dates on which medi-
cations are dispensed to the patient at the phar-
macy and the duration of the supply dispensed 
[19,47]. This supply diary can adjust for overlap-
ping fills (e.g., truncating the days supplied for 
medications which are refilled before the medi-
cation supply from the prior dispensing would 
have been exhausted) and any known interrup-
tions that may have occurred (e.g., by hospi-
talization). When generating the supply diary, 
researchers generally consider medications 
that are chemically related and not intended for 
use in combination to be interchangeable (e.g., 
two beta‐blockers). For example, patients may 
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initiate one beta‐blocker and later switch to a 
different beta‐blocker. In this case, beta‐blocker 
adherence is often measured continuously, 
rather than separately measuring adherence to 
each medication, to generate one continuous 
exposure episode. Sometimes, medications 
within the same disease state but chemically dif-
ferent (e.g., beta‐blockers and calcium channel 
blockers) could be considered interchangeable.

Several types of adherence metrics can be cal-
culated using these data, such as a continuous 
variable for adherence assessed from the first to 
last prescription record, a dichotomous variable 
in which patients are classified as adherent or 
nonadherent based on a threshold, or examin-
ing the time between dispensings. In the most 
common approach, the proportion of days that 
patients had an available supply of medication, 
or the proportion of days covered (PDC), is cal-
culated. The PDC is calculated by dividing the 
number of days with an available supply of med-
ication by the number of days in the interval 
being evaluated (an interval‐based measure) 
[48]. Other approaches include calculating the 
medication possession ratio (MPR). MPR is cal-
culated as the quotient of (1) the total number 
of days supplied of all dispensings in a given 
analysis interval for the medication under inves-
tigation, and (2) the total number of days in the 
analysis interval. The primary difference 
between the PDC and MPR adherence metrics 
is how overlapping days supplied of the same 
medication are handled. MPR assesses the total 
daily medication supply from all dispensings in 
a given analysis interval whereas PDC assesses 
the total days where a medication supply “cov-
ered” each day in a given analysis interval. The 
specific approach is typically determined by 
researcher preference, although may depend to 
some degree on the structure of the database or 
the pharmacodynamics of the drug/disease in 
question. Regardless, the results of the different 
approaches are typically very similar [23].

In addition, these data can be used to meas-
ure persistence (e.g., the time until medication 

discontinuation) by evaluating whether clinically 
meaningful treatment gaps or discontinua-
tions are observed in the dispensing data [49]. 
Potential approaches include evaluating whether 
a dispensation overlaps with the end of a follow‐
up period (i.e., 365 days after initiation) or meas-
uring the availability of drug supply at a fixed 
time after the last medication dispensing (e.g., 
whether patients have a gap of at least 30, 45, or 
60 days with no medication after the supply is 
presumed to be exhausted). Whichever method 
is chosen, investigators should conduct sensitiv-
ity analyses of the “gap rule” to determine the 
robustness of the findings.

These adherence measures are limited in 
additional ways. The vast majority of dispens-
ings for chronic medications in the US are for 
supplies of 30 days, and increasingly 90 days 
[47,50]. Measuring adherence in intervals 
shorter than 180 days can then make it difficult 
to observe variation in adherence since by defi-
nition, the first 30 or 90 days are always consid-
ered as full adherence (100%), regardless of 
actual patient behavior [51]. This problem 
becomes less pronounced with longer measure-
ment intervals. However, shorter intervals may 
be more clinically desirable since they might 
allow nonadherence to be detected and acted 
upon sooner [52].

Although adherence metrics, using pharmacy 
dispensing data, often estimate the supply of 
medication during a given time period, they do 
not measure or monitor actual pill‐taking behav-
ior, either on average or day to day. Consequently, 
they cannot be used when the timing of missed 
doses is pivotal. However, the estimation of 
adherence with pharmacy dispensing data has 
been shown to be valid for chronic medications 
where measuring overall exposure between 
refills is clinically relevant [38]. Pharmacy dis-
pensing measures of adherence have also been 
shown to be strongly associated with clinical 
outcomes [53,54]. For example, a time‐to‐ 
dispensing measure of adherence has been 
 associated with changes in HIV viral load [55] 
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and changes in blood pressure [44]. Furthermore, 
the measure has been shown to provide addi-
tional information beyond self‐reports. In a study 
of antiretroviral therapy, individuals who self‐
reported 100% adherence actually varied in their 
treatment response based on adherence metrics 
from pharmacy dispensing data. As expected, 
those with higher adherence, as defined using 
pharmacy dispensing data, had higher rates of 
treatment response, despite claims of perfect 
self‐reported adherence in both groups [56].

A limitation of adherence measures derived 
from pharmacy dispensing data is the estimate 
of the maximum potential adherence, since 
these metrics assume all medication supplied 
has been consumed between dispensations. It 
is also difficult to disentangle clinically directed 
medication discontinuation wherein persis-
tence is no longer the behavior being studied, 
from patient‐directed discontinuation against 
provider recommendation, which is defined as 
nonpersistence. Furthermore, pharmacy dis-
pensing data may also overestimate adherence 
measures when dispensing programs automati-
cally dispense a new supply on a prespecified 
schedule, irrespective of patient request for 
resupply [57].

A final consideration is how to accurately 
measure adherence to multiple medications for 
the same condition (e.g., antihypertensives). 
One common approach is to measure adher-
ence at the therapeutic class level and “average” 
adherence across the entire chronic condition 
for patients exposed to any medication for that 
condition [27].

Pill Counts
While less commonly used, adherence can also 
be measured indirectly by pill counts. Pill counts 
are similar to pharmacy dispensing data in that 
percent adherence is calculated by dividing the 
days supply consumed by the number of days 
observed. Data collected include the dispensing 
date, quantity dispensed, number of pills per 
dose, and number of pills left in the bottle, 

adjusted for doses taken that day and any addi-
tional pills left over from the last count.

Like adherence measures estimated using the 
medication dispensing date and days supplied 
(e.g., MPR and PDC), adherence measures using 
pill count data also cannot determine if the 
medication was actually consumed or the pat-
terns of consumption. However, they do provide 
direct evidence that the medication was not 
taken when pills are left over. Pill counts are sus-
ceptible to deception since “dumping” pills on 
the way to the pill count visit is simple and can 
be done impulsively before a visit. Unannounced 
pill counts, in person or by telephone, are valid 
alternatives to mitigate this type of misclassifi-
cation [55]. During calls, subjects review the 
contents of each of their pill bottles. Of course, 
this approach is also susceptible to intentional 
deception; however, the estimated adherence 
from pill bottle review was shown to be associ-
ated with treatment response [58]. The time for 
both staff and participants is a potential disad-
vantage of pill counting and an additional source 
of error. In addition, missing data can result 
when patients do not bring in their pill bottles 
or have them available during telephone calls. 
Reinforcing the importance of accuracy with 
staff is vital to ensure validity of this measure.

Medication Diaries
Although the adherence measures described 
above summarize how much medication was 
taken over a specified time period, they provide 
no detail on the timing of missed doses. 
Depending on drug pharmacokinetics and 
pharmacodynamics, missing doses may have 
different consequences depending on whether 
the doses were missed consecutively or at sepa-
rate times that are evenly spaced. These data 
may in fact be vital to classifying adherence, and 
medication diaries can provide a solution. In 
this method, participants keep a record of the 
date and time of each dose of medication and 
often whether or not it was taken with or with-
out food. These data can be collected either 
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electronically or handwritten; with newer tech-
nologies like smartphones, data collection could 
be even easier [59]. Diaries may be particularly 
useful for medications like insulin or inhalers 
that are difficult to track using other methods 
[60]. For example, medication diaries are regu-
larly used in pediatric patients [61].

However, medication diaries are susceptible 
to both overreporting and underreporting of 
adherence. Social desirability results in patients 
listing doses even though they were not taken, 
but the potential is lessened somewhat by the 
burden of creating a detailed falsified record. In 
fact, the risk of underreporting may be greater 
because of the burden of tracking each dose. It 
is also not easy to employ this method at scale 
for larger studies. Newer approaches are explor-
ing the use of apps on enabled smartphones to 
track these more nuanced medication‐taking 
patterns.

Electronic Drug Monitoring Technology
Electronic drug monitors (EDMs) feature the 
same advantages as medication diaries, but are 
less susceptible to deception, forgetting, or 
ignoring the need to write down the dose data. 
In contrast to the prior approaches, EDMs pro-
vide time‐stamped data for adherence behaviors 
to enhance precision of adherence measures. 
While there are several different hardware 
options, electronic drug monitors employ elec-
tronic date/time stamp technology that is trig-
gered by opening a container (i.e., pill bottle), 
puncturing a blister pack to obtain a dose, or 
ingesting a dose. The data are downloaded to a 
computer or smartphone via hardwired or wire-
less linkage.

Electronic drug monitor data have been shown to 
have some correlation with other measures, includ-
ing pharmacy dispensing and self‐report, though 
EDM measures are more sensitive (i.e., they are 
more likely to identify poor adherence) than self‐
reported measures [31,62]. While EDMs are less 
susceptible to deception than self‐report, they 
could theoretically could be more susceptible 

than pharmacy dispensing data [63]. However, 
it is highly unlikely that subjects will open and 
close the monitor to record doses over long 
periods of time without actually taking the 
medication, though this does occasionally hap-
pen accidentally [63,64]. EDMs are also less 
susceptible to underreporting than diaries 
because they often do not require the subject to 
do anything other than take the prescribed 
medication.

Though EDM technology is advancing rap-
idly, the packaging and cost of EDMs can still 
be burdensome and difficult to scale [64]. For 
example, EDMs have been found to be particu-
larly hard for patients with psychiatric condi-
tions to use [64–66]. In addition, they often 
preclude the use of pillboxes by generally 
requiring that the medication remain in the 
package until taken. Consequently, they are 
susceptible to underestimating adherence (e.g., 
a one‐week supply taken from the container 
at  one time will appear as one dose taken). 
However, EDMs could be used even when the 
medication is not kept in the container. In a 
warfarin study, individuals using pillboxes were 
given an EDM in an empty pill container and 
asked to open the empty bottle whenever they 
took warfarin from the pillbox. The association 
between adherence and outcome was nearly as 
strong as those who kept the warfarin in the 
monitored bottle [20].

Newer approaches are being developed, such 
as integrating EDM technology with text mes-
saging that reminds patients when they miss 
doses. In 2015, the US Food and Drug 
Administration approved the first ingestible 
sensor technology that measures actual intake 
time through ingestion of a medication that 
communicates with an adhesive patch. The 
device sends a signal to the doctor or research 
team monitoring adherence [67]. Other research 
is exploring the utility and accuracy of adher-
ence measures in which patients take date‐ and 
time‐stamped photographs of themselves or 
their pills each time they take a dose.
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Drug Concentrations
Identification of the presence of a drug in 
plasma or other tissues provides direct evidence 
of drug ingestion. However, the use of drug con-
centrations to measure adherence is limited by 
variability across patients (i.e., absorption, dis-
tribution, metabolism, and clearance  –  see 
Chapter 2). The more frequently concentrations 
are measured, the fuller the picture of adher-
ence behavior that can be obtained but the cost 
and patient inconvenience may be a limitation. 
Measurement of drug concentrations in hair 
using liquid chromatography and confirmed by 
mass spectrometry can be a useful indicator of 
long‐term medication exposure. For example, 
antiretroviral drug levels in hair give an average 
of the exposure to drug over the past weeks to 
months and predict HIV viral response better 
than serum drug levels [68].

Unfortunately, many assays are unavailable 
commercially. Furthermore, the serum drug 
level is not the relevant measure for many drugs 
when the site of action is elsewhere (e.g., intra-
cellularly rather than in serum or in hair) [69]. 
Finally, unless these assays are done quickly, 
they are not useful clinically.

Another approach to assessing drug concen-
trations is to use a marker drug that is easily 
added to a formulation and can be measured 
more easily than the actual drug of interest. The 
primary example here is the incorporation of 
riboflavin into active drugs as a urine metabo-
lite drug marker to assess adherence to medica-
tion in clinical trials [70]. Of course, this strategy 
is only relevant in settings where researchers 
have control over the formulation and direct 
access to the patient (e.g., clinical trials).

Measuring Primary Adherence
Each of the approaches described above has 
focused on later adherence phases (e.g., imple-
mentation and persistence). Measuring medica-
tion initiation (i.e., primary adherence) has been 
difficult using some of these methods, particu-
larly because secondary data require a medication 

to be dispensed for adherence behaviors to be 
monitored. Some techniques, for example self‐
report, may allow for easier study of primary 
adherence. Without linkage to other types of data 
(e.g., electronic health records that include pro-
vider medication orders), it can be difficult to 
evaluate initiation without knowledge of what 
was prescribed [5]. Newer approaches are begin-
ning to link these data sources to allow better 
assessment of the full cascade. On their own, elec-
tronic health record data limited to physician 
orders are not useful at evaluating patient adher-
ence because they do not provide information 
about medication consumption.

Measuring Adherence to Nonpill Formulations
Measuring adherence to nonpill formulations 
can be difficult for several reasons, largely 
because these medications are generally admin-
istered with a variable dosing schedule. 
Injectable medications like insulin may be 
administered based on a sliding scale, with 
doses adjusted as needed, so measuring adher-
ence using indirect dispensing data may be 
imprecise. Recently, other insulin persistence‐
based measures have been developed to over-
come some of these limitations [60,71]. Inhaled 
medications are also difficult to measure; for 
those with specific schedules (e.g., tiotropium), 
dispensing data could be used [72]. Medication 
diaries and self‐report could also theoretically 
be used but are subject to the same biases as pill 
formulations. EDMs have been used for metered 
dose inhalers [73] and ophthalmologic solutions 
[74]. The monitors increase the size of packag-
ing, but the inhalers and solutions cannot be 
taken out of the package, unlike pill formula-
tions. Measuring adherence will continue to be 
a challenge for newer nonpill formulations, 
including biologics, and in disease states in 
which both oral and injectable formulations are 
used interchangeably (e.g., osteoporosis or 
venous thromboembolism).

Topical treatments pose a particular chal-
lenge. For transdermal formulations in patches 
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(e.g., nicotine, testosterone), adherence based 
on dispensation data is a viable option because 
the supply is typically fixed. However, for creams 
and ointments, because the amount used at 
each application varies by the size of the lesion 
being treated or the size of the individual, self‐
reports and medication diaries may be the only 
currently viable options [75]. Adherence to 
intravaginal gels could be monitored by count-
ing the number of empty tubes and used appli-
cators returned at each visit, but this measure is 
subject to self‐report errors due to intentional 
falsification or mixture of used and unused 
applicators in the same bag.

Analysis Issues in Adherence

Using Adherence Data in Clinical Trials 
and Comparative Effectiveness Studies
While clinical trial participants may be more 
motivated to adhere to treatments than those in 
clinical practice, nonadherence occurs for all 
types of self‐administered therapies. Missed 
doses will typically make the active drug less 
effective and diminish observed differences 
compared to placebo in intention‐to‐treat anal-
yses. In order to compensate for this effect, 
Phase III trials may inflate sample sizes to 
account for this variability in drug exposure [8]. 
Clinical trials may also incorporate run‐in peri-
ods to try to minimize poor adherence (see 
Chapter 32).

In analyzing trials, the standard approach 
remains intention to treat. This approach lim-
its the introduction of bias and makes the 
results more generalizable [76]. However, sec-
ondary analyses can be performed on sub-
groups of adherent patients, but these patients 
may differ for reasons that may not be easily 
measurable (i.e., more willing to take therapy, a 
type of healthy adherer bias) [77,78]. The 
 benefits of randomization would therefore be 
negated. Moreover, when lifestyle changes 
are co‐interventions along with medication in 
a trial, the results of secondary analyses will 

not be true measures of drug efficacy. Of 
course, medication adherence itself can also be 
a primary or secondary outcome in rand-
omized trials, particularly for studies of inter-
ventions [79–83].

The inclusion of adherence data in analyses of 
trials is particularly important when a treatment 
fails. Reasons for failure might include lack of 
biological effect or lack of adherence. Unless 
adherence is measured and identified as the 
cause of failure, the results of the trial will be 
only partly useful. While regulators will only 
approve a drug for the studied indication if it is 
shown to result in improved outcomes, it is 
important for the drug developer to know if the 
efficacy of the drug was potentially limited by 
poor adherence. For example, in one trial, rates 
of coronary heart disease events were compared 
in patients randomized to receive either cholest-
yramine or a placebo [84]. Adherence in the 
cholestyramine group (defined as taking at least 
five out of six prescribed packets of cholesty-
ramine per day) was only 50.8% compared to 
67.3% adherence in the placebo group due to 
side effects. Because of the poor adherence, 
treatment response in the cholestyramine group 
was attenuated. Thus, because adherence was 
measured, it was possible to determine that the 
high rate of intolerable side effects resulted in 
lower adherence and thus, perhaps, lower treat-
ment effectiveness.

Similarly, observational cohort studies of com-
parative effectiveness and safety of medications 
often benefit from measuring and evaluating the 
relationship between medication adherence and 
treatment response. First, “as‐treated” analyses 
of safety evaluations often censor follow‐up in 
patients who discontinue therapies for reasons 
other than toxicity to decrease bias toward the 
null. Second, marginal structural modeling 
approaches often include medication adherence 
as a time‐varying exposure. Exploring the rela-
tionship between adherence observed between 
comparators may enrich the conclusions derived 
from these studies.
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Selecting Adherence Intervals
For all adherence measures, a prespecified win-
dow for assessing and evaluating adherence 
must be chosen. The selection of the duration of 
an adherence interval depends on two impor-
tant factors: the pharmacokinetics/pharmaco-
dynamics and the granularity of the adherence 
measurement. For drugs with short half‐lives 
and short onset of action, short intervals are 
likely to be more clinically relevant than when 
the drugs have long half‐lives and longer onsets 
of action. For adherence measures that can 
accurately assess adherence over short periods 
of time, such as electronic data monitors, 
shorter intervals can be calculated. By contrast, 
when measures derived from pharmacy dis-
pensing data are used, adherence analysis inter-
vals must be longer because adherence is based 
on evaluating patterns between medication dis-
pensing dates in conjunction with the days sup-
plied per dispensing (e.g., 30 days).

The relationship between adherence and out-
comes has been well described in antiretroviral 
therapy and oral contraceptives. Using phar-
macy dispensing data, intervals of adherence as 
long as one year [56] and as short as 30 days [85] 
have been associated with viral load outcomes 
with antiretroviral therapy; however, a 90‐day 
measure was found to be more strongly associ-
ated with viral load than a 30‐day measure. For 
oral contraceptives, two consecutive days of 
nonadherence resulted in an unacceptably high 
rate of treatment failure (i.e., pregnancy) [86].

Unfortunately, for many medications, the 
most clinically relevant adherence interval may 
be unknown, and more research is needed to 
optimize the assessment of adherence. While 
the choice of interval length depends on the 
research goals, in general, monitoring adher-
ence over shorter intervals would be desirable, 
because interventions can be more rapidly 
implemented. However, shorter intervals are 
subject to decreased accuracy regarding true 
adherence behavior. In general, without direct 
guidance, choices for an adherence interval 

should be made based on pharmacokinetic and 
pharmacodynamic data (see Chapter 2).

Statistical Analysis
The simplest approach to summarizing adher-
ence across different methods is the percentage 
of doses taken (or missed). For electronic 
 monitors, because the timing of each dose is 
available, percentage of doses taken “on time,” 
standard deviation of time between doses, dura-
tion of maximum time gap between doses, and 
many others can be calculated [4]. For  adherence 
metrics derived from pharmacy dispensing 
data, the analysis focuses on either the percent-
age of available medication or the duration of 
gaps between dispensings [44]. Self‐reports 
focus on the proportion of doses the patients 
have taken or the time since the last dose was 
missed [31].

Whichever metric is used, one must choose 
whether to include adherence as a continu-
ous  or dichotomous variable. As previously 
described, dichotomous thresholds must con-
sider both the likelihood of failure and clinical 
consequences of treatment failure. Few thresh-
olds have been established based on evidence, 
yet in research and quality improvement 
efforts, to dichotomize these adherence 
 variables, patients are often defined as fully 
adherent if they take at least 80% of prescribed 
doses. Certainly, many studies in  cardiovascular 
diseases have demonstrated this association; 
however, there is recognition that different 
 levels of adherence may be required for viral 
suppression in HIV. In treatment settings with 
a linear relation between amount of drug taken 
and therapeutic response, evaluating differ-
ences in adherence on a continuous scale 
would be clinically more meaningful than 
binary measures. Alternatively, when neither 
dichotomous nor continuous measures cap-
ture the clinically relevant dose–response 
 relationship, assigning ordinal adherence cate-
gories (e.g., <70%, 70– < 80%, 80– < 90%, etc.) 
may be preferable [87].



Currently Available Solutions 1003

In addition, evaluating regimens with multi-
ple medications poses analysis challenges [88]. 
Many classify adherence based on optimal 
adherence to at least one medication for that 
disease state (e.g., hypertension) to be fully 
adherent, although this misclassifies individuals 
who are nonadherent to some but not all com-
ponents of the regimen. Fortunately, there is 
some evidence to suggest that for medications 
taken simultaneously, adherence to one is highly 
collinear with adherence to the other [89]. 
However, differential nonadherence has been 
documented [90].

Finally, it is difficult to determine whether an 
individual is poorly adherent or whether the 
medication is no longer being prescribed when 
access to medical records is unavailable. This 
phenomenon poses the greatest challenge for 
adherence measures derived from pharmacy 
dispensing data. Further, even when medical 
records are available and the provider docu-
ments the recommendation to discontinue, the 
exact date of patient medication discontinua-
tion can be difficult to determine.

Time‐Varying Nature of Adherence 
and Trajectory Modeling
Adherence is a nonstatic behavior, and meth-
ods are needed to capture changes in adherence 
over time. This phenomenon has historically 
been ignored in studies that measure adher-
ence only once or over short intervals. Even 
when measured longitudinally, adherence data 
are often averaged. For example, quality meas-
ures in the US are based on the proportion of 
patients with ≥80% adherence (e.g., MPR or 
PDC) of their prescribed medications over the 
prior year. However, patients may experience 
substantial increases and decreases in adher-
ence that are not fully captured by these com-
posite measures.

Consider, for example, one patient who takes 
a medication perfectly for the first six months 
but then discontinues for a six‐month gap com-
pared with another patient who alternates tak-

ing medications perfectly every other week 
interspersed with week‐long gaps over a year. 
Both patients would have the same calculated 
adherence (50%) but very different medication 
use patterns. Composite, cross‐sectional meas-
ures obfuscate the potential for each patient to 
experience different health outcomes and 
require different adherence interventions.

Advanced statistical methods are beginning 
to take advantage of repeated measurements in 
adherence data, particularly in dispensing data, 
to enhance analysis beyond composite meas-
ures. One such method applied is group‐based 
trajectory modeling which estimates changes in 
an outcome that is measured repeatedly over 
time and identifies individuals with similar lon-
gitudinal patterns [91]. In brief, this approach 
fits a semiparametric (discrete) mixture model 
and assigns groupings in longitudinal data (e.g., 
monthly PDC) based on probability distribu-
tions for a prespecified number of groups [92]. 
The probability of belonging to each potential 
group is modeled as a multinomial logistic 
regression, and within each group, adherence is 
modeled as a smooth function of time using up 
to a fourth order polynomial. The statistical 
output includes each individual’s estimated 
probabilities of group membership and esti-
mated trajectory curve of adherence over time 
for each group. For example, a study by Franklin 
et  al. of statin initiators identified six distinct 
patterns of adherence over 15 months, includ-
ing patients who had (1) near‐perfect adher-
ence, (2) poor adherence initially and then 
improvement, (3) slowly declining adherence, 
(4) rapid declines in adherence, (5) occasional 
use, and (6) immediate discontinuation [92].

Researchers ultimately select the best trajec-
tory models based on fit criteria, having suffi-
cient members in each trajectory group (i.e., at 
least 5% of the overall cohort in each group), 
narrow confidence intervals and posterior 
probabilities of membership ≥0.7 (in which 
each member assigned to that group has at least 
a 0.7 probability of being in that group) [91]. 
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Trajectory modeling can be accomplished using 
statistical software with continuous, binary, 
and count data.

Overall, group‐based trajectory models have 
been shown to summarize adherence patterns 
better than composite approaches and are 
strongly associated with clinical outcomes [93]. 
However, trajectories provide general patterns 
for adherence behaviors; that is, no one individ-
ual follows the exact pattern described by the 
trajectory of the group to which they are 
assigned. For example, although a rapid declin-
ing trajectory group might be depicted as hav-
ing adherence decrease starting at month 4, any 
one individual assigned to that group might 
begin to be nonadherent at month 3 or month 5. 
Also, the number of distinct adherence tra-
jectory groups, while guided by the fit criteria 
above, can also be subjectively based on 
researchers’ interpretations and differ by dis-
ease state. Additionally, describing the individ-
ual patterns in words can be challenging; labels 
such as “mid‐year discontinuation” and “early 
nonadherence followed by later return to partial 
adherence” can be cumbersome. More research 
is needed to optimize the approach, explore 
applicability in other adherence data sources, 
and facilitate communication of findings.

Prediction of Adherence for Interventions
Unfortunately, low rates of adherence have per-
sisted despite extensive efforts to identify and 
predict patients at risk of poor adherence with 
the goal of developing interventions to improve 
adherence. Despite the expansion of databases 
with rich patient data, prediction of future 
adherence remains poor. Traditional approaches 
have focused on clinical and demographic fac-
tors at the time of medication initiation, with 
discriminative ability that is modest at best even 
with dozens of predictor variables (e.g., c‐statis-
tics ranging between 0.6 and 0.7) [52]. Even 
machine learning, with the capability of meas-
uring complex interactions among predictor 
variables, has not led to drastically improved 

prediction, likely because the true factors asso-
ciated with poor adherence are usually not 
observable in databases.

One of the more successful approaches has 
been evaluating patterns of medication filling 
shortly after initiation. For example, in phar-
macy dispensing data, researchers have found 
that failing to refill in the second and third 
months after initiation is highly predictive of 
poor adherence over the following year (i.e., 
past adherence predicts future adherence) [51]. 
Predictions of adherence by providers have also 
been shown to be no better than chance [94], so 
they should not be used routinely in adherence 
studies or in practice.

 Future Directions

As outlined throughout this chapter, though 
many methods have been developed to evaluate 
adherence, many challenges remain. Better 
methods for detecting and addressing poor 
adherence as well as the reasons for poor adher-
ence will be welcome developments. Objective 
measurement of adherence to nonpill formula-
tions in particular is difficult, especially for 
injectable, liquid, and topical treatments. The 
optimal adherence metric for most drug– 
disease dyads remains unknown. This is further 
complicated by the enormous number of possi-
ble combinations of regimens.

Adherence studies are likely to advance in 
several ways. First, because optimal adherence 
thresholds may differ across individuals and 
diseases, researchers are beginning to explore 
personalized adherence targets. For example, 
in a machine‐learning analysis among patients 
with diabetes, Lo‐Ciganic et al. observed that 
optimal adherence thresholds for an individu-
al’s hospitalization risk varied greatly based on 
their underlying health status [95,96]. Novel 
approaches using other types of data are likely 
to emerge as well, including the use of more 
advanced microelectronic technology, often 
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linked with communication systems that both 
identify and report nonadherence, or the 
enhancement of mobile and smartphone tech-
nology for tracking and intervening on adher-
ence. Refinements to currently available 
electronic monitors will also likely include 
more convenient packaging that can both help 
with adherence (e.g., a reminder or organizer 

system) and provide two‐way personalized 
communication with patients.

Hopefully, with greater recognition of the impor-
tance of nonadherence, more research will be 
conducted over the next several decades to solve 
some of these problems as well as develop better 
approaches to improving adherence so that evi-
dence‐based medications can be optimally used.
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All medications have risks. Although many dif
ferent definitions exist, risk is usually defined as 
a potential harmful outcome that can occur with 
a known or unknown probability [1]. Some med
ication‐related risks are more serious than oth
ers and some are well understood whereas others 
are clouded by uncertainty. The responsibility of 
ensuring that medications are used as safely as 
possible is shared by the pharmaceutical compa
nies that develop, investigate, manufacture, and 
market medications; the governmental agencies 
charged with regulating these processes; the 
healthcare providers who prescribe or dispense 
prescription medications and make recommen
dations concerning the use of over‐the‐counter 
products; the governmental agencies that license 
and regulate healthcare providers and health
care facilities; and the patients who ultimately 
must decide whether or not to use a medication 
and, in most cases, have control over how they 
use the medication.

Since passage of the Kefauver–Harris Amend
ments to the Food, Drug, and Cosmetic Act in 
1962, market approval of a new drug in the 
United States has required that the Food and 
Drug Administration (FDA) determine that the 
medication is safe and effective (see Chapter 1) 

[2]. Similar criteria are used by regulatory agen
cies in other countries as well [3]. For example, 
in Europe, the European Medicines Agency 
(EMA) is responsible for the scientific evalua
tion of medicines for the 28 member states of the 
European Union. Similar to the FDA, the EMA 
is required to evaluate whether medications are 
acceptably safe and effective prior to drugs being 
permitted a marketing authorization or product 
license [4]. Other chapters in this book provide 
information concerning how these determina
tions are made (see Chapters 1 and 8). Here, we 
simply reiterate that even medications that are 
judged as meeting safety standards have risks.

A drug is considered “safe” if the risks associ
ated with it are deemed to be acceptable [5]. In 
some cases, medications with substantial and 
serious risks are judged as meeting safety 
standards because the benefits of the medica
tion outweigh the risks. This is most often the 
case for medications used to treat debilitating 
or life‐threatening illnesses where few other 
effective treatment options are available. It is 
also important to recognize that the safety of a 
medication is not solely an inherent property 
of the medicine, but also the circumstances in 
which the medication is used (e.g., expertise of 
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prescribers, procedures used to monitor poten
tial adverse effects, presence of interacting 
medications). Thus, many medication risks may 
be minimized through the implementation of 
appropriate risk management strategies.

To minimize medication risks following mar
ket approval, all parties involved in the medica
tion use process must have access to up‐to‐date 
information concerning potential risks, includ
ing measures that can be used to prevent or con
trol these risks. Moreover, this information must 
be provided in a timely manner and in a way that 
is understood by the target audience and that 
facilitates informed decision making. In this 
chapter, we discuss some of the clinical and 
methodologic challenges that must be addressed 
to meet these goals. We also discuss approaches 
that are currently used to enhance the dissemi
nation and usability of information concerning 
medication risks. We conclude by suggesting 
directions for future research in this area.

 Clinical Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

Five major clinical issues involving medication 
risk communication need to be addressed by 
pharmacoepidemiologic research.

First, one must determine the information that 
patients need about medication risks to be able to 
participate in shared decision making and use 
medications safely. Most medications have many 
risks (e.g., stomach upset, liver toxicity, cancer, 
potential for allergic reactions) and each risk has 
many dimensions that can affect judgments of 
acceptability. These dimensions include proba
bility, severity, controllability, reversibility, and 
time of onset (e.g., whether potential harm usu
ally occurs soon after initiation of therapy or 
may not arise for many years) [6,7]. In addition, 

although uncertainty is an inherent characteristic 
of any risk, the risks associated with some medi
cations are more uncertain than others. For 
example, the risks associated with medications 
that have been used for many years in a large 
number of patients may be fairly well understood 
[8]. Conversely, we often have limited under
standing of the risks associated with recently 
marketed medications, particularly those that are 
first‐in‐class, and previously unrecognized risks 
may continue to emerge for several years after a 
medication is first marketed. Given that it is 
probably neither feasible nor desirable to provide 
comprehensive patient education concerning all 
medication risks, there is a need to determine 
how different types of information should be 
prioritized.

Second, one must determine what informa
tion patients need about potential medication 
benefits to be able to make informed decisions 
regarding the need for therapy and the selection 
of a specific treatment when therapeutic alter
natives are available. Serious risks associated 
with a particular medication may be acceptable 
if the medication offers substantial benefits, 
especially if no acceptable therapeutic alterna
tives are available [7]. However, the same risk 
may be unacceptable for a less effective medica
tion that does not provide unique advantages 
over other treatment options (see Chapter 35).

Third, there is a need to identify the most 
appropriate targets (e.g., healthcare providers, 
patients with a specific health problem or taking 
specific medications, consumers in general) for 
different types of communications and the most 
feasible and cost‐effective way to communicate 
the information needed by different target audi
ences. Although patients can obtain informa
tion about medication risks and benefits from a 
wide variety of sources, most express a prefer
ence for obtaining this type of information from 
their healthcare provider [9,10]. Yet healthcare 
providers often struggle to remain abreast of 
recent research findings given the sheer volume 
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of emerging information as well as conflicting 
findings from different studies [11]. In addition, 
physicians may lack the skills in evidence‐based 
medicine needed to critically evaluate the litera
ture [12,13].

Fourth, one must determine how information 
should be tailored to individuals’ needs, prefer
ences, abilities (e.g., health literacy and numer
acy), risk status (i.e., presence of factors that 
affect the probability/severity of medication 
side effects; presence of factors that affect ben
efits that might be gained by using the medica
tion and risks associated with deciding to forego 
therapy), and current status in the medication 
use process (e.g., deciding whether to initiate 
therapy with a new medication; self‐managing a 
stable, chronic medication regimen). Tailoring 
is also needed when working with special popu
lations (e.g., children, individuals with cognitive 
impairments).

Finally, there is a need to address ethical 
issues that arise when communicating infor
mation about medication risks and benefits. 
Potentially, educating patients about medica
tion risks and the uncertainty associated with 
experiencing medication benefits may increase 
patient reluctance to use an effective prescribed 
medication [14].

 Methodologic Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

In addition to the clinical issues described above, 
five major methodologic issues need to be 
addressed by pharmacoepidemiologic research. 
First, effective risk communication requires the 
availability of high‐quality information concern
ing the risks and benefits of different therapeutic 
options, including the option of foregoing treat
ment. This need goes beyond simply knowing 
that a certain risk/benefit is possible. Information 

is needed concerning all the risk dimensions dis
cussed in the previous section (e.g., probability, 
severity, controllability, reversibility, time of 
onset). Moreover, the information included in 
risk communications must be relevant to the tar
get audience. Thus, the generalizability (and lim
its to generalizability) of pharmacoepidemiologic 
studies must be well understood.

Second, there is a need to determine the best 
format for providing risk/benefit information. 
Most risk communications include probabilis
tic information, which even healthcare provid
ers can find difficult to interpret [15–17]. A 
wide variety of formats can be used to convey 
probabilistic information: qualitative descrip
tors (e.g., common, rare), numbers (e.g., abso
lute risk, relative risk, odds ratios), and graphics 
(e.g., bar charts, pictographs). Many studies 
have demonstrated that the format used to 
express probabilistic information can have a 
substantial impact on judgment and decision 
making [18,19]. Experts recommend against 
providing risk information only in relative 
terms, isolated from baseline rates and other 
information that would contextualize the risk 
[20,21]. Experts also recommend that verbal 
descriptors should either be avoided or defined 
explicitly in numerical terms as part of the risk 
communication [22,23]. However, many ques
tions remain concerning the optimal way to 
convey this type of information.

Third, there is a need to better understand the 
factors that influence individual differences in 
how people perceive and respond to risk. Risk 
evaluation is not simply a cognitive exercise 
where estimates of probability and severity are 
entered into a mathematical formula to derive 
an estimate of acceptability that is invariant 
across individuals. People respond affectively to 
risk information [24–27] and different people 
may respond differently to the same informa
tion based on their past experiences and toler
ance of uncertainty.

Fourth, there is a need to develop communica
tion strategies that address the tendency for 
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patients and providers to overestimate the 
 probability and magnitude of medication bene
fits. Hoffman and Del Mar identified a “medical 
optimism” among patients who express overly 
optimistic expectations about interventions, 
while simultaneously underestimating the chance 
of harm associated with treatments [28]. In com
parison, it might be expected that clinicians have 
more accurate expectations of the benefits and 
risks associated with treatments. However, it has 
been demonstrated that, similarly to patients, cli
nicians rarely hold accurate expectations of treat
ment benefits and harms and also tend to 
overestimate benefit and underestimate risk [29]. 
Potential reasons for this may include a tendency 
to make decisions based on an understanding of 
how a treatment works as opposed to how effec
tive it is [30] or may result from deficits in train
ing. Hoffman and Del Mar also propose the 
existence of therapeutic illusion, “an unjustified 
enthusiasm for treatment on the part of both doc
tors and patients,” as a factor that may influence 
perceptions [29]. Clinicians’ understanding of risk 
and benefits is essential to ensure that patients 
receive accurate information to make unbiased 
and informed decisions about their treatments, so 
this is clearly an issue that requires resolution.

Fifth, there is a need to determine the most 
appropriate methods to use when evaluating 
communication effectiveness. In most cases, 
the ultimate objective of risk communications 
is to improve health outcomes by reducing the 
incidence of adverse events. However, it is 
helpful to consider the causal mechanisms 
through which desired effects on health out
comes might be achieved. As shown in 
Figure 39.1, the most proximal effects of risk 
communications are likely to be increased 
knowledge and, in many cases, emotional 
arousal. Next, the information communicated 
may be incorporated into decision‐making 
processes. At this point, it is important to con
sider whether the purpose of the risk commu
nication is to inform or persuade. If the 
purpose of the communication is purely infor

mational, it would not be appropriate to evaluate 
message effectiveness in terms of the specific 
decision made. However, many risk communi
cations include components that advocate 
specific actions (e.g., initiating precautionary 
behaviors to reduce a specific risk) and, there
fore, have a persuasive intent. In these cases, 
the message would probably not be considered 
effective unless the desired behavior changes 
were realized. Evaluators must also give care
ful consideration to the time required for dif
ferent types of effects to become evident [31]. 
For example, one would expect knowledge 
change to be evident immediately following 
message exposure. However, effects on health 
outcomes may require substantial time to 
become evident.

Two additional issues related to the evalua
tion of communication effectiveness deserve 
special attention. First, when evaluating the 
effect of risk communications on knowledge, 
investigators must determine what knowledge 
is needed for patients to make informed deci
sions and use medications safely. For example, 
is it important for patients to know that the 
probability of experiencing a particular medi
cation side effect is 1%? Or is it sufficient to 
know that the side effect is possible, but 
unlikely? Reyna has argued that informed deci
sion making does not require recall of precise 
verbatim information (e.g., exact probabilities), 
but does require understanding and recall of 
the essence of the information communicated 
[32,33]. Second, when evaluating communica
tion effectiveness, it is important to consider 
unintended as well as intended effects. Risk 
communications concerning one medication 
have the potential to raise concern about unre
lated medications and result in patients discon
tinuing efficacious medications that pose 
minimal risks. Unintended consequences might 
best be evaluated by assessing changes in 
health‐related quality of life and changes in the 
use of medications other than those that are 
targeted by the risk communication.
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 Currently Available Solutions

Health Professional and Consumer 
Medication Information

Many countries have implemented regulatory 
measures in response to the challenges of 
 communication about medication risks and 
benefits. For example, in order to promote the 
principles of transparency and develop methods 

of improving risk communication, the EMA 
requires the production of several docu
ments which all play a role in risk/benefit 
 communication. These include the European 
Public Assessment Report (EPAR), the Risk 
Management Plan (RMP), and the Patient 
Information Leaflet (PIL).

The EPAR is a lengthy public document which 
details the scientific assessment of a pharma
ceutical product. These regulatory documents 
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Figure 39.1 Sample pictograph.
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are written for professionals, but pharmaceuti
cal companies must also provide a user‐friendly 
lay summary. The aim of the lay summary is to 
communicate how the decision to license the 
medicine was made. It is essential to ensure that 
such documents can be understood by potential 
users, and user testing is one potential method 
for ensuring that readability is optimized [34].

To adhere to good pharmacovigilance guide
lines set out by the EMA, medicinal products 
are authorized “on the basis that in the specified 
indication(s), at the time of authorisation, the 
risk‐benefit balance is judged to be positive for 
the target population” [35]. The EMA requires 
that pharmaceutical companies publish RMPs 
which must include information on the medi
cine’s safety profile, how any risks will be pre
vented or minimized in patients, any plans for 
studies or other activities to gain more knowl
edge about the safety and efficacy of the medi
cine, and to assess the effectiveness of risk 
minimization measures. There is a requirement 
that RMPs are updated and modified as needed 
throughout the lifetime of the medicine, as 
additional information becomes available.

Patients in the UK and throughout the coun
tries of the European Union must, by law, receive 
written information with their medicine which 
includes some communication on the risks and 
benefits associated with taking it. In 1992, a 
Directive from the European Commission on 
the labeling of medicinal products for human 
use mandated that all medicines are accompa
nied by a regulated patient information leaflet 
(package insert) inside the medicine box  [36]. 
The Directive aimed to provide a standardized 
format for patients in order to provide consumer 
protection and ensure access to full and compre
hensible information about medicines. For some 
patients, this might be the only written informa
tion they receive about their medicines.

European PILs follow a standardized format 
and include information about the following: 
potential side effects and their estimated fre
quency; what the medicine does and what it is 

for; dos and don’ts; and how to take the medi
cine [37]. Effective and balanced risk communi
cation occurs when there is presentation of 
information about both the risk of harm and 
likelihood of benefit associated with taking a 
treatment. European PILs currently contain 
both textual and numerical descriptions of the 
estimated frequency of harms associated with 
taking the drug, as well as an indication of sever
ity, aiming to inform patients about potential 
adverse effects in order to encourage help seek
ing, but also to support patients in making 
informed decisions about treatments.

Initially, guidance required European phar
maceutical license holders to present the risk of 
harm using a combination of qualitative and 
quantitative descriptions for five bands of risk 
frequency, ranging from “very common” (>10% 
frequency) to “very rare” (<0.01%). While the 
inclusion of the risk frequencies meets patients’ 
identified need for information about the 
side effects of their treatments [38], the use of 
 percentages to communicate numerical infor
mation about risk of harm can lead to overes
timations of risk [39], which have been noted 
both in patients and in doctors [40]. Con
sequently, updated guidance recommends the 
use of frequency bands using a natural fre
quency numerical format (e.g., “less than 1 in 
100”). UK PILs now communicate risk using the 
following regulatory standard [41].

 ● Very common – occurs more frequently than 
1 in 10 administrations of a drug.

 ● Common – occurs in between 1 in 10 and 1 in 
100 administrations of a drug.

 ● Uncommon – occurs in between 1 in 100 and 
1 in 1000 administrations of a drug.

 ● Rare – occurs in between 1 in 1000 and 1 in 
10 000 administrations of a drug.

 ● Very rare  –  occurs in less than 1 in 10 000 
administrations of a drug.

 ● Frequency not known.

Use of the five verbal terms (very rare; rare; 
uncommon; common; very common) alone has 
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been shown in a number of studies to produce 
risk estimates that are inconsistent with the 
assigned frequencies of incidence. For exam
ple, “common” was assigned to incident rates 
between 1% and 10% but was found to result in 
mean risk estimates of 45.3% by members of the 
public asked about a hypothetical antibiotic 
[40]. Furthermore, the term “rare,” which had 
been assigned to rates of 0.01% to 0.1%, pro
duced average risk estimates of 8%. These find
ings were replicated in a study with a similar 
study design but which asked people using sta
tin (cholesterol‐lowering) medicines to respond 
to information about real side effects (and their 
incidences). The “common” side effect of consti
pation was estimated to occur in 34.2% statin 
users, while the “rare” side effect of pancreatitis 
was estimated to occur in 18% users [42]. If 
these significant overestimates of risk frequency 
were translated into behaviors (such as deciding 
not to take the medicine), then their use would 
be problematic.

One notable point from these and other stud
ies of risk estimation is the high levels of varia
tion in estimates found in study samples. In the 
study by Berry et  al., the standard deviations 
around the estimates of “common” and “rare” 
were 22.5% and 7.5%, respectively, a pattern 
replicated elsewhere [42]. Risk estimates among 
people are highly variable, which may in part 
result from relatively stable differences between 
them in their perceptions of risk susceptibility 
or their numeracy skills [43]. However, verbal 
terms appear to add another layer of variation 
and it seems to be much more difficult to 
achieve consensus in their meaning than it is for 
numerical risks descriptors.

Verbal terms do have some strengths, as they 
may be seen as less intimidating by some patients 
and as closer to the everyday language of risk; in 
conversation, people will tend to use words to 
give a gist or estimate of the degree of risk asso
ciated with an uncertain event. However, when 
used in the context of medicine side effects, 
words seem to have framing effects, tending to 

produce inflated estimates of risk that might 
lead patients to make inaccurate judgments 
[44]. PILs, as produced currently according to 
European law, are perceived as containing infor
mation about medicines as risky, side effect‐
inducing products [45]. Therefore, it is important 
that the terms used, both in writing and in con
versation with patients, are proportionate and 
not prone to misinterpretation.

When space allows, using graphical represen
tations of risk (e.g., bar charts, pictographs) can 
be helpful, although they are not a panacea and 
evaluation is essential. However they do seem to 
have positive effects on accuracy of risk esti
mates, as well as other benefits, and appear par
ticularly useful for information users who are 
less skilled or adept at risk interpretation [46]. A 
sample pictograph is shown in Figure  39.1. In 
this graph, each square corresponds to one per
son in the at‐risk population. The black squares 
depict the risk of experiencing liver toxicity 
within five years of initiation of therapy with 
Medication B. Thus, this figure suggests that 10 
out of every 1000 patients taking Medication B 
will experience liver toxicity within five years of 
therapy initiation. The dark gray squares depict 
the increase in risk associated with Medication 
A. That is, out of every 1000 patients treated 
with Medication A, 10 extra cases of liver toxic
ity would be expected to develop among indi
viduals taking Medication A as opposed to 
Medication B. Pictographs provide a relatively 
simple way to convey information concerning 
both relative and absolute risk. However, they 
may not be useful when the risk(s) of interest 
occur very infrequently (e.g., 1 case/10 000 
patients treated).

One criticism that patients express about 
European regulated PILs is that, while informa
tion about side effects is valued, when included in 
written information it can provide an overly neg
ative impression of the medicine. Consequently, 
in order to support patients to make balanced 
and informed decisions about treatments, there 
is a need to also provide information about the 
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likelihood of benefit from the treatment along
side the likelihood of harm. Currently, there is 
no consensus on the best format for the presen
tation of this type of positive information 
although the EMA notes that benefit informa
tion should be compatible with the Summary of 
Product Characteristics, a document required 
for the licensing of a drug, and should not be 
promotional.

The inclusion of information about the poten
tial benefits of medicines in written medicines 
information is not without its challenges. As 
noted previously, there is a tendency for patients 
to overestimate the benefits of their treatments 
[28] and this can translate to “concern and 
upset” for patients when they are provided with 
numerical information that contextualizes 
the  likelihood of benefit they receive from 
their treatments. A series of qualitative studies 
exploring patient perceptions and opinions on 
the provision of textual and numerical benefit 
information in patient information leaflets have 
all presented similar findings.

Hamrosi and colleagues recruited focus 
groups of medicine users in the UK and Australia 
and provided information about the medicine 
clopidogrel in two different formats, which had 
been revised specifically for the study [47]. The 
revised leaflets contained additional benefit 
information about clopidogrel in either a text‐
only format or a numerical format based on the 
number needed to treat (NNT) to prevent a 
heart attack or stroke. The NNT statement was 
written as follows, based on the best available 
clinical trial data:

“If 100 people took this medicine for 2 years:
 ● 3 of them would be saved from having a 

heart attack
 ● 1 of them would be saved from having a 

stroke”

A key finding from this study was that while the 
inclusion of benefit information was valued and 
seen as a positive addition to the leaflet, the 

numerical benefit information provoked strong 
feelings of shock and surprise at the perceived 
low chance of benefiting from treatment. Some 
participants did not understand the numerical 
information, while others struggled to compre
hend the magnitude and made an assessment of 
potential benefit based on a crude interpreta
tion of the data.

Similar research has been undertaken explor
ing patient opinion and perception of different 
presentations of benefit information for medi
cines with different magnitudes of risk. In a 
focus group, study participants were presented 
with benefit statements for two different drugs 
(i.e., sumatriptan and simvastatin) using one of 
three different numerical formats (percentages, 
natural frequencies, and NNT) [48]. An exam
ple of the different magnitude of benefit seen in 
the two drugs is presented as follows using the 
NNT format.

 ● If 4 people like you take sumatriptan, 1 of 
them will have a less severe migraine head
ache after 2 hours.

 ● If 20 people like you take simvastatin over the 
next 5 years, 1 of them will be stopped from 
having a heart attack or stroke.

Participants reported similar levels of shock and 
surprise at the perceived poor benefits from the 
two medicines. Other key findings included the 
following:

 ● Textual format information was preferred, 
but did not provide enough information to 
help contextualize the magnitude of benefit.

 ● The NNT format was frequently misunderstood.
 ● The natural frequency format was challeng

ing to understand but when participants 
invested time to understand, they reported 
that it helped understanding.

 ● Numerical information was perceived as wor
rying, but it was valued.

 ● Some participants thought that if information 
on the chance of benefit is available, it should 
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not be withheld from patients, who may want 
it to help with their decisionmaking.

One concern noted was that numerical benefit 
information has the potential to influence 
patient behavior and could lead to the rejection 
of a beneficial treatment, perhaps based upon 
the affect heuristic, a mental shortcut that results 
in decisions being made based on an emotional 
response to information rather than reason [49].

There is evidence that “patients” shown 
numerical benefit information are more likely 
to choose not to take a treatment, rather than 
when they are shown nonnumerical informa
tion [50]. The inclusion of numerical informa
tion on the chance of benefit can influence 
decision making resulting in a tendency to 
reject a treatment. This study also explored 
the impact of the provision of numerical infor
mation about side effects and found the oppo
site  –  when individuals are provided with 
nonnumerical side effect information, they are 
less likely to take a medication than those pro
vided with numerical information about the 
likelihood of harm. A key finding from this 
study is that presenting side effect and benefit 
information in nonnumeric format appears to 
influence decision making in opposite direc
tions. Although numeric information for both 
benefits and side effects may enhance decision 
making, providing numeric benefit informa
tion may decrease individuals’ willingness to 
take the medicine, creating both an ethical 
dilemma for prescribers and providers and a 
public health concern for policy makers when 
the chance of benefit from a medicine makes 
its use attractive at a population level, but 
which may not be persuasive for individual 
patients.

In the United States, all prescription medica
tions are required to have an FDA‐approved 
package insert, targeted primarily for prescrib
ers, that comprises the official product label. 
However, with a limited number of excep
tions,  there are no regulations that require 
patients to receive written information about 

medication risks/benefits when they obtain 
prescription medications. This is despite FDA 
recognition that:

… people are able to make better decisions 
about their healthcare and better use of the 
prescription medications available to them 
when they are well informed about the medi
cations they take. Access to useful written 
information about prescription medications 
is important to ensuring appropriate use of 
these products [51].

Since the late 1960s, the FDA has required 
that patients receive a patient package insert 
when they obtain prescriptions for oral contra
ceptives and estrogens [51]. In 1979, the FDA 
proposed regulations requiring that manufac
turers develop and distribute written patient 
information, to be approved by the FDA, for all 
prescription medications. However, the regula
tions were revoked prior to implementation, 
based in part on assertions made by pharma
ceutical manufacturers and other private sector 
stakeholders that the goals of the regulations 
could be accomplished without governmental 
regulation. Unfortunately, although the availa
bility of consumer medication information has 
increased over the past 40 years, the quality of 
the materials distributed is variable and often 
poor [52]. For example, a study reported in 2007 
found that although most pharmacies in the US 
distribute written materials with prescription 
medications, many of the materials failed to 
include information such as contraindications 
and precautions needed for safe medication use 
[53]. Notably, there was considerable variability 
in the consumer medication information dis
tributed by pharmacies in the three countries 
examined: the US, Australia, and the UK. The 
materials distributed in the US were evaluated 
the least favorably.

In an attempt to assist private sector develop
ers, the FDA issued a Guidance document in 
2006 entitled “Guidance on Useful Written 
Consumer Medication Information (CMI)” [51]. 
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Although this document does not establish regu
lations or legal requirements, it does provide rec
ommendations for the content and format 
of  CMI. As shown in Table  39.1, the Guidance 
document identifies eight criteria that can be used 
to assess the usefulness of CMI. It recommends 
that CMI not include all possible side effects but 
rather focus on those that are the most serious 
and most common. The Guidance document 
does not include any recommendations con
cerning how to communicate information con
cerning the likelihood of experiencing the side 
effects included. However, the examples pro
vided in the Guidance suggest that no numerical 
information is needed. For example, in a section 
labeled “Possible side effects,” the sample CMIs 
included in the Guidance state: “The most com
mon side effects are mild upset stomach, diar
rhea, and rash. Call your health care provider if 
these side effects bother you or do not go away” 
[51]. Finally, although the Guidance document 
highlights the need to write CMI using plain lan
guage principles, it does not recommend user 
testing to assess consumer comprehension.

A study conducted in 2008 assessed the extent 
to which CMI distributed by retail pharmacies 
in the United States met these criteria [54]. This 
study found that although 94% of the pharma
cies visited by secret shoppers provided CMI 
with prescriptions for lisinopril and metformin, 

the materials met only about 60% of the eight 
criteria specified in the FDA Guidance docu
ment. Moreover, less than 50% of the materials 
were judged as meeting the criteria for compre
hensibility/legibility, leading the investigators to 
conclude that “Private sector initiatives to pro
vide useful CMI have failed.”

The FDA Amendments Act (FDAAA‐PL 
110‐85) of 2007 gave the FDA authority to 
require that pharmaceutical manufacturers sub
mit a Risk Evaluation and Mitigation Strategy 
(REMS) to the FDA when deemed necessary to 
ensure that the benefits of a drug or biologic 
product outweigh its risks [55]. The FDA may 
require a manufacturer to submit a REMS as 
part of the initial drug approval process or in 
response to a new safety concern identified via 
sources such as adverse event monitoring 
systems, peer‐reviewed biomedical literature, 
clinical trials, and the FDA’s Sentinel Initiative 
[56]. As of February 2018, 73 products have an 
approved REMS.

All REMS must include at least one safety‐
related goal that identifies the specific health 
outcome that the REMS is designed to accom
plish [55]. For example, the goal of the Prolia® 
(denosumab) REMS is to:

… mitigate the risks of hypocalcemia, oste
onecrosis of the jaw, atypical femoral frac

Table 39.1 FDA Action Plan criteria for defining useful consumer medication information.

Criterion

Drug names, indications for use, and how to monitor for improvement
Contraindications and what to do if they apply
Specific directions about how to use and store the medicine, and overdose information
Specific precautions and warnings about the medicine
Symptoms of serious or frequent possible adverse reactions and what to do
Certain general information, including encouraging patients to communicate with healthcare professionals, and 
disclaimer statements
Information that is scientifically accurate, unbiased in tone and content, and up to date
Information in an understandable and legible format that is readily comprehensible to consumers

Source: FDA [55].
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tures, serious infections, and dermatologic 
reactions by:

1) informing healthcare providers and pati ents 
about the risks of (1) hypocalcemia, (2) oste
onecrosis of the jaw, (3) atypical femoral 
fractures, (4) serious infections, and (5) der
matologic reactions associated with PROLIA®.

2) informing healthcare providers they should 
counsel patients about the risks associated 
with PROLIA® [57,58].

Risk Evaluation and Mitigation Strategies may 
include three major components [55]. First, the 
manufacturer may be required to develop a 
Medication Guide or a patient package insert 
which must be given to patients when a pre
scription is filled. Medication Guides must be 
approved by the FDA and become part of the 
official drug label. Approximately half of the 
currently approved REMS include a Medication 
Guide. However, the FDA can require a 
Medication Guide for drugs and biologic prod
ucts that do not have a REMS if they determine 
that “certain information is necessary to prevent 
serious adverse effects, patient decision making 
should be informed by information about a 
known serious side effect with a product, or 
patient adherence to directions for the use of a 
product are essential to its effectiveness” [59]

Currently, approximately 600 products have 
Medication Guides. A 2012 study [60] examined 
all the Medication Guides that were available in 
April 2010 to determine the extent to which they 
met criteria of suitability for use among individu
als with limited literacy skills [61]. Of the 185 
Medication Guides assessed, only one was deemed 
suitable for individuals with low literacy skills. In a 
separate substudy, the investigators asked study 
participants to review three Medication Guides 
(taken one at a time) and their comprehension of 
the information contained in the Guides was 
assessed using “open book” methods. Participants 
answered an average of only 52.7% (SD 22.6) of the 
comprehension questions correctly, with lower 
scores observed among those with low and mar

ginal literacy. Another study analyzed the results 
of 66 unique Medication Guide assessments sub
mitted to the FDA between September 2008 and 
June 2012 [62]. On average, participants correctly 
answered 63.5% of questions concerning the pri
mary drug risk(s). Only 20 Medication Guide 
assessments (30.3%) reported knowledge scores 
of 80% or higher. In general, higher  knowledge 
scores were reported for Medication Guides that 
were part of a REMS that also included either a 
Communication Plan or Elements to Assure Safe 
Use, as described below. Other studies have also 
demonstrated that many patients have difficulty 
understanding the information contained in 
Medication Guides, including the critical safety 
information included in these documents [63,64]. 
Thus, although the number of Medication Guides 
available has expanded dramatically over the past 
decade, work to improve the usability of these 
Guides is urgently needed.

Second, a REMS may be required to include a 
Communication Plan targeted at healthcare 
providers [66]. For example, the Communication 
Plan for Prolia targets healthcare providers 
likely to prescribe this medication [67] and 
includes: (1) a letter to healthcare providers; (2) 
a letter to professional societies; (3) a patient 
counseling toolkit that includes a patient coun
seling chart for healthcare providers, a patient 
brochure, and a Medication Guide; (4) a journal 
information piece that was published quarterly 
for 12 months in three targeted journals; (5) a 
plan for the dissemination of REMS informa
tion at scientific meetings; and (6) a REMS 
Website that provides access to all the materials 
included in the REMS [68]. In line with FDA 
requirements, the landing page of the REMS 
website includes a statement encouraging 
patients and healthcare providers to report sus
pected adverse reactions and provides a link to 
the MedWatch reporting system (see 
Chapter 10), as well as toll‐free telephone num
bers to both the FDA and the manufacturer.

The final REMS component involves elements 
to assure safe use (ETASU). These elements 
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may  include specific training, experience, or 
certifications for healthcare providers who pre
scribe or dispense the drug; restricting the types 
of healthcare settings in which the drug can be 
dispensed; special requirements for patient 
monitoring; documentation of required safety 
measures (e.g., laboratory testing); and patient 
enrollment in a drug registry.

Manufacturers are required to evaluate the 
effectiveness of their REMS 18 months, 
three years, and seven years after the REMS is 
approved. The results of these evaluations 
must be reported to the FDA so that it can 
determine whether modifications to the REMS 
are needed. Morris has provided guidelines for 
the assessment of REMS programs [69]. In 
2011, the FDA created a REMS Integration 
Initiative to better understand the overall effec
tiveness of the REMS requirements and iden
tify ways in which current regulations might be 
improved, particularly in ways that would 
reduce burdens associated with the regulations 
while not  compromising the effectiveness of 
the program [70].

Patient–Provider Communication

Although healthcare providers have a profes
sional obligation to counsel patients about med
ication risks, they may be reluctant to discuss 
potential risks with patients due to concern that 
it may decrease patient adherence to the pre
scribed medication regimen [71]. However, 
research suggests that the opposite is true. 
Patient–provider communication concerning 
potential medication risks and incorporation of 
patient preferences into the decision‐making 
process may increase adherence and decrease 
the likelihood of premature discontinuation of 
therapy [72–74]. Unfortunately, research sug
gests that this type of communication during 
patient office visits is not the norm. For exam
ple, Sibley and colleagues found that medication 
concerns (e.g., expected side effects) were dis
cussed in only 2.7% of visits involving diabetes 

patients and a nurse prescriber [75]. In another 
study, Richard and Lussier found that potential 
adverse reactions were discussed in fewer than 
17% of physician office visits in which a new 
medication was prescribed [76].

In a study that analyzed audiotaped visits of 
patients with rheumatoid arthritis and their 
rheumatologist, Blalock and colleagues found 
that, when medication risks were discussed in 
relation to a medication that was being pro
posed for addition to the patients’ regimen, the 
types of information most frequently provided 
were the importance of monitoring to detect 
potential problems early (30%), probability of 
side effect occurrence (29.8%), steps to take to 
minimize risk (25.5%), and severity (21.8%) [77]. 
When discussing risks associated with medica
tions the patient was currently taking, only the 
importance of monitoring and steps to take to 
minimize risk were discussed in over 20% of the 
conversations. These findings highlight that 
patient information needs vary depending on 
their stage in the medication use process (e.g., 
deciding whether to initiate a new medication, 
managing a current medication regimen). This 
study also found that patients often were not 
able to extract meaningful gist from the infor
mation communicated by the rheumatologists 
[78]. For example, in 14% of the visits, patient 
coders indicated that it was not clear if the rheu
matologist thought the medication was needed 
and, in 29% of the visits, the coders indicated 
that it was not clear if the rheumatologist was 
concerned about the safety of the medication. 
These findings highlight the need to focus not 
only on the types of risk/benefit information 
communicated, but also on the clarity of the 
communication.

Pharmacists also have a professional obliga
tion to counsel patients about medication 
risks. Internationally, the rates of verbal coun
seling provided by pharmacists in community 
pharmacy settings tend to be low, but vary 
widely depending upon the research methods 
used. Observational studies using simulated 
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patients (i.e., actors trained to portray patients 
with a specific condition) tend to yield lower 
estimates of the rate of counseling [79]. Few 
states in the US require pharmacists to provide 
verbal counseling to patients when prescriptions 
are filled, with most states requiring only that 
pharmacists offer to counsel patients [80]. In a 
study using simulated patients, Svarstad 
and  colleagues examined the rates of verbal 
counseling provided in 306 community phar
macies distributed across eight states in the US 
[81]. Risk communication, defined as provid
ing information about at least one side effect or 
precaution, occurred in 17% of visits in which 
a  prescription for amoxicillin was presented 
and 31% and 37% of visits in which a prescrip
tion for ibuprofen or paroxetine, respectively, 
was presented. Patients who filled a prescrip
tion in states with more strict regulations 
 concerning pharmacist counseling (e.g., phar
macists required to provide face‐to‐face 
 counseling) were more likely to receive risk 
information than patients in states with less 
strict regulations.

The Internet, Direct‐to‐Consumer 
Advertising, and Social Media

The availability of medication‐related infor
mation via the internet, direct‐to‐consumer 
advertising, and social media has expanded dra
matically since the turn of the century [82–86]. 
Unfortunately, the quality and accuracy of avail
able information vary widely from source to 
source, and few safeguards are in place to allow 
consumers to evaluate the quality of informa
tion available from different sources [86,87]. 
Direct‐to‐consumer advertising (DTCA) and 
social media sites managed by pharmaceutical 
companies present special challenges. In a 
recent study that examined notices of violation 
and warning letters issued to companies by the 
FDA, 95% involved a branded drug web
site,  online paid advertisement, or an online 
video [88]. Of the 179 violations examined, most 

involved the lack of risk information or the mis
representation of benefit information. Although 
few countries allow DTCA, online materials 
travel across borders, presenting a global chal
lenge [89].

Finally, some websites enable consumers to 
provide reviews of their medications, poten
tially opening up a Pandora’s box for the spread 
of anecdotal information. A recent study exam
ined over 100 000 reviews provided on the web
site WebMD [90]. The investigators found that 
in about two‐thirds of the cases where differ
ences in patient satisfaction ratings were 
observed for two drugs used to treat the same 
condition, the differences were consistent with 
findings reported in the published literature. 
However, where differences were observed, 
drugs with an FDA black box warning were 
reviewed less favorably by patients than would 
be expected based on the results of published 
studies, suggesting that these types of warnings 
may bias patient judgment and decision mak
ing. Clearly, more research is needed to better 
understand the effects of this type of internet‐
facilitated patient‐to‐patient communication.

 The Future

Much of the literature on risk communication 
focuses on environmental risks and the risk of 
disease. The field of medication risk communi
cation is still relatively young. The extent to 
which findings from other areas generalize to 
communication concerning medication risks 
remains unknown. Over the next few years, 
much will be learned as companies evaluate 
their REMS. For knowledge gain to be opti
mized, it will be important that REMS evalua
tion plans include a comprehensive assessment 
of both proximal and distal outcomes. The con
ceptual model depicted in Figure 39.2 may help 
to structure future evaluation efforts.

More basic research is also needed to assess 
how people process and use information about 
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medication risks. One promising approach 
involves the use of fuzzy‐trace theory [91–94]. 
Briefly, fuzzy‐trace theory posits that when an 
individual is exposed to risk information, two 
representations of the information are encoded 
in memory: a verbatim representation and a gist 
representation. The verbatim representation 
reflects the precise information received (e.g., 
10% of patients who take Medication X experi
ence Side Effect Y), whereas the gist representa
tion captures the essential meaning of the 
information as understood by the receiver, in 
qualitative terms (e.g., Medication X can cause 
Side Effect Y). Different people exposed to the 
same information may form different gist repre
sentations, depending on their preexisting 
knowledge, previous experiences, emotional 
state, developmental stage, and worldview. A 
central tenet of fuzzy‐trace theory is that when 
making judgments and decisions, people tend 
to rely on gist representations that are stored in 
memory and only retrieve verbatim representa
tions when it is required by the task at hand. 
Further, this preference for gist processing of 
information increases with age and the acquisi
tion of specialized expertise [94].

Currently, much of the risk communication 
literature focuses on how probabilistic infor
mation is best conveyed. From this perspec
tive, the difficulty patients have in accurately 
recalling probabilistic information is viewed as 
problematic. However, from the perspective of 
fuzzy‐trace theory, that conclusion might not 
be warranted. From a fuzzy‐trace perspective, 

 misunderstandings are most problematic when 
individuals interpret the gist of the informa
tion incorrectly. Numerical differences may 
have little effect on subsequent decisions. This 
possibility is supported by findings from an 
experimental study by Brewer et al. [95]. After 
reading a clinical vignette that portrayed a 
hypothetical patient, physicians in one group 
were asked whether the chance that the patient 
had a pulmonary embolism was greater or less 
than 1% and physicians in the other group were 
asked whether the chance that the patient had 
a pulmonary embolism was greater or less than 
90%. Physicians in both groups were then 
asked to provide a point estimate of the chance 
of embolism and select from among a choice of 
treatment options. The irrelevant anchor (i.e., 
1% versus 90%) used in the initial risk estimate 
had a large effect on physicians’ subsequent 
point estimates of the probability of embolism, 
23% versus 53% for physicians exposed to the 
low or high anchor, respectively. However, the 
treatment decisions made by the physicians 
were unaffected by the anchors. Thus, as sug
gested by fuzzy‐trace theory, physicians appear 
to have based their treatment decisions on 
their gist representation of the information 
presented and were able to make rational 
 decisions even in the presence of irrelevant 
information.

The findings described above illustrate the 
complexity of the risk communication process. 
Research using fuzzy‐trace theory attempts to 
better understand the psychological processes 
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Figure 39.2 Conceptual model for evaluating the effectiveness of risk communication efforts.
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that underlie risk communication by systemati
cally examining three central issues. Within the 
context of medication risk communication, 
these central issues are: (1) how do patients or 
clinicians extract gist from medication‐related 
information obtained from a variety of sources 
(e.g., written information distributed by phar
macies when prescription medications are 
 dispensed, direct‐to‐consumer advertising, 
healthcare providers, family/friends)? (2) what 
reasoning principles are invoked by contextual 
cues (e.g., format of the communication, images 
included in the communication) that affect 
patients’ or clinicians’ judgments and decisions 
concerning medication use? and (3) what  factors 
(e.g., limited health literacy skills, emotional 
state) interfere with information processing and 
lead to errors in reasoning [92]? We believe that 
systematic research examining these types of 
issues has the potential to greatly expand current 

knowledge concerning communication of infor
mation regarding medication risks and benefits.

In conclusion, we began this chapter with the 
assertion that all medications have risks. The 
responsibility for communicating information 
about medication risks is shared by many enti
ties within the healthcare system. In addition, 
we must recognize that we live in the Information 
Age. Information about medications and medi
cation risks is disseminated by many outside the 
healthcare system, in some cases by individuals 
and groups without appropriate expertise and 
whose primary motive may not be the improve
ment of patient health outcomes. The challenge 
to investigators working in the field of pharma
coepidemiology is to develop communication 
strategies that reflect an understanding of both 
psychological and social issues that affect how 
message recipients interpret and use the infor
mation communicated.
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A drug–drug interaction (DDI) occurs when 
one or more drugs affect the pharmacokinetics 
(the body’s effect on the drug) and/or pharma-
codynamics (the drug’s effect on the body) of 
one or more other drugs. In two‐drug DDIs, the 
affected drug is called the object (or victim) 
and the affecting drug is called the precipitant 
(or perpetrator). The expected outcome of most 
hypothesized DDIs is an exaggeration of the 
major pharmacologic effect of the object, such 
as serious hypoglycemia from sulfonylurea 
antidiabetic agents or bleeding from anticoagu-
lants. Other DDIs may result in reduced effec-
tiveness of the object, such as the hypothesized 
reduced effectiveness of clopidogrel in lower-
ing the risk of stroke resulting from the inhibi-
tion by proton pump inhibitors of the enzyme 
that converts clopidogrel to its active moiety. 
The precipitant of a DDI may or may not have 
an inherent effect on the health outcome in the 
absence of the object. For example, in a study of 
potential DDIs that involves warfarin as the 
object, nonsteroidal antiinflammatory drugs 

but not antibiotics as precipitants would be 
expected to increase the risk of bleeding in 
 persons not taking warfarin.

Numerous pharmacokinetic and pharmaco-
dynamic mechanisms are responsible for DDIs 
[1,2]. Because the pharmacokinetic pathways 
and pharmacodynamic effects of most drugs are 
not completely understood, it can take many 
years to identify, confirm, and fully understand 
a DDI. For example, tamoxifen and paroxetine 
were approved in 1977 and 1992 respectively, 
although it was not until 2003 that scientists 
identified a potential DDI between them that 
was hypothesized to reduce tamoxifen’s effec-
tiveness in lowering the frequency of breast 
cancer recurrence [3]. Although in vitro experi-
ments, animal studies, and clinical trials are 
used to examine the effects of one drug on the 
pharmacokinetics of another drug, pharma-
coepidemiologic studies are the principal way of 
studying the health effects of potential DDIs. 
This chapter focuses on methods for studying 
the health effects of potential DDIs.
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 Clinical Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

Drug–drug interactions are a large and growing 
clinical and public health problem, especially in 
older adults, 40% of whom take five or more 
prescription drugs in a given month [4]. 
Although the frequency with which DDIs cause 
adverse health outcomes is not well studied, in 
older adults known DDIs are estimated to cause 
13% of adverse drug events (ADEs) [5] and 5% of 
hospital admissions [6]. As new drugs are devel-
oped, old drugs are repurposed, and per capita 
drug consumption continues to rise, the clinical 
and public health consequences of DDIs are 
likely to rise correspondingly.

There are many approaches to identifying 
novel potential DDIs, including physiologically 
based pharmacokinetic models (see Chapter 2) 
and data mining of spontaneous reporting data-
bases, social media posts, and healthcare data 
(see Chapter 27). Potential DDIs, however, may 
not have observable effects on health outcomes, 
and relatively few studies have examined the 
health effects of specific potential DDIs in 
 populations. This leaves critical knowledge gaps 
for clinicians, patients, caregivers, editors of 
DDI compendia, and those who manage clinical 
decision support systems. Recognizing these 
knowledge gaps, stakeholders attending a 2009 
meeting on DDIs made the conduct of addi-
tional research on the health effects of DDIs 
their principal recommendation [7].

False warnings about DDIs that are sent to 
 clinicians in the context of automated messag-
ing in the healthcare setting, such as during 
 prescribing or dispensing, can reduce the use of 
valuable combinations of medications because 
of unsubstantiated fears that they may interact 
detrimentally. Further, physicians and pharma-
cists who are subjected to frequent alerts 
about  apparently inconsequential potential 

DDIs often become desensitized to them in a 
phenomenon known as “alert fatigue” [8]. This 
provides additional importance to conducting 
studies of the health effects of potential DDIs, as 
well as studies of better ways in which the 
healthcare system can avoid harmful DDIs.

It seems likely that some subgroups of people 
are more or less susceptible to the effects 
of  a  given DDI than other subgroups (see 
Chapter  30). Therefore, providing information 
about the health effects of potential DDIs that is 
relevant to identifiable subgroups is an impor-
tant goal of DDI research.

 Methodologic Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

A number of methodologic problems are more 
prominent in pharmacoepidemiologic studies 
of DDIs than in those examining the effects of 
individual drugs. For example, pharmacoepide-
miologic studies of DDIs usually require data 
from larger populations than those needed to 
study the effects of individual drugs. This is 
because, in any population, a small proportion 
of people will take any given drug, and a small 
proportion of those will concomitantly take the 
second drug of a drug–drug pair of interest. 
An additional problem is confounding by indi-
cation (see Chapters 3 and 43), which is regarded 
by many as the single biggest challenge in using 
the results from nonrandomized pharmacoepi-
demiologic studies to infer causation.

The problem of confounding by indication is 
more pronounced in DDI studies, which need to 
address confounding by the indications of two 
or more drugs. An additional problem is the 
inability of available healthcare data to validly 
identify all study outcomes of potential interest. 
In particular, while nonpharmacoepidemiologic 
studies of DDIs often examine serum drug 
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 concentrations or other biomarkers such as 
the  electrocardiographic QT interval or the 
international normalized ratio as outcome 
measures, pharmacoepidemiologic studies 
 typically examine health outcomes such as clini-
cally evident cardiac arrhythmias or serious 
bleeding. Further, some important outcomes of 
DDIs (e.g., serotonin syndrome) may not be 
 validly identifiable using claims data. Thus, as in 
studies of the effects of individual drugs, inves-
tigators’ ability to validly (and hopefully 
 completely, or at least in a way that does not 
lead to biased results) ascertain outcomes that 
represent toxicity or lack of effectiveness using 
available healthcare data is essential. A further 
methodologic problem is that little attention 
has been given to optimizing pharmacoepide-
miologic methods to perform well in screening 
for previously unanticipated associations (see 
Chapter 27), as may be desired when the goal is 
to identify hypotheses of novel potential DDIs. 
In addition to the need to increase the efficiency 
of such screening studies with regard to tasks 
performed by humans and by computers, 
screening large numbers of drug–drug pairs 
raises concerns that the conventionally accepted 
type I error rate of 5% may not be appropriate in 
such settings.

 Currently Available Solutions

Available Research Designs for Studying 
the Health Effects of DDIs

Table  40.1 lists available pharmacoepidemio-
logic designs to study the health effects of DDIs 
using data derived from the provision of health-
care. The most basic and intuitive epidemiologic 
design is the cohort study, which compares the 
frequency of an outcome in different groups 
(i.e.,  cohorts) that are defined based on expo-
sure. One possible but, as we shall see, generally 
unhelpful approach to assessing whether a 
health‐affecting DDI exists is to measure the 

incidence rate (IR) of the adverse health out-
come in four cohorts: (1) those taking the object 
with the precipitant (IR11), (2) those taking the 
object without the precipitant (IR10), (3) those 
taking the precipitant without the object (IR01), 
and (4) those taking neither the object nor the 
precipitant (IR00) (Table 40.1, Design 1). For DDI 
effects defined as a departure from multiplicity, 
an effect would be inferred if the following null 
hypothesis (H0) were rejected:

H IR IR IR IR

IR IR
0 11 00 10 00

01 00

: / /

/

This is to say that an effect of a DDI defined as 
departure from multiplicity would be inferred if 
the rate ratio for both‐exposed vs neither‐
exposed were statistically different (i.e., either 
higher or lower) than the object‐exposed vs 
 neither‐exposed rate ratio multiplied by the 
precipitant‐exposed vs neither‐exposed rate 
ratio. For DDI effects defined as a departure 
from additivity, an effect would be inferred if 
the following null hypothesis were rejected:

H IR IR IR IR
IR IR

0 11 00 10 00

01 00

:

This is to say that an effect of a DDI defined as a 
departure from additivity would be inferred if 
the rate difference between the both‐exposed vs 
the neither‐exposed were statistically different 
than the object‐exposed vs neither‐exposed 
rate difference plus the precipitant‐exposed vs 
 neither‐exposed rate difference.

In practice, Design 1 is rarely if ever used to 
identify either multiplicative or additive effects 
of potential DDIs. This is because it implausibly 
assumes that neither the object nor the precipi-
tant have clinical indications (i.e., reasons for 
taking the drug) that affect the outcome rate, or 
that these indications can be fully measured and 
controlled for. However, persons taking a given 
drug (whether object or precipitant) generally 
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Table 40.1 Pharmacoepidemiologic designs used to study health effects of potential drug–drug interactions.

Design
Relative measure 
of association Key assumptions Comments Example

1. Cohort study 
examining incidence 
rate (IR) of the 
outcome in: (1) those 
taking the object with 
the precipitant (IR11); 
(2) those taking the 
object without the 
precipitant (IR10); (3) 
those taking the 
precipitant without 
the object (IR01); and 
(4) those taking 
neither the object nor 
the precipitant (IR00)

Incidence rate 
ratio due to 
interaction 
(IRRI), defined as
IRRI = (IR11/
IR00)/[(IR10/
IR00) × (IR01/
IR00)]*

No among‐person 
unmeasured 
confounding by 
use of either 
object or 
precipitant

While this design yields 
the theoretically correct 
overall relative measure 
of association, the key 
assumption is 
implausible for most 
drug pairs

We are unaware 
of any published 
examples

2. Cohort (or case–
control) study nested 
within person‐time 
exposed to the object, 
comparing persons 
exposed vs unexposed 
to the precipitant

Incidence rate 
ratio (or odds 
ratio) associated 
with use of the 
precipitant 
among persons 
receiving the 
object

No among‐person 
unmeasured 
confounding by 
use of precipitant
No effect of 
precipitant in 
absence of object

Will show association if 
precipitant has inherent 
effect on outcome apart 
from interaction 
mechanism
May be useful for 
precipitants with a 
chronic indication that 
is unlikely to be 
associated with outcome
Use of a negative control 
object and/or negative 
control precipitant can 
help to assess validity of 
the key assumptions

Case–control 
study nested in 
person‐time 
exposed to 
glyburide, 
examining the 
association 
between 
cotrimoxazole 
and serious 
hypoglycemia [9]

3. Cohort (or case–
control) study nested 
within person‐time 
exposed to the object, 
comparing person‐
time exposed to the 
precipitant vs the 
negative control 
precipitant

Incidence rate 
ratio (or odds 
ratio) associated 
with use of the 
precipitant vs 
control 
precipitant 
among persons 
receiving the 
object

No among‐person 
unmeasured 
confounding by 
use of precipitant 
vs negative control 
precipitant
No effect of 
precipitant in 
absence of object 
that is not shared 
by negative 
control precipitant
No interaction 
between negative 
control precipitant 
and object

Preferable to Design 2 
because use of a valid 
control precipitant 
reduces susceptibility 
to confounding by 
indication for the 
precipitant
It can be difficult to 
know for certain that the 
control precipitant does 
not interact with the 
object or otherwise 
affect the rate of the 
outcome

Cohort study 
within person‐
time exposed to 
clopidogrel, 
examining the 
rate of ischemic 
stroke associated 
with individual 
proton pump 
inhibitors, each vs 
pantoprazole [13]

(Continued )
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have an indication for that drug, while persons 
not taking the drug generally do not. 
Pharmacoepidemiologists often use the term 
“indication” as shorthand for denoting all the 

observed and unobserved factors that lead to a 
given patient receiving a particular medication 
rather than a comparator medication, or no 
treatment. If any aspect of this indication 

Table 40.1 (Continued)

Design
Relative measure 
of association Key assumptions Comments Example

4. Cohort (or case–
control) study nested 
within person‐time 
exposed to either the 
object or the control 
object, comparing 
person‐time exposed 
to the precipitant plus 
the object vs the 
precipitant plus the 
negative control 
object

Incidence rate 
ratio (or odds 
ratio) associated 
with use of the 
precipitant 
among users of 
the object vs use 
of the 
precipitant 
among users of 
the negative 
control object

No difference in 
direct effect of the 
object vs negative 
control object on 
the outcome
No among‐person 
unmeasured 
confounding by 
use of object vs 
negative control 
object
No interaction 
between the 
precipitant and 
negative control 
object

Can help identify an 
inherent effect of the 
precipitant in the 
absence of the object

We are unaware 
of any published 
examples

5. Self‐controlled case 
series (or case–
crossover study) 
nested within person‐
time exposed to the 
object, comparing 
person‐time exposed 
vs unexposed to the 
precipitant

Incidence rate 
ratio (or odds 
ratio) associated 
with use of the 
precipitant vs 
no exposure 
among persons 
receiving the 
object

No within‐person 
unmeasured 
confounding by 
precipitant vs 
non‐use of 
precipitant
No effect of 
precipitant in 
absence of object

Self‐controlled design 
inherently eliminates 
confounding by factors 
that remain constant 
within the individual 
over the study period
Necessitates within‐
person variability in 
exposure to precipitant 
and accurate knowledge 
of onset and offset of 
exposure to precipitant
For precipitants with an 
acute indication (e.g., 
antibiotics), Design 3 
may be preferred if a 
valid control precipitant
Results can be affected 
by secular or within‐
person trends in 
exposure to the 
precipitant

Case–crossover 
study nested 
within person‐
time exposed to 
warfarin 
examining 
within‐person 
odds ratio for 
exposure to 
antimicrobial 
agents [16]

*IR11 is the incidence rate in person‐time exposed to both the object and the precipitant; IR00 is the incidence rate in 
person‐time exposed to neither the object nor the precipitant; IR10 is the incidence rate in person‐time exposed to the object 
but not the precipitant; IR01 is the incidence rate in person‐time exposed to the precipitant but not the object.



Currently Availaole Solutions 1035

(or contraindication, i.e., reason to avoid a given 
drug) directly affects the risk of the outcome or 
is otherwise associated with the outcome, then 
confounding by indication exists. Such con-
founding can cause the observed association to 
differ from the true causal effect. Confounding 
by indication is among the most important 
 challenges facing pharmacoepidemiologists. 
Given the widespread potential for confounding 
by indication, it is often unrealistic to assume 
that the baseline rate of those taking a drug is 
the same as that in those not taking the drug.

If use of the precipitant in the absence of the 
object has no effect on the outcome, and if the 
precipitant is not used for an acute indication 
that affects or is otherwise associated with the 
outcome, then one can use Design 2. Design 2 is 
a cohort or nested case–control design that 
measures, within person‐time exposed to the 
object, the incidence rate ratio of the outcome in 
those taking the precipitant versus in those not 
taking the precipitant. For example, Juurlink 
et  al. used a healthcare database from older 
adults in Ontario to conduct a case‐control study, 
nested within person‐time exposed to glyburide 
[9]. Their aim was to examine the association 
between use vs nonuse of cotrimoxazole and 
serious hypoglycemia. They found that the 
adjusted odds ratio (OR) for the association 
between cotrimoxazole use and serious hypogly-
cemia was 6.6 (95% confidence interval [CI]  
4.5–9.7). The exposure OR is the measure of 
association produced in case–control studies. If a 
case–control study uses a sampling frame known 
as risk set sampling for selection of controls, then 
the resulting OR is an unbiased estimator of the 
incidence rate ratio (IRR) that would have been 
produced by an analogous cohort study [10]. Risk 
set sampling randomly selects controls from the 
underlying cohort of those who were still at risk 
of the outcome when the corresponding case 
experienced the outcome.

The advantage of the nested case–control 
design for studies that use existing data is that 
it  is less computationally intensive than the 

 corresponding cohort study. Given the high 
computational intensity of cohort studies that 
account for time‐varying exposures and poten-
tial confounders such as concomitant medica-
tions, this computational efficiency can be more 
important in studies of DDIs than in studies of 
individual drugs that do not account for time‐
varying exposures and confounders. However, 
when conducting nested case–control studies, 
care is needed in defining the time at which 
potential confounding variables are assessed. In 
a cohort study, it is intuitive and correct to 
assess confounding variables at baseline, before 
exposure has begun. In the case of studies of 
DDIs, exposure may be said to begin with the 
onset of concomitant intake of the object 
and  precipitant. However, many nested case–
control studies assess potential confounders as 
of the index date, often defined as the date of the 
outcome in cases and some corresponding date 
in controls. Potential confounders that are 
assessed after exposure can be affected by expo-
sure. Adjusting for factors that are affected by 
exposure can introduce bias unless the analysis 
uses appropriate methods for handling time‐
varying confounding (see Chapter  43) [11]. 
Therefore, ascertaining covariates at the 
index date can introduce bias into nested case– 
control studies.

The IRR for presence vs absence of the pre-
cipitant among persons taking the object can be 
interpreted as the effect of a DDI (as in 
Table 40.1, Design 2) if there is no effect of the 
precipitant in persons not taking the object, and 
if there is no unmeasured confounding by the 
indication for the precipitant. Unfortunately, 
the assumption of no unmeasured confounding 
by the precipitant is often implausible. To assess 
its validity, investigators sometimes measure 
the corresponding association with a negative 
control precipitant. A negative control precip-
itant is a drug that is used in similar clinical cir-
cumstances as the potential precipitant under 
study, yet by virtue of the control precipitant’s 
pharmacology is not believed to interact with 
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the object or to have an inherent effect on the 
outcome in the absence of the object that is not 
shared by the precipitant. In the setting of 
Design 2, the association with the negative con-
trol precipitant is used qualitatively to place into 
context and aid in the interpretation of the asso-
ciation measure for the precipitant of interest. 
For example, in the previously described study 
that measured the OR for the association 
between cotrimoxazole as the precipitant and 
serious hypoglycemia among persons receiving 
glyburide (the object), the investigators also 
examined the association with amoxicillin as a 
negative control precipitant. In that study, the 
association between amoxicillin and serious 
hypoglycemia (adjusted OR 1.5; 95% CI 0.8–2.9) 
helped provide reassurance that the association 
with cotrimoxazole (adjusted OR 6.6) was 
unlikely to be due primarily to confounding by 
the need for an antibiotic or a shared effect of all 
antibiotics [9].

To help distinguish a DDI from an inherent 
effect of the precipitant, one can measure the 
association between the precipitant and the 
outcome within the person‐time exposed to a 
negative control object. A negative control 
object is a drug that is used for similar indica-
tions as the object under study, but is not 
believed to interact pharmacologically with the 
precipitant. For example, in a study of DDIs 
between sulfonylureas as objects and antihyper-
lipidemics as precipitants, Leonard et  al. used 
metformin as a negative control object, which is 
not believed to interact with the precipitants 
[12]. In the setting of Design 2, the association 
with presence vs absence of the precipitant in 
users of the negative control object is used qual-
itatively to place into context and aid in the 
interpretation of the association measure of pri-
mary interest. For example, in the previously 
described study by Leonard et al. of sulfonylu-
reas and antihyperlipidemics, the possibility of 
an association (although not quite statistically 
significant) between fenofibrate (a precipitant) 
and serious hypoglycemia among users of met-

formin (as a negative control object) suggested 
the possibility of an inherent hypoglycemic 
effect of fenofibrate in the absence of sulfonylu-
reas [12].

Design 3 is just like Design 2 except that the 
association measure is the IRR (or OR) of the 
precipitant of interest explicitly versus the con-
trol precipitant, among persons taking the 
object. For example, Leonard et al. conducted a 
cohort study of persons taking clopidogrel, 
examining the rate of ischemic stroke among 
persons taking individual proton pump inhibi-
tors, each versus pantoprazole as the negative 
control precipitant [13]. Pantoprazole was 
selected as the negative control precipitant 
because it is not a potent inhibitor of the enzyme 
responsible for activating clopidogrel 
(cytochrome P450 2C19) and therefore is 
believed to have a low potential for interacting 
with clopidogrel. The multiplicative interaction 
parameter can be produced either through per-
forming a single regression that estimates, 
among those exposed to the object drug, the 
association between the precipitant vs the nega-
tive control precipitant; or performing one 
regression that estimates the association 
between the presence vs absence of the precipi-
tant in those receiving the object and one that 
estimates the association between the presence 
vs absence of the negative control precipitant in 
those receiving the object, and then calculating 
the ratio of ratios and the corresponding confi-
dence limit from these two regressions using the 
delta method [14]. The advantage of Design 3 
over Design 2 is that it uses the association 
between the outcome and the control precipi-
tant quantitatively rather than qualitatively.

Similarly, Design 4 is just like Design 2 except 
that the association measure is the IRR (or OR) 
for the precipitant of interest in those receiving 
the object drug of interest vs the precipitant of 
interest in those receiving a negative control 
object drug. As with Design 3, this parameter 
can be calculated either through a single regres-
sion or by combining the results of two 
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 regressions using the delta method [14]. We are 
unaware of any published examples that have 
used this design.

Although use of a negative control precipitant 
can be a valuable strategy, there are at least three 
reasons why it is not a panacea for the problem 
of confounding by the indication for the precipi-
tant. First, there are potential DDIs for which 
there is not a plausible negative control precipi-
tant. For example, if one wanted to examine 
whether aspirin as the precipitant increased the 
risk of serious bleeding in patients receiving 
warfarin as the object, it would be difficult to 
identify a negative control precipitant that had 
the same set of indications as aspirin and was 
not believed to increase the risk of bleeding in 
patients taking warfarin. Second, even if there is 
a plausible negative control precipitant, there 
may still be residual unmeasured confounding 
between the precipitant and the negative con-
trol precipitant. For example, when amoxicillin 
is used as a negative control precipitant in stud-
ies examining cotrimoxazole as a potential pre-
cipitant, there may be residual confounding 
because amoxicillin and cotrimoxazole are not 
used in identical groups of patients. Third, there 
can be no guarantee that the negative control 
precipitant does not have an unknown interac-
tion with the object or an unknown inherent 
effect on the outcome. This may be particularly 
true for older drugs, for which pharmacokinetic 
pathways and pharmacodynamic effects may be 
less well studied than for newer drugs.

Self‐controlled designs include only persons 
who experienced the outcome, using each per-
son as her/his own control. Such designs there-
fore inherently control for both measured and 
unmeasured potential confounding factors to 
the extent that such factors do not change 
within individual over the study period. Self‐
controlled designs are useful for identifying 
short‐term effects of acute or intermittent 
exposures, which are often of interest in studies 
of DDIs. The self‐controlled case series 
(SCCS)  design is a self‐controlled design that 

is  analogous to the cohort design [15]. The 
case–crossover design is a self‐controlled design 
that is analogous to the nested case–control 
study design [15].

Design 5 is a SCCS or case–crossover study 
nested within person‐time exposed to the 
object, examining the IRR (for the SCCS design) 
or OR (for case–crossover design) associated 
with use versus nonuse of the precipitant. For a 
SCCS or case–crossover study to be feasible, 
there must be within‐person variability in expo-
sure to the precipitant while the person is taking 
the object. That is, a person whose entire time 
taking the object is either always co‐exposed or 
never co‐exposed to the precipitant will not 
contribute to the estimation of the drug interac-
tion parameter, although they can contribute to 
the estimation of other model parameters such 
as time‐varying confounders (if any) in analysis 
of a self‐controlled study of the DDI. Thus, on 
one hand, self‐controlled designs are better 
suited to examine DDIs involving precipitants 
that are taken acutely or episodically rather than 
chronically. On the other hand, acutely taken 
drugs often have acute indications that may 
affect the rate of the outcome, rendering the 
design susceptible to within‐person confound-
ing by indication.

For example, Schelleman et al. used the case–
crossover design to examine the within‐person 
association between use of antibiotics as pre-
cipitants and hospitalization for gastrointestinal 
bleeding among persons taking warfarin as the 
object [16]. They found that all antibiotics 
examined were associated with an elevated rate 
of bleeding, including those not believed to 
interact pharmacokinetically with warfarin. 
However, there were large differences among 
antibiotics. The observation that all antibiotics 
were associated with an increased rate of bleed-
ing suggests either that all antibiotics share a 
mechanism for causing bleeding in persons tak-
ing warfarin (and possibly even in those not 
 taking warfarin), or that the indication for 
 antibiotics (acute infection) itself is associated 
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with bleeding in those taking warfarin (and pos-
sibly even in those not taking warfarin). 
Clinically, whether the increased bleeding risk 
observed during antibiotic use is due to a DDI, 
is a shared effect of all antibiotics, or is an inher-
ent effect of infection may not matter as long as 
clinicians monitor anticoagulated patients care-
fully during episodes of acute infection. Thus, 
from a methodologic perspective, even though 
self‐controlled designs are generally useful to 
study acute exposures, within‐person con-
founding by the indication for drugs with acute 
indications may complicate their use for DDIs 
when the precipitants have acute indications.

Therefore, in the setting of acutely adminis-
tered precipitants, a cohort study that quantita-
tively employs a negative control precipitant 
(Design 3) may be useful in addition to or per-
haps instead of a self‐controlled study (Design 
5), provided that a good negative control pre-
cipitant is available. In addition, one could use a 
negative control precipitant in a case‐case‐time‐
control study [17] (see Chapter 43), although we 
are unaware of any studies that have used this 
design to study DDIs. Further, although self‐
controlled studies are generally thought of as a 
poor choice for studying chronically adminis-
tered drugs, exposure to medications that are 
intended to be chronically administered is often 
actually intermittent because of poor persis-
tence, incomplete adherence, or other reasons. 
Therefore, self‐controlled designs can some-
times be useful for studying precipitants that are 
intended to be used chronically, although they 
may be vulnerable to persistent user bias [18].

One could consider performing a SCCS (or 
case–crossover) study nested within person‐
time exposed to the object, explicitly comparing 
person‐time exposed to precipitant vs a control 
precipitant. This design would include only per-
sons who took both the precipitant and the neg-
ative control precipitant while taking the object, 
and who experienced the outcome while taking 
the object plus either the precipitant or the con-
trol precipitant.

Suppose, for example, that an investigator 
wished to perform a self‐controlled study to 
compare bleeding risk in warfarin users associ-
ated with concomitant use of cotrimoxazole, 
with amoxicillin as a negative control precipi-
tant. A self‐controlled study of this question 
would include only persons who experienced 
bleeding while treated with warfarin plus either 
cotrimoxazole or amoxicillin as a precipitant, 
and who also took the alternative precipitant at 
some point during warfarin therapy. Because 
few such persons are likely to exist even in a 
large population database, this design seems 
unlikely to be of practical use. However, one 
could quantitatively incorporate a negative con-
trol precipitant in a self‐controlled study by fit-
ting one regression that estimates the association 
with the precipitant in users of the object, fitting 
a second regression that estimates the associa-
tion with the negative control precipitant in 
users of the object, and calculating the ratio of 
these ratios (with the corresponding confidence 
limits) using the delta method [14]. Similarly, 
one could quantitatively incorporate a negative 
control object using a self‐controlled design by 
fitting one regression that estimates the associa-
tion with the precipitant in users of the object, 
fitting a second regression that estimates the 
association with the precipitant in users of the 
negative control object, and calculating the ratio 
of these ratios (with the corresponding confi-
dence limits) using the delta method [14]. For 
example, Han et al. used this approach to exam-
ine the association between numerous potential 
precipitants and serious hypoglycemia in users 
of sulfonylureas as objects, using metformin 
quantitatively as a negative control object [19].

As is evident from the discussion above, selec-
tion of a pharmacoepidemiologic design to 
study a specific potential DDI includes consid-
eration of numerous factors including the exist-
ence of a plausible negative control precipitant 
and control object, the relative importance 
of  among‐person confounding versus within‐ 
person confounding, and whether the  precipitant 
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is in real life taken acutely or intermittently 
 versus chronically. Investigators studying a 
given potential DDI should consider using mul-
tiple, complementary research designs.

Outcome Assessment Methods

Many studies have used review of medical 
records to examine the validity and perfor-
mance characteristics of algorithms to identify 
outcomes using administrative healthcare data 
[20]. Such studies usually examine outcomes 
that reliably result in treatment in the emer-
gency department (ED) and/or hospital admis-
sion rather than office‐based treatment. Thus, 
investigators studying the effects of potential 
DDIs on acute health outcomes usually study 
events that lead to ED treatment or hospitaliza-
tion. Given the transition in the US from the 
International Classification of Diseases, 9th 
revision, clinical modification (ICD‐9‐CM) to 
ICD‐10‐CM that occurred on October 1, 2015, 
researchers using administrative data from this 
date or later in the US will need to examine the 
validity of algorithms that use ICD‐10‐CM 
codes for identifying outcomes.

As healthcare databases increasingly include 
laboratory values and vital signs, such meas-
ures can also be used as outcomes in DDI 
studies. A typical study design using such out-
comes would examine change in a laboratory 
value from baseline when a precipitant is initi-
ated in a person receiving an object. For exam-
ple, changes in serum glucose were used to 
identify a possible DDI between the antide-
pressant paroxetine and the antihyperlipi-
demic pravastatin [21] and between proton 
pump inhibitors and metformin [22]. 
Compared to studies that rely on binary out-
comes such as the occurrence of serious hypo-
glycemia, studies examining a continuous 
measure such as serum glucose require much 
smaller sample sizes and may raise fewer con-
cerns about outcome validity, assuming that 
the laboratory value is accurately measured 

and recorded. A related limitation is that such 
measures are generally intermediate end-
points or biomarkers, rather than the actual 
clinical events that matter most to patients. In 
addition, handling of missing data deserves 
careful consideration, particularly if drug 
exposure affects the likelihood that providers 
measure or record the study endpoint.

Using a Positive Control Pair to Assess 
Assay Sensitivity

The use of a negative control precipitant and 
negative control object is discussed above, 
either as an explicit control group or implicitly 
to help assess the potential for confounding by 
the indication for the precipitant, or to help 
assess an inherent effect of the precipitant in 
the absence of the object. To assess the sensi-
tivity of the pharmacoepidemiologic study to 
capture a known DDI similar to the one being 
studied (i.e., demonstrate the sensitivity of the 
pharmacoepidemiologic assay), investigators 
should consider studying a positive control 
precipitant, which is a precipitant known to 
produce an association with an outcome in 
patients receiving the object of interest. For 
example, if one were to study a DDI between 
warfarin as the object and an antibiotic as the 
precipitant with bleeding as the outcome, it 
may be useful to reproduce the well‐estab-
lished DDI between warfarin and cotrimoxa-
zole as a positive control to demonstrate the 
ability of the study procedures and database to 
reproduce this known positive association. 
While this can be helpful, the investigator 
should consider the possibility that confound-
ing might be different for the precipitant and 
positive control such that replicating the 
known association for the positive control is 
no guarantee that the study will yield the truth 
for the precipitant. In addition, other consid-
erations such as sample size may negate the 
ability of a precipitant to serve as a reliable 
positive control.
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Considering Initiation Order 
of Object and Precipitant

Concomitant administration of an object and a 
precipitant can be divided into three categories 
based on order of initiation of the two drugs. 
When both drugs are initiated simultaneously, 
the concomitancy is combination triggered. 
When the object is started in a person already 
taking the precipitant, concomitancy is object 
triggered. When the precipitant is started in a 
person already taking the object, concomitancy 
is precipitant triggered.

An adverse event due to a DDI involving a 
dose‐titrated object may be more likely if con-
comitancy is precipitant triggered rather than 
either object triggered or combination trig-
gered. This is because in precipitant‐triggered 
concomitancy, the dose of the object may be 
titrated to produce its desired effect in a patient 
who is not receiving the precipitant, and this 
titration is later followed by initiation of the pre-
cipitant. For example, if warfarin is started and 
cotrimoxazole is later added, the prescriber may 
be unaware of the need to retitrate the dose of 
warfarin, and overanticoagulation and bleeding 
may result. In contrast, if warfarin and cotri-
moxazole are started simultaneously or if warfa-
rin is started in a patient already receiving 
cotrimoxazole, the warfarin dose will be titrated 
to the desired level of laboratory‐measured 
anticoagulation in the presence of cotrimoxa-
zole, avoiding clinical consequences of the DDI 
in that patient, provided that the patient contin-
ues to take cotrimoxazole. Naturally, if the cotri-
moxazole is later discontinued, the patient may 
be at risk of the effects of underanticoagulation, 
that is, thromboembolic events.

If an investigator wished to include only 
instances of precipitant‐triggered concomi-
tancy to increase the likelihood of identifying a 
clinically important DDI, a larger study popula-
tion would naturally be needed to detect the 
same level of increased risk, since only a subset 
of all instances of concomitancy are precipitant 

triggered. If sufficient sample size is available, it 
may be desirable to calculate separate measures 
of association for precipitant‐triggered, object‐
triggered, and combination‐triggered concomi-
tancy when studying dose‐titrated objects.

When studying precipitant‐triggered and 
object‐triggered concomitancy, it is critical to 
avoid including immortal person‐time (see 
Chapter 43). Immortal person‐time is a period 
of observation that is guaranteed to be event 
free through design of the study [23]. In an anal-
ysis of a putative DDI between clopidogrel 
(object) and proton pump inhibitors (precipi-
tants), Stockl et al. compared clopidogrel initia-
tors to clopidogrel initiators who also filled a 
prescription for a proton pump inhibitor [24]. 
Follow‐up began at clopidogrel initiation, and 
patients were classified into clopidogrel‐only or 
clopidogrel‐plus‐proton pump inhibitor groups 
based on whether they had at least one prescrip-
tion for a proton pump inhibitor in the 90 days 
before or 90 days after the clopidogrel initiation 
date. Thus, patients who qualified for inclusion 
by receiving a proton pump inhibitor in the 
90 days following the clopidogrel initiation con-
tributed immortal person‐time to the analysis – 
the time from clopidogrel initiation to the 
proton pump inhibitor prescription  –  since 
patients that entered the analysis in this way, by 
definition, could not have had a fatal outcome in 
this period. Beginning follow‐up after or at the 
time of (but not before) concomitancy can help 
to avoid immortal person‐time bias.

Studying the Time Course of the DDI

Even in the absence of a potentially interacting 
drug, the rate of an ADE often varies with 
amount of time since initiating the drug. This 
is part of the rationale for the increasingly 
standard practice in pharmacoepidemiology 
to restrict studies to new users of the drugs 
being examined, an approach known as the 
inception cohort design [25]. For many 
drug–outcome pairs, the incidence rate would 
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be expected to peak shortly after starting the 
drug and decline thereafter.

Such a declining pattern may be attributed to 
at least three different mechanisms. The first 
mechanism is depletion of susceptible patients, 
in which patients with an inherent susceptibility 
to the drug’s adverse effect experience the 
adverse effect soon after initiation, and subse-
quently discontinue the drug because of the 
adverse event or a prodrome thereof [26,27]. 
Under this mechanism, the patients who remain 
on the drug for the long term are more robust to 
the drug’s adverse effects, since the susceptible 
patients have been depleted from the cohort. 
The second mechanism leading to a declining 
event rate over time is biological adaptation to 
the drug’s pharmacologic effects. The third 
mechanism is dose reduction prompted either 
by early signs of toxicity (e.g., a reduction in the 
dose of a statin due to mild myopathy that 
reduces the risk of rhabdomyolysis) or in 
response to measurement of the serum drug 
concentration or other biomarker used in clini-
cal practice to adjust doses (e.g., a reduction in 
warfarin dose due to supratherapeutic values of 
the international normalized ratio, a laboratory 
marker of warfarin’s pharmacologic effect). 
While each of these mechanisms would be 
expected to produce a declining rate, an increas-
ing rate can be observed for drug–outcome pairs 
that are characterized by cumulative toxicity, 
such as corticosteroid‐induced avascular necro-
sis and anthracycline‐induced cardiomyopathy.

Given that the rate of an ADE often varies with 
the amount of time since initiating the drug, it is 
predictable that the rate of an outcome caused by 
a DDI may vary as a function of the amount of 
time since initiation of concomitancy, particularly 
for DDIs acting through metabolic inhibition [28]. 
The initial increase in plasma concentration of the 
object may cause a rise in the rate of the ADE ini-
tially, followed by a reduction in the rate as the 
metabolism of the object returns to baseline.

Figure  40.1A illustrates a scenario in which 
initiation of a precipitant to a person already 

receiving an object (i.e., precipitant‐triggered 
concomitancy) leads to an event rate that is 
transiently increased but then declines to base-
line. The rate might actually decline to below 
the baseline rate because the persons suscepti-
ble to the adverse effect become depleted from 
the cohort or because the body compensates to 
increase pharmacologic clearance of the object. 
If the scenario illustrated in Figure  40.1A is 
operating, and one evaluates a potential DDI 
by calculating the average rate during all time 
treated with the object–precipitant combina-
tion and dividing this rate by the rate observed 
during the time treated with the object alone, 
then one could falsely conclude that the poten-
tial DDI had no effect on the rate of the adverse 
event, even if the precipitant has a large but 
transient effect. This is because, as illustrated 
in Figure 40.1A, the transiently increased rate 
seen shortly after the initiation of the precipi-
tant in patients is outweighed by the prolonged 
time during which the rate of the adverse event 
has reverted back to (or even below) the base-
line rate associated with use of the object alone. 
In other scenarios, the increased risk associ-
ated with a precipitant‐triggered DDI may 
remain elevated throughout the course of con-
comitancy, as illustrated in Figure 40.1B.

Careful consideration must also be given to the 
timing of concomitancy when the rate of the 
ADE varies with the amount of time since initiat-
ing the object. For example, a study of a DDI 
between corticosteroids and some precipitant on 
avascular necrosis should account for time on 
corticosteroids since the rate of avascular necro-
sis increases with time on corticosteroids. If, for 
example, an investigator conducted an analysis in 
which a large portion of the time unexposed to 
the precipitant was shortly after corticosteroid 
initiation, and the majority of time concomitantly 
exposed to the precipitant was longer after corti-
costeroid initiation, then there would be a lower 
baseline risk of avascular necrosis during unex-
posed time than in exposed time, even if there 
were no effect of the precipitant.
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Given that, as illustrated in Figure 40.1A, the 
overall rate ratio may not be observably elevated 
for a DDI with a substantial but transient effect, 
it can be important to look for an association 
within time‐specific strata (i.e., examine the 
duration–response relationship of the DDI) 
regardless of whether or not an overall associa-
tion is observed over the entire period of con-
comitancy. However, looking for associations 
both overall and within strata defined by time 
since initiation of concomitancy can raise 
potential concerns about multiple testing. Given 
that DDI studies using even very large popula-
tion databases can have low statistical power, 
adjusting for multiple comparisons across time 
strata may have a crippling effect on investiga-
tors’ ability to identify important risks associ-
ated with DDIs. For example, Schelleman et al. 
used a population database of approximately 
108 million person‐years of follow‐up to evalu-
ate potential DDIs involving sulfonylureas as 
objects and lipid‐lowering drugs as precipitants 

[29]. They studied only precipitant‐triggered 
instances of concomitancy. For each object–
precipitant pair, they examined the overall asso-
ciation as well as associations for 0–29 days, 
30–59 days, 60–119 days, and ≥120 days. They 
found statistically elevated association meas-
ures for several time‐specific strata, but would 
not have done so had they accounted for multi-
ple testing due to the 56 possible duration‐ 
specific association measures, many of which had 
insufficient data even to estimate a multiplicity‐
unadjusted measure of association.

We believe that for exploratory analyses of 
time‐specific measures of association, refraining 
from accounting for multiplicity is justified 
because of the manifestly low statistical power 
associated with multiplicity‐adjusted estimates, 
provided that such association measures are 
interpreted as exploratory in light of their corre-
sponding higher‐than‐nominal type I error rate. 
The issue of multiple testing can be mitigated in 
settings where the pharmacologic mechanism of 
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Figure 40.1 Schematic depiction of the two different potential time‐courses of a precipitant‐triggered drug–drug 
interaction. In (A), the rate of the adverse event rises transiently, while in (B), the rate of the adverse event rises and 
remains persistently elevated.
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the potential DDI is sufficiently well character-
ized so that the time course of the interaction can 
confidently be predicted a priori, and analyses 
within specific time windows considered primary, 
with other time windows considered secondary.

Pharmacoepidemiologic Screening 
to Identify Potential DDIs

In addition to performing hypothesis‐driven 
DDI studies, pharmacoepidemiologic meth-
ods can be used to perform hypothesis‐free 
screening of healthcare data to identify poten-
tial DDIs. For example, Han et  al. used the 
SCCS design to screen healthcare data for pre-
cipitants that are associated with serious 
hypoglycemia in persons taking insulin secre-
tagogues (Design 5) [19]. The SCCS design is 
well suited to screening because it includes 
only persons who experienced the outcome 
while taking the object. This makes this design 
highly computationally efficient and thus 
more amenable to high‐throughput analysis 
than the cohort or nested case–control 
designs. Because of the large number of candi-
date precipitants that they examined, the 
investigators used a semi‐Bayesian shrinkage 
approach for multiple comparisons adjust-
ment [30], an approach that limits the variabil-
ity of the resulting measures of association 
and controls the type I error rate.

 The Future

Given the continued development of new drugs, 
repurposing of old drugs, the rising frequency 
of polypharmacy, and the aging of the popula-
tion, the clinical and public health importance 
of DDIs will continue to grow. The increasing 
use of healthcare data from larger populations, 
including data accessed using distributed data 
models (see Chapter  25), that characterizes 
pharmacoepidemiology in general promises to 
be particularly important for studying the health 

effect of DDIs. This is because studying the 
effects of multiple drugs in combination neces-
sitates larger population databases than does 
studying the effects of individual drugs. The set-
tings in which the health effects of DDIs are 
characterized are likely to expand from the cur-
rent predominance of studies of community‐
dwelling persons to those set in hospitals, 
nursing homes, and other settings.

A wide variety of data and approaches are 
now being used to screen for potentially clini-
cally important DDIs, including animal mod-
els, healthcare data, spontaneous reporting 
data (see Chapter  10), physiologically based 
pharmacokinetic models (see Chapter  2), 
physiologic and pharmacologic networks (see 
Chapter 2), and social media (see Chapter 27). 
As the use of screening increases, the number 
of hypothesized DDIs whose health effects 
need to be confirmed or refuted in etiologic 
studies will rise. Perhaps the most urgent need 
is to develop and test approaches to better 
incorporate the knowledge gained through 
studies of the health effects of DDIs into the 
healthcare system, thereby reducing the fre-
quency of harmful effects of DDIs while allow-
ing and perhaps even encouraging use of 
combinations that had been predicted to be 
harmful but were actually found to be safe. 
However, given the fragmented market for 
DDI knowledge bases and the surprising 
degree of lack of agreement among them [31], 
addressing this problem will be challenging.
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Medications represent the most commonly 
used form of medical therapy today. For adults, 
75% of office visits to general practitioners and 
internists are associated with the continuation 
or initiation of a drug [1]. For hospitalized 
patients, multiple medication orders tend to be 
written for each patient daily. Theoretically, 
medication errors can refer to selection of the 
wrong patient, the wrong drug, the wrong 
galenic formulation (e.g., tablets with immedi-
ate and sustained release), the wrong dosage 
or  route of administration, or wrong time. 
Medication errors are frequent, but fortunately 
only a small proportion result in harm [2]. 
However, given the high prevalence of prescrip-
tion medication use, preventable adverse drug 
events are one of the most frequent causes of 
preventable iatrogenic injuries. The IoM report 
“To Err is Human” suggested that at least 
44 000–98 000 deaths occur in the US from iat-
rogenic injury [3]. One study estimated that 
about 7000 deaths are attributed to medication 
errors [4] and about 1 million injuries might 
result from medication use in general in the US 
per year.

 Clinical Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

Definition and Classification 
of Medication Errors

While the techniques of pharmacoepidemiol-
ogy have most often been used to study the risks 
and benefits of drugs, they can also be used to 
study medication errors and their attendant 
adverse drug events. Medication errors have 
been defined as “any error in the process of 
ordering, dispensing, or administering a drug” 
regardless of whether an injury occurred or 
the  potential for injury was present [5]. 
Mechanistically, medication errors may result 
from errors in planning actions – for example, 
not knowing the correct starting dosage for a 
medication (i.e., knowledge‐based mistakes or 
rule‐based mistakes)  –  or errors in executing 
correctly planned actions, like picking one 
sound‐alike medication instead of another (i.e., 
action‐based slips or memory‐based lapses) [6].
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In clinical practice, a medication error may 
occur at any stage of drug therapy, including 
drug prescribing, transcribing, manufacturing, 
dispensing, administering, and monitoring. 
Medication errors with potential for harm are 
called near‐misses or potential adverse drug 
events; these errors may be intercepted before 
they reach the patient, or reach the patient with-
out consequence. However, generally, about one 
in 10 medication errors results in patient harm 
[7]. An adverse drug event (ADE) would be con-
sidered preventable if a medication error is 
associated with the ADE (Figure  41.1). While 
ADEs have been defined as “any injury related 
to the use of the drug, regardless of whether a 
therapeutically appropriate dosage is used, 
although the causality of this relationship may 
not be proven” [8], an adverse drug reaction 
(ADR) can be defined as harm which is caused 
by a drug while appropriately used [9] (see also 
Chapter 1 for alternative definitions).

Detection of Medication Errors

Approaches for detecting medication errors 
include manual or automatic screening of claims 

data, administrative databases, medical records, 
electronic health records, or incident reports 
mostly by providers in hospitals, as well as 
patient monitoring or direct observation often 
by pharmacists. All approaches have inherent 
advantages and pitfalls and there is no single 
approach that is considered the gold standard 
for detecting medication errors or ADEs. 
Factors which might influence the identification 
of medication errors and ADEs include the set-
ting (ambulatory vs inpatients; routine care vs 
research studies), the expected types of medica-
tion errors (prescribing vs administration 
errors), and the projected costs of detection 
[10]. In addition, the type of detection method 
influences which types of medication errors are 
found (e.g., only those resulting in patient harm) 
and with which frequency (see Chapters 8 and 
10 for further discussions of detecting medica-
tion adverse events).

Screening of claims data, administrative data-
bases, medical records, and electronic health 
records is used to evaluate large datasets, but is 
generally done retrospectively. The quality of 
the available information, however, varies 
between different data sources which limits 

adverse drug events
A) preventable; B) non-preventable

A

B

A

B

medication errors

near misses
A) intercepted; B) non-intercepted

Figure 41.1 Relationship of 
medication errors and adverse drug 
events. About 1 in 10 medication 
errors is likely to result in patient 
harm [7], whereas about 25% of 
adverse drug events can be allocated 
to a medication error [2]. Near 
misses, both intercepted and 
nonintercepted, comprise those 
medication errors with potential for 
patient harm without resulting in 
actual harm.
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opportunities to comprehensively and system-
atically detect medication errors. Especially in 
the outpatient setting, claims data can be 
obtained for very large numbers of individuals. 
In the US, this represents tens and sometimes 
hundreds of millions of people, and in many 
other countries complete data for a population 
(such as the province of Ontario) may be avail-
able. Limitations of using claims data to detect 
medication errors include uncertainty regard-
ing medication consumption and mischarac-
terization of the error if not linked to other 
information sources because clinical detail is 
often minimal (e.g., information on weight, 
actual drug dose or renal function might be 
missing). Since the focus of such data systems is 
on clinical outcomes and treatment, medication 
errors will be missed unless they result in patient 
injury severe enough to come to medical atten-
tion. Even then, it is usually not clear whether 
the injury was due to an error.

In the inpatient setting, manual chart review 
is a well‐established method to detect ADEs and 
medication errors. With most relevant patient 
information at hand, the appropriateness of 
drug prescribing and administration can be 
assessed, although documentation may still be 
incomplete, especially for assessing issues such 
as appropriateness of the medication order. The 
main limitations with chart reviews are that 
they are time‐consuming and expensive, with 
the average chart review costing approximately 
$20 per chart.

If electronic health records are available, the 
manual screening of paper‐based information 
can be replaced by semi‐automated approaches. 
However, the level of standardization and the 
extent to which clinical information is stored 
using controlled vocabulary determine the fea-
sibility and effectiveness of automated, algo-
rithm‐based data analyses [11]. If electronic 
health records include electronic prescribing 
applications with clinical decision support (i.e., 
computerized physician order entry  –  CPOE), 
data from these applications can readily be used 

to detect many types of medication errors at the 
stage of prescribing. However, the specificity of 
the systems will also depend on the availability 
of information accessible via the electronic 
health records [12]. Specific types include overly 
high dosage, cumulative dose errors, and drug–
drug interaction issues, among others.

Screening of incident reports (i.e., reports usu-
ally issued by personnel involved in the occur-
rence of an adverse event or a situation that 
might have led to an undesirable outcome) and 
patient monitoring (e.g., for specific symptoms) 
can each reveal medication errors that resulted 
in patient harm [13]. Screening of incident 
reports always grossly underestimates the inci-
dence of errors (because of underreporting of 
events), but is relatively inexpensive because 
data are collected as a byproduct of routine care 
delivery. The major barrier for reporting medi-
cation errors is staff perception that reporting 
might be associated with disciplinary actions 
[14], even if the hospital pursues a nonpunitive 
policy [15]. One approach to increase reporting 
would be to only report near misses that help to 
identify which situations facilitate errors but also 
which actions might help to detect and prevent 
errors. These “critical incident reporting systems” 
typically belong to quality management systems 
in hospitals and are becoming more prevalent in 
the primary care setting. Predetermined patient 
monitoring for adverse drug events, while more 
time‐ and cost‐intensive, has been successful, and 
can identify more adverse drug events than chart 
review [13].

Spontaneous reporting of medication errors 
(described in Chapter  10) is comparatively 
easy to implement and to maintain, both in 
inpatient and outpatient settings. However, 
both ADEs and medication errors are sub-
stantially underreported (see Chapter  10). 
Nevertheless, spontaneous reporting is use-
ful for obtaining samples of errors. However, 
this method cannot be used to assess the 
underlying rate of medication errors in a 
sample [16].
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Direct observation is typically conducted 
 during research studies and offers a comprehen-
sive assessment of medication dispensing and 
administration errors. While being both cost‐ 
and personnel‐intensive, direct observation has 
been successfully and reliably used to classify 
complex medication errors [17], and is particu-
larly useful at stages that are not sensitive to 
other detection methods (e.g., drug preparation 
or drug administration) [18].

 Methodologic Problems 
to Be Addressed by 
Pharmacoepidemiologic 
Research

Pitfalls in the Detection of Medication 
Errors

The reliable and systematic detection of medica-
tion errors has many methodologic challenges, 
including the definition of what constitutes a 
medication error and the availability and appro-
priate interpretation of clinical data.

With respect to definition, examples of com-
plexities include whether there was harm or 
potential for harm, and the decision about 
whether to include errors that are intercepted 
before reaching the patient.

Identification of medication errors remains 
challenging as general standards are lacking. For 
instance, the detection of “wrong timing errors” 
(i.e., giving a drug within a timeframe) requires 
the definition of a threshold value above which 
the medication is delayed. In the inpatient set-
ting, this threshold value might be two or four 
hours, depending on the institution. However, 
sometimes patients are away from their inpa-
tient rooms (e.g., getting diagnostic tests), in 
which case decisions need to be made about 
whether to use a singular threshold value.

Using the example of hazardous prescription of 
interacting drugs, a potential approach to detect a 
medication error involves the comparison of the 

prescribed medications with a drug–drug 
 interaction (DDI) knowledge base. However, the 
content of such knowledge bases varies widely, in 
terms of both included drug pairs and specific 
information linked to a drug pair (e.g., severity of 
the DDI) [19] – see Chapter 40. Especially in the 
outpatient setting, comprehensive and reliable 
data on the patient’s medication list may be miss-
ing. Furthermore, prescribing and dispensing 
data are seldom jointly available and determining 
actual patient adherence is even more difficult. 
Even patient surveys may not give adequate infor-
mation. While patients might be nonadherent to 
some prescribed drugs, they might also consume 
over‐the‐counter drugs with potential for DDIs 
(e.g., St John’s wort) that they do not report [20].

To evaluate the appropriateness of a medica-
tion for a specific patient, knowledge of the 
patient’s characteristics is mandatory. For exam-
ple, many medications are contraindicated in 
pregnancy, with notable examples being thalid-
omide, isotretinoin, and warfarin. In this con-
text, the greatest difficulty lies in assessing 
whether the patient is pregnant at the time of 
the exposure. Information on whether a woman 
is pregnant or not at the time of prescribing is 
challenging to obtain and most information sys-
tems do not have good approaches for tracking 
this. In retrospective analyses, identification of 
the date of birth and backward calculation 
under the assumption of a term pregnancy 
might be feasible, though this process can still 
be subject to misclassification (e.g., if the preg-
nancy was not full term) and can be complex 
since such information is not readily stored in 
one location.

Another important piece of clinical informa-
tion, especially in pediatrics (though also for the 
administration of chemotherapy and some other 
situations), is the patient’s weight. Most pediat-
ric medications use weight‐based dosing. 
Standardized documentation of this information 
can be challenging to obtain, hindering not only 
analyses of pediatric dosing but also actual pre-
scribing by pediatricians. Obtaining accurate 
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weight is also essential for many oncology 
patients, as certain intravenous chemotherapy 
drugs use weight‐based dosing. However, this 
issue is further complicated in obese patients 
who may require dosing using body surface area 
(BSA) or ideal body weight (IBW).

Finally, information on the patient’s medica-
tion allergy status is infrequently and inconsist-
ently available [21,22]. It is important that true 
allergies (e.g., a rash related to penicillin) be dif-
ferentiated from medication sensitivities or intol-
erances (nausea from codeine) through coded 
information rather than free text. It is particularly 
important that severe reactions, such as anaphy-
laxis, are clearly coded and identifiable. The 
eventual aim is to have one universal medication 
allergy list in an electronic format for each 
patient, rather than multiple disparate lists.

Measuring Incidence of Medication 
Errors

Especially because of the different approaches 
used in detection of medication errors, the 
assessment of medication error incidence 
remains challenging. Comparison of medica-
tion error incidence rates among different stud-
ies has substantial limitations. This is related to 
disparate detection approaches and using dif-
ferent methods to ascertain numerators (i.e., the 
medication errors) and denominators (i.e., the 
sample from which the medication errors arise). 
Thus, medication error rates from different 
studies can be difficult to compare unless the 
same, or similar, methods were used. Other fac-
tors to consider are the setting studied and the 
patient population. In addition, spontaneous 
reporting typically lacks information to calcu-
late incidence (see Chapter 10).

Comparing Medication Error Rates 
Across Settings

Most medication error and ADE studies have 
been performed in the hospital setting. In the 

inpatient adult setting, patients are vulnerable 
to medication errors due to their medical acuity, 
the complexity of their disease process and 
medication regimens, and their age (e.g., the 
elderly are particularly susceptible). The medi-
cation error rate may differ depending on the 
type of hospital and may be higher in nonuni-
versity hospitals. A review from 2007 indicates 
that medication errors occur in about 5.1% 
(range 0.038–26%) of medications dispensed in 
university hospitals and 13.7% (range 3.5–49%) 
in nonuniversity hospitals [7]. Studies of ADE 
rates in hospitals have found rates ranging from 
2 to 15 per 100 admissions [5,23,24].

In intensive care units (ICUs), the rates of 
medication errors appear higher than on gen-
eral care units. This may result from the admin-
istration or ordering of many more medications 
that may also be associated with higher levels of 
toxicity. Beyond the increased incidence of 
medication errors in ICUs, the nature and 
causes of medication errors are different and 
the risk that a medication error will result in 
patient harm is also higher compared to general 
inpatient wards [25], with 7.4% of patients expe-
riencing an ADE resulting from a medication 
error [26].

In nursing homes and especially in the ambu-
latory setting [13], assessment of medication 
error incidence is challenging because the indi-
vidual steps in the medication process are rarely 
jointly documented (e.g., administration), and 
there are often substantial time lags between 
them. Sometimes estimation of frequency of 
medication errors has relied on spontaneous 
reporting of medication errors [27] or docu-
mentation of ADEs in charts, which misses both 
many ADEs and nearly all medication errors. In 
a recent review of medication errors in nursing 
homes, medication errors were reported for 
16–27% of the residents. Most errors were asso-
ciated with mild effects and only 0–1% resulted 
in severe effects [28].

In the ambulatory setting, patients live in their 
homes and take their medications independently, 
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which makes detection of medication errors and 
ADEs challenging. In one review, medication 
error rates ranged from 12% to 59%, with even 
higher numbers in elderly patients with complex 
medication regimes [29]. Thereby, errors can 
also  be committed by a third person such as a 
caregiver who is also responsible for drug admin-
istration [30]. In addition, the incidence of medi-
cation error‐related ADEs may be estimated by 
direct patient surveys in the outpatient setting, 
for example by calling patients or mailing or 
emailing them a survey. Using this kind of 
approach, ADE rates ranged from 25% of patients 
(as self‐reported in a survey) [13] to 5% (of hospi-
tal admissions) [31]. For medication errors 
related to the prescription process, the error rate 
was 7.6% of all prescription orders in one study 
[32]. Medication error rates stratified for differ-
ent specializations or dentists have not been 
studied in detail [33].

Another issue is what happens at the inter-
faces of care, for example when a patient is dis-
charged home from the hospital. Many studies 
have shown that discrepancies in drug treat-
ment at transitions of care are frequent and 
often these discrepancies are unintentional, 
facilitating substantial risk for patients [34,35]. 
For example, at the interface between primary 
and tertiary care [36], and especially in the 
elderly population, the incidence of problems 
with the drug prescription regime are frequent 
after discharge (in about one‐third of elderly, 
discharged patients) and contribute to higher 
rehospitalization rates [37].

Comparing Medication Error Rates 
Across Different Patient Populations

Most early studies on medication errors and 
ADE have been done in adults. Medication 
errors were common, occurring at a rate of 5 per 
100 medication orders in inpatients [2]. Seven 
in 100 medication errors had significant poten-
tial for harm, and 1 in 100 actually resulted in an 
injury [2].

In primarily the inpatient setting, medication 
error rates in pediatric patients have been esti-
mated to be as high as 5–27% of all medication 
orders [38]. In neonatal intensive care units, 
error rates have been reported to be in similar 
ranges [39]. In the outpatient setting in cancer 
patients, medication error rates were three times 
higher in pediatric patients (18.8% of patients) 
than in adult patients (7.1% of patients) [40].

Medication error‐related ADE rates have also 
been reported for the elderly; as many as 35% of 
elderly outpatients per year may experience an 
ADE [41], and as much as 30% of hospital admis-
sions are ADE related in the elderly [42]. In 
elderly patients, many medication error studies 
have focused on the prescription of inappropri-
ate drugs, especially using the Beers criteria (a 
list of drugs specified through expert consensus 
that should be avoided in elderly patients in 
general or under consideration of specific co‐
factors including co‐morbidity or dosage) 
[43],although the utility of these criteria has 
been challenged [44].

Comparing Medication Error Rates 
Across Detection Methods

The incidence of medication errors may vary as 
much as 100‐fold depending on the detection 
method. While direct observation is the most 
cost‐intensive approach (about $5 per evaluated 
medication), it will yield the most accurate 
 estimation of medication error incidence for 
dispensing and administration errors [45]. 
When aiming to detect the same set of medica-
tion errors by chart review or incident report 
review, costs substantially decrease but so do 
numbers of detected events, from the actual 
incidence rate of 11.7% (direct observation) to 
0.7% (chart review) and 0.04% (incident report 
review). Moreover, the reported incidence will 
depend on the training and profession of the 
person who conducts the detection [45].

Medication error incidence rates are grossly 
underestimated if voluntary reporting methods 
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are applied [46]. To promote reporting, non-
punishment policies as well as anonymous 
reporting have been established. Moreover, it is 
especially crucial to invite all individuals in the 
healthcare system who might be confronted 
with a medication error to report the error. For 
example, in the outpatient setting, where patients 
tend to see several physicians but get their medi-
cations from a single pharmacy, medication 
errors may be discovered in the pharmacy rather 
than during doctor’s consultation. Thus, phar-
macists should be invited to report medication 
errors to improve the systematic collection 
methodology [47].

Measuring Impact on Health‐Related 
Outcome

As noted earlier, in one study 7 in 100 medica-
tion errors had significant potential for harm, 
and 1 in 100 actually resulted in an injury [2]. 
More recent literature indicates that in hospital-
ized patients, even 1 in 10 medication errors 
might result in an ADE [7]. However, the risk of 
whether a medication error results in harm var-
ies. For example, the susceptibility to suffer an 
ADE is higher in geriatric wards as well as ICU 
patients compared to general care units (12% vs 
6%) [25]. On the other hand, in one study pediat-
ric patients had similar rates of ADEs compared 
to adults but a threefold higher rate of near 
misses [48]. Incidence rates of ADE in hospital-
ized patients are reported with a median overall 
frequency of 6.1% of patients [7]. Again, the 
detection method used substantially influences 
the estimation of the incidence, with highest 
numbers found by patient monitoring [7]. In 
about 2.9% (range 0.14–5%) of the patients expe-
riencing an ADE, the ADE was fatal [7]. Nonfatal 
ADEs might prolong the hospital stay or increase 
the risk of rehospitalization. In another study, 
13% of patients experienced an ADE after dis-
charge, and of these 24% were preventable and 
38% ameliorable [49]. In addition, ADEs occur-
ring in the outpatient setting can contribute to 

hospital admissions, with 4.5 preventable ADEs 
per 1000 person‐months [50].

Identifying Risk Factors

The search for risk factors for medication errors 
has been challenging, as some appear to occur 
relatively randomly in the medication process. 
Robust systems need to detect and prevent even 
errors occurring randomly [51]. Substantial 
research has been conducted on error nascence 
(i.e., the origin of the medication error) and it is 
important to understand and acknowledge the 
underlying causes on system and workflow or 
process level facilitating error nascence [52].

To subsequently assess these causes, it can be 
helpful to determine:

 ● at what stage of the treatment process medi-
cation errors are occurring

 ● by which person involved in the treatment 
process (e.g., the physician, the nurse, the 
pharmacist, the patient, or an informal care 
person) the error might be committed or 
potentially intercepted

 ● what the patient’s characteristics are, includ-
ing age, co‐morbidities, and other medica-
tions they are taking

 ● what the clinical setting is.

These factors can be grouped into the catego-
ries of system level, patient level, and medica-
tion characteristics.

Well‐defined factors influencing the risk for 
medication errors on a system level include 
organization policies or the general safety culture 
of an institution. On a workflow or process level, 
risk factors comprise poor communication, 
heavy workload or inadequate procedures [52]. 
Also patient factors such as renal dysfunction 
and old age increase error risk. Setting is also 
important, ICU patients having an especially 
high risk, because they are more seriously ill and 
are exposed to large numbers of medications. 
Settings with only limited monitoring options 
such as home care appear also risky [53].
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In all settings, being administered the wrong 
dose is the most frequent type of medication 
error, especially overdosage [54]. Dosage errors 
may occur at the stage of administration (e.g., 
accidental intake of two tablets), the stage of 
manufacturing or dispensing (e.g., misreading 
the brand name), or, most frequently, at the 
stage of prescription. To select the appropriate 
dose for each patient, the physician has to con-
sider a number of patient characteristics (age, 
weight) as well as drug characteristics. The indi-
vidual exposure to a drug is subject to changes 
in the elimination organ function (e.g., renal or 
liver disease), pharmacokinetic interacting co‐
medication, and genetic polymorphisms. 
Moreover, required dosages will depend on age‐
related pharmacodynamic changes and vary 
between disease conditions. They might also be 
higher or lower both at the beginning or the end 
of the therapy. The physician needs to have all 
such information at hand once he/she decides 
to prescribe a certain drug for a specific 
patient – and a lack of information might result 
in underdosage or, more often, in overdosage.

Any drug or drug formulation can be associ-
ated with a medication error. However, there 
are  medication characteristics, including active 
ingredients, that are associated with an increased 
risk for medication errors. Predisposing factors 
include:

 ● a sophisticated way of prescribing (e.g., com-
plex dosage adjustments), administration (e.g., 
usage of administration devices), or monitor-
ing (e.g., therapeutic drug monitoring)

 ● a substantial dose‐dependent toxicity which 
increases the likelihood that a medication 
error will result in patient harm

 ● a prescription frequency which is high enough 
that the error will occur during the study 
period but low enough that detection can be 
challenging.

The drug class with the highest prescription 
frequency is cardiovascular drugs. Consistent 
with the prevalence of prescribing, cardiovascular 

drugs have often been associated with an 
increased risk of medication errors and ADEs 
[55]. The prescription of antibiotics also has often 
resulted in ADEs, most often because known 
allergies were ignored [55]. Medication errors 
with fatal outcomes, however, are often associ-
ated with drugs which are less frequently used but 
complicated in their mode of administration. For 
instance, accidental intrathecal injection of vin-
cristine has caused many deaths [56] despite 
extensive error prevention measures [57]. 
Similarly, intravenous administration of ampho-
tericin B is complex and carries a high risk of 
harm; for intravenous administration, ampho-
tericin is used both in an aqueous and a liposomal 
drug formulation with 3–4‐fold higher maximum 
recommended doses for the liposomal prepara-
tion. Erroneous administration of aqueous 
amphotericin B solution in dosages appropriate 
only for the liposomal preparation has resulted in 
a number of cases of renal toxicity and death [58].

Most often, drugs frequently reported in 
medication error studies have more than one 
predisposing factor. Examples include warfarin, 
for which treatment must be closely monitored 
by adapting dosages to measured INR values to 
maintain effectiveness and prevent ADEs such 
as bleeding. In one inpatient study [59], about 
30% of reported ADEs were caused by inappro-
priate anticoagulant use. In elderly patients, 
drugs associated with medication errors often 
affect the central nervous system and required 
dosage adjustments are often neglected [60].

In ambulatory care, specific drug formula-
tions with complex handling requirements pro-
mote drug administration errors. For instance, 
on average, about one in three patients incor-
rectly self‐administers the inhalation device for 
chronic asthma treatment [61].

Examples by Setting

In adult inpatients, administering the wrong 
dosage is the most frequent medication error. 
Patients with multiple co‐morbidities may 
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require a dosage adjustment. In pediatric 
 inpatients, wrong dosage often results from 
dose calculation errors, including 10‐fold errors 
[62]. Moreover, less severe medication errors 
often result from incomplete drug orders (i.e., 
not specifying the route of administration if 
only one route is applicable). However, espe-
cially in developed countries, most potential 
medication errors are intercepted by hospital 
pharmacists while processing the order.

In the outpatient setting, many medication 
errors happen at the stage of drug monitoring 
(e.g., neglecting a required check‐up of labora-
tory values) because patients tend to see their 
physicians only irregularly. Moreover, they will 
generally see several physicians concurrently 
who most often are only partially aware of the 
actions of their colleagues. Among elderly 
patients treated in the outpatient setting, the 
number of physicians seen by a patient was 
found to be an independent risk factor for a 
medication error‐related ADE [63]. Because 
patients might often receive drugs from several 
physicians and additionally purchase over‐the‐
counter drugs, the documentation of an actual 
and complete medication list is challenging to 
maintain. Thus, prescription of interacting 
drugs is frequent and drug–drug interactions 
contribute to 6% of ADE‐related hospital admis-
sions [31]. Compared to the inpatient setting, in 
the outpatient setting, prescription errors are 
less likely to be intercepted, so the patient must 
play a more active role in their medical treat-
ment and assume some degree of responsibility 
for appropriate drug administration. Two major 
factors might impede appropriate drug admin-
istration: (1) patient nonadherence to pre-
scribed drugs (see also Chapter  38), and (2) 
inadequate patient knowledge regarding admin-
istration, increasing the likelihood of adminis-
tration errors (e.g., for asthma inhalers).

Moreover, due in part to the fact that informa-
tion on drug prescription, dispensing, and 
administration may not be linked, dispensing 
errors are also important. In a large outpatient 

study, incidence rates were reported to be about 
four errors per 10 000 items dispensed [64]. 
Additionally, inappropriate splitting of tablets 
was found to be the source of some medication 
errors [65].

In the ICU, critically ill patients are character-
ized by rapidly changing clinical conditions, 
receive close and intensive patient monitoring, 
and require rapid adaptations of their drug ther-
apies. Due to the large number of necessary 
medications, the frequency of DDIs is particu-
larly high, with about two‐thirds of patients 
having at least one DDI and 44% suffering from 
a DDI‐related ADR in one study [66]. Moreover, 
a substantial fraction of drugs is given intrave-
nously (IV), potentially using identical IV lines. 
In one study including 50 ICU patients, 5.8% of 
concurrently given IV medications were incom-
patible [67].

In the long‐term care setting, relatively few 
data are available [68]. However, medication 
errors appear to be concentrated in a few differ-
ent drug classes, most often involving drugs 
affecting the central nervous system or analge-
sics [59]. Pharmacotherapy in the elderly occurs 
in a patient population that is in general multi-
morbid, polymedicated, and with physiological 
changes requiring complex dosage adjustment. 
Therefore, prescribing errors involving inap-
propriate drug choice as well as inappropriate 
dosages are frequent [69].

In conclusion, a multitude of different 
 combination of risk factors is possible and these 
factors must be carefully considered in design-
ing and analyzing pharmacoepidemiology 
research on medication errors.

 Currently Available Solutions

Developing Prevention Strategies

Medication error prevention strategies may 
address the persons involved in the medication 
process, the products used, or the process 
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organization itself. Most often, a prevention 
strategy might also cover several or all catego-
ries; for example, a workflow change will typi-
cally include education and training of the staff. 
Obviously, the best prevention strategies for 
medication errors will depend on the setting 
and the nature of the medication errors involved. 
Slips and lapses in executing correct planned 
actions can be addressed by workflow changes 
including skill training and monitoring (e.g., co‐
worker confirmation, checklists) [70]. In con-
trast, mistakes might be prevented by providing 
relevant knowledge at the time it is required. 
Approaches might include educational training 
as well as provision of paper‐ or computer‐
based information at the point of care.

With the majority of errors being knowledge 
based and occurring during drug prescribing, 
the implementation of electronic prescribing 
systems (CPOE) with integrated clinical deci-
sion support systems (CDSS) assumes a key 
role  in medication error prevention [71]. 
Implementation of such systems might elimi-
nate several types of errors, such as transcribing 
errors [72], and reduce others. Their impact on 
ADEs in research studies has been less pro-
nounced [73], partly due to the fact that most 
studies using this approach have been under-
powered. However, a metaanalysis from 2014 
suggested that implementing CPOE is associ-
ated with a greater than 50% decline in the pre-
ventable ADE rate [74]. Nearly all CPOE 
applications in use now were commercially 
developed, while many of the early studies were 
done on internally developed systems. In one 
study, commercial applications in the ICU set-
ting were found in a metaanalysis to be associ-
ated with an 85% reduction in the prescribing 
medication error rates, and a 12% reduction in 
ICU mortality [75]. Another vulnerable area is 
intravenous admixture [76]; this is another place 
where technology is likely to help in the future.

Electronic solutions have been developed to 
safeguard against drug dispensing or adminis-
tration errors. For example, barcoding systems 

are currently used to prevent medication 
administration to the wrong patient. Electronic 
medication administration records can be used 
to electronically monitor drug administration 
and effectively reduce errors of omission [77]. In 
the US, CPOE data linked with decision support 
and barcoding data have become the norm in 
over 90% of hospitals.

Outcome Assessment

The outcome of prevention strategies is often 
reported as changes in the frequency of medica-
tion errors. However, such information will 
imperfectly apply as a predictor for health‐
related outcome. Indeed, in studies assessing 
both medication errors and patient outcomes, a 
reduction in medication errors would not nec-
essarily be accompanied by an improvement in 
patient outcomes. For example, a computer‐
assisted disease management system might 
enhance the number of guideline‐conformed 
screenings but the disease severity would not be 
ameliorated [78]. The assessment of patient 
outcomes, either by measuring surrogate end-
points (e.g., lab values, disease monitoring 
parameters) or by assessment of clinical 
 endpoints (e.g., ADE rates, mortality rates), is 
therefore preferable to estimate the impact of a 
prevention strategy.

Evaluation of Intervention Strategies

Most prevention strategies are evaluated in a 
before vs after implementation setting and only 
scarcely evaluated in randomized trials. 
Therefore, neglecting of confounding variables 
can substantially bias the results. In 2005, Han 
et  al. reported that the implementation of a 
CPOE system was an independent factor asso-
ciated with increasing mortality rates of pediat-
ric inpatients (odds ratio 3.28; 95% confidence 
interval 1.94–5.55) [79]. However, in this study, 
the analysis did not control for workflow 
or   policy changes that coincided with the 



The Pharmacoepidemiology of Medication Errors1056

 implementation of the CPOE. Nevertheless, the 
implementation of prevention strategies might 
potentially be associated with the introduction 
of new, “e‐iatrogenic” errors [80,81], due to 
potential changes in workflows. Implementation 
of CPOE should therefore follow a stepwise roll‐
out after careful testing and be accompanied by 
close monitoring [82].

 The Future

In the past decades, a multitude of small and sev-
eral large‐scale studies have been conducted in 
order to assess the frequency and nature of medi-
cation errors as well as to evaluate the impact of 
different prevention strategies. While all studies 
have found that medication errors happen with 
considerable frequency during drug therapy, vari-
ation in detection approaches makes it hard to 
narrowly define their incidence and severity. The 
frequency, best detection approaches, and pre-

vention methods vary by setting and patient 
 population. To allow comparison among study 
results, careful consideration of the study meth-
odology is especially important. Especially in 
large‐scale studies using only administrative data, 
information relevant to reliably identifying medi-
cation errors is often not systematically available. 
Key factors in conducting valid research related to 
medication errors include the consistent use of 
definitions and classifications of medication 
errors, and attempts to merge large medication 
databases with electronic data on patient’s clinical 
information. Another area is refining the decision 
support in commercial applications.

But perhaps the major current research gap is 
to develop better approaches for and studies of 
detection and prevention in the ambulatory 
care setting – the setting in which the main part 
of drug treatment takes place. However, addi-
tional research is needed in all settings, espe-
cially in special populations such as psychiatry 
and pediatrics.
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Patient engagement reflects the effective par
ticipation of patients in their own healthcare. A 
historical view of the relationship of patient to 
clinician (physician, provider, etc.), may have 
positioned the patient in the role of a provider 
of medical history and symptoms, and subse
quently a recipient of a “healthcare product,” the 
product being clinician‐generated information, 
advice, treatment prescription, and instructions 
that the patient was expected to follow. The out
come of care was thus a factor of the quality of 
the advice and treatment recommendations as 
well as the ability and inclination of the patient 
to carry out this advice.

The influential 2001 report by the Institute of 
Medicine on reforming and improving health
care in the US named patient‐centeredness as 
one of six guiding aims for healthcare, which 
should also be safe, effective, timely, efficient, 
and equitable [1]. It has been argued that health
care is better conceived of as a service rather 
than a product provided to patients, and as such 
achievement of best patient outcomes may hinge 
on taking a co‐production approach to care. In 
this service‐oriented (rather than transactional) 
view, the patient (service user) and clinician 
(service professional) are in a collaborative rela
tionship with shared creation of the healthcare 

service and shared responsibility for outcomes. 
Effectively, the healthcare service is “co‐ produced” 
[2]. Self‐management support is a key component 
of effective chronic illness care management that 
is patient centered [3]. Concepts such as effective 
communication, shared decision making and 
monitoring of health outcomes to support suc
cessful self‐management become important and 
essential goals for co‐production of patient‐ 
centered care, particularly for chronic conditions 
(see Chapter 39).

The reframing of the patient–clinician rela
tionship as co‐producers of a healthcare service 
elevates the importance of measuring PROs in 
healthcare delivery. By extension, it increases the 
utility of PRO use in observational studies and 
clinical trials in order for patients to be able to 
translate expected benefit of study medications 
to expected experience in real‐world use based 
on meaningful clinical outcome assessments. 
Broader use of standardized PRO measures in 
healthcare also increases the feasibility of con
ducting comparative effectiveness research with 
observational clinical data.

Patient engagement in comparative effective
ness research more generally, with patients 
moving from the role of study subject to becom
ing partners in prioritizing research questions 
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and contributing to study design, has become a 
phenomenon over the past few decades due to 
patient advocacy efforts. The Patient Centered 
Outcomes Research Institute (PCORI), which 
has been funding research since 2012, has pro
moted engagement of multiple stakeholders 
(patients, clinicians, payers, healthcare institu
tions, etc.) in the conduct of clinical research 
and is systematically studying the impact of 
patient engagement on the research processes. 
Patient stakeholders on research teams may 
influence research topics towards patient pri
orities and clinical relevance, contribute to 
study design including selection of outcome 
measures, help with study materials including 
consent forms, participate in recruitment and 
retention efforts, reduce missingness in data 
collection, and provide important perspectives 
when interpreting study results. Given the brief 
period of time that patient‐centered approaches 
to research have been emphasized, it is too early 
to assess the impact of patient engagement on 
study completion or uptake of findings into 
clinical practice [4].

Patient‐reported outcomes (PROs) are 
defined as “any report of the status of a patient’s 
health condition that comes directly from the 
patient, without interpretation of the patient’s 
response by a clinician or anyone else” [5]. 
PROs enable patients to directly communicate 
information about their status with respect to 
various domains of health, such as symptoms, 
function, quality of life and participation, as 
well as health behaviors and experience with 
care, in a structured format that translates the 
patient experience into data. Use of PROs rec
ognizes that the health concerns of the patient 
may not be adequately perceived by the clini
cian unless there is direct and structured 
inquiry of what is bothering the patient. As a 
consequence of failing to elicit direct patient 
input, clinicians may prioritize other health 
topics less valued by the patient. Incorporation 
of PROs into clinical care has the potential to 
enrich clinician–patient communication as the 

patient voice is systematically and routinely 
collected, as well as providing data in the form 
of meaningful scores to which clinical decisions 
and interventions can be anchored and that 
may be complementary to lab tests or physical 
exam. Building a system around incorporation 
of PROs into the practice of medicine supports 
patient engagement.

Advances in measurement theory and the use 
of item response theory (IRT) models in scale 
development have enabled development of 
modern PRO measures that are both more effi
cient (shorter) and have more precision in scor
ing [6] than questionnaires developed with 
classic test theory. In support of the clinical 
research enterprise, the National Institutes of 
Health supported the development and distri
bution of various IRT‐based PROs, including 
the Patient Reported Outcomes Measurement 
Information System (PROMIS®) which started 
as a cooperative network in 2004 to develop 
unidimensional measures of physical, mental, 
and social health domains available as short 
forms, item banks, and computer adaptive tests. 
PROMIS measures were designed to be generic 
and used across chronic conditions to support 
clinical research [7], and the use case evolved to 
support outcomes assessment in clinical care. 
Numerous examples of other PROs have been 
widely used in research studies, and increas
ingly in clinical care.

Conceptualization of PROs as an essential 
component to patient engagement in healthcare 
has the power not only to influence and improve 
outcomes, but potentially to transform the rela
tionship of patients to the perception of their 
own health and agency, and their communica
tion and relationship with their healthcare pro
fessionals [8]. The vision is compelling but the 
reality of implementation, interpretation, use, 
and evaluation poses practical and methodo
logic challenges. This chapter will explore these 
challenges in the context of integration of PROs 
into pharmacoepidemiology research, including 
clinical trials and observational studies.
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Patient‐Reported Outcomes 
in Clinical Trials

It is increasingly recognized that including the 
perspective of the patient end‐user is important 
during development of new medication or med
ical products. Capturing the patient perspective 
as a clinical trial outcome may take the form of 
a PRO. PROs can be rating scales, symptoms 
reports, or questionnaires completed by self‐
report or completed in the form of a structured 
or unstructured interview, provided there is no 
modification of the patient’s response by the 
interviewer. Whereas only PROs can be used to 
capture symptoms and other unobservable 
domains of health, PROs can also be used to 
capture and include the patient viewpoint on 
observable domains (e.g., functional ability, 
counts of events). Methodologic challenges in 
longitudinal measurement and interpretation of 
PROs are discussed later.

In addition to PROs, there are three other 
forms of clinical outcome assessments for use in 
trials: clinician‐reported outcomes, observer‐
reported outcomes, and performance outcomes. 
Clinician‐reported outcomes are measurements 
completed by healthcare professionals based on 
their evaluation of the patient’s health condition. 
By definition, these are observable and include 
physical findings and report of clinical events or 
interpretation of clinical data supporting occur
rence of such events (lab or other physiologic 
tests). Observer‐reported outcomes are also based 
on observable signs, events or behaviors related 
to the patient’s health condition; however, they 
do not require interpretation or report by a 
healthcare professional but rather, observation 
can be by a caregiver, such as a parent. Examples 
could include event counts or behavior rating 
scales. Last, performance outcomes are based on 
patient completion of tasks as directed by a 
healthcare professional, for example, timed walk
ing distance (gait speed) or tests of cognition/
memory (word recall) [9]. These measurements 
are valued in part when they are understood by 

medical decision makers, clinicians and patients 
to be clinically meaningful endpoints [10].

Patient‐reported outcomes serve a variety of 
functions in new product development. They 
can help better understand the impact of a med
ical condition on the patient, such as in the 
realm of physical, mental, or social health, and 
also uncover if there are (unmet) medical needs 
to be addressed by a new medication [11]. PROs 
can also be used to enable estimation of the ben
efit to the patient of use of a medication during 
the clinical trial (e.g., by estimating the minimal 
clinically important treatment effect or minimal 
clinically important difference [MCID]), and by 
extension, can be used to characterize the 
expected benefit to the end‐user in the clinical 
setting. Adverse effects of treatment, or an esti
mate of risks of use, may also be captured from 
the patient perspective [5,10]. The Food and 
Drug Administration (FDA) as part of the 2012 
reauthorization of the Prescription Drug Use 
Fee Act (PDUFA V) has been including patient 
input on the impact of chronic illness to inform 
which aspects of illness would be most mean
ingful to target from the patient perspective. 
Ascertaining such information from cohorts of 
patients with chronic conditions and compiling 
perspectives on meaningful clinical impact that 
is desired from new products require a system
atic approach and robust methods to interpret 
and use the information to inform drug devel
opment [11].

After clinical outcomes that are meaningful 
drug targets from the patient perspective are 
identified, it becomes important to be able to 
determine whether the drug/treatment/inter
vention under investigation exerts a clinically 
meaningful effect on the relevant clinical out
come. Although a statistically significant change 
in outcome measure scores may be achieved, 
achieving statistical significance may not corre
spond to a clinically meaningful benefit. 
Determination that a change is of clinical mean
ingfulness rests on the idea that the outcome 
being measured is of relevance and importance 
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to the patient to begin with, and that the degree 
of change exerted creates a clinically apprecia
ble benefit (reduction in symptoms, increase in 
function, greater wellbeing, etc.). Understanding 
how to estimate clinically meaningful change in 
PROs is an area of active methodological 
research [12,13].

Patient‐Reported Outcomes 
in Routine Care

A current challenge to use of PROs as outcomes 
in observational studies is that such measures 
are not typically available, especially when 
compared to measuring other outcomes such 
as clinical events or death. However, PRO 
measures are growing in use in clinical care in 
part due to the push for patient engagement to 
provide patient‐centered care and improve 
healthcare value [14,15]. Conceptually, captur
ing PROs in clinical care could be seen as a 
method to include the patient voice in outcome 
estimation. In practice, incorporation of PROs 
is starting to effect meaningful healthcare 
improvement. Over the past decade, there has 
been a growing body of published evidence on 
the benefits of incorporating PROs in clinical 
care, including both process and outcomes 
improvement. A number of technical solutions 
for full integration into the electronic health 
record, used alongside the electronic health 
record or hybrid approaches, have been 
described [16]. User’s guides have been pub
lished with step‐by‐step instructions for health 
systems considering adoption of PROs to facili
tate incorporation into clinical care [16,17].

Better collection and understanding of PROs 
can also lead to interventions to improve out
comes. Published reports of integration of PROs 
into clinical care have over time evolved from 
description of acceptability and feasibility [18], 
to demonstration of improved care processes 
[19] and communication, to preliminary evi
dence of increased clinician satisfaction and 
even improved outcomes. When PROs are col

lected and reviewed, patients perceive the clini
cian to have increased awareness of their 
symptoms, which otherwise might go unrecog
nized and unaddressed [20]. Clinicians may be 
better able to identify and diagnose patient con
ditions, including mental health concerns, if 
PRO results are routinely collected [8]. Use of 
PROs may result in increased clinician aware
ness of the impact of the health condition on 
the  patients’ health‐related quality of life and 
facilitate patient–clinician discussions [21]. 
Communication [22], shared decision making, 
and collaborative treatment planning are 
enhanced when PROs are incorporated into 
patient and clinician conversations [15,18]. 
Until recently, despite theoretical support for 
the incorporation of PROs in clinical practice to 
improve outcomes, there has been scant evi
dence of demonstrable benefit to outcomes. 
As PROs become more established and reliably 
implemented in routine clinical practice, 
researchers are moving beyond studies of pro
cess improvement to studies of the impact of 
PROs on outcomes of care.

Much of the literature on the effective use of 
PROs in clinical medicine has come from the 
fields of oncology and surgery. A recent compel
ling report from an oncology randomized trial 
of PRO use during routine cancer treatment 
showed that integration of PROs in the form of 
electronic symptom monitoring into care of 
patients with metatastic cancer was associated 
with increased survival [23]. The authors postu
late that this could be a consequence of expe
dited medical care team response to patient 
symptoms, which could result in two potential 
benefits. First, averting potential adverse events 
with clinical interventions including adjust
ments to chemotherapy dose, and second, 
administering chemotherapy for a relatively 
longer duration which was possible due to 
reduction in adverse symptoms [24] prompted 
by early ascertainment and response to the 
symptoms. This brief research letter [23] illus
trates a compelling account of the potential 
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benefit of PROs in improved management of 
patient symptoms and survival; however, the 
impact on alleviating adverse symptoms and 
reduction of suffering is meaningful in itself. 
Bringing increased survival into the calculus 
enhances the urgency of integration of PRO 
assessment – review of scores and taking appro
priate action – into delivery of healthcare.

Recently, payers have been encouraging PRO 
collection [25], including the use of financial 
incentives for tracking PRO data. For example, 
PROs are used to evaluate the impact and tra
jectory for improvement of surgical interven
tions in the case of Medicare reimbursement for 
elective joint replacement [26]. The availability 
of such data can enhance observational studies 
by providing prospectively collected informa
tion on PROs.

Patient‐Reported Outcomes 
as Motivation to Develop New 
Therapeutic Strategies

From a therapeutic perspective, incorporation of 
PROs may contribute to a more targeted conver
sation on issues of concern for the patient that 
might otherwise go unaddressed. It may help to 
quantify the discomfort a patient feels and subse
quently trigger the use of a therapeutic interven
tion. Information on disease control status, such 
as number of asthmatic episodes, can focus the 
visit on topics of most relevance and be a useful 
measure of disease burden. Having prespecified 
and agreed‐upon PRO score thresholds that 
trigger specific evidence‐based interventions 
facilitates action by the clinician. Alternatively, 
aggregate patient‐reported data on symptoms, 
function, quality of life, or experience related to 
an intervention can be shared with an individual 
patient as part of a shared decision‐making dis
cussion [26]. Several examples are provided here.

Self‐management support is a key component 
of the Chronic Care Model, a framework 
that  has been useful in driving health system 
improvement [3]. Patient engagement, with 

informed, activated patients, is key to produc
tive patient–clinician relationships which effect 
clinical outcome improvement. Successful self‐
management support programs have the fol
lowing elements:

 ● clinicians communicate the expectation for 
the central role of the patient in managing 
their condition

 ● patients’ self‐management skills, confidence 
in management ability, barriers and supports 
are assessed regularly

 ● trained staff employ behavior change 
interventions

 ● patients co‐develop with healthcare profes
sionals their own individualized treatment 
plans and support is available on an ongoing 
basis if the patient needs it [27].

Self‐management support is a patient‐centered, 
iterative, and ongoing process. Experience 
from  a quality improvement collaborative on 
implementing self‐management support revealed 
that the most successful care teams received rel
evant training, adopted a philosophy of patient‐
centered care and collaborative goal setting, 
integrated components into the care delivery 
system, and assigned accountable staff [27]. Due 
to the fact that the majority of chronic illness 
care occurs outside the medical office in the 
interval (days to months) between office visits, 
PRO assessment has the potential to become an 
effective facilitator of between‐visit communi
cation between patients and clinicians and may 
allow patients to better manage their health 
conditions.

Since medical care at outpatient office visits 
occurs at relatively infrequent intervals while 
health events occur on an ongoing basis, the tra
jectory of illness may not be adequately cap
tured at clinic visits due to factors such as – on 
the patient side – the failings of memory (recall), 
the lack of a way to accrue and organize data, 
and perhaps – on the clinician side – failure to 
inquire (particularly in the case where PROs 
are not assessed). As a result, medical decision 
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making may not incorporate all relevant health 
information into treatment decisions. Imagine 
the situation where Patient A begins a new med
ication, Drug A, and experiences rapid improve
ment in signs and symptoms of disease which 
gradually return to baseline over time. Patient B 
experiences gradual improvement following 
the initiation of Drug B, then rapid worsening 
before the condition returns to baseline by the 
time of the follow‐up visit. Both patients have 
roughly the same disease activity level at the 
 follow‐up visit. In this scenario, information is 
lost about the relative lack of effectiveness and 
negative impact Patient B experienced being on 
Drug B, as more time was spent in a flare state 
than with Patient A who took Drug A.

Technology can enable the capture and trans
mission of both patients’ unique experience to 
the clinical team. Data can be collected at home, 
either as PRO questionnaires on computer or 
mobile devices, or as technology‐enabled patient‐
generated data (e.g., physiologic monitors), and 
then shared with the clinical team. Data collec
tion from wearable devices requires little or no 
effort from the patient perspective. This opens 
the possibility for patient data from in‐between 
patient visits to serve action‐oriented interven
tions. However, numerous potential barriers 
exist to such a system: availability of optimal 
technology platform to house and transmit data, 
cost of technology, and patient having access to a 
reliable and persistent Wi‐Fi connection. From 
the clinician perspective, additional considera
tions include the interoperability of the technol
ogy with the electronic health record, providing 
training to use the system and interpret results, 
allocating staff to review the results and integrat
ing this process into the clinical workflow. 
Patients who transmit data will have the expec
tation that results are reviewed, so workflows 
will need to be optimized to allow for reliability 
of review, and prompt response if deterioration 
in status or other change is identified.

Such a system is currently being tested in 
pediatric chronic illness care, with, for example, 

the Orchestra mobile health technology plat
form and care model intervention in cystic 
fibrosis and inflammatory bowel disease [28]. 
The concept, currently being piloted, is of a 
mobile health (mHealth) technology platform 
that enables clinicians and patients to work col
laboratively together to co‐produce healthcare. 
It does so in part by allowing symptom tracking 
with real‐time data visualization on a platform 
that is shared with patients and clinicians, 
allowing for continuation of patient–clinician 
interaction outside the office visit. Furthermore, 
the system contains automated symptom sur
veillance detection software which generates 
alerts when potentially important changes in 
health status are detected. Other features sup
porting patient engagement include previsit 
planning support and opportunities to partici
pate in research. For example, patients may be 
recruited to participate in a study of the impact 
of new medications, other interventions such as 
lifestyle changes on PROs, or other measures 
being tracked [28].

There are other insights to be gained from the 
operationalization of the mHealth technology, 
including study of the optimal way to integrate 
such a system into clinical workflow and evalu
ate the system in terms of feasibility, acceptance, 
and completion rates. Considering a culture 
shift is necessary to embrace the co‐production 
model, internal (clinical team) and external 
(patient) stakeholder engagement and training 
are required – as are social contracts. Ultimately, 
the success of the system may be measured in 
terms of increased patient engagement and self‐
efficacy (i.e., belief in one’s ability to perform 
activities necessary to achieve health goals), 
improved outcomes, and appropriate health
care utilization [28]. The concept is potentially 
transformative in the ability of patients to self‐
manage care, including supporting develop
ment of individualized treatment plans and 
customized treatment trials, N‐of‐1 studies, 
with care being optimized based on a patient’s 
own PRO data.
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 Clinical Problems to 
Be Addressed by 
Pharmacoepidemiologic 
Research

Patient‐reported outcomes are directly relevant 
to pharmacoepidemiology research insofar as 
they capture information central to the estima
tion of benefit and potential adverse effects of 
medication that may elude physical exam or 
lab testing, such as symptoms like fatigue, cog
nitive impairment, or pain. Clinical trials have 
restricted sample size and duration of use com
pared to real‐world consumption of medica
tions. Routine and systematic collection of 
PROs as part of clinical care can help us better 
understand the epidemiology of disease and, 
importantly, also the impact of medications on 
symptoms and quality of life as part of postmar
ket surveillance. The value of the information is 
contingent on the reliability of data collection 
from a representative population, and ability to 
access the data for research. While PRO collec
tion has benefit for pharmacoepidemiology 
research, the rationale behind incorporation of 
the patient voice into clinical care via the use of 
PROs is to identify unmet needs of patients and 
help identify gaps in healthcare. Once such a 
need is identified, ideally an action or response 
would occur, such as change in medication, 
referral for treatment, or development of an 
individualized action plan for lifestyle or behav
ior change as part of a self‐management sup
port. Motivating the move from recognition 
and identification of the problem to action is a 
major area for attention.

Ensuring PRO Completion 
and Results Review

In order to generate valid estimates of treatment 
effectiveness or impact on quality of life from 
analysis of PROs in clinical observational data, 
it is essential that clinical processes are in place 

to secure research quality data. As the primary 
motivation for PROs collection may be delivery 
of optimal patient‐centered care and better 
health outcomes, with the ability to use the data 
for research as secondary, the clinical team – and 
patients  –  must be aligned in perceiving the 
value of quality PRO data collection. To be most 
useful clinically, and to allow valid inferences in 
research, PROs must be collected routinely (reli
ably at regular intervals), uniformly (in a consist
ent manner), completely (able to be scored), and 
correctly (patients understand the questions and 
answers reflect their health status).

Once a decision is made to incorporate PROs 
into clinical care, there must be a means to 
achieve reliable review of the results by the clin
ical team. This review may not always occur, as 
reflected in an example from a leading institu
tion in which a discordance was noted between 
symptom documentation by self‐report for 
signs of heart disease and lack of clinician docu
mentation [29]. If clinicians do not understand 
the PRO measure, the way it is scored, do not 
feel it relevant to their specialty, or feel there is 
no intervention or action that can impact the 
PRO, they may not be inclined to discuss it [30]. 
The solution may be cultural and social, and 
require a clinical champion to motivate col
leagues and gain agreement on selection of 
PROs (more on this later). Or it may require a 
solution similar to the idea of setting a social 
contract, noted in the Orchestra co‐production 
example [28]. Barriers may be technical, related 
to location and ease of viewing of the reports in 
the medical record, in which case this may 
require an information technology solution. 
Another solution may leverage quality improve
ment methods and hinge on building a work
flow in which discussion of PRO completion is 
an expected part of the clinic visit and is 
included into process of care quality measures.

There are significant consequences of clini
cians not reviewing PROs completed by 
patients. When clinicians do not review PROs, 
it becomes a threat to co‐production of care, 
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risks the patient feeling their time and input 
were not valued, and may result in a decreased 
willingness for PRO completion at subsequent 
visits; it is also a missed opportunity to check 
the reliability of the system for PRO adminis
tration (i.e., whether the patient even received 
the PRO to complete from the staff ). Nonreview 
of PRO results is therefore a threat to patient 
satisfaction with care, their perceived trust in 
PROs, and a missed opportunity to improve 
functional outcomes.

Review of PRO results enables verification of 
patient understanding of the instrument and 
that it reflects their health status, increases rec
ognition of areas for health intervention, and 
provides positive feedback that encourages 
completion of PROs at subsequent visits.

PRO Selection, Score Interpretation 
and Interventions

As noted earlier, instrument selection is vitally 
important for both clinical and research appli
cations to ensure the measure is of clinical 
 relevance, addresses an outcome of interest, and 
is brief and practical to administer. These and 
other considerations such as ease of under
standing, ability to foster patient–clinician com
munication, and value in identifying unmet 
needs should be reviewed with representative 
patients and clinicians for input and agreement 
on importance. In addition, the basic prerequi
sites of adequate psychometric properties such 
as reliability, validity, and responsiveness should 
be met [17,25]. A comparison study of various 
PRO measures in oncology patients with feed
back from patients and clinicians helped to 
highlight the importance of reviewing and 
selecting PROs specific and useful for the 
intended application in clinical practice [31].

In order to be actionable, scores on measures 
for a specific health condition should be known, 
including the normal range versus when to 
intervene for an abnormal score. There is need 
for consensus and standard‐setting processes on 

threshold scores to trigger interventions. In 
order to track longitudinal change, it is helpful 
if the  minimal clinically important difference 
for improvement or worsening has been deter
mined (discussed further in methodologic con
siderations later). Ensuring these scores and 
thresholds for action are known, and identify
ing evidence‐based interventions or, where 
such evidence does not exist, gaining consensus 
agreement amongst practice clinicians and 
patient stakeholders on recommended interven
tions will facilitate clinicians and patients 
 moving from simple review and discussion of 
PROs to taking effective action and co‐produc
ing treatment plans based in part on PRO scores 
which are meaningful to them.

Considerations when selecting PROs for clini
cal use are likewise important for research 
applications. Using PROs with known clinically 
meaningful endpoints will facilitate longitudi
nal observational studies of effectiveness of 
medications or interventions.

Patient Engagement and Individualized 
Assessment and Treatment Plans

Mobile health tracking systems such as described 
in the Orchestra example [28] offer the possibil
ity of customized measurement (choice of PROs, 
timing of administration), and use of individual
ized measures which may be of great importance 
in pharmacoepidemiology outcome studies [8]. 
In addition, use of PROs for in‐between clinic 
visit care for continuous monitoring and data 
feedback, with customized reporting and means 
to detect signals of health status change in a 
 personalized system, lends itself to N‐of‐1 trials. 
In this type of study, an individual can make 
planned changes to treatment or lifestyle modifi
cation, then track changes in symptoms to eval
uate for possible effectiveness. By keeping daily 
journals or other means of annotation, patients 
can see if other triggers or environmental factors 
may have led  to changes in their health status 
[28]. This structured type of intervention allows 
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study of the impact of medications with rela
tively rapid onset and dissipation of effects (e.g., 
pain medications). In addition, one can study 
whether patients who are given access to their 
outcome data become more engaged in their 
health such as being more prepared for clinic 
visits and involved in shared decision making 
and treatment planning.

Barriers to Measuring PROs in Clinical 
Practice and Using PROs to Guide 
Interventions

Barriers to PRO use are varied and start with 
garnering institutional resources to obtain, store, 
and update electronic data collection tools. 
Designing integration of PROs into clinical 
workflow is a necessary step which first requires 
gaining clinician consensus on the purpose and 
value of adding PRO capture and review to the 
clinical encounter. Clinicians must understand 
how the use of structured PROs adds value over 
simply asking the patient how they feel [15]. 
Frontline staff training on the importance of PRO 
collection and distribution of questionnaires 
or  collection devices is required for reliable 
PRO collection.

Clinician training is required on how to use 
PROs to facilitate high‐quality communication 
with patients. This requires training on how to 
interpret PRO results and how to communicate 
about the results with patients. The process 
could be facilitated by orientating the patients 
themselves to use of PROs and their role in 
their  clinical care. For PROs to help facilitate  
co‐production of care may in some circum
stances necessitate reframing of the patient– 
clinician relationship, a complex endeavor in 
culture and behavior change [2].

Buy‐in may become easier to obtain as more 
convincing data become available on PRO inte
gration into care resulting in improved out
comes, as barriers to logistics of PRO collection 
are lowered, as graphical displays become more 
intuitive, and as interpretation of data and 

action steps become more familiar and sup
ported with decision aids [15]. Clinicians may 
have higher interest in use of PROs if they 
receive feedback on their own patients’ scores, 
relating to outcomes or experience with care 
(satisfaction) and recognize they can take steps 
to improve performance [30].

As use of PROs in clinical trials and pharma
coepidemiology research becomes more preva
lent, PRO endpoints may become more widely 
accepted goals to measure and monitor treat
ment efficacy. This may serve as positive rein
forcement to PRO use for monitoring treatment 
effectiveness in clinical practice settings.

 Methodologic Problems 
to Be Solved by 
Pharmacoepidemiologic 
Research

Just as patient engagement and PROs inform the 
discussion in the clinical practice setting, they 
similarly play an increasing role in the research 
setting. For example, including patient‐relevant 
outcomes in clinical trials has become a priority 
of the FDA [5,11] and fostering patient engage
ment in all stages of research has been the gene
sis of the PCORI and its significant funding 
portfolio [32]. However, there are methodologic 
challenges with incorporating PROs into clini
cal research, including issues of discordance in 
perception between raters and measurement of 
within‐person change over time.

Discordance in Perspectives Between 
Patients, Clinicians, and Researchers

With respect to differences in rater perspec
tives, there are examples of discrepancies bet
ween perceptions of clinicians and patients 
regarding level of disease activity, and about 
whether there has been improvement or deteri
oration in the condition. There may also be lack 



Patient Engagement and Patient‐Reported Outcomes1070

of  concordance between composite measures of 
disease activity used to assess efficacy in clinical 
trials and measures that use PROs.

Examples from the field of rheumatology 
include the comparison of composite indices 
used in rheumatoid arthritis clinical trials (e.g., 
complete joint counts, laboratory values, physi
cian global assessment), which tend to be 
lengthy to complete compared to PROs, which 
are shorter and more feasible for use in clinical 
practice. Composite indices are helpful to 
reduce the presentation of information from 
multiple measures into a single summary score. 
This is most informative when the measures 
included in an index are highly correlated. 
When a measure does not correlate or track well 
with others, to include it in a composite index 
would result in lost or obscured information. 
While there is a correlation between the results 
from composite indices and PROs, studies have 
found that the results from PROs do not 
always track with the composite indices. When 
PROs are independent predictors of treatment 
response, PRO results should be reported sepa
rately rather than included in a composite score 
[33]. In one study, composite indices were better 
at detecting flare states though worse at describ
ing states of low disease activity [34]. This sup
ports the inclusion of PROs in clinical studies 
along with established composite indices.

The same investigators also studied disparate 
perspectives about the change in clinical status 
between clinicians and patients with rheuma
toid arthritis. In this study, patients required a 
greater improvement in their condition to show 
improved satisfaction with the change com
pared to physicians. Likewise, patients required 
less deterioration to show dissatisfaction with 
their condition compared to clinicians. 
Clinicians valued a change in the disease activ
ity score of equal magnitude  –  better or 
worse  –  to reflect improvement or deteriora
tion. However, patients required more disease 
reduction to consider it an improvement and 
less worsening to trigger dissatisfaction. There 

was only about 60% concordance between 
patients and clinicians in judgment of disease 
activity. Perception of improvement/worsening 
has been shown in other studies to vary from 
the vantage point of clinician, patients, and car
egivers [35]. This is an area needing additional 
study. Examples of discordance can vary 
depending on type of study, measures used, and 
how perspectives are elicited.

Composite measures upon which clinicians 
base their assessment of improvement or dete
rioration may not necessarily include key 
aspects of the disease that matter to the patient. 
For instance, in the DAS‐28 (disease activity 
score) assessment of rheumatoid arthritis, 28 
joints are assessed for tenderness or swelling, 
but this count does not include the feet or 
ankles. Therefore, if patients have foot involve
ment, which can be very painful, it is possible 
they may not be satisfied with the degree of 
improvement noted on the DAS‐28 because it 
excludes an important element of their disease 
experience. Using the DAS‐28 as an outcome in 
pharmacoepidemiology studies could therefore 
miss outcomes important to patients and result 
in biased measures of association. Further, com
posite disease activity measures may not always 
translate to decision making based on the expe
rience of an individual patient [36]. As a matter 
of patient engagement, the viewpoint of the 
patient must be considered in collaborative 
treatment decisions, and it may not always be 
aligned with outcomes assessed in research 
studies [37].

Measuring Within‐Person Change

Understanding how to estimate clinically mean
ingful change using PROs is important to be 
able to determine the effectiveness of a treat
ment or intervention. Determining clinically 
meaningful change is complex; there is no con
sensus on the best approach and the topic 
 represents an area of active methodological 
research. Although there are standard statistical 



Methodologic Proolems to  e Solved oy Pharmacoepidemiologic Research 1071

approaches to understanding and analyzing the 
change in PRO scores over time, detection of a 
statistically significant difference may not 
reflect a meaningful clinical difference. As 
noted above, there may be differences in defin
ing a meaningful clinical difference depending 
on the respondent (e.g., patient, caregiver, clini
cian). It may depend on the health condition 
being studied, and also whether a patient is 
experiencing improvement or deterioration at 
the time of measurement. Additional considera
tions that make classification of meaningful 
clinical change challenging include instability of 
intrarater judgment, temporal changes related 
to disease stage, progress, and severity (see 
Chapter  37). Perception, or recall, of progress 
compared to an earlier state of disease may also 
be subject to bias. The context of measurement 
or the consequence of declaring a change mean
ingful (e.g., resulting in a treatment change) 
could influence the study results and decisions 
about clinical approaches (see Chapter 39).

Statistical Methods
Patient‐reported outcome scores may change in 
response to an intervention, but just because a 
PRO is responsive and a change in score is sta
tistically detectable does not mean the change is 
important. The minimal important difference 
(MID) represents the smallest change in score 
that could be determined important [12]. The 
minimal clinically important difference (MCID) 
is determined based on clinical anchors [12], 
and is generally regarded as the smallest differ
ence in score that would prompt a change in 
patient management [38]. In practice, the terms 
MID and MCID are sometimes used inter
changeably, but there may be differences 
between statistically derived estimations and 
those anchored on clinical parameters. MID 
and MCID estimates vary according to the pop
ulation being studied and context of measure
ment. The MID is a useful calculation to help 
determine responsiveness to change of a PRO 
measure, which is part of construct validity.

Anchor‐based methods such as the MCID use 
external indicators considered to be clinically 
relevant to the PRO, such as clinical measures 
(lab tests, clinician ratings) or patient measures 
(global rating of change), and place subjects on 
a continuum based on the size of change in the 
anchor (large negative change, small negative 
change, no change, small positive change, large 
positive change). Estimating what is considered 
a small versus medium, or other, change on a 
given clinical measure may require a consensus 
process [39]. Ideally, multiple relevant anchors 
should be used across multiple samples to con
firm responsiveness of the PRO measure. 
Patients who made small changes that were 
considered meaningful should be included in 
the exercise [12] to try and reduce the likelihood 
of picking statistical but not clinically important 
differences. Another anchor‐based technique to 
estimate MID uses receiver operating charac
teristic (ROC) curves to evaluate group‐level 
criteria for improvement or worsening of clini
cal status [40,41].

Distribution‐based methods are more strictly 
based on statistics, without requirement for a 
clinical anchor. The distribution‐based approach 
uses scores from a sample to express the effect in 
terms of standard deviation units or standard 
error of measurement [39]. Distribution meth
ods can be used if anchor methods are not avail
able, or to assess if anchor‐based measures are 
reasonable estimates [12].

Bookmarking and Scale Judgment of IRT‐
Based Measures
Alternative approaches to measuring meaning
ful within‐patient change have been devel
oped based on techniques from the field of 
educational testing applicable to PRO meas
ures developed using IRT methods. The gen
eral approach is for the development of 
clinical vignettes representing a continuum of 
IRT‐based scores, presenting these vignettes to 
a representative panel of stakeholders (e.g., 
patients, caregivers, clinicians) and having the 
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panel identify thresholds between scores (delin
eated by the vignettes), where they place a 
“bookmark” separating different levels of sever
ity. Imagine, for example, the case of physical 
function; vignettes would be presented of 
patients having no physical limitation through 
severe disability. The panel would order the 
cards according to physical function described 
by the vignette, then set thresholds between 
categories of patients with “no problem,” “mild 
problem,” “moderate problem,” and “severe 
problem.” Such exercises help to identify clini
cally meaningful cut‐points between scores 
[42]. Similar qualitative work with panelists can 
be used to identify minimal clinically meaning
ful differences by presenting PRO items to 
stakeholders and asking them to note how 
much response to an item (or items on a scale) 
would need to change for a change in status to 
be considered clinically meaningful [35].

Another approach, the “scale judgment” 
method, entails raters comparing prefilled 
IRT‐based PRO questionnaires (for example, 
considering before and after an intervention) 
and indicating whether or not the person who 
 completed the questionnaires had experienced 
an important difference [43]. These types of 
approaches require qualitative work with patient 
and other stakeholders across different patient 
populations (age, demographics, health condi
tions) and considering direction of improvement 
and worsening of PROs. Research is needed into 
the impact of different stakeholder roles and 
perspectives on agreement on severity thresh
olds and MCIDs, and how to understand and 
reconcile discordance particularly in the arena of 
clinical decision making.

Change in perspective
Another factor which may complicate the 
assessment of within‐person health state change 
is the situation when a person’s perception and 
valuation of the domain being measured change 
over time. This phenomenon, termed response 
shift, is defined as:

a change in the meaning of one’s self‐ 
evaluation of a target construct as a result 
of:  a) a change in the respondent’s internal 
standards of measurement (scale recalibra
tion); b) a change in the respondent’s values 
(i.e., the importance of component domains 
constituting the target construct), or c) a 
redefinition of the target construct (i.e, recon
ceptualization) [44].

For example, this could occur if a psychological 
intervention resulted in a change in thinking 
about a person’s condition and the impact on 
their life or if patients adapt to disease progres
sion, get used to medication toxicities, etc. 
Response shifts could potentially alter estimates 
of treatment effect over time. There are both 
statistical and qualitative methods to assess for 
response shift, and guidelines for investiga
tors to evaluate objective change and changes 
in internal valuation [44]. The phenomenon of 
response shift in the quality of life appraisal pro
cess of the patient respondent may also be at 
root when their global rating of change differs 
from what might be expected based on PROs 
or other assessments [45].

 Currently Available Solutions

Practical Guides for Selection of PROs 
and Implementation into Practice

With the proliferation in interest and adoption 
of PROs, there are publications offering guidance 
on training clinicians in use of PROs, as well as a 
number of studies on presentation of PRO scores 
to patients and clinicians. Recommendations for 
training clinicians on PRO use include eliciting 
local barriers and concerns to address during 
the training (such as how to deal with patient 
symptoms/concerns outside the specialty, con
cern about visit time constraints, how to inter
pret results), inclusion of the stakeholders in PRO 
selection and format for presentation, keeping the 
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training relatively brief, making training prob
lem based and experiential with video examples 
and case studies, and including relevant treat
ment decision aids and decision support tools in 
the training [46].

Experience on considerations for graphical 
display and communication of PRO scores has 
also been published. Display format prefer
ences tend to vary by audience characteristics 
such as age, education, and role (clinician vs 
patient) [47]. Some studies have identified pref
erences for line graphs  [48], others for bar 
graphs [49]. Patients tend to prefer simpler for
mats, and clinicians prefer more data [47,48]. 
Directionality of data has been shown to mat
ter, with better health being portrayed as higher 
on the chart, and including lines indicating 
threshold values for normal versus abnormal 
found to be helpful [50]. There are published 
examples, and depending on EHR vendor there 
may be preprogrammed displays. As the field 
matures, additional resources and guidance are 
anticipated to become available.

Overcoming perceived barriers to PRO adop
tion in clinical care may take a cultural shift, 
including acceptance of co‐production as a 
means to transform healthcare delivery and 
improve chronic illness care. For some, it may 
help to view PROs as a tool in the data arsenal 
for enhanced signal detection of the health of an 
individual gone awry, or as a communication 
tool for more efficient and accurate exchange of 
information. As evidence mounts on the side of 
increased quality of care and improved out
comes resulting from interventions supporting 
co‐production, the tide may shift to embrace 
PROs use in clinical care.

There are a host of useful publications provid
ing guidance for integrating PROs into clinical 
practice, including considerations for selection 
of PROs use in performance measurement, and 
guidance on integration of PROs into electronic 
health records. Example references are publicly 
available and the reader is also referred to the 
following resources:

 ● User’s Guide to Implementing Patient‐Reported 
Outcomes Assessment in Clinical Practice. 
International Society for Quality of Life 
Research (prepared by Aaronson L, Elliott T, 
Greenhalgh J, Halyard M, Hess R, Miller D, 
Reeve B, Santana M, Snyder C). www.isoqol.
org/UserFiles/2015UsersGuide‐Version2.pdf 
(accessed May 7, 2019).

 ● Patient Reported Outcomes (PROs) in 
Performance Measurement. National Quality 
Forum. www.qualityforum.org/Publications/ 
2012/12/Patient‐Reported_Outcomes_in_
Performance_Measurement.aspx (accessed 
May 7, 2019).

 ● User’s Guide to Integrating Patient Reported 
Outcomes in Electronic Health Records. 
Prepared for the Patient Centered Outcomes 
Research Institute (PCORI) by Johns Hopkins 
University. Snyder C, Wu AW, eds. www.
pcori.org/document/users‐guide‐integrating‐
patient‐reported‐outcomes‐electronic‐health‐ 
records (accessed May 7, 2019).

 ● A useful reference to find information about 
publicly available PRO measures developed 
and evaluated with National Institutes of 
Health (NIH) funding is the Health Measures 
website. This is a repository of official infor
mation about PROMIS® (Patient‐Reported 
Outcomes Measurement Information System), 
which has a suite of person‐centered measures 
across multiple domains of physical, mental, 
and social health for adult and pediatric popu
lations. This repository serves as a distribution 
center for other NIH‐funded measures such as 
Neuro‐QoL, NIH Toolbox®, and ASCQ‐Me®, 
in addition to PROMIS. www.healthmeasures.
net/explore‐measurement‐systems/promis

 The Future

Patient engagement in research, advances in 
PRO measurement, and recognition of the 
importance of garnering direct patient input will 
result in increased inclusion of the patient voice 
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in the calculus of medication efficacy in clinical 
studies [4–6]. PROs are increasingly used at the 
point of clinical care, and there are now proto
types for capturing data between clinical or 
study visits to enhance co‐production of care 
[28]. There is growing evidence that electronic 
PROs, or at least symptom monitoring, may 
increase not only quality of care of processes, 
but also outcomes [23], and use of PROs may 
become a reflection of, and an instrument for, 
improving quality of care. PROs may become 
increasingly used in comparative effectiveness 
research, with patient engagement in study 
design leading to more meaningful incorpora
tion of PRO measures. PRO capture is being 
incorporated in learning networks and regis
tries [51]. As more is understood about PRO 
development, effective use, interpretation and 
potential applications, the use and new use cases 
for PROs can be expected to continue to grow.

There is increasing interest in using PRO data 
from clinical settings and captured in electronic 
health records as structured outcomes assess
ment for inclusion in comparative effectiveness 
research. This could be a powerful data source 
when combined with other sources of electronic 
data [52,53] (see Part IIIb). PROs in EHRs may 
be of particular use when there are no standard
ized outcomes assessments provided by clini
cians in the clinical note. The complexities of 
analysis and interpretation of longitudinal PRO 
data require continued study to best leverage 
such data to make valid inferences. Cross‐cut
ting PRO measures that could be used across 
conditions and contexts may confer advantages 
such as anticipating from clinical trials results 
the expected outcomes in clinical practice. Such 
PROs when collected in a clinical setting  –  or 
with technology to support in‐between visit 
data collection – could be used such that clini
cal data registries could be combined with 
administrative claims data to support compara
tive effectiveness research.

An area of future development in medicine 
applicable to study and use of PROs is the use 
of wearable devices with health monitors. 
Previously used as sports fitness trackers, 
there is now the ability to track heart rhythms 
with electrocardiograms transmitted to medi
cal facilities, and blood glucose monitoring 
may eventually be an option. Medical device 
companies and technology are making sub
stantial investments in this arena. Coupling 
physiologic data with PRO data will be inform
ative in understanding clinically relevant 
change in scores. For example, a patient may 
be able to better calibrate a worsening feel
ing of fatigue (quantified in PRO score) to cor
responding physiologic worsening, keeping 
individual patients more in tune with how 
symptoms and function may reflect underly
ing physiology.

There are open research questions related 
to analysis and interpretation of measures 
used longitudinally. There are interesting and 
exciting case examples, and it remains to be 
seen which model will be scalable and gener
alizable to more settings. Ideally, the culture 
of co‐production, patient engagement, and 
self‐management will continue to take root, 
perhaps strengthened by demonstration of 
outcomes improvement, and support the shift 
towards PRO measurement for meaningful 
application, evidence generation, and shared 
decision making.
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The past two decades have witnessed an explo-
sion of methodological advances in the design 
and analysis of epidemiologic studies. Some of 
these contributions have been fundamental to 
the field of epidemiology in general while others 
have arisen specifically from questions posed by 
pharmacoepidemiologic applications. Several of 
these advances have already played an impor-
tant role in the conduct of research on drug 
effects, and will take an even greater place in 
future applications. In this chapter, we intro-
duce some of these approaches with a focus on 
confounding control, one of the major method-
ologic challenges in drug safety and effective-
ness research with noninterventional studies.

We start out by describing a robust study 
design that will exemplify several aspects of 
confounding control and other biases and point 
out critical decision points in the choice of study 
designs. Second, we describe efficient sampling 
strategies within cohort studies (case–control, 
case–cohort, and two‐stage sampling) and self‐
controlled designs (case–crossover and case–
time–control designs) and how they will help 
reduce confounding bias. Third, we introduce 
several analytic methods that have gained wider 
use in pharmacoepidemiologic studies and 

 others that only recently have made inroads into 
pharmacoepidemiology.

 Clinical Problems to Be Addressed 
by Pharmacoepidemiologic 
Research

Pharmacoepidemiologic analyses are in princi-
ple no different from analyses in any other sub-
ject area within epidemiology. They are 
concerned with valid estimation of associations 
between an exposure and outcome, and meth-
ods to minimize systematic and random error 
that may cloud causal conclusions. Some issues 
specific to pharmacoepidemiology stem from 
the constraints of the frequently used secondary 
data sources, in particular large electronic 
 longitudinal healthcare databases from insur-
ance health plans, electronic medical records 
systems, or registries (see Chapters 11–14). 
Another difference is the often unusually direct 
interdependency of treatment choice with 
health status, severity of disease, and prognosis 
that may lead to strong, sometimes intractable 
confounding by indication (see Chapter 3) [1]. 
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Pharmacoepidemiologists try to reduce biases 
by appropriate choices of study design and 
 analytic strategies. Challenges arise if not all 
confounder information is captured in the avail-
able data. This chapter provides an overview of 
selected options that fit typical pharmacoepide-
miologic data sources and study questions.

 Methodologic Problems 
to Be Addressed by 
Pharmacoepidemiologic Research

The ready and relatively cheap availability of 
large longitudinal patient‐level healthcare data-
bases make the new‐user cohort design a natu-
ral design choice as a starting point that mimics 
the classic parallel group controlled trial, except 
of course for the randomized treatment assign-
ment (Figure  43.1) [2]. Efficient sampling 
designs within such cohorts, including case–
control, case–cohort, and two‐stage sampling 
designs, are important extensions to assess 
additional covariate or outcome information in 
a subset of patients. Such sampling usually 

 provides no advantage if secondary data are the 
only source for exposure, covariate, or outcome 
assessment because there is no additional cost 
or time to analyze the entire dataset rather than 
a subsample [3].

Bias can be reduced by appropriate design 
choices. Considerations about the sources for 
exposure variation will lead to fundamental 
decisions on the appropriate study design. In a 
causal experiment, one would theoretically 
expose a patient to an agent and observe the 
agent’s effect on his or her health, then rewind 
time, leave the patient unexposed, and keep all 
other factors constant to establish a counterfac-
tual experience. Since this experiment is impos-
sible, the next logical expansion of the experiment 
is to randomly introduce or observe exposure 
variation within the same patient but over time 
(Figure  43.2). If we observe sporadic drug use 
resulting in fluctuations of exposure status 
within a patient over time, if that drug has a 
short washout period, and if the adverse event of 
interest has a rapid onset, then we may consider 
a case‐crossover design or related approaches 
(see later). For most pharmacoepidemiologic 
studies, we will utilize variation in exposure 
between individual patients, and we will there-
fore apply a cohort study design. Any exposure 
variation among higher‐level entities (provider, 
region, etc.) can be exploited using instrumental 
variable analyses (described later in the chapter) 
if unrelated to patient characteristics either 
directly or indirectly [4].

In a cohort design, there are several advantages 
to identifying patients who start a new drug and 
begin follow‐up after initiation, similar to a paral-
lel group randomized controlled trial that estab-
lishes inception cohorts. As patients in both the 
study group and the comparison group have been 
newly started on medications, they have been 
evaluated by physicians who concluded that these 
patients might benefit from the newly prescribed 
drug. This makes treatment groups more similar 
in characteristics that might not be observable in 
the study database if medication use is not new. 

No drug use

Common 1st line use drug A

Common 1st line use drug A

First-line use drug A

First-line use drug B

S

S

S

Switch to 2nd line drug C

Switch to 2nd line drug D

Add drug C to A

Add drug D to A

Figure 43.1 Principle of the new user design and its 
variations when studying second‐line therapies. Source: 
Reproduced from Schneeweiss [3] with permission from 
John Wiley & Sons.
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The clear temporal sequence of confounder meas-
urement before treatment initiation in an incident 
user design also avoids mistakenly adjusting for 
consequences of treatment (intermediates) rather 
than predictors for treatment, a possible reason 
for “overadjustment” [5]. Comparing two active 
treatment groups further reduces the chances of 
immortal time bias, a mistake that most frequently 
emerges if future information is used to define ear-
lier exposure status in healthcare databases, par-
ticularly when defining a “nonuser” comparison 
group [6]. A common example of immortal time 
bias is to define nonusers as patients who have not 
used the study medication during the first six 
months of follow‐up. By definition, these nonuser 
patients cannot die during the first six months of 
follow‐up, and therefore their inclusion can bias 
the findings. Because of the well‐defined starting 
point of inception cohorts, it is possible to assess 
whether and in what form hazards vary over time 
by stratifying on duration of treatment. Studying 
new users is also useful when studying newly mar-
keted medications; the incident user design avoids 
comparing populations predominantly composed 
of first‐time users of a newly marketed drug with a 
population predominantly composed of prevalent 
users of the old drug. Such a comparison would be 

prone to bias because patients who stay on treat-
ment for longer may be less susceptible to the 
event of interest [7].

A common criticism of the incident user 
design is that excluding prevalent users will 
restrict and thus reduce the study size, in some 
cases substantially [8]. While this is true, 
researchers should be aware that by including 
ongoing (prevalent) users, they might gain pre-
cision at the cost of validity [9]. Screening and 
identifying incident users in secondary data-
bases is not costly except for a bit more comput-
ing time. In some situations, particularly studies 
of second‐line treatments in chronic conditions, 
we can only study patients who switch from one 
drug to another, as very few patients will be 
treatment naive. Such switching is often not 
random, but rather is determined by progress-
ing disease and treatment failure or by side 
effects that may be related to the study outcome. 
A fairer treatment comparison may be achieved 
by comparing new switchers to the study drug 
with new switchers to a comparison drug (see 
Figure 43.1). Consequently, prevalent new‐user 
cohort designs are being developed to minimize 
bias when one needs to include as many new 
users of the study drug as possible.

Exposure variation
within patients

Exposure variation
between patients

Exposure variation
between providers

yes no

yes

yes

no

Case-crossover
study

Crossover trial
Cohort study

Randomized
controlled trial Instrumental

variable analysis

Cluster
randomized trial

Figure 43.2 Study design choice by source of 
exposure variation. Shaded boxes indicate 
noninterventional study designs while clear 
boxes are the randomized design versions. 
Source: Reproduced from Schneeweiss [3] 
with permission from John Wiley & Sons.
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Even with appropriate designs, however, all 
observational pharmacoepidemiologic studies 
still must consider carefully how to approach 
the problems of potential confounding, in order 
to prevent bias. Approaches to addressing these 
methodologic challenges, and their limitations, 
will be the primary focus of this chapter.

 Currently Available Solutions

The solutions available to minimize confound-
ing in pharmacoepidemiologic database studies 
can be broadly categorized into (1) approaches 
that collect more information on potential con-
founders and apply efficient sampling designs to 
reduce the time and resources it takes to com-
plete the study, and (2) analytic approaches that 
try to make better use of the existing data with 
the goal of improved control of confounding.

Efficient Sampling Designs Within 
a Cohort Study

In any cohort study, the cost, time, and resources 
necessary to collect data on all cohort members 
can be prohibitive. Even with cohorts formed 
from computerized databases, there may be a 
need to supplement and validate data with 
information from hospital records, medical 
records, and physician or patient interview 
questionnaires, with the goal of improved con-
founding control. When the cohort size is con-
siderable, such additional data gathering can 
become a formidable task. Moreover, even if no 
additional data are needed, the data analysis of a 
cohort with multiple and time‐dependent drug 
exposures can become technically unfeasible, 
particularly if the cohort size and number of 
outcome events are large. For example, a study 
of the long‐term effect of antihypertensive 
drugs and the risk of cancer involved a cohort of 
over 1.1 million patients where 41 059 devel-
oped cancer during 14 years of follow‐up, a size 
that necessitated sampling within the cohort 

[10]. Finally, there are situations with multiple 
confounding factors that may require accurate 
matching rather than simply modeling 
adjustment.

To counter these constraints, designs based 
on sampling subjects within a cohort have been 
proposed and applied successfully in pharma-
coepidemiology. These designs are based on the 
selection of all cases with the outcome event 
from the cohort, but differ in the selection of a 
small subset of “noncases.” Generally, they per-
mit the precise estimation of relative risk meas-
ures with negligible losses in precision. Below, 
we discuss structural aspects of cohorts and 
present three sampling designs within a cohort 
the nested case–control, the multi‐time case–
control, and case–cohort designs.

Structures of Cohorts
Figure 43.3 illustrates graphically a cohort of 21 
newly diagnosed diabetics over the period 1995 
to 2010. This cohort is plotted in terms of calen-
dar time, with subjects ranked according to 
their date of entry into the cohort, which can 
correspond to the date of disease diagnosis or 
treatment initiation. Such calendar‐time cohorts 
depict the natural chronological nature of the 
cohort accrual. An alternative depiction of this 
same cohort could be based on duration of dis-
ease (i.e., follow‐up time from diagnosis or first 

Calendar time (years)
1995 2010

Figure 43.3 Illustration of a calendar‐time cohort of 21 
subjects followed from 1978 to 1990 with four cases (●) 
occurring and related risk‐sets (‐‐‐).
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exposure to a drug), which may be more 
 relevant to the drug effect under study. In this 
instance, the illustration given in Figure  43.4 
for the same cohort, using follow‐up time as 
the new time axis, is significantly different 
from the previous one. In these follow‐up‐time 
cohorts, the same subjects are ranked accord-
ing to the length of follow‐up time in the study 
with zero‐time being the time of diagnosis or 
treatment start.

The question of which of the two forms one 
should use for the purposes of data analysis 
rests on one’s judgment of the more relevant of 
the two time axes, essentially the one for which 
the risk varies most over time, called the pri-
mary time axis, with respect to risk and drug 
exposure. This decision is important, since it 
affects the demarcation of “risk‐sets,” which are 
fundamental to the analysis of data from cohorts 
and consequently the sampling designs within 
cohorts. A risk‐set is formed by the members of 
the cohort who are at risk of the outcome event 
at a given point in time; namely they are free of 
the outcome event and are members of the 
cohort at that point in time, called the index 
date. Drug exposure measures are then anchored 
at this index date. It is clear that Figures 43.3 and 
43.4 produce distinct risk‐sets for the same 
cases in the same cohort, as illustrated by the 
different sets of subjects crossed by the vertical 

broken line for the same case under the two 
forms of the cohort. In Figure 43.3, for example, 
the first chronological case to occur has in its 
risk‐set only the first six subjects to enter the 
cohort, while in Figure 43.4, all 21 cohort mem-
bers belong to its risk‐set at the time that the 
first case arises. While the second form based 
on disease duration is often used, because in 
pharmacoepidemiologic drug exposure can 
vary substantially over calendar time, the first 
form may be as relevant for the formation of 
risk‐sets and data analysis as the second form. 
Regardless, an advantage of having data on the 
entire cohort is that the primary time axis can 
be changed according to the study question, 
using calendar time for one analysis, duration of 
disease or drug exposure for another, with 
respective adjustment in the analysis for the 
effect of the other time axis.

The Nested Case–Control Design
The notion of a nested case–control design 
within a cohort was first introduced by Mantel 
[11], who proposed an unmatched selection of 
controls and called it a synthetic retrospective 
study. It was developed further and formalized 
by Liddell et al. [12] in the context of a cohort 
study of asbestos exposure and the risks of lung 
cancer and mortality. The modern nested case–
control design involves four steps:

1) defining the cohort time axis, as above
2) selecting all cases in the cohort, i.e., all sub-

jects with an outcome event of interest
3) forming a risk‐set for each case and
4) randomly selecting one or more controls 

from each risk‐set.

Figure 43.5 illustrates the selection of a nested 
case–control sample from a cohort, with one 
control per case (1:1 matching). It is clear from 
the definition of risk‐sets that a future case is 
eligible to be a control for a prior case, as illus-
trated in the figure for the fourth case (the circle 
occurring last in time), and that a subject may 
be selected as a control more than once. A bias 

Follow-up time (years)
0 15

Figure 43.4 Illustration of follow‐up‐time cohort 
representation after rearranging the cohort in 
Figure 43.3, with the new risk‐sets (‐‐‐) for the four cases.
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is introduced in the estimation of the relative 
risk if controls are forced to be selected only 
from the noncases and subjects are not permit-
ted to be used more than once in the nested 
case–control sample, since the control exposure 
prevalence will be slanted to that of longer term 
subjects who do not become cases during the 
study follow‐up [13]. The magnitude of the bias 
depends on the frequency of the outcome event 
in the cohort; the more frequent the event, the 
larger the potential for bias.

This property leading to subjects possibly 
being selected more than once in the sample 
may be challenging when the exposure and 
covariate factors are time dependent, particu-
larly when the data are obtained by question-
naire where the respondent would have to 
answer questions regarding multiple time points 
in their history. This issue arose in a study of the 
risks of severe adverse events in asthma associ-
ated with the use of inhaled beta‐agonists [14]. 
A  cohort of 12 301 asthmatics spanning the 
period 1978–87 was identified from the 
Saskatchewan Health computerized databases, 
of whom 129 were cases (death or near‐death 
from asthma). A nested case–control approach 
was needed to permit the collection of additional 
data from hospital charts and questionnaires sent 
to all physicians who saw these patients. These 
additional data were time dependent, focusing 

on the two‐year period prior to the index (risk‐
set) date. A standard nested case–control sample 
of six controls per case, as described above, 
would have likely produced some case and con-
trol subjects who contributed multiple times as 
controls in the sample. This would have added 
complexity to the questioned physicians who, for 
example, would have had to respond to questions 
about the same patient’s asthma severity in dif-
ferent two‐year periods, a potentially confusing 
data collection scheme. In part to circumvent 
this difficulty, the cohort was stratified according 
to various potential confounding factors, namely 
age, area of residence, social assistance, prior 
asthma hospitalization and calendar date of entry 
into the cohort. This fine stratification resulted in 
129 mutually exclusive subcohorts, one leading 
to each case, and between two and eight controls 
per case (some risk‐sets contained only two eligi-
ble controls). Since each subcohort contained a 
single risk‐set (only one case) and the subcohorts 
were mutually exclusive, a selected subject was 
guaranteed to appear only once in the nested 
case–control sample.

The analysis of data from a nested case–con-
trol study must preserve the matched nature of 
the selection of cases and controls, particularly 
if the risk of the event changes with disease 
duration and drug exposure varies in calendar 
time. The method of analysis is identical to that 
of a conventional matched case–control study, 
not nested within a cohort. The conditional 
logistic regression method for this design is 
appropriate, as it uses the risk‐set as the funda-
mental unit of analysis, in agreement with the 
proportional hazards model of the full cohort 
[15]. Simple formulae exist to estimate the rela-
tive risk for 1:1 matching [16].

The question of the required number of con-
trols per case is important (see also Chapter 4). 
Although selecting one control per case will 
greatly simplify the data analysis, a large num-
ber of cases will be required to attain an accept-
able level of power. Since the number of cases in 
the cohort is fixed and cannot be increased to 

0 15
Follow-up time (years)

Figure 43.5 Nested case–control sample of one control 
(◼) per case (●) from cohort in Figure 43.4.
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satisfy this requirement, the only remaining 
alternative is to increase the control‐to‐case 
ratio. Tables for determining the power for 
given numbers of controls are given in Breslow 
and Day [17], and Appendix A in this book. It 
can be readily seen from these sample size tables 
that the gain in power is significant for every 
additional control up to four controls per case, 
but becomes negligible beyond this ratio. For 
example, if we consider an exposure prevalence 
in the controls to be 30% and we target detect-
ing a relative risk of 2 with 5% significance and 
80% power, the required numbers of cases are 
122, 90, 74, 65, and 62, respectively, for 1:1, 2:1, 
4:1, 10:1, and 20:1 control‐to‐case ratios. These 
translate to total study sizes (cases and controls 
combined) of 244, 270, 370, 715, and 1302, with 
clear cost implications and related optimality 
decisions. Of course, the number of cases in a 
cohort is frequently fixed a priori by the study 
constraints, thus eliminating this option to 
increase the number of cases.

However, although this general rule of an 
optimal 4:1 control‐to‐case ratio is appropriate 
in the majority of instances, one should be pru-
dent when exposure to the drug under study is 
infrequent, or when several factors or other 
drugs are being assessed simultaneously. In 
these situations, the ratio could easily be 
required to increase to 10 or more controls per 
case. This was the case in two recent nested 
case‐control studies, within a cohort of over 
40 000 patients with rheumatoid arthritis, where 
100 controls per case were used to obtain suffi-
ciently stable estimates of the rate ratios of seri-
ous hepatic events (n=25 cases) and interstitial 
lung disease (n=74 cases) associated with the 
use of disease‐modifying antirheumatic drugs 
(DMARD) [18,19].

The appropriate method to perform external 
comparisons using data from a nested case–con-
trol design has been described [20]. It uses 
knowledge about the sampling structure to yield 
an unbiased estimate of the outcome event rate 
in the full cohort, thus permitting the estimation 

of the necessary standardized relative measure 
with respect to the selected external population.

Finally, the “nested case–control” label has led 
to some misunderstandings, including the usual 
presentation of data as a comparison between 
“cases” and “controls” rather than by exposure, 
as well as the convoluted way that forward‐look-
ing associations from exposure to outcome 
extracted from backward‐looking data. Moreover, 
the nested case–control approach provides esti-
mates of the odds ratio, not a rate difference. 
However, the fact that it is nested within a clearly 
defined cohort with known sampling fraction 
allows estimation of risks and rates [21]; the 
quasi‐cohort approach utilizes this property to 
address these concerns [22]. A quasi‐cohort 
approach was used to assess the risk of pneumo-
nia associated with inhaled corticosteroids in 
patients with asthma [23].

The Multi‐time Case–Control Design
The multi‐time case–control design has been 
introduced recently as an alternative strategy to 
improve the precision of the odds ratio in a 
case–control study with transient time‐varying 
exposures, in a setting where increasing the 
number of control subjects is too costly. This 
approach is based on increasing the number of 
observations per control subject, by measuring 
drug exposure at many different points in time. 
Indeed, several case–control studies will collect 
extensive data on time‐dependent exposures 
but use only a portion of these data in estimat-
ing the rate ratio.

For example, the International Agranulocytosis 
and Aplastic Anemia Study (IAAAS) assessed 
the risk of agranulocytosis associated with the 
use of analgesics using a case–control study of 
221 cases of agranulocytosis and 1425 controls 
[24]. While the study collected data on exposure 
for four weeks prior to the index date, only one 
week’s worth of data was used in the analysis. 
The multi‐time case–control approach allows 
the use of all available exposure data during the 
four weeks (i.e., four control person‐moments) 
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rather than only one week (i.e., one control 
 person‐moment) to improve the precision of 
the odds ratio estimate, which must however be 
corrected for within‐subject correlation.

This design increases the number of control 
observations per case, thus potentially also 
increasing the power of the study without adding 
additional subjects [25]. For example, in a nested 
case–control study within a cohort of 12 090 
patients with chronic obstructive pulmonary dis-
ease (COPD), there were 245 incident cases of 
acute myocardial infarction (AMI) that occurred 
during follow‐up, for whom one and 10 controls 
per case were identified [25]. The rate ratio of 
AMI associated with use of antibiotics in the 
month prior to the index date was 2.00 (95% con-
fidence interval [CI] 1.16–3.44) with one control 
per case. The precision (as reflected in the confi-
dence intervals) was improved by increasing to 
10 controls per case with a rate ratio of 2.13 (95% 
CI 1.48–3.05). Alternatively, keeping only one 
control patient per case but increasing the num-
ber of control time windows per subject from 
one to 10 (taken as 10 control exposure meas-
ures, one for each of the 10 months prior to the 
index date) also improved the precision with a 
rate ratio of 1.99 (95% CI 1.36–2.90).

The Case–Cohort Design
The first recognized application of a sampling 
design we currently call case–cohort was made 
by Hutchison [26], in performing external com-
parisons of leukemia rates in patients treated by 
radiation for cervical cancer. It was ultimately 
developed and formalized by Prentice [27], who 
coined the name “case–cohort.” Although 
recent, this design has already been used effec-
tively in some drug risk studies [28–31]. The 
case–cohort design involves two steps:

1) selecting all cases in the cohort, i.e., all 
 subjects with an adverse event; and

2) randomly selecting a sample of predeter-
mined size of subjects from the cohort, 
irrespective of case or control status.

Figure  43.6 depicts the selection of a case–
cohort sample of six subjects from the illustra-
tive cohort. Note that it is possible that some 
cases selected in step 1 are also selected in the 
step 2 sample, as illustrated in the figure for the 
third case.

The case–cohort design resembles a reduced 
version of the cohort, with all cases from the full 
cohort included. It can also be perceived as an 
unmatched version of the nested case–control 
design, with all cases compared with a random 
sample of the cohort used as controls though 
not at a specific person‐moment. Although 
these aspects suggest a possible resemblance of 
the data analysis approach with either the estab-
lished cohort or case–control methods, the 
techniques are in fact distinct, each requiring 
specific software. The analysis of case–cohort 
sampled data is complex, as it must take into 
account the overlap of cohort members between 
successive risk‐sets induced by this sampling 
strategy [32].

The first advantage of the case–cohort design 
is its capacity to use the same sample to study 
several different types of events. Indeed, the 
cases can be split into several subcategories and 
each can be analyzed with the same “control” 
subcohort [33]. In contrast, the nested case–
control design requires different control groups 
for each type of event because the selection 

0 15

Follow-up time (years)

Figure 43.6 Case–cohort sample with six controls (◼) 
from cohort in Figure 43.4.
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depends on event times. For example, the beta‐
agonist risks nested case–control study had two 
distinct control groups, one of size 233 for the 
44 asthma deaths, the other of size 422 for the 
85 asthma near‐deaths [14]. Another useful 
advantage is that the case–cohort design per-
mits one to change the primary time axis of 
analysis from calendar to disease time and vice 
versa, depending on either the assumed model 
or the targeted outcome. This is not possible 
with the nested case–control study, where the 
primary time axis must be set a priori to permit 
the risk‐set construction. This is less of a prob-
lem in pharmacoepidemiology, however, where 
the cohort can be divided into subcohorts of suc-
cessive calendar time, as was discussed earlier. 
Yet another example is its simplicity in sampling, 
which has advantages in both comprehensibility 
and computer programming. Finally, external 
comparisons are simple to perform with the 
case–cohort approach [34].

The nested case–control design does have 
some advantages over the case‐cohort design. 
The first is the simplicity of power calculation, 
or equivalently sample size determination. The 
nested case–control design is independent of 
the size of the cohort, while for the case–cohort 
design knowledge about overlap in risk‐sets is 
essential, thus greatly complicating these calcu-
lations. Second, data on time‐dependent expo-
sure and covariates need only be collected up to 
the time of the risk‐set for the nested case–con-
trol study, while the collection must be exhaus-
tive for the case–cohort. Finally, despite the 
accessibility of software for data analysis of 
case–cohort data, these can quickly become 
surpassed and even infeasible with some of the 
huge sample sizes in some databases and multi-
ple time‐dependent exposures. In this situation, 
the nested case–control design, with its single 
risk‐set per case, is not only advantageous but 
also the only solution. A study of benzodiaze-
pine use and motor vehicle crashes, initially 
designed as a case–cohort study, had to be ana-
lyzed as a nested case–control study because of 

technical limitations of the case–cohort analysis 
software and hardware [35].

An obvious practical consideration is that the 
case–cohort sampling design can be used to 
study multiple endpoints in a single analysis (in 
contrast to case–control sampling) while the 
case–control study can easily consider many 
exposures. Depending on the clinical context, 
one might have strong preferences. As pointed 
out earlier, in database analyses the main use of 
cohort sampling designs is when additional 
information is needed that is time consuming or 
expensive to collect. If, for example, one engages 
in outcome validation via expensive chart 
review, a case–control analysis is often embed-
ded in a cohort study [36]. On the other hand, if 
baseline biomarkers need to be obtained to 
determine patient subgroups or improve con-
founding control the case–cohort design is 
more suitable [37].

Prevalent New‐User Designs
A common situation in pharmacoepidemiology 
involves the study of the effect of a new drug 
entering the market, with the best comparator 
being an older drug. Most often, patients pre-
scribed the new drug will have been switched 
from the older comparator drug. An incident 
new‐user cohort design based on incident new 
users of the study and comparator drugs, includ-
ing only patients who were treatment naive to 
both drugs, would be optimal. However, it 
would exclude the possibly large number of sub-
jects who switched from the older to the new 
drug, a clinically relevant subset. The prevalent 
new‐user design provides an approach to 
include these switchers [38].

A prevalent new‐user cohort is formed from 
the base cohort of all users of the comparator 
drug and of the drug under study, which inher-
ently includes the subjects who switched from 
the comparator to the study drug those who ini-
tiated the study drug de novo. These latter sub-
jects can directly be matched to contemporaneous 
initiators on covariates or propensity scores (see 
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below). For the subjects who switched from the 
comparator to the study drug, comparators can 
be selected from the base cohort by matching 
conditional on exposure sets. Time‐based expo-
sure sets can be defined, within the base cohort, 
by the time from the first prescription of the 
comparator drug up to the point of switching, 
while prescription‐based exposure set are 
defined by the number of prescriptions of the 
comparator drug received up to the point of 
switching. Because of the granularity of the time 
scale, time‐based exposure sets must be defined 
with a time interval (such as ±1 month) where all 
patients with a comparator prescription in the 
time interval belong to the exposure set and the 
set is defined by each patient’s prescription date. 
Thus, with either type of exposure set, each 
switcher to the study drug will belong to an 
exposure set that includes subjects of similar 
duration or prescription history with a dispens-
ing of the comparator drug. The importance of 
the exposure sets is that a visit occurred where 
the physician decided to either continue the 
comparator treatment or switch to the new 
study drug. The exposure set provides equiva-
lent time points in the disease course at which 
confounding patient characteristics can be 
measured and controlled for.

To identify, within the exposure sets, the com-
parator drug users most similar to the patients 
who switched to the study drug, time‐condi-
tional propensity scores (TCPS) can be used 
[38]. The time‐dependent Cox proportional 
hazards model can be used to compute the 
 “propensity” of switching to the study drug, 
 versus continuing on the comparator drug, as a 
function of the time‐varying patient character-
istics measured at the point of the exposure set, 
thus conserving the matching induced by the 
exposure set and avoiding adjusting for causal 
intermediates. The model is used to compute 
the time‐conditional propensity scores within 
each exposure set, thus identifying their 
matched comparator as the one with the closest 
value to that of the switcher. For the purposes of 

the positivity assumption, the time‐conditional 
propensity score of the switcher should lie 
within the range of the time‐conditional pro-
pensity scores of the members of the corre-
sponding exposure set. To emulate the 
randomized trial, the selection process can be 
initiated with the first chronological index 
study  drug subject and repeated sequentially. 
Additionally, once a patient has been selected 
into the comparator group, they are not consid-
ered any longer in subsequent exposure sets as 
potential comparators. Thus, each subject who 
initiated the study drug will have a comparator 
user, matched on the time‐conditional propen-
sity score. Cohort entry is taken as the date of 
the first prescription of the study drug and the 
corresponding date for the matched compara-
tor. If the exposure sets are too large to compute 
the time‐conditional propensity scores by the 
time‐varying Cox model, an alternative is to 
select random samples of prescriptions from 
each exposure set using conditional logistic 
regression, matching on the exposure set, with 
the relative odds estimating the relative hazards. 
The computed propensity odds score for the 
index switcher is used to identify the corre-
sponding matched patient as the subject with 
the closest value from all members of the expo-
sure set, not only the sampled ones.

This approach is useful for studies having a 
“nonuse” comparator, by using a physician visit 
or prescription for any drug other than the study 
drug as the comparator. Several questions 
remain regarding this design [38]. In particular, 
potential bias from using the prevalent users as 
comparators should be investigated by strati-
fication on the incident/prevalent new‐user 
status.

Within‐Subject Designs
When dealing with the study of transient drug 
effects on the risk of acute adverse events, 
Maclure asserts that the best representatives of 
the source population that produced the cases 
would be the case subjects themselves; this is 
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the premise of the case–crossover design [39]. 
This is a design where comparisons between 
exposures are made within subjects, thus sig-
nificantly attenuating the problem of confound-
ing. An extension to the case–crossover design, 
the case–time–control design, has been pro-
posed and is also presented here.

Case‐Crossover Design
The case–crossover study is simply a crossover 
study in the cases only. The subjects alternate at 
varying frequencies between exposure and non-
exposure to the drug of interest, until the 
adverse event occurs, which happens for all 
 subjects in the study sample, since all are cases 
by definition. With respect to the timing of the 
adverse event, each case is investigated to deter-
mine whether exposure was present within the 
predetermined effect period, namely within the 
previous four hours in our example. This occur-
rence is then classified as having arisen either 
under drug exposure or nonexposure on the 
basis of the effect period. Thus, for each case, we 
have either an exposed or unexposed status, 
which represents for data analysis the first col-
umn of a 2 × 2 table, one for each case. Since each 
case will be matched to itself for comparison, 
the analysis is matched and thus we must create 
separate 2 × 2 tables for each case.

With respect to control information, the data 
on the average drug use pattern are necessary to 
determine the typical probability of exposure 
during the time window of effect. This is done 
by obtaining data for a sufficiently stable period 
of time. In our example, we may find out the 
average number of times a day each case has 
been using beta‐agonists (two inhalations of 
100 µg each) in the past year. Note that there are 
six four‐hour periods (the duration of the effect 
period) in a day. Such data will determine 
the  proportion of time that each asthmatic is 
usually spending time in the effect period and 
thus potentially “at risk” of ventricular tachycardia. 
This proportion is then used to obtain the num-
ber of cases expected on the basis of time spent 

in these “at‐risk” periods, for comparison with 
the number of cases observed during such 
 periods. This is done by forming a 2 × 2 table for 
each case, with the corresponding control data 
as defined above, and combining the tables 
using the Mantel–Haenszel technique as 
described in detail by Maclure [39].

To carry out a case–crossover study, three 
critical points must be considered. First, the 
study must necessarily be dealing with an acute 
adverse event that is alleged to be the result of a 
transient drug effect. Thus, drugs with chronic 
or regular patterns of use which vary only mini-
mally between and within individuals are not 
easily amenable to this design. Nor are latent 
adverse events, which only occur long after 
exposure. Second, since a transient effect is 
under study, the effect period (or time window 
of effect) must be precisely determined. For 
example, in a study of the possible acute cardio-
toxicity of inhaled beta‐agonists in asthmatics, 
this effect period can be determined to be four 
hours after having taken the usual dose of two 
inhalations of 100 µg of the product. An incor-
rect specification of this time window can have 
important repercussions on the risk estimate, as 
we will show in the example below. Third, one 
must be able to obtain reliable data on the usual 
pattern of drug exposure for each case, over a 
sufficiently long period of time (as discussed 
further below). For our example, we could seek 
the frequency of use of beta‐agonists during the 
year preceding the adverse event.

We generated data for a hypothetical case–
crossover study of 10 asthmatic patients who 
experienced ventricular tachycardia. These 
were all queried (also hypothetically) regarding 
their use of two puffs of inhaled beta‐agonist in 
the last four hours and on average over the past 
year. The data are displayed in Table 43.1. The 
fact of drug use within the effect period for the 
event classification is straightforward. The usual 
frequency of drug use per year is converted to a 
ratio of the number of “at‐risk” periods to the 
number of “no‐risk” periods, the total number of 
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four‐hour periods being 2190 in one year. Thus, 
for example, the content of the 2 × 2 table for the 
first case, who is not found to have been exposed 
in the prior four‐hour period, is (0,1,365,1825), 
while for the second case, who is exposed, it is 
(1,0,6,2184). Using the Mantel–Haenszel tech-
nique to combine the 10 2 × 2 tables, the esti-
mate of relative risk is 3.0 (95% CI 1.2–7.6).

This method is sensitive to the specification 
of the time window of effect. For example, if this 
effect period is in fact only two hours, then the 
data of Table 43.1 would be affected in two ways: 
some cases may not be considered exposed any 
more, and the exposure probabilities will 
change. By considering as unexposed cases 2 
and 4, for instance, who may have been exposed 
three hours before ventricular tachycardia, and 
recalculating the appropriate exposure proba-
bilities, the relative risk becomes 2.0 (95% CI 
0.3–12.0). On the other hand, if this effect 
period is in fact six hours long, then the data of 
Table 43.1 would be affected in two ways: some 
new cases may now be considered exposed, and 
the exposure probabilities will change. By con-

sidering as exposed cases 3 and 5, for instance, 
who may have been exposed five hours before 
ventricular tachycardia, and recalculating the 
appropriate exposure probabilities, the relative 
risk becomes 5.0 (95% CI 2.0–12.2). The differ-
ence in the magnitude of the risk and the cor-
responding statistical significance between the 
various scenarios is indicative of the importance 
of the need for an accurate specification of the 
length of the effect period.

This method is valuable when studying an 
acute adverse event that is alleged to be the 
result of a transient drug effect. Consequently, it 
excludes the study of drugs with regular pat-
terns of use that vary minimally within individ-
uals or adverse events which can only result 
from long extended exposure. Moreover, the 
case–crossover design requires precise knowl-
edge about the effect period (or time window of 
effect), although the latter can be varied to 
investigate the optimum window to use. The 
design is also very useful when the selection of 
controls in the usual sense is uncertain. A sig-
nificant advantage of this design is that it elimi-

Table 43.1 Hypothetical data for 10 subjects with ventricular tachycardia included in a case–crossover study 
of the risk of ventricular tachycardia in asthma associated with the four‐hour period after beta‐agonist exposure.

Case #
Beta‐agonist use 
in last 4 hoursa (Ei)

Usual beta‐agonist 
use in last year

Periods of 
exposure (N1i)

Periods of no 
exposure (N0i)

1 0 1/day 365 1825
2 1 6/year 6 2184
3 0 2/day 730 1460
4 1 1/month 12 2178
5 0 4/week 208 1982
6 0 1/week 52 2138
7 0 1/month 12 2178
8 1 2/month 24 2166
9 0 2/day 730 1460

10 0 2/week 104 2086
a Inhalations of 200 µg: 1 = yes, 0 = no.
Note: Rate ratio estimator is (Σ Ei N0i) / (Σ (1‐ Ei) N1i).
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nates the problem of confounding by factors 
that do not change over time. It cannot, how-
ever, easily address the problem of confounding 
by factors that do change over time. In this 
instance, time‐dependent data will be required 
for such confounders, a possibly difficult task.

The case–crossover design is automatically 
free of control selection bias, which occurs when 
controls are not representative of the base popu-
lation from which the cases arose. However, the 
case was inevitably different during the time 
period when they took the drug, from the time 
period when they did not take the drug. Thus, in 
this design, confounding by indication (see 
Chapter 33) can be severe. Although such con-
trol selection bias (in the usual control sense) is 
eliminated, case selection bias could be present 
if case selection is related to the exposure under 
study. Information bias resulting from the differ-
ential quality of recent and past drug exposure 
data can be a concern but less so if one uses drug 
exposure data from computerized databases. 
However, this design requires very precise 
knowledge of when a drug was actually taken, 
often a very difficult task in computerized data-
bases, especially with drugs that are taken inter-
mittently, exactly when this design could be 
useful.

Finally, the case–crossover design is intended 
to be used with transient exposures; otherwise 
estimates will be biased towards the null, as was 
shown empirically in a case–crossover study of 
the effects of long half‐life benzodiazepines and 
the risk of motor vehicle crashes (MVC) in the 
elderly [40]. There were 5579 cases of MVC 
identified from the Province of Quebec, Canada, 
computerized databases. The case–crossover 
approach applied to all cases did not show any 
effect (OR 0.99; 95% CI 0.83–1.19). However, 
among the cases restricted to subjects with four 
or fewer prescriptions filled in the previous year 
(transient use), the odds ratio was 1.53 (95% CI 
1.08–2.16]. Thus, it is important to verify this 
assumption of transient exposure, which may 
not be met in practice for drug therapies that 

are given for chronic conditions. This approach 
has been used successfully in several studies 
[41–45]. It has also been adapted for applica-
tion to the risk assessment of vaccines (see 
Chapter 20) [46].

Case–Time–Control Design
One of the limitations of the case–crossover 
design is the assumption of the absence of a 
time trend in the exposure prevalence. An 
approach that adjusts for such time trends is the 
case–time–control method. By using cases and 
controls of a conventional case–control study as 
their own referents, the case–time–control 
design attempts to limit the biasing effect of 
unmeasured confounding factors, such as drug 
indication, while addressing the time trend 
assumption [47]. The method is an extension of 
the case–crossover analysis that uses, in addi-
tion to the case series, a series of control sub-
jects to adjust for exposure time trends.

The approach is illustrated with data from the 
Saskatchewan Asthma Epidemiologic Project 
[14], a study conducted to investigate the risks 
associated with the use of inhaled beta‐agonists 
in the treatment of asthma. Using a cohort of 
12 301 asthmatics followed during 1980–87, 129 
cases of fatal or near‐fatal asthma and 655 con-
trols were identified. The amount of beta‐ago-
nist used in the year prior to the index date was 
used for exposure. Table 43.2 displays the data 
comparing low (12 or fewer canisters per year) 
with high (more than 12) use of beta‐agonists. 
The crude odds ratio for high beta‐agonist use 
was 4.4 (95% CI 2.9–6.7). Adjustment for all 
available markers of severity, such as oral corti-
costeroids and prior asthma hospitalizations as 
confounding factors, lowers the odds ratio to 3.1 
(95% CI 1.8–5.4), the “best” estimate one can 
derive from these case–control data using con-
ventional tools.

To apply the case–time–control design, 
exposure to beta‐agonists was obtained for the 
one‐year current period and the one‐year refer-
ence period prior to the current period. First, a 
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case–crossover analysis was performed using 
the discordant subjects among the 129 cases, 
namely the 29 who were current high users of 
beta‐agonists and low users in the reference 
period, and the nine cases who were current low 
users of beta‐agonist and high users previously. 
This analysis is repeated for the 655 controls, of 
which there were 90 discordant in exposure; 
that is, 65 were current high users of beta‐ago-
nists and low users in the reference period, and 
25 were current low users of beta‐agonists and 
high users previously. The case–time–control 
odds ratio, using these discordant pairs frequen-
cies for a paired‐matched analysis, is given by 
(29/9)/(65/25) = 1.2 (95% CI 0.5–3.0). This esti-
mate, which minimizes the effect of unmeas-
ured confounding by disease severity, indicates 
a very small risk for these drugs.

The case–time–control approach can provide 
an unbiased estimate of the odds ratio in the 
presence of confounding by indication, despite 
the fact that the indication for drug use (in our 
example, intrinsic disease severity) is not meas-
ured, because of the within‐subject analysis. It 
also controls for time trends in drug use. 
Nevertheless, its validity is subject to several 
assumptions, including the absence of time‐
dependent confounders, such as increasing 
asthma severity over time (an important prob-
lem, since new drugs may be more likely to be 

implemented when disease is most severe), so 
that caution is recommended in its use [48,49]. 
This approach has been used successfully in 
several studies [50–55].

Analytic Approaches for Improved 
Confounding Control

Balancing Patient Characteristics
Confounding caused by imbalance of patient 
risk factors between treatment groups is a 
known threat to validity in nonrandomized 
studies of treatment effects. A litany of options 
for reducing confounding is available to epide-
miologists [56,57]. Several approaches fit key 
characteristics of longitudinal healthcare data-
bases well and address important concerns in 
pharmacoepidemiologic analyses.

Propensity Score Analyses
Propensity score analysis has emerged as a con-
venient and effective tool for adjusting large 
numbers of confounders. In an incident user 
cohort design, a propensity score (PS) is the 
estimated probability of starting medication A 
versus starting medication B, conditional on all 
observed pretreatment patient characteristics. 
Such prediction of treatment choice based on 
preexisting patient characteristics fits the struc-
ture of the incident user cohort design.

Table 43.2 Illustration of a case–time–control analysis of data from a case–control study of 129 cases of fatal or 
near‐fatal asthma and 655 matched controls, and current beta‐agonist use.

Controls

Cases High Low High Low OR 95% CI

Current beta‐agonist use (case–control) 93 36 241 414 3.1b 1.8–5.4
Discordanta use (case–crossover) 29 9 3.2 1.5–6.8
Discordanta use (control–crossover) 65 25 2.6 1.6–4.1
Case–time–control 29 9 65 25 1.2 0.5–3.0

a Discordant from exposure level during reference time period.
b Adjusted estimate from case–control analysis.
CI, confidence interval; OR, odds ratio.
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Propensity scores are known as a multivariate 
balancing tool that balance large numbers of 
covariates in an efficient way even if the study 
outcome is rare, which is frequent in pharma-
coepidemiology [58]. Estimating the propensity 
score using logistic regression is uncomplicated. 
Strategies for variable selection (i.e., the varia-
bles to include in the logistic regression model 
to estimate the propensity score) are well 
described [59]. Variables that are only predic-
tors of treatment choice but are not independ-
ent predictors of the study outcome will lead to 
less precise estimates and in some extreme situ-
ations to bias [60]. Selecting variables based on 
P values is not helpful as this strategy depends 
on study size, and different variables would be 
selected or unselected for confounding adjust-
ment if the study size changes, although the 
confounding effect of each variable may remain 
unchanged. Once a propensity score is esti-
mated based on observed baseline covariates, 
there are several options to utilize it in a second 
step to adjust confounding. Typical strategies 
include adjustment for quintiles or deciles of the 
score with or without trimming, regression 
modeling of the PS, or matching on propensity 
scores [61]. Matching illustrates the working of 
propensity scores well.

Fixed ratio matching on propensity scores 
like 1:1 matching has several advantages that 
may outweigh its drawback of not utilizing the 
full dataset in situations where not all eligible 
patients match. Several matching algorithms 
are frequently used [62]. They have in common 
that for each exposed patient with a specific 
propensity score, one or multiple comparator 
patients will be picked with a propensity score 
that is similar within a defined caliper [63]. 
They vary in how they identify the best 
matches. Such matching will exclude patients 
in the extreme PS ranges where there is little 
clinical ambivalence in treatment choice; we 
therefore see little or no overlap in data 
(Figure  43.7). The tails of the PS distribution 
often harbor extreme patient scenarios caused 

by unobserved patient characteristics often in 
patients who are not representative for the 
majority in clinical practice. Keeping them in 
the analyses may lead to clinically less relevant 

% of
subjects

(A)

(B)

0
0 0.5

Exposure propensity score

= treated with study drug
= treated with comparison drug

1

Patients
never
treated
with study
drug

Patients
always
treated
with study
drug

% of
subjects

0
0 0.5

Exposure propensity score

= treated with study drug
= treated with comparison drug

1

Patients
never
treated
with study
drug

Patients
always
treated
with study
drug

Figure 43.7 Two hypothetical propensity score 
distributions before and after matching. (A) Before 
matching: two propensity score distributions partially 
overlap, indicating some similarities between the 
comparison groups in a multivariate parameter space. 
(B) After 1:1 matching on propensity score: not all 
patients found matches that were similar enough in 
their multivariable characteristics. Areas of nonoverlap 
between PS distributions drop out entirely.
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findings [64,65]. Trimming the extremes of the 
propensity score distributions is a data restric-
tion strategy that generally will increase inter-
nal validity of findings [66]. Another advantage 
is that the multivariate balance of potential 
confounders can be demonstrated by cross‐
tabulating observed patient characteristics by 
actual exposure status after fixed ratio match-
ing. 1:1 matching in cohort studies does not 
require matched analyses, which simplifies the 
effect estimation to a bivariate analysis. 1:1 
matching allows inclusion of all overlapping 
comparator patients within a defined caliper in 
the analysis. However, in a variable ratio match-
ing design the matching sets need to be pre-
served in the analysis to avoid bias. Analytic 
techniques that condition on the matching sets 
and may be used in this setting include condi-
tional logistic regression or stratified Cox 
regression, depending on the data model.

It has been shown that on average, multivari-
ate covariate balance will be achieved between 
treatment groups when matching on propen-
sity score [67]. If a rational treatment decision 
process can be modeled well with observed 

patient characteristics, a resulting propensity 
score may lead to substantial or even full sepa-
ration of treated and untreated patients 
(Figure 43.8A) [68]. This means that for patients 
initiated on a study drug, very few patients ini-
tiated on a comparison drug could be identified 
who had the same propensity for treatment 
given the observed patient characteristics. This 
would leave few comparable patients for analy-
sis. In other words, treatment choice would be 
almost deterministic; little random treatment 
choice or empirical equipoise would be left in 
the prescribing decision that could be exploited 
for inference about the drug effect.

Consider the comparison of a fixed combina-
tion of ezetimibe and simvastatin versus simv-
astatin alone and their effect on coronary events 
as an example of such a situation. Assume that a 
health plan that provides the study data covers 
the ezetimibe/simvastatin combination only if 
LDL and HDL levels have crossed certain 
thresholds: every patient below those thresh-
olds will use simvastatin alone. The LDL and 
HDL levels therefore become strong if not per-
fect determinants of treatment choice, and 
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Figure 43.8 Multivariate propensity 
score distributions with varying 
degrees of overlap (A, low; B, 
moderate; C, high) as a diagnostic tool.
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including them in the propensity score estima-
tion will lead to substantial or complete separa-
tion of the PS distributions of the two treatment 
groups. As the ezetimibe/simvastatin combina-
tion continues to be marketed, it will be used 
less selectively by more and more patients. 
Consequently, as the prescribers’ treatment 
decisions are less disease state determined (e.g., 
not driven by LDL/HDL levels in the ezetimibe 
vs simvastatin example) and increasingly prefer-
ence based, the propensity score distributions 
will overlap more and more as a sign that more 
patients are subject to treatment equipoise 
(Figure 43.8B,C).

If strong separation of PS distributions is 
observed, it indicates that the specific compari-
son cannot be made validly in the study popula-
tion. In the above example, all ezetimibe and 
simvastatin users have high LDL level and 
hardly any simvastatin users have a comparable 
LDL level. Therefore, very few comparable 
patients are available for valid inference. This is 
not a limitation of the method, but rather a very 
insightful multivariate diagnostic describing the 
limitations inherent in a study population. The 
corresponding effect estimates from conven-
tional multivariate outcome models will have 
substantial imprecision, reflecting the fact that 
few patients contribute to the estimation despite 
a large study size. Investigators may want to 
reconsider the comparison agent and choose a 
more comparable drug or use another study 
population where there is less treatment separa-
tion in clinical practice.

In summary, propensity score analyses are 
convenient tools to adjust for many covariates 
when study outcomes are rare. Extensive con-
founding adjustment is central in most pharma-
coepidemiologic applications and in secondary 
healthcare databases we can often define many 
covariates in an effort to reduce the limitation 
of unobserved or misclassified patient charac-
teristics. As such, PS analyses fit the needs of 
pharmacoepidemiologists working with longi-
tudinal claims data well. In contrast to traditional 

outcome models, PS analyses allow the investi-
gator to demonstrate the covariate balance 
achieved in the final study sample. Postmatching 
c‐statistics or standardized differences of covar-
iates have gained popularity in PS matching 
analyses [63,69]. PS estimation is well developed 
for comparing two agents using logistic regres-
sion to predict treatment choice. When more 
than two agents or several dose categories are 
compared, polytomous regression models are 
used to estimate the propensity score [70] 
and  either pragmatic pairwise matching to a 
common reference group or multidimensional 
matching is applied [71]. Of importance, PS 
analyses adjust for measured variables, although 
they can be used to adjust for many at the same 
time some of which will be proxies for unob-
served confounders [72]. Further, one loses the 
ability to see the effects of adjusting for one var-
iable at a time.

In situations where exposure is rare, disease 
risk scores, an alternative to propensity score 
analysis, might be more suitable [73,74]. They 
estimate the association between patient fac-
tors and the study outcome in an unexposed 
population using multivariate regression and 
summarize the relationship in each patient’s 
estimated probability of the outcome independ-
ent of exposure.

Focusing on the Analysis of Comparable Patients
Restriction is a common and effective analytic 
tool to make drug user groups more comparable 
by making populations more homogeneous, 
which leads to less residual confounding. Some 
restrictions are quite obvious since they are 
made by explicit criteria, for example, limiting 
the study population to elderly patients with 
dementia to study the safety of antipsychotic 
medications used to control behavioral distur-
bances in this population. Other restrictions, 
like PS matching, are more implicit and blur the 
line between design choices and analytic strate-
gies to reduce confounding. It is important 
for pharmacoepidemiologists to understand the 



Currently Available Solutions  1095

reasons for specific restrictions and their impli-
cations for the generalizability of findings.

Choice of Comparator Group
Picking a comparator group is arguably the 
most fundamental choice in a pharmacoepide-
miologic study design and may influence results 
substantially. Ideally, we want to restrict the 
comparison population to patients who have 
the identical indication as the users of the study 
agent in routine care. Rosiglitazone and piogl-
itazone are such a medication pair. They were 
marketed around the same time, were both indi-
cated for second‐line treatment of diabetes, 
come from the same class of compound, and in 
the early marketing phase were thought to have 
similar effectiveness and safety profiles. This 
should make treatment choice largely random 
with regard to patient characteristics and treat-
ment groups comparable by design, resulting in 
almost overlapping propensity score distribu-
tions and little confounding (see Figure 43.8C). 
In individual situations, it may be that rosiglita-
zone‐preferring physicians may treat less sick 
patients or independently produce better health 
outcomes in comparable patients. However, 
these physicians may or may not average out 
with similar pioglitazone‐preferring physicians 
in this setting of treatment equipoise. As indi-
cations are usually recorded unreliably and 
frequently go beyond the labeled indications, 
picking a comparison drug that implicitly has 
the identical indication, if available, is usually 
more fruitful.

Limiting to Incident Users
By restricting the study population to new users of 
the study agent or a comparator agent, we implic-
itly require that both groups have been recently 
evaluated by a physician. Based on this evaluation, 
the physician has decided that the indicating con-
dition has reached a state where a pharmacologic 
treatment should be initiated. Therefore, such 
patients are likely to be more similar in observable 
and unobservable characteristics than comparing 

incident users versus nonusers or versus ongoing 
users of another drug.

Matching on Patient Characteristics
Multivariate propensity scores demonstrate areas 
of nonoverlap where no referent patients with 
comparable baseline characteristics can be identi-
fied. It is recommended to remove those patients 
from the analysis as they are not contributing to 
the estimation and may introduce bias. Such a 
restriction can be achieved by trimming these 
patients from the study population [66] or by 
matching patients on the propensity score or on 
specific key patient characteristics of importance.

While restriction is an important tool to 
improve internal validity, it will reduce general-
izability of findings. However, in pharmacoepi-
demiology we usually place higher value on 
internal validity even if that comes at the price 
of reduced external validity. Investigators will 
need to be aware of this trade‐off and justify 
their choices accordingly.

Unobserved Patient Characteristics 
and Residual Confounding
Once a study is implemented, strategies to 
reduce confounding further are limited to 
observable disease risk factors. Secondary data, 
like electronic healthcare databases, often lack 
critical details on health state and risk factors, 
which leads to residual confounding if left 
unadjusted.

Proxy Adjustment
Longitudinal electronic healthcare databases 
are as much a description of medical sociology 
under financial constraints as they are records 
of delivered healthcare and can be analyzed as a 
set of proxies that indirectly describe the health 
status of patients [75]. This status is presented 
through the lenses of healthcare providers 
recording their findings and interventions with 
or without the help of professional coders and 
operating under the constraints of a specific 
healthcare system. On several steps along the 
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way, weighing of medical evidence and treatment 
options occurred; these are not observable in 
claims data but collectively resulted in a measur-
able action. A measured action like the filling of a 
medication has a clear interpretation but such 
interpretations are not always possible. In fact, in 
most cases we cannot determine the exact inter-
pretation, but an exact interpretation may not be 
required for effective confounder adjustment. 
For example, old age serves as a proxy for many 
factors including co‐morbidity, frailty, and cogni-
tive decline; use of an oxygen canister is a sign 
of  frail health; having regular annual check‐ups 
is  indicative of a health‐seeking lifestyle and 
increased adherence. Adjusting for a perfect 
 surrogate of an unmeasured factor is equivalent 
to adjusting for the factor itself [76].

The degree to which a surrogate is related to 
an unobserved or imperfectly observed con-
founder is proportional to the degree to which 
adjustment can be achieved [77,78]. Frequently 
used proxies in pharmacoepidemiologic analy-
ses are the number of prescription drugs dis-
pensed, the number of physician visits, and 
hospitalizations before the index drug expo-
sure. Such measures of healthcare utilization 
intensity are useful proxies for general health, 
access to care, and surveillance. They have 
been shown to meaningfully help adjust for 
confounding [79].

Proxy adjustment can be exploited by algo-
rithms that systematically search through recorded 
codes for diagnoses, procedures, equipment pur-
chases, and drug dispensings to identify potential 
confounders or proxies thereof [72]. The hundreds 
of proxies that will be identified can then be 
adjusted for in a large propensity score model. 
Collinearity may likely occur in such large models. 
It will not affect estimation validity as the individ-
ual parameters estimated in the large propensity 
score regression will not be interpreted but only 
used for predicting treatment [58]; however, it 
may reduce precision [60]. This high‐dimensional 
propensity score approach has been empirically 
shown to improve confounding adjustment in 

many settings over and above investigator‐selected 
covariates [72,80–83].

While the semi‐automated high‐dimensional 
PS approach is remarkably robust, issues may 
arise in small studies with few exposed and rare 
outcomes [84,85]. Generally in such settings PS 
stratification is more robust [86] and variance 
estimates may be inflated [87]. Although adjust-
ing for variables that are only related to the 
exposure and not to the outcome (an instru-
mental variable) could theoretically increase 
bias [60], in practical scenarios the advantage of 
adjusting for potential confounders outweighs 
the risk of adjusting for the rare instrument 
according to a recent simulation study [88]. 
A challenge remains that, empirically, it is very 
difficult to know with enough certainty whether 
a variable is a confounder or an instrument.

Exploiting Random Aspects in Treatment Choice 
Via Instrumental Variable Analysis
As explained earlier, we are interested in identi-
fying residual random exposure variation after 
adjusting for observable confounders in order 
to more completely account for residual con-
founding. However, in secondary data such as 
longitudinal claims databases, electronic medi-
cal records, or registries, not all clinically rele-
vant risk factors of the outcome may be 
recorded. To attempt to address this limitation, 
we can try to identify naturally occurring quasi‐
random treatment choices in routine care. 
Factors that determine such quasi‐random 
treatment choices are called instrumental vari-
ables (IVs), and IV analyses can result in unbi-
ased effect estimates even without observing all 
confounders if several assumptions are fulfilled 
(discussed further later).

An instructive example of an instrument is a 
hospital drug formulary. Some hospitals list only 
drug A for a given indication and other hospitals 
list only drug B. It is a reasonable assumption 
that patients do not choose their preferred 
hospital based on its formulary but rather on 
location and recommendation. Therefore, the 
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choice of drug A versus drug B should be 
 independent of patient characteristics in the 
hospitals with these restricted formularies. 
Thus, comparing patient outcomes from drug A 
hospitals with patient outcomes from drug B 
hospitals should result in unbiased effects of 
drug A versus drug B, using the appropriate 
analytic tools. An example of such a study is one 
on the risk of death from aprotinin, an antifi-
brinolytic agent given to reduce bleeding during 
cardiac surgery [89]. The study identified sur-
geons who always used aprotinin and compared 
their outcomes to surgeons who always used 
aminocaproic acid, an alternative drug. If physi-
cian skill level and performance are on average 
equal between institutions, independent of drug 
use, this will result in valid findings. On the 
other hand, of course, such an assumption may 
not be valid, for example if academic hospitals 
allow less restrictive formularies, are more likely 
to see sicker patients, and have skilled physi-
cians, all of which may be true.

Instrumental variable analyses rely on the identi-
fication of a valid instrument, a factor that is 
assumed to be related to treatment, but neither 
directly nor indirectly related to the study outcome. 
As such, an IV is an observed variable that causes 
(or is a marker of) variation in the exposure similar 
to random treatment choice. Typically, the follow-
ing three assumptions need to be fulfilled for valid 
IV estimation: 1) an IV should affect treatment or 
be associated with treatment choice by sharing a 
common cause – the strength of this association is 
also referred to as the instrument strength; 2) an IV 
should be a factor that is as good as randomly 
assigned, so that it is unrelated to patient charac-
teristics; and 3) an IV should not be related to the 
outcome other than through its association with 
treatment. As such, an IV analysis sounds very 
much like a randomized trial with noncompliance. 
The flip of a coin determines the instrument status 
(treat with A vs treat with B) and the amount of 
random noncompliance determines the strength 
of the instrument. In nonrandomized research, 
however, identifying valid instruments is difficult 

and successful IV analyses are infrequent. In prin-
ciple, treatment preference can be influenced by 
time if treatment guidelines change rapidly and 
substantially. A comparison of patient outcome 
before versus after a sudden change in treatment 
patterns may then be a reasonable instrument 
[90,91]. Table 43.3 summarizes a list of some pub-
lished IV analyses in healthcare.

More commonly, IV analyses utilize individual, 
local, or regional treatment preferences. For 
example, Brookhart et  al. used physician pre-
scribing preference to study the effect of analgesic 
treatment with COX‐2 selective inhibitors (cox-
ibs) versus nonselective NSAIDs (nsNSAID) on 
the risk of upper gastrointestinal (GI) bleed [93]. 
Many variations in defining this preference were 
tested and a reasonable instrument implementa-
tion turned out to be the same physician’s analge-
sic prescription (IV status = coxib vs nsNSAID) to 
the previous patient who needed an analgesic 
[97]. The authors could demonstrate that such 
preference is a fairly strong instrument compared 
to instruments often used in economics. However, 
despite additional adjustment for observed 
patient characteristics and general quality of care 
[98,99], sicker patients may still cluster in coxib‐
preferring practices and be associated with GI 
bleed, which would invalidate the IV analysis. 
Stuckel et al. [94] used regional variation in the 
rate of cardiac catheterization (IV status = high vs 
low rate) to estimate its effect on post‐MI mortal-
ity. While this regional preference instrument was 
weaker than the physician prescribing preference, 
it was argued that the instrument was more valid 
as it is less likely that patients would move to 
another region to receive the preferred care rather 
than simply switching their physician.

An IV analysis is technically fairly straightfor-
ward once all IV assumptions are fulfilled. In the 
case of a dichotomous instrument (Z) and expo-
sure (X), the classic IV estimator is:

IV
E Y Z E Y Z
E X Z E X Z

| |
| |

1 0
1 0  
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where Y is the study outcome and β is a measure 
of the effect of X on Y [100]. The numerator of 
this estimator is the effect of the instrument sta-
tus (coxib‐preferring physician vs not) on the 
outcome measured as a risk difference. The 
denominator is the association between instru-
ment status and actual treatment and is a meas-
ure of the strength of an instrument. In the case 
where the instrument perfectly predicts the 
treatment (e.g., in the example of a restrictive 
hospital formulary), then the denominator is 1 
and the IV estimator will be identical to the 
naive risk difference estimate. As the instru-
ment gets weaker, the denominator shrinks and 
the IV estimator increases relative to the naive 
risk difference estimate. The denominator is 
sometimes called a rescaling parameter as it 
scales up the naive risk difference estimate.

In practice, IV analyses use two‐stage regres-
sion models that allow additional adjustment 
for multiple observed characteristics. These can 
be linear models to estimate risk differences or 
nonlinear models for risk ratio estimation [101]. 

Brookhart et al. have suggested several empiri-
cal tests to investigate the quality of an instru-
ment in healthcare effectiveness research [4]. 
However, such strategies cannot test all assump-
tions and only help to rule out unsatisfactory 
IVs rather than confirm valid IVs. Fundamentally, 
the price of potentially unbiased estimation in 
IV analyses is the ultimately untestable assump-
tions that the authors will have to argue based 
on substantive knowledge and some empirical 
data. Because of the two‐stage estimation, IV 
analyses are generally less precise which can, in 
some situations, severely reduce their utility for 
decision making. Users should also be cau-
tioned that IV inference is based on those “mar-
ginal” patients whose treatment decision is 
influenced by the IV status. This concept is 
somewhat similar to propensity score analyses 
where only patients in the overlapping area of 
propensity score distributions contribute to the 
multivariate analysis. The IV analy ses make an 
assumption of random treatment choice based 
on the nature of the healthcare system while 

Table 43.3 Selected examples of instrumental variable analyses in clinical epidemiology.

Instrument group Instrument type Examples

Sudden changes in 
treatment preference 
over time

Regulatory or 
coverage interventions

Johnston et al.: Beta‐blocker use after heart failure 
hospitalization before and after 1998 [90]

Innovations and rapid 
adoption

Juurlink et al.: Triamterene use in patients with 
hypertension before and after the RALES trial [91]

Provider treatment 
preference

Distance to specialist 
provider

McClellan et al.: Distance to cardiac cath lab facility 
in patients with acute myocardial infarction (MI) [92]

Physician prescribing 
preference (PPP)

Brookhart et al.: Physician’s treatment initiation 
choice to the preceding patient [93]

Regional treatment 
preference

Stukel et al.: Variation of cardiac catheterization rates 
in 530 US regions in patients with MI [94]

Hospital formulary/ 
surgeon treatment 
preference

Schneeweiss et al.: Cardiac surgeons who always use 
aprotinin as antifibrinolytic agent [89]

Medication co‐
payment level

Cole et al.: Medication co‐payment level in patients 
with heart failure and adherence [95]

Dialysis center 
preference

Thamer et al.: Epo dosing by nonprofit vs for‐profit 
dialysis centers [96]
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propensity score estimation is trying to utilize 
unexplained random treatment variation that is 
left after adjusting for all measured confounders.

Supplementing Database Studies with Clinically 
Rich Data on Potential Confounders
Resources and time permitting, another strategy 
to mitigate residual confounding is to identify a 
subsample and observe among a small number 
of patients detailed information on potential 
confounders (see sections earlier). A common 
version thereof is the nested case–control design 
or the case–cohort design where only a sample 
of controls or a sample of exposed and unex-
posed will be used to collect detailed confounder 
information. Eng et al. demonstrated the use of a 
case–cohort design embedded in a much larger 
claims‐based analysis [102]. The two‐stage sam-
pling approach samples patients according to 
their exposure and outcome status simultane-
ously and then reweights findings [103]. Collet 
et  al. demonstrated two‐stage sampling in a 
Canadian healthcare database [104]. Increasingly, 
it is possible to link information‐rich electronic 
health records or registry data in subsets of 
patients of large claims data studies. It is used to 
demonstrate that balance had been achieved in 
patient characteristics that were not observable 
in claims data [102]. In a new‐user cohort study 
of oral antidiabetic medications with propensity 
score matching, it was demonstrated that labo-
ratory test results, BMI, and duration of diabetes 
were well balanced although these parameters 
were only observable in the subset of EHR‐
linked patients and not part of the claims data 
analysis [105]. Such a process is less resource 
intensive and can be routinely applied in the 
right data environment.

From the perspective of secondary database 
studies, all these approaches can be described 
as internal validation studies, as patients are 
identified within the underlying study cohort 
and then contacted to retrieve more details on 
patient characteristics [106]. The advantage of 
these approaches is that they are tailored 
towards the specific question at hand, that is, 

the sampling as well as the confounder infor-
mation of interest can be defined by the investiga-
tor. However, these approaches are operationally 
not necessarily efficient ways to collect informa-
tion. They are often time‐consuming since 
patients need to be identified and information 
needs to be collected.

An alternative approach is to utilize detailed 
confounder information that was already col-
lected and then can be tied into the adjusted 
analysis of the main study cohort. If additional 
information is available elsewhere, such as a 
routinely conducted survey of a representative 
sample of the main database study, such exter-
nal data sources can be used for reducing resid-
ual confounding under certain assumptions 
[107,108]. For example, each year the Medicare 
Current Beneficiary Survey routinely studies a 
representative sample of Medicare beneficiaries 
to measure a wide variety of characteristics that 
are not captured in Medicare claims data, for 
example limitations in activities of daily living 
[109], cognitive impairment, and physical 
impairments [110]. If such surveys are truly rep-
resentative of the study cohort and data are 
already collected then such external adjustment 
has the advantage of being much faster and less 
costly. As the exact study question is not known 
when the external survey is conducted, it is rec-
ommendable to include a wide battery of patient 
characteristics in the questionnaire.

The available algebraic methods for such 
external adjustment [108] are limited to single 
binary confounders and cannot consider the 
joint confounding arising from several factors. 
These methods were recently extended to 
adjustment for multiple confounders of any 
scale using propensity score calibration (PSC) 
[111]. The basic concept of PSC is to estimate 
two multivariate propensity scores in the infor-
mation‐rich survey. One PS mimics the infor-
mation available in the main study and is seen as 
an error‐prone PS. The second PS uses all avail-
able information and is called the complete PS. 
By regressing the error‐prone PS on the com-
plete PS, a calibration factor can be estimated. 
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With this factor, the error‐prone PS‐adjusted 
result in the main study will be calibrated to 
produce results that are adjusted for the addi-
tional factors only available in the more detailed 
survey data using established regression cali-
bration techniques [112]. Simulation studies 
have demonstrated good performance of PSC 
assuming that the relevant confounders were 
captured in the survey and the survey is repre-
sentative of the main study [113]. PSC methods 
can be extended to other than survey data, 
including electronic medical records or disease 
registries.

Sensitivity Analyses
A series of sensitivity analyses can help investi-
gators to better understand how robust a study’s 
findings are to implicit and explicit assump-
tions. Some of the sensitivity analyses suggested 
below are generic and others are specific to 
database analyses.

An important but underutilized diagnostic 
tool for the impact of unobserved confounders 
on the validity of findings in nonrandomized 
studies is quantitative sensitivity analyses. Basic 
sensitivity analyses of residual confounding try to 
determine how strong and how imbalanced a 
confounder would have to be among drug cate-
gories to explain the observed effect. Such an 
“externally” adjusted relative risk (RRadj) can be 
expressed as a function of the unadjusted relative 
risk (RRunadj), the independent RR of the unmeas-
ured confounder on the disease outcome (RRCD), 
and the prevalence of the confounder in both 
drug exposure categories (PC|E) [16]:

RR
RR

P RR
P RR

adj
unadj

C E CD

C E CD

.
|

|

1

0

1 1
1 1  

A recent cohort study could not find the 
expected association between use of TNF‐alpha 
inhibitors, an immunomodulating agent, in 
treating rheumatoid arthritis, and the incidence 
of serious bacterial infections. There was a con-

cern that physicians may have prescribed the 
agent selectively in patients with more progres-
sive disease. A sensitivity analysis demonstrated 
the direction and strength of any such bias and 
concluded that it would be unlikely to change 
the clinical implications of the study [114]. This 
type of sensitivity analysis is particularly help-
ful in database studies, but is underutilized. 
Spreadsheet software is available for easy 
implementation of such sensitivity analyses 
(drugepi.org) [115]. Lash and Fink proposed an 
approach that considers several systematic 
errors simultaneously, allowing sensitivity anal-
yses for confounding, misclassification, and 
selection bias in one process [116].

When using retrospective databases, it is usu-
ally cumbersome or impossible to contact 
patients and ask when they began using a drug 
for the first time in order to implement an inci-
dent user cohort design. Therefore, incident 
users are identified empirically by a drug dis-
pensing that was not preceded by a dispensing of 
the same drug for a defined time period. This 
washout period is identical for all patients. A typ-
ical length is six months. In sensitivity analyses, 
this interval could be extended to nine and 
12 months. In a study on the comparative safety 
of  antidepressant agents in children in British 
Columbia, this interval was extended from one 
year to three years to ensure that the children in 
the study were treatment naive before their first 
use, which helped balance comparison groups 
and reduce confounding [117]. Although increas-
ing the length of the washout increases the likeli-
hood that patients are truly incident users, it also 
reduces the number of patients eligible for the 
study. This trade‐off is particularly worth noting 
in health plans with high enrollee turnover.

There is often uncertainty about the correct 
definition of the exposure risk window based on 
the clinical pharmacology of the study agent. 
This is further complicated in healthcare data-
bases, since the discontinuation date is imputed 
through the days’ supply of the last dispensing/
prescription. Varying the exposure risk window 
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is therefore insightful and easy to accomplish in 
cohort studies [118].

Another set of sensitivity analyses concerns the 
potential for informative censoring. Patients 
change and discontinue treatment because they 
lack a treatment effect or experience early signs of 
a side effect. The more strongly such nonadher-
ence (i.e., drug switching or discontinuation) is 
associated with the outcome, the more an as‐
treated analysis, which censors at the point of dis-
continuation, will be biased. A cumulative risk 
analysis follows all patients for a fixed time period, 
carrying forward the initial exposure status and 
disregarding any changes in treatment status over 
time. Because this analysis disregards informative 
nonadherence, it will not suffer bias as a conse-
quence of censoring, but it will suffer bias as a 
consequence of exposure misclassification. Such 
misclassification increases with a longer follow‐
up period and a shorter average time to discon-
tinuation. In most cases, though not all, such 
misclassification will bias effects towards the null, 
similar to intention‐to‐treat analyses in rand-
omized trials. Viewed separately, these two analy-
sis types trade different biases but together, they 
give a range of plausible effect estimates. Adjusting 
for nonadherence in an analysis of a drug effect 
requires information about the predictors of 
treatment discontinuation [119,120], which is 
often not available with sufficient accuracy in 
pharmacoepidemiologic studies.

 The Future

Minimizing confounding in nonrandomized 
pharmacoepidemiologic research is an ongoing 
development. While great progress has been 
made in analyzing longitudinal healthcare data-
bases, much remains to be improved in order to 
reliably achieve unbiased estimates that will 
carry the weight of medical decision making. 
Several developments are promising. One is the 
use of instrumental variable analyses utilizing 
the multilevel structure of healthcare systems. 
Another is the expanded use of propensity 
score methods, including its combination with 
data‐mining activities for high‐dimensional 
proxy adjustment. A development that is gain-
ing importance is the enrichment of existing 
data environments with supplemental clinical 
data linked from electronic medical records, 
disease registries, patient surveys, and/or 
 laboratory test result repositories. While this 
information will provide an opportunity for 
improved confounding adjustment, it comes 
with equally large methodologic challenges, as 
information is collected in routine care and 
may have been requested/recorded selectively 
in patients who were thought to benefit most. 
Clearly, there is still plenty of work to be done 
to find satisfactory solutions for the control of 
confounding in  the broad range of pharma-
coepidemiologic research.
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We should all be concerned about the future 
because we will have to spend the rest of our 
lives there.

(Charles Franklin Kettering, 1949)

Speculating about the future is at least risky 
and  possibly foolish. Nevertheless, the future 
of  pharmacoepidemiology seems apparent in 
many ways, judging from past trends and recent 
events. Interest in the field by the pharmaceuti
cal industry, government agencies, new train
ees, and the public continues to grow, as does 
realization of what pharmacoepidemiology can 
contribute. Indeed, international attention on 
drug safety remains high, important safety ques
tions involving widely used drugs continue to 
emerge, and questions concerning the effective
ness of systems of drug approval and drug safety 
monitoring remain.

As the functions of academia, industry, and 
government have become increasingly global, 
so has the field of pharmacoepidemiology. 
The  number of individuals attending the 
annual International Conference on Pharmaco
epidemiology has increased from approxi
mately 50 in the early 1980s to over 1800 in 
2019. The International Society for Pharmaco
epidemiology (ISPE), established in 1991, has 

grown to approximately 1500 members from 
over 60 countries. It developed a set of guide
lines for Good Epidemiologic Practices for 
Drug, Device, and Vaccine Research in the 
United States in 1996 [1], and updated these 
guidelines most recently in 2016 as the ISPE 
Guidelines for Good Pharmacoepidemiology 
Practices [2]. Many national pharmacoepide
miologic societies have been formed as well. 
The journal Clinical Pharmacology and 
Therapeutics, the major US academic clinical 
pharmacology journal, actively solicits pharma
coepidemiologic manuscripts, as did the Journal 
of Clinical Epidemiology. The major journal 
devoted to the field, Pharmacoepidemiology 
and Drug Safety, ISPE’s official journal, is 
indexed on Medline and achieved an impact 
factor of 2.314 in 2018, remarkably high for a 
niche field. Other journals have been formed to 
copy and compete with it.

The number of individuals seeking to enter the 
field continues to increase, as does their level of 
training. The number of programs of study in 
pharmacoepidemiology is increasing in schools 
of medicine, public health, and pharmacy. While 
in the 1980s the single summer short course 
in pharmacoepidemiology at the  University of 
Minnesota was sometimes cancelled because of 
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insufficient interest, later the University of 
Michigan School of Public Health summer 
course in pharmacoepidemiology attracted 10% 
of all students in the entire summer program, 
and now McGill University, Erasmus University 
Rotterdam, Utrecht University, and the Johns 
Hopkins Bloomberg School of Public Health all 
conduct summer short courses in pharmacoepi
demiology. Several other short courses are given 
as well, including by ISPE itself which has seen a 
massive increase in preconference courses 
offered over the years. Regulatory bodies around 
the world have expanded their internal pharma
coepidemiologic programs. The number of 
pharmaceutical companies with their own phar
macoepidemiologic units has also increased, 
along with their support for academic units and 
their funding of external pharmacoepidemio
logic studies. Requirements that a drug be shown 
to be cost‐effective (see Chapter 34) have been 
added to many national and provincial health
care systems, and managed care organizations, 
either to justify reimbursement or even to justify 
drug availability. Drug utilization review is being 
widely applied (see Chapter 19), and many hos
pitals are becoming mini‐pharmacoepidemio
logic practice and research laboratories.

The US Congress has recognized the impor
tance of pharmacoepidemiology, requiring the 
FDA to build a new data resource, containing at 
least 100 million lives, for evaluating potential 
adverse effects of medical products (see 
Chapter 25), and most recently passing the 21st 
Century Cures Act, encouraging the wide use of 
“real‐world evidence.” The latter has been 
deemed to range from traditional pharmacoepi
demiology data sources like claims and medical 
record databases, and even ad hoc pharmacoep
idemiology studies (see Part III), to novel data 
sources like e‐health tools, m‐health tools, and 
other wearable devices, as well as pragmatic tri
als using traditional pharmacoepidemiology 
databases to collect outcomes (see Chapter 32). 
The future is likely to see a marked expansion of 
these novel, technology‐driven approaches.

Thus, from the perspective of those in the 
field, the trends in pharmacoepidemiology are 
remarkably positive, although many important 
challenges remain. In this chapter, we will briefly 
give our own view on the future of pharmacoepi
demiology. Following the format of Part II of the 
book, we explore this future from the perspec
tives of academia, the pharmaceutical industry, 
regulatory agencies, and then the law.

 The View from Academia

Scientific Developments

Methodologic Advances
Methodologically, the array of approaches 
available for performing pharmacoepidemio
logic studies will continue to grow. Each of the 
methodologic issues discussed in Part V can be 
expected to be the subject of further research 
and development. The future is likely to see 
ever more advanced ways of performing and 
analyzing epidemiologic studies across all con
tent areas, as the field of epidemiology contin
ues to expand and develop. Some of these new 
techniques will, of course, be particularly useful 
to investigators in pharmacoepidemiology (see, 
for example, Chapter  43). The next few years 
will likely see continued expanded use of pro
pensity scores, instrumental variables, the 
trend‐in‐trend design, sensitivity analysis, and 
novel methods to analyze time‐varying expo
sures and confounders. In addition, we believe 
that we will see increasing application of phar
macoepidemiologic insight in the conduct of 
clinical trials, as well as increased use of the 
randomized trial design to examine questions 
traditionally addressed by observational phar
macoepidemiology (see Chapter 32), especially 
given the controversies resulting from incon
sistencies between nonexperimental studies 
and experimental studies, and given the emerg
ing field of comparative effectiveness research 
(see Chapter 26).
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Drug regulators have enthusiastically 
embraced therapeutic risk management (see 
Chapter 24). Yet, this field is still very much in 
its infancy, with an enormous amount of work 
needed to develop new methods to measure, 
communicate, and manage the risks and bene
fits associated with medication use. Rigorous 
studies (i.e., program evaluations) of the effec
tiveness of risk management programs remain 
the exception rather than the rule. Development 
of this area will require considerable effort from 
pharmacoepidemiologists as well as those from 
other fields.

We may see developments in the processes 
used to assess causality from individual case 
reports (see Chapters 10 and 29). Data mining 
approaches will be used increasingly in sponta
neous reporting databases to search for early 
signals of adverse reactions (see Chapter  27). 
Hopefully, we will see studies evaluating the 
utility of such approaches. The need for newer 
methods to screen for potential adverse drug 
effects, such as those using healthcare claims or 
medical record data and data from social media, 
is also clear.

We are likely to see increasing input from 
pharmacoepidemiologists into policy questions 
about drug approval (see Chapter 8), with new 
attention to applying pharmacoepidemiology in 
the study of the growing opiate epidemic (see 
Chapter  28). We anticipate that emphasis will 
shift from studies evaluating whether a given 
drug is associated with an increased risk of a 
given event to those that also examine patient‐
and regimen‐specific factors that affect risk [3] 
(see also Chapters 24, 26, and 42). Such studies 
are crucial because, if risk factors for adverse 
reactions can be better understood before a 
safety crisis occurs, or early in the course of a 
crisis, then the clinical use of the drug may be 
able to be repositioned, avoiding the loss of use
ful drugs (see Chapters 24, 30, 35, and 39).

With recent developments in molecular biol
ogy and bioinformatics, and their application to 
the study of pharmacogenetics, the ability of 

researchers to identify biologic factors that pre
dispose patients to adverse drug reactions has 
increased [4] (see Chapter 30). However, few of 
these discoveries have yet been shown useful 
in  improving patient care, and new studies 
and  methods must be pursued to deter
mine  the  clinical utility of genetic testing. 
Pharmacogenetics has evolved from studies of 
measures of slow drug metabolism as a contrib
utor to adverse reactions [5] to the study of 
molecular genetic markers [6–9]. This has been 
aided by the development of new, noninvasive 
methods to collect and analyze biosamples, 
making population‐based genetic studies feasi
ble. We believe that clinical measurement of 
biologic factors will ultimately complement 
existing approaches to tailoring therapeutic 
approaches for individual patients. However, it 
is unlikely that genotype will be the only, or even 
the major, factor that determines the optimal 
drug or dose for a given patient.

Future years are likely to see much more of 
this cross‐fertilization between pharmacoepi
demiology and molecular biology, and newer 
forms of “‐omics” such as the microbiome. From 
a research perspective, we can easily envision 
pharmacogenetic studies added to the process 
of evaluating potential adverse reactions. We 
also anticipate the availability of genotypic 
information for members of large patient 
cohorts for whom drug exposures and clinical 
outcomes are recorded electronically, and even 
for selected patients from electronic data sys
tems, such as those described in Part IIIb of this 
book.

New Content Areas of Interest
In addition, there are a number of new content 
areas that are likely to be explored more. Studies 
of drug utilization will continue to become more 
innovative (see Chapter 18). Particularly as the 
healthcare industry becomes more sensitive to 
the possibility of overutilization, underutiliza
tion, and inappropriate utilization of drugs, and 
the risks associated with each, one would expect 
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to see an increased frequency of and sophistica
tion in drug utilization review programs, which 
seek to improve care (see Chapter  19), poten
tially incorporating techniques from molecular 
pharmacoepidemiology (see Chapter 30).

The US Joint Commission on Accreditation of 
Healthcare Organizations revolutionized US 
hospital pharmacoepidemiology through its 
standards requiring adverse drug reaction sur
veillance and drug use evaluation program in 
every hospital [10,11]. Hospitals are also now 
experimenting with different methods of organ
izing their drug delivery systems to improve 
their use of drugs, for example through use of 
computerized clinical decision support and the 
addition of pharmacists to patient care teams 
[12] (see Chapter 41).

Interest in the field of pharmacoeconomics, 
that is, application of the principles of health 
economics to the study of drug effects, is con
tinuing (see Chapter 34). Society is realizing that 
the acquisition cost of drugs is often a very minor 
part of their economic impact, and that their 
beneficial and harmful effects can be vastly more 
important. Further, more governments and 
insurance programs are increasingly requiring 
economic justification before permitting reim
bursement for a drug. As a result, the number of 
studies exploring this is increasing. As the meth
ods of pharmacoeconomics become increasingly 
sophisticated, and its applications clear, this 
could be expected to continue to be a popular 
field of inquiry.

More nonexperimental studies of beneficial 
drug effects, particularly of drug effectiveness, 
can be expected, as the field becomes more 
aware that such studies are possible (see 
Chapter  33). This is being encouraged by the 
rapid increase in the use of propensity scores to 
adjust for measured covariates, although inves
tigators using this method often place more 
confidence in that technique than is warranted, 
some not recognizing that its ability to control 
for confounding by indication remains depend
ent on one’s ability to measure the true determi

nants of exposure (see Chapter  43). It is also 
being encouraged by the development of com
parative effectiveness research (see Chapter 26). 
Other approaches to controlling for confound
ing are similarly likely to become more common 
as they are further developed (see Chapter 43). 
New analytic approaches, like machine learn
ing, artificial intelligence, and cognitive com
puting, are also likely to make their way into 
pharmacoepidemiology studies.

We will also see more use of pharmacoepide
miologic approaches prior to drug approval, for 
example to understand the baseline rate of 
adverse events that one can expect to see in 
patients who will eventually be treated with a 
new drug (see Chapter 7).

Recent years have seen an explosion in the 
worldwide use of herbal and other complemen
tary and alternative medications. These are 
essentially pharmaceuticals sold without con
ventional standardization, and with no required 
premarketing testing of safety or efficacy. In a 
sense, for these products, this is a return to a 
preregulatory era. Therefore, it is quite likely 
that the next few years will see an analogous set 
of safety concerns associated with their use, and 
society will turn to pharmacoepidemiologists to 
help evaluate the use and effects of these prod
ucts. Of course, if regulatory oversight is 
decreased in some countries, as has been sug
gested in the US, the same could occur with tra
ditional medications.

Research interest in the entire topic of patient 
nonadherence with prescribed drug regimens 
goes back to about 1960, but little fruitful 
research could be done because methods for 
ascertaining drug exposure in individual ambu
latory patients were grossly unsatisfactory [13]. 
This problem has been mitigated greatly by 
advances in incorporating time‐stamping 
microcircuitry into pharmaceutical containers, 
which records the date and time whenever the 
container is opened [14]. Perhaps as a conse
quence of its inherent simplicity and economy, 
electronic monitoring is increasingly emerging 
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as the de facto gold standard for compiling dos
ing histories of ambulatory patients, from which 
one can evaluate the extent of adherence to the 
prescribed drug regimen. Future years are likely 
to see a continuing increase in the use of this 
technique (see Chapter 38) in research, and per
haps in clinical practice. Perhaps equally impor
tantly, new methods of measuring adherence 
that do not rely on purchasing and using alter
native sources of drug dispensing, such as 
smartphone‐based measures of pill taking, may 
expand our ability to measure adherence in real‐
world epidemiology studies.

The next few years are also likely to see the 
increasing ability to target drug therapy to the 
proper patients. This will involve increasing use 
of both statistical methods and laboratory 
techniques from other biological sciences, as 
described above. Statistical approaches will 
allow us to use predictive modeling to study, 
from a population perspective, who is most 
likely to derive benefit from a drug, and who is at 
greatest risk of an adverse outcome. Laboratory 
science will enable us to measure individuals’ 
genotypes, to predict responses to drug therapy 
(i.e., molecular susceptibility). From the per
spective of preapproval testing, these develop
ments may allow researchers to target specific 
patient types for enrollment into their studies, 
those subjects most likely to succeed with a 
drug. From a clinical perspective, it will enable 
healthcare providers to incorporate biological 
factors in the individualization of choice of 
regimens.

The past few years have seen the increased 
use of surrogate markers, presumed to repre
sent greater risk of rarer serious adverse effects 
when drugs are used in broader numbers of 
patients. These range from mild liver function 
test abnormalities, used as predictors of serious 
liver toxicity, to electrocardiographic QTc pro
longation as a marker of risk of suffering the 
arrhythmia torsades de pointes, which can lead 
to death. Indeed, some drugs have been removed 
from the market, or from development, because 

of the presence of these surrogate markers. Yet 
the utility of these markers as predictors of seri
ous clinical outcomes is poorly studied. The 
next few years are likely to see the increased use 
of both very large observational studies and 
large simple trials after marketing, to study 
important clinical outcomes (see Chapters 32 
and 36).

In addition, with the growth of concerns 
about patient safety (see Chapter 41), there has 
been more attention to simultaneous use of 
pairs of drugs that have been shown in pharma
cokinetic studies (see Chapter  2) to cause 
increased or decreased drug levels. Yet popula
tion studies informing the clinical importance 
and pharmacologic aspects of drug–drug inter
actions have only been performed in the past 
few years (see Chapter 40). The next few years 
are likely to see the emergence of more studies 
to address such questions.

Finally, in the last few years, society has 
increasingly turned to pharmacoepidemiology 
for input into major policy decisions. For exam
ple, pharmacoepidemiology played a major role 
in the evaluations by the Institute of Medicine 
of the US National Academy of Sciences of the 
anthrax vaccine [15] (deciding whether the 
existing vaccine was safe to use and, thereby, 
whether the military vaccine program should be 
restarted) and the smallpox vaccine program 
(deciding the shape of the program intended 
initially to vaccinate the entire US population) 
[16]. This is likely to occur even more often in 
the future.

Logistical Advances
Logistically, with the increased computerization 
of data in society in general and within health
care in particular, and the increased emphasis 
on using electronic databases for pharmacoepi
demiology [17] (see Part IIIb), some data 
resources will disappear (e.g., the Rhode Island 
Drug Use Reporting System and the inpatient 
databases discussed in prior editions of this 
book have disappeared, with new ones added, 
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and Group Health of Puget Sound has become 
less commonly used as a data resource, as much 
larger databases have emerged), and a number 
of new computerized databases have emerged 
as major resources for pharmacoepidemiologic 
research, such as commercial insurance data
bases (see Chapter 12), inpatient databases (see 
Chapter  14), and the databases from Ontario 
and Denmark (see Chapter 12). The importance 
of these databases to pharmacoepidemiology is 
now clear: they enable researchers to address, 
quickly and relatively inexpensively, questions 
about drug effects in different settings that 
require large sample sizes, with excellent quality 
data on drug exposures. Registries (see 
Chapter  16) will also become increasingly 
important for pharmacoepidemiologic research. 
With the initiation of US Medicare Part D in 
2006, which provides prescription drug cover
age to US Medicare recipients, the availability of 
this data resource is potentially “game chang
ing” for hypothesis testing studies, as it is so 
large relative to other resources; nearly 27 mil
lion Medicare beneficiaries were already sub
scribed to Part D coverage in 2009 [18] (see 
Chapter  12). It has created an enormous new 
data resource for pharmacoepidemiology, as 
well as increased interest from the US govern
ment in what pharmacoepidemiology can do. 
The development of the FDA’s Sentinel Initiative 
[19] (see Chapter  25) has similarly provided a 
vast new data resource, initially intended for 
hypothesis generating, and more recently used 
for hypothesis strengthening and testing.

Nevertheless, even as the use of databases 
increases, it is important to keep in mind the 
importance of studies that collect data de novo 
(see Chapter  16). Each approach to pharma
coepidemiology has its advantages and its dis
advantages, as described in Part III. No 
approach is ideal in all circumstances, and 
often a number of complementary approaches 
are needed to answer any given research ques
tion (see Chapter 17). To address some of the 
problems inherent in any database, we must 

maintain the ability to perform ad hoc studies 
as well (see Chapter  16). Perhaps better, less 
expensive, and complementary approaches to 
ad hoc data collection in pharmacoepidemiol
ogy will be developed. For example, a potential 
approach that has not been widely used is the 
network of regional and national poison con
trol centers. In particular, poison control cent
ers would be expected to be a useful source of 
information about dose‐dependent adverse 
drug effects.

Of critical importance, there is increasing 
concern about patient privacy in many coun
tries. The regulatory framework for human 
research is actively changing in the process, 
such as Europe’s new data protection law. As 
discussed in Chapter 31, this is already begin
ning to make pharmacoepidemiologic research 
more difficult, whether it affects access to medi
cal records in database studies or access to a list 
of possible cases with a disease to enroll in ad 
hoc case–control studies. This will be an area of 
great interest and rapid activity over the next 
few years as electronic health records become 
much more commonplace, and one in which the 
field of pharmacoepidemiology will need to 
remain very active or risk considerable interfer
ence with its activities.

It is likely that new types of research opportu
nities will emerge. For example, as the US finally 
implemented a drug benefit as part of Medicare, 
its health program for the elderly, US govern
ment drug expenditures suddenly increased by 
$49.5 billion in 2007 [20]. Outside the US, many 
different opportunities to form databases are 
being developed. There is also increased inter
est in the importance of pharmacoepidemiology 
in the developing world. Many developing world 
countries spend a disproportionate amount of 
their healthcare resources on drugs [21], yet 
these drugs are often used inappropriately 
[22]. There have been a number of initiatives 
in  response to this, including the World 
Health Organization’s development of its list of 
Essential Drugs [23,24].
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Funding

For a number of years, academic pharmacoepi
demiology suffered from limited research fund
ing opportunities. In the early 1980s, the only 
available US funding for the field was an extra
mural funding program from the FDA with a 
total of $1 million/year. Industry interest and 
support were similarly limited. With growing 
interest in the field, this situation appears to be 
changing rapidly. The FDA has expanded its 
internal pharmacoepidemiology program and 
the US National Institutes of Health (NIH) is 
funding pharmacoepidemiologic studies. In the 
US, other funding now comes from the Agency 
for Health Care Research and Quality (AHRQ), 
and from the Patient‐Centered Outcomes 
Research Institute (PCORI), created as part of 
the Affordable Care Act. Much industry fund
ing is available, as the perceived need for the 
field within industry grows (see below). This is 
likely to increase, especially as the FDA more 
often requires industry to perform postmarket
ing studies, and with the legislative mandate for 
the FDA to pay more attention to “real‐world 
evidence.”

There is, of course, a risk associated with 
academic groups becoming too dependent on 
industry funding, in terms of both choice of 
study questions and credibility. Fortunately, in 
the US, the AHRQ has begun to fund pharma
coepidemiologic research as well, as part of 
an  initiative in pharmaceutical outcomes 
research. In particular, the AHRQ Centers for 
Education  and Research on Therapeutics 
(CERTs)  program provided federal support for 
ongoing  pharmacoepidemiologic activities 
(see Chapter  6). While still small relative to 
industry expenditures on research, it was large 
relative to the US federal funding previously 
available for pharmacoepidemiology. Similar 
programs have now been started in Europe and 
Canada. Unfortunately, the CERTs program 
has ended and the future of the AHRQ itself is 
always in question.

Even the US NIH now funds pharmacoepide
miologic projects more often. The NIH is the 
logical major source for such support, as it is the 
major funding source for most basic biomedical 
research in the US. Its funds are also accessible 
to investigators outside the US, via the same 
application procedures. However, the NIH’s 
current organizational structure represents an 
obstacle to pharmacoepidemiologic support. In 
general, the institutes within the NIH are organ
ized by organ system.

Earlier in the development of pharmacoepi
demiology, the National Institute of General 
Medical Sciences (NIGMS) provided most of 
the US government support for our field. It 
remains, conceptually, perhaps the most appro
priate source of such support, since it is intended 
to fund projects that are not specific to an organ 
system, and it is the institute that funds clinical 
pharmacologic research. However, over the 
past few years there has been limited funding 
from the NIGMS for epidemiologic research. A 
notable exception was the NIGMS‐funded 
Pharmacogenetics Research Network (PGRN), 
which has now been disbanded. In the mean
time, NIH funding continues to be available if 
one tailors a project to fit an organ system or in 
some other way fits the priorities of one of the 
individual institutes, such as the National 
Institute on Aging or the National Institute of 
Child Health and Human Development.

Personnel

With the major increase in interest in the field of 
pharmacoepidemiology, accompanied by an 
increased number of funding opportunities, a 
major remaining problem, aggravated by the 
other trends, is one of inadequate personnel 
resources. There is a desperate need for more 
well‐trained people in the field, with employment 
opportunities available in academia, industry, and 
government agencies. Some early attempts were 
made to address this. The Burroughs Wellcome 
Foundation created the Burroughs Wellcome 
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Scholar Award in Pharmacoepidemiology, a fac
ulty development award designed to bring new 
people into the field. This program did not pro
vide an opportunity for fellowship training of 
entry‐level individuals but was designed for more 
experienced investigators. Unfortunately, it is no 
longer active.

Outside government, training opportunities 
are limited. In the US, the NIH is the major 
source of support for scientific training but as 
noted above, the NIGMS, which funds training 
programs in clinical pharmacology, now sup
ports one program in pharmacoepidemiology, 
while the National Heart, Lung and Blood 
Institute supports another. The National Institute 
of Child Health and Human Development also 
has funded limited training in pediatric pharma
coepidemiology. However, pharmacoepidemio
logic training is still too dependent on nonfederal 
sources of funds, especially at a time when such 
funding is becoming harder to obtain.

There is a growing number of institutions now 
capable of carrying out such training, for exam
ple universities with faculty members interested 
in pharmacoepidemiology, including those with 
clinical research training programs supported by, 
for example, an NIH Clinical and Translational 
Science Award and organ system‐specific train
ing grants. Young scientists interested in under
going training in pharmacoepidemiology, 
however, can only do so if they happen to qualify 
for support from such programs. No ongoing 
support is normally available from these pro
grams for training in pharmacoepidemiology per 
se. This was addressed in the past primarily 
through the leadership and generosity of some 
pharmaceutical companies. Much more is 
needed, however. Fortunately, with the rapid rise 
in interest in comparative effectiveness research 
(see Chapter  26), additional training support 
emerged from both the NIH and AHRQ/
PCORI, but this is now in question going for
ward. Further, the focus on comparative effec
tiveness research (see Chapter  26) and patient 
engagement and  patient‐reported outcomes 

(see Chapter 42) triggered by the PCORI are in 
doubt now, as PCORI was created by the 
Affordable Care Act which is itself at risk.

 The View from Industry

It appears that the role of pharmacoepidemi
ology in industry is expanding rapidly. All that 
was said above about the future of pharma
coepidemiology scientifically, as it relates to 
academia (see Chapter 6), obviously relates to 
industry as well (see Chapter 7). The necessity 
of pharmacoepidemiology has become appar
ent to many of those in industry. In addition to 
being useful for exploring the effects of their 
drugs, manufacturers are beginning to realize 
that the field can contribute not only to identi
fying problems but also to documenting drug 
safety and developing and evaluating risk 
management programs. An increasing num
ber of manufacturers are mounting pharma
coepidemiologic studies “prophylactically,” to 
have safety data available in advance of when 
crises may occur. Proper practice would argue 
for postmarketing studies for all newly mar
keted drugs used for chronic diseases, and all 
drugs expected to be either pharmacologically 
novel or sales blockbusters, because of the 
unique risks that these situations present. 
Pharmacoepidemiology also can be used for 
measuring beneficial drug effects (see 
Chapter 33) and even for marketing purposes, 
in the form of descriptive market research and 
analyses of the effects of marketing efforts.

Perhaps most importantly for the industry’s 
financial bottom line, pharmacoepidemiologic 
studies can be used to protect the major invest
ment made in developing a new drug against 
false allegations of adverse effects, protecting 
good drugs for a public that needs them. Further, 
even if a drug is found to have a safety problem, 
the legal liability of the company may be dimin
ished if the company has, from the outset, been 
forthright in its efforts to learn about that drug’s 
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risks. Finally, as noted in Chapter 1 and above, 
the FDA now has new authority to require post
marketing pharmacoepidemiologic studies, and 
a new charge to focus on “real‐world evidence,” 
so one can expect to see much more required of 
industry by regulators.

Industry is always interested in predictability. 
With that, there is increased interest in devel
oping a formulaic approach to risk–benefit 
assessment (see Chapter  35). The next few 
years are likely to see considerable additional 
work in this area.

In light of these advantages, most major phar
maceutical firms have formed their own phar
macoepidemiologic units. Of course, this then 
means that industry confronts and, in fact, 
aggravates the problem of an insufficient num
ber of well‐trained personnel. Many pharmaceu
tical companies increased their investment in 
external pharmacoepidemiologic data resources, 
so that they will be available for research when 
crises arise. This has been declining, however. A 
risk of the growth in the number of pharma
coepidemiologic studies for industry is the gen
eration of an increased number of false signals 
about harmful drug effects. This is best addressed 
by having adequately trained individuals in the 
field, and by having personnel and data resources 
available to address these questions quickly, 
responsibly, and effectively, when they are raised.

 The View from Regulatory 
Agencies

It appears that the role of pharmacoepidemiol
ogy in regulatory agencies is also expanding (see 
Chapter  8). Again, all of what was said above 
about the future of pharmacoepidemiology sci
entifically, as it relates to academia, obviously 
relates to regulatory agencies as well. In addi
tion, there have been a large number of major 
drug crises, many described throughout this 
book. Many of these crises resulted in the 
removal of the drugs from the market. The need 

for and importance of pharmacoepidemiologic 
studies have become clear. Again, this can be 
expected to continue in the future. It has even 
been suggested that postmarketing pharma
coepidemiologic studies might replace some 
premarketing Phase III studies in selected situa
tions, as was done with zidovudine [25]. As 
noted, regulatory agencies are being given 
increased authority to require such studies after 
marketing. They are also expanding their phar
macoepidemiologic staffing, and seeking train
ing in pharmacoepidemiology for those already 
employed by the agencies.

We are also seeing increasing governmental 
activity and interest in pharmacoepidemiology, 
outside the traditional realm of regulatory bod
ies. For example, in the US, pharmacoepidemi
ology used to play an important role within the 
AHRQ, the Centers for Disease Control and 
Prevention, PCORI, and the NIH, and there has 
been for nearly 40 years intermittent debate 
about the wisdom of developing an independent 
new Center for Drug Surveillance [26–29].

As noted above, the use of therapeutic risk 
management approaches (see Chapter  24) has 
been aggressively embraced by regulatory bod
ies around the world, and there has been consid
erable discussion about risk–benefit assessments 
of medical products (see Chapter 35). This will 
continue to change regulation as more experi
ence with it is gained.

There is considerable regulatory interest in 
getting important new drugs onto the market 
quickly, using mechanisms such as the FDA’s 
initiatives on orphan drugs, expanded access 
programs, compassionate use programs, fast 
track regulations, accelerated approval, priority 
review, breakthrough drug designation, and use 
of “real‐world evidence,” and analogous initia
tives elsewhere. On the other hand, efforts like 
the Right to Try Act may compromise the sci
entific rigor of the normal regulatory approach. 
The future is likely to see continued creative 
regulatory initiatives toward maintaining this 
balance.
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There is also increased interest in encourag
ing the use of generic drugs, reducing costs, 
and reducing regulatory obstacles to the avail
ability of generically equivalent drugs, once 
patents expire.

As much of drug development expands from 
just small molecules to include biologics, and as 
these mature on the market, regulators have had 
to develop a new framework to regulate biosimi
lars (see Chapter  23). The next few years are 
likely to see considerable new efforts in this vein.

Finally, there is an enormous increase in atten
tion to drug safety, for example driven by drug 
safety issues identified with COX‐2 inhibitors 
and even traditional nonsteroidal antiinflamma
tory drugs, and then by the thiazolidinediones, 
used for treatment of diabetes. The net result 
has been major regulatory change, and even new 
legislation. Between 2009 and 2012, for example, 
the FDA approved 110 new drugs and biologics 
for 120 indications, and only 13 of them did not 
have any postmarketing requirements [30].

 The View from the Law

Finally, the importance of pharmacoepidemiol
ogy to the law has also been growing. The poten
tial financial risk to drug manufacturers posed 
by lawsuits related to adverse drug effects is very 
large. Some financial payments have been enor
mous, and indeed put large multinational com
panies at risk. It is clear that the interest in the 

field and the need for more true experts in the 
field will increase accordingly.

 Conclusion

There are no really “safe” biologically active 
drugs. There are only “safe” physicians.

(Harold A. Kaminetzsky, 1963)

All drugs have adverse effects. Pharmaco
epidemiology will never succeed in preventing 
them. It can only detect them, hopefully early, 
and thereby educate healthcare providers and 
the public, which will lead to better medication 
use. Pharmacoepidemiology can also lead to 
safer use of medications through a better under
standing of the factors that alter the risk/benefit 
balance of medications. The net results of 
increased activity in pharmacoepidemiology 
will be better for industry and academia but, 
most importantly, for the public’s health. The 
next drug disaster cannot be prevented by phar
macoepidemiology but it can minimize its 
adverse public health impact by detecting it 
early. At the same time, it can improve the use of 
drugs that have a genuine role, protecting 
against the loss of useful drugs. The past few 
decades have demonstrated the utility of this 
new field. They also have pointed out some of 
its problems. With luck, the next few years will 
see the utility accentuated and the problems 
ameliorated.
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Table A1 Sample sizes for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 970 717 2 788 497 6 306 290 29 429 320 37 837 603 10 510 431 3 153 120 1 634 946 1 051 034 756 742 583 904 394 133 211 445 142  27 61 134 22 318

0.00005 394 133 557 684 1 261 219 5 885 657 7 567 179 2 101 980 630 585 326 965 210 189 151 334 116 768 78 816 42 280 28 538 12 220 4458

0.0001 197 060 278 832 630 585 2 942 699 3 783 376 1 050 923 315 268 163 467 105 083 75 657 58 376 39 401 21 135 14 264 6106 2225

0.0005 39 401 55 751 126 078 588 332 756 333 210 078 63 015 32 669 20 999 15 117 11 662 7870 4219 2845 1215 439

0.001 19 694 27 865 63 015 294 037 377 953 104 973 31 483 16 320 10 488 7549 5823 3928 2104 1418 603 216

0.005 3928 5557 12 564 58 600 75 249 20 888 6257 3240 2080 1495 1152 775 412 276 114 37

0.01 1957 2769 6257 29 170 37 411 10 378 3104 1605 1028 738 568 381 201 133 53 15

0.05 381 538 1212 5627 7140 1969 582 297 188 133 101 65 32 19 4 —

0.10 184 259 582 2684 3357 918 266 133 82 57 42 26 10 4 — —

0.15 118 166 372 1703 2095 568 161 79 47 32 23 13 — — — —

0.20 85 120 266 1212 1465 393 109 52 30 19 13 6 — — — —

0.25 65 92 203 918 1086 287 77 35 19 12 7 — — — — —

0.30 52 73 161 722 834 217 56 24 12 6 — — — — — —

0.35 43 60 131 582 654 167 41 16 7 — — — — — — —

0.40 36 50 109 477 519 130 30 11 — — — — — — — —

0.45 30 42 91 395 414 101 21 6 — — — — — — — —

0.50 26 36 77 329 329 77 14 — — — — — — — — —

0.55 22 31 66 276 261 58 8 — — — — — — — — —

0.60 19 27 56 231 203 42 2 — — — — — — — — —

0.65 17 23 48 194 155 29 — — — — — — — — — —

0.70 15 20 41 161 113 17 — — — — — — — — — —

0.75 13 17 35 133 77 7 — — — — — — — — — —

0.80 11 15 30 109 46 — — — — — — — — — — —

0.85 10 13 25 87 18 — — — — — — — — — — —

0.90 8 11 21 68 — — — — — — — — — — — —

0.95 7 9 17 51 — — — — — — — — — — — —

α =  0.05 (two‐tailed); β =  0.10 (power  =  90%); control : exposed ratio  =  1 : 1. The sample size listed is the number of subjects needed in the exposed group. An equivalent number 
would be included in the control group.
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Table A2 Sample size for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 529 057 2 153 636 4 825 616 22 279 822 28 149 090 7 764 537 2 302 889 1 183 563 755 529 540 883 415 381 278 329 147 626 99 000 41 938 15 197

0.0001 152 896 215 349 482 527 2 227 804 2 814 625 776 367 230 258 118 337 151 093 108 167 83 068 55 659 29 520 19 795 8384 3036

0.0005 30 570 43 057 96 475 445 402 562 673 155 196 46 024 23 651 75 539 54 077 41 528 27 825 14 756 9895 4189 1516

0.001 15 280 21 521 48 218 222 602 281 179 77 550 22 994 11 815 15 095 10 805 8297 5558 2946 1974 834 300

0.005 3047 4292 9613 44 362 55 984 15 433 4571 2346 7540 5396 4143 2774 1469 984 414 148

0.01 1518 2138 4787 22 082 27 834 7668 2268 1163 1496 1069 820 548 288 192 79 26

0.05 295 415 927 4258 5315 1456 426 216 740 528 404 269 141 93 37 11

0.10 142 200 444 2030 2500 680 196 97 136 95 72 47 23 14 3 —

0.15 91 128 283 1287 1561 421 119 58 60 41 31 19 8 3 — —

0.20 66 92 203 916 1092 291 80 38 35 23 17 9 — — — —

0.25 50 70 155 693 811 214 57 26 22 14 10 4 — — — —

0.30 40 56 123 545 623 162 42 18 14 9 5 — — — — —

0.35 33 46 100 439 489 125 31 12 9 4 — — — — — —

0.40 27 38 82 359 388 97 22 8 5 — — — — — — —

0.45 23 32 69 297 310 76 16 — — — — — — — — —

0.50 20 27 58 248 248 58 11 — — — — — — — — —

0.55 17 23 49 207 196 44 5 — — — — — — — — —

0.60 15 20 42 173 154 32 — — — — — — — — — —

0.65 13 17 36 145 117 22 — — — — — — — — — —

0.70 11 15 31 120 86 13 — — — — — — — — — —

0.75 9 13 26 99 59 — — — — — — — — — — —

0.80 8 11 22 80 35 — — — — — — — — — — —

0.85 7 10 18 64 — — — — — — — — — — — —

0.90 6 8 15 49 — — — — — — — — — — — —

0.95 5 7 12 36 — — — — — — — — — — — —

α  =  0.05 (two‐tailed); β  =  0.10 (power  =  90%); control : exposed ratio  =  2 : 1. The sample size listed is the number of subjects needed in the exposed group. Double this number 
would be included in the control group.
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Table A3 Sample sizes for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 369 471 1 930 847 4 322 614 19 888 657 24 913 372 6 843 626 2 014 756 1 029 014 653 418 465 696 356 275 237 254 124 571 83 030 34 793 12 510

0.00005 273 886 386 158 864 495 3 977 589 4 982 452 1 368 657 402 927 205 788 130 673 93 131 71 248 47 445 24 910 16 602 6955 2499

0.0001 136 938 193 072 432 230 1 988 706 2 491 087 684 286 201 449 102 885 65 330 46 560 35 619 23 719 12 452 8299 3476 1248

0.0005 27 380 38 603 86 418 397 599 497 995 136 790 40 266 20 563 13 055 9303 7117 4738 2486 1656 692 247

0.001 13 685 19 294 43 192 198 711 248 859 68 352 20 118 10 272 6521 4646 3554 2365 1240 825 344 122

0.005 2729 3847 8611 39 600 49 549 13 603 4000 2040 1294 921 703 467 244 161 66 21

0.01 1359 1916 4288 19 711 24 636 6759 1985 1011 640 455 347 230 119 78 31 9

0.05 264 372 830 3800 4705 1284 373 188 117 82 62 40 19 12 2 —

0.10 127 179 398 1811 2213 600 171 85 52 36 26 16 7 3 — —

0.15 81 114 254 1148 1383 372 104 50 30 20 14 8 — — — —

0.20 58 82 181 817 968 257 71 33 19 12 8 4 — — — —

0.25 45 63 138 618 719 189 50 23 13 7 4 — — — — —

0.30 36 50 109 485 552 143 37 16 8 4 — — — — — —

0.35 29 41 89 391 434 111 27 11 4 — — — — — — —

0.40 24 34 73 319 345 86 20 7 — — — — — — — —

0.45 20 28 61 264 275 67 14 — — — — — — — — —

0.50 17 24 52 220 220 52 9 — — — — — — — — —

0.55 15 21 44 184 175 39 — — — — — — — — — —

0.60 13 18 37 154 137 29 — — — — — — — — — —

0.65 11 15 32 128 105 19 — — — — — — — — — —

0.70 10 13 27 106 77 10 — — — — — — — — — —

0.75 8 11 23 87 53 — — — — — — — — — — —

0.80 7 10 19 71 31 — — — — — — — — — — —

0.85 6 8 16 56 — — — — — — — — — — — —

0.90 5 7 13 43 — — — — — — — — — — — —

0.95 4 6 11 31 — — — — — — — — — — — —

α  =  0.05 (two‐tailed); β  =  0.10 (power  =  90%); control : exposed ratio  =  3 : 1. The sample size listed is the number of subjects needed in the exposed group. Triple this number 
would be included in the control group.
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Table A4 Sample sizes for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 285 566 1 815 876 4 068 209 18 690 665 23 293 643 6 381 472 1 869 238 950 463 601 217 427 061 325 766 215 895 112 429 74 554 30 945 11 048

0.00005 257 106 363 164 813 616 3 737 999 4 658 521 1 276 231 373 825 190 079 120 234 85 404 65 147 43 174 22 482 14 907 6186 2207

0.0001 128 548 181 575 406 791 1 868 916 2 329 131 638 076 186 899 95 031 60 111 42 697 32 569 21 583 11 238 7451 3091 1102

0.0005 25 702 36 304 81 332 373 649 465 619 127 552 37 358 18 993 12 013 8532 6507 4311 2244 1487 615 218

0.001 12 846 18 145 40 650 186 741 232 680 63 737 18 665 9488 6000 4261 3249 2152 1119 741 306 107

0.005 2562 3618 8104 37 214 46 329 12 684 3711 1884 1190 844 643 425 220 145 58 19

0.01 1276 1802 4035 18 523 23 035 6303 1842 934 589 417 318 209 107 70 27 8

0.05 248 349 781 3571 4399 1198 346 174 108 76 57 36 17 10 2 —

0.10 119 168 374 1702 2070 560 159 78 48 33 24 15 6 2 — —

0.15 76 107 238 1079 1294 347 97 47 28 19 13 7 — — — —

0.20 55 77 171 767 905 240 66 31 18 11 8 3 — — — —

0.25 42 59 130 580 672 177 47 21 12 7 4 — — — — —

0.30 33 47 103 456 517 134 34 15 7 — — — — — — —

0.35 27 38 83 366 406 103 25 10 3 — — — — — — —

0.40 23 32 69 300 323 81 18 6 — — — — — — — —

0.45 19 27 58 248 258 63 13 — — — — — — — — —

0.50 16 23 48 206 206 48 8 — — — — — — — — —

0.55 14 19 41 172 164 37 — — — — — — — — — —

0.60 12 16 35 144 128 27 — — — — — — — — — —

0.65 10 14 30 120 98 18 — — — — — — — — — —

0.70 9 12 25 99 72 7 — — — — — — — — — —

0.75 8 10 21 81 50 — — — — — — — — — — —

0.80 6 9 18 66 29 — — — — — — — — — — —

0.85 6 8 15 52 — — — — — — — — — — — —

0.90 5 6 12 39 — — — — — — — — — — — —

0.95 4 5 10 28 — — — — — — — — — — — —

α  =  0.05 (two‐tailed); β  =  0.10 (power  =  90%); control : exposed ratio  =  4 : 1. The sample size listed is the number of subjects needed in the exposed group. Quadruple this number 
would be included in the control group.
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Table A5 Sample sizes for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 472 091 2 082 958 4 710 686 21 983 178 28 264 016 7 851 105 2 355 325 1 221 276 785 104 565 273 436 166 294 411 157 946 106 615 45 666 16 672

0.00005 294 411 416 580 942 108 4 396 481 5 652 548 1 570 142 471 036 244 238 157 008 113 044 87 224 58 875 31 583 21 318 9129 3330

0.0001 147 201 208 283 471 036 2 198 144 2 826 115 785 022 235 500 122 108 78 496 56 515 43 606 29 433 15 788 10 656 4562 1663

0.0005 29 433 41 645 94 178 439 474 564 968 156 925 47 071 24 404 15 686 11 292 8712 5879 3152 2126 908 329

0.001 14 711 20 816 47 071 219 641 282 325 78 413 23 518 12 191 7835 5639 4350 2935 1572 1060 451 162

0.005 2935 4152 9385 43 774 56 210 15 604 4675 2421 1554 1117 861 579 309 207 86 28

0.01 1463 2069 4675 21 790 27 946 7752 2319 1199 769 552 425 285 151 100 40 12

0.05 285 402 906 4204 5334 1471 435 222 141 100 76 49 24 15 3 —

0.10 138 194 435 2005 2508 686 200 100 62 43 32 20 8 4 — —

0.15 89 125 278 1273 1566 425 121 59 36 24 17 10 — — — —

0.20 64 90 200 906 1095 294 82 39 15 15 10 5 — — — —

0.25 49 69 152 686 812 215 58 27 10 9 6 — — — — —

0.30 40 55 121 540 623 163 42 19 6 5 — — — — — —

0.35 33 45 99 435 489 125 31 13 — — — — — — — —

0.40 27 38 82 357 388 97 23 8 — — — — — — — —

0.45 23 32 69 295 309 76 16 5 — — — — — — — —

0.50 20 27 58 247 247 58 11 — — — — — — — — —

0.55 17 24 50 207 195 44 7 — — — — — — — — —

0.60 15 20 42 173 152 32 2 — — — — — — — — —

0.65 13 18 36 145 116 22 — — — — — — — — — —

0.70 11 15 31 121 85 13 — — — — — — — — — —

0.75 10 13 27 100 58 6 — — — — — — — — — —

0.80 9 12 23 82 35 — — — — — — — — — — —

0.85 8 10 19 66 14 — — — — — — — — — — —

0.90 7 9 16 51 — — — — — — — — — — — —

0.95 6 8 14 38 — — — — — — — — — — — —

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : exposed ratio  =  1 : 1. The sample size listed is the number of subjects needed in the exposed group. An equivalent number 
would be included in the control group.
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Table A6 Sample sizes for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 190 356 1 663 432 3 680 447 16 792 779 20 878 641 5 726 194 1 683 582 859 799 546 209 389 547 298 242 198 909 104 767 69 986 29 458 10 630

0.00005 238 065 332 677 736 066 3 358 436 4 175 543 1 145 183 336 697 171 948 109 233 77 903 59 643 39 777 20 950 13 994 5889 2124

0.0001 119 028 166 332 368 018 1 679 143 2 087 655 572 556 168 336 85 967 54 611 38 947 29 818 19 886 10 473 6995 2943 1061

0.0005 23 799 33 257 73 580 335 708 417 346 114 455 33 648 17 182 10 914 7783 5958 3973 2091 1396 586 210

0.001 11 895 16 622 36 775 167 779 208 557 57 193 16 812 8584 5452 3887 2975 1983 1043 696 292 104

0.005 2372 3315 7332 33 436 41 526 11 382 3343 1705 1082 771 589 392 205 136 56 19

0.01 1182 1651 3651 16 643 20 647 5656 1659 845 536 381 291 193 100 66 26 8

0.05 230 321 707 3208 3944 1075 312 157 99 69 52 34 17 10 2 —

0.10 111 154 339 1529 1856 503 144 71 44 30 23 14 6 3 — —

0.15 71 99 216 969 1160 312 88 43 26 17 13 7 — — — —

0.20 51 71 155 689 812 216 60 28 17 11 8 4 — — — —

0.25 39 54 118 522 603 159 43 20 11 7 4 — — — — —

0.30 31 43 93 410 464 121 32 14 7 4 — — — — — —

0.35 26 35 76 330 365 93 23 10 4 — — — — — — —

0.40 21 29 63 270 290 73 17 6 — — — — — — — —

0.45 18 25 52 223 232 57 13 — — — — — — — — —

0.50 15 21 44 186 186 44 9 — — — — — — — — —

0.55 13 18 38 155 148 34 5 — — — — — — — — —

0.60 11 16 32 130 116 25 — — — — — — — — — —

0.65 10 13 27 108 89 18 — — — — — — — — — —

0.70 9 12 23 90 66 11 — — — — — — — — — —

0.75 8 10 20 74 46 — — — — — — — — — — —

0.80 7 9 17 60 28 — — — — — — — — — — —

0.85 6 7 14 47 — — — — — — — — — — — —

0.90 5 6 12 36 — — — — — — — — — — — —

0.95 4 5 9 26 — — — — — — — — — — — —

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : exposed ratio  =  2 : 1. The sample size listed is the number of subjects needed in the exposed group. Double this number 
would be included in the control group.
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Table A7 Sample sizes for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 088 323 1 516 254 3 330 831 15 057 392 18 412 768 5 014 203 1 456 566 736 622 464 207 328 848 250 342 165 451 85 870 56 861 23 565 8410

0.00005 217 658 303 242 666 145 3 011 370 3 682 391 1 002 792 291 297 147 315 92 835 65 764 50 064 33 087 17 171 11 370 4711 1681

0.0001 108 825 151 615 333 059 1 505 617 1 841 094 501 366 145 638 73 651 46 413 32 879 25 029 16 541 8584 5684 2355 839

0.0005 21 759 30 314 66 590 301 015 368 057 100 225 29 111 14 721 9276 6570 5001 3305 1714 1134 469 166

0.001 10 875 15 151 33 281 150 439 183 927 50 082 14 545 7354 4634 3282 2498 1650 855 566 233 82

0.005 2169 3021 6635 29 979 36 623 9968 2892 1461 920 651 495 326 168 111 45 15

0.01 1080 1505 3304 14 922 18 210 4954 1436 725 456 322 245 161 83 54 21 6

0.05 210 292 639 2876 3480 942 271 135 84 59 44 29 14 8 2 —

0.10 101 140 306 1370 1638 441 125 62 38 26 19 12 5 2 — —

0.15 65 90 195 868 1025 274 76 37 22 15 11 6 — — — —

0.20 46 64 139 617 718 190 52 25 14 9 6 3 — — — —

0.25 36 49 106 466 534 140 37 17 10 6 4 — — — — —

0.30 28 39 84 366 411 107 28 12 6 3 — — — — — —

0.35 23 32 68 294 323 83 21 9 4 — — — — — — —

0.40 19 26 56 240 257 65 15 6 — — — — — — — —

0.45 16 22 47 199 206 51 11 — — — — — — — — —

0.50 14 19 39 165 165 39 8 — — — — — — — — —

0.55 12 16 33 138 132 30 — — — — — — — — — —

0.60 10 14 28 115 104 23 — — — — — — — — — —

0.65 9 12 24 96 80 16 — — — — — — — — — —

0.70 8 10 20 79 60 9 — — — — — — — — — —

0.75 7 9 17 65 42 — — — — — — — — — — —

0.80 6 7 14 52 26 — — — — — — — — — — —

0.85 5 6 12 41 — — — — — — — — — — — —

0.90 4 5 10 31 — — — — — — — — — — — —

0.95 3 4 8 22 — — — — — — — — — — — —

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : exposed ratio  =  3 : 1. The sample size listed is the number of subjects needed in the exposed group. Triple this number 
would be included in the control group.
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Table A8 Sample sizes for cohort studies.

Incidence 
in control 
group

Relative risk to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 034 606 1 440 316 3 154 116 14 188 116 17 178 604 4 657 092 1 342 104 674 194 422 454 297 814 225 764 148 182 76 019 49 975 20 438 7223

0.00005 206 915 288 054 630 802 2 837 520 3 435 570 931 374 268 406 134 830 84 485 59 558 45 149 29 633 15 201 9993 4086 1443

0.0001 103 454 144 022 315 388 1 418 696 1 717 691 465 659 134 194 67 410 42 238 29 776 22 572 14 815 7599 4995 2042 721

0.0005 20 685 28 795 63 057 283 636 343 387 93 087 26 824 13 473 8442 5950 4510 2960 1518 997 407 143

0.001 10 338 14 392 31 515 141 754 171 599 46 516 13 402 6731 4217 2972 2253 1478 757 497 203 71

0.005 2061 2870 6282 28 248 34 169 9259 2665 1338 837 590 446 292 149 98 39 13

0.01 027 1429 3128 14 059 16 990 4601 1323 663 415 292 221 144 73 48 19 6

0.05 199 277 605 2709 3247 876 250 124 77 53 40 26 12 8 2 —

0.10 96 133 289 1290 1529 410 115 57 35 24 17 11 5 2 — —

0.15 61 85 184 817 957 255 71 34 20 14 10 6 — — — —

0.20 44 61 132 581 670 177 48 23 13 9 6 3 — — — —

0.25 34 47 100 439 499 130 35 16 9 5 3 — — — — —

0.30 27 37 79 344 384 99 26 11 6 — — — — — — —

0.35 22 30 64 277 302 77 19 8 3 — — — — — — —

0.40 18 25 53 226 241 60 14 5 — — — — — — — —

0.45 15 21 44 186 193 47 10 — — — — — — — — —

0.50 13 18 37 155 155 37 7 — — — — — — — — —

0.55 11 15 31 129 124 28 — — — — — — — — — —

0.60 9 13 26 108 97 21 — — — — — — — — — —

0.65 8 11 22 89 75 15 — — — — — — — — — —

0.70 7 9 19 74 56 7 — — — — — — — — — —

0.75 6 8 16 60 39 — — — — — — — — — — —

0.80 5 7 13 48 24 — — — — — — — — — — —

0.85 4 6 11 38 — — — — — — — — — — — —

0.90 4 5 9 28 — — — — — — — — — — — —

0.95 3 4 7 20 — — — — — — — — — — — —

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : exposed ratio  =  4 : 1. The sample size listed is the number of subjects needed in the exposed group. Quadruple this number 
would be included in the control group.
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Table A9 Sample sizes for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 970 728 2 788 519 6 306 363 29 429 793 37 838 497 10 510 715 3 153 225 1 635 011 1 051 081 756 780 583 937 394 159 211 464 142 743 61 147 22 330

0.00005 394 143 557 705 1 261 292 5 886 130 7 568 072 2 102 264 630 690 327 029 210 236 151 372 116 801 78 842 42 300 28 555 12 234 4469

0.0001 197 070 278 853 630 659 2 943 172 3 784 269 1 051 207 315 373 163 532 105 130 75 696 58 409 39 427 21 155 14 281 6120 2237

0.0005 39 412 55 772 126 151 588 806 757 227 210 362 63 120 32 734 21 046 15 155 11 695 7896 4238 2862 1228 451

0.001 19 704 27 887 63 088 294 510 378 847 105 257 31 588 16 384 10 535 7587 5856 3954 2124 1435 617 228

0.005 3939 5579 12 638 59 074 76 145 21 173 6363 3304 2127 1533 1184 801 432 293 128 49

0.01 1968 2790 6331 29 646 38 309 10 663 3210 1669 1076 777 601 407 221 150 67 27

0.05 391 560 1288 6111 8059 2261 690 363 237 172 135 93 52 37 18 9

0.10 195 281 659 3181 4302 1219 379 202 133 98 77 54 32 23 13 8

0.15 129 189 451 2215 3072 879 278 150 100 75 60 43 26 19 11 8

0.20 97 143 348 1741 2476 716 230 126 85 64 52 37 23 18 11 8

0.25 77 116 287 1465 2137 624 203 113 77 59 48 35 23 18 12 9

0.30 64 98 248 1289 1930 569 188 106 73 56 46 34 23 18 13 10

0.35 56 86 222 1174 1802 536 180 103 72 56 46 35 24 19 14 11

0.40 49 77 203 1097 1727 519 177 102 72 56 47 36 25 20 15 12

0.45 44 70 191 1048 1694 513 178 104 74 58 49 38 27 22 17 14

0.50 40 66 182 1023 1696 519 182 108 77 61 52 40 29 24 19 16

0.55 38 62 178 1019 1732 535 191 114 82 66 56 44 32 27 21 18

0.60 36 61 177 1035 1806 562 203 123 89 72 61 49 36 31 25 21

0.65 35 60 180 1077 1927 605 222 135 99 80 69 56 42 36 29 25

0.70 34 61 188 1149 2110 669 248 153 113 92 79 64 49 43 35 31

0.75 35 64 203 1268 2390 764 287 178 133 109 94 77 59 52 43 38

0.80 37 70 230 1465 2831 913 348 218 164 135 117 97 75 66 55 49

0.85 43 82 278 1811 3591 1168 451 285 216 179 156 129 101 90 75 68

0.90 54 108 379 2527 5143 1687 659 420 320 266 233 195 154 137 116 105

0.95 93 190 690 4717 9851 3257 1288 828 635 531 466 391 313 280 238 217

α  =  0.05 (two‐tailed); β  =  0.10 (power  =  90%); control : case ratio  =  1 : 1. The sample size listed is the number of subjects needed in the case group. An equivalent number would be 
included in the control group.

0004410300.INDD   1132 9/16/2019   7:29:17 AM



Table A10 Sample sizes for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 529 065 2 153 652 4 825 672 22 280 178 28 149 758 7 764 749 2 302 966 1 183 610 755 564 540 911 415 405 278 348 147 639 99 012 41 948 15 205

0.00005 305 811 430 731 965 148 4 456 162 5 630 233 1 553 041 460 628 236 743 151 128 108 194 83 091 55 678 29 534 19 807 8393 3044

0.0001 152 904 215 366 482 583 2 228 160 2 815 293 776 578 230 335 118 385 75 573 54 105 41 552 27 844 14 770 9906 4199 1524

0.0005 30 578 43 073 96 531 445 759 563 340 155 407 46 101 23 698 15 130 10 833 8321 5577 2960 1986 843 307

0.001 15 288 21 537 48 274 222 959 281 846 77 761 23 072 11 862 7574 5424 4167 2793 1483 996 424 155

0.005 3055 4308 9669 44 719 56 653 15 644 4649 2393 1530 1097 844 567 302 204 88 34

0.01 1526 2154 4843 22 440 28 505 7880 2346 1210 775 556 428 289 155 105 46 19

0.05 303 431 984 4623 6001 1674 506 264 171 124 97 66 37 26 13 7

0.10 150 216 503 2405 3207 904 279 148 97 71 56 39 23 17 9 6

0.15 100 145 343 1673 2292 653 205 111 74 55 44 31 19 14 8 6

0.20 74 110 265 1313 1849 533 170 93 63 47 38 28 17 13 8 6

0.25 59 89 218 1104 1597 465 151 84 57 44 35 26 17 13 9 6

0.30 49 75 188 971 1443 425 140 79 55 42 34 26 17 14 9 7

0.35 42 65 168 883 1349 401 135 77 54 42 34 26 18 14 10 8

0.40 37 58 154 825 1294 388 133 77 54 42 35 27 19 15 11 9

0.45 33 53 144 788 1270 385 133 78 56 44 37 28 20 17 13 10

0.50 31 50 137 768 1272 389 137 81 58 46 39 31 22 19 14 12

0.55 28 47 133 764 1301 402 144 86 62 50 42 33 24 21 16 14

0.60 27 45 133 775 1357 423 154 93 68 55 47 37 28 24 19 16

0.65 26 45 135 805 1449 456 168 103 76 61 52 42 32 28 22 19

0.70 26 45 140 859 1588 505 188 116 86 70 61 49 38 33 27 23

0.75 26 47 151 947 1799 577 218 136 102 84 72 59 46 40 33 29

0.80 28 51 170 1092 2133 690 265 166 125 104 90 74 58 51 42 38

0.85 31 60 205 1349 2708 884 343 218 165 137 120 100 78 70 58 53

0.90 39 78 279 1880 3881 1278 503 322 246 205 180 150 119 107 90 82

0.95 66 137 506 3505 7438 2472 984 635 489 410 360 303 243 218 186 169

α  =  0.05 (two‐tailed); β  =  0.10 (power  =  90%); control : case ratio  =  2 : 1. The sample size listed is the number of subjects needed in the case group. Double this number would be 
included in the control group.
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Table A11 Sample size for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 369 478 1 930 861 4 322 663 19 888 975 24 913 964 6 843 813 2 014 824 1 029 056 653 448 465 720 356 295 237 271 124 583 83 040 34 800 12 517

0.00005 273 893 386 172 864 545 3 977 907 4 983 044 1 368 844 402 996 205 830 130 703 93 155 71 268 47 461 24 922 16 612 6963 2506

0.0001 136 945 193 086 432 280 1 989 023 2 491 679 684 473 201 517 102 927 65 360 46 584 35 640 23 735 12 464 8309 3483 1254

0.0005 27 387 38 617 86 468 397 917 498 587 136 977 40 334 20 604 13 086 9328 7137 4754 2498 1666 700 253

0.001 13 692 19 309 43 242 199 028 249 451 68 540 20 186 10 314 6551 4671 3574 2382 1252 836 352 128

0.005 2736 3862 8661 39 918 50 143 13 790 4068 2082 1324 945 724 484 256 171 73 28

0.01 1367 1931 4338 20 030 25 231 6947 2054 1053 671 480 368 246 131 88 39 16

0.05 271 387 881 4125 5313 1477 444 231 149 108 84 57 32 22 11 6

0.10 134 194 450 2145 2841 799 245 129 85 62 49 34 20 14 8 5

0.15 89 130 307 1491 2031 577 180 97 64 48 38 27 16 12 7 5

0.20 66 98 236 1171 1639 471 150 82 55 41 33 24 15 12 7 5

0.25 53 79 195 984 1417 412 133 74 50 38 31 23 15 12 8 6

0.30 44 67 168 865 1281 376 124 70 48 37 30 23 15 12 8 6

0.35 38 58 150 786 1197 355 119 68 47 37 30 23 16 13 9 7

0.40 33 52 137 734 1149 345 118 68 48 37 31 24 16 14 10 8

0.45 30 47 128 700 1128 342 119 69 49 39 32 25 18 15 11 9

0.50 27 44 122 682 1131 346 122 72 52 41 35 27 19 16 12 10

0.55 25 42 119 679 1156 357 128 76 55 44 38 30 22 18 14 12

0.60 24 40 118 689 1207 377 137 83 60 49 41 33 25 21 17 14

0.65 23 40 119 715 1289 406 150 91 67 55 47 38 28 24 20 17

0.70 23 40 124 762 1414 450 168 104 77 63 54 44 33 29 24 21

0.75 23 42 133 839 1602 515 195 121 91 75 65 53 41 36 29 26

0.80 24 45 150 968 1900 616 236 149 112 93 80 66 52 45 38 34

0.85 27 52 180 1194 2413 789 307 195 148 123 107 89 70 62 52 46

0.90 34 68 245 1664 3459 1142 450 288 220 184 161 134 107 95 80 72

0.95 57 119 444 3100 6632 2208 881 569 438 367 323 271 217 194 165 150

α  =  0.05 (two‐tailed); β  =  0.10 (power  =  90%); control : case ratio  =  3 : 1. The sample size listed is the number of subjects needed in the case group. Triple this number would be 
included in the control group.
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Table A12 Sample sizes for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 285 573 1 815 890 4 068 256 18 690 963 23 294 197 6 381 647 1 869 301 950 501 601 245 427 084 325 786 215 910 112 440 74 563 30 952 11 054

0.00005 257 112 363 178 813 662 3 738 297 4 659 075 1 276 406 373 889 190 118 120 262 85 427 65 166 43 189 22 493 14 916 6193 2213

0.0001 128 555 181 589 406 838 1 869 214 2 329 685 638 251 186 963 95 070 60 139 42 720 32 588 21 599 11 249 7461 3098 1108

0.0005 25 709 36 318 81 379 373 947 466 173 127 727 37 422 19 032 12 041 8554 6526 4326 2255 1496 622 224

0.001 12 853 18 159 40 697 187 039 233 234 63 912 18 729 9527 6028 4284 3269 2167 1130 750 313 113

0.005 2568 3632 8151 37 513 46 884 12 860 3775 1923 1219 867 662 440 231 154 65 25

0.01 1283 1816 4082 18 823 23 592 6479 1906 973 618 440 337 224 118 79 34 14

0.05 255 363 829 3876 4969 1378 412 214 137 99 77 52 29 20 10 5

0.10 126 182 423 2015 2658 746 228 120 78 57 45 31 18 13 7 4

0.15 83 122 289 1401 1901 539 168 90 60 44 35 25 15 11 7 4

0.20 62 92 222 1099 1534 440 140 76 51 38 31 22 14 11 7 5

0.25 50 74 183 923 1326 385 125 69 47 36 29 21 14 11 7 5

0.30 41 63 158 812 1200 352 116 65 45 34 28 21 14 11 7 6

0.35 35 55 140 738 1122 333 111 63 44 34 28 21 14 12 8 6

0.40 31 49 128 688 1077 323 110 63 45 35 29 22 15 13 9 7

0.45 28 44 120 657 1058 320 111 65 46 36 30 23 17 14 10 8

0.50 25 41 114 640 1060 324 114 67 48 38 32 25 18 15 11 10

0.55 23 39 111 636 1084 335 120 72 52 41 35 28 20 17 13 11

0.60 22 38 110 645 1132 354 128 78 57 46 39 31 23 20 15 13

0.65 21 37 111 669 1209 381 140 86 63 51 44 35 26 23 18 16

0.70 21 37 116 713 1326 422 158 97 72 59 51 41 31 27 22 19

0.75 21 39 125 786 1504 483 183 114 85 70 61 50 38 33 27 24

0.80 22 42 140 905 1784 579 222 140 105 87 75 62 48 42 35 31

0.85 25 48 168 1117 2266 742 289 183 139 115 101 83 65 58 48 43

0.90 31 63 228 1556 3248 1073 423 271 207 173 151 126 100 89 75 67

0.95 52 110 412 2897 6229 2076 829 536 412 345 303 255 203 182 154 139

α  =  0.05 (two‐tailed); β  =  0.10 (power  =  90%); control : case ratio  =  4 : 1. The sample size listed is the number of subjects needed in the case group. Quadruple this number would 
be included in the control group.
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Table A13 Sample sizes for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 472 099 2 082 974 4 710 741 21 983 531 28 264 683 7 851 317 2 355 404 1 221 324 785 139 565 302 436 191 294 430 157 960 106 627 45 676 16 681

0.00005 294 418 416 596 942 163 4 396 835 5 653 216 1 570 354 471 115 244 286 157 043 113 073 87 248 58 894 31 598 21 330 9139 3339

0.0001 147 208 208 299 471 091 2 198 497 2 826 782 785 234 235 579 122 156 78 531 56 544 43 631 29 452 15 803 10 668 4572 1671

0.0005 29 440 41 661 94 233 439 828 565 636 157 137 47 150 24 452 15 721 11 321 8736 5899 3166 2138 918 337

0.001 14 719 20 831 47 126 219 994 282 992 78 625 23 596 12 239 7870 5668 4375 2954 1587 1072 461 171

0.005 2943 4168 9441 44 128 56 879 15 816 4753 2469 1589 1146 885 599 323 219 96 37

0.01 1470 2085 4730 22 145 28 617 7966 2398 1248 804 581 449 305 165 113 50 20

0.05 293 419 962 4566 6020 1690 516 272 177 129 101 70 39 28 14 7

0.10 146 211 493 2377 3214 911 283 151 100 74 58 41 24 18 10 6

0.15 97 142 337 1655 2295 657 208 113 75 56 45 32 20 15 9 6

0.20 73 107 260 1301 1850 535 172 95 64 48 39 28 18 14 9 6

0.25 58 87 215 1095 1597 466 152 85 58 44 36 27 17 14 9 7

0.30 49 74 186 964 1442 425 141 80 55 42 35 26 18 14 10 8

0.35 42 65 166 877 1346 401 135 77 54 42 35 26 18 15 11 9

0.40 37 58 152 820 1291 388 133 77 54 42 35 27 19 16 12 10

0.45 33 53 143 784 1266 384 133 78 56 44 37 29 20 17 13 11

0.50 31 50 137 765 1267 388 137 81 58 46 39 31 22 19 15 12

0.55 29 47 133 761 1294 400 143 85 62 50 42 33 25 21 16 14

0.60 27 46 133 774 1350 421 152 92 67 54 46 37 28 24 19 16

0.65 26 45 135 805 1440 453 166 101 75 61 52 42 32 27 22 19

0.70 26 46 141 859 1577 500 186 115 85 69 60 49 37 32 26 23

0.75 27 48 152 948 1785 571 215 134 100 82 71 58 45 39 33 29

0.80 28 53 172 1095 2115 682 260 163 123 101 88 73 57 50 42 37

0.85 32 62 208 1353 2683 873 337 213 162 134 117 97 76 68 57 51

0.90 41 81 283 1888 3842 1260 493 314 240 200 175 146 116 103 87 79

0.95 70 142 516 3524 7359 2433 962 619 475 397 349 293 234 210 179 162

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : case ratio  =  1 : 1. The sample size listed is the number of subjects needed in the case group. An equivalent number would 
be included in the control group.

0004410300.INDD   1136 9/16/2019   7:29:17 AM



Table A14 Sample sizes for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 190 363 1 663 444 3 680 489 16 793 046 20 879 138 5 726 351 1 683 639 859 834 546 235 389 568 298 260 198 923 104 777 69 995 29 465 10 635

0.00005 238 071 332 689 736 108 3 358 703 4 176 039 1 145 339 336 754 171 983 109 259 77 923 59 660 39 791 20 960 14 003 5896 2129

0.0001 119 034 166 344 368 060 1 679 410 2 088 152 572 713 168 393 86 001 54 637 38 967 29 835 19 899 10 483 7004 2950 1066

0.0005 23 805 33 269 73 622 335 976 417 842 114 612 33 705 17 216 10 939 7803 5975 3986 2101 1405 593 216

0.001 11 901 16 635 36 817 168 047 209 054 57 349 16 869 8618 5477 3907 2993 1997 1053 705 298 109

0.005 2378 3327 7374 33 704 42 024 11 540 3400 1740 1107 791 607 406 215 145 63 24

0.01 1188 1664 3693 16 911 21 146 5814 1717 880 561 402 308 207 211 75 33 14

0.05 236 333 750 3482 4455 1237 371 193 125 91 70 48 27 19 10 5

0.10 117 167 383 1810 2383 669 205 109 71 53 41 29 17 13 7 5

0.15 77 112 261 1258 1704 484 152 82 54 41 32 23 14 11 7 5

0.20 58 84 201 987 1376 396 126 69 47 35 28 21 13 10 7 5

0.25 46 68 166 829 1190 346 112 62 43 33 27 20 13 10 7 5

0.30 38 57 143 729 1076 316 105 59 41 32 26 20 13 11 7 6

0.35 33 50 127 662 1006 299 101 58 40 31 26 20 14 11 8 7

0.40 29 45 116 618 966 290 99 58 41 32 27 21 15 12 9 7

0.45 26 41 108 590 949 288 100 59 42 33 28 22 16 13 10 8

0.50 24 38 103 574 951 292 103 61 44 35 30 24 17 15 11 10

0.55 22 36 100 571 973 301 108 65 47 38 32 26 19 16 13 11

0.60 21 34 99 579 1016 318 116 70 52 42 36 29 22 19 15 13

0.65 20 34 101 601 1085 343 127 78 58 47 40 33 25 22 18 16

0.70 20 34 105 640 1190 380 143 89 66 54 47 38 29 26 21 19

0.75 20 35 112 705 1350 435 166 104 78 64 56 46 36 32 26 23

0.80 21 38 126 812 1601 520 201 127 96 80 70 58 45 40 34 30

0.85 23 44 152 1002 2034 667 261 167 127 106 93 77 61 55 46 42

0.90 29 58 205 1395 2916 965 383 246 189 158 139 117 94 84 71 65

0.95 48 100 371 2598 5592 1868 750 487 376 316 279 236 190 171 147 134

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : case ratio  =  2 : 1. The sample size listed is the number of subjects needed in the case group. Double this number would be 
included in the control group.
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Table A15 Sample sizes for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 088 329 1 516 265 3 330 869 15 057 631 18 413 208 5 014 341 1 456 616 736 652 464 229 328 865 250 357 165 463 85 879 56 868 23 570 8415

0.00005 217 664 303 253 666 182 3 011 608 3 682 831 1 002 930 291 347 147 345 92 856 65 782 50 079 33 098 17 180 11 377 4717 1685

0.0001 108 831 151 626 333 096 1 505 856 1 841 534 501 504 145 688 73 681 46 435 32 896 25 044 16 553 8592 5691 2360 844

0.0005 21 764 30 325 66 628 301 253 368 496 100 363 29 161 14 751 9298 6588 5016 3316 1723 1141 474 171

0.001 10 881 15 162 33 319 150 678 184 367 50 220 14 595 7384 4655 3299 2513 1662 864 573 239 87

0.005 2174 3032 6672 30 218 37 064 10 107 2943 1491 942 668 510 338 177 118 50 19

0.01 1086 1516 3342 15 161 18 652 5093 1486 755 478 340 259 173 91 61 27 11

0.05 215 303 678 3120 3932 1085 323 167 107 77 60 41 23 16 8 4

0.10 107 152 345 1620 2105 588 179 94 62 45 35 25 15 11 6 4

0.15 70 101 235 1125 1507 426 132 71 47 35 28 20 12 9 6 4

0.20 52 76 181 882 1218 349 111 60 41 31 25 18 11 9 6 4

0.25 42 62 149 741 1053 305 99 55 37 29 23 17 11 9 6 5

0.30 35 52 128 650 954 280 92 52 36 28 23 17 12 9 7 5

0.35 30 45 114 590 892 265 89 51 36 28 23 18 12 10 7 6

0.40 26 40 104 550 857 257 88 51 36 28 24 18 13 11 8 7

0.45 23 36 97 525 843 256 89 52 37 30 25 19 14 12 9 7

0.50 21 34 92 511 846 259 92 55 39 32 27 21 15 13 10 9

0.55 19 32 89 507 866 268 97 58 42 34 29 23 17 15 12 10

0.60 18 30 88 514 905 283 104 63 46 38 32 26 19 17 13 12

0.65 18 30 89 533 967 306 114 70 52 42 36 30 23 20 16 14

0.70 17 30 92 567 1061 339 128 80 60 49 42 35 27 23 19 17

0.75 17 31 99 624 1204 389 149 93 70 58 51 42 32 29 24 21

0.80 18 33 111 718 1429 466 181 115 87 72 63 52 41 37 31 28

0.85 20 38 132 884 1817 598 235 151 115 96 84 70 56 50 42 38

0.90 25 50 179 1230 2607 867 345 223 172 144 127 107 85 77 65 59

0.95 41 85 323 2288 5002 1678 678 442 342 288 255 215 174 157 134 123

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : case ratio  =  3 : 1. The sample size listed is the number of subjects needed in the case group. Triple this number would be 
included in the control group.
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Table A16 Sample sizes for case–control studies.

Prevalence 
in control 
group

Odds ratio to be detected

0.2 0.3 0.5 0.75 1.25 1.5 2.0 2.5 3.0 3.5 4.0 5.0 7.5 10.0 20.0 50.0

0.00001 1 034 611 1 440 327 3 154 151 14 188 340 17 179 015 4 657 221 1 342 151 674 222 422 474 297 830 225 778 148 193 76 026 49 982 20 443 7227

0.00005 206 920 288 065 630 838 2 837 745 3 435 981 931 503 268 452 134 858 84 505 59 574 45 162 29 644 15 209 9999 4091 1447

0.0001 103 459 144 032 315 424 1 418 920 1 718 102 465 788 134 240 67 438 42 259 29 792 22 585 14 825 7607 5002 2047 725

0.0005 20 690 28 806 63 092 283 861 343 799 93 216 26 870 13 501 8462 5966 4524 2970 1525 1003 412 147

0.001 10 344 14 403 31 551 141 978 172 011 46 645 13 449 6759 4237 2988 2266 1489 765 504 207 75

0.005 2067 2880 6318 28 473 34 581 9388 2712 1366 858 606 460 303 157 104 44 17

0.01 1032 1440 3164 14 285 17 404 4731 1370 691 435 308 234 155 81 54 23 10

0.05 205 288 641 2938 3670 1009 298 153 98 70 54 37 20 14 7 4

0.10 101 144 327 1525 1966 547 166 87 57 41 32 23 13 10 5 3

0.15 67 96 222 1059 1408 397 123 66 43 32 26 18 11 8 5 4

0.20 50 72 171 830 1138 325 103 56 38 28 23 17 10 8 5 4

0.25 39 58 140 696 985 285 92 51 35 26 21 16 10 8 6 4

0.30 33 49 121 611 892 261 86 48 33 26 21 16 11 9 6 5

0.35 28 42 107 554 836 248 83 47 33 26 21 16 11 9 7 5

0.40 24 38 97 517 803 241 82 48 34 26 22 17 12 10 7 6

0.45 22 34 91 492 790 240 83 49 35 28 23 18 13 11 8 7

0.50 20 32 86 479 793 243 86 51 37 30 25 20 14 12 9 8

0.55 18 30 83 475 812 252 91 55 40 32 27 22 16 14 11 9

0.60 17 28 82 481 849 266 97 59 44 35 30 24 18 16 13 11

0.65 16 28 83 498 908 288 107 66 49 40 34 28 21 18 15 13

0.70 16 28 86 530 997 319 121 75 56 46 40 33 25 22 18 16

0.75 16 29 92 583 1131 366 140 88 67 55 48 39 31 27 22 20

0.80 17 31 103 670 1343 439 171 108 82 68 60 50 39 35 29 26

0.85 18 35 123 826 1708 564 222 143 109 91 80 67 53 47 40 36

0.90 23 45 166 1148 2452 817 327 211 163 137 120 101 81 73 62 56

0.95 37 78 298 2133 4707 1583 641 419 325 273 242 205 165 149 127 116

α  =  0.05 (two‐tailed); β  =  0.20 (power  =  80%); control : case ratio  =  4 : 1. The sample size listed is the number of subjects needed in the case group. Quadruple this number would 
be included in the control group.
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Table A17 Tabular values of 95% confidence limit factors for estimates of a Poisson‐distributed variable.

Observed 
number 
on which 
estimate is 
based (n)

Lower 
limit 
factor 
(L)

Upper 
limit 
factor 
(U)

Observed 
number 
on which 
estimate is 
based (n)

Lower 
limit 
factor 
(L)

Upper 
limit 
factor 
(U)

Observed 
number 
on which 
estimate is 
based (n)

Lower 
limit 
factor 
(L)

Upper 
limit 
factor 
(U)

1 0.0253 5.57 21 0.619 1.53 120 0.833 1.200
2 0.121 3.61 22 0.627 1.51 140 0.844 1.184
3 0.206 2.92 23 0.634 1.50 160 0.854 1.171
4 0.272 2.56 24 0.641 1.49 180 0.862 1.160
5 0.324 2.33 25 0.647 1.48 200 0.868 1.151
6 0.367 2.18 26 0.653 1.47 250 0.882 1.134
7 0.401 2.06 27 0.659 1.46 300 0.892 1.121
8 0.431 1.97 28 0.665 1.45 350 0.899 1.112
9 0.458 1.90 29 0.670 1.44 400 0.906 1.104

10 0.480 1.84 30 0.675 1.43 450 0.911 1.098
11 0.499 1.79 35 0.697 1.39 500 0.915 1.093
12 0.517 1.75 40 0.714 1.36 600 0.922 1.084
13 0.532 1.71 45 0.729 1.34 700 0.928 1.078
14 0.546 1.68 50 0.742 1.32 800 0.932 1.072
15 0.560 1.65 60 0.770 1.30 900 0.936 1.068
16 0.572 1.62 70 0.785 1.27 1000 0.939 1.064
17 0.583 1.60 80 0.798 1.25
18 0.593 1.58 90 0.809 1.24
19 0.602 1.56 100 0.818 1.22
20 0.611 1.54
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Accuracy of a measurement is the degree to 
which the measurement approximates the 
truth.

Active surveillance is surveillance carried out 
via a continuous, defined process in a 
specific population, using one of several 
approaches. Active surveillance can be 
medical product based, identifying adverse 
events in patients taking certain products; 
setting based, identifying adverse events in 
certain healthcare settings where patients are 
likely to present for treatment (e.g., 
emergency departments); or event based, 
identifying adverse events likely to be 
associated with medical products (e.g., acute 
liver failure).

Actual knowledge, in a legal sense, is defined 
as literal awareness of a fact. Actual 
knowledge can be demonstrated by showing 
that the manufacturer was cognizant of 
reasonable information suggesting, for 
example, a particular risk.

Ad hoc studies are studies that require 
primary data collection.

Adverse drug event, adverse drug 
experience, adverse event, or adverse 
experience is an untoward outcome that 
occurs during or following clinical use of a 
drug. It does not necessarily have a causal 
relationship with this treatment. It may or 
may not be preventable.

Adverse drug reaction is an adverse drug 
event that is judged to be caused by the drug.

Studies of adverse effects examine case reports 
of adverse drug reactions, attempting to 
judge subjectively whether the adverse events 
were indeed caused by the antecedent drug 
exposure.

Adversomics is the study of vaccine adverse 
reactions using immunogenomics and 
systems biology approaches.

Agreement is the degree to which different 
methods or sources of information give the 
same answers. Agreement between two 
sources or methods does not imply that 
either is valid or reliable.

Analyses of secular trends examine trends in 
disease events over time and/or across 
different geographic locations, and correlate 
them with trends in putative exposures, such 
as rates of drug utilization. The unit of 
observation is usually a subgroup of a 
population, rather than individuals. Also 
called ecologic studies.

Analytic studies are studies with control 
groups, such as case–control studies, cohort 
studies, and randomized clinical trials.

Anticipated beneficial effects of drugs are 
desirable effects that are presumed to be 
caused by the drug. They usually represent 
the reason for prescribing or ingesting the 
drug.
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Anticipated harmful effects of drugs are 
unwanted effects that could have been 
predicted on the basis of existing knowledge.

Association is when two events occur together 
more often than one would expect by 
chance.

Autocorrelation is where any individual 
observation is to some extent a function of 
the previous observation.

Bias is any systematic (rather than random) 
error in a study.

Biologic inference is the process of 
generalizing from a statement about an 
association seen in a population to a causal 
statement about biologic relationships.

Case–cohort studies are studies that 
compare cases with a disease to a sample of 
subjects randomly selected from the parent 
cohort.

Case–control studies are studies that compare 
cases with a disease to controls without the 
disease, looking for differences in antecedent 
exposures.

Case‐crossover studies are studies that 
compare cases at the time of disease 
occurrence to different time periods in the 
same individuals, looking for differences in 
antecedent exposures.

Case reports are reports of the experience of 
individual patients. As used in 
pharmacoepidemiology, a case report usually 
describes a patient who was exposed to a 
drug and experienced a particular outcome, 
usually an adverse event.

Case series are reports of collections of 
patients, all of whom have a common 
exposure, examining what their clinical 
outcomes were. Alternatively, case series can 
be reports of patients who have a common 
disease, examining what their antecedent 
exposures were. No control group is present.

Exposure causes a health event when it truly 
increases the probability of that event in some 
individuals. That is, there are at least some 
individuals who would experience the event 

given the exposure who would not experience 
the event absent the exposure.

Changeability is the ability of an instrument to 
measure a difference in score in patients who 
have improved or deteriorated.

Channeling bias is a type of selection bias, 
which occurs when a drug is claimed to be 
safe and therefore is used in high‐risk 
patients who did not tolerate other drugs for 
that indication. It is sometimes used 
synonymously with confounding by 
indication.

Clearance is the proportion of the apparent 
volume of distribution that is cleared of a 
drug in a specified time. Its units are volume 
per time, such as liters per hour. The total 
body clearance is the sum of clearances by 
different routes, e.g., renal, hepatic, 
pulmonary, etc.

Clinical pharmacology is the study of the 
effects of drugs in humans.

Cohort studies are studies that identify 
defined populations and follow them 
forward in time, examining their frequencies 
(e.g., incidence rate, cumulative incidence) of 
disease. Cohort studies generally identify 
and compare exposed patients to unexposed 
patients or to patients who receive a different 
exposure.

Combination‐triggered drug–drug 
interaction is, in a potential drug–drug 
interaction, the scenario in which both the 
object drug and precipitant drug are initiated 
simultaneously.

Confidence interval can be conceptualized to 
represent a range of values within which the 
true population value lies, with some 
probability.

Confidentiality is the right of patients to limit 
the transfer and disclosure of private 
information.

Confounding by indication can occur when 
the underlying diagnosis or other clinical 
features that affect the use of a certain drug 
are also related to the outcome under study.
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Confounding variable, or confounder, is a 
variable other than the risk factor and 
outcome variable under study that is related 
independently both to the risk factor and to 
the outcome. A confounder can artificially 
inflate or reduce the magnitude of association 
between and exposure and outcome.

Constructive knowledge, from a legal 
perspective, is knowledge that a person did 
not have, but could have acquired by the 
exercise of reasonable care.

Construct validity refers to the extent to 
which results from a given instrument are 
consistent with those from other measures in 
a manner consistent with theoretical 
hypotheses.

Cost is the consumption of a resource that 
could otherwise be used for another 
purpose.

Cost–benefit analysis of medical care 
compares the cost of a medical intervention 
to its benefit. Both costs and benefits must 
be measured in the same monetary units 
(e.g., dollars).

Cost‐effectiveness analysis of medical care 
compares the cost of a medical intervention 
to its effectiveness. Costs are expressed in 
monetary units, while effectiveness is 
determined independently and may be 
measured in terms of any clinically 
meaningful unit. Cost‐effectiveness analyses 
usually examine the additional cost per unit 
of additional effectiveness.

Cost‐identification analysis enumerates the 
costs involved in medical care, ignoring the 
outcomes that result from that care.

Criterion validity refers to the ability of an 
instrument to measure what it is supposed to 
measure, as judged by agreement with a 
reference (gold) standard.

Cross‐sectional studies examine exposures 
and outcomes in populations at one point in 
time; they have no time sense.

Data mining is exploratory data analysis for 
hypothesis generation. As part of a 

knowledge discovery process, data mining 
looks to uncover patterns or correlations in 
the dataset with no or limited 
presupposition, with the intent of more 
rigorous testing of any emerging hypothesis 
tailored to the issue at hand.

Defined daily dose (DDD) is the usual daily 
maintenance dose for a drug for its main 
indication in adults.

Descriptive studies are studies that do not 
have control groups, namely case reports, 
case series, and analyses of secular trends. 
They are contrasted with analytic studies.

Detection bias is an error in the results of a 
study due to a systematic difference between 
the study groups in the procedures used for 
ascertainment, diagnosis, or verification of 
disease.

Differential misclassification occurs when the 
degree of misclassification of one variable 
(e.g., drug usage) varies according to the level 
of another variable (e.g., disease status).

Direct medical costs of medical care are the 
costs that are incurred in providing the care.

Direct nonmedical costs are nonmedical care 
costs incurred because of an illness or the 
need to seek medical care. They can include 
the cost of transportation to the hospital or 
physician’s office, the cost of special clothing 
needed because of the illness, and the cost of 
hotel stays and special housing (e.g., 
modification of the home to accommodate 
the ill individual).

Discriminative instruments are those that 
measure differences among people at a single 
point in time.

Disease registries are registries characterized 
by inclusion of subjects based on diagnosis 
of a common disease or condition.

Drug is any exogenously administered 
substance that exerts a physiologic effect.

Drug–drug interaction is the phenomenon in 
which one or more drugs affects the 
pharmacokinetics and/or pharmacodynamics 
of one or more other drugs.
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Drug utilization, as defined by the World 
Health Organization (WHO), is the 
“marketing, distribution, prescription and 
use of drugs in a society, with special 
emphasis on the resulting medical, social, 
and economic consequences.”

Drug utilization evaluation (DUE) programs 
are ongoing structured systems designed to 
improve drug use by intervening when 
inappropriate drug use is detected. See also 
drug utilization review programs.

Drug utilization evaluation studies are ad 
hoc investigations that assess the 
appropriateness of drug use. They are 
designed to detect and quantify the 
frequency of drug use problems.

Drug utilization review programs are 
ongoing structured systems designed to 
improve drug use by intervening when 
inappropriate drug use is detected.

Drug utilization review studies are ad hoc 
investigations that assess the appropriateness 
of drug use. They are designed to detect and 
quantify any drug use problems. See also 
drug utilization evaluation programs.

Drug utilization studies are descriptive 
studies that quantify the use of a drug. Their 
objective is to quantify the present state, the 
developmental trends, and the time course of 
drug usage at various levels of the healthcare 
system, whether national, regional, local, or 
institutional.

Ecologic studies examine trends in disease 
events over time or across different 
geographic locations and correlate them with 
trends in putative exposures, such as rates of 
drug utilization. The unit of observation is a 
subgroup of a population, rather than 
individuals. See also analyses of secular 
trends.

Effect modification occurs when the 
magnitude of effect of a drug in causing an 
outcome differs according to the levels of a 
variable other than the drug or the outcome 
(e.g., sex, age group). Effect modification can 

be assessed on an additive and/or 
multiplicative scale. See interaction.

Study of drug effectiveness is a study of 
whether, in the usual clinical setting, a drug 
in fact achieves the effect intended when 
prescribing it.

Study of drug efficacy is a study of whether, 
under ideal conditions, a drug has the ability 
to bring about the effect intended when 
prescribing it.

Study of drug efficiency is a study of whether a 
drug can bring about its desired effect at an 
acceptable cost.

Enriched or hybrid study designs draw on both 
primary and secondary data, with some data 
collected de novo, specifically for the 
purposes of the study and other study‐
specific data collected via probabilistic or 
deterministic linkage with other data 
sources, such as electronic health records, 
administrative claims and billing data, vital 
records, and genetic information.

Epidemiology is the study of the distribution 
and determinants of disease or health‐
related states in populations.

Evaluative instruments are those designed to 
measure changes within individuals over 
time.

Experimental studies are studies in which the 
investigator controls the therapy that is to be 
received by each participant, generally using 
that control to randomly allocate 
participants among the study groups.

Face validity is a judgment about the validity 
of an instrument, based on an intuitive 
assessment of the extent to which an 
instrument meets a number of criteria 
including applicability, clarity and simplicity, 
likelihood of bias, comprehensiveness, and 
whether redundant items have been 
included.

Fixed costs are costs that are incurred 
regardless of the volume of activity.

General causation, from a legal perspective, 
addresses whether a product is capable of 
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causing a particular injury in the population 
of patients like the plaintiff.

Generic quality‐of‐life instruments aim to 
cover the complete spectrum of function, 
disability, and distress of the patient, and are 
applicable to a variety of populations.

Half‐life (T1/2) is the time taken for the drug 
concentration to decline by half. Half‐life is a 
function of both the apparent volume of 
distribution and clearance of the drug.

Hawthorne effect is when study subjects alter 
their behavior simply because of their 
participation in a study, unrelated to the 
study procedures or intervention.

Health profiles are single instruments that 
measure multiple different aspects of quality 
of life.

Health‐related quality of life is a 
multifactorial concept which, from the 
patient’s perspective, represents the end‐
result of all the physiological, psychological, 
and social influences of the disease and the 
therapeutic process. Health‐related quality 
of life may be considered on different levels: 
overall assessment of wellbeing; several 
broad domains – physiologic, functional, 
psychologic, social, and economic status; and 
subcomponents of each domain – for 
example pain, sleep, activities of daily living, 
and sexual function within physical and 
functional domains.

Human research subject, as defined in US 
regulations, is “a living individual, about 
whom an investigator (whether professional 
or student) conducting research obtains 
either: (1) data through intervention or 
interaction with the individual, or (2) 
identifiable private information” [1].

Hybrid or enriched study designs draw on both 
primary and secondary data, with some data 
collected de novo, specifically for the 
purposes of the study, and other study‐
specific data collected via probabilistic or 
deterministic linkage with other data 
sources, such as electronic health records, 

administrative claims and billing data, vital 
records, and genetic information.

Hypothesis‐generating studies are studies 
that give rise to new questions about drug 
effects to be explored further in subsequent 
analytic studies.

Hypothesis‐strengthening studies are 
studies that reinforce, although do not 
provide definitive evidence for, existing 
hypotheses.

Hypothesis‐testing studies are studies that 
evaluate in detail hypotheses raised 
elsewhere.

Inception cohort design is a cohort study that 
is restricted to new users of the exposure(s) 
of interest.

Incidence/prevalence bias, a type of selection 
bias, may occur in studies when prevalent 
cases rather than new cases of a condition 
are selected for a study. A strong association 
with prevalence may be related to the 
duration of the disease rather than to its 
incidence, because prevalence is 
proportional to both incidence and duration 
of the disease.

Incidence rate of a disease is a measure of 
how frequently the disease occurs. 
Specifically, it is the number of new cases of 
the disease which develop over a defined 
time period in a defined population at risk, 
divided by the number of people in that 
population at risk.

Indirect costs are costs that do not stem 
directly from transactions for goods or 
services, but represent the loss of 
opportunities to use a valuable resource in 
alternative ways. They include costs due to 
morbidity (e.g., time lost from work) and 
mortality (e.g., premature death leading to 
removal from the workforce).

Information bias is an error in the results of a 
study due to a systematic difference between 
the study groups in the accuracy of the 
measurements being made of their exposure 
or outcome.
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Instrumental variable is a variable used to 
adjust for confounding that meets certain 
specific criteria: it should affect treatment or 
be associated with treatment choice by 
sharing a common cause; should be a factor 
that is as good as randomly assigned, so that 
it is unrelated to patient characteristics; and 
should not be related to the outcome other 
than through its association with treatment.

Intangible costs are those of pain, suffering, 
and grief.

Interaction, see effect modification.
Interrupted time‐series designs include 

multiple observations of study populations 
before and after an intervention.

Knowledge, as used in court cases, can be 
actual or constructive; see those terms.

Large simple trials are randomized trials 
characterized by large sample sizes, broad 
entry criteria consistent with the approved 
medication label, randomization based on 
equipoise, minimal data requirements, 
objectively measured endpoints, follow‐up 
that minimizes interventions or interference 
with normal clinical practice, follow‐up of all 
patients regardless of whether they 
discontinue randomized medication, and 
intent‐to‐treat analysis.

Medication errors are any error in the process 
of prescribing, transcribing, dispensing, 
administering, or monitoring a drug, 
regardless of whether an injury occurred or 
the potential for injury was present.

Meta‐analysis is a systematic, structured 
review of the literature and formal 
statistical analysis of a collection of analytic 
results for the purpose of integrating the 
findings. Meta‐analysis is used to identify 
sources of variation among study findings 
and, when appropriate, to provide an overall 
measure of effect as a summary of those 
findings.

Microbiome includes the microorganisms, 
primarily bacteria in the gut, and their genes, 
harbored within each person.

Misclassification bias is the error resulting 
from classifying study subjects as exposed 
when they truly are unexposed, or vice versa. 
Alternatively, misclassification bias can 
result from classifying study subjects as 
diseased when they truly are not diseased, or 
vice versa.

Molecular pharmacoepidemiology is the 
study of the manner in which molecular 
biomarkers alter the clinical effects of 
medications.

N‐of‐1 RCT is a randomized controlled trial 
(RCT) within an individual patient, using 
repeated assignments to the experimental or 
control arms.

Near misses are medication errors that have 
high potential for causing harm but did not, 
either because they were intercepted prior to 
reaching a patient, or because the error 
reached the patient who fortuitously did not 
have any observable untoward sequelae.

Negative control precipitant drug is, in a 
study of a potential drug–drug interaction, a 
drug that is used in similar clinical 
circumstances as the potential precipitant 
under study, yet by virtue of the control 
precipitant’s pharmacology is not believed to 
interact with the study object.

Negative control object drug is, in a study of a 
potential drug–drug interaction, a drug that 
is used for similar indications as the object 
under study, but is not believed to interact 
pharmacologically with the study 
precipitant.

Nondifferential misclassification occurs 
when the misclassification of one variable 
does not vary by the level of another variable. 
Nondifferential misclassification usually 
results in bias toward the null.

Nonexperimental studies are studies in which 
the investigator does not control the therapy, 
but observes and evaluates the results of 
ongoing medical care. The study designs that 
are used are those that do not involve random 
allocation, such as case reports, case series, 
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analyses of secular trends, case–control 
studies, and cohort studies.

Object drug is, in a drug–drug interaction, the 
drug(s) whose pharmacokinetics or 
pharmacodynamics are affected by the other 
drug(s).

Object‐triggered drug–drug interaction is, 
in a study of a potential drug–drug 
interaction, the scenario in which the object 
drug is started in a person already taking the 
precipitant drug.

Observational studies (or nonexperimental 
studies) are studies in which the investigator 
does not control the therapy, but observes 
and evaluates the results of ongoing medical 
care. The study designs that are used are 
those that do not involve randomization, 
such as case reports, case series, analyses of 
secular trends, case–control studies, and 
cohort studies.

Odds ratio is the odds of exposure in the 
diseased group divided by the odds of 
exposure in the nondiseased group. When 
the underlying risk of disease is low (about 
10% or lower), it is an unbiased estimator of 
the relative risk. It is also an unbiased 
estimate of the rate ratio in a nested or 
population‐based case–control study in 
which controls are selected at random from 
the population at risk of disease at the time 
that the case occurred.

One‐group, post‐only study design consists 
of making only one observation on a single 
group which has already been exposed to a 
treatment.

Opportunity cost is the value of a resource’s 
next best use, a use that is no longer possible 
once the resource has been used.

Patient‐reported outcomes are any report of 
the status of a patient’s health condition that 
comes directly from the patient, without 
interpretation of the patient’s response by a 
clinician or anyone else.

Pharmacodynamics is the study of the 
relationship between drug level and drug 

effect. It involves the study of the response of 
the target tissues in the body to a given 
concentration of drug.

Pharmacoeconomics is the study of how the 
price of pharmaceutical products and their 
economic impact health and the healthcare 
system.

Pharmacogenetic epidemiology is the study 
of the effects of genetic determinants of drug 
response on outcomes in large numbers of 
people.

Pharmacoepidemiology is the study of the use 
of and the effects of drugs in large numbers 
of people. It is also the application of the 
research methods of clinical epidemiology to 
the content area of clinical pharmacology, 
and the primary science underlying the 
public health practice of drug safety 
surveillance.

Pharmacogenetics is the study of genetic 
determinants of responses to drugs. 
Although it is sometimes used synonymously 
with pharmacogenomics, it often refers to a 
candidate‐gene approach as opposed to a 
genome‐wide approach.

Pharmacogenomics is the study of genetic 
determinants of responses to drugs. 
Although it is sometimes used synonymously 
with pharmacogenetics, it often refers to a 
genome‐wide approach as opposed to a 
candidate‐gene approach.

Pharmacokinetic compartment is a 
theoretical space into which drug molecules 
are said to distribute, and is represented by a 
given linear component of the log‐
concentration versus time curve. It is not an 
actual anatomic or physiologic space, but is 
sometimes thought of as a tissue or group of 
tissues that have similar blood flow and drug 
affinity.

Pharmacokinetics is the study of the 
relationship between the dose administered 
of a drug and the concentration achieved in 
the blood, in the serum, or at the site of 
action. It includes the study of the processes 
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of drug absorption, distribution, metabolism, 
and excretion.

Pharmacology is the study of the effects of 
drugs in a living system.

Pharmacotherapeutics is the application of 
the principles of clinical pharmacology to 
rational prescribing, the conduct of clinical 
trials, and the assessment of outcomes 
during real‐life clinical practice.

Pharmacovigilance is the identification and 
evaluation of drug safety signals. More 
recently, some have also used the term as 
synonymous with pharmacoepidemiology. 
The WHO defines pharmacovigilance as the 
science and activities relating to the 
detection, assessment, understanding and 
prevention of adverse effects or any other 
possible drug‐related problems [2]. Mann 
defines pharmacovigilance as “the study of 
the safety of marketed drugs under the 
practical conditions of clinical usage in large 
communities” [3].

Pharmionics is the study of how patients use 
or misuse prescription drugs in ambulatory 
care.

Population‐based databases or studies refer 
to whether there is an identifiable population 
(which is not necessarily based in 
geography), all of whose medical care would 
be included in that database, regardless of 
the provider. This allows one to determine 
incidence rates of diseases, as well as being 
more certain that one knows of all medical 
care that any given patient receives.

Positive control precipitant drug is, in a 
study of a potential drug–drug interaction, a 
precipitant drug known to produce an 
association with an outcome in patients 
receiving the object drug of interest.

Postmarketing surveillance is the study of 
drug use and drug effects after release onto 
the market. This term is sometimes used 
synonymously with “pharmacoepidemiology,” 
but the latter can be relevant to premarketing 
studies as well. Conversely, the term 

“postmarketing surveillance” is sometimes 
felt to apply only to those studies conducted 
after drug marketing that systematically 
screen for adverse drug effects. However, this 
is a more restricted use of the term than that 
applied in this book.

Potency refers to the amount of drug that is 
required to elicit a given response. A more 
potent drug requires a smaller milligram 
quantity to exert the same response as a less 
potent drug, although it is not necessarily 
more effective.

Potential adverse drug events are medication 
errors that have high potential for causing 
harm but did not, either because they were 
intercepted prior to reaching a patient, or 
because the error reached the patient who 
fortuitously did not have any observable 
untoward sequelae.

Power (statistical power) of a study is the 
probability of detecting a difference in the 
study if a difference really exists (either 
between study groups or between treatment 
periods).

Pragmatic clinical trials typically fall 
somewhere between a typical randomized 
trial and a simple and a large simple trial, 
where the goal is to introduce one or more 
pragmatic elements into the design, but with 
substantial protocol‐required follow‐up and 
testing outside of usual care practice.

Precipitant drug is, in a drug–drug 
interaction, the drug that affects the 
pharmacokinetics or pharmacodynamics of 
the other drug(s).

Precipitant‐triggered drug–drug interaction 
is, in a study of a potential drug–drug 
interaction, the scenario in which the 
precipitant drug is started in a person 
already taking the object drug.

Precision is the degree of absence of random 
error. Precise estimates have narrow 
confidence intervals.

Precision medicine has been defined by the 
National Institutes of Health (NIH) in the US 
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as an “approach to disease prevention and 
treatment based on people’s individual 
differences in environment, genes and 
lifestyle” [4].

Pre–post with comparison group design 
includes a single observation both before and 
after treatment in a nonrandomly selected 
group exposed to a treatment (e.g., physicians 
receiving feedback on specific prescribing 
practices), as well as simultaneous before‐
and‐after observations of a similar 
(comparison) group not receiving treatment.

Prescribing errors refer to issues related to 
underuse, overuse, and misuse of prescribed 
drugs, all of which contribute to the 
suboptimal utilization of pharmaceutical 
therapies.

Prevalence of a disease is a measurement of 
how common the disease is. Specifically, it is 
the number of existing cases of the disease in 
a defined population at a given point in time 
or over a defined time period, divided by the 
number of people in that population.

Prevalence study bias is a type of selection 
bias that may occur in studies when 
prevalent cases rather than new cases of a 
condition are selected for a study. A strong 
association with prevalence may be related 
to the duration of the disease rather than to 
its incidence, because prevalence is 
proportional to both incidence and duration 
of the disease.

Privacy, in the setting of research, refers to 
each individual’s right to be free from 
unwanted inspection of, or access to, 
personal information by unauthorized 
persons.

Procedure registries are registries 
characterized by inclusion of subjects based 
on receipt of specific services, such as 
procedures, or based on hospitalizations.

Product registries are registries characterized 
by inclusion of subjects based on use of a 
specific product (drug or device) or related 
products in a given therapeutic area.

Propensity scores are an approach to 
controlling for confounding that uses 
mathematical modeling to predict exposure 
based on observed variables, and uses the 
predicted probability of exposure as the basis 
for matching or adjustment.

Prospective drug utilization review is 
designed to detect drug‐therapy problems 
before an individual patient receives the drug.

Prospective studies are studies performed 
simultaneously with the events under study; 
namely, where patient outcomes have not 
yet occurred at the outset of the study.

Proteomics is, within the context of 
pharmacoepidemiology, the study of how 
proteins are responsible for variability in 
medication response.

Protopathic bias is interpreting a factor to be 
a result of an exposure when it is in fact a 
determinant of the exposure, and can occur 
when an early sign of the disease under 
study led to the prescription of the drug 
under study.

Publication bias occurs when publication of a 
study’s results is related to the study’s 
findings, such that study results are not 
published or publication is delayed because 
of the results.

P value is the probability that a difference as 
large as or larger than the one observed in 
the study could have occurred purely by 
chance if no association truly existed.

Qualitative drug utilization studies are 
studies that assess the appropriateness of 
drug use.

Quality of life is the description of aspects 
(domains) of physical, social, and emotional 
health that are relevant and important to the 
patient.

Quantitative drug utilization studies are 
descriptive studies of frequency of drug use.

Random allocation is the assignment of 
subjects who are enrolled in a study into 
study groups in a manner determined by 
chance.
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Random error is error due to chance.
Random selection is the selection of subjects 

for a study from among those eligible in a 
manner determined by chance.

Randomized clinical trials are studies in 
which the investigator randomly assigns 
patients to different therapies, one of which 
may be a control therapy.

Recall bias is an error in the results of a study 
due to a systematic difference between the 
study groups in the accuracy or 
completeness of their memory of their past 
exposures or health events.

Referral bias is error in the results of a study 
that occurs when the reasons for referring a 
patient for medical care are related to the 
exposure status, e.g., when the use of the 
drug contributes to the diagnostic process.

Registries are organized systems that use 
observational study methods to collect 
uniform data (clinical and other) to evaluate 
specified outcomes for a population defined 
by a particular disease, condition, or 
exposure, and that serves one or more 
predetermined scientific, clinical, or policy 
purposes. Registries can be thought of as 
both the process for collecting data from 
which studies are derived, as well as 
referring to the actual database.

Regression to the mean is the tendency for 
observations on populations selected on the 
basis of an abnormality to approach 
normality on subsequent observations.

Relative rate is the ratio of the incidence rate 
of an outcome in the exposed group to the 
incidence rate of the outcome in the 
unexposed group. It is synonymous 
with the terms rate ratio and incidence 
rate ratio.

Relative risk is the ratio of the cumulative 
incidence of an outcome in the exposed 
group to the cumulative incidence of the 
outcome in the unexposed group. It is 
synonymous with the term cumulative 
incidence ratio.

Reliability is the degree to which the results 
obtained by a measurement procedure can 
be replicated. The measurement of reliability 
does not require a gold standard, since it 
assesses only the concordance between two 
or more measures.

Reporting rate in a spontaneous reporting 
system is the number of reported cases of an 
adverse event of interest divided by some 
measure of the suspect drug’s utilization, 
usually the number of dispensed 
prescriptions. This is perhaps better referred 
to as a rate of reported cases.

Reproducibility is the ability of an instrument 
to obtain more or less the same scores on 
repeated measurement of patients who have 
not changed.

Research, as defined in US regulations, is any 
activity designed to “develop or contribute to 
generalizable knowledge” [5].

Research subject is “a living individual, about 
whom an investigator (whether professional 
or student) conducting research obtains 
either: 1) data through intervention or 
interaction with the individual, or 2) 
identifiable private information” [6].

Responsiveness is an instrument’s ability to 
detect change.

Retrospective drug utilization review 
compares past drug use against 
predetermined criteria to identify aberrant 
prescribing patterns or patient‐specific 
deviations from explicit criteria.

Retrospective studies are studies conducted 
after the events under study have occurred. 
Both exposure and outcome have already 
occurred at the outset of the study.

Risk is the cumulative probability that 
something will happen.

Risk evaluation and mitigation strategy 
(REMS) is a pharmacovigilance assessment 
plan in the US, approved by regulators in 
advance of implementation, to ensure that 
the benefits of a drug or biologic product 
outweigh its risks.
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For a risk management plan in the EU, phar-
macovigilance legislation explicitly requires 
the active monitoring of the outcome of risk 
minimization activities it contains, placing 
the obligation on manufacturers and regula-
tory authorities for this activity.

Judgment about safety is a personal and/or 
social judgment about the degree to which a 
given risk is acceptable.

Safety signal is a concern about an excess of 
adverse events compared to what is expected 
to be associated with use of a product (drug 
or device).

Sample distortion bias is another name for 
selection bias.

Scientific inference is the process of 
generalizing from a statement about a 
population, which is an association, to a 
causal statement about scientific theory.

Selection bias is error in a study that is due to 
systematic differences in characteristics 
between those who are selected for the study 
and those who are not.

Self‐controlled designs are studies that 
include only persons who experienced the 
outcome, using each person as their own 
control, and include self‐controlled case 
series and case‐crossover designs.

Self‐controlled case series (SCCS) design is a 
self‐controlled design that is analogous to 
the cohort design. It includes only 
individuals who experienced the outcome, 
and examines the rate of the outcome during 
exposed vs. unexposed periods within those 
individuals.

Sensibility is a judgment about the validity of 
an instrument, based on an intuitive 
assessment of the extent to which an 
instrument meets a number of criteria 
including applicability, clarity and simplicity, 
likelihood of bias, comprehensiveness, and 
whether redundant items have been included.

Sensitivity is the proportion of persons who 
truly have a characteristic, who are correctly 
classified by a diagnostic test as having it.

Sensitivity analysis is a set of procedures in 
which the results of a study are recalculated 
using alternate values for some of the study’s 
variables, in order to test the sensitivity of 
the conclusions to altered specifications.

Serious adverse experience is any adverse 
experience occurring at any dose that results 
in any of the following outcomes: death, a 
life‐threatening adverse experience, inpatient 
hospitalization or prolongation of existing 
hospitalization, a persistent or significant 
disability/incapacity, or congenital anomaly/
birth defect.

Service registries are registries characterized 
by inclusion of subjects based on receipt of 
specific services, such as procedures, or 
based on hospitalizations.

Signal is a hypothesis that calls for further 
work to be performed to evaluate that 
hypothesis.

Signal detection is the process of looking for 
or identifying signals from any source.

Signal generation, sometimes referred to as 
data mining, is an approach that uses 
statistical methods to identify a safety signal. 
No particular medical product exposure or 
adverse outcome is prespecified.

Signal refinement is a process by which an 
identified safety signal is further evaluated to 
determine whether evidence exists to 
support a relationship between the exposure 
and the outcome.

Specific causation,  from a legal perspective, 
addresses whether the product in question 
actually caused an alleged injury in the 
individual plaintiff.

Specificity is the proportion of persons who 
truly do not have a characteristic, who are 
correctly classified by a diagnostic test as not 
having it.

Specific quality‐of‐life instruments are 
focused on disease or treatment issues 
specifically relevant to the question at hand.

Spontaneous reporting systems are 
maintained by regulatory bodies throughout 
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the world and collect unsolicited clinical 
observations that originate outside of a 
formal study.

Statistical inference is the process of 
generalizing from a sample of study subjects 
to the entire population from which those 
subjects are theoretically drawn.

Statistical interaction, see effect 
modification.

Statistically significant difference is a 
difference between two study groups that is 
unlikely to have occurred purely by chance.

Steady state, within pharmacokinetics, is the 
situation when the amount of drug being 
administered equals the amount of drug 
being eliminated from the body.

Systematic error is any error in study results 
other than that due to random variation.

Therapeutic ratio is the ratio of the drug 
concentration that produces toxicity to the 
concentration that produces the desired 
therapeutic effect.

Therapeutics is the application of the 
principles of clinical pharmacology to 
rational prescribing, the conduct of clinical 
trials, and the assessment of outcomes 
during real‐life clinical practice.

Type A adverse reactions are those that are 
the result of an exaggerated but otherwise 
predictable pharmacologic effect of the 
drug. They tend to be common and dose 
related.

Type B adverse reactions are those that are 
aberrant effects of the drug. They tend to be 
uncommon, not dose related, and 
unpredictable.

Type I statistical error is concluding there is 
an association when in fact one does not 
exist, i.e., erroneously rejecting the null 
hypothesis.

Type II statistical error is concluding there is 
no association when in fact one does exist, 
i.e., erroneously accepting the null 
hypothesis.

Unanticipated beneficial effects of drugs are 
desirable effects that could not have been 
predicted on the basis of existing knowledge.

Unanticipated harmful effects of drugs are 
unwanted effects that could not have been 
predicted on the basis of existing knowledge.

Uncontrolled studies refer to studies without 
a comparison group.

Unexpected adverse experience means any 
adverse experience that is not listed in the 
current labeling for the product. This 
includes an event that may be 
symptomatically and pathophysiologically 
related to an event listed in the labeling, but 
differs from the event because of greater 
severity or specificity.

Utility measures of quality of life are measured 
holistically as a single number along a 
continuum, e.g., from death (0.0) to full 
health (1.0). The key element of a utility 
instrument is that it is preference based.

Vaccinovigilance is all methods of assessment 
and prevention of adverse events following 
immunizations.

Validity is the degree to which an assessment 
(e.g., questionnaire or other instrument) 
measures what it purports to measure.

Variable costs are costs that increase with 
increasing volume of activity.

Apparent volume of distribution (VD) is the 
apparent volume that a drug is distributed in 
after complete absorption. It is usually calcu-
lated from the theoretical plasma concentra-
tion at a time when all of the drug was 
assumed to be present in the body and uni-
formly distributed. This is calculated from 
back extrapolation to time zero of the plasma 
concentration time curve after intravenous 
administration.

Voluntariness is the concept in research ethics 
that investigators must tell subjects that 
participation in the research study is 
voluntary, and that subjects have the right to 
discontinue participation at any time.
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evidence dissemination 658–9
evidence generation 650–7
evidence synthesis 648–50
experimental studies 655–7
funding 660–1
future developments 660–3
healthy user/candidate bias 652
Hong Kong 641–2
human capital development 661–3
key attributes 646–8
medical devices 502, 512
methodologic problems 648–59
nonexperimental studies 650–2
observational 649–50, 656–7
organizational approaches 656–7
published guides 657
scope of 646
systematic reviews and metaanalysis  

648–9
US 639–40

Comparative Effectiveness Research 
through Collaborative Electronic 
Reporting (CER2) 
Consortium 544
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comparative studies
confounding data 1094–5, 1100
medical devices 504
metaanalyses 921–2
validity of data 974

COMPARE project 682
COMPASS see Computerized Online 

Medicaid Analysis and 
Surveillance System

competent regulatory authorities  
592, 593, 594

complementary medicines 1114
complete paid‐claims files of drug 

benefit programs 87
completeness of data

validity 970–1, 972, 974, 979
compliance, definition 86

see also patient compliance/
adherence

composite indices 1070
computerized decision support 424
Computerized Online Medicaid 

Analysis and Surveillance System 
(COMPASS) 11, 826

computerized physician order entry 
(CPOE) 418, 658, 1048, 1055–6

concentration–effect 
relationship 37–8

concomitant administration 1040
concordance 949
concurrent comparison groups 414
confidence intervals

clinical epidemiology 54
metaanalyses 913–14
sample size 60, 67

confidentiality see privacy and 
confidentiality

confirmatory data analysis 
(CDA) 685

confounders, important 367
confounding by disease 537
confounding by indication

beneficial drug effects 816–18, 
820–1, 822, 824–5,  
826, 828

biologics 571–2
children 537
comparative effectiveness 

research 650–2
data mining 684
drug–drug interaction 1031–5
drug safety evaluations 101
pregnancy 537
randomized controlled trials 798
regulatory agencies 127

confounding data 1078–1101
balancing patient risk factors 1091
case–cohort studies 1078,  

1085–6
case–control studies 1079, 1081, 

1082–5
clinical epidemiology 46
clinical problems 1078–9
children 538
cohort studies 1078, 1079, 

1081–93, 1099–100
comparative effectiveness 

research 650–2
comparative studies 1094–5, 1100
control of 364
current solutions 1081–101
data analysis 1081–6, 1088, 1099
efficient sampling designs  

1081–91
future developments 1101, 1114
medical devices 504–5
methodologic problems 1079–81
molecular pharmacoepidemiology  

757, 760–1, 763, 764
pregnancy 537
randomized controlled trials 798
structures of cohorts 1081–2
study design 1079–101
unobserved patient characteristics  

1095–101
vaccines 445–6
within‐subject studies 1087–8

Congressional Office of Technology 
Assessment 639

conjoint analysis 878
consent 780–1, 783
consistency 48, 922
CONsolidated Standards Of Reporting 

Trials (CONSORT) 
guidelines 684

construct validity 597, 1071
constructive knowledge 144
consumer medication 

information 592
Consumer Product Safety 

Commission 707
consumer, definition 175–6
content validity 597
Contergan® 773
continuity corrections 917
continuous benefit–risk 

monitoring 135
contract law 140, 152–5
contract research 154, 159
control groups

metaanalyses 913
randomized controlled trials  

801, 807
sample size 61–6, 68
see also case–control studies

control‐to‐case ratios 1084
controlled distribution products 345
Controlled Substance Act (CSA) 703
COPD see chronic obstructive 

pulmonary disease
copy number variants (CNV) 749
coronary heart disease 687
correlation 951
corticosteroids 296, 394, 1041

inhaled (ICS) 601, 1084
static asthmaticus 821, 1090

cost identification analysis 849
cost–benefit analysis (CBA) 847–8
cost‐effectiveness analysis

beneficial drug effects 826–7
pharmacoeconomics 848–9, 850, 

851, 858, 859
cost‐effectiveness ratio 858, 859
cost–utility analysis 848
costs

clinical trials 71
direct medical costs 850
direct nonmedical costs 850
drug utilization 394
electronic health record 

databases 265
intangibles 850–1
pharmacoepidemiological 

studies 71
prescribing practices 412–13
productivity 845, 847,  

850, 851
types of 850–1
see also pharmacoeconomics

cotrimoxazole 1035–40
Council for International 

Organizations of Medical 
Sciences (CIOMS) 173, 447, 
592–3, 677

covariates 922
coverage 600, 641, 642

area 709–10
insurance 216,218, 766, 778, 

844, 974
next‐generation sequencing 766
period 214–15
prescription drug 838, 1116
risk minimization tool 597

Cox proportional‐hazards 
modeling 507
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Cox regression model 300, 534, 629
COX‐2 see cyclo‐oxygenase‐2
COX‐2 selective inhibitors 3311, 

680, 1097
CPOE see computerized physician 

order entry
CPRD see Clinical Practice Research 

Datalink
CPT see Current Procedural 

Terminology
criterial methods 734
critical scored algorithms 735
CRNs see Clinical Research Networks 

(CRNs)
cross‐sectional construct validity  

597, 1071
cross‐sectional studies 56
CRQ see Chronic Respiratory 

Questionnaire
crude pooling 687
CTCAE see Common Terminology 

Criteria for Adverse Events 
(CTCAE)

CT‐P13 (infliximab‐dyyb, 
Inflectra®) 569

CTSA see Clinical and Translational 
Science Awards

CUGCs see Clinical Utility Gene Cards 
(CUGCs)

cumulative metaanalysis 926–8, 
928–9

cumulative revision rate over 
time 507

cumulative risk analysis 1101
cumulative sum of outcomes 

(CUSUM) 507
current procedural terminology (CPT) 

codes 213, 220, 979
CUSUM see cumulative sum of 

outcomes (CUSUM) 
methodology

CYP 3A4 inhibitors 31, 34, 37
CYP see cytochrome P450
cytochrome P450 enzymes (CYP)

molecular pharmacoepidemiology  
748, 750–1, 754–5

pharmacokinetics 31, 34, 36, 40

d
Dabigatran 191–2
DAD see Discharge Abstract  

Database
Danish Medicines Agency 

(DKMA) 641

DAS‐28 (disease activity score) 1070
data analysis

confounding data 1081–6, 
1088, 1099

event monitoring 318–27
large simple trial 801–2
patient compliance/adherence  

994, 1001
vaccines 445–6

Data and Safety Monitoring Boards 
(DSMB) 447

data collection
large simple trial 797, 801, 803
medical devices 504
metaanalyses 900, 910–12
patient adherence/compliance  

998–9
validity of data 951

data dredging 682
Data Extraction and Longitudinal 

Trend Analysis (DELTA) 
system 508

data integration 136
data integrity 782
data linkages 508–9

deterministic (direct) 508
longitudinal data 508
medical devices long‐term 

follow‐up 508–9
probabilistic (indirect) 508
vaccines 461–5

data mining 675–94
biomedical computing methods  

690–1
causality and 681–3
clinical problems 677–81
currently available solutions  

685–91
exploratory and confirmatory 

analyses 684–5
future 692–4
in healthcare databases and 

distributed database networks  
686–8

medical literature 690
medical devices 506
methodologic problems 681–91
replication and transparency in 

improving reliability 683–4
rofecoxib, withdrawal of 680–1
Sentinel Initiative 680–1, 683, 

688, 692
signal detection 676, 677–8
signal evaluation 676

signal refinement 676
signal substantiation through 

proteins 679
social media 688–90
spontaneous reporting 187, 189, 

190, 194–6
spontaneous reports 685–6
vaccines 464, 471, 472–3

data monitoring 802
data quality

electronic health record databases  
255–7, 259

inpatient databases 294
molecular 

pharmacoepidemiology 787
vaccines 445–6, 450

Data Safety Monitoring Boards 783
data sources

biologics 573–4
comparative effectiveness research  

652–5
drug safety evaluations 102–3
drug utilization 385–7
metaanalyses 905, 908
validity of data 950, 951
see also data sources, choosing among

data sources, choosing among  
357–70

available approaches 357–60
comparative characteristics 358–9, 

360–5
examples 369–70
relative cost 360
relative size of database 360, 363
relative speed 360
representativeness 360–3
research question characteristics  

365–9
Daubert v. Merrell Dow 147–8
DAWN see Drug Abuse Warning 

Network (DAWN)
days of therapy (DOT) 389
DDD see defined daily dose
DDNs see distributed data networks 

(DDNs)
Dear Healthcare Professional Letters

risk management 591–2
spontaneous reporting 172, 

177, 195
Death Master File (DMF) 258
dechallenge 726, 732, 734
DEcIDE see Developing Evidence to 

Inform Decisions about 
Effectiveness (DEcIDE)
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deep vein thromboses (DVT) 753
defined daily dose (DDD)  

388–90, 392
degrees of safety 76
delayed risks 77
DELTA see Data Extraction and 

Longitudinal Trend Analysis
demographic data, validity of 962, 

965, 966, 969
Department of Veterans’ Affairs (VA)

comparative effectiveness 
research 656

Corporate Data Warehouse 
(CDW) 258

databases 262, 264
electronic health record database  

257–9
Healthcare System 806–7
prescribing practices 413
validity of data 979

depression 132, 143, 147, 536, 955
descriptive epidemiology 104
DESI see Drug Efficacy Study 

Implementation (DESI)
design defects 141–2, 143
Desirability of Outcome Ranking 

(DOOR) 888–9
deterministic linkage 217, 345, 508
developing countries 14, 15, 181, 195
Developing Evidence to Inform 

Decisions about Effectiveness 
(DEcIDE) Network 12

Development Safety Update Report 
(DSUR) 447

device variation 513
dexamethasone 640
dexfenfluramine (Redux®) 141
diabetes

children 536, 541
data collection 344, 345
encounter database 233, 234
event monitoring 332
gestational 538–9
pregnant women 535, 537, 538–9
prescribing practices 85, 86
type 2 (NIDDM) 332, 344, 

923, 931
vaccine 472

diagnosis data 959–79
Diagnosis Related Group (DRG)  

206–7, 462
diagnosis‐linked databases 385
Diagnostic and Statistical Manual of 

Mental Disorders (DSM‐V) 701

diethylstilbestrol (DES) 7, 17, 775
differential misclassification 953
differential opportunity for 

exposure 533
diphenhydramine 566
diphtheria, tetanus, acellular 

pertussis (DTaP) vaccine 441, 
444, 457, 461

diphtheria–tetanus–pertussis (DTP) 
vaccine 444

direct medical costs 850
direct nonmedical costs 850
direct observation 1047, 1049
direct‐to‐consumer advertising 

(DTCA) 147, 151, 1022
Discharge Abstract Database 

(DAD) 226
discordance, patient/clinical/

researcher 1069–70
discounting 77
DISCOVER study 345
disease‐modifying antirheumatic 

drugs (DMARD) 1084
disease‐oriented indicators 394
disproportionalities 184–5, 194
distributed data networks (DDNs)

analysis 631
challenges in 623–4
clinical problems 621–3
confounder summary scores  

628–9
currently available solutions  

624–30
data sources 631
definition 617–18
distributed regression 630
encryption 630
examples 618–21
interoperability and 

coordination 632
meta‐analysis 629–30
methodologic problems 623
methodological advances 628–30
postmarket surveillance 623
rare exposures assessment 621
rare outcomes assessment 621–2
scope 631
sustainability and efficiency  

630–1
transparency and reproducibility  

631–2
treatment effect heterogeneity 

assessment 622–3
distributed data systems 971–2

distribution 29
distribution‐based methods 1071
DKMA see Danish Medicines Agency
DMARD see disease‐modifying 

antirheumatic drugs
doctor/pharmacy shopping 

analyses 711
dose–response relationships

clinical epidemiology 48–9
risk factors 1053

DRG see Diagnosis Related Group
drug abuse 701–17

analytic studies 703, 704, 705–9, 
709–12

clinical problems 703–13
currently available solutions  

713–16
data sources 705–9
deaths 707–8
definitions 701–3
diversion 708
future 716–17
methodologic problems 704–13
quantitative descriptive assessment  

703, 704, 705–9, 709–11,714–16
signal detection 703, 705, 709, 

713–14
Type A/B reactions 703
utilization data 709

Drug Abuse Warning Network 
(DAWN) 707, 714

drug approval processes 13–15
other countries 14–15
regulatory agencies 129
US 13–14

drug class 75, 1053
drug concentration testing 1000
drug crises 7–13
drug development programs 127–30, 

900, 915
drug discovery 765
drug–drug interactions (DDI)  

1030–43
clinical problems 1031
current solutions 1032–3
expected outcome 1030
false warnings 1031
future of 1043
initiation order of object and 

precipitant 1040
medication errors 1049
methodologic problems 1031–2
outcome assessment methods  

1039
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positive control pair to assess assay 
sensitivity 1039

research designs for studying health 
effects 1032–9

risk management 588, 589
screening to identify potential 

DDIs 1043
time course of 1040–3

drug efficacy 366
Drug Efficacy Study Implementation 

(DESI) 7, 11
Drug Enforcement 

Administration 714
Drug Epidemiology Unit 11
drug exposure 726–7
Drug‐Induced Mortality 

database 708
Drug Information Number (DIN) 

(Canada) 226
drug interactions

future developments 1115
pharmacokinetics 37
risk management 588, 589
spontaneous reporting 173

drug labels see labeling
drug misuse 78

definition 701
Drug Safety and Effectiveness Network 

(DSEN), Canada 618, 934
Drug Safety and Risk Management 

Advisory Committee 12
Drug Safety Communications 

(DSCs) 169
drug safety evaluations

biopharmaceutical 
industry 101–12

data sources 102–3
postapproval safety studies 106–8
preapproval safety studies 103–6
special populations 108–12
study design 101–2

Drug Safety Research Trust 11
Drug Safety Research Unit (DSRU)  

308, 309, 310, 311, 316, 318, 785
Drug Surveillance Research Unit 11
drug use results surveys (DURS) 100
drug utilization 375–99

antibiotics 376–7, 395
classification systems 389–92
clinical problems 378–80
currently available solutions  

387–97
data sources 385–7

definitions 377–8
event monitoring 325–7, 333–4
future 397–400
historical background 375–7
intervention strategies 396–7
methodologic problems 380–7
pregnancy 526–7
prescribing practices 412–13
quality indicators 392–6
study designs 381–2
units of measurement 388–9

drug utilization review (DUR) 
programs 377, 381, 397, 413, 
416, 423, 1112, 1114

DSEN see Drug Safety and 
Effectiveness Network (DSEN), 
Canada

DSMB see Data and Safety Monitoring 
Boards

DSRU see Drug Safety Research Unit 
(DSRU)

DSUR see Development Safety Update 
Report

DTCA see direct‐to‐consumer 
advertising

DTP see diphtheria–tetanus–pertussis
DUR see drug utilization review
duration–response relationships 48
Dutch National Pharmacovigilance 

Center Lareb 176
DVT see deep vein thromboses
dwell time 215

e
EBGM see empirical Bayes geometric 

mean (EBGM)
ECLAMC (Latin‐American 

Collaborative Study of Congenital 
Malformations) network 545

ecologic time‐series assessments 709
ecological studies see analyses of 

secular trends
economic evaluations see 

pharmacoeconomics
EDM see electronic drug monitors
educational materials 419–20
effect modifications

children 538
metaanalysis 922
molecular pharmacoepidemiology  

757–8
pregnancy 532

Effective Practice and Organisation of 
Care (EPOC) 412, 414

effectiveness
beneficial drug effects 814, 818, 

822, 825
definition 641
future developments 1114
medical devices 502–3
metaanalyses 932
prescribing practices 411, 412, 

413, 414
risk evaluation studies 1013, 1015
risk management 587, 589
see also comparative effectiveness 

research
effectiveness of medication, 

definition 88
effectiveness research see comparative 

effectiveness research
efficacy of medication, definition 88
efficacy studies

beneficial drug effects 814
metaanalyses 929, 930
risk management 589

EHRs see electronic health records 
databases

elderly populations
inpatient databases 298–9
medication errors 1051
pharmacodynamics 33
pharmacokinetics 32–4

electrocardiographic QT interval  
1032

electronic databases 102–3, 205–10
administrative databases 206–7
claims data 206–7
future 209–10
limitations 230
sample size 70
strengths 207–8, 230
vaccines 461–5
weaknesses 208–9
see also electronic health record 

databases
electronic drug monitors (EDM)  

995, 999
Electronic Frontier Foundation (EFF)  

787
electronic health record 

databases 207, 241–66, 806
applications 265
drug abuse 707
Europe and the United Kingdom  

252–7
examples of studies 260–1
future 265–6

drug–drug interactions (DDI) (cont’d)
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limitation 263–5
medication errors 1047–8
overview 242–52
pharmacovigilance and 678
strengths 259–63
US: Department of Veteran Affairs 

Healthcare 257–9
validity of data 948
variables in 246–51

electronic medical record (EMR) 
databases 115

elements to assure safe use (ETASU)  
605, 606, 1020–1

Eli Lilly 345
elimination 32
empirical Bayes geometric mean 

(EBGM) 685
EMR see electronic medical records
EMRS see European Medicines 

Regulatory Network
enabling strategies 420
ENCePP see European Network 

of Centres for 
Pharmacoepidemiology and 
Pharmacovigilance

encounter databases 211–35
ability to validate outcomes 233–4
access 217–18
applications 232–4
Asia 228
attributes 214–15
Canada 225–6
characteristics 219
data domains 212–13
database population 214
database size 233
description 212–14
European 228
federated databases 213
future 235
integrated databases 213
limitations 231–2
linkage to nonencounter data  

216–17
nonstandard encounter data 234
Nordic 227–8
population and coverage period  

214–15
selected databases 218–29
services covered and data 

completeness 215–16
size of database 214
strengths 229–31
target population 233

US 218–25
US government 222–5
US private insurance databases  

220–2
validation of 213–14

endpoints 343, 346, 380
enhanced safety surveillance (ESS)  

344, 345
enhanced surveillance 506–7
Enhancing the QUAlity and 

Transparency Of health Research” 
(EQUATOR) network 684

enrollment logs 349
EPAR see European Public Assessment 

Report
EPhMRA see European 

Pharmaceutical Market Research 
Association

Epic Database Research Company 
Ltd 253

epidemiology, definition 5
see also clinical epidemiology

EPOC see Effective Practice and 
Organisation of Care

EQUATOR network 684
errors

clinical epidemiology 44, 45,  
46–7

coding 626
see also measurement error; 

medication errors; Type I/II 
errors

etanercept 569
ETASU see Elements to Assure 

Safe Use
ethics 772–87

clinical problems 773–80
conflicts of interest 782–3,  

784–5
current solutions 783–5
data integrity 782
East Asian 778–80
European 776–8
future 785–7
informed consent 780–1, 783
methodologic problems 780 3
North American, 20th century  

773–6
pharmacovigilance practices  

783–4
surveillance 781–2

ethnicity see race/ethnicity
EudraVigilance database 169, 183, 

193, 584, 777

EU‐PACT UK trial 755–6
EUROCARE 350
EUROCOURSE 350
EUROmediCAT 545
European electronic health record 

databases 252–7
European Cancer Observatory 

(ECO) 350
European Commission 777
European Drug Utilization Research 

Group (EuroDURG) 390, 
399, 776

European Medicines Agency (EMA)  
15, 40

adaptive pathways 85
assessment reports 867
benefit–risk assessment 867
Committee for Medical Products for 

Human Use 109
drug labeling 751
drug safety evaluations  

103, 106
enhanced safety surveillance 344
founding of 776–7
Good Pharmacovigilance Practices 

(GVP) 778, 782, 783, 784
influenza vaccines 587
M‐PEM studies308–11, 317
Pharmacovigilance and Risk 

Assessment Committee (PRAC)  
100, 778

PRIME initiative 128
randomized controlled trials 794
relocation of 786
risk management 99, 587
vaccine safety 440

European Medicines Regulatory 
Network (EMRN) 777

European Network of Cancer 
Registries (ENCR) 350

European Network of Centres for 
Pharmacoepidemiology and 
Pharmacovigilance (ENCePP)  
92, 103, 134, 136, 337, 347, 785, 
904, 909, 934

Checklist for Study Protocols 778
Guide on Methodological Standards 

in Pharmacoepidemiology  
778, 784

European Pharmaceutical Market 
Research Association 
(EPhMRA) 390

European Public Assessment Report 
(EPAR) 594, 1014–15
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European Union
Clinical Trials Regulation 784
Exploring and Understanding 

Adverse Drug Reactions (EU‐
ADR) 621, 630. 678, 680

Innovative Medicines Initiative (IMI) 
“WEB‐RADR” project 689–90

pharmacoepidemiologic 
postauthorization safety studies 
(PASS) 100, 337, 783–4

postauthorization study (PAS) 
register, hosted by the 
ENCePP 784

euthanasia 78
event, definition 312
event adjudication 926
event monitoring 307–38

analysis vs event counts 
(incidence) 319

applications 330–7
automatic signal generation 333
before and after studies 332
bias 329–30
children 334
comparison of event rates and 

risks 331
confounding 330
data analysis 318–27
data collection 311–12
data processing 316
definitive answers 328
design and source data 308–10
drug utilization 325–7, 333–4
electronic data capture 337
ethics and confidentiality 310–11
exposure data 327
future 337–8
incidence densities (IDs) 319–25
modeling 332–3
multicountry network 

studies 337–8
outcome data 327–8
participation in research 328–9
pharmacovigilance risk 

management plans 335–7
pregnancy 325
qualitative evaluation of adverse 

events 318
quantifying AD reporting 334–5
quantitative analysis of events  

318–19
questionnaire design 312
reference (contextual) cohorts 328
representativeness and size 327

sample size and duration 316–18
signal strengthening 328, 330–1
simple stratification 331–2
single‐group cohort design 329
standardization 333
statistical power and sample 

size 330
stopping the drug 325
supplemental information 312
variable direction of 

investigation 327
see also modified Prescription Event 

Monitoring (M‐PEM); specialist 
cohort event monitoring (SCEM)

evidence‐based practice
comparative effectiveness research  

662–3
medical devices 501
metaanalyses 901
prescribing practices 419

evidence‐based research see 
comparative effectiveness research

excess risk 54, 76–7
execution 992, 995
experimental studies see randomized 

controlled trials
expert witnesses 140, 147
expertise 147–8
exploratory data analysis (EDA) 683
exposure data 363–4

beneficial drug effects 820
event monitoring 327
medical devices 499, 503–4
new drug 368
vaccines 444, 465–6

exposure frequency 544
exposure misclassification

confounding data 1101
vaccines 444
validity of data 973

f
face validity 957
factor V Leiden mutations 753
FAERS see under Food and Drug 

Administration
fail‐first policies 572
fail‐safe N approach 918–19
failure to warn claims 142, 143–6

causation of damages 145–6
improper warning of drug 

risk 144–5
knowledge of drug risk by 

manufacturer 143–4

false discovery rate (FDR) 764
false positives/negatives see Type I/II 

errors
FDA see Food and Drug 

Administration
Federal Commission for Protection 

against Health Risks (COFEPRIS) 
(Mexico) 100

Federal Institute for Drugs and 
Medical Devices (BfArM) 182

Federal Rules of Evidence 148
feedback systems 422–3
fenofibrate 1036
FEP see Federal Employee Program
FFS see fee‐for‐service
finasteride 319, 320–1
Fingolimod 190–1
fluoxetine 7, 143–4
follow‐up

health maintenance 
organizations 797

large simple trials 801
medical devices 508–9

follow‐up‐time cohorts 1082
Food and Drug Administration (FDA)

Adverse Event Reporting System 
(FAERS) 169, 705, 713

beneficial drug effects 815, 816, 820
benefit–risk assessment 867
causality 727–9
drug abuse 701
drug development program 128, 

129, 131
drug marketing 6–7
drug safety 35, 106, 109
elderly populations 34
ethics 773
future developments 1117
historical development 6–7, 10–13
legislative instruments 143–5, 

148–50
medical devices 506, 511
metaanalyses 904, 905, 920, 923, 

924–5, 928, 930–1
model‐informed drug development 

(MIDD) 40
pharmacoeconomics 838
pharmacoepidemiology 

applications 15–16
pharmacokinetics 35
postmarketing research 72
Pregnancy and Lactation Labeling 

Rule (PLLR) 529
Prescription Drug User Fee 785
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product liability legal theory 142
regulatory factors 72–3
risk evaluation studies 1010, 

1018–21
risk management 581, 604–5, 

609, 611
risk mitigation 112–13
spontaneous reporting 176–7, 194
Spontaneous Reporting System 73
vaccines 440, 448–9, 460, 463
Voice of the Patient reports 871
see also Sentinel Initiative

Food and Drug Administration 
Amendment Act (FDAAA) (2007)  
99, 776

Food and Drug Administration Center 
for Drug Evaluation and Research 
(FDA CDER) 349

Food and Drug Administration 
Modernization Act (FDAMA) 
(1997) 9, 11, 511, 530

Food and Drug Administration 
Reauthorization Act (2017) 
(FDARA) 10

Food and Drug Administration Safety 
and Innovation Act (2012) 
(FDASIA) 10

Food, Drug, and Cosmetic Act 
(1938) 6

formulation effects 75, 178
French Medicines Agency 182
funding 660–1, 1117
funnel plots 507–8, 918–20
fuzzy‐trace theory 1023

g
G theory see generalizability
G6PD see glucose‐6‐phosphate 

dehydrogenase deficiency
gag clauses 153
gap rule 997
Gardasil® 681
gastrointestinal (GI) bleeding

confounding data 1097
validity of data 966, 967–8, 975–8

gastrointestinal (GI) 
pharmacokinetics 35

Gastrointestinal Toxicity Survey 967
GBS see Guillain–Barré syndrome
Gemscript 254
gender effects

cultural factors 379
validity of data 962, 966

gene discovery approaches 761–2

gene–drug interactions 750–1
general causation 145–6
General Practice Research Database® 

(GPRD®) 252
advantage of 387
comparative effectiveness 

research 656
data utilization 387
study cohort 230
validity of data 976

generalizability
comparative effectiveness 

research 653
medical devices 505, 512
pharmacoeconomics 846
randomized controlled trials 797

Generic Drug User Fee Amendments 
(GDUFA) (2012) 10

generic drugs 825–6
genetic variability 747–8, 753
genome‐wide association studies 

(GWAS) 753, 761–2, 764
geriatrics see elderly populations
GFR see glomerular filtration
GIFT trial 756
Gilead 844
glaucoma 195
GlaxoSmithKline 345
Global Harmonization Task Force 

(GHTF) 497
global introspection 728, 733
Global Research in Paediatrics 

(GRIP) 621
 Network of Excellence 544

glomerular filtration rate (GFR) 32, 34
glucose‐6‐phosphate dehydrogenase 

(G6PD) deficiency 747
glucuronosyltransferase (UGT) 

isoforms 34
glutethimide 534
glyburide 1035
gold standard 949, 950, 951
golimumab 569
governance 116, 623, 624, 630, 632, 

654–6
clinical 641
see also ethics

government claims databases see 
Medicare; Medicaid

GPRD® see General Practice Research 
Database®

GRACE (Good Research for 
Comparative Effectiveness) 
Principles 347

Green Forms 311, 312, 313
Group Health Cooperative 776, 979
guideline materials 419–20
Guidelines for Good 

Pharmacoepidemiologic 
Practice 347

Guillain–Barré syndrome (GBS)  
438, 439, 444–5, 451, 453, 454, 
455

GUSTO‐I/GUSTO‐IIb 825
gynecomastia 319, 320–1

h
Harvard Pilgrim Healthcare 

Institute 933
HAS see Haute Authorité de Santé
Haute Authorité de Santé (HAS)  
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928–9
validity of data 953, 966, 967–9, 

973, 974–9
nonuser comparison groups 1080
NSDUH see National Survey on Drug 

Use and Health
number needed to harm 

(NNH) 881–2
number needed to treat (NNT)  
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observer‐reported outcomes 1063
obstetrics see pregnancy
odds ratios (OR)

clinical epidemiology 54
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pharmacokinetic gene–drug 

interactions 751
sample size 65
validity of data 953
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open‐ended questions 961–2
opinion leaders 421–2
opioid abuse see drug abuse
opportunity cost 846
optimization of therapy 4
OPV see oral polio vaccine
oral contraceptives 916, 1002, 1018
oral polio vaccine (OPV) 437, 438, 
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out‐of‐plan care 363
outpatient diagnoses

data on 364
data resources 365
electronic databases 206, 207
encounter databases 228
medication errors 1054
validity of data 966–9, 972, 973

overdose
risk factors 1053
risk management 586

overreporting 964, 966, 996, 999
over‐the‐counter (OTC) medications

drug abuse 708
medication errors 1049
randomized controlled trials 802, 

804, 809
risk management 586

oxcarbazepine 322–4



Index 1175

p
pack size 607
packaging

defects 506
EDMs 999
evaluation 595
medication errors 585
size of 1000

Paediatric Active Enhanced Disease 
Surveillance (PAEDS) 
system 449

PAEDS see Paediatric Active Enhanced 
Disease Surveillance (PAEDS)

pain 993
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pharmacogenomics 749–50
clinical pharmacology 40
data mining 676
pharmacogenetics and 749–50
vaccines 442, 452
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Phelan‐McDermid Syndrome Data 

Network 621
phenylbutazone 7, 66
phenytoin 30, 31
PHI see protected health information
PHIS see Pediatric Health Information 

System
phocomelia 307, 773, 774
physician prescribing see prescribing 

practices
Physicians’ Health Study 800
PICORI 644
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population admixture 760–1, 765
population at risk, concept 91
population based database 212, 363
population‐based data
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prazosin 16, 51, 66, 72, 75, 813
PREA see Pediatric Research 

Equity Act
preapproval review process 170
preapproval safety studies

biopharmaceutical industry 103–6
risk assessments 589
spontaneous reporting 170
see also clinical trials

PRECEDE model 419
precipitant triggered 

concomitancy 1040
Precision Medicine Initiative 843
preference studies 878, 884,885
Preferred Reporting Items for 

Systematic reviews and 
Metaanalyses (PRISMA) 648, 
902, 906–7, 910

pregnancy 524–47
automated healthcare 

databases 543
bias in samples 525
biology and epidemiology 525–6
case–control studies 545
clinical practice 530–1
confounding 537–8
currently available solutions  

541–6
drug safety evaluations 108–11
drug utilization 526–7
ethics and regulations 528–9
exposure ascertainment, timing, and 

misclassification 532–3, 533–4

future 546–7
medication adherence 526–7
medication errors 1049
methodological problems 531–41
newer designs 545
outcome and ascertainment 534–6
pharmacokinetics 36
population definition 531
prospective cohort 541
registries 541–2
risk management 595
risk tolerance 78
sample size requirements and 

challenges 532
selection bias 538–40
self‐controlled designs 545
teratogenicity 528, 529
treatment responses and patterns  

526–7
see also birth defects

premarketing studies 17–18
premarketing trials, shortcomings of  

84–5
Premier Healthcare Database 

(PHD) 290, 294, 299, 301, 302
pre–post with comparison group 

design 416
prescribed daily dose (PDD) 389
prescribing practices 411–29

academic detailing 420–1
audit and feedback systems 422–3
clinical problems 412–13
conceptual framework 419
detecting outcome effects 418–19
drug utilization 380, 381–2, 

383. 385–9
educational materials and guidelines  

419–20
effectiveness of interventions 419
ethical and legal problems 417–18
evaluating and improving 411–29
financial incentives and formulary 
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prescribing practices (cont’d)
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random‐effects models 913–14, 
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beneficial drug effects 818, 
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postapproval 793
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rapid‐cycle analyses (RCA) 685
vaccines 455–6, 462–3
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causation 731–2
ethics 773, 777–8, 780, 783–4
medical devices 497–501, 515–16
metaanalyses 930–1
pharmacoepidemiological 

studies 72–3
risk management 604–12
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918, 920, 925, 927–9, 932
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sample size 61–4
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quantitative measurement 951–2
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reporting odds ratio (ROR)  
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confounding data 1100
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Outcomes Research (RiGOR) 
study

risk assessment 99, 588–90
risk–benefit profiles see benefit–risk 

profiles
risk communication 585, 591–6, 

1012–13
risk difference (RD)

confounding data 1098
Medication Guides 1020
metaanalyses 912, 918, 927, 
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biopharmaceutical industry 99, 
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risk evaluation studies 1019–21
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current solutions 1014–22
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social media 1022

risk‐interval analysis 463–4,  
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risk management 12, 581–14
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effectiveness 587, 589
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regulatory factors 604–12
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risk mitigation 590–9, 601–2
scientifically driven 585
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risk management plans (RMP)  
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risk minimization see risk mitigation
risk mitigation 590–9, 610–14
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risk set sampling 1035
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adverse outcome 76–7
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RMP see risk management plans
rofecoxib 75, 141, 144, 146
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route‐of‐abuse profile 710
routine risk minimization 608
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SAE see serious adverse events
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Safety Evaluation of Adverse Reactions 
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Safety of Nonsteroidal Anti‐

inflammatory Drugs (SOS) 621
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900, 932

safety profiles 75, 900, 901
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beneficial drug effects 822
case–control studies 60, 62, 65–6, 

68–9
case series 66–8
cohort studies 61–4, 68–9
drug safety evaluations 104
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event monitoring 316–18
large simple trial 797
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974, 1083
validity of data 976, 977

satisficing 958, 961, 964, 965
scale judgment method 1072
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scientific inference 45
scientific method 44–5
scored algorithms 735
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pregnancy 110, 538–40
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468–9, 1037, 1038
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SEM see standard error of 
measurement

sensitivity analysis
confounding data 1100–1
pharmacoeconomics 850
validity of data 950, 953, 954, 955, 
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