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Impact of
chemoinformatics
approaches and tools on
current chemical research

1
Rajesh Kumar1,3,a, Anjali Lathwal1,a, Gandharva Nagpal2, Vinod Kumar1,3,

Pawan Kumar Raghav1,a
1Department of Computational Biology, Indraprastha Institute of Information Technology, New

Delhi, Delhi, India; 2Department of BioTechnology, Government of India, New Delhi, Delhi, India;
3Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

1.1 Background
Biological research remains at the core of fundamental analysis in the quest to
understand the molecular mechanism of living things. Biological researchers pro-
duce enormous amounts of data that critically need to be analyzed. Bioinformatics
is an integrative science that arises from mathematics, chemistry, physics, statistics,
and informatics, which provides a computational means to explore a massive
amount of biological data. Also, bioinformatics is a multidisciplinary science that
includes tools and software to analyze biological data such as genes, proteins,
molecular modeling of biological systems, molecular modeling, etc. It was Pauline
Hogeweg, a Dutch system biologist, who coined the term bioinformatics. After the
advent of user-friendly Swiss port models, the use of bioinformatics in biological
research has gained momentum at unparalleled speed. Currently, bioinformatics
has become an integral part of all life science research that assists clinical scientists
and researchers in identifying and prioritizing candidates for targeted therapies
based on peptides, chemical molecules, etc.

Chemoinformatics is a specialized branch of bioinformatics that deals with the
application of developed computational tools for easy data retrieval related to chem-
ical compounds, identification of potential drug targets, and performance of simula-
tion studies. These approaches are used to understand the physical, chemical, and
biological properties of chemical compounds and their interactions with the biological
system that can have the potential to serve as a lead molecule for targeted therapies.
Although the sensitivity of the computational methods is not as reliable as experi-
mental studies, these tools provide an alternative means in the discovery process
because experimental techniques are time consuming and expensive. The primary
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application of advanced chemoinformatics methods and tools is that they can assist
biological researchers to arrive at informed decisions within a shorter timeframe.
A molecule with drug-likeness properties has to pass physicochemical properties
such as the Lipinski rule of five and absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) properties before submitting it for clinical trials. If
any compound fails to possess reliable ADMET properties, it is likely to be
rejected. So, in the process of accelerating the drug discovery process, researchers
can use different in silico chemoinformatics computational methods for screening
a large number of compounds from chemical libraries to identify the most drug-
gable molecule before launching into clinical trials. A similar approach can be
employed for designing subunit vaccine candidates from a large number of protein
sequences of pathogenic bacteria.

In the literature, several other review articles focus on specialized parts of bioin-
formatics, but there is no such article describing the use of bioinformatics tools for
nonspecialist readers. This chapter describes the use of different biological chemo-
informatics tools and databases that could be used for identifying and prioritizing
drug molecules. The key areas included in this chapter are small molecule databases,
protein and ligand databases, pharmacophore modeling techniques, and quantitative
structureeactivity relationship (QSAR) studies. Organization of the text in each
section starts from a simplistic overview followed by critical reports from the liter-
ature and a tabulated summary of related tools.

1.2 Ligand and target resources in chemoinformatics
Currently, there has been an enormous increase in data related to chemicals and
medicinal drugs. The available experimentally validated data can be utilized in
computer-aided drug design and discovery of some novel compounds. However, most
of the resources having such data belongs to private domains and large pharmaceutical
industries. These resources mainly house data in form of chemical descriptors that may
be used to build different predictive models. A complete overview of the chemical
descriptors/features and databases can be found in Tables 1.1 and 1.2. A brief descrip-
tion of each type of database can be found in the subsequent subsections of this chapter.

1.2.1 Small molecule compound databases
Small molecule compound databases hold information on active organic and inor-
ganic substances, which can show some biological effect. The largest repository
of active small molecule compounds is the Available Chemical Directory (ACD),
which stores almost 300,000 active substances. The ACD/Labs database provides
information on the physicochemical properties such as logP, logS, and pKa values
of active compounds. Another such database is the SPRESIweb database containing
more than 4.5 million compounds and 3.5 million reactions. Another database,
CrossFire Beilstein, has more than 8 million organic compounds and 9 million active
biochemical reactions along with a variety of properties, including various physical
properties, pharmacodynamics, and environmental toxicity.
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Table 1.1 Table representing standard features and their type utilized in
quantitative structureeactivity relationship.

Descriptor
type Basis Example

Theoretical descriptors

0D Structural count Molecular weight, number of bonds, number of
hydrogen bonds, aromatic and aliphatic bonds

1D Chemical graph
theory

Numbers of functional groups, fragment counts,
disulfide bonds, ammonium bond

2D Topological
properties

Randic index, wiener index, molecular walk count,
kappa shape index

3D Geometrical
structural
properties

Autocorrelation, 3D-Morse, fingerprints

4D Conformational GRID, raptor, sample conformation

Experimental descriptors

Electronic Electrostatic
properties

Dissociation constant, hammett constant

Steric Steric properties Charton constant

Hydrophobic Hydrophobic
properties

logP, hydrophobic constant

Table 1.2 Commonly used tools and software categorized on algorithms/
scoring functions/description availability with uniform resource locator (URL)
and supported platforms.

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

Commonly used databases in chemoinformatics

Available
Chemical
Directory (ACD)

Access to meticulously
examined experimental
Nuclear Magnetic Resonance
(NMR) data, complete with
assigned structures and
references of millions of
chemical compounds

https://www.
acdlabs.com/
products/dbs/nmr_
db/index.php

32681440

CrossFire
Beilstein

Data on more than 320 million
scientifically measured
properties of chemical
compounds. The largest
database in organic chemistry.

www.
crossfirebeilstein.
com

11604014

SpresiWeb Data regarding millions of
chemical molecules and
reactions extracted from
research articles

https://www.
spresi.com/
indexunten.htm

24160861

Continued
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Table 1.2 Commonly used tools and software categorized on algorithms/scoring

functions/description availability with uniform resource locator (URL) and supported

platforms.dcont’d

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

ChEMBL Approximately 2.1 million
chemical compounds from
nearly 1.4 million assays

https://www.ebi.
ac.uk/chembl/

21948594

PubChem Contains 9.2 million
compounds with activity
information

https://pubchem.
ncbi.nlm.nih.gov

26400175

CARLSBAD Contains activity information of
0.43 million active compounds

http://carlsbad.
health.unm.edu/
carlsbad/

23794735

Drugcentral Provides information on 4,444
pharmaceutical ingredients
with 1,605 human protein
targets

http://drugcentral.
org

27789690

repoDB A standard database for drug
repurposing

http://apps.
chiragjpgroup.org/
repoDB/

28291243

PharmGKB A database for exploring the
effect of genetic variation on
drug targets

https://www.
pharmgkb.org

23824865

ZINC A commercially available
database for virtual screening

http://zinc.docking.
org

15667143

Databases for exploring proteineligand interaction

Protein Data
Bank (PDB)

Provides information on
166,301 crystallographic
identified structures of
macromolecules

https://www.rcsb.
org/

10592235

Cambridge
Structural
Database (CSD)

Provides information on nearly
0.8 million compounds

https://www.ccdc.
cam.ac.uk/
solutions/csd-
system/
components/csd/

27048719

Protein Ligand
Interaction
Database (PLID)

A resource for exploring the
proteineligand interaction
from PDB

http://203.199.
182.73/gnsmmg/
databases/plid/

18514578

Protein Ligand
Interaction
Clusters (PLIC)

A repository for exploring
nearly 84,846 proteineligand
interactions derived from PDB

http://proline.
biochem.iisc.ernet.
in/PLIC

24763918

CREDO A resource providing proteine
ligand interaction information
for drug discovery

http://www-cryst.
bioc.cam.ac.uk/
credo

19207418
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Table 1.2 Commonly used tools and software categorized on algorithms/scoring

functions/description availability with uniform resource locator (URL) and supported

platforms.dcont’d

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

PDBbind A resource for the binding
affinity of nearly 5,897
proteineligand complexes

http://www.
pdbbind.org/

15943484

Database for exploring macromolecular interactions

DOMININO A database for exploring the
interaction between protein
domains and interdomains

http://dommino.
org

22135305

PIMAdb A resource for exploring
interchain interaction among
protein assemblies

http://caps.ncbs.
res.in/pimadb

27478368

PDB-eKB A community-driven
knowledgebase for functional
annotation and prediction of
PDB data

https://www.ebi.
ac.uk/pdbe/pdbe-
kb

31584092

CATH A database for classification of
protein domains

http://www.
cathdb.info

20368142

LIGAND A composite database of
chemical compounds,
reactions, and enzymatic
information

http://www.
genome.ad.jp/
ligand/

11752349

The Molecular
Interaction
Database (MINT)

Provides information on
experimentally verified protein
eprotein interactions

https://mint.bio.
uniroma2.it/mint/

17135203

Database of
Interacting
Proteins (DIP)

A database for exploring,
prediction, and evolution of
proteineprotein interaction,
and identification of a network
of interactions

http://dip.doe-mbi.
ucla.edu

10592249

The
Biomolecular
Interaction
Network
Database (BIND)

A database for exploring
biomolecular interactions

www.bind.ca 2519993

Software used for pharmacophore modeling

Pharmer A computational tool for
pharmacophore searching
using bloom fingerprint

smoothdock.ccbb.
pitt.edu/pharmer/

21604800

PharmaGist A server for ligand-based
pharmacophore searching by
utilizing the Mtree algorithm

http://bioinfo3d.cs.
tau.ac.il/
PharmaGist/

18424800
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Table 1.2 Commonly used tools and software categorized on algorithms/scoring

functions/description availability with uniform resource locator (URL) and supported

platforms.dcont’d

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

LiSiCA A software for ligand-based
virtual screening

http://insilab.org/
lisica/

26158767

ZINCPharmer A tool for pharmacophore
searching from the ZINC
database

http://zincpharmer.
csb.pitt.edu/

22553363

LigandScout A tool for generating a 3D
pharmacophore model using
six types of chemical features

http://www.
inteligand.com/
download/
InteLigand_
LigandScout_4.3_
Update.pdf

15667141

Schrodinger The phase function of
schrodinger can be utilized for
ligand and structure-based
pharmacophore modeling

https://www.
schrodinger.com/
phase

32860362

VirtualToxLab Allows rationalizing prediction
at the molecular level by
analyzing the binding mode of
the tested compound for
target proteins in real-time 3D/
4D

http://www.
biograf.ch/index.
php?id¼projects&
subid¼virtualtoxlab

32244747

Tools used in QSAR model development

DPubChem Software for automated
generation of a QSAR model

www.cbrc.kaust.
edu.sa/dpubchem

29904147

QSAR-Co Open-source software for
QSAR-based classification
model development

https://sites.
google.com/view/
qsar-co

31083984

DTClab A suite of software for curating
and generating a QSAR model
for virtual screening

https://dtclab.
webs.com/
software-tools

31525295

Ezqsar A standalone program suite for
QSAR model development

https://github.com/
shamsaraj/ezqsar

29387275

DataWarrior An integrated computer tool
for generation and virtual
screening of a QSAR model

http://www.
openmolecules.
org/datawarrior/

30806519
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Table 1.2 Commonly used tools and software categorized on algorithms/scoring

functions/description availability with uniform resource locator (URL) and supported

platforms.dcont’d

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

Feature selection algorithm used in building a QSAR model

Waikato
Environment for
Knowledge
Analysis (WEKA)

A general-purpose
environment for automatic
classification, regression,
clustering, and feature
selection of common data
mining problems in
bioinformatics research

http://www.cs.
waikato.ac.nz/ml/
weka

15073010

DWFS A web-based tool for feature
selection

https://www.cbrc.
kaust.edu.sa/dwfs/

25719748

SciKit A Python-based framework for
feature selection and model
optimization

https://scikit-learn.
org/stable/
modules/feature_
selection.html

32834983

Docking software commonly used in chemoinformatics

Autodock4 GA; LGA; SA/empirical free
energy forcefield

http://autodock.
scripps.edu

19399780

Autodock Vina GA, PSO, SA, Q-NM/X-Score http://vina.scripps.
edu

19499576

BDT AutoGrid and AutoDock http://www.
quimica.urv.cat/
wpujadas/BDT/
index.html

16720587

BetaDock GA http://voronoi.
hanyang.ac.kr/
software.htm

21696235

CDocker SA http://accelrys.
com/services/
training/life-
science/
StructureBased
Design
Description.html

11922947

DARWIN GA http://darwin.cirad.
fr/product.php

10966571

DOCK IC/Chem Score, SA solvation
scoring, DockScore

http://dock.
compbio.ucsf.edu

19369428

DockoMatic AutoDock https://
sourceforge.net/
projects/
dockomatic/

21059259

Continued
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Table 1.2 Commonly used tools and software categorized on algorithms/scoring

functions/description availability with uniform resource locator (URL) and supported

platforms.dcont’d

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

DockVision MC, GA http://dockvision.
sness.net/
overview/overview.
html

1603810

eHiTS RBD of fragments followed by
reconstruction/eHiTS

www.simbiosys.cs/
ehits/index.html

16860582

FINDSITE-
COMB

SP-score http://cssb.biology.
gatech.edu/
findsitelhm

19503616

FITTED GA/RankScore http://www.fitted.
ca

17305329

Fleksy Flexible approach to IFD http://www.cmbi.
ru.nl/software/
fleksy/

18031000

FlexX IC/FlexXScore, PLP, Screen
Score, Drug Score

https://www.
biosolveit.de

10584068

FlipDock GA http://flipdock.
scripps.edu

17523154

FRED RBD/Screen Score, PLP,
Gaussian shape score,
ChemScore, ScreenScore,
Chemgauss4 scoring function

https://docs.
eyesopen.com/
oedocking/fred.
html

21323318

GalaxyDock GalaxyDock BP2 Score http://galaxy.
seoklab.org/
softwares/
galaxydock.html

23198780,
24108416

GEMDOCK EA/empirical scoring function http://gemdock.
life.nctu.edu.tw/
dock/

15048822

GlamDock MC/SA http://www.chil2.
de/Glamdock.html

17585857

Glide Hierarchical filters and MC/
Glide Score, glide comp

https://www.
schrodinger.com/
glide/

15027865

GOLD GA/Gold Score, chem Score https://www.ccdc.
cam.ac.uk/
solutions/csd-
discovery/
components/gold/

12910460

GriDock AutoDock4.0 http://159.149.85.
2/cms/index.php?
Software_projects:
GriDock

20623318
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Table 1.2 Commonly used tools and software categorized on algorithms/scoring

functions/description availability with uniform resource locator (URL) and supported

platforms.dcont’d

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

HADDOCK SA/HADDOCK Score http://haddock.
science.uu.nl/
services/
HADDOCK2.2/

12580598

HYBRID CGO/Ligand-based scoring
function

https://docs.
eyesopen.com/
oedocking/hybrid.
html

17591764

iGEMDOCK GA/Simple empirical scoring
function and a
pharmacophore-based
scoring function

http://gemdock.
life.nctu.edu.tw/
dock/igemdock.
php

15048822

Lead Finder GA http://moltech.ru 19007114

LigandFit Monte Carlo sampling/Lig
Score, PLP, PMF,
hammerhead

https://www.
phenix-online.org/
documentation/
reference/ligandfit.
html

12479928

Mconf-DOCK DOCK5 http://www.mti.
univ-paris-diderot.
fr/recherche/
plateformes/
logiciels

18402678

MOE Gaussian function http://www.
chemcomp.com/
MOE-Molecular_
Operating_
Environment.htm

19075767

Molegro Virtual
Docker

Evolutionary algorithm http://www.
scientificsoftware-
solutions.com/
product.php?
productid¼17625

16722650

POSIT SHAPEFIT https://docs.
eyesopen.com/
oedocking/posit_
usage.html

21323318

Rosetta Ligand Rosetta script https://www.
rosettacommons.
org/software

22183535

Continued
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Table 1.2 Commonly used tools and software categorized on algorithms/scoring

functions/description availability with uniform resource locator (URL) and supported

platforms.dcont’d

Databases/
tools

Algorithm/scoring
functions/description Website URL PMIDs

Surflex-Dock IC/Hammerhead https://omictools.
com/surflex-dock-
tool

22569590

VLifeDock GA/PLP score, XCscore, and
Steric þ Electrostatic score

http://www.
vlifesciences.com/
products/
VLifeMDS/
VLifeDock.php

30124114

Commonly used MD simulations tools

Abalone Suitable for long simulations http://www.
biomolecular-
modeling.com/
Abalone/index.html

26751047

ACEMD Fastest MD engine https://www.
acellera.com/
products/
molecular-
dynamics-
software-GPU-
acemd/

26616618

AMBER Used for simulations http://ambermd.
org/

16200636

CHARMM Allows macromolecular
simulations

http://yuri.harvard.
edu/

31329318

DESMOND Performs high-performance
MD simulations

https://www.
deshawresearch.
com/resources_
desmond.html

16222654

GROMACS Widely used with excellent
performance

http://www.
gromacs.org/

21866316

LAMMPS A coarse-grain tool,
specifically designed for
material MD simulations

http://lammps.
sandia.gov/

31749360

MOIL A complete suite for MD
simulations and modeling

http://clsbweb.
oden.utexas.edu/
moil.html

32375019

NAMD Provides a user-friendly
interface and plugins to
perform large simulations

http://www.ks.
uiuc.edu/
Research/namd/

29482074

TINKER Performs biomolecule and
biopolymer MD simulations

http://dasher.
wustl.edu/tinker/

30176213
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1.2.2 Protein and ligand information databases
3D information of a ligand and its binding residues within the pocket of its target
protein is an essential requirement while developing 3D-QSAR-based models.
Thus, the databases holding information about macromolecule structures are of great
importance for pharmaceutical industries and researchers. The Protein Data Bank
(PDB) (Rose et al., 2017) is one such open-source large repository containing struc-
tural information identified via crystallographic and Nuclear Magnetic Resonance
(NMR) experimental techniques. The current version of PDB holds structural infor-
mation on 166,301 abundant macromolecular compounds. The PDB is updated
weekly with a rate of almost 100 structures. Another such extensive database is
the Cambridge Structural Database (Groom et al., 2016), which provides structural
information on large macromolecules such as proteins.

1.2.3 Databases related to macromolecular interactions
Often the biological activity of a protein can be modulated by binding a ligand mole-
cule within its active site. Thus, identification of molecular interactions among
ligandeprotein and proteineprotein is of utmost importance. Moreover, the biolog-
ical pathways and chemical reactions occurring at the proteineligand interface are
also essential in understanding disease pathology. LIGAND is a database that pro-
vides information on enzymatic reactions occurring at the macromolecular level
(Goto et al., 2000). Several other databases, such as the Database of Interacting Pro-
teins, Biomolecular Interaction Network Database, and Molecular Interaction
Network, are also present in the literature, which includes information on proteine
protein interactions.

1.3 Pharmacophore modeling
The process of drug designing dates back to 1950 (Newman and Cragg, 2007). His-
torically, the process of drug designing follows a hit-and-miss approach. It has been
observed that only one or two tested compounds out of 40,000 reach clinical set-
tings, suggesting a low success rate. Often the developed lead molecule lacks
potency and specificity. The traditional drug design process may take up to 7e12
years, and approximately $1e2 billion in launching a suitable drug into the market.
All this suggests that finding a drug molecule is time consuming, expensive, and
needs to be optimized in a different way to identify the correct lead molecule. These
limitations also signify that there should be some novel alternative ways to identify
hits that may lead to drug molecules. Soon after discovering computational methods
to design and screen large chemical databases, the process of drug discovery has
primarily shifted from natural to synthetic (Lourenco et al., 2012). The rational stra-
tegies for creating active pharmaceutical compounds have become an exciting area
of research. Industries and research institutions are continuously developing new
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tools that can accelerate and speed up the drug discovery process. The methodology
involves identifying active molecules via ligand optimization known as pharmaco-
phore modeling or the structureeactivity relationship approach. This section of the
chapter describes ligand-based pharmacophore modeling in detail to find the active
compound with desired biological effects.

A pharmacophore is simply a representation of the ligand molecules’ structural
and chemical features that are necessary for its biological activity. According to the
International Union of Pure and Applied Chemistry, a pharmacophore is an
ensemble of steric and electrostatic features required to ensure optimal interactions
with specific biological targets to block its response. The pharmacophore is not a
real lead molecule, but an ensemble of common molecular descriptors shared by
active ligands of diverse origins. This way, pharmacophore modeling can help iden-
tify the active functional groups within ligand binding sites of target proteins and
provide clues on noncovalent interactions. The active pharmacophore feature in-
cludes hydrogen bond donor, acceptor, cationic, aromatic, and hydrophobic compo-
nents of a ligand molecule, etc. The characteristic features of active ligands are often
described in 3D space by torsional angle, location distance, and other features.
Several software tools are available to design the pharmacophore model, such as
the catalyst, MOE, LigandScout, Phases, etc.

1.3.1 Types of pharmacophore modeling
Pharmacophore modeling is broadly classified into two categories: ligand-based and
structure-based pharmacophore modeling. A brief about the methodology adopted
by each type of modeling is shown in Fig. 1.1. However, structure-based pharmaco-
phore modeling exclusively depends on the generation of pharmacophore models
based on the receptor-binding site. Still, for ligand-based pharmacophore modeling,
the bioactive conformation of the ligand is used to derive the pharmacophore model.
The best approach is to consider the receptoreligand complex and generate the phar-
macophore models from there. This provides exclusion volumes that restrict the
ligand during virtual screening to the target site and thus is quite successful in virtual
screening of large chemical database libraries.

1.3.2 Scoring scheme and statistical approaches used in
pharmacophore modeling

Several parameters assess the quality of developed pharmacophore models, such as
predictive power, identifying novel compounds, cost function, test set prediction,
receiver operating characteristic (ROC) analysis, and goodness of fit score. Gener-
ally, a test set approach is used to estimate the predictive power of a developed phar-
macophore model. A test set is a group of the external dataset of structurally diverse
compounds. It checks whether the developed model can predict the unknown
instance. A general observation is that if a developed model shows a correlation
coefficient greater than 0.70 on both training and test set, it is of good quality.
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The commonly used statistical parameter, costefunction analysis, is integrated into
the HypoGen program to validate the predictive power of the developed model. The
optimal quality pharmacophore model generally has a cost difference between 40
and 60 bits. The cost value signifies the percentage of probability of correlating
the data points. The value between 40 and 60 bits means that the developed pharma-
cophore model shows a 75%e90% probability of correlating the data points. The
ROC plot gives visual as well as numerical representation of the developed pharma-
cophore model. It is a quantitative measure to assess the predictive power of a devel-
oped pharmacophore model. The ROC curve depends on the true positive, true
negative, false positive, and false negative predicted by the developed model. The
ROC plot can be plotted using 1-specificity (false positive rate) on the X-axis and
sensitivity (true positive rate) on the Y-axis of the curve.

The developed pharmacophore model has huge therapeutic advantages in the
screening of large chemical databases. The identified pharmacophore utilized by
the methodology just mentioned and statistical approaches may serve the basis of
designing active compounds against several disorders. Successful examples include
novel CXCR2 agonists against cancer (Che et al., 2018), a cortisol synthesis inhib-
itor designed against Cushing syndrome (Akram et al., 2017), designing of ACE2

FIGURE 1.1

Overall workflow of the methodology used in developing the pharmacophore model. (A)

Ligand-based pharmacophore model. (B) Structure-based pharmacophore model.

ROC, Receiver operating characteristic.
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inhibitors (Rella et al., 2006), and chymase inhibitors (Arooj et al., 2013). Various
software tools that are available for designing the correct pharmacophore are shown
in Table 1.2. Overall, we can say that medicinal chemists and researchers can use
pharmacophore approaches as complementary tools for the identification and
optimization of lead molecules for accelerating the drug designing process.

A QSAR model can be developed using essential statistics such as regression
coefficients of QSAR models with significance at the 95% confidence level, the
squared correlation coefficient (r2), the cross-validated squared correlation coeffi-
cient (Q2), the standard deviation (SD), the Fisher’s F-value (F), and the root
mean squared error. These parameters suggest better robustness of the predicted
QSAR model based on different algorithms like simulated annealing and artificial
neural network (ANN). The algorithm-based acceptable QSAR model is required
to have statistical parameters of higher value for the square of correlation coefficient
(r2 near to 1), and Fisher’s F-value (F ¼ max), while the value is lower for standard
deviation (SD ¼ low). The intercorrelation of these independent parameters gener-
ated for descriptors is required to develop the QSAR model.

1.4 QSAR models
It is of utmost importance to identify the drug-likeness of the compounds obtained
after pharmacophore modeling and virtual screening of the chemical compound
databases. QSAR-based machine learning models are continuously being used by
the pharmaceutical industries to understand the structural features of a chemical
that can influence biological activity (Kausar and Falcao, 2018). The QSAR-
based model solely depends on the descriptors of the chemical compound. Descrip-
tors are the numerical features extracted from the structure of a compound. The
QSAR model attempts to correlate between the descriptors of the compounds
with its biological activity. A brief overview of the QSAR methodology used in
pharmaceutical industries and research laboratories follows.

1.4.1 Methodologies used to build QSAR models
The primary goal of all QSARmodels is to analyze and detect the molecular descrip-
tors that best describe the biological activity. The descriptors of chemical com-
pounds are mainly classified into two categories: theoretical descriptors and
experimental descriptors (Lo et al., 2018).

The theoretical descriptors are classified into 0D, 1D, 2D, 3D, and 4D types,
whereas the experimental descriptors are of the hydrophobic, electronic, and steric
parameter types. A brief description of descriptor types is shown in Table 1.1.

The descriptors used as input for the development of machine learning-based
models predict the property of the chemical compound. QSAR methods are named
after the type of descriptors used as input, such as 2D-QSAR, 3D-QSAR, and 4D-
QSAR methods. A brief description of each QSAR method follows.
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1.4.2 Fragment-based 2D-QSAR
In recent years, the use of 2D-QSAR models to screen and predict bioactive mole-
cules from large databases has gained momentum in pharmaceutical industries due
to their simple, easy-to-use, and robust nature. It allows the building of QSAR
models even when the 3D structure of the target is mainly unknown. A hologram-
based QSAR model was the first 2D-QSAR method developed by researchers that
did not depend on the alignment between the calculated descriptors of a compound.
First, the input compound is split into all possible fragments fed to the CRC algo-
rithm, which then hashes the fragments into bins. The second step involves the
correlation analysis of generated fragment bins with the biological activity. The
basis of the final model is partial least regression that identifies the correlation of
fragment bins with biological activity (IC50, Vmax).

1.4.3 3D-QSAR model
3D-QSAR models are computationally intensive, bulky, and implement complex al-
gorithms. They are of two types: alignment dependent and alignment independent,
and both types require 3D conformation of the ligand to build the final model.
Comparative molecular field analysis (CoMFA) and comparative molecular similar-
ity indices analysis (CoMSIA) are the popularly used 3D-QSAR methods utilized by
pharmaceutical industries for model building. The CoMFA method considers the
electrostatic and steric fields in the generation and validation of a 3D model, while
the CoMSIA utilizes hydrogen bond donoreacceptor interactions. Then, steric and
electrostatic interactions are measured at each grid point. Subsequently, partial least
squares regression analysis correlates the molecular descriptors of the ligand with
the biological activities to make a final QSAR model.

1.4.4 Multidimensional or 4D-QSAR models
To tackle the limitations of 3D-QSAR methods, multidimensional QSARmodels are
heavily used in the pharmaceutical industries. The essential requirement for the
development of 4D-QSAR methods is the 3D geometry of the receptors and ligand.
One such 4D-QSAR method is Hopfinger’s, which is dependent on the XMAP algo-
rithm. The commonly used software tools for developing multidimensional QSAR
models are Quasar and VirtualToxLab software.

Before applying machine learning-based QSAR modeling, the feature selection
process for dimensionality reduction must ensure that only relevant and best features
should be used as input in the machine learning process. Otherwise, the developed
QSAR model on all relevant and irrelevant features will decrease the model’s
performance. The most widely used open-source feature selection tools are
WEKA, scikit in Python, DWS, FEAST in Matlab, etc. A complete list of feature
extraction algorithms commonly used in pharmaceutical industries is shown in
Table 1.2. The selected features of the active and inactive compounds were
used as input features for developing the QSAR-based machine learning model.
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Machine learning-based strategies try to learn from the input structural features and
predict the compounds’ biological properties. The final developed QSAR model can
be applied to the large chemical compound libraries to screen the compounds and
predict their biological properties. All the feature selection programs utilize one
or other algorithms, namely stepwise regression, simulated annealing, genetic algo-
rithm, neural network pruning, etc.

1.4.5 Statistical methods for generation of QSAR models
The machine learning-based QSAR modeling approach has two subcategories. The
first one includes regression-based model development, and the second one provides
classification techniques based on the properties of the data. The regression-based
statistical methods implement algorithms, such as multivariate linear regression
(MLR), principal component analysis, partial least square, etc. At the same time,
classification techniques include linear discriminant analysis, k-nearest neighbor al-
gorithm, ANN, and cluster analysis that link qualitative information to arrive at
propertyestructure relationships for biological activity. Each algorithm has its
unique function and scoring scheme for building the predictive QSAR model
(Hao et al., 2010). The general workflow and statistical details of MLR are shown
in Fig. 1.2.

FIGURE 1.2

Overall workflow of the predictive quantitative structureeactivity relationship model

development.
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1.4.6 Multivariate linear regression analysis
The regression analysis module of the MLR algorithm estimates the correlation
between the biological activities of ligands/compounds with their molecular chem-
ical descriptors. The essential and first step includes the finding of data points from
descriptors that best suit the performance of the QSAR model. Next, a series of step-
wise filters is applied, which reduces the dimensionality of descriptors to arrive at
minimum descriptors that best fit the model. This will increase the predictive power
of the algorithm as well as make it less computationally exhaustive. Cross-validation
estimates the predictive power of the developed model. The mathematical details of
the procedure, as already mentioned, are described as follows. Let X be the data
matrix of descriptors (independent variable), and Y be the data vectors of biological
activity (dependent variable). Then, regression coefficient b can be calculated as:

b ¼ ðX0XÞ�1X0Y

The statistical parameter total sum of squares is a way of representing the result
obtained from MLR analysis. An example set here shows all the mathematical equa-
tions. For example, the development of a QSAR model for predicting the antiinflam-
matory effects of the COX2 compound is done with the help of the Scigress Explore
method. The correlation between the actual inhibitory value (r2 ¼ 0.857) and pre-
dicted inhibitory values (r2CV ¼ 0.767) is good enough, proving that the predicted
model is of good quality. The features used in developing the predictive models are
as explained in the following equation:

Predicted antiinflammatory activity log(LD50) ¼ þ0.167357 � Dipole
vector � (Debye) þ 0.00695659 � Steric energy (kcal/mol) � 0.00249368 � Heat
of formation (kcal/mol) þ 0.852125 � Size of smallest ring � 1.1211 � Group
count (carboxyl) � 1.24227

Here, r2 defines the regression coefficient. For better QSAR model development,
the mean difference between actual and predicted values should be minimum. If the
value of r2 varies a lot, then the model is overfitted. A brief of the general method-
ology used in building the QSAR model is illustrated in Fig. 1.2.

Traditional QSAR-based modeling only predicts the biological nature of the
compound and is capable of screening the new molecule based on the learning.
However, this approach has several limitations; all the predicted compounds do
not fit into the criteria of the Lipinski rule of five and thus may have cytotoxic prop-
erties, etc. Modern QSAR-based strategies should employ various other filtration
processes such as the incorporation of empirical rules, pharmacokinetic and pharma-
toxicological profiles, and chemical similarity cutoff criteria to handle the aforemen-
tioned issues (Cherkasov et al., 2014). This way, a ligand with potential druggability
and ADMET properties can be made in a time-efficient manner. Several software
tools like click2drug, SWISS-ADME, and ADMET-SAR can solve the user’s
problems in predicting the desired ADMET properties of a compound.
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1.5 Docking methods
Docking is an essential tool in drug discovery that predicts receptoreligand interac-
tions by estimating its binding affinity (Meng et al., 2012), due to its low cost and
time saving that works well on a personal computer compared to experimental
assays. The significant challenges in docking are a representation of receptor, ligand,
structural waters, side-chain protonation, flexibility (from side-chain rotations to
domain movement), stereoisomerism, input conformation, solvation, and entropy
of binding (Torres et al., 2019). However, recent advances in the field of drug
designing have been reported after the advent of docking and virtual screening
(Lounnas et al., 2013). Receptoreligand complex structure generation using
in silico docking approaches involves two main components: posing and scoring.
Docking is achieved through ligand orientational and conformational sampling in
the receptor-active site, wherein scoring predicts the best native pose among the
rank ligands (Chaput and Mouawad, 2017). Docking involves the structure of li-
gands for pose identification and ligand binding tendency to predict affinity (Clark
et al., 2016). This implies that search methods of ligand flexibility are categorized
into systematic strategies based on incremental construction (Rarey et al., 1996),
conformational search, and databases (DOCK and FlexX). The stochastic or random
approaches use genetic, Monte Carlo, and tabu search algorithms implemented in
GOLD, AutoDock, and PRO_LEADS, respectively. At the same time, simulation
methods are associated with molecular dynamics (MD) simulations and global
energy minimization (DOCK) (Yuriev et al., 2011).

The receptor is represented as a 3D structure in docking obtained from NMR,
X-ray crystallography, threading, homology modeling, and de novo methods. Never-
theless, ligand binding is a dynamic event instead of a static process, wherein both
ligand and protein exhibit conformational changes.

Several docking software and virtual screening tools (Table 1.2) are available and
widely used. Nonetheless, one such software that explicitly addresses receptor flex-
ibility is RosettaLigand, which uses the stochastic Monte Carlo approach, wherein a
simulated annealing procedure optimizes the binding site side-chain rotamers (Davis
et al., 2009). Another software, Autodock4, completely models the flexibility of the
selected protein portion in which selected side chains of the protein can be separated
and explicitly treated during simulations that enable rotation throughout the
torsional degree of freedom (Bianco et al., 2016). Alternatively, the protein can be
made flexible by the Insight II side-chain rotamer libraries (Wang et al., 2005). Be-
sides, the Induced Fit Docking (IFD) workflow of Schrodinger software relies on
rigid docking using the Glide module combined with the minimization of complexes
and homology modeling. IFD has been used for kinases (Zhong et al., 2009), HIV-1
integrase (Barreca et al., 2009), heat shock protein 90 (Lauria et al., 2009), and
monoacylglycerol lipase (King et al., 2009) studies. Furthermore, atom receptor
flexibility into docking was introduced using MD simulations, which measured its
effect on the accuracy of this tool by cross-docking (Armen et al., 2009). The
best complex models are obtained based on flexible side chains and multiple flexible
backbone segments.
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In contrast, the binding of docked complexes containing flexible loops and
entirely flexible targets was found less accurate because of increased noise that
affects its scoring function. Internal Coordinate Mechanics (ICM), a 4D-docking
protocol, was reported where the fourth dimension represents receptor conformation
(Abagyan and Totrov, 1994). ICM accuracy was found to be increased using multi-
ple grids that described multiple receptor conformations compared to single grid
methods. A gradient-based optimization algorithm was implemented in a local mini-
mization tool used to calculate the orientational gradient by adjusting parameters
without altering molecular orientation (Fuhrmann et al., 2009). The docking
approaches are computationally costly for creating docker ligand libraries, receptor
ensembles, and developing individual ligands against larger ensembles (Huang and
Zou, 2006). Normal mode analysis used to generate receptor ensembles is one of the
best alternatives to MD simulations (Moroy et al., 2015). The elastic network model
(ENM) method induces local conformational changes in the side chains and protein
backbone, which signifies its importance more efficiently than MD simulations.

A small change in the ligand conformation causes significant variations in the
scores of docked poses and geometries. This suggests that no method or ligand ge-
ometry produces the most precise docking pose (Meng et al., 2012). Ligand confor-
mational treatment has been precomputed through several available methods like the
generation of ligand conformations (TrixX Conformer Generator) (Griewel et al.,
2009), systematic sampling (MOLSDOCK and AutoDock 4) (Viji et al., 2012),
incremental construction (DOCK 6), genetic algorithms (Jones et al., 1997),
Lamarckian genetic algorithm (FITTED and AutoDock), and Monte Carlo (Roset-
taLigand and AutoDock-Vina).

1.5.1 Scoring functions
Docking software and webservers are validated by producing “correct” binding
modes based on the ranking, which identifies active and inactive compounds still un-
der study. Thus, several attempts have been made to improve scoring functions like
entropy (Li et al., 2010), desolvation effects (Fong et al., 2009), and target speci-
ficity. Mainly, four types of scoring functions have been categorized and imple-
mented in forcefields: classical (D-Score, G-Score, GOLD, AutoDock, and
DOCK) (Hevener et al., 2009); empirical (PLANTSCHEMPLP, PLANTSPLP)
(Korb et al., 2009), RankScore 2.0, 3.0, and 4.0 (Englebienne and Moitessier,
2009), Nscore (Tarasov and Tovbin, 2009), LUDI, F-Score, ChemScore, and
X-SCORE (Cheng et al., 2009); knowledge (ITScore/SE) (Huang and Zou, 2010),
PoseScore, DrugScore (Li et al., 2010), and MotifScore based; and machine learning
(RF-Score, NNScore) (Durrant and McCammon, 2010).

Docking calculations of entropies are included within the Molecular Mechanics/
Poisson-Boltzmann Surface Area (MM/PBSA), wherein it is a modified form of
framework, and the entropy loss is calculated. This is correspondingly assessed after
ligandereceptor binding based on the loss of rotational, torsional, translational,
vibrational, and free energies. The modification includes the free energy change
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of ligand in free or bound states. In contrast, the reorganization energy of ligand
requires the prediction of native binding affinities included in the new scoring
function.

In terms of specificity and binding affinity, water molecules play an essential role
in receptoreligand complexes. Thus it is necessary to consider specific water mol-
ecules to predict the effect of solvation in docking. An empirical solvent-accessible
surface area energy function gave an improved success rate in pose prediction
compared to native experimental binding scores. Still, it failed for receptors where
electrostatic interactions are considered. On the contrary, in silico, MM/PBSA, and
Molecular Mechanics/Generalized Born and Surface Area (MM/GBSA) calcula-
tions are performed for an ensemble if a receptoreligand complex correlates with
experimentally measured binding free energies (Hou et al., 2011).

Besides, the scoring functions based on Molecular Mechanical/Quantum Me-
chanical (MM/QM) have been considered for the treatment of ligand in combination
with GoldScore, ChemScore, and AMBER to predict the right poses based on three
essential functions: AM1d, HF/6-31G, and PM3 (Fong et al., 2009). Furthermore,
cross-docking was also performed using a combination of Universal Force Field
and B3LYP/6-31G. Similarly, an MM/QM-based docking program, QM-Polarized
Ligand Docking with SiteMap, was developed to identify binding sites that predict
improved scoring compared to Glide in terms of hydrophilic, hydrophobic, and met-
alloprotein binding sites (Chung et al., 2009). The statistical parameters of
receptoreligand complex structures are summarized in knowledge-based scoring
functions that can handle two crucial tasks: pose prediction and ligand ranking
(Charifson et al., 1999). Consensus scoring predicts the binding affinities and eval-
uates multiple-docked pose rescoring combined with specific scoring functions. The
four universal forcefield energy functions have been applied in consensus scoring of
fragment-based virtual screening to estimate binding free energy: CHARMm elec-
trostatic interaction energy, Van der Waals efficiency, TAFF interaction energy, and
linear interaction energy with continuum electrostatics (Friedman and Caflisch,
2009). However, a combination of ASP, ChemScorePLP, LigScore, GlideScore,
and DrugScorein scoring function was considered (Li et al., 2014). Virtual screening
against kinases (Brooijmans and Humblet, 2010) was successfully applied using
consensus scoring such as VoteDock development (Plewczynski et al., 2011), a
knowledge-based approach combining the quantitative structure and binding affinity
relationship, and MedusaScore, a forcefield-based method is a combination of
GOLD and MCSS docking with fragments rescoring using MM/GBSA, Harmony-
DOCK (Plewczynski et al., 2014), a combination of AutoDock4 and Vina, PMF
(Okamoto et al., 2010), DOCK4 (Ewing et al., 2001), and FlexX. Not all functions
of scoring are accurate to identify correct binding affinity. Consequently, machine
learning is currently considered essential to develop a new neural network-based
scoring function, NNScore, which is found to be very fast and accurate (Durrant
and McCammon, 2010). NNScore distinguished precisely between active and decoy
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ligands using pKd values. Similarly, RF-Score based on interacting atom pair counts
of ligand and receptor using the machine learning-based approaches suggested a
new scoring function with correct binding affinity prediction. Similarly, a support
vector machine-based model demonstrated improved affinity prediction using dock-
ing energy and native binding affinities (Kinnings et al., 2011). Subsequently, a
regression model and a classification model, trained on IC50 values from BindingDB
and active compounds, respectively, and decoys from the DUD database were used.
Afterward, scoring prediction was improved with interaction fingerprints and
profile-based methods, wherein Glide XP, a new precision scoring function
descriptor, was used to identify standard pharmacophoric features of the docked
fragments.

1.5.2 Pose prediction
Docking methods rank the predicted binding affinities and poses based on their
scoring functions. However, docking-based prediction of the binding mode is not al-
ways reliable, and indicates that there is no universal docking method. Since the
docking technique works best in small ligands and controls binding sites (Kolb
and Irwin, 2009), it was used in combination with pharmacophore modeling to pre-
dict the correct pose. Also, the associated locations of pairs of interacting atoms
were taken into account as a new atom pair IF-based method that demonstrated
the improved pose prediction (Perez-Nueno et al., 2009). The entropic term
(eTDS) was used in the analysis of MM/PBSA to identify the highly stable docking
pose (Yasuo et al., 2009). An in silico fragment-based approach was developed
through searching local similarity of a protein. A database of MED portions contain-
ing experimental proteineligand structures was combined with MED-SuMo, a
superimposition tool, and MED-Hybridize, a tool for linking chemical moieties to
known ligands, which retrieved similar matching portions of ligands for a query.
Likewise, the fragment mapping approach (FTMap) successfully identified protein
hotspots suitable for drug targeting (Landon et al., 2009).

In contrast, machine/deep learning techniques were found to be better at predict-
ing receptoreligand binding poses. This represented the convolutional neural
network (CNN)-based scoring functions, which utilized 3D receptoreligand com-
plex structure as input. The scoring function of CNN learns the characteristics of
proteineligand binding automatically. The trained CNN scoring functions separate
the correct binding poses from incorrect and known binders from nonbinders with
better accuracy as compared to AutoDock Vina. The native ligand pose prediction
of docked and experimental binding modes is validated by measured root mean
square deviation within a range of 2 Å, thus gaining useful information and a poten-
tial pose. The best scoring function always obtained the correct binding pose by
considering lower DDG that demonstrated the most stable proteineligand complex
(Ferrara et al., 2004).
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1.5.3 MD simulations
The flexibility of receptor atoms into docking was introduced using MD simulations,
which measured docking accuracy through cross-docking (Armen et al., 2009). The
obtained ligandereceptor complex is considered the best model, which includes
flexible side chains and multiple flexible backbones. In contrast, accuracy was found
reduced in complexes, which provided flexible loops and entirely flexible targets
because of the increased noise that affects scoring function. This noise can be over-
come using developed ICM, a 4D-docking protocol, wherein the receptor conforma-
tion was considered the fourth dimension (Abagyan and Totrov, 1994). ICM
accuracy was increased using multiple grids that represent multiple receptor confor-
mations. Besides, a gradient-based optimization algorithm helped to calculate the
orientational gradient. This calculation was achieved by adopting a local minimiza-
tion algorithm to modify the orientational parameters but maintaining its molecular
orientation (Fuhrmann et al., 2009). The computational approach is utilized in devel-
oping receptor ensembles and docked ligand databases, while normal mode analysis
is one of the best alternatives to MD for generating receptor ensembles (Moroy et al.,
2015). Additionally, an ENM method was found to be more efficient than MD sim-
ulations in identifying local side-chain conformational changes and protein back-
bone movement. Several MD simulation tools have been widely used (Table 1.2),
in which Gromacs and NAMD are two useful tools commonly used to predict pro-
tein structure and docked complex stability near-native states (Raghav et al.,
2012a,b; Raghav et al., 2018).

1.6 Conclusion
Modern drugs to combat diseases are based on chemical compounds. The identifi-
cation of a target drug for a disease is still a challenging task for medical researchers
due to complex behaviors and patterns of interaction of the cellular entities inside the
body. In this regard, designing and developing new effective molecules with few or
no side effects is becoming mandatory for the advancement of the human lifestyle.
Chemoinformatics is a branch of bioinformatics that deals with the design, analysis,
management, and visualization of small molecules data for the drug discovery pro-
cess. It involves the use of tools and databases for the retrieval of information from
chemical compounds with the intended aim of making better decisions in areas of
drug discovery and lead identification. Several tools and databases are available in
the literature to represent the chemical structure, perform the QSAR study, and pre-
dict the chemical, physical, and biological properties of chemical compounds. Che-
moinformatics is an advanced field in the modern drug discovery process, which is
used for the understanding of complex patterns of chemicals and biomolecules. In
this regard, the range of applications of chemoinformatics is rich; indeed, any field
of chemistry can profit from its methods. Therefore, this chapter focused on the
collection and compilation of essential chemoinformatics tools and databases, which
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are commonly used in studies and industries for the advancement of drug discovery.
Also, the chapter would likely help chemists and researchers in understanding the
flow of modern drug discovery processes.
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2.1 Introduction
The bench-to-bedside journey of a drug costs more than a billion US dollars and
takes more than 10 years (Steven et al., 2010; Bernard, 2009). The classical
approach to identify hit molecules against a disease is high-throughput screening
(HTS). HTS involves the screening of hundreds of thousands of small molecules
to identify active molecules that can elicit desired biological response. This brute-
force approach often fails due to instability, toxicity, or other poor pharmacoki-
netic/pharmacodynamic properties of hit molecules. Among other approaches,
computer-aided drug design (CADD) is effective in reducing the cost, duration,
and attrition rate of the drug discovery process. CADD involves predictive
algorithms, computing resources, and 3D visualization tools to design, optimize,
and develop small molecule therapeutics against diseases. The early detection of
undesired molecules reduces the cost and workload of HTS without compromising
the success rate. For example, in a comparative case study, a group performed virtual
screening (VS) of small molecules against tyrosine phosphatase-1B, a therapeutic
target in diabetes mellitus. They reported 365 compounds, among which 127
(35%) showed an effective inhibition. In parallel, the group performed traditional
HTS and among 400,000 compounds tested, only 81 (0.021%) showed effective
inhibition (Thompson et al., 2002). This study showed the power of CADD, which
has become an integral part of the drug discovery process. In contrast to HTS or
combinatorial chemistry, CADD involves much more targeted searching and there-
fore results in higher success rates. Table 2.1 summarizes the success case studies of
drugs that have been identified by CADD.

There are three major roles of CADD in pharmaceutical industries: (1) the
screening of large libraries of molecules to predict minimal best small molecules
to further test in actual experiments; (2) lead identification by designing novel
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small molecules; and (3) lead optimization for affinity or pharmacokinetic/
pharmacodynamic (PK/PD) properties. In this structural genomic era, the tradi-
tional usage of CADD has been extended upstream to target identification/valida-
tion and downstream for absorption, distribution, metabolism, excretion, and
toxicity (ADME/T) predictions in preclinical studies. This chapter excludes bioin-
formatics techniques, which are crucial in identification of a drug or vaccine target
(Kumar et al., 2015, 2019). Fig. 2.1 illustrates the role of CADD in the drug
discovery pipeline.

2.1.1 Advantages of CADD
The main advantages of CADD are:

• Screening of millions of small molecules to preselect a handful of potential
candidates for further evaluation in experimental testing.

• Design of novel, patentable compounds through de novo, fragment-based,
or scaffold-hopping approaches.

• Minimization of experiments in animals/humans.
• Prediction of the PK/PD parameters of lead molecules.
• Construction and usage of high-quality datasets and libraries to optimize
lead molecules for diversity or similarity.

• Reduction and overcoming of drug resistance.

Although a CADD scientist can aid in the discovery of novel drug candidates by
making the process quick and efficient, there are several hurdles and subtleties in the

Table 2.1 Success case studies of drug discovery by computer-aided drug
design.

Drug Target Diseases References

Amprenavir Human immunodeficiency
virus (HIV) protease

HIV Wlodawer and
Vondrasek (1998)

Captopril Angiotensin-converting
enzyme

Blood pressure Redshaw (1993)

Dorzolamide Carbonic anhydrase Glaucoma Baldwin et al. (1989)

Raltitrexed Thymidylate synthase HIV

Isoniazid InhA Tuberculosis Hedia et al. (2000)

Inhibitors Pim-1 kinase Cancer Ji-Xia et al. (2011)

Epalrestat 2 Aldose reductase Diabetic
neuropathy

Ling et al. (2013)

Flurbiprofen Cyclooxygenase-2 Rheumatoid
arthritis

Zachary et al. (2015)

STX-0119 STAT3 Lymphoma Kenji et al. (2010)

Norfloxacin Topoisomerase II, IV Urinary infection

Dorzolamide Carbonic anhydrase Glaucoma
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drug discovery process. Therefore a multidisciplinary team is always needed to
identify/validate a therapeutic target/drug candidate in preclinical and clinical
studies. CADD can be broadly classified in two categories on the basis of any struc-
tural information available for therapeutic targets: ligand-based drug design (LBDD)
and structure-based drug design (SBDD). LBDD exploits experimental knowledge
of active/inactive molecules, whereas SBDD demands the structural knowledge of
the therapeutic target.

2.2 Ligand-based drug design
In the absence of any structure information available for the therapeutic target, the
alternative approach is LBDD. Unlike SBDD, LBDD does not require a priori
knowledge of mechanisms of action and only needs structural information and

FIGURE 2.1

Role of computer-aided drug design (CADD) in drug discovery.

ADME/T, Absorption, distribution, metabolism, excretion, and toxicity; QSAR, quantitative

structureeactivity relationship.
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bioactivity data for small molecules. The principle of LBDD is that structurally
similar molecules are likely to have similar properties (Hendrickson, 1991). An
imperative step in LBDD is to retrieve and prepare small molecule libraries. Chem-
ical structures are usually created, processed, and utilized as molecular graphs. A
molecular graph is a combination of nodes and edges in which atoms and bonds
are represented as nodes and edges, respectively. Connection tables and linear
notations are two common ways to communicate with molecular graphs. A connec-
tion table contains sections with information about atom types, connection types,
and coordinates. Examples of connection tables include: mol2, sdf, pdb, etc. file
formats. A linear notation is a combination of alphanumeric characters. Examples
of linear notations include simplified molecular input line entry specification
(SMILE) and Wiswesser line notation. Linear notations are more compact than
connection tables and therefore are preferred while storing or transferring millions
of small molecules. A list of different small molecular databases is given in
Table 2.2.

The most common LBDD techniques include molecular similarity-based search,
quantitative structureeactivity relationship (QSAR), and pharmacophore modeling.
These techniques are discussed in the next sections.

Table 2.2 List of small molecule resources.

Name Weblink

AffinDB http://pc1664.pharmazie.uni-marburg.de/affinity/

Aureus http://www.aureuspharma.com/Pages/Products/Aurscope.php

BindingDB http://www.bindingdb.org

BindingMOAD http://www.bindingmoad.org

BioPrint http://www.eidogen-sertanty.com/products_kinasekb.html

ChEMBLdb http://www.ebi.ac.uk/chembldb/

CTD http://ctd.mdibl.org

DrugBank http://www.drugbank.ca

Eidogen-Sertanty http://www.eidogen-sertanty.com/products_kinasekb.html

GLIDA http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/

GVKBio http://www.gvkbio.com/informatics.html

IUPHARdb http://www.iuphar-db.org

KEGG http://www.genome.jp/kegg/

NikkajiWeb http://nikkajiweb.jst.go.jp

PDSP http://pdsp.med.unc.edu

PharmGKB http://www.pharmgkb.org

PubChem http://pubchem.ncbi.nlm.nih.gov

STITCH http://stitch.embl.de

Symyx http://www.symyx.com/products/databases/bioactivity/

WOMBAT http://www.sunsetmolecular.com
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2.2.1 Molecular similarity-based search
2.2.1.1 Concept
Molecular similarity-based search is the simplest LBDD technique to identity
desired small molecules. Molecular similarity-based search is an independent as
well as integral part of other LBDD and SBDD techniques in which small molecule
libraries are searched using molecular descriptors. Molecular descriptors are charac-
teristic numerical values that represent small molecules and range from simple
physicochemical properties to complex structural properties. Examples of molecular
descriptors include molecular weight, atom types, bond distances, surface area, elec-
tronegativities, atom distributions, aromaticity indices, solvent properties, and many
others (Leach and Valerie, 2007). Molecular descriptors are derived through exper-
iments, quantum-mechanical tools, or previous knowledge. Depending on the
“dimensionality,” molecular descriptors can be a 1D, 2D, or 3D descriptor. 1D
descriptors are scalar physicochemical properties of a molecule such as molecular
weight, logP values, and molar refractivity. 2D descriptors are derived from molec-
ular constitution or configuration and include topological indices and 2D finger-
prints. 3D descriptors are derived from the conformation of molecules. 3D
descriptors include 3D fingerprints, dipole moments, highest occupied molecular
orbital/lowest unoccupied molecular orbital energies, electrostatic potentials, etc.
A list of software that predicts molecular descriptors of small molecules is given
in Table 2.3.

Table 2.3 Common software to predict molecular descriptors.

Software Total numbers (types of predicted descriptors)

ADAPT >260 (topological, geometrical, electronic, physicochemical)

ADMET
Predictor

>290 (constitutional, functional group counts, topological, E-state,
moriguchi descriptors, meylan flags, molecular patterns, electronic
properties, 3D descriptors, hydrogen bonding, acidebase ionization,
empirical estimates of quantum descriptors)

CODESSA >1500 (constitutional, topological, geometrical, charge related,
semiempirical, thermodynamical)

DRAGON >5200 (constitutional, topological, 2D autocorrelations, geometrical,
WHIM, GETAWAY, RDF, functional groups, properties, 2D binary and 2D
frequency fingerprints, etc.)

MARVIN
Beans

>500 (physicochemical, topological, geometrical, fingerprints, etc.)

MOE >300 (topological, physical properties, structural keys, etc.)

MOLGEN-
QSPR

>700 (constitutional, topological, geometrical, etc.)

PreADMET >955 (constitutional, topological, geometrical, physicochemical, etc.)
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Molecular descriptors allow a rapid comparison of structural and/or physico-
chemical features of small molecules. Tanimoto coefficient, T, is the most popular
tool for measuring the similarity between the two molecules. Although T > 0.85
suggests a good fit, it does not reflect biosimilarity between the two molecules.

2.2.1.2 Workflow
The different steps involved in a molecular similarity-based search are:

• Standard formatting: At first, molecules are read and converted to the standard
formats for further steps. The standard formats are mol, mol2, SDF, pdb, etc. The
step is critical to reject ambiguous structures such as free radicles, wrong va-
lences, polymers, etc.

• Filtering: In addition to desired small molecules, small molecule databases cover
a large number of problematic molecules containing isotype atoms, inorganic
atoms, or charged carbon atoms. It is imperative to reject such undesired small
molecules in a similarity-based search using molecular filters. One of the most
popular criteria to filter small molecule libraries is drug-likeliness. Drug-
likeliness is evaluated by applying the Lipinski et al. (2001) rule of five, which
states that a drug-like candidate should have (1) <5 hydrogen bond donor atoms,
(2) <10 oxygen or nitrogen atoms, (3) a molecular mass of <500 Da, and (4) an
octanolewater partition coefficient of<5. Violation of two or more of these rules
leads to poor absorption. Other commonly used screening filters include
extended drug-like filters (Daniel et al., 2002), fragment-like filter (Simon et al.,
1999), Egan filter (Egan et al., 2000), Veber filter (Daniel et al., 2002), etc.

• Remove duplicates: A molecule can have different protonation states and thus
different tautomers. It is the user’s responsibility to decide if such duplicates are
important for study or not.

2.2.1.3 Applications

• Identification of novel targets based on chemical similarities of small molecules:
Keiser et al. correlated different receptors on the basis of ligand similarities and
annotated 65,000 ligands into sets of hundreds of drug targets. The authors built
minimal spanning trees solely based on ligand similarity, and predicted and
validated novel biological targets for ligands (Keiser et al., 2007).

• Off-target prediction: As previously stated, molecular similarity measures such as
Tanimoto coefficient are efficient tools to cluster and build networks of similar
small molecules. Recently, chemical similarity measures such as Tanimoto
coefficients are used to predict binding to multiple therapeutic targets and thus to
predict off-targets and adverse drug reactions.

2.2.1.4 Challenges

There is a trade-off between 3D descriptors and speed, and it is the user’s
decision to include 3D descriptors in a study or not.
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2.2.2 Quantitative structureeactivity relationship
2.2.2.1 Concept
QSAR, as the name suggests, is the computational technique to establish the corre-
lation between chemical structures and biological activity. In general, the QSAR
technique is implemented in rational drug design; however, the technique is widely
accepted to predict other physicochemical properties and therefore is also termed
quantitative structure property relationship. QSAR is based on the hypothesis that
similar structural compounds may possess similar biological activities (Miki,
2002). Chemical features of molecules, also known as molecular descriptors, are
correlated with the observed activity by the mean of statistical analysis. Data type
decides the statistical approach to implement the building of the model. For
example, quantitative data are processed by regression-based methods, while graded
response data are processed by means of classification-based methods. Thus built
models need to be validated before being used further for drug designing.

Among regression-based methods, multiple linear regression (MLR) is the most
commonly used method to build a regression-based QSAR model. MLR is a simple
regression method that assumes a linear relation between multiple independent vari-
ables (descriptors) and a dependent variable (biological activity). MLR involves
stepwise regression to find the best fit model and therefore it can be time consuming
for a large number of descriptors. Principal component analysis (PCA) covers such a
drawback and can reduce information from a large number of variables into a
smaller subset of unique variables. The major drawback of the PCA method is the
difficulty in extracting details of molecular descriptors that contribute to the biolog-
ical activity (Wold et al., 1987). A solution to problems associated with MLR and
PCA is partial least square (PLS) analysis. In PLS, the dependent variable, i.e.,
biological activity values, are also extracted into new variables to improve the cor-
relations (Geladi and Kowalski, 1986). MLR, PCA, and PLS are three commonly
used methods to build linear QSAR models. Nevertheless, biological systems often
show a nonlinear regression relationship between molecular descriptors and biolog-
ical activities. A neural network is the most widely used approach to deal with
nonlinear regression.

An imperative aspect of QSAR is to validate the newly built model. In a QSAR
study, the group of molecules used to build a model is known as the “training set,”
while the group of molecules used to predict the model is known as the “test set.”
There are two types of validation methods available to validate the QSAR model:
(1) internal validation and (2) external validation. Leave-one-out is the most com-
mon type of internal validation in which one of the molecules is kept in the test
set while rest of the molecules, i.e., the training set, are used to estimate the coeffi-
cients of different descriptors in a QSAR model. Next, the test set molecule is used
to predict its activity using the model built on the training set. The process is
repeated multiple times until all the molecules of the training set have served as
the test set molecule. In contrast to internal validation, external validation involves
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prediction of a QSAR model using a test set that was never used to build the model
(Gramatica, 2007). The most widely used QSAR methods are summarized in
Table 2.4.

2.2.2.2 Workflow

• Retrieve a congeneric series of ligands that have been evaluated in similar bio-
logical assay and showed diverse variation in activity.

• Identify and determine the molecular descriptors associated with physiochemical
properties of the molecules.

• Randomly divide the molecules into training set and test set.
• Use the training set to identify and calculate the correlation coefficient that can
explain the relationship between the descriptor values and the biological
activities.

• Evaluate the stability of the statistical equation using the test set molecules.
• Use the statistical model to predict the biological activity of new molecules.

2.2.2.3 Tools
Table 2.5 contains a list of the most commonly used QSAR software.

2.2.2.4 Applications

• Combining 2D and 3D descriptors: Kumar et al. (2011) used a combined holo-
graph QSAR and comparative molecular similarity indices analysis to develop a
robust QSAR model to predict topological features for protein kinase C bII
inhibition.

Table 2.4 Commonly used quantitative structureeactivity relationship
(QSAR) methods and their descriptions.

Method
Descriptor
type Description

HQSAR 2D Hologram QSAR is the technique in which molecular
substructures are represented as binary patterns and
fingerprints that are combined to generate molecular
holograms and are correlated with biological activities

CoMFA 3D Comparative molecular field analysis relates steric and
electrostatic properties of molecules to their biological
activities

CoMSIA 3D In addition to steric and electrostatic contribution,
comparative molecular similarity indices include steric,
H-bond donor/acceptor, and hydrophobic terms

COMBINE 3D Comparative binding energy analysis estimates the binding
affinities of ligands
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• Integrating QSAR model with VS: Sharma et al. (2016) applied atom-based 3D-
QSAR modeling with ligand-based pharmacophore mapping to identify novel,
selective phosphodiesterase 4B (PDE4B) inhibitors through VS and molecular
docking. The authors confirmed the stability of new molecules though molecular
dynamics (MD) simulations and evaluated their predictions through in vitro
enzymatic assay.

2.2.2.5 Challenges

• Replication of molecules in training and test sets: It is a common mistake to have
duplicated molecules in the training and test sets. Such duplications falsely
improve the prediction power of QSAR models.

• Experimental and descriptor-associated errors: It is imperative to include the
standard errors details associated with biological activities and molecular de-
scriptors to minimize model-associated errors.

• Poor transferability: The developed QSAR model from a research group is rarely
(efficiently) used by other research groups for predictive purposes.

• Simple linear regression or MLR methods are easy to calculate but are inefficient
if the number of independent variables (descriptors) is comparable or higher than
the number of total molecules.

• PLS can handle “n” number of independent variables but builds only linear
relationships.

2.2.3 Ligand-based pharmacophore
2.2.3.1 Concept
The International Union of Pure and Applied Chemistry defines a pharmacophore as
“The ensemble of steric and electronic features that is necessary to ensure the
optimal supramolecular interactions with a specific biological target structure and
to trigger (or to block) its biological response” (Wermuth et al., 1998). Ligand-
based pharmacophore (LBP) is the pharmacophore-based method of choice in the
absence of any structural information available for the therapeutic target. The aim

Table 2.5 List of quantitative structureeactivity relationship packages and
their sources.

Package Source

HQSAR, CoMFA, CoMSIA, Volsurf Tripos, SYBYL

Molecular field-based 3D QSAR PHASE, Schrodinger

HipHop, HypoGen CATALYST, Serius

QSAR Toolbox Oasis

TOPKAT Accelrys

Derek Lhasa
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of LBP is to identify the largest 3D pattern of features, which is imperative for most
of the input ligands to bind to the receptor. The task becomes more complicated as
the number of input ligands and their flexibilities increases. Therefore conforma-
tional search is an important and costly step in LBP. Programs like RAPID, MPHIL,
Phase, DISCO, HipHop, and HypoGen calculate all possible conformations of input
molecules, while programs like GALAHAD, GASP screen ligand conformations
with respect to pattern constraint. A critical step in LBP is to identify a “bioactive”
conformation of an active molecule to align the rest of the molecules. In the absence
of 3D bioactive conformation, databases are searched to find a conformation of a
molecule that is similar to the input ligands, otherwise, the most active molecule
is geometrically optimized and thus the obtained minimal energy conformation
is considered as the bioactive conformation to align the rest of the molecules. It is
imperative to validate the developed LBP before using it further, and similar to
QSAR, a separate test set of molecules is created to validate the prediction power
of the LBP.

2.2.3.2 Workflow

• Selection of active and inactive molecules in the training sets.
• Structural optimization of all molecules using a suitable forcefield.
• Superposition of all molecules to the bioactive conformation/or minimized
conformation of most active molecules.

• Model validation.
• Database screening using developed LBP.

2.2.4 Tools
Table 2.6 lists the software used for pharmacophore modeling.

2.2.4.1 Applications

• 3D-LBP and VS: Researchers have used a cocrystallized ligand as a bioactive
molecule to develop an LBP model. Using validated LBP, the authors screened a
large dataset to identify novel, selective, and submicromolar-range active in-
hibitors (Sharma et al., 2016; Al-Sha’er and Taha, 2010).

Table 2.6 List of software used for ligand-based pharmacophore modeling.

Name Source

LigandScout Inteligand

MOE Chemical Computing Group

Phase Schrodinger

Unity Certara

Quasi Denovopharma
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2.2.5 Challenges
• Binding characteristics: In an ideal LBP study, the cocrystallized ligand is used as
a bioactive conformation to align the rest of the molecules. LBP is based on the
assumption that all molecules bind receptor at a single site and have similar
binding characteristics. However, even similar molecules may bind in different
ways.

2.3 Structure-based drug design
2.3.1 Homology modeling
2.3.1.1 Concept
A preliminary requirement for any SBDD technique is the 3D structure of the target.
Various integrative structure biology techniques are available to determine the
3D structure of molecules: X-ray crystallography, nuclear magnetic resonance spec-
troscopy, or single-particle cryoelectron microscopy. However, the structure of a
therapeutic protein is difficult to solve due to technical difficulties in expressing,
purifying, or characterizing proteins. In the absence of any experimental structures,
in silico methods are used to predict the 3D structure of a target: homology
modeling, threading, or ab initio modeling. Among the three computational
methods, homology modeling is the most reliable method to predict the 3D structure
of a target because it uses the structural information of a similar protein with >40%
identity (known as template structure). Homology modeling is based on the hypoth-
esis that the two highly similar sequences have similar structures. Threading or fold
recognition is the method-of-choice if the target sequences have same protein fold as
that of known structures but there is no template (>40% sequence identity) structure
available in the protein structure database. Ab initio is the method-of-choice to
predict a protein structure when the target sequence lacks any similar known struc-
ture or similar fold in the structure database. Ab initio modeling considers the phys-
icochemical properties of amino acids to predict the least energy and stable
conformation, and is currently limited to small proteins (<120 amino acids).

2.3.1.2 Workflow

• Template search: Using a target sequence-of-interest, a protein structure database
is screened using protein BLAST to identify template sequences that are highly
similar to the target sequence.

• Global sequence alignment: The best aligned template sequence is chosen to align
against the desired target sequence. The resulting global sequence alignment is
evaluated and corrected to confirm the conservation of the functional domain.

• Model building: The first step is to generate the backbone of the target using
structural information from the template structure. During backbone modeling,
the target residues that correspond to inserts and gaps in the multiple sequence
alignment are deleted. Such deleted residues are modeled in the next step, loop
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modeling. If a similar loop region is available in the structure database (like
Research Collaboratory for Structural Bioinformatics (RCSB), the loop is
modeled using the knowledge-based method. Otherwise, the energy-based
method is used to minimize the energy of the loop and to model missing residues.
Next, the missing side chains are modeled by finding hit rotamers from the
rotamer library. Finally, the modeled structure is optimized to remove any steric
clashes or other structural issues. MD simulations or Monte Carlo (or a combi-
nation of both methods) are used to optimize the homology model and to predict
the low-energy, native-like conformation.

• Model validation: Newly modeled structures may contain errors for the following
reasons: (1) experimental errors in the template structure, and (2) percentage
identity value of <100%. Therefore it is imperative to evaluate the newly
designed model for different errors before proceeding to any actual CADD.
Ramachandran plot and favorable energies are evaluated to validate and optimize
the model to generate the final, stable homology structure of the desired target
sequence (Ramachandran and Sasisekharan, 1968). The model structure must
have minimal residues (or no residue at all) in the outlier region of the Ram-
achandran plot and must have minimal energy among all possible conformations.

2.3.1.3 Tools
Table 2.7 enlists databases and web-servers to predict protein structures.

Table 2.7 List of databases and webservers to predict protein structures.

Software/webserver URL

Homology modeling

MODELLER https://salilab.org/modeller/

SWISS-MODEL https://swissmodel.expasy.org/

PRIMO https://primo.rubi.ru.ac.za/

PyMod http://schubert.bio.uniroma1.it/pymod/index.html

MaxMod http://www.immt.res.in/maxmod/

Fold recognition

GenTHREADER http://bioinf.cs.ucl.ac.uk/psipred/

Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id¼index

MUSTER http://zhanglab.ccmb.med.umich.edu/MUSTER/

ORION http://www.dsimb.inserm.fr/orion/

DN-Fold http://iris.rnet.missouri.edu/dnfold/

Ab initio structure prediction

Robetta http://www.robetta.org/submit.jsp

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/

QUARK http://zhanglab.ccmb.med.umich.edu/QUARK/

BHAGEERATH http://www.scfbio-iitd.res.in/bhageerath/index.jsp

EVfold http://evfold.org/evfold-web/evfold.do

CABS-fold http://biocomp.chem.uw.edu.pl/CABSfold/
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2.3.2 Applications
• Rational drug design: The modeled structure can be used to perform CADD to
identify potent small molecule inhibitors. For example, Liu et al. (2005) modeled
flexible severe acute respiratory syndrome 3C-like proteinase A and used the
homology model to screen 630,000 small molecules from different databases.
From the study, the authors reported 40 bioactive inhibitors, including calm-
idazolium that inhibited the enzyme in micromolar concentration.

• Chimeric models: Multiple templates are used to build the structure of a protein
containing disordered or flexible regions. Chimeric modeling is imperative when
the missing region plays a crucial functional role in a protein. For example,
B-cell lymphoma-2 (Bcl-2) protein is an antiapoptotic member of the Bcl-2
family. Bcl-2 lacks structural details of a functionally important flexible loop
domain (FLD) region. Raghav et al. (2012a) built the high-quality structure of an
FLD domain using loop modeling and further refined the structure using MD
simulations.

2.3.3 Challenges
• Resolution of template structure: The quality of a model is directly related to the
quality of the input template structure. Therefore a high-resolution structure
should be used whenever possible.

• Low sequence similarity: The model is not reliable if the sequence identity
between the target and template is <30%.

2.3.4 Molecular docking
2.3.4.1 Concept
Molecular docking is a powerful tool to predict favorable, low-energy, binding
modes of a ligand in the active site of a receptor. In rational drug design, the ligand
corresponds to a small molecule and the receptor corresponds to a protein. The most
suitable interactions in rational drug design are noncovalent interactions and include
hydrogen bonds, van der Waals bonds, or any possible electrostatic attractions. The
concept of molecular docking is based on the hypothesis that the enhanced affinity
between proteineligand interactions is directly correlated with inhibition of thera-
peutic enzymes. Molecular docking is the most suitable structure-based drug design
technique when a high-resolution structure of a receptor is available. Molecular
docking is broadly divided into three categories depending on the flexibility of the
components: (1) rigid docking, in which both the ligand and the receptor remain fixed;
(2) flexible docking, in which the ligand is flexible but the receptor is fixed; and
(3) full flexible docking, in which both the receptor and the ligand are flexible. Among
the three docking types, flexible docking is the most widely used docking technique in
academia and industry. Docking algorithms are search parameters that are imple-
mented to predict binding modes of ligands in receptors. A combination of one or
more algorithms is often used to accurately predict the binding mode of a ligand.
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The complexity and effectiveness of a docking algorithm depend on the degrees of
freedom that it can handle. The translation and rotation motion of a molecule results
in six degrees of freedom. An additional degree of freedom is the rotational motion of
the ligand. The simplest docking algorithm consists of only rotational and transla-
tional degrees of freedom, and was the basis of DOCK software. Other software
can handle rotational and translational degrees of freedom in parallel and are briefly
divided into three groups: Monte Carlo, genetic algorithm, and incremental construc-
tion (Leach and Valerie, 2007). Scoring functions complement docking algorithms to
predict ligandereceptor complexes. Scoring functions are mathematical functions that
are used to predict the binding affinity between the ligand and the receptor in a post-
docking conformation (Huang et al., 2010). Scoring functions are of four types:
(1) forcefield, (2) empirical, (3) knowledge based, and (4) machine learning (Leach
and Valerie, 2007). Forcefield-based scoring functions calculate binding affinities
on the basis of the strength of intermolecular noncovalent interactions such as van
der Waals and electrostatic functions. Empirical scoring functions are regression-
based scoring functions, which are based on the correlation of nonrelated variables
and are used to mimic experimental binding affinities. Knowledge-based scoring
functions are derived from the statistical analysis of experimental 3D structures of bio-
molecules. Lastly, machine learning scoring functions are built by training on the
dataset and thus, unlike the rest of the three scoring functions, can predict the binding
interactions implicitly.

2.3.4.2 Workflow

• Ligand preparation: The ligand molecule/s are sketched or retrieved from the
database and converted into 3D structures. The structure is processed to generate
different tautomers and stereoisomers (if any). A suitable charge type is added to
the ligand molecule. Commonly used changes for small molecules include
Gasteiger, AM1-BCC, Mulliken, GAFF, OPLS, etc.

• Receptor preparation: The 3D structure of the receptor is processed to add
missing hydrogens, add missing side chains, correct tautomeric states of
ionizable residues, and briefly minimize to remove any steric clashes. A suitable
charge type is added to protein residues. Commonly used charges for receptor
include Amber, CHARMM, or OPLS/AA.

• Grid generation: The probable ligand-binding site is defined either by selecting
cocrystallized ligand or by active site residues or a combination of both. In a
blind docking, the entire receptor is kept under the grid such that the program can
perform a time-consuming but detailed search of a ligand in the receptor.

• Docking: Next, the actual docking begins. During docking, the program tries to
find an optimal binding pose of a ligand in the receptor on the basis of docking
using algorithms and scoring functions. First and foremost, it is imperative to
optimize docking parameters by redocking the extracted cocrystallized ligand
into the protein structure. The minimal root mean square deviation (RMSD)
value between the docked and cocrystallized pose suggests proper docking
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parameters. Next, actual docking is performed using this established list of
docking parameters. In the absence of any cocrystallized ligand, literature-based
information is used to consider the favorable binding interactions with the active
site residues of interest.

• Posttrajectory analysis: Docked ligands and the grid containing receptors are
visualized in graphical user display software to study interactions and binding
poses of the docked ligands in the active site of the receptor. In particular,
minimal binding energy, molecular mechanics/PoissoneBoltzmann (generalized
born) surface area (MM/PB(GB)SA) energies, and interactions in the desired
cavity regions are considered to shortlist desired poses of molecules. Virtual li-
gands having a similar scaffold to that of a previously cocrystallized ligand may
bind in a similar manner.

2.3.4.3 Tools and software
Table 2.8 shows is a list of widely used docking software for proteineligand
docking.

In addition to predicting the binding characteristics between protein and ligands,
molecular docking can also be performed between two macromolecules. The
most widely used proteineprotein docking tools include HDOCK, ZDOCK,
CluPro, PatchDock, FireDock, InterEvDock2, SOAP PP, and FRODOCK2. Howev-
er, these tools are beyond the scope of this chapter and are described elsewhere
(Raghav et al., 2019).

2.3.4.4 Applications

• Integration with other LBDD or SBDD techniques: Sharma and Wakode (2017)
designed a QSAR-based pharmacophore to screen small molecule databases
against PDE4B, a therapeutic target in inflammatory diseases. Thus screened
molecules were docked in a PDE4B crystal structure to identify novel, potent
PDE4B inhibitors. The authors confirmed their predictions by in vitro enzymatic
assays. Kumar et al. (2012) combined molecular docking with VS to identify
novel, selective, and specific aldose reductase inhibitors.

Table 2.8 Widely used docking software.

Software Algorithm Scoring function Webpage

AutoDock GA Forcefield þ empirical http://autodock.scripps.edu

DOCK IC Forcefield http://dock.compbio.ucsf.edu

FlexX IC Empirical https://www.biosolveit.de/FlexX/

GOLD GA Empirical þ knowledge
based

https://www.ccdc.cam.ac.uk/
solutions/csd-discovery/
components/gold/

Glide SA/IC Empirical þ knowledge
based

https://www.schrodinger.com/
glide

GA, Genetic algorithm; IC, incremental construction; SA, simulated annealing.
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• Target fishing: In an approach called “reverse docking (RD),” a biological target is
predicted using a ligand of interest. Park and Cho (2017) screened 26 ginseno-
sides against 1078 targets and identified hit targets on the basis of docking score.

• Polypharmacology: A high rate of failure in clinical trials has moved modern drug
discovery to design and develop small molecule inhibitors that can bind to
multiple targets. For example, Anighoro et al. (2017) designed first-in-class
dual inhibitors that can inhibit heat shock protein 90 and serine/threonine kinase
B-Raf.

• Improving PK/PD properties of therapeutic biomolecules: Bcl-2 is therapeutic
target in several types of cancer. Raghav et al. (2012b) modified immunoglobulin
D (IGD), a poorly binding peptide to Bcl-2, using deprotonation, amidation,
acetylation, benzoylation, benzylation, and addition of phenyl, deoxyglucose,
and glucose fragments. Such modification not only improved the binding affinity
with the Bcl-2 but also improved the PK/PD profile of IGD peptide.

• Adverse drug reactions: An early detection of possible toxicity/side effects
associated with a small molecule can save time and money in the drug discovery
process. For example, Ji et al. (2006) performed reverse docking of 11 marketed
antihuman immunodeficiency virus (HIV) drugs and identified drug adverse
effects that were previously reported in the literature.

2.3.4.5 Challenges

• Target structure:Molecular docking must have a 3D structure of target. Molecular
docking cannot be applied if any experimental or modeled structure of the
therapeutic target is not known.

• Target flexibility: Biomolecules are always in dynamic motion inside the cell and
may occupy multiple conformations that are otherwise difficult to detect using
experimental methods. Most of the docking programs ignore target flexibility.

• Solvent molecules: Solvent may stabilize ligandereceptor interactions, which are
often ignored while preparing the receptor for docking.

2.3.5 Virtual screening
2.3.5.1 Concept
VS is a robust technique to identify lead molecules. As the name suggests, the
approach involves virtual selection of designed small molecules from large data-
bases through computational tools without physically testing them in the laboratory.

2.3.5.2 General workflow
Structure-based VS encompasses the preparation of target and small molecule data-
base, docking, and postdocking analysis. The steps are:

• Target preparation: The foremost step is to retrieve a pdb file from the structure
database (such as RCSB) or to model the structure of the target protein. The
retrieved protein structure is protonated and relaxed to avoid any steric clashes.
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The correct ionization states are determined for tautomeric residues such as His
or Asp. The user decides to keep or delete the cocrystallized water molecules
depending on the role of water molecules in target inhibition.

• Database preparation: The initial dataset is converted to standard file format and
reduced in size by applying several molecular filters to preselect the drug-like
molecules. A special care is given to decide tautomeric state or a stereoisomer
during conversion of 2D representations (such as SMILE) to 3D structures.
Enantiomers are generated and stored as separate molecules. It is imperative to
assign partial atomic charge before proceeding to molecular docking. The
common charges include Gasteiger and Marsili (1980) or MMFF94
(Halgren, 1996).

• Molecular docking:Next, the prepared small molecule databases are docked in the
prepared target. Details of molecular docking are described in the previous
section.

• Postdocking analysis: It is important that the user understands the difference
between docking and scoring. While docking predicts the binding pose of a small
molecule in the receptor, the scoring function is related to the free energy of
association between the ligand and the receptor. Ideally, a good correlation is
desired between the docking and the scoring function to predict the best binding
pose with the best score. But the correlation is not always straightforward.
Therefore it is recommended that the user couple the scoring results with the 3D
interactive visualization to finalize the list of active molecules.

2.3.5.3 Tools
Table 2.9 is a list of commonly used small molecule databases that are widely used
for VS.

Table 2.10 is a list of software that is widely used for VS.

Table 2.9 A list of small molecule databases.

Database
Molecules
(#) Website

ZINC 230 million https://zinc.docking.org

eMolecules 7.3 million https://www.emolecules.com

Enamine 2.7 million https://enamine.net

ChEMBL 1.9 million https://www.ebi.ac.uk/chembl/

ChemBridge 1.3 million https://www.chembridge.com/screening_libraries/

SPECS 350,000þ https://www.specs.net

NCI 250,000þ https://cactus.nci.nih.gov/index.html

Maybridge 500,000 https://www.fishersci.com/us/en/brands/I9C8LZ4U/
maybridge.html

DrugBank 13,500 https://www.drugbank.ca
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2.3.5.4 Applications

• VS is significantly faster and requires fewer resources than traditional high-
throughput assays.

• A user can prioritize and rationalize molecules that he/she wants to buy by
evaluating millions of molecules through VS.

• The accuracy of structure-based VS can be further enhanced by complementing
with ligand-based activity data.

2.3.5.5 Challenges

• In a VS workflow, the desired molecules are rapidly selected due to VS-associated
coarse filters. Such coarse filters are less reliable to predict accurate binding
energies and thus result in rejection of many good molecules.

• Receptor flexibility is poorly handled in VS.
• The success of VS depends on the accuracy of the input structural model.
Therefore a poorly predicted homology model structure may result in false
positive/negative hits.

• There is a trade-off between accuracy and speed in VS. An algorithm that is meant
to rapidly screen millions/billions of small molecules may not successfully
handle bound metals or crystallized water molecules.

2.3.6 Receptor-based pharmacophore modeling
2.3.6.1 Concept
As the name suggests, receptor-based pharmacophore (RBP) modeling utilizes the 3D
structure of the receptor and depending on the availability of ligand structure, RBP is
divided into two categories: receptoreligand complex-based pharmacophore, and
RBP. In both cases, complementary chemical features of the active site and their
spatial arrangements are defined. Pharmacophore features are defined by either of
three methods: (1) a molecular probe-based characterization of potential interaction
energy (molecular field); or a search for (2) substructure patten or (3) chemical
features that can fulfill the interaction requirements. Receptoreligand-based pharma-
cophore modeling has an additional advantage of exclusion-volume constraint.

Table 2.10 Common docking software used for structure-based virtual
screening.

Software Ligand sampling References

Dock Incremental build Ewing et al. (2001)

FlexX Incremental build Rarey et al. (1996)

Gold Genetic algorithm Jones et al. (1995)

Glide Exhaustive search Alogheli et al. (2017)

AutoDock Genetic algorithm Morris (2020)
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Exclusion-volume is a set of spheres that represents receptor residues and thus
imposes a constraint for ligand binding. The constraint is helpful to filter false positive
ligand hits that may otherwise pass through a ligand-only pharmacophore model. To
summarize, a receptor (or receptoreligand)-based pharmacophore creates a virtual 3D
mold on the basis of spatial arrangement of nonbonded interactions in the active site.
This virtual 3D mold is computationally less complex compared to the 3D all-atom
model of the receptoreligand complex and thus is efficient in performing a rapid
search against a large dataset of small molecules.

2.3.6.2 Workflow

• Prepare the input files: Retrieve the 3D structure of the receptor (preferably)
complexed with the ligand and correct the structure for bond orders, H-bonds,
steric clashes, ionization states, etc.

• Define the binding site: Utilize the bound ligand (if available) to define the active
site region. In case of apo-structure, define the active site manually.

• Generate the pharmacophore map: Pharmacophore features are derived from the
bound ligand or from the active site cavity of the apo-enzyme.

• Select the optimal pharmacophore features: Among all possible features, the most
optimal features are shortlisted on the basis of interaction energies or using
receptoreligand interaction information, or by training the pharmacophore with
the active/inactive ligands. It is a bonus to include the volume restraint to define a
receptor-based pharmacophore model.

• Validation: Before the pharmacophore is used for drug designing, it must be
validated by screening and scoring the active/inactive ligands.

2.3.6.3 Tools
Table 2.11.enlists different software that are commonly used to build 3D pharmaco-
phore models.

2.3.6.4 Applications

• Pharmacophore-based VS: Pirard et al. generated a homology model of voltage-
dependent potassium channel Kv1.5 and utilized this model to develop a

Table 2.11 3D pharmacophore model software and their details.

Software Input Method of identification

FLAP Ligand, complex, apo Molecular field

Pharmer Ligand, complex Substructure pattern, feature

LigandScout Ligand, complex, apo Substructure pattern, feature, molecular field

Catalyst Ligand, complex, apo Substructure pattern, feature, molecular field

MOE Ligand, complex, apo Substructure pattern, feature, molecular field

PHASE Ligand, complex, apo Substructure pattern, feature, molecular field

UNITY Ligand, complex Substructure pattern, feature

2.3 Structure-based drug design 45



receptor-based pharmacophore model. Next, the authors used the pharmacophore
model to perform VS against their in-house small molecule database and
identified 19 inhibitors. Among these 19 inhibitors, five molecules had IC50 <10
mM (Pirard et al., 2005).

• De novo drug design: Ajay et al. used the apo-structure of a protein-tyrosine
phosphatase leukocyte antigen-related receptor and designed novel inhibitors
using LUDI (Ajay and Sobhia, 2011).

• Lead optimization: Boehm et al. utilized the available 3D structure of DNA gyrase
and synthetic-aperture radar data to optimize hit molecules and obtained a
3,4-disubstituted indazole molecule that was 10 times more potent than
novobiocin, the standard DNA gyrase inhibitor (Boehm et al., 2000).

• Polypharmacology:Wei et al. combined an RBP model with molecular docking to
identify dual target inhibitors against human leukotriene A4 hydrolase and the
human nonpancreatic secretory phospholipase A2, two therapeutic enzymes of
the arachidonic acid metabolism pathway. In brief, the authors screened small
molecules against a common pharmacophore that represented both the
therapeutic targets and thus identified dual-target inhibitors (Wei et al., 2008).

2.3.6.5 Challenges

• Minimal pharmacophore features: Reduction of large numbers of features to
identify the least number of pharmacophoric features is a challenge. It may cause
rejection of true positive features.

• Receptor flexibility: An active site of a receptor may bind differently to a diverse
set of ligands and therefore a single pharmacophore is not enough to perform
drug design against flexible targets.

2.3.7 Molecular dynamics simulations
2.3.7.1 Concept
Experimentally solved 3D structures are just snapshots of highly mobile biomole-
cules. MD simulation calculates the time-dependent motion of a biomolecule and
thus provides detailed insights into the flexibility or conformational rearrangements
of the system. MD simulation is based on Newton’s second law of motion, F¼ma. To
begin with, the force on the starting static structure is calculated using the coordinate
and potential energies at time t0. The equation of motion is deterministic, i.e., the
user can determine the velocities and coordinates at a time t1, considering that the
values are known at time t0. Numerous numerical algorithms are known that can
be used to integrate the equations of motions, such as Verlet (1967), Leap-frog, Ve-
locity, and Beeman’s algorithms (Mcquarrie, 1976). Based on the calculated force at
time t0, the coordinates of all atoms of a molecule are calculated at time t1. The pro-
cess is repeated millions of times to generate the trajectory from the MD simulation
of a biomolecule. The usual time step in classical MD simulation is 1e2 fs and is
enough to measure the dynamics at the atomic level.
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2.3.7.2 Workflow

• System preparation: A fundamental prerequisite for an MD simulation is the 3D
structure of a biomolecule. The 3D structure is prepared as previously described
in the section on molecular docking. In addition, any further changes are
incorporated as per the experiment such as point mutations, truncations, etc.
Next, the software compatible forcefields are applied for the biomolecule and
other nonstandard molecules. Nonstandard molecules include bound inhibitor,
cofactor, glycosylation, nucleic acids, other posttranslation modifications, etc.
Next, the unit cell is solvated in the periodic boundary conditions, and salt atoms
are added to the desired concentration.

• Minimization: The prepared system may contain steric clashes or unusual
geometry that may artificially raise the energy of the system. Therefore the
system is first relaxed by performing a small minimization. A harmonic restraint
is applied for nonwater atoms, which is gradually removed during the next steps
of heating and equilibration.

• Heating and equilibration: The minimized system gradually heads from 0 K to
the desired temperature followed by equilibration. Canonical ensemble, NVT
(N: number of atoms in the system, V: system volume, T: absolute temperature),
is usually applied during heating and initial equilibration. Harmonic restraint is
gradually removed from the system before the isothermal, isobaric ensemble,
NPT (N: number of atoms in the system, V: constant pressure, T: constant
temperature), is applied. An early NVT ensemble is required during the initial
small duration heating process because the calculation of pressure is inaccurate at
low temperatures. However, as soon as the system is heated, the ensemble is
shifted to NPT to correct the density. The rest of the simulation is generally
continued at the NPT ensemble.

• MD simulation: Next, actual MD simulation is started at the NPT ensemble. The
time scale varies between nanoseconds and milliseconds depending on the
physiological property to be studied.

• Posttrajectory analysis: MD simulation trajectories are first checked for the
stabilities in terms of RMSD, potential energy, etc. Stable trajectories are next
analyzed as per the demand of the experiment. For example, Sharma et al.
(Sharma and Wakode, 2020) confirmed the stability of their simulations using
RMSD and potential energies and then performed root mean square fluctuation,
dynamical cross-correlation matrix, PCA, and molecular mechanics Poissone
Boltzmann surface area analysis to compare the dynamics of a larger and smaller
version of a therapeutic protein, PDE4B, both complexed with a small molecule
inhibitor, NPV.

2.3.7.3 Tools
Table 2.12

2.3 Structure-based drug design 47



2.3.7.4 Applications

• Structure refinement: MD simulations can be used to refine the homology model
structure of a biomolecule. In addition, the algorithm can be combined with other
software such as Phenix to refine X-ray crystal structures. Raval et al. (2012)
performed >100 ms long MD simulation of 24 proteins and showed that the long
simulations can indeed achieve the native-like conformations of the modeled
proteins.

• Ensemble docking: Low-energy conformations from an MD simulation can be
used as the ensemble of structures to dock small molecules. For example,
Osguthorpe et al. (2012) performed replica-exchange MD to sample protein
conformations and used the representative conformations to dock small
molecules.

• Identification of allosteric site: It is likely for a dynamic biomolecule to undergo
conformational rearrangements and such allosterisms are difficult to capture in
experimentally solved static 3D structures. By combining flexible ligand docking
and MD simulation, Schames et al. (2004) showed the existence of a new binding
site in HIV integrase. The new site was previously unidentified in solved HIV
integrase X-ray crystal structures. This new site was abundant in several frames
of MD trajectories suggesting that the site was indeed energetically favored. A
later study confirmed with the solved X-ray crystal structure that a cryptic trench
site indeed existed in HIV integrase.

• Induced-fit phenomenon: Similar to allosterism, an induced-fit phenomenon is
difficult to capture in static experimental 3D structures. Zhao et al. (2012) per-
formed constrained MD simulation of an EphA3 structure in explicit solvent to
create an induced-fit cavity. Using this induced-fit cavity, the authors carried out
pharmacophore filtering and high-throughput docking, and identified 10 classes
of novel molecules that could not be discovered using a primary X-ray crystal
structure.

• Advanced free energy calculations: MD simulation has been advanced to calcu-
late the binding free energies between two molecules using thermodynamic

Table 2.12 List of software widely used for MD simulations.

Software Webpage

AMBER https://ambermd.org

NAMD https://www.ks.uiuc.edu/Research/namd/

Gromacs http://www.gromacs.org

Desmond https://www.schrodinger.com/desmond

LAMMPS https://lammps.sandia.gov

It is imperative to mention that each package is capable of performing different types of simulations
such as sampling configuration (replica exchange, accelerated molecular dynamics, steered molecular
dynamics, nudged elastic band), free energy calculations (molecular mechanics/PoissoneBoltzmann
(generalized born) surface area, nonequilibrium free energy, binding enthalpy measurements), etc.
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integration, single-step perturbation, and free energy perturbation. Researchers
have used different approaches to calculate binding free energies between mol-
ecules (Sharma et al., 2016; Moreau et al., 2017, 2020; Douglas et al., 2018;
Sharma and Wakode, 2017; Sharma and Wakode, 2020).

• Study of bond breakage/formation or transition-metal complex: Although
classical molecular mechanics-based MD simulation can predict several bio-
logical phenomena accurately, such simulations are not suitable to predict
situations where the quantum effect is mandatory. Examples of such situations
are (1) interaction with transition metals, or (2) breakage or formation of covalent
bonds. To solve this issue, researchers have integrated classical MD simulations
with quantum mechanical calculations. For example, Hong et al. (2011)
complemented classical molecular mechanics-based MD simulation with quan-
tum mechanics and studied the proton transfer mechanism of [FeeFe]H2ases.

• Point mutations: Padhi et al. (2012) utilized an all-atom MD simulation approach
to understand the role of different point mutations on the function of human
angiogenin. Using all-atom MD simulation, the authors studied the conforma-
tional switching of catalytic residue His114 and correlated with the mechanism
causing loss of ribonucleolytic activity.

2.3.7.5 Challenges

• Large MD simulations of 1 ms or longer sometimes fail to predict the confor-
mational rearrangements demanding implementation of sophisticated confor-
mational sampling techniques.
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3.1 Introduction
Computer-aided drug design (CADD) includes highly effective techniques crucial in
the discovery and development of a drug. The phases involved in drug discovery and
development include lead identification and validation, target identification and vali-
dation, preclinical studies, and clinical trials. It takes approximately 13e15 years or
more for a drug to come to market going through various stages and involves a cost
of approximately 2.6 billion dollars for a single drug candidate to reach the market.
Despite the considerable cost and time involved in the process, about 90% of drug
candidates do not enter the Food and Drug Administration (FDA)-regulated clinical
trials. They fail at various stages of the drug discovery and development process.
About 75% of the cost involved is spent on stages before clinical trials. The esca-
lating cost and extended time involved have led to the development of methods
and strategies to reduce the time frame and cost involved in discovering and devel-
oping a drug candidate. CADD plays a pivotal role in screening out at early stages
the molecules that are likely to fail in later stages as potential drug candidates.
Through various in silico studies, a large number of ligands having the potential
to lead are screened. Only the ligands showing promising results can then be exper-
imentally tested, thereby reducing the cost and time. Most of the pharmaceutical and
biotechnology industries are now using CADD as a vital part of the drug discovery
and development pipeline. The CADD field started more than 40 years ago. CADD
techniques and tools can, in no small way, give an accurate prediction of binding af-
finity, the effectiveness of ligands, probable side effects, mode of action, and phar-
macokinetic profiling of candidate molecules. These results further help in designing
and developing therapeutics having better efficacy and potency with minimal side
effects. Many studies show the role of CADD in new drug development (Karthick
et al., 2016; Clark et al., 2016; Chao et al., 2007; Tran et al., 2015).

The techniques involved in CADD are broadly classified into (1) structure-based
drug design (SBDD) and (2) ligand-based or analog-based drug design. The basic
concept behind SBDD is that the structures of both target and ligands are known.
The 3D structure of the target molecule is obtained through experimental techniques
like X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy.
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In the absence of experimental structure, the 3D structure of the target is predicted
using computational techniques like homology modeling, threading, and ab initio
methods. The structure of the ligand is obtained through experimental methods or
generated using 3D structure drawing tools. The 3D structures are used for designing
potential drug candidates. Techniques like docking, high-throughput virtual
screening, and de novo ligand designing are part of SBDD. However, ligand-
based or analog-based drug design techniques are used when neither the experi-
mental nor the predicted 3D structure of the target molecule is known. Methods
like 3D and 4D quantitative structureeactivity relationship (3D-QSAR and
4D-QSAR), pharmacophore search, and molecular similarity approach are
analog-based drug design techniques. QSAR techniques generate the QSAR model
correlating the biological activity of known ligand molecules with various descrip-
tors and use the model to predict the activity for new ligand molecules.

This chapter focuses on computational SBDD methods, advances in techniques,
and tools. SBDD has been crucial in the development of many FDA-approved drugs
(Talele et al., 2010; Clark, 2006; Kitchen et al., 2004).

3.1.1 Structure-based drug design methods
The biological functions in living systems are a consequence of a network of biolog-
ical interactions between proteins, nucleic acids, carbohydrates, lipids, substrates,
and effectors. These interactions are crucial in various biological processes, like
signal transduction and cellular regulation. An insight into how the physiological
functions occur (particularly in areas of drug designing to find a cure for different
diseases) is imperative to study how these interacting molecules influence each other
in terms of structure, conformation, and functions. An insight into the mechanisms
of biological processes is key to SBDD. The design and development of novel ther-
apeutics or modification of existing drugs to create a highly potent, specific, and se-
lective drug with minimal or no side effects require an understanding of the disease
at the structure level of receptor and ligand.

3D structure information of the target molecule is required for SBDD. The 3D
structure of the target molecules, usually proteins or RNA, is analyzed by SBDD
methods. The objective is to identify critical residues and interactions responsible
for biological activity. The Protein Data Bank (PDB) currently has 165,650 struc-
tures determined through X-ray crystallography or NMR. The significant techniques
of SBDD are (1) docking, and (2) de novo ligand designing.

3.2 Molecular docking
Docking is a method to study the binding affinity of molecules (proteineprotein,
proteineligand, proteineDNA) and their interaction mechanism. Docking involves
two molecules: a target (receptor) and a ligand. The dynamic perturbations that
range from small side-chain flexibility in the catalytic site to domain movements
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or opening or closing of channels occur on the binding of the ligand to the receptor.
These dynamic perturbations introduced are also known as the induced-fit effect.
The biological activity results from the interactions between specific conformations
of receptor and ligand. Not all the conformers (poses) of proteins and ligands result
in biological activity. Docking predicts the preferred conformation (pose) of a mole-
cule in its bound state to another molecule, which is energetically more stable and
mimics the molecular recognition process. Docking techniques must accurately pre-
dict ligand poses and their binding affinity in agreement with experimental observa-
tion. Fig. 3.1 depicts a ligand bound in the active site of the receptor.

In a nutshell, for any two given biological molecules, docking aims to find:

Whether the two molecules interact.
If they interact with each other, then what is the orientation that maximizes the
interaction and minimizes the complex’s total energy?

3.2.1 Challenges in docking
The major factors that govern receptoreligand interactions are:

i. Shape complementarity.
ii. Nonbonded interactions (H-bonding, electrostatic, and van der Waals

interactions).
iii. Conformational flexibility of the receptor.

FIGURE 3.1

Surface view of COX-2 monomer bound with a peptide. The peptide is shown in green

color in ball and stick mode.
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iv. Conformational flexibility of the ligand.
v. Dynamic perturbations in the complex as a result of the binding of the ligand to

the receptor.
vi. Presence or absence of solvent molecules.
vii. Presence or absence of other ions/molecules.
viii. Multiple binding sites.

Therefore any docking algorithm must deal with:

i. Six degrees of freedom of the ligand (three translational, three rotational).
ii. N degrees of freedom in case of full flexibility consideration of ligand and re-

ceptor in the native and bound states.
iii. Interaction of every atom in the ligand with each atom of the receptor.

3.2.2 Types of molecular docking
The receptor in most biological studies is usually a protein molecule, and the ligand
may be another protein, small molecule (agonist, antagonist, substrate), DNA, lipid,
or carbohydrate. Proteins are highly flexible molecules. Depending upon the type of
receptor and ligand involved, docking may be of different types:

• Proteineligand docking (small molecule docking).
• Proteineprotein docking.
• ProteineDNA docking.

Table 3.1 contains a list of software in proteineprotein and proteineligand
docking.

3.2.2.1 Rigid versus flexible docking
Docking methods are broadly categorized depending on the consideration of flexi-
bility of receptor and ligand by the docking algorithms: rigid docking and flexible
docking. Receptoreligand docking is a dynamic process. It is a well-known fact
that proteins and ligands can exist in different conformations depending on their
flexibility. There are six degrees of rotational and translation freedom of the two
molecules relative to each other and the conformational degree of freedom of
each molecule. The more the number of rotatable bonds in a molecule, the more flex-
ible it would be. The native state conformation of a molecule is different from its
conformation in a bound state. Moreover, all the probable conformations of a mole-
cule do not result in a biological effect. Only specific poses contribute to the biolog-
ical effect.

Rigid docking: In this method, the protein and ligand are both considered as
rigid bodies. Their conformational flexibility is not taken into consideration.

Flexible docking: In this method, the protein, as the receptor, is considered rigid
and the ligand is treated as flexible. Fig. 3.2 depicts a ligand docked flexibly in the
active site of the receptor. Some methods can consider the localized conformational
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Table 3.1 Tools for proteineprotein docking and proteineligand docking
and their accessibility.

S.
no. Program Functionality/features Web address References

Proteineprotein docking

1. pyDock Proteineprotein docking https://omictools.
com/pydock-tool

Cheng et al.
(2007)

2. EROS-DOCK An approach that uses
the physics-based
ATTRACT function

https://erosdock.
loria.fr/

Echartea et al.
(2019)

3. ClusPro Direct docking of two
interacting proteins

https://cluspro.bu.
edu/home.php

Kozakov et al.
(2017)

4. ZDOCK Performs a full rigid-body
docking

https://zlab.
umassmed.edu/
zdock/index.shtml

Chen et al.
(2003)

5. HADDOCK Flexible docking
approach for
biomolecular complexes

https://bianca.
science.uu.nl/
haddock2.4/

van Zundert
et al. (2016)

6. PatchDock Docking algorithm based
on the shape
complementarity principle

http://bioinfo3d.
cs.tau.ac.il/
PatchDock/php.
php

Schneidman-
Duhovny et al.
(2005)

7. MemDock Membraneeprotein
docking algorithm

http://bioinfo3d.
cs.tau.ac.il/
Memdock/php.
php

Hurwitz et al.
(2016)

8. FiberDock Method for flexible
refinement of rigid-body
docking

http://bioinfo3d.
cs.tau.ac.il/
FiberDock/php.
php

Mashiach
et al. (2010)

9. LightDock Open-source protein
docking framework
written in Python

https://lightdock.
org/

Jiménez-
Garcı́a et al.
(2018)

10. FlexDock Identifies hinge regions
and rigid parts followed
by docking

http://bioinfo3d.
cs.tau.ac.il/
FlexDock/php.php

Schneidman-
Duhovny et al.
(2007)

11. ParaDock ProteineDNA docking
algorithm

http://bioinfo3d.
cs.tau.ac.il/
ParaDock/php.
php

Banitt et al.
(2011)

12. Symmref Reranking and refinement
of symmetric docking
solutions

http://bioinfo3d.
cs.tau.ac.il/
SymmRef/php.
php

Mashiach-
Farkash et al.
(2011)

Continued
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Table 3.1 Tools for proteineprotein docking and proteineligand docking and their

accessibility.dcont’d

S.
no. Program Functionality/features Web address References

13. FireDock Effective in rescoring of
rigid-body protein
eprotein interaction

http://bioinfo3d.
cs.tau.ac.il/
FireDock/php.php

Mashiach
et al. (2008)

14. CombDock Prediction of near-native
assemblies

http://bioinfo3d.
cs.tau.ac.il/
CombDock/
download/

Inbar et al.
(2003)

15. GRAMM-X Search for rigid-body
conformation

http://vakser.
compbio.ku.edu/
main/resources_
gramm1.03.php

Vakser et al.
(1999)

16. 3d GARDEN Based on marching-
cubes algorithm

http://www.sbg.
bio.ic.ac.uk/
w3dgarden/

Lesk et al.
(2008)

17. ATTRACT Prediction of complex
structures, supports two-
body proteineprotein
docking protocol

http://www.
attract.ph.tum.de/
services/
ATTRACT/
ATTRACT.vdi.gz

de Vries et al.
(2015)

18. ICM-DOCK Involves accurate
individual docking sets

http://www.
molsoft.com/
docking.html

Abagyan et al.
(1994)

19. DOCK/PIERR Proteineprotein docking
algorithm based on
residue contact potential
(PIE) and atomic potential
for a given structure
(PISA)

http://clsbweb.
oden.utexas.edu/
dock.html

Viswanath
et al. (2014)

20. LZerD
software suite

Pairwise and multiple
protein docking

http://kiharalab.
org/
proteindocking/
index.php

Esquivel-
Rodriguez
et al. (2014)

21. MEGADOCK Proteineprotein docking
tool with ultrahigh
performance

http://www.bi.cs.
titech.ac.jp/
megadock/

Ohue et al.
(2014)

22. HDOCK ProteineDNA/RNA and
proteineprotein docking
based on hybrid
algorithm of template-
based modeling and ab
initio modeling

http://hdock.phys.
hust.edu.cn/

Yan (2017)

Proteineligand docking

23. Autodock A suite of automated
docking tools to predict
the binding of small

http://autodock.
scripps.edu/

Morris et al.
(2009)
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flexibility of the receptor. Therefore, based on the conformational flexibility of the
receptor, flexible docking techniques can be further subclassified into:

Soft docking: This is one of the simplest methods, which takes into consider-
ation of some amount of flexibility in the catalytic site of the receptor. In this
method, the interatomic van der Waals interactions are relaxed to allow a small
degree of overlap between the ligand and the receptor (Jiang and Kim, 1991;
Ferrari et al., 2004). It is computationally less intensive compared to the other
three methods.
Side-chain flexibility: This method considers the backbone of the receptor to be
rigid and considers the flexibility of the protein’s side chains using rotamer
libraries (Schnecke and Kuhn, 2000).

Table 3.1 Tools for proteineprotein docking and proteineligand docking and their

accessibility.dcont’d

S.
no. Program Functionality/features Web address References

molecules to the 3D
structure of a
macromolecule

24. AutoDock
Vina

Open-source program to
perform molecular
modeling

http://vina.scripps.
edu/

Trott et al.
(2010)

25. Dockvision A complete docking
package with Monte
Carlo and genetic
algorithm and database
screening docking
algorithm

http://dockvision.
sness.net/

Pagadala
et al. (2017)

26. Situs Flexible refinement of
protein structures against
intermediate resolution
density maps

https://situs.
biomachina.org/
index.html

Wriggers
(2012)

27. CaverDOCK Analysis of transportation
mechanism in proteins

https://loschmidt.
chemi.muni.cz/
caverdock/

Vavra et al.
(2019)

28. Flex X Ensures accurate binding
mode prediction

https://www.
biosolveit.de/
FlexX/

29. Glide Offers high-throughput
screening

https://www.
schrodinger.com/
glide

Friesner et al.
(2004)

30. Gold Protein-ligand docking
software having higher
accuracy of binding
modes of ligand with the
protein

https://www.ch.
cam.ac.uk/
computing/
software/gold-
suite

Verdonk et al.
(2003)
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Molecular relaxation: The primary feature of this method is consideration of
the backbone as well as the side-chain flexibility of the protein in the region
around the ligand. It works in two steps. First, the ligand is docked in the active
site of the target using rigid-body docking. In the second step, after rigid
docking, the complex thus formed is relaxed or refined using techniques like
molecular dynamics (MD) simulation and Monte Carlo (MC) simulations. The
relaxation involves translation and rotation of the backbone and side chains of
residues within the vicinity of the rigidly docked ligand to remove any steric
hindrance and obtain an energetically favorable and stable complex (Aposto-
lakis et al., 1998; Davis and Baker, 2009).
Ensemble based: The real challenge lies in considering the flexibility of both
protein backbone and side chains. These methods can be very computationally
intensive. Ensemble-based and induced-fit docking (IFD) consider the com-
plete flexibility of the protein during docking.
Proteins are known to exist in different druggable conformations. The ensemble
of protein conformations is extracted from the PDB. If the 3D structure of the
protein is obtained through structural prediction algorithms, a conformational
search is done to obtain all low-energy conformations. Therefore, in this
method, a ligand is docked against the receptor’s multiple conformations using
MD simulations. Ensemble docking results in better pose predictions leading to
virtual screening enrichment (Carlson and McCammon, 2000; Carlson, 2002;
Teague, 2003; Cozzini et al., 2008; Totrov and Abagyan, 2008; Li et al., 2019).
Various methods have been developed in ensemble-based docking (Amaro
et al., 2018; De Paris et al., 2018; Fu and Meiler, 2018). The results of
ensemble-based docking have found application in providing a structural basis

FIGURE 3.2

Different poses of a ligand are flexibly docked in the active site of the receptor. The ligand

poses are shown in ball and stick model.
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for the prediction of metabolism, toxicity, and off-target binding (Evangelista
et al., 2016). Ensemble-based docking methods have led to a number of FDA-
approved drugs (Schames et al., 2004; Hazuda et al., 2004; Summa et al., 2008).
Induced fit: IFD considers both the target and ligand molecules’ flexibility. The
target protein structures are treated as flexible. Schrodinger’s tool, Glide
(Sherman et al., 2006), incorporates the IFD method for an exhaustive search
for possible binding modes of the ligand and the associated conformational
changes within receptor active sites. It iteratively combines structure prediction
methods with the docking of a rigid receptor. A Monte Carlo-based minimi-
zation algorithm is used by RosettaLigand (Meiler and Baker, 2006). Roset-
taLigand considers the residues’ side-chain flexibility in the binding pocket of
the target and flexibility of the backbone residues of the target. Adaptive BP-
Dock uses perturbation response scanning in combination with the docking
method of RosettaLigand. It has been tested on HIV reverse transcriptase and
HIV protease (Boila and Ozkan, 2016). A mutually orthogonal Latin squares
method has been developed for the conformational sampling of the flexible
residues of the receptor and poses of the ligand (Paul and Gautham, 2017). IFD
has been successfully implemented in designing novel lead molecules (Clark
et al., 2016; Baumgartner and Evans, 2018).

3.2.2.2 Blind versus site-directed docking
The blind docking approach is used when there is no information available about the
ligand-binding active site. The method can explore the probable binding pockets in a
receptor, e.g., identification of a probable binding site in acetylcholine nicotinic recep-
tors has been reported using a blind docking approach for allosteric modulators. The
site-directed or guided docking approach refers to defining the putative site where
ligand may bind. The putative site is defined either using information from site-
directed mutagenesis about essential residues or through active site predictionmethods.

3.2.3 Methodology
3.2.3.1 Generation of a 3D structure of receptor and ligand
The 3D structure of the receptor and ligand is essential for docking studies and used
as input files. The 3D structure of both the receptor and the ligand is obtained from
X-ray crystallography or NMR studies. The coordinates are downloaded from the
PDB. In case the data from crystal structure/NMR is not available, then structural
modeling is carried out. The 3D structure of the target is predicted using structure
prediction methods like homology, threading, or ab initio predictions. The ligand
3D structure can be generated by drawing the 2D structure and converting it into
a 3D structure followed by optimization using energy minimization techniques.
Software like ChemkSketch, ISIS Draw, PubChem Sketcher, ChemDoodle, and
Marvin is available (open source and commercial) for building 3D structures of li-
gands. For example, many of the modeling software, Maestro, MOE, has an in-built
tool for building 3D structures.
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3.2.3.2 Cleaning and refinement of structures
The accuracy of the docking study depends on input structures for the ligand as well
as the target. The structural coordinate files obtained from the PDB consist of heavy
atoms of protein of monomeric or heteromeric subunits of protein. It may also have
water molecules or other solvent molecules, ligands, cofactors, and metal ions. The
3D structure, either experimentally determined or predicted, requires the following
refinements: addition of H-atoms, addition of water (solvent) molecules, addition of
any missing side chains or loop regions due to low resolution in a specific area,
capping the termini residues, assignment of bond orders, creation of zero bond order
to metals, topologies, or formal atomic charges, ionization, and tautomeric states.

Refinement is done using either molecular mechanics (MM) or quantum me-
chanics (QM). QM calculations solve approximations to Schrodinger’s wave equa-
tion to determine the molecular properties such as electron density, free energy,
transition moments, and others. In MM, a molecule is considered as a series of balls
and springs. Hooke’s law determines the energy of the molecule. Modules like
Maestro of Schrodinger provide a pipeline for protein preparation. There is much
standalone software available to carry out the different steps in the preparation of
protein and ligand. The protonation states of the amino acids in the protein can be
determined using PROPKA (Sondergaard et al., 2011; Olsson et al., 2011), Hþþ
(Anandakrishnan et al., 2012), and SPORES (ten Brink and Exner, 2010). Several
methods for the addition or removal of water molecules like 3D RISM (Kovalenko,
2003; Young et al., 2007; Abel et al., 2008), SZMAP (Rashin and Bukatin, 1991),
JAWS (Michel et al., 2009), and WaterMap (Young et al., 2007; Abel et al., 2008;
Schrodinger, 2020) are available.

3.2.3.3 Identification of active site
There can be multiple binding sites present in a target molecule. However, there is
only one active site. The active site is the site where the ligand binding results in
biological activity. Experimentally, mutagenesis studies, particularly site directive
mutagenesis, can reveal information regarding residues affecting biological activity.
Cocrystallization of protein with the ligand is also used to determine the binding site
of a ligand in protein. Computationally, a comparison of the structure of a protein
with known homologs or pocket detection algorithms is used to detect the active
site in a target. All the available algorithms detect the active site based on two pa-
rameters: size and shape. The conventional algorithms available are divided into
two categories: geometry-based and energy-based methods.

Geometry-based methods generally determine the molecular surface to identify
the pockets. Solvent mapping is done with probes like hydrogen atoms or small
organic molecules to identify binding sites on a 3D structure. For example,
DOCK uses Connolly’s algorithm for molecular surface determination. Some of
the pocket-finding tools based on geometry-based methods include SURFNET-
ConSurf (Glaser et al., 2006), CASTp (Tian et al., 2018), LIGSITE (Huang and
Schroeder, 2006), PrankWeb (Jendele et al., 2019), SiteMap (Halgren, 2007,
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2009; Schrodinger 2020), FTMap (Ngan et al., 2012), Fpocket (le Guilloux et al.,
2009), MDpocket (Schmidtke et al., 2011), QsiteFinder (Laurie and Jackson,
2005), MED-SUMO (Doppelt-Azeroual et al., 2010), and SiteHound-web (Hernan-
dez et al., 2009).

On the other hand, energy-based methods focus on calculating interaction energy
between a probe and the protein. A probe molecule can be a hydroxyl, methyl, or any
amino group. Q-SiteFinder is an example of an energy-based method where more
than one probe may be used in one simulation to study the dynamic behavior. The
free energy contributing between the protein and probes can be calculated and
used for detecting binding sites. Tools using an energy-based method include
MDMix (Seco et al., 2009), SILCS (Raman et al., 2011), and MixMD (Lexa and
Carlson, 2011).

Water molecules play an essential role in the physiological system and impact
ligands’ interaction with the target molecules. The study of thermodynamic prop-
erties of water molecules solvating the binding sites and their interactions with the
residues of the target and ligands provides significant insight into action mecha-
nisms. Drug design must assess the binding affinity of a ligand. Thus water is
also used as a probe for solvent mapping and identification of putative binding
sites. Examples of tools include WaterFLAP (Baroni et al., 2007), WaterMap
(Young et al., 2007; Abel et al., 2008; Schrodinger, 2020), 3D-RISM (Kovalenko,
2003; Young et al., 2007; Abel et al., 2008), SZMAP (Rashin and Bukatin, 1991),
and AquaMMapS (Cuzzolin et al., 2018). A comparative study of water-mapping
tools showed that considering water molecules enhances the efficacy of docking
results (Bucher et al., 2018).

3.2.3.4 Conformational flexibility of ligand and receptor
In the case of rigid-body docking, the conformational analysis of ligand is carried
out. The low-energy conformers are then selected and used for docking studies.
Conformational analysis is done using a systematic search, random search,
distance-based geometry approach, and genetic algorithm.

3.2.3.5 Docking
There are two essential aspects of any docking technique: algorithm and the scoring
function used. These are discussed next. Fig. 3.3 shows a schematic representation
of steps in the docking of a proteineligand.

3.2.3.6 Analysis of docking results
The analysis of docking results is based on the geometrical and stereochemical
considerations obtained from docking scores, specific hydrogen bonding,
electrostatic interaction, and van der Waals interaction between the ligand and
active site of the receptor, and molecular surface analysis of the complex.
Fig. 3.4 shows the ligand docked in the active site and interacting with residues
of the protein.
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3.2.4 Docking algorithms
The algorithm deals with placing the ligand, within the receptor binding site, by
conformational and orientation sampling of the ligand using different techniques.
The primary docking algorithms used are:

i. Shape complementarity.
ii. Exhaustive systematic search.
iii. Fragment-based docking (FBD).

FIGURE 3.3

A flow chart depicting the various steps in molecular docking.
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iv. Stochastic search.
v. Genetic algorithm.
vi. MC simulation.
vii. MD simulation.

3.2.4.1 Shape complementarity algorithm
Shape complementarity is one of the simplest and crudest methods for initially
placing the ligand in the binding pocket of the receptor. It is generally used as the
first step in many advanced docking algorithms. The ligand is placed by matching
the molecular surface of the ligand with that of the binding site in the receptor.
Both ligand and receptor are considered as rigid bodies at this stage. The solvent-
accessible surface area or the hydrophobic features of a receptor determine the re-
ceptor’s molecular surface area. If the molecular surface of the ligand complements
the molecular surface of the binding site, then the ligand is placed in the binding site.

Some of the docking programs based on shape complementarity are DOCK
(Kuntz et al., 1982), FRED (McGann et al., 2003), EUDOC (Pang et al., 2001),
LigandFit (Venkatachalam et al., 2003), Surflex (Jain, 2003), MS-DOCK (Sauton
et al., 2008), MDock (Huang and Zou, 2007a, 2007b), LibDock (Diller and Merz,
2001), LIDAEUS (Taylor et al., 2008), Ph4DOCK (Goto et al., 2004), and Q-Fit
(Jackson, 2002).

FIGURE 3.4

A docked complex of COX-2 with a ligand. COX-2 is shown as a ribbon and the ligand as a

ball and stick model. Interacting residues are labeled.
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3.2.4.2 Exhaustive systematic search algorithm
Systematic search is a method for comprehensively sampling ligand conformations
(using all six degrees of freedom) in the torsional space. It is used for flexible dock-
ing. It generates all putative low-energy conformers of the ligand. The number of
rotatable bonds is identified, and then each rotatable bond is subjected to a torsional
value between 0 and 360 using incremental values for the rotation step size. Each of
the conformers thus generated is ranked according to the binding energy. With the
increase in the number of rotatable bonds, the number of possible conformations
also increases. Therefore the exhaustive search algorithm may result in a combina-
torial explosion; that is, the number of conformations generated may be too large.
With this method, some programs apply geometric and distance constraints to
limit the number of conformations generated. MOLSDOCK and Glide (Friesner
et al., 2004, 2006; Halgren et al., 2004) are examples of hierarchical sampling
methods.

3.2.4.3 Fragment-based docking
The FBD method functions by breaking the ligand molecule into two or more low
molecular weight fragments or substructures. These fragments or the poses of the
fragments are then placed into the active site either by using the exhaustive system-
atic search or stochastic search.

In the incremental construction (IC) algorithm, the complete ligand is built
within the active site by incrementally growing fragments one after the other in
sequential order. All the fragments are placed in the active site and covalently con-
nected using scaffolds or linkers. The scaffolds or linkers are used only for connect-
ing the fragments, and they may have no interactions with the active site residues.

The advantage of using the FBD method is that it is computationally less exhaus-
tive and thus more efficient. The substructures or fragments themselves have weak
interactions with the receptor. However, these fragments are subjected to optimiza-
tion within the active site and connected to build the complete ligand having a higher
affinity for the receptor. This method is used in de novo drug design. Some tools
based on FBD include DOCK (Ewing and Kuntz, 1997), LUDI (Bohm, 1992),
FlexX (Rarey et al., 1996), and ADAM (Mizutani et al., 1994). Tools like DOCK
6.0 (Allen et al., 2015), Hammerhead (Welch et al., 1996), eHITS (Zsoldos et al.,
2006), FLOG (Miller et al., 1994), PatchDock (Schneidman-Duhovny et al.,
2005), and ProPOSE (Hogues et al., 2018) use the IC algorithm.

3.2.4.4 Stochastic search algorithm
The stochastic search algorithm places the ligand in the active site by random sam-
pling of ligand conformation in both the Cartesian coordinate space and the torsional
space. Random changes are made either in the Cartesian coordinates or torsional an-
gles. The nature of the random movement and the criteria employed for accepting or
rejecting the random moves vary depending on the method employed.

Stochastic search algorithms are further subclassified into:

68 CHAPTER 3 Advances in structure-based drug design



1. MC search
In this strategy, multiple runs are carried out from random starting positions and
orientations. The probability of accepting or rejecting a random move is
calculated using the Boltzmann probability function (exp(DE/kT)) through a
comparison of probability against a random number. The move is accepted only
if the Boltzmann probability of the move is larger than the random number. In
case the value is smaller, the system returns to its original configuration.
The ligand makes random moves around the receptor. At each step, random
changes are made either in the Cartesian coordinates or torsional angles. The
energy calculated for each change or step is compared to the previous energy
value. The new step is only accepted if the energy value is lower than the
previous step. In the case of higher energy, the step is accepted with a proba-
bility exp(DE/kT).
Programs that use the MC method include DockVision (Hart and Read, 1992),
Prodock (Torsset and Scheraga, 1999), MCDOCK (Liu and Wang, 1999), ICM
(Abgyan et al., 1994), RosettaLigand (Meiler and Baker, 2006), and AutoDock
Vina (Trott and Olson, 2010).

2. Tabu search
In this method, new states or conformations (N solutions) are randomly gener-
ated from an initial state. A record of the new conformations and the confor-
mational search space explored is maintained so that the algorithm is forced to
search into previously unexplored conformational spaces. The new conforma-
tions are scored and ranked in ascending order. Out of all the N solutions, only
the best conformer (solution) is retained. The probability of acceptance of a new
conformation is dependent on the previously explored conformational space.
Tabu search makes use of the root mean square deviation (RMSD) to accept or
reject the orientation or conformation of a ligand. The new conformation
generated after a random search is accepted if the RMSD value between the new
ligand conformation and any of the previous conformations is more than a
threshold cut-off. In case the RMSD value of a new conformer and any previous
conformers obtained is less than the cut-off, then the particular random move is
rejected. Some examples of tools are PRO LEADS (Baxter et al., 1998) and
PSI-DOCK (Pei et al., 2006).

3. Particle swarm optimization
Particle swarm optimization (PSO) is a population-based stochastic optimization
technique based on fish schooling’s social behavior. In this method, initializa-
tion of the system is done using random solutions. The optimal solutions are
obtained by updating generations. The potential solutions follow the current
optimal solution to further move through the problem space. The best positions
of the neighbors direct the movement of a ligand in the search space. Tools
based on this method include SODOCK (Chen et al., 2007), Tribe-PSO (Chen
et al., 2006), PSO@Autodock (Namasivayam and Gunther, 2007), and FIPS
DOCK (Liu et al., 2013).
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4. Genetic algorithm
This comes under the category of evolutionary algorithms and involves sto-
chastic search. Genetic algorithms are based on the theory of evolution and
natural selection by Darwin. Different conformations and positions of ligands
are generated. These initial states are considered to be at the lowest energy
positions. These initial conformers are subjected to crossover and random
mutations to generate new conformers. A set of values defines the conformation
and orientation of a ligand and a protein called state variables (e.g., dihedral
angles, ring geometry), which reflect the conformation and orientation of the
ligand with respect to the receptor. Here, the genotype is the state of the ligand,
and atomic coordinates define the phenotype. After successive steps of evolu-
tion, the best conformation of the ligand having the lowest energy is selected.
The conformers having favorable genes are accepted and passed on to the next
generation, and unfavorable conformers are eliminated. The selection of
favorable/unfavorable conformer is through the fitness score. The interaction
energy of the protein with the ligand defines the fitness score.
GOLD (Jones et al, 1995, 1997), AutoDock (Morris et al., 1998), DIVALI
(Clark, 1995), DARWIN (Taylor and Burnett, 2000), MolDock (Thomsen and
Chirstensen, 2006), PSI-DOCK (Pei et al., 2006), FLIPDock (Zhao and Sanner,
2007), GAsDock (Li et al., 2004), Lead finder (Stroganov et al., 2008), and
EADock (Grosdidier et al., 2007) are some of the tools that have implemented
genetic algorithms for docking. A variant of genetic algorithm called La-
marckian genetic algorithm has also been developed to handle larger degrees of
freedom.

5. MD simulation
MD simulation is a technique to study the dynamic behavior of molecules. This
method can help in understanding the dynamic perturbations occurring when a
ligand binds to the receptor. It is based on Newton’s second law of motion:

F ¼ ma where F is force; m is mass; and a is acceleration. (3.1)

This equation is integrated over a period of timeframe (usually in the order
ranging from picoseconds to femtoseconds) to determine the new position,
velocity, and acceleration of the molecules. The output is in terms of the new
conformer of the complex. The protein is rigid, and the ligand is flexible. The
conformations generated are docked into the protein in successive steps. MD
simulation is carried out, followed by energy minimization of the system steps.
Scoring is done based on energy values. This technique is useful in determining
poses that are comparable with experimental structures.

3.2.5 Scoring functions in docking
The scoring function’s objective is to analyze and rank the poses generated and
select the best pose (conformer) for a given ligand based on binding affinity. The ac-
curacy of the docking algorithm is determined by the scoring function used.

70 CHAPTER 3 Advances in structure-based drug design



Depending on the method of derivation, the scoring functions have been categorized
into the following types.

3.2.5.1 Forcefield-based scoring functions
Forcefield is a mathematical function defining the conformations based on energy
terms. These scoring schemes approximate the free binding energy of proteine
ligand complexes using forcefields. In other words, forcefields are sums of terms
that correspond to bonded and nonbonded interaction, namely bond, angle, torsion,
van der Waals, and electrostatic interaction energies as functions of conformation.

The forcefield parameters from AMBER (Weiner and Kollman, 1981),
CHARMM (Brooks et al., 1983), OPLS (Jorgensen et al., 1996), OPLS3 (Harder
et al., 2016), and MMF forcefields are used. The solvent effect is considered using
(1) distance-dependent dielectric constant or (2) explicit solvents such as free energy
pertubation and thermodynamic integration (Wang et al., 2001) or (3) implicit sol-
vents such as PoissoneBoltzmann/surface area models (Rocchia et al., 2002; Grant
et al., 2001) and the generalized-born/surface area models (Zou et al., 1999; Liu
et al., 2004). The limitations of these methods are in the calculation of entropic ef-
fects and free energy calculations. Examples include AutoDock, G-Score, GOLD,
DockScore, GoldScore, and HADDOCK scoring functions.

3.2.5.2 Empirical scoring functions
A set of proteineligand complexes with known binding affinity is used for deriving
the empirical scoring. The set of weighted empirical energy terms is used to calcu-
late the binding energy score of a receptoreligand complex. The empirical energy
terms include van der Waals energy, electrostatic energy, hydrogen bonding energy,
desolvation term, entropy term, and hydrophobicity term:

DG¼
X

Wi DGi (3.2)

where {DGi} shows individual empirical energy terms and {Wi} represents the co-
efficients {Wi} corresponding to it. The coefficients are determined using least
square fitting by comparing the binding affinity data of a training set of receptore
ligand complexes with known structures (Eldridge et al., 1997; Krammer et al.,
2005; Wang et al., 2002). The fit of the pose is evaluated according to this inferred
potential. The empirical scoring functions are relatively more accurate than
forcefield-based scoring functions. The use of binding constants of known proteine
ligand complexes from the PDB can enhance the efficacy of empirical scoring
functions.

Examples of an empirical scoring function using algorithms/programs are Glide-
Score (Friesner et al., 2004; Halgren et al., 2004), PLP (Gehlhaar et al., 1995),
F-Score (Rarey et al., 1996), LigScore (Krammer et al., 2005), LUDI (Bohm
1994, 1998), SCORE (Wang et al., 1998), X-Score (Wang et al., 2002), ChemScore
(Eldridge et al., 1997), Medusa Score (Yin et al., 2008), AIScore (Raub et al., 2008),
and SFCscore (Sotriffer et al., 2008).
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3.2.5.3 Knowledge-based scoring function
The knowledge-based scoring functions are based on the structural information
available in known receptoreligand complexes in the PDB. The energy of receptore
ligand binding is the sum of the interaction terms for all the receptoreligand atom
pairs in the complex. The probability distributions of interatomic distances are con-
verted into distance-dependent interaction free energies of proteineligand atom
pairs. The “inverse Boltzmann law” is used to convert interatomic distance probabil-
ity distributions into distance-dependent interaction free energies of proteineligand
atoms (Huang and Zou, 2010):

wðrÞ¼ � kBT ln½pðrÞ = p�ðrÞ� (3.3)

Here, kB represents the Boltzmann constant, T the absolute temperature of the
system, p(r) the number density of the proteineligand atom pair at distance r in
the training set, and p*(r) the pair density in a reference state of no interatomic in-
teractions. The reference states determine the weights between the various probabil-
ity distributions. The knowledge-based scoring functions are efficient in terms of
accuracy and speed as a large number of receptoreligand complexes have been
used to generate the potential term.

Examples include DrugScore (Gohlke et al., 2000; Velec et al., 2005), SMoG
(DeWitte and Shakhnovich 1996; Ishchenko and Shakhnovich, 2002), BLEEP
(Mitchell et al., 1999), GOLD/ASP (Mooji and Verdonk, 2005), MScore (Yang
et al., 2006), and KScore (Zhao et al., 2008).

3.2.5.4 Consensus scoring
Consensus scoring is used to enhance the accuracy of a docking score by considering
the scores from different scoring functions to minimize the errors in scoring func-
tions. MultiScore and X-Cscore use consensus scoring (Wang et al., 2002; Terp
et al., 2001).

3.3 High-throughput screening
High-throughput virtual screening (HTVS) is an extensively used method in SBDD.
It is applied in the early stages of drug discovery and development. HTVS methods
facilitate the fast screening of a large number of compounds against a specific bio-
logical target molecule to identify hits having a good affinity for binding to the
target. The hits thus identified provide insight into the modulation mechanism of
a particular biomolecular mechanism or pathway and interactions involved with
the target in a particular physiological process at the cellular level. The screened
hits can then be further modified and developed into lead compounds having the po-
tential to be a drug molecule.

The methods, steps involved, and tools of HTVS are discussed here.
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3.3.1 Methodology of virtual screening
3.3.1.1 Compound databases
There are many chemical compound databases available consisting of different
chemical entities, either from synthetic sources or natural sources. These databases
may be compiled from in-house data or compound databases having pretested or un-
tested molecules (van Hilten et al., 2019;.Gong et al., 2017). The databases are either
publicly available or commercially available. Some of the notable publicly available
repositories for virtual screening include PubChem, ZINC, DrugBank, ChEMBL,
ChemSpider, and NCI.

PubChem, a repository of NIH, contains millions of small molecules showing
biological activity (Kim et al., 2019). It also contains macromolecules such as pep-
tides, lipids, nucleotides, and carbohydrates. It provides details relating to structures,
identifiers, physicochemical properties, activity, pharmacokinetic profile, and patent
information for the molecules. Currently, it contains 102,768,482 molecules. ZINC
database has more than 120 million compounds with drug-like properties and is
readily available for purchase (Sterling and Irwin, 2015). The data for small mole-
cules contain biological activity, physicochemical properties, structure, and com-
mercial availability. The latest version is ZINC 15, which uses information from
public databases such as ChEMBL, HMDB, DrugBank, and https://ClinicalTrials.
gov for annotation of high activity compounds. So, the database is enriched with
chemical compounds and biogenic molecules, natural products, metabolites, and
approved drugs. DrugBank database (Wishart et al., 2018) is a comprehensive data-
base of drugs and their targets. This database currently contains 13,579 drug entries,
which include approved 2635 small molecule drugs, 1378 biologics, 131 nutraceut-
icals, and more than 6375 compounds under evaluation because of their probability
of being drugs. It also has 5229 nonredundant protein sequences linked to the drug
entries. ChEMBL (Gaulton et al., 2017) is a curated database of bioactive molecules.
There are more than 1.6 million unique compounds in the current version, with 14
million activity values from 1.2 million assays mapped to about 11,000 targets.

Many commercial databases are also available from companies such as Chem-
Bridge, ChemDiv, Maybridge, MedChemExpress, ChemNavigator, etc. These data-
bases need refinement as the molecules are generally in 2D SDF format. ChemDiv
has a large, diverse, and pharmacologically important collection of compounds,
including more than 1,500,000 small drug-like molecules. MedChemExpress con-
tains over 10,000 molecules having proven pharmacological activities. Schrodinger
has a phase database of fragments and probable lead-like and drug-like compounds
for which it has partnered with Enamine, MilliporeSigma, and MolPort.

3.3.1.2 Ligand preparation of the compound database
The next step involves the preprocessing and prefiltering of compounds. Most of the
databases, except for the ZINC database, do not have compounds in a format that can
be directly used for docking in virtual screening. Ligand preparation involves mul-
tiple preprocessing steps and format conversions. Generally, the compounds in the
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libraries are stored in compact 1D formats like SMILES or 2D formats like SDF. The
compounds in SMILES or SDF formats are converted to 3D format during prepro-
cessing to assign the proper stereochemistry, tautomeric, protonation states, and en-
ergy minimization. Tools like OpenBabel (O’Boyle et al., 2011), an open-source
software, convert into a 3D format. There are many software packages like LigPrep
(Schrodinger, 2020), Epik (Greenwood et al., 2010; Schrodinger 2020), and
SPORES (ten Brink and Exner, 2010), which are specifically for ligand preparation.

The screening of large libraries of compounds is computationally intensive and
time consuming, and the screened compounds have redundant possibilities. There-
fore many filters are applied to the compounds in the library to screen compounds
having “drug-likeness” properties. One of the widely used filtering parameters is
the “Lipinski rule of five.” It states that drug-like compounds should have molecular
weights lower than 500, lipophilicity lower than five, hydrogen bond donors less
than five, and hydrogen bond acceptors less than 10. However, it has been reported
that even many approved oral drugs do not precisely follow the Lipinski rule of five.
There are many variations with flexibility like the rule of three, which states that mo-
lecular weight should be less than 300, logP value should be less than three, number
of hydrogen bond donors and acceptors should be less than three, and number of
rotatable bonds should be less than three.

Pfizer’s rule of 3/75 correlates physicochemical properties to preclinical toxicity.
The partition coefficient (ClogP) values are compared with the topological polar sur-
face area (TPSA). According to this rule, compounds having a ClogP value lower
than three and TPSA higher than 75 have a higher probability of passing in
in vivo assays. The quantitative estimate of drug-likeness filter, which ranks chem-
ical structures based on the properties of orally available drugs, is also used.

Absorption, distribution, metabolism, elimination, toxicity (ADMET) filtering
may be applied at this stage or later to filter the compounds based on their bioavail-
ability and toxicity.

3.3.1.2.1 Library design
During the preprocessing stage, customized libraries may be designed. Highly
similar structures can be removed from a library by ligand similarity calculations.
A customized library holds a wide range of chemically diverse molecules while
reducing the size of the database. The compound libraries may also be customized
to a specific target or have compounds with specific molecular property profiles
based on different physicochemical properties like lipophilicity, partition coeffi-
cient, solubility, and fragment-likeness.

The open-source software for library design includes CLEVER (Song et al.,
2009) and ChemT (Abreu et al., 2011). There are many other commercial tools
for library design as per user-defined filters like Tripos, Diverse Solution, Accelrys
Discovery Studio, and Medchem Studio. Table 3.2 contains details of the major
HTVS tools available.
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Table 3.2 Tools for high-throughput virtual screening workflow.

S.
no. Program

Functionality/
features Web address References

1. PyRx Screens library of
compounds against
potential drug targets

http://mgltools.
scripps.edu/

Dallakyan et al.
(2015)

2. ProDy An open-source
Python package for
protein structural
dynamics analysis

http://prody.csb.
pitt.edu/

Bakan et al.
(2011)

3. FragPELE Hit-to-lead drug
design tool

https://
carlesperez94.
github.io/frag_
pele/first_steps.
html

Perez et al.
(2020)

4. GpuSVMScreen Ligand-based virtual
screening

https://bio.tools/
GpuSVMScreen

Jayaraj et al.
(2019)

5. ATT2 Designed for
automatic lead
optimization, also lead
discovery

http://www.sioc-
ccbg.ac.cn/
software/att2/

Li et al. (2016)

6. MolAr Carries out the entire
virtual screening
process

http://www.
drugdiscovery.
com.br/software/

Maia et al.
(2020)

7. Octopus Can perform fast and
friendly docking
simulation

http://www.
drugdiscovery.
com.br/software/

Maia et al.
(2017)

8. PRODIGY Focuses on binding
energy of biological
complexes and
identification of
biological interfaces
from crystallographic
structures

https://bianca.
science.uu.nl/
prodigy/lig

Vangone et al.
(2015)

9. PSOVina Fast docking tool
optimization algorithm
of particle swarm
intelligence

https://cbbio.cis.
um.edu.mo/
software/psovina/

Tai et al. (2018)

10. PoLi Pipeline based on
template pocket and
ligand similarity

http://cssb.
biology.gatech.
edu/PoLi.

Roy A et al.
(2015)

11. Panther Ultrahigh-throughput
screening procedure

http://www.
medchem.fi/
panther/

Niinivehmas
et al. (2015)

12. GeauxDock Binding of small
ligands with

http://www.
institute.loni.org/

Fang at al
(2016)

Continued
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Table 3.2 Tools for high-throughput virtual screening workflow.dcont’d

S.
no. Program

Functionality/
features Web address References

pharmacologically
relevant molecules

lasigma/package/
dock/

13. LIDAEUS High-throughput
in silico screening
program

http://opus.bch.
ed.ac.uk/lidaeus/

Lim et al.
(2011)

14. GalaxySite Ligand-binding site
prediction

http://galaxy.
seoklab.org/site

Heo et al.
(2014)

15. mRAISE Descriptor-based
bitmap search engine

http://www.zbh.
uni-hamburg.de/
raise

von Behren
et al. (2016)

16. GEMDOCK Program to compute
a ligand conformation
and orientation
relative to active site of
the protein

http://gemdock.
life.nctu.edu.tw/
dock/

Yang et al.
(2004)

17. HomDock Similarity based, used
to improve efficiency
and accuracy of
complex binding of
ligand and unknown
protein

http://www.chil2.
de/HomDock.html

Marialke et al.
(2007)

18. GlamDock Based onMonte Carlo
and minimization
search in hybrid
interaction

http://www.chil2.
de/Glamdock.
html

Tietze et al.
(2007)

19. eSimDock Ligand docking and
binding affinity
prediction

http://www.
brylinski.org/
esimdock

Brylinski M
(2003)

20. Sliding
Box Docking

Standalone tool for
managing simulations
of ligand docking at
defined positions of
3D structures of DNA

https://
sourceforge.net/
projects/
slidingboxdocki

Martins-José
(2013)

21. VSDocker Uses AutoDock4 for
optimized virtual
screening

http://www.bio.
nnov.ru/projects/
vsdocker2

Prakhov et al.
(2010)

22. SwissDock Small molecule
docking screening

http://www.
swissdock.ch/

Grosdidier
et al. (2011)

23. Exemplar A map generated for
the perfect ligand
bound to the
complement

https://rosie.
rosettacommons.
org/make_
exemplar

Lyskov et al.
(2013)

24. PyPLIF Method to interpret
3D interaction of

Radifar et al.
(2013)
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3.3.1.3 Target preparation
The receptor molecule is prepared. The protocol followed is the same as discussed
earlier in the docking section (Fig. 3.3).

3.3.1.4 Docking
Each compound in the library is virtually docked into the active binding site. Details
of docking algorithms and tools are given in the docking section 3.2.4.

3.3.1.5 Postprocessing
The screened compounds and their poses are ranked based on scores and analyzed
for binding scores, poses, desirable chemical moieties, physicochemical properties,
lead-likeness, chemical diversity, bonded and nonbonded interactions with the
target, and ADMET profiling. The selected compounds are validated through exper-
imental assays.

Table 3.2 Tools for high-throughput virtual screening workflow.dcont’d

S.
no. Program

Functionality/
features Web address References

ligand and protein into
bit array form (1D)

https://code.
google.com/
archive/p/pyplif/

25. BAPPL-Z A server that predicts
the binding affinity of a
proteineligand
complex containing
zinc

http://www.
scfbio-iitd.res.in/
software/
drugdesign/
bapplz.jsp

Jain et al.
(2007)

26. Fold X Provides the
importance of
interactions
contributing to the
stability of protein
eprotein complexes

http://foldxsuite.
crg.eu/

Schymkowitz
et al. (2005)

27. CRDOCK Proteineligand
docking program
similar to GLIDE

https://ub.cbm.
uam.es/drug_
design/crdock.
php

Cortes
Cabrera et al.
(2012)

28. VSDMIP Virtual screening of
chemical libraries
integrated with
MySQL relational
database

https://ub.cbm.
uam.es/drug_
design/vsdmip.
php

Gil-Redondo
et al. (2009)

29. AMMOS Molecular mechanics
optimization tool for
high-throughput
screening

http://drugmod.
rpbs.univ-paris-
diderot.fr/
ammosHome.
php.

Pencheva
et al. (2008)
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HTVS is an effective method to identify hits having diverse chemical structures,
even in the absence of high-resolution crystallographic data or standard drug-
binding data. Recently, a novel HTVS cascade protocol has been reported,
combining both pharmacophore modeling and molecular docking to identify novel
compounds for cancer immunotherapy (Serafini et al., 2020). HTVS has been used
to successfully identify novel molecules for leukocyte antigen DR, Bruton’s tyrosine
kinase, and retinoic acid-related orphan receptors (Damm-Ganamet et al., 2019).

3.4 De novo ligand design
De novo ligand design uses knowledge about the 3D structure of receptor design novel
lead molecules using molecular modeling tools. The high-resolution structure of the
target or structureeactivity relationship data of active modulators and well-defined
binding site are required for de novo designing. The de novo design tools search
the active site binding space for novel potent hit compounds. This technique provides
the edge in designing leads with a defined selectivity profile and a unique molecular
structure. The ligands designed may be similar to known inhibitors or novel scaffolds.
These are then synthesized, and bioactivity assays carried out to validate the biological
activity. The methods of de novo ligand design can be broadly classified into two cat-
egories: (1) whole molecule docking and (2) fragment-based techniques.

3.4.1 Whole molecule docking
Each of the proposed ligands is docked to position it in the receptor’s active site or
matched to a pharmacophore model representing the active site. The different con-
formations of the ligand are generated during docking to the active site to identify
poses having good binding affinity. It makes use of properties like shape comple-
mentarity and electrostatic fitting for docking.

3.4.2 Fragment-based methods
The fragment-based methods are classified into four subcategories:

1. Site-point connection methods: Determine desirable locations of individual
atoms (“site points”) and then place suitable fragments.

2. Fragment connection methods: Start with previously positioned fragments in the
active site and find “linkers” or “scaffolds” to connect those fragments without
moving previously positioned fragments.

3. Sequential buildup methods: Construct ligands atom-by-atom or fragment-by-
fragment within the active site. The set of building blocks is generally small,
and the construction process may be random.

4. Random connection methods: Amalgamate different techniques incorporating
randomness in designed ligands by incorporating specific features from various
methods and bond-disconnection strategies.
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There is much software available for de novo ligand design. Tools for ligand
building such as biochemical and organic model builder (BOMB), SPROUTS, Lig-
Builder, SILCS, LigMerge, and ReLeaSE have been developed. BOMB (Barreiro
et al., 2007; Jorgensen, 2009) builds molecules by fixing the core structure and add-
ing substituents. SPROUTS has been successfully used to design inhibitors for
Escherichia coli RNS polymerase (Gillet et al., 1994; Sova et al., 2009). LigMerge
(Lindert et al., 2012) identifies the maximum common substructure by analyzing the
known ligands. By systematically altering the distinct fragments attached to the
common substructure at each complex, LigMerge produces multiple molecules
with common features of the known ligands. SILCS uses MD simulations to find li-
gands with a high probability of binding to the receptor (Raman et al., 2012; Faller
et al., 2015). The high probability binding areas of the target are analyzed from mul-
tiple simulation results. In LigBuilder (Yuan et al., 2011, 2020), the ligands are
either grown or linked, and an empirical scoring function is used to estimate binding
affinities. Tools like LUDI or Pocket identify the key interactions or hot spots at the
binding site and convert these into 3D search queries and virtual screening. ReLeaSE
(Popova et al., 2018) designs novel chemical compounds with desired properties by
combining two deep neural networks namely-generative and predictive neural net-
works. Sequential graph generators have also been developed for de novo designing
(Li, 2018). Designing of dual inhibitors of c-Jun N-terminal kinase 3 and glycogen
synthase kinase-3 beta was accomplished using deep generative models. These com-
pounds showed effective activity for both the targets.

The fragment-based de novo ligand design can assemble drug-like molecules in a
highly reduced search space. They have also been used in de novo drug design, target
selectivity, and receptor-based pharmacophore screening (Hartenfeller and
Schneider, 2011; Schenider and Clark, 2019; Fischer et al., 2019; Amaravadhi
et al., 2014). Table 3.3 shows details of the widely used de novo drug design
programs.

3.5 Biomolecular simulations
The 3D structures of biomolecular complexes obtained from X-ray crystallography,
NMR, and cryogenic electron microscopy reflect only certain aspects of molecular
recognition. They only partly capture the dynamic behavior of biomolecules. How-
ever, biomolecules are dynamic. Both the ligand and the receptor may occur in mul-
tiple conformations. The native or unbound (apo) conformation of a receptor is
different from its bound (holo) state conformation due to dynamic perturbations.
Various factors such as solvent rearrangements and fluctuations, electrostaticse
polarization, temperature, pH, ionic strength, presence of metal ions, and other mol-
ecules contribute to structural conformational transitions. All these factors are crit-
ical for structure-based and ligand-based drug design. There are multiple binding
sites in a receptor molecule. The binding of ligands on one site may cause allosteric
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effects. Thus the finding of the biologically active conformation of a biomolecule is
a challenging task.

Biomolecular simulation techniques are invaluable in understanding protein mo-
tion and conformational flexibility of the target molecule in apo form and holo form.
The structural properties and the microscopic interactions between the assembly of
molecules can be explored through simulations. Biomolecular simulation techniques
can be broadly categorized in (1) MD and (2) MC simulations. There are also many
hybrid techniques incorporating both MD and MC.

Table 3.3 Software for de novo ligand design and their accessibility.

S.
no. Program

Functionality/
features Web address References

1. REINVENT
2.0

Production-ready tool
for de novo drug design

https://github.com/
MolecularAI/Reinvent

Thomas et al.
(2020)

2. CzeekD Fragment-based de
novo drug design
system

https://www.k-ct.jp/
en/service/czeekd.
html

Yoshikawa
et al.

3. DeepScaffold A scaffold-based tool
using deep learning

https://github.com/
deep-scaffold

Li et al. (2019)

4. SPROUT Structure-based drug
design

http://www.
keymodule.co.uk/
products/sprout/
sprout-classic.html

Gillet et al.
(1994)

5. Glide Offers high-throughput
screening

https://www.
schrodinger.com/
glide

Friesner et al.
(2006)

6. AutoGrow4 Open-source genetic
algorithm based

http://durrantlab.
com/autogrow4

Spiegel et al.
(2020)

7. iSyn WebGL-based
interactive program,
evolutionary-based
algorithm that designs
novel ligands

http://istar.cse.cuhk.
edu.hk/iSyn.tgz

Li et al. (2014)

8. Ludi Designs candidate
ligands for the active
site of proteins

http://www.esi.
umontreal.ca/
accelrys/life/
insight2000.1/ludi/1-
Intro.doc.html

Böhm (1992)

9. DOGS Reaction-based
program

Hartenfeller
et al. (2012)

10. LigBuilder V3 De novo multitarget
approach and
optimization

http://www.pkumdl.
cn/ligbuilder3/

11. e-LEA3D Performs CADD based
on molecular fragments

https://chemoinfo.
ipmc.cnrs.fr/LEA3D/
index.html

Douguet D
et al. (2005)
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3.5.1 Molecular dynamics simulations
In MD, conformations of the system are generated by integrating Newton’s laws of
motion. The trajectories define positions and velocities of the particles over a period
of time. MD methods provide an insight into the transient changes and dynamic per-
turbations. Forcefield parameters are used to mimic the dynamic behavior of real
molecules (Durrant and McCammon, 2011). Realistic atomistic simulation of mo-
lecular systems is dependent on the accurate and reliable molecular mechanics
forcefield. Several forcefields used in MD simulations include AMBER, CHARMM,
OPLS, and GROMOS. They differ only in terms of parameterization. Some of the
MD tools include AMBER, NAMD, GROMACS, and DESMOND.

Table 3.4 includes a list of important tools used for biomolecular simulation.
With the advent of graphical processor unit architectures and increasing computa-
tional power, it is feasible to run long-range MD simulations with better accuracy.
The estimation of thermodynamics and kinetics associated with drug�target recog-
nition is enhanced by explicit structural flexibility and entropic effects. The range of
timescale of a MD simulation is in nanoseconds to microseconds to milliseconds.

The purpose of MD simulation is to find all possible conformational states in
which a molecule may exist. Individual states or conformations of the protein are
often separated from others by extremely high energy barriers. The high computa-
tional demands limit conventional MD simulations to the order of microseconds,
thereby resulting in inadequate sampling of conformational states. Enhanced sam-
pling methods solve the issue of timescale in conventional MD and enable them
to find biologically relevant conformational states. Fig. 3.5 shows a typical system
setup in MD. The enhanced sampling algorithms solve the timescale problem and
enhance the conformational sampling. Different techniques of enhanced sampling
are reported: accelerated molecular dynamics, umbrella sampling, multicanonical
algorithms, simulated tempering, transition path sampling, targeted molecular dy-
namics, and parallel tempering.

3.5.1.1 Accelerated molecular dynamics
Accelerated molecular dynamics simulation reduces energy barriers separating
different states of a system. It improves the conformational space sampling. The po-
tential energy landscape is modified by increasing energy wells that are below a
certain threshold level. The energy wells above the threshold remain unaffected.
Thus the energy barriers are reduced, and better conformational sampling is done
(Hamelberg et al., 2004; Hamelberg and McCammon, 2005; Markwick et al.,
2007; Bucher et al., 2011). It has been used in simulations of fast-folding proteins
(Miao et al., 2015), G-protein coupled receptors (Miao et al., 2014), a silk-like poly-
peptide (Zhao et al., 2017), bovine pancreatic trypsin inhibitor (Pierce et al., 2012),
streptavidinebiotin complex (Song et al., 2015), antitrypsin (Andersen et al., 2017),
MSI-594 (Mukherjee et al., 2017), insulin (Nejad and Urbassek, 2018), and helical
proteins in explicit water (Duan et al., 2019).
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Table 3.4 Software for molecular dynamics and Monte Carlo simulations.

S.
no. Program

Functionality/
features Web address References

1. LARMD Based on
conventional
molecular dynamics

http://chemyang.
ccnu.edu.cn/ccb/
server/LARMD/
index.php/home/
index

Yang et al. (2019)

2. Tinker-HP Devoted to long-
polarizable molecular
dynamics simulations

http://tinker-hp.
ip2ct.upmc.fr/

Lagardère et al.
(2018)

3. NAST Generates RNA
structures using
knowledge-based
forcefield

https://simtk.org/
projects/nast

Jonikas et al.
(2009)

4. DelPhi Force Calculates
electrostatic force

http://compbio.
clemson.edu/
delphi-force/

Li et al. (2017)

5. MDWeb Runs standard
molecular dynamics
simulations

http://mmb.
irbbarcelona.org/
MDWeb/

Hospital et al.
(2012)

6. ProtPOS Predicts preferred
orientation of protein
on the surface with
initial absorption

https://cbbio.cis.
um.edu.mo/
software/protpos/

Jimmy et al.
(2016)

7. Desmond High-speed molecular
dynamic simulations

https://www.
deshawresearch.
com/resources_
desmond.html

Robustelli et al.
(2020)

8 Veinna-PTM Molecular dynamics
simulations for
exploring
posttranscriptional
modifications

http://vienna-ptm.
univie.ac.at/

Margreitter et al.
(2013)

9. LocalMove Based on the Monte
Carlo approach

http://
bioinformatics.bc.
edu/clotelab/
localmove/

Meng et al. (2011)

10. GROMACS Fast and flexible
program and freely
accessible

http://www.
gromacs.org/

Abraham et al.
(2015)

11. ProtoMol An object-oriented
component-based
framework for
molecular dynamics
simulations

http://protomol.
sourceforge.net/

Matthey et al.
(2004)

12. NAMD Molecular dynamics
code for high-yield
simulation of
macromolecules

http://www.ks.
uiuc.edu/
Research/namd/

Phillips et al.
(2005)
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3.5.1.2 Umbrella sampling
Umbrella sampling (Torrie and Valleau, 1977) accelerates conformational sampling
by flattening high-energy barriers. In umbrella sampling, artificial “umbrella” poten-
tials mirroring the real barriers are added to flatten the energy landscape. Systematic
sampling is done. It has been used for computing binding free energy and studying
the dissociation process of ligandereceptor complexes. Umbrella sampling has been
used in simulations of G-quadruplex DNA channels (Akhshi and Wu, 2017),
troponin C isoforms (Bowman and Lindert, 2018), and the dissociation process of
drugs with mitogen-activated protein kinase complex (You et al., 2019).

3.5.1.3 Metadynamics sampling
Metadynamics sampling uses a set of collective variables (CVs) describing the pro-
cess (Laio, and Parrinello, 2002). The CVs are reaction coordinates accounting for
relevant degrees of freedom in binding and unbinding states. Some of the CVs are

Table 3.4 Software for molecular dynamics and Monte Carlo simulations.dcont’d

S.
no. Program

Functionality/
features Web address References

13. Amber Suite of programs to
carry out molecular
dynamics simulations

http://ambermd.
org

Ferrer et al. (2013)

14. MOIL Suite of programs with
a set of tools

http://clsbweb.
oden.utexas.edu/
moil.html

Ruymgaart et al.
(2011)

15. SQUEEZE Method evolved to cut
the cost of
computational
simulations

http://haddock.
science.uu.nl/
services/
SQUEEZE/

Kastritis et al.
(2014)

16. OpenMM Based on recent
graphics processing
units, open source

http://docs.
openmm.org/7.4.
0/userguide/
index.html

Eastman et al.
(2017)

17. CHARMMing Performs molecular
dynamics simulations
with in-built set of tools

https://www.
charmming.org/
charmming

Miller et al. (2008)

18. Hþþ Calculation of pK
values of ionizable
groups and addition of
Hþþ according to
specific pH

http://biophysics.
cs.vt.edu/

Anandakrishnan
et al. (2012)

19. DynOmics Uses elastic network
model

http://gnm.csb.
pitt.edu/index.
php

Li et al. (2017)
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interatomic angles, dihedrals, and distances. After every dynamic step, a small
Gaussian-shaped potential is applied to the reaction coordinate. The free energy pro-
file is calculated by summing all the Gaussian’s potentials (Sinko et al., 2013; Vals-
son et al., 2016; Yang et al., 2020,Yang et al., 2019). This technique has application
in finding transition states, conformations, prediction of association, and dissocia-
tion and calculation of free energy profiles (Cavalli et al., 2015; De Vivo et al.,
2016).

3.5.1.4 Targeted molecular dynamics
Targeted molecular dynamics (Schlitter et al., 1994; Ma et al., 2000) induces a
conformational change in a target structure at normal temperature by applying a
time-dependent geometrical constraint. It uses a moving distance constraint along
reaction coordinates to find rare transitions. Targeted molecular dynamics are useful
in searching stable intermediates during simulations (Wolf and Stock, 2018; Wolf
et al., 2019). It has been used to study the transition between active and inactive
structures in beta-adrenergic receptors (Xiao et al., 2015).

3.5.1.5 Parallel tempering method
In the parallel tempering method or replica exchange molecular dynamics (REMD)
(Hukushima and Nemoto, 1996; Hansmann, 1997; Sugita and Okamoto, 1999;

FIGURE 3.5

A typical setup of a molecular dynamics simulation system comprising protein, bilipid

layer, and water molecules.
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Garcı́a and Sanbonmatsu, 2002), replicas of the system can be parallel simulated at
different temperatures to sample conformations. Thus high-energy barriers on the
potential energy surface are overcome. REMD is a hybrid method coupling MD sim-
ulations with MC simulations. It is useful in calculating equilibrium properties and
extracting kinetic information Stelzl and Hummer (2017). Parallel tempering has
been used for simulation of human islet amyloid polypeptide (Qi et al., 2018) and
folding of the G b-hairpin (Yu et al., 2016).

MD trajectories are analyzed to obtain free energy and kinetics measures. The
results are compared with experimental data. Various applications of MD simula-
tions in drug discovery have been reported (Leelananda and Lindert, 2016; Michel,
2014; Yu and MacKerell, 2017; De Vivo et al., 2016).

3.5.2 Monte Carlo simulations
MC methods rely on a random sampling technique to explore conformational space.
Identifying drug-binding cavities at the proteineprotein interaction (PPI) interface
is challenging for designing inhibitors that can disrupt the PPIs (Da Silva et al.,
2019). PPI cavities do not exhibit overlap in property with those of proteinedrug
complexes. Thus identifying a hit ligand is difficult. PPIs are dynamic. Therefore
methods based on molecular simulations have been developed. Protein energy land-
scape exploration (PELE) is an excellent method to explore energy landscapes.
PELE is made of structure prediction algorithms combined with MC techniques
(Borrelli et al., 2005). It works in three steps: initial perturbation, side-chain sam-
pling, and minimization. In the perturbation step, the protein is perturbed, and the
ligand is randomly translated or rotated. In side-chain sampling, the structure is
rebuilt using rotamer predictions. MC simulation has been used to identify proteine
protein inhibitors in hemagglutinin found on influenza viruses (Diaz et al., 2020).
MC techniques have been successfully applied in various drug design projects
(Grebner et al., 2017; Kotev et al., 2018; Gilabert et al., 2019; Santiago et al., 2018).

3.6 ADMET profiling
Pharmacokinetics and pharmacodynamics study the effect of drugs on the human
body. Pharmacokinetics deals with the absorption, distribution, metabolism, elimi-
nation, and toxicity of drugs (ADMET). Pharmacodynamics is the study of the
drug’s biochemical and physiological effects and helps to study the mechanism of
action of the drug. In silico ADMET profiling of hits and leads is done in the early
phases of drug discovery to filter out compounds that do not have drug-like proper-
ties or good oral bioavailability or that may be toxic. Thus the computational predic-
tion of the ADMET profile of molecules is one of the essential steps in drug design.

A variety of filters for desired pharmacological features and ADMET profiling
should be used. There are several criteria used for estimating the ADMET profile
of compounds. A rule like the Lipinski rule of five and similar rules enable rapid
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screening of compounds. Another extensively used rule,the “Jorgensen rule-of-
three,” implies that the logS (aqueous solubility) should be greater than �5.7, the
cell permeability factor defined by Caco-2 should be faster than 22 nm/s, and the pri-
mary metabolites should be less than 7. These hold for the majority of oral drugs.
Several online tools are available to efficiently filter compounds against such
criteria, such as Qikprop and FAF2. Pan assay interference compounds (Baell and
Holloway, 2010) and ALARMNMR (Metz et al., 2007) filters are useful in identi-
fying compounds that are chemically reactive and assay interfering. Various statis-
tical and mathematical models and machine learning algorithms such as neural
networks, support vector machines, partial least squares discriminant analysis, and
artificial neural networks have been used to develop prediction models.

Quantitative structureeproperty relationship (QSPR) models such as regression
or classification models have also been developed. These QSPR models use the cor-
relation of molecular descriptors to the receptor activity to predict various ADMET
profiles. Tools like METEOR (Testa et al., 2005), MetabolExpert (Darvas, 1987) and
META (Klopman et al., 1997) use the biotransformation reactions from biochemical
and metabolic pathway databases to predict the probable metabolism of a com-
pound. Software for toxicity prediction includes OncoLogic (Benigni et al.,
2012), CASE (Saiakhov et al., 2013), TOPKAT (Venkatapathy et al., 2004), Hazard-
Expert Pro (Dearden, 2003), ProTox (Drwal et al., 2014), and the open-source Tox-
tree (Mombelli and Deviller, 2010). Inverse screening approaches are used to predict
any adverse effect resulting from off-target binding. Tools include idTarget (Wang
et al., 2012), TarFisDock (Li et al., 2006), INVDOCK (Chen and Ung, 2001), Rever-
seScreen3D (Kinnings et al., 2011), PharmMapper (Liu et al., 2010), SEA (Keiser
et al., 2007), and SwissTargetPrediction (Gfeller et al., 2014).

3.7 Conclusion
SBDD strategies help in the fast and cost-effective design of lead molecules and are
an integral component of drug discovery and development projects. Computational
methods like docking, HTVS, and de novo drug design are highly effective in
screening, designing, and developing lead molecules. Using these rational drug
design methods, the number of compounds to be screened in vitro for biological
activities reduces considerably. Advances in algorithms have made it possible to effi-
ciently screen in silico ligands having predicted activity comparable to experimen-
tally determined biological activity. Experimental methods like X-ray
crystallography usually represent proteins as static structures. Biomolecular simula-
tions are highly useful in studying the dynamic behavior of proteins in native as well
as complex forms. Molecular docking methods like IFD and ensemble-based ap-
proaches consider the target’s flexibility and provide real results. HTVS methods
can do a fast screening of sizable small molecule databases against a target to iden-
tify potential hits that can be developed into lead molecules. The pharmacokinetic
profile of a compound is a major deciding factor in its development as a successful
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drug molecule. In silico determination of the ADMET profile of a compound helps
mostly in filtering out compounds likely to have an adverse effect on animal studies
or preclinical trials.

Despite many advances and successes, CADD has many challenges in enhancing
the efficacy of virtual screening methods and designing multitarget drugs and more
efficient algorithms and tools to mimic the physiological system.
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4.1 Introduction
In the modern-day world, cheminformatics holds the key to the latest technology to
carry out research effectively through computational tools in the areas of synthesis
chemistry and medicinal chemistry. Researchers who have an extensive and
elaborate knowledge of the combination of theoretical concepts of chemistry along
with computational tools are essential for industries today. There are a number of
detailed books available on cheminformatics but this chapter intends to provide a
comprehensive outlook on computational problems in pharmaceutical sciences to
achieve a higher success rate in the laboratory.

Cheminformatics is also known as an interface science as it combines physics,
chemistry, biology, mathematics, biochemistry, statistics, and informatics
(Arulmozhi and Rajesh, 2011; Engel, 2006; Bharati et al., 2009). Cheminformatics
solves chemical and synthetic problems effectively by making use of information
tools available on the web. Hence, we can say that it is recognized as a distinct
discipline in computational molecular sciences. Cheminformatics has now made it
easier to make or innovate newer designs of molecules of desirable pharmaceutical
properties. Furthermore, it also helps in designing reactions and possible synthetic
routes to obtain anticipated products. It helps with analysis and also aids in the
structural elucidation of molecules isolated from various biological and environ-
mental sources or from reaction pathways. Though modern-day research is based
on an interdisciplinary approach, we must view cheminformatics in terms of under-
standing bioinformatics, which is primarily characterized by putting more emphasis
on the processing of computational tools for using databases of biological informa-
tion or sequences available in large amounts. In cheminformatics, we use databases
of structures of chemical origin either in 2D or 3D forms with information on basic
structural and physical properties of the respective molecules.

Cheminformatics has evolved from the basic representation of structures and the
collection of different structures along with effective searching methodologies for
the desired structure from vast databases. So, we may also summarize the basic defi-
nition of cheminformatics as a subject that deals with suitable applications of
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computational tools to molecules of chemical origin that possess a wide range of
applications in other fields of importance for better and healthier living. Those fields
may include biology, environmental chemistry, pharmaceutical chemistry, etc. as
shown in Fig. 4.1. The methods involved in the representation of molecules and chem-
ical reactions are discussed in the next section, which gives an understanding of the
topic in depth. To explore the vast array of molecules of pharmaceutical importance,
these methodologies will have to be adopted by practicing them simultaneously to
gain confidence for the journey ahead. In the present work, a modest attempt has
been made to provide a list of databases that are sufficient to start this quest.

A brief summary of cheminformatics covered in this chapter is given in Fig. 4.2.
Fig. 5.2 shows how basic web cum computational tools help in setting up a link to
understand molecules, reactions, spectra, structure, activities, and applications. It
also gives an outline of the chapter.

It is pertinent to remember that the optimization tools mentioned in Section 4.6
are a part of molecular modeling, wherein computational tools for drawing and visu-
alization of molecules of chemical origin are important to understand the basis of
formation of the wide range of databases utilized for applications of cheminfor-
matics and bioinformatics. Molecular modeling refers to that branch of chemistry
that encompasses all computational methods that aid in drawing, visualizing, calcu-
lating, and interpreting results on chemical molecules. This branch of science
includes not only drug designing in chemical biology but also designing and esti-
mating the potential of novel materials in materials sciences without performing
the experiments in a lab. It not only helps in the aforementioned projects but is
also worthwhile when studying the reaction mechanism. Quantitative structuree
activity relationship (QSAR) forms an interface between the structure and activity
of various molecules of interest. It is generally available through multiple platforms

FIGURE 4.1

Applications of cheminformatics in different disciplines.
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inclusive of molecular modeling software like HyperChem (Froimowitz, 1993),
Materials Studio (Accelrys, 2016), Arguslab (Thompson, 2004), AutoDoc 4.2
(Morris et al., 2009), Spartan’18 (Shao et al., 2006), MOE (Molecular Operating
Environment (MOE), 2019), and many more.

Later, a general overview of the correlation of spectral analysis with structural
aspects of molecules is discussed. It helps in effective structural elucidation and
one can also appreciate how different spectroscopies are complementary. Using
these techniques, confirmation of specific functional groups along with their orien-
tations can be achieved successfully. Nowadays, there is software available (Logic
for Structure Elucidation, LSD software) for elucidation of structure automatically
that is good for beginners to understand how small molecules can be introduced by
relating their structural properties to simple 1D and 2D spectra. It shows that effec-
tive collaboration of spectra such as HSQC, Cosy, and HMBC is effective for under-
standing interactions of nonhydrogen elements/atoms that are important for arriving
at a solution (Nuzillard and Bertrand, 2017).

One will be able to appreciate the successful usage of information technology to
help chemists and even biologists to investigate new-age problems of different types
that keep evolving in newer forms. It not only enables investigation but also assists in
organizing, analyzing, and understanding data available on the web for the develop-
ment of newer drugs, materials, novel compounds, and reaction processes. The
application sections cover examples from implementation of the knowledge of
cheminformatics in modern-day science for better living. Now that the organization
of the chapter has been discussed, it is now time to explore the role of cheminfor-
matics in the science of discovery of newer and innovative drugs in a clearer and
technologically self-sufficient way.

FIGURE 4.2

Summary of the chapter.

HTS, High-throughput screening.
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4.2 Molecules and their reactions: representation
It is imperative to represent a molecular structure in the correct way to develop a
deeper understanding of its properties. Chemical structures are generally displayed
as either 2D forms (formulae) or models of 3D forms. While 2D representations are
based on graphs, 3D forms help in attaining better insights into conformational
structures, which display important steric and structural properties with the clarity
of electronic factors as well. 3D models are adequate to explain the spatial arrange-
ment of bonds and atoms, but the availability of these in cyberspace does not ensure
clarity of the additional properties possessed by them. To achieve the latter, the
properties of interest must be transformed into suitable algorithms/methodological
tools available with molecular modeling, which is described in Section 4.6 in detail.
3D representations or conformations are better and hence computational researchers
show greater interest in the development of programs and databases for these. How-
ever, to reach the final outcome, the major challenge is to arrive at the most stable
geometrically optimized structure, but, simultaneously, conformational flexibility
cannot be ignored. In this section, we place emphasis on the widely used databases
on 3D data information. Though information on representation is covered in later
subsections, it is deemed fit to understand how one can use the discovery of knowl-
edge in the already available large databases on various web portals. Mercury
(Macrae et al., 2020), Chemcraft (https://www.chemcraftprog.com), VMD-Visual
Molecular Dynamics (Humprey et al., 1996), Chemaxon (Marvin, 2014), and Chem-
spider (Swain, 2012) are some of the 2D and 3D visualization tools widely used.

One must begin by understanding the term “data mining,” which refers to the
discovery of arrangements and patterns in a vast number of datasets that involve tech-
niques by using a suitable combination of computational tools, statistical tools, and
databases. It paves the way for research into understanding chemistry in a better way.

4.2.1 Data mining
Data mining refers to a method that is a combination of statistical methods and
computational tools (Fig. 4.3). The statistical methods include principal component
analysis (PCA), principal component regression, multilinear regression analysis, and
partial least squares regression. Other methods involved are factor analysis and cor-
relation analysis. The computational tools are from the branch of machine learning
that incorporates the study of the artificial neural networks like self-organizing,
feedforward, counterpropagation, Bayesian, etc. Machine learning is also based
on K-nearest neighbor analysis, decision learning trees like C5 and ID3, clustering
algorithms, and genetic algorithms. The most comprehensively used databases for
data mining include Cambridge Structural Database (CSD) and Protein Data Bank
(PDB). The former, i.e., CSD, is a source that comprises crystal structures of metal
organic molecules and simple organic molecules. These structures are mainly
based on X-ray diffraction (XRD) or neutron diffraction studies. However,
polypeptides and polysaccharides possessing more than 24 units, alloys, metals,
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and oligonucleotides are totally excluded from CSD. PDB is a database that deals
with the structures of nucleic acids and proteins in 3D form. Here, the data available
are derived from XRD studies or nuclear magnetic resonance (NMR) studies. More
than 5000 structures are released per year. The list of databases available for
chemical data is infinite in today’s technological world. Descriptions of each one
of them are beyond the scope of this chapter and hence they are described in
Table 4.1 (Leach and Gillet, 2007).

These databases and many more based on similar compilations contain an infin-
ite amount of data and information related to proteomics, phylogenetics, metalobo-
mics, genomics, gene expression, nucleotide sequencing, chemical sciences, and
more. The list is beyond the scope of this chapter but for a beginner, Table 4.1
provides enough information to successfully get started. This section discussed
the discovery of information from large databases.

4.2.2 Representation of chemical structures
The efficacy of cheminformatics is directly related to the correct representation of
molecules of chemical origin and their transformations through chemical reactions
(Engel and Gasteiger, 2018). The previous section mentioned the wide range of
databases in which information regarding the representation of chemical structures
and other properties of interest for applications can be easily found. But correct
representation of the chemical structure carries prime importance. Making use of

FIGURE 4.3

Methods and tools in data mining (*for details refer to Table 4.1).
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Table 4.1 List of databases that serve as an effective tool in
cheminformatics.

Database URL Remarks

Cambridge Structural
Database

www.ccdc.cam.ac.
uk/products/csd/

Comprehensive library of chemical
structures of organometallics and
simple organic molecules.

Protein Data Bank http://www.rcsb.org/
pdb/home/home.do

Wide-ranging data of 3D
representations of nucleic acids and
proteins.

ChemIndustry https://www.
chemindustry.com/

Exhaustive directory for chemical and
industrial researchers. It contains
more than 50,000 entities with full
texts.

ChemExper https://www.
chemexper.com/

Multidisciplinary in its approach, it
combines chemical sciences with
telecommunication and
computational science.

PubChem http://pubchem.ncbi.
nlm.nih.gov/

2D structures of chemical
compounds that are available for free
(developed by the National Center for
Biotechnology Information):
PubChem Compounds, PubChem
BioAssay, and PubChem
Substances.

Beilstein database http://info.
crossfiredatabases.
com/

Covers published information from
1771 to the present day.

CAS www.cas.org/ CAS is a part of the American
Chemical Society. It is effective for
obtaining information on research
related to biomedical sciences,
materials, agriculture, chemical
sciences, and many more.

NIOSHTIC-2 http://www2a.cdc.
gov/nioshtic-2/

I A searchable database (in the form
of a bibliography) of health-related
research. Several other databases
related to it are ACS, Science Direct,
Elsevier, NLM, etc.

World of Molecular
BioActivity

http://www.
sunsetmolecular.com/

Aims at providing data related to
clinical pharmacokinetics in addition
to target information of drugs. It is
ideal for computational drug
discovery and relates to descriptors
effectively for quantitative structure
eactivity relationship (QSAR) study.

ChemSpider http://www.
chemspider.com/

Chemical search engine that is
centered around the information of
the structure of the chemical
molecule.
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Table 4.1 List of databases that serve as an effective tool in

cheminformatics.dcont’d

Database URL Remarks

ZINC https://zinc.docking.
org/

Fulfills the need virtual screening by
providing a free database of
thousands of commercially available
compounds. The compounds
available are put in a 3D ready-to-
dock format.

Distributed Structure-
searchable Toxicity

http://www.epa.gov/
ncct/dsstox/index.
html

A good tool for QSAR and
quantitative structureetoxicity
relationship

Registry of Toxic
Effects of Chemical
Substances

rtecsfile@symyx.com Includes a database of a wide range
of prescribed and nonprescribed
drugs of biological, pesticidal, and
chemical sciences.

ChemBank http://chembank.
broadinstitute.org/
welcome.htm

Public database for screening of
small molecules of biological and
medical importance.

Unified Medical
Language System

http://www.nlm.nih.
gov/research/umls/

Library of biomedical compounds.

e-molecules http://www.
emolecules.com/

Focuses on a database of molecules
of chemical origin.

Specs https://www.specs.
net/index.php

Founded in 1987 it provides
databases of chemical compounds
and molecules of importance for drug
discovery in addition to some natural
compounds obtained from nuclear
magnetic resonance studies.

Biological databases https://pdb101.rcsb.
org/browse/
biomolecules

Databases of molecules of biological
origin that include information
obtained from computational study
as well as lab experiments.

PROSITE http://www.expasy.
ch/prosite/

Acts as an interface between
cheminformatics and bioinformatics
by relating the domains of various
protein families.

MOLTABLE Web
Portal

http://moltable.ncl.res.
in/

Deserves a special mention because
it has molecules of chemical origin
with importance in pharmaceutical
sciences.

Chemoinformatics.org http://www.
cheminformatics.org/
menu.shtml

One of the best websites, which is
noncommercial and provides
information on all progams related to
cheminformatics. Database sets for
QSAR, quantitative structure
eproperty relationship, and blood
ebrain barrier penetrations are also
available.

Continued
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ChemDraw or ISISDraw (Science Museum Group. ISIS Draw chemical drawing
software), ACD/Chemsketch (ACD/ChemSketch, 2020), ChemDoodle (Todsen,
2014), and JChemPaint (Krause et al., 2000) is an inherent part of earlier computa-
tional ways of representing chemical molecules. Nowadays, the ways this can be
done are as follows:

1. Linear representation: This is done using Simplified Molecular Input Line
Entry System (SMILES), International Chemical Identifier (InChI), and Single
Line Notation. These are the codes that are used for effective representation of
molecules in code language form.

The most extensively used linear notation is SMILES as it is much easier to
comprehend. The set of rules for writing these strings is limited and comfortable
for all to use. Several publications discuss SMILES in more detail, including Ander-
son et al. (1987), Weininger (1988), Weininger et al. (1989), and Hunter et al. (1987).
The basic syntax rules for SMILES are limited to just five and if these rules are
violated in a SMILES entry, then a warning is generated to the user, who is asked
to reedit or reenter the structure. The codings support all elements of the periodic
table. The extensions of SMILES are also very useful, e.g., SMART and SMIRKS,
which is a line notation for generic reactions. One can read more about SMILES no-
tations elsewhere (James et al., 2002).

Another widely used linear notation is InChI code, which was developed as a
result of the requirement for a machine-readable standard nomenclature. It is devel-
oped by IUPAC (Stein et al., 2003). It is an open and freely available identifier that is
based on a layer of hierarchy. The initial layers comprise information related to
connection tables, and later, layers need to be additionally added that deal with

Table 4.1 List of databases that serve as an effective tool in

cheminformatics.dcont’d

Database URL Remarks

European Molecular
Biology Laboratory

http://www.ebi.ac.uk/
embl/

Nucleotide source that originated in
Europe that also acts as a main
source for providing sequences of
RNA and DNA.

OMIM http://www.ncbi.nlm.
nih.gov/omim/

Database of all genetic diseases.

NCBI http://www.ncbi.nlm.
nih.gov/

Database of genome sequencing and
hence carries importance because it
is related to pharmaceutical sciences.

Medical Literature
Analysis and Retrieval
System Online

www.nlm.nih.gov/
databases/
databases_medline.
html

Database based on bibliography.

MeSH http://www.nlm.nih.
gov/mesh/

Contains indexed articles of journals
and books of biological sciences.
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the complex nature of the structure of isomers and isotopes. These layers are flexible
and can be extended. However, standard notation for InChI is when one notifies a
predefined number for layers and if certain layers need to be added, in which case
it is extended to nonstandard form of code that has additional layers for providing
information related to the complexity of the structure of the chemical. It is unlike
the earlier codes discussed as it refers to a canonical form of line/linear representa-
tion and hence constitutes a unique identifier that follows simple sets of rules. There
is more than one SMILES string possible for a given structure, which is not the case
in the present one. One must not confuse InChI with a registry system as it is a
nomenclature describing the structural aspects of a chemical, and can even be gener-
ated for a chemical system that does not exist.

2. Multidimensional representation: There are a number of chemical table files
available for different file formats. Multidimensional representation refers to a
family of chemical file formats based on text that is able to correctly interpret
molecules and the reactions they are involved in. It may be related to different
types of coordinate system for representations. For multidimensional repre-
sentation, there are several file formats available out of which mdl molfile
extension is widely used. MDL molfile has a format that carries knowledge of
the atoms, their connectivities, bonds between them along with coordinates of a
molecule. Most of the cheminformatics software is compatible with the molfile
format. The latter basically comprises the connection table having information
on atoms, bonds, connections, and types in addition to other complex
information. These days, molfile V2000 and the latest molfile V3000 are also
being used widely. These are the extended connection tables.

Another file format widely used for structure representation is the .sdf file format,
which stands for structure data file. Primarily, it puts emphasis on structural
information. SDF files have a special feature of including data associated with the
molecule while wrapping the molfile in it. It supports multiple line data representa-
tions and uses a high carriage return if there is extension of the text field beyond 200.
It may be noted here that most codes violate the requirement of restriction within
200 character frames and hence this statement is often violated.

3. File formats and visualization of chemical structures: Apart from the afore-
mentioned representations, SYBYL MOL/MOL2 can also be used to represent
pdb structures in terms of Cartesian coordinates and CIF, the crystallographic
file formats using the z-matrix.

4.2.3 Representation of chemical reactions
Apart from chemical structures being included in the core of cheminformatics, struc-
tural transformations also form an inherent part of it. This refers to the chemical
reactions occurring between various molecules. It is more challenging to handle
chemical reactions. On understanding the basic molecules that form part of a
reaction either by being a reactant or a product, it is now appropriate to talk about
information based on discoveries available for reactions of chemical origin.
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The ways of representation for a reaction can be placed according to different stan-
dards like (1) description of reaction centers, (2) coding of electron and bondmatrices,
and (3) description of vectors or fingerprints of molecules (Faulon and Bender, 2010).
Representation of certain types of reaction that undergo similar changes with respect
to atoms and bonds irrespective of the intermediate states involves more complex
approaches than merely just specifying a particular reaction involving the different
reactants and products. In those cases, a set of chemicals involved in the entire
reaction and products forms are used for representation (James et al., 2002).

4.3 Preparation before building libraries for databases in
cheminformatics

4.3.1 Importance of descriptors
In recent times, drug designing and development of suitable and similar ligands for
docking of macromolecular targets has become increasingly demanding especially
because of the pandemic. Before we move on with the structures of files or libraries,
it is pertinent to discuss the descriptors generally used to explain the similarities
or dissimilarities in structures. These descriptors may be calculated from 2D or
3D representations. Some simple descriptors calculated from 2D representation
are physicochemical properties, atomic pairs, fingerprints, kappa-shaped indices,
topological indices, refractivity of the molar substance, BCUT descriptors, electro-
topological state indices, simple counts, or other physicochemical properties. 3D
descriptors always provide better in-depth knowledge about the compounds/struc-
tures under study. These include pharmacophore keys, 3D fragment screens, dipole
moments, electrostatic potential, comparative molecular field analysis, and several
additional descriptors, which are used for predicting absorption, distribution,
metabolism, elimination, and toxicity (ADMET) properties of ligands used as
potential drugs for docking biomolecules such as proteins. The data obtained based
on these descriptors are then verified and manipulated using simple methods such as
scaling or a complicated technique such as PCA that further yields a whole new list
of descriptors (Leach and Gillet, 2007).

For descriptors to be of importance to particular research, they must satisfy
simple requirements such as: they must be able to interpret the structure, they
should be able to correlate the structures with one or more properties, they should
be able to differentiate between the isomers, they should be available for local
application, they should be simple and easy to comprehend by the research society
at large, they should not be deduced on the basis of experimental results or
properties, they should be different from other descriptors and should not bear
any relations with any other descriptors, and they should be based on similar
concepts of structure. Descriptors must change with change in the structure of
the molecule and if they are related to molecular size, they should be dependent
on size to a high degree of correctness.
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Therefore it would be ideal if one believes that molecular descriptors play a
crucial role in pharmaceutical chemistry, wherein these structures are presumed to
be real entities, which are later changed/modified to number representations on
screen, and then mathematically treated for information relating to chemistry
contained in the structure of the molecule. Therefore the molecular descriptors
are described as logical and mathematical deductions that are transformed into
information related to the chemical structures (Todeschini and Consonni, 2009).
These descriptors are based on experiments or theory. Some descriptors based on
the former, i.e., experimental descriptors, are log P, dipole moment, molar refrac-
tivity, and other physicochemical properties, and some descriptors based on the
latter include a range of descriptors such as 0D, 1D, and 2D to 6D. To discuss
each one of these is beyond the scope of this chapter but they are important for
performing further research with molecules. QSARs are also based on these descrip-
tors and these studies are important for the development and designing of newer
compounds and drugs for pharmaceutical industries.

To understand the basis of these important properties, one must understand
what descriptors are. Descriptors represent characteristics of molecules on the basis
of their physicochemical properties. The most common descriptors are based on
shape, size, geometry, interconnectivity of molecules, surface, electrostatic, hybrid,
constitutional, and topological; all these are explicitly related to one another
(Karelson et al., 2000). Constitutional descriptors are those that describe the chem-
ical composition of compounds (http://www.vcclab.org/lab/indexhlp/consdes.html).
Topologicaldescriptorsare those thatarebasedonencodingthechemicalconstitutionon
the surfaceof themolecule that enables it to showpermeabilityand solubility of a partic-
ular substance to understand its efficacy to prove itself as a drug. A descriptor that
describes the extent of polarizability, electronic properties such as ionization energy,
dipole moment, and electron density of a crystal is known as an electrostatic descriptor
(http://www.codessa-ro.com/descriptors/electrostatic/index.htm). 3D descriptors are
based on xyz coordinates that provide the orientation of the molecule in space and
are known as geometrical descriptors. These descriptors are very useful in predicting
biological activities (Balaban, 1997). There are quantum chemical descriptors too that
incorporate in themselves all the characteristics related to geometrical and electronic
parameters of a chemical system (Karelson et al., 1996). Quantum chemical des-
criptors include highest occupied molecular orbitals, lowest unoccupied molecular
orbitals, delocalization of electrons in the system, and electronic density (Enoch,
2010). Apart from these, there are hybrid descriptors too, which are based on the
diverse nature of chemical compounds and hence are helpful in predicting futuristic
models (Stanton, 1999; Ma et al., 2012). In modern-day research, there many classes
of descriptors. One of the most popular ones is the fingerprint descriptor, which is
based on binary bit string for a similarity search in large database systems. There
are several fingerprints known in the literature (http://rdkit.org/docs/api/rdkit.Chem.
MACCSkeys-pysrc.html, Todeschini et al., 1996; Hinselmann et al., 2011; Rogers
and Mathew, 2010; Bender, et al., 2010; Deursen et al., 2010).
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These days, descriptors play a crucial role in the drug-discovery process too. Let
us just explore some of the important ones here, such as the solubility parameter
(Jorgenson and Duffy, 2002), which has great influence on the bioavailability of
the drug. This constitutes a very important parameter of pharmacokinetic descriptors
(Livingstone et al., 2009). It also plays a central role in pharmacy for lipid-based
formulations (Persson et al., 2013). Another common and basic descriptor is log
P, which is the ratio of the partition coefficient of water to the partition coefficient
of octanol (Faller, 2007). Knowledge of these descriptors is important at the initial
stages of the drug-discovery process. Knowledge of these descriptors of the
biological target and the smaller-sized ligand are computed simultaneously to
gain an insight into the side effects of drugs, and it also leads to further information
about the upcoming area of research in medicine known as polypharmacology
(Cortes-Cabrera et al., 2013).

Descriptors not only play a crucial role in the area of drug discovery but also are
important in the field of materials science. In these areas, selection of the right
descriptor has paved the way for the development of improved energetic substances
(Rice and Byrd, 2013). Single adsorption isotherms have also been predicted by
evaluation of important structural and molecular descriptors of both the adsorbate
and the adsorbent (Garcia et al., 2013). The range of descriptors is huge but the
importance of each and every descriptor can be exclusively studied under the topics
of QSAR; however, those explained in this chapter will suffice at the initial level.

4.3.2 Verification and manipulation of data
In the previous subsection, the importance of descriptors was discussed. In this sec-
tion, we will briefly discuss some of the tools that are employed for examining the
characteristics of the structures or the representations under study. This is an impor-
tant step before analysis of the compound. The distribution of values for a particular
molecular descriptor must be evaluated to monitor how one descriptor is correlated
to another. While doing this, researchers might feel the need to manipulate the data
as well. As stated earlier, this can involve the use of methods ranging from simple to
complex, or in other words ranging from scaling methods to PCA methods. Manip-
ulation yields an altogether new set of descriptors with improved and desired
features. Other methods are data spread and distribution of data, correlational
analysis of descriptors, etc. PCA refers to reducing the dimensions, i.e., the number
of variables, that are used to describe a particular molecule, object, or dataset
regarding the number of overlaps in characteristic features of descriptors. This
implies that if the number of correlations found is too many, then application of
PCA is mandatory. PCA can be represented by a simple illustration as shown in
Fig. 4.4.

In this, drug search is as important as the synthesis of newer compounds. Combi-
natorial libraries play an important role in the act of designing a drug.
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4.3.3 Development of computational models for designing a new
drug

The synthesis of drugs on the virtual mode is a vast topic in itself and consists of two
broad categories: ligand-based drug design and structure-based drug design. Most of
the designing protocols involve the traditional pathway that involves designing,
synthesizing, and testing a new drug. Since 2019 drug testing has become very
competitive because of the recent pandemic. The most common characteristic
feature of this type of development using computational tools involves building a
basic model that will enable the observation of desired activities or properties of
the ligand or the drug so that it is docked efficiently.

The development of an efficient virtual model depends on a number of factors.
One of the factors is whether the datasets are small or large in number. While the
smaller ones can be analyzed using simple QSAR techniques, the larger datasets
require high-throughput screening (HTS). QSAR models can be developed using
simple or multiple linear regression analysis. The quality of these analyses then
needs to be assessed, which can be done in a number of ways. The most common
way is by making use of the square of the correlation coefficient or regression
coefficient. This is generally followed by modification of the dataset where some
values are removed from the dataset and a QSAR model is derived using the rest
of the values, which is then applied to predict the results of the final model after
the removal of those values from the dataset. One of the approaches generally
discussed is the leave one out approach where just one value of data is removed
and the process is carried out to cross-validate the squared correlation coefficient;
hence, this method is known as cross-validation. The value of the square of the cor-
relation coefficient thus found is lower than the normal value obtained. This process

FIGURE 4.4

Illustration of principal component analysis.
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when reiterated for best results proves to be the best method for predicting the
efficiency of the QSAR equation developed for building the best model. Another
method that can be employed for validating the predictability of regression function
is the standard error of prediction that involves a mathematical expression
dependence on the number of independent variables. This is further aided by having
information on the number of degrees of freedom that are linked to each parameter.

QSAR in itself is a vast topic, which has now expanded to QSPR, i.e., quantita-
tive structure property relationship, and QSTR, i.e., quantitative structure toxicity
relationship. However, a general overview of QSAR is as follows.

The general protocol followed in QSAR can be summarized in five steps:

1. A set of chemical molecules is selected. These molecules should be capable of
interacting with some macromolecular target and its activity should be known.

2. The descriptor should be calculated highlighting important features efficiently
and easily.

3. Sets should be divided into training set and testing set.
4. A model is built wherein relations between properties and activities are estab-

lished. In this step, machine learning, statistical methods, regression analysis,
and more are employed.

5. The model is now tested on the testing data set.

QSAR is mainly based on a number of factors such as likeliness of drug and lead
compounds and their prediction and calculation based on diversity; similarity in 2D
and 3D representations; search of the subset and substructures; filtering of ligand or
efficient hits on the basis of physicochemical properties, descriptors, pharmaco-
phores, groups based on toxicity, reactivities, etc.; clustering of compounds, scaffold
hopping, and linking of fragments; prediction of ADMET properties; designing of
targeted and focused lead compounds; and development of focused libraries.
Once this process is completed, the drugs that make it to the final stage are tested
and tried. Additional methods that help in the process involve molecular dynamics
simulation of biomolecules or target macromolecules, modeling of structures of
proteins as well as ligands, and de novo designing or homology modeling. The latter
are efficient tools of molecular modeling that form the basis for forming effective
databases for support in the infinite world of cheminformatics.

4.3.4 Similarity techniques
There are several similarity techniques that are employed that may be based on
several classification tools and methodologies. These searches that look for an
effective substructure or 3D pharmacophore include the categorization of a specific
problem or query, which is then input to look for a suitable database for identifica-
tion of compounds that are potential hits. Each of these methods is associated with
certain limitations such as restrictions on the number of active compounds
shortlisted, which are very few in number. Searches may or may not match the query,
and the researcher generally has no control over the number of compounds that will
be obtained in the output.
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This section, hence, introduces the reader to the similarity methods, which
involve searching techniques that are supplementary alternatives to the searching
of substructures and pharmacophores. In this method, a query compound is utilized
to look for a database of potential hit compounds or leads that are most similar to the
query by carrying out a comparison of queries with every shortlisted compound
available in the database. The compounds are then listed in order of descending
levels of similarity to the query in the database. This method has several advantages
in comparison to other methods of searches such as eliminating the requirement for
defining a specific substructure or pharmacophore because even one active molecule
is sufficient to begin searching for other compounds to be listed in the database. The
level of similarity can also be known and hence it is easier to form a list of those
compounds that are more active than the others and which qualify to act as potential
drugs. It is sometimes done or utilized along with a host of other methodologies such
as virtual screening, which is discussed in the next section. The only limitation is
that once the level of similarity between two molecules is known, it is difficult to
give it a quantified justification. The two elementary steps are calculation of a set
of descriptors for comparison of chemical structures and gaining knowledge about
quantification of the level of similarity based on the descriptors calculated. The
similarity searches commonly carried out are based on fingerprint knowledge,
coefficients of similarity, distance coefficients, similarity searches involving sub-
graphs, reduced graphs, etc. Better pictures are provided by 3D similarity searches
such as alignment-independent methods, field-based methods, gnomonic projection
methods, and alignments looking for optimal similarities in orientations or confor-
mations. These similarity searches are then compared and evaluated using simulated
property prediction, enrichment factors, and hit rates. These methods have improved
and evolved drastically in the last three decades, and today, data fusion is carried out,
which uses the consensus scoring approach. The approach mentioned is generally
used for the docking of ligands to proteins. This technique will now be discussed
and explored in the following subsection, which is more concerned with analysis
on the basis of the diverse nature of chemical molecules.

4.3.5 Selection of compounds based on diversity analysis
If we expect compounds with similarities in structure to show similar activities, then
we look for maximum overlap in the activity space by selecting compounds with
diversity in their structures. Such a library has more chances of containing molecules
with a range of activities and the number of useless or waste compounds would also be
less in that case. One needs such diverse combinatorial libraries for carrying out
screening of a wide range of macromolecular targets such as proteins or when hardly
anything is known about the active site of the target of interest in a particular research.

It has already been proved that when diversity in the number of compounds
increases, then in a particular library the number of hits in assays of biology
also increases. But just by increasing the number of different type of molecules,
the condition of diversity will not be fulfilled; it is also important to take their
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properties into account. Nowadays, these properties with advancement of molecular
modeling can be easily studied and compared to experiments too if the data for the
latter are available. The need of the hour is not only to achieve diversity but also to
remain focused on the active compound that shows the highest potential to act as a
drug. A collection of active compounds from a successful pharmaceutical research
department may show about one million chemical structures at the research level,
and these figures vary from 1020 to 1060 (Valler and Green, 2000). Diversity analysis
offers a technique for exploring the most suitable chemical region so that identifica-
tion of suitable subsets of chemical molecules for becoming drugs can be done for
finally synthesizing, purchasing, and testing the lead compounds.

There are a number of methods for the selection of diverse sets and most of them
incorporate the use of molecular descriptors to specify a chemical region. There are
many approaches for the selection of diverse sets of chemical compounds but the
most commonly used are cell-based methods, dissimilarity-based methods, cluster
analysis, and well-known optimization techniques. The first three methods
mentioned include a set of protocols of a basic algorithm that comprises generation
of descriptors followed by calculation of similarity, which is succeeded by use of a
clustering algorithm with the final step of the selection of the principal subset that is
formed by selection of one or more chemical moieties from each available cluster. In
dissimilarity-based methods, emphasis is placed on calculations of dissimilarities
instead of similarities and a final representative subset is created. Cell-based
methods are also known as partitioning methods that function with a predesignated
lower-dimensional chemical region of space (Mason et al., 1994). The last discussed
method is the optimization technique wherein the d-optimal design was one of the
initial techniques used (Martin et al., 1995). Most of these techniques in the
present-day world revolve around simulation techniques such as Monte Carlo and
molecular dynamics with simulated annealing (Hassan et al., 1996; Agrafiotis,
1997). While each of these methods can be discussed extensively, they are beyond
the scope of this chapter.

To summarize the selection of diverse compounds to form a representative set,
the function must possess the following characteristics: if any useless molecule is
added, which has properties similar to an existing molecule, then the diversity
should not change. The addition of useful or nonredundant chemical molecules
should result in a higher level of diversity. The function should be such that it is
in favor of filling space to fill up voids in larger vacant spaces compared to already
highly filled regions. For a finite descriptor space, a finite value for diversity function
should be obtained when infinite chemical molecular structures are filled. The diver-
sity should escalate when one molecule moves further away from others present in
the set but must approach a finite and constant value. This approach matches the
protocol followed by Gaussian functions too (Waldman et al., 2000). It is indeed
a Herculean task to decide which is the best method suited for a selection of diverse
subsets of chemical moieties for the development of a suitable drug in pharmaceu-
tical sciences. Therefore the choice of descriptors, preplanning for choices of the
subsets chosen, and finally computational demand must be taken into consideration.
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4.4 High-throughput screening and virtual screening
After gaining knowledge of the optimized properties of molecules of importance in
the pharmaceutical industry, it is important to screen a huge amount of data of
compounds very effectively. HTS systems make it possible to screen thousands of
compounds in a small number of days (Hertzberg and Pope, 2000). These runs
generate large volumes of huge datasets for efficient analysis. It helps in measuring
activities of each sample at a predesignated concentration. This information is then
analyzed for identification of a subset of leads that will be processed for a later stage
where an extensive protocol is followed for measurement of inhibition of the target
protein or biomolecule. The most common method engages the formation of a
doseeresponse curve where activities at varied concentrations are used for the
determination of IC50 values (concentration of the drug needed to decrease the bind-
ing interactions of a small molecule or ligand or, in other words, the rate of change of
concentration of a ligand with time by 50%). First, the predissolved liquid samples
are analyzed and assays are performed using the samples. Finally, the dosee
response curve is used for confirmation with the help of solid samples for which
the purity can also be verified. HTS analysis yields innovative methodologies for
designing newer compounds for screening in successive iterations that are carried
out in the drug-discovery process. As stated earlier, the most potential compounds
are selected for the next stage where determination of the number of selected
molecules is done using throughput of the following assay.

Bioinformatics and chemoinformatics are crucial for the success of virtual
screening of compound libraries, which is an alternative and complementary
approach to HTS in the lead discovery process (Tropsha, 2008). A combination of
drug-derived building blocks and a restricted set of reaction schemes are key for
the automatic development of novel, synthetically feasible structures that can be
docked into the active site of a drug target for lead identification using computers,
which is the essence of virtual screening (Perola et al., 2000). The virtual screening
of combinatorial libraries is used to rationally select compounds for biological
in vitro testing from databases of hundreds of thousands of compounds. In addition
to descriptors related to structural features such as fingerprints and pharmacophores,
the application of relatively simple structural descriptors traditionally used in
quantitative structureeactivity studies offers speed and efficiency for rapidly
measuring the molecular diversity of such collections capable of screening large
datasets of organic compounds for potential ligands. Certain filters described in
this section are used for computationally prioritizing a suitable candidate from
molecular libraries for synthesis and screening of potential compound. In this
regard, statistical methods are powerful because they provide a simple way to
estimate the properties of the overall system.

Screening methods alleviate the drug development protocols by fastening the
search for a true ligand that can efficiently dock the protein structure. HTS, dis-
cussed earlier, is a combination of several of the latest technological tools such as
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controlling software, optical readers, robotics, and liquid handlers. The gist of the
method is that small sets of compounds are tested against the target molecule or a
bioassay. This is what we call screening in batches. Those compounds are shortlisted
here as “hits,” which bind to the target efficiently and are declared to be active. If
shortlisted hits are agreeable to the research world of pharmaceutical and medical
sciences, then they are tested for toxicity and if found nontoxic, they are developed
further to act as potential leads or drugs against a particular target.

Another screening tool that complements the aforementioned process is known
as virtual screening, which aids in choosing the right compounds for formation of a
suitable subset for screening in HTS. It uses tools of computational chemistry
depending on the information available regarding the target and the ligand mole-
cules. A structure-based approach is employed when there is knowledge of the
macromolecular target and then the computational tools involve molecular docking
followed by the obtaining of subsequent scores of each of the ligand molecules
bound to the target biomolecule (DiMasi et al., 2003). When there is knowledge
of the activity of the ligand molecule or the smaller drug molecule, then in that
case one prefers the ligand-based approach. Structure similarity tools may be used
in case of the presence of fewer active compounds. On the other hand, if a lot of
active compounds needed to dock the bioassay target are known, then discriminant
analysis tools are used. This is done by selecting many ligands, whose activities are
known for a specific target molecule, followed by developing appropriate models
that predict and discriminate whether the ligand is active or inactive (Leach and
Gillet, 2003). The main aim is to finally utilize these combination models in
unscreened compounds to select active compounds that are then taken a step further
in the research lab.

The main limitation of using computational tools and machine learning tools for
such analyses is that they create an imbalance in the final output, in the sense that
only one in 1000 inactive compounds proves to be active (Bradley, 2008). The tools
that presume a balance are not efficient for predicting models for minority class
ratio. Therefore one must keep in mind that the computational tools chosen must
cope with this imbalance. This has paved the way for a cost-sensitive classifier.
So, imbalanced pharmaceutical data are first subjected to virtual screening with
two types of approaches: one with the use of classifiers without misclassification
costs (Ehrman et al., 2007) and the other with the use of small datasets to reduce
imbalance (Eitrich et al., 2007). A recent PubChem database was made available
that made use of naive Bayes classifiers (Chan and Wild, 2009). All such databases
and more are discussed in several research publications by putting more emphasis on
drug-discovery processes, cost-effective classifiers, and bioassay databases available
on cyberspace platforms. The present-day screening tools are primarily concerned
with biological activities and other important descriptors of ligand molecules such
as ADMET so that the drug-discovery process is faster, more efficient, and the
best supplementary tool to serve humankind.
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4.5 Combinatorial libraries
Diversity in molecular structure has proved to be a great tool in designing combina-
torial libraries. These libraries are very useful for the identification of lead structures
and they provide excellent information on the structure that is utilized for optimiza-
tion of compounds via a pathway through specifically designed libraries with no bias
for structure for a particular macromolecular or biological target. When nothing is
known about the ligand or the biomolecular target, then extensive searching
becomes mandatory. Hence, a library’s diversity plays a crucial role because its
size should be expanded with every new research. The search must always be exten-
sive. The aim is to maximize the diversity of the library to put emphasis on specific
compounds with, say, specific physicochemical properties or electronic or optical
properties depending on the requirement of the drug. If the hit of the ligand gives
us a promising compound, then optimization libraries could be utilized to bring
about modifications in structure, stability, solubility, potency, etc. for yielding an
improved drug. It all depends on the comparison of calculations of similarities
and dissimilarities between the competing candidates with a potential to prove
them as drugs. Some compounds also have the ability to do calculations for other
additional binding properties and metabolic properties or toxicity, which proves to
be beneficial. Additional data always serve as a tool for incorporation of intuitive
compounds by experienced researchers in pharmaceutical and medical sciences.

Usually, a general multidimensional space, also known as a combinatorial build-
ing block, is created for each molecule, which is represented by a specific point.
Here, similarity is reflected by proximity. Then, subsets are selected from a candi-
date’s (ligand’s) larger set that is used for filling the property space with as much
efficiency as possible. This is done with the help of mathematical sampling methods.
The ligands or candidates can also be differentiated on the basis of their docking
abilities (docking into a 3D receptor). The additional categories into which these
candidates can be put depend on the need of researchers. To choose selected substit-
uents from different categories, stratified sampling is used. This type of calculation,
which is diverse in nature, can be combined with information available in databases
virtually to develop combinatorial libraries as per the need of the research world.
There are a number of combinatorial library designs from which classification based
on degrees of bias is quite popular. The first comprises design based on pure
diversity, the second is based on bias of physicochemical properties of drugs that
are orally available for use, the third is a library with efficient docking ligands
that can be docked into the active site of the macromolecule, and the fourth is an
optimization library of lead compounds designed especially to improve the molec-
ular weight of the initial hit by decreasing it, thereby increasing potency.

Therefore it would not be wrong if it were stated that combinatorial library
design is an important part of research where the aim is to develop or discover novel
small drug molecules or ligands for a macromolecule or a target protein. De novo
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design technology also carries significance for library selection and enumeration
(Todorov et al., 2007). There are several examples cited in various research articles
on the use of de novo design technology.

For more than a century, a combinatorial library has offered one of the best-suited
methods to achieve great molecular diversity for the development of newer drugs. An
ideal case for which these have been used is that of peptoids, which can be prepared
easily with the help of a wide range of readily available primary amines. Screening
methods with advancement have led to inexpensive and faster ways of developing
specific macromolecular binding ligands from a plethora of available compounds.
An example of a combinatorial library is SmiLab (combinatorial libraries using
SMILES code) developed by Schuller, which is based on Java script and offers the
construction of large combinatorial libraries. Combinatorial libraries can be created
using various tools, e.g., ChemDraw (Science Museum Group. ISIS Draw chemical
drawing software), ChemFinder (PerkinElmer Informatics), ChemACX (PerkinElmer
Informatics), Double Dutch (Roehner et al., 2016), and many more.

4.6 Additional computational tools in cheminformatics:
molecular modeling

The basis of all theoretical study comes from the knowledge of the tools of molec-
ular modeling. This helps not only in the study of those compounds that cannot be
tested experimentally but provides additional data on the experimental observations,
if available. It solves the chemical problems and provides energy for the system
along with details of structural, optical, and other physicochemical properties. Input-
ting the correct basis functions forms the basic framework of calculations in molec-
ular modeling. To carry out molecular calculations successfully it is very important
that the choice of basis sets is proper. Molecular modeling incorporates the number
of methods. These include molecular mechanics and semiempirical, ab initio, and
dynamics simulations (Monte Carlo simulations, molecular dynamics) (Fig. 4.5).

An effective overlap between molecular modeling and cheminformatics is occu-
pied by the requirement to design and develop new chemical molecules that may
have applicability in the areas of the pharmaceutical industry, medical sciences,
environmental applications, etc. Most of the tools of molecular modeling belong
to one of several optimization methods. The computational methodologies
employed in molecular modeling bring together a plethora of tools and techniques
to develop an altogether new approach. This new approach aids in forming many
databases that constitute the study of cheminformatics effectively. Theory and
experiments both contribute effectively to the formation of databases. If the data-
bases are perfectly in order, they supplement suitable information to build a model
pharmacophore, which gives important keynote features of a whole range of active
molecules. In other cases, a 3D structure may be available in sources by virtue of
XRD studies, comparative modeling, or NMR studies.
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Active pharmacophore searching can be carried out in which a wide range of
molecules is covered with the help of screening, as discussed earlier. Nowadays,
these search methodologies come in a very handy form from the dropdown menu
of the toolbars of several types of molecular modeling software. Once this model
(pharmacophore) is developed, it gives direction to find newer analogs of active
molecules that are capable of becoming efficient drugs. If the molecules are not
completely rigid, then their conformational properties must also be taken into
consideration. Making use of the concept of ensemble distance geometry, molecular
dynamics, clique detection methods, or maximum similarity or likelihood methods
can aid in taking conformational properties into account while building up newer
molecules of interest. There are many tools that have been under development since
the 1990s that make use of both energy minimization and an approach based on
knowledge gained for the molecule: CORINA (Gasteiger et al., 1990) and
CONCORD (Rusinko et al., 1988) are effective generators of structures and are
used for the efficient prediction of structures.

The tools of molecular modeling that are used in combination with other simu-
lation techniques to build up the subject of cheminformatics efficiently are discussed
in the proceeding subsections to develop a deeper understanding of the world of
optimization.

FIGURE 4.5

Methods incorporated in molecular modeling.
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4.6.1 Molecular mechanics methods
The molecular mechanics method is used in both theoretical and computational
works but also forms an important part of experimental studies, which include
many X-ray and NMR-derived structures of proteins, nucleic acids, and their
complexes, with other molecules deposited in the PDB (Berman et al., 2003) and
Nucleic Acid Data Bank (Berman et al., 1992) that are the results of molecular
mechanics refinements. Hence, this is a powerful tool with important applicability
in drug discovery, as it is able to handle very large systems such as macromolecular
targets, proteins, other biomolecules, etc. Use of the approach based on a forcefield
tends to ignore the electronic calculations that are very time consuming for macro-
chemical moieties, and calculates the energy of the systems by taking them as a
function of the position of their respective nucleus. In some cases, the forcefield
concept has proved to be successful for providing accurate information on even
the topmost calculations involving quantum mechanics. The only limitation of the
method is that it does not give any information on the properties of the electronic
nature of the molecule. All the calculations done in molecular mechanics are based
on the presumption that atoms act as a ball and bonds act as a spring, and it is this
behavior of ball and spring that is finally assessed.

Several valid assumptions set up the working of the molecular mechanics method
involved in dynamic calculations. One such assumption is the famous Borne
Oppenheimer approximation. This method is very simple in its approach for inter-
actions occurring within the chemical moiety. The interactions range from simple
stretching and bending of bonds to various nonbonded interactions such as the
van der Waals interaction and Coulombic interactions. The attribution of transfer-
ability and correct parametrization of a forcefield mean that they yield nearly
accurate results and take the research related to macromolecules a step further.

4.6.2 Semiempirical methods
These methods are a combination of partial theory, partial experimental verifica-
tions, and results obtained from the successful research carried out for the project
under study. An easier and simplified version of HartreeeFock methods of quantum
mechanics semiempirical methods paves the way for performing calculations with
great time efficiency and fairly accurate range of data because of quantum
mechanics as well as empirical data, i.e., data derived from experiments. The
methods would obviously be more time consuming in comparison to the molecular
mechanics method but the time spent is worthwhile because the results obtained in
many cases are comparable to the quantum mechanical data within the range of
permissible limits of computational calculations.

The incorporation of values obtained from various experiments has made these
approximate semiempirical methods equal to quantum mechanical methods such as
ab initio. They are sometimes able to calculate certain properties in a more efficient
way in comparison to ab initio methods. Several highly effective semiempirical
methods were developed by Pople and Dewar such as NDDO, intermediate neglect
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of differential overlap (INDO), and complete neglect of differential overlap (CNDO).
The basic framework in this case is mainly based on approximation in the molecular
orbital techniques that are again based on the popular RoothaaneHall equations
framework. The theoretical calculations are then combined with the experimental
data and result in values that match the level of quantum mechanical calculations
while saving a lot of time considering all electronic parameters. Some of the quantum
mechanical (HartreeeFock self-consistent field (SCF)) integrals are ignored during
calculations by explicitly taking valence electrons of the system into account for
calculations. The inner core electrons are presumed to be merged with the nucleus.
But by considering all valence electrons, semiempirical methods turn out to be better
than the Hückel molecular orbital approaches that take only pi electrons into consid-
eration for calculating energies of multielectronic systems.

This technique invariable makes use of those orbitals that are orthogonal in
nature such that they simplify the equations further for calculations and also make
use of basis sets that comprise Slater-type orbitals such as s-, p-, and d-orbitals.
Overlap and identity matrix are equated in this technique. Therefore all diagonal
elements in the overlap matrix are one and off diagonal elements are simply equal
to zero. Based on the type of approximation employed in the overlap between
orbitals, semiempirical methods include ZDO, NDDO, CNDO, INDO, MINDO,
MINDO/3, SAM1, PM3, AM1, and EHT. Each of these methods is discussed exten-
sively in several books that deal with the study of molecular modeling (Leach, 2009;
Cramers, 2013; Lewar, 2003; Hinchliffe, 2003).

4.6.3 Ab initio methods
The most expensive of all methods is ab initio because it is based entirely on the
principles of quantum mechanics and validated approximations for calculations of
energy and other structural, optical, and physicochemical properties of relatively
smaller molecules that may act as a ligand or a drug. This method was highly
time consuming until almost a decade ago, and with the advent of drastic improve-
ments in efficiencies of hardware and software that are easy to use, the calculations
that employ ab initio methodology seem easier and hence it has wider usage in the
modern-day world. These calculations are also based on the HartreeeFock SCF
methodology that evaluates integrals correctly after manipulating them. These
calculations are appropriate for performing calculations of the energy of the ground
state of smaller/moderate-sized organic systems. The RoothaaneHall equations are
also employed with HartreeeFock theory, which can be either spin restricted or spin
unrestricted (Pople and Nesbet, 1954). These calculations can be done on closed
shell systems (with no unpaired electrons) or open shell systems (with at least one
unpaired electron). In the former, electron distribution is assumed to be zero
throughout the system due to the pairing of all electrons, whereas in the latter, extra
electron spin expressed in terms of spin density results in absorbing electronic
density into calculations. Configuration interaction, electron correlation, and
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perturbation theories are some of the approaches used in solving the energy of a
chemical system using ab initio methodology.

When the nuclei are free to move for the calculation of energy, the process
becomes tedious and hence highly time consuming. To make the process easier,
different stages of theoretical calculations need to be employed at different levels
of calculation. Tricks and tactics are to be employed judiciously to reduce the burden
of calculations. One such technique involves carrying out optimization using ab
initio lower basis set methodology and then carrying out further calculations of prop-
erties by giving a single point run at a higher basis set. Remember, here the choice of
basis set for any ab initio calculation will matter a great deal as this is what decides
the absolute accuracy of the results obtained. The SCF method used in molecular
modeling in itself is direct or converged. As the value may be underestimated in
earlier cases, in the case of ab initio, there are chances of the results being overesti-
mated because of basis set superposition error. This error factor is attributed to the
fall in energy of the overall system when two or more atoms come closer to each
other due to favorable interactions between them, and the basis sets give more infor-
mation about the electronic atmosphere around the molecule.

4.6.4 Density functional theory
This is one of the most extensively used tools for optimization, which is not only
time efficient but has also proved its mettle in giving accurate results that are com-
parable to real-world data. It is based on the calculations of the electronic structure
of chemical systems (Parr, 1983; Wimmer, 1997). It considers density of the electron
as a functional for calculations of energy and other properties and hence is less time
consuming than the elaborate ab initio method. It also takes into account single
electron functions. Density functional theory (DFT) unlike the last method discussed
does not calculate the entire “n” electron wave function but makes an attempt to
evaluate the electronic energy of the entire system along with the density distribution
of electrons. DFT is based on the relation between the former and the latter, i.e., elec-
tronic energy evaluated for the entire system and overall density distribution of
electrons in the system. It became popular only after research proved that energy
of the ground state and other important properties of a system could be defined
on the basis of electron density completely (Hohenberg and Kohn, 1964). Hence,
mathematically, energy is equated to the functional of electronic density dependent
on the distance of the electron from the nucleus. It makes use of a number of math-
ematical and quantum mechanical concepts wherein contributions from interactions
between different electrons, variational approach, Lagrangian multiplier, etc., are
used. An equation is developed in DFT that is equivalent to the quantum mechanical
Schrodinger wave equation. The popularity of this optimization methodology
reached its zenith with the publishing of another pioneering paper by Kohn and
Sham (Kohn and Sham, 1965). The equations developed by these authors for the
calculation of energies and other properties gave proper definition to correlation
and exchange functionals, where not only did the correlation and exchange
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contributions matter but also contributions from the difference between the real
kinetic energy of the chemical moiety and the entire energy of multielectronic
systems containing “n” electrons are taken into account. To solve the equations
developed in their paper, the approach used is based on the self-consistent method.
A trial value is initially fed into the KohneSham equations, which yields orbitals
that give a better picture of the value of density. This is then followed by successive
iterations until the calculations converge. DFT has now been extended to local spin
density DFTwhere not only electron density but also spin density are considered to
be fundamental quantities, with spin density being calculated as the difference
between the up and down spin densities of electrons. One of the most important
reasons for the extensive use of this method is the fact that even if a simple approx-
imation is applied to the exchange correlation functional, the results obtained are
favorable. Here, one must not forget that it owes its accuracy to quantum Monte
Carlo methods (Ceperley and Alder, 1980) as these approaches are employed for
calculation of all densities of interest in a particular research. The method has
now been extended from local density approximations to gradient generalized
approximations or gradient corrected functionals, and even hybrid HartreeeFock
methods of DFT.

DFT has paved the way for faster analogs to be more competitive with sometimes
even superior values in comparison to ab initio techniques. The choice of basis sets is
as important here as it was in the earlier case of full quantum mechanical calcula-
tions (Baboul et al., 1999). The gradients of energy calculated by also taking nuclear
coordinates into account are one of the most important achievements of DFT in
practical use.

4.6.5 Molecular dynamics
This is a simulation tool used for creating a real-time environment on screen for
chemical systems. Integration of the equation of Newton’s laws of motion is carried
out to produce successive configurations of the chemical system under study. It
yields a trajectory that shows how velocities and positions vary with time for
particles in any chemical system. There are different cases that are often considered
to apply Newton’s laws of motion. One case is where the particles undergoing
collision are under no force impact. Another case is where a constant force is
believed to be acting on colliding particles. And a third case is where the force
acts on the particle depending on its location relative to the location of the other
particles in the system. Dynamics, when done with continuous potentials, includes
finite difference techniques, predictorecorrector integrator models, multiple time
step dynamics, etc. When it is finally set and made to run, constraint dynamics is
also applied and temperature is calculated.

The models used in molecular dynamics range from simple to complex. Calcu-
lations done for properties that evolve with time include correlation functions,
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various transport properties that refer to the flow of the substance from one point in
space to another. Also, constant temperature and constant pressure dynamics may
also be carried out while simultaneously incorporating the effect of solvents on these
dynamics calculations. Due to varied aspects involved in these calculations, molec-
ular dynamics tools not only help to obtain a better picture of energy of the chemical
systems when put in a real environment, but also aid in carrying out conformational
analysis. For smaller timescale calculations, atomistic simulations are done, and for
systems demanding evaluations to be done for longer timespans, rather simpler
models may be employed. For those that occur in intermediate timescales, meso-
scale dynamics modeling may be employed in the form of dissipative particle
dynamics. The latter refers to the super-quick movement of atoms, which is inte-
grated and the left out basic units of beads interact with others through a suitable
potential application (Koelman and Hoogerbrugge, 1993). The bead here refers to
the smallest unit of the fluid. Force acting on each bead is a result of all dissipative
forces and interactions of this basic unit with the rest in the system. Molecular
dynamics simulations based on periodic box models overcome the barriers laid
down by the primitive potentials, and their extension into Langevin and Brownian
dynamics has proved significant in carrying out calculations of energy and other
physicochemical properties easily by understanding of simple equations that are
extensions of the equations of Newton’s laws of motion.

4.6.6 Monte Carlo simulations
The birth of Monte Carlo simulations was marked by a serious note when it was
established as a computer simulations tool in the form of a technique purely based
on a statistical mechanical approach over the entire configuration space. Initially, it
was done using the method of importance sampling and is now extended to metrop-
olis Monte Carlo simulations involving random sampling where a correction is
offered to the earlier model where the majority of the phase space is concerned
with highly energetic configurations that are nonphysical. The Boltzmann factor
has a substantial value only for a very small region of space considered. The box
in this case is also considered to be periodic. These simulations have been success-
fully employed for rigid molecules as well as flexible molecules.

4.6.6.1 Importance of molecular dynamics simulations
Molecular dynamics simulations are used for the computation of balanced states at
equilibrium and the transportation characteristics of multiple-body chemical
systems. It is based on classical mechanical laws and is applicable to a wide range
of chemical substances. It represents chemical systems in real-time environments
wherein the observables are calculated over a chosen time range and interval. The
longer the span is averaged out, the more accurate the measurements will be. To
calculate properties of interest in these simulations, one must be able to express
these properties as a function of its exact position in 3D space and momenta of
the system.
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4.6.6.2 Contrast between molecular dynamics simulations and Monte
Carlo simulations

Monte Carlo simulations are based on random sampling techniques and also provide
a real-time environment for molecular problems. The modeling of these is based on
the principles of molecular dynamics simulations with the only difference being its
approach, which depends on statistical mechanics at equilibrium that involves cal-
culations using Boltzmann distribution. It is also popularly known as the metropolis
Monte Carlo simulation technique. Another advantage of using Monte Carlo over
molecular dynamics simulations is that the former can be used to model chemical
systems that are to be defined on the basis of energy prescriptions. These simulations
have further paved the way for developments of innovative methods for optimization
such as simulated annealing.

Several software packages have been exclusively focused on use of the Monte
Carlo metropolis algorithm, some of which are: Faunus (https://mlund.github.io/
faunus/), ProtoMS (http://www.essexgroup.soton.ac.uk/ProtoMS/), Sire (https://
siremol.org/), MCPro (Jorgenson and Tirado-Rives, 2005; Jorgenson, 1998),
CP2K (https://www.cp2k.org/howto:gemc), and BOSS (Jorgenson and Tirado-
Rives, 2005; Jorgenson, 1998).

4.6.7 Molecular docking
This is an important tool in molecular modeling, which helps in predicting the suc-
cessful interaction of a ligand molecule with a biomolecular target. It also helps in
predicting the correct orientation of the docking molecule with respect to the target
so that the two can result in the formation of a stable complex. Macromolecules or
biological targets include a wide range of chemical systems ranging from nucleic
acids, proteins, carbohydrates, lipids, and peptides to supramolecules of the chem-
ical world. This is the most important tool of molecular modeling, which aids in
drug designing and hence marks its importance in the fields of pharmaceutical
and medicinal sciences. The set of ligands shortlisted for docking through screening
methodologies results in formation of prodigious databases for use by those who are
into deep cheminformatics. Binding affinity has a significant role in the characteriza-
tion of pairs of chemical and biological systems to expound basic processes involved
in the field of biochemistry. It works on a principle analogous to the lock and key
mechanism where the macromolecule is the lock and the drug in the form of a ligand
molecule is the key. During interactions between the two, a best fit orientation results
after appropriate conformational adjustments, also known as induced fit.

This technique is principally based on simulations of computational tools for the
recognition of the correct molecules to achieve minimized conformation for the
combination system of macromolecule and ligand in such a way that results in
the minimization of the free energy of the entire system under research. Docking
approaches also vary. One utilizes a match-making method wherein the ligand
and its protein are considered as complementary surfaces to each other and another
emphasizes simulation of the real docking method. The latter incorporates
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calculation of the ligandeprotein duo pairwise. But like all other methods, the
advantages of these docking tools are accompanied by a few limitations as well.
While the first approach is amenable to approaches based on featured pharmaco-
phores as they utilize molecular descriptors of ligands to judge minimal binding
to the target, the second focuses on the flexibility of the ligand, which makes it
more real but highly time consuming because of the coverage of larger grid spaces.
All these and more advancements have made docking a realistic tool for the forma-
tion of suitable databases for effective use in cheminformatics.

4.7 Conclusions
The chapter began with teaching methods suited for representations of structures and
reactions in both 2D and 3D formats, which laid down the foundation stone of the
basic purpose of this work. If representations are made properly, then poststorage
search and recovery becomes easy. Identification of molecules with similar proper-
ties is done using database searching tools. Molecular descriptors barring a few are
purely computational with values that can be predicted for new molecules that have
yet to be discovered. There are several mathematical models that are also used for
deriving QSAR or QSPR models effectively such as multiple linear regression or
the partial least squares method. A complementary tool for pharmacophore search-
ing or substructure searching is the similarity method. There were four major
approaches discussed for selection tools for diverse subsets of chemical compounds,
which were optimization tools, cell-based method, dissimilarity-based method, and
cluster-based method. One must keep in mind that the descriptors chosen should
have relevance to biological activity for the compound to be suitable for pharmaceu-
tical application. The growing number of large-sized databases from HTS evaluates
and tests the central ideology of similarity searches too. The number of chemical
systems that can be calculated by making use of virtual screening keeps increasing
with the development of new programs and advanced hardware. Accuracy and
reliability are the keynote issues for making sure that the scores of molecular dock-
ing and models built for the prediction of ADMET properties are successful. Now
with the rapidly increasing pace of experimental research with modernized real
tools, computation tools for designing libraries have also been matched. Maintaining
a balance between different features for selecting reagents for real lab synthesis is
mandatory but one must not lose sight of the factors for “diverse” molecules and
“focus” for the right hit.

The work presented in this chapter was by no means complete in this ever-
diverging research world of converged analysis. The overview provided in the
chapter placed emphasis on the important tools of cheminformatics that proved to
be well organized for pharmaceutical data analysis and applications. Each of the
tools described in the chapter has been extensively discussed in many research
publications but this work gave a complete overview of the main tools and tech-
niques that were able to aid in the study of many important applications such as
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drug-discovery processes and other biochemical applications. The link between
molecular modeling with cheminformatics is of great significance and cannot be
ignored. Hence, the various optimization tools of molecular modeling act as “add-
ons” to the main aim of discovering a potential drug or an active lead hit compound.
Ranging from representations to searching databases, descriptors to QSAR analysis,
similarity searching to deriving pharmacophores, and shortlisting datasets to form-
ing combinatorial libraries, cheminformatics makes full use of the latest advance-
ments of technologies available in the vast world of cyberspace. One must always
be aware of the latest tools and techniques of cheminformatics that have emerged
in recent years to make sure that the knowledge of cheminformatics when made
to run with its analog in biology, i.e., bioinformatics, serves as a guiding principle
for the development of newer molecules for widespread use as an application of
pharmaceutical sciences and society at large.
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5.1 Introduction
Most proteins interact directly with other protein(s) to carry out their functions, both
inside and outside the cells. Such proteineprotein interactions (PPIs) occur during
various biological processes like metabolic pathways, antibody activity, cell-to-
cell interactions, and cell developmental process control (Braun and Gingras,
2012). Experimental methods like the yeast two-hybrid system and affinity
purification-coupled mass spectrometry are largely used to study interacting proteins
(De Las Rivas and Fontanillo, 2010). Other techniques like co-immunoprecipitation,
analytical ultracentrifugation, fluorescence spectroscopy, luminescence-based
mammalian interactome mapping, protein-fragment complementation assay, surface
plasmon resonance, and calorimetry are also engaged in identifying PPIs. Many
computational methods based on genomic context, text mining, and machine
learning are now extensively used for this purpose. The Rosetta Stone approach,
conserved neighborhood method, and phylogenetic profiling are genome context-
related methods (Marcotte, 1999; Raman, 2010). Text mining is a much less costly
method, which generally detects binary relations between interacting proteins from
individual sentences using rule/pattern-based information extraction methods from
the literature (Badal et al., 2015). Machine learning methods like Random forest
distinguish interacting protein pairs from others based on features such as cellular
co-localization, gene co-expression, close location of genes on DNA, and so on
(Qi et al., 2006). X-ray crystallography is presently the important technique to study
the mode of interaction in a proteineprotein complex at the atomic level. Also,
nuclear magnetic resonance (NMR) spectroscopy, electron microscopy, and fluores-
cence resonance energy transfer are used for this purpose. Analysis of the structural
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information derived from these techniques has been the inducing factor for the
computational design of PPI modulators which are either inhibitors or stabilizing
agents (Villoutreix et al., 2014).

Blocking PPIs using small molecules or peptides has been in practice for func-
tional annotations of proteins. The idea of using PPIs as drug targets and modulating
biochemical pathways for therapeutic significance has surfaced recently and today
they are used as drug targets in various therapeutic fields like cancer (Li et al.,
2016), heart failure and inflammation (Anand et al., 2013), neurological disorders
(Hayes et al., 2017), tropical infectious diseases (Dawidowski et al., 2017), and
oxidative stress (Lu et al., 2016; Ran and Gestwicki, 2018). One example of this suc-
cess story is the ABT-199 compound derived from the fragment-based screening
method for inhibition of Bcl-2 regulatory proteins (Oltersdorf et al., 2005) for the
treatment of chronic lymphocytic leukemia.

PPI inhibitors can inhibit PPIs by binding either to the interface (orthosteric in-
hibition) or to a distal site (allosteric inhibition) (Cesa et al., 2015). The molecules
are said to act either by hindering the formation of a protein complex or by destabi-
lizing PPIs.

This chapter deals with a structure-based drug designing strategy for screening
small molecules for orthosteric inhibition of PPIs and about the pharmacokinetic
properties of these inhibitors. It reviews the databases that can be considered for
exploring PPI interactions and their modulators. Here, transcription factors (TFs)
are highlighted as one of the PPI drug targets and is dealt along with a case study.
Finally, few in silico tools that can be used for studying PPI inhibition are discussed
along with their algorithms, working procedures, and result analyses.

5.2 Methods to identify inhibitors of PPIs
The general means for identifying small-molecule inhibitors of PPIs include high-
throughput screening (HTS) and computational techniques like fragment-based
drug discovery, peptide-based drug discovery, and protein secondary structure
mimetics (Meireles and Mustata, 2011). In HTS technologies, numerous com-
pounds are screened in a relatively short period; however, HTS has been more
effective for conventional targets like enzymes and receptors and less effective
for PPI targets (Macarron, 2006). In fragment-based drug discovery, a small-
molecular fragment library is screened initially against the given target. Fragments
that bind at the required sites are made to have higher affinity using techniques like
linking two fragments and growing fragments that are then developed into compounds
(Winter et al., 2012; Coyne et al., 2010). Peptides are preferred for PPI inhibition and
peptidomimetics are designed based on the knowledge of natural peptide ligands;
Peptidomimetics are designed to circumvent some of the problems associated with
a natural peptides like digestion by proteases and poor bioavailability (Eguchi
et al., 2003). However, the problem of proteases is not completely resolved. Recently,
using the peptidomimetics approach, small-molecule compounds resembling the
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spatial arrangement of protein secondary structures which are involved in PPI, are
designed or screened to act as competitive inhibitors (Marshall et al., 2009).

However, identification of small molecules that inhibit PPIs has many challenges
to overcome. They include the absence of catalytic activity to screen and functional
assays to monitor PPIs, the existence of various types of PPI modes like stable and
transient, covalent, and noncovalent interactions and their different types of inter-
faces, and the size and character of typical small-molecule libraries. However,
many of these problems are taken care of by advancements in molecular biology
and computational modeling techniques (Arkin and Wells, 2004).

5.3 Nature of the PPI interface
The primary requirement in the phase of computational development of PPI modu-
lators is to understand the PPI interface. Based on this knowledge, the inhibitors are
either designed or screened. The structures of proteineprotein complexes deposited
in databases and the literature facilitate an understanding of the PPI interfaces.
The interface between two proteins usually has an area of 1500e3000 Å2

with w750e1500 Å2 of surface area buried in each protein (Conte et al., 1999).
The proteineprotein complexes are stabilized by desolvation energy and van der
Waals interactions (Fernandez and Scheraga, 2002). Besides hydrophobic interac-
tions, electrostatic forces largely support complex formation and also determine
the lifetime of protein complexes (Kundrotas and Alexov, 2006). In some interfaces,
hydrogen bonding is responsible for interaction. It has been found that one hydrogen
bond is present per 100e200 Å surface area in many complexes (Jones and Thorn-
ton, 1997). Moreover, all the residues on the interface between the proteins do not
contribute equally to PPIs. A few residues donate more to the binding free energy
and are called hot spots.

Regions having hot spots are seen more at the center of binding interfaces, which
are small or medium in size (250e900 Å2). A hot spot residue is identified as a res-
idue that when substituted by an amino acid (e.g., alanine) shows a noteworthy
increase in free energy of binding (generally >1.5 kcal/mol). Mutagenesis and
structural studies show that small molecules targeted against these hot spots can
modulate or inhibit PPIs (Kuenemann et al., 2015). To determine hot spots by exper-
imental methods is a time-consuming and tiresome process and hence computational
algorithms are developed for this. Alanine scanning analysis data indicate that hot
spot residues are generally tryptophan (Trp), arginine (Arg), tyrosine (Try), leucine
(Leu), isoleucine (Ile), and phenylalanine (Phe) (Bogan and Thorn, 1998). Energetic
hot spots from alanine scanning correlate with structurally conserved residues in
proteins. Of these, Trp and Tyr are involved in hydrophobic p-interactions and
also form hydrogen bonds in the PPI region. The residue Arg generally forms
hydrophobic interactions, salt bridges, and hydrogen bonds (Ma et al., 2003). In a
protein-eprotein complex, for hot spots that are spread over an area and are not
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continuous, small molecules of larger size are preferred as PPI inhibitors and for
PPIs with continuous hotspots, relatively smaller size molecules are preferred (Sable
and Jois, 2015).

5.4 Computational drug designing
Today, in silicoworks are carried out to understand the molecular mechanism of dis-
eases (Barale et al., 2019) and many in vitro and in vivo experiments are comple-
mented with computational analysis and molecular simulations at different stages
of the drug discovery process to save time and money. This in silico drug designing
intends to select or design molecules that have complementary shape, charge,
hydrogen bond donoreacceptor groups, along with hydrophobic, van der Waals,
or electrostatic attraction towards the biomolecular target and thus can specifically
bind to it with high affinity. Several molecular docking and molecular dynamics
simulation studies have been carried out to understand the structureefunction rela-
tionship of enzymeeligand, proteinepeptide, peptideepeptide, as well as PPIs
(Dhanavade et al., 2013, 2016; Jalkute et al., 2015; Sonawane and Barage, 2014;
Barage et al., 2014; Dhanavade and Sonawane, 2014).

Structure-based drug designing is the strategy undertaken for identifying inhib-
itors for PPIs when the proteineprotein complex structure is available. This
approach is favored when the 3D structure of the biological target is available pref-
erably through experimental methods like X-ray crystallography, NMR, and CD or
through in silico modeling by methods like ab initio, threading, and homology
modeling. In this strategy, using the proteineprotein complex comprising of the
target and its interacting protein, the main residues and hot spots in the protein com-
plex are identified and based on that information, small molecules or peptide inhib-
itors that bind with high affinity and selectivity to the target are designed or chosen
by virtual screening and docking approaches. These selected ligands are tested for
their binding stability by molecular dynamic simulations; their pharmacokinetic
properties are evaluated and recommended as lead candidates for developing new
drugs. In Fig. 5.1, the general strategy followed to identify small molecules for
PPI inhibition is given in flow chart format.

Numerous work on PPI inhibitors has been carried out in the oncology field (Jin
et al., 2014; Zinzalla and Thurston, 2009). In a study by Wang et al. using structure-
based drug designing strategy, DDO-5936 was identified as a small-molecule inhib-
itor of the Hsp90eCdc37 complex related to colorectal cancer and was tested to be
active in in vitro conditions (Wang et al., 2015). The authors carried out molecular
dynamics (MD) simulation with Gromacs to verify the hot spots, and docking
against Hsp90 was performed with the Glide program. Binding free energy calcula-
tions were conducted using the molecular mechanics PoissoneBoltzmann surface
area method with the AMBER program to predict the binding affinity.

A ligand-based drug designing strategy is undertaken to inhibit PPIs when natural
or reduced affinity ligands to the target molecule are known. Here, pharmacophore
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patterns are derived from known ligands and are screened against the small molecule
databases to retrieve similar molecules. These molecules are then tested for
their target binding affinity to select molecules having higher affinity towards the
target.

FIGURE 5.1

Structure-based drug designing strategy flow chart (one among many) to identify

small-molecule orthosteric inhibitors of proteineprotein interactions (PPIs).

ADME/T, Absorption, distribution, metabolism, excretion, and toxicity; MD, molecular

dynamics; MM/PB(GB)SA, Molecular Mechanics energies combined with

PoissoneBoltzmann or Generalized Born and Surface Area continuum solvation.
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Devi et al. performed studies to retrieve pharmacophoric patterns from known
ligands of the BRD4 protein using PHASE and E-pharmacophore modules of the
Schrodinger Maestro tool and screened against Zinc database clean leads subset
(Devi et al., 2015). With this approach, three small molecules were identified, which
could bind effectively with BRD4 and inhibit its interaction with histones for the
treatment of BRD4-NUT midline carcinoma. The binding stability of the ligands
with the target were verified with Gromacs simulation studies and binding free
energy calculations.

5.5 Databases that play a significant role in the process of
predicting PPI inhibitors: databases of PPIs, PPI
modulators, and decoys

To treat a disease condition or to develop antimicrobials, knowledge of interacting
proteins is needed. Among the numerous experimentally validated and predicted
interactions, selecting PPIs of therapeutic significance is crucial. It depends on the
information known from their interactions, the depth and width of the study
made, and literature reviews. Databases and tools for PPI networks assist in this
stage. Once a valid PPI is identified, in silico studies are to be carried out to
smoothen the way to experimental studies to identify valid modulators of PPI. Struc-
ture databases provide the valuable information required for in silico studies. Also,
databases of experimentally validated and predicted inhibitors or stabilizers or non-
active molecules can speed up drug development by providing knowledge on the
mechanism and outcome of their binding, which can help in designing modulators
of selected PPIs. Also, decoy databases aid in validating the docking process, which
is an inevitable step in the drug designing process. Although many biological data-
bases exist for the previously discussed subjects, an overview of a few important da-
tabases is discussed next.

5.5.1 Databases of PPIs
There are numerous databases that have information on PPIs, most of which are
organized as interactive networks. Though most of them have collections of all types
of PPIs, some are specific toward species, organisms, and protein families. A few
important databases for PPI are discussed here. PPI data from experiments known
from publications are collected in databases like the Database of Interacting Proteins
(Xenarios, 2000), Human Protein Reference Database (Mishra, 2006), Biomolecular
Interaction Network Database (Bader, 2003), Biological General Repository for
Interaction Datasets (Oughtred et al., 2019), MIPS Protein Interaction Resource
on Yeast, and MIPS Mammalian ProteineProtein Interaction Database (Pagel
et al., 2004). Apart from publications, original PPI data are included in databases
like the Agile Protein Interactomes Dataserver (Alonso-López et al., 2016),

144 CHAPTER 5 Structure-based drug designing strategy



Wiki-Pi (Orii and Ganapathiraju, 2012), and the Microbial Protein Interaction
Database (Goll et al., 2008). Predicted information on PPIs are included in many
databases like the Human ProteineProtein Interaction Prediction Database (PIPs)
(McDowall et al., 2009) and STRING-db (Szklarczyk et al., 2016), a widely used
database having both experimental and predicted data. Some databases like PiSITE
have a collection of protein interaction sites (Higurashi et al., 2009). Some are huge
databases that collect data from other databases. For example, IRefWeb has a large
collection of data on PPIs in over 1000 organisms. This collection is consolidated
from 14 major public databases (Turner et al., 2010).

To identify modulators of PPI by computational methods, their structural details
are needed. The huge repository structure database Protein Data Bank (PDB) has
structural data on PPI complexes, but the number is comparatively less compared
to individual structures. Structures of domainedomain interactions are available
in databases like 3did (Stein et al., 2010), iPfam (Finn et al., 2004), and KBDock
(Ghoorah et al., 2013). The Interactome3D database (Mosca et al., 2013) provides
12,000 structural PPIs from eight organisms. Most of these databases have in-
built tools to predict interaction between protein pairs or between a given set of pro-
teins, while a few have only datasets to download.

Apart from these databases, there are many online tools that can predict whether
two proteins can interact based on their sequences. Tools are also available for
proteineprotein docking, given a pair of structures, to understand the PPI interface.
A list of these tools is found in the vls3d site (http://www.vls3d.com) under proteine
protein docking and homology modeling of complexes. For example, one such tool
is MEGADOCK.

MEGADOCK 4.0 is structural bioinformatics software for fast Fourier
transform-based rigid docking to screen PPI pairs for an interactome prediction. It
makes extensive use of recent heterogeneous supercomputers and shows powerful
and scalable performance. For a user-submitted list of protein structures, the tool
performs all-to-all docking to predict relevant PPI pairs and also performs interac-
tome mapping. The procedure for PPI prediction consists of two sections called
docking calculation and PPI decision. For a submitted set of protein structures, a
docking calculation section performs all-to-all docking and generates high-scoring
decoys for all possible combinations, based on shape complementarity and physico-
chemical properties. Later, for each pair of proteins, the PPI decision section ana-
lyzes the structural distributions of high-scoring decoys and concludes whether
the two proteins can really interact. Also in the output, a possible PPI network is
included that connects the positively predicted PPIs (Ohue et al., 2013; Ohue
et al., 2016; http://www.bi.cs.titech.ac.jp/megadock).

5.5.2 Databases of PPI modulators
Though various studies both in vitro and in silico were carried out targeting PPIs
for various purpose for past many years, separate databases for PPI modulatorsd
iPPI-DB, 2P2I, and TIMBAL databasesdhave been developed over the past
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10e12 years only. Also, small-molecule modulators for PPIs can be searched in
ethnobotanical databases (Thakar et al., 2019; Thakar et al., 2015) and other
natural sources (Barbosa and Roque, 2019).

iPPI database (iPPI-DB) (2012) is a database for orthosteric small-molecule in-
hibitors of PPIs and has no information on peptide inhibitors. Available details about
structure, binding and activity, and pharmacological and pharmacokinetic properties
are presented for 2054 PPI inhibitors as well as the profile of 35 families of PPI tar-
gets; these data are mostly retrieved from peer-reviewed scientific articles and world
patents. Only compounds with activities below 30 mM are qualified for entry. The
molecules in the database can be queried either by using physicochemical/pharma-
cological properties or with a user-defined structure.

Each compound has an individual ID card where all information are summarized
under compound summary, physicochemistry, pharmacology, and drug similarity
tabs. The compound summary has details on chemical structure, SMILES notation,
and its IUPAC, along with external links to other databases such as ChEMBL,
PubChem, and PubMed article, as well as patent information, if any. In the physico-
chemistry tab, the physicochemical profile of the compound is provided along with
its compliance toward Lipinski’s rule of 5 and Veber’s and Pfizer’s 3/75 rules. A
principal component analysis map shows the position of the selected compound in
the iPPI chemical space with respect to iPPI-DB compounds of the same family
and iPPI-DB compounds on the same target. In the pharmacology tab, the available
binding data are given together with assay type and activity type. Also, lipophilic
and ligand efficiencies of the compound are compared with the same family of
iPPI-DB compounds and all the modulators available for the same target are repre-
sented in a biplot. The drug similarity tab holds the chemical structure of the
compounds together with the most similar drugs found in the MDL Drug Data
Report database, along with links to DrugBank (Labbe et al., 2015; https://ippidb.
pasteur.fr/).

2P2I database (2010) is a hand-curated database of only orthosteric inhibitors
and has a collection of structural information about proteineprotein and proteine
ligand complexes and the small molecules involved, which are available in the
PDB database and the literature. It encompasses 27 proteineprotein complexes
and 274 proteineinhibitor complexes related to 242 unique small-molecule modu-
lators. The proteineprotein complexes were subdivided into three classes:
(1) proteinepeptide complexes, (2) globular proteineprotein complexes, and
(3) bromodomainsehistone complexes. For a given PPI family, it has 3D structures
and data on geometry and the physicochemical nature of the interface, intermolec-
ular nonbonded contacts, hydrogen bonds and salt bridges, and other binding param-
eters. In addition, the small molecules involved and its descriptors are portrayed and
links to other webservers are present. It hosts a query tool to search for inhibitors
within the database using standard molecular descriptors. The other in-built tool,
2P2I-inspector, calculates the physical and chemical nature of the PPI interface
and bonds in the user-submitted complex structure (Basse et al., 2016; http://
2p2idb.cnrs-mrs.fr).
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TIMBAL database (2009) has a collection of approximately 8900 PPI orthos-
teric modulators of molecular weight<1200 Da. It was created initially by manually
curating information extracted from relevant scientific publications and later was
retrieved from the ChEMBL database (https://www.ebi.ac.uk/chembl/). As
ChEMBL also has data on nonactive molecules, TIMBAL has a collection of inac-
tive molecules against PPI targets (7%). Allosteric modulators are not included.
Orthosteric small peptides having less than 10 peptide bonds are included in the
collection and it contains more than 14,000 data points for nearly 7000 small mol-
ecules. The database also covers 50 known PPI drug targets, including PPIs that are
stabilized by small molecules with therapeutic effect. Links to the PDB database and
CREDO database are provided to retrieve experimental structures of proteinesmall
molecules, proteineprotein complexes, and unbound proteins, and to explore in
detail the atomic interactions of these complexes, respectively. Other data entries
are for integrins, the cell surface receptors that have been long recognized as ther-
apeutic targets (Higueruelo et al., 2013; http://www-cryst.bioc.cam.ac.uk/timbal).

In a comparative view, the iPPI-DB derives its information from peer-reviewed
scientific articles and world patents, 2PPI derives its information from both literature
and PDB entries, and TIMBAL derives its information from the literature and the
ChEMBL database. Both iPPI and 2P2I have collections of orthosteric inhibitors,
whereas TIMBAL deals with both orthosteric inhibitors and stabilizers. Similarly,
both iPPI and 2P2I have only small-molecule inhibitors but TIMBAL has both small
molecules and peptide PPI modulators. Also, only TIMBAL has data on inactive
molecules for PPI targets. Of the three, the iPPI-DB is still manually curated and
can be queried with both PPI targets and small-molecule structure. The PPI target
families in these three databases are listed in Table 5.1.

Currently, the 2P2I (active until March 14, 2019) and TIMBAL databases are not
active. But some companies hold certain information on the molecules and targets
from these databases and the molecules can be ordered for lab purposes. For
example, Life Chemicals has PPI Focused Libraries, which includes 2400 com-
pounds that were extracted from the Life Chemicals HTS Compound Collection
(18,936 reference compounds) by a 2D fingerprint similarity search toward the
TIMBAL database with Tanimoto 85% threshold. It also includes 4600 compounds
obtained by filtering 2P2I and iPPI-DB compounds using the Rule of Four (https://
lifechemicals.com).

5.5.3 Decoy databases for PPIs and modulators
Decoy sets of structures (false positive matches) are very important in developing
intermolecular potentials and scoring functions. Servers like ZDOCK (http://
zdock.umassmed.edu/) and RosettaDock (https://www.rosettacommons.org), which
perform proteineprotein docking, have their own decoy sets. Some decoy databases
are developed from which the decoy sets can be downloaded and used for developing
and validating proteineprotein docking methodologies and results.
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Table 5.1 List of proteineprotein interaction (PPI) target families in PPI
modulator databases.

iPPI 2P2I TIMBAL

MDM2-like/P53 BRD2-1/H4 14-3-3/PMA

Bcl-2 like/BAX BRD2-2/H4 ARF1/SEC7

LFA/ICAM BRD3-1/H4 AuxinIAA-TIR1

XIAP/Smac BRD3-2/H4 BIII/X11a

Bromodomain/
Histone

BRD4-1/H4 BRD2/Ack

CD4/gp120 BRD4-2/H4 BRD4/NUT

LEDGF/IN BRDT-1/H4 BRDT/H4

CD80/CD28 Bcl2/Bax CD40/CD154

TTR BclXL/Bak CD74/MIF

Beta-catenin/TCF-4 CIAP1_1/
CASPASE-9

c-Myc/Max

Survivin dimer CIAP1_2/
SMAC

CRM1/Rev

MENIN/MLL HDM2/P53 Cyclophilins

IL2/IL2R HPV_E2/E1 E1/E2

VHL/HIF1alpha HRAS/SOS1 HIF-1a/p300

E2/E1 IL-2/IL-2R IL-2/IL-2Ra

PCNA trimer Integrase/
LEDGF

FKBP1A/FK506

Myc/Max KEAP1/NRF2 Integrins

NRP/VEGF KRAS/SOS1 K-Ras/SOS1

14-3-3/TASK-like MDM4/P53 Nrf2/Keap1

UPAR/UPA Menin/MLL Adenylyl cyclase dimer C1eC2 domains

14-3-3/PMA2 TNFR1A/TNFB Annexin A2/S100-A10

Influenza NP TNFalpha Bcl-2 and Bcl-XL with BAX; BAK and BID

VEGF/VEGFR VHL/HIF1A Beta catenin/Tcf4 and Tcf3

MDM2-like dimer XDM2/P53 CD80/CD28 (or CTLA-4)

Col1/Jaz1 XIAP/
CASPASE-9

Clathrin/adaptor and accessory proteins

CaM/CaMBD2 XIAP/SMAC ESX/Sur-2 (DRIP130)

H-Ras/SOS1 ZIPA/FTSZ LMO2/LDB1 or TAL1

Keap1/Nrf2 TNFa trimer or TNFa/TNFR

BRI1 Transthyretin tetramer

FAK/VEGFR3 UL30(Pol)/UL42 subunits of HSV T-1 DNAP

14-3-3/ER XIAP/Caspase9 or SMAC

ZipA/ftsZTNF trimer ZipA/FtsZ

CD40L-trimer MLL/Menin
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The Dockground project is developing docking software, including proteine
protein docking and software for studying protein interfaces. The docking decoys
were developed and designed for the unbound docking set, based on experimentally
determined proteineprotein complexes and their unbound structural forms from
structure databases. The set consisting of 99 complexes was first gathered by selec-
tion, where sequence identity between bound and unbound structures is greater than
97%. Homomultimers and structures in the wrong formats were then deleted.
GRAMM-X scan was engaged to build docking decoys from this set. The following
characteristics were computed for 500,000 matches per complex: root mean square
deviation (RMSD) of the backbone atoms of the interface residues, RMSD of the
backbone atoms of the ligand (the smaller protein of the complex), the number of
native residueeresidue contacts in the predicted complex divided by the number
of contacts in the native complex, and the number of non-native residueeresidue
contacts in the predicted complex divided by the total number of contacts in the
complex. The set contains 61 decoy complexes, with each complex having 100
lowest energy non-native structures and at least one near-native structure
(RMSD < 5.0 Å) and no native structures (Liu et al., 2008; http://dockground.
bioinformatics.ku.edu). The decoys for proteineprotein docking can be downloaded
at http://dockground.bioinformatics.ku.edu/UNBOUND/decoy/decoy.php.

Also, ligand decoys can be engaged in the docking studies to identify valid small
molecule inhibitors for PPIs. There are many databases dedicated to this, with the
DUD•E database having a vast collection.

The DUD•E (Directory of Useful Decoys-Enhanced) database provides chal-
lenging decoys for molecular docking. It contains 22,886 ligands and their affinities
against 102 targets, with an average of 224 ligands per target. For each ligand, 50
decoys are constructed having similar physicochemical properties but different 2D
topology. DUD uses 2D similarity fingerprints to minimize the topological similarity

Table 5.1 List of proteineprotein interaction (PPI) target families in PPI modulator

databases.dcont’d

iPPI 2P2I TIMBAL

WDRS/MLL Neuropilin-1/VEGF-A

PPAR-gamma/NRCoA1

Plk1(PBD)/PBD substrate

Rac1/GEFs

Rad51/BRCA2

RGS4/Galpha-o protein

RRTF1/CBFb

p53/S100B, p53/MDM2, p53/MDMX

Tak1/Tab1

Dimers of MAX, SOD1, STAT5, ToxT, STAT3
and tubulin
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between decoys and ligands to minimize the likelihood of actual binding. To enable
focused research on particular target classes, the following subsets are available:
DUD38, the original DUD targets rebuilt; GPCR, seven transmembrane helix recep-
tors; Kinase, protein kinases; Nuclear, nuclear hormone receptors; Protease, prote-
ases; and Diverse, selected targets that are representative of the entire set. The
actives and decoys can be downloaded in mol2 and SDF format. Also, decoys can
be generated for user-entered active compounds by querying with SMILES, with
or without an identifier. DUD decoys are matched to the physical chemistry of the
queried ligands based on properties like molecular weight, number of rotatable
bonds, calculated logP, and hydrogen bond donors and acceptors, and the decoy
set is generated (Mysinger et al., 2012; http://dude.docking.org/).

5.6 Transcription factors as one of the PPI drug targets:
importance, case study, and specific databases

Particular types of PPIs are frequently chosen as drug targets like transmembrane,
cytoskeleton and mitotic proteins, and nuclear receptors, based on the ease of target-
ing them. TFs play a pivotal role in controlling cell signaling by regulating gene
expression and hence are crucial for cell growth, cell division, embryonic develop-
ment, etc. Dysfunction of specific TFs is known to be involved in a wide variety of
diseases such as obesity, cancer, autoimmunity, diabetes, cardiovascular disease, and
neurological disorders (Lee and Young, 2013). As they always function as dynamic
complexes, they are held up as PPI targets for many therapeutic indications, even
though there are known hurdles on the way (Fontaine et al., 2015).

Modulation of TF activity can be achieved by various approaches, like direct or
indirect modulation of their own expression, altering their DNA binding activity and
particularly affecting their ability to interact with partner proteins by PPI inhibition.
The partner protein(s) can be the TF itself when they form homodimers (e.g., STAT),
another TF (e.g., MYC/MAX), a cofactor/coactivator/mediator or repressor (e.g.,
Nrf2/Keap1), protein belonging to basal transcription machinery, RNA polymerase,
and chaperones associated with nuclear translocation (Lambert et al., 2018). The
first TF inhibited by modulating PPIs is the tumor suppressor transcription factor
p53 (p53/mdm2). The first small-molecule AI-10-49 to target the fusion of
TFs, CBFb, and SMMHC was developed by a fragment building-based strategy
(Illendula et al., 2015). This inhibition of PPI restored the transcriptional activity
of RUNX1 and selectively induced cancer cell death in vivo in acute myeloid
leukemia.

Modulation of transcriptional activity is carried out either to hinder, restore,
enhance, or downregulate transcriptional activity of a single gene or set of genes
related to the disease condition for therapeutic purposes. In humans, TF mutations
are known to cause specific diseases like Rett syndrome, autoimmune diseases, mul-
tiple cancers, etc., and medications can be potentially targeted toward them.
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Approximately 10% of genes in the human genome code for TFs, which makes this
family the single largest family of human proteins. In fact, over 30 TFs have been
identified as therapeutic targets of about 9% of the approved drugs in the DrugBank
database. However, since 2001, though around 1700 human TFs and fewer than 200
coregulators have been predicted, only 62 TFs have been functionally validated
(Vaquerizas et al., 2009; Schaefer et al., 2010); thus there is a huge space to study
them for therapeutic purposes. Interestingly, most of the microbial TFs which are
essential for their viability, are not highly conserved in eukaryotic cells, and hence
are valid drug targets for antiinfective therapy. TFs like NusA, NusB/E, and NusG
are well-recognized antibacterial targets (Ma et al., 2016).

Studies on microbial TFs are carried out to develop antibiotics. A bacterial TF,
CarD, was known to interact with RNA polymerase (RNAP) to control rRNA tran-
scription in Mycobacterium tuberculosis (Mtb) and their interaction was detected to
be indispensable for the viability of the organism (Stallings et al., 2009); many
experimental and in silico studies verified CarD as a valid target (Weiss et al.,
2012; Priya et al., 2012). Based on this, studies by Priya et al. identified a small-
molecule inhibitor to inhibit CarDeRNAP interaction (Priya et al., 2018). In their
approach, initially, with the crystal structure of the CarDeRNAP complex (PDB
ID:4KBM), Schrodinger’s BioLuminate program panels and ANCHOR tool were
utilized for identification of interacting residues and hot spot residues at the interface
of this PPI. The structure of the CarDeRNAP complex is displayed in Fig. 5.2 along

FIGURE 5.2

Crystal structure of CarDeRNA polymerase (RNAP) b-subunit complex in Mtb (PDB ID:

4KBM) (Gulten and Sacchettini, 2013). The RNAP binding site of CarD is located at its

N-terminal domain and their interaction results in a 500 Å2 buried surface area. There are

eight hydrogen bonds and 69 nonbonded contacts at the interface, comprising

electrostatic, hydrophobic, and van der Waals interactions, with the electrostatic force

being the major contributor.
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with details of the nature of their interface. It is a beb interface, and based on the
analysis, the residues ARG47, ARG25, THR45, Leu44, and VAL46 were identified
as hot spot residues on CarD. Later, the pepMMsMIMIC tool was engaged for
screening small molecules based on the RNAP residues which interact with hotspots
on CarD. With the collection of these small molecules, docking analysis was carried
out with Glide, and three small molecules were selected based on the CarD residues
with which they interact and the binding score. The docking interaction between
MMs0248919, one of the three small molecule hits and CarD is displayed in
Fig. 5.3. Binding free energy calculations were done with the Prime program of
Schrodinger using MM-GBSA calculations, and of the three hits, the small molecule
MMs02420750 with least binding free energy was selected for a molecular
dynamics simulation run in Gromacs to test the stability of the targeteligand com-
plex. The absorption, distribution, metabolism, and excretion (ADME) properties of
the molecule were predicted using QikProp from Schrodinger and was proclaimed as
a valid inhibitor of CarD-RNAP complex.

Though the TF’s sequence, structure, and other information like domain, family,
and motifs are present in general biological databases, there are many specific data-
bases dedicated to only TFs. They focus on the classification of TFs, their DNA
binding sites, and regulatory interactions with other proteins. A few TF-specific
databases are discussed next.

The TRANSFAC (TRANScription FACtor) database is a manually curated
database of eukaryotic TFs and their DNA binding profiles. TFs are classified
into families, classes, and superclasses based on the architecture of their DNA

FIGURE 5.3

Interactions between the small molecule MMs0248919 with the hot spot residues

ARG47, ARG25, THR45, Leu44, and VAL46 on the target CarD are represented in 2D.

The nature of the interaction is indicated by different colored dotted lines, as given in color

box (Schrodinger’s visualization tool).
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binding domains. Since July 2016, TRANSFAC has become a partially commer-
cial database. It provides a list of classifications of TFs based on superclasses
and classes along with the description, and also the families and subfamilies are
provided along with links to databases like UniProt, Human Protein Atlas,
TRANSFAC, and PDB. The previous version 2017e12 factor table is free to
search, which can be carried out using various search terms relating to fields
like gene, homolog, organism, species, reference authors, etc. This database
has been widely used to predict TF binding sites as seen in many publications
(Wingender et al., 1996; http://genexplain.com/).

The TRRUST (Transcriptional Regulatory Relationships Unraveled by
Sentence-based Text mining) database consists of 8444 regulatory interactions for
800 TFs in humans and 6552 regulatory interactions for 828 TFs in mice, all derived
from PubMed articles. If a TF gene is submitted as a query, it gives information
about both the target genes it regulates along with the mode of regulation if known
and other TFs involved in regulation of the submitted TF, along with a PubMed
reference article. It also displays information about the other TFs that regulate the
same target genes and also about the diseases and pathways with which the query
TF is involved. If a non-TF gene is submitted, all the TFs involved in its regulation
are displayed. For both searches, the protein interaction network is provided (Han
et al., 2017; https://www.grnpedia.org/trrust/).

The Animal Transcription Factor DataBase (AnimalTFDB 3.0) has a vast
collection of animal TFs and cofactors from 97 animal genomes. The TFs are further
classified into 73 families based on their DNA-binding domain and the TF cofactors
are classified into 83 families based on their function. For each entry, the database
provides information about the gene model, protein sequence length, functional
domain site, and orthologs and paralogs along with the similarity score, and has links
to other databases like Ensembl and Pfam. It has a TF binding site prediction tool to
identify potential binding TFs for nucleotide sequences and a TF prediction tool to
identify whether the submitted sequence is a TF sequence. It also has a separate
human TF database web interface (Hu et al., 2018; http://bioinfo.life.hust.edu.cn/
AnimalTFDB/).

The SM-TF database holds 3D structures of TFs complexed with small mole-
cules. There are presently 934 entries consisting of 176 TFs from various species.
TFs are derived from bacteria, eukaryote, and archaeal lineages contributing 51%,
47%, and 2%, respectively. In the database, classification is done according to the
organisms and species. TFs from Homo sapiens and Mus musculus are linked to
TFClass, and TFs from Escherichia coli are linked to RegulonDB. In the list of
TFs, the marking “DT” in front of their UniProt ID indicates that they are druggable
targets. For each TF in the list, three PDB files are provided: (1) conformation of the
small molecule in the binding mode, (2) binding site on the target protein, and (3) a
clean binding site containing only the amino acid residues. It is suggested to use the
file containing the small molecule for virtual screening studies with TFs and the files
containing the binding site structure can be used in studies related to inverse docking
(Xu et al., 2016; http://zoulab.dalton.missouri.edu/SM-TF).
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5.7 Pharmacokinetic properties of small-molecule
inhibitors of PPI

Many drug candidates fail during clinical studies due to poor pharmacokinetic proper-
ties, namely absorption, distribution, metabolism, excretion, and toxicity (ADME/T).
These physicochemical and biochemical properties of drug molecules indicate
what the body does to the drug. The ADME criteria of the drugs are discussed in
brief next.

When a drug enters into the body it needs to reach the destined site at a required
concentration to carry out its function to give the desired effect. This bioavailability
of a drug depends on its absorption concentration. For oral drugs, absorption
depends on the molecule’s solubility, instability in the stomach, and intestinal transit
time. Molecules that are less absorbed orally need to be administrated through other
routes like nasal, parental, and dermal. Molecules that enter the blood stream must
be delivered to the effector site and this process is called distribution. Distribution
depends on the properties of the molecule like polarity, molecular size, and plasma
protein binding nature. Drugs that have performed their function have to be excreted
and hence need to be metabolized. Generally, from the time of entry into the body,
metabolism of the molecule begins. Small-molecule drugs are mostly metabolized in
the liver by a family of cytochrome P450 enzymes. Most of the current drugs are
inactivated by metabolism and only a few drugs that are given as prodrugs are acti-
vated. Though the rate of metabolism depends on various physiological and patho-
logical factors, the structure and properties of the molecules decide the rate of
metabolism. Finally, drug excretion occurs through urine via the kidneys, through
biliary excretion or fecal excretion, and through the lungs. The toxicity factor, on
the other hand, arises due to many factors like inappropriate ADME properties, bind-
ing of the drug to other molecules (off-target binding), and the presence of harmful
functional groups in the drug. The effect of toxicity can vary from mild to adverse
and can even be fatal.

There are many in vitro assays carried out to predict ADME properties but pre-
dicting toxicity by in vitro assays is a tedious process. In the field of drug develop-
ment, this information is used for prioritizing lead series, lead optimization, select
compounds for in vivo studies, and the assessment of in vivo results (Balani et al.,
2005). In silico prediction of ADME/T properties of the drug candidates prior to
costly experimental procedures can eliminate unnecessary testing on compounds
that will ultimately fail. Hence, during the drug designing process, the pharmacoki-
netic parameters like bioavailability, metabolic half-life, permeability, etc., of the
small molecule ligands are predicted computationally using ADME/T tools.

The generalized chemical properties of the PPI inhibitors are predicted by
analyzing PPI inhibitors discovered till now. PPI inhibitors are generally larger in
size and molecular weight compared to traditional drugs (MW > 400 Da). Their
hydrophobicity values are high with an ALogP > 4 and have more than four
hydrogen bonds and four or more rings (Morelli et al., 2011; Villoutreix et al.,
2014; Koes and Camacho, 2011) and hence they are not governed by Lipinski’s
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rule (Lipinski et al., 2012). Servers and tools existing at present have only databases
of traditional drugs for reference. Hence, we need to predict the properties using
these tools but analysis has to be done based on the knowledge of known PPI
inhibitors.

There are two online servers, PPI-HitProfiler (http://www.cdithem.fr/) and
2P2IHunter, which offer in silico filters to design libraries of PPI inhibitors from
the huge set of conventional compound collections. PPI-HitProfiler uses the decision
tree approach and 2P2IHunter uses support vector machine (SVM) algorithms to filter
molecules based on the descriptors of known PPI inhibitors. 2P2IHunter is currently
not available.

5.8 Strategies and tools to identify small-molecule
inhibitors of PPIs

The general strategy followed in structure-based drug designing to inhibit PPIs is
shown in Fig. 5.1 under Section 5.4. Various tools can be used in each step of the
process. In this section, some important tools that are specifically used for studying
PPI interfaces and to screen small molecules for the inhibition of PPIs are discussed
in detail. Also, tools to study the pharmacokinetic profile of the molecules are
reviewed.

5.8.1 Prediction of interacting residues and hot spots in
proteineprotein complexes

Given a proteineprotein complex consisting of a target protein and an interacting
protein, the main hot spot residues on the interacting protein can be used as a tem-
plate to design or screen small molecules that can bind with the hot spot residues on
the target protein at the PPI interface and hinder the interaction between the two pro-
teins. Based on the structure of proteineprotein complexes in the databases, compu-
tational tools are developed for the prediction of hot spots by alanine scanning
mutagenesis. In this procedure, all the residues of the proteins in the complex or
the residues at the interfaces are mutated to alanine and the residues whose mutation
to alanine results in a decrease of at least 2.0 kcal/mol in binding free energy are
identified as hot spots. The binding free energy (DGbinding) is calculated as:

DGbinding ¼DGmut � DGwt

where DGwt and DGmut are the binding free energies upon complex formation of the
wild-type and alanine-mutated proteins, respectively (Moreira et al., 2007). Alanine
is generally a first-choice residue for mutational scanning because it retains only the
beta carbon but no other side chain chemistry, as beta carbon position depends on the
backbone dihedral angles of the polypeptide and hence is really part of the main
chain structure of the protein.
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The tools follow various strategies to identify the interacting residues and hot
spots, where some tools are based on dedicated energy functions, like FoldX
(Schymkowitz et al., 2005) and PCRPi (Assi at al., 2009), and some tools rely on
machine learning algorithms, like HSpred (Lise et al., 2011) and HotPoint (Tuncbag
et al., 2010). Molecular dynamics simulation tools like CHARMM, GROMACS,
NAMD, AMBER, and DESMOND are also used to manually verify the hot spots
and of these, GROMACS (Spoel et al., 2005) is a free and extensively used software.
Prediction reliability of these methods are high and hence combining them is recom-
mended for accurate prediction. Commercial tools like the Flex_ddG method of
Rosetta (Barlow et al., 2018) and the BioLuminate program of Schrodinger (Beard
et al., 2013) are highly engaged software for the prediction of interacting residues
and hot spots.

The FoldX server is used to predict the stability of proteineprotein structures
and calculate important interaction residues and hot spots between them using en-
ergy functions. This suite is freely available to academic and nonprofit research in-
stitutions for research purposes only. The binding free energy of a complex AB is
calculated as:

DGbinding¼DGAB � ðDGAþDGBÞ
where DGAB is the Gibbs free energy of the complex and DGA and DGB are the in-
dividual free energies of A and B molecules. FoldX follows the given linear combi-
nation of empirical terms to calculate free energy (in kcal/mol):

DG¼ aDGvdwþ b$DGsolvH þ c$DGsolvPþ d$DGwbþ e$DGhbond þ f $DGel

þ g$DGkonþ h$TDSmcþ k$TDSscþ l$DGclash:

where (a. l) are relative weights of the different energy terms used for free energy
calculation, DGsolvH is the desolvation term related to hydrophobic groups, DGsolvP

is the desolvation term related to polar groups, DGwb is the explicit calculation of
water molecules that makes more than two hydrogen bonds with the protein, DGvdw

is calculated in a similar fashion to desolvation but now taking into account exper-
imental transfer energies from water to vapor, DGel is calculated from a simple
implementation of Coulomb’s law, DGhbond is for hydrogen bonds calculated on
the basis of simple geometric considerations and their energy, DGkon calculates
the electrostatic contribution of interactions at interfaces, DSmc is derived from a sta-
tistical analysis of the phiepsi distribution of a given amino acid as observed in a set
of nonredundant high-resolution crystal structures (entropy penalty), DSsc is the
entropy cost of fixing a side chain in a particular conformation, and the DGclash

term provides a measure of the steric overlaps between atoms in the structure.
The output contains the DGbinding for each pair of polypeptide chains in the .pdb
file, decomposed into different energy terms (Schymkowitz et al., 2005; http://
foldxsuite.crg.eu/).

The user needs to submit the PPI complex structure (.pdb file) and set the option
for parameters like temperature, water, ionic strength, and van der Waals design.
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The output displays the binding energies for each pair of polypeptide chains in the
.pdb file, mentioning the contribution of each energy term like backbone hydrogen
bond, side chain hydrogen bond, electrostatics, van der Waals, water bridge, entropy
of side and main chain used by FoldX plus, and an additional term that reflects the
intrachain clashes of residues forming part of the interface. To identify hot spots, an
alanine scan is done, the effect of the truncation on the binding energy between the
chains is calculated, and the list of changes in binding energy due to mutation for
each residue is displayed.

HSPred, an SVM-based method, predicts hot spot residues given the structure of
a complex. The basic energetic terms that contribute to hot spot interactions, i.e., van
der Waals potentials, solvation energy, hydrogen bonds, and Coulomb electrostatics,
are used as input features of an SVM classifier. Also, they have developed two addi-
tional SVM classifiers, specifically optimized for arginine and glutamic acid resi-
dues to improve the performance (Lise et al., 2011; http://bioinf.cs.ucl.ac.uk/
psipred/).

The user needs to upload the PDB structure and specify the chains forming the
interface by entering the chain identifiers for protein 1 and protein 2. HSPred mu-
tates each amino acid at the interface to alanine and scores them. In the output, a
score greater than zero represents predicted hot spot, and negative scores are pre-
dicted nonhot spots. In the resultant .pdb file, predicted hot spot residues are colored
red, nonhot spot residues are colored white, and those that are not part of the inter-
face are colored blue (specified in temperature column).

The BioLuminate program from Schrodinger through the Protein Interaction
Analysis panel identifies the closest interacting residue neighbors in a submitted
proteineprotein complex. The following criteria are used to find the interacting
residues: initially each residue is considered as the target residue and any residue
that has an atom within the specified distance (default 4.0 Å) to the target residue is
considered as its neighbor but interactions between backbone atoms are ignored.
To detect hydrogen bonds, the four atoms involved in the hydrogen bond are desig-
nated as DeH . AeX, when the minimum acceptor angle H . AeX is 90
degrees, the minimum donor angle DeH . A is 120 degrees, and the maximum
H . A distance is 2.5 Å. For detecting a salt bridge, the maximum distance
between an ion and a protein atom is recommended to be 4.0 Å. For pi stacking,
the maximum distance between the centroids of the two aromatic rings is expected
to be 4.0 Å. Also, if RA þ RB e RAB, where RA and RB are the van der Waals radii
and RAB is the distance between atoms A and B, is greater than the allowable over-
lap of 0.4 Å, the atoms are considered to have van der Waals clash (Beard et al.,
2013; BioLuminate, Schrödinger, LLC, New York, NY).

With a proteineprotein complex .pdb file, the following steps are to be followed:
open the BioLuminate interface of Schrodinger, import the Protein complex, and
prepare the proteins using the Protein Preparation Wizard. Then, open the Protein
Interaction Analysis panel from the task bar and in the Define Interacting Groups
box, from the unassigned chain list displayed, select and assign the protein chains
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for Group 1 and Group 2. In the Advanced option box, the default values for
hydrogen bond, salt bridges, pi stacking, and van der Waals clashes displayed can
be agreed or changed. Run by clicking Determine Protein Interactions.

The output of the program lists all the interacting residues of Group 1 protein
with residue number and a three-letter code, and gives details of the residues in
Group 2 protein with which interactions are seen along with particulars like distance
in Angstrom, number of hydrogen bonds, salt bridges, piepi stacking interactions,
disulfide bridges, and van der Waals clashes between them. It also includes van
der Waals shape complementarity and percentage of buried solvent accessible sur-
face area (SASA) of each interacting residue of Group 1 protein toward its interact-
ing residues of Group 2 protein. Similar details are predicted for Group 2 protein and
the analysis of both results gives a clear indication of the nature and mode of inter-
actions at the PPI interface.

The Residue Scanning panel in the BioLuminate program of Schrodinger is
engaged to identify hot spot residues at PPI sites in a submitted proteineprotein
complex by mutating residues of a protein (labeled as ligand) to any particular amino
acid (e.g., alanine), or to an amino acid of the same physicochemical nature. Consid-
ering one protein in the complex as ligand and rest of the system as receptor, it then
calculates the change in stability. Other changes like: change in total surface area
due to the mutation, change in surface area of nonpolar atoms and polar atoms
due to the mutation, change in pKa of the mutated residue, change in binding affinity
of the mutated protein treated as the ligand (negative valuedmutant binds better
than the native protein), change in hydrophobicity or hydrophilicity of the mutated
residue, and change in the van der Waals surface complementarity of residues at the
interface due to the mutation are calculated only when opted by the user. Stability of
the protein is estimated from a thermodynamic cycle to check the effect of mutation
as shown here:

where L(u) is the unfolded ligand, L(f) is the folded ligand, L0(u) is the unfolded
mutated ligand, and L0( f ) is the folded mutated ligand. The change in stability is
given as:

DDGðstabilityÞ¼DG2� DG1 ¼ DG4� DG3

Experimentation measures DG1 and DG2, but DG3 and DG4 are calculated to
effectively cancel the error in the computational models. Prime MM-GBSA, which
uses an implicit solvation model, is engaged for these calculations. Similarly, the
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change in binding affinity of the protein due to the mutation is computed from a ther-
modynamic cycle, as given here:

where R is the receptor, L is the ligand, and L0 is the mutated ligand. R þ L and
R þ L0 represent the separated receptor and ligand. R$L and R$L0 represent the
receptor bound to the ligand. The change in binding affinity is:

DDGðbindÞ¼DG2� DG1 ¼ DG4� DG3

where DG1 and DG2 are experimental values and DG3 and DG4 are calculated
to avoid computational errors and these calculations are also done with Prime MM-
GBSA (Beard et al., 2013; BioLuminate, Schrödinger, LLC, New York, NY).

The following steps are to be followed in the program: in the BioLuminate inter-
face, the proteineprotein complex (.pdb file) has to be imported, refined using the
Protein Preparation Wizard, and displayed in the workspace. From the task bar,
open the Residue Scanning Panel and choose one protein as ligand. Mutation in
both the proteins can be done by labeling the other protein as ligand in the second
run. Here, all the residues of the labeled protein will be displayed with chain
name, number, and a three-letter code in the Residues column. The user can also
choose to show Polar or Nonpolar residues only. In the Surface Complementarity
column, the van der Waals surface complementarity for residues at the interface is
provided, which assists the user to choose residues for mutation based on comple-
mentarity. All the residues can be mutated or only selected residues can be mutated
by checking/selecting the box Mutate selected residues only. To carry out single res-
idue mutation click the Mutation column, and against the selected residue, from the
dropdown menu, select the amino acid to replace or select the residue group like
polar, neutral, etc. and press Enter. Next, for a proteineprotein complex, the prop-
erty affinity needs to be selected and the program run.

In the results, the effects of mutation such as change in total surface area and
change in surface area of polar atoms and nonpolar atoms, which are opted, are dis-
played. From change in binding affinity and change in the stability displayed for
each mutated residue, the hot spot residues in the protein chains of the complex
need to be predicted. For this, a negative value means that the mutant binds better
than the native protein and vice versa. Residues that have a high positive value of
more than 1 are to be considered as hot spots at the PPI interface.

Several research groups have used these tools to investigate the properties of
PPIs. Mattapally et al. sequenced the NKX2.5 gene in 100 congenital heart disease
patients and 200 controls, and identified seven mutations of which D16N was a novel
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mutation that was associated with ventricular septal defect. Furthermore, they car-
ried out computational analysis to verify the effect of mutation. Interaction of the
NKX2.5 protein with GATA4, a TF, was studied using molecular modeling, docking,
and MD simulation studies and the role of the mutation was analyzed. Then,
using the BioLuminate residue scanning/affinity maturation panel and web servers
DrugScorePPI and BeatMusic, alanine scanning of interface residues of the
NKX2.5eGATA4 protein complex structure was carried out, which confirmed
the importance of the mutation and also key residues of this PPI were identified
(Mattapally et al., 2018).

ANCHOR is a web server program that identifies anchor residues in a proteine
protein complex, which are amino acid side chains deeply buried at proteineprotein
interfaces, to discover possible druggable pockets to be targeted by small molecules.
Also, the analogs of the side chain can aid in designing or screening PPI inhibitors.
ANCHOR calculates the change in solvent accessible surface area (DSASA) upon
binding for each residue, and it also approximates the contribution of each residue
toward binding free energy. To characterize anchor residues in a given proteine
protein complex structure, ANCHOR first adds missing atoms using the
CHARMM19 force field and performs hydrogen minimization. It then substitutes
each residue with alanine and calculates the DSASA for each residue’s side chain
by figuring the difference in SASA of the side chain in the unbound protein (isolated
from complex) and in the bound protein complex. SASA is calculated with a compu-
tational program NACCESS. The binding free energy of each residue is calculated
using FastContact, a fast empirical pairwise estimate that combines a standard
distance-dependent dielectric “4r” electrostatic and a desolvation contact potential
(Meireles et al., 2010; http://structure.pitt.edu/anchor/).

For this, open the tool on the web by typing “anchor tool for proteins” or use the
web address. Upload the protein complex and specify chains for protein 1 and pro-
tein 2 and click Submit. In the second turn, interchange the protein chains and
submit.

In the output, for protein 1 chain, the residues are listed in the decreasing order of
DSASA or predicted binding energy as the user chooses. From the residues that
contribute more to binding free energy (having least scores) and that show major
percentage change in DSASA upon mutation, the anchor residues can be predicted.
Analyze the results for both protein chains. In the tool through the Jmol visualizer,
the user can visualize selected anchor residues in their pockets and the stereochem-
ical nature of the surrounding region.

Dosztanyi et al. studied the prediction of the ANCHOR server for detecting bind-
ing regions in disordered proteins with the structure of human calcium/calmodulin-
dependent protein kinase IV and verified its credibility (Dosztanyi et al., 2009).

5.8.2 Screening of small molecules
The information from interacting residues at hot spots from the proteineprotein com-
plex is used to screen small-molecule compounds using peptidomimetic techniques.
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For this, residues of the interacting protein are submitted for small-molecule
screening in tools like pepMMsMIMIC. Alternatively, the hot spot residues on the
target can be submitted as targeting points and virtual docking of small-molecule
datasets from databases can be carried out using docking tools. For example,
DockBlaster is an online server that screens small molecules in the Zinc database
against the submitted target (Irwin et al., 2009).

pepMMsMIMIC is a free web tool that carries out virtual screening of peptido-
mimetic compounds. When a peptide or protein 3D structure is given as a query, it
does a multiconformers 3D similarity search based on pharmacophore and shape
similarity against 17 million conformers stored in the MMsINC database, which
are generated from 4.5 million commercially obtainable chemicals. With a submit-
ted proteineprotein/peptide complex structure, pepMMsMIMIC first identifies three
key residues that are responsible for complex formation or recognizes the user-
entered residues. Peptide complexity is reduced and the basic pharmacophore model
is defined by its critical structural features in 3D space. All possible peptide pharma-
cophore feature arrangements are enumerated to form the basis of a peptide pharma-
cophore bitstring. pepMMsMIMIC performs pharmacophore screening against
multiconformers in the MMsINC database. All possible conformer pharmacophore
feature arrangements are estimated to form the basis of a conformer pharmacophore
bitstring. Engaging two scoring approaches, pharmacophore fingerprint similarity
(PFS) and ultrafast shape recognition (USR), and their consensus, peptidomimetic
candidates are ranked according to similarity and the best top 200 are displayed
as hits. The USR is a fast 3D similarity search method and in the encoding, the shape
of the atomic ensemble is characterized by the distributions of atomic distances to
four reference locations: the molecular centroid (ctd), the closest atom to ctd
(cst), the farthest atom to ctd (fct), and the farthest atom to fct (ftf). Overall, each
of these distributions is described through its first three vectors. In this way, each
molecule is associated with a vector of 12 shape descriptors. PFS measure has
been implemented based on a weighted similarity index (Sw), which is computed as:

Sw ¼ c=ðcþ 2:5x mÞ
where c is the number of common bits between the peptide query fingerprint and the
conformer’s fingerprint, and m is the count of bits in the query fingerprint but not the
conformer’s fingerprint.

Four different scoring methods are actually implemented in the current version
of pepMMsMIMIC: (1) shape score (ShS) based on the USRmethods; (2) PFS based
on weighted similarity coefficient Sw; (3) combined ShS and PFS filtering; and (4)
hybrid scoring function, which is a weighted combination of the ShS and PFS
approach (Floris et al., 2011; http://mms.dsfarm.unipd.it/pepMMsMIMIC).

For its use, using the web address, open the tool and upload the proteineprotein
complex .pdb file consisting of a target and an interacting protein. The 3D structure
of the complex will be displayed on the Jmol visualization window. Based on
the interactions in the complex analyzed previously, either directly from the 3D
structure or from the display boxes below where all the residues are listed in the
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pull-down menu, select three residues (linear or nonlinear) of the interacting protein
that interacts with the hot spot residues on the target protein. Also, for these three
residues, the user has a choice to select CO and/or NH interactors derived from
the carbamide bonds of the backbone and/or the corresponding side chain moiety
using the checker box to include the atoms of these for similarity search. Four
different similarity searches are available: (1) only shape similarity, (2) only phar-
macophoric similarity, (3) shape-based filtering of pharmacophoric similarity, and
(4) hybrid search (60% pharmacophoric similarity, 40% shape), to search for small
molecule conformers. Select a type of similarity search and run the program.

In the output of the program, for each search, the top 200 small molecule hits are
displayed in their 2D representation, along with their MMsINC database ID and link
to the database, where the known and predicted properties of the molecule can be
discerned. The hits can be downloaded as a single .sdf file.

A hostepathogen interaction inhibition study was done by Alam, where PPI in-
hibition strategy was followed. Apical membrane antigen 1 protein of Plasmodium
falciparum found on the surface of the organism, which interacts with rhoptry neck
protein (PfRON2) on erythrocytes of humans, was targeted. Based on the interacting
residues of PfRON2, a peptide similarity search to identify small molecules was
done with the pepMMsMIMIC server and the top five peptidomimetics were taken
for docking analysis with AutoDock Vina. The molecules MMs03919469,
MMs03919369, MMs0391948, MMs03919367, and MMs02548719, which were
found to bind at the expected hydrophobic groove of PfAMA1, were portrayed as
potential lead compounds for designing antimalarials (Alam, 2014).

For entry into human cells, the human immunodeficiency virus needs its enve-
lope glycoprotein gp120 to interact with the CD4 glycoprotein and a chemokine re-
ceptor on the human cell surface (Kwong et al., 1998). In a study by Andrianov et al.
from crystal data of the gp120eCD4 complex, CD4 amino acid residues responsible
for specific interactions with gp120 were used as the input data for the pepMMsMI-
MIC tool. The peptidomimetic candidates found were docked against gp120 and
evaluated by MD simulations and binding free energy calculations to find the poten-
tial inhibitor (Andrianov et al., 2015).

5.8.3 Prediction of ADME/T properties
ADME/T properties are predicted to validate drug-likeness of compounds and to
optimize their structure to enhance target binding affinities and drug-likeness qual-
ities. It is suggested to carry out this study after the docking and simulation proced-
ure to avoid filtering out valid inhibitors whose properties fall out of the
recommended range. Online free tools like SwissADME (http://www.swissadme.
ch/), admetSAR (http://lmmd.ecust.edu.cn/admetsar2/), and molinspiration
(https://www.molinspiration.com) and commercial software like QikProp (Schro-
dinger), ADMET Descriptors/Collection (Accelrys), and MetaSite (Molecular Dis-
covery) are widely used to predict ADME/T properties of the molecules.
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TheQikProp program from Schrodinger Maestro (commercial) is used to calcu-
late the ADME properties of the small-molecule ligands. It evaluates numerically
the pharmacokinetic properties of the molecules, which can be compared with the
recommended values provided by the program. The ranges of the recommended
values are calculated based on the analysis of 95% known drugs. In the development
of QikProp, using BOSS program and OPLS-AA force field, Monte Carlo statistical
mechanics simulations were performed on organic solutes in periodic boxes of
explicit water molecules, which resulted in configurational averages for a number
of descriptors. Correlations of these descriptors to experimentally determined prop-
erties were made, and then algorithms that mimic the full Monte Carlo simulations
were developed. While performing an evaluation of the user-submitted molecules,
QikProp rapidly analyses atom types and charges, rotor counts, volume, and surface
area of the molecules. It then uses this information, along with the physical descrip-
tors calculated using the QikProp developed algorithms, in the regression equations.
The result is an accurate prediction of a molecule’s pharmacologically relevant
properties. QikProp is run in normal mode or fast mode, where in normal mode
44 properties for nearly 10,000 molecules are predicted in an hour and in fast
mode 40 properties of approximately 300,000 compounds are predicted in an
hour. Fast mode skips some calculations like dipole moment, ionization potential,
etc. (QikProp, Schrödinger, LLC, New York, NY).

To run the program, from the Schrodinger Suite, select Maestro and run QikProp
from the application. As the ligands to be submitted to QikProp should be in 3D
structures and hydrogen atoms has to be explicit, the ligands are priorly prepared
using LigPrep, the ligand preparation wizard in Maestro. In Maestro, on the Project
toolbar, click Import and import the ligand molecules from the .mae file. The ligands
are imported as individual entries. From the Project toolbar select the Table button to
see the list of ligands and the entries that are selected. From Applications, open the
QikProp panel. From Use structures from the option menu, select the Project
Table (selected entries) or browse and select the file from system and click start.
From the Start dialog box, from the Incorporate option, choose to replace existing
entries. In the Name box, type any name (ligands) and click start. QikProp by default
runs in normal mode; to run in fast mode, select Fast Mode. Also, the user can opt to
search for a similar specified number of drug molecules before starting the process.
When the job is over, .mae, .qpsa, .out, .log, and .csv files are found in the working
directory. Choose Project and click Save as. In the box opening, name the project
(.prj) and click Save. All the files will be saved as a project.

The .csv file contains all predicted properties of the molecules. In the output, the
evaluation of descriptors and properties are numerically represented to be compared
with the given recommended range values. A few of the descriptors and their recom-
mended values are polarizability: from 13.0 to 70.0, hexadecane/gas partition coef-
ficient: from 4.0 to 18.0, octanol/gas partition coefficient from 8.0 to 35.0, and
octanol/water partition coefficient: from �2.0 to 6.5.

Falchi et al. reviewed studies on small-molecule modulators of PPIs obtained
from different virtual screening strategies. Potential small-molecule inhibitors
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from the studies were evaluated for their main pharmacokinetic properties using the
QikProp program of Schrodinger (Falchi et al., 2014). This study gave an overview
of the characteristics of small-molecule modulators used in PPI targeting studies.

Also, there are many tools to predict only the toxicity profile of small molecules,
based on various strategies. Commercial tools like TOPKAT, DEREK, and MCASE
and freely available tools like TEST, TOXTRE (http://toxtree.sourceforge.net/), and
LAZAR (https://openrisknet.org/e-infrastructure/services/110/) are widely used.
Also, toxicity prediction from the admetSAR tool (Cheng et al., 2012) is extensively
used in many studies (Priya, 2017; Parulekar and Sonawane, 2017), and many prom-
inent databases like DrugBank compute the pharmacokinetics profile of the drug
compounds using this tool.

TEST (Toxicity Estimation Software Tool) estimates toxicity values for chemi-
cals using quantitative structureeactivity relationship (QSAR) methodologies,
which calculate the toxicity profile based on physical characteristics of molecular
structures called molecular descriptors. QSARs are mathematical models and simple
QSAR models calculate the toxicity of chemicals using a simple linear function of
molecular descriptors:

Toxicity¼ ax1 þ bx2 þ c

where x1 and x2 are the independent descriptor variables and a, b, and c are fitted
parameters. For the user-submitted molecules, TEST calculates the required molec-
ular descriptors and the toxicity is estimated using one of several advanced QSAR
methodologies like the hierarchical method, functional data analysis (FDA) method,
single-model method, group contribution method, and nearest neighbor method
(Martin et al., 2012; https://www.epa.gov/chemical-research/toxicity-estimation-
software-tool-test).

The program has to be downloaded and installed and the following steps are to be
carried out: open the software window and either enter the ID of the small molecule
or draw the structure in the chemical sketcher window. Also, the structure can be
imported from the structure file or as a .mol file, or generated from SMILES.
From the End Point pulldown menu, choose the toxicity dataset that has to be
compared. The datasets available for comparison are 96 h fathead minnow LC50,
40 h Tetrahymena pyriformis IGC50, 48 h Daphnia magna LC50, oral rat LD50,
developmental toxicity, bioaccumulation factor, and Ames mutagenicity. From the
Method pulldown menu, select the methodology required. Hierarchical clustering,
FDA, single model, and nearest neighbor are some of the methods that can be
selected. From the options box, the user can allow relaxing fragment constraint
and select the output folder. Click Calculate.

In the output, the numerical values for the predicted properties are displayed
along with experimental values if available. Also, predicted values of the most
similar compounds are displayed. Graphical representations of the predicted results
are saved as a .png file.

Parulekar et al. carried out studies on aminoglycoside phosphotransferases
(APHs) in the multidrug-resistant organism Bacillus subtilis strain RK, which is
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responsible for aminoglycoside antibiotics resistance. In this study, through in vitro
and in silico studies, the molecule ZINC71575479 was identified as a potential
inhibitor for APH. The toxicity profile of this molecule was predicted with the
TEST tool and its comparison with known inhibitor tyrphostin AG1478 identified
it to be a valid molecule for drug development (Parulekar et al., 2019).

5.9 Conclusion
Present in silico tools and biological databases largely assist in the identification of
small molecules for PPI inhibition. A deep understanding of the molecular basis of
the disease and the investigation of the target will facilitate discovery of potent
inhibitors to PPI using these tools. However, it should be noted that all PPIs are
not easy to target because of their interaction complexity and limited number of
experimental structures with high resolution. Also, the molecules in screening
libraries are generated for traditional targets like enzymes, while molecules of a
wider range of chemical diversities are required to inhibit PPIs. Hence, advance-
ments in the molecular biology field, along with expansion of bioinformatics data-
bases and screening libraries with more sophisticated tools and strategies, will make
PPIs the most promising drug targets.
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6.1 Introduction
Nowadays, to overcome the challenges of experimental drug designing,
computer-aided (in silico) methods are widely accepted with the applications
of chemoinformatics. The field of chemoinformatics has emerged in the past
decades to aid in the conventional drug-discovery process by utilizing various
computational tools and inductive learning procedures (Sliwoski et al., 2014).
The term chemoinformatics was first introduced by Frank Brown to establish the
use of chemical information for curating better strategies in developing drugetarget
interaction (DTI). It uses the power of computers, “informatics,” and “chemistry”
to design new drugs and predict complex activities such as toxicity, metabolism, carci-
nogenesis, drugedrug interactions, and chemical evaluation (Cooper, 2004). It has
advanced chemical research and has substantially shaped the drug-discovery process.

Drug discovery is a broad field that encompasses the process of chemical identi-
fication, optimization, screening, and activity prediction (Sinha et al., 2017). The devel-
opment of a new drug has always remained a quest in the current field of biomedicine.
The process of drug discovery is divided into four steps, namely (1) data collection;
(2) preprocessing; (3) high-throughput virtual screening; and (4) selectivity based on
absorption, distribution, metabolism, excretion, and toxicity (ADMET) and chemical
drug likeness (Lipinski rule of five) (Keiser et al., 2009) (Fig. 6.1).

The initial step of the drug-discovery process consists of potential target identi-
fication and compound collection from freely or commercially available databases.
The preprocessing step involves the validation of the intended actual target and
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entity specifically interacting with the target (Lagarde et al., 2019). Furthermore, the
computational method allows the screening of thousands of compounds that helps to
discover potential drug candidates utilizing statistical and machine-learning (ML)
models called “virtual screening (VS)” (Patrick Walters et al., 1998). VS is usually
a knowledge-driven method that allows sequential filters to narrow down and select a
set of “lead-like” hits. It is mainly divided into two broad categories, i.e., structure-
based VS (SBVS) and ligand-based VS (LBVS). Databases of up to 10 million com-
pounds can be handled for any category of VS experiment. SBVS is based on prior
knowledge of the 3D structure of the biological target. It is the method of virtual
high-throughput screening of compounds aimed at identifying whether a given data-
set of compounds can interact with a prespecified target or not (Bohacek et al.,
1996). It helps in the prediction of DTI in which unlikely drugetarget combinations
can be eliminated and high-affinity active combinations can be selected for clinical
experimentation. SBVS can easily be explored using the molecular docking
approach and tools working with different binding and scoring algorithms such as
DOCK, AutoDock, Glide, GOLD, etc. (Bajusz et al., 2017).

On the other hand, LBVS is considered a nonstructure-based VS method. It relies
on compound activity data derived from a set of known compound activities (Jahn
et al., 2009). Pharmacophore designing is an important model in LBVS, and recog-
nizes putative active compounds with diverse chemical features. It helps in the
designing of new candidates and is easily explored using pharmacophore-
mapping, shape-matching, and similarity search (Geppart et al., 2010; Lavecchia
and Giovanni, 2013) tools such as PHASE, RAPID, Mo-inspiration, etc. Apart
from screening, the pharmacophore model can also be used in quantitative
structureeactivity relationship (QSAR) studies for activity predictions. QSAR is
the assumption with respect to the relationship of a compound activity with its bio-
logical potency. QSAR can be classified based on the dimensions of compound
feature representations, namely 2D QSAR and 3D QSAR methods. 2D QSAR is
based on topological features of the compound, while 3D QSAR utilizes the geomet-
rical descriptors for model generation and activity prediction (Neves et al., 2018).

ML algorithms are gaining popularity in designing robust QSAR models.
Different supervised and unsupervised learning algorithms such as k-nearest
neighbor (kNN), support vector machine (SVM), artificial neural network (ANN),

FIGURE 6.1

Schematic representation of the steps in in silico-based drug designing.

ADMET, Absorption, distribution, metabolism, excretion, and toxicity.
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and others have been applied for compound classification and regression scoring
(Chen et al., 2018). ML is advantageous for chemoinformatics to train diversity
of datasets and is capable of screening a large number of compounds with an impres-
sive yield of activity prediction.

Understanding different applications and the need for chemoinformatics tools
to follow different steps in the drug-discovery process are of utmost importance
(Fig. 6.2). Therefore in the present framework, we explore various ligand resources
that provide information that is vital to perform VS. Besides, we also report various
tools to perform molecular docking such as AutoDock, AutoDock Vina, Glide,
GOLD, FlexX, and Fred/Hybrid, and pharmacophore designing such as Mol-
inspiration, MolSoft, Moka, and others. Furthermore, QSAR prediction tools
and ML algorithms, mainly SVM, linear discriminant analysis (LDA), naı̈ve
Bayesian, random forest, kNN, ANN, and deep learning (DL), are included that
help to outperform VS and QSAR tools.

6.2 Current chemoinformatics approaches and tools
6.2.1 Ligand databases/libraries
Compound databases are the platforms that allow users to implement efficient stor-
age and retrieval of information about chemicals. To accomplish different
VS, similarity search calculations, and QSAR tasks, various databases have been
developed (Masoudi-Sobhanzadeh et al., 2020) that store vast amounts of informa-
tion in a well-organized format. Table 6.1 provides information on the database
tools, features, and available URLs.

FIGURE 6.2

Graphical representation of scope of various activities of chemoinformatics.

QSAR, Quantitative structureeactivity relationship.
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Table 6.1 Public databases of compounds/chemicals/drug molecules and
links used in chemoinformatics.

Databases Description of tool (web link)

DrugBank A chemical repository with physical and structural details. This database
offers suites describing clinical-level information and free access to
resources. It consists of more than 14,000 drug entries and Food and
Drug Administration (FDA)-approved small molecules. Discovery phase
molecules are also available in this database (Law et al., 2014). (http://
www.drugbank.com)

PubChem A chemically oriented public repository and information resource (Kim
et al., 2016). It organizes the data into three linked databases, i.e.,
substance, compound, and bioassay database. It also holds the data of
regulatory agencies such as the FDA, US Environmental Protection
Agency, and substance registry (http://pubchem.ncbi.nlm.nih.gov)

ChemBL A repository of bioactive molecules with drug-like properties determined
using different assays such as binding affinity and absorption,
distribution, metabolism, excretion, and toxicity assays. It shares its
database with PubChem and complements information with shared
portals. It also interlinks the chemical and biological data that aids in
translational research (Gaulton et al., 2017) (https://www.ebi.ac.uk)

ZINC A prepared library of comprehensive chemical compounds available with
3D structure features for virtual screening (Irwin and Shoichet, 2005).
This library containsw250,000 compounds and most of the compounds
are drug-like or lead-like that are immediately usable by different virtual
screening tools. The library is freely available in different formats such as
SMILES, mol2, sdf, and DOCK files along with vendor and purchasing
details (https://zinc.docking.org)

NCI A directory of small molecules, therapeutic structures, and a depository
for researchers mainly for cancer research (Bykov et al., 2002) (https://
cactus.nci.nih.gov)

ChemDB A database of stereochemical and geometrical information for small
molecules (Chen et al., 2005). It handles stereochemical and geometrical
information of molecules. It also provides a wide variety of flexible
threshold functions and filters for determining molecular features (https://
cdb.ics.uci.edu/)

Chemspider An online chemical database consisting of more than 25 million chemical
molecules andw25,000 spectroscopic data. It aggregates the data with
different platforms (nearly 400 different sources) and is known as the
Google of chemicals (Pence andWilliams, 2010) (www.chemspider.com)

BindingDB Provides a library of compounds with measured binding affinities. It helps
in the classification of new compounds by searching binding properties
with similar compounds. It holds more than 25,000 binding affinity
measurements utilized in virtual screening, and also provides a training
set of ligands for quantitative structureeactivity relationship (Gilson et al.,
2016) (https://www.bindingdb.org)
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Table 6.1 Public databases of compounds/chemicals/drug molecules and links used

in chemoinformatics.dcont’d

Databases Description of tool (web link)

PDB-Bind A database that provides a collection of ligandereceptor complexes
available in PDB format. The data from this database help in molecular
recognition events where the information about structure and energy
scoring functions are deposited. Currently, more than 25,000 binding
complexes are deposited, including proteineligand, proteineprotein,
proteinenucleic acid, and nucleic acideligand complexes (Liu et al.,
2015) (https://www.pdbbind.org.cn)

PDBeChem A chemical dictionary of structures, stereoisomers, isomers, and
enantiomers of small molecules (Velankar et al., 2016) (https://www.ebi.
ac.uk)

KEGG
Compound

A collection of small compounds, biopolymers, and chemical substances
applied to biological systems. This database has been employed with
KEGG pathways and KEGG drug networking online portals (Kanehisa
et al., 2017) (https://www.genome.jp)

HMDB A human metabolome database consisting of a collection of small
molecule metabolites found in biological systems. This database is
interlined with KEGG, and Reactome collections to meet the
requirements in metabolomics. It provides quantitative and analytical
information about metabolites, associated enzymes, transporters, and
disease-related pathology (Zhou et al., 2012) (https://hmdb.ca)

SMPDB A visual dictionary specifically designed for small molecule pathways
such as different metabolic and drug-action pathways. This database is
hyperlinked to other databases such as DrugBank and HMDB, and is
accompanied by detailed descriptions of all chemicals (Frolkis et al.,
2009) (https://smpdb.ca)

HIT Consists of herbal-derived compounds and protein target information. It
covers a broad range of herbal ingredients that play roles as activators,
inhibitors, agonists, and antagonists. It searches based on the keyword
hit method and covers more than 5000 herbal entries in the database
(Benesch et al., 2010) (https://omictools.com/hit-tool)

TTD The first database that contains information about clinical therapeutic
proteins and nucleic acid drug targets. Drugs with known specific target
function are included in this with more than 10,000 data entries (Chen
et al., 2002) (https://bidd.nus.edu.sg)

PharmGKB A clinically oriented drug encyclopedia that displays genotype,
molecular, and clinical information about drugs and candidate genes. It
helps in building pharmacogenomics relationships with small
compounds (Thorn et al., 2013) (https://www.pharmgkb.org)

SuperNatural A database based on natural product descriptions. It mainly includes
secondary plant metabolites along with physicochemical descriptions
and toxicity profiles (Dunkel, 2006) (https://bioinformatics.charite.de)
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In general, ligand libraries are mainly clinically oriented drug encyclopedias and
databases. These are the resources that provide 2D and 3D structure, target activity
measurement, physicochemical features, molecular descriptors, and clinically rele-
vant literature-based data (Gupta et al., 2018). Prominent large-scale bioactivity data
(IC50, EC50) and high-throughput screening experiment data have also been avail-
able in such databases, which adds complementary features. Furthermore, there
are some resources that can be accessed to provide information about toxic metab-
olites and ligandeligand interactions (Williams and Tkachenko, 2014; Richard
et al., 2006).

6.2.2 In silico structure-based virtual screening
SBVS is also known as target-based VS, which predicts the interactions between
ligand and molecular target. As a consequence, ligands are ranked according to
affinity and the most potential ones are shown at the top. SBVS requires knowledge
of the 3D structure of the target, so that the information can be predicted using
in silico software. Among the approaches of SBVS, molecular docking is
noteworthy in drug designing. The technique identifies drug-like binders from
the extensive database of compounds. The main purpose is to devise specific
electrostatic and stereochemical algorithms to search molecular recognition
events, i.e., to link the interaction of the compound with biological targets
(Kitchen et al., 2004). Shape and noncovalent interactions play essential roles in
identifying the position, binding energetics, molecular interactions, and conforma-
tional changes between a compound (ligand) and target (receptor) for docking
(Brooijmans and Kuntz, 2003). The docking protocols are composed of search
algorithms and score functions to achieve accurate SBVS (Weng et al., 1996).
The basic workflow of the molecular docking-based VS is shown in Fig. 6.3.

Search algorithms are used to search for the orientations and conformations of
the ligand at the binding site. To predict the conformation, the algorithm considers
three types of ligand flexibility: systemic, stochastic, and deterministic. Further-
more, scoring function in docking is used to estimate the noncovalent force in a
ligandetarget complex. Prediction of binding affinity is the primary factor that
decides the failure or success of a molecule. Forcefield and empirical-based
scoring functions are widely used in software; however, hybrid-based and
ML-based functions such as SVM, decision tree, and ensemble methods are
gaining attention for their reliable prediction (Schulz-Gasch and Stahl, 2004).
Some evolutionary-based algorithms such as genetic algorithm, anticolony optimi-
zation, local search, linear programming, statistical search, Monte Carlo, confor-
mational space annealing, or stimulated annealing and similarity-based
approaches also represent the quality of the generated proteineligand complexes
(Maia et al., 2020).
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6.2.2.1 Classes of molecular docking

1. Rigid docking
In this type, the docking system does not allow movement in the conformations
of receptor and ligand. It produces docked conformations with a favorable
surface complementary method. The docking accuracy of a rigid system is
suitable for proteineprotein or proteinenucleic acid interaction (Zhao et al.,
2015).

2. Semiflexible docking
In this type, the docking system allows the alteration in the conformation of the
ligand while keeping the conformation of the receptor fixed or unchanged. It is
suitable for proteineligand and nucleic acideligand interactions (Huanga and
Caflischa, 2010).

3. Flexible docking
In this type, the docking system allows movement in both receptor and ligand
conformations. This type of docking is commonly applicable and provides

FIGURE 6.3

Molecular docking procedure for structure-based virtual screening of compounds.
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additional variables to increase conjugation affinity and make the process more
reliable. It is suitable for ligandeligand and ligandereceptor interactions
(Rosenfeld et al., 1995).

6.2.2.2 Molecular docking tools
The performance of SBVS is based on the selection of a suitable docking program. A
docking program provides the conformational search algorithm, best molecular
complex poses, and high ranking of active compounds based on docking scoring
function (Table 6.2).

Table 6.2 Commonly used docking programs used in chemoinformatics.

Program Description (web link)

DOCK Based on geometric molecular matching and forcefield scoring for
semiflexible docking (https://dock.compbio.ucsf.edu)

AutoDock Based on a Lamarckian genetic algorithm and forcefield scoring for
semiflexible docking (https://autodock.scripps.edu)

GRAMM Based on molecular matching exhaustive search and empirical free
energy scoring for semiflexible docking (https://vakser.compbio.ku.edu)

FlexX Based on an incremental construction algorithm and empirical free
energy scoring for semiflexible docking (https://www.biosolveit.de/FlexX)

GOLD Based on a genetic algorithm and molecular forcefield-based scoring for
flexible docking (https://www.ccdc.cam.ac.uk/gold/)

Glide Based on systemic search and empirical free energy-based scoring for
semiflexible docking (https://www.schrodinger.com/glide/)

ICM Based on stochastic random search, global minimization, and empirical
free energy-based scoring for flexible docking (https://www.molsoft.
com/docking.html)

CDOCKER
(CHARMm)

Based on a molecular dynamics-simulated annealing algorithm and
forcefield-based scoring for flexible docking

LigandFit Based on a Monte Carlo or stochastic algorithm and forcefield-based
scoring for rigid and flexible docking (https://accelrys.com/products/
discovery-studio)

MolDOCK Based on a hybrid dual algorithm-guided differential evolution and
forcefield-based scoring for flexible docking (https://www.molsoft.com/
docking)

AutoDock
Vina

Based on a BroydeneFletchereGoldfarbeShanno algorithm and
empirical free energy-based scoring for semiflexible docking (https://
vina.scripps.edu)

Surflex-
DOCK

Based on an incremental construction algorithm, surface-based
molecular algorithm, and forcefield-based scoring for flexible docking
(https://www.tripos.com/index.php)

FRED Based on an exhaustive search algorithm and Chemgauss scoring for
rigid docking (https://www.eyesopen.com/oedocking)

HYBRID Based on an exhaustive search algorithm and chemical Gaussian overlay
for semiflexible docking (https://www.eyesopen.com/oedocking)

Affinity Based on a Monte Carlo algorithm and forcefield-based scoring for
flexible docking
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1. DOCK
DOCK is an open-source molecular docking tool. It is suitable for semiflexible-
type docking using a geometric matching algorithm. It allows preorganization
of the ligand into the molecular anchor, based on orientation; the geometric
parameters are built for interactions. This method is usually called DOCK
anchor docking. A forcefield energy-based scoring function is used, and
optimization of the docked molecule is performed using the on-the-fly
optimization method (Ewing et al., 2001).

2. AutoDock
This is a freely available unbiased tool for semiflexible-type docking for
proteins and ligands. It combines the simulated annealing and genetic
algorithm to dock a complex rigid ligand with the target. The AMBER
forcefield method is used for energy calculations and is generally used for
substrateeenzyme complex evaluation (Morris et al., 1996).

3. AutoDock Vina
AutoDock Vina is an open-source docking tool that uses the Broydene
FletchereGoldfarbeShanno algorithm. The docking system is based on a
gradient optimization method for manual selection of molecules using the
AutoGrid program and allows cluster formations for scoring. It uses AutoDock
PDBRT input file format and semiempirical free energy for evaluation pur-
poses. This software is robust and fast for semiflexible docking with 80%
accuracy results. Other AutoDock tools can be used with Vina to improve
docking efficiencies such as LeDOCK, rDOCK, and UCSF DOCK (Docking
et al., 1998; Gonczarek et al., 2018).

4. Glide
Glide is a commercially available suite of semiflexible-type molecular
docking, and utilizes the hierarchical filter to search for an optimized version
of the native ligand with possible active sites. The shape and properties of the
receptor are represented in the Glide grid to provide appropriate scoring of
the bound ligand. Glide utilizes the systemic search algorithm for the
conformational search function and an empirical-based scoring function
algorithm to achieve acceptable results with w82% accuracy. The docking
results are presented in the form of a Glide score. This program is suitable
for ligandereceptor interactions and predicts binding affinities (Friesner
et al., 2004).

5. GOLD
GOLD (Genetic Optimization of Ligand Docking) is commercially applied
software that performs automated flexible docking with full receptoreligand
flexibility and searches for space using a genetic algorithm. A simple scoring
function is utilized in GOLD for hydrogen bonding, using a pairwise disper-
sion method to describe hydrophobic bonding. Furthermore, it uses a cavity
detection method to define the active site in the receptor. The genetic algo-
rithm’s output is represented as the fittest conformations between ligand and
receptor in the form of genetic algorithm fitness scores (Jones et al., 1997).

6.2 Current chemoinformatics approaches and tools 181



6. FlexX
The FlexX (Fast Flexible Ligand Docking) program is a commercially available
flexible-type docking tool based on the conformational flexibility model be-
tween receptoreligand complexes predicted by geometric intermolecular
constraints. FlexX requires the coordinates of the active site of the receptor for
docking. Geometrically restricted interaction centers define the active site in
the model. For docking, an incremental construction algorithm and complete
linkage hierarchical cluster algorithm are used. These algorithms search for
matching interaction groups between receptor and ligand and arrange them in
the form of a tree-like structure. The output of FlexX is generally provided
with DG values with the best prediction consisting the highest negative value
(Rarey et al., 1996).

7. GRAMM
GRAMM (Global Range Molecular Matching) is commercial software for
semiflexible-type protein docking based on molecular function matching. It
predicts high scoring best possible ligand conformations, which are further
used for complex formation. It utilizes an exhaustive search algorithm through
translation and molecular rotation to obtain a complex with high score steric
fit. It allows 6D searches to predict the flexible interactions of molecular pairs,
including proteineprotein or proteineligand docking. The program uses the
empirical evaluation approach to produce the gross feature of the complex
(Tovchigrechko and Vakser, 2005).

8. ICM
ICM (Internal Coordinate Modeling) is a commercially flexible docking tool
that involves internal coordinate variables such as bond length, bond angles,
torsion angles, and phase dihedral angles to derive the algorithm for energy
calculations. Systemic search or Monte Carlo simulation procedures are
generally used to define essential docking components, i.e., energy function
and search procedure. It predicts ligandereceptor interaction by global
energy minimization (potential energy function) runs through the Cartesian
coordinate space. It provides both a rigid and flexible type of docking with
52%e55% interaction accuracy (Abagyan et al., 1994).

9. CDOCKER
CDOCKER (CHARMm) (CHARMm-based docking) is a molecular
dynamics-simulated annealing-based algorithm for flexible proteineligand
docking. It is a combined grid-based docking tool that offers a forcefield
energy scoring function. The docking strategy is based on the generation of
several initial ligand conformations to target active sites followed by
molecular dynamics-based simulation annealing and minimization for
interactions. The output of CDOCKER is based on the flexibility of ligand,
ligand size, and internal ligand geometry. Furthermore, this tool is best
designed for medium-sized VS experiments with an accuracy of 50%e56%
(Gagnon et al., 2016).
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10. LigandFit
LigandFit is a freely available shape-based docking tool that allows two
essential procedures for interaction analysis: (1) identification of protein active
site cavity using a flood fitting algorithm, and (2) docking that utilizes the
Monte Carlo or stochastic algorithms for conformational search, selection of
best ligand-compatible shape, and grid-based forcefield energy calculation to
estimate the energy of receptoreligand interaction. Being flexible and rigid,
both types of docking are possible with a shape-directed ligand fit docking
program with an accuracy of 45% (Venkatachalam et al., 2003).

11. Surflex
Surflex is a commercially available automatic flexible docking algorithm. It
reflects the incremental construction algorithm from the Hammerhead docking
system with a search engine based on surface molecular similarity to generate
the best possible poses. Results are presented by the Surflex utility screening
tool using the molecular forcefield evaluation method. It is a fast method
suitable for flexible docking with an 80% performance rate (Jain, 2003).

12. MolDOCK
MolDOCK is a commercial flexible docking tool based on a new hybrid dual
algorithm called guided differential evolution. It combines the heuristic search
and cavity prediction algorithm for the conformational search process and
accurate identification of molecule binding poses. The docking scoring
function uses the piecewise linear potential along with hydrogen bond and
electrostatic directionality. Furthermore, to improve docking accuracy, the
rescoring function is introduced in the MolDOCK program (Thomsen and
Christensen, 2006).

13. FRED and HYBRID
FRED and HYBRID are commercially available tools that belong to OpenEye’s
OEDocking suite. FRED is a rigid docking program that uses only the
structure of the protein to pose and score for docking, while HYBRID is a
semiflexible program that uses the structure of the protein and ligand to pose
and score. Both programs use an exhaustive search algorithm to dock the
molecule. FRED allows only one protein to be docked with one ligand at a
time and uses the Chemgauss scoring algorithm for scoring function. How-
ever, HYBRID allows multiple ligand docking and uses the chemical Gaussian
overlay algorithm for a scoring of a docked molecule (McGann, 2012).

6.2.3 Pharmacophore development
The LBVS method applies because of the unavailability of drugetarget structure.
The most popular approaches for ligand-based VS are 3D pharmacophore develop-
ment and QSAR modeling. A pharmacophore is an arrangement of molecular
descriptors or elements related to biological activity (Yang, 2010). The pharmaco-
phore comprises molecular descriptors such as hydrogen bond acceptor, hydrogen
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bond donor, aromatic group, anion, cation, and hydrophobic group. These features
are building blocks mainly extracted from the compounds that are known to be
active (Wood et al., 2012). Subsequently, there are several commercial and free tools
available that help in the prediction of molecular descriptors to design a pharmaco-
phore. Generation of a pharmacophore requires the following steps: (1) a 3D
structural database of ligands generated for feature extractions, (2) generation of
multiple conformations from the compound database to produce new bioactive
conformation, (3) identification and optimization of reciprocal properties, (4) align-
ment of features, and (5) generation of an active pharmacophore (Ghose et al., 2001).

6.2.3.1 Pharmacophore development tools
Pharmacophore designing can be performed using a suitable tool, either commercial
or open source. A pharmacophore designing program provides the conformational
space for chemical feature extraction and generation of new active conformations.
Some important programs for pharmacophore designing are described next, while
webserver and standalone software is listed in Table 6.3.

Table 6.3 List of pharmacophore designing tools.

Tool Description (web link)

Mol-inspiration Offers fragment-based ligand-based virtual screening (LBVS),
molecular processing, and property calculations (http://
molinspiration.com/egi-bin/proputus/)

QSIRIS Property
Explorer

Helps in structure drawing and characterization of molecular
descriptors (http://organic-chemistry.org/prog/peo/)

MolSoft Helps in structure drawing, ligand editing, and clustering of large
compound libraries (https://molsoft.com/mprop/)

MoKa Helps in ligand editing using Grid molecular interaction fields (https://
moldiscovery.com/software/moka)

Disco Tech Generates low-energy conformations of pharmacophores.

GALAHAD Helps in assigning macro definition features using genetic and rigid-
body alignment algorithms

Ligand Scout Allows extraction of molecular features and creates active
conformations

PHASE Identifies pharmacophore features and is used for overlapping and
structureeactivity data analysis (https://www.schrodinger.com/
phase/)

GASP Involves the superimposition of flexible molecules based on their
proximity

PharmaGist Free software for pharmacophore designing (https://bioinfo3d.cs.
tau.ac.il/PharmaGist/)

ALADDIN Helps in geometric, steric, and substructure searching

RAPID Helps in identifying geometric invariants from the collection of small
molecules
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1. Mol-inspiration
Mol-inspiration is software that offers algorithms for molecular processing and
property calculations. The program is written in Java language. It provides
fragment-based VS of large databases, reproduces new conformations, and
calculates various molecular properties such as pKa, ionic strength, and
binding strength (Jarrahpour et al., 2012). The software is also available with
molecular processing algorithms, including SMILES, SD file conversions, and
high-quality molecule depiction.

2. QSIRIS Property Explorer
This is free software written in Java language that computes different drug-
relevant properties to form an active valid structure. It also helps to draw the
structure, and calculates drug-relevant properties such as cLogP prediction,
solubility prediction, and overall drug-likeness score (Martin et al., 1993).

3. MolSoft
This is freely available software that helps in modeling structure and ligand
editing. It allows the spatial organization of biological molecules, forecasts the

Table 6.3 List of pharmacophore designing tools.dcont’d

Tool Description (web link)

MPHIL Free software to derive a 3D pattern of pharmacophores utilizing
feature and interfeature distances

SCAMPI A program based on recursive partitioning and fast conformational
search to design pharmacophores.

CoLibri A standalone tool for LBVS (https://www.biosolveit.de/CoLibri/)

Decoy Finder A standalone program that helps to find decoy molecules for active
ligands (https://urvnutrigenomica-ctns.github.io/DecoyFinder/)

NNScore A neural network-based program for LBVS (https://rocce-vm0.ucsd.
edu/data/sw/hosted/nnscore/)

Epik A standalone tool to develop ligand protonation states and
tautomers (https://www.schrodinger.com/Epik)

SwissSimilarity A webserver for complete LBVS and pharmacophore designing
(https://www.swisssimilarity.ch/)

ZincPharmer A web program that searches for pharmacophore descriptors from
the ZINC compound library

ShaEP A standalone tool used to align rigid molecular structures (https://
users.abo.fi/mivainio/shaep/index.php)

BALLOON Creates 3D atomic coordinates from distance geometry (https://
web.abo.fi/fak/mnf/bkf/research/johnson/software.php)

React2D Helps to combine fragmented libraries to form complete libraries

CATS Performs chemical similarity search for small molecules

Autoclick Chem A webserver and standalone software that performs chemical
reactions

Shape-it A tool for shape-based alignment using atomic Gaussians (https://
mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html)
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conformations of ligands, performs 2D to 3D conversion, allows clustering of
large compound libraries, and predicts the compound descriptors and
properties.

4. MoKa
This is free downloading software for pharmacophore development. It imple-
ments ligand editing using the algorithm based on descriptors derived from
the GRID molecular interaction field. It has an independent graphical user
interface for system training and building of customized compound prediction
models (Milletti et al., 2007).

5. Disco Tech
Disco Tech (Distance Computing Technique) is a commercially available tool
that helps to generate low-energy conformations. Using the location of atoms
in the molecule and projections from the molecule to hydrogen bond acceptors
and donors, it assists pharmacophore mapping. It uses a clique-specified
number detection method to find the superpositions in the conformations. It is
one of the fastest tools for mapping and is also able to compare the
predicted pharmacophore model with alternative pharmacophore maps
(Spitzer et al., 2010).

6. GALAHAD
GALAHAD (genetic algorithm with linear assignment for the hypermolecular
alignment of the database) is a commercially available pharmacophore
developer tool. It helps in the iterative construction of hypermolecules that
retain the individual attribute to identify target pharmacophores. It works on
two algorithms: (1) genetic algorithm and (2) rigid-body alignment algorithm.
This software uses macro definition fillers (such as acidity, basicity, and
tautomerization) of encountering compounds to assign features in pharma-
cophores and allow molecular features to overlap. It is also available as a
default suite with SYBYL-2 software for pharmacophore mapping (Richmond
et al., 2006).

7. Ligand Scout
Ligand Scout is a commercially available tool for the LBVS of pharmaco-
phores. It allows extraction of active ligand features, creation of active
conformations, validation, and interpretation of models within its graphical
user interface (Wolber and Langer, 2005).

8. PHASE
PHASE is an outstanding pharmacophore development suite available with the
Schrodinger package. It is used to identify target pharmacophore features,
mapping, overlapping, and rationalizing structureeactivity data to develop a
pharmacophore. It utilizes the Monte Carlo multiple minimum algorithm and
low mode conformational searching algorithm for mapping and the rapid
torsion sampling algorithm to generate a pharmacophore with six built-in
descriptors: hydrogen bond donor, acceptor, hydrophobe, negative ionizable,
positive ionizable, and aromatic ring (Dixon et al., 2006).
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9. GASP program
GASP is utilized in commercial programs. It involves the superimposition of
flexible molecules by minimizing the distance between known pharmacophore
points in the two molecules that are being compared. It also encodes
information about the intermolecular mapping between the structural features.
The collection of data in GASP is called chromosomes, and two algorithms,
CROSSOVER and MUTATION, are applied by the program to remove the
least fit model and select the active base molecule. To run the program in
GASP, the input structure is normally created using the SYBYL BUILD
module. Input is decoded on the basis of fitness function using a least square
fitting technique (Jones et al., 1995). Mapping is performed by superimposing
each molecule on the base molecule obtained from the least square technique.
Furthermore, a similarity score is generated to filter overlay molecules, and
finally a fitness score is generated to develop an active new molecule (Hou and
Xu, 2004).

10. PharmaGist
PharmaGist is the first academic webserver for pharmacophore development. It
handles a set of drug-like molecules to find the highest scoring 3D pattern of
molecular features. It uses the pairwise alignment and multiple alignment
(pivot iteration) algorithm to generate pharmacophores with the hydrogen
bond acceptor, donor, cation, anion, and hydrophobe (Schneidman-Duhovny
et al., 2008).

11. ALADDIN
ALADDIN is an integrated computational tool for the design and recognition of
pharmacophores from geometric, steric, and substructure searching. It is
mainly used to design analogs to probe a flexible bioactive conformation with
more subtle variations in shape of the structure. It utilizes the geometric
description language and includes the provision to test the molecule in the
actual coordinate system to generate and store 3D structures. Implementation
of ALADDIN is based on GENIE. It is a language that incorporates chemical
searches and helps in substructure specification, recognition, and enumeration
(Van Drie et al., 1989).

12. RAPID
RAPID is a randomized pharmacophore identification for drug designing
academic-based tools. It helps in the generation of pharmacophores by
identifying geometric invariants among the collection of small molecule
datasets. This tool is based on finding the largest common point sets in the
input data, which are system tractable and without noise. The RAPID
algorithm generates a large number of conformations at random (Finn et al.,
1997). Then, the information is partitioned into sets that reflect geometric
similarities, followed by the clustering of possible conformations of the
molecule. These clusters are used as inputs to identify the invariants. This tool
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uses pairwise matching and multiple alignments to determine the invariants.
Finally, the possible invariants in the cluster are overlaid to produce new active
conformations (Humblet and Marshall, 1980).

13. CLEW
CLEW is freely available software that utilizes the combination of two
different algorithms, i.e., correlation theorem and ML classification method,
to generate a complete set of new conformations. First, it designs pharma-
cologically important features such as hydrogen bond acceptor, donor, anion,
cation, and hydrophobe using a correlation theorem from active analogs.
Second, it classifies the designed pharmacophore utilizing the ML algorithm
(Dolata et al., 1998).

14. MPHIL
MPHIL is an academically available tool that identifies the smallest 3D pattern
of pharmacophore points (k-point) by measuring feature and interfeature
distances within the input ligands. It also employs genetic algorithms to build a
pharmacophore feature such as hydrogen bond donor, hydrogen bond
acceptor, extensions of hydrogen bond, and electrostatic interactions of
binding sites (Holliday and Willett, 1997).

15. SCAMPI
SCAMPI (Statistical Classification of Activities of Molecules for
Pharmacophore Identifications) uses integrated recursive partitioning and fast
conformational search followed by clustering analysis. It creates a
correspondence space in which all possible chemical features and
configurations are indicated. It uses an ensemble distance geometry and active
analogs approach to present correspondence search features among different
compound datasets. Furthermore, the student t-test is used for recursive parti-
tioning of datasets to form a binary molecular descriptor matrix. This matrix
helps to guide the presence and absence of particular molecular descriptors in
the compound (Chen et al., 1999). This tool also performs energy minimization
of all input datasets to restrict the conformations within low-energy regions. The
random search and minimum accessible distance calculation algorithms are
used in the new version of SCAMPI.

16. LigBuilder
LigBuilder builds ligands by using an organic fragments approach used in
structure-based drug design. This tool uses programs for binding pocket
analysis, building up methods, scoring methods, and genetic algorithms. It
uses growing strategy and linking strategy, GROWand LINK, respectively, for
building pharmacophore sites with prominent positions for interactions (Wang
et al., 2000).

17. Other tools
There are other software packages available such as CoLibri, DecoyFinder,
MOLA, NNScore, Epik, SwissSimilarity, ZincPharmer, ShaEP, BALLOON,
React2D, ChemCom, CATS, Autoclick Chem, GMA, Shape-it, Li-SiCA,
DANTE, APOLLO, GAMMA, and Apex 3D tools for pharmacophore
development (Agrawal et al., 2018).

188 CHAPTER 6 Advanced approaches and in silico tools



6.2.4 Quantitative structureeactivity relationship prediction
QSAR is one of the most important models employed in chemoinformatics. QSAR
is a mathematical model that has been developed to relate the structural features of a
pharmacophore to its biological and physiochemical activity. QSAR modeling
has the potential to provide information by reducing time, cost, and animal model
testing (Gramatica, 2007). QSAR is available with various variants such as quanti-
tative structural toxicity relationship and quantitative structureepharmacokinetics
relationship to model toxicological and pharmacological activities, respectively
(Tropsha et al., 2003; Devillers, 2004).

The principle to search for QSARworks on the assumption that similar structures
have similar activities. Therefore these methods are often called predictive methods
(Gadaleta et al., 2016). They can predict different activities such as biological activ-
ity (IC50), class of compounds to which a compound belongs (inhibitor or activator),
developmental toxicity, mutagenicity, and can give rise to the property of interest.

Developing QSAR models for the prediction process involves various modeling
methods such as linear regression and logistic regression (Cao et al., 2010). Howev-
er, knowledge-based ML algorithms are gaining importance and describe the empir-
ical relationship between structure and compound. ML algorithms involves the
preparation of a training compound set of represented similar compounds through
the scanning of optimal molecular descriptors. Furthermore, training sets are run
prior to testing, providing program learning. Finally, the test is run with newly devel-
oped pharmacophores and different algorithms are applied to predict the QSAR of
new molecules (Martins and Ferreira, 2013) (Fig. 6.4).

FIGURE 6.4

Schematic representation of quantitative structureeactivity relationship (QSAR).
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6.2.4.1 Types of QSAR
Various dimension-based QSAR approaches cater for the selection of desirable
features and energy calculations of compounds, mainly 1D, 2D, 3D, 4D, 5D, and
6D QSARs. 1D and 2D QSARs are classic forms corresponding to pKa and logP
properties for activity predictions. Besides, 3D QSAR allows spatial arrangement
of molecules to set the 3D dynamic lattice algorithms for biological activity predic-
tion. Comparative molecular field analysis (COMFA) and comparative molecular
similarity indices analysis (CoMSIA) are the most frequent methods employed for
3D QSAR modeling. COMFA and CoMSIA are alignment-dependent and ligand
descriptor-based methods for building QSAR. The concept focuses on placing
ligands on energy grids and at each lattice point in the grid the energy is calculated.
COMFA correlates energy fields in terms of electrostatic (Coulombic) and steric
properties (van der Waals), while CoMSIA is capable of providing more stable
information correlates with steric, electrostatic, hydrogen bond donor, and hydrogen
bond acceptor interactions with the aim of increasing the potential of the compounds
(Sharma et al., 2016).

4D QSAR is an advanced version that allows conformational flexibility and
freedom of alignment features in 3D QSAR analysis. Moreover, for virtual model
building for advanced pharmacokinetics properties predictions, multiple representa-
tions of chemicals generally provide new dimensions in 4D QSAR. Representation
of a 4D prediction model for multiple induced fit is called a 5D QSAR model. The
new dimension “solvation function” addition to 5D QSAR to study the noncovalent
interactions in activity prediction is called a 6D QSAR model. The advantage of
each approach of the QSAR model is efficiently shown by scoring functions of
internal validation such as cross-validation (q2), least square fit, and external valida-
tion (Damale et al., 2014).

Cross-validation and least square fit are internal validation methods to determine
how large a model can be used for the dataset. They have promising predictive abil-
ities that represent the relationship between predictors and response or experimental
activity. Besides this, external validation of a QSARmodel is based on predicted and
observed activities of external test sets and search for the correlation coefficient and
coefficient of determination. Internal validation is a popular method that defines
robustness and assesses the model fit (Veerasamy et al., 2011).

6.2.4.2 QSAR modeling tools

1. SYBYL
SYBYL is a commercial tool providing a wide range of structure-building,
optimization, and basic comparison models to relate to the structure. The tool
comes with a selection of broad forcefields that can be used in compound
activity prediction. COMFA is generally employed for affinity representation
in the SYBYL tool.

2. CODESSA
CODESSA is a commercially available tool for QSAR prediction. It is able to
calculate a range of molecular descriptors based on 3D structure of the
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compound on the basis of constitutional, topological, geometrical, electro-
static, charged surface area, quantum chemical, molecular orbital-related, and
thermodynamic features. The use of CODESSA can be integrated with
AMPAC for compound property prediction of the chemical structure.

3. Auto-QSAR
Auto-QSAR is an application of the commercially available software
Schrodinger. It is automated, high-quality guesswork applied to generate
models and predict structural property. It uses the practice included in the
OECD-QSAR guidelines. It estimates the property using structural similarity
among the training set and returns a yes or no indication for a particular
prediction. The results for QSAR prediction can be analyzed via Maestro
visualization application (Karnik et al., 2020).

4. OECD-QSAR toolbox
To facilitate the QSAR approaches in regulatory government-based industries
and to improve regulatory acceptance, the OECD developed a QSAR toolbox
application to access the hazards of any chemical. The tool consists of
several programs for identification of potential mechanisms of action
of compounds, identification of other similar compounds, and prediction of
activities (Oecd, 2004).

5. Vega QSAR
Vega QSAR is a freely available tool providing accessibility to various
applications for toxicity prediction of a compound. It allows users to develop
their own model of prediction to predict any property of the compound
scripted in the Java language (Benfenati et al., 2013).

6. TEST
The toxicity estimation software tool is freely available software developed to
estimate toxicity and physical properties of a compound using various QSAR
algorithms. It predicts toxicity based on the physical characteristics of the
compound. The best part of the software is that it does not require any external
program to run it. The input chemical structure can draw on a chemical
sketcher window of the software, or a structural text file (SMILES) can be used
or directly imported from the list of databases. The software includes models
for estimation of IC50, LC50, LD50, developmental toxicity, and mutagenicity
(US EPA, 2010).

7. Caesar 2.0
Caesar version 2.0 software is a freely available tool that has been integrated
with the QSARmodel to predict developmental toxicity and mutagenicity. It is
a Java application and is easy to use for analysis (Cassano et al., 2010).

8. PASS Prediction
PASS (prediction of activity spectra for substances ) is an online application
available with Way2Drug predictive services. PASS is employed to predict
biological activity of new compounds, including pharmacological activity,
mechanism of action, toxicity, and adverse effects (Rudik et al., 2019).
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9. DEMETRA
DEMETRA is freely available software that is useful for predicting the toxicity
of molecules particularly for pesticide chemicals.

10. Other tools
E-Dragon, GRIN/GRID, Danish QSAR, TOX match, Toxtree, OCHEM,
AMBIT, ChemAxon Marvin, MetaDrug, PreADME, TerraQSAR, Derek,
Hazardexpert, TIES, and QSAR Pro are other tools available to predict
structureeactivity relationships based on different prediction models or
algorithms (Yousefinejad and Hemmateenejad, 2015) (Table 6.4).

6.3 Machine learning approaches and tools for
chemoinformatics

The area of ML is currently one of the most rapidly evolving approaches in the field
of chemoinformatics. ML methods are primarily employed for pattern recognition
algorithms to construct a model for structureeactivity prediction. It mainly works
on the “modes of statistical interference” and “predictive modeling levels” to
develop a prediction model (Simeone, 2018). These methods in chemoinformatics
provide knowledge-based relationships between the structure and property of inter-
est. The optimal learning parameters are mainly used to perform two important tasks
(Shalev-Shwartz and Ben-Daid, 2013):

1. Retrieving chemical information (feature description) to extract domain
knowledge with desired behavior, called “ENCODING.”

2. Learning by building a hypothesis class for chemoinformatics models called
“MAPPING” to illustrate the structureeactivity relationship.

Table 6.4 List of quantitative structureeactivity relationship (QSAR)
prediction tools.

Tools Description (web links)

SYBYL Commercial-based molecular field QSAR analysis-based tool
(https://www.tripos.com)

CODESSA Commercial-based 1D and 2D QSAR modeling tool (https://
www.codessa-pro.com/index.htm)

Auto-QSAR Commercial QSAR tool in Schrodinger (https://schrodinger.
com/autoqsar)

Vega-QSAR Freely available 2D QSAR tool (https://vegahub.eu/download/
vega-qsar-download/)

TEST Free tool for absorption, distribution, metabolism, excretion,
and toxicity prediction (http://epa.gov/chemical-research/
toxicity-estimation-software-tool-test/)

PASS Webserver activity prediction spectra tool (http://
pharmaexpert.ru/passonline/)

OECD QSAR toolbox Webserver tools for activity prediction (http://oecd.org/
chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm)
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This section highlights the introduction of newer ML methods and advanced
QSAR tools that are commonly used to build and validate prediction models in
chemoinformatics.

6.3.1 Techniques of ML
ML algorithms are broadly classified into two main techniques: supervised learning
and unsupervised learning.

1. Unsupervised learning
Unsupervised learning is defined as “learning of the pattern from the unlabeled
data, i.e. training sets consist of input without the labeled desired output for
activity prediction.” There is no indication of desirable output; however, it could
predict the properties of the mechanism generating the data. Data clustering is
the main learning task of unsupervised learning (Odziomek et al., 2017).

2. Supervised learning
Supervised learning is defined as “external reinforcement of information to
produce a learning hypothesis, i.e. training set consists of labeled input and
output for activity prediction.” Generation of pattern or hypothesis to predict
chemical activity via supervised learning involves dataset features collections,
construction of new features, and selection of learning algorithms to test
compound activity (Lavecchia, 2015). Different platforms utilizing ML
techniques are listed in Table 6.5.

Table 6.5 Platforms for machine learning (ML)-based quantitative
structureeactivity relationship (QSAR) modeling.

Tool Description (web link)

LibSVM Commercial program based on ML support vector machine (SVM) and
super vector regression (SVR) algorithms. This tool performs priority-wise
extraction of influential datasets and cross-validates to search for the best
molecular feature. This technique in SVM is called Information Gain or
InfoGain. The suite contains SVM-scale tools that comprise certain
parameters on which the data are classified such as S SVM_type, t
kernel_type, d degree, g gamma, wi weight, v-n validation mode, and q
quiet mode (https://www.csie.ntu.edu.tw/libsvm/)

DPubChem This tool is a freely available MATLAB-based program that performs
different classification and regression data visualizations, simulations,
image processing, and computational modeling (Soufan et al., 2018).
(https://www.cbrc.kaust.edu.sa/dpubchem)

MOE MOE is commercial drug discovery software with ML algorithms to perform
QSAR, pharmacophore discovery, protein modeling, molecular modeling,
and simulation medicinal chemistry application and method development.
Given a set of known training sets, an MOE-designed QSAR model can
also help to correlate the activities (Vilar et al., 2008) (https://www.
chemcomp.com/software.htm/)
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Table 6.5 Platforms for machine learning (ML)-based quantitative

structureeactivity relationship (QSAR) modeling.dcont’d

Tool Description (web link)

Ezqsar A free R-program-based QSAR tool. This is open-source tool performs a
variety of linear or nonlinear statistical modeling, time series analysis,
classification, regression, and clustering tools (Tsiliki, 2015) (https://www.
omicstools.com)

CORAL A free R-program-based QSAR and nano-QSAR tool. (https://www.insilico.
eu/coral/)

QSARINS A free R-program-based QSAR tool. It performs a variety of linear or
nonlinear statistical modeling and time series regression analyses (Tsiliki,
2015) (https://www.vegatools.com)

RRegrs A free R-program-based QSAR tool (https://www.r-project.org/)

WeKa Open-source program for ML-based QSAR modeling. This suite of ML is a
popular open source for performing feature selection, clustering,
classification, association rule mining, and regression (Pyka et al., 2012)
(https://www.cs.waikato.ac.nz/ml/weka/)

KNIME Konstanz Information Miner is a free standalone R-program-based tool for
QSAR. It is an academic platform for data integration, processing, analysis,
and modeling. The given module of a dataset is organized in the form of
nodes that provide data modeling, visualization, and data flow (Berthold
et al., 2006) (https://www.knime.org)

Rapid
Miner

Open-source Weka-based tool for QSAR. The system operates with the
Java project for implementing ML and data mining algorithms. It also
integrates the Weka attributes for library modeling. It has an “optimize
parameter” operator to allow the semiautomation of different tools
(Choudhary et al., 2018) (https://rapid-i.com)

Tanagra Free tools that allow support data visualization, one-way ANOVA, Welch
ANOVA, paired t-test, normality test, feature selection (remove constant,
define feature status), regression (regression tree, SVR, multiple linear
regression algorithm), factorial analysis (principal component analysis,
principal factor analysis), clustering (k-nearest neighbor), and classification
(SVM, random forest, decision tree, and naı̈ve Bayes classifiers) (http://eric.
univ-lyon2.fr/wricco/tanagra/en/tanagra.html)

Keel Open-source tool for finding evolutionary relationships (https://sci2s.ugr.
es/keel/)

AZOrange AZOrange is an open-source tool for ML, developed for absorption,
distribution, metabolism, excretion, and toxicity, in particular for QSAR
models in drug discovery. It provides fundamental scientific principles of
reproducibility, which are guided by OECD for QSAR modeling. It also
consists of some open-source codes such as OpenCV package, PLearn
interface, and APPSPACK especially for QSAR modeling (Stålring et al.,
2011) (https://www.orange.biolab.si/)
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6.3.2 Types of supervised learning
1. Classification

Classification methods classify data into specific classes based on the finite and
discrete similarity output.

2. Regression
Regression methods refer to the regression algorithm to improve the accuracy of
predicted classification models by providing quantitative true values. The
objective of regression methods is to provide the mathematical equation to
predict the outcome.

6.3.3 Algorithms for classification and regression problems in drug
designing

1. Support vector machine
The SVM learning algorithm maps the data within the high-dimensional space
along with demarcation of the separating hyperplane. A hyperplane is defined
by a linear discriminant function comprising a linear combination of molecular
descriptors. The SVM approach is based on the linear kernel function; it means
that when the 2D data are not separated using a straight line, they are projected
in the form of an SVM hyperplane that allows data to be linearly separated
(Geppert et al., 2008). Each test instance is classified depending on which side
of the hyperplane boundary they lie. Ranking could be achieved by measuring
the distance between a hyperplane and the instance. SVM is one of the most
common classifier approaches used in chemoinformatics adopted for binary or
multiple classification (Cortes and Vapnik, 1995). SVM learning algorithms
used in bioactivity prediction for repurposing drugs, inhibitors, and receptor
compounds are based on the structural risk minimization principle (Zhao et al.,
2006). Furthermore, it is also used to predict toxicity-related properties and
physicochemical property prediction that include solubility, pKa, logP, and
melting point. LibSVM, Weka, and MOE are efficient platforms utilizing the
SVM algorithm.

2. Linear discriminant analysis
An LDA classifier works on data that has categorical target properties and mo-
lecular descriptors in continuous variables. It also finds the separating hyper-
plane that can separate different classes. The hyperplane is generated using the
LDA of molecular features. The LDA approach classifies the unknown com-
pound on the basis of L-discriminant scores either below or above the hyper-
plane margin score. Applications of LDA in modeling are used to predict
mutagenicity, antiparasitic drugs, toxicity of pesticides, and antitrypanosomal
and trichomonacidal symptoms (Vert and Jacob, 2008). SPSS, SAS, R-program,
and Tanagra are commonly developed tools utilizing LDA for prediction.

6.3 Machine learning approaches and tools for chemoinformatics 195



3. Naı̈ve Bayesian algorithm
Naı̈ve Bayes classification algorithms are probabilistic approaches for estimating
the probabilities of class membership. They are based on Bayes theorem of
conditional probability in which the test instance is correctly assigned to the
highest estimated probability class, and has the benefit of conceptual simplicity
(Klon, 2009). The use of naı̈ve Bayesian analysis has been investigated
extensively to predict biological activities of multiple drugs with newly pro-
posed features; a well-known example of this approach was recently reported by
Bai et al. (2018). This study performed the systemic analysis of large random
drug pairs using the naı̈ve Bayesian algorithm to predict effective drugs com-
binations for cancer and metabolic disorder based on two new features: meta-
bolic enzymes of drugs and transporters of drugs. The method demonstrated
better performance and constructed a more stable and accurate predictive model
compared to other ML classifiers, indicating the role of the naı̈ve Bayes
approach in predicting drug combinations. In addition, the naı̈ve Bayes
approach is often used for performance enhancement, protein target prediction,
bioassay classification for drug-like molecules, and toxicity.

4. Random forest algorithm
The decision tree is a hierarchical arrangement of nodes and branches. Decision
tree structure mainly consists of three main nodes: root nodes, middle nodes,
and terminal or leaf nodes, respectively. Two nodes, i.e., root and middle node,
form the test condition, which is assigned with molecular descriptors; the ter-
minal nodes are assigned with target properties to classify unknowns. The
classification of unknown molecules is based on the terminal or leaf node. The
information undergoes a series of inquiries through root and internal middle
nodes, with rules and regulations. A compound will be classified on the basis of
matching of properties from the given set of descriptors. Most commonly,
Hunt’s algorithm runs the deciding tree. It specifies the threshold of molecular
descriptors that specify the best splitting of the unknowns. Applications of the
decision tree have been applied in QSAR to cytochrome P450, catalyst pre-
diction, peptideeprotein binding affinity, inhibitors, and substrate predictions
(Sela and Simonoff, 2012).
In contrast, random forest classifiers work on the development of the consensus
of large numbers of decision tress, thus forming a forest. The majority predicted
score from each tree in the forest forms the final prediction. Random forest is
easy to use if provided with the number of trees in the forest and a number of
molecular descriptors (Segal, 2004). Therefore a large number of trees or re-
lationships can be utilized to classify the unknown molecule in random forest.

5. k-nearest neighbor algorithm
kNN is a nonparametric and lazy ML algorithm for classifying test sets. It al-
lows simple implementation to classify the instances and does not need any
training dataset for model development. Each test feature/instance is classified
based on a class common to its closest neighbor “k” present in a high-
dimensional feature space. The algorithm finds the distance between the two
instances using Euclidean distance, Hamming distance, Manhattan distance,
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and Minkowski distance, followed by finding and voting to search for the
closest neighbor (Kauffman and Jurs, 2001). Each instance is defined as a
position vector in the feature space that is often chosen to be a small integer,
and the neighbor is chosen to be closest to the point for which the instances
need to be predicted. Let the classes of a feature be 2, then k ¼ 1 is selected as
the nearest neighbor in the feature space to vote. The number of neighbors in
kNN has to be decided by the requirement of the dataset. The small number of
neighbor fits flexible with high variance and low biasness into the network.
kNN can easily identify the class of the dataset; however, regression can also
be performed by assessing the attribute of each test instance. Furthermore, it is
also helpful to assess the contribution of the properties of the neighbors
(Mitchell, 2014). kNN is commonly used in ligand-based drug designing,
which classifies based on the assumption of compound similarity with nearest
neighbor, predicting binding affinity of receptor ligand complexes such as
activity of anti-HIV isatin analogs, T-helper cell antagonists, and others.

6. Least square algorithms
The linear regression model in ML fits the classified data according to the least
square method to acquire the accurate sampling data and reduce the square of
the error. This method predicts the linear function scores of one variable from
the given set of training data points. The predicting group is called the criterion
variable and another known group is called the predictor variable. The values of
criterion and predictor variables are the model parameters. The regression plot
utilizes the values of both of criterion and predictor variables to construct the
best fitted straight “regression line” to the data points (Marill, 2004). The fitted
line minimizes the distance between the data nodes along the dimensions to give
outcome variables. Hansch and Free-Wilson analysis of QSAR models makes
extensive use of linear regression algorithms. It is also applied to the prediction
of luteinizing hormone-releasing factor and interleukin-1 antagonists (Frank
and Friedman, 1993).
Several techniques of the least square method such as principal component
regression and super vector regression are available to combat model
complexity. L2 regularization methods like ridge regression and Gaussian
process decrease the number of predictor variables and select the small subsets
that are being predicted by any chemoinformatics model such as QSAR or
QSPR (Seeger, 2004). Principal component regression (PCR) is a type of
multiple regression method under unsupervised learning that converts the large
variable dataset into the smaller set of variables with unrelated features. This
type of regression method is commonly used to identify mechanistic features
among the variables. Another popular method of regression is partial least
squares, which mainly couples the PCR algorithm with multivariate regression.
This method transforms the given set of predictor variables into noncorrelated
variables and is the first choice for QSAR and 3D QSAR modeling, predicting
compound inhibitors for Chlorella vulgaris and human immunodeficiency virus
(HIV) (Lo et al., 2018).
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7. Artificial neural networks algorithms
ANNs are a family of ML neural network algorithms. They are inspired by the
operations of brain networks; unlikely a mathematical model used for pattern
recognition. The network is based on a consecutive connected layered
architecture, an input layer for recognition (analogous to dendrites) input signal,
some intermediate or hidden layers that generate an activation response (anal-
ogous to cell body), and an output layer that passes the output signals to sub-
sequent connected nodes (analogous to axons) (Niculescu, 2003). Each
connection between the neurons carries the signal in the form of desired patterns
or scores. The network learns how to connect the input and output data during
the training phase; this approach is called pretraining. The ANN has adjustable
internal parameters called weights or knobs to fine tune the function. It is uti-
lized for speed recognition and prevent overfitting for better generalization of
the functions. ANN algorithms have been widely applied to all branches of
chemoinformatics, including modeling QSAR/QSPR properties of drug-like
molecules, pharmacokinetic and pharmacodynamic analysis, and toxicological
and physicochemical property analysis (Patel and Goyal, 2008). R-program,
MATLAB, and Neuralware are some tools used for ANN development.

8. Deep learning neural network algorithm
Deep learning network (DLN) is closely associated with ANN-type architecture,
with multiple (hundreds to millions) hidden layers. Each hidden layer has its
own weights, activation functions, and biases that help to modify the internal
function for better output. The recent success of DL provides an opportunity to
develop tools for molecular graph generation to set descriptors of chemical
structures (Ekins, 2016). DL was first introduced in QSAR evaluation to predict
complex statistical patterns among thousands of molecular descriptors. It helps
in numerous chemoinformatics applications of drugetarget identification, de
novo molecular design, small molecule optimization, and QSAR prediction.
One advantage of DLN algorithms is that they have different flexible algorithms
to fine tune the method.
A convolutional neural network (CNN) is a type of DL algorithm that is designed
to predict performance using local filter scans and different hidden layers. Each
hidden layer in ConvNets acts with independent function. It takes advantages of
feature extractions by pooling data, sharing weights, and using different hidden
layers in the network. It mainly helps in image recognition by employing simple
local features to complex models. CNN does not have any sort of dependency in
the sequential input data. The output from the CNN is self-dependent based on
the training model (Duvenaud et al., 2015). For example, if 200 different inputs
are run, the results do n’ot have any correlation between previous inputs and the
next input (nonbiased data classification).
In contrast, when the identification of a new model is dependent on previous data
generated, then results biasness based on previous output is required. In this
scenario, the second type of DL, i.e., recurrent neural network (RNN), helps to
channel information through a series of operations with some sense of memory
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of previous input or output in the sequence of data. In the RNN, all hidden layers
are merged into a single recurrent layer that helps to store all the previous
functional input, and merges that information with the current input (Olivecrona
et al., 2017). This kind of output information indicates the correlation between
the current data step and previous input. This complex algorithm is useful in
building models for QSAR, de novo synthesis, QSPR activities, and long arrays
of data analysis, such as gene expression data.

6.4 Conclusion
The effectiveness of the chemoinformatics approach to drug discovery is associated
with various tools used in conjugation. In spite of advances, a number of drug
candidates fail to reach the clinical phase, so there is a need to adopt techniques
that will be easy to use and show minimal loss in the designing process. Chemoin-
formatics applications enclosed within software-based platforms have enabled re-
searchers from across the world to collaborate with their respective areas of drug
discovery and vaccine development. The in silico chemoinformatics tools discussed
in this chapter provide a different insight into pharmaceutical studies so that various
facets of modern biomedicine may be understood to expand their horizons without
the use of textbooks . The previously existing attitudes and conceptions of drug
designing mean that software-based computational approaches are now redundant.
These disciplines are no longer separate and the advancements in each of these fields
inevitably impact each other. It is therefore imperative for students, scientists,
learners, and researchers to understand this nexus and to make concerted efforts
to develop new strategies for accelerating the drug-discovery process for countless
diseases that impact humanity.
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Geppert, H., Horváth, T., Gärtner, T., Wrobel, S., Bajorath, J., 2008. Support-vector-machine-
based ranking significantly improves the effectiveness of similarity searching using 2D
fingerprints and multiple reference compounds. J. Chem. Inf. Model. 48, 742e746.

Geppert, H., Vogt, M., Bajorath, J., 2010. Current trends in ligand-based virtual screening:
molecular representations, data mining methods, new application areas, and performance
evaluation. J. Chem. Inf. Model. 50, 205e216.

Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., 2001. The fundamentals of pharmaco-
phore modeling in combinatorial chemistry. J. Recept. Signal Transduct. 21, 357e375.

Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., Chong, J., 2016. BindingDB in
2015: a public database for medicinal chemistry, computational chemistry and systems
pharmacology. Nucleic Acids Res. 44, D1045eD1053.

Gonczarek, A., Tomczak, J.M., Zareba, S., Kaczmar, J., Dąbrowski, P., Walczak, M.J., 2018.
Interaction prediction in structure-based virtual screening using deep learning. Comput.
Biol. Med. 100, 253e258.

Gramatica, P., 2007. Principles of QSAR models validation: internal and external. QSAR
Comb. Sci. 26, 694e701.

References 201



Gupta, P.P., Bastikar, V.A., Chhajed, S.S., 2018. Chemical Structure Databases in Drug Dis-
covery, vol. 3, pp. 47e61.

Holliday, J.D., Willett, P., 1997. Using a genetic algorithm to identify common structural fea-
tures in sets of ligands. J. Mol. Graph. Model. 15, 221e232.

Hou, T., Xu, X., 2004. Applications of genetic algorithms to computer-aided drug design.
Prog. Chem. 16, 35e38.

Huanga, D., Caflischa, A., 2010. Library screening by fragment-based docking. J. Mol.
Recogn. 23, 183e193.

Humblet, C., Marshall, G.R., 1980. Pharmacophore identification and receptor mapping.
Annu. Rep. Med. Chem. 15, 267e276.

Irwin, J.J., Shoichet, B.K., 2005. Zinc - a free database of commercially available compounds
for virtual screening. J. Chem. Inf. Model. 45, 177e182.

Jahn, A., Hinselmann, G., Fechner, N., Zell, A., 2009. Optimal assignment methods for
ligand-based virtual screening. J. Cheminf. 1, 14.

Jain, A.N., 2003. Surflex: fully automatic flexible molecular docking using a molecular
similarity-based search engine. J. Med. Chem. 46, 499e511.

Jarrahpour, A., Fathi, J., Mimouni, M., Hadda, T.B., Sheikh, J., Chohan, Z., Parvez, A., 2012.
Petra, Osiris and Molinspiration (POM) together as a successful support in drug design:
antibacterial activity and biopharmaceutical characterization of some azo Schiff bases.
Med. Chem. Res. 21, 1984e1990.

Jones, G., Willett, P., Glen, R.C., 1995. A genetic algorithm for flexible molecular overlay and
pharmacophore elucidation. J. Comput. Aided Mol. Des. 9, 532e549.

Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R., 1997. Development and validation
of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727e748.

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K., 2017. KEGG: new per-
spectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353eD361.

Karnik, K.S., Narula, I.S., Sarkate, A.P., Wakte, P.S., 2020. Auto QSAR- A fast approach for
creation and application of QSAR models through automation. Chem. Select 5,
5756e5762.

Kauffman, G.W., Jurs, P.C., 2001. QSAR and k-nearest neighbor classification analysis of se-
lective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors.
J. Chem. Inf. Comput. Sci. 41, 1553e1560.

Keiser, M.J., Keiser, M.J., Setola, V., Setola, V., Irwin, J.J., Irwin, J.J., et al., 2009. Predicting
new molecular targets for known drugs. Nature 462, 175e181.

Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., et al., 2016.
PubChem substance and compound databases. Nucleic Acids Res. 44, D1202eD1213.

Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J., 2004. Docking and scoring in virtual
screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3,
935e949.

Klon, A., 2009. Bayesian modeling in virtual high throughput screening. Comb. Chem. High
Throughput Screen. 12, 469e483.

Lagarde, N., Goldwaser, E., Pencheva, T., Jereva, D., Pajeva, I., Rey, J., Tuffery, P.,
Villoutreix, B.O., Miteva, M.A., 2019. A free web-based protocol to assist structure-
based virtual screening experiments. Int. J. Mol. Sci. 20 (18), 4648.

Lavecchia, A., Giovanni, C., 2013. Virtual screening strategies in drug discovery: a critical
review. Curr. Med. Chem. 20, 2839e2860.

Lavecchia, A., 2015. Machine-learning approaches in drug discovery: methods and
applications. Drug Discov. Today 20, 318e331.

202 CHAPTER 6 Advanced approaches and in silico tools



Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., et al., 2014. DrugBank 4.0:
shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091eD1097.

Liu, Z., Li, Y., Han, L., Li, J., Liu, J., Zhao, Z., Nie, W., Liu, Y., Wang, R., 2015. PDB-wide
collection of binding data: current status of the PDBbind database. Bioinformatics 31,
405e412.

Lo, Y.C., Rensi, S.E., Torng, W., Altman, R.B., 2018. Machine learning in chemoinformatics
and drug discovery. Drug Discov. Today 23, 1538e1546.

Maia, E.H.B., Assis, L.C., de Oliveira, T.A., da Silva, A.M., Taranto, A.G., 2020. Structure-
based virtual screening: from classical to artificial intelligence. Front. Chem. 8, 343.

Marill, K.A., 2004. Advanced statistics: linear regression, Part II: multiple linear regression.
Acad. Emerg. Med. 11, 94e102.

Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I., Pavlik, P.A., 1993. A fast new
approach to pharmacophore mapping and its application to dopaminergic and benzodiaz-
epine agonists. J. Comput. Aided Mol. Des. 7, 83e102.

Martins, J.P., Ferreira, M.M.C., 2013. Qsar modeling: a new open source computational pack-
age to generate and validate qsar models. Quim. Nova 36. 554-U250.

Masoudi-Sobhanzadeh, Y., Omidi, Y., Amanlou, M., Masoudi-Nejad, A., 2020. Drug data-
bases and their contributions to drug repurposing. Genomics 112 (2), 1087e1095.

McGann, M., 2012. FRED and HYBRID docking performance on standardized datasets.
J. Comput. Aid. Mol. Des. 26, 897e906.

Milletti, F., Storchi, L., Sforna, G., Cruciani, G., 2007. New and original pKa prediction
method using grid molecular interaction fields. J. Chem. Inf. Model. 47, 2172e2181.

Mitchell, B.O., 2014. Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev.
Comput. 4, 468e481. J.B.O.

Morris, G.M., Goodsell, D.S., Huey, R., Olson, A.J., 1996. Distributed automated docking of
flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol.
Des. 10, 293e304.

Neves, B.J., Braga, R.C., Melo-Filho, C.C., Moreira-Filho, J.T., Muratov, E.N.,
Andrade, C.H., 2018. QSAR-based virtual screening: advances and applications in drug
discovery. Front. Pharmacol. 9, 1275.

Niculescu, S.P., 2003. Artificial neural networks and genetic algorithms in QSAR. J. Mol.
Struct. 622, 71e83.

Odziomek, K., Rybinska, A., Puzyn, T., 2017. Unsupervised Learning Methods and Similarity
Analysis in Chemoinformatics: Handbook of Computational Chemistry, pp. s2095e2132.

Oecd, 2004. OECD principles for the validation, for regulatory purposes, of (quantitative)
structure-activity relationships models. Biotechnology 1e2.

Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H., 2017. Molecular de-novo design
through deep reinforcement learning. J. Cheminf. 9.

Patel, J., Goyal, R., 2008. Applications of artificial neural networks in medical science. Curr.
Clin. Pharmacol. 2, 217e226.

Patrick Walters, W., Stahl, M.T., Murcko, M.A., 1998. Virtual screening - an overview. Drug
Discov. Today 3, 160e178.

Pence, H.E., Williams, A., 2010. Chemspider: an online chemical information resource.
J. Chem. Educ. 87 (11).

References 203
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7.1 Importance of technology in medical science
Computational approaches involving both cheminformatics and bioinformatics have
made remarkable progress in drug discovery. Since the beginning of the 20th
century, theoretical chemists have developed various chem-bioinformatic approaches
to identify and validate targets, design new drugs, perform bimolecular interaction of
new potential targets with chosen targets, and realize virtual screening of potential
drugs for a disease (Augen, 2002). Conventional drug discovery involves huge invest-
ment in terms of money, time, and labor. Therefore drug discovery is a challenging
task for the entire scientific fraternity. With the advent of high-speed computers
and user-friendly computational software, pharma companies are employing these
tools on a regular basis to save precious resources and shorten the drug discovery
cycle.

7.2 Origin of cheminformatics
With the intent of reducing the cost and time of discovering a drug, pharmaceutical
companies joined hands with information technologists to expedite the process. As a
result of the amalgamation of these two fields, the term “cheminformatics” originated.
With the foundation of the Journal of Chemical Information and Modelling,
chemists embraced the importance of information technology in the field of chemistry
in 1961 and it still remains the core journal for cheminformatics (Willett, 2008).
Cheminformatics primarily deals with the processing of chemical data extracted
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from the molecular structure, which is then analyzed to establish a meaningful
relation between the structure features of a compound and its activity. Strictly
speaking, cheminformatics extracts, assimilates, manipulates, stores, visualizes, and
interprets the chemical information stored in molecules (Gasteiger, 2006). In the
beginning, cheminformatics was introduced as a tool to facilitate drug discovery;
nevertheless, it has extended its applications to other areas of chemistry and biology
(Prakash and Gareja, 2010).

7.2.1 Role of cheminformatics in drug designing
The dawn of cheminformatics has brought a breakthrough in pharmaceutical
research. It has become an inseparable approach to discover new drugs as the entire
process is expedited leading to remarkable reductions in the time and cost of
developing a drug. The approach to design a new drug has been given a completely
new outlook from hit-and-trial to tailored-made designing. Traditional drug
designing methods relied on synthesizing a random library of chemical compounds
that contained many nondrug-like molecules, whereas computational techniques are
based on a rational approach for searching large databases and modeling their
physicochemical and biological properties to design potent and commercially
feasible drugs. What has made cheminformatics so instrumental in revolutionizing
pharmaceutical research? It has facilitated advances in high-throughput screening
and combinatorial sciences. As a result of these advances, structural and bioactivity
data have really burgeoned, adding millions of chemical compounds with each
passing year. This necessitates the use of more sophisticated informatics techniques
that can efficiently handle this avalanche of data. For many decades, chemin-
formatics has successfully been employed in the discovery of various drugs.
Although it is hard to tabulate all the data applications, an attempt has been made
to include the major ones in this chapter.

Normally, the process of discovering a novel drug commences with the shortlist-
ing of an appropriate target that is involved in a particular disease (Turk and Cantley,
2003). This is then followed by searching, designing, and screening the potential
compounds, which can behave like a drug (usually inhibitors of the target molecule).
At this stage, various in silico techniques are employed to systematically identify
drug-like candidates, which undergo various screening criteria to prove their
efficacy. The following are the cheminformatics approaches that are usually adopted
in a drug-discovery process.

7.2.1.1 Selection of a compound library
The selection of appropriate compound and generating virtual libraries is one of the
first and foremost requirements in drug discovery as it is practically very difficult to
screen huge numbers of compounds that combinatorial chemistry has added to the
pool; only a few of these compounds turn into potential hits (Hall et al., 2001).
Various computational methods have been developed to generate chemically diverse
libraries comprising molecules similar to existing drugs. Some of these methods are
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library enumerations, structural similarity algorithms, structural descriptor-based
calculations, and other classical algorithms. Nevertheless, these approaches added
little to the comfort of researchers. The screened molecules using these methods
are not necessarily potential drug candidates. Moreover, other related issues like
lead optimization, target validation, etc. cropped up during the process. However,
improving the screening of designed compounds using these cheminformatics
approaches remained a gigantic task. Fortunately, the virtual screening approach
offered a better solution to the previous approaches. A computational approach
mediated the generation of a virtual library of designed compounds with diversity,
pharmacokinetics, and synthetic accessibility being the central criteria for the
screening of drug-like compounds (Downs and Barnard, 1997; Walters et al.,
1998; Bajorath, 2002; Lobanov and Agrafiotis, 2002).

7.2.1.2 Virtual screening
Virtual screening is basically a process of filtering out the less competent candidates
that would not have resulted in potent drugs at a preliminary stage by imposing
certain constraints that can be either ligand based or structure based (Oprea et al.,
2005). In other words, virtual screening employs computational techniques to
pick potential hits from virtual fragment libraries. This can be done by introducing
filters that sort the compounds based on certain factors such as bioavailability
(amount of medication after entering the body that is actually circulated), solubility,
chemical reactivity/toxicity of chemical compounds, and absorption, distribution,
metabolism, and excretion (ADME) (Lipinski et al., 1997; Huuskonen et al.,
2000; Zuegge et al., 2001). Structure-based virtual screening is adopted when the
target structure is well characterized and involves the docking of compounds with
the targeted structure, whereas ligand-based virtual screening is adopted when the
target structure is not known and involves a comparison of new compounds with
drug-like compounds and their similarity index is analyzed for identification of
structural features which are primarily responsible for pharmacological action.
(Abagyan and Totrov, 2001; Diller and Merz, 2001; Duca and Hopfinger, 2001;
Makara, 2001; Willett, 2000). However, there may be a case when the structures
of the target and ligand are not known; then, structureeactivity relationship
paradigms may be determined by screening the experimental data using statistical
tools (Hopfinger and Duca, 2000; Roberts et al., 2000; Gedeck and Willett, 2001).
Besides, virtual screening is a useful technique for designing a combinatorial library
for a given target. ZINC has been identified as one of largest databases, which
provides access to the compounds that are available commercially for repurposing.

7.2.1.3 High-throughput screening
High-throughput screening is an excellent technique that allows swift testing of
millions of compounds for their biological activities via an automated screening
process. The process is so efficient that it can screen 103e106 molecules in parallel
fashion (Attene-Ramos et al., 2014). Conventionally, the entire library of
compounds is tested at a single concentration, whereas a more advanced version
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of high-throughput screening called quantitative high-throughput screening provides
a means to carry out testing of the compounds at various concentrations. Their
response curves are generated immediately after performing screening and this
output can be analyzed to predict the potential hits. High-throughput screening
basically aims at identifying the active molecules that can alter a target in a favorable
way (Camp et al., 2012). The basic information for high-throughput screening can
be borrowed from virtual screening. High-throughput screening yields results that
are more accurate and are comparable to online available libraries.

7.2.1.4 Structureeactivity relationship on high-throughput screening data
and sequential screening

As we move forward, each step works at narrowing down the cost of production and
eliminating undesired candidates. The data retrieved from high-throughput screening
can be further subjected to sequential high-throughput screening (Hawkins et al.,
1997) where compounds are screened in an iterative manner, their activities are
analyzed until desired, and nanomolar and novel leads are identified. This technique
of further shortlisting the compounds is driven by structureeactivity relationship
analysis (Tropsha and Zheng, 2002).

7.2.1.5 In silico ADMET
ADMET expands ADME to adsorption, distribution, metabolism, elimination, and
toxicity. Therefore ADMET determines the safety, uptake, elimination, metabolic
behavior, and effectiveness of a drug. The emergence of predicting ADMET
properties arose from that fact that almost 60% of the candidates fail in clinical
trials. After identifying a lead compound, it is essential to evaluate the properties
related to ADMET so that the effects of these compounds on the human body can
be assessed. Modern-day in silico ADMET studies rely on computational methods
(Paul Gleeson et al., 2011) to select molecules with reasonable values of these
properties so that less competent candidates can be eliminated at an early stage
and only the desired ones can be carried forward for synthesis and biological testing.
This would further lead to cost reduction by avoiding in vivo and in vitro testing.
The famous Lipinski’s “rule of five” is also often employed to determine the
drug-likeliness of a potential drug candidate. It is a set of five rules introduced by
Christopher A. Lipinski in 1997 to underline the importance of physical and
chemical properties of a molecule, i.e., ADME properties that could be a deter-
mining factor whether a given molecule is likely to be orally bioavailable or not.
The rule was based purely on the observation that relatively small molecules with
moderate lipophilicity have more chances of being orally active and their use is
limited to only orally administered drugs. He then formulated it in the form of rules:

• Not more than five hydrogen bond donors.
• Not more than 10 hydrogen bond acceptors.
• The molar mass should be less than 500 Da.
• Maximum value of log P (partition coefficient) can be five.
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A molecule is unlikely to behave like a drug if it violates two or more of the
aforementioned conditions. Under all the mentioned conditions, the multiple of
five lies at the core to determine the drug likeliness, hence this rule is known as
the rule of five (Lipinski et al., 1997).

7.3 Role of bioinformatics in drug discovery
Earlier, we learnt how techniques of cheminformatics help in handling the data
stored in chemical structures. A close observation, however, suggests that it only
deals with small molecules. Informatics techniques are also helpful in treating
complicated biomolecules, which gives rise to the birth of “bioinformatics.” Both
these fields complement each other for exploring the human physiological
processes. A number of computational methods are available to design and develop
novel lead inhibitors, which are called computer-aided drug designing (CADD)
techniques. CADD is primarily of two types: structure-based and ligand-based
in silico drug designing. There are other computational techniques too that assist
drug designing: 3D pharmacophore modeling and the molecular dynamics
simulation approach.

7.3.1 In silico designing of a drug using the structure-based
approach

Structure-based drug designing basically focuses on determining and analyzing the
3D structures of target molecules. Drug targets are proteins and enzymes intrinsi-
cally involved in a specific metabolic pathway linked with a disease. Drug molecules
are generally inhibitors of the target that are capable of altering the disease-related
pathway to produce desired therapeutic results (Kaushik et al., 2018). The human
genome project, after its successful completion, led to an exponential increase in
information on various targets that created ample opportunities for drug discoverers.
Structure-based designing facilitates the swift screening of potential drug candidates,
which may subsequently be validated by employing simulation and visualization tech-
niques. The key steps for structure-based drug designing are briefly explained next.

7.3.1.1 Selection of the target
A drug target is usually selected depending on the requirements of the problem
disease; hence, this step is primarily biologically or biochemically driven. Ideally,
the target must be associated with a disease and it must have a suitable binding-
pocket/active site into which a drug or drug-like molecule can bind. Generally,
proteins are good targets but sometimes RNA can also serve the purpose. Enzymes
usually contain small grooves or pockets into which substrate (a small ligand) can
easily bind and inhibit it; therefore, enzymes are excellent drug targets.
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7.3.1.2 Evaluation of the drug target
After identifying a target, it is essential to have a well-characterized 3D structure of
the enzyme/protein. The well-characterized 3D structures provide key information
on the binding site that will assist in developing novel drugs for a particular disease.
X-ray crystallographic and nuclear magnetic resonance techniques can be used to
obtain the 3D structure of protein targets. Imagine the level of precision at which
both these techniques are operating! Working at such a high resolution (atomic level)
will allow us to explore the intermolecular interactions that are present in a proteine
drug complex very precisely. This is what makes structure-based drug designing an
indispensable tool in drug designing. In case an experimental-derived 3D structure
of the target is not available, then the alternative approach is homology modeling.
This is actually predictive modeling that works on the principle that “3D structures
of two proteins will be similar if there is similarity in their sequencing.” In other
words, if the protein sequence of a protein is known, then the same sequence can
be copied for other similar proteins. Accuracy of the derived protein structure
through homology modeling depends on its probability (Enyedy et al., 2001a,b;
Schapira et al., 2001).

7.3.1.3 Refining the target structure
This step is also called protein preparation. The protein obtained earlier must be
refined before its interactions are studied with a drug molecule by adding hydrogen
(because hydrogen cannot be detected by X-ray crystallography). Various tauto-
meric and protonation states are generated for the residues wherever required. Water
molecules close to the binding sites are only retained and the rest of the water mol-
ecules and unnecessary heteroatoms are removed.

7.3.1.4 Locating the binding site
Locating the binding site or active site for the target protein is a crucial step. The
binding site is a pocket in the target structure formed by protein folding, which
allows a small drug-like molecule to bind into it. It is usually characterized by the
presence of molecular surfaces, number of hydrogen bond donors and acceptors,
and number of hydrophobic functionalities that help it to hold a substrate
(Filikov et al., 2000; Lind et al., 2002).

7.3.1.5 Docking ligands into the binding site
After successfully identifying the structure of the target and its active site, it is
important to model the interactions between inhibitors and target protein. It has
been observed that molecules having similar binding affinities will show similar
biological effects and hence careful analysis of binding site of a target will help
in predicting novel ligands. At this stage, molecular docking, which is a structure-
based drug design technique, is usually employed. A binding model clearly depicts
the behavior of an inhibitor in the binding site of the enzyme and gives an insight
into the interactions between ligand and receptor at the atomic level, which
facilitates understanding of biochemical processes (McConkey et al., 2002).
Molecular docking involves predicting the preferred conformation of a ligand in
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the active site of the target and assessing its binding affinity. The earliest theory of
molecular docking suggested that a lock-and-key type mechanism operates between
a ligand and a receptor (Fischer, 1894). There was a shortcoming of this method in
that it allowed refining of the ligandereceptor complex by fixing its relative orien-
tations. This type of docking is called rigid docking. A more advanced version of this
theory is induced-fit theory. As per induced-fit theory, the target receptor and ligand
can orient themselves to achieve the best fit conformation (Koshland, 1963; Hammes,
2002). Contrary to rigid docking, flexible docking gives more accurate information
about the binding events but of course it is computationally very expensive.
Therefore docking is usually performed by keeping the receptor fixed and allowing
the ligand to change its orientation continuously (Moitessier et al., 2008).

7.3.2 In silico drug designing using the ligand-based approach
The foremost condition for structure-based drug designing is the availability of a 3D
structure of the protein/enzyme, but if the structure is not available, then it is not
possible to apply the structure-based approach. Alternatively, information about
ligands can play an important role in developing pharmacologically active ligands.
This is called the ligand-based approach. There are ligand-based approaches such
as quantitative structureeactivity relationship (QSAR) and pharmacophore modeling,
which are used commonly for drug designing (Loew et al., 1993; Mason et al., 2001).

7.3.2.1 Pharmacophore modeling
The presence of pharmacophoric features associated with the 3D spatial arrangement
of structural properties such as hydrophobic surfaces, aromatic rings, hydrogen bond
donating and accepting groups, etc. helps in binding a ligand inside the active site of
the target (Alvarez, 2004; Verma et al., 2010). The term pharmacophore was first
introduced to the world of drug designing by Ehrlich. It is essentially a framework
that contains key structural features primarily driving biological activity of a ligand
(Ehrlich, 1909). Normally, atom and functional group type, their position and
orientation, and stereochemistry of a ligand are encoded into a pharmacophore model
(Van Drie, 2003).

To create a pharmacophore, a dataset of biologically active ligands with a diverse
scaffold (substituents can also be diverse) is selected. Conformational analysis of
each ligand must be performed to construct a 3D model, whereas information about
atoms and their connectivity is sufficient to construct a 2D model. These conforma-
tions are then superimposed on each other to find the common pharmacophoric fea-
tures. Models are then generated by employing an algorithm. More than one model
may be constructed using the same set of ligands and the one with highest score is
finally selected for further procedure. These models are ranked using various scoring
functions incorporated in the pharmacophore-building software (Güner, 2002).
The top models are validated by exploring the receptoreligand binding. A valid
model is the one that gives a clear insight into the active site of the target and
does not contradict the established mechanism.
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7.3.2.2 Quantitative structureeactivity relationship
QSAR methods are reliable predictive methods that can intuit the biological
activities of untested compounds. QSAR essentially depends on a simple assump-
tion that the pharmacological activity of compounds and their properties has a
direct correlation with the structure of the molecule. Mathematically, it can be
expressed as:

Biological activity ¼ f ðPhysiochemical propertyÞ
Mathematically, it is possible to devise a relation to express biological activity in

terms of physicochemical properties of a compound. It has been observed that
molecules having similar physical and chemical properties tend to show similar
biological activities (Akamatsu, 2002; Verma and Hansch, 2009). These relation-
ships are prepared using the statistical equations that are further employed for
designing better inhibitors. The following steps are generally followed to build
and test a QSAR model:

• Ligands with desired experimental biological activities are identified. To ensure a
large variation in activities, selected compounds must be structurally similar yet
diverse.

• Molecular descriptors derived from the structural and physicochemical properties
of these compounds are determined.

• Quantitative relations between these descriptors and activity are formulated to
explain the correlation between structure and activity by employing various
statistical models.

• Developed QSAR models are tested for their predictability and robustness.

7.3.3 Another exquisite tool: molecular dynamics
Molecular dynamics (MD) is yet another powerful simulation method to investigate
the dynamics of conformational space where ligand and receptor are both allowed to
move over a definite time period. In other words, it can be said that MD visualizes
temporal motion of the receptoreligand complex to generate a trajectory for the
whole system. The algorithms used in MD are much more advanced than any
method applied for flexible docking. Newton’s laws of motion are used for energy
minimization. Although local optimization is amazingly effective in MD simula-
tions, the process occurs in small steps; thus overcoming energy conformational
barriers can be a challenge. Ideally, simulations must be performed at a remarkably
high temperature because it will allow the system to overcome high-energy barriers
that can lead to insufficient sampling. Structures are picked up from the course at a
regular period for further energy minimization (Leach et al., 2007). Hence, a viable
strategy may be used for random search and to identify preferred conformation
of the ligand followed by more precise MD simulations. MD can be used for
simulations of protein shapes and refinement of X-ray structures (Polanski, 2009).
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7.4 Applications of cheminformatics and bioinformatics in
the development of antimalarial drugs

7.4.1 Background of the disease
The scientific fraternity is working assiduously to discover new drugs for various
diseases, yet a significantly high death rate due to malaria remains one of the major
tragedies of this century. It is the foremost cause of mortality and morbidity in hot
and humid places worldwide and remains an unresolved disease control priority
(Ngoungou et al., 2006; Solomon et al., 2007; White et al., 2014). As per the
WHO (2020) report, approximately 229 million cases of malaria were reported,
which is a clear indication that the conquest of this ancient disease is still a long
way off. As per the WHO malaria report 2020, India witnessed a sharp fall in total
number of cases from 10 million in 2000 to 5.6 mllion cases in 2019. Although,
India accounted for 84% of malaria related deaths in south east Asia. In humans,
there are five species of parasites that cause malaria; these are P. falciparum,
Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium
knowlesi (Wilson et al., 2011). Drug resistance is a major challenge to clear the
parasites from the bloodstream of the human host (Derbyshire et al., 2011). Since
78% of total malaria cases are caused by P. falciparum, under this study suitable
antimalarials are screened with respect to P. falciparum.

7.4.2 Antimalarials commercially available
There are quite a large number of antimalarial drugs in use belonging to particular
classes of chemical compounds having different modes of action and specificity for
various biochemical targets of antimalarial therapy. The currently used antimalarial
drugs are classified as per targets and mode of action in Table 7.1.

7.4.3 Hybrid molecules: an alternative to conventional antimalarial
drugs

A popular strategy that has been adopted by various research groups is to synthe-
size hybrid compounds carrying more than one functional group to block or inhibit
more than one pathway essential for the survival of the parasite. Quinoline-
containing molecules have been in use for some time but the popularity
of renowned drugs like chloroquine has fallen due to increased drug resistance
(Vangapandu et al., 2007; Kouznetsov and Gómez-Barrio, 2009). Development
of alternative drugs has prompted synthetic chemists to develop novel drugs as a
first line of defense. It was proposed that hybrid molecules [an example shown
in Fig. 7.1] carry pharmacophoric features that lead to parasite killing without
any drug resistance over a long period (Dechy-Cabaret et al., 2000; Wenzel
et al., 2010). This multitarget strategy gave rise to various hybrid molecules, for
example, 4-aminoquinoline-trioxane, 4-aminoquinoline-based Mannich bases
(Jarrahpour et al., 2007), 4-aminoquinoline-isatin (Agarwal et al., 2005a,b), and
4-aminoquinoline-ferrocene (Biot et al., 1997).
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4-Aminoquinoline moiety is known to block or inhibit hematin polymerization
and convert it into a nontoxic product, while triazines and pyrimidines are
well-established dihydrofolate reductase (DHFR) enzymes (Falco et al., 1951;
Rosowsky et al., 1973; Agarwal et al., 2005a,b; Katiyar et al., 2005; Ojha et al.,
2011; Müller and Hyde, 2013). DHFR of P. falciparum is an enzyme that mediates
the conversion of nicotinamide adenine dinucleotide phosphate-dependent reduc-
tion of 7,8-dihydrofolate to 5,6,7,8-tetrahydrofolate in the folate metabolism
(Osborne et al., 2001; Yuthavong et al., 2012; Rao and Tapale, 2013). Hence, it
is an essential pathway for the survival of P. falciparum as it will lead to the

Table 7.1 Principally available antimalarial drugs.

Drugs
Target
location

Pathway/
mechanism

Target
molecule

Chloroquine, amodiaquine,
piperaquine, quinine, quinidine,
mefloquine, halofantrine,
lumefantrine, primaquine

Food vacuole Heme
polymerization

Inhibit hematin
detoxification

Artemisinin, arteether, artemether,
artesunate, dihydroartemisinin

Food vacuole Unknown Free radical
generations

Pyrimethamine, chloroproguanil Cytosol Folate
metabolism

DHFR inhibitor

Sulfadoxine, sulfalene, dapsone Cytosol Folate
metabolism

DHPS inhibitor

Atovaquone Mitochondria Electron
transport

Cytochrome-C
oxidoreductase

Azythromycin, clindamycin, Apicoplast Protein
synthesis

Apicoplast
ribosome

DHFR, Dihydrofolate reductase; DHPS, dihydropteroate synthase.

FIGURE 7.1

Hybrid molecule depicting two separate chemical entities connected by a linker.
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synthesis of purines and thymidine as well as the remethylation cycle of homocys-
teine to methionine. Inhibition of P. falciparum (pf)-DHFR by compounds like
cycloguanil or pyrimethamine, etc. for long periods leads to mutations on amino
acids like Ala16, Ile51, Cys59, Ser108, and Ile164 in the binding pocket of
DHFR of P. falciparum (Liao et al., 2011).

In the present work, hybrid molecules were designed by combining 4-
aminoquinolines and triazines/pyrimidines. 4-Aminoquinolines are known for their
antimalarial efficacy against cycloguanil-sensitive and -resistant strains of
P. falciparum (Manohar et al., 2012; Manohar et al., 2013), whereas s-triazines
are capable of inhibiting the folate mechanism by targeting dihydrofolate reductase.
One chemical entity is linked with another through a spacer arm, which is a linear-
chained diaminoalkane termed a linker (Tables 7.3e7.5).

7.4.4 Computational details
7.4.4.1 Collection of dataset
A dataset of IC50 values for a total of 47 compounds based on functional moiety; 4-
aminoquinoline, were used for pharmacophore modelling and subsequent 3D
QSAR. The reported IC50 values were obtained during testing of these 47 com-
pounds both against the sensitive and resistant strains of P. falciparum for the
drug chloroquine.

7.4.4.2 Steps involved in pharmacophore and 3D QSAR model building
The steps incloved in pharmacophore modelling and 3D QSAR buidling were shown
as in Figs. 7.2e7.6.

7.4.4.3 Preparation of ligands
A pharmacophore alignment and scoring engine module of Schrӧdinger 19.2 was
performed to predict common pharmacophores. The reported IC50 values of dataset
comprising analogs of 4-aminoquinolines, tabulated in Table 7.2 were transformed
as a negative log of IC50 (pIC50) to achieve uniform distribution. To discern the
active molecules from inactive molecules, a threshold limit was set in pIC50 as
0.68 and 0.45 for active and inactive ligands, respectively. The inactive set can be
used in scoring to screen out hypotheses that match both active and inactive ligands
on the basis of Bayes classification. LigPrep was used to refine the geometries of
ligands. The ionization, tautomeric, and stereoisomeric states at physiological pH
(7 � 2) for each of these molecules were generated. To search the flexibility and so-
phisticated conformational analysis of ligands, a mixed large-scale low-mode search
was employed along with a mixed Monte Carlo low-mode search (Rosipal and
Krämer, 2005). The search was performed using a dielectric solvation model along
with optimized potential for liquid simulation (OPLS) version 2005 for tautomer
generation. The limit value of 10 kcal/mol relative to the global energy minimum
conformer was fixed for this iterative process.
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Table 7.2 List of ligands selected based on 4-aminoquinoline derivatives. [Fig. 7.2]

Ligand
Name n X R₁

IC50 in mM (D6 clone)
Plasmodium falciparum

IC50 in mM (W2 clone)
P. falciparum

Ratio of
activity
(D6/W2)

1. 1 O Aniline 0.29 0.17 1.705

2. 1 O 4-Ethylaniline 0.47 0.67 0.701

3. 1 O 4-fluoroaniline 0.24 0.48 0.500

4. 1 O 4-methoxyaniline 0.25 0.59 0.423

5. 1 O HNCH2CH₂OH 0.49 1.70 0.288

6. 1 O HNCH2CH₂CH₂OH 0.67 1.56 0.429

7. 1 O HNCH2CH₂CH₂CH₂OH 0.48 1.52 0.315

8. 1 CH3 HNCH2CH₂CH₂CH₂OH 0.14 0.40 0.350

9. 1 CH3 HNCH2CH₂CH₂OH 0.21 0.83 0.253

10. 1 CH3 HNCH2CH₂OH 0.19 0.49 0.387

11. 2 O Aniline 0.44 1.05 0.419

12. 2 O 4-Ethylaniline 0.40 0.42 0.952

13. 2 O 4-fluoroaniline 0.43 0.33 1.303

14. 2 O 4-methoxyaniline 0.16 0.15 1.066

15. 2 O HNCH2CH₂OH 0.50 2.06 0.242

16. 2 O HNCH2CH₂CH₂OH 0.63 1.52 0.414

17. 2 O HNCH2CH₂CH₂CH₂OH 0.51 1.12 0.455

18. 3 O Aniline 0.29 0.25 1.160

19. 3 O 4-Ethylaniline 0.39 0.18 2.166

20. 3 O 4-fluoroaniline 0.24 0.11 2.181

21. 3 O 4-methoxyaniline 0.07 0.71 0.090

22. 3 O HNCH2CH₂OH 0.19 0.59 0.322

23. 3 O HNCH2CH₂CH₂OH 0.22 0.57 0.385

24. 3 O HNCH2CH₂CH₂CH₂OH 0.09 0.49 0.183

25. 3 CH3 HNCH2CH₂CH₂CH₂OH 0.10 0.28 0.357

26. 3 CH3 HNCH2CH₂CH₂OH 0.06 1.17 0.051

27. 3 CH3 HNCH2CH₂OH 0.19 0.42 0.452
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Table 7.3 List of 4-aminoquinoline-pyrimidine hybrids (6ae6d) [Fig. 7.3].

Ligand
Name n

IC50 in mM (D6 clone)
Plasmodium falciparum
(resistant)

IC50 in mM (W2 clone)
P. falciparum
(sensitive)

Ratio of
activity
(D6/W2)

6a 1 0.16 0.5 0.320

6b 2 0.33 0.70 0.471

6c 3 0.12 0.68 0.176

6d 5 0.44 0.54 0.814

Table 7.4 List of 4-aminoquinoline-pyrimidine hybrids (7ae7d) [Fig. 7.4].

Ligand
Name n

IC50 in mM (D6)
Plasmodium falciparum

IC50 in mM (W2)
P. falciparum

Ratio of
activity (D6/
W2)

7a 1 0.21 0.81 0.259

7b 2 0.24 1.17 0.205

7c 3 0.17 0.64 0.265

7d 5 0.14 0.58 0.241

Table 7.5 List of 4-aminoquinoline-pyrimidine hybrids (8be8n) [Fig. 7.5].

Ligand
Name n R₂

IC50 in mm (D6)
Plasmodium
falciparum

IC50 in mm
(W2)
P. falciparum

Ratio of
activity
(D6/W2)

8b 2 piperidine 0.02 0.21 0.095

8c 3 piperidine 0.02 0.09 0.222

8d 5 piperidine 0.06 0.10 0.600

8e 1 morpholine 0.02 0.14 0.142

8f 2 morpholine 0.02 0.05 0.400

8h 5 morpholine 0.03 0.14 0.214

8i 1 N-
Methylpiperazine

0.005 0.03 0.166

8j 2 N-
Methylpiperazine

0.007 0.016 0.116

8k 3 N-
Methylpiperazine

0.021 0.023 0.913

8l 5 N-
Methylpiperazine

0.007 0.016 0.437

8m 2 N-
Methylpiperazine

0.006 0.06 0.100

8n 3 N-
Methylpiperazine

0.02 0.023 0.869
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FIGURE 7.2

4-Aminoquinoline-triazine hybrids (1e27).

FIGURE 7.3

4-Aminoquinoline-pyrimidine hybrids (6ae6d).

FIGURE 7.4

4-Aminoquinoline-pyrimidine hybrids (7ae7d).
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7.4.4.4 Site creation and finding pharmacophores
The pharmacophore models were generated using all states of the compounds as dis-
cussed in Section 7.4.4.3. The chemical features of all the ligands were mapped to
identify common pharmacophoric features (CPHs). A common tree-based
portioning approach used active ligand conformations and identified pharmacophore
models with 2 Å set distance. Table 7.6 shows the numbers of hypotheses that can be
generated for individual variants in 10 active analogs. A hypothesis can be classified
as either good or bad depending on its active and inactive features.

Each of the 123,262 hypotheses contained a number of similar pharmacophores,
any of which could be considered to be a common pharmacophore. However, with
the help of a variety of user-adjustable criteria, a single pharmacophore was selected
from each variant, and these were deemed to be the common pharmacophore
hypotheses.

FIGURE 7.6

Fundamental steps required for pharmacophore modeling and 3D quantitative

structureeactivity relationship (QSAR) using phase-incorporated Schrӧdinger Inc. The
schematic diagram portrays the steps followed to generate common pharmacophore

models and to build an atom-based 3D QSAR.

FIGURE 7.5

4-Aminoquinoline-pyrimidine hybrids (8be8n).
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7.4.4.5 Scoring of pharmacophores
First, the scores with respect to active analogs were calculated. The “survival score”
is a product of root mean square deviation (RMSD) values and other score values
like volume, site, etc. with certain weightages. The scoring was performed on all
13 variants selected in Table 7.6. Furthermore, the hypotheses were filtered based
on their match to the inactive ligands. The resulting scoring by the hypothesis
with highest survival from that of the inactive score was used subsequently for
further analysis. The best perceived pharmacophore hypothesis was AADDR, which
was picked for further validation.

7.4.4.6 Model validation: 3D QSAR
To ensure accuracy of CPHs, an atom-based 3D QSAR model based on partial least
square (PLS) regression was used. The atom-based 3D QSAR approach basically
considered all atoms as van der Waals spheres. All atoms were classified into the
following six categories:

W: represents atoms that are nonionic oxygen and nitrogen and are treated as
withdrawing atoms.
D: represents hydrogen atoms bonded to a polar atom and essentially function as
donors.
H: atoms that are represented as hydrophobic atoms and these atoms are carbon
and halogens.
N: represents atoms that carry a negative charge.
P: represents atoms that carry a positive charge.
X: represents the rest of the atoms classified as miscellaneous.

Table 7.6 Identified pharmacophore hypotheses.

Variant Maximum hypothesis

ADHRR 12,255

ADDHR 8,530

AHHRR 10,515

AHHHR 8,176

AAADR 1,714

ADDRR 1,018

AAAHR 4,069

AAHRR 5,670

ADHHR 30,883

AADHR 18,385

AADRR 2,703

AADDR 1,502

AAHHR 17,842

Total ¼ 123,262
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In this study, the whole dataset was divided into a training set and a test set. The
training set ligands were used to develop the QSAR models and the test set was used
for externally validating the generated QSAR. PLS regression was employed to
generate the QSAR models. The PLS factor was kept at 3 with a grid spacing of
1 Å. In the current study, 70% of the dataset was assumed as a training set and
the rest were treated as a test set. For the purpose of QSAR development, the best
generated hypothesis, i.e., AADDR, was chosen.

7.4.4.7 Creating a virtual library
After the generation of CPHs and 3D QSAR validation, the foremost step was to
create the 3D ZINC database for carrying out the screening process. ZINC is a freely
available commercial library of chemical compounds for the screening of potential
drugs (Wold et al., 2001). Site creation and the common pharmacophore protocol
were repeated to obtain the various pharmacophore models for each of the 7781 mol-
ecules in the ZINC database, which were then stored with the pdb extension. The
best generated hypothesis AADDR was used as a 3D structural input file to search
the database for compounds that contained the pharmacophore features required of
active ligands.

7.4.4.8 Molecular docking
The prepared ligands and the protein were then docked using the Glide module from
the Schrӧdinger suite. Grid-based ligand docking with energetics was employed to
screen out potential candidates on the basis of their binding affinity with the targeted
protein. Furthermore, an attempt was made to dock pf-DHFR with ligands. The 3D
target receptors P. falciparum dihydrofolate reductase-thymidylate synthase
(pf-DHFR-TS) (PDB ID: 4DPD) and a hematin (CCD ID: 162267) structure were
obtained from the Protein Data Bank and the Cambridge Crystallographic Database,
respectively. The hematin structure was subjected to geometry optimization with the
PM3 semiempirical method, whereas the protein target DHFR-TS was subjected to
“protein preparation” Under this step, the missing bond orders were corrected along
with addition of missing loops. Subsequently, cocrystallized water molecules were
kept intact up to 5 Å distance from the binding site. Finally, hydrogen atoms were
added because X-ray diffraction structure lacks them. The prepared protein structure
was subjected to energy minimization using an OPLS forcefield. Minimization was
processed in an iterative manner until the RMSD value of the heteroatoms reached
0.3 Å.

Side chain refinement was performed using the Prime module with default set-
tings. To perform Prime GBSA for calculating free energy changes, the ligands
were minimized using the density functional theory method and active residues of
the binding pockets were subjected to a B3LYP/LACVP* basis set and minimized
using the OPLS forcefield. LACVP* employs the 6-31G* basis set for nontransition
elements in the active site. In MM/GBSA, energy values obtained using OPLS mini-
mization (EMM) were combined with solvation contribution for polar solvents
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(GSB) and nonpolar (GNP) solvents. The non-solar component consists of acces-
sible surfaces and van der Waals contacts.

DGbinding ¼Gprotein �
�
GproteinþGligand

�

G¼EMM þ GSBþ GNP

7.4.4.9 In silico rapid ADME prognosis
The 457 hits that were lifted from the ZINC database were run on a QikProp module
of Schrödinger software. The module was used to track down the candidates that
possess drug-like properties. It is a speedy, precise, easy-to-use program designed
by Professor William L. Jorgensen, which is used to predict ADME of a drug-like
molecule by comparing its properties with those of known drugs. The 10 drug mol-
ecules that are most similar to the input molecules were identified for running the
job. The module predicted 44 properties for the hits and these are tabulated in S1.

7.4.5 Results and discussion
The pharmacophore models were generated using 3D structural attributes of listed
4-aminoquinoline-based hybrids that were keys for hematin {Fe(III)(PPIX)} inhibi-
tion. The pharmacophore hypothesis generated gave the impression of the relative
binding of the ligands to ferri(III)protoporphyrin IX, and for the predictability of
the hypothesis, a 3D QSAR model was generated to identify overall aspects of
the molecular structure that governed the activity. A pharmacophore essentially em-
bodies all key binding aspects that have been collected from an experimental dataset
of ligands bound to a receptor. Subsequently, variants of pharmacophore models
were prepared and scored, and it was found in the present study that five featured
pharmacophore models scored better than models containing three and four pharma-
cophoric features. These five featured pharmacophore models’ CPHs were scored in
terms of their alignment of active ligands with an RMSD value limit of 1.2e2 Awith
the default values as set for distances tolerance in the module of the software. The
alignment values were expressed in terms of survival score as:

S¼WsiteSsite þWvecSvec þWvolSvol þWselSsel þWm
rew

where W and S represent weights and scores, Ssite stands for alignment score, Svec
represents vector score, Svol represents volume score, and Ssei represents selectivity
score. The default values of Wsite and Wsei were kept as 1 and 0 Å, respectively.
Wm

rew stands for reward weights defined as m�1. The value of m is defined as a hy-
pothesis of how many active sites can be matched. The CPHs so developed were
again tested in terms of a score value by considering all 25 inactive ligands with a
weightage of 1 Å. Later, CPHs were evaluated by subtracting their survival scores
from inactive scores. Out of 10 variants, AADDR CPH was the best variant selected
based on scoring. AADDR has the maximum predictive potential out of the 10
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variants of CPHs. Fig. 7.7 represents the spatially positioned features with their site
distance AADDR.

To generate a QSAR model, out of 47 inhibitors, 33 (hematin detoxification)
were used as testing compounds for internal validation and 14 were used for external
validation of the QSAR model. A PLS approach was utilized to design the model. It
built a linear model based on numerous dependent variables Y, and a set of indepen-
dent factors that were used for the prediction of biological activity (Wold et al.,
2001). Currently, “x” was the experimental biological activity and “y” was the pre-
dicted biological activity (both in PIC50). Table 7.7 shows the 3D QSAR models for
PLS factors 1, 2, and 3, and it was observed that for PLS factor 3, the statistical fac-
tor had significantly improved (R2 ¼ 0.854 and Q2 ¼ 0.44). Furthermore, increasing
the PLS factor did not improved the statistics.

When all the ligands were superimposed over the created pharmacophore model,
fitness was observed for the ligands with R2 value 0.854 and Q2 value of 0.449.
Hence, the obtained pharmacophore model AADDR can be used satisfactorily for
the screening of inhibitors out of a commercially available library. Fig. 7.8 shows
the correlation of experimental activity with predicted activities for both the training
and test sets of ligands and all necessary information in Table S2 (supplementary
information).

After the generation of 12,362 compounds and screening of the library, exactly
1263 compounds were identified for further study with maximum fitness value of
2.96 (77% match) and lower fitness of 0.13 (4% match). All the necessary informa-
tion is tabulated in Table S2.

FIGURE 7.7

Fitting of the most active ligand (8b) in the created common pharmacophore with fit value

3 Å. (The orange, pink and light blue spheres represent aromatic ring, O2 hydrogen bond

acceptors, and O2 hydrogen bond donors.)
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Table 7.7 Partial least square (PLS) statistical parameters of the selected 3D quantitative structureeactivity relationship
model of hypothesis AADDR.

ID
PLS
factor SD R2 F P RMSD Q2 Pearson-R

AADDR 1 0.222 0.426 23.1 3.754e-05 0.292 0.074 0.314

2 0.169 0.679 31.8 3.884e-08 0.277 0.169 0.452

3 0.116 0.854 56.7 3.056e-12 0.225 0.449 0.675

RMSD, Root mean square deviation; SD, standard deviation.
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7.4.5.1 3D QSAR visualization
A notable conjecture of the predicted model can only be achieved after the visual-
ization of atoms in 3D space. A specialized pattern of cubes was created that illus-
trated the structural features responsible for intensifying as well as diminishing the
inhibitory effect against hematin detoxification. Fig. 7.9AeC shows the conceptual
representation of the generated contours. In these pictorial representations, the yel-
low cubes signify the favorable regions, i.e., if the functional groups are added to this
position it may enhance the biological activity, whereas the purple cubes indicate
unfavorable regions where the placement of the functionality may not lead to any
enhancement of the activity.

7.4.5.2 Virtual database screening
Database searching can competently be used to spot unique and potential inhibitors.
This enables us to search a database to identify potential inhibitors by filtering the
inactive ones. AADDR was considered as a 3D structural query to search the entire
ZINC database, which comprises seven thousand seven compounds. An iterative
search was carried out, which involves screening of those compounds, which
encompasses the same model with similar pharmacophoric features as in AADDR
hypothesis. The search retrieved 457 potent candidates.

7.4.5.3 Drug resemblance analysis
The 457 hits were made to pass through ADME screening. All the four parameters
had a profound effect on the plasma kinetics of drugs in the systemic circulation.

FIGURE 7.8

Fitness graph between observed activity versus phase-predicted activity for training and

test set compounds.
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A total of 44 parameters such as solubility, partition coefficient, bloodebrain bar-
riers, guteblood barriers, log HAS for serum binding, and Lipinski’s five rules
were obtained for all the hits. All the values are summarized in Table S3. Forty-
nine compounds could successfully pass ADME screening. ADME properties of
the selected four lead candidates are summarized in Table S3 (supplementary
information).

To gain an insight into receptoreligand binding, the 49 successful compounds
obtained from ADME were docked into a ferri(III)protoporphyrin IX ring, which
is a structural unit of hematin and the active site of pf DHFR-TS, respectively, using
a nondeterministic sampling method. The 49 compounds showed diverse Glide
scores with both targets. The molecular docking results are summarized in Table 7.8.
In agreement with our experimental results, the Glide scores of all the compounds
are better than already known drugs, which validates that they inhibit pf-DHFR-
TS more effectively and are highly active compared to the standard drugs cyclogua-
nil, pyrimethamine, and chloroquine. We considered only the top four scoring poses
for further analysis (Table 7.8). The pose that is best for the docking of ligand with
the receptor was selected based on various parameters such as Glide score, model
energy score (Emodel), nonbonded contribution, and internal energy of generated
conformation.

FIGURE 7.9

(A) 3D visualization of hydrogen bond donor in a quantitative structureeactivity

relationship (QSAR) model (yellow cubes depict positive potential and purple cubes

exhibit negative potential for H bond substitution). (B) 3D visualization of electron

withdrawing group in the QSAR model (yellow cubes depict positive potential and purple

cubes exhibit negative potential for electron withdrawing substitution). (C) 3D

visualization of hydrophobic/nonpolar groups in the QSAR model (yellow cubes depict

positive potential and purple cubes exhibit negative potential for hydrophobic/nonpolar

substitutions).
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7.4.5.4 Docking of lead molecules with Fe(III)PPIX ring
Fe(III)PPIX is a complex consisting of a protoporphyrin ring bonded to one Fe(III)
atom at the center. Singh et al., (2014) suggested that the iron atom in the protopor-
phyrin ring forms a bond with the heteroatoms in inhibitors. Fig. 7.10 displays the
complex structures formed between the Fe(III)PPIX and the top lead molecule. All
the docked structures illustrated that Fe(III) atoms form the center of the ring and
connect with the atoms of the 1,2,4-triazole ring of the lead molecules, which is
in agreement with the conclusion deduced by Singh et al. in their pioneering study
(Singh et al., 2014). Therefore our attempt indicated that our lead molecules substan-
tially bind to Fe(III) atoms of the protoporphyrin ring.

Table 7.8 Glide scores of top four hit molecules.

Lead
molecules

Glide score for inhibition of
Fe(III)PPIX

Glide score for inhibition of
pf-DHFR-TS enzyme

Lead 1 �5.49 �5.38

Lead 2 �5.46 �5.17

Lead 3 �4.47 �4.22

Lead 4 �5.30 �5.24

Cycloguanil NA �3.44

Pyrimethamine NA �4.0

Chloroquine �3.42 NA

pf-DHFR, Plasmodium falciparum dihydrofolate reductase.

FIGURE 7.10

Interaction between Fe(III)PPIX and the lead molecule 1.
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7.4.5.5 Docking of lead molecules with pf-DHFR
To validate further, our speculation, i.e., the presence of triazine/pyrimidine motif in
the hybrid molecules, inhibits pf-DHFR. Docking was performed between the 49
database hits and the enzyme pf DHFR-TS. Fig. 7.11 shows a docking pose of the
ligand, which scored the maximum for docking with the receptor.

It was deduced from the figure that lead molecule 1 forms the hydrogen bond
with ASP 212, LYS 321, and ASN 330 inside the binding pockets of the dihydrofo-
late in the enzyme pf-DHFR-TS. LYS 321 interacts with the 1,2,4-triazole ring via
ASP 212 connecting with the phenolic group and the ASN 330 amino acid forming a
bond with the carbonyl group of the amide linkage.

3D and 2D representations of all shortlisted compounds are given in the supple-
mentary information (Fig. S1).

7.5 Conclusions
The approach of drug designers has changed from “how to make” to “what to make.”
As a result, it has become mandatory to eliminate nondrug-like candidates as early as
possible. With the advent of cheminformatics and bioinformatics, it is now possible to
design novel drugs at a faster pace, saving time, money, effort, chemicals, and use of
animals for in vivo testing. The case study of searching for potential antimalarials as
discussed here concluded that for inhibition of Fe(III)PPIX and pf-DHFR, 1,2,4-
triazole is the key functionality for the binding. After successfully applying the tech-
niques embedded in CADD workflow, namely pharmacophore model creation, 3D
QSAR modeling and database search, in silico ADME, and molecular docking,
four lead compounds were shortlisted, which were found to inhibit Fe(III)PPIX and
pf-DHFR more effectively than well-known antimalarial drugs such as chloroquine,
cycloguanil, and pyrimethamine. These results clearly suggest that the choice of
hybrid molecules as antimalarials can be a promising alternative to conventional
aminoquinoline-based drugs. It becomes mandatory here to reveal that some of these
hybrid compounds have also made their way to clinical trials (Meunier, 2008).

FIGURE 7.11

(A) A still image of docking between lead molecule 1 and the pf-DHFR, Plasmodium

falciparum dihydrofolate reductase (pf-DHFR-TS) enzyme. (B) 2D interaction of lead

molecule 1 with amino acids of the active site of the pf -DHFR-TS enzyme.
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(a-d) 3D and 2D representations of the top four lead molecules.

Electronic Supplementary information 231



Table S1 QikProp determine the following parameters.

Property or
descriptor Description

Acceptable range/
recommended values for
95% of known drugs

#stars Number of property or descriptor
values that fall outside the 95%
range of similar values for known
drugs. Outlying descriptors and
predicted properties are denoted
with asterisks (*) in the .out file.
A large number of stars suggests that
a molecule is less drug-like than
molecules with few stars. The
following properties and descriptors
are included in the deter- mination of
#stars: MW, dipole, IP, EA, SASA,
FOSA, FISA, PISA, WPSA,
PSA, volume, #rotor,
donorHB,accptHB, glob, QPpolrz,
QPlogPC16, QPlogPoct, QPlogPw,
QPlogPo/w, logS, QPLogKhsa,
QPlogBB,#metabol

0 e5

#amine Number of non-conjugated amine
groups

0 e1

#amidine Number of amidine and guanidine
groups

0

#acid Number of carboxylic acid groups 0-1
#amide Number of non-conjugated amide

groups
0 e1

#rotor Number of non-trivial (not CX3), non-
hindered (not alkene, amide, small
ring) rotatable bonds

0 e 15

#rtvFG Number of reactive functional groups;
the specific groups are listed in the
output file. The presence of these
groups can lead to false positives in
HTS assays and to decomposition,
reactivity, or toxicity problems invivo

0 e2

CNS Predicted central nervous system
activity on a e2 (inactive) to þ2
(active) scale

e2 (inactive), þ2 (active)
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Table S1 QikProp determine the following parameters.dcont’d

Property or
descriptor Description

Acceptable range/
recommended values for
95% of known drugs

mol_MW Molecular weight of the molecule 130.0 e 725.0
dipoley Computed dipole moment of the

molecule
1.0 e 12.5

SASA Total solvent accessible surface area
(SASA) in square angstroms using a
probe with a 1.4 A radius

300.0 e 1000.0

FOSA Hydrophobic component of the SASA
(saturated carbon and attached
hydrogen)

0.0 e 750.0

FISA Hydrophilic component of the SASA
(SASA on N, O, H on heteroatoms,
carbonyl C)

7.0 e 330.0

PISA p (carbon and attached hydrogen)
component of the SASA

0.0 e 450.0

WPSA Weakly polar component of the SASA
(halogens, P, and S)

0.0 e 175.0

volume Total solvent-accessible volume in
cubic angstroms using a probe with a
1.4 A radius

500.0 e 2000.0

donorHB Estimated number of hydrogen
bonds that would be donated by the
solute to water molecules in an
aqueous solution.
Values are averages taken over a
number of configurations, so they can
be non-integer

0.0 e 6.0

accptHB Estimated number of hydrogen
bonds that would be accepted by the
solutefrom water molecules in an
aqueous solution. Values are
averages taken over a number of
configurations, so they can be non-
integer

2.0 e 20.0

dip̂2/Vy Square of the dipole moment divided
by the molecular volume

0.0 e 0.13

ACxDN̂.5/SA Index of cohesive interaction in solids.
This term represents the relationship
(accptHB(donorHB)) ⁄ (SA)

0.0 e 0.05
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Table S1 QikProp determine the following parameters.dcont’d

Property or
descriptor Description

Acceptable range/
recommended values for
95% of known drugs

glob Globularity descriptor, (4pr2) ⁄ (SASA)
, where r is the radius of a sphere with
a volume equal to the molecular
volume.
Globularity is 1.0 for a spherical
molecule

0.75 e 0.95

polrz Predicted polarizability in cubic
angstroms

13.0 e 70.0

logPC16 Predicted hexadecane/gas partition
coefficient

4.0 e 18.0

logPoctz Predicted octanol/gas partition
coefficient

8.0 e 35.0

logPw/g Predicted water/gas partition
coefficient

4.0 e 45.0

logPo/w Predicted octanol/water partition
coefficient

e2.0 e 6.5

logS Predicted aqueous solubility, log S. S
in mol dme3 is the con- centration of
the solute in a saturated solution that
is in equi- librium with the crystalline
solid

e6.5 e 0.5

CI-logS Conformation-independent predicted
aqueous solubility, log S
S in mol dm-3 is the concentration of
the solute in a sat- urated solution
that is in equilibrium with the
crystalline solid

e6.5 e 0.5

logHERG Predicted IC50 value for blockage of
HERG Kþ channels

concern below e5

PCaco Predicted apparent Caco-2 cell
permeability in nm/sec. Caco- 2 cells
are a model for the gut-blood barrier.
QikProp predictions are for non-
active transport

<25 is poor, >500 is great

logBB Predicted brain/blood partition
coefficient. QikProp predictions are
for orally delivered drugs

e3.0 e 1.2

PMDCK Predicted apparent MDCK cell
permeability in nm/sec. MDCK cells
are considered to be a goodmimic for
the blood- brain barrier. QikProp
predictions are for non-active
transport

<25 is poor, >500is great
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Table S1 QikProp determine the following parameters.dcont’d

Property or
descriptor Description

Acceptable range/
recommended values for
95% of known drugs

logKp Predicted skin permeability, log Kp e8.0 e e1.0
IP(ev)y PM3 calculated ionization potential 7.9 e 10.5
EA(eV)y PM3 calculated electron affinity e0.9 e 1.7
#metabz Number of likely metabolic reactions 1 e 8
logKhsa Prediction of binding to human serum

albumin
e1.5 e 1.5

Human Oral
Absorption

Predicted qualitative human oral
absorption

1, 2, or 3 for low, medium, or
high._

% Human
Oral
Absorption

Predicted human oral absorption on
0 to 100% scale. The pre- diction is
basedon a quantitative multiple linear
regression model. This property
usually correlates well with
HumanOral- Absorption, as both
measure the sameproperty

>80% is high <25% is poor

SAFluorine Solvent-accessible surface area of
fluorine atoms

0.0 e 100.0

SAamideO Solvent-accessible surface area of
amide oxygen atoms

0.0 e 35.0

PSA Van der Waals surface area of polar
nitrogen and oxygen atoms and
carbonyl carbon atoms

7.0 e 200.0

#NandO Number of nitrogen and oxygen
atoms

2 e 15

Rule of Five Number of violations of Lipinski’s rule
of five. The rules are: mol_MW<500,
logPo/w < 5, donorHB � 5,
accptHB�
10. Compounds that satisfy these
rules are considered drug- like

maximum is 4

Rule of Three Number of violations of Jorgensen’s
rule of three. The three rules are:
QPlogS>
-5.7, QP PCaco> 22 nm/s, # Primary
Metabolites < 7. Compounds with
fewer (and preferably no) violations of
these rules are more likely to be orally
available

maximum is 3

#ringatoms Number of atoms in a ring
#in34 Number of atoms in 3- or 4-

membered rings
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Table S1 QikProp determine the following parameters.dcont’d

Property or
descriptor Description

Acceptable range/
recommended values for
95% of known drugs

#in56 Number of atoms in 5- or
6-membered rings

#noncon number of ring atoms not able to form
conjugated aromatic systems .

#nonHatm Number of heavy atoms
(nonhydrogen atoms)

Jm Predicted maximum transdermal
transport rate, Kp � MW � S
(mg cme2 hre1).
Kp ¼ predicted skin permeability
MW¼molecular weight
S¼ solubility

Table S2 Fitness and predicted activity of training and test set for 3D QSAR
studies.

Ligand
name

QSAR
set

PIC₅₀ [
-(log IC₅₀)
ratio of
activity
(D6/W2)

PLS
factors

Predicted
activity

Pharm
set Fitness

1. Training 0.232 3 0.33 inactive 1.86
2. Training 0.154 3 0.22 inactive 1.82
3. Test 0.301 3 0.27 inactive 1.82
4. Training 0.374 3 0.33 inactive 1.82
5. Training 0.541 3 0.47 1.87
6. Training 0.368 3 0.41 inactive 1.86
7. Test 0.502 3 0.62 1.95
8. Training 0.456 3 0.45 1.91
9. Training 0.597 3 0.52 1.89

10. Training 0.412 3 0.47 inactive 1.88
11. Training 0.378 3 0.24 inactive 2.68
12. Training 0.021 3 0.00 inactive 2.64
13. Test 0.115 3 0.25 inactive 2.66
14. Test 0.028 3 0.24 inactive 2.64
15. Test 0.616 3 0.49 2.86
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Table S2 Fitness and predicted activity of training and test set for 3D QSAR

studies.dcont’d

Ligand
name

QSAR
set

PIC₅₀ [
-(log IC₅₀)
ratio of
activity
(D6/W2)

PLS
factors

Predicted
activity

Pharm
set Fitness

16. Test 0.383 3 0.46 inactive 2.84
17. Training 0.342 3 0.41 inactive 2.82
18. Training 0.064 3 0.15 inactive 2.06
19. Training 0.336 3 0.25 inactive 1.7
20. Training 0.339 3 0.65 inactive 1.81
21. Training 1.046 3 1.10 active 1.81
22. Test 0.492 3 0.58 1.77
23. Training 0.415 3 0.38 inactive 1.89
24. Training 0.738 3 0.64 active 1.77
25. Test 0.447 3 0.64 inactive 1.74
26. Training 1.292 3 1.03 active 1.83
27. Training 0.345 3 0.30 inactive 1.96
6a Training 0.495 3 0.58 1.93
6b Training 0.327 3 0.52 inactive 2.86
6c Test 0.754 3 0.31 active 2.14
6d Training 0.089 3 0.02 inactive 1.1
7a Training 0.587 3 0.53 1.78
7b Training 0.688 3 0.78 active 1.48
7c Training 0.577 3 0.60 1.34
7d Test 0.618 3 0.64 1.17
8b Test 1.022 3 0.80 active 3
8c Training 0.654 3 0.57 2.23
8d Training 0.222 3 0.08 inactive 1.31
8e Test 0.848 3 0.67 active 1.91
8f Training 0.398 3 0.48 inactive 2.82
8h Training 0.67 3 0.77 1.47
8i Training 0.78 3 0.65 active 1.9
8j Test 0.936 3 0.86 active 2.96
8k Training 0.04 3 0.15 inactive 2.11
8l Training 0.36 3 0.33 inactive 1.09
8m Training 1 3 0.92 active 2.94
8n Test 0.061 3 0.60 inactive 2.21
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Table S3 The ADME properties of the selected four lead candidates.

Lead logPo/W logS PCaco logKhsa logBB log HERG % human oral

molecules (-2.0 to (-6.5 to 0.5) (<25 is (-1.5 to (-3.0 to (below -5.0) absorption

6.5) poor 1.5) 1.2) (<25% is poor &

&>500 is >80% is high)

great)

Lead 1 3.214 -5.255 522.453 0.251 -1.036 -6.207 94.410

Lead 2 2.874 -5.316 283.807 0.175 -1.403 -6.584 87.678

Lead 3 4.129 -6.306 1000.186 0.363 -0.523 -6.491 100.000

Lead 4 1.153 -3.332 114.601 -0.442 -1.532 -5.437 70.550
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Kouznetsov, V.V., Gómez-Barrio, A., 2009. Recent developments in the design and synthesis
of hybrid molecules basedon aminoquinoline ring and their antiplasmodial evaluation.
Eur. J. Med. Chem. 44 (8), 3091e3113.

Leach, A.R., John, B.T., David, J.T., 2007. Comprehensive Medicinal Chemistry II. Elsevier,
Oxford, pp. 87e118.

240 CHAPTER 7 Chem-bioinformatic approach for drug discovery



Lind, K.E., Du, Z., Fujinaga, K., Peterlin, B.M., James, T.L., 2002. Structure-based compu-
tational database screening, in vitro assay, and NMR assessment of compounds that target
TAR RNA. Chem. Biol. 9 (2), 185e193.

Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 1997. Experimental and computa-
tional approaches to estimate solubility and permeability in drug discovery and develop-
ment settings. Adv. Drug Deliv. Rev. 23 (1e3), 3e25.

Loew, G.H., Villar, H.O., Alkorta, I., 1993. Strategies for indirect computer-aided drug design.
Pharmaceut. Res. 10 (4), 475e486.

Lobanov, V.S., Agrafiotis, D.K., 2002. Scalable methods for the construction and analysis of
virtual combinatorial libraries. Comb. Chem. High Throughput Screen. 5 (2), 167e178.

Makara, G.M., 2001. Measuring molecular similarity and diversity: total pharmacophore
diversity. J. Med. Chem. 44 (22), 3563e3571.

Manohar, S., Rajesh, U.C., Khan, S.I., Tekwani, B.L., Rawat, D.S., 2012. Novel 4-
aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial
activity. ACS Med. Chem. Lett. 3 (7), 555e559.

Manohar, S., Khan, S.I., Rawat, D.S., 2013. 4-Aminoquinoline-Triazine-Based hybrids with
improved in vitro antimalarial activity against CQ-sensitive and CQ-resistant strains of
plasmodium falciparum. Chem. Biol. Drug Des. 81 (5), 625e630.

Mason, J.S., Good, A.C., Martin, E.J., 2001. 3-D pharmacophores in drug discovery. Curr.
Pharmaceut. Des. 7 (7), 567e597.

McConkey, B.J., Sobolev, V., Edelman, M., 2002. The performance of current methods in
ligandeprotein docking. Curr. Sci. 845e856.

Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, A.C., 2008. Towards the devel-
opment of universal, fast and highly accurate docking/scoring methods: a long way to go.
Br. J. Pharmacol. 153 (S1), S7eS26.

Müller, I.B., Hyde, J.E., 2013. Folate metabolism in human malaria parasitesd75 years on.
Mol. Biochem. Parasitol. 188 (1), 63e77.

Ngoungou, E.B., Quet, F., Dubreuil, C.M., Marin, B., Houinato, D., Nubukpo, P., Dalmay, F.,
Millogo, A., Nsengiyumva, G., Kouna-Ndouongo, P., Diagana, M., 2006. Epidemiology
of epilepsy in sub-Saharan Africa: a review. Cahiers d’études et de recherches franco-
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Rosipal, R., Krämer, N., 2005. February. Overview and recent advances in partial least
squares. In: International Statistical and Optimization Perspectives Workshop" Subspace,
Latent Structure and Feature Selection. Springer, Berlin, Heidelberg, pp. 34e51.

Rosowsky, A., Chen, K.K.N., Lin, M., 1973. 2, 4-Diaminothieno [2, 3-d] pyrimidines as anti-
folates and antimalarials. 3. Synthesis of 5, 6-disubstituted derivatives and related tetracy-
clic analogs. J. Med. Chem. 16 (3), 191e194.

Schapira, M., Raaka, B.M., Samuels, H.H., Abagyan, R., 2001. In silico discovery of novel
retinoic acid receptor agonist structures. BMC Struct. Biol. 1 (1), 1e7.

Singh, K., Kaur, H., Smith, P., de Kock, C., Chibale, K., Balzarini, J., 2014. Quinolinee
pyrimidine hybrids: synthesis, antiplasmodial activity, SAR, and mode of action
studies. J. Med. Chem. 57 (2), 435e448.

Solomon, V.R., Haq, W., Srivastava, K., Puri, S.K., Katti, S.B., 2007. Synthesis and antima-
larial activity of side chain modified 4-aminoquinoline derivatives. J. Med. Chem. 50 (2),
394e398.

Tropsha, A., Zheng, W., 2002. Rational principles of compound selection for combinatorial
library design. Comb. Chem. High Throughput Screen. 5 (2), 111e123.

Turk, B.E., Cantley, L.C., 2003. Peptide libraries: at the crossroads of proteomics and
bioinformatics. Curr. Opin. Chem. Biol. 7 (1), 84e90.

Van Drie, J.H., 2003. Pharmacophore discovery-lessons learned. Curr. Pharmaceut. Des. 9
(20), 1649e1664.

Vangapandu, S., Jain, M., Kaur, K., Patil, P., Patel, S.R., Jain, R., 2007. Recent advances in
antimalarial drug development. Med. Res. Rev. 27 (1), 65e107.

Verma, R.P., Hansch, C., 2009. Camptothecins: a SAR/QSAR study. Chem. Rev. 109 (1),
213e235.

Verma, J., Khedkar, V.M., Coutinho, E.C., 2010. 3D-QSAR in drug design-a review. Curr.
Top. Med. Chem. 10 (1), 95e115.

Walters, W.P., Stahl, M.T., Murcko, M.A., 1998. Virtual screeningdan overview. Drug Dis-
cov. Today 3 (4), 160e178.

Wenzel, N.I., Chavain, N., Wang, Y., Friebolin, W., Maes, L., Pradines, B., Lanzer, M.,
Yardley, V., Brun, R., Herold-Mende, C., Biot, C., 2010. Antimalarial versus cytotoxic
properties of dual drugs derived from 4-aminoquinolines and Mannich bases: interaction
with DNA. J. Med. Chem. 53 (8), 3214e3226.

White, N.J., Pukrittayakamee, S., Hien, T.T., Faiz, M.A., Mokuolu, O.A., Dondorp, A.M.,
2014. Malaria. Lancet 383 (9918), 723e735.

Willett, P., 2000. Chemoinformaticsesimilarity and diversity in chemical libraries. Curr.
Opin. Biotechnol. 11 (1), 85e88.

Willett, P., 2008. A bibliometric analysis of the literature of chemoinformatics. In: Aslib
Proceedings. Emerald Group Publishing Limited.

Wilson, M.E., Kantele, A., Jokiranta, T.S., 2011. Review of cases with the emerging fifth hu-
man malaria parasite, Plasmodium knowlesi. Clin. Infect. Dis. 52 (11), 1356e1362.
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8.1 Background
Information technology has paved the way for generating an exceptional amount of
knowledge and data for various research fields. Bioinformatics represents a compre-
hensive field that plays a central role in combining other research fields like statis-
tics, computation, molecular biology, and mathematics. It has been defined in
various ways, but it simply deals with the collection, storage, and interpretation of
biological information. The bioinformatics tools are computer algorithms and
programs that can analyze the biological data more efficiently. We have witnessed
(especially the last two decades) a revolution in the progress of computer-based
technologies that have helped in revealing fundamental mechanisms involved in
biological pathways, disease processes, and evolution in molecular biology. The
Human Genome Project and microarray expression profiling have proved to be
the revolution that established bioinformatics as a well-recognized discipline.

Any function of a species is the outcome of genetic, epigenetic, and treatment
options. There have been several studies that have shown the risk factors and
involvement of macromolecules that are DNA, RNA, protein, and metabolites in dis-
ease progression. Molecular biology deals with huge loads of data of the biological
processes involved, which can be very hard to interpret manually. Then, there is the
role of bioinformatics tools. Bioinformatics tools help to develop programs and
methodologies to systemically collect and store large volumes of biological data
so that we may better understand them. Fig. 8.1 represents a relationship between
biological systems and databases.

Moreover, bioinformatics involves various duties like the study of the genome,
data mining, structure prediction, molecular dynamics simulation, molecular dock-
ing, and designing. A few general bioinformatics tasks are shown in Fig. 8.2.

8.1.1 Emergence and evolution of bioinformatics
The origin of bioinformatics was associated with the evolution of protein sequencing
back in the 1960s. However, it all started with the determination of the first protein
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sequence, insulin, in the early 1950s (Sanger and Thompson, 1953a,b). This break-
through encouraged researchers to work in this field, but sequencing really came into
existence with the development of Edman’s degradation method of protein

FIGURE 8.1

Genotype-to-phenotype relationships.

FIGURE 8.2

General tasks of bioinformatics tools.
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sequencing (Edman, 1949). The simplicity of this method kept it very popular and
useful for over a decade. With the increasing number of protein sequences deter-
mined, it started to become difficult to store the data, and also for large sequences,
assembling a large number of small fragments of residues to get a complete
sequence became problematic. This issue brought the emergence of the first
computer-based program, named COMPROTEIN, which compiled Edman
sequencing data and helped in the preparation of the Protein Information Resource
(PIR) (Dayhoff and Ledley, 1962). This collection of sequences of proteins was pub-
lished in 1965 as an atlas. The term “bioinformatics,” however, was first coined in
1970 as information technology by the Dutch biologist, Hogeweg (Hesper and
Hogeweg, 1970). This paradigm of protein sequencing began to shift to DNA
sequencing when Francis Crick’s hypothesis of central dogma was put forward.
By that time, it became clear that it was DNA that governed the essential biological
processes, thus regulating the synthesis of protein (Crick, 1958). In the 1970s, the
field progressed rapidly with the growth of DNA sequencing techniques such as
Sanger sequencing (Sanger and Coulson, 1975) and MaxameGilbert sequencing
(Maxam and Gilbert, 1977). Thereafter, in the early 1980s with the advancement
in computation, various DNA sequence databases were created by compiling
DNA sequence data. The popular ones are Genbank (http://www.ncbi.nlm.nih.
gov/genbank), EMBL (the European Molecular Biology Laboratory) (http://www.
embl.org,), and DDBJ (DNA Data Bank of Japan) (http://www.ddbj.nig.ac.jp).
The SWISS-MODEL server became the first widely used web-based automated
modeling platform, which brought a massive change with its user-friendly interface
in the 1990s (Brooks et al., 1993). Then, one of the most popular and useful
web-based platforms from NCBI, the “BLAST tool” (Stephen et al., 1990), became
available, which brought many vital databases such as Human Genome into the
establishment (Brown, 2002). Human Genome was the biggest landmark establish-
ment, which has revolutionized the genomic era. Fig. 8.3 displays few of these
important milestones in the evolution of genomic era. In today’s world, as the tech-
nology is growing, more researchers are trying to develop more interactive easy-to-
use bioinformatics tools. Computational issues rose again with the development of
next-generation sequencing (high-throughput sequencing), which enabled millions
of DNA sequences to be sequenced in a single run. Roche Diagnostics came up
with software, Newbler, that indeed set high standards for its rivals in processing
the data from high-throughput sequencers (Silva et al., 2013). This rapid growth
of bioinformatics has generated various projects and has required a lot of resources.
The expense and expertise required brought several organizations into the picture. In
fact, there are several government-sponsored programs running that are taking their
respective countries forward in this race.

8.2 Genome
8.2.1 Gene expression
In genetics, DNA expression plays a vital role in various biochemical reactions of
eukaryotes, prokaryotes (archaea and bacteria), and viruses. DNA governs the
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synthesis of protein, which is an essential part of our various metabolic activities,
consequently regulating gene expression as well as transferring heredity data from
one generation to another. A gene is composed of exons (triplets of nucleotides)
and introns (the noncoding part). Gene expression is a vital part of the cell cycle;
it carries the information for protein synthesis.

In the human genome, only 3%e5% of the entire genome is coding, which
results in the production of proteins. Regulation of gene expression affects various
processes like transcription, translation, RNA splicing, and posttranslation modifica-
tions. It controls cell machinery timing and number of essential products of genes. A
gene expresses in different ways in different organisms, which results in variation in

FIGURE 8.3

Evolution of the genomic era and bioinformatics.
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genotypes and phenotypes. Alteration in the gene sequence can cause mutation or
various types of genetic disorders like sickle cell anemia, phenylketonuria, etc.
For a better understanding of such genetic disorders, mutations, and diseases related
to them, large amounts of data need to be analyzed. Therefore the advanced compu-
tational approach plays a big role in getting rid of such time-consuming data
processing.

8.2.2 Gene prediction
Gene prediction, also known as gene recognition, has been an area of extensive
research in bioinformatics. The occurrence of genetic variation within the same spe-
cies has caught the interest of researchers for biological processes like splice sites,
ribosomal binding sites, polyadenylation sites, topoisomerase I cleavage sites, topo-
isomerase II binding sites, start and stop codons, and various transcription factor
binding sites of a genomic DNA (Gelfand, 1995; Sherriff and Ott, 2001). However,
in bioinformatics, gene finding is easy in the case of the bacterial gene (prokaryotes)
but in the case of eukaryotes, this process is very complex due to the presence of
multiple types of intron/exon patterns. Thus it is very difficult to identify the func-
tional sites of a gene in large sequences or in the case of unknown genes. So, ma-
chine learning has been developed as a revolutionary step in the prediction of
transcription factors and coding regions in the genome (Alipanahi et al., 2015).
The selection of bioinformatics tools depends on the nature of analysis required,
for example, ATGpr is used to identify the translational sites in cDNA (Li and
Leong, 2005), and AUGUSTUS and GLIMMERHMM are used for eukaryotic
gene prediction (Keller et al., 2011; Majoros et al., 2004). Another set of tools,
BGF, FGENESH, and PRODIGAL (Prokaryotic Dynamic Programming Genefind-
ing Algorithm), are based on the hidden Markov model (HMM) and log-likelihood
functions for gene prediction (Hyatt et al., 2010; Salamov and Solovyev, 2000).
Some advanced tools like GrailEXP are used for the prediction of exons, CpG
islands, promoters, genes, polyAs, and repeating elements in the DNA sequence,
and GENOMESCAN predicts the location and exon/intron position in the genes
of various organisms (Lambert et al., 2003). Table 8.1 lists some of the commonly
used programs.

8.3 Sequence analysis
8.3.1 Nucleotide sequence analysis
Sequence analysis is another important part of the bioinformatics task that plays a
vital role in the understanding of various characteristics of biomolecules like
DNA, RNA, or proteins. The first-ever DNA-based genomic sequence of insulin pro-
teins was analyzed by Fred Sanger in 1951. The analytical method used in thisstudy
is well known as the Sanger method or Sanger sequencing as mentioned earlier. This
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method was one of the biggest breakthroughs for the sequencing of long strand
DNA, and later this method was used in the famous Human Genome Project (Sanger
et al., 1977). However, Michael Levitt claimed that the first sequence analysis began
between 1969 and 1977 (Levitt, 2001). It was believed that Robert Holley’s group
from Cornell University was the first group to sequence an RNA molecule (Holley
et al., 1965). Since that time, many developments have been carried out in this field.
In 1977, the complete genomic sequence of bacteriophage was published (Sanger
et al., 1977). The bioinformatical analysis of these biomolecules gave an idea of
their unique features. In a bioinformatical analysis, first, the sequence of a biomol-
ecule is taken from the databank. After necessary refinement, analytical tools are
used to predict the homologous molecules, structure, function, and evolutionary his-
tory. So, depending on the nature of analysis, various tools for sequence analysis are
available and a few are listed in Table 8.2.

These tools are based on advance statistical and mathematical modeling and are
popular for creating databases of genomes and proteomes and their enormous

Table 8.1 Bioinformatics tools used for gene prediction in various species.

S.
no. Program

Gene prediction available
for References

1. GeneMark,
GenMark.hmm

Human, rat, mouse, chicken,
Drosophila, C. elegans,
Arabidopsis, rice, yeast,
many archaea and bacteria

Besemer et al. (2001),
Borodovsky and McIninch
(1993), Lukashin and
Borodovsky (1998), Shmatkov
et al. (1999)

2. Glimmer,
GlimmerM

Many archaea and bacteria,
Aspergillus, Plasmodium,
rice, Arabidopsis

Delcher et al. (1999), Salzberg
et al. (1998)

3. Grail, GrailEXP Human, mouse, Arabidopsis,
Drosophila, Escherichia coli

Uberbacher et al. (1996)

4. GenScan Human, maize, Arabidopsis Burge and Karlin (1997), Burge
and Karlin (1998)

5. GeneBuilder Human, rat, mouse,
Drosophila, fugu, C. elegans,
Aspergillus, Arabidopsis

Milanesi et al. (1999)

6. Genie Human Reese et al. (2000)

7. GeneID Human, Drosophila Parra et al. (2000)

8. GeneFinder,
Fgenes,
Fgenesh

Human, yeast, C. elegans,
Arabidopsis, Drosophila

Salamov and Solovyev (2000)

9. HMMgene Human, Arabidopsis,
C. elegans

Krogh (2000)

10. GeneFinder,
MZEF

Human, mouse,
Schizosaccharomyces
pombe, Arabidopsis

Zhang (1997)
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applications in biological sciences. They help in identifying and analyzing promoter,
terminator, and untranslated regions in the genome and also in recognition of exon,
intron, open reading frame, and some variable regions that can be used for diagnostic
purposes. A bioinformatic study also helps to find similarities and comparisons
between two different sequences or variations like point mutation and single nucle-
otide polymorphism. Until now, millions of sequences of proteins and nucleic acid
of different organisms are known. These sequences are divided into protein families
and gene families and aligned in two different ways: pairwise sequence alignment
and multiple sequence alignment by using the NeedlemaneWunsch algorithm and
the SmitheWaterman algorithm (Rehm, 2001). Software tools like BLAST (Basic

Table 8.2 Bioinformatics tools used for sequence analysis of protein and
nucleic acid.

S.
no.

Sequence
analyzing tools Function References

1. BLAST Used for DNA or protein sequence analysis (Stephen
et al., 1990)

2. HMMER Used for homologous protein sequences
identification

Finn et al.
(2011)

3. Clustal Omega Used for multiple sequence alignments Sievers et al.
(2011)

4. Sequerome Used for sequence profiling Ganesan et al.
(2005)

5. ProtParam Used to predict physicochemical properties
of proteins

Gasteiger
et al. (2005)

6. JIGSAW Used to predict the splicing sites in DNA
sequences

Allen and
Salzberg
(2005)

7. novoSNP Used to find single nucleotide variation Weckx et al.
(2005)

8. Virtual Footprint Used to analyze whole prokaryotic genomes
along with promoter regions

Münch et al.
(2005)

9. WebGeSTer Contains a database of transcription
terminator sequences

Unniraman
et al. (2002)

10. Genscan Used to predict the exon/intron sites Burge and
Karlin (1997)

11. Softberry Tools Annotates plant, animal, and bacterial
genomes along with function and structure
prediction of RNA and proteins

Gangal and
Sharma
(2005)

12. ORF Finder Used to find open reading frame Rombel et al.
(2002)

13. Prokaryotic
promoter
prediction

Used to find the promoter sequences in
prokaryotes

Kanhere and
Bansal (2005)
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Local Alignment Search Tool) and ClustalW are used to compare the origin and
evolutionary history of species on the basis of genetic and protein databases. There
are several tools used by researchers for the graphical view of data like TreeView,
Jalview, GeneView, and Genes-Graphs. As mentioned, these tools are mainly based
on mathematical modeling and statistical applications like regression analysis,
dynamic programming, artificial neural network, HMM, clustering, and sequence
mining to study given biological sequences (Mehmood et al., 2014).

8.3.2 Protein sequence analysis
Protein sequences can also be sequenced similar to DNA sequences. Among all the
bioinformatics tools available, the more sophisticated tools for protein sequence
analysis are motif searching and 3D structural prediction. A motif is a specific
sequence in DNA and protein that forms a distinct structure. Motif sequences are
patterns of amino acids that have some known function (Bilgen et al., 2004). Several
bioinformatics tools contain a collection of motif sequences; one examples is the
PROSITE database maintained by the University of Geneva Medical Center (Bair-
och et al., 1997). Another example is PFAM, created with the literature data of
already available sequence databases for the identification of such sequences (Bate-
man et al., 2004). Apart from these, many software tools for motif sequences are
available, and a few of them are listed in Table 8.3. The databases from various
analytical tools help to recognize the specific amino acids with their functional
significance even for unknown proteins. The function of a protein is not only decided
by its sequence but also depends on its structure. The 3D structure of a protein
decides biological activities and thus its functions. One of the major challenges in
bioinformatics is to conclude the protein structure by analyzing its sequence.

There have been methods available for the prediction of secondary structure
(alpha-helix and beta-sheet) for many years now, for example, Cn3D is an applica-
tion from NCBI, which was used to predict the 3D structure of the protein. Now,
with the advanced version of this application, we can obtain information about
protein structure, sequence, and alignment (Wang et al., 2000). Another popular
website for protein modeling is EMBL Biocomputing, which provides data on mul-
tiple protein modeling (Madeira et al., 2019).

8.3.3 Phylogenetic analyses
The word phylogeny is used for the evolutionary history of any species. Phyloge-
netic analyses give the evolutionary relationships between the group of organisms.
From the molecular sequence database, it was observed that all the species on Earth,
including those that are extinct, have arisen from a common ancestor (Khan et al.,
2014). Sequence databases provide the data to reveal the role of biomolecules
with functions in the evolution of a species. Phylogenetic analysis provides the in-
formation to understand the interrelationship between the different species. A better
and easier way of understanding the interrelationship between different species is by
using a phylogenetic tree or tree of life as shown in Fig. 8.4.
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Table 8.3 Bioinformatics tools used for motif finding.

S.
no. Tool name Description References

1. PMS Motif search Din and
Rajasekaran
(2013)

2. eMOTIF Extraction of shorter motifs sequence Huang and
Brutlag (2001)

3. PHI-Blast Motif alignment tool Zhang et al.
(1998)

4. PRATT Used for pattern generation with ScanProsite Gunduz et al.
(2003)

5. TEIRESIAS Motif extraction and database Schwartz and
Gygi (2005)

6. BASALT Multiple and regular expression motif
searches

Redhead and
Bailey (2007)

7. ScanProsite Motif database tool Gattiker et al.
(2002)

8. I-sites Structure motif library Bystroff et al.
(2000)

9. JCoils Prediction of leucine zipper and coiled-coil
protein structure

Rehman et al.
(2017)

FIGURE 8.4

Interrelation between various species (phylogenetic tree).
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The tree is composed of various nodes and branches. The nodes of the tree repre-
sent taxonomic units like genes, proteins, species, or populations, whereas branches
give the time estimation of the evolutionary relationship. The principle behind the
phylogenetic tree is to group the organism on the basis of its genotypic similarity.
The organisms that have more genotypic similarities appear much closer in the
tree than those having fewer similarities (Freckleton et al., 2002). There are various
bioinformatics tools used to draw or analyze various phylogenetic trees, and a few
are shown in Table 8.4 (Price et al., 2010).

The following are methods for constructing a tree.

8.3.3.1 Distance-based method
In this method, we calculate the genetic distance between the pairs of sequences to
obtain a distance matrix-based tree. The sequences are first aligned using multiple
sequence alignment and then the distance of mismatched position is measured to
form a distance matrix. This method is very fast and efficient for continuous char-
acters. The two mainly used distance-based methods are the unweighted pair group
method with arithmetic mean (UPGMA) and the neighbor-joining (NJ) method. The
UPGMA method was originally developed by Sokal and Michener in 1958 for
numeric taxonomy. This method uses sequential clustering to form a tree. In this
method, the sequences are compared by pairwise alignment to build a distance ma-
trix. The two sequences that have minimum distance are clustered to form a signal
and this is repeated with the other sequences to make a new distance. This is the
simplest algorithm and thus it is fast, but requires the evolutionary rate to be constant
and it works only for ultrametric data (Sokal, 1958).

The other popular distance-based method is NJ. This method was developed by
Saitao and Nei in 1987. It works similarly to UPGMA; however, it does not require a

Table 8.4 Bioinformatics tools used for phylogenetic analyses.

S.
no. Tools Function References

1. MEGA (Molecular
Evolutionary Genetics
Analysis)

Used to build a phylogenetic tree to
study the evolutionary link between
species

Tamura et al.
(2007)

2. MOLPHY Based on the maximum likelihood
method

Adachi and
Hasegawa
(1992)

3. PAML Based on the maximum likelihood
method

Yang (2007)

4. PHYLIP Used for phylogenetic studies Retief (2000)

5. JStree Database library for viewing and
editing the phylogenetic tree

Shank et al.
(2018)

6. TreeView Used to view the phylogenetic tree Page (2003)

7. Jalview Used to refine alignment Waterhouse
et al. (2009)
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constant evolutionary rate, thus it is used for large sequences as well. In this method,
the operational taxonomic units (OTUs) are clustered and formed into a star-like
tree. The branches lead to the respective OTUs and radiate from one node and
form a star-like pattern. In the next step, another pair of sequences is selected,
removed from the star, and joined to a second node, which is connected to the
branch, and finally, the distance is calculated as shown in Fig. 8.5. After calculation,
the sequences are returned to their respective positions, and then another pair is
selected. This minimizes the length of the tree (Gascuel and Steel, 2006).

8.3.3.2 Character-based method
In comparison to the distance-based method, the character-based method is based on
utilizing the sequences rather than mismatched distance. Character-based analysis
helps in studying the evolutions of the mutations in the sequences. The two
commonly known methods are maximum parsimony and maximum likelihood.
Maximum parsimony is a simpler and popular criterion. In this method, the phylo-
genetic tree, which has fewer substitutions to explain evolutionary history, is
preferred. Here, all the character changes are considered to be independent of their
neighbors (Farris, 1970). On the other hand, maximum likelihood is a statistical-
based widely used method. It evaluates data by branch swapping similar to
maximum parsimony, but a phylogenetic tree with maximum compound probability
is preferred (Chor and Tuller, 2005). This method can be very useful for broad
differing datasets. However, this method requires massive computation, which
currently limits its usage.

8.4 Sequence database
In the bioinformatics field, a sequence database refers to a biological database
comprising a vast collection of information regarding different biological molecule

FIGURE 8.5

Phylogenetic tree using Saitou and Nei’s neighbor-joining method.
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sequences like nucleic acid sequences, protein sequences, and polymer sequences,
which could be classified via a unique key. The information gathered via a sequence
database is of great importance for future use, and along with this, it also aids as a
primary sequence analyzing tool. With the new developments made in sequence-
determining techniques, sequence determination could be acquired even at a single
genome level, which has become a huge source of data generation nowadays.
Numerous databases are developed all around the world to make collection and
submission of sequence data freely accessible to researchers. Every database works
as a sovereign depiction of life at a molecular level. Knowledge of these databases
will facilitate retrieving information from them a once-only requirement.

Sequencing databases portray a significant role in examining the data of biolog-
ical organisms. So, they have been categorized into three types, namely primary, sec-
ondary, and composite databases based on the information they possess. The primary
database consists of data that are attained via experimentation, e.g., through X-ray
diffraction and nuclear magnetic resonance (NMR) techniques relevant to a structure
or sequence. Examples of primary databases are GenBank (Benson et al., 2008),
DDBJ (Miyazaki et al., 2003), Universal Protein (UniProt) sequence database (Uni-
Prot, 2014), PIR (Wu et al., 2003), Swiss-Prot (Boeckmann et al., 2003), EMBL
(Stoesser et al., 2001), and Protein Data Bank (PDB) (Berman et al., 2000). In
contrast, a secondary database consists of information that is derived from the
data originated from the examinations and studies done and stored in primary data-
bases, which comprise active sites residues, conserved sequences, and conserved
protein secondary motifs (Finn et al., 2014; Gonzalez et al., 2014). Examples of sec-
ondary databases are Structural Classification of Proteins (SCOP) database (Fox
et al., 2014), PROSITE (Sigrist et al., 2012), Class, Architecture, Topology, and
Homology (CATH) database (Pearl et al., 2005), and eMOTIF (Huang and Brutlag,
2001). On a comparative note, primary databases are considered classical databases,
whereas secondary databases are considered a more organized form of database. The
composite database consists of an array of primary databases, which eradicates the
requirement for searching each database separately. Data structures and search algo-
rithms differ from the composite database used. Examples of composite databases
are the International Nucleotide Sequence Database (INSD), which is basically a
compilation of nucleic acid sequences from GenBank, EMBL, and DDBJ. The
nonredundant database is also an example of a composite database, consisting of in-
formation from PIR, Swiss-Prot, PRF, GenBank (CDS translations), and PDB. Simi-
larly, UniProt also serves as an example of a composite database representing a
collection of sequences obtained from different databases such as Swiss-Prot,
PIRPSD (Protein Information Resource Protein Sequence Database), and TrEMBL
(Translation from EMBL). A few of the sequence database examples are discussed
in Table 8.5.

8.4.1 Genomic database
Bioinformatics, especially genomic informatics, has emerged as a scientific tool of
great significance during the postgenomic period with the advancements made in the
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human genomic field. Developments in the field of technology have made it possible
to determine a vast number of alterations at the genomic scale in human genes,
varying from small mutations to broad rearrangements. With time, it has become
clear that an understanding and arrangement of these variations in structure archives
would be of huge significance for both diagnosis purposes and the whole scientific
community.

The genomic database simply refers to the collection of information regarding
genomic mutations or alterations that are available online, represented for a
position-specific, general gene, or particular individual or group of people.

8.4.1.1 Advantages of the genomic database are

1.It provides aid in diagnostics at the DNA level to interpret an optimum method
for detection of the mutation.
2.It facilitates information regarding particular alterations or mutation-
phenotypic motifs.
3.It compares position-specific alteration information with the genomic data
already available, such as gene structures, mutation hotspots, recombination
frequencies, repeating units, conserved species, and much more (Mehmood
et al., 2014).

8.4.1.2 GenBank
GenBank, which comes under the NCBI, is a large compilation of genomic
sequences comprising about 250,000 species (Benson et al., 2008). GenBank data
can be retrieved via NCBI’s integrated system, Entrez, whereas information can
be gathered using PubMed (Benson et al., 2012a,b). Enormous amounts of informa-
tion can be obtained through each genomic sequence regarding the bibliography,
organism, literature, and other diverse characteristics. This information contains

Table 8.5 Examples of commonly used sequence databases.

S.
no. Database About References

1. GenBank Member of International Nucleotide Sequence
Database (INSD) and provides an annotated
collection of all freely available information
regarding nucleotide sequences and their
protein translations

Benson et al.
(2012a,b)

2. DNA Data
Bank of Japan

Member of INSD and a huge resource for
nucleotide sequences

Miyazaki
et al. (2003)

3. Rfam Contains information on a group of RNA
families, depicted by multiple sequence
alignments

Burge et al.
(2013)

4. European
Nucleotide
Archive

Offers free and unrestricted information about
annotated DNA and RNA sequences. Also
stores the collection of experimental data and
sequencing projects metadata.

Amid et al.
(2012)
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promoters, exons, introns, coding regions, translations, untranslated regions, termi-
nators, and repetitive regions. Individual laboratories along with huge genomic
sequencing projects contribute to generating sequence data to be collected and
stored in GenBank. Similarly, Xenbase is an example of a genomic database that
keeps biological and genomic information related to frogs as well as Xenopus
tropicalis and Xenopus laevis (Bowes et al., 2010). In this, Xenopus spp. could be
considered a model that facilitates new understanding about the advancements
made in biology, which can be used for modeling and simulation studies of various
human disorders.

8.4.1.3 SGD
Another example of a genomic database is the Saccharomyces Genome Database
(SGD), which consists of complete information regarding yeast (Saccharomyces
cerevisiae) and also facilitates bioinformatics tools to examine its data. This data-
base can be employed to analyze practical relationships between gene sequences
and products in the case of fungi and eukaryotes (http://www.yeastgenome.org/).
Other than this, genome databases such as FlyBase”facilitate the accessing of infor-
mation related to genomes and genes of Drosophila melanogaster accompanied by
search options for alleles, gene sequences, different phenotypes, genetic aberrations,
and illustrations of the Drosophila class (St. Pierre et al., 2014).

8.4.1.4 Other genomic databases
Other databases such as WormBase and wFleaBase also facilitate accessing data
related to genes and genomes. WormBase (http://www. wormbase.org) facilitates
accurate, updated, and accessible information regarding C. elegans molecular
biology, along with that of roundworms. On the other hand, wFleaBase (http://
wfleabase.org/) facilitates data accession for the class of genus Daphnia (i.e., water
flea) where Daphnia is treated as a classical system to analyze and gather informa-
tion on complicated interactions. This information is vital for understanding gene
expression, genome structure, individual fitness, and population-level reactions to
environmental transformations and chemical pollution. Although wFleaBase con-
sists of a large amount of information on almost all classes of the genus, the funda-
mental classes are Daphnia magna and Daphnia pulex. Several other examples of
genomic databases are mentioned in Table 8.6.

8.4.2 Protein sequence databases
The examination of proteins on an extensive scale has provided plenty of data
because of the information offered via the various genomic projects and the discov-
ery of an advanced range of technologies in science. These advanced technologies
have facilitated the straightforward recognition and nature of posttranslational alter-
ations in protein (Sickmann et al., 2003). They have also made it easier to determine
a broad range of proteins and outline their interactions to specify their cellular
positions (Huh et al., 2003), along with their biological activity interpretation.
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Hence, protein sequence databases portray a significant part of being the hub of data
storage and making it accessible to the scientific community. Table 8.7 contains few
of the commonly used examples of protein sequence databases.

8.4.2.1 Types of protein sequence databases
Protein databases can be distinguished by having a better understanding and being
able to analyze the nature of the data contained in them. Proteins of almost every
species existing are available in universal protein databases, while information
related to a specified protein family, organism, or certain type of protein is made
available by some specialized databases. Universal protein sequence databases
can again be divided into sequence archives, which work as storehouses for data
consisting of no additional information, and efficiently curated databases, which
consist of additional information along with preexisting data (Apweiler et al.
2004).

Table 8.6 Examples of commonly used genomic databases.

S.
no. Database About References

1. Ensembl Facilitates integrated genomic
information for researchers for
genome study

Kersey et al.
(2018)

2. ENCODE Determines the human genome
functional elements

Sloan et al. (2016)

3. GWAS Central Free access database providing data
for genetic association studies in the
case of humans

Beck et al. (2014)

4. NCBI Genome Contains information on extensive
genomic projects, genome
sequences, assemblies, and mapped
annotations like alterations, markers,
and data obtained through
epigenomics analysis

(Sayers et al.,
2021)

5. IGSR (International
Genome Sample
Resource)

Biggest free access compilation of
data for human alterations

1000 Genomes
Project
Consortium
(2015)

6. DGV (Database of
Genomic Variants)

Gives collective information regarding
structural alterations in the human
genome

MacDonald et al.
(2014)

7. H-InvDB (H-
Invitational
Database)

Human transcripts and genes unified
database

Yamasaki et al.
(2010)

8. GMOD Project Provides free access for managing,
visualizing, storing, and annotating
biological data

Stein et al. (2002)
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8.4.2.2 Protein sequence archives
A few of the protein sequence databases work as protein sequence archives. Such
databases only provide sequence history, details, or reports offering no extra related
information and do not even make any attempt to offer necessary information on the
sequences. Examples of such databases are GenPept, NCBI’s Entrez Protein, and
RefSeq. GenPept (GenBank Gene Products Data Bank) is one of the simplest kinds
of databases available, which comes under NCBI (Wheeler et al., 2003). The data
contained within it are obtained via sequence translations available in the nucleotide
databases, managed altogether by the European Molecular Biology Laboratory
(EMBL) Nucleotide Sequence Database (Stoesser et al., 2003), the DDBJ, and Gen-
Bank, and consist of very few annotations. Another example of such databases is
NCBI’s Entrez Protein, which consists of a collection of sequence data adapted
from already available nucleotide sequences of databases such as EMBL/DDBJ/
GenBank and also sequences available in PIR, PDB (Westbrook et al., 2003),
Swiss-Prot, and RefSeq (Pruitt et al., 2003). Unlike GenPept, the NCBI’s Entrez
Protein database also provides supplementary information derived through curated
databases like PIR and Swiss-Prot. Other than these examples, the RefSeq
database is also a protein sequence archive that is maintained by NCBI. The main
objective of this database is to facilitate the necessary compilation of protein- and

Table 8.7 Examples of commonly used protein sequence databases.

S.
no. Database About References

1. Swiss-Prot Curated protein sequence database that
provides manually annotated sequences

Boeckmann
et al. (2003)

2. Proteomics
Identifications
Database

Free access data archive, provides
nonredundant data related to functional
characterization and posttranslation
alterations

(Vizcaı́no
et al., 2010)

3. PROSITE Contains information depicting protein
families, domains, and active sites along with
their amino acid patterns and profiles

Sigrist et al.
(2012)

4. UniProt Biggest collection of information regarding
protein sequences

UniProt
(2008)

5. Pfam Contains protein families, their annotations,
and multiple sequence arrangements

Finn et al.
(2014)

6. InterPro Characterizes protein families, active sites,
and sustained domains

Quevillon
et al. (2005)

7. Protein Data
Bank

A major source of protein information of
experimentally determined structures of
proteins, nucleic acids, and other composite
structures

Berman et al.
(2000)
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nucleotide-linked sequences, provide data confirmation and format regularity,
extend distinct series, provide updated information about sequence data and biology,
and provide up-to-date curations carried out via NCBI itself and its coworkers
(Apweiler et al., 2004).

8.4.2.3 Universal curated database
The other type of protein sequence database is a universal curated database, which
contains additional information along with sequences. PIRPSD is one of the most
used universal curated databases. This database keeps a collection of extensive,
necessary protein sequence data, managed by family and superfamily and annotated
through structural, functional, genetic, and bibliographic data. It provides not only
sequence data, but also the name and categorization of protein, name of the organism
containing the protein naturally, fundamental literature, natural characteristics
accompanied with their function’s references, and active sites of the sequence.
Many times, the database is cross-cited with GenBank nucleic acid/EMBL/DDBJ
and protein identifier, MEDLINE IDs and PubMed, and also other database sources.

8.4.2.3.1 Swiss-Prot
Swiss-Prot is an extensively used universal curated database that contains necessary
information compiled altogether in one place, and has great unified accordance with
other databases (Gasteiger et al., 2001). In this database, the annotation contains
information related to protein functions, active sites, domains, posttranslational
alterations, resemblance with other proteins, secondary and quaternary protein
structures, protein deficiency-related diseases, protein-expressing levels, tissues
containing a particular protein, protein corresponding pathways, and competition
and modifications in a sequence.

8.4.2.3.2 TrEMBL
Another example of such databases is TrEMBL, which offers sequence searching
much faster than Swiss-Prot, because Swiss-Prot requires more manual effort, mak-
ing it time and labor consuming, which in turn limits the rate of progress of the data-
base. This is because the number of newly acquired sequences is larger than that of
the expertly annotated physical sequences entered in the database. It also contains
information through computer annotations obtained by translations of all coding se-
quences present in other databases such as EMBL/DDBJ/GenBank nucleotide
sequence database, which were not covered by Swiss-Prot until now.

8.4.2.3.3 UniProt
One of the most significant protein sequence databases is UniProt, which contains an
extensive collection of information related to protein sequences, and also grants free
and open access to its data. The data contained by PIR, Swiss-Prot, and TrEMBL
collectively form UniProt, facilitating all detailed information related to a protein
from its sequence to its functions all in one database (UniProt, 2010).
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8.5 Structure prediction
Structural biology is the field that concerns how macromolecules, i.e., proteins,
RNA, or DNA, acquire their native 3D structure and how their functions change
with any change in their native states. Since the number of proteins is vast, the deter-
mination of their 3D structures experimentally is a tedious job. The unavailability of
information about the structure of proteins can be unsatisfying for researchers. This
high demand for knowledge of protein structures was somewhat fulfilled by compu-
tational modeling. Protein structure prediction is based on the information provided
by already solved protein structures. This gave rise to a new approach, “structural
genomics,” also referred to as high-throughput structural biology. Structural geno-
mics talks about characterizing the 3D structure of every protein of a given genome
rather than focusing on a single protein (Griffiths et al., 2000). With a plethora of
information available about a large number of sequenced genomes, structure predic-
tion has become easy with the combination of experimental, bioinformatics, and
modeling approaches. Characterization of genomes at the structural level can help
in deducing generalizations about the structural organization of genomes (Elsliger
and Wilson, 2013). The high-throughput techniques are used to elucidate protein
structures of genomes on a large scale. To understand the function of a particular
gene or genome, it is important to understand the composition and locus of the
gene. This large-scale elucidation can help in cloning and manipulating genes; it
also provides insight into potential drug targets for therapeutical purposes. Structural
genomics begins with the assignment of genes and markers to specific chromosomes
followed by high-resolution chromosome mapping of these genes and markers, and
finally physical mapping of genomes and genome sequencing. These genome maps
can be used for various genetic analyses, i.e., gene isolation (disease-related genes)
and functional genomics.

Predicting the structure and function of a protein using bioinformatics techniques
has become a major topic in this field. There are thousands of 3D structures of pro-
teins that are predicted and submitted to protein databases every month. Information
on the structure of a protein correlated to the function of that protein as the biological
activity is dependent on how a protein folds into a 3D structure. Since the last cen-
tury, protein just like DNA has been a very complicated macromolecule. It is built
from linear sequences of amino acids, specified by nucleotide codons, which ulti-
mately end up in different spatial shapes and structures depending on intramolecular
interaction and thus exhibit different biological activities in the biological system.
X-ray crystallography and NMR are the two most used experimental techniques
to determine the 3D structure of a protein. But their limitations, like cost and
time consumption, along with other technical difficulties (sample preparation)
make their productivity poor compared to the number of protein sequences submit-
ted in bioinformatics databases. The last two decades have seen exponential growth
in the submission of protein sequences. The ongoing advancement in computational
methods bridges the gap between the submitted protein sequences and their 3D
structures. UniProt and PDB are two major databases that contain millions of
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sequences (Consortium, 2015). Structure prediction is based on “Anfinsen dogma,”
which says that the native structure of a protein is encoded only by the amino acid
sequence. This hypothesis was given by Anfinsen in 1973 and formed the basis of
protein folding prediction (Anfinsen, 1973). However, determination of the stable
conformation of a protein is still very difficult. The fundamental steps of protein
modelling are depicted in Fig. 8.6.

There is a variety of easy-to-use protein sequence databases and web servers for
protein structure modeling. A few popular examples are shown in Table 8.8.

Several publicly available online programs are also available that are very conve-
nient and easy to use. Some examples of famous publicly available programs are:

1. BLAST
2. FASTA
3. ClustalW
4. SWISS-MODEL

FIGURE 8.6

Fundamental steps of protein modeling.
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There are two types of protein modeling:

1. Template-based modeling
2. Template-free modeling

8.5.1 Template-based modeling
This involves the mimicking and refining of the structural framework (as a template)
of a known protein structure to build the structure of the unknown protein. 3D struc-
tures for the family of a protein can be built if one protein of the family has a known
structure. This assumption is based on the fact that for a small change at the
sequence level, there are no significant changes in the 3D structures of the proteins
(Chothia and Lesk, 1986).

These methods are very advantageous because of their high-quality and cost-
effective 3D structures. However, the requirement of a known structure (template)
can limit their application.

8.5.2Comparative protein modeling
Comparative protein modeling is a template-based method that predicts the

model of a protein by comparing its alignment with proteins of known structures.
It may seem difficult to predict the 3D structure because of the presence of a large
number of different proteins. But the limited number of possibilities of tertiary
motifs helps in solving the problem (Zhang, 2008).

The general sequencing steps of comparative protein modeling are to:

1. Identify or select the template(s) corresponding to the target sequence.
2. Align the target sequence with the template(s).

Table 8.8 Databases for protein structure modeling.

S.
no. Database About References

1. Ensembl Contains 227 annotated genomes Yates et al.
(2020)

2. GENBANK Contains annotated nucleotide sequences with
their protein translations for more than 300,000
organisms

Benson et al.
(2012a,b)

3. Protein
Information
Resource

An integrated database with a variety of protein
annotation resources

Huang et al.
(2007)

4. UniProtKB Contains both UniProtKB/Swiss-Prot, and
UniProtKB/TrEMBL sequences

(Consortium,
2015)

5. Protein Data
Bank

A major source of protein information of
experimentally determined structures that
contain more than 144,000 proteins, nucleic
acids, and other composite structures

wwPDB
consortium
(2019)
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3. Construct a model.
4. Evaluate the model for errors in prediction.

Comparative protein modeling is further divided into:

8.5.1.1 Homology modeling
Homology modeling usually involves the target protein sequence, which shares
sequence similarities with a related homologous protein whose structure has already
been experimentally determined. These types of protein sequences are assumed to
share notable similarities in their structures. On the evolution of a protein, it has
been demonstrated that the protein structures are more conserved than their amino
acid sequences in a homologous family (Illergård et al., 2009). Moreover, difficulties
arise in the alignment of the protein sequences. However, this method is ideal for
similar protein sequences.

8.5.1.2 Protein threading
On the other hand, protein threading does not limit itself to sequence similarity.
Rather, it functions based on fold recognition and can provide better results even
in low sequence similarity. It searches the database of known or experimentally
determined structures for the unknown or target protein sequence. It uses an algo-
rithm with a scoring function to determine the compatibility of the unknown
sequence with a particular solved structure. This 3D structure recognition with 1D
protein sequences is unique and aspires to give rise to more advanced methods
that can scan structures for a large database (Bowie et al., 1991).

8.5.2 Template-free modeling
This modeling technique is used to model protein sequences that do not contain sim-
ilarity with existing solved structures. This method is based on fragment assembly of
the residues, which uses a database of fragments of already determined proteins to
examine the space frame available for the target (unknown) protein. The correlation
between the protein sequence and the structure adopted by them is one of the funda-
mental principles for ab initio modeling. On the other hand, the template-based
methods that are most used do not provide any information about the fundamental
law of protein folding. The requirement of larger computational resources and so-
phisticated algorithms by template-free methods has limited their success; therefore
they have only been used for small proteins (Zhang, 2008). However, their potential
for structural genomics is considered to be very high due to their physics-based
atom-by-atom simulation approach, which can help in understanding the principles
of protein folding (Shaw et al., 2009).

8.5.2.1 Ab initio protein modeling
Ab initio, also known as de novo, protein modeling methods are based on building
3D models of proteins from their primary sequence. It utilizes physical principles
rather than using a known homolog of a protein, thus it requires huge computation.
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Ab initio modeling methods function by producing structural conformations
(decoys) and as the decoys approach the most stable conformation, the free energy
decreases. Conformations with lower free energies are picked by ab initio modeling
methods. Examples of these methods include programs like Rosetta by David Baker
(Rohl et al., 2004), which can be employed for a complete solution to structures
ranging from three to nine residues. Another very useful example is QUARK by
Yang Zhang, which is an excellent modeling method for a fragment ranging from
1 to 20 residues. Then, there are other examples that range even more, like FRAG-
FOLD (Jones, 2001), PROFESY (Lee et al., 2004), SCRATCH (Cheng et al., 2005),
etc. However, these methods are not capable of solving large protein problems
emerging from side-chain amino acids.

8.6 Bioinformatics and drug discovery
Drug discovery and development is a very tedious, challenging, time-consuming but
highly rewarding process. Pharmaceutical companies follow traditional pharma-
cology and chemistry techniques for drug designing that experience various diffi-
culties. The development of a potent optimum drug requires expertise in machine
handling, resources, millions of dollars of investment, and lots of time for its market
commercialization, and, in fact, after lots of hard work, it may fail various phase tri-
als (Iskar et al., 2012). So, to eliminate such issues, the involvement of pharmaco-
genomics and bioinformatics has made the process easier and reduced the cost
and time. With the increasing demands of a large number of drugs with reduced
potent risk, the interest of the pharmaceutical industry in bioinformatics has
increased as it is an easier and faster way to analyze the molecule compared to
the experimental approach (Ortega et al., 2012). A new and separate computer-
based technique, computer-aided drug design, is used for the discovery of novel
drugs (Cordeiro and Speck-Planche, 2012). The entire process of drug discovery
can be divided into four types: drug target identification, target validation, lead iden-
tification, and lead optimization.

8.6.1 Drug target identification
This is a recent approach used to find biologically active molecules. The drug can be
a small molecule that can target the protein, receptor, enzyme, or nucleic acid (Viz-
ovisek et al., 2016). The drug is developed in such a manner so that it can target and
inhibit the disease site and deliver therapeutic benefits. The target is the main key to
the diagnosis as it allows the drug molecule to act on the metabolism and signaling
pathway of the infected cells (Yamanishi et al., 2010). Therefore genetic information
is required to understand the nucleotide composition and coding of a target protein
and here bioinformatics plays a major role. The genomics and proteomics analysis of
a disease is used to locate the target, which shows an abnormal change in gene
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regulation (Katara, 2013). This expression analysis helps in distinguishing between
the normal cell and an infected cell (Frantzi et al., 2019). There are various bioinfor-
matics software packages available in the market for fast target identifications and a
few of them are listed in Table 8.9.

8.6.2 Drug target validation
Bioinformatics provides algorithms and data to explore new drug targets. After the
identification of drug targets, the drug molecule and target must show strong inter-
action (Yamanishi et al., 2010). The extent of interaction of the drugetarget complex
decides its success. The establishment of such a relation is known as target valida-
tion. Target validation is an area of drug development where bioinformatics helps to
avoid the failure of the drugs in clinical trials. Once approved through bioinformat-
ics, the next step is to identify a lead compound.

Table 8.9 Bioinformatics tools for drug discovery.

S.
no. Tools Function References

1. Potential Drug Target
Database

Web-accessible database of proteins
for drug target identification

Gao et al.
(2008)

2. Drug Bank Bioinformatics tools that combine
chemical drugs data with a drug target
identification database

Wishart et al.
(2006)

3. Therapeutic Target
Database

Provides information of the known
therapeutic nucleic acids and protein
targets

Zhu et al.
(2010)

4. Manually Annotated
Targets and Drugs
Online Resource

A database for exploring drugetarget
relationships. It gives direct as well as
indirect interactions.

Gunther et al.
(2007)

5. TDR Target Database
(Tropical Disease
Research)

A tool as well as a genomic database
that identifies the gene of interest from
the disease. It is part of the World
Health Organization special program
agenda.

Aguero et al.
(2008)

6. TB Drug Target
Database

Contains the database of drugs and
targeted protein of tuberculosis

Ekins et al.
(2011)

7. ChEMBL A large-scale database for drug-like
bioactive molecules, this tool gives 2D
structure analysis and various
calculations like Lipinski parameters,
logP, binding constants, molecular
mass, pharmacokinetics, etc.

Gaulton et al.
(2017)

8. DrugPort Gives structural data from the Protein
Data Bank related to drugs and their
target molecules

Paxman and
Heras (2017)
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8.6.3 Lead identification and optimization
After validation of the drug targets, the next step is to find a suitable molecule (drug)
that can alter the active site of the target. A large number of bioinformatics databases
are available for virtual screening of molecules, which can be used to study the bind-
ing and inhibition or activation of the protein. High-throughput screening identifies
the promising molecules in the process of drug development and becomes a vital
part of it. This screening is a very high-tech approach that exhibits selectivity of
the compound for the target site; due to this property it is gaining popularity in phar-
maceutical industries (Martis et al., 2011).

the lead data process is followed by lead optimization. To procure unique analogs
having enhanced efficacy, lead compound synthesis is the main objective of lead
optimization. To deduce the target active sites and improve the optimization of
the lead, several properties like metabolic stability, selectivity, etc. are contained
therein. Lead optimization is accomplished by chemically modifying its hit struc-
ture, followed by alterations by making use of structureeactivity relationship, i.e.,
structureeactivity analysis accompanied by design, based upon its structure when
the structural data related to the target are accessible (Frye, 1999). Along with
this, optimization of the lead mainly involves experimental verification and recog-
nition of compounds depending on the already available animal models and tools
offered by absorption, distribution, metabolism, excretion, and toxicity both
in vitro and in situ, which can be used for target determination and target confirma-
tion (Wishart, 2005). Furthermore, there should be good correspondence between
the lead compound and the drugs, and the lead compound should show no interven-
tion with P-glycoprotein or with enzymes such as cytochrome P450 (Reddy et al.,
2007).

8.7 Pharmacogenomics
The development of a precise medicine that can show an equal effect on all patients
of the same gene pool is the utmost goal for the medical industry. The study of hu-
man genetics from the past 20 years has made the understanding of the relationship
between human genetics and diseases somewhat easier (van der Wouden et al.,
2020). Genomic information is used in various applications, one of which is the
emerging field of pharmacogenomics-informed pharmacotherapy. Pharmacogenom-
ics is a new field of pharmacology and genomics for the development of effective
and safe doses of drugs. Pharmacogenomics gives an idea of how the genetic vari-
ants respond to a particular dose of a drug (Amstutz and Carleton, 2011; Kaur et al.,
2013). The drugs available in the market are “one size fits all,” but the effect of the
drug is not the same on individuals. Understanding of the role of genetic biomarkers
linked with various diseases can help pharmaceutical companies in the development
of more effective and precise drugs, therefore identification of the geneedrug reg-
ulatory network becomes very important (Eichelbaum et al., 2006). This can only
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be possible by observing the variations of those genetic elements that take part in
drug interactions, which is somewhere linked with the pharmacodynamics and
pharmacokinetics of the drugs (Katara, 2013; Whittaker, 2003). Various surveys
have reported that the leading cause of patient death every year in hospitals is
adverse drug reactions and medical errors (Rawlins, 2004; Rodziewicz and Hip-
skind, 2020). The pharmacogenomics approach helps to prescribe suitable drugs
to patients on the basis of their genetic profiles, which reduces the risk and increases
the efficacy of the drugs (Prows and Prows, 2004). Bioinformatics tools provide
various information to help researchers to gain a better understanding of geneedrug
interactions. Information from various available pharmacogenomics tools is
partially summarized in Table 8.10.

8.8 Future aspects
Bioinformatics has become a vital tool in the field of biotechnology and biomedical
sciences. This makes it possible to test ideas and hypotheses effectively that can help
in decision making prior to any expensive experimental implementation. In the past
few years, bioinformatics has shown enormous expansion in various fields and has
become a very reliable technique for cost-effective and fast analysis of genomics,
proteomics, as well as structure prediction, drug designing, and molecular interac-
tion studies. The large online databases and software tools provide more reliable
and accurate results. In addition to this, they also solve various complexities of
sophisticated biological pathways and interactions and further help in understanding
the relationship between species and the evolution of life. As per the future

Table 8.10 Pharmacogenomics tools for drug designing and development.

S.
no. Sources Information References

1. PharmGKB The knowledge base is used to search and gain
knowledge of genotypeephenotype relation,
drug dosage, geneedrug interactions, diseases,
and pathways

Barbarino
et al. (2018)

2. CYP allele
nomenclature

Database on the genetic information of major
cytochrome P450s

Gaedigk et al.
(2018)

3. FDA genomic
marker table

Database of Food and Drug Administration-
approved drugs with their pharmacogenomics
information

Schuck and
Grillo. (2016)

4. dbSNP home
page

The public domain of single nucleotide variation Sherry et al.
(2001)

5. HapMap
project

An international project to develop a haplotype
map to find genes that affect human health,
disease, and response to various drugs

Thorisson
et al. (2005)
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perspective, there is still a long way to go, as the possibilities are vast in the compu-
tational world. Bioinformatics still requires more advancement to understand the
deeper knowledge of principles and functions of biomolecules, which can lead to
advancements in drug discovery and other therapies. Thus bioinformatics and other
such scientific disciplines need to be explored further for the welfare of the human
community.
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9.1 Introduction
Over the past decade, advancements in scientific fields such as life science and med-
ical science have caused an exponential growth in data generation (Mallappallil
et al., 2020; Ezer and Whitaker 2019). Various datasets such as medical imaging
data, which is derived from a patient’s diagnostics reports (Munn and Jordan,
2011; He et al., 2017), genomics data, which is derived from next-generation
sequencing during cancer and other genomics studies (Munn and Jordan, 2011;
He et al., 2017), or pharmaceutical datasets that provide biochemical properties of
small molecules (Hassan et al., 2006) are not only huge but complex as well.
Bioinformatics combines biology and computer science to answer questions derived
from life science and biomedical science (Ouzounis and Valencia, 2003). The term
bioinformatics, coined by Paulien Hogeweg and Ben Hesper (Hogeweg, 2011), dates
back to 1970. However, constant development in this field has dramatically changed
the definition of bioinformatics in comparison to its original historic meaning
(Bayat, 2002). The rapid development of bioinformatics has given birth to separate
research areas such as immunoinformatics (Tomar and De, 2014), computational
genomics (Tomar and De, 2014), systems biology (Chuang et al., 2010), computa-
tional structural biology (Chuang et al., 2010), and chemoinformatics (Hassan
et al., 2006). Chemoinformatics is also known as cheminformatics and deals with
the data commonly derived from chemical compounds in various forms (3D struc-
tures, chemical fingerprints, activity assays, biomolecular interactions, molecular
simulations, etc.). The research involved in chemoinformatics is often focused on
data retrieval, database creation, pattern recognition, structureeactivity relationship
modeling, combinatorial chemistry, molecular docking, and toxicity prediction
(Hassan et al., 2006; Joshi et al., 2013, 2015). Drug discovery is a highly laborious,
time-consuming, and costly process, therefore pharmaceutical and academic
settings now rely increasingly on chemoinformatics approaches (Joshi et al.,
2015; Hughes et al., 2011). Chemoinformatics is not limited to biomedical and
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pharmacology applications but can also be implemented in chemical and allied
industries and environmental science, where chemical processes are evident.
Researchers deal with a variety of datasets in different fields but the principle behind
data analysis never changes; rather, these computational techniques are highly
invariable across different disciplines (Petit et al., 2018; Westra et al., 2017). As
might be expected in any area that has access to a massive dataset, researchers
are fascinated by what current computational approaches can offer by utilizing these
datasets. Exploring worthwhile findings by applying various statistical and machine
learning-based approaches with current rapidly developing computational infra-
structure is the key strategy to uncover hidden information from these complex data-
sets (Olson et al., 2018). Python is a widely used and extremely popular
programming language that has proved to be a game-changer in recent times (Olson
et al., 2018). The primary focus of this chapter is to address two important questions:
(1) How can Python programming be adopted in bioinformatics and chemoinfor-
matics research? and (2) What are the available resources (Table 9.1)? In this
chapter, we have tried to compile steps to gather resources that are essential in
adopting Python programming and popular data science techniques in bioinformat-
ics and chemoinformatics research. This chapter is aimed at an audience that is not
very familiar with computer programming and has little idea how and where to start
chemoinformatics data analysis using Python. Python (Pilgrim and Willison, 2009)
is considered a very popular language in data science and in this chapter we have
listed some very popular resources that are required to include Python in research.
Here, we have provided a thorough introduction to utilizing open-source resources
such as Anaconda and pip to install Python and desired packages, as well as apply
data analysis methodologies to biological datasets.

Table 9.1 A curated list of software and Python libraries for bioinformatics
and chemoinformatics.

Package name Description Installation

Biopython Molecular biology analysis conda install -c conda-forge
biopython

ChemoPy Chemoinformatics analysis https://github.com/salotz/
chemopy.git

deepchem Quantum chemistry with deep
learning

conda install -c deepchem
deepchem

FragBuilder Peptide fragment builder conda install -c bioconda
fragbuilder

iFeature Protein and peptide descriptor
calculation

pip install iFeature

Matplotlib Data plotting library conda install -c conda-forge
matplotlib
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9.2 Desired skill sets
In a constantly developing field like data science, bioinformatics, and chemoinfor-
matics, it is always very challenging to summarize a comprehensive skillset (Wilson
Sayres et al., 2018). It may vary across the board, but a basic or minimal skill set can

Table 9.1 A curated list of software and Python libraries for bioinformatics and

chemoinformatics.dcont’d

Package name Description Installation

Modlamp Peptide-based analysis conda install -c bioconda
modlamp

Pandas Data analysis conda install -c anaconda
pandas

PyBioMed Molecular representation of
biomolecules

PyBioMed-1.0.zip

PyDpi Descriptor calculation conda install -c biocond
pydpi

PyQuante Quantum chemistry library conda install -c rpmuller
pyquante2

Quantiprot Quantitative analysis of peptide
sequence

conda install -c bioconda
quantiprot

RDKit Chemoinformatics packages conda install -c rdkit rdkit

Scikit-chem Chemoinformatics analysis conda install -c richlewis
scikit-chem

Scikit-learn Machine learning modeling conda install -c anaconda
scikit-learn

Seaborn Data plotting library conda install -c anaconda
seaborn

Software resources

Anaconda Package manager Downloadable installer is
available

Pip Python package manager Downloadable installer is
available

Jupyter
Notebook

Interactive environment to run
Python code

Using conda and pip

Jupyter lab Advanced interactive environment to
run Python code

Using conda and pip

Virtualenv Creates Python virtual environment Using pip and conda

Miniconda Lighter version of Anaconda Downloadable installer is
available

PyCharm and
spyder

Interactive development
environment for Python

Downloadable installer is
available
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be defined that drives one’s interest in the right direction to adopt these interdisci-
plinary concepts in academia or industrial research settings. The following are a
few important skill sets:

1. Understanding of domain-specific data and data formats.
2. Basic data visualization and presentation.
3. Understanding of application programming interface (API, a set of functions and

methods enabling various applications to interact programmatically and provide
data access to various website databases and services) methods and their
application.

4. Understanding of domain-specific databases and API methods to communicate
across various database resources.

5. Generic and domain-specific statistical data analysis methods.
6. Good understanding of a programming language like R or Python.
7. Understanding of supervised and unsupervised methods.
8. Understanding of basic matrix algebra, probability theory, statistics, basic cal-

culus, and familiarity with mathematical terminology associated with the listed
mathematical concepts.

The listed core skills are set widely and are useful across various areas, including
bioinformatics and chemoinformatics. Additionally, it is worth noting that it is not
mandatory to gain expertise in all the fields but a little experience makes a big dif-
ference. In addition to technical expertise, a curious and enthusiastic mindset is
highly desirable.

9.3 Python
The history of programming languages dates back to the 1950s with very popular
classical languages like Regional assembly language, Fortran, COBOL, BASIC,
etc. However, since the early 1950s, programming languages have evolved signifi-
cantly. In comparison to other older languages like C, Cþþ, and Java, Python
and R are relatively young. However, as described in the TIOBE programming
community index (a measure of the popularity of programming languages), the evo-
lution of Python in data science during the last few decades has been remarkable and
has made Python a tough competitor to Cþþ and Java. Python is a general-purpose
language and can be used in any aspect of data science. A few important points that
make Python very useful in data science are:

1. Python is an open-source language; hence it is easy to include in any project
without being concerned with intellectual property rights issues.

2. Python has a fast learning curve with many open-source resources.
3. Python is a widely accepted general-purpose programming language.
4. Various courses in data science have adopted Python as an introductory pro-

gramming language.
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5. Python is widely used to implement unsupervised and supervised machine
learning methods and workflows.

6. More than 235,000 Python packages can be downloaded through PyPI (Python
package index, the global repository of open-source Python packages) to extend
the capabilities of Python.

7. These packages are implemented on the basis of thousands of peer-reviewed
algorithms and tested by a huge user community.

8. Codes are highly redistributable and easy to run if combined with a Jupyter
Notebook.

9. Addons like Jupyter Notebook, R studio, and PyCharm make these programming
languages very useful and reliable.

Python is an interpreted not a statically typed (a language is statically typed if it
is desired to define the type of a variable before compilation instead of at run time)
language, hence it is sometimes criticized by the community due to its performance
when compared to superfast languages like C/Cþþ; in spite of these imitations the
user base of Python is growing significantly day by day.

9.4 Python in bioinformatics and chemoinformatics
As described in an earlier section, the capability of Python can be enhanced by
thousands of open-source packages that can be easily incorporated in the research
to analyze enormous data types. There are hundreds of packages that can be down-
loaded using Anaconda and PyPi using simple commands, which are described in
detail later in this chapter. In Table 9.1, we have listed very popular and widely
utilized Python packages in data science, bioinformatics, and chemoinformatics
research.

9.5 Use Python interactively
Whether it is biology or astronomy, data analysis and visualization are two crucial
components of data science. Analysis sometimes works as a black box where a
user is not very familiar with the underlying algorithms; however, the outcome
is sufficient to evaluate a complex hypothesis. Data visualization is the graphical
projection of information through various visual counterparts such as charts,
graphs, and maps. This visual approach provides an interactive way to explore
the data and its features such as patterns, trends, and various statistical parameters.
An image is worth a thousand words; hence these visualization techniques are
important in data-driven decision making. Commonly, there are three different
ways one can write and run a Python code: first, writing a program directly
on the interactive shell (Fig. 9.2), second, using a text editor or integrated
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development environment tools, and third, writing a program via interactive
Jupyter Notebook. The least popular approach is writing code directly on the
Python interactive shell, which works well with a very basic 5e10 lines of code
but is not ideal for a large Python program. The other two methods of writing pro-
gramming codes are widely adopted approaches in building Python-based soft-
ware, libraries, or interactive data analysis pipelines. Jupyter Notebook is quite a
recent project and was developed by an open-source community to provide a
best solution for both analysis and data visualization in one place. All the examples
in the upcoming sections are implemented within Jupyter Notebook and example
codes are provided with this chapter.

FIGURE 9.1

Flow diagram representing steps to install Python with Jupyter Notebook.

FIGURE 9.2

A standard Python interactive shell.
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9.6 Prerequisites to working with Python
A flow diagram that explains all the steps to install Python with a Jupyter interactive
environment are described in Fig. 9.1.

9.6.1 Linux OS/OSX
Linux is an operating system that is a very popular choice for data science and is
highly recommended by the data science community. Several open-source Linux
distributions are freely available to download and are easy to install. One of the
most popular and widely used Linux distributions is Ubuntu, which has been sup-
ported by a large community for almost a decade now. The link https://releases.
ubuntu.com/20.04/ can be used to download the latest Ubuntu distribution.

9.6.2 Basic Linux bash commands
Linux command is simply a predefined statement that performs a specific task when
entered into a shell (a shell is a user interface tool for access to an operating system’s
services and is provided with all the operating systems) (Fig. 9.2).

Very frequently used Unix/Linux commands are included in Table 9.2 which
may be useful during this chapter.

Table 9.2 Basic Unix/Linux commands.

Type Command Function

File and
directory

ls Listing directories and files

ls -al Formatted listing of hidden files

cd dir_name Change directory to “dir_name”

cd Return to home directory

pwd Show current directory path

mkdir my_dir Create a new directory “my_dir”

rm my_file Delete a file “my_file”

rm -rf my_dir Force remove directory "my_dir"

cp/path1/file1/path2/file1 Copy file1 to a new path2

cp -r/path1/dir1/path2/dir1 Copy directory dir1

mv/path1/file1/path2/file1 Move or rename a file1

touch my_new_file Creates a new file

Process
management

ps Display current active process

top Display all running processes

kill pid Kill a process with a process id

File
permission

chmod þx my_script Change permission of a file

chmod 777 Permission to read, write, execute for all

Searching grep pattern files Search a pattern in files
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9.6.3 Anaconda
Anaconda, an open-source package manager for Python and R programming
languages for data science, has been widely utilized in machine learning, big-data
analysis, predictive modeling, bioinformatics, etc. Anaconda distribution enables
easy management of Python and R programming languages and underlying packages.

Installation instructions are as follows:

1. Go to the linkhttps://www.anaconda.com/products/individual#linux.
2. Download the latest version of Anaconda in the download folder “Anaconda3-

2020.07-Linux-x86_64.sh”.
3. Open the shell terminal (CtrlþAltþT) and type this command:

cd /home/username/Downlaods

4. Type the command to change the permission:

chmod þx Anaconda3-2020.07-Linux-x86_64.sh

5. Type the command and hit enter:

./Anaconda3-2020.07-Linux-x86_64.sh
After hitting enter, just follow the instructions that appear on the terminal screen.

It is recommended to accept all the defaults during installation.

9.6.4 Installing Python in the conda environment
The first question that comes to mind is what is a conda environment? In simple lan-
guage, we can think of a conda environment as a box where one can put desired
Python installations and associated packages without affecting the native installa-
tion. A conda environment is a directory created on a computer by conda commands
that contain a desired collection of Python or R packages for a particular project.
Using conda, one can create two separate conda environments and install two
different Python versions, for example, 3.6 and 3.8, on one machine without
affecting each other’s performance.

Type the following command to create a conda environment:
conda create –name P3.6 -y python¼3.6

If everything goes as intended we should have a new environment in our conda
installation. We can check this by typing a simple command on the terminal “conda
info -e”. If you can see a new environment, “P3.6”, on the terminal you are almost
ready to follow all the examples provided with this chapter. But do not worry, if you
encounter any error, follow the available resources that explain conda in the details.

9.6.5 Jupyter Notebook
In this chapter, all the examples and codes are implemented on Jupyter Notebook,
which is a browser-based interactive development environment that facilitates
researchers to quickly implement their ideas and analyze the outcomes interactively
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at the same time. In addition to this, Jupyter Notebooks can be used to build repro-
ducible data analysis pipelines, and results can be shared easily across the scientific
community.

Type the following command to install Jupyter Notebook:
conda activate P3.6
conda install -c conda-forge notebook
If everything goes as intended you can run Jupyter Notebook by simply typing

“jupyter notebook” at the command prompt. Jupyter Notebook can be accessed
through any browser by typing localhost:8080. Fig. 9.3 describes a standard Jupyter
Notebook interface. A few important components are as follows:

File This button can be used to launch a new notebook, save the changes before
exit, or download a notebook in various formats.

Cell A cell is a block where you can write and run your code using various
options such as run an individual cell or run all cells at once.

Insert Here, you can insert a cell above or below an existing cell.
Kernel This section is important when you need to restart the kernel (a kernel is a

program that runs and assesses the code).
The second menu bar contains some important buttons such as add, cut, or copy a

new cell to control the behavior of a Jupyter Notebook.
Here, we have provided a compact but simple approach to install all the require-

ments to start the journey with Python programming language; however, installation
of these resources always depends on the operating system and hence several user-
defined settings can be made, such as environment variable and installation path. We
have selected Ubuntu Linux, which provides several powerful and easy ways of
installing resources and does not require complex user-defined settings. For further
details, the following are useful weblinks of popular tutorials:

1. Ubuntu installation: https://ubuntu.com/tutorials/install-ubuntu-desktop#1-
overview

2. Python installation: https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
3. Advanced conda settings: https://docs.anaconda.com/anaconda-repository/2.23/

admin/advanced/

FIGURE 9.3

A standard Jupyter Notebook and the menu bar.
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4. Jupyter Notebook installation: https://jupyter.org/install
5. Python virtual environment: https://linuxize.com/post/how-to-create-python-

virtual-environments-on-ubuntu-18-04/

9.7 Quick overview of Python components
This section explains the basic concepts and provides a tutorial by summarizing the
selected functionalities of the Python programming language. We have not included
a detailed tutorial for Python in this chapter; rather, we have focused more on
providing a basic understanding of minimal Python utilities that are required to
run a simple program and analysis pipeline.

9.7.1 Variable
Let’s use an example to understand this. Suppose you have a glass in your home that
is empty; this glass has a constant volume that can be filled with water. However, the
volume of the water may differ as per your requirement; sometimes the glass is half
filled and sometimes fully filled with water, so the glass is a variable that can hold
different volumes of water at different times. Similarly, in a programming language,
a variable is a reserved memory location to store different types of values. There are
several rules that define a variable in Python but the most important is that we
will only use “_” special characters to name a variable with the common characters
from “a” to “z.”

As an example:
my_first_variable ¼ 10
my_second_varible ¼ "This is an example"
my_first_variable ¼ 20.5
We define two variables: first, we assign an integer value to the first variable,

while we assign a string to the second variable. We have overwritten the first variable
by assigning a float (a number that has a decimal place) value that replaces the pre-
vious integer 10 with 20.5. These variables are very useful and provide different
value inputs dynamically during run time.

9.7.2 Operators in Python
Lines in the code are called statements. These statements build upon various expres-
sions: a simple example of an expression is a mathematical expression, for example,
1þ1 or a * b. These expressions are defined by operators; in the foregoing example
“þ” and “*” are operators. Python language supports the following types of
operators:

1. Arithmetic operators
2. Relational operators
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3. Assignment operators
4. Logical operators
5. Bitwise operators
6. Membership operators
7. Identity operators

Table 9.3 describes some of the selected operators that we will use during this
chapter very frequently; however, bitwise and identity operators have been excluded
in this chapter.

9.7.3 Control flow and control statements in Python
There are various control flow statements in Python that may appear complex, but
are very easy to understand. Control flow statements, such as if, else, assess some
condition and control the flow of the code by making a decision. On the other
hand, “for” and “while” loops repeat a portion of a code until a certain condition
is satisfied. Look at the following example code:

Example 1
1 a ¼ 5
2 If a > 4: # statement a > 4 is true

Table 9.3 List of commonly used Python operators.

Operator type Operator Example

Arithmetic
operators

þ Addition
� Subtraction
* Multiplication
/ Division
% Modulus
** Exponent
// Floor division

x þ y
x � y
x * y
x / y
x % y
x ** y ¼ xy
9//2 ¼ 4 and 9.0//2.0 ¼ 4.0, �11//3 ¼
�4, �11.0//3 ¼ �4.0

Comparison
operators

¼¼
!¼
<>
<
>
<¼
>¼

(x ¼¼ y) is not true
(x !¼ y) is true
(x <> y) is true
(x > y) is not true
(x < y) is true
(x >¼ y) is not true
(x <¼ y) is true

Assignment
operators

¼ z ¼ xþ y assigns the value of x þ y into
z

Logical
operators

and (logical AND)
or (logical OR)
not (logical NOT)

(x and y) are true
(x or y) is true
(x and y) are false

Membership
operators

in
not in

if x is present in the list y ¼ [a,x,n]
if x is not present in the list y ¼ [a,b,c]
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3 print (“Print command executed, ‘a’ is greater than 4”)
Output:
Print command executed, ‘a’ is greater than 4
Example 2
1 a ¼ 5
2 If a < 4:
3 print (“Print command executed, ‘a’ is greater less than 4”)
4 else:
5 print(“Execute this line, a < 4 is false greater than 5”)
Output:
Execute this line, a < 4 is false greater than 5
A noticeable point here is the statement after “#”, “# statement a> 4 is true”, and

“#Code never stops but execution passed to the next line”. These are the special
statements in Python that never contribute any logical operation; rather, they just
provide helpful information about the code and are always ignored by the interpreter
while executing the program.

In the first example, the second statement “If a > 4” checks if the variable ‘a’ is
greater than 4 or not. We know that this statement is ‘true’ because “a¼ 5”, therefore
the code is executed further and runs the “print” command “print (command
executed, ‘a’ is greater than 4)”. In the second example, again “a ¼ 5”, but the con-
trol statement is different, “If a < 4”, assessing if variable “a” is less than 4 or not,
which we know is incorrect. In this example, a new statement can be observed as
“else”. When the condition is not satisfied (false) in the second line, technically
code should stop, but when the interpreter sees the “else”, the code executes further
rather than terminating. These examples explain how the “if and else” statement
works. The following examples explain the execution of the other two control
statements.

Example 3 Multiplying 2 with all the items of a list using for-loop.
1 My_list ¼ [2, 4, 6]
2 for x in My_list: # can also be visualized as “for x in [2, 4, 6]:”
3 print(x*2)
Output: 4

8
12

In the first statement we have created a variable called “My_list”; unlike a
normal variable “a” that we defined in examples 1 and 2, lists are used to store mul-
tiple items in a single variable and represented by “ [ ] ”. The second line, “for x in
My_list”, is a for-loop statement that executes a section of code repeatedly until a
defined condition is not satisfied. For-loop assigns three values one by one to the var-
iable “x” and the mathematical expression “x*2” performs the multiplication one by
one, and prints the results. It is clear that a for-loop makes life easier and minimizes
the code by avoiding repetitive lines, but what when we want to stop our for-loop at a
certain condition? Example 4 explains similar conditions where the code generated a
table of 2 up to 10 values and once the objective is achieved the code stops.

290 CHAPTER 9 Python, a reliable programming language



Example 4
1 a ¼ 2
2 b ¼ [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
3 for x in b:
4 c ¼ a*x
5 if c > 20:
6 break
7 else:
8 print (c)
Output:

2
4
6
8
10
12
14
16
18
20

Let’s dissect this code.
Line 1 Integer 2 assigned to a variable “a”, a ¼ 2
Line 2 Integers assigned to a list variable “b”;
b ¼ [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
Line 3Here for-loop “for x in b:” fetches each value from list “b” one by one and

assigns value to a variable “x”.
Line 4 Variables “a” and “x” multiply and the result will be saved into a new

variable named “c”.
Line 5 “if c > 20:” is a control statement. Every time “x” receives a new value

that overwrites the old value during each cycle, consequently “c” also receives a new
value in each cycle.

Line 6 If the “if c > 20:” condition is true, the statement “break”, actually
breaks the execution of the code; otherwise, the next statement executes.

Line 7 Every time the condition “if c > 20:” is not satisfied, “else” is allowed to
execute the last statement “print (c)”.

Line 8 “print (c)” prints the result.
The “while” statement is also somehow similar to the for-loop; it repeatedly

executes a block of code as long as a condition is true. The next example explains
the execution of the “while” loop statement.

Example 5
1 i ¼ 1
2 while i < 5:
3 print(i)
4 i þ¼ 1
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Output:
1
2
3
4

Let’s dissect the code.
Line 1 Value 1 assigned to the variable “i”.
Line 2 Unlike for-loop, while loop itself checks the condition and executes a set

of statements as long as a condition is true.
Line 3 Prints the updated value of “i”, print(i).
Line 4 As the loop progresses with every step, it adds 1 in the variable and at the

same time updates the value of “i” by 1, “i þ¼ 1”. Here, we can see the use of
assignment operator “¼” in combination with the addition operator “þ”. We can
break this statement as “i ¼ i þ 1”.

This example provides a fairly good understanding of control flow and control
statements. It is recommended to execute these examples using the Jupyter Note-
book that is provided with this chapter where you can change values of the variables
and operators to get a good understanding of the code.

9.7.4 Python functions
Python functions are simply a chunk of reusable code that can perform similar
operations with different inputs. In the previous section, we wrote down a code to
produce a table of integer 2. What if we want to produce a table for any given integer
without changing the code every time? The solution is a function.

Example 6. Function to write down a table for any given integer.
1 def Write_a_table(a):
2 b ¼ [1,2,3,4,5,6,7,8,9,10]
3 for x in b:
4 c ¼ a*x
5 print (c)
Calling a function.
6 Write_a_table(10) #Call this function with different values
Output:

10
20
30
40
50
60
70
80
90
100

Let’s dissect the code.
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Line 1 Keyword (predefined words in Python cannot be used as user-defined var-
iables; other examples are print, class, for, while is, etc.) “def” is used to define a
function named “Write_a_table”. Inside the bracket ‘(a)’, the variable “a”, is a spe-
cial variable called an argument, which can take inputs during the function call
(using a function). A function always ends with “:” and could take no or multiple
arguments. At the advanced levels, function arguments can also be defined as a
list of dictionaries.

Lines 3, 4, and 5 Similar to previous examples.
Line 6 After defining a function we can use a function by calling

“Write_a_table(10)”.

9.7.5 Library or a module
Previously, this section described how to reuse code in the form of a function. How-
ever, complex and large software does not always depend on function; rather, utilities
advance concepts such as “class” and OOPs (object-oriented programming). These
advanced programs and software can be distributed in the form of packages, libraries,
or modules. We will not discuss this advanced concept here; rather, our focus is to
learn how to use libraries and models. More than 100,000 Python packages are avail-
able to download and can be integrated into any program script. Additionally, these
resources are reusable, redistributable, and built on thousands of advanced available
algorithms that enable easy integration inside a Python project. Apart from these
external resources, Python already has several prebuilt modules that are provided
with every standard Python installation.

Example 1
1 cwd ¼ os.getcwd()
When this code executes, it returns an expected error.
————————————————————————————————
NameError Traceback (most recent call last)
<ipython-input-40-340a96f19465> in <module>
——> 1 cwd ¼ os.getcwd()
NameError: name ‘os’ is not defined

However, “os” is an inbuilt module, but we cannot use it until we “import” it.
1 import os
2 cwd ¼ os.getcwd()
3 Print (“cwd”)
Output:

’/home/user’
Line 1 Importing the inbuilt module “OS”.
Line 2 Call the method “getcwd()” that returns the path to the current working

directory and assigns it to a variable cwd.
Line 3 Print the variable value.
Import is an inbuilt function that loads the module “os” to utilize its functionality.

Similarly, several inbuilt modules such as sys, time, and global are available in
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Python that can be imported directly and utilized. Despite these inbuilt modules, we
can download lots of open-source packages provided by the scientific community. In
this chapter, we never focus on writing complex functions; rather, we learn how to
download, install, import, and utilize these publicly available modules. There are
several ways a Python module can be installed. The most preferable method is using
conda or through the pip package manager. We prefer conda package managers over
pip to install available popular Python libraries.

9.7.6 Indentation
As noticed in the earlier sections, Python code follows a strict structure in terms of
margin and indentation. It is important to note that Python is very sensitive to inden-
tation and a single mismatch in indentation level terminates the code execution due
to the indentation error. Hence, it is always recommended to verify the indentation
before executing the code. A simple example of indentation is when a line in the
code after key words like def, if, for, while, etc. always starts with the next inden-
tation level.

1 def Write_a_table(a):
2 ..b ¼ [1,2,3,4,5,6,7,8,9,10]
3 ..if a > x:
4...print(“Something”)
Indentation,“..”, in lines 2, 3, and 4 represents the number of spaces that define

the indentation level. Execution of the code is always determined by the indentation
level. Code execution always starts with the zero indentation level and goes to the
second indentation level and so on.

9.7.7 Data structure
The data structure is a huge topic and hence we do not provide details of all the data
structures. Usually, a data structure is a way of representing and processing the data
in a computer program. In this chapter, we will use a list, dictionary, and data frame,
which are the common data structures. A list is defined by square brackets “[ ]” and
can hold the string [‘a’, ‘b’], integers [1, 2], and float [5.5, 5.7]. Dictionaries are a bit
more advanced than lists, have two components, “keys” and “values” {‘key’:
‘value’}, and can be represented by “{ }”. Keys can be used to access the values
of a dictionary. See the following example:

1 My_dict ¼ {’fruit’: ‘banana’
2 ‘clothes’: ‘shirt’
3 ‘sports’: ‘cricket’}
4 print (My_dict[’clothes’])
Output:

shirt
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Data frame, a 2D data structure that contains columns and rows, is capable of
handling very big and complex data files with various file formats such as “csv”
and “tsv”. “pandas” is a very popular library for handling data frames.

9.8 Bioinformatics and cheminformatics examples
The entire Python functionally and its components is beyond the scope of this chap-
ter. However, the selected topics covered in this chapter concerning the Python pro-
gramming language are just the tip of the iceberg but sufficient to write simple
Python codes to analyze data and generate data analysis plots.

9.8.1 Genomics data handling and analysis
In this section, we utilize a very popular resource, Biopython (Cock et al., 2009), to
explore genomics data. The first step is to install the desired modules in the Python
environment “P3.6”. First, open a terminal (CtrlþAltþT) and activate the conda
environment by typing this command “conda activate P3.6.” The next step will
install a Biopython library in the Python environment; the commands are:

conda install -c anaconda -y -n P3.6 biopython
or
pip install biopython
However, both commands are capable of installing the desired Python libraries

but we recommend conda over pip (pip is a standard package-management system
used to install and manage Python-based libraries, modules, and software packages).
However, pip can be used if a package is not available in conda. If Biopython instal-
lation is successful, it can be imported as follows:

1 import Bio
This command should import the Biopython module without an error and avail-

able classes (classes is an advanced topic that is not covered in this chapter but, in
simple words, a class can be imagined as a book and functions are its chapters, while
a software package is a library that holds several books) or functions can be assessed
using the following command:

1 dir(Bio)
Output :
[‘Align’, ‘AlignIO’, ‘Alphabet’, ‘BiopythonDeprecationWarning’, ‘Bio-

pythonExperimentalWarning’, ‘BiopythonParserWarning’, ‘BiopythonWarning’,
‘Data’, ‘File’, ‘’GenBank’, ‘MissingExternalDependencyError’, ‘MissingPython-
DependencyError’, ‘Nexus’, ‘Seq’, ‘SeqFeature’, ‘SeqIO’, ‘SeqRecord’,
‘Sequencing’, ‘SwissProt’, ‘__builtins__’, ‘__cached__’, ‘__doc__’, ‘__file__’,
‘__loader__’, ‘__name__’, ‘__package__’, ‘__path__’, ‘__spec__’, ‘__version__’,
‘_parent_dir’, ‘_py3k’, ‘_utils’, ‘Os’, ‘warnings’]

The statement “dir(Bio)” returns a list as described in the output that describes
the names of all the available classes and modules in the Biopython library.
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Let’s explore a bit more.
1 from Bio import SeqIO
This command imports the underneath functionality; let’s try the “dir()” com-

mand to explore SeqIO a bit more. This command will return a list of methods asso-
ciated with “SeqIO”.

1 dir(SeqIO)
Output:
[’AbiIO’, ‘AceIO’, ‘Alphabet’, ‘AlphabetEncoder’, ‘FastaIO’, ‘GckIO’, ‘IgIO’,

‘InsdcIO’, ‘Interfaces’, ‘MultipleSeqAlignment’, ‘NibIO’, ‘PdbIO’, ‘PhdIO’,
‘PirIO’, ‘QualityIO’, ‘SeqRecord’, ‘SeqXmlIO’, ‘SffIO’, ‘SnapGeneIO’, ‘SwissIO’,
‘TabIO’, ‘UniprotIO’, ‘XdnaIO’, ‘_BinaryFormats’, ‘_FormatToIterator’, ‘_Format-
ToString’, ‘_FormatToWriter’, ‘__builtins__’, ‘__cached__’, ‘__doc__’, ‘__file__’,
‘__loader__’, ‘__name__’, ‘__package__’, ‘__path__’, ‘__spec__’, ‘_dict’,
‘_force_alphabet’, ‘_get_base_alphabet’, ‘as_handle’, ‘basestring’, ‘convert’, ‘in-
dex’, ‘index_db’, ‘parse’, ‘print_function’, ‘read’, ‘sys’, ‘to_dict’, ‘write’]

Furthermore, the build method “help()” is very useful and can be used to explore
help related to listed items.

1 help(AbiIO)
Output:
Help on module Bio.SeqIO.AbiIO in Bio.SeqIO:
NAME

Bio.SeqIO.AbiIO - Bio.SeqIO parser for the ABI format.
DESCRIPTION

ABI is the format used by Applied Biosystem’s sequencing machines to store
sequencing results.
For more details on the format specification, visit:

http://www6.appliedbiosystems.com/support/software_community/ABIF_File_
Format.pdf

FUNCTIONS
AbiIterator(handle, alphabet¼None, trim¼False)
Return an iterator for the Abi file format.

DATA
ambiguous_dna ¼ IUPACAmbiguousDNA()
tag ¼ {’BufT1’: ‘Buffer tray heater temperature (degrees C)’}
unambiguous_dna ¼ IUPACUnambiguousDNA()

FILE
/home/usr/anaconda3/envs/NEWTF/lib/python3.7/site-packages/Bio/SeqIO/

AbiIO.py
The foregoing section describes how to install, import, and explore a module and

fetch in build help. The following example explains how to write a simple code using
Biopython to explore a publicly available database.

Example 1 Function fetch GEO database and extracting records.
1 def Extract_records(Entrez_data_ID, Usr_email):
2 from Bio import Entrez
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3 Entrez.email ¼ Usr_email
4 handle ¼ Entrez.esearch(db¼"gds", term¼Entrez_data_ID)
5 record ¼ Entrez.read(handle)
6 handle.close()
7 new_records ¼ record["IdList"]
8 for new_record in new_records:
9 print (new_record)
10 print(’total records:’, len(new_records))
Calling the function with some input
11 Extract_recrods("GSE16", ‘MyEmail@gmail.com’)
Output:

200000016
100000028
.
300000801
total records: 20

Let’s dissect this code.
Line 1 Defined a function “Extract_records” with two arguments (variable)

‘Entrez_data_ID’, ‘Usr_email’.
Line 2 Imported the ‘Entrez’ module from “from Bio” as “from Bio import

Entrez”.
Line 3 Entreze requires user email ID to fetch the data from databases; argu-

ments pass the provided email ID to the Entreze.
Line 4 “Entrez.esearch()” is a function of Biopython that connects to the remote

database by providing information such as “db¼"gds"”, “term¼Entrez_data_ID”,
and performs a search to explore the store records.

Line 5 “Entrez.read()” consumes “handle” object and reads the fetched records.
Line 6 Once the reading is completed, a line “handle.close()” closes the

connection.
Line 7 The previous line reads the records; records were stored in the form of a

dictionary, and dictionary key “IdList” is used to fetch all the associated records.
Line 8 “for-loop” loops over the list that contains records.
Line 9 Printing the records one by one.
Line 10 Inbuilt function “len()” was used to calculate the total number of items

in the list ‘new_records’.
Line 11 We called the function “Extract_recrods("GSE16", ‘MyEmail@gmail.-

com’)” with the input and it produced some output.
The following examples demonstrate other functions of the Biopython library.

Fasta files are the text files that contain biological sequences such as genomic or pro-
tein sequences. The example explains how to use a Biopython function to read a
fasta file and extract information.

Example 2 Reading a fasta file.
1 def ExtractFastaRecords(FastaFile, record):
2 from Bio import SeqIO
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3 Seqs ¼ SeqIO.parse(FastaFile, "fasta")
4 for seq_record in Seqs:
5 if record ¼¼ ’id’:
6 print(seq_record.id)
7 elif record ¼¼ ’seq’:
8 print(repr(seq_record.seq))
9 else:
10 pass
11 print(‘Enter correct record type’)
12 ExtractFastaRecords("Example.fasta", ‘seq’)
Output:
Seq(’CGTAACAAGGTTTCCGTGATCATTGATGAGACCGTGG.CGC’,

SingleLetterAlphabet())
Seq(’CGTAACAACTGCGGAAGGATCATTGTTGAGACAACAG.GGC’,

SingleLetterAlphabet())
.
Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATC.GCC’,

SingleLetterAlphabet())
13 ExtractFastaRecords("Example.fasta", ‘id’)
Output:
gi|2765658|emb|Z78533.1|CIZ78533
gi|2765657|emb|Z78532.1|CCZ78532
.
gi|2765564|emb|Z78439.1|PBZ78439
14 ExtractFastaRecords("Example.fasta", ‘PID’)
Output:
Enter the correct record type
This code demonstrates how to read a fasta file, how to create a function, looping

over some list items, and how to control the behavior of a program by checking
certain conditions.

Let’s dissect the code.
Line 1 Constructs a function ‘ExtractFastaRecords’ with two arguments.
Line 2 Imports “SeqIO”.
Line 3 Parse (extracting desired information from a data file) the input fasta file

using the parse method “SeqIO.parse(FastaFile, "fasta")” into a variable called
“Seqs”.

Line 4 Looping over sequence record list “Seqs”.
Line 5 Checking if the record type is “id”.
Line 6 If conditions satisfy, print the record id.
Line 7 Checking if the record type is “seq”.
Line 8 If conditions satisfy, print the seq.
Line 9 If both conditions do not satisfy “else” is executed, and execution is trans-

ferred to the next line.
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Line 10 “pass” statements execute and continue the execution without interrupt-
ing the code.

Line 11 If both conditions do not satisfy execution, exit the loop and reach the
first indentation level where it prints the error or a suggestion message “Enter correct
record type”.

Line 12 Demonstrate the function call.

9.8.2 Chemoinformatics data handling and analysis
Several recent studies have applied modern techniques like machine learning and
artificial intelligence to derive new inhibitors and drug molecules to fight disease.
Chemoinformatics is becoming a popular approach in drug discovery, toxicology,
and environmental chemistry to find answers to complex questions. We will now
explore some useful examples of Python in chemoinformatics. Programming lan-
guages are useful when a database needs to be explored dynamically by utilizing
an API. The next example will explain how to fetch information directly from the
ChEMBL database through a Python program. The first step is to install a Python
library “chembl_webresource_client”, enabling communication with the ChEMBL
(Gaulton et al., 2011) database and rdkit to play with chemical structures and small
molecules.

1 conda install -c chembl -y chembl_webresource_client
2 conda install -c rdkit -y rdkit
We can utilize ‘dir()’ and ‘help()’ to explore the features of these modules as

explained in the previous section.
In the following example we demonstrated how to utilize these popular libraries

to explore information and data related to dexamethasone, a well-known steroidal
anti-inflammatory drug, from ChEMBL.

Example 1 Exploring dexamethasone, an antiinflammatory drug.
1 from rdkit import Chem
2 from chembl_webresource_client.new_client import new_client
3 Chem_1_smiles¼ “CC1CC2C3CCC4¼CC(¼O)C¼CC4(C3(C(CC2(C1(C(¼O)
CO)O)C)O)F)C”

4 Chem_1_mol ¼ Chem.MolFromSmiles(Chem_1_smiles)
5 Chem_1_mol
Output:
Let’s dissect the code.
Lines 1 and 2 Libraries being imported.
Line 3 A smile code (a 1D string that represents chemical structure) of dexa-

methasone is passed in a variable “Chem_1_smiles”.
Line 4 Function “MolFromSmiles” converts smiles to “Mol” format that holds

2D and 3D structural information of a chemical structure.
Line 5 Returns the 2D image of the dexamethasone structure (Fig. 9.4).
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This example explains how to convert the smile code of dexamethasone into a 2D
or 3D structure that can be utilized for further analysis. The following example dem-
onstrates how to fetch the ChEMBL database using “chembl_webresource_client”
library.

Example 2 Fetch data related to dexamethasone from the ChEMBL database.
1 from chembl_webresource_client.new_client import new_client
2 import pandas as pd
3 molecule ¼ new_client.molecule
4 res ¼ molecule.search(’Dexamethasone’)
5 df ¼ pd.DataFrame(res)
6 Column_names ¼ df.columns.tolist()
7 print("total Columns:",len(Column_names))
8 for c in Column_names:
9 print(c)

10 df.to_csv(‘DexaData.csv’)
Output:
total Columns: 39
atc_classifications
availability_type
.
Withdrawn_year
Output:
Stores the file in your current directory.
Let’s discuss the code.
Lines 1 and 2 Importing the Python libraries “chembl_webresource_client.-

new_client” and “pandas”.
Line 3 Creating a molecule instance.
Line 4 Searching the term “Dexamethasone” on the database.
Line 5 Saving the data as a pandas data frame in memory.
Line 6 Accessing individual columns.
Line 7 Counting total column.

FIGURE 9.4

2D representation of dexamethasone structure.
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Lines 8 and 9 Looping over column names.
Line 10 Saving data on the disc as DexaData.csv file.
The next step is calculating descriptors of a chemical structure (chemical or

physiological properties of a chemical compound) that can be utilized in various
chemoinformatics methodologies such as prediction of bioactivity, toxicity, and
drug efficacy or building a quantitative structureeactivity relationship model. First,
all the available descriptions can be explored via the given code as follows:

1 from rdkit.Chem import Descriptors
2 Des_list ¼ dir(Descriptors)
3 print (Des_list[0:10])
Output:
[’BalabanJ’, ‘BertzCT’, ‘Chem’, ‘Chi0’, ‘Chi0n’, ‘Chi0v’, ‘Chi1’, ‘Chi1n’,

‘Chi1v’, ‘Chi2n’]
Let’s dissect the code.
Line 1 Descriptor module of rdkit library being imported.
Line 2 dir(Descriptors) returns all the underneath methods.
Line 3 Prints the top 10 items of the list Des_list[0:10] by slicing the list.
This code explains how to explore the available descriptor to utilize it in the next

example.
Example 3 Calculating descriptors for dexamethasone.
1 from rdkit import Chem
2 from rdkit.Chem.Descriptors import *
3 compound_1_smiles ¼ "CC1CC2C3CCC4¼CC(¼O)C¼CC4(C3(C(CC2

(C1(C(¼O)CO)O)C)O)F)C"
4 compound_1_mol ¼ Chem.MolFromSmiles(compound_1_smiles)
5 print ("Log P:",MolLogP(compound_1_mol))
6 print ("Molecular Weight:", MolWt(compound_1_mol))
7 print ("HeavyAtomCount:", HeavyAtomCount(compound_1_mol))
8 print ("HeavyAtomMolWt:", HeavyAtomMolWt(compound_1_mol))
9 print ("Molecular Weight:", round(MolWt(compound_1_mol),3))

10 print ("HeavyAtomMolWt:", round(HeavyAtomMolWt(compound_
1_mol),3))

Output:
Log P: 1.8957
Molecular Weight: 392.4670000000001
HeavyAtomCount: 28
HeavyAtomMolWt: 363.23500000000007
Molecular Weight: 392.467
HeavyAtomMolWt: 363.235
Let’s dissect the code.
Lines 1 and 2 Importing libraries “*” work as a wild card and import all the

descriptors.
Line 3 Smile code of dexamethasone stored in the variable “compound_

1_smiles”.
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Line 4 Smile converted into a “Mol” format.
Lines 5e10 Descriptor methods “MolLogP”, “MolWt”, “HeavyAtomCount”

and “HeavyAtomMolWt” are called and calculations are performed on “com-
pound_1_mol”. We can observe an inbuilt function “round()” that controls the dec-
imal points. “round ()” functions produce a floating-point number that is a rounded
version of the original value up to the desired decimal place.

In this example, three different descriptors have been calculated, and how to con-
trol the floating-point number has been described.

Example 4 Plotting the descriptor data.
1 from rdkit.Chem.Descriptors import *
2 import seaborn as sns
3 Chem_1_smiles ¼ "CC1CC2C3CCC4¼CC(¼O)C¼CC4(C3(C(CC2(C1
(C(¼O)CO)O)C)O)F)C"

4 Comp ¼ Chem.MolFromSmiles(Chem_1_smiles)
5 data ¼ [[HeavyAtomMolWt(Comp), HeavyAtomCount(Comp), MolWt
(Comp)]]

6 df ¼ pd.DataFrame(data, columns¼[’HAtmMolW’,’HAmCount’, ‘ MolWt’])
7 ax ¼ sns.barplot(data¼df)
Output:
Let’s dissect the code.
Lines 1 and 2 Importing the libraries.
Line 3 Smile code of dexamethasone stored in the variable “compound_

1_smiles”.
Line 4 Smile converted into a “Mol” format.
Line 5 Creating a data array from the descriptor data.
Line 6 Converting data array into a data frame.
Line 7 Plotting the data using the “barplot()” method of the seaborn library

(Fig. 9.5).

FIGURE 9.5

Bar plot of descriptors.
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9.9 Conclusion
Recent advancements in computer infrastructure, data analysis algorithms, and
pipelines have been evolving continuously and helping researchers to explore their
data rigorously with ease. However, the production of a huge amount of data still
needs more and more exploration and demands researchers skilled in advanced
programming languages. Bioinformatics and chemoinformatics data are growing
exponentially every day and Python, an easy-to-learn but powerful programming
language provides the best solution to explore these enormous datasets. Examples
included in this chapter prove the simplicity of Python programming, thus providing
a start point to adopt Python with ease.
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10.1 Background
DNAeprotein complexes have been given utmost importance to uncover the
mysteries of various biological processes in vivo. To gain insight into the mechanism
of DNAeprotein recognition patterns, the prerequisite condition is to understand the
structure and function of these biomolecules. DNA cannot exist and function on its
own, it requires interaction with proteins to facilitate various functions such as DNA
packaging, DNA replication, DNA repair and transcription, etc. The proteins
that bind to nucleic acids are composed of nucleic acid-binding domains where
interfacing with amino acids takes place in a nonspecific or specific manner. Proteins
have entities that may selectively bind to a specific DNA sequence or may recognize
any polymorphic structure of DNA. Earlier reports suggested that prokaryotic as
well as eukaryotic genomes encode various DNA-binding proteins. There are
many DNA-binding motifs that specifically recognize and bind to DNA sequences
as well as structures such as leucine zipper, zinc finger, helix-turn-helix, etc.
(Luscombe et al., 2000; Walter et al., 2009; Ofran et al., 2007). This selective recog-
nition of DNA structures by proteins is an intriguing process and a challenge for
the structural biologist. In vivo, the proteins assemble and adopt 3D complex
dynamic structures to facilitate myriad critical functions in cell cycle, as well as
other important metabolic functions for cell survival. For a long time, thousands
of crystal structures of proteineDNA complexes are deciphered and deposited in
the Protein Data Bank (PDB) (Berman et al., 2000). They are made available to
the scientific community to understand and crack the codes of various binding
modes and mechanisms.

Presently, more than 3868 DNAeprotein complex crystal structures are available
in the PDB; this is a much smaller number than the number of DNAeprotein
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complexes that exist in nature and this number increases day to day. Bioinformatics
assists in providing platforms and tools to uncover the complex interaction of mac-
romolecules in a simpler way. With the advent of genome sequencing technology,
several genome sequences of various organisms are deciphered and deposited in
databanks (Bernstein et al., 1977; Berman et al., 2000). To have an understanding
of the clear picture of genomic constitution and functions, the fine details of DNAe
protein interactions should be understood. The structural and physical properties of
binding sites present on DNA as well as the surface of proteins provide significant
information regarding the obstacles limiting their interactions. This helps to discover
strategies to overcome the limitations and facilitate the interactions. For a better
understanding of DNAeprotein interactions, the structural features and sequence
context of both the interacting partners should be well explored.

10.2 Structural aspects of DNA
10.2.1 DNA: structural elements
DNA is a dynamic molecule and needs myriad proteins to perform meticulous bio-
logical functions such as packaging, replication, transcription, etc. Proteins can
interact and bind to DNA structures in a number of ways, i.e., through groove bind-
ing or through ionic interaction between the negatively charged sugar phosphate
backbone of DNA. It is well known that amino acids are building blocks of proteins
comprising many positively charged amino acids such as lysine (K), arginine (R),
and histidine (H). These amino acid residues can interact and bind with negatively
charged DNA backbone.

DNA exhibits a higher degree of structural polymorphism and exists as canon-
ical (B-DNA or WatsoneCrick DNA) as well as many unusual noncanonical (non-
B-DNA) structural forms in biological systems such as Z-DNA, hairpin, slipped
structures, triplexes, G-quadruplexes, i-motifs, and cruciform structures (Bochman
et al., 2012; Kaushik et al., 2016; Spiegel et al., 2020). Fig. 10.1 depicts some of
the polymorphic forms of DNA.

10.2.2 DNA: nitrogenous bases of DNA are involved in base pairing
All the DNA unusual structures are stabilized by varied hydrogen-bonding
patterns. Apart from the universal antiparallel WatsoneCrick base pairing, there
exist Hoogsteen, reverse-Hoogsteen, and wobble and parallel WatsoneCrick
base pairing. The two types of nitrogenous bases, i.e., purines and pyrimidines,
present in DNA are adenine/guanine and thymine/cytosine, respectively (Sinden,
1994). Schematic representation of DNA bases facilitating WatsoneCrick base
pairing is shown in Fig. 10.2.

Nitrogenous bases are bestowed with various potential hydrogen bond donor and
acceptor sites, which actively participate in hydrogen bond formation generating
various polymorphic structures. Besides the sites on the bases already involved in
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FIGURE 10.1

Canonical (B-DNA): (A) duplex DNA, (B) gapped DNA, (C) opened DNA, (D) sticky ends,

(E) nicked DNA, (F) hairpin duplex DNA. Noncanonical DNA (non-B-DNA) structures:

(G) triple helical DNA, (H) G-quadruplex and i-motif, and (I) cruciform DNA.

FIGURE 10.2

Nitrogenous basesdpyrimidines and purinesdshowing the WatsoneCrick base pairing

scheme involved in a standard DNA duplex.
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WatsoneCrick base pairing, there also exist other potential hydrogen bond donor
and acceptor atoms, which with further interactions with other bases can create
higher-order structures. These extra hydrogen bonding sites may also interact specif-
ically with amino acids within the proteins. Tautomeric forms of DNA bases with
their hydrogen bonding sites are depicted in Fig. 10.3.

FIGURE 10.3

Tautomerization of bases and various hydrogen-bonding potential sites present on

nitrogenous bases. (A) Guanine exists in keto form where a carbonyl group is present at

the C6 position. (B) Amine and imine forms of adenine. (C) Ketoeenol forms of thymine.

(D) Amine and imine forms of cytosine. The arrows indicate the hydrogen-bonding

properties of the bases. The arrows pointing outward from the hydrogen and toward the

negative centers represent hydrogen-bonding donors and acceptors, respectively.
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The most conspicuous and crucial features of DNA exposed to proteins and other
ligands are the two grooves, i.e., major groove and minor groove. The grooves arise
due to helical twisting of two strands around each other. The major groove is wide
and accessible, while the minor groove is narrow. Since water is an integral part of
biological systems, a hydration shell is present around the grooves where secondary
structural elements of protein can interact well with DNA bases. The major groove is
wider and can harbor an a-helix or two strands of b-ribbon, whereas being narrow,
the minor groove can accommodate only a single peptide chain. Hydrogen bond
donor and acceptor sites exposed in grooves are accessible by protein directly or
indirectly through one or more water molecules (Blackburn et al., 2006). Grooves
are well hydrated in DNA, but can be displaced when proteins approach to bind
the duplex structures. The structural elements of DNA need to be considered prior
to establishing their interaction with proteins.

10.3 Structural aspects of proteins
10.3.1 Characteristic features of amino acids
Protein is a critically important biomolecule, substantial for the myriad biological
functions along with building blocks of the body. Protein initiates various biological
processes either via interaction with other biomolecules or by directly playing a
central role in the processes. Amino acids are the basic units of protein, linked
together via peptide bonds ultimately forming a polypeptide chain. Many polypep-
tides, interlinked with disulfide linkage, may result in forming various domains and
ultimately a protein structure. Interaction between DNA and protein are mediated by
various hydrogen bond donor and acceptor groups on DNA bases, and amino acids
of proteins, through hydrogen bonds. Like the DNA bases, the polar amino acids, at
their side chains, contain various hydrogen bond donor and acceptor sites. For
example, asparagine and arginine side chains instantly involve hydrogen bonds
with guanine and adenine, forming a bidentate complex. The aromatic amino acids
tryptophan, phenylalanine, and tyrosine are known to form weaker hydrogen bonds
known as “p-hydrogen bonds” with DNA bases.

Water molecules play a substantial role in making bridges between DNA and
protein. They can extend the surface of the DNA and link it to an amino acid.
The amide backbone of the protein can also hydrogen bonded with nucleic acids
(bases). The structural element of a protein found interacting most frequently with
the DNA major groove is an a-helix, whereas many proteins such as TATA-
binding proteins can interact with DNA via the minor groove (Fig. 10.4).

10.3.2 Characteristic features of proteins
Proteins can be classified on the basis of their structure as well as functions per-
formed by them in biological processes. Based on the information available from
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previous studies and the literature in PubMed, PDB (Berman et al., 2000), CATH
(Orengo et al., 1997), SCOP (Murzin et al., 1995), COPS (Suhrer et al., 2009),
NPIDB (Kirsanov et al., 2013), DNAproDB (Sagendorf et al., 2017), etc. databases,
three classification categories, namely class, type, and subtypes, are proposed. Pro-
tein can be classified in a class on the basis of function and can be further categorized
in three subcategories, i.e., enzyme, transcription factor (TF), and structural or
DNA-binding proteins, respectively.

10.3.3 Classification of protein-binding motifs
The proteins that involve the modification of DNA are classified as enzymes. Various
proteins, which facilitate transcription and regulation of gene expression in
biological systems, are classified as TFs. Another class, known as structural or

FIGURE 10.4

Basic skeleton of nucleic acid bases, where hydrogen is bonded with amino acids.
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DNA-binding proteins, comprises proteins involved in DNA packaging, DNA
bending, and aggregation. On the basis of reactions catalyzed and the function of
enzymes, category type is organized in 15 subcategories: dioxygenase (Yang
et al., 2008), endonuclease (Williams, 2003), excisionase (Sam et al., 2004), gluco-
syltransferase (Lariviere et al., 2005), glycosylase (Fromme et al., 2004), helicase
(Lee and Yang, 2006), ligase (Nandakumar et al., 2007), methyltransferase (Brenner
and Fuks, 2006), nuclease, photolyase (Mees et al., 2004), polymerase (Brautigam
and Steitz, 1998), recombinase (Guo et al., 1997), topoisomerase (Redinbo et al.,
1998), translocase (Löwe et al., 2008), and transposase (Davies et al., 2000).

Structural or DNA-binding protein can be categorized in eight different subcat-
egories, i.e., centromeric protein (Verdaasdonk and Bloom, 2011), DNA packaging
(Ward and Coffey, 1991), maintenance/protection (Strogantsev and Ferguson-Smith,
2012), DNA bending (Vliet and Verrizer, 1993), repair protein (Ambekar et al.,
2017), replication protein (Prakash and Borgstahl, 2012),telomeric protein (Amir
et al., 2020), and Zalpha (Yang et al., 2014). TFs include seven categories of proteins
that bind to the DNA structures and mediate various functions; they are alpha helix
(a-helix) (Doig et al., 2001), a/b protein (Fujiwara et al., 2012), b-sheet (Perczel
et al., 2005), helix-turn-helix (Brennan and Matthews, 1989), ribbon/helix/helix
(Schreiter and Drennan, 2007), zinc coordinating (Laitaoja et al., 2013), and zipper
type (Hakoshima, 2005). The category subtypes include more specific features of
proteins such as specific reaction of a particular enzyme, specific DNA binding sites
and domains, etc. These classes, types, and characteristic functions are tabulated in
Table 10.1.

Apart from these classifications, various protein features are also to be taken into
consideration such as number of protein monomers interlinked with double-helix
DNA, whether the protein is heteromultimeric or homomultimeric, or both.
Numerous proteins present in the vicinity of other DNA-binding proteins may recog-
nize each other and be involved in proteineprotein interaction. Another important
feature relies on a methodology that gives insight into the location of atoms of
DNA and protein in 3D spaces (Ferrada and Melo, 2009). Sequence and structural
information of a query protein opens new avenues to explore DNA-binding residues
and provide a platform to develop computational strategies or databases. Based on
sequence similarity, numerous studies have been considered for the development
of databases for DNA-binding domains (Ofran et al., 2007; Hwang et al., 2007;
Yan et al., 2006; Ahmad and Sarai, 2005; Wu et al., 2009; Carson et al., 2010). It
is observed that the DNA-binding residues are found to be less conserved, which
is why if the protein structure is known, some structural biology techniques and
other methods can be used to detect DNA-binding residues.

The DNA-binding sites can be predicted by comparing with known putative
DNA-binding spots on the query protein. Furthermore, 3D structures of proteins
can be used to explore and decipher the binding sites (Alibes et al., 2010; Li
et al., 2014; Li et al., 2013; Xiong et al., 2011). Fig. 10.5 displays the schematic
diagram of a strategy implemented to explore sequence and structure similarity
for binding. Putative sequences (conserved binding motifs) and 3D structural data
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Table 10.1 Classes, types, and characteristic function catalyzed by various proteins.

S.
no. Class Type Characteristic functions

1. Enzymes Dioxygenase Involved in DNA repair in which lesions are caused, by using a direct oxidative dealkylation
mechanism (Yang et al., 2008)

Endonuclease DNA cleaves at specific places by restriction enzyme (Williams, 2003)

Excisionase Integrase-mediated DNA rearrangement is controlled by this enzyme (Sam et al., 2004)

Glucosyltransferase This enzyme interacts and binds on an abasic site of DNA and flips it. Using UDP-glucose,
glucosylation happens at 5-methylcytosine in duplex DNA (Lariviere et al., 2005)

Glycosylase Involved in base excision repair (a process in which damaged nucleotides in DNA can be
removed or replaced) (Fromme et al., 2004)

Helicase Helicases are involved in unwinding DNA double helices by using ATP hydrolysis (Lee and
Yang, 2006)

Ligase This class of enzymes is involved in the recognition of nicks and conditions for strand closure
(Nandakumar et al., 2007)

Methyltransferase Involved in methylation in the genome and plays a pivotal role in gene silencing (Brenner and
Fuks, 2006)

Nuclease This is a nucleate or cleave DNA but does not come under the class of endonucleases (Mees
et al., 2004)

Photolyase In ultraviolet-induced base lesions caused in DNA, this enzyme uses light to repair the lesions
(Mees et al., 2004)

Polymerase This enzyme is involved in polynucleotide synthesis against a nucleotide template strand using
base-pairing interaction (Brautigam and Steitz, 1998)

Recombinase This enzyme mediates the recombination process in biological systems (Guo et al., 1997)

Topoisomerase Helps to relax DNA superhelical stress or lesions by causing a transient single-stranded break in
double helical DNA (Redinbo et al., 1998)

Translocase This enzyme is involved in the segregation of circular chromosomes, formed by recombination
of monomer sister strands (Löwe et al., 2008)

Transposase Mediates the movement of DNA segments known as transposons by a process known as
transposition (Davies et al., 2000)
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2. Structural or
DNA binding

Centromeric protein Includes a protein that is part of the centromere (Verdaasdonk and Bloom, 2011)

DNA packaging Includes a protein (histone in eukaryotes) that assists DNA in packaging
(Ward and Coffey, 1991)

Maintenance/
protection

These proteins indulge in the protection and maintenance of genomes (Strogantsev and
Ferguson-Smith, 2012)

DNA bending Protein that helps in the bending of DNA for indirect readout (Vliet and Verrizer, 1993)

Repair protein Protein involved in the recognition and repair of damaged DNA (Ambekar et al., 2017)

Replication Protein that assists in the replication of DNA (Prakash and Borgstahl, 2012)

Telomeric protein These proteins are involved in recognition and binding to the telomere part of the chromosome
and impart stability (Amir et al., 2020)

Zalpha These proteins specifically recognize and bind to Z-DNA (left-handed DNA) (Yang et al., 2014)

3. Transcription
factor

a-Helix Protein rich in alpha helices that interacts with DNA via alpha helices (Doig et al., 2001)

a/b Includes alpha helices and beta-sheets to interact with DNA (Fujiwara et al., 2012)

b-Sheet This protein is rich in beta-sheets and interacts with DNA via the beta-sheets
(Perczel et al., 2005)

Helix-turn-helix This protein is known as a helix-turn-helix DNA binding protein having a winged helix domain
(Brennan and Matthews, 1989)

Ribbon/helix/helix Contains ribbons or helices in binding domains and binds to DNA (Schreiter and
Drennan, 2007)

Zinc coordinating Protein that harbors zinc in structures to interact with DNA (Laitaoja et al., 2013)

Zipper type These proteins contain motifs that can bind to DNA as a zipper (e.g., leucine zipper)
(Hakoshima, 2005)
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are freely available on public databases, which can now be used to construct various
datasets to study proteineDNA complexes. Much literature is available showing
established and constructed datasets. It is significant to note that for proper binding
between protein and DNA, a specific cutoff distance should be present between
atoms of amino acid residue and the neighboring atoms of the DNA molecule.

Again, much literature is available on DNAeprotein-binding site prediction,
which uses different datasets as well as parameters of DNA-binding sites. Datasets
used to study/predict DNA-binding proteins and sites are tabulated in Table 10.2.

Using evolutionary and structural information for predicting binding sites,
several groups have reported varied cutoff distances for binding and nonbinding res-
idues. While Kuznetsov et al. (2006) established that cutoff distance should be
4.5 Å, Si et al. reported the cutoff distance as 3.5, 4.0, 4.5, 5.0, 5.5, and 6.0 Å,
respectively. However, the most suitable cutoff distance was proven to be 3.5 Å
for the separation between binding and nonbinding residues (Si et al., 2011). Further
development of more software and databases has taken into consideration parame-
ters such as amino acid residues, forces for stabilization, etc._

Each bioinformatics database and tool has its own specific decisive factor and
characteristics to set the design datasets. For example, the TRANSFAC database
operates by choosing specific DNA sequences depending on the specific class of
proteins. It is based on selecting a small stretch of DNA segment (5e25 base pairs)
and transferring it to the appropriate relational data model. By using this knowledge,
information on protein-binding sites and factors can be predicted. It is necessary to
investigate this, as one site can interact with various factors, and many known factors

FIGURE 10.5

Strategy to explore the sequence and structure similarity in DNA as well as protein.
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can bind to many sites. The SITES and TABLES, the two separate types of tabular
information, can be extracted on the basis of a relational data model in which the
SITES table entails the exact position of a regulatory site, the gene where this site
is located along with biological relevance of that particular gene (Wingender
et al., 1996). Besides this, various other tools are available that use evolutionary
aspects and information to design datasets to study DNAeprotein interaction.

Table 10.2 Datasets used to predict DNA-binding proteins and binding
sites.

S.
no.

ID
(datasets) Detailed notes References

1. DB179 Contains 179 NA-binding proteins, 40%
sequence identity

Gao and
Skolnick
(2008)

2. NB3797 Contains 3797 nonbinding proteins, 35%
significant sequence identity level (3482
independent clusters)

Gao and
Skolnick
(2008)

3. PD138 Consists of 138 DNA-binding proteins, mostly
nonredundant at 35% sequence identity,
categorized in seven structural classes

Szilagyi and
Skolnick
(2006)

4. DISIS Consists of 78 DNA-binding proteins, redundant
at 20% sequence similarity

Ofran et al.
(2007)

5. PDNA62 Contains 62 DNA-binding proteins, 78 chains,
approximately 57 nonredundant sequences at
30% identity

Ahmad et al.
(2004)

6. NB110 Consists of 110 nonbinding proteins,
nonredundant at 30% sequence similarity. It has
entries without DNA derived from RS126
secondary structure dataset.

Ahmad et al.
(2004)

7. BIND54 Contains 54 binding proteins, exactly 58 chains,
nonredundant at 30% sequence identity

Stawiski et al.
(2003)

8. NB250 Consists of 250 nonbinding proteins,
nonredundant at 35% sequence similarity

Stawiski et al.
(2003)

9. DBP374 Comprises 374 DNA-binding proteins,
redundancy at 25% sequence identity level

Wu et al.
(2009)

10. TS75 Consists of 75 DNA-binding proteins,
independent from DBP374 and PDNA62 but has
redundant entries both with 35% sequence
identity level

Wu et al.
(2009)

11. PDNA-316 Comprises 316 target proteins and is used in the
metaDBsite web server with 30% sequence
similarity

Si et al. (2011)

12. DNA
BindR171

Consists of 171 proteins with sequence identity
�30%, each protein has a minimum of 40 amino
acid residues

Yan et al.
(2006)
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The web server (DP-Bind) is a kind of user interface comprising three input fields
such as query sequence (to be analyzed), selection of encoding method, and email
address. Users can investigate and seek detailed information about each field along
with output format just by clicking on the help hyperlink. FASTA format can be used
for pasting or uploading amino acid sequences in the place of input. Input sequence
can be 1000 residues long and the web server accepts 100 sequences for single-
sequence-based encoding. The output is seen on DP-Bind, which comprises three
parts, i.e., a header predicting the format, input sequence, and results of the query
sequence in a tabulated format. The table contains 10 columns where the first col-
umn represents a residue index that shows the exact position of the sequence; the
second column consists of amino acid residue. DP-Bind also uses different predic-
tors such as support vector machine (SVM) (Vapnik, 1998), kernel logistic regres-
sion (KLR) (Zhu and Hastie, 2005), and penalized logistic regression (PLR)
(le Cessie and van Houwelingen, 1992) predictors to predict results. Columns
3e8 display output from SVM, KLR, and PLR predictors. Output from each method
comprises a predicted binding label and the probability of that label. Different la-
bels, such as label 1 and label 0, represent DNA-binding and nonbinding residues,
respectively. Majority and strict consensus are depicted in columns 9 and 10, respec-
tively, and if strict consensus is not obtained, i.e., one method differs from the other
two methods, the position is marked with not available (NA). DP-bind is signifi-
cantly a very informative bioinformatics tool implied for predicting DNA-binding
residue, based on sequences present in DNA-binding proteins (Hwang et al., 2007).

10.4 In silico tools for unveiling the mystery of
DNAeprotein interactions

It is well documented that a number of biophysical techniques are available for
gaining insight into the structural details and modes of interaction in DNAeprotein
complexes. Also, a plethora of computational tools and software is available and
being employed presently to predict DNAeprotein interactions. These are summa-
rized next.

10.4.1 TRANSFAC
The TRANSFAC database is used to gain information on the TF binding sites from
yeast to humans. It is a comprehensive knowledge-based tool employed to enquire
about query sequences by comparing with experimentally proven binding sites.
TRANSFAC has a broad compilation of binding sites allowing the derivation of
matrices, which can be used along with suitable tools to search various DNA
sequences. This database includes several entries under different categories. It pro-
vides a significant value, which assists in identifying DNA-binding activity and thus
leads to decipher a specific factor. TRANSFAC also gives a platform for other tools
called Match, which exploits the nucleotide weight matrices of TRANSFAC to
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explore potential binding sites in uncharacterized sequences. Other web programs
such as AliBaba2 utilize the TRANSFAC database to decipher TF-binding sites in
an unknown DNA sequence. This web program exploits the binding sites deposited
and collected in TRANSFAC. In addition to TRANSFAC, another tool, P-Match, is
also employed to identify TF binding sites in DNA sequences (Matys et al., 2003;
Wingender et al., 2001). It uses pattern matching and weight matrices in combina-
tion to facilitate a high level of accuracy of recognition. Many other web programs
are also available that use the TRANSFAC database to predict and identify unique
computational functions.

10.4.2 DISPLAR (DNA site prediction from record of neighboring
residues)

The DISPLAR database is based on the neural network that significantly assists in
predicting the protein residues involved in recognition and binding to DNA, pro-
vided the structure of the protein is known. DISPLAR utilizes position-specific
sequence as well as solvent accessibilities along with spatial neighbors to predict
the binding residues. It shows prediction accuracy over 80% and interprets the
accurate DNA-binding residues (Tjong and Zhou, 2007).

10.4.3 iDBPs (exploration of DNA-binding proteins)
Nimrod et al. (2010), established the iDBPs server for the identification of
DNA-binding proteins based on the 3D structure of protein. This server first utilizes
PatchFinder to explore the functional region of the protein. Moreover, the Patch-
Finder algorithm is extensively used to search the clusters of putative conserved
residues on the protein surface. By using this algorithm, the maximum-likelihood
patches are easy to find and depict the functional regions in protein, as well as
DNA-binding regions within the DNA-binding proteins. This information is
exploited by users for the investigation of their results by including prediction scores
of the proteins with requisite score cutoff (Nimrod et al., 2010).

10.4.4 MAPPER (multigenome analysis of position and patterns of
elements of regulation)

MAPPER, utilized for the identification of TF binding sites, is based on the hidden
Markov model retrieved from known sites. TF binding sites can be exploited to align
with the sites provided by TRANSFAC and other similar databases. It can be used to
depict the sites in the genome sequence by scanning various organisms (humans,
flies, mice, worms, yeast, etc.) (Marinescu et al., 2005a,b). Compared to other
computational models, it is a more specific and sensitive tool. Usually, a query
sequence is uploaded and followed by multiple sequence alignments of the TF bind-
ing sites.
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10.4.5 DP-Bind
In DP-Bind, protein binding sites are predicted on the basis of analysis of amino acid
residues. Three support models, namely SVMs, KLR, and PLR, are used to predict
the binding sites. The predictions can be made by utilizing single sequence query or
cluster of evolutionary conservation of input sequence. These three support models
in combination can be exploited to provide consensual, high precision results
(Hwang et al., 2007).

10.4.6 PreDs
PreDs is a web-based server where protein molecular surfaces are used to gain in-
formation about DNA-binding sites. Atomic coordinates are available in pdb format
and are used to generate protein molecular surfaces. This prediction considers elec-
trostatic potential, global curvature, as well as the local curvature of the protein sur-
face (Tsuchiya et al., 2004).

10.4.7 ZIFIBI (zinc finger site database)
As the name indicates, this database includes the zinc finger domains of protein hav-
ing the potential to recognize DNA sequences. It helps in spotting the C2H2 zing
finger transcription binding site in the cis-regulatory location of the target genes.
This tool also exploits the hidden Markov model to perform calculation of the state
path for binding sites. Here, specific attention is given to the interaction of amino
acid residues of zinc finger and nucleotide sequences (Cho et al., 2008).

10.4.8 Bindn and BindnD
Bindn is a web-based tool that utilizes SVMs to interpret and depict the nucleic acid
(DNA and RNA) binding sites. SVM modes are based on sequence features, such as
side chain pKa values, hydrophobicity index, and molecular mass of an amino acid.
Basically, the primary sequence data of proteins is exploited extensively to procure
binding site information (Wang and Brown, 2006). Similarly, Bindnþ is also a web-
based tool that utilizes SVMs but exploits varied protein features to predict DNA-
binding sites. In this method, the biochemical property of the amino acids is utilized
to prepare a position-specific scoring matrix (Wang et al., 2010).

10.4.9 ProNIT
This database utilizes quantitative parameters in place of DNAeprotein structural
data. Various thermodynamic parameters (dissociation constant, association con-
stant, Gibbs free energy change, enthalpy change, heat capacity change, etc.), exper-
imental conditions, structural information of protein, as well as nucleic acids
are exploited to predict binding sites. It facilitates many output options to provide
information to other databases to provide flexibility in searching the binding sites
(Prabakaran et al., 2001).
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10.4.10 DNA-Prot
This tool utilizes protein sequences for the identification of DNA-binding proteins.
DNA-Prot can efficiently differentiate between DNA-binding and non-DNA-
binding proteins by specific recognition of nucleotide sequence and chains. This
tool employs the random forest method to depict DNA-binding residues and proteins
(Kumar et al., 2009).

10.4.11 PDIdb
PDIdb is a tool that acts as a repository containing the relevant structural information
of proteineDNA complexes solved by X-ray crystallography. It uses the data depos-
ited in PDBs. This user-friendly database uses a method to classify all the complexes
in three hierarchical levels, i.e., classes, types, and subtypes, respectively. Classifi-
cation is made on the basis of manually curated information gathered from various
databases such as PDB, PubMed, CATH, SCOP, and COPS. PDIdb focuses on each
atomic interface of both DNA and protein and each entry has a specific proteine
DNA interface (Norambuena and Melo, 2010).

10.4.12 PADA1 (protein assisted DNA assembly 1)
PADA1 is a generic algorithm that exploits model structural complexes to depict
DNA-binding proteins of already resolved structures. It utilizes a library of protein
and duplex DNA pairs harvested from 2103 DNAeprotein complexes. To evaluate
and filter 3D docking models, a fast-statistical forcefield computed from atomeatom
distance is used. The use of PADA1 has established that the quality of docked
templates is compatible with the FoldX protein design tool. It also represents DNAe
protein conformational changes by predicting DNA-binding regions/nucleotide
sequences (Blanco et al., 2018).

10.4.13 DNAproDB
A web-based tool, DNAproDB is specifically designed to gain information on
DNAeprotein complexes. Structural features of these complexes are extracted by
using this tool, which provides an automated structure-processing pipeline. The
extracted data are arranged in structured data files that can be utilized by any
programming language or easily viewed in a browser. The database can be searched
by taking a combination of DNA, protein, or DNAeprotein interactions at the inter-
face. DNAproDB facilitates various interactive and customizable tools for gener-
ating visualization of the DNAeprotein interface (Sagendorf et al., 2017).

10.4.14 WebPDA
WebPDA, where P stands for protein, D stands for DNA, and A indicates analyzer, is
a structure analysis program that utilizes PDB files as inputs and carries out structure
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analysis, including proteineDNA complex restructuration and double-stranded
DNA reconstruction. It provides a new technique to analyze DNA base-pairs, as
well as systematic annotation of DNAeprotein interactions. This tool also identifies
the DNA sequences involved in DNAeprotein interactions as well as in binding res-
idues (Kim and Guo, 2009). The current PDB files are easy to process and undergo
analysis by using this tool. WebPDA is also used as a web interface for exploiting
PDA and for data retrieval.

10.4.15 DOMMINO
The DOMMINO 2.0 database is designed to analyze protein, DNA, RNA, and their
interactions. This web interface is utilized to search and depict the subunit interac-
tion network at the atomic level of whole macromolecular assemblies to gain infor-
mation on binding domains. This software is very efficient as it utilizes the structural
classification of the interacting subunits and compares the interactions of several
macromolecules (Kuang et al., 2016, Fig. 10.6).

10.4.16 FlyFactorSurvey
This server is specifically designed to identify the TF binding sites in the Drosophila
genome. It includes 400 recognition motifs and position weight matrices for over

FIGURE 10.6

Summary of databases and tools used for in silico study of DNAeprotein interaction.

320 CHAPTER 10 Unveiling the molecular



200 TFs. It utilizes a bacterial one-hybrid system to select TF binding sites in the
database. This also facilitates search tools and flat file downloads to retrieve infor-
mation on binding sites for individual TF binding domains or groups of TF domains
with characteristic binding or recognition specificity. Various tools are linked to this
database to identify binding motifs similar to the query matrix or for an individual
motif throughout the Drosophila genome (Zhu et al., 2011).

10.5 Future perspectives
Investigational approaches for defining proteinenucleic acid interactions are expen-
sive and time consuming. Moreover, these approaches will not be able to deal with
the ever-increasing numbers of protein sequences requiring annotations for their
potential nucleic acid binding ability. Since solving the crystal structure is not
possible for each homolog for every DNA-binding protein, even small changes at
the sequence level may meaningfully alter the interaction dynamics. Henceforward,
computational podiums for the prediction of DNA/RNA binding sites from the
sequences can provide an alternative that can be just as reliable to analyze proteine
nucleic acid interactions. The computational identification of nucleic acid-binding
amino acid residues can greatly contribute to a better understanding of their func-
tions. There are now several prediction methods developed and available for use
as web accessible services. One has to make maximum use of these programs for
predictions and information on nucleic acid-binding residues. Moreover, their ability
to discriminate binding and nonbinding residues can also be accessed.

Macromolecular interactions play a vital role in almost all the biological pro-
cesses. Quite specifically, DNA and protein biomolecules are an integral and indis-
pensable part of the biological system. DNAeprotein interactions are crucial for the
proper functioning of every organism. Since DNA alone is a passive molecule, there-
fore, from packaging to transcription, replication in every arena, DNA needs to
interact with proteins to facilitate every biological function. Numerous biophysical
techniques are available that explore DNAeprotein interaction and mode of binding.
Recently, in silico tools have emerged, which give more exquisite and detailed infor-
mation of DNAeprotein interaction and binding residues. Because of the unique
structural features of DNA, amino acid residues (protein-binding domains) interact
with DNA nucleotides via major and minor grooves. ProteineDNA interaction
might be specific or nonspecific. Biophysical and biochemical characterization of
DNAeprotein complexes is an intriguing as well as laborious process for elucidating
the type of interaction taking place between these biomolecules. Bioinformatics
tools are more feasible to portray the exact picture of complex formation and
mode of binding in vivo.

A plethora of literature is available, indicating the advantages and significance of
computational tools to study and depict the DNA-binding residues and their interac-
tion with proteins. Many in silico tools are available that are exclusively exploited to
gain insight into the structural architecture and position of atoms of DNA such as the
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Nucleic Acid Database (Berman et al., 1992), 3DNA (Lu and Olson, 2003, Lu and
Olson, 2008), etc. Based on the UniProtKB/Swiss-Prot database, approximately
21% of proteins are denoted as nucleic acid binding (Boutet et al., 2007). Specific da-
tabases are also designed to investigate the recognition between amino acid and nucle-
otide residues, i.e., the Amino Acid-Nucleotide Interaction Database (Hoffman et al.,
2004). The Protein-Nucleic Acid Complex Database is also available to seek informa-
tion on fine structural details of proteinenucleic acid complexes (An et al., 1998).

In silico tools and databases have further advantages because they overcome the
limitations of biophysical techniques by reducing analysis time and displaying hy-
pothetical prediction of binding residue along with depicting binding parameters,
energy gap, as well as removing water molecules involved in DNAeprotein interac-
tion. To gain a better picture of any macromolecular complex, a 3D structure is
required, provided by a computational docking approach based on a fine single detail
of an individual entity/macromolecule. In silico tools and databases facilitate a
reasonable, precise, and accurate model picture of proteineDNA complexes, which
assists users to uncover the mysteries of various biological processes and mecha-
nisms. With the advent of new bioinformatics tools and databases we hope to
gain a better understanding of the puzzles of DNAeprotein complexes in the future.

10.6 Abbreviations
AANT Amino Acid-Nucleotide Interaction Database
CATH Class, Architecture, Topology, Homology
COPS Co-Occurrence Pattern Search
DISPLAR DNA site prediction from a list of adjacent residues
DNA-Prot DNA-Protein
DP-Bind DNA-Protein Binding
iDBPs Identification of DNA-binding proteins
MAPPER Multigenome analysis of position and patterns of elements of regulation
NDB Nucleic Acid Database
NPIDB Nucleic AcideProtein Interaction Database
PADA1 Protein Assisted DNA Assembly 1
PDB Protein Data Bank
PDIdb Protein-DNA Interface Database
ProNIT Protein Nucleic Acid Interactions
ProNuC Protein-Nucleic Acid Complex Database
SCOP Structural Classification of Protein
SVM Support vector machine
TF Transcription factor
ZIFIBI Zinc finger site database
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11.1 Introduction
Cancer is characterized by abnormal and uncontrolled cell growth infiltrating
healthy tissues. These cancerous cells can metastasize and destroy other tissues
and organs. Cancer genomics aims to understand the proliferation differences
between normal and malignant cells, the underlying mutations, and the role of the
immune system. It focuses on deciphering the genetic basis of tumor cells. There
are different types of cancers, and an understanding of cancer’s genetic basis is
essential for effective therapeutic interventions. In the 20th century, the unregulated
growth in sea urchin eggs was attributed to chromosomal aberrations. This observa-
tion highlighted the hypotheses of the role of chromosomes in cancer (Harris, 2008).
The discovery of Philadelphia chromosomes confirmed the role of genetic alter-
ations (Rowley, 1973; Nowell and Hungerford, 2004). Various studies have estab-
lished that each cancer is unique and characterized by different cells having
varied mutational spectra. Selected subclonal mutations are the driver mutations
(Knudson, 1971; Nowell, 1976; ER, 1990).

Somatic evolution is dependent on the rate of mutation and clonal expansion.
The different genomic regions have substantially different mutational rates. One
of the distinguishing features of most cancer types is chromosomal instability caused
by amplifications, deletions, translocations, or other structural changes. The rele-
vance of genetic aberrations in cancer physiology is established by the discovery
of various nucleotides responsible for the oncogenic phenotype (Reddy et al.,
1982; Tabin et al., 1982; Taparowsky et al., 1982). For example, the v-src gene is
an oncogene. Reports have shown that the v-src gene, responsible for cancer induc-
tion, is present in viruses that are oncogenic transforming like Rous sarcoma virus
(RSV). Furthermore, studies on different mutants of RSV have shown that of all
the genes present, only the v-src gene is involved in cancer. Similarly, hereditary
colorectal cancer occurs due to mutations in the POLD1 and POLE genes. These
genes are known to encode DNA polymerases d and e.

The identification of genes involved in cancer using techniques like positioning
cloning, candidate gene studies, and biological screening assays (Futreal et al.,
2004) coupled with an understanding of the human genome (Consortium, 2001;
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Venter et al., 2001) has facilitated deeper understanding at chromosomal structural
levels. Cancer genetics studies have led to the identification of many genes (Bardelli
et al., 2003; Davies et al., 2005; Stephens et al., 2005; Bignell et al., 2006; Wang
et al., 2002) involved in different types of cancers. Large-scale genomics studies
have been carried out to understand the genetic and epigenetic changes in cancer.
Such studies have revealed the aberrations in genes leading to the development
and growth of cancer and paved the way for better diagnostics and therapeutic inter-
ventions. One prominent example is the discovery of a common mutation in the
BRAF gene in several types of cancer (Edwards et al., 2004). This resulted in the
development of targeted Food and Drug Administration (FDA)-approved drugs
vemurafenib and dabrafenib for the treatment of cancer patients having specific
BRAF-V600E mutation in the BRAF gene (Hauschild et al., 2012). A comparison
of genomic changes observed in different tumors has shown certain similarities.
For example, the HER2 mutations gene is known to occur across bladder, breast,
pancreatic, and ovarian cancers. The capillary-based sequencing and targeting poly-
merase chain reaction techniques have led to the identification of cancer genes in
colorectal cancers (Sjöblom et al., 2006), breast cancers, pancreatic cancers (Jones
et al., 2008), and glioblastoma multiforme tumors (Parsons et al., 2008). The ad-
vances in sequencing technologies, including next-generation sequencing (NGS)
coupled with computational data analysis, are revolutionizing our understanding
of cancer biology. These have led to several novel targeted therapies for cancer treat-
ment whose efficacy is dependent mainly on the mutation profile of tumors in
patients (Jing et al., 2019). Fig. 11.1 depicts a strategy for the identification of

FIGURE 11.1

Strategies for identifications of anti-cancer drugs.
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specific drugs for cancer therapy. Larotrectinib is an FDA-approved inhibitor of
tropomyosin receptor kinases for any cancer with specific TRK gene fusion (Drilon
et al., 2018).

11.2 Cancer genomics technologies
The investigation of cancer biology is growing faster due to the human genome’s
availability. Completion of the Human Genome Project (Collins et al., 2003) has
revolutionized biomedical research and practices. The groundbreaking newer
sequencing technologies are changing the way cancer genomics is being
approached. The advantage is the improvement of DNA sequencing. The cost to
generate a whole-genome sequence high-quality draft is reduced to below $1000.
Massive parallel sequencing or NGS technologies, including pyrosequencing
(Margulies et al., 2005), ligation (Shendure et al., 2005), sequencing by synthesis
(Bentley et al., 2008), single polymerase (Eid et al., 2009), patterned nanoarrays
(Drmanac et al., 2010), and semiconductor pH-based pyrosequencing (Rothberg
et al., 2011) have led to sequencing multiple samples across genes. Newer methods
have been developed for parallel target selection to target coding regions of multiple
genes, for example, molecular inversion probes (Porreca et al., 2007), microarray-
based genomic selection (Albert et al., 2007), and solution hybrid selection (Okou
et al., 2007; Teer et al., 2010; Clark et al., 2011). NGS platforms can sequence mil-
lions of whole-genome fragments, producing a large number of short reads in a
shorter time frame and at a reduced cost. The nucleotides are added and deleted
in a sequential approach. However, samples from cancerous tissues pose a challenge
to the analysis. First, samples of solid tumor cells are a mixture of healthy cells and
tumor cells. Ideally, for sequencing, the majority of the sample should consist of tu-
mor cells. Techniques like laser capture microdissection and flow sorting are used to
extract genomic DNA/RNA from tumor cells. Second, formalin fixation and paraffin
embedding preservation techniques are used for tissue examination. Third, tissues
are available in a low amount. To counter this, NGS libraries are constructed from
samples having low DNA content (Mardis, 2019).

The decoding of cancer exomes and genomes from a whole-genome library is
possible with “hybrid capture” methods. Hybrid capture methods use synthetic
DNA or RNA probes that are complementary to known coding sequences (Gnirke
et al., 2009; Hodges et al., 2009; Bainbridge et al., 2010). The newer library
construction techniques in NGS facilitate RNA sequencing (RNA-seq). These can
identify the mutations in cancer cells from DNA, chromatin packaging, and other
epigenomic mechanisms, and evaluate their expression.
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11.3 Computational cancer genomics analysis
There is considerable diversity in the genetic abnormalities found within cancers of a
single type. The process of identifying specific and rare mutations inducing cancer
development and progression is a major challenge. The development of cell lines
and animal models that can mimic human cancer diversity is also needed. NGS
sequencing of genes in a high-throughput manner with low cost is done. The man-
agement and analysis of the enormous amounts of genomics data generated require
efficient and robust computational algorithms and tools. The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium (ICGC) have DNA
sequences from many different types of tumors. Many computational methods
have been developed to detect sequence reads in the genetic variation(s). These tools
employ an algorithm with three steps: processing the read, mapping and alignment,
and variant calling to identify variants/mutations.

11.3.1 Mapping and alignment
NGS technologies generate billions of overlapping short reads. These reads are
assembled into contigs. Sequence alignment is one of the most commonly employed
techniques for assembling these reads. Alignment helps in assembling the sequence,
identifying its location in the genome, and understanding the differences compared
to the normal genome.

A high degree of structural variation is observed in the cancer genome compared
to the germline. Structural variation refers to changes in the genome sequence due to
duplication, copy number variation, inversion, or translocation. The small structural
variants (SVs) range from single base pair to 1 kb, whereas large-scale variants can
include 1 million base pairs. These SVs can result in chromosomal aberrations and
are significant markers for cancer. Therefore the alignment techniques employed
should be able to detect these SVs. Identification of large-scale variants is a compli-
cated task. The two commonly used alignment techniques are (1) reference assem-
bly, and (2) de novo assembly.

Generally, reference-based alignment techniques are used where the analysis of
variant is dependent on initial alignment of reads with a reference genome and then
clustered using various methods. Reference-based alignment algorithms like
BurrowseWheeler Aligner (Burrows and Wheeler, 1994), Bowtie (Langmead
et al., 2009), MOSAIK (Lee et al., 2014), and SOAP2 (Li et al., 2009a) work
well for reads with fewer alignments. The BurrowseWheeler transform is the con-
ventional method for the data lossless compression technique. They have limited use
in the case of reads having multiple alignments when there are high rates of
variation.

De novo assembly is useful in identifying SVs and complex rearrangements.
These assemblers are based on graph theory. They can be classified into three clas-
ses: (1) the Overlap-Layout-Consensus (OLC), (2) the de Bruijn graph (DBG) or
Eulerian, and (3) the greedy graph algorithms. The greedy graph algorithms use
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either OLC or DBG. In the de novo assembly, the equal regions are first identified,
and then these regions are overlapped by fragmented sequenced ends. This method
works very well for long reads; however, incorrect alignments may occur for short
reads. It is computationally more intensive compared to the reference assembly.

11.3.2 RNA-seq data for pan-cancer
RNA-seq reads can be analyzed for single nucleotide polymorphisms (SNPs), fusion
genes, transcript abundance, splice variants, and quantification of differential
expression of isoforms. The RNA-seqs lack introns, making RNA-seq alignment
challenging to classify all sequence read outputs. The intronless regions appear as
large gaps in alignment with the reference genome. Many alignment methods
have been developed, taking into consideration the absence of introns like GSNAP,
MapSplice, SOAPsplice (Huang et al., 2011), STAR, CRAC, FineSplice (Gatto
et al., 2014), and Tophat2 (Kim et al., 2013). Some of these methods have higher
sensitivity and specificity. However, they all have spliceejunction misalignment.
The tools STAR and HISAT2 have improved accuracy. Both these tools differ in
the methods to align the reads against genome assembly. A dataset of known splice
sites is used for the identification of probable spliced sequencing reads. STAR
(Dobin et al., 2013) does the alignment in two steps. First, it aligns the first region,
known as “seed,” for a specific read sequence. This “seed” is aligned to the
maximum mappable length of the read against the reference genome. In the second
step, the rest of the region, known as “second seed,” is aligned to the maximum map-
pable length. In the next step, the two or more “seeds” are connected. The scoring is
done based on mismatches, insertions, and deletions. The tool HISAT2 (Pertea et al.,
2016) uses two indices for alignment-whole-genome FerraginaeManzini (FM)
index for “seed” and multiple overlapping local FM indices for extending the
alignment.

RNA-seq is used to identify and quantify differentially expressed genes (Rapa-
port et al., 2013; Seyednasrollah et al., 2013; Soneson and Delorenzi, 2013). The
programs edgeR and DESeq2, both R packages, have good accuracy for quantifying
data and differential expression. They minimize the differences between the array
and the sequence data. DESeq2 (Anders and Huber, 2010) uses a generalized linear
model for normalizing the count of each gene. Next, for the correction of dispersion
and log2-fold change, it uses an empirical Bayes shrinkage method. The program
edgeR (Robinson et al., 2010) estimates the ratio of RNA production using a
trimmed mean of the log expression ratio.

The quantification of transcriptomic features is done by RNA-seq data analysis.
Many programs have been developed for a comparative, relative, or differential
abundance of RNA-seq isoform data. These methods examine either the read counts
on each exon (DEXseq) or the exoneexon junction like ALEXA-seq, MISO, MATS,
and SpliceSeq (Ryan et al., 2012; Shen et al., 2012; Aschoff et al., 2013; Ge et al.,
2011; McPherson et al., 2011; Chen et al., 2012). Exon quantification pipelines are
also available for both the alignment and the quantification steps of an RNA-seq
workflow (Schuierer and Roma, 2016).
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11.3.3 Databases
Large-scale genomic datasets are sequenced from tumor samples and experimental
models. These datasets can be analyzed and reanalyzed to understand the mecha-
nisms underlying the development and progression of different types of cancers.

Analysis of the genomic data involves the processing of raw data generated
by experiments, normalization of data, analyses, and meaningful biological inter-
pretation.

The Gene Expression Omnibus (GEO) and the NCI Genomic Data Commons are
highly essential repositories for genomics data. NCI is a unified data repository for
several cancer genome programs, including TCGA and Tumor Alterations Relevant
for Genomics-Driven Therapy. The other significant cancer datasets are the Cancer
Cell Line Encyclopedia (CCLE) (Barretina et al., 2012), the Genomics of Drug
Sensitivity in Cancer (Garnett et al., 2012), the BROAD LINCS dataset (http://
www.lincscloud.org/), the Fantom Consortium datasets (Forrest et al., 2014), the
ENCyclopedia Of DNA Elements (ENCODE) project (ENCODE_Project_Consor-
tium, 2012), and the Epigenome Roadmap (Kundaje et al., 2015). Oncomine is a
database focusing on collecting, standardizing, analyzing cancer transcriptome
data (Rhodes et al., 2007). UALCAN uses data from TCGA and is an interactive
web portal facilitating the study of variations in gene expression. It also assesses sur-
vival associations (Chandrashekar et al., 2017). cBioPortal utilizes cancer gene
sequencing data and provides visualization and analysis of data (Gao et al., 2013).

There are several databases containing information on cancer genes and their
function. The Catalogue Of Somatic Mutations In Cancer (COSMIC) is a compre-
hensive resource for somatic mutations in human cancer (Tate et al., 2019). It
currently has approximately 6 million coding mutations across 1.4 million tumor
samples. The cancer gene census of COSMIC includes 719 genes, the types of mu-
tations causing dysfunction of the gene, and details of the cancers in which increased
frequency of mutations is observed. Out of the 719 genes, 554 are oncogenic or have
tumor-promoting or -suppressing activity, depending on the tissue of origin, tumor
stage, and various other factors. The cell lines project of COSMIC has mutation pro-
files of more than 1000 cell lines used in cancer research. COSMIC also comprises
COSMIC-3D, a tool for understanding cancer mutations by mapping protein
missense, in-frame deletion, and nonsense mutations to protein sequence and struc-
ture. The cancer mutation data can be correlated with known small-molecule bind-
ing sites, and druggable binding sites (Le Guilloux et al., 2009) that can help in the
mutation-guided design of lead molecules to specific cancer mutants (Jubb et al.,
2018).

The Atlas of Genetics and Cytogenetics is a database having information on can-
cer genes, genetic abnormalities, histopathology, and clinical diagnosis (Huret et al.,
2013). Such information is helpful to clinicians and the pharmaceutical industry for
developing a therapy. The Network of Cancer Genes is a catalog of 2372 known or
predicted cancer driver genes (Repana et al., 2019) identified from cancer
sequencing screens. It has in-depth information on the various distinguishing
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features of somatic mutations in these driver genes, including duplicability, origin,
RNA and protein expression, miRNA and protein interactions, and protein function.
It has wide application in the identification and validation of cancer genes and
miRNA biomarkers (Andres-Leon et al., 2017; Jäkel et al., 2017; Xion et al.,
2017; Woollard et al., 2016). The Cancer 3D database includes about 1,457,702
mutations from 9079 samples from 32 different cancer types (Sedova et al.,
2019). These mutations have been mapped to 18,425 unique proteins. This database
is useful for analyzing patterns of cancer missense mutations occurring in the
proteins and their correlation to patients’ clinical data. The functional modules of
a protein coded by gene and mutation positions in the protein can be studied. The
interactive domain and significant proteineprotein interactions can be assessed.

Databases like CCLE focus primarily on therapeutic agents for cancer. The
CCLE is a database of gene expression, genotype, and drug sensitivity data for
human cancer cell lines. It has wide applications in the systematic interpretation
of single nucleotide variants (SNVs), copy number aberrations (CNAs), and
mRNA expression and utilizing them to develop therapeutics. It helps determine ge-
netic variables leading to drug resistance, drug awareness, and genomics of drug sus-
ceptibility in cancer. Recently, about 1072 cancer cell lines have been studied to
extract information regarding RNA splicing, DNA methylation, histone H3 modifi-
cation, microRNA expression, and reverse-phase protein array. The data obtained
was integrated with drug sensitivity data, short hairpin RNA knockdown, and
CRISPReCas9 knockout data. The correlation helped identify potential targets
and associated biomarkers (Ghandi et al., 2019). The Drug-Gene Interaction Data-
base (DGIdb) is one of the largest databases for drugegene interactions and
potential gene druggability (Cotto et al., 2018).

The crossing of information for analysis from one database to another is not an
easy task. Each database or resource uses different identifiers. The datasets are signi-
fied in a tabular format in these databases for genome analysis. The de facto standard
and shared resources of the database are termed tab-separated value files. These files
have advantages in computation as they are easier to read and write, and are straight-
forward. The contents from the file typically grip the columns. The proteins and the
drugs targeting germline differences and the diseases regulate their transcription.
The experimental databases, such as the Gene Expression Omnibus and Array
Express, contain statistics from the microarray experiments.

Different identifiers have been used in different databases for very similar
entries. For example, genes in Entrez and Ensembl have different identifiers for
similar entities. These resources borrow identifiers from HGNC gene symbols.
KEGG and its library have their identifiers for genes. These offer maps for gene sym-
bols. Translating identifiers and their incompatibilities exist between resources,
i.e., MutationAssessor predicts protein mutations, pathogenicity, and uses identifiers
of UniProt. Analysis systems use Ensembl data for mutations using Ensembl Protein
IDs. Coordinate mappings, and in some cases translating identifiers, are used for
defining mutations to the incorrect isoforms. Incorrect predictions help to reduce
the number of predictions. One of the crucial tasks in computational biology is to
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analyze and correlate data from various resources. A sound translation coding
system or program is required for meaningful data integration.

Pharmacological evidence combined with the genomic data in these databases
could be a significant instrument for clinicians to convert new findings into medi-
cines. A comparative study of seven databases of variants in cancer has been
reported (Pallarz et al., 2019). They are compared in terms of genes, drugs, and
geneedrug associations. The study revealed that although many of the databases
had largely overlapping information, each also had its specific features. Therefore
a comprehensive analysis of data from multiple databases should be used for devel-
oping precision medicine.

11.3.4 Genomics landscape for oncogenic mutations
The economical cost and shorter time needed to sequence a sample are advantageous
as multiple samples from different types of tumors can be analyzed for common and
rare variants. Consortiums like TCGA and ICGC catalog and characterize the com-
mon somatic genetic alterations in different types of tumors (Uhlén et al., 2015;
Kotelnikova et al., 2016; Nagarajan et al., 2019). A variety of mutational patterns
such as kataegis, chromothripsis, and chromoplexy result in complex germline
and somatic SVs and are key signatures of cancer (Pellestor, 2019). The genetic var-
iations observed in cancer are categorized as germline and somatic mutations. Many
programs have been developed for germline and somatic variant calling.

11.3.4.1 Germline mutations
The germline or inherited mutations are analyzed by programs using the Bayesian
model such as SAMtools (Li et al., 2009b), GATK (DePristo et al., 2011), MPG
(Garrison and Marth, 2012), and FreeBayes (Walsh et al., 2010). Healthy tissues
are generally used to identify inherited variants. Many studies Walsh et al. (2010)
(Johnston et al., 2012; Chang et al., 2013; Kanchi et al., 2014) examining germline
variants have been reported. The germline variant algorithms have a 50% or 100%
allele frequency rate. These tools can also be used for somatic variants; however,
analysis of somatic variants poses various challenges. It is challenging to accurately
separate somatic variants from inherited variants without a matched normal sample.

11.3.4.2 Somatic mutations
The various kinds of somatic mutation range from SNVs, to bigger CNAs (>50 bp),
to tiny insertions and deletions (indels). These genomic changes are examined by
low-performance methods, including targeted gene sequencing, cytogenetic
methods, systemic mutagenesis, and DNA linkage assessment. One of the significant
challenges associated with somatic variant calling methods is distinguishing be-
tween the variants with low frequency precisely. Usually, to distinguish between
the germline variant and somatic variant, both the tumor sample and normal sample
are sequenced, taken from the same individual. The variants that are detected only in
the tumor samples are referred to as somatic mutations, whereas the variants
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observed both in tumor sample as well as in normal sample are referred to as
inherited mutations. Such an approach enhances the sensitivity and specificity.
Some of the software based on this approach are VarScan/VarScan 2 (Koboldt
et al., 2009, 2012), Strelka (Saunders et al., 2012), Somatic Sniper (Larson et al.,
2011; Cibulskis et al., 2013), MuTect, and Shimmer (Hansen et al., 2013). There
are many algorithms based on machine learning frameworks: e.g., MutationSeq
(Ding et al., 2012), SomaticSeq (Fang et al., 2015), SNooPer (Spinella et al.,
2016), and BAYSIC (Cantarel et al., 2014). The genetic variants are grouped into
(1) insertion and deletion, (2) SVs like duplication, translocation, copy number vari-
ation, and (3) SNV. The analysis of each of these types of variants requires specific
algorithms. However, the algorithms using a minimum number of variant callers are
used to analyze all such genetic variants. In the case of SNVs and short indels, non-
reference nucleotide bases are checked from the sequences that cover each position.
The reads are too short in case of SVs, and long indels are present; therefore the
algorithms use the patterns of misalignment with paired-end reads to detect the
breakpoints. Split reads assembly and de novo methods are used for the analysis
of SVs.

11.3.4.2.1 Somatic mutations in pan-cancer
Numerous studies utilize data from TCGA and report a pan-cancer analysis of
somatic mutations (Narayan et al., 2016; Kandoth et al., 2013). Significantly,
mutated genes with high confidence levels have been reported (Tomczak et al.,
2015). Such studies have shown that tumors have distinct mutational profiles and
identified genes within and across all specific types of tumors. Co-occurrence and
mutual exclusivity tests were performed for mutated gene pairs. Mutation status
with clinical outcomes was correlated across tumors. The copy number, mutation,
and DNA methylation data have been used to classify different subclasses of tumors
(Ciriello et al., 2013). Their study resulted in the identification of significant func-
tional mutations and subclasses based on alteration signatures. Such a hypothesis
supports that based on the alteration profile, and some combinations of drugs may
show good activity across different types of tumors. Using data from 21 types of
tumor, 224 cancer driver genes have been reported for one or more tumor type
(Lawrence et al., 2014). They were able to identify additional genes that could
not be detected through individual analysis.

Patterns of nucleotide changes within tumors have been studied (Alexandrov
et al., 2013). In this study, 21 single-nucleotide mutational signatures and their flank-
ing bases were identified. Characterization of mutational signatures is significant for
the understanding of cancer genomics. Studies linking mutation profile to a potential
cause have been done. The different signatures have been co-related in cancer sam-
ples. The “localized substitution hypermutations” were also observed (Nik-Zainal
et al., 2012; Burns et al., 2013; Roberts et al., 2013).
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11.3.5 Noncoding mutations
Cancer genomics studies are also focusing on noncoding mutations causing cancer.
The noncoding region comprises more than 98% of the genome. The majority of the
somatic mutations lie in the noncoding region. The population genomics model
using 1000 genomes and ENCODE project data identified functionally important
noncoding regions and rare polymorphism enrichment. These suggest an approach
that effectively identifies cancer driver genes. Transcription factors (TFs) were
found to contain many disease variants and binding motifs for specific TF families
(Supek et al., 2014).

The cancer drivers have been identified in regulatory regions like promoters and
enhancers. The mutations in the TERT gene promoter (Huang et al., 2013; Vinagre
et al., 2013) indicated the role of mutations in the noncoding region in cancer pro-
gression. Telomerase reverse transcriptase is repressed in healthy somatic cells and
catalyzes the lengthening of telomeres. In acute lymphoblastic leukemia within the
enhancer of TAL1, recurrent noncoding mutations have been reported (Mansour
et al., 2014). Furthermore, ChIP-seq data indicated that TAL1 enhancer mutations
create new binding sites that are important for the binding of MYB. So noncoding
mutations affect gene expression and may create novel pathways by altering the
transcriptional networks. In chronic lymphocytic leukemia, mutations in a potential
enhancer region close to the PAX5 gene involved in B-cell differentiation have been
reported (Puente et al., 2015).

Noncoding mutations in untranslated regions (UTRs) are likely to contain cancer
driver genes. The 30 UTR mutations of CD274 are reported to disrupt miRNA-
mediated degradation of the mRNA transcript, leading to overexpression of
CD274 in gastric cancer (Wang et al., 2012). In melanoma, 50 UTR mutations in
the gene RPS27 are known to occur (Dutton-Regester et al., 2014).

Noncoding mutations in functional RNA molecules, such as miRNAs and some
long noncoding RNAs (lncRNAs), are significant. The miRNA mutations, both
somatic and germline, are known to drive cancer (Wojcicka et al., 2014). MALAT1,
a lncRNA, has shown mutations in estrogen receptor-positive breast cancer
(Ellis et al., 2012).

The noncoding cancer mutations can be detected by (1) annotation-based
methods, (2) rate-based methods, and (3) correlation-based methods. They are
used for identifying somatic mutations by mapping them to regions of interest. Tools
like LARVA and FunSeq2 are used for detecting noncoding mutations.

Coding and noncoding mutation information needs to be correlated to decode
how somatic mutations cause cancer progression.

11.3.6 Variant annotation
Many tools have been developed for variant annotation. They catalog various muta-
tions and calculate the frequencies of these mutations across different samples and
different types of tumors. These help in identification of those positions or genes that
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are frequently more mutated than expected. Studies have revealed that some somatic
mutations are functional, while some are incidental mutations. It is the functional
mutations that drive the oncogenic process. There are methods for detecting poten-
tial functional mutations by finding positions with a higher frequency of mutation.
Some of the tools based on this include MuSiC, MutSig, and Gistic (Mermel
et al., 2011; Dees et al., 2012; Lawrence et al., 2013). Other methods employ non-
recurrence approaches such as Multi-Dendrix to identify pathways based on mutated
genes in patients. Oncodrive-FM (Gonzalez-Perez and Lopez-Bigas, 2012; Leiser-
son et al., 2013) identifies the potential driver genes based on mutations having a
considerable effect on function. OncodriveCLUST uses localized mutation clusters
to find specific driver genes (Reimand and Bader, 2013).

COSMIC (Forbes et al., 2008), TCGA, and ICGC (Lathrop et al., 2010) are used
for the determination of variants and their frequencies observed in different types of
tumor. A better understanding of variants’ potential impact can be determined with
datasets of genotypeephenotype relation. Online Mendelian Inheritance in Man,
ClinVar (Landrum et al., 2013), Human Gene Mutation Database (Stenson et al.,
2014), and My Cancer Genome are some of the databases. The DGIdb (Griffith
et al., 2013) database of drugegene interactions leads to a better understanding of
function and therapeutic relevance. The various tools for the prediction of function
based on mutations include SIFT (Ng and Henikoff, 2003; Bromberg and Rost,
2007), SNAP, PolyPhen2 (Adzhubei et al., 2010), CHASM (Carter et al., 2009),
CHASMPlus (Tokheim and Karchin, 2019), mCluster, and transFIC (Gnad et al.,
2013).

11.3.7 Structural variants
SVs, inversions, deletions, duplications, and translocations are distinguishing
markers of cancer. These critical mutational rearrangements delete, amplify, or
reorder genomic fragments. SVs can disrupt gene function and regulate gene expres-
sion. There are several methods based on the type of information they utilize. Copy
number variants (CNVs) are a subtype of SVs and include deletions and duplica-
tions. The read depth differences are used in identifying CNVs. In a genomic
sequence, the read depth data are homogeneous. The shift in values from mean depth
enables the identification of CNVs. Tools like RDXplorer (Yoon et al., 2009) and
CNVnator (Abyzov et al., 2011) are based on read depth differences for CNV detec-
tion. In targeted sequencing, heterogeneity is observed in read depth over different
regions. In such cases, CNVs are detected by comparing the read depth of tumor
sample against normal samples using tools like ExomeCNV (Sathirapongsasuti
et al., 2011) and VarScan2 (Koboldt et al., 2012). CoNIFER and XHMM are pro-
grams for singular value decomposition used for normalizing target regions (Fromer
et al., 2012; Krumm et al., 2012).

De novo assembly is the preferred method for the identification of SVs. They have
the advantage that they can detect larger insertions. The limitation of standard de novo
assembly is that it represents only one haplotype, thereby missing heterozygous SVs.
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Cortex is a method that uses combinations of SNVs, indels, and rearrangements to
detect SVs by using DBG (Iqbal et al., 2012). The SGVar (Tian et al., 2018) method
uses a string graph-based de novo assembly pipeline and also uses short reads. It
makes use of the read length and read quality and has better results for identifying
insertion and deletion. Tools like BlasR (Chaisson and Tesler, 2012), MUMmmer
(Delcher et al., 1999), or Minimap2 (Li, 2018) utilize previously assembled contigs
and scaffolds. The tool DELLY (Rausch et al., 2012) analyzes the split reads for
detecting abnormal distances and orientations among pairs of reads. The efficiency
is enhanced for the detection of smaller deletions. LUMPY (Layer et al., 2014) and
Manta (Chen et al., 2016) analyze the read depth, paired-end read, and split reads.
They can be used on single samples and also for comparison with a tumor sample.
They build graphs across regions and identify specific variations. The tool TARDIS
(Soylev et al., 2019) can detect tandem duplication.

All of these methods are suitable for detecting specific variants. However, the
accuracy rate varies for different types and sizes of SVs. Meta-methods combine fea-
tures from different tools using varied methods. Thereby, using multiple methods,
variants can be detected. Tools like MetaSV (Mohiyuddin et al., 2015), Parliament2
(Zarate et al., 2018), and SURVIVOR (Jeffares et al., 2017) give multiple types of
the variant compared to single variant calling methods.

11.4 Pathway analysis
Various callers and instruments to predict the functional effect of mutations only
focus on individual genes, mutations, and functional impacts of their DNA. Howev-
er, genes do not operate in isolation but communicate by complicated cellular
responses that change their regular patterns in cancer. They are structured into orga-
nizations, often called pathways, based on these relationships. Pathway analysis of
high-throughput data is an essential tool for understanding the pathways being regu-
lated. The association between genes or proteins needs to be measured. The confi-
dence scores retrieved from proteineprotein interaction databases have recently
been reported for association studies (Garcı́a-Campos et al., 2015). Various methods
have been reported to identify significant pathways from high-throughput biological
data. Somatic transformations are interpreted by comparing pathways involving var-
iants with recognized pathway databases. The overlap of mutated genes and genes
with known functional notations can be calculated, and the probability of their
occurrence is assessed by statistical measures such as the exact Fischer or hypergeo-
metric tests (Lai et al., 2017).

Another widely used strategy, Gene Set Enrichment Analysis (GSEA), deter-
mines whether a defined set of genes shows statistically significant, concordant dif-
ferences between two biological states such as a healthy and diseased state. GSEA
works on groups of genes rather than a single gene. GSEA has been used to screen
the common pathways and differentially expressed genes in lung cancer at the
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transcriptional level (He et al., 2019). Four datasets of lung adenocarcinoma from
GEO were analyzed using the GSEA approach. The analysis led to the identification
of crucial genes and pathways involved in cell cycle and DNA replication. Reactome
is another effective method for high-performance pathway analysis. It uses
in-memory data structures and algorithms for genome-wide dataset analysis in a
short time span (Fabregat et al., 2017).

One of the most commonly used databases for enrichment assessment is Gene
Ontology (GO). It comprises three ontologies that are hierarchically organized to
define protein in terms of related biological procedures and cellular and molecular
activities (GO terms). By considering them independently, the simple approach to
measuring the enrichment of GO terms cannot account for GO’s hierarchical frame-
work. Pathway enrichment testing has been used to characterize transcriptional sub-
populations from single-cell RNA-seq data (Fan, 2019). The Goeman and
Mansmann test technique (Goeman and Mansmann, 2008) was suggested to pre-
serve the GO chart’s composition. It needs an individual to select a focus level in
the GO chart representing the specific number of terms selected by the user. The col-
lective sets of mutated genes in a biological pathway contribute to the development
of a tumor. In such cases, the algorithm must be able to differentiate between highly
mutated genes and those that show very few mutations. To resolve these, evaluation
techniques are used for screening patient-related genes (for example, mutated genes)
versus recognized pathways to detect mutated pathways in all patients. PathScan is
one such statistical method that considers the variations in gene lengths within a
pathway and also distribution probabilities of mutations among samples for signif-
icance test (Wendell et al., 2011). Thus the results are biologically more relevant. It
uses mathematical concepts of convolution and FishereLancaster theory. Likewise,
Boca et al. calculated enhancement results for perpetual mutation and combined
them with the general classification. Various methods have been developed to inte-
grate known biological interactions. These methods have led to the improved perfor-
mance of network inference and better differential dependency network approaches.
A computational network-based method known as Evaluation of Differential Depen-
dencY (EDDY) combines GSEA’s gene-set-assisted advantages and differential
network dependency for identifying biological associations in pathways. The
method was applied to gene expression data of 202 glioblastoma samples to identify
pathways enriched with differential dependency (Speyer et al., 2016). One of the
major problems in identifying subtype-specific drug vulnerabilities is to assess
how the key signaling networks are affected by genetic alterations and gene expres-
sion. With the application of EDDY, the subtype-specific network and gene depen-
dencies were identified in glioblastoma samples. The results showed 57 pathways
with a statistically significant divergence between mesenchymal and nonmesenchy-
mal samples. These results have applications in the identification of subtype-specific
drug vulnerabilities.

With the development of newer methods, it is becoming possible to integrate
various pathways without analyzing individual pathways. Moreover, not every
gene is similarly essential for a pathway, and the topology of the relationships
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that can catch the dependency between the genes on a particular trajectory is not
considered. Cross-talking of various paths has to be taken into consideration while
developing new methods.

11.5 Network analysis
In contrast to processes that evaluate pathways with well-established features, inter-
action networks utilize network-based methods to infer new cancer genes and path-
ways. Gene functional similarity networks have found wide application in predicting
proteineprotein interactions, cellular localization, and identifying genes involved in
diseases. A refined gene functional similarity network method has been proposed.
Geneegene association networks were created from the Protein-Protein Interaction
data (Tian et al., 2017). Protein networks can be either undirected (physical proteine
protein relationships) or guided (high-level functional relationships). While most
present methods use undirected networks, the use of guided networks is significant
since the various relationships leading to cancer development can be demonstrated.
The identification of biomarkers from microarray gene expression data of breast
cancer was done using network analysis (Khunlertgit and Yoon, 2016). The progres-
sion of cancer involves the dysregulation of multiple genetic processes. Therefore
genes present in common pathways or the protein coded by these genes known to
be functionally related in proteineprotein interaction networks should be treated
as a single feature. Various association coefficients may be applied to estimate the
topological similarity. These topological attributes are known to enhance the predic-
tion of potential subnetwork markers, which can be helpful in the prediction of can-
cer prognosis. Reactome includes a human protein network of functional interacting
proteins, gene coexpression, proteinefield relationships, and other sources. Either
experimentally examined and deemed more confident, or computationally based,
the changes in the protein communication networks are predictable. Examples of da-
tabases containing relationships include HPRD and BioGRID. Other databases, such
as STRING, comprise predicted and experimentally determined proteineprotein in-
teractions, which are either direct (physical) or indirect (functional) associations.
KEGG and Reactome are reliable resources for pathway information. iRefWeb
covers the largest full network of interaction protein because it integrates protein
interaction data from 10 different interaction databases: BioGRID, BIND, CORUM,
DIP, HPRD, INTACT, MINT, MPPI, MPACT, and OPHID. iRefWeb is an interface
to a relational database.

Various techniques have been suggested incorporating somatic mutations with
communication networks to identify interaction populations of mutated DNA. The
concept behind these techniques is that mutations in the DNA vary from person to
person with the same disease form, but the cells impacted engage in the same bio-
logical procedures. Any disease is generally not due to an abnormality of a gene,
protein, or cell but as a result of the interactions of genes, proteins, or cells in a com-
plex network. The network biomarkers and dynamic network biomarkers with
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proteineprotein or geneegene interactions are useful in studying the progression of
cancer. Identification of cancer subtypes predictor of clinical results such as patient
survival and treatment reaction using the network-based stratification (NBS) meth-
odology has been reported. NBS is less precise in showing the significance of bio-
logical networks in operation when clustering without network data (Chen et al.,
2015; Papanikolaou et al., 2015). Similarly, with three distinct interaction networks,
Leiserson et al. and Vandin et al. conducted a TCGA pan-canner assessment of 12
cancer types. Its technique, HotNet2, utilizes network propagation to detect heavily
linked parts of aberrant DNA and a statistical experiment for assessing the impor-
tance of subnet numbers and sizes.

11.5.1 Data integration and methodological combination
By applying several information sources via information inclusion, cancer genome
information can be better predicted and interpreted. The pipelines, like Mutex,
MEMo, and MEMCover, include multiple information sources and combine distinct
approaches. In particular, both network and shared exclusivity analyzes are conducted.
MEMo detects genetically aberrant cliques in a proteineprotein network.

MEMCover, on the other hand, in its first stage detects mutually exclusive trends
of mutations in many tissue kinds and then utilizes interaction information to eval-
uate the possibility of fresh pan-cancer-dysregulated subnetworks for identified,
mutually exclusive communities. The combination of various methodologies is
especially helpful in producing interpretable listings of cancer genes or clusters.
For instance, the memo-derived modules identify genes that are mutually exclusive
and communicating, thus enabling their biological interpretation and validation tests
to be designed. The inclusion of multiple kinds of carcinogenic information like con-
tact nets, expression of mRNA, abundance of phosphoproteome, genetic aberrations,
and microRNAs may, on the whole, provide an insight into the fundamental molec-
ular processes of cancer.

In addition to network assessment, identification of combinatorial models is
another successful strategy to detect cancer genes. The methods for cancer driver
mutations and pathways use known pathways, network information, or de novo tech-
niques for identifying pathways (Dimitrakopoulos and Beerenwinkel, 2017). The
mutually exclusive gene alterations can be identified in a given set of genomic
profiles (Babur et al., 2015). Co-occurring mutations, by comparison, show favor-
able mutations in the gene. There are simultaneous mutations in two or more genes
to gain a competitive benefit for the cell. The RME algorithm detects gene modules
whose components are mutated repeatedly and shows mutually exclusive models.
Besides, mutually exclusive occurrences of unusual genes tend to occur by chance,
which is why they are harder to identify.

MEMo utilizes a statistical permutation examination that permits mutated genes
between the specimens for mutual exclusion between genetic aberrations. The per-
mutation experiment is conducted on gene communities identified as cliques from a
network of protein interactions. The MEMo, therefore, incorporates various sources
of information and incorporates various methodologies.
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Dendrix (De novo driver exclusivity) and Multi-Dendrix are the methods that
solve the restriction caused by unusual errors. By its elevated exclusivity and high
visibility, Dendrix recognizes driver paths. In contrast to RME, instead of each
gene individually, Dendrix requires a substantial level of coverage of the gene com-
ponents found. Multi-Dendrix simulcast is a linear integer programming strategy to
identify various mutually exclusive gene sets. Genome-scale information is much
faster than Dendrix, and mutually exclusive mutations have been recognized in
well-studied cancer processes, like p53 and PI3K/AKT. Mutex and CoMEt are
two of the latest techniques for the identification of reciprocal genomic occurrences.
By establishing a shared exclusivity rule that prevents significant imbalances in the
contribution of each gene to the general shared exclusivity model, Mutex detects
clusters of chromosomes with a downstream impact on a signaling network. To
accomplish this, each gene is screened against the association of the other commu-
nity changes for shared exclusivity (Zhang and Zhang, 2018).

CoMEt conducts a precise statistic experiment on the frequency of each modifi-
cation and therefore can identify both unusual mutations more efficiently and
various sets of mutually exclusive changes in conjunction, which can overlap, differ
in magnitude, and relate to various types of disease. Compared with Dendrix, Multi-
Dendrix, MEMo, and RME, Mutex and CoMEt have shown enhanced efficiency in
forecasting mutually excluding occurrences. Progress of cancer may be considered
to accumulate mutations in various genes. Nevertheless, more solid models can be
obtained primarily due to the large-scale gene-mutational heterogeneity by consid-
ering dependencies between modified processes. The concept is that developmental
limitations among pathways are explicitly taken into consideration, which would
otherwise confuse the identification of the mutually exclusive gene communities.
Candidate cancer genes and pathways can be suggested by combinatorial mutational
models unbiased without any previous understanding. The combined approach can
also provide an understanding of the genes’ functional relationships and play an
essential role in developing drugs for targeted therapy. Fig. 11.2 shows an integrated
approach for targeted therapy.

11.5.2 Software resources (workflow and visualization interfaces)
The analysis of cancer genome data involves several tasks that necessitate the use of
secondary software to support the analysis in a cancer pipeline. This software could
be used for data mining searches of germline mutations, SNPs, and identifications of
proteineprotein interaction subnetworks. Many cancer data analysis pipelines have
in-built tools for such analysis or may be using third-party software for these
analyses. The workflow of cancer data analysis uses web services, local applications,
browser-based applications, command-line tools, or application programming inter-
faces (APIs). Many of the resources accept data in multiple ways. For example, in
Ensembl, the data can be accessed using the web interface, FTP server, or through
the PERL API.
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Any cancer genome analysis involves either a single dataset or multiple datasets;
therefore the pipeline requires many interconnected analysis steps. Consequently, in
the pipeline, analytical steps should be scripted so that all are interlinked, and repro-
ducible results are produced. A comprehensive analysis should be carried out, and
there should be features in the workflow to adapt to specific data requirement
analyses from different experiments. Systems like Taverna and Galaxy have been
designed to build pipelines with visual interfaces, including a range of
functionalities.

11.6 Conclusion
A large amount of data is generated by the newer sequencing technologies of the
second and third generations. The analysis involves the application of sophisticated
methods. These data, from multiple samples and different types of tumors, are
heterogeneous. Heterogeneity of the data, coupled with the disparity of the software

FIGURE 11.2

Integrated approach for targeted cancer therapy.
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implementations, adds to the complexity in analysis for producing meaningful
biological results. Computational cancer genomics applies algorithms and statistical
models to the datasets. Considerable progress is being made in cancer genome anal-
ysis systems with newer and better algorithms to manage the complexity, taking into
consideration-specific characteristics of each analysis. Computational cancer geno-
mics through the development of computational methods and tools, and utilizing
platforms, datasets, and resources, aim to help in the deep understanding of cancer
biology. These methods and tools are used to analyze cancer genomics data across
populations to identify genes, regions, and pathways that are altered and subtypes of
the disease. Numerous tools are available for detecting somatic mutations and struc-
tural variants. As specific pathways are capable of complex rewiring between
conditions, methods involving pathway analysis and network-based analyses are
highly useful. While the findings of computational techniques are essential for
understanding cancer, it is vital to integrate them with experimental approaches to
generate meaningful and interpretable results.
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Sjöblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Mandelker, D.,
Leary, R.J., Ptak, J., Silliman, N., 2006. The consensus coding sequences of human breast
and colorectal cancers. Science 314, 268e274.

Soneson, C., Delorenzi, M., 2013. A comparison of methods for differential expression anal-
ysis of RNA-seq data. BMC Bioinf. 14, 91.

Soylev, A., Le, T., Amini, H., Alkan, C., Hormozdiari, F., 2019. Discovery of tandem and
interspersed segmental duplications using high throughput sequencing. Bioinformatics
35 (20), 3923e3930.

Speyer, G., Kiefer, J., Dhruv, H., Berens, M., Kim, S., 2016. Knowledge assisted approach to
identify pathways with differential dependencies. Pac. Symp. Biocomput. 21, 33e44.

Spinella, J.F., Mehanna, P., Vidal, R., Saillour, V., Cassart, P., Richer, C., Ouimet, M.,
Healy, J., Sinnett, D., 2016. SNooPer: a machine learning-based method for somatic
variant identification from low-pass next-generation sequencing. BMC Genom. 17 (1),
912.

References 357



Stenson, P.D., Mort, M., Ball, E.V., Shaw, K., Phillips, A.D., Cooper, D.N., 2014. The Human
Gene Mutation Database: building a comprehensive mutation repository for clinical and
molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet.
133, 1e9.

Stephens, P., Edkins, S., Davies, H., Greenman, C., Cox, C., Hunter, C., Bignell, G.,
Teague, J., Smith, R., Stevens, C., 2005. A screen of the complete protein kinase gene
family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet.
37, 590.

Supek, F., Minana, B., Valcarcel, J., Gabaldon, T., Lehner, B., 2014. Synonymous mutations
frequently act as driver mutations in human cancers. Cell 156, 1324e1335.

Tabin, C.J., Bradley, S.M., Bargmann, C.I., Weinberg, R.A., Papageorge, A.G.,
Scolnick, E.M., Dhar, R., Lowy, D.R., Chang, E.H., 1982. Mechanism of activation of
a human oncogene. Nature 300, 143.

Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., Wigler, M., 1982. Activa-
tion of the T24 bladder carcinoma transforming gene is linked to a single amino acid
change. Nature 300, 762.

Tate, J.G., Bamford, S., Jubb, H.C., Sondka, Z., Beare, D.M., Bindal, N., Boutselakis, H.,
Cole, C.G., Creatore, C., Dawson, E., Fish, P., Harsha, B., Hathaway, C., Jupe, S.C.,
Kok, C.Y., Noble, K., Ponting, L., Ramshaw, C.C., Rye, C.E., Speedy, H.E.,
Stefancsik, R., Thompson, S.L., Wang, S., Ward, S., Campbell, P.J., Forbes, S.A., 2019.
COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47 (D1),
D941eD947.

Teer, J.K., Bonnycastle, L.L., Chines, P.S., Hansen, N.F., Aoyama, N., Swift, A.J.,
Abaan, H.O., Albert, T.J., Margulies, E.H., Green, E.D., 2010. Systematic comparison
of three genomic enrichment methods for massively parallel DNA sequencing. Genome
Res. 20, 1420e1431.

Tian, Z., Guo, M., Wang, C., Liu, X., Wang, S., 2017. Refine gene functional similarity
network based on interaction networks. BMC Bioinf. 18 (Suppl. 16), 550.

Tian, S., Yan, H., Klee, E.W., Kalmbach, M., Slager, S.L., 2018. Comparative analysis of de
novo assemblers for variation discovery in personal genomes. Briefings Bioinf. 19,
893e904.

Tokheim, C., Karchin, R., 2019. CHASMplus reveals the scope of somatic missense mutations
driving human cancers. Cell Syst 9 (1), 9e23 e8.

Tomczak, K., Czerwi�nska, P., Wiznerowicz, M., 2015. The Cancer Genome Atlas (TCGA): an
immeasurable source of knowledge. Contemp. Oncol. 19, A68.

Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A.,
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12.1 Introduction: background (history)
Genetics was considered a discipline of biology that studied hereditary traits, and
dealt with the discovery and research of units involved in central dogma, discovery
of reverse transcriptase, Mendel’s laws of inheritance, genes, and genetic variations
(Plomin et al., 2008; McClean, 2011). Later, a new discipline of modern biology was
evolved called genomics, which involved sequencing, mapping, and analysis of the
genome, and was considered to be a part of genetics (McKusick and Ruddle, 1987;
Weissenbach, 2016). With the progression of technology, sequencing became
practicable especially with the discovery of polymerase chain reaction (PCR), avail-
ability of enzymes to modify nucleic acids, and fluorescent techniques (Saiki et al,
1985, 1988).

In 1977, Sanger et al. at Cambridge University developed a new method of
sequencing for nonviral DNA (Sanger et al.,1977b). The first gene (encodes protein)
was sequenced from bacteriophages by using RNA-sequencing (RNA-seq) (Jou
et al., 1972; Fiers et al., 1976) and a few months later DNA-sequencing of viral
DNA was successfully done (Sanger et al., 1977a). Sanger’s team initially discov-
ered the complete nucleotide DNA sequence of unicellular microorganisms and
then successfully worked on eukaryotes. Haemophilus influenzae (bacteria) was
the first prokaryote to be sequenced in 1995 (Fleischmann et al., 1995) followed
by Saccharomyces cerevisiae (budding yeast), which was the first eukaryote
sequenced in 1996 (Galibert et al., 1996). The development of technologies for
genome sequencing provided massive genomic data, which was an exceptional chal-
lenge for researchers. As a genome is sequenced, it is required to store, organize, and
analyze huge genomic datasets, which seems impossible without computers.

In 1980, the global digital revolution gave rise to the adoption of computers
for digital storage of biological data. Development in computer science led
to advances in the field of genomics. Therefore genomics is now considered a
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multidisciplinary science that includes biology, genetics, biochemistry, computer
sciences, and statistics (McClean, 2011). Bioinformatics is a crucial part of
genomics, which helps to collect, store, organize, and analyze gigantic biological
datasets by using computational, statistical, and mathematical tools (Baxevanis
et al., 2020). Rapid development of advanced software gave researchers new pro-
grams to manage these enormous datasets (De Filippo et al., 2012). This resulted in
the genesis of a new era of molecular biology (Weissenbach, 2016).

The growing interest in existing genetic technologies led the US Department of
Energy to officially release the Human Genome Project (HGP) to map the complete
human genome in 1987. At the beginning of the 21st century, the first draft contain-
ing sequencing of around three billion base-pairs that make up the whole human
genome was published (Lander et al., 2001). Consequently, the HGP bestowed
researchers with unprecedented information for the study of genetic diseases and
evolution. The emergence of computers resulted in more advanced techniques
compared to Sanger’s sequencing such as HiSeq, Ion Torrent, PacBio, etc., which
are cost effective, high throughput, and have parallel sequencing capacity (Liu
et al., 2012; Pareek et al., 2011; Reuter et al., 2015). This led to the challenge of eval-
uating this large influx of data.

In the past 20 years, several innovative techniques allowed the conversion of
the data obtained by sequencing techniques for annotation of the genome (Koonin
and Galperin, 2003; de Sá et al., 2018). Various platforms, methods, and bioinfor-
matics tools have been used to manage data obtained by high-throughput DNA
hybridization microarray and sequencing techniques (Edgar et al., 2002; Clough
and Barrett, 2016). Techniques involved in the functional analysis of the genome
were able to recognize over- or under-expressed genes, gene characterization, and
the development of biological profiles (ENCODE Project Consortium, 2012). This
helped biologists to effortlessly understand the relation of cellular events with
variable genomic conditions. In eukaryotes, annotation is more challenging due to
the presence of several repeats, variable lengths of intergenic regions (IGRs), and
inconsistent behavior of protein coding genes (Yandell and Ence, 2012). Computa-
tional methods of annotation are highly efficient quantitatively but sometimes they
become unreliable qualitatively due to a large number of errors (Salzberg, 2019).
The demands of data production and analysis necessitate bioinformatics to provide
continuous upgraded computing, storage, and data analysis tools. In addition, the
data should be easily accessible to the public.

Gene expression is a critical process in which information from genes is
expressed as a final functional gene product (protein) (Crick, 1970). Traditionally,
the expression of only one gene could be measured at a time, but today several
computational methods have been used based on mRNA expression. RNA and
DNA gene expression microarray techniques empowered biologists to quickly
understand the aspects of life, genetic abnormalities, and evolution. Computational
methods have been used in genomics to measure and identify gene expression data
obtained from high-throughput technologies like DNA microarray, RNA-seq, etc.
(Fyad et al., 2016). Clinically, the blooming technologies in the world of biology
have been fruitful in recognizing genetic disorders (Guttmacher and Collins, 2005;
Steward et al., 2017).

362 CHAPTER 12 Computational and functional annotation



12.2 Genome sequencing
After the discovery of DNA, several methods were discovered for the detection of
nucleotide sequences of DNA in the genome. Prediction of a gene is related to
sequencing and assembly approaches. The discovery of DNA sequencing techniques
deciphered all the codes of life and inspired many researchers to understand genetic
diseases and evolution. Advancement in technology rapidly improves the potential-
ity and volume in the field of genome sequencing (Levy and Myers, 2016). Fifteen
years ago sequencing was based only on Sanger’s “chain termination method,” but
from 2005 new technologies with high throughput, reduced cost, and increased
efficiency have evolved and are considered as the second generation of sequencing,
often called “next-generation sequencing” (NGS) (McPherson, 2014; Liu et al.,
2012). Further development in technology in the last few decades has emerged at
an incredible pace. More advanced sequencing techniques have evolved with higher
speed and volume of genomic sequencing. Therefore based on time and improve-
ment in the sequencing techniques, three generations of sequencing technologies
exist so far as shown in Table 12.1 (Levy and Myers, 2016; Kchouk et al., 2017).

12.2.1 First generation (Sanger’s generation): an old but reliable
approach

Sanger’s and MaxameGilbert’s discoveries of sequencing techniques were the
breakthrough in the field of genomics to decode all the codes of biological systems.
MaxameGilbert’s (degradation method) and Sanger’s techniques (synthesis
method) for sequencing were considered as the “first generation of sequencing.”
Sanger was awarded a Nobel Prize in 1980 for his first and common sequencing
technique with low radioactivity and high efficiency. The HGP utilized Sanger’s
“chain termination method” to sequence the entire human genome comprising
nearly three billion bps due to its better quality. Sanger’s method utilized one strand
of DNA to serve as a template, dideoxy nucleotides (dNTPs), radioactive primer, and
DNA polymerase. Different size fragments of dNTPs were obtained with DNA
polymerase, which were separated by gel electrophoresis to achieve a final sequence
(Sanger et al., 1977b). To make it easier, in 1995 Applied Biosystems Inc. built an
improved and updated version of automated Sanger sequencing technology. Various
projects of sequencing, including plants (Goff et al., 2002) and humans (1000
Genomes Project Consortium, 2010), used Sanger’s sequencing technology. Even
now, Sanger sequencing has been used to verify variants in sequence because of
its better quality and accuracy.

The MaxameGilbert method of sequencing was based on degradation of
sequences by using chemicals (Maxam and Gilbert, 1977). Fragments obtained after
degradation are separated by gel electrophoresis. This method was less popular
because of its slow speed, complexity, and toxicity (Kchouk et al., 2017). Thus
Sanger’s sequencing technique was the most efficient genome sequencing technique
until the new era of technologies.
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Table 12.1 Evolution of sequencing techniques with the development of technologies.

Sequencing
technique Manufacturer Instruments

Chemical
method

Detection
method Read type Error rate URL

First generation

ABI Sanger Applied
Biosystems Inc.
(ABI)

3730xI Sequencing
by synthesis

Electrophoresis Single end 0.3% e

Maxam
eGilbert

e Sequencing
by
degradation

Electrophoresis Single end e e

Second generation

454 (Roche) Roche 454 GS20, GS FLX, GS FLX
Titanium, Titaniumþ,
GS Junior

Sequencing
by synthesis

Optical Single end,
paired end

1% http://www.454.
com/

Illumina Illumina Inc. MiniSeq, MiSeq,
NextSeq, HiSeq, HiSeq
X

Sequencing
by synthesis

Optical Single end,
paired end

0.1%e1% http://www.illumina.
com/

Ion Torrent Thermo Fisher
Scientific

PGM 314 chip v2,
PGM 316 chip v2,
PGM 318 chip v2, Ion
Proton, Ion S5/S5XL
520, Ion S5/S5XL 530,
Ion S5/S5XL 540

Sequencing
by synthesis

Solid state Single end 1% http://www.therm.
ofisher.com/us/en/
home/brands/ion
-torrent.html

SOLiD Life
Technologies,
ABI
Thermo Fisher
Applied
Biosystems

5500 W, 5500xIW Sequencing
by ligation

Optical Single end w0.1% http://www.
lifetechnologies.
com; http://www.
thermofisher.com/
us/en/home/
brands/applied-
biosystems.html

Third generation

PacBio Pacific
Biosciences

RS CI, RS C2, RS C2
XL, RS II C2 XL, RS II
P5 C3, RS II P6 C4,
Sequel

Sequencing
by synthesis

Optical Single end 12%e15% http://www.pacifi.
cbiosciences.com/

Oxford
Nanopore

Oxford
Nanopore
Technologies

MinION Mk,
PromethION

Nanopore Nanopore ID, 2D 12% http://www.nanop
oretech.com
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12.2.2 Second-generation/next-generation sequencing
Sanger’s sequencing technique was utilized for three decades in the world of
genomics until “second- or next-generation sequencing” introduced a new perspec-
tive to genome analysis in 2005 (de Sá et al., 2018). NGS has several advantages
over first-generation sequencing methods in terms of speed, cost, high throughput,
and effortlessness (Liu et al., 2012). NGS can generate parallel analysis of millions
of reads in less time and at a lower cost (Shendure, 2008). Additionally, there is no
requirement for electrophoresis as NGS directly detects the output. Among the large
number of NGS technologies, we briefly discuss some of the commonly used
sequencing technologies.

12.2.2.1 454 (Roche) sequencing
The new era of sequencing starts with 454 Roche sequencing technology, which is
based on the sequencing-by-synthesis approach, which utilizes the pyrosequencing
technique. This technique involves the release of pyrophosphate, which emits light
when nucleotides are incorporated in DNA and detects the fragments of DNA
(Margulies et al, 2005). This technique easily generates millions of long reads in
parallel fashion (Kchouk et al., 2017; Liu et al., 2012). The only drawback to this
method was that it could not detect insertions and deletions (indels) in the sequence
accurately (Huse et al., 2007).

12.2.2.2 Illumina sequencing
This is a widely used sequencing technique of NGS. It also uses a sequencing-by-
synthesis approach. This technique decodes the given DNA fragment from each
end. The overall procedure of sequencing by Illumina is illustrated in Fig. 12.1
(Kchouk et al., 2017). The length of base-pair reads is 150e250 bp with an output
of more than 600 Gbp for the latest Illumina sequencer. Errors in Illumina
sequencing techniques are due to an excessive requirement of samples, which causes
overlapping and results in substitution nucleotide errors (Liu et al., 2012; Kulski,
2016).

12.2.2.3 Ion Torrent sequencing
This sequencing technology was initially commercialized by Life Technologies, but
in 2014 Thermo Fisher Scientific acquired Ion Torrent (IT) sequencing. IT
sequencing involves detection of nucleotides based on change in Hþ ion concentra-
tion (Rothberg et al, 2011). During synthesis, when a nucleotide is incorporated in
DNA by DNA polymerase, there is a release of Hþ ions that changes the pH of the
overall solution, and that change is detected by the sensor and finally changes
the voltage that detects the nucleotide incorporated. The IT sequencer uses a chip
that can produce a throughput of 10 Gb with base-pair reads of length 200, 400,
and 600 bp. Unlike other NGS techniques, it does not use fluorescence for labeling
nucleotides (de Sá et al, 2018). Like the 454 Roche sequencing technique, it also has
indel error (Reuter et al., 2015).
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12.2.2.4 SOLiD sequencing
Life Technologies commercialized the Supported Oligonucleotide Ligation and
Detection (SOLiD) sequencing technique, but in 2007 this technique was acquired
by Applied Biosystems Inc. (ABI) (Shendure, 2008). It includes five steps:
(1) attachment of adapter to DNA, (2) fixation on beads, (3) cloning by PCR,
(4) sequential ligation to DNA fragment after fluorescent labeling, and (5) detection
by color. Error type is substitution and sometimes error in recognition of bases is due
to noise in the ligation cycle. Moreover, it is a slow process and only applicable to
short reads (Kchouk et al., 2017).

12.2.3 Third generation (current generation)
The stumbling blocks in NGS were short reads and difficult assembly of the genome.
Third-generation sequencing is a considerable improvement over first and second
generation as it can quickly produce long reads at low cost and easily prepare sam-
ples without the requirement of PCR (Kchouk et al., 2017). The current generation
uses two approaches, i.e., single-molecule real time (SMRT) and synthetic
approaches (Goodwin et al., 2016). The following are the latest methods of
sequencing that utilize the SMRT approach.

FIGURE 12.1

Illumina sequencing technique.
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12.2.3.1 PacBio
PacBio. is a commonly used third-generation sequencing technique that uses the
SMRT approach launched by Pacific Biosciences. This sequencing technique recog-
nizes the sequence of DNA molecules during replication. It involves many SMRT
cells, which are composed of zero-mode waveguide (ZMW). DNA polymerase
and DNA fragments are attached to the bottom of each ZMW. Every time a nucle-
otide is incorporated into the DNA fragment by using polymerase a luminance signal
is liberated, which is detected by sensors (Rhoads and Au, 2015). PacBio sequencing
can produce longer reads (w10,000 bp/read) compared to the second generation in a
shorter period but with exceptionally large error rates (Kchouk et al., 2017). Indel
errors in PacBio are randomly distributed in long reads (Kulski, 2016; Koren
et al., 2012).

12.2.3.2 Oxford Nanopore
Oxford Nanopore Technologies promises to produce longer reads with high-
resolution repeats and variants. They generate a device called MinION, which is a
portable single-molecule nanopore sequencer device that can connect to a laptop
by USB 3.0 (Mikheyev and Tin, 2014). The sample is simply loaded in the device,
and without delay data from longer reads (>150 kbp) are generated on the screen.
This technique involves passing a fragment of DNA through a nanopore (protein
nanopore) after attaching to the complementary strand of a hairpin. An ionic current
is generated when a DNA fragment enters the pore, and the variation in ionic current
is measured and recorded in graphical model (Jain et al, 2016). It has various advan-
tages like portability and low cost over any other sequencing techniques but at the
cost of high error (w12%) (Kchouk et al., 2017; Ip et al., 2015).

12.3 Genome assembly
Grouping together data obtained from the foregoing sequencing techniques is the
next challenge for researchers in the process of genome analysis. Fragments of
sequences are subjected to pretreatment because it is necessary to put all the frag-
ments together for genome annotation and minimize the possibility of error
(Fig. 12.2). Reads obtained from the sequencing technique are trimmed and bases
of low-quality are filtered by using quality filters. Then all the fragments are assem-
bled after estimation of size and correcting reads (Wojcieszek et al, 2014.; Ekblom
and Wolf, 2014).

12.3.1 De novo assembly
This process involves the assembling of short reads and long reads to make a com-
plete genome without a reference sequence (de Sá et al., 2018). Several software
packages were developed based on the following computational approaches for de
novo assembly of the genome:
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1. Greedy algorithm: This approach is based on alignment of reads for the analysis
of genome (Wojcieszek et al, 2014; Ekblom and Wolf, 2014). Software for
genome assembly based on greedy algorithms are VCAKE (Jeck et al, 2007),
SSAKE (Warren et al, 2007), and SHARCGS (Dohm et al, 2007).

2. Overlap-layout-consensus (OLC): The OLC approach involves construction of
graphs after recognition of overlaps in the reads and ultimately creating a
consensus sequence (Wojcieszek et al., 2014; Ekblom and Wolf, 2014).
Software programs for genome assembly based on the OLC approach are Mira
(Chevreux et al., 2004), Edena (Hernandez et al., 2008), and Newbler
(Reinhardt et al., 2009).

3. De Bruijn graphs: This approach identifies the overlaps by creating k-mer and
(k-1)-mer read lengths (k represents original read lengths). Afterward, they
determine (k-1)-mers out of k-mers and represent them graphically (Wojcieszek
et al., 2014; Ekblom and Wolf, 2014). Software programs for genome assembly
based on De Bruijn are Velvet (Zerbino and Birney, 2008), SPAdes (Bankevich
et al., 2012), SOAPdenovo (Luo et al., 2012), and ALL-PATHS-LG (Gnerre
et al., 2011).

These consensus sequences are actually different parts of a genome and need to
be arranged by the process of scaffolding as they are composed of gap regions. After
genome assembly, software programs like GAPFILLER were applied for gap
closure and produced scaffold (Boetzer and Pirovano, 2012). The assembled contig-
uous sequences are then evaluated by mapping.

12.3.2 Reference assembly
This involves allocation of sequences at a specific position on a genome. Sequence
mapping is a challenge for computational methods as most of the data obtained from

FIGURE 12.2

Schematic representation of genome assembly.
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computational sequencing techniques are short reads. Software packages for align-
ments are classified based on the portion aligned in the reads, i.e., local alignment
(only small parts of reads) and global alignment (full length of reads) (de Sá et al,
2018). Challenges for reference assembly are:

1. Complexity is due to huge amounts of data from sequencing techniques.
2. Quality of mapping for reference is important, therefore errors are minimized.
3. Original genetic variation and errors produced during sequencing should be

distinguishable.

Based on the analysis of DNA, RNA, and miRNA, various software packages are
available for mapping such as Bowtie (Langmead et al., 2009), BWA (Li and Durbin,
2009), SHRiMP (Rumble et al., 2009), SOAP2 (Li et al., 2009), TopHat2 (Kim et al.,
2013), and mrsFAST (Hach et al., 2010).

12.4 Genome annotation
Genome sequencing platforms paved the way for researchers to understand the
features, functions, and structures of genes. With the advancement in technology
and improvement in computational methods, it is now possible to provide unprece-
dented information about the genome. Annotation is a very crucial part of genome
analysis and there are many ways to define genome annotation like “genome
annotation is identification and interpretation of features and functions of the
genome by using biological facts and computational methods” (Fyad et al., 2016)
or “genome annotation is a subfield of genome analysis which can be done by using
computational tools” (Koonin and Galperin, 2003) or “genome annotation is the
ability to interpret the effects of variations on the function of gene by gathering in-
formation from structure of the gene” (Steward et al, 2017).

Genome annotation is preceded by a gene prediction algorithm that determines
gene structures associated with transcription, coding protein, splicing, etc. (Mudge
and Harrow, 2010). When a genome is sequenced, it is important to annotate it, as
annotation describes the functions associated with the product of the gene. But
many researchers still believe that it is an unreliable process in genome analysis
due to its inaccuracy. Annotation of the genome is diversified into interpreting
assorted features of genes. Genome annotation can extract the name of the gene,
its characteristic function, physical behavior, and altogether metabolic activities
performed by genes in the organism (Koonin and Galperin, 2003).

12.4.1 Levels of genome annotation
Overall, the process of genome annotation is organized in three levels for a better
understanding of the outcomes of the genome (Stein, 2001). Annotation of the
genome is precisely associated with the following three levels, which are inextri-
cably linked (Fig. 12.3).
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12.4.1.1 Nucleotide level
This is also considered a syntactic or structural level of genome annotation as it
determines the structure and component of a gene. This level involves the identifi-
cation of location of relevant DNA sequences. It also seeks to locate repetitive ele-
ments in genes and RNAs. This level is associated with error during the sequencing
processes, generally indel errors (Fyad et al., 2016; de Sá et al., 2018).

12.4.1.2 Protein level
This is the functional level of annotation that determines the function of genes
identified in the nucleotide level. It predicts the functions by identifying the similar-
ities in structures and patterns of sequence with the experimental data obtained from
the literature with computational protein/gene datasets (Fyad et al., 2016; de Sá
et al., 2018).

12.4.1.3 Process level
Process level annotation is relational and contextual as it identifies the process and
pathways that interact with various genes and other biological elements. This results
in several regulatory networks, various gene families, and other metabolic networks
(Fyad et al., 2016; de Sá et al., 2018).

The genome annotation-utilized in silico approach explains all the foregoing re-
quirements (Médigue et al., 2002). Bioinformatics software has been developed for
ab initio genome annotations based on the following three specific features:

1. Signal sensor: This recognizes the functional site in the gene and is generally a
small sequence motif, e.g., start codons, stop codons, branch points, TATA box,
polypyrimidine tract, splicing sites, etc.

FIGURE 12.3

Levels of genome annotations.
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2. Content sensor: This senses the different regions of DNA and classifies them
based on their content and codon structure, e.g., codon usage, dicodon
(AAG-AAG) frequency, G þ C content, etc.

3. Similarity detection: This determines the degree of similarity between different
DNA, RNA, and protein sequences, e.g., similarities in mRNAs of the same
organism, similarity in proteins between related individuals, etc. It is the ratio of
similar residue over the length of the aligned sequence and similarity is
measured in percentage (Stein, 2001; de Sá et al., 2018).

The schematic representation of genome annotation is shown in Fig. 12.4.
Genome annotation started with genome sequencing. Predicting functions of genes
is associated with statistical gene methods such as GeneMark and GLIMMER,
which are successfully used (based on hidden Markov models) for prokaryotes,
and less successfully GENSCAN for eukaryotes. This results in a set of data for
genes, proteins, or RNAs, which is a combined result of general database searching
in the National Center for Biotechnology Information (NCBI), statistical gene
prediction, and structural feature prediction. Structural features are predicted by

FIGURE 12.4

Genome annotation flow chart. BLAST, Basic Local Alignment Search Tool; CDD,

Conserved Domains Database; COGs, clusters of orthologous groups of proteins; KEGG,

Kyoto Encyclopedia of Genes and Genomes; Pfam, protein families; SMART, Simple

Modular Architecture Research Tool.
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peptide signal, coiled domain transmembrane, and other features in protein. These
sets help to determine the errors in the sequences, which might arise during genome
sequencing and thus provide feedback to genome sequencing techniques. Function
of a gene is predicted by using special database searches, which are categorized into
three parts: (1) searching domain databases for conserved domains like SMART,
CDD, and Pfam; (2) genome-oriented databases for determining the relationship
between homologous genes and predicting functions like COGs; and (3) metabolic
databases for reconstructing metabolic pathways. Final analysis and comparison of
genome is interlinked with gene function prediction and other database searches
(Koonin and Galperin, 2003).

12.4.2 Tools for genome annotation
Since genome annotation requires different levels of predictions and identifications
(Stein, 2001), manual pasting of sequences in the computer is practically infeasible.
Gaasterland and Sensen predicted that genome annotation of a sequence requires a
minimum of 1 year per person for one megabase by hand (Gaasterland and Sensen,
1996). Due to this, genome annotation is the limiting step in several genome
projects. Therefore requirement of automation at several levels of genome annota-
tion is essential. Hence, to make it practicable, every genome project uses software
to achieve automatic run of routine tasks and then organizes the outcomes in a
convenient fashion (Reeves et al., 2009).

The first automated tool for genome analysis was GeneQuiz (Scharf et al., 1994).
This project was fully automatic and ran databases, analyzed sequences, evaluated
results, and generated functional annotations automatically. Several other automated
tools were created after GeneQuiz such as PEDANT (Frishman et al., 2001),
MAGPIE (Gaasterland and Sensen, 1996), ERGO (Overbeek et al., 2003), and
Imagene (Médigue et al., 1999) but only GeneQuiz was open to the public
(Table 12.2). Unfortunately, annotation by GeneQuiz generates a significant number
of errors in the sequence similarity analysis. The latest automatic genome annotation
tool for eukaryotes is Ensembl; it obtains data from mRNA, protein sequence, and
RNA-seq (Zerbino et al., 2018). However, manual annotation is still considered stan-
dard because of its high accuracy. Thus a project named ENCODE was developed to
determine the accuracy of computational annotation methods by comparing with
manual gene annotation assembled by the Human and Vertebrate Analysis and
Annotation (HAVANA) group. Surprisingly, only 3.2% transcripts estimated by
computational means were found to be valid (ENCODE Project Consortium,
2007; Harrow et al., 2006). There are two main groups that generate manual anno-
tations: (1) HAVANA at Wellcome Trust Sanger Institute in the United Kingdom,
and (2) RefSeq at NCBI in the United States (Pruitt et al., 2014). HAVANA is
well known for its excellent quality of manual transcript and gene annotation.
HAVANA is associated with other computational groups and identifies pitfalls in
annotation by experimentally annotating transcripts and providing feedback
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to computational groups so that they can improve their analysis (Harrow et al.,
2012). However, RefSeq is not completely manual; 45% of transcripts of RefSeq
are computationally annotated (Steward et al., 2017).

12.4.3 Reliability of genome annotation
For many scientists, genome annotation is considered an unreliable process as it pro-
duces errors and incorrect annotation of the genome. Despite the low error rate, flaws
are highly visible due to the massive size of the genome. Production of enormous
data leads to the accumulation of errors. These errors can be algorithm errors due
to bugs in the script or program, and clerical errors due to humans (Koonin and
Galperin, 2003). Therefore several challenges and problems are faced by researchers
when converting quantity into quality. These automated and manual annotation tools
are easy and accurate at low levels, e.g., for 10 sequences, but when their
number changes to 100,000 their accuracy decreases and labor increases dramati-
cally (Salzberg, 2019). Furthermore, error rate increases at a much higher rate in
computational methods compared to manual methods. As discussed earlier, the
ENCODE project conceived a huge error in computational annotation methods
when compared with the same data with manual annotators (ENCODE Project
Consortium, 2007).

Besides this, computational methods have several advantages over manual
methods because they are economical and determine unknown information quickly,
but on the other hand manual annotation methods are reliable and have better qual-
ity. So, why not take benefits from both? For improved results, scientists made a
hybrid/mixed annotation process, e.g., in the GENCODE project, and took

Table 12.2 Genome annotation tools.

Genome
annotation
tools Automated/manual URL

GeneQuiz Automated https://www.osti.gov/biblio/377162-
genequiz- workbench-sequence-analysis

PEDANT Automated https://academic.oup.com/nar/article/31/l/
207/24 01158

MAGPIE Automated https://bioinformatics.tugraz.at/sensencw/
magpie.htm

ERGO Automated http://ergo.integratedgenomics.com/ERGO

Imagene Automated http://www.imagene.eu/

Ensembl Automated http://www.ensembl.org/

PFAM Manual þ automated http://pfam.xfam.org/

HAVANA Manual https://www.sanger.ac.uk/project/manual-
annotation/

RefSeq Manual https://www.ncbi.nlm.nih.gov/RefSeq
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advantage from both automated and manual tools. Annotation by computational
means provides information to the manual annotation groups and gives hints for
unannotated features in the gene, whereas manual annotators identify the errors
made by automated annotators and help them to make further improvements. GEN-
CODE predicts the genome annotation by making use of manual (HAVANA) and
automated (Ensembl) annotators (Harrow et al., 2012).

The GENCODE model is now clinically used as it can describe IncRNA, sRNA,
protein coding gene, and pseudogene with good-quality annotation (Coffey et al.,
2011) Moreover, GENCODE is collaborated with RefSeq to recognize CoDing
sequences agreed by both in the protein coding gene and hence further improves
the consensus CoDing sequence (Farrell et al., 2014). UCSC browser (Casper
et al., 2018) and Ensembl (Zerbino et al., 2018) both display GENCODE models
that are accessible to the public and update after every 6 months.

12.5 Techniques for gene expression analysis
Gene expression in simple terms is a process by which the information for proteins
is procured by coding genes in the form of three bases (Crick, 1970). Gene expres-
sion regulates the appearance of phenotype and mechanisms that are responsible
for functions in living organisms. Gene expression techniques have numerous
advantages in biomedical research of cancer diagnosis and treatment, and subdivi-
sion of various other diseases. Several techniques have been developed to date
to determine the expression possessed by various genes. Northern blot (Pall and
Hamilton, 2008), Western blot (Morash et al, 1999), reverse transcription polymer-
ase chain reaction (RT-PCR) (Muller et al., 2002), microarray analysis (Schena,
1996), fluorescent in situ hybridization (Zenklusen and Singer, 2010), serial anal-
ysis of gene expression (SAGE) (Yamamoto et al., 2001), and RNA-seq (Ji and
Sadreyev, 2018) are some techniques used to determine the expression of genes.
However, these techniques work in two ways, i.e., either they evaluate protein level
(e.g., Western blot) or evaluate mRNA level (e.g., Northern blot, RT-PCR, micro-
array analysis, etc.). However, techniques involved in measuring mRNA showed
improved results compared to techniques involved in measuring protein. Some
of the automated techniques are discussed next.

12.5.1 SAGE
SAGE stands for serial analysis of gene expression. This technique allows digital
analysis of genome-wide expression. The gene expression profiles produced by
SAGE are sensitive and comprehensive. SAGE does not require prior knowledge
of sequence and it works well even in low quantities of mRNA transcripts. This tech-
nology generates a collection of short sequence tags that can uniquely recognize
transcripts. The expression level of each transcript in SAGE is dependent on the
number of detection cycles of a tag (Yamamoto et al., 2001) (https://www.
thermofisher.com/).
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12.5.2 DNA microarray
DNA microarray or DNA chip or biochip is an extremely useful technique to
discover the gene expression profile of several genes from different sites of genome
at one time. This technique involves formation of an array of DNA spots on a
solid surface, which can be silicon chip or glass slide. Microarray is based on
hybridization of mRNA to template DNA. Gene discovery and gene expression
are determined simultaneously by binding of complementary sequences to the
DNA spots. A DNA chip contains thousands of DNA spots. Thus a DNA chip
furnishes information of all the samples at one time. Printing of probes/samples
on solid surfaces is now automatic (Schena, 1996). This technique is reliable
and cost effective and therefore it has been used in gene discovery, disease diag-
nosis like cancers, pharmacogenomics for relating drugs with genomic profiles,
and toxicological research (Russo et al., 2003).

12.5.3 RNA-seq
This is a highly comprehensive and sensitive technique for identification, compar-
ison, and measurement of gene expression (Ji and Sadreyev, 2018). It is based on
data obtained from NGS methods. Reads created in NGS methods first undergo
mapping for characterization and then identification of differential gene expression
(de Sá et al., 2018). In the presence of a reference, Bioscope (Pinto et al., 2014) is
used first to map the reads, then DEGseq (Wang et al., 2010) or TopHat-Cufflinks
pipelines (Trapnell et al., 2012) are used to analyze differential gene expressions.
However, if a reference is unavailable, SOAPdenovo-Trans (Xie et al., 2014),
Trinity (Grabherr et al., 2011), and Trans-Abyss (Robertson et al., 2010) are
used to represent transcripts. These transcripts are then mapped for quantification
of expression and finally expression is identified in different conditions. There are
two advantages of RNA-seq: (1) errors in the genome annotation can be corrected
by RNA-seq, and (2) gene prediction, e.g., GeneMark-ET, is possible (Lomsadze
et al., 2014; de Sá et al., 2018).

12.6 Gene expression data analysis
12.6.1 Data analysis by data mining
High-throughput technologies like RNA-seq, microarray, etc. erupt enormous data
that are rich in information. As discussed in the previous section, analyzing these
massive data is a challenge for researchers. Datasets generated from sequencing
and gene expression require large-scale data mining of the genome. Data mining
is considered a process of analyzing biological relevance information from large
datasets obtained from sequencing, gene expressions, and interaction studies
(Fyad et al., 2016). Methodologies involved in data mining are divided into two cat-
egories, i.e., clustering and classification techniques (Fig. 12.5). These methods have
been extensively used to determine the characteristics of genes (Lee et al., 2008).
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12.6.1.1 Clustering method
This technique has various applications in biomedical sciences. It helps to reduce
data by grouping and clustering. Clustering analysis determines clusters and
converts high-dimensional data produced in gene expression techniques into 2D
data (Lee et al., 2008). Clustering techniques have several applications in cancer
diagnostics (Smolkin and Ghosh, 2003). This technique is only effective when
some prior knowledge of data is known. Hierarchical, partitioned, and model based
are three methods involved in the clustering of data. Their principles, advantages,
and disadvantages are discussed next.

12.6.1.1.1 Hierarchical
This method is used to recognize differential gene expression in sarcopenia and to
visualize and categorize data obtained from proteomics of pathogenic species of
bacteria (Meunier et al., 2007). Hierarchical methods include agglomerative hierar-
chical methods, probabilistic methods, and division methods.

Principle: This method assigns elements to other closely related elements by
merging small groups into large clusters or splitting large clusters into smaller
groups.

Advantages: No requirement of initial input of parameters. Prior knowledge of
the number of clusters is not compulsory. It makes a complete hierarchy with intu-
itive visual distribution of data.

Disadvantages: Clusters are not clear, and they cannot automatically discover
required clusters (Fyad et al., 2016).

12.6.1.1.2 Partitioned
This method is used to identify gene expression in yeast during cell cycles. It gives a
better engrossed distribution of clusters during the diagnosis of cancers like leuke-
mia and melanoma. It includes K-means, partitioning around medoids, Clara, and
fuzzy C-mean methods (Kim et al., 2005).

Principle: It is based on degrading the whole datasets into separate clusters (sub-
sets) and then determining the similarities in behavior of genes in those subsets.

FIGURE 12.5

Categorization of data mining methods. AR, Association rule; LDA, Latent Dirichlet

Allocation.
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Advantages: This method has several advantages over other methods of clus-
tering. For example, K-means is best suited for large-scale data analysis and is
easy to execute and highly efficient.

Disadvantages: Prior knowledge of the number of clusters is compulsory. It has
high sensitivity toward outliers, start point, and noisy data (Fyed et al., 2016).

12.6.1.1.3 Model based
This is used to determine gene groups in the differentiation mechanism of
cells involved in intestinal absorption (enterocytes), e.g., self-organizing map
(Bédrine-Ferran et al., 2004).

Principle: It is based on the division of genes in a partitioning experiment into
geometrically present structures of subgroups.

Advantages: Similarity in the data is a function of position of clusters/groups,
hence close-lying data have similar expression profiles.

Disadvantages: First, outcome is dependent on the distance and second, an
expected number of groups need to be specified (Fyad et al., 2016).

12.6.1.2 Classification methods
Classification methods make use of preclassified genomic data to generate predicted
genomic models for various categories. Such analyses have been employed in cancer
research as an alternative technique for the diagnosis of cancer. However, prediction
of gene expressions faces problems during classification in biomedical sciences.
Various methods have been developed for classification modeling such as support
vector machines (SVMs), gene voting, Bayesian regression models, decision trees
(DTs), partial least squares, association rule (AR), kernel estimation (KNN), linear
discriminant analysis, etc. (Lee et al., 2008; Fyad et al., 2016). Some of the classi-
fication methods are discussed next.

12.6.1.2.1 KNN
Kernel estimation or k-nearest neighbors based on searching the k-nearest neighbor
of a given sample depends on distance measure. Due to its easy accessibility and
interpretability, it is commonly used in classification of diseases and other clinical
purposes. It has been reported that KNN modeling is implicated for systematic
analysis of data obtained from the gene expression microarray of various cancers
(Parry et al., 2010).

12.6.1.2.2 SVM
Support vector machine method is used for the classification of tumors. The SVM
classification technique involves the separation of two classes by identifying the hy-
perplane and is based on mapping data in kernel space. A combination of SVM and
mutual information have been reported for classifying lymphoma and colon cancer
(Ca and Mc, 2015). A major drawback in this classification technique is that the
SVM is only applicable to a maximum of two classes.
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12.6.1.2.3 DT
Decision tree is one of the well-known algorithms that have been used in bioinfor-
matics due to its simplicity, easy interpretability, and ability to handle huge amounts
of data. The DT genomic model is developed in the form of a tree where the large
dataset is split into smaller and smaller subsets, and a side-by-side decision tree is
progressively developed. Results obtained from DT are better than SVM. Moreover,
its performance for identification of cancers further improves when it is used in com-
bination with particle swarm optimization (Chen et al., 2014).

12.6.2 Data analysis by ontology
Ontology is a representation of information and knowledge in a domain. Gene
ontology (GO) is a representation of biological knowledge that shows the proper-
ties of genes and their product and relates the molecular components and cellular
components with the biological processes (Fyad et al., 2016). GO helps the
research community to enhance and enable the sharing of data (Gene Ontology
Consortium, 2012).

GO is accessible on the AmiGO portal, which consists of lots of information and
references (Carbon et al., 2009). For biomedical research, the Open Biomedical
Ontology project (Ghazvinian et al., 2011) has been created for reference ontologies
and the National Center for Biomedical Ontology made a bioportal (Whetzel et al.,
2011) for biomedical researchers. Furthermore, the Sequence Ontology project
(Eilbeck et al., 2005) was created for the characterization of genomic sequencing
for genome annotation. The Gene Expression Omnibus (GEO) project at the
NCBI is designed as a public repository for storage, submission, and retrieval of
hybridization array and gene expression high-throughput data (Barrett et al.,
2007). Similarly, ArrayExpress at the European Bioinformatics Institute is another
source for gene ontologies (Parkinson et al., 2007). The Microarray Gene Expres-
sion Data Society furnishes all aspects of gene expression data by DNA chips for
annotation, management, and sharing.

Besides this, GO provides static representation of biological components like
DNA or RNA sequence, genes, and gene products but it cannot permit a proper
visualization. Hence, the required functional analysis of gene expression is estab-
lished by a combination of data mining and GO. Analysis of gene expression data
is performed as a first determination of the cluster or group of coexpressed genes
using data mining and then its functional analysis by GO (Chabalier et al., 2007).

12.7 Software for gene expression analysis
Several software programs have been developed based on clustering and classifica-
tion techniques to analyze gene expression data (Fyad et al., 2016). These software
programs are the combination of clustering and graphical methods that provide
comprehensible images of outcomes generated by gene expression. Some of these
programs that have been developed for grouping data from gene expression are listed
in Table 12.3 with their applications, language, and URL.
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12.8 Computational methods for clinical genomics
DNA sequencing, genome annotation, and gene expression analysis are now basic
requirements for biomedical research involved in the classification, diagnosis, and
treatment of diseases. For example, once the genome of a patient is sequenced,
it is compared with the reference for the analysis of functional variants. Genome
analysis is particularly important for clinical applications. Researchers are seeking
to perceive knowledge to understand the accurate annotation and function of
genomic data. But in some cases, current technologies disappoint clinicians when
identifying correct pathogenic variants responsible for diseases in patients. Errors
in genome annotation strongly influence the identification of variants in the gene
of a patient (Steward et al., 2017). Therefore it is necessary to resolve these abnor-
malities by further improving and reanalyzing the technologies involved in genome
sequencing, annotation, and gene expression analysis.

Table 12.3 Software for gene expression analysis.

Software Language Applications URL

MAGIC
Tools

Java Microarray data analysis http://www.mybiosoftware.
com/magic-tool-2-1-
microarray-genome-
imaging-clustering-tool.html

Cluster
and
Treeview

C Organization and analysis of
datasets from microarray
and other experiments

http://bonsai.hgc.jp/
wmdehoon/software/cluster/
manual/Introduction.html
#Introduction

Weka Java Data classification,
preprocessing, clustering,
association rule, and
visualization

http://www.cs.waikato.ac.nz/
ml/weka/

SAS C Data visualization and
analysis

https://www.sas.com/en lu/
home.html

IBM
SPSS

Java Data mining http://www.spss.com/
software/modeling/modeler-
pro/

MeV Java Data stratification,
clustering, classification,
visualization, and analysis
especially for microarray
and RNA-seq

http://mev.tm4.org/
#/welcome

LIBSVM Cþþ and
Java

Data classification https://www.csie.uni.edu.tw/
wcjlin/1ibsvm/

SVMlight C Data classification and
analysis

http://svmlight.joachims.org
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12.9 Conclusion
Bioinformatics tools provide computational screens for identification, storage, and
analysis of massive genomic data. Their low cost, easy accessibility, and speed
have attracted biological researchers to better understand cellular processes.
Progress and advancement in technology with computers yield better sequencing,
annotation, data mining, and gene expression techniques. The launch of a new
technique in the field of genome analysis promises high coverage, low cost, and bet-
ter quality. The in silico approach has benefited the insightful description of raw as
well as analyzed data. Moreover, all these requirements in addition to human
resources must be upgraded according to the demands due to increased data
production.

This chapter provided an overview of all the steps and techniques involved in
genome data analysis and how improvement in technologies led to the complete
and exact assembly of genomic data. Clinically, these current technologies in
genomics play a crucial role in disease diagnostics and treatment. They help in
the treatment of patients having genetic abnormalities by determining pathogenic
variants. Especially in the case of cancer, sequencing and differential gene expres-
sion techniques decipher the behavior of the gene involved. However, inaccuracy in
the computational methods of genome analysis is a major pitfall. Enhancement in
genome annotation methods is necessary to resolve problems in the present tech-
niques of genome analysis.

Abbreviations
ABI Applied Biosystems Inc.
BLAST Basic Local Alignment Search Tool
BWA BurrowseWheeler alignment
CCD coupled charge device
COGs clusters of orthologous groups of proteins
DEGseq differentially expressed genes or isoforms for RNA-seq
dNTPs dideoxy nucleotides
DT decision tree
EBI European Bioinformatics Institute
ENCODE ENCyclopedia Of DNA Elements
GLIMMER Gene Locator and Interpolated Markov Model ER
GO gene ontology
HAVANA Human and Vertebrate Analysis and Annotation
HGP Human Genome Project
IGR intergenic regions
indel insertion and deletion
IT Ion Torrent
KEGG Kyoto Encyclopedia of Genes and Genomes
KNN k-nearest neighbor
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MAGIC Mining Algorithm for GenetIc Controllers
MAGPIE Multipurpose Automated Genome Project Investigation
MeV MultiExperiment Viewer
mRNA messenger RNA
mrsFAST microread (substitutions only) fast alignment and search tool
NCBI National Center for Biotechnology Information
NGS next-generation sequencing
OLC overlap-layout-consensus
PCR polymerase chain reaction
Pfam protein families
RefSeq reference sequence
RNA-seq RNA sequencing
RT-PCR reverse transcription polymerase chain reaction
SAGE Serial Analysis of Gene Expression
SAS Statistical Analysis System
SEALS System for Easy Analysis of Lots of Sequences
SMART Simple Modular Architecture Research Tool
SMRT Single-Molecule Real Time
SO Sequence Ontology
SOAP Short Oligonucleotide Analysis Package
SOLiD Supported Oligonucleotide Ligation and Detection
SPSS Statistical Package For The Social Sciences
SVM support vector machines
UCSC University of California Santa Cruz
VCAKE Verified Consensus Assembly by K-mer Extension
Weka Waikato Environment for Knowledge Analysis
ZMW zero-mode waveguide C
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13.1 Introduction
Annually, 100 million animals are used for testing, scientific research, and educa-
tional purposes throughout the world. These animals are bred, wounded, cut open,
injected, infected, genetically modified, and ultimately sacrificed (killed) (Badyal
and Desai, 2014). Countries like the United States, Japan, China, the United
Kingdom, Brazil, and Germany are the topmost nations using animals. According
to reports emerging from the British Union for the Abolition of Vivisection and
Dr. Hadwen Trust, about 115 million vertebrates are used a year worldwide (Dua
and Dua, 2013). In the United Kingdom alone, over 3.6 million animals were
used for experiments in 2010. This number is 37% higher than the figures in
2000. At the beginning of the last decade (2011) more than 2,600,000 mice,
2,700,000 rats, 162,618 birds, 563,903 fishes, 37,714 sheep, 15,900 amphibians,
15,000 rabbits, 11,500 guinea pigs, 84,000 horses, 4550 dogs, 2700 primates,
4340 pigs, 383 reptiles, and 235 cats were used in experiments; these figures
have significantly increased in the last 9 years (Fig. 13.1, Statistics of Scientific
Procedures on Living Animals Great Britain 2011, 2011; Dua and Dua, 2013). In
the Indian scenario, more than 50,000 animals are used in different laboratories
and institutes per year. Hyderabad-based National Centre for Laboratory Animal
Science is one of the leading animal suppliers to 175 institutes, including educa-
tional institutes and pharmaceutical companies. Such a vast quantity of animals
used in scientific research, education, and testing has always raised concerns in
the minds of environmentalists and animal lovers to limit or eliminate animal use
in experiments. This has led to many movements and legislative initiatives. In the
18th century, a group of people in the United Kingdom initiated an animal protection
movement against the use of animals in experiments. In 1975, Societies for Protec-
tion and Care of Animals opposed the utilization of all kinds of animals in research
worldwide (Arora et al., 2011). Also, consideration of nonanimal procedures
(reasonable and practicably available) or justification of minimum animal use had
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been suggested by the Council of Europe in 1986 for minimization of suffering
and pain (Gruber and Thomas, 2004; Knight, 2008). To monitor animal pain,
suffering, and poor treatmentdbefore, during, or after an experimentdthe Commit-
tee for the Purpose of Control and Supervision of Experiments on Animals
(CPCSEA), India, was formed. For animal welfare, the Government of India
promulgated the Breeding of and Experiments on Animals (Control and Supervi-
sion) Rules, 1998, which were further amended in 2001 and 2006 for the proper
regulation of animal procedures (CPCSEAGuideline, 2010). With the recommenda-
tion of the CPCSEA, constituted under the provision of Section 15 of the Prevention
of Cruelty to Animals Act of 1960, the Union Ministry of Environment and Forests
banned the use of living animals in research and educational institutes for dissection
purposes. However, using live animals in new scientific discoveries was exempted
from this ban (Dua and Dua, 2013; CPCSEA Guideline, 2010). The CPCSEA has
also designed rules, procedures, and guidelines for the care and use of animals
in experiments. It monitors animal research through ethical committees, like the
Institutional Animal Care and Use Committees, formed at the institutional level.

Concern regarding scientific research in India has always been raised but over-
thrown many times due to inadequate experimental procedures, lack of proper lab

FIGURE 13.1

Percentage of animals used in research. Worldwide, mice and rats are the most

experimented creatures.
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practice, and reduced animal care. There are many incidences where regulatory bodies
like the People for Ethical Treatment to Animals and the CPCSEA have intervened
because of substandard animal care, e.g., more than 30 monkeys were rescued from
the National Institute of Virology, Pune, India, due to inadequate use of animal re-
cords, appalling conditions, and lack of proper care. Similarly, in 2002, the CPCSEA
inspected Ranbaxy Laboratories animal facilities in Delhi, India, and observed ani-
mals suffering from infectious disease and inbreeding defects (Dua and Dua, 2013).

In 1959 Russell and Burch first proposed the fundamentals for good animal prac-
tice in laboratories and their idea about alternatives in the form of “the 3Rs”d
reduction (in the number of animals), refinement (decrease in animal suffering
and pain), and replacement (to replace with nonanimal model) (Fig. 13.2). As
they stated, “Refinement is never enough, and we should always seek further reduc-
tion and if possible replacement . . Replacement is always a satisfactory answer”
(Arora et al., 2011; Knight, 2008; Herrmann, 2019). The 3Rs are defined as follows:

• Reduction: Accounts for limits in animal numbers like sharing animals, phylo-
genetic reduction, and improved statistical design.

• Refinement: Implemented by improved animal handling, control of pain, proper
instrumentation, and limited invasiveness.

• Replacement: Associated with the use of nonanimal models to limit animal use.

FIGURE 13.2

3Rs principle of animal use in research.
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13.2 Need for alternatives
Scientific limitation linked with animal models for testing toxicopharmacokinetics
or pharmacodynamics (PD) is very prominent. This may include differences in spe-
cies, restriction to single gender, unrealistic dose, drug exposure time, inappropriate
group size, loss of variation due to inbred strain, stress-related physiological or
immunological distortion, and lack of comorbidities (Van Norman, 2019). Such lim-
itations cause variation in drug response in the human system and produce ambig-
uous results. Substitutes for animal use in research has opened a new field of
medical science where various therapeutic drugs or chemicals have been checked
for their therapeutic effect to negate the use of animals. Replacement of animals
in research does not expose humans to health risks. This helps to improve the quality
of research as well as the time taken to report experimental findings. In recent times,
many scientists have seen it ethical to support alternatives to animals in research
(Doke and Dhawale, 2015). Nowadays, substitutes for animal testing have been
exploited in various fields of science like toxicity testing, neuroscience, and drug
development (Exner et al., 2007).

In the early stages of candidate drug analysis, animal experimentation was a prior
requirement of the Food and Drug Administration (FDA) (Doke and Dhawale,
2015). Pharmacokinetics (PK) and absorption/distribution/metabolism/excretion
(ADME) studies are generally done using more than two species to understand
both the effects of a drug in the living system and how the human body will process
the drug (Li et al., 2019). Due to variation in the genome sequence of animals
concerning humans, animal experiments may not always give 100% accuracy.
This nonhomology may further lead to changes in their biochemistry, genetics,
and physiological properties, e.g., P450-dependent monooxygenase enzyme is one
of the best examples to understand interspecies variation. This enzyme catalyzes
the oxidation of drugs or toxins and is a significant enzyme in xenobiotic
metabolism. Oxidation generates nontoxic metabolites that are soluble in blood
and suitable for renal elimination (Baillie et al., 2016; Knight, 2008). However,
metabolic pathways and the rate of metabolite generation may differ due to interspe-
cies difference. This is one of the main reasons for drug failure during human trials
(Knight, 2008).

Stand-ins for animals like computational models, human cell lines, and tissue
culture can provide more accurate results. Early prediction of ADME properties
aiding computer-based tools prevents wastage of resources and time in the field
of drug research. Traditionally, animals are the main sources to conduct ADME
study of the drugs but the development of new ADME-based software programs
(listed in Section 13.3.1) do not just eliminate the use of animals (including
in vivo bioavailability, absorption reactive metabolites, and metabolic identifica-
tion), they also reduce the cumbersome process of drug development (Andrade
et al., 2016a).

Recently, researchers have discovered that tests using human skin cells grown
in vitro are more accurate than the traditional animal test when it comes to
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identifying chemicals that are irritant to the skin, e.g., a model of collagen-
containing human dermal fibroblasts as a substrate to primary human keratinocytes
is readily being employed as 3D skin (Carlson et al., 2008).

The merits of the alternatives to animal testing are the production of fast and
more accurate results. Rapid testing means researchers can evaluate five to six prod-
ucts with proxy testing simultaneously compared to studying a single product by an-
imal testing. The other advantage of the substitute for animal testing is cost
reduction, which reduces the need for animal purchasing, housing, feed, and care
(Digges, 1986; Doke and Dhawale, 2015). The most relevant answer to animal
replacement is that it does not create any ethical problem because research and dis-
covery of any new drug is always a painful experience for animals (Akhtar, 2015).

Nonanimal models as alternatives to animals are used whenever required. These
models could be physicochemical techniques, microbiological systems, tissue/organ
culture preparations, in silico techniques, epidemiological surveys, metabolism as-
says in plants, stem cells, microdosing, DNA chips, microfluidics chips, imaging
technologies, etc. Here, we discuss in detail the use of in silico techniques and
stem cells as alternatives to animal use.

13.3 What are the alternative methods to animal research
Scientists have suggested various methods to avoid the use of animals in experimen-
tation. These scientific practices provide alternative means for drug and chemical
testing to obtain better results. There are multiple advantages associated with these
techniques, such as time efficiency, less workforce requirement, cost effectiveness,
better results, and high-throughput screening (Table 13.1).

Table 13.1 Alternative methods of animal research.

S. no. Methods Examples

1. Computational
methods

CADD, expert system

2. Cell and tissue
culture

Human dopaminergic neurons are used as a model of
Parkinson’s disease and for transgenic models with
modified expression of PARK genes

3. Epidemiology Smoking linked to cancer; high cholesterol linked to
heart disease

4. Plants Drug-induced defense response and activation of
detoxification mechanisms as a result of oxidative
stress in Brassica juncea

5. Microorganisms Cunninghamella elegans and Vibrio vulnificus

6. DNA chip Microarray analysis

7. Microfluidics Organ-on-a-chip

8. Noninvasive imaging MRI, AMS, MEG, DTI, ultrasound

AMS, Accelerator mass spectroscopy; CADD, computer-aided drug designing; DTI, diffusion tensor
imaging; MEG, magnetoencephalography; MRI, magnetic resonance imaging.

13.3 What are the alternative methods to animal research 393



13.3.1 Physicochemical techniques
These techniques are used to assess human response to a chemical or biological sub-
stance in a cost-effective manner. Tests like absorption, organ concentration,
toxicity, PK, and PD are crucial for evaluating a drug in the preclinical stage,
e.g., chitosan-based films are used as a substitute for human epidermal sheets to
assess polar and nonpolar drugs for in vitro permeation studies (Arora et al.,
2011; Knight, 2008).

During drug development, ADME PK studies are critical for the selection and
efficacy benchmarking for multiple drug candidates. These assays are necessary
for the movement of drug candidates into clinical programs. Keeping the selectivity
and potency of lead compounds intact, continuous improvement in ADME proper-
ties is attained through lead optimization. However, in vivo potency of such
drug candidates could vary even after acceptable ADME properties (Andrade
et al., 2016a).

• Absorption: Extent to which the drug administered has absorbed and reached the
site of action. It can be affected by multiple factors like solubility of drug,
intestinal transit, chemical stability, etc. Route of administration is crucial for
drug efficacy.

• Distribution: Drug distribution takes place through the blood stream in multiple
organs. It is essential to know the extent to which a drug has reached the target
site.

• Metabolism: The parent drug molecule breaks down into smaller molecules
through the action of enzymes. It leads to active and inactive metabolites.
Inactive metabolites are inert and reduce the effect of the parent drug, while
active metabolites enhance the effect at the target site.

• Excretion: Excretion prevents the accumulation of foreign substances in the
body. The risk of adverse effects on multiple metabolic processes is high if the
excretion of foreign entities has not happened.

• Toxicity: ADME studies estimate the harmful effect on organisms with the extent
of administered drugs. A toxicity study is the part of the last phase of ADME
studies.

PK behavior is significant for drug development as it is linked to the efficacy of
that compound (drug). In silico tools, such as VolSurfþ and GRID, are ideal for
optimizing compounds simultaneously on multiple criteria.

VolSurfþ creates 128 molecular descriptors from 3Dmolecular interaction fields
produced by the software GRID, which are specific to ADME prediction and are
easy to interpret, e.g., for membrane permeability, an interaction energy moment
descriptor between hydrophilic and hydrophobic regions is crucial and can
be created by VolSurfþ, which is further used to build statistical models. Vol-
Surfþincludes models such as bloodebrain barrier permeation, solubility, protein
binding, volume of distribution, metabolic stability, and passive intestinal absorp-
tion, and has key functions like calculation of relevant ADME descriptors. It also
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performs statistical modeling with experimental data, selection of compounds based
on similar ADME properties, and predicts behavior of new compounds on the basis
of existing or new ADME models.

Computer-based tools are currently more prevalent for PK/PD analysis. Further-
more, PK/PD analysis determines optimal dosing regimens in clinical trials or de-
scribes the kinetic and dynamic relation for new drugs (de Velde et al., 2018).
Initially, it obtains population PK information of the selected drug (for instance,
antimicrobial drug) in the target population (Tuntland et al., 2014). Using in silico
tools like Boomer and the PKPD software server, the PK/PD indices are calculated
(Nielsen et al., 2011). PK/PD indices determine the dose regimen using simulation.
If the index is more than 90%, the dose regimen of the drug is passed and selected
(Rizk et al., 2019). Physicochemical properties of a compound, such as water solu-
bility, log P (octanolewater partition coefficient), rotatable bonds, nonpolar surface
area, etc., are the primary considerations under Lipinski’s rule of five (Lipinski,
2004). According to this rule, a drug should not violate more than one property to
be considered as a lead for further development. The compounds that fail to comply
with Lipinski’s rule of five possess poor pharmacokinetic properties. Such drugs
may show poor absorption, faster metabolism and excretion, unfavorable distribu-
tion, and might be toxic (Rautio et al., 2008; Ası́n-Prieto et al., 2015). Common
in silico software programs and servers are:

• BiokmodWeb: Contains some features of the mathematical tool BIOKMOD to
be applied in PK.

• Boomer: A simulation and modeling program for PK and PD data analysis.
• ADME-AP: Stands for ADME-Associated Protein software, and is used to find

the relation between ADME of its associated proteins.
• PKPD software server: Evaluates PK/PD of a particular drug.
• ChemTree-: Helps in the prediction of absorption, distribution, metabolism,

excretion, and toxicity (ADME/Tox) properties of a drug molecule and is freely
available for researchers and the scientific community.

• MDL (metabolite database): This software program provides metabolic infor-
mation on drugs.

• MDL (toxicity database): This database gives an insight into the structure-
searchable bioactivity database of toxic chemical substances.

• MetaSite: A computational procedure specially designed to predict the site of
metabolism for xenobiotics starting from the 3D structure of a compound.

• GRID: Determines energetically favorable binding sites on molecules of known
structure.

• Shop: Useful in guiding the scaffold-hopping procedure during the drug dis-
covery process.

• ADME/Toxicity Property Calculator: In silico screening-based program from the
known ADME/Tox knowledge base.
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13.3.2 Cell and tissue culture
Cells and tissues that are isolated from animal bodies and cultured in laboratory
conditions can be used without the direct use of animals for research. The cells
and tissues directly obtained from various sources, such as skin, kidney, liver,
etc., are cultured in a suitable growth medium for a few days to several months or
even a few years (Doke and Dhawale, 2015). The prominent nature of cells in the
body is their limited division to make new daughter cells. This limitation is known
as Hayflick’s limit (Bartlett, 2014; Varela and Blasco, 2010). Most of the cells that
cross this limit become immortal. Such immortal cells can divide infinite times to
generate a cell line, a powerful tool for experimental studies.

Benefits associated with cell and tissue culture techniques are easy to follow, less
time consuming, and economical. These cultures are routinely in use for preliminary
screening of potential drug molecules/chemicals for their toxicity and efficacy
studies (Doke and Dhawale, 2015), e.g., the Organization for Economic Cooperation
and Development (OECD) has approved viability tests for 3T3 cells to test the
toxicity of drugs such as skin irritants and phototoxicity (Kim et al., 2015).

13.3.3 Tissue engineering
This approach is very similar to the cell and tissue culture technique described
earlier. However, it has a major limitation. Due to the 2D culture system, cell/tissue
culture fails to mimic the internal environment of the experimental animal. Tissue-
engineering techniques can simulate the exact 3D model for drug testing. One of the
best examples is the formation of spheroids. These spheroids are made of normal
cells in 3D, and are currently being used as a cancer model to test antitumor drugs
(Sant and Johnston, 2017). A simple and miniature version of organs, formed by the
self-organization of cells like stem cells in 3D, is called an organoid, and introduces
new horizons to drug evaluation. Organoids are models of organs used to better un-
derstand the effect of drugs on a particular organ. To gain insight into SARS-CoV-2
(causing the COVID-19 pandemic) versatile invading behavior, from lung to liver,
kidney, and guts, these miniorgans provide significant findings (de Souza, 2018;
Mallapaty, 2020).

Advancements, such as 3D bioprinting in tissue engineering, provide a boost in
various aspects, like drug testing and tissue/organ transplantation. Bioprinting is a
process in which tissue-like structures are created using biological agents, such as
cells, growth factors, and a biocompatible matrix (biomaterial) to mimic natural tis-
sue. As the name suggests, it works like a printing process. Bioink (a composite of
biological factors and biomaterial) is used as material, through the layer-by-layer
deposition of bioink, to produce a 3D structure of a tissue. Currently, different
types of bioprinting methods are available like inkjet (Foyt et al., 2018), acoustic
(Sriphutkiat et al., 2019), extrusion (Pati et al., 2015), and laser technique (Foyt
et al., 2018). Despite different methods, the process of bioprinting is conserved:

• Blueprint or model: 3D imagining scans, like computed tomography or magnetic
resonance imaging scans, are used to obtain the precise dimensions of tissue
(Bishop et al., 2017). The process eliminates further fine adjustment to fit in the
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tissue. Software programs, like AutoCAD, provide the blueprint for the printing
process (Bishop et al., 2017). This blueprint offers essential details related to
layer-by-layer instruction.

• Bioink: This is the combination of biological factors, i.e., living cells and factors
with compatible matrix, i.e., biomaterial like alginate, gelatin, collagen, silk,
etc. The role of the matrix is to provide the former with scaffolding or a structure
on which to grow. Bioink is viscous.

• Printing and solidification: The deposition of bioink layer by layer leads to the
formation of the physical structure of the blueprint. The thickness and size of
each layer can be controlled by the incorporation of different nozzles and are
dependent on the type of tissue being printed. As viscous bioink layers start to
solidify, the structure starts to hold the shape. Crosslinking is a widely accepted
method of solidification where specific chemicals, known as crosslinkers, are
added. The aid of ultraviolet light or heat is also well known for crosslinking
(Knowlton et al., 2017).

This innovative approach can develop vascularized 3D tissues for tissue regener-
ation, tissue/organ transplantations (as implants), disease testing models, and drug-
testing models (organ-on-a-chip). These structures provide a good insight into the
specific effect of a drug on a particular tissue/organ. Hence, 3D bioprinting is a
promising nonanimal model.

13.3.4 Microbiological analysis
Microbiological analysis has enormous potential to limit animal usage, if not
substituted for scientific testing. The microbes can be easily handled, and are
cost-effective, nonhuman, and predictive systems for drug screening, e.g., fungi
are used for drug metabolism studies. Bacterium, like Vibrio vulnificus, has been
used to evaluate the cytotoxicity of RtxA1 (Guo et al., 2018). Microbiology systems
help to check the carcinogenicity and toxicity of an experimental molecule. Ames
test is a famous test to check the carcinogenicity of any compound. Ames test, devel-
oped by B.N. Ames in 1970, is an assay to assess the mutagenic potential of any
substance with the assumption that if a compound is a mutagen (induces mutation)
in bacteria, then it may also be carcinogenic (causes cancer). This test employs bac-
teria, like Salmonella typhimurium and Escherichia coli. A point mutation is intro-
duced in histidine in the case of S. typhimurium (or in tryptophan in E. coli) operon
to obtain a histidine (or tryptophan) strain of respective bacteria. Due to the point
mutation, these strains are unable to synthesize histidine, hence they limit growth
in a medium that is deprived of histidine. If the test sample reverts this mutation
in histidine operon genes, then the investigational substance is a mutagen and
may cause cancer. The mutagenic potential of a test sample is assessed by culturing
amino acid-deficient organisms in medium lacking that particular amino acid
with different concentrations of sample substance for the reversion mutation event.
Selection is based on the survival of bacteria in media lacking particular amino acids
(histidine or tryptophan) (Ames et al., 1973).
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Also, microbial cultures play a significant role in testing the antimicrobial prop-
erty of any drug. However, testing of antimicrobial activity of compounds derived
from various sources based on the agar disk diffusion technique (KirbyeBauer
test) is time consuming (Hudzicki, 2009), and screening thousands of compounds
is very difficult. Hence, in silico methods are convenient. The use of in silico tech-
niques is based on the development of 3D structures of the compounds (inhibitors)
using the graphical user interface and implemented in the molecular operating envi-
ronment software program (Vilar et al., 2008). The enzymeeinhibitor complexes are
developed with ligandseproteins energy minimization using the Merck molecular
forcefield. Furthermore, a quantitative structure eactivity relationship (QSAR)
module calculates the molecular descriptors. Finally, docking is performed to select
the best inhibitory molecule. It helps to select the best inhibitory compounds (drug)
and decreases microbial lab testing.

13.3.5 Mathematical models and computer simulations
In this alternative, a biological effect is depicted in the form of codes or equations,
e.g., BIOKMOD is one such tool that can be used to analyze PK (Sanchez, 2005).
These methods can accurately predict the effect of drugs in humans and several
times have bypassed animal testing due to the urgent requirement of treatment (pro-
tease inhibitors in the case of human immunodeficiency virus patients).

The continuummodel is one of the mathematic models that are based on the prin-
ciple of fluid and continuum mechanics. It describes cancer-related variables, such
as cell population, nutrient concentration, oxygen distribution, and growth factor
concentration through continuum differential equations. This mathematical
modeling provides data and helps in the development of the hypothesis of cancer
progression, and mathematical simulation helps in the development of new drug
candidates based on mathematical modeling. With the advancement in technology,
computer-aided drug designing (CADD) gives an opportunity to allow targeting of
specific receptors or molecules. In light of this, new drugs like captopril and dorzo-
lamide have already been approved based on robust data received from the virtual
hearts study as animal data were inconclusive (Talele et al., 2010). By using this
method, sensitive anatomical functions, like heart rate, can be simulated in computer
models to determine predisposition to certain illnesses.

13.3.6 Epidemiological surveys
These surveys are helpful in limiting a large number of investigational drugs on an-
imals. These estimates correlate previous data of chemical exposure with lifestyle
factors in a population, e.g., the risk of glioblastoma is linked to alcohol consump-
tion in a doseeresponse relationship (Baglietto et al., 2011). In an epidemiological
analysis, raw data are collected from the patient. In the study design, the data are
categorized into age distribution, status of patients, and sex distribution. Central ten-
dencies for the age of patients of different categories are also calculated. After this,
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mathematical analysis is performed by multiple study models. SIR (more prevalent
in infectious disease; S stands for susceptible, I stands for infected, and R stands for
recovered) is one of them. In this model, a fixed population of N individuals is
divided into various “compartments” that vary as a function of time. The SIR model
describes the change in the population of each of these compartments in terms of two
parameters, b and g. b describes the effective contact rate of the disease (a suscep-
tible individual comes into contact with an infectious individual and acquires the dis-
ease). g is the mean removal rate (it is calculated using the removed cases as against
the new claims daily) (Mazumder et al., 2020).

13.3.7 Plant analysis
Certain compounds show relatively similar effects after exposure to plants compared
to the mammalian system. According to the “green liver” concept, proposed by
Sandermann in 1994, some plants (e.g., Brassica juncea) show a tantamount detox-
ification scheme of mammalian liver. Xenobiotics metabolism in plants occurs in
multiple phases. Phase 1 activates the compounds that occur through a specific set
of enzymatic reactions, followed by phase 2 where conjugation reactions take place,
and later sequestration of substances from specific organelles completes phase 3 of
detoxification. However, this model has limited success as an alternative to animals
in research due to significant differences between animals and plants (Arora et al.,
2011; Sandermann, 1999).

13.3.8 Microdosing
A new drug can be administered in humans at such an ultralow dose that it creates
enough impact to be measured on individual cells instead of a huge physiological
concussion. This approach has been shown as cost effective and safe for Investiga-
tional New Drug submission and hence is accepted by the FDA subject to their
guidelines. It is based on ultrasensitive accelerator mass spectroscopy. Human meta-
bolism data, obtained by using this method, can be helpful to screen out drugs in the
early phase of a trial. Microdosing cuts the cost and time required for drug testing
apart from providing excellent accuracy (Tewari and Mukherjee, 2010). Psychedelic
compounds are very prominent for testing under microdosing, e.g., LSD and psilo-
cybin have been tested against alcohol and tobacco dependence, depression, and
end-of-life anxiety, while relative research for disorders related to posttraumatic
stress, 3,4-methylenedioxymethamphetamine, has shown great promise (Anderson
et al., 2019).

13.3.9 Microfluidics chips
These are small chips having a series of tiny chambers connected to fine channels
(diameter in micrometers, Fig. 13.3). Each chamber contains specific tissue from
different body parts. To mimic the human body at the microscale level, blood
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substitute medium is allowed to flow in these microchannels. The investigational
drug is added to the blood substitute medium and circulated through the chip. Sen-
sors in the chip provide information to the computer for further analysis (Han and
Kang, 2016).

13.3.10 Tissue chips in space
Currently, a unique strategy is employed to observe the effect of microgravity on the
human body, called tissue chip in space. Tissue chip in space is a joint venture of the
National Centre for Advancing Translational Sciences from the National Institute of
Health and the International Space Station (ISS) national laboratory to obtain better
insight into human disease models and potential drug testing in the low or micro-
gravity of the ISS. Tissue chips are designed to mimic living human tissue and
organs, e.g., the immune system chip takes account of specific immune cells, pro-
genitor immune cells from bone marrow, and infection encountering immune cells
(cells from the lining of blood vessels). These chips travel to the space station and
stay there for 2 or more weeks in an incubator. Later, the chips are preserved and sent
back to Earth for further analysis. This initiative is likely to unfold physiological
changes encountered by astronauts in Earth’s low orbital gravity, like aging, bone
loss, muscle deterioration, and immune system alteration. Such a low-gravity envi-
ronment causes an alteration in cell behavior, cell signaling, proliferation, aggrega-
tion, and differentiation due to rehabilitated movement of fluids and specific stress
stimulation of a space environment (Yeung et al., 2020).

13.3.11 Noninvasive imaging techniques
Techniques, like computed tomography, ultrasound, nuclear imaging, magnetic
resonance imaging, magnetoencephalography, diffusion tensor imaging, and accel-
erator mass spectroscopy provide real-time and very sophisticated measurements of

FIGURE 13.3

Microfluidics chip and its role in research.
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relations between structure and function in humans compared to unreliable animal
models. These noninvasive techniques are very sensitive and may be used up to
single-cell resolution (Arora et al., 2011).

13.4 Potential of in silico and stem cell methods to sustain
3Rs

13.4.1 In silico
There are various computer-based methods available, which are focused on the basic
principle of biology (Table 13.2). These specialized computer models and tools/soft-
ware programs help to design new medicines and chemical compounds. New
computational approaches rely on various biological and toxic effects of a chemical

Table 13.2 List of software.

S. no.
Biological
tools Uses Software References

1. Basic local
alignment
search tool

Sequence
similarity for
significant
matches

Online
available tool
at NCBI

https://blast.ncbi.nlm.
nih.gov/

2. Multiple
sequence
alignment
tool

Sequence
similarity of
multiple
sequences
simultaneously

Cluster,
omega,
MEGA-X, and
MEGA 7

https://www.ebi.ac.uk/
Tools/msa/clustalo/

3. Molecular
modeling

Mimics the
behaviors of the
molecules

Chime version
2.0, Macro
Model, etc.

Daugelaite et al. (2013)

4. Molecular
docking

Searches for the
best interacting
molecules

AutoDock,
SwissDock,
etc.

Deckha and Xie (2008)

5. QSAR Predicts biological
activity of new
molecules before
their synthesis.

VEGA
platform,
CAESAR,
DEMETRA,
etc.

CPCSEA Guideline
(2010)

6. Microarray Gene expression
analysis

MetaCore,
Cytoscape,
etc.

Exner et al. (2007)

7. Artificial
intelligence/
machine
learning

Future prediction
of the nature of
compounds from
publicly available
data of previous
studies

RASAR https://
analyticsindiamag.com/
machine-learning-may-
soon-be-an-alternative-
to-animal-testing/

QSAR, Quantitative structureeactivity relationship.
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or potential drug candidate without an animal’s dissection. In silico models help to
screen out multiple compounds and provide the best molecule for in vivo experimen-
tation. Interaction of drug molecules for particular receptors has become of high
interest to the scientific community to save time and money involved in the drug
development process. To understand the receptor binding site of a drug, extensive
in vivo experiments are generally performed. However, a technique like CADD
can predict receptor binding sites for a potential drug molecule. CADD works on
the principle of the best-fitting model in terms of binding energy minimization
and hence avoids testing of unwanted chemicals without biological activity (Baig
et al., 2017). Energy optimization, also known as energy minimization, is an oper-
ation to obtain an arrangement of atoms in space in such a way that interatomic force
on each atom is close to or zero. Software programs that are commonly used for
binding energy estimation are Hyde, X-score, NNScore, etc. With the help of
such software, one can tailor-make a new drug for specific receptor binding, and
later, animal testing can be done to obtain confirmatory results. Hence, the require-
ment of total number of experimental animals decreases significantly.

Reduction in the use of animals utilized in research is due to the use of highly
sophisticated in silico tools. This not only reduces the use of animal experiments
for drug testing and drug safety, but also lowers the risk for patients during clinical
trials and minimizes delays in the research for novel drugs (Swaminathan et al.,
2019; Arora et al., 2011).

13.4.1.1 BLAST (basic local alignment search tool)
Initial information on new nucleotides (DNA/RNA) and proteins is obtained from
their sequence. This information helps researchers to infer function of nucleotide/
protein by comparing sequence with homologous molecules. BLAST is based on
the use of sequence information to search for similarity using the heuristics tech-
nique to generate quick results. BLAST programs have been designed to compare
nucleotide or protein databases with the unknown sequence. There are algorithms,
which have been incorporated within the BLAST program, for searching similarity
in protein and nucleotide sequence (Altschul et al., 1997). There are different vari-
ants of BLAST search (Altschul et al., 1997):

• Blastn: Helps in comparing a nucleotide query sequence with nucleotide data-
base. It has high speed but less sensitivity.

• BlastP: Used for comparing a protein query with a database.
• BlastX: Used for comparing a nucleotide query with a protein database by

translating the query sequence into six possible frames, and comparing each
against the database.

• tblastn: Compares a protein query to a nucleotide database in six possible frames.
• tblastX: Used for comparing protein encoded by a query nucleotide to the protein

encoded in a nucleotide database.
• blast2: An advance version of BLAST. It can also perform gapped alignments.
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• PSI-Blast (Position Specific Iterated BLAST): Performs iterative database
searching.

• RPSBLAST (Reverse-Position-Specific BLAST): Quickly searches a protein
query against a database of position-specific scoring matrices (PSSMs) that
were usually produced by PSI-BLAST.

• DELTA-BLAST: Produces a PSSM with a fast RPSBLAST search of the query,
followed by searching this PSSM against a database of protein sequences.

13.4.1.2 Multiple sequence alignment tools
Multiple sequence alignment (MSA) is generally used to align more than three bio-
logical sequences of protein or nucleotides of similar length. The result helps to
discover homology and the evolutionary relationship between the sequences. Simi-
larity of the sequences can also help to identify functional, structural, and/or evolu-
tionary relationships among the biological sequences (Daugelaite et al., 2013).

• Clustal Omega: A new MSA tool that uses a seeded guide tree to generate
alignments. It is particularly suited for medium to large alignments of
sequences.

• EMBOSS Cons: Utilizes a consensus sequence for protein or nucleotide multiple
alignments.

• Kalign: A high-speed MSA tool that concentrates on local regions of the
sequence. It is suitable for large-scale alignments.

• MAFFT: Stands for Multiple Alignments using Fast Fourier Transform. It is
based on fast Fourier transformation for mediumelarge alignments.

• MUSCLE: Stands for Multiple Sequences Comparison by Log-Expectation. It is
a very accurate MSA tool, especially good with proteins. It is suitable for
medium-range alignments.

• MViewTransform: A sequence similarity search that results in an MSA using the
MView program.

13.4.1.3 Structureeactivity relationship
Structureeactivity relationship is a popular computer-aided tool. A quantitative
SAR (QSAR)-based model has continuously been employed in medicinal chemistry
for drug discovery and lead optimization (Fig. 13.4). QSAR helps in the develop-
ment of the mathematical relationship of physiochemical properties of a drug and
its biological activity. This technique is based on the chemical moieties present
on the parent compound and how they interact with other compounds. The QSAR
project is based on four principles: selection of suitable molecules or drugs
(adequate number of compounds, a wide range of activities, and consistent biolog-
ical activity), construction of a model of the selected compound, validation of
the models, and their application model. There is another related technique of
QSAR, known as multitarget QSAR, which is used to predict the activity of an inves-
tigational drug on various targets simultaneously (Cherkasov et al., 2014).
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These computer-based methods have an advantage over traditional techniques due to
their efficiency and time-saving capability. Their speed limit is also high, so thou-
sands of compounds can be validated in a short span of time.

QSAR helps in the reduction of animals used in research because it enables re-
searchers or clinicians to predict/select the best drug before resorting to animal
study. It also lowers the risk for patients during clinical trials. Strike is a software
program of Schrödinger, which is used for structureeactivity relationship study
(Andrade et al., 2016b). Software programs are mentioned in Table 13.2.

13.4.1.4 Molecular modeling
Molecular modeling (MM) is a computer-based technique for drawing, manipu-
lating structures, reaction of molecules, and other properties of compounds that
are dependent on 3D structures. MM incorporates various fields, such as computa-
tional chemistry, drug design, computational biology, nanostructures, and material
science (Pimentel et al., 2013). It helps in understanding the fundamentals of phys-
ical and chemical interactions, which are difficult to calculate using experimental
procedures. It also helps in the development of new theories, models, processes,
and products. Molecular dynamics, Monte Carlo, and geometry optimization are
the most commonly used simulation techniques in MM. Monte Carlo simulation dif-
fers from traditional simulation techniques of MM because it treats random variables
for model parameters, while others use fixed variables. RiskAMP is the Monte Carlo
simulation engine for Microsoft Excel. Various industrial applications of MM are
being exploited. One such example is prediction of hydrocarbon composition in
crude oil assay. MM uses crude oil raw data, like distillation curve, American Petro-
leum Institute gravity, and peptide nucleic acids content, etc., to build a model of

FIGURE 13.4

Quantitative structureeactivity relationship model.
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hydrocarbon molecules that mimics the measurable physiochemical properties of
crude oil. The chemical compositions of model hydrocarbon molecules as derived
from profile data of the crude oil are further used to interpolate, extrapolate, and pre-
dict crude oil assays and properties based on molecular thermodynamic models
(Pimentel et al., 2013).

13.4.1.5 Computer simulation in organ modeling
The application of computer simulation has the potential to improve drug develop-
ment and reduce the need for animal testing. Recently, computer simulations have
become prevalent in drug development. With the help of computer simulation,
many virtual organs have been modeled for drug studies. Virtual heart is one such
organ (Trayanova and Chang, 2016; Hurmusiadis, 2007). Small variations in the
metabolism of drugs in animal and human cells can amplify the risk to the patient
and may lead to drug withdrawals from the market because of safety issues. Re-
searchers in the Department of Computer Science from the University of Oxford
have demonstrated that computational models of human heart have higher accuracy
(89%e96%) than animal models and can serve as an alternative tool for predicting
side effects of drugs (Passini et al., 2017). Ultimately, such tools have the advantages
of reducing the use of animals in the preliminary testing of drugs.

13.4.1.6 Molecular docking
The main goal of molecular docking is to predict molecular recognition, binding
modes, and binding affinity. One of the software programs to predict binding affinity
is Liaison. Molecular docking is performed between small molecules and target
macromolecules (Fig. 13.5), such as proteineprotein docking and proteinedrug
docking. Glide and induced fit are two main software programs of Schrödinger
used for docking studies. Apart from Schrödinger, GOLD is a proteineligand dock-
ing software program. Molecular docking utilizes a molecular descriptor tool to
analyze physiochemical properties. This tool reduces and enriches the library of
ligands available in a database for molecular docking. The molecule to be docked
is used at the final stage for virtual screening to provide a 3D hypothesis of how a
ligand interacts with its target. Molecular docking has a wide array of applications
in drug discovery, like structureeactivity studies, lead optimization, and finding
potential leads by virtual screening (Sethi et al., 2020).

13.4.1.7 Structure-based virtual screening
The rapid increase in 3D structures of proteins and drugs requires the use of highly
advanced computational programs for the screening of thousands of compounds
simultaneously for selection of suitable lead molecules (Fig. 13.6). Screening of
compounds against a target protein is carried out in less time by virtual screening.
It can run using parallel computing because proteineligand docking events are
completely independent of each other. Virtual screening utilizes a database for hit
identification and lead optimization. High-throughput docking is used as a hit iden-
tification method when the structure of a target and its active or binding site is
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FIGURE 13.5

Docking of molecules.

FIGURE 13.6

Virtual screening of lead molecules (ligands) binding to receptors by docking.
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available. However, similar calculations are often used during lead optimization
when a modification to a known active structure can quickly be tested in computer
models before compound synthesis (Lionta et al., 2014).

The necessary steps for docking/virtual screening include protein structure prep-
aration, ligand database preparation, docking calculation, and postprocessing
(Guedes et al., 2014). The preparation of protein for virtual screening experiments
necessitates different conformations of proteins to be considered. The receptor
site of the protein needs to be determined and specific charges have to be assigned.
The modeled protein should be accurate. Surface atoms and interaction data such as
marking hydrogen-bond donors/acceptors and so forth are incorporated separately
(Pantsar and Poso, 2018). Because many ligand molecules are involved in docking,
manual steps in preparation for such a database have to be avoided. Starting typically
from a 2D structure, bond types have to be checked, protonation states must be deter-
mined, charges must be assigned, and solvent molecules should be removed before
docking. 3D configuration can be generated using a program such as CORD. Scoring
steps involve docking search for one ligand interacting with a given protein, search
for ligands binding to one protein, and search for one or different ligands with
respect to their binding affinity (Lionta et al., 2014; Pantsar and Poso, 2018;
Sliwoski et al., 2014).

13.4.1.8 Microarray or DNA-based chip
Microarray technology has become one of the indispensable tools used to analyze
and monitor expression levels of genes in a given organism. A microarray platform
is typically a glass slide made by the process of photolithography. A sequence of
genes or DNA is coated on the slide in an orderly manner at a specific location
known as a spot. Each microarray may contain thousands of spots and each spot
may contain a few million copies of identical DNA molecules uniquely correspond-
ing to a gene or DNA sequence. Gene expression profile can be linked to external
information to gain insight into biological processes and assist in the discovery
of pathways and functions of genes. Microarray helps to understand variation in
gene level due to treatment and transcriptional control (Kaliyappan et al., 2012;
Bumgarner, 2013). Besides, there are various applications of microarray data anal-
ysis. It can:

• Help in predicting binding sites.
• Identify statistically overrepresented sequence patterns.
• Assess the quality of the discovered pattern using statistical significance criteria.
• Find out coexpressed genes in two studied organisms.
• Identify conserved proteins.
• Find instances where conserved proteins are coexpressed in both organisms.
• Map information on protein interaction pathways or metabolic pathways avail-

able for one organism to predict interacting proteins or function of identified
proteins in other organisms.
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• Find out evolutionary conservation of proteins in more than two organisms; this
provides knowledge of functional modules that have been conserved in
evolution.

13.4.1.9 Microarray data analysis
The process of microarray data analysis involves various steps, like feature extrac-
tion, quality control, normalization, differential expression analysis, biological inter-
pretation of results, and submission of data to a public database (Zahurak et al.,
2007; Rhodius and Grossutz, 2011):

• Feature extraction: Feature extraction is the process of converting the scanned
image of the microarray data into quantifiable values and annotating them with
gene IDs, sample names, etc. The output of this process is raw data files that can
be in binary or text format. After the feature extraction process, the data can be
analyzed. The downstream process of data analysis is done using software like
GenePattern and statistics software R.

• Quality control: Quality control is the process to inspect the visual scanned
microarray images and make sure that there should not be any blank areas
available in the data. After feature extraction, the data analysis software
packages can be used to make diagnostic plots to help identify problematic
arrays, reporters, or samples.

• Normalization: Normalization of microarray data is carried out to eliminate
technical variation present in the raw data while processing. It is also used to
secure the biological variation of the assay. Microarray data are normalized
using multiple methods, such as robust multiarray average, quantile normali-
zation, and Loess normalization.

• Differential expression analysis: Differential expression analysis aims to identify
genes whose expressions vary in different conditions. An essential consider-
ation for differential expression analysis is correction for multiple testing. It
increases false positive results. For identification of differentially expressed
genes, multiple testing methods can be employed, e.g., Log2 fold change ratio
between the test and control condition and an adjusted P-value that rates the
significance of the difference.

• Biological interpretation of data: Once significant genes have been identified, the
relevant genes and their core pathways can be analyzed using several publicly
available databases and tools, like DAVID, GO, pathfinR, etc., and the most
significant pathways are further used for experimental study.

• Submission of data: Once the microarray data are entirely analyzed, they can be
published publicly to the ArrayExpress database.

13.4.1.10 Artificial intelligence and machine learning
Artificial intelligence (AI) and machine learning (ML) are very advanced technolo-
gies of the 21st century and have several applications across a wide range of indus-
tries and R&D projects. AI and ML have revolutionized biological research leading
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to the development of innovations across biotechnology. Sometimes newly synthe-
sized compounds interact with living cells in an unexpected way to harm the system.
There are multiple applications of AI and ML in biology such as gene prediction,
functional annotation of genes, systems biology, microarray data analysis, pathway
analysis, genomic data analysis, future prediction, etc. that give AI and ML an edge
over time-consuming animal testing. Applications mainly consist of two broad
categories:

1. Identification of coding gene: Continuous advancement in sequencing technique
of a genome in a short time, like next-generation sequencing. In this area, ML
and AI are used to identify coding regions within the genome. It is highly
sensitive compared to typical homolog-based searches.

2. Prediction of structure: The use of ML- and AI-based tools has gained
70%e80% accuracy in results. ML and AI help in the identification of new or
novel drug targets using predicted structure of proteins.

Al makes it possible to automate some tests using previous knowledge of chem-
ical interactions available in databases. AI uses various algorithms to predict a more
reliable compound based on previous animal tests. It can also correlate the biological
effect of any compound based on its structure and other relevant details present in
the database. Hartung’s software is one of the AI-based software programs
that determine the toxicity of a new compound by comparing it with similar com-
pounds available in the database and making predictions based on their properties
(Luechtefeld et al., 2018).

The process of ML is quite similar to predictive modeling and data mining.
ML searches data to identify patterns and alter the action of the program accordingly
(Kourou et al., 2015; Kavakiotis et al., 2017; Riordon et al., 2019). ML-based
tools are:

• Cell Profiler: This software is used for biological image analysis. It only mea-
sures single parameters from a group of images, like quantitatively individual
features similar to fluorescent cell number in the microscopy field.

• Deep Variant: Used for genomic data analysis and helps in the prediction of
common genetic variations.

• Atomwise: This tool helps researchers to convert 2D molecules into 3D pixels. It
works with highly atomic precision.

• Deep neural network: Used for validation of biomarkers that reveal the disease
state. It also helps in the identification of potential biomarkers from genome and
proteome data.

13.4.1.11 In silico has the edge over animal testing
Commencement of the in silico technique and advancement of computational
knowledge create a new opportunity for scientists to overcome the shortage of ani-
mals and ethical concerns associated with animals used in research. Development of
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a novel drug is a time-consuming process. Traditionally, whenever a new drug is
developed, it requires extensive animal study before human trials. Selection of suit-
able animal models in terms of genomic similarity to humans is a crucial step to
achieve better results of newly developed drugs. BLAST and MSA are used to
discover the level of homology, evolutionary relationship, and similarity among
groups of species as well as intergroup species. They help in the selection of suitable
animal models that lead to the reduction of unnecessary preliminary animal studies
or unspecific animal pilot studies (de Aguilar-Nascimento, 2005). In silico tech-
niques, like QSAR, virtual screening, molecular docking, molecular modeling,
ADME, PK/PD, and ML/AI, have proven very effective in predicting the effect of
drugs. Using virtual screening, scientists are able to screen thousands of compounds
simultaneously and select the best candidate for further study. Techniques like Auto-
Dock can be used to check the binding potential of developed drugs against partic-
ular proteins, which helps researchers to modify all the unnecessary moieties present
in the drugs. Hence, they provide the pace to drug development. AI and ML are,
however, in the initial phases of their development but are still very effective in
reducing the use of animals in research. Their working principles are based on algo-
rithms and advanced computing tools that are generally used for the identification of
coding regions of genomic data obtained from next-generation sequencing, which is
highly sensitive. AI and ML are also used for future prediction of the effect of drugs
based on previously available data. The accuracy of AI and ML is also very high,
about 70%e80%. Using these two tools, predictions of the effects of drugs are
now evident, which ultimately reduces the use of animals in research (Webb,
2018; Murphy, 2014). Undoubtedly, in silico methods have the edge in terms of
efficiency, ethics, and economic aspects. However, the success rate is limited to pre-
dictions only. The best-predicted candidates are further required to undergo various
in vitro and in vivo tests for validation. Apart from this limitation, in silico methods
surely shorten the lengthy process and also help in achieving refinement and reduc-
tion, if not replacement, of animals.

13.4.2 Stem cells: an emerging alternative to animal research
The use of stem cells has shown immense potential as in vitro models for testing the
disease and toxicity of drugs to minimize animal testing.

13.4.2.1 Stem cells and their types
Stem cells are self-renewable and can differentiate into a particular lineage under
specific stimulus. So, in this way, stem cells not only maintain their pool but also
replenish the lost cells to regrow tissue or organs. Here, three types of stem cells
are mentioned, which are generally used as animal alternatives: embryonic stem
(ES) cells, adult stem (AS) cells, and induced pluripotent stem cells (iPSC) (Nugud
et al., 2018).
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ES cells are pluripotent and considered as the initiator cells from which all other
types of cells are derived. These are present in the inner cell mass of an embryo, at
the blastocyst stage of development. These cells form the three germ layers: ecto-
derm, mesoderm, and endoderm, whereas AS cells are present in the adult tissue
and support tissue homeostasis by replenishing the lost cells. These cells also display
a self-renewable property but with limited proliferation. AS cells can differentiate
into most body cells and are considered multipotent. Bone marrow, peripheral blood,
dental pulp, and gastrointestinal tract are some popular niches of AS cells. Bone
marrow is the residence of two distinct types of AS cell subpopulations: hematopoi-
etic stem cells (HSCs) and mesenchymal stem cells (MSCs). HSCs give rise to
various types of blood cells, including both myeloid (monocytes, macrophages, neu-
trophils, basophils, eosinophils, erythrocytes, and megakaryocytes) lineage and
lymphoid (T-cells, B-cells, natural killer cells, and some dendritic cells) lineage.
MSCs, on the other hand, have the potential to differentiate into mesodermal line-
ages like chondrocytes, osteocytes, and adipocytes. With specific stimuli, MSCs
display the potential to differentiate into some ectodermal and endodermal lineages
as well. In contrast to other stem cells, iPSCs/reprogrammed cells are the adult cells
that gain pluripotency by transfecting a set of genes known as 4F (4 factors: OCT4,
SOX2, KLF4, and c-MYC). iPSCs combine the advantage of both ES and AS cells,
and this makes them an excellent model for drug testing with no concern for ethical
issues (Kondo et al., 2009; Ullah et al., 2015; Shi et al., 2017).

13.4.2.2 Stem cells as a promising alternative
According to the OECD test guidelines, assessment of teratogenicity and embryo-
toxicity requires multigeneration studies that are not only expensive and time
consuming but may also use about 3000 animals per substance (Knight, 2008).
In vitro methods are an attractive replacement to test such developmental toxicity
studies, especially in ES cells with the establishment of endpoints for screening
compounds toxic to embryos (Luz and Tokar, 2018). Toxicogenomics, “loss of func-
tion” assays for cells having a homozygous mutation of specific genes, “gain of
function” assays for overexpressing foreign genes, pharmaceutical assays, and
models to test the function of pathological cells can also be performed in ES cells
(Fig. 13.7). Embryotoxicity is assessed by three endpoints, i.e.: (1) inhibition of
3T3 cell growth (cytotoxicity) in MTT assay, (2) undifferentiated ES cells after
10 days of treatment with test compounds, and (3) inhibition of ES cell differentia-
tion into myoblast (cardiac muscle cells; a-actinin as a marker) precursors after
10 days of treatment. Also, gene expression profiling at different stages of ES cell
differentiation could be checked for chemical vulnerability.

ES cells also find application in toxicogenomics (application of genomics to toxi-
cology) (McHale et al., 2014), including transcriptomics, proteomics, and metabo-
lomics. In transcriptomics, cDNA microarrays are used to detect carcinogens and
hepatotoxicants (Joseph, 2017). The term proteomics is defined as the systematic
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FIGURE 13.7

Stem cell research as a substitute for animal use.
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analysis of the protein profile of tissues, whereas metabolomics is a large-scale study
of small molecules (metabolites) and their interaction within cells, biofluids, tissues,
and organisms (Martins-de-Souza, 2014). ES cells could also serve as a specific tis-
sue graft by exploiting their growth factor-induced differentiation potential (Metallo
et al., 2008). Differentiation of ES cells into a number of potential target tissues
makes them one of the best candidates for the screening of teratogenicity, growth
retardation assay, and embryotoxicity (Schumann, 2010). The resultant assays of
ES cells are comparatively straightforward and reproducible. In vitro culture of
ES cells may provide a good model for human development and circumvent inter-
species difference (Vazin and Freed, 2010). However, the use of human ES (hES)
cells is still ethically arguable (Knight, 2008).

To assess toxicity, embryoid body outgrowth derived from murine ES cells is
widely used, e.g., morphological analysis of cardiomyocyte contraction under toxic
inhibition is carried out by this method (Denning et al., 2016). Another assay
includes the detection of changes in sarcomeric myosin heavy chain and a-actinin
using intracellular staining and flow cytometry during cardiac differentiation of
ES cells (Mummery et al., 2012). Detection of teratogenicity is possible with
in vitro culture of transgenic ES cells expressing green fluorescence protein.
In vitro culture of differentiated mouse ES cells, BLC-6, into synaptically coupled
neurons has shown that these cells carry complex electric properties of postmitotic
neurons and are more efficient than tumor cells or primary embryonic cells extracted
from animals (Gruber and Thomas, 2004). Molecular endpoints to screen out embry-
otoxic compounds have been successfully established using stem cells and are
efficiently validated by the European Centre for the Validation of Alternative
Methods (Brown, 2002). By introducing the genes of Parkinson’s patients into ES
cells, models have been established that resemble the degenerative potential of
this disease (Li et al., 2018). Other disease models have also been developed using
ES cells, including two spinal cord diseases, i.e., spinal muscular atrophy and Lou
Gehrig’s disease for drug screening.

13.4.2.3 Shortcomings of stem cells
Besides many advantages, stem cells fall short of predicting the effect of drug
metabolites inside the human body. These metabolites might have a modest impact
on different organs, and because of this, stem cells fail as a model of systemic
toxicity. Moreover, the growth and maintenance of hES cells depend on calf serum
and mouse “feeder” cells. These two components secrete molecules that enable hES
cells to maintain their stemness. Nevertheless, this does not eliminate animal use. In
the current scenario, ES cell research is relatively expensive and faces ethical issues
that limit their use as a complete alternative to animal research. Hence, stem cells
would not replace animal use completely. However, these cells can definitely refine
and reduce the number of experimental animals (Deckha and Xie, 2008).
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13.5 Challenges with alternatives
With all the pros, alternative techniques also have some drawbacks. Alternative
methods, as of now, can only fulfill 2Rs, i.e., reduction and refinement, out of
3Rs. Complete replacement is not yet achievable. Some of the limitations are:

• One of the most common challenges is unnecessary experimental duplication.
Repetition of studies is one of the leading causes of neglecting animal welfare
(Knight, 2008).

• To extract complete knowledge of drug metabolism inside an organism, a
metabolic response is required. This cannot be entirely fulfilled by any of the
alternatives (Arora et al., 2011).

• Due to a lack of immune response, acceptance or rejection of implants
cannot be established using alternative techniques. Similarly, replacement
methods fail to determine the idiosyncratic response of a substance that
generates an unpredicted response (Mak and Uetrecht, 2018).

• Companies fail to take advantage of previous studies or records from other
companies due to the unavailability of data in the public domain and other legal
issues (Adibuzzaman et al., 2017).

• ES cell culture is not wholly devoid of animal use. Serum and animal cells
(mouse “feeder” cells) are still the significant requirements of maintaining ES
cell culture.

• The inability to find proxy due to lack of awareness and improper protocols also
contributes toward ignoring alternative techniques.

13.6 Conclusion
Animal experiments are performed to understand disease/disorder and find possible
therapies for humans. However, the difference between species and genders with
subsequent effects on toxicity, PK, and PD has led to a high rate of clinical trial
failures. Furthermore, regulatory limitations have prompted the scientific commu-
nity to use alternatives to animal experimentation to decrease the number of animals
used and minimize pain and suffering to animals. The 3Rs, replacement (with
nonanimal models), reduction (of animal numbers), and refinement (to decrease
animal suffering), were proposed in this regard by Russel and Burch in 1959. Nowa-
days, a broad range of tools exists that may replace animal use within biomedical
research. Apart from others, in silico methods and stem cell use are the focus of
this chapter. In silico ways are used for physicochemical evaluation and computer-
ized modeling of drugs, proteins, and evaluating ADME/Tox properties. Using these
tools, unnecessary use of animals could be minimized, which may require thousands
of animals and wastage of money and labor (Fig. 13.8). Similarly, stem cells are
being used for embryotoxicity, teratogenicity, and growth retardation studies.
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However, due to limitations with both of these alternatives, complete replacement is
not yet possible. But we should always endeavor to reduce the pain and suffering of
experimental animals.

Acknowledgments
All the images are created by BioRender.com, invoiced #5C8F22DD-0001, and receipt
#2835e999.

References
Adibuzzaman, M., DeLaurentis, P., Hill, J., Benneyworth, B.D., 2017. “Big data in healthcare -

the promises, challenges and opportunities from a research perspective: a case study with a
model database. In: Annual symposium proceedings. AMIA Symposium 2017,
pp. 384e392.

FIGURE 13.8

In silico and stem cell-based alternatives to animals in research. ADME, Absorption/

distribution/metabolism/excretion.

References 415

http://BioRender.com


de Aguilar-Nascimento, J.E., 2005. Fundamental steps in experimental design for animal
studies. Acta Cir. Bras. 20 (1), 2e8. https://doi.org/10.1590/s0102-86502005000100002.

Akhtar, A., 2015. The flaws and human harms of animal experimentation. Camb. Q. Healthc.
Ethics 24 (4), 407e419. https://doi.org/10.1017/S0963180115000079.
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14.1 Basic local alignment search tool
Biology is more like history than it is like physics. You have to know the past to
understand the present. And you have to know it in exquisite detail. There is as
yet no predictive theory of biology, just as there is not yet a predictive theory of his-
tory. The reasons are the same: both subjects are still too complicated for us. But we
can know ourselves better by understanding other cases.

d Carl Sagan, COSMOS

What is Area 51? What is quid pro quo? What is a Brexit? These were among the
top 10 most-searched queries on Google throughout 2019.

So what happens when we search “what is a Brexit” on Google? The Google
search engine, like any other search engine, is a tool that facilitates search across
databases on the World Wide Web and delivers specific websites/webpages as its
output, depending on the query or search value entered in the search bar. So,
when we ask what a Brexit is, a list of internet links related to the brexit news is
delivered to us from a server. Similarly, asking Google the difference between alli-
gator and crocodile would get us a list of sites suggesting the differences and com-
monalties between the two reptiles. This framework is extremely simple and acts as
a beautiful analogy for understanding what BLAST is. In layman’s terms, BLAST is
the program/method of comparing a sequence of DNA or protein with other
sequences of DNA and protein present in different databases around the world to
further understand the molecular biology of that sequence. That very particular
sequence might lead to the breakthrough discovery of a drug target to a menacing
disease. It is for this reason that BLAST remains crucial and is at the very core of
drug designing. However, to completely comprehend the functions of BLAST and
how it works, it is imperative to have an understanding of certain biological
concepts.
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14.2 Building blocks
To understand what and how BLASTworks, we ought to understand what the build-
ing blocks are, what the importance of comparing these building blocks is, and how
they are compared. Gregor Mendel and Charles Darwin laid down the framework for
us to follow, a framework of heredity and inheritance and evolution over time by
adapting to one’s natural environment. These adaptations have now been studied
extensively and characterized as genetic changes taking place in DNA and/or
RNA that translate functionally and structurally through proteins along generations.
Structurally, nucleic acids (DNA and RNA) are made up of chemical building blocks
called nucleotides. Each nucleotide consists of one of the four nitrogenous bases
(cytosine [C], guanine [G], adenine [A], and thymine [T]) plus a phosphate group
and a pentose sugar molecule. These nucleotides are linked into chains, with alter-
nating phosphate and sugar groups that form a strand of DNA or RNA. Conversely,
proteins are made up of another set of building blocks, strings of amino acids (e.g.,
proline, alanine, arginine glycine, etc.) joined together by specialized chemical
bonds (peptide bonds) to form linear sequences that determine the primary structure
of the protein.

These biomolecules, DNA, RNA, and proteins have a specific arrangement of
sequences in which they occur in nature. The difference in the arrangement of
sequences of nucleotides in DNA differentiates one gene from another; similarly,
a difference in the arrangement of sequences of amino acids in proteins distinguishes
between the structure and functionality of one protein from another (Fig. 14.1A and
B). In the field of bioinformatics, a single, continuous molecule of nucleic acid or
amino acid (protein) is considered a biological sequence. These biological
sequences are molecular products of evolution, since they undergo random changes
during the evolutionary process, leading to the structural and functional changes in
organs, pathways, and/or mechanisms. Scientific research, however, has suggested
that the traces of evolution remain in certain sequences despite the accumulation
of mutations and divergence over the course of time. Evolutionary traces remain
because certain amino acids that are crucial for the survival of organisms do not
mutate, thus they are preserved by natural selection. On the other hand, amino acids
whose function and/or structure is not crucial for the survival of organisms have a
greater tendency to be mutated (possibly by change in codon by deletion, insertion,
or substitution). These traces can lead researchers to the identification of common
ancestry between several different sequences, which can be understood and analyzed
by aligning two or more biological sequences together.

14.2.1 Sequence alignment
Sequence alignment is the procedure of arranging and comparing two or more
sequences by searching for a series of individual characters or character patterns
that are in the same order in the sequences. To carry out the structural and functional
analysis of newly identified biological sequences or the sequence of interest,
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sequence alignment is the first step. The evolutionary relatedness between the two
sequences can be identified by the degree of evolutionary traces left in between
them (conserved residues in sequences), while identification of mutations (deletions,
insertions, and substitution of amino acids) through sequence alignment helps in
studying the degree of variance between the sequences. Sequence alignment is often
done by lining up two sequences with the intention of achieving the maximal levels
of identity and conservation in the case of amino acid alignments. This is often
called pairwise alignment. In this process, a nucleotide or protein sequence is placed
over another biological sequence and arranged by sliding one sequence over the
other to find the best pairing of the two sequences, such that there is maximum cor-
respondence or matching among residues. When two sequences are aligned with
each other, alignments can reflect evolutionary conservation, structural similarity,
functional similarity, or a random event, which can be measured through the
following three parameters (Fig. 14.2):

FIGURE 14.1

(A) The three biological sequences of DNA, RNA, and protein (amino acid sequence);

RNA has uracil instead of thymine. (B) How two different DNA sequences code for

different amino acids and how amino acids with different orders of sequence become

different proteins (three-nucleotide codon coding for a single amino acid).
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1 Homology: Homology is an evolutionary hypothesis that indicates shared
ancestry or same origin. Since we can rarely be certain about homology, it is
therefore usually a hypothesis that may be more or less probable and can be
understood as a true/false probability parameter. Either sequences are homolo-
gous (i.e., they have a common ancestor; the hypothesis is true) or the sequences
are not homologous (i.e., they do not have a common ancestor; the hypothesis is
false). Homology is a more generic term that encompasses similarity and
identity. A common mistake that is often made is quantifying the level of
homology in percentage value. Homology is a qualitative and not a quantitative
measure; two sequences can never be 80% homologous or 20% homologous
(for a detailed explanation, check the important notes later).

2 Similarity: Similarity refers to the degree of likeness between two sequences. It
is an indication of the extent to which two biological sequences are alike and is
expressed in terms of percentage. It means sharing a statistically significant
number of bases or amino acids in long continuous stretches of nucleotide or
protein sequences. Similarity between protein sequences is often described as
the percentage of aligned residues that are similar in physiochemical properties
such as size, charge, and hydrophobicity. Similarity is more specific than
homology but less specific than identity.

Sequence similarity (percentage) is calculated as:

S¼ ½ðLs� 2Þ = ðLaþ LbÞ� � 100

FIGURE 14.2

Correlation between sequence similarity and sequence identity and the connection they

share with sequence homology.
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where S is percentage sequence similarity, Ls is the number of aligned residues with
similar characteristics, and La and Lb are the total lengths of each individual
sequence.

3 Identity: Identity refers to the minimum number of characters that match exactly
in the two sequences and indicates how two sequences are alike in the strictest
terms. It is also expressed in percentage. Identity is the most specific of the three
parameters of evolutionary conservation. It is therefore more useful to consider
sequence identity shared by two sequences rather than similarity.
Sequence identity (percentage) is calculated as:

I¼ ½ðLi� 2Þ = ðLaþ LbÞ� � 100

where L is percentage sequence identity, Li is the number of aligned identical
residues, and La and Lb are the total lengths of each individual sequence.

Sequences of evolutionary significance are often characterized by different
names, based on the different specific characteristics they share. These common
terms are as follows (Fig. 14.3):

1. Homologs: Sequences that have a common origin or shared ancestry are usually
termed homologs or homologous sequences.

FIGURE 14.3

The concept of homology. Ancestral histone H1 gene upon gene duplication has two

copies of the same gene histone H1.1 (red) and histone H1.2 (blue), which upon

speciation (an event in evolution where a species diverges into two different species)

passes on histone H1.1 (red) or histone H1.2 (blue) to humans and chimpanzees. When

this happens, the two genes are said to share common ancestry and are called orthologs.

With the passing of both copies of genes (histone H1.1 [red] or histone H1.2 [blue]) to the

same species, the two genes are said to be paralogs. Contrary to homology, analogs are

those two genes that may perform a similar function but do not share common ancestry:

bacterial histone-like nucleoid-structuring protein and human/chimp histone protein.
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2. Paralogs: Homologs in the same common organism arise through gene dupli-
cation, for example, hemoglobin A and hemoglobin F are paralogs.

3. Orthologs: Homologs in different organisms arise through speciation (divergent
copies of a solitary gene), e.g., histone H1 of humans and histone H1 of
chimpanzees.

4. Xenologs: Orthologs arise through horizontal gene transfer.
5. Analogs: Sequences that have a different origin or no shared ancestry are usually

termed analogs or analogous sequences. Analogs and homologs are thus
antonymous, and are the very opposite of each other, e.g., wings of a bat and
wings of a sparrow.

Important notes

Homology is an evolutionary concept and not a quantifiable entity, and thus cannot be expressed in

terms of percentage. It is incorrect to express homology by using phrases such as “significant

homology,” “less homologous,” “more homologous,” or “x% homologous.”

1. Homologous sequences are not necessarily similar; similar organs are not necessarily homolo-

gous. Two sequences (Alignment A) with 94% similarity and two sequences (Alignment B) with

98% similarity are both homologous. The extent of homology cannot be determined and it

cannot be said that the two sequences in Alignment A are more homologous than the two

sequences in Alignment B. Thus a high degree of similarity implies a high probability of

homology.

2. If two sequences are not similar, we cannot say with certainty if they are homologous.

3. If two sequences are not homologous, their sequences are usually not similar (but they may be

similar by chance).

4. If two sequences are homologous, their sequences may or may not be similar.

5. Detection of similarity between sequences allows us to transfer information about one sequence to

other similar sequences with reasonable, though not always total, confidence.

6. Our ability to perform rapid automated comparisons of sequences facilitates everything from

assignment of function to a new sequence, to prediction and construction of model protein

structures, to design and analysis of gene expression experiments.

Whenever statistically significant sequence or structural similarity between proteins or protein

domains is observed, this is an indication of their divergent evolution from a common ancestor

or, in other words, evidence of homology.

14.2.2 Note
It is a common inference that protein sequences are more sensitive than DNA
sequences in homology. This is primarily because of the following reasons:

1. DNA is composed of four characters: A, G, T, and C. Hence, two unrelated DNA
sequences are expected to have a default of 25% similarity.

2. In contrast, a protein sequence is composed of 20 amino acids, thus the
sensitivity of comparison is improved.

3. It is also accepted that convergence of proteins is rare, meaning that high
similarity between the two proteins almost always means homology.

5. DNA databases are much larger and grow faster than protein databases. Bigger
databases imply more entries and therefore more random hits.
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So far, understanding alignment of biological sequences allows a deeper under-
standing of evolutionary background of given sequences, which sheds light on
structural and functional similarity between them. However, the questions arise:
How is the alignment done? What are the parameters? What are the rules that decide
which alignment is more successful and significant than other possible alignments
among the residues of two sequences? The answer to all these questions is “scoring
system”. Each sequence is aligned with other sequences and then scores are given
based on the fixed matrixes (explained later); alignment with the best score is
considered to be the most significant alignment. The sequence alignments of
different biological sequences like DNA and proteins have their own virtues and
drawbacks. Sequence alignment is carried out by giving scores depending on match,
deletion, insertion, and/or substitution, and based on the best scores, the final
alignment is predicted. Alignment of DNA sequences is straightforward as there
are only four bases (A, T, G, and C), so scoring the building blocks of two sequences
is comparatively easy since the possibility of mismatch or substitution is one in four
(Fig. 14.4A). On the other hand, scoring the alignment of amino acids is more
complicated as there are 20 amino acids (meaning a one in 20 possibility of
mismatch/substitution), which means substitution mutation must have a properly
defined scoring system (this is where PAM [point accepted mutation] and BLOSUM
[BLOcks amino acid SUbstitution Matrices] come to rescue and will be explained
later) (Fig. 14.4B). It is important to understand that scoring the residues of two
sequences is not as simple as aligning the numerator of one sequence directly on
the denominator residue of the sequence below. However, this is possible in an ideal
sequence alignment, where both sequences are of the same length and sequence
identity is 100%. Nevertheless, if both sequences are of the same length but not
100% identical, then the evolutionary mutations of deletion, insertion, and substitu-
tion complicate the alignment process, for which the concept of gap (�) was
introduced in sequence alignment algorithms as explained in Figs. 14.4A, B and
14.5 (to understand the deletion/insertion gap concept better). Gap is introduced
during sequence alignment where an algorithm predicts the putative mutation and
gives a score as per the rules of the algorithm, which by having the final score in
different possible alignments predicts the best possible alignment with the best
score. The addition of gaps in an alignment may be biologically relevant, since
gaps would reflect the evolutionary changes that may have occurred to the sequence.
So, when a sequence alignment shows significantly high similarity among the group
of sequences, it can be considered that the sequences belong to the same family. This
is where sequence alignment shines because having significant similarity among
sequences would also suggest having higher similarity in structure as well, thus if
structure and function of one of the family members is known, the structure and
function of the query sequence can also be elucidated. Such similarity suggests
evolutionary relatedness.
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FIGURE 14.4

(A) The sequence alignment of two DNA sequences. Assuming sequence 1 and 2 are the

two sequences that need to be aligned, there are several ways two sequences can be

glided over one another and aligned (four scenarios as shown in the figure, given that this

sequence is small; for larger sequences, the number of scenarios also increases). Each

nucleotide from one sequence is aligned with the nucleotide from the other sequence and

the scores are given as per Match (1), Mismatch (0), and Gap (�1). Gap receives a

negative score as it implicates a strong mutation (insertion or deletion), which normally

cells are reluctant to acquire. Moreover, the higher the number of gaps would mean a

more negative score, which would suggest the least final score. Since it is impossible to

know the position of mutation of an indel (as it might have happened billions of years ago),
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14.2.3 Types of mutations
The level of similarity, to any extent, existing between the sequences of different or-
ganisms can be attributed to the theory of evolution that all genetic material has
eventually come from one common ancestral DNA. So, over the course of billions
of years, with every evolving step, mutations kept on occurring and diverging the
species at each point, creating differences and diversity between once closely related
individuals of the same species. Most mutations are considered to be local muta-
tions, modifying the DNA sequence in a specific manner. These modifications be-
tween nucleotide sequences or strings can be of the following types:

1. Insertion: An insertion of a base (A, T, G, or C) or several bases between the
already existing bases in the sequence, or an amino acid residue in the case of a
protein sequence. Insertion is denoted by the amino acid/nucleotide that is
inserted.

=
different scenarios are created by inserting the gap in different positions. Then, each

scenario is scored as per the scoring matrix and the scenario that receives the best score is

considered to be the best possible alignment. Scenario 1 is the best possible alignment for

the given two sequences. It is important to remember that gaps can only be included in

between the nucleotides, and care must be taken not to interfere with the sequential

presence of extant sequences, e.g., in the given sequence 2 a single gap or multiple gaps can

be introduced before or after A or C or T; however, a gap cannot remove the already existing

nucleotide sequence present in the sequence, i.e., AeTe (removing C) or eCTe (removing

A) would be wrong. (B) Sequence alignment of two amino acid sequences. Assuming

sequence 1 and 2 are the two sequences that need to be aligned, there are several ways two

sequences can be glided over one another and aligned (three scenarios as shown in the

figure, with more possible scenarios, given that this sequence is small; for larger sequences,

the number of scenarios also increases). Each amino acid residue from one sequence is

aligned with the amino acid residue from the other sequence and scores are given as per

scoring matrix (BLOSUM), while gaps are given a heavy negative score (�5). Gap receives a

negative score as it implicates a strong mutation (insertion or deletion), which normally cells

are reluctant to acquire. Moreover, the higher the number of gaps would mean a more

negative score, which would suggest the least final score, thus there is less possibility of there

being a significantly good alignment. Since, it is impossible to know the position of mutation of

an indel (as it might have happened billions of years ago), different scenarios are created by

inserting the gap in different positions. Then, each scenario is scored as per the scoring

matrix and the scenario that receives the best score is considered to be the best possible

alignment. Scenario 3 is the best possible alignment for the given two sequences. It is

important to remember that gaps can only be included in between the residues, and care

must be taken not to interfere with the sequential presence of extant sequences, e.g., in the

given sequence 2 a single gap or multiple gaps can be introduced before or after any of the

residue; however, a gap cannot remove the already existing amino acid from the sequence,

i.e., PR-TERITe (removing the third amino acid K) or PRKT__IT__ (removing E and R) would

be wrong.
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2. Deletion: A deletion of a base (A, T, G, or C) or several bases from the already
existing sequence, or an amino acid residue in the case of a protein sequence.
Deletion is denoted by (�) and (.) for DNA and protein, respectively.

3. Substitution: Substitution of a base (A, T, G, or C) or several bases between the
already existing bases in the sequence, or an amino acid residue in the case of a
protein sequence. Substitution is denoted by the new nucleotide/amino acid that
substitutes the one that was present before.

When two sequences are aligned, it is impossible to know what mutations either
of them has gone through over the course of billion years of evolution. Hence, the
deletion and insertion concepts are interchangeable when two sequences are aligned.
That is, from sequence 1, what is assumed to be deletion compared to sequence 2

FIGURE 14.5

How deletions and insertions are to be interpreted when two sequences with certain

differences are aligned. Practically, there are more complicated sequences in nature;

however, for the sake of simplicity, in the figure sequence is exemplified to have two

mutations highlighted with a green box. Sequence 2 seems to have an extra histidine and

leucine at positions 11 and 12, respectively. Since two sequences are extant and might

have gone through mutations over the course of evolution, it is difficult to decipher which

one is original and which one is mutated. This scenario can be presented in two different

ways: either sequence 2 was always the ancestral sequence and sequence 1 had deletion

mutation over the course of millions of years at positions 11 and 12, or sequence 1 was

always the original ancestral sequence and sequence 2 acquired insertion mutations at

positions 11 and 12. Both scenarios are correct in their own right, thus in scenarios like

this, the region in question with missing residues is denoted as a gap, which could suggest

either deletion in sequence 1 or insertion in the other.

432 CHAPTER 14 An introduction to BLAST



could actually be insertion mutation in sequence 2 while sequence 1 was not
mutated; similarly, what is considered as an insertion mutation in sequence 2 might
actually be the residues that were deleted from sequence 1 during evolution while
sequence 2 was the original all along (Fig. 14.5). This is why the missing residue,
be it a deletion or insertion in either of the sequences, is referred as “GAP (indel).”

14.2.4 Scoring matrices
Scoring matrices also known as substitution matrixes, which are used to give scores
for sequence alignment. Scoring matrices deserve a separate chapter, so we will not
be addressing it here in its entirety. However, for the sake of understanding BLAST,
we will make a brief introduction to the scoring system. As previously mentioned,
the scoring matrices for nucleotide sequences are relatively simple given that only
four nucleotides are available for substitution. Usually, a high/positive score is given
for a match between the two nucleotides, while a low/negative score is given for a
mismatch. However, slight complicacy may originate due to transitions (substitu-
tions between purines and purines or between pyrimidines and pyrimidines) and
transversions (substitutions between purines and pyrimidines), but the former is
observed to occur more frequently than the latter.

Conversely, it is more complicated to create scoring matrices for amino acids
because scoring has to reflect the physicochemical properties of amino acid residues.
Margaret Dayhoff (considered as the Mother of Bioinformatics) studied thousands
of closely related proteins from several protein families. Upon sequence alignment
of homologous proteins, she observed that specific amino acid substitution had taken
place between the two sequences. She identified the amino acids that were replaced
by other amino acids and were accepted by natural selection, which she called point
accepted mutation, PAM. (In reality it was called accepted point mutation, but PAM
rolled well with the tongue.) To understand which of the amino acid substitutions
were accepted by nature, she studied around 71 groups of families and observed
1572 changes. She created a matrix based on these observations, which is used
even today given that massive high-throughput sequencing data have made it easier
to study substitution changes in sequences and Dayhoff’s observation was correct.
She observed that amino acids with similar physiochemical properties (like alanine
and glycine) had increased tendency to mutate (because the function they carried out
could be easily performed by other amino acids with similar physicochemical prop-
erties), while certain unique amino acids like cysteine and tryptophan rarely mutated
(possibly due to their uniqueness in structure: sulfur bridges in the case of cysteine
and single codon coding for tryptophan, which upon mutation would render protein
functionless). Based on these mutational probabilities, she created matrices
commonly known as PAM matrices, which are used to give scores to each residue
matchup in an alignment. Similarly, studying more than 2000 conserved amino
acid patterns representing 500 groups of protein sequences, Henikoff and Henikoff
constructed a BLOSUM matrix where ungapped alignments of less than 60 amino
acid residues in length were used. BLOSUM and PAM were derived from
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alignments of higher extant similar sequences. Using these matrices, a scoring
system was developed that gave a high score for a more likely substitution, whereas
a low score was given for a rare substitution.

With the advent of technology surging through most spheres of life, revolution-
ary advancements have been made in the field of computational biology and bioin-
formatics. Over time, different alignment algorithms have been developed to achieve
the aforementioned objective of pairwise alignment. These algorithm approaches are
mainly of two types, namely exhaustive search approaches and heuristic search
approaches.

However, before we dive deeper into these two approaches, it is important to note
that although the nexus between biology and computer science has been strength-
ened with modern technologies, the two still use different nomenclature
(Table 14.1).

Though subsequence has different connotations in biology and computer
sciences, bioinformatics researchers usually use the biological terminology associ-
ated with subsequence. Thus “subsequence” mainly implies a contiguous sequence
of letters. Now that we have an understanding of the commonly used terminology in
biology and computational sciences, we can discuss the different algorithm
approaches employed for alignments, namely exhaustive (dynamic) approaches
and heuristic approaches.

Most of the sequence alignments need to be done online to search for something
associated with the sequence of interest to the researcher. This suggests that the
search has to be done in all kinds of databases that contain the reference sequences,
be it DNA, RNA, or protein sequences. To obtain the desired results, there are certain
requirements that we must implement on algorithms for sequence database
searching.

Sensitivity: Sensitivity refers to the ability of an algorithm to find as many cor-
rect hits as possible. These hits are generally known as true positives.

Selectivity: Selectivity refers to the ability of an algorithm to exclude incorrect
hits. These hits are generally known as false positives.

Speed: Speed, as the name suggests, refers to the time an algorithm takes to
obtain results from database searches.

Table 14.1 Comparison of the notations of the two disciplines of computer
sciences and biology.

Computer sciences Biology

String, word Sequence

Substring (contiguous sequence of letters) Subsequence

Subsequence Noncontiguous segment of a sequence

Exact matching N/A

Inexact matching Alignment
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For a desirable search, a researcher would prefer all three requirements to be met,
but unfortunately as the sensitivity of a search increases so does the time it takes to
find the results, while if sensitivity is reduced, selectivity increases giving rise to
false positives. So, to obtain the desirable results, one ought to choose the algorithm
that fits their needs.

Exhaustive type algorithms are the rigorous algorithms that use brute force to
find the best and exact solution for a particular problem by examining all possible
mathematical combinations for alignments; however, these methods are extremely
slow and time consuming. These programs are also very taxing for computer mem-
ory. They keep the first two criteria of sensitivity and selectivity in account but at the
cost of speed. This is why most of the current database searches do not use
exhaustive-type algorithms because they do not give results in real time. Two of
the methods used by exhaustive-type algorithms are the global pairwise alignment
algorithm also known as the NeedlemaneWunsch method and the local pairwise
alignment algorithm also known as the SmitheWaterman method.

14.2.5 Dynamic programming
To perform a pairwise sequence alignment, this algorithm builds a 2D matrix with
one sequence on the X-axis and the other on the Y-axis. Algorithmic rules are
applied in each case (the local pairwise alignment algorithm is slightly different
from the global pairwise alignment algorithm) giving a scoring scheme to fill the
matrix. Scores are given to every possible combination of residues of two sequences
and then the maximum scored region representing the best alignment by backtrack-
ing through the matrix is found (Fig. 14.6). One can imagine why this kind of algo-
rithm can be extremely time consuming; the databases have sequences in the billions
and will take a massive amount of computer power and a long time to find the best
alignment. Global pairwise alignment, as the name suggests, would find the most
accurate sequence alignment throughout the sequence; however, local pairwise
alignment would only search for the most conserved region in between the two
sequences (for further details, study the dynamic NeedlemaneWunsch method
and the SmitheWaterman method).

On the other hand, heuristic programming is a computational strategy and
approach to find an empirical or near optimal solution by using certain thumb rules
that make processing less time intensive. Heuristic algorithm approaches provide
approximate solutions to a complex problem by taking shortcuts and circumventing
the exhaustive brute force approach. Though the use of heuristics may not amount to
the most accurate results, they do promise results in a realistic time frame without
compromising the authenticity of the results. Sometimes, these results are not
able to formally prove whether the solutions derived through heuristic approaches
actually solve the problem at hand, yet these algorithm approaches work much faster
than exact algorithms and since this is a software-based strategy, it is relatively
cheaper and more widely available. Exhaustive models of sequence alignments
are thus accurate but slow, whereas heuristic approaches run at a much faster rate,
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but their shortcuts and complexity make them more difficult to implement at times.
Nevertheless, researchers around the world have been completely content with the
results obtained using heuristic methods as it has been quite useful so far, and double
checks have revealed that the results are nearly perfect. Heuristic programming ap-
proaches for sequence alignment employ certain assumptions based on observations
such as:

FIGURE 14.6

The exhaustive approach of pairwise alignment of one of the two methods (global

alignment in this case). As the figure shows, every possible residue/nucleotide is

compared with every possible residue/nucleotide of the other sequence. Score is given

based on match, mismatch, and gap in the case of nucleotides, while the scoring matrix is

used to score match and substitution in the case of amino acids. Each box is scored

from three sides: below, side, and diagonal. Below and side give the score of the gap,

that is �2, while diagonal gives the score as per match/mismatch/substitution between

two residues associated with that box (in the case of a nucleotide, 1 for match, 0 for

mismatch). Of the three values, the highest value is given to that box. Similarly, the entire

matrix is filled with scores from below, adjacent to left, and adjacent diagonal box. Finally,

from the top right of the box, backtracking is done to each box that has given the highest

score to the said box until backtracking reaches the bottom left. Final residues of

backtracking boxes are aligned, which gives the best possible alignment between the two

sequences. This method is extremely time consuming and taxing on computer memory;

however, it does give the most accurate of alignments. Local alignment is done in a similar

way with slight changes in scores; where there are no negative scores, scores are either

positive or zero (even if calculation gives a negative value, the matrix is filled with zero).

For further clarification, please read the NeedlemaneWunsch and SmitheWaterman

alignment algorithms in detail.
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1. Substitutions occur much more likely than insertions or deletions. This is
because organisms tend to prefer substitution mutation over indels since dele-
tion of a residue entails deletion of three nucleotides, and similarly, insertion of
an amino acid would mean insertion of three nucleotides. On the contrary,
substitution may merely involve insertion/deletion of a single nucleotide;
moreover, substitution mutation may occur due to frame shifts as well. All the
possible ways of having substitution mutation are less taxing on the organism,
while indels are more taxing on them, which is why they prefer substitution
rather than indels. (Having said that, this does not mean that there are no indels.
It does happen over the course of evolution; it is just that cells prefer it less.)

2. Homologous sequences contain many segments with matches or substitutions
without gaps or insertions/deletions. These segments can thus be used to kick
start the searching operation.

14.3 Basic local alignment search tool
By now, we should have an understanding of what biological sequences are, how
they are aligned, how different types of scoring matrices are used to give scores
to different alignments to get the most optimal alignment, and how an alignment
of a sequence into the database can reveal structural, functional, and even evolu-
tionary information regarding other sequences. We also learned how certain algo-
rithms are best at giving the most accurate alignments but are not practical due to
their time constraints, whereas other algorithms sacrifice some sensitivity to get
closer to the best alignment in a very acceptable time run. One such program is
known as BLAST. BLAST is merely a search tool, similar to the Google search
engine, but for biological sequences. It is a tool that instead of keywords takes up
biological sequences (in FASTA or GenBank format) and a weight matrix (PAM
or BLOSUM), and searches them against other biological sequences on various on-
line databases. The beauty of this structure lies in the fact that you can choose the
databases and even the sequences you wish to search against among other biological,
computational, and statistical parameters, which are entirely customizable. The bio-
logical sequences are then aligned against other sequences from the internet to pro-
duce an output that can be delivered in a variety of formats, ranging from HTML to
plain text to XML formatting. Essentially, the output contains a list of search results
(called hits), each containing alignment information regarding the extent to which
the two sequences are perfectly aligned. This is expressed as a percentage and
can be referred to as similarity or identity in a biological context. Homology,
similarity, and identity were discussed earlier in this chapter.

BLAST is a heuristic local alignment-based algorithm that aligns genomic or
proteomic sequences to discover regions of local similarity between the sequences.
According to the National Center for Biotechnology Information (NCBI), BLAST is
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the most widely used sequence similarity tool. The program compares nucleotide
(DNA or RNA) and/or protein sequences to sequence databases and calculates the
statistical significance of matches. BLAST can be used to infer functional and evolu-
tionary relationships between sequences as well as help identify members of gene
families.

The BLAST algorithm facilitates comparison of sequences that are classified as
follows:

1. Query sequence: This refers to the subject nucleotide or protein sequence that is
to be searched.

2. Target sequence/s or database sequences: This refers to the library or sequence
database to which the query sequences are aligned to identify target sequences
from a database that resemble the query sequence above a certain statistically
significant threshold.

BLASTwas created by Stephen Altschul et al. at the National Institute of Health
and was published in the Journal of Molecular Biology in 1990. It is known to be
derived from the 1990 stochastic model of Samuel Karlin and Stephen Altschul,
who “proposed a method for estimating similarities between the known DNA
sequences of one organism with that of another,” and their work is often attributed
as the statistical backbone for BLAST.

This is known to be a significant improvement over the previously existing
SmitheWaterman algorithm as it uses a much faster alignment approach and less
computer power. It is much more time efficient than another heuristic approach,
FASTA, as it searches only for the more significant blocks in sequences with
comparative selectivity and sensitivity.

BLAST was developed to allow extremely fast searches through databases. The
main criteria for these database searches as explained before were speed, sensitivity,
and selectivity:

1. Speed: This refers to the number of computational alignments made while
searching through a given database with respect to time. These databases grow
exponentially, due to the enormous amounts of data being uploaded every day.
Therefore the faster the algorithm, the more efficient its output would be. Speed
thus contributes greatly for the success of BLAST as an alignment algorithm.

2. Sensitivity: This means that the algorithm needs to acquire all or most of the
matches that are within a database. The higher the sensitivity of the algorithm,
the better its efficiency would be. BLAST has proven to provide near perfect
alignments, which has kept researchers satisfied around the globe.

3. Selectivity: This is another parameter that substantiates the efficiency of the
BLASTalgorithm and suggests that all or most of the matches that the algorithm
finds in the database must be correct. The higher the selectivity of the algorithm,
the better its efficiency.
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14.4 How BLAST works
The BLAST algorithm works by taking the query sequence and breaking the entire
sequence into “words.” “Words” are created by breaking a DNA sequence into sub-
strings of 11 nucleotides each, while protein sequences are broken into three sub-
strings (explained in Fig. 14.7). This process is known as seeding and the list
must include every possible word that can be extracted from the query sequence.
After seeding, all created “words” are allowed to search for a match using pairwise
alignment in a database for the occurrence of these words (since the size of “words”
is extremely small, this part of the algorithm takes only a small amount of time and
eliminates several million sequences as potential false positives at a time, thus
saving time again). For an alignment to start, at least one “word” from the list of
“words” should match the sequence in the database. The matching of words is scored
by a given substitution matrix (PAM or BLOSUM) and a “word” is considered as a
match if its score is above threshold. Once the “word[s]” identifies their match with
the appropriate threshold, the next step involves extension of pairwise alignment
from the words in both directions while counting the alignment score using the
same substitution matrix that was used at the beginning of the program. The exten-
sion of pairwise alignment and addition of residues/nucleotides on either or both
sides of the sequence continue until the score of the alignment drops below a specific
threshold due to encountering mismatches. The dropping threshold for DNA is 20,
while for protein it is 22. The resulting contiguously aligned segment pair without
any gaps after pairwise alignment is called the high-scoring segment pair or HSP.
The algorithm also looks for more than one HSP with the possibility of combining
several together to make a larger HSP, which would suggest better sequence
alignment.

FIGURE 14.7

Seeding of a query amino acid sequence where the given sequence is broken into every

possible “word.” Triplet for an amino acid, 11 base pair for the nucleotide sequence.
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In the example given in Fig. 14.8A, all the possible “words” are identified and
each individual word (all three amino acids) is given a score as per the substitution
matrix (PAM or BLOSUM). According to the scoring matrices, the best score is
always along the diagonal line of an amino acid to itself. For instance, according
to the BLOSUM62 matrix, in the case of LIA, L matched to L would give 4, I
aligned to I would give 4, and A aligned to Awould give 4 as well. Thus the highest
possible total for the word LIA in the best possible alignment case would be 12,
which happens when LIA in the query sequence matches the LIA sequence in the
database. Similarly, all possible “words” of the query amino acid will have the
best possible score they can achieve with respect to the given substitution matrix,
as shown in Fig. 14.8A.

“Words” that are above a certain given threshold are kept, while the rest whose
scores fall below this given threshold are discarded (Fig. 14.8B). This threshold
value can be specified in most BLAST algorithms by using the (-f) option given
in the user interface, thereby removing unimportant or uninformative parts of the
sequence that are not going to be useful while searching through a database, as
the probability of them occurring is very high. Once the words with low scores
are discarded, the next step is extending the words with higher scores than the
threshold. The word is extended if the score is above a certain threshold or the score
is above a certain value and is extended in both directions. If the alignment cannot be
extended further, then the sufficiently high-scored segments are introduced by gaps;
however, if the score falls below the specific threshold, extension is ended; other-
wise, it is temporarily maintained until the score rises again. Once the extension
has reached its limit, the final alignment is called the HSP; again, the substitution

FIGURE 14.8

(A) Seeded “words” receiving the best possible scores they can achieve upon aligning

with other sequences using the BLOSUM62 scoring matrix. (B) Filtering off the words

whose scores are below the threshold value, while those words above the threshold score

are allowed to go further and have more chances of achieving a significant match.
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matrix is used to score this HSP alignment (Fig. 14.9A). An HSP is a local alignment
that has no gaps and achieves one of the highest alignment scores in a given search.

In the case of gaps, gap opening penalty and gap extension penalty are applied to
the score. In our example, the total score is 54. The score is essentially a property of
the alignment and the substitution matrix that was used to give a score to the align-
ment. As long the same scoring matrix is used for the same alignment, the score will
always be 54. This score of 54 is called the “raw score,” and it never changes
(Fig. 14.9B).

However, here arises the question: Is this score significant, and if yes, what is it
significantly different from?

It is of paramount importance to find out whether the score and the alignment
given is a statistically significant match or whether the alignment is produced on
a mere chance. The significance scores help to distinguish between the evolution-
arily related sequences and the unrelated ones. Thus we start with a pairwise score
and try to calculate whether the score is significant or not. For this, the initial amino
acid sequence is jumbled and all the possible combinations of those amino acids at
random are identified. Thus our choices have the exact same amino acid present in
the sequence, but in a different order. Next, we calculate the entire possible anagram
sequences, align them against the main sequence, and score these sequence align-
ments. The scores obtained from randomized shuffling and then alignment with
the given sequence can be used to plot a graph by taking the score on the X-axis
and the number of alignments on the Y-axis to obtain an inverse graph (Fig. 14.10).
As the number of alignments decreases, the score increases and vice versa.

FIGURE 14.9

A) Introduction of a “gap” within the limits of threshold value giving rise to a high-scoring

segment pair (HSP). (B) Scoring of HSP as per BLOSUM62 while applying the gap score

of �1 for opening the gap and �1 score for gap extension. The final score, also known as

“raw score,” is 54.

14.4 How BLAST works 441



The numbers of alignments are thus inversely proportional to the score. We now take
this curve and on it we place our score of 54 (raw score from our sequence alignment).
On plotting our raw score on this inverse graph we can get the probability that our
alignment is random. The fraction of arbitrary sequences with a score greater than
our raw score provides us with the likelihood that our alignment was just as random.

If the fraction is extremely low, it implies that the score is significant. However, if
the fraction is very high, it would imply that there is a good probability that the
alignment was purely because of chance. This fraction value is called the P-value
and is defined as the probability of the sequence alignment being random. Canoni-
cally, the P-value is calculated by relating the observed alignment score, S, to the
expected distribution of HSP scores from comparisons of random sequences of
the same length and composition as the query to the database. The most highly sig-
nificant P-values will be those close to zero. Table 14.2 explains a basic rule of
thumb to generate inferences based on our P-values. These are only rules of thumb
and these inferences or understandings can be modified based on our experience
with sequence alignment to understand the results much better.

Based on this understanding, we can now completely understand the traditional
definition of BLAST as described on the NCBI website.

FIGURE 14.10

Inverse graph plotted between the number of alignments and the score obtained when

sequence of interest was randomly jumbled and aligned with itself. The graph shows the

fraction of random sequences with a score less than the raw score obtained from BLAST,

which is extremely low, suggestive of a low P-value (i.e., result of a random chance) and a

significant match.
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BLAST (Altschul et al., 1990, 1997) is a sequence comparison algorithm opti-
mized for speed and used to search sequence databases for optimal local alignments
to a query. The initial search is done for a word of length “W” that scores at least “T”
when compared to a query using a substitution matrix. Word hits are then extended
in either direction in an attempt to generate an alignment with a score exceeding the
threshold of “S.” The “T” parameter dictates the speed and sensitivity of the search.

BLAST is, however, a lot more complex than this. The reasons for this
complexity include problems with sampling and oversampled statistics. Another
problem with the algorithm is that longer sequences are more likely to find higher
scoring pairs due to their lengths. Coupled with this, longer databases are more
likely to find higher scoring pairs because they contain more sequences that our
query sequence can match against.

Thus the developers of the BLAST algorithm decided to convert these P-values
into expectation values or E-values (E). This value essentially gives us an idea about
the expected frequency of a researcher finding this alignment in the database at
random. The E-value is a parameter that describes the number of hits one can
“expect” to see by chance when searching a database of a particular size. This value
decreases exponentially as the S of the match increases. Essentially, the E-value
describes the random background noise. For example, an E-value of 1 assigned to
a hit can be interpreted as meaning that in a database of the current size one might
expect to see one match with a similar score simply by chance.

The lower the E-value, or the closer it is to zero, the more “significant” the match
is. However, it should be kept in mind that virtually identical short alignments have
relatively high E-values. This is because calculation of the E-value takes into
account the length of the query sequence. These “high” E-values make sense
because shorter sequences have a higher probability of occurring in the database
purely by chance. The E-value can also be used as a convenient way to create a
significance threshold for reporting results. You can change the E-value threshold
on most BLAST search pages. When the E-value is increased from the default value
of 10, a larger list with more low-scoring hits can be reported.

Table 14.2 Different relevant inferences that can be derived on the basis of
obtained P-value results.

P-values Inference

10e100 Identical sequences

1 � 10�50 to 1 � 10�100 Nearly identical sequences

1 � 10�5 to 1 � 10�50 Homologous sequences

1 � 10�1 to 1 � 10�5 Distantly homologous sequences

>1 � 10�1 The sequence alignment may be random

14.4 How BLAST works 443



The basic formula for the E-value is as follows:

¼ length of databaseðmÞ x length of sequenceðnÞ x probabilityðPÞ
E¼ mnP

The E-value (Expected value) can also be described as:

E¼ kmne elS

where k and l are scaling factors (these can be defined as parameters),m is the length
of the database, n is the length of the query sequence, and S is the raw HSP score
(e.g.,: 54).

Since, k and l are scaling factors, we can simply eliminate these and convert our
raw HSP score directly to a more refined score called the bit score (S0).

S0 ¼ lS� ln k

ln k

It is important to note that E-values are subject to change as new sequences are
uploaded to databases, and they keep growing with each passing day. A higher bit
score corresponds to a lower E-value. Table 14.3 suggests another basic rule of
thumb for making certain inferences based on E-values shown at the end of a
BLAST result.

The NCBI hosts a webpage at blast.ncbi.nlm.nih.gov as well as a network ser-
vice. The algorithm can be run as a standalone application for researchers who
intend to run it on their own machines or with their own personal sequence data-
bases. A number of standalone latest generation applications can be downloaded
by installing the BLASTþ package from the Web. NCBI also serves as a great portal
for assisting researchers in carrying out alignments by providing them access to NIH
Genetic and Proteomic Sequence databases that contain a large volume of nucleotide
and protein sequence data. The algorithm can also be used in association with other
bioinformatics algorithms that require approximate sequence matching.

Table 14.3 Different relevant inferences that can be derived on the basis of
obtained E-value results.

Expected values (E-values) Inference

<1 � 10�100 Identical sequences

1 � 10�50 to 1 � 10�100 Nearly identical sequences

1 � 10�5 to 1 � 10�50 Homologous sequences

1 � 10�1 to 1 � 10�5 Distantly homologous sequences

>1 � 10�1 The sequence alignment may be random
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14.5 Codons, reading frames, and open reading frames
In molecular sciences, a reading frame is a way of dividing nucleotide sequences
(RNA or DNA) into triplets that are consecutive and nonoverlapping. These triplets
code for amino acids during translation, and are thus called codons.

An open reading frame (ORF) is the segment of a reading frame that has the ten-
dency to be translated. It is a register for reading the section of DNA that starts with
ATG (start codon), uses three letters at a time to call for amino acids, and uses one or
more amino acids to close the reading. It is a continuous stretch of codons that start
with the start codon (AUG) and end at a stop codon (UGA, UAA, or UAG). The start
codon within the ORF marks the point where the translation starts and the stop
codon, in turn, marks the transcription termination site.

Since DNA is interpreted in nucleotide triplets called codons, a DNA strand has
three distinct reading frames. However, we know that the DNA molecule exists as a
double helix having two strands that runs in an antiparallel manner (i.e., if one strand
runs in the 50/30 direction, the other runs in the 30/50 direction), having three
reading frames each. Therefore there are six possible frames of translation.

There are three reading frames that can be read in the 50/30 direction, each one
beginning from a different nucleotide in the triplet, and an additional three reading
frames that can be read from the other complementary strand.

NOTE: Not every ORF makes a protein. As a rule of thumb, researchers consider
a minimum of 100 amino acids to produce a protein. ORFs are therefore essential in
transcriptomics, metabolomics, bioinformatics, and chemoinformatics studies.

Now that we have a basic understanding of codons, reading frames, and ORFs,
we can correlate that knowledge to understand different types or variants of BLAST
that exist for providing researchers with different prospects to go further with their
projects. The different variants or types of BLAST are discussed ahead. The next
section of this chapter describes how four major BLAST programs function by uti-
lizing different types of databases and query sequences. These specialized types of
BLAST can be correlated with the applications of BLAST mentioned earlier in this
chapter to curate specific research projects depending on various targeted research
objectives.

The major types of BLAST are:

1. BLASTN: Compares a DNA query to a DNA database; searches for both strands
automatically. This type of BLAST is optimized for speed over sensitivity.

2. BLASTP: Known to compare a protein query against a protein database.
3. BLASTX: Compares a DNA query sequence to a protein database by translating

the former in six different ORFs, and then compares each of them against the
database, which has three reading frames from each DNA strand.

4. TBLASTN: Compares a protein query to a DNA sequence database in all the six
possible ORFs of the database.
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5. TBLASTX: Compares the protein encoded in the DNA query to the protein
encoded in the DNA database in the 6 � 6 possible frames of the database and
query sequences.

Apart from the types of BLAST described here, there exist many other BLAST
wrappers and derivatives. BLAST wrappers are specialized scripts that run BLAST
in specific ways. Other variants include PHI-BLAST, PSI-BLAST, organism-
specific BLAST, MegaBLAST, BLASTZ, XBLAST, HT-BLAST, GENE-BLAST,
and MPBLAST.

Once researchers have a basic understanding of sequence alignments, homology,
the BLAST algorithm, ORFs, and the traditional alignment approaches, they can
extrapolate that information and knowledge to work with various specialized forms
of BLAST mentioned earlier. These forms cater to specific research needs and
require additional fields or parameters that can be mentioned in the user interface
fields according to the requirement of the researcher.

14.6 Bioinformatics and drug design
Drug discovery involves the process of identifying new medications based on the
knowledge provided by their targets; these targets are often biological molecules
like membrane receptor proteins, membrane transport proteins, protein kinases, en-
zymes, transcription factors, and sometimes specific binding regions of DNA. The
medications, however, also known as drug molecules, are often small chemical mol-
ecules that either activate or inhibit the function of biological molecules (drug tar-
gets), which in turn interfere with their metabolic or signaling pathway in disease.
Thus, in layman’s terms, a drug molecule should be designed in its shape and struc-
ture in such a way that it interferes with the normal pathway of a target molecule by
binding to it. The binding of a drug molecule can be anywhere on the target molecule
as long as its binding inhibits the target molecule’s functions and qualifies for all the
criteria, including absorption, distribution, metabolism, excretion, and toxicological
(ADMET) profiles. Traditional drug discovery using the trial-and-error method is
usually time consuming and economically taxing, thus a more robust method was
required that would screen, identify, and validate drug targets and drug molecules
on a larger scale while saving time and money. This type of modeling is often
referred to as computer-aided drug design (CADD), which is a specialized discipline
that uses computational methods to study the drugereceptor interactions. CADD
methods are heavily dependent on bioinformatics tools, applications, and databases.
The drug discovery process usually starts with an analysis of binding sites in target
proteins and an identification of structural features common to active compounds
(Fig. 14.11). Moreover, CADD is also used to predict the conformational changes
in the target that may occur when the small molecule binds to it, allowing efficient
screening of lead molecules.
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CADD indeed plays a major role in the rapid assessment of already existing
chemical libraries to speed up the early-stage development of new active com-
pounds, saving billions of dollars and a massive amount of time. One of the most
important functions of CADD is to estimate the strength of intermolecular interac-
tion between putative drug molecule and target molecule. This suggests, be it ligand-
based strategy or structure-based strategy, there are two major pillars on which the
efficiency and even the possibility of CADD to function is dependent: “lead mole-
cule,” also known as drug molecule, and “target molecule,” which is mostly a protein
(Fig. 14.12).

CADD entails a vast number of computational methodologies like virtual library
design, virtual screening, lead optimization, and de novo design. Due to its proven
ability of computational techniques to guide the selection of new hit compounds,
chemoinformatics is still the scientific discipline that is in full bloom. While there
are databases and libraries that contain lists of thousands of chemical compounds
that can be used as lead molecules, they still need to be optimized and validated
for each specific target protein. Here, BLAST plays a crucial role in identifying
such drug targets by identifying those protein and/or DNA sequences that are similar
to or to some extent share homology with already existing targets. So, if screening,
identifying, and validating a lead molecule is one the pivotal functions of CADD,

FIGURE 14.11

Drugetarget interaction in its most oversimplified form. However, this concept is core to

identifying putative drugs for any disease to identify the protein of interest (drug target) for

which a modified lead/drug can be used. Bioinformatics plays a major role in identifying

such targets, especially with the help of BLAST.
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sequence analysis of the target molecule to be a perfect match for the lead molecule
is equally important. BLAST is used to identify drug targets in two different ways:
either identifying the drug target (protein, DNA, RNA, peptide) that is already avail-
able in protein and other databases or generating a 3D structure of the active site or
whole protein via de novo synthesis. Most of the drugs exert their effects on target
proteins by impairing structural and/or functional capabilities. The BLAST tech-
nique as we understand it is at the core of finding sequences that share similar struc-
tural and functional properties. Therefore if the structure of a drug molecule is
known, regarding the target site it binds to, and if the structure of the target molecule
(e.g., catalytic site of an enzyme protein, structural conformation of a receptor pro-
tein, subcellular localization of transport protein) is known, then BLAST can be uti-
lized to identify other putative target proteins in a family that shares some similarity
with the target molecule. On the other hand, if the structure of the target molecule
(protein) is unknown, then ligand-based design, where pharmacophores are used
to identify the putative target site of the unknown protein, is used to elucidate the
structure of a “part” of the target protein. Once CADD provides the basic putative
structure of a target site, homology-based 3D structuring of proteins will be carried
out for which, again, BLAST plays a critical role by identifying the most promising
backbone for the protein.

FIGURE 14.12

Computer-aided drug design (CADD) identifies the drug targets based on already existing

knowledge of protein structures as well us by performing de novo synthesis of protein

structures based on the chemical structure of already known drugs.

QSAR, Quantitative structureeactivity relationship.
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14.7 Applications of BLAST

1. BLAST plays a very pivotal role in chemoinformatics and drug discovery
(explained earlier).

2. BLAST helps in the identification of secondary and tertiary structures of
proteins from existing databases, which can be further studied as drug targets.

3. BLAST helps to kick start any kind of de novo 3D structure prediction, which
can further be used to identify putative binding drug molecules.

4. BLAST can be used for identifying species when working with a DNA
sequence from an unknown species or in finding homologous, orthologous,
and paralogous sequences for a given query sequence. This is useful when a
microbial, plant, or animal species has a protein that is related phylogeneti-
cally in lineage to a certain protein with a known amino acid sequence.

5. While working with proteins, a researcher can input a given protein sequence
into the BLAST algorithm to find out various domains within the sequence of
interest. This is useful to discover other genes that encode proteins that exhibit
motifs such as those that have been determined in an experiment?

6. A BLAST output can construct a radial or linear phylogenetic tree and help
establish relationships between the sequence under study and its ancestral
sequences. If a particular protein causes a microbial infection in a host, the
evolutionary ancestor of this protein can be determined and that information is
used to establish links between vaccines or drugs developed for the ancestor
and their effectiveness in combating the disease caused by the protein under
study.

7. BLAST is also very useful in DNA mapping when an unknown region of DNA
sequence is encountered while working with a known species. In this scenario,
BLAST can be used to compare the region of interest to the relevant sequences
in the database(s). NCBI has a “Magic-BLAST” tool built around BLAST for
this purpose.

8. When working with genes, BLAST can locate common genes in two related
species, and can be used to map annotations from one organism to another.

9. Different polymorphisms of any gene can be studied with the help of BLAST.
10. BLAST can identify novel genes by checking the structural and functional

similarity between genes of interest and sequences in vast databases.

14.8 Understanding coronavirus: the menace of 2020
In December 2019, a novel coronavirus outbreak was discovered in Wuhan, China.
This virus outbreak was labeled a Public Health Emergency of International
Concern by the World Health Organization within 2 months of the discovery of
the first few patients. Though the virus seems relatively less hazardous (with a
case fatality rate of about 3%e4%), the number of deaths caused by the global
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pandemic has already surpassed that of the 2002e03 severe acute respiratory syn-
drome (SARS) outbreak. The rapid increase in pandemic cases has resulted in
more genomes being sequenced every day, in hopes that they may provide some
clarity and evidence of viral mutations, specifically, the possibility of the introduc-
tion of different variants of the virus into the human population.

With an average rise of 160,000 global COVID-19 cases per day, as of June 21st,
there are widespread concerns that the virus will acquire more substrains and vari-
ants, and the virulent viral strain is estimated to emerge with a much stronger
toxicity, causing extreme outcomes for the global population. This makes it
extremely crucial to track, model, and characterize the viral strains, variants, symp-
toms, patient profiles, treatment responses, and geographical locations. BLAST can
be employed to carry out various sequence alignments and enable researchers to find
new viral variants of SARS-CoV-2 from the comfort of their homes, in combination
with various in silico approaches discussed in this book. Coupled with this, BLAST
results can be employed to carry out phylogenetic analysis, and thereby conduct
research for a better understanding of the origin of the viral genome. This can cata-
pult biological and clinical research toward finding effective vaccine candidates
based on sequence similarities found between SARS-CoV-2 and other related
viruses. As of this writing, there is no slowdown in COVID-19 cases, and the number
of infected patients seems to be rising exponentially. Our fight against this viral
menace will be a long and tiring one, until we develop vaccines or effective
approaches and treatments to tackle this unforeseen situation. We are still at an early
stage of the global pandemic and have little information about the tendency of the
virus to mutate into newer, more deadly forms. It is therefore incumbent upon bio-
informatics and chemoinformatics researchers and scientists to employ their exper-
tise, knowledge, and skills to develop better experimental approaches that can help
accelerate the vaccine development process, among other research crusades. As of
this writing, various online portals, including NCBI, EMBL, and DDBJ, are making
efforts to release viral genomes in open-source, web repositories, enabling
researchers to engage in variant analysis experiments.

14.8.1 BLAST simulation practical
1. Go to https://www.ncbi.nlm.nih.gov/sars-cov-2/ to retrieve SARS-CoV-2

sequences that have been uploaded to this specialized NCBI resource.
2. Access the NCBI sequence records through the website mentioned in 1. by

clicking on the “Download Sequence List” button. This redirects you to a page
that starts the download for a PDF file that has all the latest lists of SARS-CoV-2
nucleotide sequences. You can now query these IDs in GenBank.

3. You must now open the PDF file and select the accession numbers of the two
coronavirus sequences you wish to align and draw results from. Accession
numbers are unique numbers or fingerprints that are special to an entry in the
NCBI database. Each accession number corresponds to only one biological
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sequence, and is linked to a specific page, dedicated completely for that
particular sequence.

4. You must now open a new tab and redirect to https://blast.ncbi.nlm.nih.gov/
Blast.cgi This is the official BLAST page hosted by NCBI. You can now
select Nucleotide BLAST on this website. This action will redirect you to the
Nucleotide BLAST page hosted by NCBI.

5. On the Nucleotide BLAST page, you can now paste the selected accession
numbers and enter the parameters of search or use the default BLAST param-
eters to carry out the alignment.

6. Once you have selected the Search Set and Program in the “Choose Search Set”
and “Program Selection” parameters, you can finally click on BLAST. The
input sequences now enter the algorithm for processing. This processing step
might take a few minutes.

7. You will now be redirected to the BLAST Results page, and has access to the
alignment results, which can be used to draw further inferences. These include a
description tab that has information regarding scores, identity, query cover and
many other parameters, a graphic summary tab that provides a graphical result
of the alignment, an alignments tab that enables you to change the alignment
view, and a taxonomy tab that enables you to work with information regarding
lineage, organism, and taxonomy. The BLASToutput also includes E-values for
the alignments that will enable you to draw conclusions and inferences dis-
cussed in Table 14.3 in this chapter.

The following are five accession numbers to different SARS-CoV-2 sequences.
Try aligning different combinations of the five sequences by taking varying pairs
one at a time:

1. MT039890.1
2. MN994468.1
3. NC_045512.2
4. MT019532.1
5. MT044258.1

The PDF file downloaded from the NCBI website has the accession numbers to
numerous SARS-CoV-2 variants, which can be used as inputs for BLAST. This
opens a wide new horizon of research for students, researchers, and biology enthu-
siasts. Any and every scientific enthusiast who reads this chapter can now follow the
foregoing instructions to access the BLAST portal and draw inferences based on
these results from the comfort of their homes. Find a unique combination of two se-
quences, pay attention to the BLAST results, and you might be the next great scien-
tist who discovers a mutation in the different viral genomes. Remember, when you
change the way you look at things, the things you look at begin to change. These data
might sometimes seem inconsequential, but if you dive deeper into the very basics of
your understanding and start seeing things differently, these very data may lead
to further inferences that the best of scientists might have somehow missed.
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An alternative approach may include aligning any two sequences from the aforemen-
tioned resource, and carrying out a BLAST against the whole nucleotide database to
see similarity with other viruses, and draw various inferences from them.

For instance, a BLAST between the parent/zeroth sequence of SARS-CoV-2
from Wuhan, China, shows a higher percentage identity with a Middle East respira-
tory syndrome (MERS) genomic sequence. An appropriate inference and course of
action may be to start using the previously done research on MERS for drug discov-
ery and for strategically curating the vaccine development process. This accelerates
the vaccine development process, thereby saving months of time and thousands, if
not, millions of lives. Research from the comfort of your home may now impact mil-
lions of lives. A few clicks and you might be the one to save the world from a global
pandemic.

Learn. Think. Act.

14.9 Conclusions
In this chapter, we explained the very basics of BLAST to understand what BLAST
is, how it is used, and the background on which BLAST was created. We briefly
explained the core concepts that are required to understand the functionality of
BLAST and more importantly for students to have an underlying understanding of
sequence comparison, which is pivotal for drug discovery. BLAST in itself is a tech-
nique that has been used in several fields of science; here, we briefly explained how
it is an integral part of drug discovery. We live in a world where technological
advances from the past 70 years have transformed from using a computer that
was as big as a room to exploiting artificial intelligence in gadgets that fit in the
palm of a hand. There was a time when biology, chemistry, mathematics, and com-
puter sciences where subjects of their own right; however, with the advent of bioin-
formatics all these subjects were amalgamated to give results in a time frame that
was not possible before. One such area that benefited from the fruits of bioinformat-
ics is the field of pharmacology in novel drug discovery. Traditionally, drug discov-
ery was a tedious process, which for a single drug could take more than 20 years and
millions of dollars, and was at risk of being disqualified for ADMET properties to
pass through clinical trials at the last stage. Due to this slow progress and massive
expenditure, market pressure to find new drugs in a short period of time along
with bare minimum risks has fueled the interest of researchers to design drugs using
bioinformatics. These challenges were overcome by the introduction of CADD that
uses cost-effective and time-efficient procedures for the development of drugs. With
the help of CADD, millions of drug molecules (virtual screening) and drug targets
(protein receptors, enzymes, kinases, signaling proteins, etc.) are analyzed,
screened, modeled, and predicted with the least amount of money and time spent,
and moreover with added accuracy. Although experimentation and in vivo testing
are the only ways to identify the authenticity of a drug, CADD eliminates millions
of spurious candidates and targets at a time (read Chapter Chemoinformatics for a
more detailed insight into CADD).
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The identification of regions of interest in drug targets includes ORFs, conserved
motifs, conserved domains, promoters, catalytic region, terminators, subcellular
localization signal regions, and other structural and functional regions that are
crucial to the protein involved in a specific disease. Without knowledge of these re-
gions, no amount of efficient drug molecule is of any use unless the target that it
binds to is properly identified, verified, and functionally understood. To validate
the drug target, it is imperative to have the sequence analysis of the said candidate
protein, and this is precisely why: BLAST is a decisive technique at the very core of
pharmacology and chemoinformatics. In the grand scheme of things and the vast
fields of chemoinformatics and complicated methodology of CADD, BLAST may
seem to be a single isolated technique, but this technique is one of the integral pillars
of the foundation on which modern drug discovery is laid. Comparative/homology
modeling is one of the most straightforward approaches to predict a 3D structure of a
protein molecule. BLAST helps in the identification of a related template (at least
30% sequence identity with target protein), which is further used to predict the un-
known structure of the target protein. Once the structure of a target protein is iden-
tified, CADD, quantitative structureeactivity relationship, virtual screening, and
other programs can be used by researchers to tailor specific compounds that bind
at a particular site for a given protein. The Protein Data Bank (PDB) is one of the
most sought databases that have protein structures that are verified by nuclear mag-
netic resonance and X-ray crystallography; however, due to slow updating of the
database, relatively low numbers of structures are available compared to primary
and secondary structures available in a database like Uni-Prot. Apart from using
PDB, there are several other approaches used to model the target protein if a homo-
log of an unknown protein is available, such as MODELLER, 3D-JIGSAW, and
COMPOSER, among others. Nevertheless, no matter what software is used to design
a drug for the protein pertaining to a disease, BLAST remains at the very center, or
should we say at the very beginning, of each analysis.
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15.1 Introduction
An emulsion is a biphasic dispersion of two immiscible liquids in which one phase is
evenly distributed as a fine globule form (dispersed phase) into the other continuous
phase (dispersion medium) (Mehta, 2002; Winfield and Richards, 2004). Emulsions
are thermodynamically unstable, which tend to separate into two phases, i.e., aqueous
and oily phases on standing undisturbed; therefore requires special additives named
emulsifying agents to be stable for longer time (Goodarzi and Zendehboudi, 2019;
Agarwal and Rajesh, 2007). Depending on the phases, emulsions may be classified
as oil-in-water (O/W) emulsion and water-in-oil (W/O) emulsion. Complex forms
of these two emulsions are called double emulsions or multiple emulsions. When
an emulsion is emulsified with another phase, e.g., a W/O emulsion, and emulsified
again with water, it produces a water-in-oil-in-water (W/O/W) emulsion (Khan
et al., 2006). The globule size of the dispersed phase in an emulsion depends on
many factors, such as the method of preparation, nature of oil used, and type of
emulsifying agent. This categorizes the emulsion as a macroemulsion (0.1e10 mm),
microemulsion (5e50 nm), and nanoemulsion (20e1000 nm) (Fuhrman, 2006;
Binks, 1998), which further determine the stability of the emulsion (Dickinson,
1994). The larger the size of droplets of the dispersed phase, the smaller the stability
because the large droplets tend to coalescence with each other, which leads to phase
separation. Therefore macroemulsions are less stable than microemulsions over time
(Ganguli and Ganguli, 2003). Addition of surfactants (emulsifying agents) reduces the
interfacial tension at the oil and water interface and increases the miscibility of these
two phases, which makes them stable for a prolonged time (Sharma et al., 2014). The
emulsifiers are amphiphilic molecules, which contain both polar and nonpolar groups
that form micelles around the dispersed phase at the liquid interface and hold both
liquids tightly to make them miscible (Amashita et al., 2017).

In the area of pharmaceuticals, emulsions have broader applications in drug
delivery systems as most of the drug molecules are hydrophobic in nature, which
poses solubility and bioavailability problems in drug delivery to the body. So, the
emulsions can be of great importance in the rapid delivery of both hydrophilic
and lipophilic drugs due to the presence of the characteristics of both water and
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lipids, which can be delivered either through the oral route or through the topical
route (Ahmad et al., 2011; Kommuru, 2001). A pseudoternary phase diagram is a
tool that optimizes the three components of any typical emulsion, i.e., water, oil,
and surfactant, to obtain the concentration range of these components, which
form a stable emulsion. The three components of a system are plotted on the three
corners of the triangle. The sides of the triangle represent the binary system, and the
middle part represents the possible equilibrium state between the three components
at constant conditions of temperature and pressure (Richard et al., 2013). The phase
diagram can also determine the pattern of arrangement of surfactant molecules at the
water and oil interface. A ternary phase diagram helps to identify and determine
the effect of component variabilities such as type of oil phase, surfactant ratio on
the globule size, viscosity, pH, conductivity, refractive index, and transmittance
properties of the prepared emulsion. The stability-indicating factors of the emulsion
can be optimized based on the foregoing information, which further assists in the
designing of the drug delivery system for different drug molecules (Kumar et al.,
2016). The mutual interaction of the three components in different proportions pro-
duces different types of phases: either a completely miscible phase, which is stable
for a longer time, or a partially miscible phase, which separates into two pure
components, i.e., water and oil, when standing for some time. Regarding the weight
percentage range of each component, making a stable emulsion can be identified
from a phase diagram. Therefore a further detailed study of pseudoternary phase
vdiagrams of emulsions is discussed in the following sections to understand, opti-
mize, and develop emulsions into stable drug delivery systems.

15.2 Classification of emulsions
Pharmaceutical emulsions can be classified broadly in two ways (Fig. 15.1) (Fatima
et al., 2014; Bari et al., 2019):

1. Based on the dispersed phase:
(a) Simple emulsion (Kempin et al., 2020; Wang et al., 2020):

(i) W/O emulsion
(ii) O/W emulsion

(b) Complex/multiple emulsion (Iqbal et al., 2020; Ji et al., 2020):
(i) W/O/W emulsion
(ii) Oil-in-water-in-oil (O/W/O) emulsion

2. Based on the globule size (Hazlett and Schechter, 1988; Das et al., 2020; Jiang
et al., 2020):
(a) Macroemulsion
(b) Microemulsion
(c) Nanoemulsion
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15.2.1 Simple emulsion
A simple emulsion is the mixture of two phases, i.e., water and oil (Fig. 15.2). W/O
emulsion is produced when the water content is less than 45% of the total weight,
and an oil-soluble surfactant is used during the preparation of the emulsion.
In this condition, water droplets are suspended into the oil with the help of oil-
soluble emulsifying agents such as wool fat, beeswax, fatty acids, and resins.
W/O emulsion is generally meant for external application to the skin (Opawale
and Burgess, 1998; Bokhout et al., 1981; Bobra, 1991). In the case of O/Wemulsion,
the water is in excess, i.e., more than 45% of the total weight of the emulsion. A
suitable water-soluble emulsifying agent is used, which suspends the oil droplets
in the water with the help of water-soluble emulsifying agents such as tragacanth,
acacia, and cellulose derivatives. Addition of surfactant may also be desired to
stabilize the emulsion for extended periods. These are prepared for internal use
(Paulo et al., 2020; Stepisnik et al., 2019).

Classification of emulsion

Based on the dispersed phase

Simple emulsion 

Water in oil (W/O) 
emulsion

Oil in water (O/W) 
emulsion

Complex/multiple 
emulsion

Water in oil in water 
(W/O/W) emulsion

Oil in water in oil 
(O/W/O) emulsion

Based on the globule size

Macroemulsion

Microemulsion

Nanoemulsion

FIGURE 15.1

Classification of emulsions.
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15.2.2 Complex/multiple emulsion
A complex emulsion is one that is produced by the reemulsification of the simple
emulsion, e.g., W/O emulsion is reemulsified with water to produce W/O/W emul-
sion by the addition of suitable emulsifiers (Fig. 15.3). Similarly, O/W emulsion
is reemulsified with oil to produce O/W/O emulsion. Complex emulsions are
very difficult to produce and maintain as these contain multiple surfactants of oppo-
site nature, which may cause phase separation, cracking, or phase inversion of the
emulsion (Matsumoto et al., 1976; Silva et al., 2016; Soriano-Ruiz et al., 2019;
Liu et al., 2004).

15.2.3 Macroemulsion
Macroemulsions are the mixture of two immiscible liquids with a dispersed phase
having a droplet size >0.1 mm. These are thermodynamically unstable and appear
turbid or milky when two phases are mixed. Due to their larger size, the droplets
of the dispersed phase coalesce with each other, and the two immiscible phases
separate out on standing of the emulsion. However, use of a suitable emulsifier
may increase the stability of macroemulsions to some extent (Sharma and Shah,
1985; Ruckenstein, 1999).

15.2.4 Microemulsion
In contrast to a macroemulsion, microemulsions are thermodynamically more stable
with disperse-phase droplet sizes of 5e50 nm. These appear as a transparent and

FIGURE 15.2

Representation of simple emulsion types.
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clear liquid when prepared by using suitable emulsifying agents (Fig. 15.4). The pro-
portion of surfactant is higher in microemulsions compared to macroemulsions,
which lowers the interfacial tension to a considerable extent and makes microemul-
sions quite stable (Kumar and Mittal, 1999; Lawrence and Rees, 2000).

15.2.5 Nanoemulsion
Nanoemulsion is a biphasic colloidal system with a droplet size of the dispersed
phase in the submicron size range of 20e1000 nm. Nanoemulsions are thermody-
namically most stable and transparent because of the presence of one or more
amphiphilic surfactants. Nanoemulsion is the most advanced type of emulsion
system, which has great potential in the area of drug delivery systems. It is used
in targeted delivery, mucosal delivery, transdermal delivery, and site-specific
delivery and as a diagnostic tool (Singh et al., 2017; Shah et al., 2010; Fryd and
Mason, 2012).

15.3 Emulsifying agents (surfactants)
Emulsifying agents are a range of hydrophilic and lipophilic surfactants (low
molecular weight chemicals), which are used in the preparation of different

FIGURE 15.3

Representation of complex emulsion.
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types of emulsions. These are amphiphilic in nature and contain hydrophilic and
lipophilic characteristics in a single chemical moiety. This moiety is distributed at
the interface of two immiscible liquids and reduces the surface tension (Vijayakumar
and Saravanan, 2015; Sobrinho et al., 2013). Emulsifying agents can be classified
based on their solubilities, such as either water soluble or oil soluble, using the
hydrophilicelipophilic balance (HLB) scale proposed by Griffin (Yamashita and
Sakamoto, 2016). The HLB scale classifies surfactants on an imaginary scale as
values from 0 to 20, which are based on the relative proportion of polar-to-nonpolar
groups in a nonionic surfactant molecule. For emulsifying agents, an HLB value of
2e6 indicates them as oil-soluble surfactants and 12e15 as water-soluble surfac-
tants (Gadhave, 2014). This scale has now been extended to ionic surfactants too,
which have higher HLB values up to 50 based on their ionization extent. Therefore,
based on the nature and type of emulsion being prepared, a suitable emulsifying
agent, either single or in combination, can be selected based on the HLB classifica-
tion as shown in Table 15.1 (Rieger, 1987). If the continuous phase is oil, then the
surfactants with HLB values of 2e6 are most suitable. For water, continuous-
phase surfactants with an HLB value of 12e15 are suitable (Fig. 15.5) (Griffin,
1949). In the case of complex or multiple emulsions, the combination of surfactants
can be utilized to achieve the desired stability of the emulsion (Fox, 1986).

When a single surfactant is unable to provide the desired HLB value, then the
addition of another surfactant with the previous one may be chosen to obtain the
desired HLB to prepare a stable emulsion. Two or more surfactants can be mixed
based on the fraction of oil and fats used for the preparation of the emulsion.
Suppose there is a fraction f of surfactant X and fraction (1 e f ) of surfactant Y to

FIGURE 15.4

Representation of oil-in-water microemulsion.
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be included in the formulation, then the HLB value of the mixture would be
calculated as per Eqs. (15.1)e(15.3):

HLBmixture¼ f$ HLBX þ ð1� fÞ$ HLBY (15.1)

Table 15.1 List of surfactants with their hydrophilicelipophilic balance
(HLB) values used for emulsion preparation.

Name HLB Water dispersibility

Ethylene glycol distearate 1.5 No dispersion

Sorbitan tristearate 2.1

Propylene glycol monostearate 3.4

Sorbitan sesquioleate 3.7

Glyceryl monostearate, nonself-
emulsifying

3.8 Poor dispersion

Propylene glycol monolaurate 4.5

Sorbitan monostearate 4.7

Diethylene glycol monostearate 4.7

Glyceryl monostearate, self-emulsifying 5.5

Diethylene glycol monolaurate 6.1 Milky dispersion (not stable)

Sorbitan monopalmitate 6.7

Sucrose dioleate 7.1

Propylene glycol (200) monooleate 8.0

Sorbitan monolaurate 8.6

Polyethylene (4) lauryl ether 9.5 Milky dispersion (stable)

Polyoxyethylene (4) sorbitan monostearate 9.6

Polyoxyethylene (6) cetyl ether 10.3

Polyoxyethylene (20) sorbitan tristearate 10.5 Translucent to clear
dispersionPolyoxyethylene glycol (400) monooleate 11.4

Polyoxyethylene glycol (400) monostearate 11.6

Polyoxyethylene (9) nonyl phenol 13.0

Propylene glycol (400) monolaurate 13.1 Clear solution

Polyoxyethylene (4) sorbitan monolaurate 13.3

Polyoxyethylene (20) sorbitan monooleate 15.0

Polyoxyethylene (20) oleyl ether 15.4

Polyoxyethylene (20) sorbitan
monopalmitate

15.6

Polyoxyethylene (20) cetyl ether 15.7

Polyoxyethylene (40) stearate 16.9

Sodium oleate 18.0

Polyoxyethylene (100) stearate 18.8

Potassium oleate 20.0

Sodium lauryl sulfate Approx. 40
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The percentage amount of surfactant X and surfactant Y needed to produce the
required HLB can be calculated by rearranging Eq. (15.1):

X¼ 100$ð f�HLBYÞ=HLBX � HLBY (15.2)

Y¼ 100� X (15.3)

15.4 Pseudoternary phase diagrams
Any typical emulsion is formed by a suitable blend of oil, water, and surfactant/
cosurfactant. So, a ternary phase diagram is the graphical representation of these
three phases in the form of an imaginary triangle. This triangle determines the phase
behavior and type of emulsion, droplet size, properties, and stability of formed emul-
sion (Ahmad et al., 2013). The apex of triangles represents the pure component, i.e.,
100%, which reduces gradually to 0% on reaching another apex where another
component is 100%, as shown in Fig. 15.6.

Pseudoternary phase diagrams are produced by the water titration method in
which first Smix (suitable fixed weight ratios of surfactant and cosurfactant) is pre-
pared and then mixed with the oil phase in different w/w ratios. This mixture of

FIGURE 15.5

Hydrophilicelipophilic balance (HLB) classification of surfactants.
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oil and surfactant (Smix:oil) is titrated with water added dropwise. The resulting
emulsions are observed for their physicochemical properties such as transparency,
globule size, and stability. These ratio points are then plotted on the phase diagram
and the area covered under these points gives the range of microemulsion existence
(Chandra et al., 2014; Sabale and Vora, 2012). The phase behavior of emulsion com-
ponents can easily be presented and studied with the help of a pseudoternary phase
diagram. The components of the system must be mixed in a fixed ratio either in
weight or in volume in such a manner that the concentration of one component de-
creases from 100 to 0 and that of other component gradually increases from 0 to 100.
Generally, the phase diagram of emulsions is prepared by using the fixed ratios of
water to surfactant or ratio of surfactant to cosurfactant (Nazzal et al., 2002; Rao
and Shao, 2008; Zhang et al., 2008). Phase diagrams are the easiest way to identify
the regions of existence of microemulsion, nanoemulsion, or coarse emulsion and
their compositions, including water, oil, and surfactant (Elnaggar et al., 2009; Shafiq
et al., 2007; Kang et al., 2004). A ternary phase diagram can predict the nature, prob-
ability, and type of emulsion formed using different compositions of water, oil, and
surfactants, as shown in Fig. 15.7:

FIGURE 15.6

Representation of a pseudoternary phase diagram containing all three phases of an

emulsion, i.e., water, oil, and surfactant/cosurfactant.
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As shown in Fig. 15.7, we will discuss each side of the triangle representing the
binary components and their probable generalized interactions with each other to
form either type of emulsion.

Side A: Side A of the triangle represents the water/surfactant/cosurfactant binary
system. The probability of formation of O/W emulsion is at maximum because in
this region the water is in excess with limited oil and surfactant concentration.
The surfactant forms micelles with the hydrophilic group arranged toward the
outside embedded in water.

Side B: Side B of the pseudoternary phase diagram represents the oil/surfactant
binary system. Here, the oil phase will behave as the dispersion medium
and maximum probability of formation of W/O emulsion. The surfactant forms
reverse micelles with the hydrophobic group arranged toward the outside
embedded in oil.

Side C: Side C of the pseudoternary phase diagram represents a water and oil
binary system with a reduced amount of surfactant. In this region, multiple phases
may exist either as separate components or any type of emulsion with reduced
stability.

FIGURE 15.7

An imaginary ternary phase diagram showing the different regions with increased

probability of a particular type of emulsion. O/W, Oil in water; W/O, water in oil.
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Upper apex: The upper apex of the triangle at the surfactant/cosurfactant side
has low water- and low oil-phase concentration. In contrast, the surfactant/cosurfac-
tant concentration is highest at this point, so this apex will have the surfactant mol-
ecules arranged in the form of a lamellar sheet and devoid of any type of emulsion
(Lawrence and Rees, 2012).

Bicontinuous phase: The bicontinuous phase is the region where oil and water
phases are almost equal in volume with a sufficient amount of surfactant. In this
case, a particular emulsion is not formed, but continuous layers of water and oil
are present bounded by the surfactant monolayers in between.

As previously mentioned, the pattern of the phase diagram is not applicable for
every type of surfactant, cosurfactant, and every composition of different compo-
nents. Many factors collectively determine which type of emulsion would result
from a particular combination of components and further the stability of emulsion
formed so far. These factors may include the HLB value, nature of hydrophobic
chain and solubility of surfactant alone or in combination with cosurfactants, the
pattern of micelle forming, nature and type of oil, and effect of temperature and pres-
sure on the binary system. If these factors do not favor the particular type of emul-
sion, then phase inversion, phase separation, coalescence, or cracking of emulsion
may take place.

So, in short, we cannot predict the behavior of emulsion. Still, in general, we can
assume that more probably the component with reduced volume would form the
droplets of the dispersed phase. On the other hand, the component with higher
volume would form the continuous phase of the binary system provided that the
added surfactant must favor the dispersion of the reduced volume component into
the higher-volume component.

15.4.1 Phase behavior
Phase behavior studies are an important aspect of surfactant systems because they
provide information about the different components’ variability, temperature, and
structural arrangement of surfactant molecules (Laughlin, 1976). Therefore the
phase behavior of any microemulsion can be attributed to many factors, such as
properties of lipids used, nature of surfactants and cosurfactants, temperature,
pressure, and number of different components. Different types of lipids are available
for the preparation of microemulsions, such as glycerides, long-chain fatty acids,
medium-chain fatty acids, vegetable oils, and polyalcohols, and they also differ in
hydrophobicity and hydrophilicity. Some are highly hydrophobic and have almost
zero HLB value, while others may have a mixture of both hydrophobic and hydro-
philic groups. Lipids with different hydrophobic and hydrophilic groups are difficult
to process to formulate a microemulsion. On the other hand, high molecular weight
lipids are very difficult to emulsify because these create problems in penetrating the
interfacial surfactant film. Similarly, the choice of surfactant also depends on the
type of lipids and type of emulsion , i.e., O/W emulsion or W/O emulsion. The sur-
factants should lower the interfacial tension between the oil and water interface to
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the maximum extent to solubilize them into one phase by partitioning themselves
between the two phases. To achieve the desired stability of the microemulsion, a
cosurfactant could be added along with the surfactants, which increases the flexi-
bility on the interface resulting in the formulation of nanodroplets of the dispersed
phase. Regarding the type of surfactant used in the preparation of a microemulsion,
generally nonionic surfactants are preferred over ionic because of reduced irritancy
and toxicity and increased stability (Baroli et al., 2000). A surfactant with a lower
HLB value favors W/O microemulsion and a surfactant with a high HLB value
favors O/W microemulsion. Sometimes the HLB value of a surfactant is too high,
so the addition of a cosurfactant is required to adjust the HLB value of the surfactant
to the desired level. It should be kept in mind that every combination of different
components may not result in a stable microemulsion. So, optimization is required
when using different combinations of different lipids, surfactants, and cosurfactants.
Even some time addition of the drug to either phase and range of operating temper-
ature may also affect the behavior of the phase of an emulsion such as inversion of
the phase from W/O to O/W or vice versa through the change in the interface
behavior, i.e., micelle to reverse micelle, lamellar to bicontinuous phase
(Fig. 15.8). In this way, depending on the conditions and concentration of surfactant,

FIGURE 15.8

Representation of phase behavior of a microemulsion.

466 CHAPTER 15 Pseudoternary phase diagrams used in emulsion preparation



the arrangement of hydrophilic and hydrophobic groups of the surfactant may vary
producing different types of phases, which also affect the nature and stability of an
emulsion.

15.4.2 Understanding of the pseudoternary phase diagram
An emulsion is composed of three phases, i.e., water, oil, and surfactant/cosurfac-
tant. Therefore a pseudoternary phase diagram for an emulsion can be represented
by a triangle having three corners. Each corner of the triangle represents one compo-
nent of the emulsion in pure form (100% of the concentration of this component) as
shown in Fig. 15.9. Moving away from a corner, the concentration of that component
starts decreasing and becomes 0% on the other corner where the concentration of
other component is 100%. The sides of the triangle between any two corners repre-
sent increasing order of one component and decreasing order of the second compo-
nent, for example, in Fig. 15.9, on the side of the triangle between component A and
component B, by moving from A to B, the magnitude of A continues decreasing
from 100% to 0%, and when moving from B to A, the magnitude of B continues
decreasing from 100% to 0%. Similarly, the other sides of the triangle can be
read for other pairs of components. The points at any location on a triangle side

FIGURE 15.9

Understanding of the pseudoternary phase diagram.
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give the ratio of component A and component B. Now the desired range of different
components such as surfactant/cosurfactant, water, and oil can be easily identified
for a stable emulsion by the area under the curve of the triangle.

For a better understanding refer to Fig. 15.7, where it is clearly seen that by
changing the concentration of different components on the area under the curve
of the triangle, different types of phase appear such as lamellar phase, O/W emul-
sion, W/O emulsion, bicontinuous phase, and mixture of multiple phases. Therefore
from a ternary phase diagram, we can discover the concentration ranges of different
components to form a stable emulsion of the desired droplet size. The effect of any
additional components such as drug molecules, polymers, and other additives on the
phase behavior of an emulsion can also be observed from a phase diagram.

15.4.3 How to plot values on the triangle of the pseudoternary
phase diagram

To plot the value or identify the point value on the phase diagram, consider the three
components A, B, and C on the triangle, as shown in Fig. 15.10. Each component is
divided into an equal percentage fraction (each fraction of 10%) of components
shown on the sides of the triangle in decreasing order of magnitude.

FIGURE 15.10

Marking and division of the triangle in percentage fractions.
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Mark the percentage values in decreasing order of magnitude for every point, i.e.,
for component A, the decreasing order is from point A to B, for component B, it is
from B to C, and for component C, it is from C to A. Percentage value of different
components for any given point on the triangle is read by moving along the red lines
lying parallel to the front side of that component, e.g., to read the value for compo-
nent A, the red lines parallel to the CB side will be considered and the values on the
AB side will give the value of A, for component B, the red lines parallel to AC will
be read, and the values on the CB side will give the value of B, and for component C,
the red lines parallel to AB will be read and the values on the AC side will give the
value of C as shown by the red lines in Fig. 15.11.

Therefore for the combined form of the triangles in Fig. 15.11, look at Fig. 15.12,
where an unknown point X (shown as a red dot) is given for which the percentage
fractions of each component, i.e., A, B and C, are to be found. The value for compo-
nent A is 30%, component B is 20%, and component C is 50%. The direction of
reading the value for each component is indicated by the redlines from the unknown
point X. So in this way, anyone can read a phase diagram or prepare it for emulsions
by plotting the experimental values on this triangle to find out the suitable range of
components for a stable emulsion.

15.4.4 Preparation of the pseudoternary phase diagram
Preparing a pseudoternary phase diagram is a very critical and time-consuming step
where the first experiment is set up. Then, the data obtained from this experiment are
reported on the phase diagram. Some important points are mentioned next for the
preparation of a pseudoternary phase diagram (Siriporn, 2017).

15.4.4.1 Preparation of surfactant mix (Smix)
First, prepare the surfactant system required for the emulsion by mixing two or more
surfactants in a predefined ratio, e.g., mixing of surfactant A and surfactant B in
weight ratios of 1:1, 1:2, and 2:1. This ratio can be varied as per the need and
type of surfactants used. Quantifying the different surfactants helps to identify
and optimize the right surfactant in the right amount required for the preparation
of stable emulsion.

15.4.4.2 Mixing of surfactant (Smix) and oil in a defined ratio
Now, Smix and the given oil are mixed in a fixed weight proportion such as 0:1, 1:9, 2:
8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, and 1:0 or in other ratios as per the requirement and
types of oil used. This step helps in selecting the optimized ratio of surfactant mix to
emulsify the given oil in a better way.

15.4.4.3 Determination of equilibrium point
The above-prepared ratios of surfactant and oil are titrated with distilled water until
the endpoint has the appearance of a clear or milky solution. The volume of water
consumed in titration and composition of all components converted in weight
percent are noted.
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FIGURE 15.11

Understanding of way of reading the three components on a triangle.
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15.4.4.4 Preparation of ternary phase diagrams
Now the weight percent values of oil, water, and surfactant at an equilibrium point
for each ratio of Smix and oil are plotted on the ternary phase diagram. The phase
boundary produced by plotting in such way can differentiate between single-
phase region and two-phase region.

15.5 Software used for the preparation of pseudoternary
phase diagrams

Advancement in science and technology makes our work very easy and less time
consuming. So, preparing and reading a pseudoternary phase diagram using a
computer program or software is now effortless. There are different software pro-
grams available either as freeware or with a subscription, which are very useful in
the preparation of pseudoternary phase diagrams for emulsions. The basic principle
or working of all software is quite similar, but they differ only in user interface mod-
ules. Therefore we will study only a few of them to understand the working and
methodology of the software. Some of them are discussed next:

1. Chemix School
2. Design Expert

FIGURE 15.12

Spotting of a point on the triangle to find the percentage fraction of each component.
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3. Minitab
4. SPSS
5. Sigma plot
6. Graph pad
7. Matlab
8. XL Stat
9. Delta plotware

10. Triplot
11. R
12. Lab Plot
13. ProSim

15.5.1 Chemix School
Chemix School is an interactive educational program covering a wide range of
topics in the area of chemistry. It is utilized for calculation purposes in classrooms
and laboratories for different types of studies, including pseudoternary phase dia-
grams for emulsions. It helps students to perform the repeated process of hit, trial,
and error in an easy-going way to avoid manual calculation (Arne; Arne). This com-
puter program is very useful for undergraduates, postgraduates, and research
scholars in solving different problems. The procedure for the preparation of a phase
diagram for an acetic acid/water/chloroform system is given next.

1. Specify the name/title of the ternary system that you are going to prepare, e.g.,
acetic acid/water/chloroform system.
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2. Add the weight percent of two components such as acetic acid and chloroform as
optimized in the formula by putting the annotation 1-p for phase-1 and 2-p for
phase-2 for all observations and click on the calculate button. The software will
calculate the weight percent of the third component (water). As to the total
100% sum of three components, the weight percent of two are known, so for the
third it will be calculated automatically by subtracting the sum of these two
components from 100.

3. Set the boundary points between the 1-p and 2-p system by pointing the cursor
and clicking the mouse at every point to separate the two phases.
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4. Now change the graph from “spline mode” to “fill mode” to visualize the two
phases on the graph.

5. You can color the fill point region with different colors to distinguish between the
two phases.
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6. Now you can save the prepared phase diagram in high quality and convert to a
suitable format such as JPG, JPEG, PNG, or PDF.

15.5.2 XL stat
Like Chemix School software, XL Stat is also a very useful tool to create a ternary
phase diagram of three components. The required steps for this are discussed in a
step-by-step manner next (Ternary diagram in Excel tutorial, XLSTAT Support
Center):

1. Preparation of dataset: The dataset for the given three component ternary
systems is prepared in an Excel sheet before preparing the phase diagram. Any
one set of data contains three values of weight percent, which represent the
coordinates of three components in space. However, there is one requirement
for this system: the sum of values of the three components will always be 100%.

2. Preparation of ternary diagram: Once you are ready with the data, open the
XL Stat and under the Visualizing Data tab select Ternary Diagrams as shown in
the red circle of the following image.
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3. Once you click on Ternary Diagram, a new window will appear as shown in the
following image. Under the General tab of this window enter the value of three
components by selecting the data from the already prepared Excel sheet.
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4. Under the Chart tab, you can customize the final chart that will be prepared in the
next step as shown in the following image. Set the minimum values to 0 and
maximum values to 1. Also, press the tick marks for the desired parameter that
you need to be displayed on the final chart and click OK.

5. Preparation of the phase diagram: When you click OK after entering all the
necessary information in the system, the ternary phase diagram will appear on
the screen as shown in the following image:
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So. in this manner, you can prepare a ternary phase diagram for any ternary
system by using any dataset.

15.6 Conclusion
This chapter summarized the different classifications of emulsions, surfactants, HLB
value of surfactant, and phase behavior of an emulsion based on the composition and
concentrations of different components of an emulsion. The ratio of oil, water, and
surfactant can be easily identified using pseudoternary phase diagrams to form a
thermodynamically stable emulsion. A pseudoternary phase diagram suggests that
the effectiveness of any surfactant can be optimized either by changing the concen-
tration of the surfactant or by adding a secondary surfactant, i.e., cosurfactant, to the
primary one. The solubility of drugs in the oil phase and aqueous phase and drug
release pattern can be improved based on the data obtained from the phase diagram.
In the later section of the chapter, the ternary phase diagram was explained in detail
to enable readers to understand it easily. Plotting of the datasets on a phase triangle
and reading of the phase diagram were also explained. With the advancement in sci-
ence and technology, the application of a computer also extended the calculation and
preparation of phase diagrams, which further make the process easy. Therefore the
application and use of different computer software programs in the preparation of
phase diagrams, e.g., Chemix School and XL Stat, were included and discussed
for a better understanding of the method to prepare a ternary phase diagram.
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Soriano-Ruiz, J.L., Suñer-Carbó, J., Calpena-Campmany, A.C., et al., 2019. Clotrimazole
multiple W/O/W emulsion as anticandidal agent: characterization and evaluation on
skin and mucosae. Coll. Surf. B Biointerf. 175, 166e174.

Stepisnik, P.T., Zupanc, M., Dular, M., 2019. Revision of the mechanisms behind oil-water
(O/W) emulsion preparation by ultrasound and cavitation. Ultrason. Sonochem. 51,
298e304.

Ternary diagram in Excel tutorial | XLSTAT support center. Available from: https://help.xlstat.
com/s/article/ternary-diagram-in-excel-tutorial?language¼en_US.

Vijayakumar, S., Saravanan, V., 2015. Biosurfactants-types, sources and applications. Res. J.
Microbiol. 10 (5), 181e192.

Wang, L., Li, Y., Xiang, D., Zhang, W., Bai, X., 2020. Stability of lutein in O/Wemulsion pre-
pared using xanthan and propylene glycol alginate. Int. J. Biol. Macromol. 152, 371e379.

Winfield, A.J., Richards, R.M.E., 2004. Pharmaceutical Practice, third ed. Churchill Living-
stone Publisher, London, pp. 199e202.

Yamashita, Y., Sakamoto, K., 2016. Hydrophilicelipophilic balance (HLB): classical index-
ation and novel indexation of surfactant. In: Encyclopedia of Biocolloid and Biointerface
Science 2V Set. John Wiley & Sons, Ltd, pp. 570e574.

Zhang, P., Liu, Y., Feng, N., Xu, J., 2008. Preparation and evaluation of self-microemulsifying
drug delivery system of oridonin. Int. J. Pharm. 355 (1e2), 269e276.

References 481

https://doi.org/10.17504/protocols.io.jyccpsw
https://doi.org/10.17504/protocols.io.jyccpsw
https://help.xlstat.com/s/article/ternary-diagram-in-excel-tutorial?language=en_US
https://help.xlstat.com/s/article/ternary-diagram-in-excel-tutorial?language=en_US
https://help.xlstat.com/s/article/ternary-diagram-in-excel-tutorial?language=en_US


Index

Note: ‘Page numbers followed by “f” indicate figures and “t” indicate tables.’

A
Ab initio protein modeling, 37, 127e128,

265e266

Absorption, distribution, metabolism, elimination,

toxicity (ADMET), 1e2, 74, 85e86, 173

Accelerated molecular dynamics, 81

ACE2 inhibitors, 13e14

ALADDIN, 187

Algorithms/scoring functions, 2, 3te10t

Amino acids, 309, 310f

4-Aminoquinoline, 216e217, 218te219t,

220fe221f

Anaconda, 283, 286

Analogs, 428

ANCHOR, 160

Animal research, 393t

cell and tissue culture, 396

computer simulations, 398

epidemiological surveys, 398e399

mathematical models, 398

microbiological analysis, 397e398

microdosing, 399

microfluidics chips, 399e400, 400f

noninvasive imaging techniques, 400e401

physicochemical techniques, 394e395

plant analysis, 399

tissue chips in space, 400

tissue engineering, 396e397

Anti-cancer drugs, 329e331, 330f

Antimalarial drugs, 215

commercially available, 215, 216t

computational details

dataset collection, 217

3D QSAR model, 222e223, 227, 228f

ligand preparation, 217

molecular docking, 223e224

pharmacophore and 3D QSAR model, 217,

220fe221f

pharmacophores, scoring, 222

in silico rapid ADME prognosis, 224

site creation and finding pharmacophores, 221,

222t

virtual library, 223

drug resemblance analysis, 227e228, 229t

hybrid molecules, 215e217, 216f, 218te219t

lead molecules docking

Fe(III)PPIX ring, 229, 229f

pf-DHFR, 230, 230f

partial least square (PLS), 225, 226t

virtual database screening, 227

Arginine, 306

Arguslab, 106e107

Artificial neural networks (ANNs), 14, 198

Artificial intelligence (AI), 408e409

ATGpr, 249

Atlas of Genetics and Cytogenetics,

334e335

AutoDoc 4.2, 106e107

AutoDock, 181

Autodock4, 18

AutoDock Vina, 21, 181

Auto-QSAR, 191

Available Chemical Directory (ACD), 2

B
Basic local alignment search tool (BLAST), 423,

442f

applications of, 449

bioinformatics and drug design, 446e448,

447fe448f

building blocks, 424e437, 430fe431f

mutations, types of, 431e433

scoring matrices, 433e435

sequence alignment, 424e428

codons, 445e446

coronavirus, 449e452

dynamic programming, 435e437, 436f

E-values, 443, 444t

high-scoring segment pair (HSP), 439

alignment, 441, 441f

open reading frame (ORF), 445e446

P-values, 442, 443t

query sequence, 438

reading frames, 445e446

seeding, 439, 439f

words, 440, 440f

selectivity, 438

sensitivity, 438

speed, 438

target sequence/database sequences, 438

B-cell lymphoma-2 (Bcl-2) protein, 39

Binding free energy, 155

Bindn, 318

Bindn+, 318

483



Biochemical and organic model builder

(BOMB), 79

Bioink, 396e397

BiokmodWeb, 395

Biological data, 1

Biological sequences, 424

BioLuminate, 157

Biomolecular Interaction Network Database, 11

Biomolecular simulations, 79e80

molecular dynamics (MD), 82te83t, 84f

accelerated molecular dynamics, 81

metadynamics sampling, 83e84

parallel tempering method, 84e85

targeted molecular dynamics, 84

umbrella sampling, 83

Monte Carlo (MC), 85

Bioprinting, 396e397

BLAST, 250e252. See also Basic local alignment

search tool (BLAST)

Blind docking, 63

Boltzmann constant, 72

Boltzmann probability, 69

Boomer, 395

BRAF gene, 329e331

BRAF-V600E mutation, 329e331

Brexit, 423

BurrowseWheeler transform, 332

C
CADD. See Computer-aided drug design (CADD)

Caesar 2.0, 191

Cambridge Structural Database (CSD), 11,

108e109

Cancer Cell Line Encyclopedia (CCLE), 334

Cancer genomics, 329, 331

Catalogue Of Somatic Mutations In Cancer

(COSMIC), 334

CDOCKER, 182

Chain termination method, 363

Character-based method, 255

ChEMBL database, 73, 299

ChemDoodle, 63

Chemical reactions, 113e114

Chemical structures, 109e112

file formats and visualization, 113

linear representation, 112

multidimensional representation, 113

Chemix School, 472e475

ChemkSketch, 63

ChemTree, 395

Chloroquine, 217

Chymase inhibitors, 13e14

CLEVER, 74

CLEW, 188

Clinical genomics, 379

ClustalW, 250e252

CODESSA, 190e191

Codons, 445e446

Collective variables (CVs), 83e84

Combinatorial libraries, 123e124

CoMEt, 344

Committee for the Purpose of Control and

Supervision of Experiments on Animals

(CPCSEA), 389e390

Comparative molecular field analysis (COMFA),

15, 190

Comparative molecular similarity indices analysis

(CoMSIA), 15, 190

COMPROTEIN, 245e247

Computational cancer genomics analysis, 332

databases, 334e336

genomics landscape

germline mutations, 336

somatic mutations, 336e337

mapping and alignment, 332e333

noncoding mutations, 338

RNA-seq data, 333

structural variants (SVs), 339e340

variant annotation, 338e339

Computational drug designing, 142e144, 143f

Computational tools, 105e107, 106f

combinatorial libraries, 123e124

development of, 117e118

high-throughput screening (HTS), 121e122

molecular modeling, 124e132

molecules and reactions, 108

chemical reactions, 113e114

chemical structures, 109e113

data mining, 108e109

virtual screening (VS), 121e122

Computer-aided drug design (CADD), 55, 211,

446, 448f

advantages of, 28e29

drug discovery, 27e28, 28t

roles of, 27e28, 29f

ligand-based drug design (LBDD), 29e37

pharmaceutical industries, 27e28

structure-based drug design (SBDD), 37e49

Connolly’s algorithm, 64e65

Consensus scoring, 72

Constitutional descriptors, 115

Convolutional neural network (CNN), 21,

198e199

Copy number variants (CNVs), 339

484 Index



Coronavirus, 449e452

Cortex, 339e340

COVID-19, 450

CrossFire Beilstein, 2

Cross-talking, 341e342

Cross-validation, 17

Cushing syndrome, 13e14

CXCR2 agonists, 13e14

D
Database of Interacting Proteins, 11

Databases, 3te10t

compound selection, 119e120

computational cancer genomics analysis,

334e336

data mining, 108e109, 110te112t

descriptors, 114e116

ligand, 175e178, 176te177t

macromolecular interactions, 11

proteineprotein interactions (PPIs), 144e145,

148te149t

decoy, 147e150

iPPI database (iPPI-DB), 146

MEGADOCK 4.0, 145

2P2I database, 146

TIMBAL, 147

protein structure modeling, 263, 264t

sequence, 255e261

similarity techniques, 118e119

small molecule compound, 2

verification and manipulation, 116, 117f

virtual screening (VS), 173e174

Data handling/analysis

chemoinformatics

bar plot, 302, 302f

dexamethasone structure, 299, 300f

genomics, 295e299

Data mining, 108e109, 375, 376f

classification methods

decision trees (DTs), 378

k-nearest neighbors (KNN), 377

support vector machines (SVMs), 377

clustering method

hierarchical, 376

model based, 377

partitioned, 376e377

databases, 108e109, 110te112t

methods and tools, 109f

Data structure, 294e295

Data visualization, 283e284

De Bruijn graph (DBG), 332e333, 368

Decision trees (DTs), 378

Deep learning network (DLN), 198e199

DEMETRA, 192

Dendrix, 344

De novo assembly, 332e333, 339e340, 367e368

De novo ligand design, 78

fragment-based methods, 78e79, 80t

whole molecule docking, 78

Density functional theory (DFT), 128e129

Descriptors, 114e116

DESeq2, 333

Dexamethasone structure, 299, 300f

Dihydrofolate reductase (DHFR), 216e217

Disco Tech (Distance Computing Technique), 186

DISPLAR database, 317

Distance-based method, 254e255, 255f

DNA, 423

biological sequences, 425f

nitrogenous bases of, 306e309, 307f

sequence alignment, 430fe431f

structural elements, 306, 307f

DNA aggregation, 310e311

DNA bending, 310e311

DNA-binding sites, 311e314

DNA microarray, 375

DNA packaging, 305, 310e311

DNAproDB, 319

DNA-Prot, 319

DNA-protein interactions

Bindn, 318

Bindn+, 318

DISPLAR database, 317

DNAproDB, 319

DNA-Prot, 319

DOMMINO, 320, 320f

DP-Bind, 318

FlyFactorSurvey, 320e321

iDBPs, 317

MAPPER, 317

PADA1, 319

PDIdb, 319

PreDs, 318

ProNIT, 318

TRANSFAC, 316e317

WebPDA, 319e320

ZIFIBI, 318

DNA repair, 305

DNA replication, 305

DNA-sequencing, 245e247, 331, 361

DNA transcription, 305

DOCK, 181

DockBlaster, 160e161

Dockground project, 149

Index 485



Docking

components, 18

molecular, 39e42, 56e72

molecular dynamics (MD) simulations, 22

pose prediction, 21

scoring functions, 19e21

software and virtual screening tools, 18

DOMMINO, 320, 320f

Double emulsions, 455

DP-Bind, 318

5D QSAR models, 190

6D QSAR models, 190

3D-QSAR models, 15

4D-QSAR models, 15e16

DrugBank, 73

Drug costs, 27

Drug designing, 11e12, 208, 446e448,

447fe448f

classification and regression problems, 195e199

compound library, 208e209

high-throughput screening (HTS), 209e210

structureeactivity relationship, 210

sequential screening, 210

in silico ADMET, 210e211

virtual screening (VS), 209

Drug discovery, 11e12, 55, 173, 211, 266e268,

279e280, 446. See also Docking

bioinformatics tools, 267t

computer-aided drug design (CADD), 27e28, 28t

molecular dynamics (MD), 214

in silico drug designing

ligand-based approach, 213e214

structure-based approach, 211e213

Drug-Gene Interaction Database (DGIdb), 335

Drug-likeness properties, 1e2

Drug molecules, 446

Drug resemblance analysis, 227e228, 229t

Drug resistance, 215

Drug synthesis, 117e118

Drug target identification, 266e267

Drug-target interaction (DTI), 173

Drug target validation, 267

DUD•E (Directory of Useful Decoys-Enhanced)

database, 149e150

Dynamic programming, 435e437, 436f

E
Elastic network model (ENM), 19

Electrostatic descriptor, 115

Empirical scoring functions, 71

Emulsifying agents (surfactants), 459e462, 461t,

462f

Emulsions

applications, 455e456

classification of, 457f

complex/multiple emulsion, 458, 459f

macroemulsion, 458

microemulsion, 458e459, 460f

nanoemulsion, 459

simple emulsion, 457, 458f

oil-in-water (O/W), 455

stability-indicating factors, 455e456

water-in-oil (W/O), 455

ENCyclopedia Of DNA Elements (ENCODE),

334, 373

Ensemble based docking, 62e63

Epidemiological surveys, 398e399

Equation of motion, 46

Evaluation of Differential DependencY (EDDY),

341

E-values, 443, 444t

Exclusion-volume, 44e45

F
False positives, 434

Flexible docking, 39e40, 58e63, 62f, 179e180

Flexible loop domain (FLD) region, 39

FlexX (Fast Flexible Ligand Docking), 182

FlyFactorSurvey, 320e321

FoldX, 156

Forcefield-based scoring functions, 71

Fragment-based docking (FBD), 68

Fragment-based 2D-QSAR, 15

Fragment connection methods, 78

Full flexible docking, 39e40

G
GASP program, 187

Gaussian functions, 120

GenBank, 257e258

GENCODE project, 373e374

Gene expression, 247e249, 362

data analysis

data mining, 375e378, 376f

ontology, 378

software for, 378, 379t

techniques for

DNA microarray, 375

RNA-sequencing (RNA-seq), 375

serial analysis of gene expression (SAGE), 374

Gene Expression Omnibus (GEO), 334, 378

Gene ontology (GO), 341, 378

Gene prediction, 249, 250t

Gene recognition, 249

486 Index



Gene Set Enrichment Analysis (GSEA), 340e341

Genes-Graphs, 250e252

Genetics, 361

GeneView, 250e252

Genome

gene expression, 247e249

gene prediction, 249

Genome annotation, 369, 370f

nucleotide level, 370

process level, 370e372, 371f

protein level, 370

reliability of, 373e374

tools for, 372e373, 373t

Genome assembly, 368f

de novo, 367e368

reference, 368e369

Genome sequencing

evolution of, 363, 364t

first generation (Sanger’s generation), 363

second-generation/next-generation sequencing

illumina sequencing, 365, 366f

ion torrent (IT) sequencing, 365

454 (Roche) sequencing, 365

Supported Oligonucleotide Ligation and

Detection (SOLiD) sequencing, 366

third generation, 366

Oxford Nanopore, 367

PacBio, 367

Genomic database, 256e257, 259t

advantages of, 257

GenBank, 257e258

Saccharomyces Genome Database

(SGD), 258

wFleaBase, 258

WormBase, 258

Genomic evolution, 245e247, 248f

Genomics, 361e362

Genotype-to-phenotype relationships, 245, 246f

Germline mutations, 336

Glide module, 18, 181

Global pairwise alignment, 435

GOLD (Genetic Optimization of Ligand Dock-

ing), 181

GrailEXP, 249

GRAMM (Global Range Molecular Matching),

182

Greedy algorithm, 368

Grooves, 309

H
Heuristic programming, 435e437

High-scoring segment pair (HSP), 439

High-throughput screening (HTS), 27, 107f,

117e118, 121e122, 140e141, 209e210

structure-activity relationship, 210

High-throughput virtual screening (HTVS), 72

compound databases, 73

ligand preparation of, 73e74, 75te77t

docking, 77

postprocessing, 77e78

target preparation, 77

Histidine, 306

Homology modeling, 39, 265, 426, 428b

applications, 39

concept, 37

tools, 38, 38t

workflow, 37e38

Hooke’s law, 64

HSPred, 157

HTS. See High-throughput screening (HTS)

HTVS. See High-throughput virtual screening

(HTVS)

Human and Vertebrate Analysis and Annotation

(HAVANA), 372e373

Human Genome Project (HGP), 245, 331, 362

Hybrid capture methods, 331

p-Hydrogen bonds, 309

Hydrophilic-lipophilic balance (HLB), 459e460,

461t, 462f

HyperChem, 106e107

HypoGen program, 12e13

I
ICM (Internal Coordinate Modeling), 182

Illumina sequencing, 365, 366f

Incremental construction (IC) algorithm, 68

Induced-fit docking (IFD), 18, 63

Information technology, 245

In silico drug designing, 173, 174f

ligand-based approach

pharmacophore modeling, 213

quantitative structureeactivity relationship

(QSAR), 214

structure-based approach

binding site location, 212

docking ligands, 212e213

drug target, evaluation of, 212

refining target structure, 212

target selection, 211

In silico methods, 401e402, 415f

animal testing, 409e410

artificial intelligence (AI), 408e409

BLAST, 402e403

computer simulation, organ modeling, 405

Index 487



In silico methods (Continued)

DNA-based chip, 407e408

machine learning (ML), 408e409

microarray, 407e408

data analysis, 408

molecular docking, 405, 406f

molecular modeling (MM), 404e405

multiple sequence alignment (MSA), 403

softwares, 401t

structureeactivity relationship, 403e404, 404f

structure-based virtual screening, 405e407, 406f

In silico structure-based virtual screening, 178

molecular docking, 178, 179f

classes of, 179e180

tools, 180e183, 180t

pharmacophore development, 183e188

quantitative structure-activity relationship

(QSAR), 189e192

Insulin, 245e247

Internal Coordinate Mechanics (ICM), 19, 22

International Cancer Genome Consortium

(ICGC), 332

International Chemical Identifier (InChI),

112e113

International Nucleotide Sequence Database

(INSD), 256

Inverse Boltzmann law, 72

Ion torrent (IT) sequencing, 365

ISIS Draw, 63

J
Jalview, 250e252

Jupyter Notebook, 283, 284f, 286e288, 287f

K
Kernel estimation, 377

Kernel logistic regression (KLR), 314e316

k-nearest neighbors (KNN), 108e109, 196e197,

377

Knowledge-based scoring function, 72

L
Larotrectinib, 329e331

LBP. See Ligand-based pharmacophore (LBP)

Lead identification, 268

Lead optimization, 268

Least square algorithms, 197

LIGAND, 11

Ligand-based drug design (LBDD)

connection tables, 29e30

ligand-based pharmacophore (LBP)

concept, 35e36

workflow, 36

linear notations, 29e30

molecular graphs, 29e30

molecular similarity-based search

applications, 32

concept, 31e32, 31t

workflow, 32

nodes and edges, 29e30

principle of, 29e30

quantitative structure-activity relationship

(QSAR), 35

applications, 34e35

concept, 33e34, 34t

tools, 34, 35t

workflow, 34

small molecule resources, 29e30, 30t

techniques, 30

tools, 36e37, 36t

applications, 36

Ligand-based pharmacophore (LBP), 12

concept, 35e36

workflow, 36

Ligand-based virtual screening (LBVS), 173e174

pharmacophore designing, 174

Ligand databases/libraries, 175e178, 176te177t

LigandFit, 183

Ligand information databases, 11

Ligand Scout, 186

LigBuilder, 188

Linear notations, 29e30

Linux OS/OSX, 285

Lipids, 465e467

Lipinski rule of five, 1e2, 17, 74, 210

Lysine, 306

M
Machine-learning (ML), 15e16, 108e109,

173e174, 192, 408e409

algorithms, 174e175

classification and regression problems

artificial neural networks (ANNs), 198

deep learning network (DLN), 198e199

k-nearest neighbor algorithm (kNN), 196e197

least square algorithms, 197

linear discriminant analysis (LDA), 195

Naı̈ve Bayesian algorithm, 196

random forest algorithm, 196

support vector machine (SVM), 195

techniques of, 193, 193te194t

supervised learning, 193

unsupervised learning, 193

Macroemulsion, 455, 458

488 Index



MAPPER, 317

Marvin, 63

Massive parallel sequencing, 331

Materials Studio, 106e107

MaxameGilbert sequencing, 245e247, 363

Maximum likelihood, 255

Maximum parsimony, 255

Medical science, 207

MedusaScore, 20e21

MEGADOCK 4.0, 145

MEMCover, 343

MEMo, 343

Metadynamics sampling, 83e84

MetaSite, 395

Microarray, 407e408

data analysis, 408

expression profiling, 245

Microbiological analysis, 397e398

Microdosing, 399

Microemulsion, 455, 458e459, 460f

phase behavior, 465e467, 466f

Microfluidics chips, 399e400, 400f

MLR. See Multivariate linear regression (MLR)

MoKa, 186

MolDOCK, 183

Molecular biology, 245

Molecular descriptors, 31, 33

Molecular docking, 42, 66f, 131e132, 405, 406f

active site identification, 64e65

algorithms, 58

exhaustive systematic search, 68

fragment-based docking (FBD), 68

shape complementarity, 67

stochastic search, 68e70

analysis, 65, 67f

antimalarial drugs, 223e224

applications, 41e42

classes of, 179e180

cleaning and refinement, 64

concept, 39e40

COX-2 monomer, peptide, 56e57, 57f

factors, 57e58

receptor and ligand

conformational flexibility, 65

3D structure, 63

scoring functions, 70e72

tools, 180t

AutoDock, 181

AutoDock Vina, 181

CDOCKER, 182

DOCK, 181

FlexX (Fast Flexible Ligand Docking), 182

FRED and HYBRID, 183

Glide, 181

GOLD (Genetic Optimization of Ligand

Docking), 181

GRAMM (Global Range Molecular

Matching), 182

ICM (Internal Coordinate Modeling), 182

LigandFit, 183

MolDOCK, 183

Surflex, 183

tools and software, 41, 41t

types of, 59te61t

blind vs. site-directed docking, 63

rigid vs. flexible docking, 58e63, 62f

workflow, 40e41

Molecular dynamics (MD) simulations, 22, 35, 62,

84f

accelerated molecular dynamics, 81

metadynamics sampling, 83e84

parallel tempering method, 84e85

stochastic search algorithm, 70

structure-based drug design (SBDD), 49

applications, 48e49

concept, 46

tools, 47, 48t

workflow, 47

targeted molecular dynamics, 84

umbrella sampling, 83

Molecular Interaction Network, 11

Molecular mechanics (MM), 64

Molecular modelling (MM), 404e405

Ab initio methods, 127e128

density functional theory (DFT), 128e129

methods, 124, 125f

molecular docking, 131e132

molecular dynamics (MD), 129e130

molecular mechanics methods, 126

Monte Carlo (MC) simulations, 130e131

semiempirical methods, 126e127

softwares, 106e107

tools, 125

Molecular relaxation, 62

Molecular similarity-based search

applications, 32

concept, 31e32, 31t

workflow, 32

Mol-inspiration, 185

MolSoft, 185e186

Monte Carlo (MC) simulations, 18, 62, 85

molecular dynamics simulations, 130e131

MPHIL, 188

Multi-Dendrix, 344

Index 489



Multiple emulsions, 455

Multiple linear regression (MLR), 33

Multiple sequence alignment (MSA), 403

Multivariate linear regression (MLR), 16e17

Mutagenesis, 141e142

Mutations, types, 431e432

deletion, 432, 432f

insertion, 431

substitution, 432

Mycobacterium tuberculosis (Mtb), 151e152

N
Naı̈ve Bayesian algorithm, 196

Nanoemulsion, 455, 459

National Center for Biotechnology Information

(NCBI), 437e438

NCI Genomic Data Commons, 334

NeedlemaneWunsch algorithm, 250e252

Neighbor-joining (NJ) method, 254, 255f

Network analysis, 342e343

data integration and methodological combination,

343e344, 345f

software resources, 344e345

Network-based stratification (NBS), 342e343

Network of Cancer Genes, 334e335

Neutron diffraction, 108e109

Newton’s second law of motion, 46, 70

Next-generation sequencing (NGS), 329e331,

363

Nitrogenous bases, 306e308, 307f

NNScore, 20e21

Nuclear magnetic resonance (NMR), 11, 108e109

Nucleotide level annotation, 370

Nucleotide sequence analysis, 249e252, 251t

O
OECD-QSAR toolbox, 191

Oil-in-water (O/W) emulsion, 455, 457, 460f

Oligonucleotides, 108e109

Ontology, 378

OpenBabel, 73e74

Open reading frame (ORF), 445e446

Operational taxonomic units (OTUs), 254e255

Operators, Python, 288e289, 289t

Orthologs, 428

Overlap-layout-consensus (OLC), 332e333, 368

Oxford Nanopore, 367

P
PacBio, 367

PADA1, 319

Parallel tempering method, 84e85

Paralogs, 428

Partial least square (PLS), 33, 225, 226t

Particle swarm optimization (PSO), 69

PASS Prediction, 191

Pathway analysis, 340e342

PDIdb, 319

Penalized logistic regression (PLR), 314e316

pepMMsMIMIC, 161

Peptides, 140e141

Pharmaceutical emulsions, 456, 457f

Pharmacodynamics (PD), 85, 392

Pharmacogenomics, 268e269, 269t

Pharmacokinetics (PK), 85, 392

Pharmacophore modeling, 11e12, 35e36,

183e184

scoring scheme, 12e14

statistical approaches, 12e14

tools, 184e188, 184te185t

ALADDIN, 187

CLEW, 188

Disco Tech (Distance Computing Technique),

186

GALAHAD, 186

GASP program, 187

Ligand Scout, 186

LigBuilder, 188

MoKa, 186

Mol-inspiration, 185

MolSoft, 185e186

MPHIL, 188

PharmaGist, 187

PHASE, 186

QSIRIS Property Explorer, 185

RAPID, 187e188

SCAMPI, 188

types of, 12, 13f

Pharmacophore fingerprint similarity (PFS), 161

PharmaGist, 187

Phase behavior, 465e467, 466f

Phenylketonuria, 248e249

Phosphodiesterase 4B (PDE4B) inhibitors, 35

Phylogenetic analyses, 253f

bioinformatics tools, 254, 254t

character-based method, 255

distance-based method, 254e255, 255f

Physicochemical techniques, 394e395

Plant analysis, 399

Plasmodium falciparum, 215

Plasmodium knowlesi, 215

Plasmodium malariae, 215

Plasmodium ovale, 215

Plasmodium vivax, 215

490 Index



POLD1, 329

POLE, 329

Polymerase chain reaction (PCR), 361

Polypeptides, 108e109

Polypharmacology, 116

Polysaccharides, 108e109

Pose prediction, 21

Posttranslation modifications, 248e249

PreDs, 318

Principal component analysis (PCA), 33, 116,

117f

Process level annotation, 370e372, 371f

ProNIT, 318

Protein Data Bank (PDB), 11, 56, 108e109, 305

Protein energy land scape exploration (PELE), 85

Protein Information Resource (PIR), 245e247

Protein Interaction Analysis panel, 157

Protein level annotation, 370

Protein preparation, 212

Protein-protein interactions (PPIs), 85

biological processes, 139e140

blocking, 140

computational drug designing, 142e144, 143f

databases, 144e145, 148te149t

decoy, 147e150

iPPI database (iPPI-DB), 146

MEGADOCK 4.0, 145

2P2I database, 146

TIMBAL, 147

identify inhibitors, 140e141

interface, 141e142

nature, 141e142

pharmacokinetic properties, 154e155

strategies and tools, 155

ADME/T properties, 162e165

interacting residues and hot spots, 155e160

screening, 160e162

transcription factors, 151e152, 151fe152f

Animal Transcription Factor DataBase

(AnimalTFDB 3.0), 153

SM-TF database, 153

TRANSFAC (TRANScription FACtor)

database, 152e153

TRRUST (Transcriptional Regulatory

Relationships Unraveled by Sentence-based

Text mining) database, 153

Proteins, 305, 423

amino acids, 309

biological sequences, 425f

characteristic features, 309e310

ligand information databases and, 11

protein-binding motifs, 310e316, 312te313t,

314f, 315t

sequence analysis, 252, 253t

Protein sequence databases, 245e247, 258e259,

260t

archives, 260e261

types of, 259

universal curated database, 261

Swiss-Prot, 261

TrEMBL, 261

UniProt, 261

Protein threading, 265

Pseudoternary phase diagram, 455e456, 463f,

467f

bicontinuous phase, 465

phase behavior, 465e467, 466f

plot values, 468e469, 468f, 470fe471f

preparation of, 469

equilibrium point, 469

softwares, 471e478

surfactant mix (Smix), 469

surfactant mix (Smix) and oil, defined ratio, 469

ternary phase diagrams, 471

sides of, 464

ternary phase diagram, 464, 464f

upper apex, 465

water titration method, 462e463

PubChem, 73, 122

PubChem Sketcher, 63

PyPi, 283

Python, 279e280, 280te281t, 282e283

Anaconda, 286

bioinformatics, 283

chemoinformatics, 283

components, 288

control flow, 289e292

control statements, 289e292

data structure, 294e295

functions, 292e293

indentation, 294

library, 293e294

module, 293e294

operators, 288e289

variable, 288

installing, 284f

conda environment, 286

interactive shell, 283e284, 284f

Jupyter Notebook, 286e288, 287f

Linux OS/OSX, 285

Unix/Linux commands, 285, 285t

write and run, 283e284

Index 491



Q
QikProp, 151e152, 163

QSAR. See Quantitative structure-activity

relationship (QSAR)

QSIRIS Property Explorer, 185

Q-SiteFinder, 65

Quantitative structure-activity relationship

(QSAR), 2, 3t, 106e107, 117e118, 164,

174, 175f, 189f, 214

algorithm-based acceptable, 14

3D-QSAR models, 15

4D-QSAR models, 15e16

fragment-based 2D-QSAR, 15

ligand-based drug design (LBDD), 35

applications, 34e35

concept, 33e34, 34t

tools, 34, 35t

workflow, 34

methodologies, 14

multidimensional, 15e16

multivariate linear regression (MLR), 17

regression coefficients, 14

statistical methods for, 16, 16f

tools, 190e192, 192t

types of, 190

Quantitative structure-property relationship

(QSPR), 86

Quantum chemical descriptors, 115

Quantum mechanics (QM), 64

R
Random connection methods, 78

Random forest algorithm, 196

RAPID, 187e188

Reading frames, 445e446

Receiver operating characteristic (ROC) analysis,

12e13

Receptor-based pharmacophore (RBP)

modeling, 46

applications, 45e46

concept, 44e45

tools, 45, 45t

workflow, 45

Recurrent neural network (RNN), 198e199

Reference assembly, 368e369

Regression-based statistical methods, 16

Refinement, 64

Replica exchange molecular dynamics (REMD),

84e85

Research Collaboratory for Structural

Bioinformatics (RCSB), 37e38

Residue Scanning panel, 158

Rigid docking, 39e40, 58, 179

RNA polymerase (RNAP), 151e152

RNA-sequencing (RNA-seq), 331, 361, 375

RNA splicing, 248e249

454 (Roche) sequencing, 365

Root mean square deviation (RMSD), 69, 149, 222

RosettaLigand, 18

Rous sarcoma virus (RSV), 329

3Rs principle, 391, 391f, 401e413

S
Saccharomyces Genome Database (SGD), 258

Sanger sequencing, 245e247, 249e250

SBDD. See Structure-based drug design (SBDD)

SCAMPI, 188

Schrodinger, 151e152

Scigress Explore method, 17

Scoring functions, 19e21, 39e40

molecular docking, 70e71

consensus scoring, 72

empirical, 71

forcefield, 71

knowledge, 72

Scoring matrices

BLOSUM matrix, 433e434

computer sciences vs. biology, 434, 434t

PAM matrices, 433e434

selectivity, 434

sensitivity, 434

speed, 434

Screening methods, 121e122, 160e162

Second seed, 333

Seeding, 439, 439f

Semiempirical methods, 126e127

Semiflexible docking, 179

Sequence alignment, 332, 424e428

homology, 426

identity, 427, 427f

similarity, 424e427, 426f

Sequence analysis

nucleotide, 249e252

phylogenetic, 252e255

protein, 252

Sequence database, 255e256, 257t

genomic, 256e258

protein, 258e261

Sequence identity, 427, 427f

Sequence similarity, 426e427

Sequential buildup methods, 78

Serial analysis of gene expression

(SAGE), 374

Shape complementarity, 67

492 Index



Sickle cell anemia, 248e249

Side-chain flexibility, 61

Simple emulsion, 457, 458f

Simplified Molecular Input Line Entry System

(SMILES), 29e30, 112

Single Line Notation, 112

Single nucleotide polymorphisms (SNPs), 333

Site-point connection methods, 78

Skill sets, 281e282

Small molecule compound databases, 2

SmitheWaterman algorithm, 250e252, 438

Soft docking, 61

Solvent mapping, 64e65

Somatic evolution, 329

Somatic mutations, 336e337

pan-cancer, 337

Spartan’18, 106e107

SPRESIweb database, 2

Statements, 288e289

Stem cells, 415f

alternative, 411e413, 412f

shortcomings of, 413

types, 410e411

Stochastic search algorithm, 68e70

genetic algorithm, 70

molecular dynamics (MD), 70

Monte Carlo (MC), 69

particle swarm optimization (PSO), 69

Tabu search, 69

Structural variants (SVs), 332, 339e340

Structure-based drug design (SBDD),

142, 143f

3D structure information, 56

homology modeling, 39

applications, 39

concept, 37

tools, 38, 38t

workflow, 37e38

molecular docking, 39e42

molecular dynamics (MD) simulations, 49

applications, 48e49

concept, 46

tools, 47, 48t

workflow, 47

receptor-based pharmacophore (RBP) modeling,

44e46

virtual screening (VS), 44

applications, 44

concept, 42

tools, 43, 43te44t

workflow, 42e43

Structure-based pharmacophore modeling, 12

Structure-based virtual screening (SBVS),

173e174. See also In silico

structure-based virtual screening

Structure prediction, 262e263, 263f

databases for, 263, 264t

template-based modeling, 264e265

template-free modeling, 265e266

Substitution matrixes, 433

Supervised learning, 193, 195

Supported Oligonucleotide Ligation and

Detection (SOLiD) sequencing, 366

Support vector machines (SVMs), 155, 195,

314e316, 377

Surflex, 183

Surfactants (emulsifying agents), 455, 459e462

Swiss-Prot, 261

SYBYL, 190

Systematic search, 68

T
Tabu search algorithms, 18

Targeted molecular dynamics, 84

Tautomerization, 306e308, 308f

Template-based modeling, 264e265

Template-free modeling, 265e266

Ternary phase diagram, 455e456

TEST, 164, 191

Test set approach, 12e13, 33e34

The Cancer Genome Atlas (TCGA), 332

TIMBAL database, 147

Tissue chips, in space, 400

Tissue engineering, 396e397

Topological descriptors, 115

Topological polar surface area (TPSA), 74

Toxicopharmacokinetics, 392

Training set, 33e34

Transcription, 248e249

Transcription factors (TFs), 338

TRANSFAC, 316e317

Translation, 248e249

TreeView, 250e252

TrEMBL, 261

True positives, 434

U
Ubuntu, 285

Ultrafast shape recognition (USR), 161

Umbrella sampling, 83

Uniform resource locator (URL), 2, 3te10t

UniProt, 261

Index 493



Unix/Linux commands, 285, 285t

Unsupervised learning, 193

Unweighted pair group method with arithmetic

mean (UPGMA), 254

V
Vega QSAR, 191

Virtual screening (VS), 20e21, 27, 121e122,

173e174, 209

structure-based drug design (SBDD), 44

applications, 44

concept, 42

tools, 43, 43te44t

workflow, 42e43

VoteDock, 20e21

v-src gene, 329

W
Water-in-oil (W/O) emulsion, 455, 457

Water-in-oil-in-water (W/O/W) emulsion, 455

Water molecules, 309

WatsoneCrick base pairing, 306, 307f

WebPDA, 319e320

wFleaBase, 258

Wiswesser line notation, 29e30

WormBase, 258

X
Xenologs, 428

XL Stat, 475e477

dataset, 475

phase diagram, 477

ternary diagram, 475

X-ray diffraction (XRD), 108e109

Z
ZIFIBI, 318

ZINC database, 73

494 Index


	Front-Matte_2021_Chemoinformatics-and-Bioinformatics-in-the-Pharmaceutical-S
	Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences

	Copyright_2021_Chemoinformatics-and-Bioinformatics-in-the-Pharmaceutical-Sci
	Copyright

	Contributor_2021_Chemoinformatics-and-Bioinformatics-in-the-Pharmaceutical-S
	Contributors

	Chapter-1---Impact-of-chemoinformatics-a_2021_Chemoinformatics-and-Bioinform
	1. Impact of chemoinformatics approaches and tools on current chemical research
	1.1 Background
	1.2 Ligand and target resources in chemoinformatics
	1.2.1 Small molecule compound databases
	1.2.2 Protein and ligand information databases
	1.2.3 Databases related to macromolecular interactions

	1.3 Pharmacophore modeling
	1.3.1 Types of pharmacophore modeling
	1.3.2 Scoring scheme and statistical approaches used in pharmacophore modeling

	1.4 QSAR models
	1.4.1 Methodologies used to build QSAR models
	1.4.2 Fragment-based 2D-QSAR
	1.4.3 3D-QSAR model
	1.4.4 Multidimensional or 4D-QSAR models
	1.4.5 Statistical methods for generation of QSAR models
	1.4.6 Multivariate linear regression analysis

	1.5 Docking methods
	1.5.1 Scoring functions
	1.5.2 Pose prediction
	1.5.3 MD simulations

	1.6 Conclusion
	Acknowledgments
	References


	Chapter-2---Structure--and-ligand-based-d_2021_Chemoinformatics-and-Bioinfor
	2. Structure- and ligand-based drug design: concepts, approaches, and challenges
	2.1 Introduction
	2.1.1 Advantages of CADD

	2.2 Ligand-based drug design
	2.2.1 Molecular similarity-based search
	2.2.1.1 Concept
	2.2.1.2 Workflow
	2.2.1.3 Applications
	2.2.1.4 Challenges

	2.2.2 Quantitative structure–activity relationship
	2.2.2.1 Concept
	2.2.2.2 Workflow
	2.2.2.3 Tools
	2.2.2.4 Applications
	2.2.2.5 Challenges

	2.2.3 Ligand-based pharmacophore
	2.2.3.1 Concept
	2.2.3.2 Workflow

	2.2.4 Tools
	2.2.4.1 Applications

	2.2.5 Challenges

	2.3 Structure-based drug design
	2.3.1 Homology modeling
	2.3.1.1 Concept
	2.3.1.2 Workflow
	2.3.1.3 Tools

	2.3.2 Applications
	2.3.3 Challenges
	2.3.4 Molecular docking
	2.3.4.1 Concept
	2.3.4.2 Workflow
	2.3.4.3 Tools and software
	2.3.4.4 Applications
	2.3.4.5 Challenges

	2.3.5 Virtual screening
	2.3.5.1 Concept
	2.3.5.2 General workflow
	2.3.5.3 Tools
	2.3.5.4 Applications
	2.3.5.5 Challenges

	2.3.6 Receptor-based pharmacophore modeling
	2.3.6.1 Concept
	2.3.6.2 Workflow
	2.3.6.3 Tools
	2.3.6.4 Applications
	2.3.6.5 Challenges

	2.3.7 Molecular dynamics simulations
	2.3.7.1 Concept
	2.3.7.2 Workflow
	2.3.7.3 Tools
	2.3.7.4 Applications
	2.3.7.5 Challenges


	References


	Chapter-3---Advances-in-structu_2021_Chemoinformatics-and-Bioinformatics-in-
	3. Advances in structure-based drug design
	3.1 Introduction
	3.1.1 Structure-based drug design methods

	3.2 Molecular docking
	3.2.1 Challenges in docking
	3.2.2 Types of molecular docking
	3.2.2.1 Rigid versus flexible docking
	3.2.2.2 Blind versus site-directed docking

	3.2.3 Methodology
	3.2.3.1 Generation of a 3D structure of receptor and ligand
	3.2.3.2 Cleaning and refinement of structures
	3.2.3.3 Identification of active site
	3.2.3.4 Conformational flexibility of ligand and receptor
	3.2.3.5 Docking
	3.2.3.6 Analysis of docking results

	3.2.4 Docking algorithms
	3.2.4.1 Shape complementarity algorithm
	3.2.4.2 Exhaustive systematic search algorithm
	3.2.4.3 Fragment-based docking
	3.2.4.4 Stochastic search algorithm

	3.2.5 Scoring functions in docking
	3.2.5.1 Forcefield-based scoring functions
	3.2.5.2 Empirical scoring functions
	3.2.5.3 Knowledge-based scoring function
	3.2.5.4 Consensus scoring


	3.3 High-throughput screening
	3.3.1 Methodology of virtual screening
	3.3.1.1 Compound databases
	3.3.1.2 Ligand preparation of the compound database
	3.3.1.2.1 Library design

	3.3.1.3 Target preparation
	3.3.1.4 Docking
	3.3.1.5 Postprocessing


	3.4 De novo ligand design
	3.4.1 Whole molecule docking
	3.4.2 Fragment-based methods

	3.5 Biomolecular simulations
	3.5.1 Molecular dynamics simulations
	3.5.1.1 Accelerated molecular dynamics
	3.5.1.2 Umbrella sampling
	3.5.1.3 Metadynamics sampling
	3.5.1.4 Targeted molecular dynamics
	3.5.1.5 Parallel tempering method

	3.5.2 Monte Carlo simulations

	3.6 ADMET profiling
	3.7 Conclusion
	References


	Chapter-4---Computational-tools_2021_Chemoinformatics-and-Bioinformatics-in-
	4. Computational tools in cheminformatics
	4.1 Introduction
	4.2 Molecules and their reactions: representation
	4.2.1 Data mining
	4.2.2 Representation of chemical structures
	4.2.3 Representation of chemical reactions

	4.3 Preparation before building libraries for databases in cheminformatics
	4.3.1 Importance of descriptors
	4.3.2 Verification and manipulation of data
	4.3.3 Development of computational models for designing a new drug
	4.3.4 Similarity techniques
	4.3.5 Selection of compounds based on diversity analysis

	4.4 High-throughput screening and virtual screening
	4.5 Combinatorial libraries
	4.6 Additional computational tools in cheminformatics: molecular modeling
	4.6.1 Molecular mechanics methods
	4.6.2 Semiempirical methods
	4.6.3 Ab initio methods
	4.6.4 Density functional theory
	4.6.5 Molecular dynamics
	4.6.6 Monte Carlo simulations
	4.6.6.1 Importance of molecular dynamics simulations
	4.6.6.2 Contrast between molecular dynamics simulations and Monte Carlo simulations

	4.6.7 Molecular docking

	4.7 Conclusions
	References
	Further reading


	Chapter-5---Structure-based-drug-designing-st_2021_Chemoinformatics-and-Bioi
	5. Structure-based drug designing strategy to inhibit protein-protein-interactions using in silico tools
	5.1 Introduction
	5.2 Methods to identify inhibitors of PPIs
	5.3 Nature of the PPI interface
	5.4 Computational drug designing
	5.5 Databases that play a significant role in the process of predicting PPI inhibitors: databases of PPIs, PPI modulators, and  ...
	5.5.1 Databases of PPIs
	5.5.2 Databases of PPI modulators
	5.5.3 Decoy databases for PPIs and modulators

	5.6 Transcription factors as one of the PPI drug targets: importance, case study, and specific databases
	5.7 Pharmacokinetic properties of small-molecule inhibitors of PPI
	5.8 Strategies and tools to identify small-molecule inhibitors of PPIs
	5.8.1 Prediction of interacting residues and hot spots in protein–protein complexes
	5.8.2 Screening of small molecules
	5.8.3 Prediction of ADME/T properties

	5.9 Conclusion
	References


	Chapter-6---Advanced-approaches-and-in-si_2021_Chemoinformatics-and-Bioinfor
	6. Advanced approaches and in silico tools of chemoinformatics in drug designing
	6.1 Introduction
	6.2 Current chemoinformatics approaches and tools
	6.2.1 Ligand databases/libraries
	6.2.2 In silico structure-based virtual screening
	6.2.2.1 Classes of molecular docking
	6.2.2.2 Molecular docking tools

	6.2.3 Pharmacophore development
	6.2.3.1 Pharmacophore development tools

	6.2.4 Quantitative structure–activity relationship prediction
	6.2.4.1 Types of QSAR
	6.2.4.2 QSAR modeling tools


	6.3 Machine learning approaches and tools for chemoinformatics
	6.3.1 Techniques of ML
	6.3.2 Types of supervised learning
	6.3.3 Algorithms for classification and regression problems in drug designing

	6.4 Conclusion
	References


	Chapter-7---Chem-bioinformatic-approach-for-d_2021_Chemoinformatics-and-Bioi
	7. Chem-bioinformatic approach for drug discovery: in silico screening of potential antimalarial compounds
	7.1 Importance of technology in medical science
	7.2 Origin of cheminformatics
	7.2.1 Role of cheminformatics in drug designing
	7.2.1.1 Selection of a compound library
	7.2.1.2 Virtual screening
	7.2.1.3 High-throughput screening
	7.2.1.4 Structure–activity relationship on high-throughput screening data and sequential screening
	7.2.1.5 In silico ADMET


	7.3 Role of bioinformatics in drug discovery
	7.3.1 In silico designing of a drug using the structure-based approach
	7.3.1.1 Selection of the target
	7.3.1.2 Evaluation of the drug target
	7.3.1.3 Refining the target structure
	7.3.1.4 Locating the binding site
	7.3.1.5 Docking ligands into the binding site

	7.3.2 In silico drug designing using the ligand-based approach
	7.3.2.1 Pharmacophore modeling
	7.3.2.2 Quantitative structure–activity relationship

	7.3.3 Another exquisite tool: molecular dynamics

	7.4 Applications of cheminformatics and bioinformatics in the development of antimalarial drugs
	7.4.1 Background of the disease
	7.4.2 Antimalarials commercially available
	7.4.3 Hybrid molecules: an alternative to conventional antimalarial drugs
	7.4.4 Computational details
	7.4.4.1 Collection of dataset
	7.4.4.2 Steps involved in pharmacophore and 3D QSAR model building
	7.4.4.3 Preparation of ligands
	7.4.4.4 Site creation and finding pharmacophores
	7.4.4.5 Scoring of pharmacophores
	7.4.4.6 Model validation: 3D QSAR
	7.4.4.7 Creating a virtual library
	7.4.4.8 Molecular docking
	7.4.4.9 In silico rapid ADME prognosis

	7.4.5 Results and discussion
	7.4.5.1 3D QSAR visualization
	7.4.5.2 Virtual database screening
	7.4.5.3 Drug resemblance analysis
	7.4.5.4 Docking of lead molecules with Fe(III)PPIX ring
	7.4.5.5 Docking of lead molecules with pf-DHFR


	7.5 Conclusions
	Electronic Supplementary information
	Chem-bioinformatic approach for drug discovery: in silico screening of potential antimalarial compounds

	Acknowledgments
	References


	Chapter-8---Mapping-genomes-by-usin_2021_Chemoinformatics-and-Bioinformatics
	8. Mapping genomes by using bioinformatics data and tools
	8.1 Background
	8.1.1 Emergence and evolution of bioinformatics

	8.2 Genome
	8.2.1 Gene expression
	8.2.2 Gene prediction

	8.3 Sequence analysis
	8.3.1 Nucleotide sequence analysis
	8.3.2 Protein sequence analysis
	8.3.3 Phylogenetic analyses
	8.3.3.1 Distance-based method
	8.3.3.2 Character-based method


	8.4 Sequence database
	8.4.1 Genomic database
	8.4.1.1 Advantages of the genomic database are
	8.4.1.2 GenBank
	8.4.1.3 SGD
	8.4.1.4 Other genomic databases

	8.4.2 Protein sequence databases
	8.4.2.1 Types of protein sequence databases
	8.4.2.2 Protein sequence archives
	8.4.2.3 Universal curated database
	8.4.2.3.1 Swiss-Prot
	8.4.2.3.1 Swiss-Prot
	8.4.2.3.2 TrEMBL
	8.4.2.3.2 TrEMBL
	8.4.2.3.3 UniProt
	8.4.2.3.3 UniProt



	8.5 Structure prediction
	8.5.1 Template-based modeling
	8.5.1.1 Homology modeling
	8.5.1.2 Protein threading

	8.5.2 Template-free modeling
	8.5.2.1 Ab initio protein modeling


	8.6 Bioinformatics and drug discovery
	8.6.1 Drug target identification
	8.6.2 Drug target validation
	8.6.3 Lead identification and optimization

	8.7 Pharmacogenomics
	8.8 Future aspects
	References


	Chapter-9---Python--a-reliable-programmin_2021_Chemoinformatics-and-Bioinfor
	9. Python, a reliable programming language for chemoinformatics and bioinformatics
	9.1 Introduction
	9.2 Desired skill sets
	9.3 Python
	9.4 Python in bioinformatics and chemoinformatics
	9.5 Use Python interactively
	9.6 Prerequisites to working with Python
	9.6.1 Linux OS/OSX
	9.6.2 Basic Linux bash commands
	9.6.3 Anaconda
	9.6.4 Installing Python in the conda environment
	9.6.5 Jupyter Notebook

	9.7 Quick overview of Python components
	9.7.1 Variable
	9.7.2 Operators in Python
	9.7.3 Control flow and control statements in Python
	9.7.4 Python functions
	9.7.5 Library or a module
	9.7.6 Indentation
	9.7.7 Data structure

	9.8 Bioinformatics and cheminformatics examples
	9.8.1 Genomics data handling and analysis
	9.8.2 Chemoinformatics data handling and analysis

	9.9 Conclusion
	References


	Chapter-10---Unveiling-the-molecular-basis_2021_Chemoinformatics-and-Bioinfo
	10. Unveiling the molecular basis of DNA–protein structure and function: an in silico view
	10.1 Background
	10.2 Structural aspects of DNA
	10.2.1 DNA: structural elements
	10.2.2 DNA: nitrogenous bases of DNA are involved in base pairing

	10.3 Structural aspects of proteins
	10.3.1 Characteristic features of amino acids
	10.3.2 Characteristic features of proteins
	10.3.3 Classification of protein-binding motifs

	10.4 In silico tools for unveiling the mystery of DNA–protein interactions
	10.4.1 TRANSFAC
	10.4.2 DISPLAR (DNA site prediction from record of neighboring residues)
	10.4.3 iDBPs (exploration of DNA-binding proteins)
	10.4.4 MAPPER (multigenome analysis of position and patterns of elements of regulation)
	10.4.5 DP-Bind
	10.4.6 PreDs
	10.4.7 ZIFIBI (zinc finger site database)
	10.4.8 Bindn and Bindn+
	10.4.9 ProNIT
	10.4.10 DNA-Prot
	10.4.11 PDIdb
	10.4.12 PADA1 (protein assisted DNA assembly 1)
	10.4.13 DNAproDB
	10.4.14 WebPDA
	10.4.15 DOMMINO
	10.4.16 FlyFactorSurvey

	10.5 Future perspectives
	10.6 Abbreviations
	References


	Chapter-11---Computational-c_2021_Chemoinformatics-and-Bioinformatics-in-the
	11. Computational cancer genomics
	11.1 Introduction
	11.2 Cancer genomics technologies
	11.3 Computational cancer genomics analysis
	11.3.1 Mapping and alignment
	11.3.2 RNA-seq data for pan-cancer
	11.3.3 Databases
	11.3.4 Genomics landscape for oncogenic mutations
	11.3.4.1 Germline mutations
	11.3.4.2 Somatic mutations
	11.3.4.2.1 Somatic mutations in pan-cancer
	11.3.4.2.1 Somatic mutations in pan-cancer


	11.3.5 Noncoding mutations
	11.3.6 Variant annotation
	11.3.7 Structural variants

	11.4 Pathway analysis
	11.5 Network analysis
	11.5.1 Data integration and methodological combination
	11.5.2 Software resources (workflow and visualization interfaces)

	11.6 Conclusion
	References


	Chapter-12---Computational-and-functional-_2021_Chemoinformatics-and-Bioinfo
	12. Computational and functional annotation at genomic scale: gene expression and analysis
	12.1 Introduction: background (history)
	12.2 Genome sequencing
	12.2.1 First generation (Sanger’s generation): an old but reliable approach
	12.2.2 Second-generation/next-generation sequencing
	12.2.2.1 454 (Roche) sequencing
	12.2.2.2 Illumina sequencing
	12.2.2.3 Ion Torrent sequencing
	12.2.2.4 SOLiD sequencing

	12.2.3 Third generation (current generation)
	12.2.3.1 PacBio
	12.2.3.2 Oxford Nanopore


	12.3 Genome assembly
	12.3.1 De novo assembly
	12.3.2 Reference assembly

	12.4 Genome annotation
	12.4.1 Levels of genome annotation
	12.4.1.1 Nucleotide level
	12.4.1.2 Protein level
	12.4.1.3 Process level

	12.4.2 Tools for genome annotation
	12.4.3 Reliability of genome annotation

	12.5 Techniques for gene expression analysis
	12.5.1 SAGE
	12.5.2 DNA microarray
	12.5.3 RNA-seq

	12.6 Gene expression data analysis
	12.6.1 Data analysis by data mining
	12.6.1.1 Clustering method
	12.6.1.1.1 Hierarchical
	12.6.1.1.1 Hierarchical
	12.6.1.1.2 Partitioned
	12.6.1.1.2 Partitioned
	12.6.1.1.3 Model based
	12.6.1.1.3 Model based

	12.6.1.2 Classification methods
	12.6.1.2.1 KNN
	12.6.1.2.1 KNN
	12.6.1.2.2 SVM
	12.6.1.2.2 SVM
	12.6.1.2.3 DT
	12.6.1.2.3 DT


	12.6.2 Data analysis by ontology

	12.7 Software for gene expression analysis
	12.8 Computational methods for clinical genomics
	12.9 Conclusion
	Abbreviations
	References


	Chapter-13---Computational-methods--in-sili_2021_Chemoinformatics-and-Bioinf
	13. Computational methods (in silico) and stem cells as alternatives to animals in research
	13.1 Introduction
	13.2 Need for alternatives
	13.3 What are the alternative methods to animal research
	13.3.1 Physicochemical techniques
	13.3.2 Cell and tissue culture
	13.3.3 Tissue engineering
	13.3.4 Microbiological analysis
	13.3.5 Mathematical models and computer simulations
	13.3.6 Epidemiological surveys
	13.3.7 Plant analysis
	13.3.8 Microdosing
	13.3.9 Microfluidics chips
	13.3.10 Tissue chips in space
	13.3.11 Noninvasive imaging techniques

	13.4 Potential of in silico and stem cell methods to sustain 3Rs
	13.4.1 In silico
	13.4.1.1 BLAST (basic local alignment search tool)
	13.4.1.2 Multiple sequence alignment tools
	13.4.1.3 Structure–activity relationship
	13.4.1.4 Molecular modeling
	13.4.1.5 Computer simulation in organ modeling
	13.4.1.6 Molecular docking
	13.4.1.7 Structure-based virtual screening
	13.4.1.8 Microarray or DNA-based chip
	13.4.1.9 Microarray data analysis
	13.4.1.10 Artificial intelligence and machine learning
	13.4.1.11 In silico has the edge over animal testing

	13.4.2 Stem cells: an emerging alternative to animal research
	13.4.2.1 Stem cells and their types
	13.4.2.2 Stem cells as a promising alternative
	13.4.2.3 Shortcomings of stem cells


	13.5 Challenges with alternatives
	13.6 Conclusion
	Acknowledgments
	References


	Chapter-14---An-introduction-to-BLAST--app_2021_Chemoinformatics-and-Bioinfo
	14. An introduction to BLAST: applications for computer-aided drug design and development
	14.1 Basic local alignment search tool
	14.2 Building blocks
	14.2.1 Sequence alignment
	14.2.2 Note
	14.2.3 Types of mutations
	14.2.4 Scoring matrices
	14.2.5 Dynamic programming

	14.3 Basic local alignment search tool
	14.4 How BLAST works
	14.5 Codons, reading frames, and open reading frames
	14.6 Bioinformatics and drug design
	14.7 Applications of BLAST
	14.8 Understanding coronavirus: the menace of 2020
	14.8.1 BLAST simulation practical

	14.9 Conclusions
	References


	Chapter-15---Pseudoternary-phase-diag_2021_Chemoinformatics-and-Bioinformati
	15. Pseudoternary phase diagrams used in emulsion preparation
	15.1 Introduction
	15.2 Classification of emulsions
	15.2.1 Simple emulsion
	15.2.2 Complex/multiple emulsion
	15.2.3 Macroemulsion
	15.2.4 Microemulsion
	15.2.5 Nanoemulsion

	15.3 Emulsifying agents (surfactants)
	15.4 Pseudoternary phase diagrams
	15.4.1 Phase behavior
	15.4.2 Understanding of the pseudoternary phase diagram
	15.4.3 How to plot values on the triangle of the pseudoternary phase diagram
	15.4.4 Preparation of the pseudoternary phase diagram
	15.4.4.1 Preparation of surfactant mix (Smix)
	15.4.4.2 Mixing of surfactant (Smix) and oil in a defined ratio
	15.4.4.3 Determination of equilibrium point
	15.4.4.4 Preparation of ternary phase diagrams


	15.5 Software used for the preparation of pseudoternary phase diagrams
	15.5.1 Chemix School
	15.5.2 XL stat

	15.6 Conclusion
	References


	Index_2021_Chemoinformatics-and-Bioinformatics-in-the-Pharmaceutical-Science
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z



