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More than a decade has passed since the second edition of the Encyclopedia of
Molecular Pharmacology was published. During this time, our knowledge in
molecular pharmacology has increased and the way scientific information is
presented and made accessible has changed. The third edition therefore puts
an emphasis on essays, covering important aspects of molecular pharmacology
and written by leading experts. We have removed short definitions from the
encyclopedia, as they are now available from numerous internet resources.
Similarly, the appendix, which listed drugs and drug targets, has been omitted.
For systematic up-to-date information on established or potential drug
targets such as receptors, channels, transporters, and enzymes, we now refer
to the well-curated web-based databases provided by national and interna-
tional pharmacological societies such as the Guide to Pharmacology
(www.guidetopharmacology.org) or the biannually published Concise Guide
to Pharmacology of the British Journal of Pharmacology.

It has again been a pleasure and a great learning experience to interact with
the 400 authors of the encyclopedia, who have done a great job to briefly
describe important topics of molecular pharmacology for a broad readership.
We thank the new and old authors for their excellent work and many helpful
and constructive suggestions, which went into the third edition. On the side of
Springer Nature, we would like to thank Susanne Dathe and Andrew Spencer,
for initiating and guiding the project, as well as Kate Emery, who tirelessly
managed the project for the last two years. Finally, our special thanks go to
Svea Hiimmer, who provided excellent and invaluable assistance during all
stages of this project.

Bad Nauheim/Frankfurt am Main/Jena Stefan Offermanns
May 2021 Walter Rosenthal


http://www.guidetopharmacology.org

The first edition of the Encyclopedic Reference of Molecular Pharmacology
was well received by its readers, thanks to the excellent work done by the
authors, of whom most have contributed to the second edition as well. The
basic structure of the Encyclopedia has remained unchanged. It is primarily
based on essays, which have been updated, and their number has been
increased to 225 to include many new exciting areas. These essays cover
important drugs and drug targets, but also general principles of pharmacology
as well as cellular processes and pathological situations which are relevant for
drug action. In addition, there are about xy key words linked to the essays. The
Encyclopedia is complemented by an Appendix, which has been greatly
enlarged, listing more than 700 drugs and more than 4,000 proteins that act
as receptors, membrane transport proteins, transcription factors, enzymes or
adhesion molecules.

During the preparation, we greatly enjoyed the interaction with all our
colleagues who contributed to this reference work. It has been a pleasure and
an enriching experience to deal with so many facets of pharmacology. We are
very thankful to the contributing authors for the careful updating of their
essays, and, in particular, we would like to express our gratitude to the more
than xy new authors who have written excellent essays on novel topics.
Finally, we would like to thank Dr. Michaela Bilic and Simone Giesler from
Springer for their enthusiasm throughout the project and their constant
support.

Heidelberg/Berlin Stefan Offermanns
November 2007 Walter Rosenthal
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The era of pharmacology, the science concerned with the understanding of
drug action, began only about 150 years ago when Rudolf Buchheim
established the first pharmacological laboratory in Dorpat (now, Tartu, Esto-
nia). Since then, pharmacology has always been a lively discipline with “open
borders”, reaching out not only to other life sciences such as physiology,
biochemistry, cell biology and clinical medicine, but also to chemistry and
physics. In a rather successful initial phase, pharmacologists devoted their time
to describing drug actions either at the single organ level or on an entire
organism. Over the last few decades, however, research has focused on the
molecular mechanisms by which drugs exert their effects. Here, cultured cells
or even cell-free systems have served as models. As a consequence, our
knowledge of the molecular basis of drug actions has increased enormously.
The aim of Encyclopedic Reference of Molecular Pharmacology is to cover
this rapidly developing field.

The reductionist approach described above has made it increasingly impor-
tant to relate the molecular processes underlying drug actions to the drug effect
on the level of an organ or whole organism. Only this integrated view will
allow the full understanding and prediction of drug actions, and enable a
rational approach to drug development. On the molecular or even atomic
level, new disciplines such as bioinformatics and structural biology have
evolved. They have gained major importance within the field but are particu-
larly relevant for the rational development and design of new drugs. Finally,
the availability of the complete genome sequence of an increasing number of
species provides a basis for systematic, genome-wide pharmacological
research aimed at the identification of new drug targets and individualised
drug treatment (pharmacogenomics and pharmacogenetics). All these aspects
are considered in this encyclopedia.

The main goal of the Encyclopedia is to provide up-to-date information on
the molecular mechanisms of drug action. Leading experts in the field have
provided 159 essays, which form the core structure of this publication.

Most of the essays describe groups of drugs and drug targets, with the
emphasis not only on already exploited drug targets, but also on potential drug
targets as well. Several essays deal with the more general principles of
pharmacology, such as drug tolerance, drug addiction or drug metabolism.
Others portray important cellular processes or pathological situations and
describe how they can be influenced by drugs. The essays are complemented
by more than 1600 keywords, for which links are provided. By looking up the



keywords or titles of essays highlighted in each essay, the reader can obtain
further information on the subject. The alphabetical order of entries makes the
Encyclopedia very easy to use and helps the reader to search successfully. In
addition, the names of authors are listed alphabetically, together with the title
of their essay, to allow a search by author name.

Apart from very few exceptions, the entries in the main text do not contain
drug names in their titles. Instead, drugs that are commonly used all over the
world are listed in the Appendix. Also included in the Appendix are four
extensive sections that contain tables listing proteins such as receptors, trans-
porters or ion channels, which are of particular interest as drug targets or
modulators of drug action.

The Encyclopedia provides valuable information for readers with different
expectations and backgrounds (from scientists, students and lecturers to
informed lay-people) and fills the gap between pharmacology textbooks and
specialized reviews.

All the contributing authors as well as the editors have taken great care to
provide up-to-date information. However, inconsistencies or errors may
remain, for which we assume full responsibility. We welcome comments,
suggestions or corrections and look forward to a stimulating dialog with the
readers of the Encyclopedic Reference of Molecular Pharmacology whether
their comments concern the content of an individual entry or the entire
concept.

We are indebted to our colleagues for their excellent contributions. It has
been a great experience, both personally and scientifically, to interact with and
learn from the 200 plus contributing authors. We would also like to thank
Ms. Hana Deuchert and Ms. Katharina Schmalfeld for their excellent and
invaluable secretarial assistance during all the stages of this project. Within
Springer-Verlag, we are grateful to Dr. Thomas Mager for suggesting the
project and to Frank Krabbes for his technical expertise. Finally, we would
like to express our gratitude to Dr. Claudia Lange for successfully managing
the project and for her encouraging support. It has been a pleasure to work
with her.

Heidelberg/Berlin Stefan Offermanns
June 2003 Walter Rosenthal
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Synonyms

ABC proteins; ATP binding cassette proteins

Definition

The ABC transporters represent one of the largest
families of transmembrane proteins in most
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organisms including plants, bacteria, and eukary-
otic cells. They perform numerous key physiolog-
ical processes directly coupled with the hydrolysis
of ATP. From the pharmacological point of view,
ABC transporters are of special interest because of
their relevance in transmembrane transport of var-
ious drugs, thereby modifying intracellular con-
centrations and hence effects of these compounds.
Furthermore, they represent potential target struc-
tures to interfere with (patho-)physiological pro-
cesses in which they are involved.

Basic Characteristics

ATP-binding cassette (ABC) proteins are present
in plants, bacteria, and eukaryotic organisms
including mammalians. In humans the ABC
gene superfamily comprises about 50 members,
which are organized in 7 subfamilies called
ABCA to ABCG on the basis of their domain
organization and phylogenetic similarities.
Besides the systematic gene nomenclature alter-
native names for the proteins are widely used,
which are based on the first functional description
such as P-glycoprotein for ABCBI1 (which are
also used for the proteins in this article). ABC
proteins are involved in various physiological
processes including the transport of lipids such
as cholesterol (e.g., ABCAl, ABCG1/5/8) or
fatty acids (ABCD1/2), presentation of peptides
by MHC class I molecules (ABCB2/ABCB3,
which are better known as transporter associated

S. Offermanns, W. Rosenthal (eds.), Encyclopedia of Molecular Pharmacology,
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with antigen processing (TAP)), or regulation of
ion channels. For example, the regulatory subunit
of the Katp channel of the pancreatic beta-cells
and target structure of the antidiabetic sulfonyl-
ureas SUR1 is encoded by the ABCC8 gene, and
ABCC7 encodes an important chloride channel
(cystic fibrosis transmembrane conductance regu-
lator, CFTR) in epithelial cells of the lung and
pancreas. In addition, some ABC transporters are
important components of physiological barriers
like the intestinal epithelium or the blood-brain
barrier and in excreting organs as the liver and
kidney. Here, they are acting as efflux pumps
protecting the organism against endogenous
metabolites as well as environmental toxins
including several pharmacological important
drugs. Some of these transporters, namely,
ABCBI1 (P-glycoprotein, P-gp, MDR1), ABCG2
(breast cancer resistance protein, BCRP), and sev-
eral members of the multidrug resistance protein
(MRP) family (ABCC1-C6; ABCC10-ABCC12),
are of high pharmacological relevance, because
they have been identified as one underlying mech-
anism of a cancer-related phenotype called multi-
drug resistance (MDR) (Chen et al. 2016;
Gottesman and Ling 2006; Slot et al. 2011). This
phenomenon is characterized by the resistance of
cancer cells against anticancer drugs caused by
reduced intracellular drug concentrations. Fur-
thermore, these transporters can affect pharmaco-
kinetic parameters of various drugs in general
(Chan et al. 2004).

Topology and Structure

Most ABC transporters, especially those located
in the plasma membrane, are phosphorylated and
glycosylated transmembrane proteins of different
molecular weights (e.g., P-gp/ABCB1, 170 kDa;
BCRP/ABCQG?2, 72 kDa). In general, active ABC
transporters consist of two nucleotide-binding
folds (NBF) and two transmembrane domains
(TMD, each consisting of six a-helices), which
can be localized on a single polypeptide (full
transporter, e.g., P-gp) or formed by dimerization
of a so-called half transporter (e.g., BCRP). This
core structure can be modified by additional
TMDs (e.g., MRP1/ABCCI1) (Fig. 1). The NBFs
contain the highly conserved Walker A and B
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consensus motifs as well as the LSGGQ signature
motif, which is unique for ABC transporters and
catalyzes the ATP hydrolysis — a prerequisite for
substrate binding and transport against a substrate
gradient. For further details on structure and
mechanism of ABC transporters, see Beis (2015).

Tissue Distribution and Localization
Although initially detected in cancer cell lines,
ABC transporters show a wide tissue distribution.
Several drug transporting ABC proteins are
highly expressed in physiological barriers such
as the luminal membrane of enterocytes, the endo-
thelial cells of the blood-brain barrier, or the
maternal facing (apical) membrane of the placen-
tal syncytiotrophoblast. In all of these organs, they
protect sensible tissues like the brain or the grow-
ing fetus against potentially toxic compounds. In
addition, ABC transporters are highly abundant in
the kidney and liver (Fig. 2). In hepatocytes they
are involved in the elimination of many endoge-
nous and exogenous compounds and therefore
expressed in both the canalicular and sinusoidal
membranes. The canalicular expression is a pre-
requisite for biliary elimination. For example, the
bile salt export pump (BSEP/ABCBI11) transports
bile salts, MRP2 (ABCC2) is involved in the
elimination of organic anions like bilirubin glucu-
ronides or glutathione conjugates, MDR3
(ABCB4) is essential for secretion of phospho-
lipids, and P-gp (ABCB1) eliminates a number of
drugs into bile. Other ABC transporters like
MRP3 (ABCC3) and MRP4 (ABCC4) are located
at the sinusoidal membrane of hepatocytes. They
transport xenobiotics and several conjugates back
into the blood and are of special relevance under
pathophysiological conditions. For example,
hepatic expression of both transporters is induced
during cholestasis, thereby protecting the hepato-
cytes against toxic bile acid concentrations by
transport into the blood followed by increased
renal elimination (Keppler 2011; Slot et al. 2011).
ABC transporters are also expressed in other
organs like the heart, lung, pancreas, or blood
cells. Here, they may be important for both phys-
iological processes and local drug concentrations.
In this context it is noteworthy that many of these
transporters not only eliminate xenobiotic and
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Fig. 1 Predicted
membrane topologies of
P-gp (ABCBI1), MRP1
(ABCC1), and BCRP
(ABCG2), exemplifying
full (P-gp and MRP1) and
half (BCRP) transporters, as
described in the main text
(NBF, nucleotide-binding
fold; TMD, transmembrane
domain; scheme modified

P-gp
(ABCB1)

Cytosol
N-terminus

glycosylation

according to Borst and \ )L ) C-terminus
Elferink 2002) Y Y
TMD, TMD,
N-terminus
[ S
MRP1 %&% %g
(ABCC1)
Cytosol
\ N ) C-terminus
TMD, TMD, TMD2
BCRP
(ABCG2)
Cytosol C-terminus

toxic compounds from the cell but export also
physiological important metabolites. Finally, the
intracellular localization of ABC transporters is
not restricted to the plasma membrane, but they
have been also detected in intracellular structures.
For example, ABCD1/2 is localized in peroxi-
somes and ABCB2/3 in the endoplasmic reticu-
lum. For further reading, see Borst and Elferink
(2002).

Physiological and Pathophysiological Aspects
Based on their physiological function, it is not
surprising that genetic variants affecting

NBF

N-terminus 0

expression and function of ABC proteins have
been identified as the underlying mechanisms for
several diseases. For example, loss-of-function
mutations in the gene encoding the cholesterol
transporter ABCA1 have been associated with
the Tangier disease (patients show a severe reduc-
tion of high-density lipoprotein, HDL), and
genetic variants of ABCA7 have been identified
as risk factors for Alzheimer’s disease (Aikawa
et al. 2018). Cystic fibrosis is caused by genetic
defects in the CFTR (ABCC7) gene, and certain
polymorphisms in the SUR1 (ABCCS8) gene are
risk factors for the development of diabetes. In
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ABC Transporters, Fig. 2 ABC transporter expression
and localization in pharmacokinetically important tissues,
such as the intestine, liver, kidney, and brain microvascular
endothelial cells forming the blood-brain barrier. Details

view of physiological processes, also several
MRPs are of interest. The block of biliary elimi-
nation of bilirubin glucuronides caused by the
absence of MRP2 (ABCC2) from the canalicular
membrane leads to the Dubin-Johnson syndrome.
Genetic defects of MRP6 (ABCC6) cause the
ectopic mineralization disorder pseudoxanthoma
elasticum (characterized by fragmentation and
mineralization of elastic fibers) probably through
a diminished hepatocellular export of ATP, which
is extracellularly rapidly converted into AMP and
the mineralization inhibitor pyrophosphate (Jan-
sen et al. 2013).

enterocytes

4) Apical localization

ABC Transporters

proximal
tubule cells

Blood-brain
barrier

glia cells

endothelial cells

tight junction

on localization and function of the depicted transporters are
given in the main text (xthe localization of MPR1 at the
blood-brain barrier is still unclear)

MRP4 (ABCC4), which is expressed in many
tissues and cancer cells, transports not only xeno-
biotics like nucleotide-based anticancer drugs but
also endogenous signaling molecules such as
cyclic nucleotides and has been established as an
independent regulator of especially cAMP levels
in several cell types including vascular smooth
muscle cells and platelets (Belleville-Rolland
et al. 2016). Genetic variations of MRPS
(ABCCI1) determine the human cerumen type
(wet or dry ear wax) and presence of underarm
osmidrosis but are also involved in therapy resis-
tance in breast cancer (Ishikawa et al. 2013).
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Based on their pathophysiological roles, ABC
proteins represent drug targets of established and
potential novel drugs. For example, the widely
used antidiabetic sulfonylureas and glinides
inhibit the regulatory subunit SUR1 (ABCCS8) of
the ATP-sensitive potassium channels (Karp),
thereby inducing the insulin secretion. Drugs
such as ivacaftor have been developed, which
can at least partially restore the function of
CFTR (ABCC7) in certain genetic defects and
thus treat cystic fibrosis (Berical et al. 2019).
Moreover, in order to treat this disease, several
approaches have already been evaluated to
replace the defective ABCC7 by gene therapy.
Other physiological relevant transporters like
MRP4 may also represent novel targets, e.g., to
regulate platelet function (Belleville-Rolland et al.
2016).

Drugs

From the pharmacological point of view, ABC
transporters represent drug targets (pharmacody-
namics relevance, see above) and — even more
important — affect the bioavailability of other
compounds including various drugs (pharmacoki-
netic relevance).

Drug Transport

The pharmacokinetic relevance of ABC trans-
porters becomes evident because of their high
expression at physiological barriers and excretion
organs like the intestine, blood-brain barrier, liver,
and kidney. Substrates of these transporters, espe-
cially for P-gp, BCRP, and several MRPs, are
intensively eliminated into the bile and the urine
or transported back to the intestine, thereby limit-
ing oral bioavailability. In this context, it is not
surprising that ABC transporters are involved in
drug-drug interactions in analogy to metabolizing
enzymes. Besides inhibition and in turn enhanced
bioavailability after coadministration of trans-
porter substrates or inhibitors, ABC transporters
can also be induced by certain mechanisms lead-
ing to a reduced bioavailability of their substrates.
For example, similar to the P450 enzyme
CYP3A4, the promoter of ABCBI1 (P-gp)

contains a transcription factor binding site for
the pregnane X receptor (PXR). PXR, which is
expressed in high abundance in the liver and
intestine, functions as a xenosensor detecting
potential toxic compounds. Its activation leads to
an enhanced expression of metabolizing enzyme
(e.g., CYP3A4) and ABC transporters (mainly P-
gp), thereby protecting the organisms. Of note,
not only drugs like rifampicin, barbiturates, or
carbamazepine but also apparently harmless com-
pounds like St. John’s wort (active compound
hyperforin) can activate PXR and in turn
upregulate transporter expression. Besides PXR,
binding sites for other nuclear receptors like the
constitutive androstane receptor (CAR), the
farnesoid X receptor (FXR), the steroid and xeno-
biotic receptor (SXR), or the peroxisome pro-
liferator-activated receptor (PPAR) have also
been described for ABC transporters.

Besides pharmacokinetic important organs,
ABC transporters are expressed in drug target
structures, thereby affecting local drug concentra-
tions. Many anticancer drugs are ABC transporter
substrates, and tumor cells often show an
enhanced transporter expression resulting in a
multidrug resistance phenotype, an unsolved
problem in chemotherapy. Inhibitors of ABC
transporters, especially P-gp, have been devel-
oped as chemosensitizers to overcome resistance,
but so far clinical trials revealed only limited or no
benefits. The problem of limited drug availability
at its target site is not restricted to cancer therapy.
As already mentioned, drug transporting ABC
transporters like P-gp and BCRP are also
expressed at the blood-brain barrier, thereby lim-
iting the access of drugs to the brain. While this is
useful for drugs like loperamide, a morphine-
based drug against diarrhea, it is a problem for
central acting drugs like antipsychotics. A list of
pharmacological relevant ABC transporters and
their substrates is given in Table 1.

In pharmacotherapy, a different response of
patients to a certain drug is often observed. A
part of this interindividual variability can be
attributed to pharmacokinetic differences of the
substances in the different patients. Besides the
abovementioned drug-drug interaction on trans-
porter level, genetic variability of ABC
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ABC Transporters, Table 1 Substrates of ABC trans- et al. 2017; Mao and Unadkat 2015; Slot et al. 2011; Zhou
porters involved in multidrug resistance and drug transport et al. 2008)
according to (Keppler 2011; Ishikawa et al. 2013; Lund

ABC
transporter

P-gp (ABCB1)

MRP1
(ABCCI)

MRP2
(ABCC2)

MRP3
(ABCC3)

MRP4
(ABCC4)

MRP5
(ABCC5)

MRPS
(ABCCI1)

BCRP
(ABCG2)

Transporter substrates

Endogenous substrates: steroids, lipids, bilirubin, bile acids

Drugs: anticancer drugs (e.g., docetaxel, doxorubicin, etoposide, erlotinib, imatinib, irinotecan,
paclitaxel, topotecan, vinblastine); antibiotic and virostatic drugs (e.g., abacavir, clarithromycin,
elvitegravir, erythromycin, indinavir, levofloxacin, maraviroc, nelfinavir, ritonavir, sofosbuvir);
immunomodulatory drugs (e.g., cyclosporin A, everolimus, methylprednisolone, sirolimus,
tacrolimus); cardiovascular drugs (e.g., apixaban, atorvastatin, dabigatran etexilate, digoxin,
simvastatin, talinolol, ticagrelor); and others (e.g., canagliflozin, cimetidine, domperidone,
fexofenadine, glibenclamide, ivermectin, lansoprazole, loperamide, morphine, oxcarbamazepine,
ondansetron, saxagliptin)

Endogenous substrates: cysteinyl leukotrienes (LTC4, LTD4); reduced (in co-transport) and
oxidized glutathione (GSH, GSSG); glutathione, glucuronate, and some sulfate conjugates of
endogenous lipophilic compounds such as steroids (e.g., estradiol 17B-glucuronide); folic acid;
sphingosine 1-phosphate; and others

Drugs (resistance profile): many cytostatic drugs (e.g., methotrexate, anthracyclines, vinca
alkaloids, etoposide, cyclophosphamide, paclitaxel; transport often GSH-dependent), colchicine;
HIV protease inhibitors (e.g., indinavir ritonavir); some antibiotics (e.g., ciprofloxacin); and others

Endogenous substrates: bilirubin glucuronides, cysteinyl leukotrienes, estradiol 17p-glucuronide,
estrone-3-sulfate, dianionic conjugated bile salts, and others

Drugs: glutathione, glucuronate, and sulfate conjugates of drugs; statins (e.g., pravastatin); HIV
protease inhibitors (e.g., indinavir, ritonavir); antibiotics (ampicillin, azithromycin, ceftriaxone);
resistance to cytostatic drugs (e.g., irinotecan, cisplatin, anthracyclines, vinca alkaloids,
methotrexate, mitoxantrone); valsartan; and others

Endogenous substrates: estradiol-173-glucuronide, LTC4, bile salts (e.g., cholylglycine), bilirubin
glucuronides, dehydroepiandrosterone-3-sulfate (DHEAS), and others

Drugs: methotrexate, clopidogrel metabolites, acetaminophen glucuronide, phytoestrogen
conjugates, and others

Endogenous substrates: cyclic nucleotides (cCAMP, cGMP), urate, estradiol-17f-glucuronide,
DHEAS, bile acids (+GSH), folate, LTC4, LTB4 (+GSH), prostanoids (PGE1/2, TXB2), sphingosine
1-phosphate, and others

Drugs: nucleoside-based antiviral drugs (e.g., adefovir, zidovudine, acyclovir, ganciclovir); some
HIV protease inhibitors (e.g., nelfinavir, tenofovir); resistance to purine-based anticancer drugs (e.g.,
6-mercaptopurine, 6-thioguanine), methotrexate; statins, furosemide, hydrochlorothiazide,
olmesartan, and others

Endogenous substrates: cyclic nucleotides (cGMP, cAMP, cCMP), folate, glutamate conjugates,
and others

Drugs: nucleoside-based antiviral drugs (e.g., adefovir), methotrexate and several other anticancer
drugs (resistance to cladribine, cladarabin, gemcitabine, cytarabine, 5-FU, 6-mercaptopurine,
thioguanine), and others

Endogenous substrates: cyclic nucleotides (cAMP, cGMP), estradiol-173-glucuronide, DHEAS,
LTC4, folate, GSH-conjugated sulfanylalkanols (odorant precursors), and others

Drugs: fluoropyrimidine-based anticancer drugs, eribulin, tenofovir, and others

Endogenous substrates: flavonoids, porphyrins, folate, sulfate conjugates (e.g., estrone-3-sulfate)
Drugs: anticancer drugs (e.g., topotecan, irinotecan, SN-38, methotrexate, imatinib, mitoxantrone);
antibiotics/anti-retrovirals (e.g., zidovudine, lamivudine, sulfasalazine, nitrofurantoin); prazosin,
pantoprazole, rosuvastatin, and others

transporter is also involved. Besides genetic loss- common polymorphisms have been identified in

of-function

variants leading to  the ABC transporter genes. Some of these variants

abovementioned inherited diseases, several more have been associated with a reduced transporter
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expression or function (Bruhn and Cascorbi
2014; Wolking et al. 2015). For example, an
amino acid exchange in the BCRP transporter
(rs2231142, 421C>A, Q141K) leads to reduced
transporter function and in turn causes enhanced
plasma levels of certain drugs (e.g., statins). In
the case of MRP2, a polymorphism (15717620, -
24C>T) in the promoter region of the ABCC2
gene has been identified. This variant is associ-
ated with a reduced transporter expression and in
turn pharmacokinetic differences of some MRP2
substrates in the respective patients. Interest-
ingly, the relevance of genetic variation within
the ABCBI (P-gp) gene is still less clear. Even if
ABCB1/P-gp is probably the best characterized
transporter in this field and various synonymous
and nonsynonymous polymorphisms as well as
deletions and insertions have been identified, the
clinical relevance of these polymorphisms is still
unclear.

Taken together, ABC transporters represent a
large family of proteins affecting the pharmacoki-
netic parameters of various drugs. Here, P-gp is
currently the best characterized member, and it
may also be one of the most important ABC trans-
porters with regard to drug transport. However,
ABC transporters act in a coordinated fashion
with other detoxification systems like P450
enzymes and uptake transporters. In particular,
P-gp and CYP3A4 are closely intertwined in
terms of regulation and function. Thus, further
reviews have to address the combined action of
various systems.
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Synonyms

Angiotensin-1 converting enzyme inhibitors

Angiotensin-1 Converting Enzyme (ACE)

Angiotensin-1 converting enzyme (ACE, EC
3.4.15.1, also known as peptidyl dipeptidase) is
a key zinc metallopeptidase in cardiovascular reg-
ulation that acts against angiotensin peptides
(Ang I, Ang II), as well as other vasoactive pep-
tides, including kinins (e.g., bradykinin),

Renin

(ACE2)

—i1 @D
v

ced)

A
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ACE Inhibitors, Fig. 1 An overview of the renin-
angiotensin-aldosterone system (RAAS). A complex
pathway of peptides converted to active hormones by

peptidases and key receptors provide a number of targets
for therapeutic intervention. AT2R, angiotensin type

ACE Inhibitors

substance P, and the acetylated tetrapeptide
Ac-SDKP. Becasue of its promiscuity as an
enzyme, ACE and its peptide substrates and prod-
ucts affect many physiologic processes, including
blood pressure control, hematopoiesis, reproduc-
tion, renal development, renal function, and the
immune response (for reviews see Acharya et al.
2003; Bernstein et al. 2012; Arendse et al. 2019).

ACE is a critical component of the renin-
angiotensin aldosterone system (RAAS) (Fig. 1),
which controls blood pressure and strongly influ-
ences the function of the heart and the kidneys, as
well as the walls of blood vessels. For these rea-
sons, drugs that target the RAAS, such as ACE
inhibitors, are among the most important thera-
peutic agents available today for the treatment of
hypertension, heart failure, coronary artery dis-
ease, renal insufficiency, and  general
atherosclerosis.

Mechanism of Action of ACE Inhibitors

ACE inhibitors competitively inhibit the enzy-
matic activity of ACE with K; values between

endo- .
‘peptidases

(ACE)
_{
(Ace)
J

Mas

2 receptor; AT1R, angiotensin type 1 receptor; Mas, Mas
receptor for Ang 1-7; ACE, angiotensin-converting
enzyme; ACE2, angiotensin-converting enzyme 2; ACE;,
ACE inhibitor; ATIR-I, angiotensin type 1 receptor
blocker
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107'% and 10", ACE cleaves a wide range of
pairs of amino acids from the carboxy-terminal
end of a plethora of peptide substrates. The con-
version of Ang I to Ang II and the degradation of
bradykinin to inactive fragments are considered
the most important functions of ACE. Ang II
(a powerful vasoconstrictor) primarily circulates
in the blood and causes the muscles surrounding
the blood vessels to contract, thereby narrowing
the vessels. This increases the pressure within the
vessels, causing an increase in blood pressure
(known as hypertension). Ang II also stimulates
the release of the hormone aldosterone from the
adrenal glands, which in turn signals the kidneys
to retain salt and water, which further raises blood
pressure. Furthermore, Ang II acts as a growth
factor that stimulates thickening of the blood ves-
sel walls, aggravating the process of atherosclero-
sis, or hardening of the arteries. Drugs acting on
ACE and the RAAS reduce blood pressure,
improve the function of the heart, and slow
down the progression of atherosclerosis and kid-
ney disease. However, Ang II is not the only
peptide metabolized by ACE.

ACE also acts on other peptide hormones,
notably bradykinin, which has the opposite effect
of Ang Il and acts as a vasodilator. ACE inhibition
results in reduced levels of Ang II (therefore, less
vasoconstriction) but increased levels of bradyki-
nin (therefore, more vasodilatation). These effects
together cause a greater reduction in blood pres-
sure than Ang II alone. Bradykinin also has anti-
inflammatory effects, all of which explains why
ACE inhibitors have a different therapeutic profile
than drugs that only block the Ang II receptor.
Ang I in the blood is formed from
angiotensinogen, a protein produced by the liver
and released into the blood. Ang II is formed from
Ang I in the blood by ACE. Current clinically
available ACE inhibitors are nonpeptide ana-
logues of Ang I that reduce (inhibit) the enzymatic
activity ACE by decreasing the production of Ang
II. As a result, blood vessels enlarge or dilate, and
blood pressure is reduced. This lower blood pres-
sure makes it easier for the heart to pump blood
and can improve the function of a failing heart. In
addition, the progression of kidney disease due to
high blood pressure or diabetes is slowed.

Molecular Properties of ACE

Human ACE is a type I transmembrane protein
comprised of 1306 amino acids when processed to
its mature form. A sequence of 22 hydrophobic
amino acids located near the carboxy terminus of
the protein serves as the transmembrane domain
that anchors ACE to the cell surface. This creates a
28-residue cytosolic domain and a 1277-residue
glycosylated extracellular domain. ACE is mem-
ber of a large family of proteins that undergo
cleavage with release of their ectodomain as a
soluble form of the protein. This solubilization
or shedding is a controlled process that can be
upregulated by protein kinase C activation and
other mechanisms, resulting in the release of
ACE into the systemic circulation.

There are two isoforms of human ACE: in
somatic tissues, it exists as a glycoprotein com-
posed of a mature single large polypeptide chain
of 1277 amino acids (sACE), corresponding to the
extracellular domain of the full-length membrane
protein. sACE is localized on the plasma mem-
brane of endothelial and absorptive epithelial and
neuroepithelial cells (Soubrier et al. 1988). The
approximate concentration of SACE in human
plasma is between 36 and 288 ng/ml (260-2076
pM), which is ~200-fold molar excess compared
with Ang I. However, sACE has limited impact on
tissue Ang-II levels, which might be more depen-
dent on the local conversion of Ang-I to Ang-1I by
endothelial ACE in direct proximity to type
I angiotensin II receptor (AT1R). sACE consists
of two homologous catalytically active centers on
each N and C domain, known as nACE and cACE
(Soubrier et al. 1988) (Fig. 2). In germinal cells,
ACE is synthesized as a lower molecular mass
form and is thought to play a role in sperm matu-
ration and the binding of sperm to the oviduct
epithelium. Testis ACE (tACE, 701 amino acids
long) is identical to cACE, except for a unique
36-residue sequence constituting its amino
terminus.

Our understanding of the function of ACE has
been aided by detailed molecular structures, based
on high-resolution crystal structures of cACE and
nACE with a clinical ACE inhibitor such as
lisinopril (Fig. 3, Natesh et al. 2003; Corradi
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N-domain (nACE

sACE
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ACE Inhibitors, Fig. 2 Schematic representation of the
domain structure of SACE and tACE. LR linker region,
NT N-terminus, SR stalk region, TM transmembrane

ACE 3 Structures of nACE

Inhibitors,
(PDB2C6N) and cACE (PDB1086) in complex with
lisinopril. Schematic representation of the overall struc-
tures of (a) nACE and (b) cACE inhibitor complexes (loop
regions are shortened for clarity), with close-up view of
bound lisinopril in the active site of (¢) nACE and (d)

Fig.

region, CT C-terminus, HExxH Zinc binding histidine
and catalytic glutamate conserved motif

cACE. Zinc ions and water molecules are depicted as
lilac and red spheres, respectively, with helices and
B-strands colored in rose and dark cyan, respectively.
Lisinopril and loop regions are colored magenta for
nACE and dark green for cACE
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et al. 2006). The catalytic site with the zinc ion is
buried deep inside the groove of the molecule. It
contains the conserved HEXXH zinc binding
motif, formed by two histidine residues that coor-
dinate the zinc ion together with a conserved
glutamate residue. Two functionally important
chloride ion binding sites, two with cACE and
one with nACE, have also been identified.

Both nACE and cACE possess distinct but
overlapping substrate specificity and physiologic
functions, differences in chloride dependence, and
distinct glycosylation patterns. Both domains cat-
alyze the degradation of bradykinin with similar
efficiencies. Knockout mouse models for these
domains show similar bradykinin plasma levels
as wild-type mice (Bernstein et al. 2011),
suggesting that bradykinin cleavage by one
domain can effectively compensate for the
absence of the other domain. In contrast, cACE
is the primary site for Ang-II formation and is
essential and sufficient for controlling blood pres-
sure in vivo (Fuchs et al., 2008; Bernstein et al.
2011). On the other hand, nACE is the primary
site for the clearance of the tetrapeptide Ac-SDKP,
a potent anti-inflammatory and antifibrotic pep-
tide. nACE is thermally more stable than cACE,
more resistant to proteolysis under denaturing
conditions, and is less dependent on chloride acti-
vation as compared to cACE.

Design of First-Generation ACE
Inhibitors

In 1977 Cushman et al. first described the synthe-
sis of a series of potent inhibitors of ACE
designed on the basis of an assumed mechanistic
homology with carboxypeptidase A (Cushman
et al. 1977). This ushered in a generation of
drugs including captopril, lisinopril and enalapril,
many of which are still used today in the
clinic. Remarkably, these inhibitors were devel-
oped without the benefit of any detailed chemical,
kinetic, or structural information on human ACE.

There are currently over 20 ACE inhibitors
available which belong to three different chemical
classes: thiolate compounds such as captopril;
carboxylate compounds, such as enalapril; and

1

phosphinate zinc binding group compounds,
such as fosinopril (Fig. 4). The thiolate com-
pounds exert more undesired, but also desired
effects, since they additionally interact with
endogenous sulfhydryl groups. Carboxylate
group compounds are in general more potent
than captopril. The phosphinate compounds are
usually characterized by the longest duration of
action.

The majority of these ACE inhibitors are pro-
drugs which improve their oral bioavailability, but
need to be converted to active compounds in the
liver, kidneys, and/or intestinal tract. In effect,
converting enzyme inhibitors have quite different
kinetic profiles with regard to half-life, onset and
duration of action, or tissue penetration. However,
in general, ACE inhibitors at the doses currently
used in the clinic are safe drugs with good glucose
tolerance.

Adverse Effects of Present ACE Inhibitors

ACE inhibitors are commonly prescribed because
they seldom cause adverse effects. Despite the
success of ACE inhibitors, many patients
(~20-25%) are unable to tolerate long-term treat-
ment with current-generation ACE inhibitors
because of undesired side effects. These side
effects may include:

* Dry cough

+ Skin rash

* Increased blood potassium levels
(hyperkalemia)

* Dizziness from blood pressure decreasing
too much

* Headaches

* Loss of taste

In rare cases, particularly in certain
populations, ACE inhibitors can cause issues in
the throat and tongue to swell (this is called
angioedema) which is potentially life threatening.
It is now widely accepted that these effects are
caused by increased bradykinin or substance
P and stimulation of the vagal fibres. Additionally,
ACE inhibitors can result in lower aldosterone



12 ACE Inhibitors

Thiolate zinc binding group
fo) 0 \-OH

Q 0
§\‘ /\)J\ < Q \}’OH
HSH@ OH HS N\:? ) S\/U\'D

Captopril /
OH Zofenopril é
Rentiapril

Carboxylate zinc binding group

(0] OH
X
@\/\/H i \\:3’ ©\/\/ it \\/OH ©\/\/H i
AN A : Ny
Eto Yo O/\OH E0 N0
Enalapril Lisinopril Quinapril
/3 N/\\( N\)J\N »
/g o A
Et0” Y0
C|Iazapnl Benazaprll Moexipril oMo
OMe

N
Et0” O
Trandolapril

SUNB S QU TSN e UPT LY

O R TN
Et0” Y0 o)\ N Eto” o E0 N ° Q
Imidapril Delapril Spirapril S\)

Phosphinate zinc binding group

HO.
©\/\ﬁ OHO\;O @\/\/\O §ore
o 5 2 0 :
P & ?LNQ
W H Ceranopril
0~
Fosinopril NH,

Py
)

3

T

=
<|
o
©
=
3

o

o
°

==

(\

ACE Inhibitors, Fig. 4 ACE inhibitors. The structures of 17 approved ACE inhibitors categorized according to their
respective zinc binding groups



ACE Inhibitors

levels which lead to hyperkalemia in patients with
poor kidney function. ACE inhibitors containing
sulfhydryl groups, such as captopril, have been
linked to rash, neutropenia, and nephrotic syn-
drome and these effects have been associated
with renal insufficiency.

Chronic use of ACE inhibitors can lead to ACE
inhibitor escape, where Ang-II is not reduced to
normal levels. The hydrolysis of Ang-I by
chymase is a possible mechanism for ACE inhib-
itor escape. Studies in rodents have shown that
chronic ACE inhibitor treatment caused a marked
increase in chymase activity in the left ventricle
mediated by the bradykinin receptor (Wei
et al. 2010).

Thus, some of these limitations of ACE inhib-
itors involving the wide substrate specificity of
ACE and the ability of other enzymes to metabo-
lize Ang II have necessitated the design of a next-
generation ACE inhibitor that is specific for the
cACE catalytic site of the enzyme.

ACE Inhibitors: Clinical Implications

Essential Hypertension

Essential or primary hypertension is a type of
elevated blood pressure that does not have an
identifiable cause, but is usually associated with
poor diet, obesity, genetic factors, smoking, and
lack of exercise. The first-choice drugs for the
treatment of hypertension are ACE inhibitors or
Ang II receptor blockers (ARBs), thiazide or
thiazide-like diuretics, and calcium channel
blockers. ACE inhibitors as initial therapy alone,
or in combination with thiazide diuretics, were
recommended in the landmark ALLHAT study
(ALLHAT Officers and Coordinators for the
ALLHAT Collaborative Research Group. The
Antihypertensive and Lipid Lowering Therapy
in Heart Attack Trial 2002). However, there
were no differences between ACE inhibitor
(lisinopril), diuretics (chlorthalidone), and cal-
cium channel blockers (amlodipine) in the pri-
mary endpoint of combined fatal coronary heart
disease or nonfatal or fatal myocardial infarction.
In other trials (HOPE and EUROPA), ACE inhib-
itors ramipril and perindopril produced better
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outcomes than placebo in patients at increased
cardiovascular risk. ACE inhibitor and ARBs
have a cardioprotective effect independent of
blood pressure lowering in patients at high risk
for a cardiovascular event, however the attained
blood pressure, not the drug used, is of primary
importance in such patients.

Congestive Heart Failure and Myocardial
Infarction

Several large randomized trials have shown that
ACE inhibitors reduce mortality in patients with
congestive heart failure (CHF). The reduction in
mortality has been seen in patients with asymp-
tomatic left ventricular dysfunction, and mainly
results from a reduction in the progression of
CHEF, although the incidence of myocardial infarc-
tion (MI) and sudden death may also decrease.
While ACE inhibitors improve the outcome in
patients with systolic dysfunction, a lot of patients
with hypertension develop CHF because of dia-
stolic dysfunction related to left ventricular hyper-
trophy. ACE inhibitors reverse left ventricular
hypertrophy in hypertensive patients, but have
not been shown to reduce adverse outcomes in
patients with heart failure and preserved ejection
fraction.

Changes in the shape, size, and function of the
heart due to cardiac injury (cardiac or ventricular
remodeling) following M1 is attenuated with ACE
inhibitor treatment. A number of large clinical
trials have demonstrated that ACE inhibitors
reduce short- and long-term mortality, prevent
onset of heart failure, and reduce the risk of stroke
following MI. Trials such as SAVE, AIRE, and
TRACE showed a 20% reduction in mortality in
high-risk patients with left ventricular dysfunction
or heart failure after MI. Moreover, ACE inhibitor
or ARB treatment after acute Ml is linked to long-
term survival, regardless of underlying renal func-
tion (Evans et al. 2016).

Diabetic Nephropathy

The burden of diabetes has increased dramatically
over the last three decades and the number of
adults living with diabetes is projected to rise
from 463 million (2019) to 700 million
(2045) (https://diabetesatlas.org/en/). Over time,
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diabetes can damage the blood vessels, heart,
eyes, kidneys, and nerves and it is one of the
leading causes of kidney disease. One of the
reasons ACE inhibitors are so effective in the
treatment of diabetes is their inhibition of bra-
dykinin metabolism. Bradykinin acts as a vaso-
dilator generating signals that lead to increased
production of nitric oxide. Additionally, brady-
kinin increases insulin sensitivity, most notably
during insulin resistance (Henrikson and Jacob
2003). ACE inhibitors also regulate the produc-
tion of the vasoconstrictor Ang Il and high blood
pressure (more specifically, increased glomeru-
lar capillary pressure) that contribute to the
acceleration of the complications associated
with diabetic nephropathy. Finally, there is evi-
dence for a local RAAS that directly affects the
pancreas and can lead to decreased insulin secre-
tion by regulating islet perfusion (Stump
et al. 2000).

ACE Inhibitors and Cancer

The RAAS also plays a critical role in cancer
biology and affects tumor growth and metastasis.
Angiotensin II has an antiapoptotic role that
involves ATI1R/phosphatidylinositol 3-kinase/
Akt activation and the suppression of caspase-9
and -3 activation. Ang II also reduces cell adhe-
sion and invasion via Ang II interaction with the
AT1 receptor, and this effect may be due to
reduced expression of integrins. However, there
have been conflicting results from epidemiologi-
cal studies assessing whether ACE inhibitors and
ARBs have protective effects against cancer risk.
The response to ACE inhibitor and ARB therapy
might depend on tumor type or stage, as studies
have shown that specific cancer types, such as
renal cell carcinoma, hepatocellular carcinoma,
certain lung cancers, and pancreatic cancer, are
more responsive to inhibition of the RAAS than
others (Rosenthal and Gavras 2019). Further-
more, the high ACE activity DD genotype is
associated with increased susceptibility to
develop certain cancers. ACE inhibitors and
ARBs have also been suggested to prevent
cardiotoxicity and improve patient outcomes in
different cancers when administered as
coadjuvants with chemotherapy.

ACE Inhibitors

ACE Inhibitors as Modulators of
Atherosclerosis

ACE inhibitors play an important role in the reg-
ulation of oxidative stress. Ang Il stimulates
NADPH oxidase in the vascular wall resulting in
the production of superoxide anion leading to
smooth muscle cell hypertrophy. ACE inhibitors
enhance nitric oxide activity and limit the forma-
tion of hydrogen peroxide which is involved in
smooth muscle cell proliferation and this retards
the progression of carotid artery thickening. The
benefits of the ACE inhibitor ramipril on the
thickness of the carotid artery, administered with
or without antioxidant vitamin E, were investi-
gated in the SECURE clinical trial (Lonn et al.
2001). The progression of atherosclerosis was
significantly less in the ramipril treated patients,
but there was no significant decrease in progres-
sion rates in the vitamin E group. In the random-
ized Quinapril Ischemic Event Trial (QUIET,
Cashin-Hemphill et al. 1999), there was no overall
benefit of quinapril on coronary angiography-
measured progression of atherosclerosis. This
outcome could be due to the dosage or that almost
20% of the patients were simultaneously taking
lipid-lowering drugs. ACE inhibitors should be
considered in appropriate patients to slow athero-
sclerosis or prevent its development.

New Generation of Domain-Specific ACE
Inhibitors

Until the molecular cloning of the ACE gene,
expression of the full-length protein and nACE
and cACE in isolation, ACE was assumed to
comprise a polypeptide chain with a single active
site and this was the basis for the design of all
currently used ACE inhibitors. Animal studies
using transgenic mice that express ACE with
inactivated nACE or cACE have provided valu-
able insights regarding the in vivo functions and
synergy of these structurally similar but noniden-
tical substrate binding sites (Fuchs et al. 2008).
We now know that nACE and cACE play distinct
physiological roles (with minor differences in
potency and pharmacokinetic properties). Con-
comitantly, domain-selective ACE inhibitors as a
single drug, or in combination with other inhibi-
tors or receptor blockers, offer the promise of safer
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and more effective treatment for hypertension and
cardiovascular disease.

Based on what we now know, inhibitors of
cACE will affect cardiovascular function similar
to those of current-generation ACE inhibitors, but
with improved side effect profiles largely due to
decreased bradykinin levels. Moreover, we cannot
rule out the possibility that cACE-selective inhib-
itors have a different therapeutic spectrum than
current-generation inhibitors, all of which are
essentially mixed nACE/cACE inhibitors. This,
together with reduced side effects, will enable
clear marked differentiation from current
strategies.

RAAS inhibitors, for example ACE inhibitors,
are among the few treatment options for slowing
cardiovascular disease (CVD) end-organ damage,
but the benefits seen with normal clinical doses of
these drugs are modest. This has been ascribed, in
part, to incomplete blockade of the RAAS.
A novel approach to limiting CVD end-organ
damage is increasing plasma levels of the acety-
lated tetrapeptide Ac-SDKP, a thymosin [4-
derived tetrapeptide that reduces target-organ
inflammation and fibrosis in relevant animal
models. Ac-SDKP degradation is almost entirely
dependent on hydrolysis by nACE, and current
ACE inhibitors lead to a fivefold increase in
plasma Ac-SDKP levels. It has been shown that
inactivation of nACE significantly reduces
bleomycin-induced lung fibrosis, implicating
Ac-SDKP in the mechanism of protection. This
represents a strong case for the use of nACE-
selective ACE inhibitors for increasing tolerance
to bleomycin in cancer therapy and treatment of
fibrosing lung diseases (Li et al. 2010). Highly
selective nACE inhibitors will substantially
increase Ac-SDKP levels, providing cardio- and
reno-protective effects, without leading to exces-
sive RAAS inhibition. AnnACE-selective inhibi-
tor will leave the cACE active site free to
metabolize angiotensin and bradykinin peptides
and will therefore not induce hypotension, hyper-
kalemia, and renal impairment that are observed
with excessive RAAS inhibition.

There are currently no domain-selective ACE
inhibitors commercially available. However, sev-
eral domain-specific residues within the active site
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of each domain have been identified that are
important for conferring domain selectivity.
A number of experimental compounds with up
to 3—4 orders of magnitude selectivity for one
domain over the other have been identified (Dive
et al. 1999; Watermeyer et al. 2008, 2010; Kroger
et al. 2009; Douglas et al. 2014). In particular, a
cACE-selective ACE inhibitor, lisinopril-
tryptophan (Lis-W) reduces blood pressure and
Ang 1II levels similarly to a conventional ACE
inhibitor without increasing bradykinin levels in
a hypertensive mouse model (Burger et al. 2014).
Moreover, nACE-selective phosphinic-based
inhibitors RXP407 (Dive et al. 1999) and 33RE
(Douglas et al. 2014), and cACE inhibitors
RXPA380 (Georgiadis et al. 2004) and carboxyl-
ate and ketone derivatives have proved to be
invaluable in elucidating the molecular basis of
the selectivity of nACE and cACE. The
phosphinic peptides RXP407 and RXPA380 are
good starting points for further development, but
are not suitable for use as pharmacological lead
compounds due to their poor pharmacokinetic
profiles. These compounds (delivered as a single
IV dose in rats) are rapidly cleared, unchanged,
via renal excretion, probably because of their
highly polar nature. Compounds with similar
pharmacological profiles, but substantially
improved PK properties, are required to deliver
the benefits of a domain-selective ACE inhibitor.

Dual ACE/NEP or Vasopeptidase Inhibitors

Maximal suppression of the RAAS by ACE inhib-
itors and ARBs does not always lead to adequate
reduction in blood pressure, and thus extensive
efforts have gone into developing vasopeptidase
inhibitors that target multiple structurally related
peptidases within the different vasoactive systems
controlling blood pressure and cardiovascular
function. The natriuretic peptide system is an
important peptide hormone system that influences
blood pressure, fluid and electrolyte homeostasis,
renal function, and cardiovascular function. Natri-
uretic peptides (NPs) comprise atrial, brain, and
C-type natriuretic peptides (ANP, BNP, and CNP,
respectively), which principally mediate natri-
uretic, diuretic, vasorelaxant, and antimitogenic
responses largely directed to reduce blood
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pressure and maintain fluid volume homeostasis
(reviewed by Pandey (2005)). With the discovery
and elucidation of the actions of NEP and its
inhibitors, both the similarities and differences
between the RAAS and the NP system have
become clearer. The greater efficacy of dual
ACE and NEP inhibitor therapy was initially con-
firmed in animal models of heart failure and car-
diomyopathy, followed by the development of
orally active molecules that inhibited both ACE
and NEP, i.e., dual inhibitors (Fournie-Zaluski
et al. 1994). The structural similarity between
ACE, NEP, and endothelin converting enzyme
(ECE-1) and their overlapping substrate specific-
ity enabled the development of single molecules
that target two or even three of these enzymes.
Remarkably, the design of current-generation
ACE inhibitors as well as vasopeptidase inhibitors
that have entered clinical trials to date has been
achieved with limited knowledge of the sequences
and three-dimensional structures of the enzymes.
Early dual inhibitors were designed rationally
based on specific ACE and NEP inhibitors. Com-
bining a P1’ benzyl group, known to be important
for NEP inhibition, with a P2’ proline group, as
seen in the first ACE inhibitors such as captopril,
led to a series of potent mercaptoacyl dipeptides
with dual inhibitory activity. Further structure—
activity relationships (SAR) to optimize for
in vivo activity led to conformationally restricted
dipeptide mimetics and, eventually, to the devel-
opment of omapatrilat. The dual ACE/NEP inhib-
itors were the first vasopeptidase inhibitors to
enter clinical trials. They were developed to
simultaneously block the ACE-mediated forma-
tion of the vasoconstrictor Ang II and the NEP-
mediated degradation of vasodilator natriuretic
peptides. Of the dual natriuretic peptides tested
in the clinic, omapatrilat progressed the furthest
but eventually failed to obtain approval after large
stage III clinical trials due to an increased risk of
vasodilator-mediated adverse effects. In the
OVERTURE (Omapatrilat Versus Enalapril Ran-
domized Trial of Utility in Reducing Events) trial,
comparison of omapatrilat with enalapril in 5,770
patients with heart failure failed to show any
superiority of omapatrilat in the primary endpoint
(all cause mortality or hospitalization for heart
failure) (Packer et al. 2002). Moreover,
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angioedema, which can obstruct the upper air-
ways, occurred more frequently with omapatrilat
(0.8%) than with enalapril (0.5%). In order to
obtain a clearer understanding of the frequency
of'this complication, and, in particular, to compare
omapatrilat with an ACE inhibitor, enalapril, the
OCTAVE (Omapatrilat Cardiovascular Treatment
vs. Enalapril) trial was conducted in 25,302
hypertensive subjects. As expected, omapatrilat
was superior to enalapril in reducing blood pres-
sure. However, the incidence of angioedema was
again significantly higher and more severe in the
subjects treated with omapatrilat (2.17%) than in
those receiving lisinopril (0.68%). Based on
observations of increased angioedema in the
OCTAVE trial, efforts to gain approval for
omapatrilat, and further clinical research on the
entire class of vasopeptidase inhibitors were
halted.

Despite decades of research on structure—
function relationships on peptidases that metab-
olize vasoactive peptides, in preclinical models
of cardiovascular diseases, and in clinical
research, significant uncertainties remain
regarding the physiology and pathophysiology
of vasoactive peptide systems and their effect on
cardiovascular function and diseases. It may be
unnecessary to leave both nACE and NEP free to
degrade bradykinin and other vasodilatory pep-
tides. Since ACE is the primary bradykinin-
metabolizing enzyme, nACE may compensate
sufficiently for cACE in preventing the buildup
of dangerous levels of bradykinin. Conse-
quently, dual cACE-selective/NEP inhibitors
are likely to offer a promising alternative for
the treatment of hypertension and cardiovascu-
lar disease by potentiating natriuretic peptide
levels in addition to blocking Ang II formation.
Important insights from the crystal structures of
cACE and NEP in complex with different inhib-
itors (Sharma et al. 2020) pave the way for the
development of new leads with similar efficacy
to omapatrilat, but with improved side effect
profiles.

Acknowledgments The ACE research was funded by the
Medical Research Council (UK) Research Grant
MR/M026647/1 (to KRA) and the National Research
Foundation (South Africa) CPRR grant 13082029517
(to EDS).



ACE Inhibitors

References

Acharya KR, Sturrock ED, Riordan JF et al (2003) ACE
revisited: a new target for structure-based drug design.
Nat Rev Drug Discov 2:891-902

ALLHAT Officers and Coordinators for the ALLHAT Col-
laborative Research Group. The Antihypertensive and
Lipid-Lowering Treatment to Prevent Heart Attack
Trial (2002) Major outcomes in high risk hypertensive
patients randomized to angiotensin-converting enzyme
inhibitor or calcium channel blocker vs diuretic. The
Antihypertensive and Lipid-Lowering Treatment to
Prevent Heart Attack Trial (ALLHAT). JAMA
288:2981-2997

Arendse LB, Danser AHJ, Poglitsch M et al (2019) Novel
therapeutic approaches targeting the renin-angiotensin
system and associated peptides in hypertension and
heart failure. Pharmacol Rev 71:539-570

Bernstein KE, Shen XZ, Gonzalez-Villalobos RA et al
(2011) Different in vivo functions of the two catalytic
domains of angiotensin-converting enzyme (ACE).
Curr Opin Pharmacol 11:105-111

Bernstein KE, Ong FS, Blackwell WL et al
(2012) A modern understanding of the traditional and
non-traditional biological functions of angiotensin-
converting enzyme. Pharmacol Rev 65:1-46

Burger D, Reudelhuber TL, Mahajan A et al (2014) Effects
of a domain-selective ACE inhibitor in a mouse model
of chronic angiotensin II-dependent hypertension. Clin
Sci (Lond) 127:57-63

Cashin-Hemphill L, Holmvang G, Chan RC et al
(1999) Angiotensin-converting enzyme inhibition as
antiatherosclerotic therapy: no answer yet. QUIET
Investigators. QUinapril Ischemic Event Trial. Am
J Cardiol 83:43-47

Corradi HR, Schwager SL, Nchinda AT et al (2006) Crystal
structure of the N domain of human somatic angiotensin
I-converting enzyme provides a structural basis for
domain-specific inhibitor design. J Mol Biol 357:964-974

Cushman DW, Cheung HS, Sabo EF et al (1977) Design of
potent competitive inhibitors of angiotensin-converting
enzyme. Carboxyalkanoyl and mercaptoalkanoyl
amino acids. Biochemistry 16:5484-5491

Dive V, Cotton J, Yiotakis A et al (1999) RXP407, a
phosphinic peptide, is a potent inhibitor of angioten-
sin I converting enzyme able to differentiate between
its two active sites. Proc Natl Acad Sci 96:
4330-4335

Douglas RG, Sharma RK, Masuyer G et al
(2014) Fragment-based design for the development of
N-domain-selective angiotensin-1-converting enzyme
inhibitors. Clin Sci (Lond) 126:305-313

Evans M, Carrero JJ, Szummer K et al (2016) Angiotensin-
converting enzyme inhibitors and angiotensin receptor
blockers in myocardial infarction patients with renal
dysfunction. J Am Coll Cardiol 67:1687-1697

Fournie-Zaluski MC, Coric P, Thery V et al (1994) New
dual inhibitors of neutral endopeptidase and
angiotensin-converting enzyme: rational design, bio-
availability, and pharmacological responses in experi-
mental hypertension. ] Med Chem 37:1070-1083

17

Fuchs S, Xiao HD, Hubert C et al (2008) Angiotensin-
converting enzyme C-terminal catalytic domain is the
main site of angiotensin I cleavage in vivo. Hyperten-
sion 51:267-274

Georgiadis D, Cuniasse P, Cotton J et al (2004) Structural
determinants of RXPA380, a potent and highly selec-
tive inhibitor of the angiotensin-converting enzyme
C-domain. Biochemistry 43:8048-8054

Henrikson EJ, Jacob S (2003) Modulation of metabolic
control by angiotensin converting enzyme (ACE) inhi-
bition. J Cell Physiol 196:171-179

Kroger WL, Douglas RG, O'Neill HG et al (2009) Investi-
gating the domain specificity of phosphinic inhibitors
RXPA380 and RXP407 in angiotensin-converting
enzyme. Biochemistry 48:8405-8412

LiP, Xiao HD, Xu J et al (2010) Angiotensin-converting
enzyme  N-terminal  inactivation  alleviates
bleomycin induced lung injury. Am J Pathol 177:
1113-1121

Lonn EM, Yusuf S, Dzavik V et al (2001) Effects of
ramipril and vitamin E on atherosclerosis: the study to
evaluate carotid ultrasound changes in patients treated
with ramipril and vitamin E (SECURE). Circulation
103:919-925

Natesh R, Schwager SLU, Sturrock ED et al (2003) Crystal
structure of the human angiotensin-converting enzyme-
lisinopril complex. Nature 421:551-554

Packer M, Califf RM, Konstam MA et al (2002) Compar-
ison of omapatrilat and enalapril in patients with
chronic heart failure: the omapatrilt versus enalapril
randomized trial of utility in reducing events
(OVERTURE). Circulation 106:920-926

Pandey KN (2005) Biology of natriuretic peptides and their
receptors. Peptides 26:901-932

Rosenthal T, Gavras I (2019) Renin-angiotensin inhibition
in combating malignancy: a review. Anticancer Res
39:4597-4602

Sharma U, Cozier G, Sturrock ED et al (2020) Molecular
basis for omapatrilat and sampatrilat binding to
neprilysin-implications for dual inhibitor design with
angiotensin-converting enzyme. J Med Chem
63:5488-5500

Soubrier F, Alhenc-Gelas F, Hubert C et al (1988) Two
putative active centers in human angiotensin
I-converting enzyme revealed by molecular cloning.
Proc Natl Acad Sci 85:9386-9390

Stump CS, Hamilton MT, Sowers JR (2006) Effect of
antihypertensive agents on the development of type
2 diabetes mellitus. Mayo Clin Proc 81:796-806

Watermeyer JM, Kroger WL, O'Neill HG et al (2008) Prob-
ing the basis of domain-dependent inhibition using
novel ketone inhibitors of angiotensin-converting
enzyme. Biochemistry 47:5942—-5950

Watermeyer JM, Kroger WL, O'Neill HG et al (2010) Char-
acterization of domain-selective inhibitor binding in
angiotensin-converting enzyme using a novel deriva-
tive of lisinopril. Biochem J 428:67-74

Wei C, Hase N, Inoue Y et al (2010) Mast cell chymase
limits the cardiac efficacy of Ang I-converting enzyme
inhibitor therapy in rodents. J Clin Invest
120:1229-1239



Acetylcholine
Acetylhydrolase

Cholinesterases

Acetylcholine Hydrolase

Cholinesterases

Acetylcholinesterase (EC
3.1.1.7) (AChE)

Cholinesterases

Acetylthiocholinesterase

Cholinesterases

Acetyl-B-
Methylcholinesterase

Cholinesterases

Acid-Sensing lon Channels

Silke Haerteis' and Stephan Kellenberger”
"Institute for Molecular and Cellular Anatomy,
University of Regensburg, Regensburg, Germany
*Department of Biomedical Sciences, University
of Lausanne, Lausanne, Switzerland

Definition
Acid-sensing ion channels (ASICs) are non-volt-

age-gated sodium channels transiently activated
by extracellular protons, selective for sodium, and

Acetylcholine Acetylhydrolase

belong to the epithelial sodium channel (ENaC)/
degenerin (DEG) family of ion channels. The
members of this ion channel superfamily share a
similar topology with short intracellular amino
and carboxy termini and two membrane-spanning
domains connected by a large extracellular
domain. The ASIC ion channel group consists of
four genes encoding at least six ASIC subunits
including 1a, 1b, 2a, 2b, 3, and 4.

Basic Characteristics

Channel family,
function

structural organization and

Channel Family

The ENaC/DEG superfamily of cation channels
encompasses more than 60 members including
the ASICs (Wemmie et al. 2006, 2013;
Kellenberger and Schild 2015, 2002; Stockand
et al. 2008). ASICs have been cloned in the mid-
1990s based on sequence homology to ENaC and
DEGs. Extracellular acidification opens ASICs
only transiently, because of rapid desensitization,
indicating that ASICs can exist in the three func-
tional states closed, open, and desensitized
(Waldmann et al. 1997; Carattino 2011;
Kellenberger and Schild 2015) (Fig. 1¢). ASICs
are expressed in all vertebrates and responsible
for acid-evoked currents in many neurons of the
nervous system.

Structural Organization

The ASIC group consists of four ASIC genes
resulting in six isoforms in rodents, termed
ASICla, ASIC1b, ASIC2a, ASIC2b, ASIC3 and
ASIC4 with a length of 500 to 560 amino acids
(Kellenberger and Schild 2015). The members of
ENaC/DEG superfamily share the same topology
characterized by a large extracellular domain
(~370 amino acids), short intracellular amino
and carboxy termini (~35 to 90 amino acids),
and two transmembrane regions (~20 amino
acids). Individual ASIC subunits assemble to
form homo- or heterotrimeric channels, except
for ASIC2b and ASIC4. ASIC2b is not functional
as homomeric channel, but forms functional



Acid-Sensing lon Channels

heteromeric channels together with other ASIC
subunits. So far, no role for ASIC4 in homo- or
heteromeric channels has been observed. In 2007,
Jasti et al. described the first crystal structure of
one of the ASIC proteins, the chicken ASICla
channel (Jasti et al. 2007) which shares 90%
sequence identity with human ASICla. This
structure showed that the channel is formed by
three subunits. The shape of the single subunit
was compared to that of a hand, and sub-domains
were named accordingly (Fig. 1a). Subsequently,
structures obtained from chicken ASICla
representing likely the closed and the toxin-
opened conformation were published (Baconguis
et al. 2014; Yoder et al. 2018).

Trans-
membrane

Normalized current

Desensitized

Acid-Sensing lon Channels, Fig. 1 ASIC structure
and function. (a) Structural model of a single ASIC sub-
unit (left) and of a channel trimer (right), based on the
crystal structure of chicken ASICla opened by mit-toxin
(Baconguis et al. 2014). The subdomains are color-coded
in one subunit and labeled. (b) Typical ASICla current
trace, obtained with two-electrode voltage-clamp to

Basic Functional Properties

ASICs are transiently activated by a rapid drop in
extracellular pH (Fig. 1b). Protons are the main
physiological activators of ASICs. As mentioned
above, ASICs exist in three different functional
states termed closed, open, and desensitized (Fig. 1c).
The transient peak current lasts hundreds of millisec-
onds and is terminated by desensitization. In ASIC3
and some heteromeric ASICs, the desensitization is
not complete and allows a small sustained current.
Return to physiological pH 7.4 brings the channel
into the closed state, allowing subsequent activation
by protons. The molecular details of the activation of
ASIC:s are currently not completely understood. Sev-
eral studies indicate that protonation events close to

pH74| 5 |74

10 A
10 s

7 6 5
pH

—60 mV of a Xenopus oocytes expressing ASICla. The
extracellular pH was changed as indicated on the top of the
Fig. (¢) Kinetic scheme of ASIC function. Upon a pH
change from 7.4 to 5.0, the channels pass from the closed
to the open and then into the desensitized state. (d) pH —
current response curve of ASIC1a. The normalized current
amplitude is plotted as a function of the pH
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the thumb (the “acidic pocket”), in the palm, and in
the extracellular pore entry contribute to pore opening
(see Kellenberger and Schild 2015).

ASICla opens at pH 7.0 and reaches its half-
maximal activation (pHsg) at pH 6.2—6.6 (Fig.
1d). The pHs, values of other ASICs are 5.9-6.3
(ASIC1b), 4.0-4.9 (ASIC2a), and 6.4-6.7 (ASIC3)
(Waldmann et al. 1999; Wemmie et al. 2013;
Kellenberger and Schild 2015). Many endogenous
and exogenous compounds were shown to modulate
ASIC function (reviewed in Wemmie et al. 2013;
Kellenberger and Schild 2015), as discussed below.

Physiological Roles

ASICs are expressed in all vertebrates; even organ-
isms with rudimentary nervous system have been
shown to express at least one of the ASICs. ASICs
contribute to acid-evoked currents in many neurons
of both the central and peripheral nervous systems
(CNS and PNS). ASICla, ASIC2a, and ASIC2b
are expressed throughout the CNS and PNS
(Wemmie et al. 2013; Kellenberger and Schild
2015). In the CNS, ASICla, ASIC2a, and ASIC2b
show their highest expression in the hippocampus,
the cortex, the cerebellum, the olfactory bulb, and
the amygdala. ASIC1b and ASIC3 expression is
restricted to the PNS (Wemmie et al. 2013).
ASIC3 is most abundant in dorsal root ganglia. So
far, ASIC4 has not been found in the PNS and
shows a more dispersed expression compared to
other ASICs in the CNS (rev. in Kellenberger and
Schild 2015; Wemmie et al. 2013).

Local pH changes affect the function of almost
any protein, including ion channels, and influence
therefore many cellular processes. The release of
the content of the synaptic vesicles that are acidic
leads to a rapid lowering of the pH in the synaptic
cleft. Tissue acidification occurs in situations such
as inflammation or ischemia (rev. in Boscardin
et al. 2016).

The activation of ASICs allows Na" entry into
neurons, inducing depolarization of the neuronal
membrane, generating action potentials, and,
thus, exciting the neurons. The physiological and
pathological roles of ASICs, demonstrated with
mouse models deficient of specific ASIC isoforms
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or with pharmacological approaches using small
molecule inhibitors or ASIC-specific toxins,
include fear conditioning and anxiety, retinal func-
tion, neurodegeneration after ischemic stroke, syn-
aptic plasticity, learning, and memory (Wemmie
et al. 2013; Kellenberger and Schild 2015). In
addition, studies with mice and rats showed evi-
dence for a role of ASICs in the PNS (mostly
ASIC3) and of ASICs of the CNS (mostly
ASICla) in the sensation of different forms of pain.
ASICs also have been proposed to play a role in
mechanosensation. While such a role has been dem-
onstrated on the level of the animal, it has so far not
been possible to directly show activation of ASICs
by mechanical stimuli in cell systems, suggesting
that ASICs are part of a mechanotransduction com-
plex that may not be intact in dissociated cells (rev. in
Wemmie et al. 2013 and Kellenberger and Schild
2015).

ASIC Regulators

lons and Polyamines

The activity of ASICs can be modulated by both
divalent and trivalent metal ions, including Ni2+,
Cu", Ca**, and Zn*" ions (rev. in Wemmie et al.
2013; Kellenberger and Schild 2015). Ca*" func-
tions as allosteric modulator of ASIC pH depen-
dence, likely by competing with protons for
binding sites, and as a channel blocker (Paukert
et al. 2004; Babini et al. 2002).

Depending on the ASIC type of channel, Zn*"
can potentiate or inhibit the channel. Zn>" has
been reported to potentiate proton-induced cur-
rents mediated by homomeric ASIC2a and hetero-
meric ASIC2a-containing channels at micromolar
concentrations. In contrast, ASIC1la, ASIC1b, and
ASIC3 are inhibited by Zn>"; nanomolar concen-
trations inhibit homomeric ASICla channels,
whereas ASIC1b and ASIC3 are only inhibited
by micromolar concentrations of Zn*" (rev. in
Wemmie et al. 2013; Kellenberger and Schild
2015; Baron and Lingueglia 2015).

The endogenous polyamine spermine modu-
lates proton-evoked ASIC1- and ASICla/
ASIC2a-mediated currents (Babini et al. 2002;
Baron and Lingueglia 2015).
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Neuropeptides

FANaC, a member of the ENaC/DEG ion channel
family, is activated by the neuropeptide
FMRFamide (Phe-Met-Arg-Phe amide).
FMRFamide has also been shown to modulate
the function of ASICI and ASIC3 by potentiating
their responses to acidification. The action on
ASICs of FMRFamide and related neuropeptides
involves amino acid residues in the palm and a
linker between the palm and the thumb (Vick and
Askwith  2015; Bargeton et al. 2019).
FMRFamide and related neuropeptides increase
ASIC activity in several ways, including an acidic
shift of the pH dependence of desensitization, a
slowing of the current decay, and the generation of
a sustained current (Fig. 2).

Proteases

Channel regulation by different types of proteases
(mainly serine proteases) is a topic that has been
intensively described for the ENaC. There is also
evidence for proteolytic regulation of ASICs. The
serine proteases trypsin and matriptase led to an
acidic shift of the pH dependence of the peak
current of ASIC1a, but not ASIC1b. Furthermore,
proteolytic cleavage of ASIC1a, but not ASIC2a,
by tissue kallikrein was reported (Su et al. 2011).
The relevant protease cleavage sites involved in
this process are located in the finger domain of
ASICla for trypsin and matriptase (Vukicevic
et al. 2006; Clark et al. 2010), similar to the
cleavage sites in a and YENaC. This points to a

Acid-Sensing lon
Channels, Fig. 2 Sites of
drug action. The figure
shows the sites of action of
toxins and small molecules
that inhibit or modulate
ASICs. Green lines mark
positive modulation, while
red lines indicate inhibition.
Note that for mit-toxin, the
interaction region with
ASIC is larger than
indicated and stretches over
the whole thumb and up to
the finger
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regulatory role of the finger domain for ASIC
activity.

Protein Kinases

The activation of the tropomyosin-related kinase
B (TrkB) has been shown to increase ASICla
activity and its surface expression via the
phosphatidylinositol 3-kinase (PI3-K)/protein
kinase B (PKB or Akt) pathway. Moreover, the
regulation of ASIC function by other protein
kinases has been described in many studies
(discussed in Wemmie et al. 2013; Kellenberger
and Schild 2015).

Amphiphilic Substances

Bile acids have been shown to activate two mem-
bers of the ENaC/DEG family of ion channels, the
bile acid-sensitive ion channel (BASIC) and
ENaC. It is conceivable that bile acids may play
arole in ASIC regulation under physiological and
pathophysiological conditions as increased ASIC
activity in sensory neurons of the gastrointestinal
tract may contribute to hyperalgesia and colonic
hypersensitivity observed in patients with irritable
bowel syndrome with increased bile acid concen-
trations in their gut. Indeed, it was reported that
the function of ASIC1a heterologously expressed
in Xenopus laevis oocytes is modulated by bile
acids and also other amphiphilic substances like
the detergent maltoside (Ilyaskin et al. 2017). In
the presence of these bile acids, the whole-cell
currents elicited by acidic pH were significantly

GMQ
Neuropeptides

Diminazene

Amiloride
Diminazene
GMQ
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increased. Molecular docking predicted binding
of bile acids to the pore region near the DEG site
(G433) in the open conformation of the channel.

Lipids

ASIC function can also be regulated by lipids,
e.g., arachidonic acid (AA) (Kellenberger and
Schild 2015). It has been proposed that AA acts
directly on ASICs to increase channel activity.
Recently it has been shown that AA together
with the endogenous lipid lysophosphati-
dylcholine can activate ASIC3 in the absence of
any extracellular acidification (Marra et al. 2016).

GMQ and Related Compounds

The synthetic compound 2-guanidine-4-
methylquinazoline (GMQ) is an exogenous mod-
ulator of ASICs. GMQ has been described as first
non-proton activator of ASICs that depends on
extracellular Ca®" and exclusively activates
ASIC3 (Yu et al. 2010). Subsequent studies
showed that GMQ affects the pH dependence of
not only ASIC3 but also ASICla, ASIC1b, and
ASIC2a, leading to activation of ASIC3, and a
decrease of the H'-activated current amplitude of
other ASICs (Alijevic and Kellenberger 2012).
Based on their structural similarity with GMQ,
two natural polyamines, the arginine metabolite
agmatine and its analog arcaine, have been pro-
posed to be endogenous non-proton ligands for
ASIC3. These two compounds lead to ASIC3
activation similar to GMQ however to a smaller
extent. Agmatine also activated heteromeric
ASIC3/ASIC1b channels, extending its potential
physiological relevance (rev. in Kellenberger and
Schild 2015; Baron and Lingueglia 2015).

Drugs

Toxins

Several peptide toxins have been identified that
bind to ASICs with nano- or micromolar affinity
and act as gating modifiers, inhibitors, or activa-
tors. The most important known ASIC toxins
comprise psalmotoxinl (PcTx1) from the venom
of the spider Psalmopoeus cambridgei, Hila of
the Australian funnel-web spider Hadronyche

Acid-Sensing lon Channels

infensa, APETX2 of the sea anemone Anthopleura
elegantissima, mambalgin of the black mamba
(Dendroaspis polylepis polylepis), and mit-toxin
of the Texas coral snake (Micrurus tener tener)
(Baron and Lingueglia 2015; Chassagnon et al.
2017). These are peptide toxins composed of >40
amino acid residues. PcTx1 and Hila are structur-
ally related, with Hila containing two tandem
PcTx1-like sequences. From co-crystallization
and mutagenesis studies, it is known that
mit-toxin, PcTx1, and mambalgin bind to the
thumb — acidic pocket region of ASICla (rev. in
Kellenberger and Schild 2015; Baron and
Lingueglia 2015). Mit-toxin activates ASICla,
ASIC1b, and ASIC3 and potentiates ASIC2a
opening by protons. PcTxl inhibits mostly
ASICla homomers, and mambalgin inhibits
ASICla and ASIC1b homomers and ASICla-
containing heteromers, while APETx2 inhibits
ASIC3 homomers and ASIC3-containing hetero-
mers. Except for APETx2, which inhibits besides
ASICs also voltage-gated Na" channels (Peigneur
et al. 2012; Blanchard et al. 2012), these toxins
appear to be specific for ASICs. PcTx1 and
mambalgin exert their inhibition by changing the
pH dependence of ASICs. PcTx1 shifts the pH
dependence of desensitization to more alkaline
values, leading to desensitization of ASICla at
physiological pH and preventing channel opening
by subsequent acidification. Mambalgin shifts the
pH dependence of activation to more acidic
values, thereby leading to a smaller response to
acidification. In contrast, the effects of Hila and
APETX2 appear to be pH-independent. The ASIC
toxins have been instrumental in defining some
functional roles of ASICs in animal studies
(Wemmie et al. 2013).

Small Molecule Inhibitors

Currently there are no ASIC-selective, high affin-
ity small molecule inhibitors available. Amiloride
and its derivative benzamil are pore blockers of
ENaC/DEG channels. While amiloride inhibits
ENaC with an ICsq of ~100 nM, its ICsq of
ASIC peak currents is >10 pM, and it does not
inhibit sustained ASIC currents. At concentra-
tions >10 pM, amiloride also inhibits several
transporters (Wemmie et al. 2013; Kellenberger
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and Schild 2015). In spite of these limitations,
amiloride has been used in experimental studies
in humans. A-317567 inhibits the transient and
sustained ASIC current fractions in dorsal root
ganglion neurons with an ICs¢ of 2-10 uM and
was shown to be more potent in treating pain than
amiloride in animal models (rev. in Kellenberger
and Schild 2015; Baron and Lingueglia 2015).
Nafamostat mesylate is a synthetic protease inhib-
itor with potential use as anticoagulant or anti-
tumor agent. It has been shown to inhibit ASIC
currents, including the sustained current compo-
nent of ASIC3, with ICs values of 2—70 uM (rev.
in Kellenberger and Schild 2015; Baron and
Lingueglia 2015). The analysis of a number of
anti-protozoal diarylamidines identified several
compounds that inhibit ASICs with ICsq values
of 0.3-40 uM. Among these, diminazene was
further characterized in several studies and
shown to inhibit ASICs in part by a pore block
(Schmidt et al. 2017). Diminazene inhibits the
related BASIC channel with similar affinity. Sev-
eral nonsteroidal anti-inflammatory  drugs
(NSAIDs) were shown to inhibit ASICs, with
ICso values in the micromolar range, requiring
thus much higher concentrations than clinically
used. ASIC mRNA levels in sensory neurons are
upregulated in inflammation. Interestingly, sev-
eral NSAIDs, including aspirin, diclofenac, and
ibuprofen, prevented this upregulation at thera-
peutic doses (Voilley et al. 2001). There have
been several attempts in developing more specific
and potent ASIC inhibitors, resulting in the iden-
tification of inhibitors with sub-micromolar affin-
ities (reviewed in Kellenberger and Schild 2015;
Baron and Lingueglia 2015; Rash 2017). How-
ever, so far, these compounds have not been fur-
ther developed.
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Adaptor Proteins
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Synonyms

Anchoring protein; Docking protein; Scaffold

Definition

Adaptor proteins are multi-domain proteins
(Fig. 1) that interact with components of signaling
pathways. As a consequence of these interactions,
adaptor proteins are able to regulate signaling
events within the cell, providing spatiotemporal
control and specificity and influencing how a cell
responds to a particular stimulus.

Basic Mechanisms

Adaptor proteins function by simultaneously
interacting with multiple components of a signaling
pathway (Fig. 2). In order to be able to bind to more
than one target protein at the same time, adaptor
proteins contain at least two specific protein-protein
interaction domains. These domains recognize spe-
cific motifs in the target proteins and can act
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completely independently, like beads on a string, or
interact with another domain within the same mol-
ecule. Such intramolecular interactions can regulate
the ability of each domain to bind to its tar-
get (Pawson 2007).

Adaptor Protein Function

In their simplest form, adaptor proteins perform a
straightforward function: the formation of multi-
protein complexes. However, they often provide
more than a static scaffold support for signaling
components, instead enabling dynamic regulation
to control propagation of pathways and networks.
Consequently, adaptor proteins can act as signaling
modules, directing propagation of the pathway,
influencing downstream events, and even modify-
ing the cellular response to a specific stimulus.
Some of the different roles of adaptor proteins are
described below. These functions are not mutually
exclusive, and more than one of these roles can be
performed by a particular adaptor protein at one
tiume.

Assembly of Signaling Complexes

This is perhaps the simplest function provided
by adaptor proteins and involves bringing
together individual components of a pathway.
These complexes promote propagation, and often

amplification, of the signal. Examples of this are
found in the MAP Kkinase pathway, where the
adaptor proteins IQGAP1 and kinase suppressor
of Ras-1 (KSR-1) bind to multiple kinases. Con-
sequently, they enable efficient signaling from one
kinase to the next (Brown and Sacks 2009;
Langeberg and Scott 2015).

Spatial Regulation

Adaptor proteins can assemble the complexes in
particular subcellular compartments. For exam-
ple, following activation of a ligand-bound
receptor, adaptor proteins can localize down-
stream signaling targets to the intracellular
domains of the receptor (Fig. 2a, b), thereby
facilitating propagation of the signal through
the cell. Note that signaling events occur in all
cell organelles and subcellular compartments
and adaptor proteins appear to function through-
out the cell. Through their ability to localize
signaling targets to specific subcellular compart-
ments, adaptor proteins not only facilitate sig-
naling events but also influence how these
signals are interpreted by the cell and conse-
quently the cellular response. For example, in
the MAP kinase pathway, signaling from